Alabama-Mississippi Coastal Classification Maps - Perdido Pass to Cat Island
Morton, Robert A.; Peterson, Russell L.
2005-01-01
The primary purpose of the USGS National Assessment of Coastal Change Project is to provide accurate representations of pre-storm ground conditions for areas that are designated high-priority because they have dense populations or valuable resources that are at risk from storm waves. Another purpose of the project is to develop a geomorphic (land feature) coastal classification that, with only minor modification, can be applied to most coastal regions in the United States. A Coastal Classification Map describing local geomorphic features is the first step toward determining the hazard vulnerability of an area. The Coastal Classification Maps of the National Assessment of Coastal Change Project present ground conditions such as beach width, dune elevations, overwash potential, and density of development. In order to complete a hazard vulnerability assessment, that information must be integrated with other information, such as prior storm impacts and beach stability. The Coastal Classification Maps provide much of the basic information for such an assessment and represent a critical component of a storm-impact forecasting capability. The map above shows the areas covered by this web site. Click on any of the location names or outlines to view the Coastal Classification Map for that area.
Global Stress Classification System for Materials Used in Solar Energy Applications
NASA Astrophysics Data System (ADS)
Slamova, Karolina; Schill, Christian; Herrmann, Jan; Datta, Pawan; Chih Wang, Chien
2016-08-01
Depending on the geographical location, the individual or combined impact of environmental stress factors and corresponding performance losses for solar applications varies significantly. Therefore, as a strategy to reduce investment risks and operating and maintenance costs, it is necessary to adapt the materials and components of solar energy systems specifically to regional environmental conditions. The project «GloBe Solar» supports this strategy by focusing on the development of a global stress classification system for materials in solar energy applications. The aim of this classification system is to assist in the identification of the individual stress conditions for every location on the earth's surface. The stress classification system could serve as a decision support tool for the industry (manufacturers, investors, lenders and project developers) and help to improve knowledge and services that can provide higher confidence to solar power systems.
NASA Astrophysics Data System (ADS)
Xie, W.-J.; Zhang, L.; Chen, H.-P.; Zhou, J.; Mao, W.-J.
2018-04-01
The purpose of carrying out national geographic conditions monitoring is to obtain information of surface changes caused by human social and economic activities, so that the geographic information can be used to offer better services for the government, enterprise and public. Land cover data contains detailed geographic conditions information, thus has been listed as one of the important achievements in the national geographic conditions monitoring project. At present, the main issue of the production of the land cover data is about how to improve the classification accuracy. For the land cover data quality inspection and acceptance, classification accuracy is also an important check point. So far, the classification accuracy inspection is mainly based on human-computer interaction or manual inspection in the project, which are time consuming and laborious. By harnessing the automatic high-resolution remote sensing image change detection technology based on the ERDAS IMAGINE platform, this paper carried out the classification accuracy inspection test of land cover data in the project, and presented a corresponding technical route, which includes data pre-processing, change detection, result output and information extraction. The result of the quality inspection test shows the effectiveness of the technical route, which can meet the inspection needs for the two typical errors, that is, missing and incorrect update error, and effectively reduces the work intensity of human-computer interaction inspection for quality inspectors, and also provides a technical reference for the data production and quality control of the land cover data.
Hydrological Classification, a Practical Tool for Mangrove Restoration
Van Loon, Anne F.; Te Brake, Bram; Van Huijgevoort, Marjolein H. J.; Dijksma, Roel
2016-01-01
Mangrove restoration projects, aimed at restoring important values of mangrove forests after degradation, often fail because hydrological conditions are disregarded. We present a simple, but robust methodology to determine hydrological suitability for mangrove species, which can guide restoration practice. In 15 natural and 8 disturbed sites (i.e. disused shrimp ponds) in three case study regions in south-east Asia, water levels were measured and vegetation species composition was determined. Using an existing hydrological classification for mangroves, sites were classified into hydrological classes, based on duration of inundation, and vegetation classes, based on occurrence of mangrove species. For the natural sites hydrological and vegetation classes were similar, showing clear distribution of mangrove species from wet to dry sites. Application of the classification to disturbed sites showed that in some locations hydrological conditions had been restored enough for mangrove vegetation to establish, in some locations hydrological conditions were suitable for various mangrove species but vegetation had not established naturally, and in some locations hydrological conditions were too wet for any mangrove species (natural or planted) to grow. We quantified the effect that removal of obstructions such as dams would have on the hydrology and found that failure of planting at one site could have been prevented. The hydrological classification needs relatively little data, i.e. water levels for a period of only one lunar tidal cycle without additional measurements, and uncertainties in the measurements and analysis are relatively small. For the study locations, the application of the hydrological classification gave important information about how to restore the hydrology to suitable conditions to improve natural regeneration or to plant mangrove species, which could not have been obtained by estimating elevation only. Based on this research a number of recommendations are given to improve the effectiveness of mangrove restoration projects. PMID:27008277
Hydrological Classification, a Practical Tool for Mangrove Restoration.
Van Loon, Anne F; Te Brake, Bram; Van Huijgevoort, Marjolein H J; Dijksma, Roel
2016-01-01
Mangrove restoration projects, aimed at restoring important values of mangrove forests after degradation, often fail because hydrological conditions are disregarded. We present a simple, but robust methodology to determine hydrological suitability for mangrove species, which can guide restoration practice. In 15 natural and 8 disturbed sites (i.e. disused shrimp ponds) in three case study regions in south-east Asia, water levels were measured and vegetation species composition was determined. Using an existing hydrological classification for mangroves, sites were classified into hydrological classes, based on duration of inundation, and vegetation classes, based on occurrence of mangrove species. For the natural sites hydrological and vegetation classes were similar, showing clear distribution of mangrove species from wet to dry sites. Application of the classification to disturbed sites showed that in some locations hydrological conditions had been restored enough for mangrove vegetation to establish, in some locations hydrological conditions were suitable for various mangrove species but vegetation had not established naturally, and in some locations hydrological conditions were too wet for any mangrove species (natural or planted) to grow. We quantified the effect that removal of obstructions such as dams would have on the hydrology and found that failure of planting at one site could have been prevented. The hydrological classification needs relatively little data, i.e. water levels for a period of only one lunar tidal cycle without additional measurements, and uncertainties in the measurements and analysis are relatively small. For the study locations, the application of the hydrological classification gave important information about how to restore the hydrology to suitable conditions to improve natural regeneration or to plant mangrove species, which could not have been obtained by estimating elevation only. Based on this research a number of recommendations are given to improve the effectiveness of mangrove restoration projects.
John Hof; Curtis Flather; Tony Baltic; Rudy King
2006-01-01
The 2005 Forest and Rangeland Condition Indicator Model is a set of classification trees for forest and rangeland condition indicators at the national scale. This report documents the development of the database and the nonparametric statistical estimation for this analytical structure, with emphasis on three special characteristics of condition indicator production...
A Dimensionally Aligned Signal Projection for Classification of Unintended Radiated Emissions
Vann, Jason Michael; Karnowski, Thomas P.; Kerekes, Ryan; ...
2017-04-24
Characterization of unintended radiated emissions (URE) from electronic devices plays an important role in many research areas from electromagnetic interference to nonintrusive load monitoring to information system security. URE can provide insights for applications ranging from load disaggregation and energy efficiency to condition-based maintenance of equipment-based upon detected fault conditions. URE characterization often requires subject matter expertise to tailor transforms and feature extractors for the specific electrical devices of interest. We present a novel approach, named dimensionally aligned signal projection (DASP), for projecting aligned signal characteristics that are inherent to the physical implementation of many commercial electronic devices. These projectionsmore » minimize the need for an intimate understanding of the underlying physical circuitry and significantly reduce the number of features required for signal classification. We present three possible DASP algorithms that leverage frequency harmonics, modulation alignments, and frequency peak spacings, along with a two-dimensional image manipulation method for statistical feature extraction. To demonstrate the ability of DASP to generate relevant features from URE, we measured the conducted URE from 14 residential electronic devices using a 2 MS/s collection system. Furthermore, a linear discriminant analysis classifier was trained using DASP generated features and was blind tested resulting in a greater than 90% classification accuracy for each of the DASP algorithms and an accuracy of 99.1% when DASP features are used in combination. Furthermore, we show that a rank reduced feature set of the combined DASP algorithms provides a 98.9% classification accuracy with only three features and outperforms a set of spectral features in terms of general classification as well as applicability across a broad number of devices.« less
A Dimensionally Aligned Signal Projection for Classification of Unintended Radiated Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vann, Jason Michael; Karnowski, Thomas P.; Kerekes, Ryan
Characterization of unintended radiated emissions (URE) from electronic devices plays an important role in many research areas from electromagnetic interference to nonintrusive load monitoring to information system security. URE can provide insights for applications ranging from load disaggregation and energy efficiency to condition-based maintenance of equipment-based upon detected fault conditions. URE characterization often requires subject matter expertise to tailor transforms and feature extractors for the specific electrical devices of interest. We present a novel approach, named dimensionally aligned signal projection (DASP), for projecting aligned signal characteristics that are inherent to the physical implementation of many commercial electronic devices. These projectionsmore » minimize the need for an intimate understanding of the underlying physical circuitry and significantly reduce the number of features required for signal classification. We present three possible DASP algorithms that leverage frequency harmonics, modulation alignments, and frequency peak spacings, along with a two-dimensional image manipulation method for statistical feature extraction. To demonstrate the ability of DASP to generate relevant features from URE, we measured the conducted URE from 14 residential electronic devices using a 2 MS/s collection system. Furthermore, a linear discriminant analysis classifier was trained using DASP generated features and was blind tested resulting in a greater than 90% classification accuracy for each of the DASP algorithms and an accuracy of 99.1% when DASP features are used in combination. Furthermore, we show that a rank reduced feature set of the combined DASP algorithms provides a 98.9% classification accuracy with only three features and outperforms a set of spectral features in terms of general classification as well as applicability across a broad number of devices.« less
DOT National Transportation Integrated Search
2012-09-01
This is an implementation project for the research completed as part of the following projects: SPR3005 Classification of Organic Soils : and SPR3227 Classification of Marl Soils. The methods developed for the classification of both soi...
Tropical Warm Semi-Arid Regions Expanding Over Temperate Latitudes In The Projected 21st Century
NASA Astrophysics Data System (ADS)
Rajaud, A.; de Noblet, N. I.
2015-12-01
Two billion people today live in drylands, where extreme climatic conditions prevail, and natural resources are limited. Drylands are expected to expand under several scenarios of climatic change. However, relevant adaptation strategies need to account for the aridity level: it conditions the equilibrium tree-cover density, ranging from deserts (hyper-arid) to dense savannas (sub-humid). Here we focus on the evolution of climatically defined warm semi-arid areas, where low-tree density covers can be maintained. We study the global repartition of these regions in the future and the bioclimatic shifts involved. We adopted a bioclimatological approach based on the Köppen climate classification. The warm semi-arid class is characterized by mean annual temperatures over 18°C and a rainfall-limitation criterion. A multi-model ensemble of CMIP5 projections for three representative concentration pathways was selected to analyze future conditions. The classification was first applied to the start, middle and end of the 20th and 21st centuries, in order to localize past and future warm semi-arid regions. Then, time-series for the classification were built to characterize trends and variability in the evolution of those regions. According to the CRU datasets, global expansion of the warm semi-arid area has already started (~+13%), following the global warming trend since the 1900s. This will continue according to all projections, most significantly so outside the tropical belt. Under the "business as usual" scenario, the global warm semi-arid area will increase by 30% and expand 12° poleward in the Northern Hemisphere, according to the multi-model mean. Drying drives the conversion from equatorial sub-humid conditions. Beyond 30° of latitude, cold semi-arid conditions become warm semi-arid through warming, and temperate conditions through combined warming and drying processes. Those various transitions may have drastic but also very distinct ecological and sociological impacts.
Voting strategy for artifact reduction in digital breast tomosynthesis.
Wu, Tao; Moore, Richard H; Kopans, Daniel B
2006-07-01
Artifacts are observed in digital breast tomosynthesis (DBT) reconstructions due to the small number of projections and the narrow angular range that are typically employed in tomosynthesis imaging. In this work, we investigate the reconstruction artifacts that are caused by high-attenuation features in breast and develop several artifact reduction methods based on a "voting strategy." The voting strategy identifies the projection(s) that would introduce artifacts to a voxel and rejects the projection(s) when reconstructing the voxel. Four approaches to the voting strategy were compared, including projection segmentation, maximum contribution deduction, one-step classification, and iterative classification. The projection segmentation method, based on segmentation of high-attenuation features from the projections, effectively reduces artifacts caused by metal and large calcifications that can be reliably detected and segmented from projections. The other three methods are based on the observation that contributions from artifact-inducing projections have higher value than those from normal projections. These methods attempt to identify the projection(s) that would cause artifacts by comparing contributions from different projections. Among the three methods, the iterative classification method provides the best artifact reduction; however, it can generate many false positive classifications that degrade the image quality. The maximum contribution deduction method and one-step classification method both reduce artifacts well from small calcifications, although the performance of artifact reduction is slightly better with the one-step classification. The combination of one-step classification and projection segmentation removes artifacts from both large and small calcifications.
NASA Astrophysics Data System (ADS)
Cheng, Tao; Zhang, Jialong; Zheng, Xinyan; Yuan, Rujin
2018-03-01
The project of The First National Geographic Conditions Census developed by Chinese government has designed the data acquisition content and indexes, and has built corresponding classification system mainly based on the natural property of material. However, the unified standard for land cover classification system has not been formed; the production always needs converting to meet the actual needs. Therefore, it proposed a refined classification method based on multi source of remote sensing information fusion. It takes the third-level classes of forest land and grassland for example, and has collected the thematic data of Vegetation Map of China (1:1,000,000), attempts to develop refined classification utilizing raster spatial analysis model. Study area is selected, and refined classification is achieved by using the proposed method. The results show that land cover within study area is divided principally among 20 classes, from subtropical broad-leaved forest (31131) to grass-forb community type of low coverage grassland (41192); what's more, after 30 years in the study area, climatic factors, developmental rhythm characteristics and vegetation ecological geographical characteristics have not changed fundamentally, only part of the original vegetation types have changed in spatial distribution range or land cover types. Research shows that refined classification for the third-level classes of forest land and grassland could make the results take on both the natural attributes of the original and plant community ecology characteristics, which could meet the needs of some industry application, and has certain practical significance for promoting the product of The First National Geographic Conditions Census.
Water Quality Conditions at Tributary Projects in the Omaha District: 2008 Report
2009-01-01
SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release... distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as... Plankton
Application of information-retrieval methods to the classification of physical data
NASA Technical Reports Server (NTRS)
Mamotko, Z. N.; Khorolskaya, S. K.; Shatrovskiy, L. I.
1975-01-01
Scientific data received from satellites are characterized as a multi-dimensional time series, whose terms are vector functions of a vector of measurement conditions. Information retrieval methods are used to construct lower dimensional samples on the basis of the condition vector, in order to obtain these data and to construct partial relations. The methods are applied to the joint Soviet-French Arkad project.
NASA Astrophysics Data System (ADS)
Otero, Noelia; Sillmann, Jana; Butler, Tim
2018-03-01
A gridded, geographically extended weather type classification has been developed based on the Jenkinson-Collison (JC) classification system and used to evaluate the representation of weather types over Europe in a suite of climate model simulations. To this aim, a set of models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) is compared with the circulation from two reanalysis products. Furthermore, we examine seasonal changes between simulated frequencies of weather types at present and future climate conditions. The models are in reasonably good agreement with the reanalyses, but some discrepancies occur in cyclonic days being overestimated over North, and underestimated over South Europe, while anticyclonic situations were overestimated over South, and underestimated over North Europe. Low flow conditions were generally underestimated, especially in summer over South Europe, and Westerly conditions were generally overestimated. The projected frequencies of weather types in the late twenty-first century suggest an increase of Anticyclonic days over South Europe in all seasons except summer, while Westerly days increase over North and Central Europe, particularly in winter. We find significant changes in the frequency of Low flow conditions and the Easterly type that become more frequent during the warmer seasons over Southeast and Southwest Europe, respectively. Our results indicate that in winter the Westerly type has significant impacts on positive anomalies of maximum and minimum temperature over most of Europe. Except in winter, the warmer temperatures are linked to Easterlies, Anticyclonic and Low Flow conditions, especially over the Mediterranean area. Furthermore, we show that changes in the frequency of weather types represent a minor contribution of the total change of European temperatures, which would be mainly driven by changes in the temperature anomalies associated with the weather types themselves.
NASA Astrophysics Data System (ADS)
Garcia-Vila, Margarita; Corselli, Rocco; Bonet, María Teresa; Lopapa, Giuseppe; Pillitteri, Valentina; Fereres, Elias
2017-04-01
In the past, the lack of technologies (e.g. synthetic fertilizers) to overcome biophysical limitations has played a central role in land use planning. Thus, landscape management and agronomic practices are reactions to local knowledge and perceptions on natural resources, particularly soil. In the framework of the European research project MEMOLA (FP7), the role of local farmers knowledge and perceptions on soil for the historical land use through the spatial distribution of crops and the various management practices have been assessed in three different areas of Monti di Trapani region (Sicily). The identification of the soil classification systems of farmers and the criteria on which it is based, linked to the evaluation of the farmers' ability to identify and map the different soil types, was a key step. Nevertheless, beyond the comparison of the ethnopedological classification approach versus standard soil classification systems, the study also aims at understanding local soil management and land use decisions. The applied methodology was based on an interdisciplinary approach, combining soil science methods and participatory appraisal tools, particularly: i) semi-structured interviews; ii) soil sampling and analysis; iii) discussion groups; and iv) a workshop with local edafologists and agronomists. A rich local glossary of terms associated with the soil conditions and an own soil classification system have been identified in the region. Also, a detailed soil map, including process of soil degradation and soil capability, has been generated. This traditional soil knowledge has conditioned the management and the spatial distribution of the crops, and therefore the configuration of the landscape, until the 1990s. Acknowledgements This work has been funded by the European Union project MEMOLA (Grant agreement no: 613265).
23 CFR 646.210 - Classification of projects and railroad share of the cost.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 23 Highways 1 2010-04-01 2010-04-01 false Classification of projects and railroad share of the... ENGINEERING AND TRAFFIC OPERATIONS RAILROADS Railroad-Highway Projects § 646.210 Classification of projects and railroad share of the cost. (a) State laws requiring railroads to share in the cost of work for...
Water Quality Conditions at Tributary Projects in the Omaha District: 2006 Annual Report
2007-12-01
ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public...release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...14 2.3.3 Plankton
7 CFR 1794.31 - Classification.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 12 2013-01-01 2013-01-01 false Classification. 1794.31 Section 1794.31 Agriculture... Classification. (a) Electric and telecommunications programs. RUS will normally determine the proper environmental classification of projects based on its evaluation of the project description set forth in the...
7 CFR 1794.31 - Classification.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 12 2012-01-01 2012-01-01 false Classification. 1794.31 Section 1794.31 Agriculture... Classification. (a) Electric and telecommunications programs. RUS will normally determine the proper environmental classification of projects based on its evaluation of the project description set forth in the...
7 CFR 1794.31 - Classification.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 12 2014-01-01 2013-01-01 true Classification. 1794.31 Section 1794.31 Agriculture... Classification. (a) Electric and telecommunications programs. RUS will normally determine the proper environmental classification of projects based on its evaluation of the project description set forth in the...
7 CFR 1794.31 - Classification.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 12 2010-01-01 2010-01-01 false Classification. 1794.31 Section 1794.31 Agriculture... Classification. (a) Electric and telecommunications programs. RUS will normally determine the proper environmental classification of projects based on its evaluation of the project description set forth in the...
7 CFR 1794.31 - Classification.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 12 2011-01-01 2011-01-01 false Classification. 1794.31 Section 1794.31 Agriculture... Classification. (a) Electric and telecommunications programs. RUS will normally determine the proper environmental classification of projects based on its evaluation of the project description set forth in the...
NASA Astrophysics Data System (ADS)
Stryhal, Jan; Huth, Radan
2018-03-01
Winter midlatitude atmospheric circulation has been extensively studied for its tight link to surface weather, and automated circulation classifications have often been used to this end. Here, eight such classifications are applied to daily sea level pressure patterns simulated by an ensemble of CMIP5 GCMs twenty-first century projections for the British Isles and central Europe in order to robustly estimate future changes in frequency, persistence, and strength of synoptic-scale circulation there. All methods are able to identify present-day biases of models reported before, such as an overestimated occurrence of zonal flow and underestimation of anticyclonic conditions and easterly advection, although the strength of these biases varies among the methods. In future, models show that the zonal flow will become more frequent while the strength of the mean flow is not projected to change. Over the British Isles, the models that better simulate the latitude of zonal flow over the historical period indicate a slight equatorward shift of westerlies in their projections, while the poleward expansion of circulation—expected in future at global scale—is apparent in those models that have large errors. Over central Europe, some classifications indicate an increase in persistence and especially in frequency of anticyclonic types, which is, however, shown to be rather an artifact of some methods than a real feature. On the other hand, the easterly flow is robustly projected to become markedly weaker in central Europe, which we hypothesize might be an important factor contributing to the projected decrease of cold extremes there.
NASA Astrophysics Data System (ADS)
Baker, Ernest; van der Voort, Martijn; NATO Munitions Safety Information Analysis Centre Team
2017-06-01
Ballistics trajectory and impact conditions calculations were conducted in order to investigate the origin of the projection criteria for Insensitive Munitions (IM) and Hazard Classification (HC). The results show that the existing IM and HC projection criteria distance-mass relations are based on launch energy rather than impact conditions. The distance-mass relations were reproduced using TRAJCAN trajectory analysis by using launch energies of 8, 20 and 79J and calculating the maximum impact distance reached by a natural fragment (steel) launched from 1 m height. The analysis shows that at the maximum throw distances, the impact energy is generally much smaller than the launch energy. Using maximum distance projections, new distance-mass relations were developed that match the criteria based on impact energy at 15m and beyond rather than launch energy. Injury analysis was conducted using penetration injury and blunt injury models. The smallest projectile masses in the distance-mass relations are in the transition region from penetration injury to blunt injury. For this reason, blunt injury dominates the assessment of injury or lethality. State of the art blunt injury models predict only minor injury for a 20J impact. For a 79J blunt impact, major injury is likely to occur. MSIAC recommends changing the distance-mass relation that distinguishes a munitions burning response to a 20 J impact energy criterion at 15 m and updating of the UN Orange Book.
Jones, William R.; Garber, Adrienne
2012-01-01
The Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) funds over 100 wetland restoration projects across Louisiana. Integral to the success of CWPPRA is its long-term monitoring program, which enables State and Federal agencies to determine the effectiveness of each restoration effort. One component of this monitoring program is the analysis of high-resolution, color-infrared aerial photography at the U.S. Geological Survey's National Wetlands Research Center in Lafayette, Louisiana. Color-infrared aerial photography (9- by 9-inch) is obtained before project construction and several times after construction. Each frame is scanned on a photogrametric scanner that produces a high-resolution image in Tagged Image File Format (TIFF). By using image-processing software, these TIFF files are then orthorectified and mosaicked to produce a seamless image of a project area and its associated reference area (a control site near the project that has common environmental features, such as marsh type, soil types, and water salinities.) The project and reference areas are then classified according to pixel value into two distinct classes, land and water. After initial land and water ratios have been established by using photography obtained before and after project construction, subsequent comparisons can be made over time to determine land-water change. Several challenges are associated with the land-water interpretation process. Primarily, land-water classifications are often complicated by the presence of floating aquatic vegetation that occurs throughout the freshwater systems of coastal Louisiana and that is sometimes difficult to differentiate from emergent marsh. Other challenges include tidal fluctuations and water movement from strong winds, which may result in flooding and inundation of emergent marsh during certain conditions. Compensating for these events is difficult but possible by using other sources of imagery to verify marsh conditions for other dates in time.
Laufenberg, Jared S.; Clark, Joseph D.; Chandler, Richard B.
2018-01-01
Monitoring vulnerable species is critical for their conservation. Thresholds or tipping points are commonly used to indicate when populations become vulnerable to extinction and to trigger changes in conservation actions. However, quantitative methods to determine such thresholds have not been well explored. The Louisiana black bear (Ursus americanus luteolus) was removed from the list of threatened and endangered species under the U.S. Endangered Species Act in 2016 and our objectives were to determine the most appropriate parameters and thresholds for monitoring and management action. Capture mark recapture (CMR) data from 2006 to 2012 were used to estimate population parameters and variances. We used stochastic population simulations and conditional classification trees to identify demographic rates for monitoring that would be most indicative of heighted extinction risk. We then identified thresholds that would be reliable predictors of population viability. Conditional classification trees indicated that annual apparent survival rates for adult females averaged over 5 years () was the best predictor of population persistence. Specifically, population persistence was estimated to be ≥95% over 100 years when , suggesting that this statistic can be used as threshold to trigger management intervention. Our evaluation produced monitoring protocols that reliably predicted population persistence and was cost-effective. We conclude that population projections and conditional classification trees can be valuable tools for identifying extinction thresholds used in monitoring programs.
Laufenberg, Jared S; Clark, Joseph D; Chandler, Richard B
2018-01-01
Monitoring vulnerable species is critical for their conservation. Thresholds or tipping points are commonly used to indicate when populations become vulnerable to extinction and to trigger changes in conservation actions. However, quantitative methods to determine such thresholds have not been well explored. The Louisiana black bear (Ursus americanus luteolus) was removed from the list of threatened and endangered species under the U.S. Endangered Species Act in 2016 and our objectives were to determine the most appropriate parameters and thresholds for monitoring and management action. Capture mark recapture (CMR) data from 2006 to 2012 were used to estimate population parameters and variances. We used stochastic population simulations and conditional classification trees to identify demographic rates for monitoring that would be most indicative of heighted extinction risk. We then identified thresholds that would be reliable predictors of population viability. Conditional classification trees indicated that annual apparent survival rates for adult females averaged over 5 years ([Formula: see text]) was the best predictor of population persistence. Specifically, population persistence was estimated to be ≥95% over 100 years when [Formula: see text], suggesting that this statistic can be used as threshold to trigger management intervention. Our evaluation produced monitoring protocols that reliably predicted population persistence and was cost-effective. We conclude that population projections and conditional classification trees can be valuable tools for identifying extinction thresholds used in monitoring programs.
A standard lexicon for biodiversity conservation: unified classifications of threats and actions.
Salafsky, Nick; Salzer, Daniel; Stattersfield, Alison J; Hilton-Taylor, Craig; Neugarten, Rachel; Butchart, Stuart H M; Collen, Ben; Cox, Neil; Master, Lawrence L; O'Connor, Sheila; Wilkie, David
2008-08-01
An essential foundation of any science is a standard lexicon. Any given conservation project can be described in terms of the biodiversity targets, direct threats, contributing factors at the project site, and the conservation actions that the project team is employing to change the situation. These common elements can be linked in a causal chain, which represents a theory of change about how the conservation actions are intended to bring about desired project outcomes. If project teams want to describe and share their work and learn from one another, they need a standard and precise lexicon to specifically describe each node along this chain. To date, there have been several independent efforts to develop standard classifications for the direct threats that affect biodiversity and the conservation actions required to counteract these threats. Recognizing that it is far more effective to have only one accepted global scheme, we merged these separate efforts into unified classifications of threats and actions, which we present here. Each classification is a hierarchical listing of terms and associated definitions. The classifications are comprehensive and exclusive at the upper levels of the hierarchy, expandable at the lower levels, and simple, consistent, and scalable at all levels. We tested these classifications by applying them post hoc to 1191 threatened bird species and 737 conservation projects. Almost all threats and actions could be assigned to the new classification systems, save for some cases lacking detailed information. Furthermore, the new classification systems provided an improved way of analyzing and comparing information across projects when compared with earlier systems. We believe that widespread adoption of these classifications will help practitioners more systematically identify threats and appropriate actions, managers to more efficiently set priorities and allocate resources, and most important, facilitate cross-project learning and the development of a systematic science of conservation.
Refining Landsat classification results using digital terrain data
Miller, Wayne A.; Shasby, Mark
1982-01-01
Scientists at the U.S. Geological Survey's Earth Resources Observation systems (EROS) Data Center have recently completed two land-cover mapping projects in which digital terrain data were used to refine Landsat classification results. Digital ter rain data were incorporated into the Landsat classification process using two different procedures that required developing decision criteria either subjectively or quantitatively. The subjective procedure was used in a vegetation mapping project in Arizona, and the quantitative procedure was used in a forest-fuels mapping project in Montana. By incorporating digital terrain data into the Landsat classification process, more spatially accurate landcover maps were produced for both projects.
A best-fit model for concept vectors in biomedical research grants.
Johnson, Calvin; Lau, William; Bhandari, Archna; Hays, Timothy
2008-11-06
The Research, Condition, and Disease Categorization (RCDC) project was created to standardize budget reporting by research topic. Text mining techniques have been implemented to classify NIH grant applications into proper research and disease categories. A best-fit model is shown to achieve classification performance rivaling that of concept vectors produced by human experts.
ERIC Educational Resources Information Center
Peterson, Norman G., Ed.
As part of the United States Army's Project A, research has been conducted to develop and field test a battery of experimental tests to complement the Armed Services Vocational Aptitude Battery in predicting soldiers' job performance. Project A is the United States Army's large-scale manpower effort to improve selection, classification, and…
A signature dissimilarity measure for trabecular bone texture in knee radiographs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woloszynski, T.; Podsiadlo, P.; Stachowiak, G. W.
Purpose: The purpose of this study is to develop a dissimilarity measure for the classification of trabecular bone (TB) texture in knee radiographs. Problems associated with the traditional extraction and selection of texture features and with the invariance to imaging conditions such as image size, anisotropy, noise, blur, exposure, magnification, and projection angle were addressed. Methods: In the method developed, called a signature dissimilarity measure (SDM), a sum of earth mover's distances calculated for roughness and orientation signatures is used to quantify dissimilarities between textures. Scale-space theory was used to ensure scale and rotation invariance. The effects of image size,more » anisotropy, noise, and blur on the SDM developed were studied using computer generated fractal texture images. The invariance of the measure to image exposure, magnification, and projection angle was studied using x-ray images of human tibia head. For the studies, Mann-Whitney tests with significance level of 0.01 were used. A comparison study between the performances of a SDM based classification system and other two systems in the classification of Brodatz textures and the detection of knee osteoarthritis (OA) were conducted. The other systems are based on weighted neighbor distance using compound hierarchy of algorithms representing morphology (WND-CHARM) and local binary patterns (LBP). Results: Results obtained indicate that the SDM developed is invariant to image exposure (2.5-30 mA s), magnification (x1.00-x1.35), noise associated with film graininess and quantum mottle (<25%), blur generated by a sharp film screen, and image size (>64x64 pixels). However, the measure is sensitive to changes in projection angle (>5 deg.), image anisotropy (>30 deg.), and blur generated by a regular film screen. For the classification of Brodatz textures, the SDM based system produced comparable results to the LBP system. For the detection of knee OA, the SDM based system achieved 78.8% classification accuracy and outperformed the WND-CHARM system (64.2%). Conclusions: The SDM is well suited for the classification of TB texture images in knee OA detection and may be useful for the texture classification of medical images in general.« less
75 FR 47897 - Proposed Collection; Comment Request for Regulation Project
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-09
...-Classification (Section 301.7701-4). DATES: Written comments should be received on or before October 8, 2010 to...: Title: Environmental Settlement Funds-Classification. OMB Number: 1545-1465. Regulation Project Number... classification of trusts formed to collect and disburse amounts for environmental remediation of an existing...
1977-03-01
2 1.3 C’oordinate Systems ............ *............... 41 1.4 Scale . ..................................... 1.5 Classification by Feature...50 8S Conditions of Equal Area and Conformiality ..... 57 2.9 (Convergence of’the Meridians .......... 57 1.10 Rotation of’ the Coordinate System ...325 vI . ... .I l i FIGURES Figure Title Page 1.2.1 Distortion Ft’fects ............................... 3I 1.3.1 Terestral. oordinato System
Applying matching pursuit decomposition time-frequency processing to UGS footstep classification
NASA Astrophysics Data System (ADS)
Larsen, Brett W.; Chung, Hugh; Dominguez, Alfonso; Sciacca, Jacob; Kovvali, Narayan; Papandreou-Suppappola, Antonia; Allee, David R.
2013-06-01
The challenge of rapid footstep detection and classification in remote locations has long been an important area of study for defense technology and national security. Also, as the military seeks to create effective and disposable unattended ground sensors (UGS), computational complexity and power consumption have become essential considerations in the development of classification techniques. In response to these issues, a research project at the Flexible Display Center at Arizona State University (ASU) has experimented with footstep classification using the matching pursuit decomposition (MPD) time-frequency analysis method. The MPD provides a parsimonious signal representation by iteratively selecting matched signal components from a pre-determined dictionary. The resulting time-frequency representation of the decomposed signal provides distinctive features for different types of footsteps, including footsteps during walking or running activities. The MPD features were used in a Bayesian classification method to successfully distinguish between the different activities. The computational cost of the iterative MPD algorithm was reduced, without significant loss in performance, using a modified MPD with a dictionary consisting of signals matched to cadence temporal gait patterns obtained from real seismic measurements. The classification results were demonstrated with real data from footsteps under various conditions recorded using a low-cost seismic sensor.
Decision making guidelines for mining historic landfill sites in Flanders.
Winterstetter, A; Wille, E; Nagels, P; Fellner, J
2018-04-20
This study aims at showing how the United Nations Framework Classification for Resources (UNFC) can help to classify potential landfill mining projects with different levels of maturity, from exploration to production, under technical, socio-economic and project-planning aspects. Taking the example of three former landfill sites in Flanders general decision making guidelines regarding the future management of old landfills are provided. Using the ECLAR methodology for the evaluation (E) and classification (CL) of anthropogenic resources (AR), the individual projects, where clean land and/or materials are recovered, are mapped under the three-dimensional UNFC system. The Bornem project, yields a negative Net Present Value (NPV) of -17 Mio € (-44 €/t of excavated waste), i.e. the project is currently not economically viable. In case of changing key parameters the landfill has, however, reasonable prospects for future economic extraction. The Turnhout land development turned out to be economically viable with a NPV of 361,000 € (8 €/t of excavated waste). The Zuienkerke remediation project is at a too early stage to determine its socioeconomic viability. The main focus to compare and prioritize potential landfill mining projects in Flanders should be on (1) site specific conditions (e.g. landfill's composition, land prices), (2) project related factors (e.g. remediation required vs. resource/land recovery, selected technologies and project set-ups, private vs. public evaluation perspective) and (3) the timing of mining, considering future development of costs, prices, laws, available data and information. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Wilson, Sharise Mavis
2010-01-01
The purpose of this project was to explore the decision-making approach and types of data that school psychologists use in determining special education classification. There were three research objectives: (a) to investigate the types of conditions and measures needed to test the use of the representativeness heuristic and assessment data, (b) to…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svendsen, R.L.
1996-12-31
Information is outlined on the Council of Industrial Boiler Owners (CIBO) special project on non-utility fossil fuel ash classification. Data are presented on; current (1996) regulatory status of fossil-fuel combustion wastes; FBC technology identified for further study; CIBO special project methods; Bevill amendment study factors; data collection; and CIBO special project status.
Maximum entropy PDF projection: A review
NASA Astrophysics Data System (ADS)
Baggenstoss, Paul M.
2017-06-01
We review maximum entropy (MaxEnt) PDF projection, a method with wide potential applications in statistical inference. The method constructs a sampling distribution for a high-dimensional vector x based on knowing the sampling distribution p(z) of a lower-dimensional feature z = T (x). Under mild conditions, the distribution p(x) having highest possible entropy among all distributions consistent with p(z) may be readily found. Furthermore, the MaxEnt p(x) may be sampled, making the approach useful in Monte Carlo methods. We review the theorem and present a case study in model order selection and classification for handwritten character recognition.
VizieR Online Data Catalog: LAMOST-Kepler MKCLASS spectral classification (Gray+, 2016)
NASA Astrophysics Data System (ADS)
Gray, R. O.; Corbally, C. J.; De Cat, P.; Fu, J. N.; Ren, A. B.; Shi, J. R.; Luo, A. L.; Zhang, H. T.; Wu, Y.; Cao, Z.; Li, G.; Zhang, Y.; Hou, Y.; Wang, Y.
2016-07-01
The data for the LAMOST-Kepler project are supplied by the Large Sky Area Multi Object Fiber Spectroscopic Telescope (LAMOST, also known as the Guo Shou Jing Telescope). This unique astronomical instrument is located at the Xinglong observatory in China, and combines a large aperture (4 m) telescope with a 5° circular field of view (Wang et al. 1996ApOpt..35.5155W). Our role in this project is to supply accurate two-dimensional spectral types for the observed targets. The large number of spectra obtained for this project (101086) makes traditional visual classification techniques impractical, so we have utilized the MKCLASS code to perform these classifications. The MKCLASS code (Gray & Corbally 2014AJ....147...80G, v1.07 http://www.appstate.edu/~grayro/mkclass/), an expert system designed to classify blue-violet spectra on the MK Classification system, was employed to produce the spectral classifications reported in this paper. MKCLASS was designed to reproduce the steps skilled human classifiers employ in the classification process. (2 data files).
Integrating human and machine intelligence in galaxy morphology classification tasks
NASA Astrophysics Data System (ADS)
Beck, Melanie R.; Scarlata, Claudia; Fortson, Lucy F.; Lintott, Chris J.; Simmons, B. D.; Galloway, Melanie A.; Willett, Kyle W.; Dickinson, Hugh; Masters, Karen L.; Marshall, Philip J.; Wright, Darryl
2018-06-01
Quantifying galaxy morphology is a challenging yet scientifically rewarding task. As the scale of data continues to increase with upcoming surveys, traditional classification methods will struggle to handle the load. We present a solution through an integration of visual and automated classifications, preserving the best features of both human and machine. We demonstrate the effectiveness of such a system through a re-analysis of visual galaxy morphology classifications collected during the Galaxy Zoo 2 (GZ2) project. We reprocess the top-level question of the GZ2 decision tree with a Bayesian classification aggregation algorithm dubbed SWAP, originally developed for the Space Warps gravitational lens project. Through a simple binary classification scheme, we increase the classification rate nearly 5-fold classifying 226 124 galaxies in 92 d of GZ2 project time while reproducing labels derived from GZ2 classification data with 95.7 per cent accuracy. We next combine this with a Random Forest machine learning algorithm that learns on a suite of non-parametric morphology indicators widely used for automated morphologies. We develop a decision engine that delegates tasks between human and machine and demonstrate that the combined system provides at least a factor of 8 increase in the classification rate, classifying 210 803 galaxies in just 32 d of GZ2 project time with 93.1 per cent accuracy. As the Random Forest algorithm requires a minimal amount of computational cost, this result has important implications for galaxy morphology identification tasks in the era of Euclid and other large-scale surveys.
Classification of standard-like heterotic-string vacua
NASA Astrophysics Data System (ADS)
Faraggi, Alon E.; Rizos, John; Sonmez, Hasan
2018-02-01
We extend the free fermionic classification methodology to the class of standard-like heterotic-string vacua, in which the SO (10) GUT symmetry is broken at the string level to SU (3) × SU (2) × U(1) 2. The space of GGSO free phase configurations in this case is vastly enlarged compared to the corresponding SO (6) × SO (4) and SU (5) × U (1) vacua. Extracting substantial numbers of phenomenologically viable models therefore requires a modification of the classification methods. This is achieved by identifying conditions on the GGSO projection coefficients, which are satisfied at the SO (10) level by random phase configurations, and that lead to three generation models with the SO (10) symmetry broken to the SU (3) × SU (2) × U(1) 2 subgroup. Around each of these fertile SO (10) configurations, we perform a complete classification of standard-like models, by adding the SO (10) symmetry breaking basis vectors, and scanning all the associated GGSO phases. Following this methodology we are able to generate some 107 three generation Standard-like Models. We present the results of the classification and one exemplary model with distinct phenomenological properties, compared to previous SLM constructions.
Rudolf, Klaus-Dieter; Kus, Sandra; Chung, Kevin C; Johnston, Marie; LeBlanc, Monique; Cieza, Alarcos
2012-01-01
A formal decision-making and consensus process was applied to develop the first version of the International Classification on Functioning, Disability and Health (ICF) Core Sets for Hand Conditions. To convene an international panel to develop the ICF Core Sets for Hand Conditions (HC), preparatory studies were conducted, which included an expert survey, a systematic literature review, a qualitative study and an empirical data collection process involving persons with hand conditions. A consensus conference was convened in Switzerland in May 2009 that was attended by 23 healthcare professionals, who treat hand conditions, representing 22 countries. The preparatory studies identified a set of 743 ICF categories at the second, third or fourth hierarchical level. Altogether, 117 chapter-, second-, or third-level categories were included in the comprehensive ICF Core Set for HC. The brief ICF Core Set for HC included a total of 23 chapter- and second-level categories. A formal consensus process integrating evidence and expert opinion based on the ICF led to the formal adoption of the ICF Core Sets for Hand Conditions. The next phase of this ICF project is to conduct a formal validation process to establish its applicability in clinical settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagener, Thorsten; Mann, Michael; Crane, Robert
2014-04-29
This project focuses on uncertainty in streamflow forecasting under climate change conditions. The objective is to develop easy to use methodologies that can be applied across a range of river basins to estimate changes in water availability for realistic projections of climate change. There are three major components to the project: Empirical downscaling of regional climate change projections from a range of Global Climate Models; Developing a methodology to use present day information on the climate controls on the parameterizations in streamflow models to adjust the parameterizations under future climate conditions (a trading-space-for-time approach); and Demonstrating a bottom-up approach tomore » establishing streamflow vulnerabilities to climate change. The results reinforce the need for downscaling of climate data for regional applications, and further demonstrates the challenges of using raw GCM data to make local projections. In addition, it reinforces the need to make projections across a range of global climate models. The project demonstrates the potential for improving streamflow forecasts by using model parameters that are adjusted for future climate conditions, but suggests that even with improved streamflow models and reduced climate uncertainty through the use of downscaled data, there is still large uncertainty is the streamflow projections. The most useful output from the project is the bottom-up vulnerability driven approach to examining possible climate and land use change impacts on streamflow. Here, we demonstrate an inexpensive and easy to apply methodology that uses Classification and Regression Trees (CART) to define the climate and environmental parameters space that can produce vulnerabilities in the system, and then feeds in the downscaled projections to determine the probability top transitioning to a vulnerable sate. Vulnerabilities, in this case, are defined by the end user.« less
[On risk-oriented model of sanitary epidemiologic surveillance in occupational hygiene].
Zaitseval, N V; Mai, I V; Kostarev, V G; Bashketova, N S
2015-01-01
In 2015, Federal Service on surveillance in consumers rights protection and public well-being set a task to organize planned work of regional agencies on basis of risk-oriented model of control and supervision. Based on results of pilot project in Rospotrebnadzor Department of Perm area and St-Petersburg, the article covers methodic approaches to classification of objects liable to surveillance in occupational hygiene. The classification considers possibility of sanitary law violation, severity of this violation consequences and number of workers exposed to risk factors including hazardous work conditions. The authors specified recommendations on periodicity and forms of planned inspections considering evaluation of potential risk for human health, determined problems that require solution in implementation of risk-oriented model of surveillance.
Brain tumor segmentation based on local independent projection-based classification.
Huang, Meiyan; Yang, Wei; Wu, Yao; Jiang, Jun; Chen, Wufan; Feng, Qianjin
2014-10-01
Brain tumor segmentation is an important procedure for early tumor diagnosis and radiotherapy planning. Although numerous brain tumor segmentation methods have been presented, enhancing tumor segmentation methods is still challenging because brain tumor MRI images exhibit complex characteristics, such as high diversity in tumor appearance and ambiguous tumor boundaries. To address this problem, we propose a novel automatic tumor segmentation method for MRI images. This method treats tumor segmentation as a classification problem. Additionally, the local independent projection-based classification (LIPC) method is used to classify each voxel into different classes. A novel classification framework is derived by introducing the local independent projection into the classical classification model. Locality is important in the calculation of local independent projections for LIPC. Locality is also considered in determining whether local anchor embedding is more applicable in solving linear projection weights compared with other coding methods. Moreover, LIPC considers the data distribution of different classes by learning a softmax regression model, which can further improve classification performance. In this study, 80 brain tumor MRI images with ground truth data are used as training data and 40 images without ground truth data are used as testing data. The segmentation results of testing data are evaluated by an online evaluation tool. The average dice similarities of the proposed method for segmenting complete tumor, tumor core, and contrast-enhancing tumor on real patient data are 0.84, 0.685, and 0.585, respectively. These results are comparable to other state-of-the-art methods.
Comparative analysis of methods and sources of financing of the transport organizations activity
NASA Astrophysics Data System (ADS)
Gorshkov, Roman
2017-10-01
The article considers the analysis of methods of financing of transport organizations in conditions of limited investment resources. A comparative analysis of these methods is carried out, the classification of investment, methods and sources of financial support for projects being implemented to date are presented. In order to select the optimal sources of financing for the projects, various methods of financial management and financial support for the activities of the transport organization were analyzed, which were considered from the perspective of analysis of advantages and limitations. The result of the study is recommendations on the selection of optimal sources and methods of financing of transport organizations.
Continuity and Discontinuity of Attachment from Infancy through Adolescence.
ERIC Educational Resources Information Center
Hamilton, Claire E.
2000-01-01
Examined relations between infant security of attachment, negative life events, and adolescent attachment classification in sample from the Family Lifestyles Project. Found that stability of attachment classification was 77 percent. Infant attachment classification predicted adolescent attachment classification. Found no differences between…
ERIC Educational Resources Information Center
Markey, Karen; Demeyer, Anh N.
This research project focuses on the implementation and testing of the Dewey Decimal Classification (DDC) system as an online searcher's tool for subject access, browsing, and display in an online catalog. The research project comprises 12 activities. The three interim reports in this document cover the first seven of these activities: (1) obtain…
Constructions and classifications of projective Poisson varieties.
Pym, Brent
2018-01-01
This paper is intended both as an introduction to the algebraic geometry of holomorphic Poisson brackets, and as a survey of results on the classification of projective Poisson manifolds that have been obtained in the past 20 years. It is based on the lecture series delivered by the author at the Poisson 2016 Summer School in Geneva. The paper begins with a detailed treatment of Poisson surfaces, including adjunction, ruled surfaces and blowups, and leading to a statement of the full birational classification. We then describe several constructions of Poisson threefolds, outlining the classification in the regular case, and the case of rank-one Fano threefolds (such as projective space). Following a brief introduction to the notion of Poisson subspaces, we discuss Bondal's conjecture on the dimensions of degeneracy loci on Poisson Fano manifolds. We close with a discussion of log symplectic manifolds with simple normal crossings degeneracy divisor, including a new proof of the classification in the case of rank-one Fano manifolds.
Constructions and classifications of projective Poisson varieties
NASA Astrophysics Data System (ADS)
Pym, Brent
2018-03-01
This paper is intended both as an introduction to the algebraic geometry of holomorphic Poisson brackets, and as a survey of results on the classification of projective Poisson manifolds that have been obtained in the past 20 years. It is based on the lecture series delivered by the author at the Poisson 2016 Summer School in Geneva. The paper begins with a detailed treatment of Poisson surfaces, including adjunction, ruled surfaces and blowups, and leading to a statement of the full birational classification. We then describe several constructions of Poisson threefolds, outlining the classification in the regular case, and the case of rank-one Fano threefolds (such as projective space). Following a brief introduction to the notion of Poisson subspaces, we discuss Bondal's conjecture on the dimensions of degeneracy loci on Poisson Fano manifolds. We close with a discussion of log symplectic manifolds with simple normal crossings degeneracy divisor, including a new proof of the classification in the case of rank-one Fano manifolds.
Nationwide forestry applications program. Analysis of forest classification accuracy
NASA Technical Reports Server (NTRS)
Congalton, R. G.; Mead, R. A.; Oderwald, R. G.; Heinen, J. (Principal Investigator)
1981-01-01
The development of LANDSAT classification accuracy assessment techniques, and of a computerized system for assessing wildlife habitat from land cover maps are considered. A literature review on accuracy assessment techniques and an explanation for the techniques development under both projects are included along with listings of the computer programs. The presentations and discussions at the National Working Conference on LANDSAT Classification Accuracy are summarized. Two symposium papers which were published on the results of this project are appended.
1961-1968 New Construction Report.
ERIC Educational Resources Information Center
National Association of Physical Plant Administrators of Universities and Colleges, Richmond, IN.
137 NAPPA colleges and universities provided data for this summary. Projects are summarized by thirteen building classifications. Under each classification the following information headings are used--(1) name of institution, (2) project completion date, (3) gross square feet, (4) net assignable area, (5) construction costs, (6) number of stories,…
Galaxy Zoo 1: data release of morphological classifications for nearly 900 000 galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linott, C.; Slosar, A.; Lintott, C.
Morphology is a powerful indicator of a galaxy's dynamical and merger history. It is strongly correlated with many physical parameters, including mass, star formation history and the distribution of mass. The Galaxy Zoo project collected simple morphological classifications of nearly 900,000 galaxies drawn from the Sloan Digital Sky Survey, contributed by hundreds of thousands of volunteers. This large number of classifications allows us to exclude classifier error, and measure the influence of subtle biases inherent in morphological classification. This paper presents the data collected by the project, alongside measures of classification accuracy and bias. The data are now publicly availablemore » and full catalogues can be downloaded in electronic format from http://data.galaxyzoo.org.« less
NASA Technical Reports Server (NTRS)
Cibula, William G.; Nyquist, Maurice O.
1987-01-01
An unsupervised computer classification of vegetation/landcover of Olympic National Park and surrounding environs was initially carried out using four bands of Landsat MSS data. The primary objective of the project was to derive a level of landcover classifications useful for park management applications while maintaining an acceptably high level of classification accuracy. Initially, nine generalized vegetation/landcover classes were derived. Overall classification accuracy was 91.7 percent. In an attempt to refine the level of classification, a geographic information system (GIS) approach was employed. Topographic data and watershed boundaries (inferred precipitation/temperature) data were registered with the Landsat MSS data. The resultant boolean operations yielded 21 vegetation/landcover classes while maintaining the same level of classification accuracy. The final classification provided much better identification and location of the major forest types within the park at the same high level of accuracy, and these met the project objective. This classification could now become inputs into a GIS system to help provide answers to park management coupled with other ancillary data programs such as fire management.
An Automatic Vehicle Classification System.
1981-07-01
addi- tion, various portions of the system design can be used by other vehicle study projects, e.g. for projects concerned with vehicle speed or for...traffic study projects that require an axle counter or vehicle height indicator. A *4 UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(W1en Data Enrerod...optoelectronic components as the basis for detection. Factors of vehicle length, height, and number of axles are used as identification characteristics. In
Exploring Biological Classification: The Unique Organism Project
ERIC Educational Resources Information Center
Haines, Sarah; Richman, Laila; Hartley, Renee; Schmid, Rachel
2017-01-01
The unique organism project was designed as a culminating assessment for a biological classification unit in a middle school setting. Students developed a model to represent their unique organism. Using the model, students were required to demonstrate how their unique organism interacts with its environment, and how its internal and external…
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManamay, Ryan A.; Troia, Matthew J.; DeRolph, Christopher R.
Stream classifications are an inventory of different types of streams. Classifications help us explore similarities and differences among different types of streams, make inferences regarding stream ecosystem behavior, and communicate the complexities of ecosystems. We developed a nested, layered, and spatially contiguous stream classification to characterize the biophysical settings of stream reaches within the Eastern United States (~ 900,000 reaches). The classification is composed of five natural characteristics (hydrology, temperature, size, confinement, and substrate) along with several disturbance regime layers, and each was selected because of their relevance to hydropower mitigation. We developed the classification at the stream reach levelmore » using the National Hydrography Dataset Plus Version 1 (1:100k scale). The stream classification is useful to environmental mitigation for hydropower dams in multiple ways. First, it creates efficiency in the regulatory process by creating an objective and data-rich means to address meaningful mitigation actions. Secondly, the SCT addresses data gaps as it quickly provides an inventory of hydrology, temperature, morphology, and ecological communities for the immediate project area, but also surrounding streams. This includes identifying potential reference streams as those that are proximate to the hydropower facility and fall within the same class. These streams can potentially be used to identify ideal environmental conditions or identify desired ecological communities. In doing so, the stream provides some context for how streams may function, respond to dam regulation, and an overview of specific mitigation needs. Herein, we describe the methodology in developing each stream classification layer and provide a tutorial to guide applications of the classification (and associated data) in regulatory settings, such as hydropower (re)licensing.« less
NASA Astrophysics Data System (ADS)
Knoefel, Patrick; Loew, Fabian; Conrad, Christopher
2015-04-01
Crop maps based on classification of remotely sensed data are of increased attendance in agricultural management. This induces a more detailed knowledge about the reliability of such spatial information. However, classification of agricultural land use is often limited by high spectral similarities of the studied crop types. More, spatially and temporally varying agro-ecological conditions can introduce confusion in crop mapping. Classification errors in crop maps in turn may have influence on model outputs, like agricultural production monitoring. One major goal of the PhenoS project ("Phenological structuring to determine optimal acquisition dates for Sentinel-2 data for field crop classification"), is the detection of optimal phenological time windows for land cover classification purposes. Since many crop species are spectrally highly similar, accurate classification requires the right selection of satellite images for a certain classification task. In the course of one growing season, phenological phases exist where crops are separable with higher accuracies. For this purpose, coupling of multi-temporal spectral characteristics and phenological events is promising. The focus of this study is set on the separation of spectrally similar cereal crops like winter wheat, barley, and rye of two test sites in Germany called "Harz/Central German Lowland" and "Demmin". However, this study uses object based random forest (RF) classification to investigate the impact of image acquisition frequency and timing on crop classification uncertainty by permuting all possible combinations of available RapidEye time series recorded on the test sites between 2010 and 2014. The permutations were applied to different segmentation parameters. Then, classification uncertainty was assessed and analysed, based on the probabilistic soft-output from the RF algorithm at the per-field basis. From this soft output, entropy was calculated as a spatial measure of classification uncertainty. The results indicate that uncertainty estimates provide a valuable addition to traditional accuracy assessments and helps the user to allocate error in crop maps.
Code of Federal Regulations, 2011 CFR
2011-01-01
... may be made at the same time as the request for initial classification. The written application may... 7 Agriculture 2 2011-01-01 2011-01-01 false Conditions for review of classification and for... CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Classification Reviews and Micronaire Determinations...
Code of Federal Regulations, 2010 CFR
2010-01-01
... may be made at the same time as the request for initial classification. The written application may... 7 Agriculture 2 2010-01-01 2010-01-01 false Conditions for review of classification and for... CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Classification Reviews and Micronaire Determinations...
NASA Astrophysics Data System (ADS)
Xiao, Zhitao; Leng, Yanyi; Geng, Lei; Xi, Jiangtao
2018-04-01
In this paper, a new convolution neural network method is proposed for the inspection and classification of galvanized stamping parts. Firstly, all workpieces are divided into normal and defective by image processing, and then the defective workpieces extracted from the region of interest (ROI) area are input to the trained fully convolutional networks (FCN). The network utilizes an end-to-end and pixel-to-pixel training convolution network that is currently the most advanced technology in semantic segmentation, predicts result of each pixel. Secondly, we mark the different pixel values of the workpiece, defect and background for the training image, and use the pixel value and the number of pixels to realize the recognition of the defects of the output picture. Finally, the defect area's threshold depended on the needs of the project is set to achieve the specific classification of the workpiece. The experiment results show that the proposed method can successfully achieve defect detection and classification of galvanized stamping parts under ordinary camera and illumination conditions, and its accuracy can reach 99.6%. Moreover, it overcomes the problem of complex image preprocessing and difficult feature extraction and performs better adaptability.
NASA Astrophysics Data System (ADS)
Martín–Moruno, Prado; Visser, Matt
2017-11-01
The (generalized) Rainich conditions are algebraic conditions which are polynomial in the (mixed-component) stress-energy tensor. As such they are logically distinct from the usual classical energy conditions (NEC, WEC, SEC, DEC), and logically distinct from the usual Hawking-Ellis (Segré-Plebański) classification of stress-energy tensors (type I, type II, type III, type IV). There will of course be significant inter-connections between these classification schemes, which we explore in the current article. Overall, we shall argue that it is best to view the (generalized) Rainich conditions as a refinement of the classical energy conditions and the usual Hawking-Ellis classification.
Risk Classification and Risk-based Safety and Mission Assurance
NASA Technical Reports Server (NTRS)
Leitner, Jesse A.
2014-01-01
Recent activities to revamp and emphasize the need to streamline processes and activities for Class D missions across the agency have led to various interpretations of Class D, including the lumping of a variety of low-cost projects into Class D. Sometimes terms such as Class D minus are used. In this presentation, mission risk classifications will be traced to official requirements and definitions as a measure to ensure that projects and programs align with the guidance and requirements that are commensurate for their defined risk posture. As part of this, the full suite of risk classifications, formal and informal will be defined, followed by an introduction to the new GPR 8705.4 that is currently under review.GPR 8705.4 lays out guidance for the mission success activities performed at the Classes A-D for NPR 7120.5 projects as well as for projects not under NPR 7120.5. Furthermore, the trends in stepping from Class A into higher risk posture classifications will be discussed. The talk will conclude with a discussion about risk-based safety and mission assuranceat GSFC.
Land cover classification for Puget Sound, 1974-1979
NASA Technical Reports Server (NTRS)
Eby, J. R.
1981-01-01
Digital analysis of LANDSAT data for land cover classification projects in the Puget Sound region is surveyed. Two early rural and urban land use classifications and their application are described. After acquisition of VICAR/IBIs software, another land use classification of the area was performed, and is described in more detail. Future applications are considered.
Ecosystem classifications based on summer and winter conditions.
Andrew, Margaret E; Nelson, Trisalyn A; Wulder, Michael A; Hobart, George W; Coops, Nicholas C; Farmer, Carson J Q
2013-04-01
Ecosystem classifications map an area into relatively homogenous units for environmental research, monitoring, and management. However, their effectiveness is rarely tested. Here, three classifications are (1) defined and characterized for Canada along summertime productivity (moderate-resolution imaging spectrometer fraction of absorbed photosynthetically active radiation) and wintertime snow conditions (special sensor microwave/imager snow water equivalent), independently and in combination, and (2) comparatively evaluated to determine the ability of each classification to represent the spatial and environmental patterns of alternative schemes, including the Canadian ecozone framework. All classifications depicted similar patterns across Canada, but detailed class distributions differed. Class spatial characteristics varied with environmental conditions within classifications, but were comparable between classifications. There was moderate correspondence between classifications. The strongest association was between productivity classes and ecozones. The classification along both productivity and snow balanced these two sets of variables, yielding intermediate levels of association in all pairwise comparisons. Despite relatively low spatial agreement between classifications, they successfully captured patterns of the environmental conditions underlying alternate schemes (e.g., snow classes explained variation in productivity and vice versa). The performance of ecosystem classifications and the relevance of their input variables depend on the environmental patterns and processes used for applications and evaluation. Productivity or snow regimes, as constructed here, may be desirable when summarizing patterns controlled by summer- or wintertime conditions, respectively, or of climate change responses. General purpose ecosystem classifications should include both sets of drivers. Classifications should be carefully, quantitatively, and comparatively evaluated relative to a particular application prior to their implementation as monitoring and assessment frameworks.
Automated source classification of new transient sources
NASA Astrophysics Data System (ADS)
Oertel, M.; Kreikenbohm, A.; Wilms, J.; DeLuca, A.
2017-10-01
The EXTraS project harvests the hitherto unexplored temporal domain information buried in the serendipitous data collected by the European Photon Imaging Camera (EPIC) onboard the ESA XMM-Newton mission since its launch. This includes a search for fast transients, missed by standard image analysis, and a search and characterization of variability in hundreds of thousands of sources. We present an automated classification scheme for new transient sources in the EXTraS project. The method is as follows: source classification features of a training sample are used to train machine learning algorithms (performed in R; randomForest (Breiman, 2001) in supervised mode) which are then tested on a sample of known source classes and used for classification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-09-01
The furniture and fixtures industry encompasses companies that manufacture household, office, store, public building, and restaurant furniture and fixtures. The second section provides background information on the size, geographic distribution, employment, production, sales, and economic condition of the Wood Furniture and Fixtures industry. The type of facilities described within the document are also described in terms of their Standard Industrial Classification (SIC) codes. Additionally, this section contains a list of the largest companies in terms of sales.
76 FR 27753 - Proposed Collection; Comment Request for Regulation Project
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-12
... collection requirements related to Simplification of Entity Classification Rules. DATES: Written comments....gov . SUPPLEMENTARY INFORMATION: Title: Simplification of Entity Classification Rules. OMB Number... partnerships for federal tax purposes. The election is made by filing Form 8832, Entity Classification Election...
Research on evaluating water resource resilience based on projection pursuit classification model
NASA Astrophysics Data System (ADS)
Liu, Dong; Zhao, Dan; Liang, Xu; Wu, Qiuchen
2016-03-01
Water is a fundamental natural resource while agriculture water guarantees the grain output, which shows that the utilization and management of water resource have a significant practical meaning. Regional agricultural water resource system features with unpredictable, self-organization, and non-linear which lays a certain difficulty on the evaluation of regional agriculture water resource resilience. The current research on water resource resilience remains to focus on qualitative analysis and the quantitative analysis is still in the primary stage, thus, according to the above issues, projection pursuit classification model is brought forward. With the help of artificial fish-swarm algorithm (AFSA), it optimizes the projection index function, seeks for the optimal projection direction, and improves AFSA with the application of self-adaptive artificial fish step and crowding factor. Taking Hongxinglong Administration of Heilongjiang as the research base and on the basis of improving AFSA, it established the evaluation of projection pursuit classification model to agriculture water resource system resilience besides the proceeding analysis of projection pursuit classification model on accelerating genetic algorithm. The research shows that the water resource resilience of Hongxinglong is the best than Raohe Farm, and the last 597 Farm. And the further analysis shows that the key driving factors influencing agricultural water resource resilience are precipitation and agriculture water consumption. The research result reveals the restoring situation of the local water resource system, providing foundation for agriculture water resource management.
George E. Host; Carl W. Ramm; Eunice A. Padley; Kurt S. Pregitzer; James B. Hart; David T. Cleland
1992-01-01
Presents technical documentation for development of an Ecological Classification System for the Manistee National Forest in northwest Lower Michigan, and suggests procedures applicable to other ecological land classification projects. Includes discussion of sampling design, field data collection, data summarization and analyses, development of classification units,...
Study of USGS/NASA land use classification system. [computer analysis from LANDSAT data
NASA Technical Reports Server (NTRS)
Spann, G. W.
1975-01-01
The results of a computer mapping project using LANDSAT data and the USGS/NASA land use classification system are summarized. During the computer mapping portion of the project, accuracies of 67 percent to 79 percent were achieved using Level II of the classification system and a 4,000 acre test site centered on Douglasville, Georgia. Analysis of response to a questionaire circulated to actual and potential LANDSAT data users reveals several important findings: (1) there is a substantial desire for additional information related to LANDSAT capabilities; (2) a majority of the respondents feel computer mapping from LANDSAT data could aid present or future projects; and (3) the costs of computer mapping are substantially less than those of other methods.
Variance approximations for assessments of classification accuracy
R. L. Czaplewski
1994-01-01
Variance approximations are derived for the weighted and unweighted kappa statistics, the conditional kappa statistic, and conditional probabilities. These statistics are useful to assess classification accuracy, such as accuracy of remotely sensed classifications in thematic maps when compared to a sample of reference classifications made in the field. Published...
Evaluation of rock classifications at B. C. Rail tumbler ridge tunnels
NASA Astrophysics Data System (ADS)
Kaiser, Peter K.; Mackay, C.; Gale, A. D.
1986-10-01
Construction of four single track railway tunnels through sedimentary rocks in central British Columbia, Canada, provided an excellent opportunity to compare various rock mass classification systems and to evaluate their applicability to the local geology. The tunnels were excavated by conventional drilling and blasting techniques and supported primarily with rock bolts and shotcrete, and with steel sets in some sections. After a brief project description including tunnel construction techniques, local geology and groundwater conditions, the data collection and filed mapping procedure is reviewed. Four rock mass classification systems ( RQD, RSR, RMR, Q) for empirical tunnel design are reviewed and relevant factors for the data interpretation are discussed. In comparing and evaluating the performance of these classification systems three aspects received special attention. The tunnel support predicted by the various systems was compared to the support installed, a unique correlation between the two most useful and most frequently applied classifications, the RMR and Q systems, was established and assessed, and finally, the non-support limit and size effect were evaluated. It is concluded that the Q-system best predicted the required tunnel support and that the RMR was only adequate after adjustment for the influence of opening size. Correction equations for opening size effects are presented for the RMR system. The RSR and RQD systems are not recommended for empirical tunnel design.
Topobathymetric LiDAR point cloud processing and landform classification in a tidal environment
NASA Astrophysics Data System (ADS)
Skovgaard Andersen, Mikkel; Al-Hamdani, Zyad; Steinbacher, Frank; Rolighed Larsen, Laurids; Brandbyge Ernstsen, Verner
2017-04-01
Historically it has been difficult to create high resolution Digital Elevation Models (DEMs) in land-water transition zones due to shallow water depth and often challenging environmental conditions. This gap of information has been reflected as a "white ribbon" with no data in the land-water transition zone. In recent years, the technology of airborne topobathymetric Light Detection and Ranging (LiDAR) has proven capable of filling out the gap by simultaneously capturing topographic and bathymetric elevation information, using only a single green laser. We collected green LiDAR point cloud data in the Knudedyb tidal inlet system in the Danish Wadden Sea in spring 2014. Creating a DEM from a point cloud requires the general processing steps of data filtering, water surface detection and refraction correction. However, there is no transparent and reproducible method for processing green LiDAR data into a DEM, specifically regarding the procedure of water surface detection and modelling. We developed a step-by-step procedure for creating a DEM from raw green LiDAR point cloud data, including a procedure for making a Digital Water Surface Model (DWSM) (see Andersen et al., 2017). Two different classification analyses were applied to the high resolution DEM: A geomorphometric and a morphological classification, respectively. The classification methods were originally developed for a small test area; but in this work, we have used the classification methods to classify the complete Knudedyb tidal inlet system. References Andersen MS, Gergely Á, Al-Hamdani Z, Steinbacher F, Larsen LR, Ernstsen VB (2017). Processing and performance of topobathymetric lidar data for geomorphometric and morphological classification in a high-energy tidal environment. Hydrol. Earth Syst. Sci., 21: 43-63, doi:10.5194/hess-21-43-2017. Acknowledgements This work was funded by the Danish Council for Independent Research | Natural Sciences through the project "Process-based understanding and prediction of morphodynamics in a natural coastal system in response to climate change" (Steno Grant no. 10-081102) and by the Geocenter Denmark through the project "Closing the gap! - Coherent land-water environmental mapping (LAWA)" (Grant no. 4-2015).
NASA Astrophysics Data System (ADS)
Zhu, Zhe; Gallant, Alisa L.; Woodcock, Curtis E.; Pengra, Bruce; Olofsson, Pontus; Loveland, Thomas R.; Jin, Suming; Dahal, Devendra; Yang, Limin; Auch, Roger F.
2016-12-01
The U.S. Geological Survey's Land Change Monitoring, Assessment, and Projection (LCMAP) initiative is a new end-to-end capability to continuously track and characterize changes in land cover, use, and condition to better support research and applications relevant to resource management and environmental change. Among the LCMAP product suite are annual land cover maps that will be available to the public. This paper describes an approach to optimize the selection of training and auxiliary data for deriving the thematic land cover maps based on all available clear observations from Landsats 4-8. Training data were selected from map products of the U.S. Geological Survey's Land Cover Trends project. The Random Forest classifier was applied for different classification scenarios based on the Continuous Change Detection and Classification (CCDC) algorithm. We found that extracting training data proportionally to the occurrence of land cover classes was superior to an equal distribution of training data per class, and suggest using a total of 20,000 training pixels to classify an area about the size of a Landsat scene. The problem of unbalanced training data was alleviated by extracting a minimum of 600 training pixels and a maximum of 8000 training pixels per class. We additionally explored removing outliers contained within the training data based on their spectral and spatial criteria, but observed no significant improvement in classification results. We also tested the importance of different types of auxiliary data that were available for the conterminous United States, including: (a) five variables used by the National Land Cover Database, (b) three variables from the cloud screening "Function of mask" (Fmask) statistics, and (c) two variables from the change detection results of CCDC. We found that auxiliary variables such as a Digital Elevation Model and its derivatives (aspect, position index, and slope), potential wetland index, water probability, snow probability, and cloud probability improved the accuracy of land cover classification. Compared to the original strategy of the CCDC algorithm (500 pixels per class), the use of the optimal strategy improved the classification accuracies substantially (15-percentage point increase in overall accuracy and 4-percentage point increase in minimum accuracy).
Advanced Oil Spill Detection Algorithms For Satellite Based Maritime Environment Monitoring
NASA Astrophysics Data System (ADS)
Radius, Andrea; Azevedo, Rui; Sapage, Tania; Carmo, Paulo
2013-12-01
During the last years, the increasing pollution occurrence and the alarming deterioration of the environmental health conditions of the sea, lead to the need of global monitoring capabilities, namely for marine environment management in terms of oil spill detection and indication of the suspected polluter. The sensitivity of Synthetic Aperture Radar (SAR) to the different phenomena on the sea, especially for oil spill and vessel detection, makes it a key instrument for global pollution monitoring. The SAR performances in maritime pollution monitoring are being operationally explored by a set of service providers on behalf of the European Maritime Safety Agency (EMSA), which has launched in 2007 the CleanSeaNet (CSN) project - a pan-European satellite based oil monitoring service. EDISOFT, which is from the beginning a service provider for CSN, is continuously investing in R&D activities that will ultimately lead to better algorithms and better performance on oil spill detection from SAR imagery. This strategy is being pursued through EDISOFT participation in the FP7 EC Sea-U project and in the Automatic Oil Spill Detection (AOSD) ESA project. The Sea-U project has the aim to improve the current state of oil spill detection algorithms, through the informative content maximization obtained with data fusion, the exploitation of different type of data/ sensors and the development of advanced image processing, segmentation and classification techniques. The AOSD project is closely related to the operational segment, because it is focused on the automation of the oil spill detection processing chain, integrating auxiliary data, like wind information, together with image and geometry analysis techniques. The synergy between these different objectives (R&D versus operational) allowed EDISOFT to develop oil spill detection software, that combines the operational automatic aspect, obtained through dedicated integration of the processing chain in the existing open source NEST software, with new detection, filtering and classification algorithms. Particularly, dedicated filtering algorithm development based on Wavelet filtering was exploited for the improvement of oil spill detection and classification. In this work we present the functionalities of the developed software and the main results in support of the developed algorithm validity.
Engineering and Design: Rock Mass Classification Data Requirements for Rippability
1983-06-30
Engineering and Design ROCK MASS CLASSIFICATION DATA REQUIREMENTS FOR RIPPABILITY Distribution Restriction Statement Approved for public release...and Design: Rock Mass Classification Data Requirements for Rippability Contract Number Grant Number Program Element Number Author(s) Project...Technical Letter 1110-2-282 Engineering and Design ROCK MASS CLASSIFICATION DATA REQUIREMENTS FOR RIPPABILITY 1“ -“ This ETL contains information on data
Integrating Human and Machine Intelligence in Galaxy Morphology Classification Tasks
NASA Astrophysics Data System (ADS)
Beck, Melanie Renee
The large flood of data flowing from observatories presents significant challenges to astronomy and cosmology--challenges that will only be magnified by projects currently under development. Growth in both volume and velocity of astrophysics data is accelerating: whereas the Sloan Digital Sky Survey (SDSS) has produced 60 terabytes of data in the last decade, the upcoming Large Synoptic Survey Telescope (LSST) plans to register 30 terabytes per night starting in the year 2020. Additionally, the Euclid Mission will acquire imaging for 5 x 107 resolvable galaxies. The field of galaxy evolution faces a particularly challenging future as complete understanding often cannot be reached without analysis of detailed morphological galaxy features. Historically, morphological analysis has relied on visual classification by astronomers, accessing the human brains capacity for advanced pattern recognition. However, this accurate but inefficient method falters when confronted with many thousands (or millions) of images. In the SDSS era, efforts to automate morphological classifications of galaxies (e.g., Conselice et al., 2000; Lotz et al., 2004) are reasonably successful and can distinguish between elliptical and disk-dominated galaxies with accuracies of 80%. While this is statistically very useful, a key problem with these methods is that they often cannot say which 80% of their samples are accurate. Furthermore, when confronted with the more complex task of identifying key substructure within galaxies, automated classification algorithms begin to fail. The Galaxy Zoo project uses a highly innovative approach to solving the scalability problem of visual classification. Displaying images of SDSS galaxies to volunteers via a simple and engaging web interface, www.galaxyzoo.org asks people to classify images by eye. Within the first year hundreds of thousands of members of the general public had classified each of the 1 million SDSS galaxies an average of 40 times. Galaxy Zoo thus solved both the visual classification problem of time efficiency and improved accuracy by producing a distribution of independent classifications for each galaxy. While crowd-sourced galaxy classifications have proven their worth, challenges remain before establishing this method as a critical and standard component of the data processing pipelines for the next generation of surveys. In particular, though innovative, crowd-sourcing techniques do not have the capacity to handle the data volume and rates expected in the next generation of surveys. These algorithms will be delegated to handle the majority of the classification tasks, freeing citizen scientists to contribute their efforts on subtler and more complex assignments. This thesis presents a solution through an integration of visual and automated classifications, preserving the best features of both human and machine. We demonstrate the effectiveness of such a system through a re-analysis of visual galaxy morphology classifications collected during the Galaxy Zoo 2 (GZ2) project. We reprocess the top-level question of the GZ2 decision tree with a Bayesian classification aggregation algorithm dubbed SWAP, originally developed for the Space Warps gravitational lens project. Through a simple binary classification scheme we increase the classification rate nearly 5-fold classifying 226,124 galaxies in 92 days of GZ2 project time while reproducing labels derived from GZ2 classification data with 95.7% accuracy. We next combine this with a Random Forest machine learning algorithm that learns on a suite of non-parametric morphology indicators widely used for automated morphologies. We develop a decision engine that delegates tasks between human and machine and demonstrate that the combined system provides a factor of 11.4 increase in the classification rate, classifying 210,803 galaxies in just 32 days of GZ2 project time with 93.1% accuracy. As the Random Forest algorithm requires a minimal amount of computational cost, this result has important implications for galaxy morphology identification tasks in the era of Euclid and other large-scale surveys.
18 CFR 401.35 - Classification of projects for review under Section 3.8 of the Compact.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Classification of... less than a daily average rate of 100,000 gallons except when the imported water is wastewater; (18... water during any 30-day period; and (18) Any other project that the Executive Director may specially...
Advances in Medical Analytics Solutions for Autonomous Medical Operations on Long-Duration Missions
NASA Technical Reports Server (NTRS)
Thompson, David E.; Lindsey, Antonia Edward
2017-01-01
A review will be presented on the progress made under STMDGame Changing Development Program Funding towards the development of a Medical Decision Support System for augmenting crew capabilities during long-duration missions, such as Mars Transit. To create an MDSS, initial work requires acquiring images and developing models that analyze and assess the features in such medical biosensor images that support medical assessment of pathologies. For FY17, the project has focused on ultrasound images towards cardiac pathologies: namely, evaluation and assessment of pericardial effusion identification and discrimination from related pneumothorax and even bladder-induced infections that cause inflammation around the heart. This identification is substantially changed due to uncertainty due to conditions of fluid behavior under space-microgravity. This talk will present and discuss the work-to-date in this Project, recognizing conditions under which various machine learning technologies, deep-learning via convolutional neural nets, and statistical learning methods for feature identification and classification can be employed and conditioned to graphical format in preparation for attachment to an inference engine that eventually creates decision support recommendations to remote crew in a triage setting.
Hu, Hongqiang; Westover, Tyler L.; Cherry, Robert; ...
2016-10-03
Inorganic species (ash) in biomass feedstocks negatively impact thermochemical and biochemical energy conversion processes. In this work, a process simulation model is developed to model the reduction in ash content of loblolly logging residues using a combination of air classification and dilute-acid leaching. Various scenarios are considered, and it is found that costs associated with discarding high-ash material from air classification are substantial. The costs of material loss can be reduced by chemical leaching the high-ash fraction obtained from air classification. The optimal leaching condition is found to be approximately 0.1 wt% sulfuric acid at 24°C. In example scenarios, totalmore » process costs in the range of $10-12/dry tonnes of product are projected that result in a removal of 11, 66, 53 and 86% of organics, total ash (inorganics), alkaline earth metals and phosphorus (AAEMS+P), and silicon, respectively. Here, sensitivity analyses indicate that costs associated with loss of organic material during processing (yield losses), brine disposal, and labor have the greatest potential to impact the total processing cost.« less
High Accuracy Human Activity Recognition Based on Sparse Locality Preserving Projections.
Zhu, Xiangbin; Qiu, Huiling
2016-01-01
Human activity recognition(HAR) from the temporal streams of sensory data has been applied to many fields, such as healthcare services, intelligent environments and cyber security. However, the classification accuracy of most existed methods is not enough in some applications, especially for healthcare services. In order to improving accuracy, it is necessary to develop a novel method which will take full account of the intrinsic sequential characteristics for time-series sensory data. Moreover, each human activity may has correlated feature relationship at different levels. Therefore, in this paper, we propose a three-stage continuous hidden Markov model (TSCHMM) approach to recognize human activities. The proposed method contains coarse, fine and accurate classification. The feature reduction is an important step in classification processing. In this paper, sparse locality preserving projections (SpLPP) is exploited to determine the optimal feature subsets for accurate classification of the stationary-activity data. It can extract more discriminative activities features from the sensor data compared with locality preserving projections. Furthermore, all of the gyro-based features are used for accurate classification of the moving data. Compared with other methods, our method uses significantly less number of features, and the over-all accuracy has been obviously improved.
High Accuracy Human Activity Recognition Based on Sparse Locality Preserving Projections
2016-01-01
Human activity recognition(HAR) from the temporal streams of sensory data has been applied to many fields, such as healthcare services, intelligent environments and cyber security. However, the classification accuracy of most existed methods is not enough in some applications, especially for healthcare services. In order to improving accuracy, it is necessary to develop a novel method which will take full account of the intrinsic sequential characteristics for time-series sensory data. Moreover, each human activity may has correlated feature relationship at different levels. Therefore, in this paper, we propose a three-stage continuous hidden Markov model (TSCHMM) approach to recognize human activities. The proposed method contains coarse, fine and accurate classification. The feature reduction is an important step in classification processing. In this paper, sparse locality preserving projections (SpLPP) is exploited to determine the optimal feature subsets for accurate classification of the stationary-activity data. It can extract more discriminative activities features from the sensor data compared with locality preserving projections. Furthermore, all of the gyro-based features are used for accurate classification of the moving data. Compared with other methods, our method uses significantly less number of features, and the over-all accuracy has been obviously improved. PMID:27893761
Rifai Chai; Naik, Ganesh R; Sai Ho Ling; Tran, Yvonne; Craig, Ashley; Nguyen, Hung T
2017-07-01
This paper presents a classification of driver fatigue with electroencephalography (EEG) channels selection analysis. The system employs independent component analysis (ICA) with scalp map back projection to select the dominant of EEG channels. After channel selection, the features of the selected EEG channels were extracted based on power spectral density (PSD), and then classified using a Bayesian neural network. The results of the ICA decomposition with the back-projected scalp map and a threshold showed that the EEG channels can be reduced from 32 channels into 16 dominants channels involved in fatigue assessment as chosen channels, which included AF3, F3, FC1, FC5, T7, CP5, P3, O1, P4, P8, CP6, T8, FC2, F8, AF4, FP2. The result of fatigue vs. alert classification of the selected 16 channels yielded a sensitivity of 76.8%, specificity of 74.3% and an accuracy of 75.5%. Also, the classification results of the selected 16 channels are comparable to those using the original 32 channels. So, the selected 16 channels is preferable for ergonomics improvement of EEG-based fatigue classification system.
Liu, Chao; Gu, Jinwei
2014-01-01
Classifying raw, unpainted materials--metal, plastic, ceramic, fabric, and so on--is an important yet challenging task for computer vision. Previous works measure subsets of surface spectral reflectance as features for classification. However, acquiring the full spectral reflectance is time consuming and error-prone. In this paper, we propose to use coded illumination to directly measure discriminative features for material classification. Optimal illumination patterns--which we call "discriminative illumination"--are learned from training samples, after projecting to which the spectral reflectance of different materials are maximally separated. This projection is automatically realized by the integration of incident light for surface reflection. While a single discriminative illumination is capable of linear, two-class classification, we show that multiple discriminative illuminations can be used for nonlinear and multiclass classification. We also show theoretically that the proposed method has higher signal-to-noise ratio than previous methods due to light multiplexing. Finally, we construct an LED-based multispectral dome and use the discriminative illumination method for classifying a variety of raw materials, including metal (aluminum, alloy, steel, stainless steel, brass, and copper), plastic, ceramic, fabric, and wood. Experimental results demonstrate its effectiveness.
Object-based change detection: dimension of damage in residential areas of Abu Suruj, Sudan
NASA Astrophysics Data System (ADS)
Demharter, Timo; Michel, Ulrich; Ehlers, Manfred; Reinartz, Peter
2011-11-01
Given the importance of Change Detection, especially in the field of crisis management, this paper discusses the advantage of object-based Change Detection. This project and the used methods give an opportunity to coordinate relief actions strategically. The principal objective of this project was to develop an algorithm which allows to detect rapidly damaged and destroyed buildings in the area of Abu Suruj. This Sudanese village is located in West-Darfur and has become the victim of civil war. The software eCognition Developer was used to per-form an object-based Change Detection on two panchromatic Quickbird 2 images from two different time slots. The first image shows the area before, the second image shows the area after the massacres in this region. Seeking a classification for the huts of the Sudanese town Abu Suruj was reached by first segmenting the huts and then classifying them on the basis of geo-metrical and brightness-related values. The huts were classified as "new", "destroyed" and "preserved" with the help of a automated algorithm. Finally the results were presented in the form of a map which displays the different conditions of the huts. The accuracy of the project is validated by an accuracy assessment resulting in an Overall Classification Accuracy of 90.50 percent. These change detection results allow aid organizations to provide quick and efficient help where it is needed the most.
Rochester Epidemiology Project Data Exploration Portal
Grossardt, Brandon R.; Finney Rutten, Lila J.; Roger, Veronique L.; Majerus, Michelle; Jensen, Daniel W.; Brue, Scott M.; Bock-Goodner, Cynthia M.; Rocca, Walter A.
2018-01-01
Introduction The goal of this project was to develop an interactive, web-based tool to explore patterns of prevalence and co-occurrence of diseases using data from the expanded Rochester Epidemiology Project (E-REP) medical records-linkage system. Methods We designed the REP Data Exploration Portal (REP DEP) to include summary information for people who lived in a 27-county region of southern Minnesota and western Wisconsin on January 1, 2014 (n = 694,506; 61% of the entire population). We obtained diagnostic codes of the International Classification of Diseases, 9th edition, from the medical records-linkage system in 2009 through 2013 (5 years) and grouped them into 717 disease categories. For each condition or combination of 2 conditions (dyad), we calculated prevalence by dividing the number of persons with a specified condition (numerator) by the total number of persons in the population (denominator). We calculated observed-to-expected ratios (OERs) to test whether 2 conditions co-occur more frequently than would co-occur as a result of chance alone. Results We launched the first version of the REP DEP in May 2017. The REP DEP can be accessed at http://rochesterproject.org/portal/. Users can select 2 conditions of interest, and the REP DEP displays the overall prevalence, age-specific prevalence, and sex-specific prevalence for each condition and dyad. Also displayed are OERs overall and by age and sex and maps of county-specific prevalence of each condition and OER. Conclusion The REP DEP draws upon a medical records-linkage system to provide an innovative, rapid, interactive, free-of-charge method to examine the prevalence and co-occurrence of 717 diseases and conditions in a geographically defined population. PMID:29654640
G Caton, Jack; Armitage, Gary; Berglundh, Tord; Chapple, Iain L C; Jepsen, Søren; S Kornman, Kenneth; L Mealey, Brian; Papapanou, Panos N; Sanz, Mariano; S Tonetti, Maurizio
2018-06-01
A classification scheme for periodontal and peri-implant diseases and conditions is necessary for clinicians to properly diagnose and treat patients as well as for scientists to investigate etiology, pathogenesis, natural history, and treatment of the diseases and conditions. This paper summarizes the proceedings of the World Workshop on the Classification of Periodontal and Peri-implant Diseases and Conditions. The workshop was co-sponsored by the American Academy of Periodontology (AAP) and the European Federation of Periodontology (EFP) and included expert participants from all over the world. Planning for the conference, which was held in Chicago on November 9 to 11, 2017, began in early 2015. An organizing committee from the AAP and EFP commissioned 19 review papers and four consensus reports covering relevant areas in periodontology and implant dentistry. The authors were charged with updating the 1999 classification of periodontal diseases and conditions and developing a similar scheme for peri-implant diseases and conditions. Reviewers and workgroups were also asked to establish pertinent case definitions and to provide diagnostic criteria to aid clinicians in the use of the new classification. All findings and recommendations of the workshop were agreed to by consensus. This introductory paper presents an overview for the new classification of periodontal and peri-implant diseases and conditions, along with a condensed scheme for each of four workgroup sections, but readers are directed to the pertinent consensus reports and review papers for a thorough discussion of the rationale, criteria, and interpretation of the proposed classification. Changes to the 1999 classification are highlighted and discussed. Although the intent of the workshop was to base classification on the strongest available scientific evidence, lower level evidence and expert opinion were inevitably used whenever sufficient research data were unavailable. The scope of this workshop was to align and update the classification scheme to the current understanding of periodontal and peri-implant diseases and conditions. This introductory overview presents the schematic tables for the new classification of periodontal and peri-implant diseases and conditions and briefly highlights changes made to the 1999 classification. It cannot present the wealth of information included in the reviews, case definition papers, and consensus reports that has guided the development of the new classification, and reference to the consensus and case definition papers is necessary to provide a thorough understanding of its use for either case management or scientific investigation. Therefore, it is strongly recommended that the reader use this overview as an introduction to these subjects. Accessing this publication online will allow the reader to use the links in this overview and the tables to view the source papers (Table ). © 2018 American Academy of Periodontology and European Federation of Periodontology.
G Caton, Jack; Armitage, Gary; Berglundh, Tord; Chapple, Iain L C; Jepsen, Søren; S Kornman, Kenneth; L Mealey, Brian; Papapanou, Panos N; Sanz, Mariano; S Tonetti, Maurizio
2018-06-01
A classification scheme for periodontal and peri-implant diseases and conditions is necessary for clinicians to properly diagnose and treat patients as well as for scientists to investigate etiology, pathogenesis, natural history, and treatment of the diseases and conditions. This paper summarizes the proceedings of the World Workshop on the Classification of Periodontal and Peri-implant Diseases and Conditions. The workshop was co-sponsored by the American Academy of Periodontology (AAP) and the European Federation of Periodontology (EFP) and included expert participants from all over the world. Planning for the conference, which was held in Chicago on November 9 to 11, 2017, began in early 2015. An organizing committee from the AAP and EFP commissioned 19 review papers and four consensus reports covering relevant areas in periodontology and implant dentistry. The authors were charged with updating the 1999 classification of periodontal diseases and conditions and developing a similar scheme for peri-implant diseases and conditions. Reviewers and workgroups were also asked to establish pertinent case definitions and to provide diagnostic criteria to aid clinicians in the use of the new classification. All findings and recommendations of the workshop were agreed to by consensus. This introductory paper presents an overview for the new classification of periodontal and peri-implant diseases and conditions, along with a condensed scheme for each of four workgroup sections, but readers are directed to the pertinent consensus reports and review papers for a thorough discussion of the rationale, criteria, and interpretation of the proposed classification. Changes to the 1999 classification are highlighted and discussed. Although the intent of the workshop was to base classification on the strongest available scientific evidence, lower level evidence and expert opinion were inevitably used whenever sufficient research data were unavailable. The scope of this workshop was to align and update the classification scheme to the current understanding of periodontal and peri-implant diseases and conditions. This introductory overview presents the schematic tables for the new classification of periodontal and peri-implant diseases and conditions and briefly highlights changes made to the 1999 classification. It cannot present the wealth of information included in the reviews, case definition papers, and consensus reports that has guided the development of the new classification, and reference to the consensus and case definition papers is necessary to provide a thorough understanding of its use for either case management or scientific investigation. Therefore, it is strongly recommended that the reader use this overview as an introduction to these subjects. Accessing this publication online will allow the reader to use the links in this overview and the tables to view the source papers (Table 1). © 2018 American Academy of Periodontology and European Federation of Periodontology.
Detection and classification of virus from electron micrograms
NASA Astrophysics Data System (ADS)
Strömberg, Jan-Olov
2010-04-01
I will present a PhD project were Diffusion Geometry is used in classification of virus particles in cell kernels from electron micrograms. I will give a very short introduction to Diffusion Geometry and discuss the main classification steps. Some preliminary result from a Master Thesis will be presented.
Analysis of a Bibliographic Database Enhanced with a Library Classification.
ERIC Educational Resources Information Center
Drabenstott, Karen Markey; And Others
1990-01-01
Describes a project that examined the effects of incorporating subject terms from the Dewey Decimal Classification (DDC) into a bibliographic database. It is concluded that the incorporation of DDC and possibly other library classifications into online catalogs can enhance subject access and provide additional subject searching strategies. (11…
ERIC Educational Resources Information Center
Nerden, J. T.; And Others
Designed for the exclusive purpose of accompanying the Project EDNEED (Empirical Determination of Nationally Essential Educational Data) classification document, this volume comprises the third of a five-volume final report. It provides uniform definitions for vocational education terms found in the EDNEED classification document, and aids in…
ERIC Educational Resources Information Center
Wekesa, Noah Wafula; Ongunya, Raphael Odhiambo
2016-01-01
The concept of classification of organisms in Biology seems to pose a problem to Secondary School students in Kenya. Though, the topic is important for understanding of the basic elements of the subject. The Examinations Council in Kenya has identified teacher centred pedagogical techniques as one of the main causes for this. Project based…
Zeng, Wenfeng; Tan, Qiang; Wu, Shihua; Deng, Yingcong; Liu, Lifen; Wang, Zhi; Liu, Yimin
2015-12-01
To investigate the application of risk grading and classification for occupational hazards in risk management for a shipbuilding project. The risk management for this shipbuilding project was performed by a comprehensive application of MES evaluation, quality assessment of occupational health management, and risk grading and classification for occupational hazards, through the methods of occupational health survey, occupational health testing, and occupational health examinations. The results of MES evaluation showed that the risk of occupational hazards in this project was grade 3, which was considered as significant risk; Q value calculated by quality assessment of occupational health management was 0.52, which was considered to be unqualified; the comprehensive evaluation with these two methods showed that the integrated risk rating for this shipbuilding project was class D, and follow- up and rectification were needed with a focus on the improvement in health management. The application of MES evaluation and quality assessment of occupational health management in risk management for occupational hazards can achieve objective and reasonable conclusions and has good applicability.
Estimates of emergency operating capacity in U.S. manufacturing industries: 1994--2005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belzer, D.B.
1997-02-01
To develop integrated policies for mobilization preparedness, planners require estimates and projections of available productive capacity during national emergency conditions. This report develops projections of national emergency operating capacity (EOC) for 458 US manufacturing industries at the 4-digit Standard Industrial Classification (SIC) level. These measures are intended for use in planning models that are designed to predict the demands for detailed industry sectors that would occur under conditions such as a military mobilization or a major national disaster. This report is part of an ongoing series of studies prepared by the Pacific Northwest National Laboratory to support mobilization planning studiesmore » of the Federal Emergency Planning Agency/US Department of Defense (FEMA/DOD). Earlier sets of EOC estimates were developed in 1985 and 1991. This study presents estimates of EOC through 2005. As in the 1991 study, projections of capacity were based upon extrapolations of equipment capital stocks. The methodology uses time series regression models based on industry data to obtain a response function of industry capital stock to levels of industrial output. The distributed lag coefficients of these response function are then used with projected outputs to extrapolate the 1994 level of EOC. Projections of industrial outputs were taken from the intermediate-term forecast of the US economy prepared by INFORUM (Interindustry Forecasting Model, University of Maryland) in the spring of 1996.« less
River reach classification for the Greater Mekong Region at high spatial resolution
NASA Astrophysics Data System (ADS)
Ouellet Dallaire, C.; Lehner, B.
2014-12-01
River classifications have been used in river health and ecological assessments as coarse proxies to represent aquatic biodiversity when comprehensive biological and/or species data is unavailable. Currently there are no river classifications or biological data available in a consistent format for the extent of the Greater Mekong Region (GMR; including the Irrawaddy, the Salween, the Chao Praya, the Mekong and the Red River basins). The current project proposes a new river habitat classification for the region, facilitated by the HydroSHEDS (HYDROlogical SHuttle Elevation Derivatives at multiple Scales) database at 500m pixel resolution. The classification project is based on the Global River Classification framework relying on the creation of multiple sub-classifications based on different disciplines. The resulting classes from the sub-classification are later combined into final classes to create a holistic river reach classification. For the GMR, a final habitat classification was created based on three sub-classifications: a hydrological sub-classification based only on discharge indices (river size and flow variability); a physio-climatic sub-classification based on large scale indices of climate and elevation (biomes, ecoregions and elevation); and a geomorphological sub-classification based on local morphology (presence of floodplains, reach gradient and sand transport). Key variables and thresholds were identified in collaboration with local experts to ensure that regional knowledge was included. The final classification is composed 54 unique final classes based on 3 sub-classifications with less than 15 classes each. The resulting classifications are driven by abiotic variables and do not include biological data, but they represent a state-of-the art product based on best available data (mostly global data). The most common river habitat type is the "dry broadleaf, low gradient, very small river". These classifications could be applied in a wide range of hydro-ecological assessments and useful for a variety of stakeholders such as NGO, governments and researchers.
Spencer, Simon; Wolf, Alex; Rushton, Alison
2016-01-01
Context: Identification of strategies to prevent spinal injury, optimize rehabilitation, and enhance performance is a priority for practitioners. Different exercises produce different effects on neuromuscular performance. Clarity of the purpose of a prescribed exercise is central to a successful outcome. Spinal exercises need to be classified according to the objective of the exercise and planned physical outcome. Objective: To define the modifiable spinal abilities that underpin optimal function during skilled athletic performance, clarify the effect of spinal pain and pathologic conditions, and classify spinal exercises according to the objective of the exercise and intended physical outcomes to inform training and rehabilitation. Design: Qualitative study. Data Collection and Analysis: We conducted a qualitative consensus method of 4 iterative phases. An exploratory panel carried out an extended review of the English-language literature using CINAHL, EMBASE, MEDLINE, and PubMed to identify key themes and subthemes to inform the definitions of exercise categories, physical abilities, and physical outcomes. An expert project group reviewed panel findings. A draft classification was discussed with physiotherapists (n = 49) and international experts. Lead physiotherapy and strength and conditioning teams (n = 17) reviewed a revised classification. Consensus was defined as unanimous agreement. Results: After the literature review and subsequent analysis, we defined spinal abilities in 4 categories: mobility, motor control, work capacity, and strength. Exercises were subclassified by functionality as nonfunctional or functional and by spinal displacement as either static (neutral spinal posture with no segmental displacement) or dynamic (dynamic segmental movement). The proposed terminology and classification support commonality of language for practitioners. Conclusions: The spinal-exercise classification will support clinical reasoning through a framework of spinal-exercise objectives that clearly define the nature of the exercise prescription required to deliver intended physical outcomes. PMID:27661792
Agricultural resources investigations in northern Italy and southern France (Agreste Project)
NASA Technical Reports Server (NTRS)
1976-01-01
The author has identified the following significant results. The vegetation structure of rice was investigated and interpreted in dynamic terms as a significant factor governing the distribution of solar energy thoughout the canopy and therefore conditions the final yield. Radiometric characteristics of rice culture were described for various stages of development in relation to the vegetation structure in an attempt to establish correlations between data of total biomass and of grain yield. Qualitative classification results were encouraging although the discrimination achieved was far from complete.
DOT National Transportation Integrated Search
2007-08-01
The following chapter explains the purpose of this document, outlines the essential elements involved in : the Project Development Process, describes the differences in the three main project classifications, and : provides the necessary background i...
Elliott, Caroline M.; Jacobson, Robert B.
2006-01-01
A multiscale geomorphic classification was established for the 39-mile, 59-mile, and adjacent segments of the Missouri National Recreational River administered by the National Park Service in South Dakota and Nebraska. The objective of the classification was to define naturally occurring clusters of geomorphic characteristics that would be indicative of discrete sets of geomorphic processes, with the intent that such a classification would be useful in river-management and rehabilitation decisions. The statistical classification was based on geomorphic characteristics of the river collected from 1999 orthophotography and the persistence of classified units was evaluated by comparison with similar datasets for 2003 and 2004 and by evaluating variation of bank erosion rates by geomorphic class. Changes in channel location and form were also explored using imagery and maps from 1993-2004, 1941 and 1894. The multivariate classification identified a hierarchy of naturally occurring clusters of reach-scale geomorphic characteristics. The simplest level of the hierarchy divides the river from segments into discrete reaches characterized by single and multithread channels and additional hierarchical levels established 4-part and 10-part classifications. The classification system presents a physical framework that can be applied to prioritization and design of bank stabilization projects, design of habitat rehabilitation projects, and stratification of monitoring and assessment sampling programs.
Rock Mass Classification of Karstic Terrain in the Reservoir Slopes of Tekeze Hydropower Project
NASA Astrophysics Data System (ADS)
Hailemariam Gugsa, Trufat; Schneider, Jean Friedrich
2010-05-01
Hydropower reservoirs in deep gorges usually experience slope failures and mass movements. History also showed that some of these projects suffered severe landslides, which left lots of victims and enormous economic loss. Thus, it became vital to make substantial slope stability studies in such reservoirs to ensure safe project development. This study also presents a regional scale instability assessment of the Tekeze Hydropower reservoir slopes. Tekeze hydropower project is a newly constructed double arch dam that completed in August 2009. It is developed on Tekeze River, tributary of Blue Nile River that runs across the northern highlands of Ethiopia. It cuts a savage gorge 2000m deep, the deepest canyon in Africa. The dam is the highest dam in Ethiopia at 188m, 10 m higher than China's Three Gorges Dam. It is being developed by Chinese company at a cost of US350M. The reservoir is designed at 1140 m elevation, as retention level to store more than 9000 million m3 volume of water that covers an area of 150 km2, mainly in channel filling form. In this study, generation of digital elevation model from ASTER satellite imagery and surface field investigation is initially considered for further image processing and terrain parameters' analyses. Digitally processed multi spectral ASTER ortho-images drape over the DEM are used to have different three dimensional perspective views in interpreting lithological, structural and geomorphological features, which are later verified by field mapping. Terrain slopes are also delineated from the relief scene. A GIS database is ultimately developed to facilitate the delineation of geotechnical units for slope rock mass classification. Accordingly, 83 geotechnical units are delineated and, within them, 240 measurement points are established to quantify in-situ geotechnical parameters. Due to geotechnical uncertainties, four classification systems; namely geomorphic rock mass strength classification (RMS), slope mass rating (SMR), rock slope stability probability classification (SSPC) and geological strength index (GSI) are employed to classify the rock mass. The results are further compared with one another to delineate the instability conditions and produce an instability map of the reservoir slopes. Instability of the reservoir slopes is found to be mainly associated with daylighting discontinuities, thinly bedded/foliated slates, and karstified limestone. It is also noted that these features are mostly located in the regional gliding plane and shear zone, which are related with old slides scars. In general, the instabilities are found relatively far from the dam axis, in relatively less elevated and less steep slopes, which are going to be nearly covered by the impoundment; thus, they are normally expected to have less hazard in relation to the reservoir setting. Some minor failures will be generally expected during the reservoir filling.
ERIC Educational Resources Information Center
Markey, Karen; Demeyer, Anh N.
In this research project, subject terms from the Dewey Decimal Classification (DDC) Schedules and Relative Index were incorporated into an online catalog as searcher's tools for subject access, browsing, and display. Four features of the DDC were employed to help searchers browse for and match their own subject terms with the online catalog's…
Global land cover mapping: a review and uncertainty analysis
Congalton, Russell G.; Gu, Jianyu; Yadav, Kamini; Thenkabail, Prasad S.; Ozdogan, Mutlu
2014-01-01
Given the advances in remotely sensed imagery and associated technologies, several global land cover maps have been produced in recent times including IGBP DISCover, UMD Land Cover, Global Land Cover 2000 and GlobCover 2009. However, the utility of these maps for specific applications has often been hampered due to considerable amounts of uncertainties and inconsistencies. A thorough review of these global land cover projects including evaluating the sources of error and uncertainty is prudent and enlightening. Therefore, this paper describes our work in which we compared, summarized and conducted an uncertainty analysis of the four global land cover mapping projects using an error budget approach. The results showed that the classification scheme and the validation methodology had the highest error contribution and implementation priority. A comparison of the classification schemes showed that there are many inconsistencies between the definitions of the map classes. This is especially true for the mixed type classes for which thresholds vary for the attributes/discriminators used in the classification process. Examination of these four global mapping projects provided quite a few important lessons for the future global mapping projects including the need for clear and uniform definitions of the classification scheme and an efficient, practical, and valid design of the accuracy assessment.
Sliding Window Generalized Kernel Affine Projection Algorithm Using Projection Mappings
NASA Astrophysics Data System (ADS)
Slavakis, Konstantinos; Theodoridis, Sergios
2008-12-01
Very recently, a solution to the kernel-based online classification problem has been given by the adaptive projected subgradient method (APSM). The developed algorithm can be considered as a generalization of a kernel affine projection algorithm (APA) and the kernel normalized least mean squares (NLMS). Furthermore, sparsification of the resulting kernel series expansion was achieved by imposing a closed ball (convex set) constraint on the norm of the classifiers. This paper presents another sparsification method for the APSM approach to the online classification task by generating a sequence of linear subspaces in a reproducing kernel Hilbert space (RKHS). To cope with the inherent memory limitations of online systems and to embed tracking capabilities to the design, an upper bound on the dimension of the linear subspaces is imposed. The underlying principle of the design is the notion of projection mappings. Classification is performed by metric projection mappings, sparsification is achieved by orthogonal projections, while the online system's memory requirements and tracking are attained by oblique projections. The resulting sparsification scheme shows strong similarities with the classical sliding window adaptive schemes. The proposed design is validated by the adaptive equalization problem of a nonlinear communication channel, and is compared with classical and recent stochastic gradient descent techniques, as well as with the APSM's solution where sparsification is performed by a closed ball constraint on the norm of the classifiers.
The Ilac-Project Supporting Ancient Coin Classification by Means of Image Analysis
NASA Astrophysics Data System (ADS)
Kavelar, A.; Zambanini, S.; Kampel, M.; Vondrovec, K.; Siegl, K.
2013-07-01
This paper presents the ILAC project, which aims at the development of an automated image-based classification system for ancient Roman Republican coins. The benefits of such a system are manifold: operating at the suture between computer vision and numismatics, ILAC can reduce the day-to-day workload of numismatists by assisting them in classification tasks and providing a preselection of suitable coin classes. This is especially helpful for large coin hoard findings comprising several thousands of coins. Furthermore, this system could be implemented in an online platform for hobby numismatists, allowing them to access background information about their coin collection by simply uploading a photo of obverse and reverse for the coin of interest. ILAC explores different computer vision techniques and their combinations for the use of image-based coin recognition. Some of these methods, such as image matching, use the entire coin image in the classification process, while symbol or legend recognition exploit certain characteristics of the coin imagery. An overview of the methods explored so far and the respective experiments is given as well as an outlook on the next steps of the project.
Rule-guided human classification of Volunteered Geographic Information
NASA Astrophysics Data System (ADS)
Ali, Ahmed Loai; Falomir, Zoe; Schmid, Falko; Freksa, Christian
2017-05-01
During the last decade, web technologies and location sensing devices have evolved generating a form of crowdsourcing known as Volunteered Geographic Information (VGI). VGI acted as a platform of spatial data collection, in particular, when a group of public participants are involved in collaborative mapping activities: they work together to collect, share, and use information about geographic features. VGI exploits participants' local knowledge to produce rich data sources. However, the resulting data inherits problematic data classification. In VGI projects, the challenges of data classification are due to the following: (i) data is likely prone to subjective classification, (ii) remote contributions and flexible contribution mechanisms in most projects, and (iii) the uncertainty of spatial data and non-strict definitions of geographic features. These factors lead to various forms of problematic classification: inconsistent, incomplete, and imprecise data classification. This research addresses classification appropriateness. Whether the classification of an entity is appropriate or inappropriate is related to quantitative and/or qualitative observations. Small differences between observations may be not recognizable particularly for non-expert participants. Hence, in this paper, the problem is tackled by developing a rule-guided classification approach. This approach exploits data mining techniques of Association Classification (AC) to extract descriptive (qualitative) rules of specific geographic features. The rules are extracted based on the investigation of qualitative topological relations between target features and their context. Afterwards, the extracted rules are used to develop a recommendation system able to guide participants to the most appropriate classification. The approach proposes two scenarios to guide participants towards enhancing the quality of data classification. An empirical study is conducted to investigate the classification of grass-related features like forest, garden, park, and meadow. The findings of this study indicate the feasibility of the proposed approach.
Wang, Yi; Ma, Xiang; Wen, Ya-Dong; Yu, Chun-Xia; Wang, Luo-Ping; Zhao, Long-Lian; Li, Jun-Hui
2012-10-01
In this study, tobacco quality analysis of industrial classification of different producing area was carried out applying spectrum projection and correlation methods. The group of industrial classification data was near-infrared (NIR) spectrum in 2010 year from different tobacco plant parts and colors of Hongta Tobacco (Group) Co., Ltd. 6 064 tobacco leaf samples of 17 classes from Yuxi, Chuxiong and Zhaotong, in Yunnan province and 6 industrial classifications were collected using near infrared spectroscopy, which from different parts and colors and all belong to tobacco varieties of K326. The conclusion showed that, the probability of the grading belonging by the first dimension was 84%, the probability of the producing area belonging by the second dimension was 71%. The study can explain the difference of tobacco quality of industrial classification and producing area by a projection method to get the quantitative similarity values. The quantitative similarity values were instructive in combination of tobacco leaf blending.
ERIC Educational Resources Information Center
Mandel, Carol A.
This paper presents a synthesis of the ideas and issues developed at a conference convened to review the results of the Dewey Decimal Classification Online Project and explore the potential for future use of the Dewey Decimal Classification (DDC) and Library of Congress Classification (LCC) schedules in online library catalogs. Conference…
18 CFR 401.35 - Classification of projects for review under Section 3.8 of the Compact.
Code of Federal Regulations, 2010 CFR
2010-04-01
... materials; (6) A change in land cover on major ground water infiltration areas when the amount of land that... infiltration areas; (11) Hydroelectric power projects, including pumped storage projects; (12) Projects or...
18 CFR 401.35 - Classification of projects for review under Section 3.8 of the Compact.
Code of Federal Regulations, 2013 CFR
2013-04-01
... materials; (6) A change in land cover on major ground water infiltration areas when the amount of land that... infiltration areas; (11) Hydroelectric power projects, including pumped storage projects; (12) Projects or...
18 CFR 401.35 - Classification of projects for review under Section 3.8 of the Compact.
Code of Federal Regulations, 2014 CFR
2014-04-01
... materials; (6) A change in land cover on major ground water infiltration areas when the amount of land that... infiltration areas; (11) Hydroelectric power projects, including pumped storage projects; (12) Projects or...
18 CFR 401.35 - Classification of projects for review under Section 3.8 of the Compact.
Code of Federal Regulations, 2012 CFR
2012-04-01
... materials; (6) A change in land cover on major ground water infiltration areas when the amount of land that... infiltration areas; (11) Hydroelectric power projects, including pumped storage projects; (12) Projects or...
Optimal Couple Projections for Domain Adaptive Sparse Representation-based Classification.
Zhang, Guoqing; Sun, Huaijiang; Porikli, Fatih; Liu, Yazhou; Sun, Quansen
2017-08-29
In recent years, sparse representation based classification (SRC) is one of the most successful methods and has been shown impressive performance in various classification tasks. However, when the training data has a different distribution than the testing data, the learned sparse representation may not be optimal, and the performance of SRC will be degraded significantly. To address this problem, in this paper, we propose an optimal couple projections for domain-adaptive sparse representation-based classification (OCPD-SRC) method, in which the discriminative features of data in the two domains are simultaneously learned with the dictionary that can succinctly represent the training and testing data in the projected space. OCPD-SRC is designed based on the decision rule of SRC, with the objective to learn coupled projection matrices and a common discriminative dictionary such that the between-class sparse reconstruction residuals of data from both domains are maximized, and the within-class sparse reconstruction residuals of data are minimized in the projected low-dimensional space. Thus, the resulting representations can well fit SRC and simultaneously have a better discriminant ability. In addition, our method can be easily extended to multiple domains and can be kernelized to deal with the nonlinear structure of data. The optimal solution for the proposed method can be efficiently obtained following the alternative optimization method. Extensive experimental results on a series of benchmark databases show that our method is better or comparable to many state-of-the-art methods.
24 CFR 58.32 - Project aggregation.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Project aggregation. 58.32 Section... Environmental Review Process: Documentation, Range of Activities, Project Aggregation and Classification § 58.32 Project aggregation. (a) A responsible entity must group together and evaluate as a single project all...
24 CFR 58.32 - Project aggregation.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Project aggregation. 58.32 Section... Environmental Review Process: Documentation, Range of Activities, Project Aggregation and Classification § 58.32 Project aggregation. (a) A responsible entity must group together and evaluate as a single project all...
24 CFR 58.32 - Project aggregation.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Project aggregation. 58.32 Section... Environmental Review Process: Documentation, Range of Activities, Project Aggregation and Classification § 58.32 Project aggregation. (a) A responsible entity must group together and evaluate as a single project all...
24 CFR 58.32 - Project aggregation.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Project aggregation. 58.32 Section... Environmental Review Process: Documentation, Range of Activities, Project Aggregation and Classification § 58.32 Project aggregation. (a) A responsible entity must group together and evaluate as a single project all...
NASA Astrophysics Data System (ADS)
Nezhnikova, Ekaterina
2017-10-01
This article deals with social and economic essence of strategy of the housing industry development, both complex system of economic relations in field of production and consumption, which is regulated through the mechanism of prices and implemented through formation and realization of priority directions. Developed criteria for classification of housing construction projects as environmentally friendly and the quality criteria of variables for assessment of the environmental friendliness of residential buildings allowed to determine the ways of development of the industry on the basis of creation of competitive projects in interrelation with quality, environmental friendliness and price of consumption.
Development of an ecological classification system for the Wayne National Forest
David M. Hix; Andrea M. Chech
1993-01-01
In 1991, a collaborative research project was initiated to create an ecological classification system for the Wayne National Forest of southeastern Ohio. The work focuses on the ecological land type (ELT) level of ecosystem classification. The most common ELTs are being identified and described using information from intensive field sampling and multivariate data...
Some Dimensions of Auditory Sonar Signal Perception and Their Relationships to Target Classification
1981-02-13
a priori how the sample of experimental stimuli related to the classification stereotypes of experienced sonar personnel, Question 6 was addressed by...projections on some of the experimentally identified dimensions are associ- ated with a high degree of classification success, but signals that lack ,strong...11 Hypotheses ......................... 11 Procedure ....... .. .. ......................... 11 Experimental Stimuli
2002-05-01
GAO United States General Accounting OfficeReport to Congressional CommitteesMay 2002 CUSTOMS SERVICE MODERNIZATION Management Improvements Needed...from... to) - Title and Subtitle CUSTOMS SERVICE MODERNIZATION: Management Improvements Needed on High-Risk Automated Commercial Environment... Customs management of ACE. Subject Terms Report Classification unclassified Classification of this page unclassified Classification of Abstract
R-parametrization and its role in classification of linear multivariable feedback systems
NASA Technical Reports Server (NTRS)
Chen, Robert T. N.
1988-01-01
A classification of all the compensators that stabilize a given general plant in a linear, time-invariant multi-input, multi-output feedback system is developed. This classification, along with the associated necessary and sufficient conditions for stability of the feedback system, is achieved through the introduction of a new parameterization, referred to as R-Parameterization, which is a dual of the familiar Q-Parameterization. The classification is made to the stability conditions of the compensators and the plant by themselves; and necessary and sufficient conditions are based on the stability of Q and R themselves.
Operation Ghost Dancer: The Use of Active Duty Army Forces in Marijuana Eradication.
1991-03-11
NO. NO. ACCESSION NO. 11. TITLE (Include Security Classification) OPERATION GHOST DANCER: The Use of Active Duty Army Forces in Marijuana Eradication...The Use of Active Duty Army Forces in Marijuana Eradication An Individual Study Project by Lieutenant Colonel Henry J. Richter United States Army...Dancer: The Use of Active Duty Army Forces in Marijuana Eradication Format: Individual Study Project Date: 11 March 1991 Pages: 70 Classification
NASA Technical Reports Server (NTRS)
Joyce, A. T.
1974-01-01
Significant progress has been made in the classification of surface conditions (land uses) with computer-implemented techniques based on the use of ERTS digital data and pattern recognition software. The supervised technique presently used at the NASA Earth Resources Laboratory is based on maximum likelihood ratioing with a digital table look-up approach to classification. After classification, colors are assigned to the various surface conditions (land uses) classified, and the color-coded classification is film recorded on either positive or negative 9 1/2 in. film at the scale desired. Prints of the film strips are then mosaicked and photographed to produce a land use map in the format desired. Computer extraction of statistical information is performed to show the extent of each surface condition (land use) within any given land unit that can be identified in the image. Evaluations of the product indicate that classification accuracy is well within the limits for use by land resource managers and administrators. Classifications performed with digital data acquired during different seasons indicate that the combination of two or more classifications offer even better accuracy.
2014-01-01
Background The inter-patient classification schema and the Association for the Advancement of Medical Instrumentation (AAMI) standards are important to the construction and evaluation of automated heartbeat classification systems. The majority of previously proposed methods that take the above two aspects into consideration use the same features and classification method to classify different classes of heartbeats. The performance of the classification system is often unsatisfactory with respect to the ventricular ectopic beat (VEB) and supraventricular ectopic beat (SVEB). Methods Based on the different characteristics of VEB and SVEB, a novel hierarchical heartbeat classification system was constructed. This was done in order to improve the classification performance of these two classes of heartbeats by using different features and classification methods. First, random projection and support vector machine (SVM) ensemble were used to detect VEB. Then, the ratio of the RR interval was compared to a predetermined threshold to detect SVEB. The optimal parameters for the classification models were selected on the training set and used in the independent testing set to assess the final performance of the classification system. Meanwhile, the effect of different lead configurations on the classification results was evaluated. Results Results showed that the performance of this classification system was notably superior to that of other methods. The VEB detection sensitivity was 93.9% with a positive predictive value of 90.9%, and the SVEB detection sensitivity was 91.1% with a positive predictive value of 42.2%. In addition, this classification process was relatively fast. Conclusions A hierarchical heartbeat classification system was proposed based on the inter-patient data division to detect VEB and SVEB. It demonstrated better classification performance than existing methods. It can be regarded as a promising system for detecting VEB and SVEB of unknown patients in clinical practice. PMID:24981916
NASA Astrophysics Data System (ADS)
Sebastián-López, Ana; Urbieta, Itziar R.; de La Fuente Blanco, David; García Mateo, Rubén.; Moreno Rodríguez, José Manuel; Eftichidis, George; Varela, Vassiliki; Cesari, Véronique; Mário Ribeiro, Luís.; Viegas, Domingos Xavier; Lanorte, Antonio; Lasaponara, Rosa; Camia, Andrea; San Miguel, Jesús
2010-05-01
Forest fires burn at the local scale, but their massive occurrence causes effects which have global dimensions. Furthermore climate change projections associate global warming to a significant increase in forest fire activity. Warmer and drier conditions are expected to increase the frequency, duration and intensity of fires, and greater amounts of fuel associated with forest areas in decline may cause more frequent and larger fires. These facts create the need for establishing strategies for harmonizing fire danger rating, fire risk assessment, and fire prevention policies at a supranational level. Albeit forest fires are a permanent threat for European ecosystems, particularly in the south, there is no commonly accepted fuel classification scheme adopted for operational use by the Member States of the EU. The European Commission (EC) DG Environment and JRC have launched a set of studies following a resolution of the European Parliament on the further development and enhancement of the European Forest Fire Information System (EFFIS), the EC focal point for information on forest fires in Europe. One of the studies that are being funded is the FUELMAP project. The objective of FUELMAP is to develop a novel fuel classification system and a new European fuel map that will be based on a comprehensive classification of fuel complexes representing the various vegetation types across EU27, plus Switzerland, Croatia and Turkey. The overall work plan is grounded on a throughout knowledge of European forest landscapes and the key features of fuel situations occurring in natural areas. The method makes extended use of existing databases available in the Member States and European Institutions. Specifically, our proposed classification combines relevant information on ecoregions, land cover and uses, potential and actual vegetation, and stand structure. GIS techniques are used in order to define the geographic extent of the classification units and for identifying the main driving factors that determine the spatial distribution of the resulting fuel complexes. Furthermore, relevant parameters influencing fire potential and effects such as fuel load, live/dead ratio, and fuels' size classes' distribution are considered. National- and local-scale datasets (vegetation maps, forest inventory plots, fuel maps...) will be also studied and compared. Local ground- truth data will be used to assess the accuracy of the classification and will contribute, along with literature values and experts' opinion, to characterize the fuels' physical properties. The resulting classification aims to support the characterization of the fire potential, serve as input in fire emissions models, and be used to assess the expected impact of fire in the European landscapes. The work plan includes the development of a GIS software tool to automatically update the fuel map from modified (up-to-date) input data layers. The fuel map of Europe is mainly intended to support the implementation of the EFFIS modules that can be enhanced by the use of improved information on forest fuel properties and spatial distribution, though it is also envisaged that the results of the project might be useful for other relevant applications at different spatial scales. To this purpose, the classification will be designed with a hierarchical and flexible structure for describing heterogeneous landscapes. The work is on-going and this presentation shows the first results towards the envisaged European fuel map.
Fuzzy C-means classification for corrosion evolution of steel images
NASA Astrophysics Data System (ADS)
Trujillo, Maite; Sadki, Mustapha
2004-05-01
An unavoidable problem of metal structures is their exposure to rust degradation during their operational life. Thus, the surfaces need to be assessed in order to avoid potential catastrophes. There is considerable interest in the use of patch repair strategies which minimize the project costs. However, to operate such strategies with confidence in the long useful life of the repair, it is essential that the condition of the existing coatings and the steel substrate can be accurately quantified and classified. This paper describes the application of fuzzy set theory for steel surfaces classification according to the steel rust time. We propose a semi-automatic technique to obtain image clustering using the Fuzzy C-means (FCM) algorithm and we analyze two kinds of data to study the classification performance. Firstly, we investigate the use of raw images" pixels without any pre-processing methods and neighborhood pixels. Secondly, we apply Gaussian noise to the images with different standard deviation to study the FCM method tolerance to Gaussian noise. The noisy images simulate the possible perturbations of the images due to the weather or rust deposits in the steel surfaces during typical on-site acquisition procedures
NASA Astrophysics Data System (ADS)
Abdullahi, Sahra; Schardt, Mathias; Pretzsch, Hans
2017-05-01
Forest structure at stand level plays a key role for sustainable forest management, since the biodiversity, productivity, growth and stability of the forest can be positively influenced by managing its structural diversity. In contrast to field-based measurements, remote sensing techniques offer a cost-efficient opportunity to collect area-wide information about forest stand structure with high spatial and temporal resolution. Especially Interferometric Synthetic Aperture Radar (InSAR), which facilitates worldwide acquisition of 3d information independent from weather conditions and illumination, is convenient to capture forest stand structure. This study purposes an unsupervised two-stage clustering approach for forest structure classification based on height information derived from interferometric X-band SAR data which was performed in complex temperate forest stands of Traunstein forest (South Germany). In particular, a four dimensional input data set composed of first-order height statistics was non-linearly projected on a two-dimensional Self-Organizing Map, spatially ordered according to similarity (based on the Euclidean distance) in the first stage and classified using the k-means algorithm in the second stage. The study demonstrated that X-band InSAR data exhibits considerable capabilities for forest structure classification. Moreover, the unsupervised classification approach achieved meaningful and reasonable results by means of comparison to aerial imagery and LiDAR data.
Guidelines on severity assessment and classification of genetically altered mouse and rat lines.
Zintzsch, Anne; Noe, Elena; Reißmann, Monika; Ullmann, Kristina; Krämer, Stephanie; Jerchow, Boris; Kluge, Reinhart; Gösele, Claudia; Nickles, Hannah; Puppe, Astrid; Rülicke, Thomas
2017-12-01
Genetic alterations can unpredictably compromise the wellbeing of animals. Thus, more or less harmful phenotypes might appear in the animals used in research projects even when they are not subjected to experimental treatments. The severity classification of suffering has become an important issue since the implementation of Directive 2010/63/EU on the protection of animals used for scientific purposes. Accordingly, the breeding and maintenance of genetically altered (GA) animals which are likely to develop a harmful phenotype has to be authorized. However, a determination of the degree of severity is rather challenging due to the large variety of phenotypes. Here, the Working Group of Berlin Animal Welfare Officers (WG Berlin AWO) provides field-tested guidelines on severity assessment and classification of GA rodents. With a focus on basic welfare assessment and severity classification we provide a list of symptoms that have been classified as non-harmful, mild, moderate or severe burdens. Corresponding monitoring and refinement strategies as well as specific housing requirements have been compiled and are strongly recommended to improve hitherto applied breeding procedures and conditions. The document serves as a guide to determine the degree of severity for an observed phenotype. The aim is to support scientists, animal care takers, animal welfare bodies and competent authorities with this task, and thereby make an important contribution to a European harmonization of severity assessments for the continually increasing number of GA rodents.
Locality-preserving sparse representation-based classification in hyperspectral imagery
NASA Astrophysics Data System (ADS)
Gao, Lianru; Yu, Haoyang; Zhang, Bing; Li, Qingting
2016-10-01
This paper proposes to combine locality-preserving projections (LPP) and sparse representation (SR) for hyperspectral image classification. The LPP is first used to reduce the dimensionality of all the training and testing data by finding the optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the manifold, where the high-dimensional data lies. Then, SR codes the projected testing pixels as sparse linear combinations of all the training samples to classify the testing pixels by evaluating which class leads to the minimum approximation error. The integration of LPP and SR represents an innovative contribution to the literature. The proposed approach, called locality-preserving SR-based classification, addresses the imbalance between high dimensionality of hyperspectral data and the limited number of training samples. Experimental results on three real hyperspectral data sets demonstrate that the proposed approach outperforms the original counterpart, i.e., SR-based classification.
Building a Multi-Discipline Digital Library Through Extending the Dienst Protocol
NASA Technical Reports Server (NTRS)
Nelson, Michael L.; Maly, Kurt; Shen, Stewart N. T.
1997-01-01
The purpose of this project is to establish multi-discipline capability for a unified, canonical digital library service for scientific and technical information (STI). This is accomplished by extending the Dienst Protocol to be aware of subject classification of a servers holdings. We propose a hierarchical, general, and extendible subject classification that can encapsulate existing classification systems.
2016-11-01
focuses on characterizing Electromagnetic Induction (EMI) responses in the underwater setting through numerical and experimental studies with the...marine EMI sensing. 15. SUBJECT TERMS Munitions Response, Electromagnetic Induction, Unexploded Ordnance, Classification 16. SECURITY CLASSIFICATION...using Advanced EMI Sensors in the Underwater Environment.” The project focuses on characterizing Electromagnetic Induction (EMI) responses in the
2012-05-01
GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7 . PERFORMING ORGANIZATION NAME(S...2.3.3 Classification using template matching ...................................................... 7 2.4 Details of classification schemes... 7 2.4.1 Camp Butner TEMTADS data inversion and classification scheme .......... 9
1987-10-01
PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK Human Resources Research Organization 2 P 3 QA2 79 9"INiTNUMBERS 1100...classification tests which will validly predict carefully developed measures of job performance . The project addresses the 675,000-person enlisted personnel...are to include both Army-wide job performance measures based on newly developed rating scales, and direct hands-on measures of MOS-specific task
The use of a projection method to simplify portal and hepatic vein segmentation in liver anatomy.
Huang, Shaohui; Wang, Boliang; Cheng, Ming; Huang, Xiaoyang; Ju, Ying
2008-12-01
In living donor liver transplantation, the volume of the potential graft must be measured to ensure sufficient liver function after surgery. Couinaud divided the liver into 8 functionally independent segments. However, this method is not simple to perform in 3D space directly. Thus, we propose a rapid method to segment the liver based on the hepatic vessel tree. The most important step of this method is vascular projection. By carefully selecting a projection plane, a 3D point can be fixed in the projection plane. This greatly helps in rapid classification. This method was validated by applying it to a 3D liver depicted on CT images, and the result was in good agreement with Couinaud's classification.
Wang, Yi; Xiang, Ma; Wen, Ya-Dong; Yu, Chun-Xia; Wang, Luo-Ping; Zhao, Long-Lian; Li, Jun-Hui
2012-11-01
In this study, tobacco quality analysis of main Industrial classification of different years was carried out applying spectrum projection and correlation methods. The group of data was near-infrared (NIR) spectrum from Hongta Tobacco (Group) Co., Ltd. 5730 tobacco leaf Industrial classification samples from Yuxi in Yunnan province from 2007 to 2010 year were collected using near infrared spectroscopy, which from different parts and colors and all belong to tobacco varieties of HONGDA. The conclusion showed that, when the samples were divided to two part by the ratio of 2:1 randomly as analysis and verification sets in the same year, the verification set corresponded with the analysis set applying spectrum projection because their correlation coefficients were above 0.98. The correlation coefficients between two different years applying spectrum projection were above 0.97. The highest correlation coefficient was the one between 2008 and 2009 year and the lowest correlation coefficient was the one between 2007 and 2010 year. At the same time, The study discussed a method to get the quantitative similarity values of different industrial classification samples. The similarity and consistency values were instructive in combination and replacement of tobacco leaf blending.
Zhang, Chi; Zhang, Ge; Chen, Ke-ji; Lu, Ai-ping
2016-04-01
The development of an effective classification method for human health conditions is essential for precise diagnosis and delivery of tailored therapy to individuals. Contemporary classification of disease systems has properties that limit its information content and usability. Chinese medicine pattern classification has been incorporated with disease classification, and this integrated classification method became more precise because of the increased understanding of the molecular mechanisms. However, we are still facing the complexity of diseases and patterns in the classification of health conditions. With continuing advances in omics methodologies and instrumentation, we are proposing a new classification approach: molecular module classification, which is applying molecular modules to classifying human health status. The initiative would be precisely defining the health status, providing accurate diagnoses, optimizing the therapeutics and improving new drug discovery strategy. Therefore, there would be no current disease diagnosis, no disease pattern classification, and in the future, a new medicine based on this classification, molecular module medicine, could redefine health statuses and reshape the clinical practice.
The Project Method in Agricultural Education: Then and Now
ERIC Educational Resources Information Center
Roberts, T. Grady; Harlin, Julie F.
2007-01-01
The purpose of this philosophical paper was to synthesize theoretical and historical foundations of the project method and compare them to modern best-practices. A review of historical and contemporary literature related to the project method yielded six themes: 1) purpose of projects; 2) project classification; 3) the process; 4) the context; 5)…
Notification: Follow-up Review of EPA’s Classification of National Security Information
Project #OPE-FY15-0057, July 20, 2015. The EPA OIG plans to begin preliminary research on the OARM actions taken to improve policies and procedures related to the classification of national security information.
Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS
NASA Astrophysics Data System (ADS)
Kilpatrick, C. D.; Pan, Y.-C.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.
2017-01-01
We report the following classifications of optical transients from spectroscopic observations with KOSMOS on the KPNO Mayall 4-m telescope. Targets were supplied by the All-Sky Automated Survey for Supernovae (ASAS-SN) and the ATLAS project (ATel #8680).
Creating a Canonical Scientific and Technical Information Classification System for NCSTRL+
NASA Technical Reports Server (NTRS)
Tiffany, Melissa E.; Nelson, Michael L.
1998-01-01
The purpose of this paper is to describe the new subject classification system for the NCSTRL+ project. NCSTRL+ is a canonical digital library (DL) based on the Networked Computer Science Technical Report Library (NCSTRL). The current NCSTRL+ classification system uses the NASA Scientific and Technical (STI) subject classifications, which has a bias towards the aerospace, aeronautics, and engineering disciplines. Examination of other scientific and technical information classification systems showed similar discipline-centric weaknesses. Traditional, library-oriented classification systems represented all disciplines, but were too generalized to serve the needs of a scientific and technically oriented digital library. Lack of a suitable existing classification system led to the creation of a lightweight, balanced, general classification system that allows the mapping of more specialized classification schemes into the new framework. We have developed the following classification system to give equal weight to all STI disciplines, while being compact and lightweight.
Bolin, Jocelyn Holden; Finch, W Holmes
2014-01-01
Statistical classification of phenomena into observed groups is very common in the social and behavioral sciences. Statistical classification methods, however, are affected by the characteristics of the data under study. Statistical classification can be further complicated by initial misclassification of the observed groups. The purpose of this study is to investigate the impact of initial training data misclassification on several statistical classification and data mining techniques. Misclassification conditions in the three group case will be simulated and results will be presented in terms of overall as well as subgroup classification accuracy. Results show decreased classification accuracy as sample size, group separation and group size ratio decrease and as misclassification percentage increases with random forests demonstrating the highest accuracy across conditions.
Early classification of pathological heartbeats on wireless body sensor nodes.
Braojos, Rubén; Beretta, Ivan; Ansaloni, Giovanni; Atienza, David
2014-11-27
Smart Wireless Body Sensor Nodes (WBSNs) are a novel class of unobtrusive, battery-powered devices allowing the continuous monitoring and real-time interpretation of a subject's bio-signals, such as the electrocardiogram (ECG). These low-power platforms, while able to perform advanced signal processing to extract information on heart conditions, are usually constrained in terms of computational power and transmission bandwidth. It is therefore essential to identify in the early stages which parts of an ECG are critical for the diagnosis and, only in these cases, activate on demand more detailed and computationally intensive analysis algorithms. In this work, we present a comprehensive framework for real-time automatic classification of normal and abnormal heartbeats, targeting embedded and resource-constrained WBSNs. In particular, we provide a comparative analysis of different strategies to reduce the heartbeat representation dimensionality, and therefore the required computational effort. We then combine these techniques with a neuro-fuzzy classification strategy, which effectively discerns normal and pathological heartbeats with a minimal run time and memory overhead. We prove that, by performing a detailed analysis only on the heartbeats that our classifier identifies as abnormal, a WBSN system can drastically reduce its overall energy consumption. Finally, we assess the choice of neuro-fuzzy classification by comparing its performance and workload with respect to other state-of-the-art strategies. Experimental results using the MIT-BIH Arrhythmia database show energy savings of as much as 60% in the signal processing stage, and 63% in the subsequent wireless transmission, when a neuro-fuzzy classification structure is employed, coupled with a dimensionality reduction technique based on random projections.
Early Classification of Pathological Heartbeats on Wireless Body Sensor Nodes
Braojos, Rubén; Beretta, Ivan; Ansaloni, Giovanni; Atienza, David
2014-01-01
Smart Wireless Body Sensor Nodes (WBSNs) are a novel class of unobtrusive, battery-powered devices allowing the continuous monitoring and real-time interpretation of a subject's bio-signals, such as the electrocardiogram (ECG). These low-power platforms, while able to perform advanced signal processing to extract information on heart conditions, are usually constrained in terms of computational power and transmission bandwidth. It is therefore essential to identify in the early stages which parts of an ECG are critical for the diagnosis and, only in these cases, activate on demand more detailed and computationally intensive analysis algorithms. In this work, we present a comprehensive framework for real-time automatic classification of normal and abnormal heartbeats, targeting embedded and resource-constrained WBSNs. In particular, we provide a comparative analysis of different strategies to reduce the heartbeat representation dimensionality, and therefore the required computational effort. We then combine these techniques with a neuro-fuzzy classification strategy, which effectively discerns normal and pathological heartbeats with a minimal run time and memory overhead. We prove that, by performing a detailed analysis only on the heartbeats that our classifier identifies as abnormal, a WBSN system can drastically reduce its overall energy consumption. Finally, we assess the choice of neuro-fuzzy classification by comparing its performance and workload with respect to other state-of-the-art strategies. Experimental results using the MIT-BIH Arrhythmia database show energy savings of as much as 60% in the signal processing stage, and 63% in the subsequent wireless transmission, when a neuro-fuzzy classification structure is employed, coupled with a dimensionality reduction technique based on random projections. PMID:25436654
Towns, Megan; Rosenbaum, Peter; Palisano, Robert; Wright, F Virginia
2018-02-01
This literature review addressed four questions. (1) In which populations other than cerebral palsy (CP) has the Gross Motor Function Classification System (GMFCS) been applied? (2) In what types of study, and why was it used? (3) How was it modified to facilitate these applications? (4) What justifications and evidence of psychometric adequacy were used to support its application? A search of PubMed, MEDLINE, and Embase databases (January 1997 to April 2017) using the terms: 'GMFCS' OR 'Gross Motor Function Classification System' yielded 2499 articles. 118 met inclusion criteria and reported children/adults with 133 health conditions/clinical descriptions other than CP. Three broad GMFCS applications were observed: as a categorization tool, independent variable, or outcome measure. While the GMFCS is widely used for children with health conditions/clinical description other than CP, researchers rarely provided adequate justification for these uses. We offer recommendations for development/validation of other condition-specific classification systems and discuss the potential need for a generic gross motor function classification system. The Gross Motor Function Classification System should not be used outside cerebral palsy or as an outcome measure. The authors provide recommendations for development and validation of condition-specific or generic classification systems. © 2017 Mac Keith Press.
32 CFR 2001.10 - Classification standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 6 2014-07-01 2014-07-01 false Classification standards. 2001.10 Section 2001... Classification § 2001.10 Classification standards. Identifying or describing damage to the national security. Section 1.1(a) of the Order specifies the conditions that must be met when making classification decisions...
32 CFR 2001.10 - Classification standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 6 2013-07-01 2013-07-01 false Classification standards. 2001.10 Section 2001... Classification § 2001.10 Classification standards. Identifying or describing damage to the national security. Section 1.1(a) of the Order specifies the conditions that must be met when making classification decisions...
32 CFR 2001.10 - Classification standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 6 2012-07-01 2012-07-01 false Classification standards. 2001.10 Section 2001... Classification § 2001.10 Classification standards. Identifying or describing damage to the national security. Section 1.1(a) of the Order specifies the conditions that must be met when making classification decisions...
32 CFR 2001.10 - Classification standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 6 2010-07-01 2010-07-01 false Classification standards. 2001.10 Section 2001... Classification § 2001.10 Classification standards. Identifying or describing damage to the national security. Section 1.1(a) of the Order specifies the conditions that must be met when making classification decisions...
32 CFR 2001.10 - Classification standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 6 2011-07-01 2011-07-01 false Classification standards. 2001.10 Section 2001... Classification § 2001.10 Classification standards. Identifying or describing damage to the national security. Section 1.1(a) of the Order specifies the conditions that must be met when making classification decisions...
Griffiths, Jason I.; Fronhofer, Emanuel A.; Garnier, Aurélie; Seymour, Mathew; Altermatt, Florian; Petchey, Owen L.
2017-01-01
The development of video-based monitoring methods allows for rapid, dynamic and accurate monitoring of individuals or communities, compared to slower traditional methods, with far reaching ecological and evolutionary applications. Large amounts of data are generated using video-based methods, which can be effectively processed using machine learning (ML) algorithms into meaningful ecological information. ML uses user defined classes (e.g. species), derived from a subset (i.e. training data) of video-observed quantitative features (e.g. phenotypic variation), to infer classes in subsequent observations. However, phenotypic variation often changes due to environmental conditions, which may lead to poor classification, if environmentally induced variation in phenotypes is not accounted for. Here we describe a framework for classifying species under changing environmental conditions based on the random forest classification. A sliding window approach was developed that restricts temporal and environmentally conditions to improve the classification. We tested our approach by applying the classification framework to experimental data. The experiment used a set of six ciliate species to monitor changes in community structure and behavior over hundreds of generations, in dozens of species combinations and across a temperature gradient. Differences in biotic and abiotic conditions caused simplistic classification approaches to be unsuccessful. In contrast, the sliding window approach allowed classification to be highly successful, as phenotypic differences driven by environmental change, could be captured by the classifier. Importantly, classification using the random forest algorithm showed comparable success when validated against traditional, slower, manual identification. Our framework allows for reliable classification in dynamic environments, and may help to improve strategies for long-term monitoring of species in changing environments. Our classification pipeline can be applied in fields assessing species community dynamics, such as eco-toxicology, ecology and evolutionary ecology. PMID:28472193
NASA Technical Reports Server (NTRS)
Bryant, N. A.; Mcleod, R. G.; Zobrist, A. L.; Johnson, H. B.
1979-01-01
Procedures for adjustment of brightness values between frames and the digital mosaicking of Landsat frames to standard map projections are developed for providing a continuous data base for multispectral thematic classification. A combination of local terrain variations in the Californian deserts and a global sampling strategy based on transects provided the framework for accurate classification throughout the entire geographic region.
Water quality assessment of the Li Canal using a functional fuzzy synthetic evaluation model.
Feng, Yan; Ling, Liu
2014-07-01
Through introducing functional data analysis (FDA) theory into the conventional fuzzy synthetic evaluation (FSE) method, the functional fuzzy synthetic evaluation (FFSE) model is established. FFSE keeps the property of the conventional FSE that the fuzziness in the water quality condition can be suitably measured. Furthermore, compared with FSE, FFSE has the following advantages: (1) FFSE requires fewer conditions for observation, for example, pollutants can be monitored at different times, and missing data is accepted; (2) the dynamic variation of the water quality condition can be represented more comprehensively and intuitively. The procedure of FFSE is discussed and the water quality of the Li Canal in 2012 is evaluated as an illustration. The synthetic classification of the Li Canal is "II" in January, February and July, and "I" in other months, which can satisfy the requirement of the Chinese South-to-North Water Diversion Project.
Three approaches to the classification of inland wetlands. [Dismal Swamp, Tennessee, and Florida
NASA Technical Reports Server (NTRS)
Gammon, P. T.; Malone, D.; Brooks, P. D.; Carter, V.
1977-01-01
In the Dismal Swamp project, seasonal, color-infrared aerial photographs and LANDSAT digital data were interpreted for a detailed analysis of the vegetative communities in a large, highly altered wetland. In Western Tennessee, seasonal high altitude color-infrared aerial photographs provided the hydrologic and vegetative information needed to map inland wetlands, using a classification system developed for the Tennessee Valley Region. In Florida, color-infrared aerial photographs were analyzed to produce wetland maps using three existing classification systems to evaluate the information content and mappability of each system. The methods used in each of the three projects can be extended or modified for use in the mapping of inland wetlands in other parts of the United States.
Cooperative forestry inventory project for Nevada
NASA Technical Reports Server (NTRS)
Thornhill, R.
1981-01-01
A forest inventory project employing computerized classification of LANDSAT data to inventory vegetation types in western Nevada is described. The methodology and applicability of the resulting survey are summarized.
NASA Astrophysics Data System (ADS)
Dakhlaoui, H.; Ruelland, D.; Tramblay, Y.; Bargaoui, Z.
2017-07-01
To evaluate the impact of climate change on water resources at the catchment scale, not only future projections of climate are necessary but also robust rainfall-runoff models that must be fairly reliable under changing climate conditions. The aim of this study was thus to assess the robustness of three conceptual rainfall-runoff models (GR4j, HBV and IHACRES) on five basins in northern Tunisia under long-term climate variability, in the light of available future climate scenarios for this region. The robustness of the models was evaluated using a differential split sample test based on a climate classification of the observation period that simultaneously accounted for precipitation and temperature conditions. The study catchments include the main hydrographical basins in northern Tunisia, which produce most of the surface water resources in the country. A 30-year period (1970-2000) was used to capture a wide range of hydro-climatic conditions. The calibration was based on the Kling-Gupta Efficiency (KGE) criterion, while model transferability was evaluated based on the Nash-Sutcliffe efficiency criterion and volume error. The three hydrological models were shown to behave similarly under climate variability. The models simulated the runoff pattern better when transferred to wetter and colder conditions than to drier and warmer ones. It was shown that their robustness became unacceptable when climate conditions involved a decrease of more than 25% in annual precipitation and an increase of more than +1.75 °C in annual mean temperatures. The reduction in model robustness may be partly due to the climate dependence of some parameters. When compared to precipitation and temperature projections in the region, the limits of transferability obtained in this study are generally respected for short and middle term. For long term projections under the most pessimistic emission gas scenarios, the limits of transferability are generally not respected, which may hamper the use of conceptual models for hydrological projections in northern Tunisia.
NASA Astrophysics Data System (ADS)
Cheng, T.; Zhou, X.; Jia, Y.; Yang, G.; Bai, J.
2018-04-01
In the project of China's First National Geographic Conditions Census, millions of sample data have been collected all over the country for interpreting land cover based on remote sensing images, the quantity of data files reaches more than 12,000,000 and has grown in the following project of National Geographic Conditions Monitoring. By now, using database such as Oracle for storing the big data is the most effective method. However, applicable method is more significant for sample data's management and application. This paper studies a database construction method which is based on relational database with distributed file system. The vector data and file data are saved in different physical location. The key issues and solution method are discussed. Based on this, it studies the application method of sample data and analyzes some kinds of using cases, which could lay the foundation for sample data's application. Particularly, sample data locating in Shaanxi province are selected for verifying the method. At the same time, it takes 10 first-level classes which defined in the land cover classification system for example, and analyzes the spatial distribution and density characteristics of all kinds of sample data. The results verify that the method of database construction which is based on relational database with distributed file system is very useful and applicative for sample data's searching, analyzing and promoted application. Furthermore, sample data collected in the project of China's First National Geographic Conditions Census could be useful in the earth observation and land cover's quality assessment.
Impacts of future changes in weather condition on U.S. transportation
NASA Astrophysics Data System (ADS)
Ashfaq, M.; Pagan, B. R.; Bonds, B. W.; Rastogi, D.
2016-12-01
High-resolution near-term climate projections suggest an intensification of the regional hydrological cycle over the U.S., leading to stronger and more frequent precipitation events. Increase in precipitation extremes is driven by both warm season convection driven rainstorms and frontal based cold season snowstorms. Results also indicate that future warming is driven more by hot extremes, as decrease in cold extremes is three times less than increase in hot extremes. While projected changes may likely impact the transportation system across the U.S., accurate estimation of such impacts requires knowledge of changes in precipitation types (rain, snow, ice, freezing rain). Here we apply four commonly used precipitation typing algorithms to determine different types of precipitation in an 11-memebr high-resolution (18 km) climate projections dataset that covers 40 years (1966-2005) in the baseline and 40 years (2011-2050) in the future period under Representative Concentration Pathway 8.5. The results are compared with the NARR-based precipitation classification in the historical period at the county level. Documented weather related county level fatal crash data for the CONUS and non-fatal crash data for selected states in the eastern half of the U.S. is compiled to develop the historical baseline for the impact of weather conditions on transportation. Further analysis is carried out to understand the ability of an ensemble of high-resolution simulations to produce different precipitation types in the baseline period, potential changes in the occurrence of each type of weather condition in the future period and that how such changes may impact road conditions, vehicle crashes and human fatalities. Additional analysis will also be explored to understand the impact of changes in winter weather conditions on the cost associated with road maintenance.
NASA Astrophysics Data System (ADS)
Pinto, Livio; Sona, Giovanna; Biffi, Andrea; Dosso, Paolo; Passoni, Daniele; Baracani, Matteo
2014-05-01
The project ITACA (Innovation, Technologies, Actions to Contrast Alloctonous species) rises from the need of protecting natural habitats in parks where native vegetation is threaten by the always increasing spread of alloctonous species. Starting from preliminary results obtained in previous experimental studies performed inside Adda Park (Lombardy Region, Northern Italy) the aim of the project is a further development and optimization of some tested techniques and procedures. In the frame of ITACA project, that involves Politecnico di Milano and some local enterprises, 11 separate areas of the Adda Park, globally covering 50 hectars, will be surveyed with UAV-borne multispectral sensors through different seasons (summer, autumn and spring). The summer and autumn flights have already been realized by the fixed wing UAV Sensefly SwingletCAM mounted with a Canon Ixus 220HS, producing real color images (RGB), and an identical camera, modified to produce false color images (NIR-RG). The 'multisensor-multitemporal' flights have been planned with high longitudinal and transversal overlaps, always in the range 60% to 80%, and a GSD of around 4 cm. Presignalized artificial points or natural elements have been surveyed on the ground by GPS RTK Trimble 5700, making use a Network GPS ervice (NRTK). For each survey two flights have been realized, one with the standard camera, and the second one with the NIR-modified one, with the double purpose of: - producing a multispectral orthomosaic, formed by the four bands NIR-R-G-B, coregistered. - increasing the coverage of the area, yielding in the block adjustment phase a more robust solution and a higher metric accuracy of digital products (digital orthomosaics). The first two flights have been scheduled taking into account information on the phenology of the species under observation (both native or invasive) given by expert botanists involved in the project. The first set of acquisition, originally planned for the first half of July, was realized over a longer period : from 09/07/2013 to 28/08/2013, due to weather condition and technical reasons. In any case the vegetation characteristics resulted to be unchanged. The second set of flights, in autumn, were done in a shorter period, during the days 16-17-18 October 2013, thus obtaining even better homogeneity of the vegetation conditions. Image and data processing are based on standard classification techniques, both pixel and object based, applied simultaneously on multispectral and multitemporal data, with the aim of producing a thematic map of the species of interest. The classification accuracies will be computed on the basis of ground truth comparison, to study possible misclassification among species.
Automated classification of articular cartilage surfaces based on surface texture.
Stachowiak, G P; Stachowiak, G W; Podsiadlo, P
2006-11-01
In this study the automated classification system previously developed by the authors was used to classify articular cartilage surfaces with different degrees of wear. This automated system classifies surfaces based on their texture. Plug samples of sheep cartilage (pins) were run on stainless steel discs under various conditions using a pin-on-disc tribometer. Testing conditions were specifically designed to produce different severities of cartilage damage due to wear. Environmental scanning electron microscope (SEM) (ESEM) images of cartilage surfaces, that formed a database for pattern recognition analysis, were acquired. The ESEM images of cartilage were divided into five groups (classes), each class representing different wear conditions or wear severity. Each class was first examined and assessed visually. Next, the automated classification system (pattern recognition) was applied to all classes. The results of the automated surface texture classification were compared to those based on visual assessment of surface morphology. It was shown that the texture-based automated classification system was an efficient and accurate method of distinguishing between various cartilage surfaces generated under different wear conditions. It appears that the texture-based classification method has potential to become a useful tool in medical diagnostics.
Gender classification under extended operating conditions
NASA Astrophysics Data System (ADS)
Rude, Howard N.; Rizki, Mateen
2014-06-01
Gender classification is a critical component of a robust image security system. Many techniques exist to perform gender classification using facial features. In contrast, this paper explores gender classification using body features extracted from clothed subjects. Several of the most effective types of features for gender classification identified in literature were implemented and applied to the newly developed Seasonal Weather And Gender (SWAG) dataset. SWAG contains video clips of approximately 2000 samples of human subjects captured over a period of several months. The subjects are wearing casual business attire and outer garments appropriate for the specific weather conditions observed in the Midwest. The results from a series of experiments are presented that compare the classification accuracy of systems that incorporate various types and combinations of features applied to multiple looks at subjects at different image resolutions to determine a baseline performance for gender classification.
Hyperspectral landcover classification for the Yakima Training Center, Yakima, Washington
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinmaus, K.L.; Perry, E.M.; Petrie, G.M.
1998-04-01
The US Department of Energy`s (DOE`s) Pacific Northwest National Laboratory (PNNL) was tasked in FY97-98 to conduct a multisensor feature extraction project for the Terrain Modeling Project Office (TMPO) of the National Imagery and Mapping Agency (NIMA). The goal of this research is the development of near-autonomous methods to remotely classify and characterize regions of military interest, in support of the TMPO of NIMA. These methods exploit remotely sensed datasets including hyperspectral (HYDICE) imagery, near-infrared and thermal infrared (Daedalus 3600), radar, and terrain datasets. The study site for this project is the US Army`s Yakima Training Center (YTC), a 326,741-acremore » training area located near Yakima, Washington. Two study areas at the YTC were selected to conduct and demonstrate multisensor feature extraction, the 2-km x 2-km Cantonment Area and the 3-km x 3-km Choke Point area. Classification of the Cantonment area afforded a comparison of classification results at different scales.« less
Teaching Methods, Intelligence, and Gender Factors in Pupil Achievement on a Classification Task
ERIC Educational Resources Information Center
Ryman, Don
1977-01-01
Reports on twelve year-old students instructed in Nuffield Project and in "traditional" classrooms. A division of the subjects into two groups based on intelligence revealed significant differences on classification ability. Interaction effects were also observed. (CP)
DOT National Transportation Integrated Search
2014-11-01
The Long-Term Pavement Performance (LTPP) project has developed and deployed a set of rules for converting axle spacing and weight data into estimates of a vehicles classification. These rules are being used at Transportation Pooled Fund Study (TP...
Szilard, Istvan; Cserti, Arpad; Hoxha, Ruhija; Gorbacheva, Olga; O'Rourke, Thomas
2002-04-01
The International Organization for Migration (IOM) developed and implemented a three-month project entitled Priority Medical Screening of Kosovar Refugees in Macedonia, within the Humanitarian Evacuation Program (HEP) for Kosovar refugees from FR Yugoslavia, which was adopted in May 1999. The project was based on an agreement with the office of United Nations High Commission for Refugees (UNHCR) and comprised the entry of registration data of refugees with medical condition (Priority Medical Database), and classification (Priority Medical Screening) and medical evacuation of refugees (Priority Medical Evacuation) in Macedonia. To realize the Priority Medical Screening project plan, IOM developed and set up a Medical Database linked to IOM/UNHCR HEP database, recruited and trained a four-member data entry team, worked out and set up a referral system for medical cases from the refugee camps, and established and staffed medical contact office for refugees in Skopje and Tetovo. Furthermore, it organized and staffed a mobile medical screening team, developed and implemented the system and criteria for the classification of referred medical cases, continuously registered and classified the incoming medical reports, contacted regularly the national delegates and referred to them the medically prioritized cases asking for acceptance and evacuation, and co-operated and continuously exchanged the information with UNHCR Medical Co-ordination and HEP team. Within the timeframe of the project, 1,032 medical cases were successfully evacuated for medical treatment to 25 host countries throughout the world. IOM found that those refugees suffering from health problems, who at the time of the termination of the program were still in Macedonia and had not been assisted by the project, were not likely to have been priority one cases, whose health problems could be solved only in a third country. The majority of these vulnerable people needed social rather than medical care and assistance a challenge that international aid agencies needed to address in Macedonia and will need to address elsewhere.
Spectrum of gluten-related disorders: consensus on new nomenclature and classification.
Sapone, Anna; Bai, Julio C; Ciacci, Carolina; Dolinsek, Jernej; Green, Peter H R; Hadjivassiliou, Marios; Kaukinen, Katri; Rostami, Kamran; Sanders, David S; Schumann, Michael; Ullrich, Reiner; Villalta, Danilo; Volta, Umberto; Catassi, Carlo; Fasano, Alessio
2012-02-07
A decade ago celiac disease was considered extremely rare outside Europe and, therefore, was almost completely ignored by health care professionals. In only 10 years, key milestones have moved celiac disease from obscurity into the popular spotlight worldwide. Now we are observing another interesting phenomenon that is generating great confusion among health care professionals. The number of individuals embracing a gluten-free diet (GFD) appears much higher than the projected number of celiac disease patients, fueling a global market of gluten-free products approaching $2.5 billion (US) in global sales in 2010. This trend is supported by the notion that, along with celiac disease, other conditions related to the ingestion of gluten have emerged as health care concerns. This review will summarize our current knowledge about the three main forms of gluten reactions: allergic (wheat allergy), autoimmune (celiac disease, dermatitis herpetiformis and gluten ataxia) and possibly immune-mediated (gluten sensitivity), and also outline pathogenic, clinical and epidemiological differences and propose new nomenclature and classifications.
Spectrum of gluten-related disorders: consensus on new nomenclature and classification
2012-01-01
A decade ago celiac disease was considered extremely rare outside Europe and, therefore, was almost completely ignored by health care professionals. In only 10 years, key milestones have moved celiac disease from obscurity into the popular spotlight worldwide. Now we are observing another interesting phenomenon that is generating great confusion among health care professionals. The number of individuals embracing a gluten-free diet (GFD) appears much higher than the projected number of celiac disease patients, fueling a global market of gluten-free products approaching $2.5 billion (US) in global sales in 2010. This trend is supported by the notion that, along with celiac disease, other conditions related to the ingestion of gluten have emerged as health care concerns. This review will summarize our current knowledge about the three main forms of gluten reactions: allergic (wheat allergy), autoimmune (celiac disease, dermatitis herpetiformis and gluten ataxia) and possibly immune-mediated (gluten sensitivity), and also outline pathogenic, clinical and epidemiological differences and propose new nomenclature and classifications. PMID:22313950
A vegetational and ecological resource analysis from space and high flight photography
NASA Technical Reports Server (NTRS)
Poulton, C. E.; Faulkner, D. P.; Schrumpf, B. J.
1970-01-01
A hierarchial classification of vegetation and related resources is considered that is applicable to convert remote sensing data in space and aerial synoptic photography. The numerical symbolization provides for three levels of vegetational classification and three levels of classification of environmental features associated with each vegetational class. It is shown that synoptic space photography accurately projects how urban sprawl affects agricultural land use areas and ecological resources.
Implications of the Budgeting Process on State-of-the-Art (SOA) Extensions.
1987-12-01
CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT Approved for public release; Zb DECLASSiFICATION1DOWNGRADING SCHEDULE Distribution is...PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO NO ACCESSION NO 11. TITLE (Include Security Classification ) IMPLICATIONS OF THE BUDGETING PROCESS ON STATE...20 DISTRIBUTIONAVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION 0 UNCLASSIFIED,UNLIMI"ED 0 SAME AS RPT QJ DTIC USERS UNCLASSIFIED 22a
New Features for Neuron Classification.
Hernández-Pérez, Leonardo A; Delgado-Castillo, Duniel; Martín-Pérez, Rainer; Orozco-Morales, Rubén; Lorenzo-Ginori, Juan V
2018-04-28
This paper addresses the problem of obtaining new neuron features capable of improving results of neuron classification. Most studies on neuron classification using morphological features have been based on Euclidean geometry. Here three one-dimensional (1D) time series are derived from the three-dimensional (3D) structure of neuron instead, and afterwards a spatial time series is finally constructed from which the features are calculated. Digitally reconstructed neurons were separated into control and pathological sets, which are related to three categories of alterations caused by epilepsy, Alzheimer's disease (long and local projections), and ischemia. These neuron sets were then subjected to supervised classification and the results were compared considering three sets of features: morphological, features obtained from the time series and a combination of both. The best results were obtained using features from the time series, which outperformed the classification using only morphological features, showing higher correct classification rates with differences of 5.15, 3.75, 5.33% for epilepsy and Alzheimer's disease (long and local projections) respectively. The morphological features were better for the ischemia set with a difference of 3.05%. Features like variance, Spearman auto-correlation, partial auto-correlation, mutual information, local minima and maxima, all related to the time series, exhibited the best performance. Also we compared different evaluators, among which ReliefF was the best ranked.
Discovering Beaten Paths in Collaborative Ontology-Engineering Projects using Markov Chains
Walk, Simon; Singer, Philipp; Strohmaier, Markus; Tudorache, Tania; Musen, Mark A.; Noy, Natalya F.
2014-01-01
Biomedical taxonomies, thesauri and ontologies in the form of the International Classification of Diseases as a taxonomy or the National Cancer Institute Thesaurus as an OWL-based ontology, play a critical role in acquiring, representing and processing information about human health. With increasing adoption and relevance, biomedical ontologies have also significantly increased in size. For example, the 11th revision of the International Classification of Diseases, which is currently under active development by the World Health Organization contains nearly 50, 000 classes representing a vast variety of different diseases and causes of death. This evolution in terms of size was accompanied by an evolution in the way ontologies are engineered. Because no single individual has the expertise to develop such large-scale ontologies, ontology-engineering projects have evolved from small-scale efforts involving just a few domain experts to large-scale projects that require effective collaboration between dozens or even hundreds of experts, practitioners and other stakeholders. Understanding the way these different stakeholders collaborate will enable us to improve editing environments that support such collaborations. In this paper, we uncover how large ontology-engineering projects, such as the International Classification of Diseases in its 11th revision, unfold by analyzing usage logs of five different biomedical ontology-engineering projects of varying sizes and scopes using Markov chains. We discover intriguing interaction patterns (e.g., which properties users frequently change after specific given ones) that suggest that large collaborative ontology-engineering projects are governed by a few general principles that determine and drive development. From our analysis, we identify commonalities and differences between different projects that have implications for project managers, ontology editors, developers and contributors working on collaborative ontology-engineering projects and tools in the biomedical domain. PMID:24953242
Discovering beaten paths in collaborative ontology-engineering projects using Markov chains.
Walk, Simon; Singer, Philipp; Strohmaier, Markus; Tudorache, Tania; Musen, Mark A; Noy, Natalya F
2014-10-01
Biomedical taxonomies, thesauri and ontologies in the form of the International Classification of Diseases as a taxonomy or the National Cancer Institute Thesaurus as an OWL-based ontology, play a critical role in acquiring, representing and processing information about human health. With increasing adoption and relevance, biomedical ontologies have also significantly increased in size. For example, the 11th revision of the International Classification of Diseases, which is currently under active development by the World Health Organization contains nearly 50,000 classes representing a vast variety of different diseases and causes of death. This evolution in terms of size was accompanied by an evolution in the way ontologies are engineered. Because no single individual has the expertise to develop such large-scale ontologies, ontology-engineering projects have evolved from small-scale efforts involving just a few domain experts to large-scale projects that require effective collaboration between dozens or even hundreds of experts, practitioners and other stakeholders. Understanding the way these different stakeholders collaborate will enable us to improve editing environments that support such collaborations. In this paper, we uncover how large ontology-engineering projects, such as the International Classification of Diseases in its 11th revision, unfold by analyzing usage logs of five different biomedical ontology-engineering projects of varying sizes and scopes using Markov chains. We discover intriguing interaction patterns (e.g., which properties users frequently change after specific given ones) that suggest that large collaborative ontology-engineering projects are governed by a few general principles that determine and drive development. From our analysis, we identify commonalities and differences between different projects that have implications for project managers, ontology editors, developers and contributors working on collaborative ontology-engineering projects and tools in the biomedical domain. Copyright © 2014 Elsevier Inc. All rights reserved.
Use of remote sensing for land use policy formulation
NASA Technical Reports Server (NTRS)
1987-01-01
The overall objectives and strategies of the Center for Remote Sensing remain to provide a center for excellence for multidisciplinary scientific expertise to address land-related global habitability and earth observing systems scientific issues. Specific research projects that were underway during the final contract period include: digital classification of coniferous forest types in Michigan's northern lower peninsula; a physiographic ecosystem approach to remote classification and mapping; land surface change detection and inventory; analysis of radiant temperature data; and development of methodologies to assess possible impacts of man's changes of land surface on meteorological parameters. Significant progress in each of the five project areas has occurred. Summaries on each of the projects are provided.
NASA Technical Reports Server (NTRS)
1980-01-01
The U.S./Canada wheat/barley exploratory experiment is discussed with emphasis on labeling, machine processing using P1A, and the crop calendar. Classification and the simulated aggregation test used in the U.S. corn/soybean exploratory experiment are also considered. Topics covered regarding the foreign commodity production forecasting project include: (1) the acquisition, handling, and processing of both U.S. and foreign agricultural data, as well as meteorological data. The accuracy assessment methodology, multicrop sampling and aggregation technology development, frame development, the yield project interface, and classification for area estimation are also examined.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-09
.... Above GS-15 Positions B. Classification 1. Occupational Series 2. Classification Standards and Position... Duty Locations Appendix B: Occupational Series by Occupational Family Appendix C: Intervention Model..., MD; Lakehurst, NJ; and Orlando, FL. These facilities support research, development, test, evaluation...
Gene selection for microarray data classification via subspace learning and manifold regularization.
Tang, Chang; Cao, Lijuan; Zheng, Xiao; Wang, Minhui
2017-12-19
With the rapid development of DNA microarray technology, large amount of genomic data has been generated. Classification of these microarray data is a challenge task since gene expression data are often with thousands of genes but a small number of samples. In this paper, an effective gene selection method is proposed to select the best subset of genes for microarray data with the irrelevant and redundant genes removed. Compared with original data, the selected gene subset can benefit the classification task. We formulate the gene selection task as a manifold regularized subspace learning problem. In detail, a projection matrix is used to project the original high dimensional microarray data into a lower dimensional subspace, with the constraint that the original genes can be well represented by the selected genes. Meanwhile, the local manifold structure of original data is preserved by a Laplacian graph regularization term on the low-dimensional data space. The projection matrix can serve as an importance indicator of different genes. An iterative update algorithm is developed for solving the problem. Experimental results on six publicly available microarray datasets and one clinical dataset demonstrate that the proposed method performs better when compared with other state-of-the-art methods in terms of microarray data classification. Graphical Abstract The graphical abstract of this work.
Science Fair Projects: The Environment.
ERIC Educational Resources Information Center
Bonnet, Bob; Keen, Dan
This book approaches the development of science fair projects from the point of view that science should be enjoyable, interesting, and thought-provoking. The scientific concepts introduced here will later help young students to understand more advanced scientific principles. These projects develop skills such as classification, making measured…
Reddy, T.B.K.; Thomas, Alex D.; Stamatis, Dimitri; Bertsch, Jon; Isbandi, Michelle; Jansson, Jakob; Mallajosyula, Jyothi; Pagani, Ioanna; Lobos, Elizabeth A.; Kyrpides, Nikos C.
2015-01-01
The Genomes OnLine Database (GOLD; http://www.genomesonline.org) is a comprehensive online resource to catalog and monitor genetic studies worldwide. GOLD provides up-to-date status on complete and ongoing sequencing projects along with a broad array of curated metadata. Here we report version 5 (v.5) of the database. The newly designed database schema and web user interface supports several new features including the implementation of a four level (meta)genome project classification system and a simplified intuitive web interface to access reports and launch search tools. The database currently hosts information for about 19 200 studies, 56 000 Biosamples, 56 000 sequencing projects and 39 400 analysis projects. More than just a catalog of worldwide genome projects, GOLD is a manually curated, quality-controlled metadata warehouse. The problems encountered in integrating disparate and varying quality data into GOLD are briefly highlighted. GOLD fully supports and follows the Genomic Standards Consortium (GSC) Minimum Information standards. PMID:25348402
NASA Astrophysics Data System (ADS)
Saad, S. M.; Shakaff, A. Y. M.; Saad, A. R. M.; Yusof, A. M.; Andrew, A. M.; Zakaria, A.; Adom, A. H.
2017-03-01
There are various sources influencing indoor air quality (IAQ) which could emit dangerous gases such as carbon monoxide (CO), carbon dioxide (CO2), ozone (O3) and particulate matter. These gases are usually safe for us to breathe in if they are emitted in safe quantity but if the amount of these gases exceeded the safe level, they might be hazardous to human being especially children and people with asthmatic problem. Therefore, a smart indoor air quality monitoring system (IAQMS) is needed that able to tell the occupants about which sources that trigger the indoor air pollution. In this project, an IAQMS that able to classify sources influencing IAQ has been developed. This IAQMS applies a classification method based on Probabilistic Neural Network (PNN). It is used to classify the sources of indoor air pollution based on five conditions: ambient air, human activity, presence of chemical products, presence of food and beverage, and presence of fragrance. In order to get good and best classification accuracy, an analysis of several feature selection based on data pre-processing method is done to discriminate among the sources. The output from each data pre-processing method has been used as the input for the neural network. The result shows that PNN analysis with the data pre-processing method give good classification accuracy of 99.89% and able to classify the sources influencing IAQ high classification rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagentoft, C.E.
1986-01-01
Many old district-heating culverts are in bad condition due to the entry of water into the thermal insulation. The thermal conductivity, and thereby the heat loss from the culvert, is much larger for a wet than a dry thermal insulation. The high energy prices make it interesting and necessary to find the water-damaged parts of the district-heating culvert and improve the thermal insulation so that a reduction in the heat losses is obtained. The aim of the project is to develop a simple field method to determine the heat loss and the condition of the culvert. The method is basedmore » on the measurement of the temperature on the top of the culvert and a classification of the soil. The classification of the soil gives an estimation of its thermal conductivity. The heat loss and the reduction in heat loss due to an extra insulation is estimated from these data. Five different types of culverts were tested: two types of asbestos cement culverts, one concrete culvert, and two aerated concrete culverts. The comparison of the measured temperatures and the temperatures obtained from the simulations is reported in the study.« less
Updated United Nations Framework Classification for reserves and resources of extractive industries
Ahlbrandt, T.S.; Blaise, J.R.; Blystad, P.; Kelter, D.; Gabrielyants, G.; Heiberg, S.; Martinez, A.; Ross, J.G.; Slavov, S.; Subelj, A.; Young, E.D.
2004-01-01
The United Nations have studied how the oil and gas resource classification developed jointly by the SPE, the World Petroleum Congress (WPC) and the American Association of Petroleum Geologists (AAPG) could be harmonized with the United Nations Framework Classification (UNFC) for Solid Fuel and Mineral Resources (1). The United Nations has continued to build on this and other works, with support from many relevant international organizations, with the objective of updating the UNFC to apply to the extractive industries. The result is the United Nations Framework Classification for Energy and Mineral Resources (2) that this paper will present. Reserves and resources are categorized with respect to three sets of criteria: ??? Economic and commercial viability ??? Field project status and feasibility ??? The level of geologic knowledge The field project status criteria are readily recognized as the ones highlighted in the SPE/WPC/AAPG classification system of 2000. The geologic criteria absorb the rich traditions that form the primary basis for the Russian classification system, and the ones used to delimit, in part, proved reserves. Economic and commercial criteria facilitate the use of the classification in general, and reflect the commercial considerations used to delimit proved reserves in particular. The classification system will help to develop a common understanding of reserves and resources for all the extractive industries and will assist: ??? International and national resources management to secure supplies; ??? Industries' management of business processes to achieve efficiency in exploration and production; and ??? An appropriate basis for documenting the value of reserves and resources in financial statements.
Bromuri, Stefano; Zufferey, Damien; Hennebert, Jean; Schumacher, Michael
2014-10-01
This research is motivated by the issue of classifying illnesses of chronically ill patients for decision support in clinical settings. Our main objective is to propose multi-label classification of multivariate time series contained in medical records of chronically ill patients, by means of quantization methods, such as bag of words (BoW), and multi-label classification algorithms. Our second objective is to compare supervised dimensionality reduction techniques to state-of-the-art multi-label classification algorithms. The hypothesis is that kernel methods and locality preserving projections make such algorithms good candidates to study multi-label medical time series. We combine BoW and supervised dimensionality reduction algorithms to perform multi-label classification on health records of chronically ill patients. The considered algorithms are compared with state-of-the-art multi-label classifiers in two real world datasets. Portavita dataset contains 525 diabetes type 2 (DT2) patients, with co-morbidities of DT2 such as hypertension, dyslipidemia, and microvascular or macrovascular issues. MIMIC II dataset contains 2635 patients affected by thyroid disease, diabetes mellitus, lipoid metabolism disease, fluid electrolyte disease, hypertensive disease, thrombosis, hypotension, chronic obstructive pulmonary disease (COPD), liver disease and kidney disease. The algorithms are evaluated using multi-label evaluation metrics such as hamming loss, one error, coverage, ranking loss, and average precision. Non-linear dimensionality reduction approaches behave well on medical time series quantized using the BoW algorithm, with results comparable to state-of-the-art multi-label classification algorithms. Chaining the projected features has a positive impact on the performance of the algorithm with respect to pure binary relevance approaches. The evaluation highlights the feasibility of representing medical health records using the BoW for multi-label classification tasks. The study also highlights that dimensionality reduction algorithms based on kernel methods, locality preserving projections or both are good candidates to deal with multi-label classification tasks in medical time series with many missing values and high label density. Copyright © 2014 Elsevier Inc. All rights reserved.
Classification with asymmetric label noise: Consistency and maximal denoising
Blanchard, Gilles; Flaska, Marek; Handy, Gregory; ...
2016-09-20
In many real-world classification problems, the labels of training examples are randomly corrupted. Most previous theoretical work on classification with label noise assumes that the two classes are separable, that the label noise is independent of the true class label, or that the noise proportions for each class are known. In this work, we give conditions that are necessary and sufficient for the true class-conditional distributions to be identifiable. These conditions are weaker than those analyzed previously, and allow for the classes to be nonseparable and the noise levels to be asymmetric and unknown. The conditions essentially state that amore » majority of the observed labels are correct and that the true class-conditional distributions are “mutually irreducible,” a concept we introduce that limits the similarity of the two distributions. For any label noise problem, there is a unique pair of true class-conditional distributions satisfying the proposed conditions, and we argue that this pair corresponds in a certain sense to maximal denoising of the observed distributions. Our results are facilitated by a connection to “mixture proportion estimation,” which is the problem of estimating the maximal proportion of one distribution that is present in another. We establish a novel rate of convergence result for mixture proportion estimation, and apply this to obtain consistency of a discrimination rule based on surrogate loss minimization. Experimental results on benchmark data and a nuclear particle classification problem demonstrate the efficacy of our approach. MSC 2010 subject classifications: Primary 62H30; secondary 68T10. Keywords and phrases: Classification, label noise, mixture proportion estimation, surrogate loss, consistency.« less
Classification with asymmetric label noise: Consistency and maximal denoising
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, Gilles; Flaska, Marek; Handy, Gregory
In many real-world classification problems, the labels of training examples are randomly corrupted. Most previous theoretical work on classification with label noise assumes that the two classes are separable, that the label noise is independent of the true class label, or that the noise proportions for each class are known. In this work, we give conditions that are necessary and sufficient for the true class-conditional distributions to be identifiable. These conditions are weaker than those analyzed previously, and allow for the classes to be nonseparable and the noise levels to be asymmetric and unknown. The conditions essentially state that amore » majority of the observed labels are correct and that the true class-conditional distributions are “mutually irreducible,” a concept we introduce that limits the similarity of the two distributions. For any label noise problem, there is a unique pair of true class-conditional distributions satisfying the proposed conditions, and we argue that this pair corresponds in a certain sense to maximal denoising of the observed distributions. Our results are facilitated by a connection to “mixture proportion estimation,” which is the problem of estimating the maximal proportion of one distribution that is present in another. We establish a novel rate of convergence result for mixture proportion estimation, and apply this to obtain consistency of a discrimination rule based on surrogate loss minimization. Experimental results on benchmark data and a nuclear particle classification problem demonstrate the efficacy of our approach. MSC 2010 subject classifications: Primary 62H30; secondary 68T10. Keywords and phrases: Classification, label noise, mixture proportion estimation, surrogate loss, consistency.« less
Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS
NASA Astrophysics Data System (ADS)
Kilpatrick, C. D.; Pan, Y.-C.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.
2017-02-01
We report the following classifications of optical transients from spectroscopic observations with KOSMOS on the KPNO Mayall 4-m telescope. Targets were supplied by the All-Sky Automated Survey for Supernovae (ASAS-SN), the ATLAS project (ATel #8680), and the Pan-STARRS Survey for Transients (PSST).
Probabilistic topic modeling for the analysis and classification of genomic sequences
2015-01-01
Background Studies on genomic sequences for classification and taxonomic identification have a leading role in the biomedical field and in the analysis of biodiversity. These studies are focusing on the so-called barcode genes, representing a well defined region of the whole genome. Recently, alignment-free techniques are gaining more importance because they are able to overcome the drawbacks of sequence alignment techniques. In this paper a new alignment-free method for DNA sequences clustering and classification is proposed. The method is based on k-mers representation and text mining techniques. Methods The presented method is based on Probabilistic Topic Modeling, a statistical technique originally proposed for text documents. Probabilistic topic models are able to find in a document corpus the topics (recurrent themes) characterizing classes of documents. This technique, applied on DNA sequences representing the documents, exploits the frequency of fixed-length k-mers and builds a generative model for a training group of sequences. This generative model, obtained through the Latent Dirichlet Allocation (LDA) algorithm, is then used to classify a large set of genomic sequences. Results and conclusions We performed classification of over 7000 16S DNA barcode sequences taken from Ribosomal Database Project (RDP) repository, training probabilistic topic models. The proposed method is compared to the RDP tool and Support Vector Machine (SVM) classification algorithm in a extensive set of trials using both complete sequences and short sequence snippets (from 400 bp to 25 bp). Our method reaches very similar results to RDP classifier and SVM for complete sequences. The most interesting results are obtained when short sequence snippets are considered. In these conditions the proposed method outperforms RDP and SVM with ultra short sequences and it exhibits a smooth decrease of performance, at every taxonomic level, when the sequence length is decreased. PMID:25916734
Regional land cover characterization using Landsat thematic mapper data and ancillary data sources
Vogelmann, James E.; Sohl, Terry L.; Campbell, P.V.; Shaw, D.M.; ,
1998-01-01
As part of the activities of the Multi-Resolution Land Characteristics (MRLC) Interagency Consortium, an intermediate-scale land cover data set is being generated for the conterminous United States. This effort is being conducted on a region-by-region basis using U.S. Standard Federal Regions. To date, land cover data sets have been generated for Federal Regions 3 (Pennsylvania, West Virginia, Virginia, Maryland, and Delaware) and 2 (New York and New Jersey). Classification work is currently under way in Federal Region 4 (the southeastern United States), and land cover mapping activities have been started in Federal Regions 5 (the Great Lakes region) and 1 (New England). It is anticipated that a land cover data set for the conterminous United States will be completed by the end of 1999. A standard land cover classification legend is used, which is analogous to and compatible with other classification schemes. The primary MRLC regional classification scheme contains 23 land cover classes.The primary source of data for the project is the Landsat thematic mapper (TM) sensor. For each region, TM scenes representing both leaf-on and leaf-off conditions are acquired, preprocessed, and georeferenced to MRLC specifications. Mosaicked data are clustered using unsupervised classification, and individual clusters are labeled using aerial photographs. Individual clusters that represent more than one land cover unit are split using spatial modeling with multiple ancillary spatial data layers (most notably, digital elevation model, population, land use and land cover, and wetlands information). This approach yields regional land cover information suitable for a wide array of applications, including landscape metric analyses, land management, land cover change studies, and nutrient and pesticide runoff modeling.
Atmospheric circulation classification comparison based on wildfires in Portugal
NASA Astrophysics Data System (ADS)
Pereira, M. G.; Trigo, R. M.
2009-04-01
Atmospheric circulation classifications are not a simple description of atmospheric states but a tool to understand and interpret the atmospheric processes and to model the relation between atmospheric circulation and surface climate and other related variables (Radan Huth et al., 2008). Classifications were initially developed with weather forecasting purposes, however with the progress in computer processing capability, new and more robust objective methods were developed and applied to large datasets prompting atmospheric circulation classification methods to one of the most important fields in synoptic and statistical climatology. Classification studies have been extensively used in climate change studies (e.g. reconstructed past climates, recent observed changes and future climates), in bioclimatological research (e.g. relating human mortality to climatic factors) and in a wide variety of synoptic climatological applications (e.g. comparison between datasets, air pollution, snow avalanches, wine quality, fish captures and forest fires). Likewise, atmospheric circulation classifications are important for the study of the role of weather in wildfire occurrence in Portugal because the daily synoptic variability is the most important driver of local weather conditions (Pereira et al., 2005). In particular, the objective classification scheme developed by Trigo and DaCamara (2000) to classify the atmospheric circulation affecting Portugal have proved to be quite useful in discriminating the occurrence and development of wildfires as well as the distribution over Portugal of surface climatic variables with impact in wildfire activity such as maximum and minimum temperature and precipitation. This work aims to present: (i) an overview the existing circulation classification for the Iberian Peninsula, and (ii) the results of a comparison study between these atmospheric circulation classifications based on its relation with wildfires and relevant meteorological variables. To achieve these objectives we consider the main classifications for Iberia developed within the framework of COST action 733 (Radan Huth et al., 2008). This European project aims to provide a wide range of atmospheric circulation classifications for Europe and sub-regions (http://www.cost733.org/) with an ambitious objective of assessing, comparing and classifying all relevant weather situations in Europe. Pereira et al. (2005) "Synoptic patterns associated with large summer forest fires in Portugal". Agricultural and Forest Meteorology,129, 11-25. Radan Huth et al. (2008) "Classifications of Atmospheric circulation patterns. Recent advances and applications". Trends and Directions in Climate Research: Ann. N.Y. Acad. Sci. 1146: 105-152. doi: 10.1196/annals.1446.019. Trigo R.M., DaCamara C. (2000) "Circulation Weather Types and their impact on the precipitation regime in Portugal". Int J of Climatology, 20, 1559-1581.
Using color histograms and SPA-LDA to classify bacteria.
de Almeida, Valber Elias; da Costa, Gean Bezerra; de Sousa Fernandes, David Douglas; Gonçalves Dias Diniz, Paulo Henrique; Brandão, Deysiane; de Medeiros, Ana Claudia Dantas; Véras, Germano
2014-09-01
In this work, a new approach is proposed to verify the differentiating characteristics of five bacteria (Escherichia coli, Enterococcus faecalis, Streptococcus salivarius, Streptococcus oralis, and Staphylococcus aureus) by using digital images obtained with a simple webcam and variable selection by the Successive Projections Algorithm associated with Linear Discriminant Analysis (SPA-LDA). In this sense, color histograms in the red-green-blue (RGB), hue-saturation-value (HSV), and grayscale channels and their combinations were used as input data, and statistically evaluated by using different multivariate classifiers (Soft Independent Modeling by Class Analogy (SIMCA), Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA), Partial Least Squares Discriminant Analysis (PLS-DA) and Successive Projections Algorithm-Linear Discriminant Analysis (SPA-LDA)). The bacteria strains were cultivated in a nutritive blood agar base layer for 24 h by following the Brazilian Pharmacopoeia, maintaining the status of cell growth and the nature of nutrient solutions under the same conditions. The best result in classification was obtained by using RGB and SPA-LDA, which reached 94 and 100 % of classification accuracy in the training and test sets, respectively. This result is extremely positive from the viewpoint of routine clinical analyses, because it avoids bacterial identification based on phenotypic identification of the causative organism using Gram staining, culture, and biochemical proofs. Therefore, the proposed method presents inherent advantages, promoting a simpler, faster, and low-cost alternative for bacterial identification.
NASA Technical Reports Server (NTRS)
Tan, Bin; Brown de Colstoun, Eric; Wolfe, Robert E.; Tilton, James C.; Huang, Chengquan; Smith, Sarah E.
2012-01-01
An algorithm is developed to automatically screen the outliers from massive training samples for Global Land Survey - Imperviousness Mapping Project (GLS-IMP). GLS-IMP is to produce a global 30 m spatial resolution impervious cover data set for years 2000 and 2010 based on the Landsat Global Land Survey (GLS) data set. This unprecedented high resolution impervious cover data set is not only significant to the urbanization studies but also desired by the global carbon, hydrology, and energy balance researches. A supervised classification method, regression tree, is applied in this project. A set of accurate training samples is the key to the supervised classifications. Here we developed the global scale training samples from 1 m or so resolution fine resolution satellite data (Quickbird and Worldview2), and then aggregate the fine resolution impervious cover map to 30 m resolution. In order to improve the classification accuracy, the training samples should be screened before used to train the regression tree. It is impossible to manually screen 30 m resolution training samples collected globally. For example, in Europe only, there are 174 training sites. The size of the sites ranges from 4.5 km by 4.5 km to 8.1 km by 3.6 km. The amount training samples are over six millions. Therefore, we develop this automated statistic based algorithm to screen the training samples in two levels: site and scene level. At the site level, all the training samples are divided to 10 groups according to the percentage of the impervious surface within a sample pixel. The samples following in each 10% forms one group. For each group, both univariate and multivariate outliers are detected and removed. Then the screen process escalates to the scene level. A similar screen process but with a looser threshold is applied on the scene level considering the possible variance due to the site difference. We do not perform the screen process across the scenes because the scenes might vary due to the phenology, solar-view geometry, and atmospheric condition etc. factors but not actual landcover difference. Finally, we will compare the classification results from screened and unscreened training samples to assess the improvement achieved by cleaning up the training samples. Keywords:
Estimates of emergency operating capacity in US manufacturing and nonmanufacturing industries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belzer, D.B.; Serot, D.E.; Kellogg, M.A.
1991-03-01
Development of integrated mobilization preparedness policies requires planning estimates of available productive capacity during national emergency conditions. Such estimates must be developed in a manner that allows evaluation of current trends in capacity and the consideration of uncertainties in various data inputs and in engineering assumptions. This study, conducted by Pacific Northwest Laboratory (PNL), developed estimates of emergency operating capacity (EOC) for 446 manufacturing industries at the 4-digit Standard Industrial Classification (SIC) level of aggregation and for 24 key non-manufacturing sectors. This volume presents tabular and graphical results of the historical analysis and projections for each SIC industry. (JF)
Queering the Catalog: Queer Theory and the Politics of Correction
ERIC Educational Resources Information Center
Drabinski, Emily
2013-01-01
Critiques of hegemonic library classification structures and controlled vocabularies have a rich history in information studies. This project has pointed out the trouble with classification and cataloging decisions that are framed as objective and neutral but are always ideological and worked to correct bias in library structures. Viewing…
Cataloguing and Classification Section. Bibliographic Control Division. Papers.
ERIC Educational Resources Information Center
International Federation of Library Associations, The Hague (Netherlands).
Papers on cataloging, classification, and coding systems which were presented at the 1982 International Federation of Library Associations (IFLA) conference include: (1) "Numbering and Coding Systems for Bibliographic Control in Use in North America" by Lois Mai Chan (United States); (2) "A Project Undertaken by the Library of…
Assessment and Develop the Saudi's Contractors Classification System
ERIC Educational Resources Information Center
Almutairi, Saud
2017-01-01
Research has shown that construction projects in Saudi Arabia have had a perceived poor performance for the past three decades, from 1970-2016. The Saudi construction industry relies on a Contractor Classification System (CCS) to determine contractors' capabilities, and prevent underperformance. Through this study, a survey was conducted among…
ERIC Educational Resources Information Center
Sargent, John
The Office of Technology Policy analyzed Bureau of Labor Statistics' growth projections for the core occupational classifications of IT (information technology) workers to assess future demand in the United States. Classifications studied were computer engineers, systems analysts, computer programmers, database administrators, computer support…
How a national vegetation classification can help ecological research and management
Scott Franklin; Patrick Comer; Julie Evens; Exequiel Ezcurra; Don Faber-Langendoen; Janet Franklin; Michael Jennings; Carmen Josse; Chris Lea; Orie Loucks; Esteban Muldavin; Robert Peet; Serguei Ponomarenko; David Roberts; Ayzik Solomeshch; Todd Keeler-Wolf; James Van Kley; Alan Weakley; Alexa McKerrow; Marianne Burke; Carol Spurrier
2015-01-01
The elegance of classification lies in its ability to compile and systematize various terminological conventions and masses of information that are unattainable during typical research projects. Imagine a discipline without standards for collection, analysis, and interpretation; unfortunately, that describes much of 20th-century vegetation ecology.
Project Operation Index: An Approach to Content Analysis and Indexing of Videotapes.
ERIC Educational Resources Information Center
Ontario Educational Communications Authority, Toronto. Research and Planning Branch.
Three projects, each covering certain selected aspects of a potential information storage and retrieval system, were part of a study by the Ontario Educational Communications Authority (OECA) to explore various means for extending the usefulness of audiovisual materials. Project Dataset began the collection, classification, and cataloging of…
United States Census Bureau Topics Population Latest Information Age and Sex Ancestry Children Mobility Population Estimates Population Projections Race Veterans Economy Latest Information Portal Other Economic Programs Business Latest Information Business Characteristics Classification Codes
A Design Study for Quick Strike Reconnaissance/Reconnaissance Reporting Facility
1976-06-01
Engineer: Ronald B. Haynes (IRRO) Copies available in DDC . ’*■ KEY WORDS (Conllnut on ranfM »id* (/ n*c»«ary and Idmnllly by block number... CLASSIFICATION OF THIS PAGE (("),.„ D.I, Bm.rvd) 40 60% mmmmm tu ’~mmmmmmmm~~-’ rfÜk UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGEfWun...include the following: Systems time and date Operators name Project/mission identification Classification Organisation. (3) Station Release
Managing the Big Data Avalanche in Astronomy - Data Mining the Galaxy Zoo Classification Database
NASA Astrophysics Data System (ADS)
Borne, Kirk D.
2014-01-01
We will summarize a variety of data mining experiments that have been applied to the Galaxy Zoo database of galaxy classifications, which were provided by the volunteer citizen scientists. The goal of these exercises is to learn new and improved classification rules for diverse populations of galaxies, which can then be applied to much larger sky surveys of the future, such as the LSST (Large Synoptic Sky Survey), which is proposed to obtain detailed photometric data for approximately 20 billion galaxies. The massive Big Data that astronomy projects will generate in the future demand greater application of data mining and data science algorithms, as well as greater training of astronomy students in the skills of data mining and data science. The project described here has involved several graduate and undergraduate research assistants at George Mason University.
Framework for evaluating disease severity measures in older adults with comorbidity.
Boyd, Cynthia M; Weiss, Carlos O; Halter, Jeff; Han, K Carol; Ershler, William B; Fried, Linda P
2007-03-01
Accounting for the influence of concurrent conditions on health and functional status for both research and clinical decision-making purposes is especially important in older adults. Although approaches to classifying severity of individual diseases and conditions have been developed, the utility of these classification systems has not been evaluated in the presence of multiple conditions. We present a framework for evaluating severity classification systems for common chronic diseases. The framework evaluates the: (a) goal or purpose of the classification system; (b) physiological and/or functional criteria for severity graduation; and (c) potential reliability and validity of the system balanced against burden and costs associated with classification. Approaches to severity classification of individual diseases were not originally conceived for the study of comorbidity. Therefore, they vary greatly in terms of objectives, physiological systems covered, level of severity characterization, reliability and validity, and costs and burdens. Using different severity classification systems to account for differing levels of disease severity in a patient with multiple diseases, or, assessing global disease burden may be challenging. Most approaches to severity classification are not adequate to address comorbidity. Nevertheless, thoughtful use of some existing approaches and refinement of others may advance the study of comorbidity and diagnostic and therapeutic approaches to patients with multimorbidity.
NASA Astrophysics Data System (ADS)
Raje, Deepashree; Mujumdar, P. P.
2010-09-01
Representation and quantification of uncertainty in climate change impact studies are a difficult task. Several sources of uncertainty arise in studies of hydrologic impacts of climate change, such as those due to choice of general circulation models (GCMs), scenarios and downscaling methods. Recently, much work has focused on uncertainty quantification and modeling in regional climate change impacts. In this paper, an uncertainty modeling framework is evaluated, which uses a generalized uncertainty measure to combine GCM, scenario and downscaling uncertainties. The Dempster-Shafer (D-S) evidence theory is used for representing and combining uncertainty from various sources. A significant advantage of the D-S framework over the traditional probabilistic approach is that it allows for the allocation of a probability mass to sets or intervals, and can hence handle both aleatory or stochastic uncertainty, and epistemic or subjective uncertainty. This paper shows how the D-S theory can be used to represent beliefs in some hypotheses such as hydrologic drought or wet conditions, describe uncertainty and ignorance in the system, and give a quantitative measurement of belief and plausibility in results. The D-S approach has been used in this work for information synthesis using various evidence combination rules having different conflict modeling approaches. A case study is presented for hydrologic drought prediction using downscaled streamflow in the Mahanadi River at Hirakud in Orissa, India. Projections of n most likely monsoon streamflow sequences are obtained from a conditional random field (CRF) downscaling model, using an ensemble of three GCMs for three scenarios, which are converted to monsoon standardized streamflow index (SSFI-4) series. This range is used to specify the basic probability assignment (bpa) for a Dempster-Shafer structure, which represents uncertainty associated with each of the SSFI-4 classifications. These uncertainties are then combined across GCMs and scenarios using various evidence combination rules given by the D-S theory. A Bayesian approach is also presented for this case study, which models the uncertainty in projected frequencies of SSFI-4 classifications by deriving a posterior distribution for the frequency of each classification, using an ensemble of GCMs and scenarios. Results from the D-S and Bayesian approaches are compared, and relative merits of each approach are discussed. Both approaches show an increasing probability of extreme, severe and moderate droughts and decreasing probability of normal and wet conditions in Orissa as a result of climate change.
Detecting asphalt pavement raveling using emerging 3D laser technology and macrotexture analysis.
DOT National Transportation Integrated Search
2015-08-01
This research project comprehensively tested and validated the automatic raveling detection, classification, : and measurement algorithms using 3D laser technology that were developed through a project sponsored by : the National Cooperative Highway ...
NASA Astrophysics Data System (ADS)
Yu, Xin; Wen, Zongyong; Zhu, Zhaorong; Xia, Qiang; Shun, Lan
2016-06-01
Image classification will still be a long way in the future, although it has gone almost half a century. In fact, researchers have gained many fruits in the image classification domain, but there is still a long distance between theory and practice. However, some new methods in the artificial intelligence domain will be absorbed into the image classification domain and draw on the strength of each to offset the weakness of the other, which will open up a new prospect. Usually, networks play the role of a high-level language, as is seen in Artificial Intelligence and statistics, because networks are used to build complex model from simple components. These years, Bayesian Networks, one of probabilistic networks, are a powerful data mining technique for handling uncertainty in complex domains. In this paper, we apply Tree Augmented Naive Bayesian Networks (TAN) to texture classification of High-resolution remote sensing images and put up a new method to construct the network topology structure in terms of training accuracy based on the training samples. Since 2013, China government has started the first national geographical information census project, which mainly interprets geographical information based on high-resolution remote sensing images. Therefore, this paper tries to apply Bayesian network to remote sensing image classification, in order to improve image interpretation in the first national geographical information census project. In the experiment, we choose some remote sensing images in Beijing. Experimental results demonstrate TAN outperform than Naive Bayesian Classifier (NBC) and Maximum Likelihood Classification Method (MLC) in the overall classification accuracy. In addition, the proposed method can reduce the workload of field workers and improve the work efficiency. Although it is time consuming, it will be an attractive and effective method for assisting office operation of image interpretation.
Pläschke, Rachel N; Cieslik, Edna C; Müller, Veronika I; Hoffstaedter, Felix; Plachti, Anna; Varikuti, Deepthi P; Goosses, Mareike; Latz, Anne; Caspers, Svenja; Jockwitz, Christiane; Moebus, Susanne; Gruber, Oliver; Eickhoff, Claudia R; Reetz, Kathrin; Heller, Julia; Südmeyer, Martin; Mathys, Christian; Caspers, Julian; Grefkes, Christian; Kalenscher, Tobias; Langner, Robert; Eickhoff, Simon B
2017-12-01
Previous whole-brain functional connectivity studies achieved successful classifications of patients and healthy controls but only offered limited specificity as to affected brain systems. Here, we examined whether the connectivity patterns of functional systems affected in schizophrenia (SCZ), Parkinson's disease (PD), or normal aging equally translate into high classification accuracies for these conditions. We compared classification performance between pre-defined networks for each group and, for any given network, between groups. Separate support vector machine classifications of 86 SCZ patients, 80 PD patients, and 95 older adults relative to their matched healthy/young controls, respectively, were performed on functional connectivity in 12 task-based, meta-analytically defined networks using 25 replications of a nested 10-fold cross-validation scheme. Classification performance of the various networks clearly differed between conditions, as those networks that best classified one disease were usually non-informative for the other. For SCZ, but not PD, emotion-processing, empathy, and cognitive action control networks distinguished patients most accurately from controls. For PD, but not SCZ, networks subserving autobiographical or semantic memory, motor execution, and theory-of-mind cognition yielded the best classifications. In contrast, young-old classification was excellent based on all networks and outperformed both clinical classifications. Our pattern-classification approach captured associations between clinical and developmental conditions and functional network integrity with a higher level of specificity than did previous whole-brain analyses. Taken together, our results support resting-state connectivity as a marker of functional dysregulation in specific networks known to be affected by SCZ and PD, while suggesting that aging affects network integrity in a more global way. Hum Brain Mapp 38:5845-5858, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Cheng, Guanhui; Huang, Guohe; Dong, Cong; Zhu, Jinxin; Zhou, Xiong; Yao, Y.
2017-03-01
An evaluation-classification-downscaling-based climate projection (ECDoCP) framework is developed to fill a methodological gap of general circulation models (GCMs)-driven statistical-downscaling-based climate projections. ECDoCP includes four interconnected modules: GCM evaluation, climate classification, statistical downscaling, and climate projection. Monthly averages of daily minimum (Tmin) and maximum (Tmax) temperature and daily cumulative precipitation (Prec) over the Athabasca River Basin (ARB) at a 10 km resolution in the 21st century under four Representative Concentration Pathways (RCPs) are projected through ECDoCP. At the octodecadal scale, temperature and precipitation would increase; after bias correction, temperature would increase with a decreased increment, while precipitation would increase only under RCP 8.5. Interannual variability of climate anomalies would increase from RCPs 4.5, 2.6, 6.0 to 8.5 for temperature and from RCPs 2.6, 4.5, 6.0 to 8.5 for precipitation. Bidecadal averaged climate anomalies would decrease from December-January-February (DJF), March-April-May (MAM), September-October-November (SON) to June-July-August (JJA) for Tmin, from DJF, SON, MAM to JJA for Tmax, and from JJA, MAM, SON to DJF for Prec. Climate projection uncertainties would decrease in May to September for temperature and in November to April for precipitation. Spatial climatic variability would not obviously change with RCPs; climatic anomalies are highly correlated with climate-variable magnitudes. Climate anomalies would decrease from upstream to downstream for temperature, and precipitation would follow an opposite pattern. The north end and the other zones would have colder and warmer days, respectively; precipitation would decrease in the upstream and increase in the remaining region. Climate changes might lead to issues, e.g., accelerated glacier/snow melting, deserving attentions of researchers and the public.
Semi-supervised vibration-based classification and condition monitoring of compressors
NASA Astrophysics Data System (ADS)
Potočnik, Primož; Govekar, Edvard
2017-09-01
Semi-supervised vibration-based classification and condition monitoring of the reciprocating compressors installed in refrigeration appliances is proposed in this paper. The method addresses the problem of industrial condition monitoring where prior class definitions are often not available or difficult to obtain from local experts. The proposed method combines feature extraction, principal component analysis, and statistical analysis for the extraction of initial class representatives, and compares the capability of various classification methods, including discriminant analysis (DA), neural networks (NN), support vector machines (SVM), and extreme learning machines (ELM). The use of the method is demonstrated on a case study which was based on industrially acquired vibration measurements of reciprocating compressors during the production of refrigeration appliances. The paper presents a comparative qualitative analysis of the applied classifiers, confirming the good performance of several nonlinear classifiers. If the model parameters are properly selected, then very good classification performance can be obtained from NN trained by Bayesian regularization, SVM and ELM classifiers. The method can be effectively applied for the industrial condition monitoring of compressors.
NASA Astrophysics Data System (ADS)
Hatzaki, M.; Flocas, H. A.; Giannakopoulos, C.; Kostopoulou, E.; Kouroutzoglou, I.; Keay, K.; Simmonds, I.
2010-09-01
In this study, a comparison of a reanalysis driven simulation to a GCM driven simulation of a regional climate model is performed in order to assess the model's ability to capture the climatic characteristics of cyclonic tracks in the Mediterranean in the present climate. The ultimate scope of the study will be to perform a future climate projection related to cyclonic tracks in order to better understand and assess climate change in the Mediterranean. The climatology of the cyclonic tracks includes inter-monthly variations, classification of tracks according to their origin domain, dynamic and kinematic characteristics, as well as trend analysis. For this purpose, the ENEA model is employed based on PROTHEUS system composed of the RegCM atmospheric regional model and the MITgcm ocean model, coupled through the OASIS3 flux coupler. These model data became available through the EU Project CIRCE which aims to perform, for the first time, climate change projections with a realistic representation of the Mediterranean Sea. Two experiments are employed; a) the ERA402 with lateral Boundary conditions from ERA40 for the 43-year period 1958-2000, and b) the EH5OM_20C3M where the lateral boundary conditions for the atmosphere (1951-2000) are taken from the ECHAM5-MPIOM 20c3m global simulation (run3) included in the IPCC-AR4. The identification and tracking of cyclones is performed with the aid of the Melbourne University algorithm (MS algorithm), according to the Lagrangian perspective. MS algorithm characterizes a cyclone only if a vorticity maximum could be connected with a local pressure minimum. This approach is considered to be crucial, since open lows are also incorporated into the storm life-cycle, preventing possible inappropriate time series breaks, if a temporary weakening to an open-low state occurs. The model experiments verify that considerable inter-monthly variations of track density occur in the Mediterranean region, consistent with previous studies. The classification of the tracks according to their origin domain show that the vast majority originate within the examined area itself. The study of the kinematic and dynamic parameters of tracks according to their origin demonstrate that deeper cyclones follow the SW track. ACKNOWLEDGMENTS: M. Hatzaki would like to thank the Greek State Scholarships Foundation for financial support through the program of postdoctoral research. The support of EU-FP6 project CIRCE Integrated Project-Climate Change and Impact Research: the Mediterranean Environment (http://www.circeproject.eu) for climate model data provision is also greatly acknowledged.
7 CFR Appendix A to Subpart E of... - Hazard Potential Classification for Civil Works Projects
Code of Federal Regulations, 2010 CFR
2010-01-01
... essential facilities and access Disruption of critical facilities and access. Property Losses 4 Private..., communications, power supply, etc. 4 Direct economic impact of value of property damages to project facilities and down stream property and indirect economic impact due to loss of project services, i.e., impact on...
DOT National Transportation Integrated Search
1990-05-01
Oregon has twelve sites that are part of the Strategic Highway Research Program (SHRP), Long Term Pavement Performance (LTPP) studies. Part of the data gathering on these sites involves vehicle weight and classification. This pilot project was to hel...
A Cradle-to-Grave Integrated Approach to Using UNIFORMAT II
ERIC Educational Resources Information Center
Schneider, Richard C.; Cain, David A.
2009-01-01
The ASTM E1557/UNIFORMAT II standard is a three-level, function-oriented classification which links the schematic phase Preliminary Project Descriptions (PPD), based on Construction Standard Institute (CSI) Practice FF/180, to elemental cost estimates based on R.S. Means Cost Data. With the UNIFORMAT II Standard Classification for Building…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, Tatiparthi B. K.; Thomas, Alex D.; Stamatis, Dimitri
The Genomes OnLine Database (GOLD; http://www.genomesonline.org) is a comprehensive online resource to catalog and monitor genetic studies worldwide. GOLD provides up-to-date status on complete and ongoing sequencing projects along with a broad array of curated metadata. Within this paper, we report version 5 (v.5) of the database. The newly designed database schema and web user interface supports several new features including the implementation of a four level (meta)genome project classification system and a simplified intuitive web interface to access reports and launch search tools. The database currently hosts information for about 19 200 studies, 56 000 Biosamples, 56 000 sequencingmore » projects and 39 400 analysis projects. More than just a catalog of worldwide genome projects, GOLD is a manually curated, quality-controlled metadata warehouse. The problems encountered in integrating disparate and varying quality data into GOLD are briefly highlighted. Lastly, GOLD fully supports and follows the Genomic Standards Consortium (GSC) Minimum Information standards.« less
Semi-Supervised Projective Non-Negative Matrix Factorization for Cancer Classification.
Zhang, Xiang; Guan, Naiyang; Jia, Zhilong; Qiu, Xiaogang; Luo, Zhigang
2015-01-01
Advances in DNA microarray technologies have made gene expression profiles a significant candidate in identifying different types of cancers. Traditional learning-based cancer identification methods utilize labeled samples to train a classifier, but they are inconvenient for practical application because labels are quite expensive in the clinical cancer research community. This paper proposes a semi-supervised projective non-negative matrix factorization method (Semi-PNMF) to learn an effective classifier from both labeled and unlabeled samples, thus boosting subsequent cancer classification performance. In particular, Semi-PNMF jointly learns a non-negative subspace from concatenated labeled and unlabeled samples and indicates classes by the positions of the maximum entries of their coefficients. Because Semi-PNMF incorporates statistical information from the large volume of unlabeled samples in the learned subspace, it can learn more representative subspaces and boost classification performance. We developed a multiplicative update rule (MUR) to optimize Semi-PNMF and proved its convergence. The experimental results of cancer classification for two multiclass cancer gene expression profile datasets show that Semi-PNMF outperforms the representative methods.
Galaxy Zoo: Infrared and Optical Morphology
NASA Astrophysics Data System (ADS)
Carla Shanahan, Jesse; Lintott, Chris; Zoo, Galaxy
2018-01-01
We present the detailed, visual morphologies of approximately 60,000 galaxies observed by the UKIRT Infrared Deep Sky Survey and then classified by participants in the Galaxy Zoo project. Our sample is composed entirely of nearby objects with redshifts of z ≤ 0.3, which enables us to robustly analyze their morphological characteristics including smoothness, bulge properties, spiral structure, and evidence of bars or rings. The determination of these features is made via a consensus-based analysis of the Galaxy Zoo project data in which inconsistent and outlying classifications are statistically down-weighted. We then compare these classifications of infrared morphology to the objects’ optical classifications in the Galaxy Zoo 2 release (Willett et al. 2013). It is already known that morphology is an effective tool for uncovering a galaxy’s dynamical past, and previous studies have shown significant correlations with physical characteristics such as stellar mass distribution and star formation history. We show that majority of the sample has agreement or expected differences between the optical and infrared classifications, but also present a preliminary analysis of a subsample of objects with striking discrepancies.
NASA Astrophysics Data System (ADS)
Pytharoulis, Ioannis; Tegoulias, Ioannis; Karacostas, Theodore; Kotsopoulos, Stylianos; Kartsios, Stergios; Bampzelis, Dimitrios
2015-04-01
The Thessaly plain, which is located in central Greece, has a vital role in the financial life of the country, because of its significant agricultural production. The aim of DAPHNE project (http://www.daphne-meteo.gr) is to tackle the problem of drought in this area by means of Weather Modification in convective clouds. This problem is reinforced by the increase of population and the water demand for irrigation, especially during the warm period of the year. The nonhydrostatic Weather Research and Forecasting model (WRF), is utilized for research and operational purposes of DAPHNE project. The WRF output fields are employed by the partners in order to provide high-resolution meteorological guidance and plan the project's operations. The model domains cover: i) Europe, the Mediterranean sea and northern Africa, ii) Greece and iii) the wider region of Thessaly (at selected periods), at horizontal grid-spacings of 15km, 5km and 1km, respectively, using 2-way telescoping nesting. The aim of this research work is to investigate the model performance in relation to the prevailing upper-air synoptic circulation. The statistical evaluation of the high-resolution operational forecasts of near-surface and upper air fields is performed at a selected period of the operational phase of the project using surface observations, gridded fields and weather radar data. The verification is based on gridded, point and object oriented techniques. The 10 upper-air circulation types, which describe the prevailing conditions over Greece, are employed in the synoptic classification. This methodology allows the identification of model errors that occur and/or are maximized at specific synoptic conditions and may otherwise be obscured in aggregate statistics. Preliminary analysis indicates that the largest errors are associated with cyclonic conditions. Acknowledgments This research work of Daphne project (11SYN_8_1088) is co-funded by the European Union (European Regional Development Fund) and Greek national funds, through the action "COOPERATION 2011: Partnerships of Production and Research Institutions in Focused Research and Technology Sectors" in the framework of the Operational Programme "Competitiveness and Entrepreneurship" and Regions in Transition (OPC II, NSRF 2007-2013).
Treatment-Based Classification versus Usual Care for Management of Low Back Pain
2017-10-01
AWARD NUMBER: W81XWH-11-1-0657 TITLE: Treatment-Based Classification versus Usual Care for Management of Low Back Pain PRINCIPAL INVESTIGATOR...Treatment-Based Classification versus Usual Care for Management of Low Back Pain 5b. GRANT NUMBER W81XWH-11-1-0657 5c. PROGRAM ELEMENT NUMBER 6...AUTHOR(S) MAJ Daniel Rhon – daniel_rhon@baylor.edu 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S
Distance Metric between 3D Models and 2D Images for Recognition and Classification
1992-07-01
and 2D Image__ for Recognition and Classification D TIC Ronen Basri and Daphna Weinshall ELECTE JAN2 91993’ Abstract C Similarity measurements...Research Projects Agency of the Department of Defense under Office of Naval Research contract N00014-19-J-4038. Ronen Basri is supported by the...Distance Metric Between 3D Models and 2D Images for N00014-85-K-0124 Recognition and Classification N00014-91-J-4038 6. AUTHOR(S) Ronen Basri and
v3NLP Framework: Tools to Build Applications for Extracting Concepts from Clinical Text
Divita, Guy; Carter, Marjorie E.; Tran, Le-Thuy; Redd, Doug; Zeng, Qing T; Duvall, Scott; Samore, Matthew H.; Gundlapalli, Adi V.
2016-01-01
Introduction: Substantial amounts of clinically significant information are contained only within the narrative of the clinical notes in electronic medical records. The v3NLP Framework is a set of “best-of-breed” functionalities developed to transform this information into structured data for use in quality improvement, research, population health surveillance, and decision support. Background: MetaMap, cTAKES and similar well-known natural language processing (NLP) tools do not have sufficient scalability out of the box. The v3NLP Framework evolved out of the necessity to scale-up these tools up and provide a framework to customize and tune techniques that fit a variety of tasks, including document classification, tuned concept extraction for specific conditions, patient classification, and information retrieval. Innovation: Beyond scalability, several v3NLP Framework-developed projects have been efficacy tested and benchmarked. While v3NLP Framework includes annotators, pipelines and applications, its functionalities enable developers to create novel annotators and to place annotators into pipelines and scaled applications. Discussion: The v3NLP Framework has been successfully utilized in many projects including general concept extraction, risk factors for homelessness among veterans, and identification of mentions of the presence of an indwelling urinary catheter. Projects as diverse as predicting colonization with methicillin-resistant Staphylococcus aureus and extracting references to military sexual trauma are being built using v3NLP Framework components. Conclusion: The v3NLP Framework is a set of functionalities and components that provide Java developers with the ability to create novel annotators and to place those annotators into pipelines and applications to extract concepts from clinical text. There are scale-up and scale-out functionalities to process large numbers of records. PMID:27683667
NASA Technical Reports Server (NTRS)
Maslanik, J. A.; Key, J.
1992-01-01
An expert system framework has been developed to classify sea ice types using satellite passive microwave data, an operational classification algorithm, spatial and temporal information, ice types estimated from a dynamic-thermodynamic model, output from a neural network that detects the onset of melt, and knowledge about season and region. The rule base imposes boundary conditions upon the ice classification, modifies parameters in the ice algorithm, determines a `confidence' measure for the classified data, and under certain conditions, replaces the algorithm output with model output. Results demonstrate the potential power of such a system for minimizing overall error in the classification and for providing non-expert data users with a means of assessing the usefulness of the classification results for their applications.
Stellar Classification Online - Public Exploration
NASA Astrophysics Data System (ADS)
Castelaz, Michael W.; Bedell, W.; Barker, T.; Cline, J.; Owen, L.
2009-01-01
The Michigan Objective Prism Blue Survey (e.g. Sowell et al 2007, AJ, 134, 1089) photographic plates located in the Astronomical Photographic Data Archive at the Pisgah Astronomical Research Institute hold hundreds of thousands of stellar spectra, many of which have not been classified before. The public is invited to participate in a distributed computing online environment to classify the stars on the objective prism plates. The online environment is called Stellar Classification Online - Public Exploration (SCOPE). Through a website, SCOPE participants are given a tutorial on stellar spectra and their classification, and given the chance to practice their skills at classification. After practice, participants register, login, and select stars for classification from scans of the objective prism plates. Their classifications are recorded in a database where the accumulation of classifications of the same star by many users will be statistically analyzed. The project includes stars with known spectral types to help test the reliability of classifications. The SCOPE webpage and the use of results will be described.
Classification of proteins with shared motifs and internal repeats in the ECOD database
Kinch, Lisa N.; Liao, Yuxing
2016-01-01
Abstract Proteins and their domains evolve by a set of events commonly including the duplication and divergence of small motifs. The presence of short repetitive regions in domains has generally constituted a difficult case for structural domain classifications and their hierarchies. We developed the Evolutionary Classification Of protein Domains (ECOD) in part to implement a new schema for the classification of these types of proteins. Here we document the ways in which ECOD classifies proteins with small internal repeats, widespread functional motifs, and assemblies of small domain‐like fragments in its evolutionary schema. We illustrate the ways in which the structural genomics project impacted the classification and characterization of new structural domains and sequence families over the decade. PMID:26833690
NASA Astrophysics Data System (ADS)
Cialone, Claudia; Stock, Kristin
2010-05-01
EuroGEOSS is a European Commission funded project. It aims at improving a scientific understanding of the complex mechanisms which drive changes affecting our planet, identifying and establishing interoperable arrangements between environmental information systems. These systems would be sustained and operated by organizations with a clear mandate and resources and rendered available following the specifications of already existent frameworks such as GEOSS (the Global Earth Observation System of systems)1 and INSPIRE (the Infrastructure for Spatial Information in the European Community)2. The EuroGEOSS project's infrastructure focuses on three thematic areas: forestry, drought and biodiversity. One of the important activities in the project is the retrieval, parsing and harmonization of the large amount of heterogeneous environmental data available at local, regional and global levels between these strategic areas. The challenge is to render it semantically and technically interoperable in a simple way. An initial step in achieving this semantic and technical interoperability involves the selection of appropriate classification schemes (for example, thesauri, ontologies and controlled vocabularies) to describe the resources in the EuroGEOSS framework. These classifications become a crucial part of the interoperable framework scaffolding because they allow data providers to describe their resources and thus support resource discovery, execution and orchestration of varying levels of complexity. However, at present, given the diverse range of environmental thesauri, controlled vocabularies and ontologies and the large number of resources provided by project participants, the selection of appropriate classification schemes involves a number of considerations. First of all, there is the semantic difficulty of selecting classification schemes that contain concepts that are relevant to each thematic area. Secondly, EuroGEOSS is intended to accommodate a number of existing environmental projects (for example, GEOSS and INSPIRE). This requirement imposes constraints on the selection. Thirdly, the selected classification scheme or group of schemes (if more than one) must be capable of alignment (establishing different kinds of mappings between concepts, hence preserving intact the original knowledge schemes) or merging (the creation of another unique ontology from the original ontological sources) (Pérez-Gómez et al., 2004). Last but not least, there is the issue of including multi-lingual schemes that are based on free, open standards (non-proprietary). Using these selection criteria, we aim to support open and convenient data discovery and exchange for users who speak different languages (particularly the European ones for the broad scopes of EuroGEOSS). In order to support the project, we have developed a solution that employs two classification schemes: the Societal Benefit Areas (SBAs)3: the upper-level environmental categorization developed for the GEOSS project and the GEneral Multilingual Environmental Thesaurus (GEMET)4: a general environmental thesaurus whose conceptual structure has already been integrated with the spatial data themes proposed by the INSPIRE project. The former seems to provide the spatial data keywords relevant to the INSPIRE's Directive (JRC, 2008). In this way, we provide users with a basic set of concepts to support resource description and discovery in the thematic areas while supporting the requirements of INSPIRE and GEOSS. Furthermore, the use of only two classification schemes together with the fact that the SBAs are very general categories while GEMET includes much more detailed, yet still top-level, concepts, makes alignment an achievable task. Alignment was selected over merging because it leaves the existing classification schemes intact and requires only a simple activity of defining mappings from GEMET to the SBAs. In order to accomplish this task we are developing a simple, automated, open-source application to assist thematic experts in defining the mappings between concepts in the two classification schemes. The application will then generate SKOS mappings (exactMatch, closeMatch, broadMatch, narrowMatch, relatedMatch) based on thematic expert selections between the concepts in GEMET with the SBAs (including both the general Societal Benefit Areas and their subcategories). Once these mappings are defined and the SKOS files generated, resource providers will be able to select concepts from either GEMET or the SBAs (or a mixture) to describe their resources, and discovery approaches will support selection of concepts from either classification scheme, also returning results classified using the other scheme. While the focus of our work has been on the SBAs and GEMET, we also plan to provide a method for resource providers to further extend the semantic infrastructure by defining alignments to new classification schemes if these are required to support particular specialized thematic areas that are not covered by GEMET. In this way, the approach is flexible and suited to the general scope of EuroGEOSS, allowing specialists to increase at will the level of semantic quality and specificity of data to the initial infrastructural skeleton of the project. References ____________________________________________ Joint research Centre (JRC), 2008. INSPIRE Metadata Editor User Guide Pérez-Gómez A., Fernandez-Lopez M., Corcho O. Ontological engineering: With Examples from the Areas of Knowledge Management, e-Commerce and the Semantic Web.Spinger: London, 2004
Classification of US hydropower dams by their modes of operation
McManamay, Ryan A.; Oigbokie, II, Clement O.; Kao, Shih -Chieh; ...
2016-02-19
A key challenge to understanding ecohydrologic responses to dam regulation is the absence of a universally transferable classification framework for how dams operate. In the present paper, we develop a classification system to organize the modes of operation (MOPs) for U.S. hydropower dams and powerplants. To determine the full diversity of MOPs, we mined federal documents, open-access data repositories, and internet sources. W then used CART classification trees to predict MOPs based on physical characteristics, regulation, and project generation. Finally, we evaluated how much variation MOPs explained in sub-daily discharge patterns for stream gages downstream of hydropower dams. After reviewingmore » information for 721 dams and 597 power plants, we developed a 2-tier hierarchical classification based on 1) the storage and control of flows to powerplants, and 2) the presence of a diversion around the natural stream bed. This resulted in nine tier-1 MOPs representing a continuum of operations from strictly peaking, to reregulating, to run-of-river, and two tier-2 MOPs, representing diversion and integral dam-powerhouse configurations. Although MOPs differed in physical characteristics and energy production, classification trees had low accuracies (<62%), which suggested accurate evaluations of MOPs may require individual attention. MOPs and dam storage explained 20% of the variation in downstream subdaily flow characteristics and showed consistent alterations in subdaily flow patterns from reference streams. Lastly, this standardized classification scheme is important for future research including estimating reservoir operations for large-scale hydrologic models and evaluating project economics, environmental impacts, and mitigation.« less
Classification of US hydropower dams by their modes of operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManamay, Ryan A.; Oigbokie, II, Clement O.; Kao, Shih -Chieh
A key challenge to understanding ecohydrologic responses to dam regulation is the absence of a universally transferable classification framework for how dams operate. In the present paper, we develop a classification system to organize the modes of operation (MOPs) for U.S. hydropower dams and powerplants. To determine the full diversity of MOPs, we mined federal documents, open-access data repositories, and internet sources. W then used CART classification trees to predict MOPs based on physical characteristics, regulation, and project generation. Finally, we evaluated how much variation MOPs explained in sub-daily discharge patterns for stream gages downstream of hydropower dams. After reviewingmore » information for 721 dams and 597 power plants, we developed a 2-tier hierarchical classification based on 1) the storage and control of flows to powerplants, and 2) the presence of a diversion around the natural stream bed. This resulted in nine tier-1 MOPs representing a continuum of operations from strictly peaking, to reregulating, to run-of-river, and two tier-2 MOPs, representing diversion and integral dam-powerhouse configurations. Although MOPs differed in physical characteristics and energy production, classification trees had low accuracies (<62%), which suggested accurate evaluations of MOPs may require individual attention. MOPs and dam storage explained 20% of the variation in downstream subdaily flow characteristics and showed consistent alterations in subdaily flow patterns from reference streams. Lastly, this standardized classification scheme is important for future research including estimating reservoir operations for large-scale hydrologic models and evaluating project economics, environmental impacts, and mitigation.« less
The Crescent Project : an evaluation of an element of the HELP Program : executive summary
DOT National Transportation Integrated Search
1994-02-01
The HELP/Crescent Project on the West Coast evaluated the applicability of four technologies for screening transponder-equipped vehicles. The technologies included automatic vehicle identification, weigh-in-motion, automatic vehicle classification, a...
McMahon, Richard
2018-03-01
A recently blossoming historiographical literature recognizes that physical anthropologists allied with scholars of diverse aspects of society and history to racially classify European peoples over a period of about a hundred years. They created three successive race classification coalitions - ethnology, from around 1840; anthropology, from the 1850s; and interwar raciology - each of which successively disintegrated. The present genealogical study argues that representing these coalitions as 'transdisciplinary' can enrich our understanding of challenges to disciplinary specialization. This is especially the case for the less well-studied nineteenth century, when disciplines and challenges to disciplinary specialization were both gradually emerging. Like Marxism or structuralism, race classification was a holistic interpretive framework, which, at its most ambitious, aimed to structure the human sciences as a whole. It resisted the organization of academia and knowledge into disciplines with separate organizational institutions and research practices. However, the 'transdisciplinarity' of this nationalistic project also bridged emerging borderlines between science and politics. I ascribe race classification's simultaneous longevity and instability to its complex and intricately entwined processes of political and interdisciplinary coalition building. Race classification's politically useful conclusions helped secure public support for institutionalizing the coalition's component disciplines. Institutionalization in turn stimulated disciplines to professionalize. They emphasized disciplinary boundaries and insisted on apolitical science, thus ultimately undermining the 'transdisciplinary' project.
Naïve and Robust: Class-Conditional Independence in Human Classification Learning
ERIC Educational Resources Information Center
Jarecki, Jana B.; Meder, Björn; Nelson, Jonathan D.
2018-01-01
Humans excel in categorization. Yet from a computational standpoint, learning a novel probabilistic classification task involves severe computational challenges. The present paper investigates one way to address these challenges: assuming class-conditional independence of features. This feature independence assumption simplifies the inference…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sauber, A.J.
The National Environmental Policy Act (NEPA) requirement of environmental impact statements for the testing of military equipment, specifically nuclear weapons, conflicts with national security objectives. The author examines NEPA and the Freedom of Information Act (FOIA) in terms of the environmental effects of weapons testing and the relevant case law. The Supreme Court's decision in Catholic Action of Hawaii/Peace Education Project sought to resolve the conflict by distinguishing between a project which is contemplated and one which is proposed. The classification scheme embodied in the FOIA exemption for national security may cause unwarranted frustration of NEPA's goals. The author outlinesmore » a new classification system and review mechanism that could curb military abuse in this area.« less
2016-08-21
USER GUIDE Research Summary: Projecting Vegetation and Wildfire Response to Changing Climate and Fire Management in Interior Alaska SERDP Project...Summary: Projecting Vegetation and Wildfire Response to Changing Climate and Fire Management in Interior Alaska 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...forecast landscape change in response to projected changes in climate , fire regime, and fire management. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF
[Gastroenterology in the G-DRG-System 2004].
Bunzemeier, H; Frühmorgen, P; Caspary, W F; Roeder, N
2003-11-01
After a year of preliminary voluntarily introduction of casemix funding in hospitals in 2003 nearly every German hospital will be confronted with lump sump payments on the basis of the G-DRG system for their inpatient care starting from January 2004. To analyse weaknesses referring to gastroenterology services within the G-DRG version 1.0 the German Association for Disorders of the Digestive System and Metabolism (DGVS) and the DRG-Research-Group from the University of Muenster conducted a DRG evaluation project. In the analysis patient data from 16 hospitals were included. As a result of the project recommendations for G-DRG adjustments were generated. Those recommendations were implemented in the advancement to G-DRG version 2004. Also the International Classification of Diseases (ICD-10) was modified to ICD-10 German Modification. The classification of procedures OPS-301 was revised. The main adjustments to the G-DRG system and both classifications will be presented in this paper.
A transient search using combined human and machine classifications
NASA Astrophysics Data System (ADS)
Wright, Darryl E.; Lintott, Chris J.; Smartt, Stephen J.; Smith, Ken W.; Fortson, Lucy; Trouille, Laura; Allen, Campbell R.; Beck, Melanie; Bouslog, Mark C.; Boyer, Amy; Chambers, K. C.; Flewelling, Heather; Granger, Will; Magnier, Eugene A.; McMaster, Adam; Miller, Grant R. M.; O'Donnell, James E.; Simmons, Brooke; Spiers, Helen; Tonry, John L.; Veldthuis, Marten; Wainscoat, Richard J.; Waters, Chris; Willman, Mark; Wolfenbarger, Zach; Young, Dave R.
2017-12-01
Large modern surveys require efficient review of data in order to find transient sources such as supernovae, and to distinguish such sources from artefacts and noise. Much effort has been put into the development of automatic algorithms, but surveys still rely on human review of targets. This paper presents an integrated system for the identification of supernovae in data from Pan-STARRS1, combining classifications from volunteers participating in a citizen science project with those from a convolutional neural network. The unique aspect of this work is the deployment, in combination, of both human and machine classifications for near real-time discovery in an astronomical project. We show that the combination of the two methods outperforms either one used individually. This result has important implications for the future development of transient searches, especially in the era of Large Synoptic Survey Telescope and other large-throughput surveys.
Nursing Outcomes Classification implementation projects across the care continuum.
Moorhead, S; Clarke, M; Willits, M; Tomsha, K A
1998-06-01
The health care environment in which nurses deliver care is experiencing constant change characterized by decreased lengths of stay in acute care settings, increased use of technology, increasing emphasis on computerized patient records and care planning options, increasing markets dominated by managed care, and an emphasis on outcomes rather than process. These changes dictate that nursing as a profession ensures that the work of nursing is visible in this health care environment and included in the data used to make health policy decisions. This article describes the rich history of a Midwestern hospital's use of standardized nursing languages for the last 25 years. Currently this facility is in the process of implementing the Nursing Outcomes Classification (NOC). Four projects are described that illustrate the ways nurses can use this language with diagnoses from the North American Nursing Diagnoses Association (NANDA) and interventions from the Nursing Interventions Classification (NIC).
Mining the Galaxy Zoo Database: Machine Learning Applications
NASA Astrophysics Data System (ADS)
Borne, Kirk D.; Wallin, J.; Vedachalam, A.; Baehr, S.; Lintott, C.; Darg, D.; Smith, A.; Fortson, L.
2010-01-01
The new Zooniverse initiative is addressing the data flood in the sciences through a transformative partnership between professional scientists, volunteer citizen scientists, and machines. As part of this project, we are exploring the application of machine learning techniques to data mining problems associated with the large and growing database of volunteer science results gathered by the Galaxy Zoo citizen science project. We will describe the basic challenge, some machine learning approaches, and early results. One of the motivators for this study is the acquisition (through the Galaxy Zoo results database) of approximately 100 million classification labels for roughly one million galaxies, yielding a tremendously large and rich set of training examples for improving automated galaxy morphological classification algorithms. In our first case study, the goal is to learn which morphological and photometric features in the Sloan Digital Sky Survey (SDSS) database correlate most strongly with user-selected galaxy morphological class. As a corollary to this study, we are also aiming to identify which galaxy parameters in the SDSS database correspond to galaxies that have been the most difficult to classify (based upon large dispersion in their volunter-provided classifications). Our second case study will focus on similar data mining analyses and machine leaning algorithms applied to the Galaxy Zoo catalog of merging and interacting galaxies. The outcomes of this project will have applications in future large sky surveys, such as the LSST (Large Synoptic Survey Telescope) project, which will generate a catalog of 20 billion galaxies and will produce an additional astronomical alert database of approximately 100 thousand events each night for 10 years -- the capabilities and algorithms that we are exploring will assist in the rapid characterization and classification of such massive data streams. This research has been supported in part through NSF award #0941610.
NASA Technical Reports Server (NTRS)
Huck, F. O.; Davis, R. E.; Fales, C. L.; Aherron, R. M.
1982-01-01
A computational model of the deterministic and stochastic processes involved in remote sensing is used to study spectral feature identification techniques for real-time onboard processing of data acquired with advanced earth-resources sensors. Preliminary results indicate that: Narrow spectral responses are advantageous; signal normalization improves mean-square distance (MSD) classification accuracy but tends to degrade maximum-likelihood (MLH) classification accuracy; and MSD classification of normalized signals performs better than the computationally more complex MLH classification when imaging conditions change appreciably from those conditions during which reference data were acquired. The results also indicate that autonomous categorization of TM signals into vegetation, bare land, water, snow and clouds can be accomplished with adequate reliability for many applications over a reasonably wide range of imaging conditions. However, further analysis is required to develop computationally efficient boundary approximation algorithms for such categorization.
Jennifer L. Long; Melanie Miller; James P. Menakis; Robert E. Keane
2006-01-01
The Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, required a system for classifying vegetation composition, biophysical settings, and vegetation structure to facilitate the mapping of vegetation and wildland fuel characteristics and the simulation of vegetation dynamics using landscape modeling. We developed...
ERIC Educational Resources Information Center
Harper, Ronald; And Others
This manual reviews thirty projects selected by the Oregon Educational Coordinating Council (ECC) as exemplary in method, operation, and development. The projects are organized into 9 broad classifications: large group-small group alternatives, autotutorial programmed instruction, process centered, computer and simulation, on-site/field study,…
Joseph St. Peter; John Hogland; Nathaniel Anderson; Jason Drake; Paul Medley
2018-01-01
Land cover classification provides valuable information for prioritizing management and conservation operations across large landscapes. Current regional scale land cover geospatial products within the United States have a spatial resolution that is too coarse to provide the necessary information for operations at the local and project scales. This paper describes a...
Rehabilitation treatment taxonomy and the international classification of health interventions.
Sykes, Catherine R
2014-01-01
This commentary provides some reactions to the rehabilitation treatment taxonomy project in relation to work already underway to develop an International Classification of Health Interventions. This commentary also includes some comments in response to questions posed by the authors. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Integrating Vegetation Classification, Mapping, and Strategic Inventory for Forest Management
C. K. Brewer; R. Bush; D. Berglund; J. A. Barber; S. R. Brown
2006-01-01
Many of the analyses needed to address multiple resource issues are focused on vegetation pattern and process relationships and most rely on the data models produced from vegetation classification, mapping, and/or inventory. The Northern Region Vegetation Mapping Project (R1-VMP) data models are based on these three integrally related, yet separate processes. This...
A surface fuel classification for estimating fire effects
Duncan C. Lutes; Robert E. Keane; John F. Caratti
2009-01-01
We present a classification of duff, litter, fine woody debris, and logs that can be used to stratify a project area into sites with fuel loading that yield significantly different emissions and maximum soil surface temperature. Total particulate matter smaller than 2.5?m in diameter and maximum soil surface temperature were simulated using the First...
Page layout analysis and classification for complex scanned documents
NASA Astrophysics Data System (ADS)
Erkilinc, M. Sezer; Jaber, Mustafa; Saber, Eli; Bauer, Peter; Depalov, Dejan
2011-09-01
A framework for region/zone classification in color and gray-scale scanned documents is proposed in this paper. The algorithm includes modules for extracting text, photo, and strong edge/line regions. Firstly, a text detection module which is based on wavelet analysis and Run Length Encoding (RLE) technique is employed. Local and global energy maps in high frequency bands of the wavelet domain are generated and used as initial text maps. Further analysis using RLE yields a final text map. The second module is developed to detect image/photo and pictorial regions in the input document. A block-based classifier using basis vector projections is employed to identify photo candidate regions. Then, a final photo map is obtained by applying probabilistic model based on Markov random field (MRF) based maximum a posteriori (MAP) optimization with iterated conditional mode (ICM). The final module detects lines and strong edges using Hough transform and edge-linkages analysis, respectively. The text, photo, and strong edge/line maps are combined to generate a page layout classification of the scanned target document. Experimental results and objective evaluation show that the proposed technique has a very effective performance on variety of simple and complex scanned document types obtained from MediaTeam Oulu document database. The proposed page layout classifier can be used in systems for efficient document storage, content based document retrieval, optical character recognition, mobile phone imagery, and augmented reality.
Aliper, Alexander; Plis, Sergey; Artemov, Artem; Ulloa, Alvaro; Mamoshina, Polina; Zhavoronkov, Alex
2016-07-05
Deep learning is rapidly advancing many areas of science and technology with multiple success stories in image, text, voice and video recognition, robotics, and autonomous driving. In this paper we demonstrate how deep neural networks (DNN) trained on large transcriptional response data sets can classify various drugs to therapeutic categories solely based on their transcriptional profiles. We used the perturbation samples of 678 drugs across A549, MCF-7, and PC-3 cell lines from the LINCS Project and linked those to 12 therapeutic use categories derived from MeSH. To train the DNN, we utilized both gene level transcriptomic data and transcriptomic data processed using a pathway activation scoring algorithm, for a pooled data set of samples perturbed with different concentrations of the drug for 6 and 24 hours. In both pathway and gene level classification, DNN achieved high classification accuracy and convincingly outperformed the support vector machine (SVM) model on every multiclass classification problem, however, models based on pathway level data performed significantly better. For the first time we demonstrate a deep learning neural net trained on transcriptomic data to recognize pharmacological properties of multiple drugs across different biological systems and conditions. We also propose using deep neural net confusion matrices for drug repositioning. This work is a proof of principle for applying deep learning to drug discovery and development.
Aliper, Alexander; Plis, Sergey; Artemov, Artem; Ulloa, Alvaro; Mamoshina, Polina; Zhavoronkov, Alex
2016-01-01
Deep learning is rapidly advancing many areas of science and technology with multiple success stories in image, text, voice and video recognition, robotics and autonomous driving. In this paper we demonstrate how deep neural networks (DNN) trained on large transcriptional response data sets can classify various drugs to therapeutic categories solely based on their transcriptional profiles. We used the perturbation samples of 678 drugs across A549, MCF‐7 and PC‐3 cell lines from the LINCS project and linked those to 12 therapeutic use categories derived from MeSH. To train the DNN, we utilized both gene level transcriptomic data and transcriptomic data processed using a pathway activation scoring algorithm, for a pooled dataset of samples perturbed with different concentrations of the drug for 6 and 24 hours. In both gene and pathway level classification, DNN convincingly outperformed support vector machine (SVM) model on every multiclass classification problem, however, models based on a pathway level classification perform better. For the first time we demonstrate a deep learning neural net trained on transcriptomic data to recognize pharmacological properties of multiple drugs across different biological systems and conditions. We also propose using deep neural net confusion matrices for drug repositioning. This work is a proof of principle for applying deep learning to drug discovery and development. PMID:27200455
Retinex Preprocessing for Improved Multi-Spectral Image Classification
NASA Technical Reports Server (NTRS)
Thompson, B.; Rahman, Z.; Park, S.
2000-01-01
The goal of multi-image classification is to identify and label "similar regions" within a scene. The ability to correctly classify a remotely sensed multi-image of a scene is affected by the ability of the classification process to adequately compensate for the effects of atmospheric variations and sensor anomalies. Better classification may be obtained if the multi-image is preprocessed before classification, so as to reduce the adverse effects of image formation. In this paper, we discuss the overall impact on multi-spectral image classification when the retinex image enhancement algorithm is used to preprocess multi-spectral images. The retinex is a multi-purpose image enhancement algorithm that performs dynamic range compression, reduces the dependence on lighting conditions, and generally enhances apparent spatial resolution. The retinex has been successfully applied to the enhancement of many different types of grayscale and color images. We show in this paper that retinex preprocessing improves the spatial structure of multi-spectral images and thus provides better within-class variations than would otherwise be obtained without the preprocessing. For a series of multi-spectral images obtained with diffuse and direct lighting, we show that without retinex preprocessing the class spectral signatures vary substantially with the lighting conditions. Whereas multi-dimensional clustering without preprocessing produced one-class homogeneous regions, the classification on the preprocessed images produced multi-class non-homogeneous regions. This lack of homogeneity is explained by the interaction between different agronomic treatments applied to the regions: the preprocessed images are closer to ground truth. The principle advantage that the retinex offers is that for different lighting conditions classifications derived from the retinex preprocessed images look remarkably "similar", and thus more consistent, whereas classifications derived from the original images, without preprocessing, are much less similar.
Multi-static Serial LiDAR for Surveillance and Identification of Marine Life at MHK Installations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alsenas, Gabriel; Dalgleish, Fraser; Ouyang, Bing
Final Report for project DE-EE0006787: Multi-static Serial LiDAR for Surveillance and Identification of Marine Life at MHK Installations. This project developed and tested an optical monitoring system prototype that will be suitable for marine and hydrokinetic (MHK) full project lifecycle observation (baseline, commissioning, and decommissioning), with automated real-time classification of marine animals. This system can be deployed to collect pre-installation baseline species observations at a proposed deployment site with minimal post-processing overhead. To satisfy deployed MHK project species of concern (e.g. Endangered Species Act-listed) monitoring requirements, the system provides automated tracking and notification of the presence of managed animals withinmore » established perimeters of MHK equipment and provides high resolution imagery of their behavior through a wide range of conditions. During a project’s decommissioning stage, the system can remain installed to provide resource managers with post-installation data. Our technology, known as an Unobtrusive Multi-static Serial LiDAR Imager (UMSLI), is a technology transfer of underwater distributed LiDAR imaging technology that preserves the advantages of traditional optical and acoustic solutions while overcoming associated disadvantages for MHK environmental monitoring applications. This new approach is a purposefully-designed, reconfigurable adaptation of an existing technology that can be easily mounted on or around different classes of MHK equipment. The system uses low average power red (638nm) laser illumination to be invisible and eye-safe to marine animals and is compact and cost effective. The equipment is designed for long term, maintenance-free operations, to inherently generate a sparse primary dataset that only includes detected anomalies (animal presence information), and to allow robust real-time automated animal classification/identification with a low data bandwidth requirement. Advantages of the technology over others currently being used or being considered for MHK monitoring include: Unlike a conventional camera, the depth of field is near-infinite and limited by attenuation (approximately 5-8 m) rather than focal properties of a lens; Operation in an adaptive mode which can project a sparse grid of pulses with higher peak power for longer range detection (>10 meters) and track animals within a zone of interest with high resolution imagery for identification of marine life at closer range (<5m); System detection limit and Signal-to-Noise-Ratio is superior to a camera, due to rejection of both backscattering component and ambient solar background; Multiple wide-angle pulsed laser illuminators and bucket detectors can be flexibly configured to cover a 4pi steradian (i.e. omnidirectional) scene volume, while also retrieving 3D features of animal targets from timing information; Process and classification framework centered around a novel active learning and incremental classification classifier that enables accurate identification of a variety of marine animals automatically; A two-tiered monitoring architecture and invisible watermarking-based data archiving and retrieving approach ensures significant data reduction while preserving high fidelity monitoring. A methodology to train and optimize the classifier for target species of concern to optimize site monitoring effectiveness. This technological innovation addresses a high priority regulatory requirement to observe marine life interaction near MHK projects. Our solution improves resource manager confidence that any interactions between marine animals and equipment are observed in a cost-effective and automated manner. Without EERE funding, this novel application of multi-static LiDAR would not have been available to the MHK community for environmental monitoring.« less
2013-01-01
Background Stillbirth classifications use various strategies to synthesise information associated with fetal demise with the aim of identifying key causes for the death. RECODE is a hierarchical classification of death-related conditions, which grants a major place to fetal growth restriction (FGR). Our objective was to explore how placement of FGR in the hierarchy affected results from the classification. Methods In the Rhône-Alpes region, all stillbirths were recorded in a local registry from 2000 to 2010 in three districts (N = 969). Small for gestational age (SGA) was defined as a birthweight below the 10th percentile. We applied RECODE and then modified the hierarchy, including FGR as the penultimate category (RECODE-R). Results 49.0% of stillbirths were SGA. From RECODE to RECODE-R, stillbirths attributable to FGR decreased from 38% to 14%, in favour of other related conditions. Nearly half of SGA stillbirths (49%) were reclassified. There was a non-significant tendency toward moderate SGA, singletons and full-term stillbirths to older mothers being reclassified. Conclusions The position of FGR in hierarchical stillbirth classification has a major impact on the first condition associated with stillbirth. RECODE-R calls less attention to monitoring SGA fetuses but illustrates the diversity of death-related conditions for small fetuses. PMID:24090495
Object-Based Classification and Change Detection of Hokkaido, Japan
NASA Astrophysics Data System (ADS)
Park, J. G.; Harada, I.; Kwak, Y.
2016-06-01
Topography and geology are factors to characterize the distribution of natural vegetation. Topographic contour is particularly influential on the living conditions of plants such as soil moisture, sunlight, and windiness. Vegetation associations having similar characteristics are present in locations having similar topographic conditions unless natural disturbances such as landslides and forest fires or artificial disturbances such as deforestation and man-made plantation bring about changes in such conditions. We developed a vegetation map of Japan using an object-based segmentation approach with topographic information (elevation, slope, slope direction) that is closely related to the distribution of vegetation. The results found that the object-based classification is more effective to produce a vegetation map than the pixel-based classification.
NASA's University Program: Active projects, fiscal year 1981
NASA Technical Reports Server (NTRS)
1981-01-01
Active university R and D activities funded by NASA which contribute to mission needs are documented. Technical rather than fiscal information is emphasized. A classification of government sponsored research is included. A cross index providing access to the project description is also included.
75 FR 53740 - Proposed Collection; Comment Request for Regulation Project
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-01
... Request for Regulation Project AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice and... Transactions Involving Computer Programs (Sec. 1.861-18). DATES: Written comments should be received on [email protected] . SUPPLEMENTARY INFORMATION: Title: Classification of Certain Transactions Involving Computer...
76 FR 17163 - Submission of OMB Review; Comments Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-28
... per investor per project. Type of Respondents: Business or other institution (except farms); individuals. Standard Industrial Classification Code: All. Description of Affected Public: U.S. companies or... the document used by OPIC to determine investor's and project eligibility for political risk insurance...
Classification of wetlands systems is needed not only to establish reference condition, but also to predict the relative sensitivity of different wetland classes. In the current study, we examined the potential for ecoregion- versus flow-based classification strategies to explain...
7 CFR 400.304 - Nonstandard Classification determinations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... changes are necessary in assigned yields or premium rates under the conditions set forth in § 400.304(f... Classification determinations. (a) Nonstandard Classification determinations can affect a change in assigned yields, premium rates, or both from those otherwise prescribed by the insurance actuarial tables. (b...
The Survey of Cultural Heritage after AN Earthquake: the Case of Emilia-Lombardia in 2012
NASA Astrophysics Data System (ADS)
Adami, A.; Chiarini, S.; Cremonesi, S.; Fregonese, L.; Taffurelli, L.; Valente, M. V.
2016-06-01
In recent years many earthquakes hit Italy and its Cultural Heritage. The topic of survey of buildings damaged by seismic events and their interpretation has become very relevant and involved many research groups and Italian Civil Protection. The damage survey has different roles: in the first stage, immediately after the emergency, the documentation is necessary for the shoring and protection of damaged structures (AEDES forms of Civil Protection). The aim of the second stage is the study and the documentation for the restoration, reconstruction and retrofitting of buildings. In this context, this study presents methods and instruments used in the survey of 24 churches in the province of Mantua, Lombardy, after the 2012 earthquake sequence. The paper examines the difficulties in surveying damaged buildings and presents the classification used to define, time by time, the most suitable survey approach in the field of Geomatics. In this classification, many aspects are taken into account, such as logistical and practical problems, safety conditions, time preserving methods, economic decisions, complexity of building and required results. The accurate documentation obtained as a three-dimensional architectural database allows for the observation and analysis of the damage, the definition of interpretative models and the development of intervention projects. Different results are obtained from the point cloud database: traditional 2D representations for architectural projects as well as 3D models for structural analysis or for the development of BIM.
NASA Astrophysics Data System (ADS)
Stephenson, S. R.; Babiker, M.; Sandven, S.; Muckenhuber, S.; Korosov, A.; Bobylev, L.; Vesman, A.; Mushta, A.; Demchev, D.; Volkov, V.; Smirnov, K.; Hamre, T.
2015-12-01
Sea ice monitoring and forecasting systems are important tools for minimizing accident risk and environmental impacts of Arctic maritime operations. Satellite data such as synthetic aperture radar (SAR), combined with atmosphere-ice-ocean forecasting models, navigation models and automatic identification system (AIS) transponder data from ships are essential components of such systems. Here we present first results from the SONARC project (project term: 2015-2017), an international multidisciplinary effort to develop novel and complementary ice monitoring and forecasting systems for vessels and offshore platforms in the Arctic. Automated classification methods (Zakhvatkina et al., 2012) are applied to Sentinel-1 dual-polarization SAR images from the Barents and Kara Sea region to identify ice types (e.g. multi-year ice, level first-year ice, deformed first-year ice, new/young ice, open water) and ridges. Short-term (1-3 days) ice drift forecasts are computed from SAR images using feature tracking and pattern tracking methods (Berg & Eriksson, 2014). Ice classification and drift forecast products are combined with ship positions based on AIS data from a selected period of 3-4 weeks to determine optimal vessel speed and routing in ice. Results illustrate the potential of high-resolution SAR data for near-real-time monitoring and forecasting of Arctic ice conditions. Over the next 3 years, SONARC findings will contribute new knowledge about sea ice in the Arctic while promoting safe and cost-effective shipping, domain awareness, resource management, and environmental protection.
The Ecohydrological Context of Drought and Classification of Plant Responses
NASA Astrophysics Data System (ADS)
Feng, X.; Ackerly, D.; Dawson, T. E.; Manzoni, S.; Skelton, R. P.; Vico, G.; Thompson, S. E.
2017-12-01
Many recent studies on drought-induced vegetation mortality have explored how plant functional traits, and classifications of such traits along axes of, e.g., isohydry - anisohydry, might contribute to predicting drought survival and recovery. As these studies proliferate, concerns are growing about the consistency and predictive value of such classifications. Here, we outline the basis for a systematic classification of drought strategies that accounts for both environmental conditions and functional traits. We (1) identify drawbacks of exiting isohydricity and trait-based metrics, (2) identify major axes of trait and environmental variation that determine drought mortality pathways (hydraulic failure and carbon starvation) using non-dimensional trait groups, and (3) demonstrate that these trait groupings predict physiological drought outcomes using both measured and synthetic data. In doing so we untangle some confounding effects of environment and trait variations that undermine current classification schemes, outline a pathway to progress towards a general classification of drought vulnerability, and advocate for more careful treatment of the environmental conditions within which plant drought responses occur.
Coenen, Michaela; Rudolf, Klaus-Dieter; Kus, Sandra; Dereskewitz, Caroline
2018-05-24
The International Classification of Functioning, Disability and Health (ICF) provides a standardized language of almost 1500 ICF categories for coding information about functioning and contextual factors. Short lists (ICF Core Sets) are helpful tools to support the implementation of the ICF in clinical routine. In this paper we report on the implementation of ICF Core Sets in clinical routine using the "ICF Core Sets for Hand Conditions" and the "Lighthouse Project Hand" as an example. Based on the ICF categories of the "Brief ICF Core Set for Hand Conditions", the ICF-based assessment tool (ICF Hand A ) was developed aiming to guide the assessment and treatment of patients with injuries and diseases located at the hand. The ICF Hand A facilitates the standardized assessment of functioning - taking into consideration of a holistic view of the patients - along the continuum of care ranging from acute care to rehabilitation and return to work. Reference points for the assessment of the ICF Hand A are determined in treatment guidelines for selected injuries and diseases of the hand along with recommendations for acute treatment and care, procedures and interventions of subsequent treatment and rehabilitation. The assessment of the ICF Hand A according to the defined reference points can be done using electronic clinical assessment tools and allows for an automatic generation of a timely medical report of a patient's functioning. In the future, the ICF Hand A can be used to inform the coding of functioning in ICD-11.
NASA Astrophysics Data System (ADS)
Zaki, N. F. M.; Ismail, M. A. M.; Hazreek Zainal Abidin, Mohd; Madun, Aziman
2018-04-01
Tunnel construction in typical karst topography face the risk which unknown geological condition such as abundant rainwater, ground water and cavities. Construction of tunnel in karst limestone frequently lead to potentially over-break of rock formation and cause failure to affected area. Physical character of limestone which consists large cavity prone to sudden failure and become worsen due to misinterpretation of rock quality by engineer and geologists during analysis stage and improper method adopted in construction stage. Consideration for execution of laboratory and field testing in rock limestone should be well planned and arranged in tunnel construction project. Several tests including Ground Penetration Radar (GPR) and geological face mapping were studied in this research to investigate the performances of limestone rock in tunnel construction, measured in term of rock mass quality that used for risk assessment. The objective of this study is to focus on the prediction of geological condition ahead of tunnel face using short range method (GPR) and verified by geological face mapping method to determine the consistency of actual geological condition on site. Q-Value as the main indicator for rock mass classification was obtained from geological face mapping method. The scope of this study is covering for tunnelling construction along 756 meters in karst limestone area which located at Timah Tasoh Tunnel, Bukit Tebing Tinggi, Perlis. For this case study, 15% of GPR results was identified as inaccurate for rock mass classification in which certain chainage along this tunnel with 34 out of 224 data from GPR was identified as incompatible with actual face mapping.
NASA Astrophysics Data System (ADS)
Dostál, Tomáš; Krása, Josef; Bauer, Miroslav; Strouhal, Luděk; Jáchymová, Barbora; Devátý, Jan; David, Václav; Koudelka, Petr; Dočkal, Martin
2015-04-01
Pluvial and flash floods, related to massive sediment transport become phenomenon nowadays, under conditions of climate changes. Storm events, related to material damages appear at unexpected places and their effective control is only possible in form of prevention. To apply preventive measures, there have to be defined localities with reasonable reliability, which are endangered by surface runoff and sediment transport produced in the subcatchments, often at agriculturally used landscape. Classification of such localities, concerning of potential damages and magnitude of sediment transport shall be also included within the analyses, to design control measures effectively. Large scale project for whole territory of the Czech Republic (ca 80.000 km2) has therefore been granted b the Ministry of Interior of the Czech Republic, with the aim to define critical points, where interaction between surface runoff connected to massive sediment transport and infrastructure or vulnerable water bodies can occur and to classify them according to potential risk. Advanced GIS routines, based on analyses of land use, soil conditions and morphology had been used to determine the critical points - points, where significant surface runoff occurs and interacts with infrastructure and vulnerable water bodies, based exclusively on the contributing area - flow accumulation. In total, ca 150.000 critical points were determined within the Czech Republic. For each of critical points, its subcatchment had then been analyzed in detail, concerning of soil loss and sediment transport, using simulation model WATEM/SEDEM. The results were used for classification of potential risk of individual critical points, based on mean soil loss within subcatchment, total sediment transport trough the outlet point and subcatchment area. The classification has been done into 5 classes. The boundaries were determined by calibration survey and statistical analysis, performed at three experimental catchments area of 100 km2 each. Concentrated flow trajectory had then been analyzed trough urban areas and potential vulnerability of incident structures has been determined. Total hazard of infrastructure has been classified again into 5 categories for each individual critical point using risk matrix, combining threat and vulnerability features. Generalized control measures (changes in land-use, changes in agrotechnology, diverting linear measures or retention structures) were then introduced into mathematical model WATEM/SEDEM in number of scenarios, to allow effective design of control measures against surface runoff and sediment transport for each individual critical point. Result of the project will be public available by WEB application and shall be useful for government, local decision makers, for planning of development of communities and also optimization of effective design of flash floods control measures. The research has been supported by the research project VG20122015092.
Some Exact Conditional Tests of Independence for R X C Cross-Classification Tables
ERIC Educational Resources Information Center
Agresti, Alan; Wackerly, Dennis
1977-01-01
Exact conditional tests of independence in cross-classification tables are formulated based on chi square and other statistics with stronger operational interpretations, such as some nominal and ordinal measures of association. Guidelines for table dimensions and sample sizes for which the tests are economically implemented on a computer are…
Forest site classification for cultural plant harvest by tribal weavers can inform management
S. Hummel; F.K. Lake
2015-01-01
Do qualitative classifications of ecological conditions for harvesting culturally important forest plants correspond to quantitative differences among sites? To address this question, we blended scientific methods (SEK) and traditional ecological knowledge (TEK) to identify conditions on sites considered good, marginal, or poor for harvesting the leaves of a plant (...
1979-03-01
showed the dam to be in good c~rndition. The dam has a size classification of intermediate and a hazard classification of low. The test flood is the ti... good condition. However, water passing over the spillway limited the inspection of the spillway. The dam has a size classification of intermediate...hydrologic and hydraulic assumptions. The dam is generally in good condition. However, it is recommended that the owner repair the drawdown outlet, and
Timmermans, Erik J; Schaap, Laura A; Herbolsheimer, Florian; Dennison, Elaine M; Maggi, Stefania; Pedersen, Nancy L; Castell, Maria Victoria; Denkinger, Michael D; Edwards, Mark H; Limongi, Federica; Sánchez-Martínez, Mercedes; Siviero, Paola; Queipo, Rocio; Peter, Richard; van der Pas, Suzan; Deeg, Dorly J H
2015-10-01
This study examined whether daily weather conditions, 3-day average weather conditions, and changes in weather conditions influence joint pain in older people with osteoarthritis (OA) in 6 European countries. Data from the population-based European Project on OSteoArthritis were used. The American College of Rheumatology classification criteria were used to diagnose OA in older people (65-85 yrs). After the baseline interview, at 6 months, and after the 12-18 months followup interview, joint pain was assessed using 2-week pain calendars. Daily values for temperature, precipitation, atmospheric pressure, relative humidity, and wind speed were obtained from local weather stations. Multilevel regression modelling was used to examine the pain-weather associations, adjusted for several confounders. The study included 810 participants with OA in the knee, hand, and/or hip. After adjustment, there were significant associations of joint pain with daily average humidity (B = 0.004, p < 0.01) and 3-day average humidity (B = 0.004, p = 0.01). A significant interaction effect was found between daily average humidity and temperature on joint pain. The effect of humidity on pain was stronger in relatively cold weather conditions. Changes in weather variables between 2 consecutive days were not significantly associated with reported joint pain. The associations between pain and daily average weather conditions suggest that a causal relationship exist between joint pain and weather variables, but the associations between day-to-day weather changes and pain do not confirm causation. Knowledge about the relationship between joint pain in OA and weather may help individuals with OA, physicians, and therapists to better understand and manage fluctuations in pain.
Applications of remote sensing, volume 1
NASA Technical Reports Server (NTRS)
Landgrebe, D. A. (Principal Investigator)
1977-01-01
The author has identified the following significant results. ECHO successfully exploits the redundancy of states characteristics of sampled imagery of ground scenes to achieve better classification accuracy, reduce the number of classifications required, and reduce the variability of classification results. The information required to produce ECHO classifications are cell size, cell homogeneity, cell-to-field annexation parameters, input data, and a class conditional marginal density statistics deck.
2003-04-07
USAWC STRATEGY RESEARCH PROJECT LEADERSHIP by LIEUTENANT COLONEL RONALD D. JOHNSON United States Army Colonel David R. Brooks Project Advisor The...TITLE AND SUBTITLE Leadership Unclassified 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Johnson, Ronald D. ; Author... Leadership FORMAT: Strategy Research Project DATE: 07 April 2003 PAGES: 28 CLASSIFICATION: Unclassified This SRP shows that values and ethics are essential
[Definition and classification of pulmonary arterial hypertension].
Nakanishi, Norifumi
2008-11-01
Pulmonary hypertension(PH) is a disorder that may occur either in the setting of a variety of underlying medical conditions or as a disease that uniquely affects the pulmonary vasculature. Because an accurate diagnosis of PH in a patient is essential to establish an effective treatment, a classification of PH has been helpful. The first classification, established at WHO Symposium in 1973, classified PH into groups based on the known cause and defined primary pulmonary hypertension (PPH) as a separate entity of unknown cause. In 1998, the second World Symposium on PPH was held in Evian. Evian classification introduced the concept of conditions that directly affected the pulmonary vasculature (i.e., PAH), which included PPH. In 2003, the third World Symposium on PAH convened in Venice. In Venice classification, the term 'PPH' was abandoned in favor of 'idiopathic' within the group of disease known as 'PAH'.
ERIC Educational Resources Information Center
Lau, Che-Ming Allen; And Others
This study focused on the robustness of unidimensional item response theory (UIRT) models in computerized classification testing against violation of the unidimensionality assumption. The study addressed whether UIRT models remain acceptable under various testing conditions and dimensionality strengths. Monte Carlo simulation techniques were used…
Methods for structuring scientific knowledge from many areas related to aging research.
Zhavoronkov, Alex; Cantor, Charles R
2011-01-01
Aging and age-related disease represents a substantial quantity of current natural, social and behavioral science research efforts. Presently, no centralized system exists for tracking aging research projects across numerous research disciplines. The multidisciplinary nature of this research complicates the understanding of underlying project categories, the establishment of project relations, and the development of a unified project classification scheme. We have developed a highly visual database, the International Aging Research Portfolio (IARP), available at AgingPortfolio.org to address this issue. The database integrates information on research grants, peer-reviewed publications, and issued patent applications from multiple sources. Additionally, the database uses flexible project classification mechanisms and tools for analyzing project associations and trends. This system enables scientists to search the centralized project database, to classify and categorize aging projects, and to analyze the funding aspects across multiple research disciplines. The IARP is designed to provide improved allocation and prioritization of scarce research funding, to reduce project overlap and improve scientific collaboration thereby accelerating scientific and medical progress in a rapidly growing area of research. Grant applications often precede publications and some grants do not result in publications, thus, this system provides utility to investigate an earlier and broader view on research activity in many research disciplines. This project is a first attempt to provide a centralized database system for research grants and to categorize aging research projects into multiple subcategories utilizing both advanced machine algorithms and a hierarchical environment for scientific collaboration.
NASA Technical Reports Server (NTRS)
Spruce, Joseph; Sader, Steven; Smoot, James
2012-01-01
Cypress swamp forests of Louisiana offer many important ecological and economic benefits: wildlife habitat, forest products, storm buffers, water quality, and recreation. Such forests are also threatened by multiple factors: subsidence, salt water intrusion, sea level rise, persistent flooding, hydrologic modification, hurricanes, insect and nutria damage, timber harvesting, and land use conversion. Unfortunately, there are many information gaps regarding the type, location, extent, and condition of these forests. Better more up to date swamp forest mapping products are needed to aid coastal forest conservation and restoration work (e.g., through the Coastal Forest Conservation Initiative or CFCI). In response, a collaborative project was initiated to develop, test and demonstrate cypress swamp forest mapping products, using NASA supported Landsat, ASTER, and MODIS satellite data. Research Objectives are: Develop, test, and demonstrate use of Landsat and ASTER data for computing new cypress forest classification products and Landsat, ASTER, and MODIS satellite data for detecting and monitoring swamp forest change
The Milky Way Project: Mapping star formation in our home Galaxy, one click at a time
NASA Astrophysics Data System (ADS)
Jayasinghe, Tharindu K.; Povich, Matthew S.; Dixon, Don; Velasco, Jose; Milky Way Project Team
2017-01-01
In the recent years, citizen science has helped astronomers comb through large data sets to identify patterns and objects that are not easily found through automated processes. The Milky Way Project (MWP), a popular citizen science initiative, presents internet users with images from the GLIMPSE, MIPSGAL, SMOG and CYGNUS-X surveys of the Galactic plane using the Spitzer Space Telescope. These citizen scientists are directed to make "classification" drawings on the images to identify targeted classes of astronomical objects. We present an updated data reduction pipeline for the MWP. Written from the ground up in Python, this data reduction pipeline allows for the aggregation of classifications made by MWP users into catalogs of infrared (IR) bubbles, IR bow shocks and “yellowballs” (which may be the early precursors of IR bubbles). Coupled with the more accurate bubble classification tool used in the latest iterations of the MWP, this pipeline enables for better accuracy in the shapes and sizes of the bubbles when compared with those listed in the first MWP data release (DR1). We obtain an initial catalog of over 4000 bubbles using 2 million user classifications made between 2012 and 2015. Combined with the classifications from the latest MWP iteration (2016-2017), we will use a database of over 4 million classifications to produce a MWP DR2 bubble catalog. We will also create the first catalog of candidate IR bow shocks identified through citizen science and an updated “yellowball” catalog. This work is supported by the National Science Foundation under grants CAREER-1454334 and AST-1411851.
Jones, William R.; Garber, Adrienne
2013-01-01
The Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) funds over 100 wetland restoration projects across Louisiana. Integral to the success of CWPPRA is its long-term monitoring program, which enables State and Federal agencies to determine the effectiveness of each restoration effort. One component of this monitoring program is the classification of high-resolution, color-infrared aerial photography at the U.S. Geological Survey’s National Wetlands Research Center in Lafayette, Louisiana. Color-infrared aerial photography (9- by 9-inch) is obtained before project construction and several times after construction. Each frame is scanned on a photogrametric scanner that produces a high-resolution image in Tagged Image File Format (TIFF). By using image-processing software, these TIFF files are then orthorectified and mosaicked to produce a seamless image of a project area and its associated reference area (a control site near the project that has common environmental features, such as marsh type, soil types, and water salinities.) The project and reference areas are then classified according to pixel value into two distinct classes, land and water. After initial land and water ratios have been established by using photography obtained before and after project construction, subsequent comparisons can be made over time to determine land-water change.
Local Subspace Classifier with Transform-Invariance for Image Classification
NASA Astrophysics Data System (ADS)
Hotta, Seiji
A family of linear subspace classifiers called local subspace classifier (LSC) outperforms the k-nearest neighbor rule (kNN) and conventional subspace classifiers in handwritten digit classification. However, LSC suffers very high sensitivity to image transformations because it uses projection and the Euclidean distances for classification. In this paper, I present a combination of a local subspace classifier (LSC) and a tangent distance (TD) for improving accuracy of handwritten digit recognition. In this classification rule, we can deal with transform-invariance easily because we are able to use tangent vectors for approximation of transformations. However, we cannot use tangent vectors in other type of images such as color images. Hence, kernel LSC (KLSC) is proposed for incorporating transform-invariance into LSC via kernel mapping. The performance of the proposed methods is verified with the experiments on handwritten digit and color image classification.
Accuracy and efficiency of area classifications based on tree tally
Michael S. Williams; Hans T. Schreuder; Raymond L. Czaplewski
2001-01-01
Inventory data are often used to estimate the area of the land base that is classified as a specific condition class. Examples include areas classified as old-growth forest, private ownership, or suitable habitat for a given species. Many inventory programs rely on classification algorithms of varying complexity to determine condition class. These algorithms can be...
Crown-condition classification: a guide to data collection and analysis
Michael E. Schomaker; Stanley J. Zarnoch; William A. Bechtold; David J. Latelle; William G. Burkman; Susan M. Cox
2007-01-01
The Forest Inventory and Analysis (FIA) Program of the Forest Service, U.S. Department of Agriculture, conducts a national inventory of forests across the United States. A systematic subset of permanent inventory plots in 38 States is currently sampled every year for numerous forest health indicators. One of these indicators, crown-condition classification, is designed...
Continuous robust sound event classification using time-frequency features and deep learning
Song, Yan; Xiao, Wei; Phan, Huy
2017-01-01
The automatic detection and recognition of sound events by computers is a requirement for a number of emerging sensing and human computer interaction technologies. Recent advances in this field have been achieved by machine learning classifiers working in conjunction with time-frequency feature representations. This combination has achieved excellent accuracy for classification of discrete sounds. The ability to recognise sounds under real-world noisy conditions, called robust sound event classification, is an especially challenging task that has attracted recent research attention. Another aspect of real-word conditions is the classification of continuous, occluded or overlapping sounds, rather than classification of short isolated sound recordings. This paper addresses the classification of noise-corrupted, occluded, overlapped, continuous sound recordings. It first proposes a standard evaluation task for such sounds based upon a common existing method for evaluating isolated sound classification. It then benchmarks several high performing isolated sound classifiers to operate with continuous sound data by incorporating an energy-based event detection front end. Results are reported for each tested system using the new task, to provide the first analysis of their performance for continuous sound event detection. In addition it proposes and evaluates a novel Bayesian-inspired front end for the segmentation and detection of continuous sound recordings prior to classification. PMID:28892478
Continuous robust sound event classification using time-frequency features and deep learning.
McLoughlin, Ian; Zhang, Haomin; Xie, Zhipeng; Song, Yan; Xiao, Wei; Phan, Huy
2017-01-01
The automatic detection and recognition of sound events by computers is a requirement for a number of emerging sensing and human computer interaction technologies. Recent advances in this field have been achieved by machine learning classifiers working in conjunction with time-frequency feature representations. This combination has achieved excellent accuracy for classification of discrete sounds. The ability to recognise sounds under real-world noisy conditions, called robust sound event classification, is an especially challenging task that has attracted recent research attention. Another aspect of real-word conditions is the classification of continuous, occluded or overlapping sounds, rather than classification of short isolated sound recordings. This paper addresses the classification of noise-corrupted, occluded, overlapped, continuous sound recordings. It first proposes a standard evaluation task for such sounds based upon a common existing method for evaluating isolated sound classification. It then benchmarks several high performing isolated sound classifiers to operate with continuous sound data by incorporating an energy-based event detection front end. Results are reported for each tested system using the new task, to provide the first analysis of their performance for continuous sound event detection. In addition it proposes and evaluates a novel Bayesian-inspired front end for the segmentation and detection of continuous sound recordings prior to classification.
NASA Technical Reports Server (NTRS)
Shull, Forrest; Godfrey, Sally; Bechtel, Andre; Feldmann, Raimund L.; Regardie, Myrna; Seaman, Carolyn
2008-01-01
A viewgraph presentation describing the NASA Software Assurance Research Program (SARP) project, with a focus on full life-cycle defect management, is provided. The topics include: defect classification, data set and algorithm mapping, inspection guidelines, and tool support.
14 CFR 151.55 - Accounting and audit.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Costs of force account construction. (5) Engineering costs of plans and designs. (6) Engineering costs... allowability of all incurred costs of the project. The sponsor shall segregate and group project costs so that it can furnish, on due notice, cost information in the following cost classifications: (1) Purchase...
14 CFR 151.55 - Accounting and audit.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Costs of force account construction. (5) Engineering costs of plans and designs. (6) Engineering costs... allowability of all incurred costs of the project. The sponsor shall segregate and group project costs so that it can furnish, on due notice, cost information in the following cost classifications: (1) Purchase...
14 CFR 151.55 - Accounting and audit.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Costs of force account construction. (5) Engineering costs of plans and designs. (6) Engineering costs... allowability of all incurred costs of the project. The sponsor shall segregate and group project costs so that it can furnish, on due notice, cost information in the following cost classifications: (1) Purchase...
14 CFR 151.55 - Accounting and audit.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Costs of force account construction. (5) Engineering costs of plans and designs. (6) Engineering costs... allowability of all incurred costs of the project. The sponsor shall segregate and group project costs so that it can furnish, on due notice, cost information in the following cost classifications: (1) Purchase...
CrossLink: a novel method for cross-condition classification of cancer subtypes.
Ma, Chifeng; Sastry, Konduru S; Flore, Mario; Gehani, Salah; Al-Bozom, Issam; Feng, Yusheng; Serpedin, Erchin; Chouchane, Lotfi; Chen, Yidong; Huang, Yufei
2016-08-22
We considered the prediction of cancer classes (e.g. subtypes) using patient gene expression profiles that contain both systematic and condition-specific biases when compared with the training reference dataset. The conventional normalization-based approaches cannot guarantee that the gene signatures in the reference and prediction datasets always have the same distribution for all different conditions as the class-specific gene signatures change with the condition. Therefore, the trained classifier would work well under one condition but not under another. To address the problem of current normalization approaches, we propose a novel algorithm called CrossLink (CL). CL recognizes that there is no universal, condition-independent normalization mapping of signatures. In contrast, it exploits the fact that the signature is unique to its associated class under any condition and thus employs an unsupervised clustering algorithm to discover this unique signature. We assessed the performance of CL for cross-condition predictions of PAM50 subtypes of breast cancer by using a simulated dataset modeled after TCGA BRCA tumor samples with a cross-validation scheme, and datasets with known and unknown PAM50 classification. CL achieved prediction accuracy >73 %, highest among other methods we evaluated. We also applied the algorithm to a set of breast cancer tumors derived from Arabic population to assign a PAM50 classification to each tumor based on their gene expression profiles. A novel algorithm CrossLink for cross-condition prediction of cancer classes was proposed. In all test datasets, CL showed robust and consistent improvement in prediction performance over other state-of-the-art normalization and classification algorithms.
Kalegowda, Yogesh; Harmer, Sarah L
2012-03-20
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) spectra of mineral samples are complex, comprised of large mass ranges and many peaks. Consequently, characterization and classification analysis of these systems is challenging. In this study, different chemometric and statistical data evaluation methods, based on monolayer sensitive TOF-SIMS data, have been tested for the characterization and classification of copper-iron sulfide minerals (chalcopyrite, chalcocite, bornite, and pyrite) at different flotation pulp conditions (feed, conditioned feed, and Eh modified). The complex mass spectral data sets were analyzed using the following chemometric and statistical techniques: principal component analysis (PCA); principal component-discriminant functional analysis (PC-DFA); soft independent modeling of class analogy (SIMCA); and k-Nearest Neighbor (k-NN) classification. PCA was found to be an important first step in multivariate analysis, providing insight into both the relative grouping of samples and the elemental/molecular basis for those groupings. For samples exposed to oxidative conditions (at Eh ~430 mV), each technique (PCA, PC-DFA, SIMCA, and k-NN) was found to produce excellent classification. For samples at reductive conditions (at Eh ~ -200 mV SHE), k-NN and SIMCA produced the most accurate classification. Phase identification of particles that contain the same elements but a different crystal structure in a mixed multimetal mineral system has been achieved.
Supervised machine learning and active learning in classification of radiology reports.
Nguyen, Dung H M; Patrick, Jon D
2014-01-01
This paper presents an automated system for classifying the results of imaging examinations (CT, MRI, positron emission tomography) into reportable and non-reportable cancer cases. This system is part of an industrial-strength processing pipeline built to extract content from radiology reports for use in the Victorian Cancer Registry. In addition to traditional supervised learning methods such as conditional random fields and support vector machines, active learning (AL) approaches were investigated to optimize training production and further improve classification performance. The project involved two pilot sites in Victoria, Australia (Lake Imaging (Ballarat) and Peter MacCallum Cancer Centre (Melbourne)) and, in collaboration with the NSW Central Registry, one pilot site at Westmead Hospital (Sydney). The reportability classifier performance achieved 98.25% sensitivity and 96.14% specificity on the cancer registry's held-out test set. Up to 92% of training data needed for supervised machine learning can be saved by AL. AL is a promising method for optimizing the supervised training production used in classification of radiology reports. When an AL strategy is applied during the data selection process, the cost of manual classification can be reduced significantly. The most important practical application of the reportability classifier is that it can dramatically reduce human effort in identifying relevant reports from the large imaging pool for further investigation of cancer. The classifier is built on a large real-world dataset and can achieve high performance in filtering relevant reports to support cancer registries. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Gender classification from video under challenging operating conditions
NASA Astrophysics Data System (ADS)
Mendoza-Schrock, Olga; Dong, Guozhu
2014-06-01
The literature is abundant with papers on gender classification research. However the majority of such research is based on the assumption that there is enough resolution so that the subject's face can be resolved. Hence the majority of the research is actually in the face recognition and facial feature area. A gap exists for gender classification under challenging operating conditions—different seasonal conditions, different clothing, etc.—and when the subject's face cannot be resolved due to lack of resolution. The Seasonal Weather and Gender (SWAG) Database is a novel database that contains subjects walking through a scene under operating conditions that span a calendar year. This paper exploits a subset of that database—the SWAG One dataset—using data mining techniques, traditional classifiers (ex. Naïve Bayes, Support Vector Machine, etc.) and traditional (canny edge detection, etc.) and non-traditional (height/width ratios, etc.) feature extractors to achieve high correct gender classification rates (greater than 85%). Another novelty includes exploiting frame differentials.
Frøen, J Frederik; Pinar, Halit; Flenady, Vicki; Bahrin, Safiah; Charles, Adrian; Chauke, Lawrence; Day, Katie; Duke, Charles W; Facchinetti, Fabio; Fretts, Ruth C; Gardener, Glenn; Gilshenan, Kristen; Gordijn, Sanne J; Gordon, Adrienne; Guyon, Grace; Harrison, Catherine; Koshy, Rachel; Pattinson, Robert C; Petersson, Karin; Russell, Laurie; Saastad, Eli; Smith, Gordon CS; Torabi, Rozbeh
2009-01-01
A carefully classified dataset of perinatal mortality will retain the most significant information on the causes of death. Such information is needed for health care policy development, surveillance and international comparisons, clinical services and research. For comparability purposes, we propose a classification system that could serve all these needs, and be applicable in both developing and developed countries. It is developed to adhere to basic concepts of underlying cause in the International Classification of Diseases (ICD), although gaps in ICD prevent classification of perinatal deaths solely on existing ICD codes. We tested the Causes of Death and Associated Conditions (Codac) classification for perinatal deaths in seven populations, including two developing country settings. We identified areas of potential improvements in the ability to retain existing information, ease of use and inter-rater agreement. After revisions to address these issues we propose Version II of Codac with detailed coding instructions. The ten main categories of Codac consist of three key contributors to global perinatal mortality (intrapartum events, infections and congenital anomalies), two crucial aspects of perinatal mortality (unknown causes of death and termination of pregnancy), a clear distinction of conditions relevant only to the neonatal period and the remaining conditions are arranged in the four anatomical compartments (fetal, cord, placental and maternal). For more detail there are 94 subcategories, further specified in 577 categories in the full version. Codac is designed to accommodate both the main cause of death as well as two associated conditions. We suggest reporting not only the main cause of death, but also the associated relevant conditions so that scenarios of combined conditions and events are captured. The appropriately applied Codac system promises to better manage information on causes of perinatal deaths, the conditions associated with them, and the most common clinical scenarios for future study and comparisons. PMID:19515228
Frøen, J Frederik; Pinar, Halit; Flenady, Vicki; Bahrin, Safiah; Charles, Adrian; Chauke, Lawrence; Day, Katie; Duke, Charles W; Facchinetti, Fabio; Fretts, Ruth C; Gardener, Glenn; Gilshenan, Kristen; Gordijn, Sanne J; Gordon, Adrienne; Guyon, Grace; Harrison, Catherine; Koshy, Rachel; Pattinson, Robert C; Petersson, Karin; Russell, Laurie; Saastad, Eli; Smith, Gordon C S; Torabi, Rozbeh
2009-06-10
A carefully classified dataset of perinatal mortality will retain the most significant information on the causes of death. Such information is needed for health care policy development, surveillance and international comparisons, clinical services and research. For comparability purposes, we propose a classification system that could serve all these needs, and be applicable in both developing and developed countries. It is developed to adhere to basic concepts of underlying cause in the International Classification of Diseases (ICD), although gaps in ICD prevent classification of perinatal deaths solely on existing ICD codes.We tested the Causes of Death and Associated Conditions (Codac) classification for perinatal deaths in seven populations, including two developing country settings. We identified areas of potential improvements in the ability to retain existing information, ease of use and inter-rater agreement. After revisions to address these issues we propose Version II of Codac with detailed coding instructions.The ten main categories of Codac consist of three key contributors to global perinatal mortality (intrapartum events, infections and congenital anomalies), two crucial aspects of perinatal mortality (unknown causes of death and termination of pregnancy), a clear distinction of conditions relevant only to the neonatal period and the remaining conditions are arranged in the four anatomical compartments (fetal, cord, placental and maternal).For more detail there are 94 subcategories, further specified in 577 categories in the full version. Codac is designed to accommodate both the main cause of death as well as two associated conditions. We suggest reporting not only the main cause of death, but also the associated relevant conditions so that scenarios of combined conditions and events are captured.The appropriately applied Codac system promises to better manage information on causes of perinatal deaths, the conditions associated with them, and the most common clinical scenarios for future study and comparisons.
Bogren, Sara; Fornara, Andrea; Ludwig, Frank; del Puerto Morales, Maria; Steinhoff, Uwe; Fougt Hansen, Mikkel; Kazakova, Olga; Johansson, Christer
2015-01-01
This study presents classification of different magnetic single- and multi-core particle systems using their measured dynamic magnetic properties together with their nanocrystal and particle sizes. The dynamic magnetic properties are measured with AC (dynamical) susceptometry and magnetorelaxometry and the size parameters are determined from electron microscopy and dynamic light scattering. Using these methods, we also show that the nanocrystal size and particle morphology determines the dynamic magnetic properties for both single- and multi-core particles. The presented results are obtained from the four year EU NMP FP7 project, NanoMag, which is focused on standardization of analysis methods for magnetic nanoparticles. PMID:26343639
Whittenburg, Luann; Meetim, Aunchisa
2016-01-01
An innovative nursing documentation project conducted at Bumrungrad International Hospital in Bangkok, Thailand demonstrated patient care continuity between nursing patient assessments and nursing Plans of Care using the Clinical Care Classification System (CCC). The project developed a new generation of interactive nursing Plans of Care using the six steps of the American Nurses Association (ANA) Nursing process and the MEDCIN® clinical knowledgebase to present CCC coded concepts as a natural by-product of a nurse's documentation process. The MEDCIN® clinical knowledgebase is a standardized point-of-care terminology intended for use in electronic health record systems. The CCC is an ANA recognized nursing terminology.
Spectral-Spatial Shared Linear Regression for Hyperspectral Image Classification.
Haoliang Yuan; Yuan Yan Tang
2017-04-01
Classification of the pixels in hyperspectral image (HSI) is an important task and has been popularly applied in many practical applications. Its major challenge is the high-dimensional small-sized problem. To deal with this problem, lots of subspace learning (SL) methods are developed to reduce the dimension of the pixels while preserving the important discriminant information. Motivated by ridge linear regression (RLR) framework for SL, we propose a spectral-spatial shared linear regression method (SSSLR) for extracting the feature representation. Comparing with RLR, our proposed SSSLR has the following two advantages. First, we utilize a convex set to explore the spatial structure for computing the linear projection matrix. Second, we utilize a shared structure learning model, which is formed by original data space and a hidden feature space, to learn a more discriminant linear projection matrix for classification. To optimize our proposed method, an efficient iterative algorithm is proposed. Experimental results on two popular HSI data sets, i.e., Indian Pines and Salinas demonstrate that our proposed methods outperform many SL methods.
The Southwest Regional Gap Analysis Project (SW ReGAP) improves upon previous GAP projects conducted in Arizona, Colorado, Nevada, New Mexico, and Utah to provide a
consistent, seamless vegetation map for this large and ecologically diverse geographic region. Nevada's compone...
Transformation and Change Management for Strategic Leaders
2002-04-09
TRANSFORMATION AND CHANGE MANAGEMENT FOR STRATEGIC LEADERS BY MR. KENNETH L. WRIGHT Department of the Army DISTRIBUTION STATEMENT A: Approved for Public...PROJECT TRANSFORMATION AND CHANGE MANAGEMENT FOR STRATEGIC LEADERS BY MR. KENNETH L. WRIGHT DEPARTMENT OF THE ARMY Dr. Robert M. Murphy Project Advisor The...STRATEGIC LEADERS FORMAT: Strategy Research Project DATE: 09 April 2002 PAGES: 33 CLASSIFICATION: Unclassified The objective of this work is to examine
Surface Water Detection Using Fused Synthetic Aperture Radar, Airborne LiDAR and Optical Imagery
NASA Astrophysics Data System (ADS)
Braun, A.; Irwin, K.; Beaulne, D.; Fotopoulos, G.; Lougheed, S. C.
2016-12-01
Each remote sensing technique has its unique set of strengths and weaknesses, but by combining techniques the classification accuracy can be increased. The goal of this project is to underline the strengths and weaknesses of Synthetic Aperture Radar (SAR), LiDAR and optical imagery data and highlight the opportunities where integration of the three data types can increase the accuracy of identifying water in a principally natural landscape. The study area is located at the Queen's University Biological Station, Ontario, Canada. TerraSAR-X (TSX) data was acquired between April and July 2016, consisting of four single polarization (HH) staring spotlight mode backscatter intensity images. Grey-level thresholding is used to extract surface water bodies, before identifying and masking zones of radar shadow and layover by using LiDAR elevation models to estimate the canopy height and applying simple geometry algorithms. The airborne LiDAR survey was conducted in June 2014, resulting in a discrete return dataset with a density of 1 point/m2. Radiometric calibration to correct for range and incidence angle is applied, before classifying the points as water or land based on corrected intensity, elevation, roughness, and intensity density. Panchromatic and multispectral (4-band) imagery from Quickbird was collected in September 2005 at spatial resolutions of 0.6m and 2.5m respectively. Pixel-based classification is applied to identify and distinguish water bodies from land. A classification system which inputs SAR-, LiDAR- and optically-derived water presence models in raster formats is developed to exploit the strengths and weaknesses of each technique. The total percentage of water detected in the sample area for SAR backscatter, LiDAR intensity, and optical imagery was 27%, 19% and 18% respectively. The output matrix of the classification system indicates that in over 72% of the study area all three methods agree on the classification. Analysis was specifically targeted towards areas where the methods disagree, highlighting how each technique should be properly weighted over these areas to increase the classification accuracy of water. The conclusions and techniques developed in this study are applicable to other areas where similar environmental conditions and data availability exist.
Forensic characterization of camcorded movies: digital cinema vs. celluloid film prints
NASA Astrophysics Data System (ADS)
Rolland-Nevière, Xavier; Chupeau, Bertrand; Do"rr, Gwena"l.; Blondé, Laurent
2012-03-01
Digital camcording in the premises of cinema theaters is the main source of pirate copies of newly released movies. To trace such recordings, watermarking systems are exploited in order for each projection to be unique and thus identifiable. The forensic analysis to recover these marks is different for digital and legacy cinemas. To avoid running both detectors, a reliable oracle discriminating between cams originating from analog or digital projections is required. This article details a classification framework relying on three complementary features : the spatial uniformity of the screen illumination, the vertical (in)stability of the projected image, and the luminance artifacts due to the interplay between the display and acquisition devices. The system has been tuned with cams captured in a controlled environment and benchmarked against a medium-sized dataset (61 samples) composed of real-life pirate cams. Reported experimental results demonstrate that such a framework yields over 80% classification accuracy.
Project DIPOLE WEST - Multiburst Environment (Non-Simultaneous Detonations)
1976-09-01
PAGE (WIMn Dat• Bntered) Unclassified SECURITY CLASSIFICATION OP’ THIS PAGE(ft• Data .Bnt......, 20. Abstract Purpose of the series was to obtain...HULL hydrodynamic air blast code show good correlation. UNCLASSIFIED SECUFUTY CLASSIFICATION OF THIS PA.GE(When Date Bntered) • • 1...supervision. Contributions were also made by Dr. John Dewey, University of Victoria; Mr. A. P. R. Lambert, Canadian General Electric; Mr. Charles Needham
A Proposed Methodology to Classify Frontier Capital Markets
2011-07-31
but because it is the surest route to our common good.” -Inaugural Speech by President Barack Obama, Jan 2009 This project involves basic...machine learning. The algorithm consists of a unique binary classifier mechanism that combines three methods: k-Nearest Neighbors ( kNN ), ensemble...Through kNN Ensemble Classification Techniques E. Capital Market Classification Based on Capital Flows and Trading Architecture F. Horizontal
A Proposed Methodology to Classify Frontier Capital Markets
2011-07-31
out of charity, but because it is the surest route to our common good.” -Inaugural Speech by President Barack Obama, Jan 2009 This project...identification, and machine learning. The algorithm consists of a unique binary classifier mechanism that combines three methods: k-Nearest Neighbors ( kNN ...Support Through kNN Ensemble Classification Techniques E. Capital Market Classification Based on Capital Flows and Trading Architecture F
Projet de classification de spectres stellaires IUE à basse résolution par système expert.
NASA Astrophysics Data System (ADS)
Imadache, A.
Le project d'étude porte sur l'utilisation de l'intelligence artificielle en vue d'établir une classification de spectres IUE. Pour la réalisation de ce projet, des liens de collaboration ont été établis entre l'Observatoire Astronomique de Strasbourg et l'équipe ST-ECF à l'ESO.
Code of Federal Regulations, 2011 CFR
2011-10-01
... under § 435.121 or SSI criteria, or to one or more of the following classifications of individuals who... that meets the conditions specified in this section. (8) Individuals in additional classifications... receiving optional State supplements); and (3) Available to all individuals in each classification in...
Code of Federal Regulations, 2010 CFR
2010-10-01
... under § 435.121 or SSI criteria, or to one or more of the following classifications of individuals who... that meets the conditions specified in this section. (8) Individuals in additional classifications... receiving optional State supplements); and (3) Available to all individuals in each classification in...
Wu, Shang-Lin; Liao, Lun-De; Lu, Shao-Wei; Jiang, Wei-Ling; Chen, Shi-An; Lin, Chin-Teng
2013-08-01
Electrooculography (EOG) signals can be used to control human-computer interface (HCI) systems, if properly classified. The ability to measure and process these signals may help HCI users to overcome many of the physical limitations and inconveniences in daily life. However, there are currently no effective multidirectional classification methods for monitoring eye movements. Here, we describe a classification method used in a wireless EOG-based HCI device for detecting eye movements in eight directions. This device includes wireless EOG signal acquisition components, wet electrodes and an EOG signal classification algorithm. The EOG classification algorithm is based on extracting features from the electrical signals corresponding to eight directions of eye movement (up, down, left, right, up-left, down-left, up-right, and down-right) and blinking. The recognition and processing of these eight different features were achieved in real-life conditions, demonstrating that this device can reliably measure the features of EOG signals. This system and its classification procedure provide an effective method for identifying eye movements. Additionally, it may be applied to study eye functions in real-life conditions in the near future.
Lati, Ran N; Filin, Sagi; Aly, Radi; Lande, Tal; Levin, Ilan; Eizenberg, Hanan
2014-07-01
Weed/crop classification is considered the main problem in developing precise weed-management methodologies, because both crops and weeds share similar hues. Great effort has been invested in the development of classification models, most based on expensive sensors and complicated algorithms. However, satisfactory results are not consistently obtained due to imaging conditions in the field. We report on an innovative approach that combines advances in genetic engineering and robust image-processing methods to detect weeds and distinguish them from crop plants by manipulating the crop's leaf color. We demonstrate this on genetically modified tomato (germplasm AN-113) which expresses a purple leaf color. An autonomous weed/crop classification is performed using an invariant-hue transformation that is applied to images acquired by a standard consumer camera (visible wavelength) and handles variations in illumination intensities. The integration of these methodologies is simple and effective, and classification results were accurate and stable under a wide range of imaging conditions. Using this approach, we simplify the most complicated stage in image-based weed/crop classification models. © 2013 Society of Chemical Industry.
The Minnesota Defense Industry Conversion Project. A Partnership for Retraining.
ERIC Educational Resources Information Center
Daines, James R.; And Others
The Minnesota Defense Conversion Adjustment Project was initiated in 1993 with funding provided through the U.S. Department of Labor's Defense Conversion Adjustment Program to help workers at a Minnesota defense plant make the transition from assembler and related production classifications to machinists and other positions requiring specific job…
Automated spectral classification and the GAIA project
NASA Technical Reports Server (NTRS)
Lasala, Jerry; Kurtz, Michael J.
1995-01-01
Two dimensional spectral types for each of the stars observed in the global astrometric interferometer for astrophysics (GAIA) mission would provide additional information for the galactic structure and stellar evolution studies, as well as helping in the identification of unusual objects and populations. The classification of the large quantity generated spectra requires that automated techniques are implemented. Approaches for the automatic classification are reviewed, and a metric-distance method is discussed. In tests, the metric-distance method produced spectral types with mean errors comparable to those of human classifiers working at similar resolution. Data and equipment requirements for an automated classification survey, are discussed. A program of auxiliary observations is proposed to yield spectral types and radial velocities for the GAIA-observed stars.
Classification of Odours for Mobile Robots Using an Ensemble of Linear Classifiers
NASA Astrophysics Data System (ADS)
Trincavelli, Marco; Coradeschi, Silvia; Loutfi, Amy
2009-05-01
This paper investigates the classification of odours using an electronic nose mounted on a mobile robot. The samples are collected as the robot explores the environment. Under such conditions, the sensor response differs from typical three phase sampling processes. In this paper, we focus particularly on the classification problem and how it is influenced by the movement of the robot. To cope with these influences, an algorithm consisting of an ensemble of classifiers is presented. Experimental results show that this algorithm increases classification performance compared to other traditional classification methods.
NASA Astrophysics Data System (ADS)
Tiwari, Priyanka; Goel, Arun
2017-05-01
Subsurface drainage has been used for more than a century to keep water table at a desired level of salinity and waterlogging control. This paper has been focused on the impact assessment of pilot studies in India and some other countries from 1969 to 2014 . This review article may prove quite useful in deciding the installation of subsurface drainage project depending on main design parameters, such as drain depth and drain spacing, installation area and type of used outlet. A number of pilot studies have been taken up in past to solve the problems of soil salinity and waterlogging in India. The general guidelines that arise on the behalf of this review paper are to adapt drain depth >1.2 m and spacing depending on soil texture classification, i.e., 100-150 m for light-textured soils, 50-100 m for medium-textured soils and 30-50 m heavy-textured soils, for better result obtained from the problem areas in Indian soil and climatic conditions. An attempt has been made in the manner of literature survey to highlight the salient features of these studies, and it is hopeful to go a long way in selecting design parameters for subsurface drainage problems in the future with similar soil, water table and climatic conditions.
ERIC Educational Resources Information Center
Liu, Boquan; Polce, Evan; Sprott, Julien C.; Jiang, Jack J.
2018-01-01
Purpose: The purpose of this study is to introduce a chaos level test to evaluate linear and nonlinear voice type classification method performances under varying signal chaos conditions without subjective impression. Study Design: Voice signals were constructed with differing degrees of noise to model signal chaos. Within each noise power, 100…
Biomarkers for Musculoskeletal Pain Conditions: Use of Brain Imaging and Machine Learning.
Boissoneault, Jeff; Sevel, Landrew; Letzen, Janelle; Robinson, Michael; Staud, Roland
2017-01-01
Chronic musculoskeletal pain condition often shows poor correlations between tissue abnormalities and clinical pain. Therefore, classification of pain conditions like chronic low back pain, osteoarthritis, and fibromyalgia depends mostly on self report and less on objective findings like X-ray or magnetic resonance imaging (MRI) changes. However, recent advances in structural and functional brain imaging have identified brain abnormalities in chronic pain conditions that can be used for illness classification. Because the analysis of complex and multivariate brain imaging data is challenging, machine learning techniques have been increasingly utilized for this purpose. The goal of machine learning is to train specific classifiers to best identify variables of interest on brain MRIs (i.e., biomarkers). This report describes classification techniques capable of separating MRI-based brain biomarkers of chronic pain patients from healthy controls with high accuracy (70-92%) using machine learning, as well as critical scientific, practical, and ethical considerations related to their potential clinical application. Although self-report remains the gold standard for pain assessment, machine learning may aid in the classification of chronic pain disorders like chronic back pain and fibromyalgia as well as provide mechanistic information regarding their neural correlates.
Large Scale Crop Mapping in Ukraine Using Google Earth Engine
NASA Astrophysics Data System (ADS)
Shelestov, A.; Lavreniuk, M. S.; Kussul, N.
2016-12-01
There are no globally available high resolution satellite-derived crop specific maps at present. Only coarse-resolution imagery (> 250 m spatial resolution) has been utilized to derive global cropland extent. In 2016 we are going to carry out a country level demonstration of Sentinel-2 use for crop classification in Ukraine within the ESA Sen2-Agri project. But optical imagery can be contaminated by cloud cover that makes it difficult to acquire imagery in an optimal time range to discriminate certain crops. Due to the Copernicus program since 2015, a lot of Sentinel-1 SAR data at high spatial resolution is available for free for Ukraine. It allows us to use the time series of SAR data for crop classification. Our experiment for one administrative region in 2015 showed much higher crop classification accuracy with SAR data than with optical only time series [1, 2]. Therefore, in 2016 within the Google Earth Engine Research Award we use SAR data together with optical ones for large area crop mapping (entire territory of Ukraine) using cloud computing capabilities available at Google Earth Engine (GEE). This study compares different classification methods for crop mapping for the whole territory of Ukraine using data and algorithms from GEE. Classification performance assessed using overall classification accuracy, Kappa coefficients, and user's and producer's accuracies. Also, crop areas from derived classification maps compared to the official statistics [3]. S. Skakun et al., "Efficiency assessment of multitemporal C-band Radarsat-2 intensity and Landsat-8 surface reflectance satellite imagery for crop classification in Ukraine," IEEE Journal of Selected Topics in Applied Earth Observ. and Rem. Sens., 2015, DOI: 10.1109/JSTARS.2015.2454297. N. Kussul, S. Skakun, A. Shelestov, O. Kussul, "The use of satellite SAR imagery to crop classification in Ukraine within JECAM project," IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp.1497-1500, 13-18 July 2014, Quebec City, Canada. F.J. Gallego, N. Kussul, S. Skakun, O. Kravchenko, A. Shelestov, O. Kussul, "Efficiency assessment of using satellite data for crop area estimation in Ukraine," International Journal of Applied Earth Observation and Geoinformation vol. 29, pp. 22-30, 2014.
Classification of Regional Ionospheric Disturbances Based on Support Vector Machines
NASA Astrophysics Data System (ADS)
Begüm Terzi, Merve; Arikan, Feza; Arikan, Orhan; Karatay, Secil
2016-07-01
Ionosphere is an anisotropic, inhomogeneous, time varying and spatio-temporally dispersive medium whose parameters can be estimated almost always by using indirect measurements. Geomagnetic, gravitational, solar or seismic activities cause variations of ionosphere at various spatial and temporal scales. This complex spatio-temporal variability is challenging to be identified due to extensive scales in period, duration, amplitude and frequency of disturbances. Since geomagnetic and solar indices such as Disturbance storm time (Dst), F10.7 solar flux, Sun Spot Number (SSN), Auroral Electrojet (AE), Kp and W-index provide information about variability on a global scale, identification and classification of regional disturbances poses a challenge. The main aim of this study is to classify the regional effects of global geomagnetic storms and classify them according to their risk levels. For this purpose, Total Electron Content (TEC) estimated from GPS receivers, which is one of the major parameters of ionosphere, will be used to model the regional and local variability that differs from global activity along with solar and geomagnetic indices. In this work, for the automated classification of the regional disturbances, a classification technique based on a robust machine learning technique that have found wide spread use, Support Vector Machine (SVM) is proposed. SVM is a supervised learning model used for classification with associated learning algorithm that analyze the data and recognize patterns. In addition to performing linear classification, SVM can efficiently perform nonlinear classification by embedding data into higher dimensional feature spaces. Performance of the developed classification technique is demonstrated for midlatitude ionosphere over Anatolia using TEC estimates generated from the GPS data provided by Turkish National Permanent GPS Network (TNPGN-Active) for solar maximum year of 2011. As a result of implementing the developed classification technique to the Global Ionospheric Map (GIM) TEC data which is provided by the NASA Jet Propulsion Laboratory (JPL), it will be shown that SVM can be a suitable learning method to detect the anomalies in Total Electron Content (TEC) variations. This study is supported by TUBITAK 114E541 project as a part of the Scientific and Technological Research Projects Funding Program (1001).
How a national vegetation classification can help ecological research and management
Franklin, Scott; Comer, Patrick; Evens, Julie; Ezcurra, Exequiel; Faber-Langendoen, Don; Franklin, Janet; Jennings, Michael; Josse, Carmen; Lea, Chris; Loucks, Orie; Muldavin, Esteban; Peet, Robert K.; Ponomarenko, Serguei; Roberts, David G.; Solomeshch, Ayzik; Keeler-Wolf, Todd; Van Kley, James; Weakley, Alan; McKerrow, Alexa; Burke, Marianne; Spurrier, Carol
2015-01-01
The elegance of classification lies in its ability to compile and systematize various terminological conventions and masses of information that are unattainable during typical research projects. Imagine a discipline without standards for collection, analysis, and interpretation; unfortunately, that describes much of 20th-century vegetation ecology. With differing methods, how do we assess community dynamics over decades, much less centuries? How do we compare plant communities from different areas? The need for a widely applied vegetation classification has long been clear. Now imagine a multi-decade effort to assimilate hundreds of disparate vegetation classifications into one common classification for the US. In this letter, we introduce the US National Vegetation Classification (USNVC; www.usnvc.org) as a powerful tool for research and conservation, analogous to the argument made by Schimel and Chadwick (2013) for soils. The USNVC provides a national framework to classify and describe vegetation; here we describe the USNVC and offer brief examples of its efficacy.
Vehicle Engine Classification Using Spectral Tone-Pitch Vibration Indexing and Neural Network*
Wei, Jie; Vongsy, Karmon; Mendoza-Schrock, Olga; Liu, Chi-Him
2015-01-01
As a non-invasive and remote sensor, the Laser Doppler Vibrometer (LDV) has found a broad spectrum of applications in various areas such as civil engineering, biomedical engineering, and even security and restoration within art museums. LDV is an ideal sensor to detect threats earlier and provide better protection to society, which is of utmost importance to military and law enforcement institutions. However, the use of LDV in situational surveillance, in particular vehicle classification, is still in its infancy due to the lack of systematic investigations on its behavioral properties. In this work, as a result of the pilot project initiated by Air Force Research Laboratory, the innate features of LDV data from many vehicles are examined, beginning with an investigation of feature differences compared to human speech signals. A spectral tone-pitch vibration indexing scheme is developed to capture the engine’s periodic vibrations and the associated fundamental frequencies over the vehicles’ surface. A two-layer feed-forward neural network with 20 intermediate neurons is employed to classify vehicles’ engines based on their spectral tone-pitch indices. The classification results using the proposed approach over the complete LDV dataset collected by the project are exceedingly encouraging; consistently higher than 96% accuracies are attained for all four types of engines collected from this project. PMID:26788417
Goossen, W T; Epping, P J; Abraham, I L
1996-03-01
The development of nursing information systems (NIS) is often hampered by the fact that nursing lacks a unified nursing terminology and classification system. Currently there exist various initiatives in this area. We address the question as to how current initiatives in the development of nursing terminology and classification systems can contribute towards the development of NIS. First, the rationale behind the formalization of nursing knowledge is discussed. Next, using a framework for nursing information processing, the most important developments in the field of nursing on formalization, terminology and classification are critically reviewed. The initiatives discussed include nursing terminology projects in several countries, and the International Classification of Nursing Practice. Suggestions for further developments in the area are discussed. Finally, implications for NIS are presented, as well as the relationships of these components to other sections of an integrated computerized patient record.
Towards linking patients and clinical information: detecting UMLS concepts in e-mail.
Brennan, Patricia Flatley; Aronson, Alan R
2003-01-01
The purpose of this project is to explore the feasibility of detecting terms within the electronic messages of patients that could be used to effectively search electronic knowledge resources and bring health information resources into the hands of patients. Our team is exploring the application of the natural language processing (NLP) tools built within the Lister Hill Center at the National Library of Medicine (NLM) to the challenge of detecting relevant concepts from the Unified Medical Language System (UMLS) within the free text of lay people's electronic messages (e-mail). We obtained a sample of electronic messages sent by patients participating in a randomized field evaluation of an internet-based home care support service to the project nurse, and we subjected elements of these messages to a series of analyses using several vocabularies from the UMLS Metathesaurus and the selected NLP tools. The nursing vocabularies provide an excellent starting point for this exercise because their domain encompasses patient's responses to health challenges. In successive runs we augmented six nursing vocabularies (NANDA Nursing Diagnosis, Nursing Interventions Classification, Nursing Outcomes Classification, Home Health Classification, Omaha System, and the Patient Care Data Set) with selected sets of clinical terminologies (International Classification of Primary Care; International Classification of Primary Care- American English; Micromedex DRUGDEX; National Drug Data File; Thesaurus of Psychological Terms; WHO Adverse Drug Reaction Terminology) and then additionally with either Medical Subject Heading (MeSH) or SNOMED International terms. The best performance was obtained when the nursing vocabularies were complemented with selected clinical terminologies. These findings have implications not only for facilitating lay people's access to electronic knowledge resources but may also be of assistance in developing new tools to aid in linking free text (e.g., clinical notes) to lexically complex knowledge resources such as those emerging from the Human Genome Project.
NASA Technical Reports Server (NTRS)
Hogan, Christine A.
1996-01-01
A land cover-vegetation map with a base classification system for remote sensing use in a tropical island environment was produced of the island of Hawaii for the State of Hawaii to evaluate whether or not useful land cover information can be derived from Landsat TM data. In addition, an island-wide change detection mosaic combining a previously created 1977 MSS land classification with the TM-based classification was produced. In order to reach the goal of transferring remote sensing technology to State of Hawaii personnel, a pilot project was conducted while training State of Hawaii personnel in remote sensing technology and classification systems. Spectral characteristics of young island land cover types were compared to determine if there are differences in vegetation types on lava, vegetation types on soils, and barren lava from soils, and if they can be detected remotely, based on differences in pigments detecting plant physiognomic type, health, stress at senescence, heat, moisture level, and biomass. Geographic information systems (GIS) and global positioning systems (GPS) were used to assist in image rectification and classification. GIS was also used to produce large-format color output maps. An interactive GIS program was written to provide on-line access to scanned photos taken at field sites. The pilot project found Landsat TM to be a credible source of land cover information for geologically young islands, and TM data bands are effective in detecting spectral characteristics of different land cover types through remote sensing. Large agriculture field patterns were resolved and mapped successfully from wildland vegetation, but small agriculture field patterns were not. Additional processing was required to work with the four TM scenes from two separate orbits which span three years, including El Nino and drought dates. Results of the project emphasized the need for further land cover and land use processing and research. Change in vegetation composition was noted in the change detection image.
Vegetation classification and distribution mapping report Mesa Verde National Park
Thomas, Kathryn A.; McTeague, Monica L.; Ogden, Lindsay; Floyd, M. Lisa; Schulz, Keith; Friesen, Beverly A.; Fancher, Tammy; Waltermire, Robert G.; Cully, Anne
2009-01-01
The classification and distribution mapping of the vegetation of Mesa Verde National Park (MEVE) and surrounding environment was achieved through a multi-agency effort between 2004 and 2007. The National Park Service’s Southern Colorado Plateau Network facilitated the team that conducted the work, which comprised the U.S. Geological Survey’s Southwest Biological Science Center, Fort Collins Research Center, and Rocky Mountain Geographic Science Center; Northern Arizona University; Prescott College; and NatureServe. The project team described 47 plant communities for MEVE, 34 of which were described from quantitative classification based on f eld-relevé data collected in 1993 and 2004. The team derived 13 additional plant communities from field observations during the photointerpretation phase of the project. The National Vegetation Classification Standard served as a framework for classifying these plant communities to the alliance and association level. Eleven of the 47 plant communities were classified as “park specials;” that is, plant communities with insufficient data to describe them as new alliances or associations. The project team also developed a spatial vegetation map database representing MEVE, with three different map-class schemas: base, group, and management map classes. The base map classes represent the fi nest level of spatial detail. Initial polygons were developed using Definiens Professional (at the time of our use, this software was called eCognition), assisted by interpretation of 1:12,000 true-color digital orthophoto quarter quadrangles (DOQQs). These polygons (base map classes) were labeled using manual photo interpretation of the DOQQs and 1:12,000 true-color aerial photography. Field visits verified interpretation concepts. The vegetation map database includes 46 base map classes, which consist of associations, alliances, and park specials classified with quantitative analysis, additional associations and park specials noted during photointerpretation, and non-vegetated land cover, such as infrastructure, land use, and geological land cover. The base map classes consist of 5,007 polygons in the project area. A field-based accuracy assessment of the base map classes showed overall accuracy to be 43.5%. Seven map classes comprise 89.1% of the park vegetated land cover. The group map classes represent aggregations of the base map classes, approximating the group level of the National Vegetation Classification Standard, version 2 (Federal Geographic Data Committee 2007), and reflecting physiognomy and floristics. Terrestrial ecological systems, as described by NatureServe (Comer et al. 2003), were used as the fi rst approximation of the group level. The project team identified 14 group map classes for this project. The overall accuracy of the group map classes was determined using the same accuracy assessment data as for the base map classes. The overall accuracy of the group representation of vegetation was 80.3%. In consultation with park staff , the team developed management map classes, consisting of park-defined groupings of base map classes intended to represent a balance between maintaining required accuracy and providing a focus on vegetation of particular interest or import to park managers. The 23 management map classes had an overall accuracy of 73.3%. While the main products of this project are the vegetation classification and the vegetation map database, a number of ancillary digital geographic information system and database products were also produced that can be used independently or to augment the main products. These products include shapefiles of the locations of field-collected data and relational databases of field-collected data.
Steel, Emily J; Gelderblom, Gert Jan; de Witte, Luc P
2012-02-01
People with disabilities are entitled to access assistive technology (AT) to facilitate their full and effective participation in society and may reasonably expect to be central to the decision-making processes of services that provide these technologies. European projects have improved the knowledge and resources available for AT service delivery in many countries, but the outputs are not consistently implemented or published in scientific literature. This article examines European developments in AT service delivery and the barriers to its effective provision. Specifically, it analyzes the role of the International Classification of Functioning, Disability, and Health in service delivery improvement. Published scientific papers, as well as reports from and descriptions of European projects related to AT service delivery, were reviewed. The publications were analyzed in relation to six criteria for AT service delivery described in an earlier, major European project. The findings and recommendations from the publications are synthesized in this article to identify advances and gaps in AT service delivery and to assess the current status and direction of AT service delivery improvement in Europe. Multicountry projects have brought together AT researchers from across Europe to work together and produced promising results that are contextually relevant. Access to AT information and training of practitioners has improved, and efforts are being made to facilitate user involvement. More effort should be put into integrating research and resources from European projects into practice. Use of the International Classification of Functioning, Disability, and Health model and terminology may support coordination of service delivery systems. The AT research and practice communities in Europe may be able to learn from developments in North America, while continuing to work together, sharing resources and strategies, and communicating results internationally.
An ensemble predictive modeling framework for breast cancer classification.
Nagarajan, Radhakrishnan; Upreti, Meenakshi
2017-12-01
Molecular changes often precede clinical presentation of diseases and can be useful surrogates with potential to assist in informed clinical decision making. Recent studies have demonstrated the usefulness of modeling approaches such as classification that can predict the clinical outcomes from molecular expression profiles. While useful, a majority of these approaches implicitly use all molecular markers as features in the classification process often resulting in sparse high-dimensional projection of the samples often comparable to that of the sample size. In this study, a variant of the recently proposed ensemble classification approach is used for predicting good and poor-prognosis breast cancer samples from their molecular expression profiles. In contrast to traditional single and ensemble classifiers, the proposed approach uses multiple base classifiers with varying feature sets obtained from two-dimensional projection of the samples in conjunction with a majority voting strategy for predicting the class labels. In contrast to our earlier implementation, base classifiers in the ensembles are chosen based on maximal sensitivity and minimal redundancy by choosing only those with low average cosine distance. The resulting ensemble sets are subsequently modeled as undirected graphs. Performance of four different classification algorithms is shown to be better within the proposed ensemble framework in contrast to using them as traditional single classifier systems. Significance of a subset of genes with high-degree centrality in the network abstractions across the poor-prognosis samples is also discussed. Copyright © 2017 Elsevier Inc. All rights reserved.
A conceptual weather-type classification procedure for the Philadelphia, Pennsylvania, area
McCabe, Gregory J.
1990-01-01
A simple method of weather-type classification, based on a conceptual model of pressure systems that pass through the Philadelphia, Pennsylvania, area, has been developed. The only inputs required for the procedure are daily mean wind direction and cloud cover, which are used to index the relative position of pressure systems and fronts to Philadelphia.Daily mean wind-direction and cloud-cover data recorded at Philadelphia, Pennsylvania, from January 1954 through August 1988 were used to categorize daily weather conditions. The conceptual weather types reflect changes in daily air and dew-point temperatures, and changes in monthly mean temperature and monthly and annual precipitation. The weather-type classification produced by using the conceptual model was similar to a classification produced by using a multivariate statistical classification procedure. Even though the conceptual weather types are derived from a small amount of data, they appear to account for the variability of daily weather patterns sufficiently to describe distinct weather conditions for use in environmental analyses of weather-sensitive processes.
Automotive System for Remote Surface Classification.
Bystrov, Aleksandr; Hoare, Edward; Tran, Thuy-Yung; Clarke, Nigel; Gashinova, Marina; Cherniakov, Mikhail
2017-04-01
In this paper we shall discuss a novel approach to road surface recognition, based on the analysis of backscattered microwave and ultrasonic signals. The novelty of our method is sonar and polarimetric radar data fusion, extraction of features for separate swathes of illuminated surface (segmentation), and using of multi-stage artificial neural network for surface classification. The developed system consists of 24 GHz radar and 40 kHz ultrasonic sensor. The features are extracted from backscattered signals and then the procedures of principal component analysis and supervised classification are applied to feature data. The special attention is paid to multi-stage artificial neural network which allows an overall increase in classification accuracy. The proposed technique was tested for recognition of a large number of real surfaces in different weather conditions with the average accuracy of correct classification of 95%. The obtained results thereby demonstrate that the use of proposed system architecture and statistical methods allow for reliable discrimination of various road surfaces in real conditions.
Automotive System for Remote Surface Classification
Bystrov, Aleksandr; Hoare, Edward; Tran, Thuy-Yung; Clarke, Nigel; Gashinova, Marina; Cherniakov, Mikhail
2017-01-01
In this paper we shall discuss a novel approach to road surface recognition, based on the analysis of backscattered microwave and ultrasonic signals. The novelty of our method is sonar and polarimetric radar data fusion, extraction of features for separate swathes of illuminated surface (segmentation), and using of multi-stage artificial neural network for surface classification. The developed system consists of 24 GHz radar and 40 kHz ultrasonic sensor. The features are extracted from backscattered signals and then the procedures of principal component analysis and supervised classification are applied to feature data. The special attention is paid to multi-stage artificial neural network which allows an overall increase in classification accuracy. The proposed technique was tested for recognition of a large number of real surfaces in different weather conditions with the average accuracy of correct classification of 95%. The obtained results thereby demonstrate that the use of proposed system architecture and statistical methods allow for reliable discrimination of various road surfaces in real conditions. PMID:28368297
Learning about the internal structure of categories through classification and feature inference.
Jee, Benjamin D; Wiley, Jennifer
2014-01-01
Previous research on category learning has found that classification tasks produce representations that are skewed toward diagnostic feature dimensions, whereas feature inference tasks lead to richer representations of within-category structure. Yet, prior studies often measure category knowledge through tasks that involve identifying only the typical features of a category. This neglects an important aspect of a category's internal structure: how typical and atypical features are distributed within a category. The present experiments tested the hypothesis that inference learning results in richer knowledge of internal category structure than classification learning. We introduced several new measures to probe learners' representations of within-category structure. Experiment 1 found that participants in the inference condition learned and used a wider range of feature dimensions than classification learners. Classification learners, however, were more sensitive to the presence of atypical features within categories. Experiment 2 provided converging evidence that classification learners were more likely to incorporate atypical features into their representations. Inference learners were less likely to encode atypical category features, even in a "partial inference" condition that focused learners' attention on the feature dimensions relevant to classification. Overall, these results are contrary to the hypothesis that inference learning produces superior knowledge of within-category structure. Although inference learning promoted representations that included a broad range of category-typical features, classification learning promoted greater sensitivity to the distribution of typical and atypical features within categories.
Image Processing and Computer Aided Diagnosis in Computed Tomography of the Breast
2007-03-01
TERMS breast imaging, breast CT, scatter compensation, denoising, CAD , Cone-beam CT 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...clinical projection images. The CAD tool based on signal known exactly (SKE) scenario is under development. Task 6: Test and compare the...performances of the CAD developed in Task 5 applied to processed projection data from Task 1 with the CAD performance on the projection data without Bayesian
Understanding Tumor Dormancy as a Means of Secondary Prevention
2015-10-14
CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT Unclassified b. ABSTRACT Unclassified c ...Nearest Person month worked: 10 calendar month Contribution to project: Elvin Wagenblast has left CSHL. His effort will be replaced by Simon Knott ...beginning October 15, 2015 Name: Simon Knott Project Role: Post Doc Nearest Person month worked: 0 Contribution to project: Simon will be
The IASLC Lung Cancer Staging Project: A Renewed Call to Participation.
Giroux, Dorothy J; Van Schil, Paul; Asamura, Hisao; Rami-Porta, Ramón; Chansky, Kari; Crowley, John J; Rusch, Valerie W; Kernstine, Kemp
2018-06-01
Over the past two decades, the International Association for the Study of Lung Cancer (IASLC) Staging Project has been a steady source of evidence-based recommendations for the TNM classification for lung cancer published by the Union for International Cancer Control and the American Joint Committee on Cancer. The Staging and Prognostic Factors Committee of the IASLC is now issuing a call for participation in the next phase of the project, which is designed to inform the ninth edition of the TNM classification for lung cancer. Following the case recruitment model for the eighth edition database, volunteer site participants are asked to submit data on patients whose lung cancer was diagnosed between January 1, 2011, and December 31, 2019, to the project by means of a secure, electronic data capture system provided by Cancer Research And Biostatistics in Seattle, Washington. Alternatively, participants may transfer existing data sets. The continued success of the IASLC Staging Project in achieving its objectives will depend on the extent of international participation, the degree to which cases are entered directly into the electronic data capture system, and how closely externally submitted cases conform to the data elements for the project. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
LANDSAT land cover analysis completed for CIRSS/San Bernardino County project
NASA Technical Reports Server (NTRS)
Likens, W.; Maw, K.; Sinnott, D. (Principal Investigator)
1982-01-01
The LANDSAT analysis carried out as part of Ames Research Center's San Bernardino County Project, one of four projects sponsored by NASA as part of the California Integrated Remote Sensing System (CIRSS) effort for generating and utilizing digital geographic data bases, is described. Topics explored include use of data-base modeling with spectral cluster data to improve LANDSAT data classification, and quantitative evaluation of several change techniques. Both 1976 and 1979 LANDSAT data were used in the project.
A Framework for Categorizing Important Project Variables
NASA Technical Reports Server (NTRS)
Parsons, Vickie S.
2003-01-01
While substantial research has led to theories concerning the variables that affect project success, no universal set of such variables has been acknowledged as the standard. The identification of a specific set of controllable variables is needed to minimize project failure. Much has been hypothesized about the need to match project controls and management processes to individual projects in order to increase the chance for success. However, an accepted taxonomy for facilitating this matching process does not exist. This paper surveyed existing literature on classification of project variables. After an analysis of those proposals, a simplified categorization is offered to encourage further research.
NASA Astrophysics Data System (ADS)
Hong, Liang
2013-10-01
The availability of high spatial resolution remote sensing data provides new opportunities for urban land-cover classification. More geometric details can be observed in the high resolution remote sensing image, Also Ground objects in the high resolution remote sensing image have displayed rich texture, structure, shape and hierarchical semantic characters. More landscape elements are represented by a small group of pixels. Recently years, the an object-based remote sensing analysis methodology is widely accepted and applied in high resolution remote sensing image processing. The classification method based on Geo-ontology and conditional random fields is presented in this paper. The proposed method is made up of four blocks: (1) the hierarchical ground objects semantic framework is constructed based on geoontology; (2) segmentation by mean-shift algorithm, which image objects are generated. And the mean-shift method is to get boundary preserved and spectrally homogeneous over-segmentation regions ;(3) the relations between the hierarchical ground objects semantic and over-segmentation regions are defined based on conditional random fields framework ;(4) the hierarchical classification results are obtained based on geo-ontology and conditional random fields. Finally, high-resolution remote sensed image data -GeoEye, is used to testify the performance of the presented method. And the experimental results have shown the superiority of this method to the eCognition method both on the effectively and accuracy, which implies it is suitable for the classification of high resolution remote sensing image.
Jordan, Alan; Rees, Tony; Gowlett-Holmes, Karen
2015-01-01
Imagery collected by still and video cameras is an increasingly important tool for minimal impact, repeatable observations in the marine environment. Data generated from imagery includes identification, annotation and quantification of biological subjects and environmental features within an image. To be long-lived and useful beyond their project-specific initial purpose, and to maximize their utility across studies and disciplines, marine imagery data should use a standardised vocabulary of defined terms. This would enable the compilation of regional, national and/or global data sets from multiple sources, contributing to broad-scale management studies and development of automated annotation algorithms. The classification scheme developed under the Collaborative and Automated Tools for Analysis of Marine Imagery (CATAMI) project provides such a vocabulary. The CATAMI classification scheme introduces Australian-wide acknowledged, standardised terminology for annotating benthic substrates and biota in marine imagery. It combines coarse-level taxonomy and morphology, and is a flexible, hierarchical classification that bridges the gap between habitat/biotope characterisation and taxonomy, acknowledging limitations when describing biological taxa through imagery. It is fully described, documented, and maintained through curated online databases, and can be applied across benthic image collection methods, annotation platforms and scoring methods. Following release in 2013, the CATAMI classification scheme was taken up by a wide variety of users, including government, academia and industry. This rapid acceptance highlights the scheme’s utility and the potential to facilitate broad-scale multidisciplinary studies of marine ecosystems when applied globally. Here we present the CATAMI classification scheme, describe its conception and features, and discuss its utility and the opportunities as well as challenges arising from its use. PMID:26509918
NASA Technical Reports Server (NTRS)
Kocurek, Michael J.
2005-01-01
The HARVIST project seeks to automatically provide an accurate, interactive interface to predict crop yield over the entire United States. In order to accomplish this goal, large images must be quickly and automatically classified by crop type. Current trained and untrained classification algorithms, while accurate, are highly inefficient when operating on large datasets. This project sought to develop new variants of two standard trained and untrained classification algorithms that are optimized to take advantage of the spatial nature of image data. The first algorithm, harvist-cluster, utilizes divide-and-conquer techniques to precluster an image in the hopes of increasing overall clustering speed. The second algorithm, harvistSVM, utilizes support vector machines (SVMs), a type of trained classifier. It seeks to increase classification speed by applying a "meta-SVM" to a quick (but inaccurate) SVM to approximate a slower, yet more accurate, SVM. Speedups were achieved by tuning the algorithm to quickly identify when the quick SVM was incorrect, and then reclassifying low-confidence pixels as necessary. Comparing the classification speeds of both algorithms to known baselines showed a slight speedup for large values of k (the number of clusters) for harvist-cluster, and a significant speedup for harvistSVM. Future work aims to automate the parameter tuning process required for harvistSVM, and further improve classification accuracy and speed. Additionally, this research will move documents created in Canvas into ArcGIS. The launch of the Mars Reconnaissance Orbiter (MRO) will provide a wealth of image data such as global maps of Martian weather and high resolution global images of Mars. The ability to store this new data in a georeferenced format will support future Mars missions by providing data for landing site selection and the search for water on Mars.
Improving the Selection, Classification, and Utilization of Army Enlisted Personnel. Project A
1987-06-01
performance measures, to determine whether the new predictors have incremental validity over and above the present system. These two components must be...critical aspect of this task is the demonstration of the incremental validity added by new predictors. Task 3. Measurement of School/Training Success...chances of incremental validity and classification efficiency. 3. Retain measures with adequate reliability. Using all accumulated information, the final
2013-09-01
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington...of MASTER OF SCIENCE IN HUMAN SYSTEMS INTEGRATION from the NAVAL POSTGRADUATE SCHOOL September 2013 Author: Jason Bilbro...22 Figure 9. Training slide example with speaker notes ......................................... 31
2015-09-30
together the research community working on marine mammal acoustics to discuss detection, classification, localization and density estimation methods...and Density Estimation of Marine Mammals Using Passive Acoustics - 2015 John A. Hildebrand Scripps Institution of Oceanography UCSD La Jolla...dclde LONG-TERM GOALS The goal of this project was to bring together the community of researchers working on methods for detection
The Human Skeletal Muscle Proteome Project: a reappraisal of the current literature
Gonzalez‐Freire, Marta; Semba, Richard D.; Ubaida‐Mohien, Ceereena; Fabbri, Elisa; Scalzo, Paul; Højlund, Kurt; Dufresne, Craig; Lyashkov, Alexey
2016-01-01
Abstract Skeletal muscle is a large organ that accounts for up to half the total mass of the human body. A progressive decline in muscle mass and strength occurs with ageing and in some individuals configures the syndrome of ‘sarcopenia’, a condition that impairs mobility, challenges autonomy, and is a risk factor for mortality. The mechanisms leading to sarcopenia as well as myopathies are still little understood. The Human Skeletal Muscle Proteome Project was initiated with the aim to characterize muscle proteins and how they change with ageing and disease. We conducted an extensive review of the literature and analysed publically available protein databases. A systematic search of peer‐reviewed studies was performed using PubMed. Search terms included ‘human’, ‘skeletal muscle’, ‘proteome’, ‘proteomic(s)’, and ‘mass spectrometry’, ‘liquid chromatography‐mass spectrometry (LC‐MS/MS)’. A catalogue of 5431 non‐redundant muscle proteins identified by mass spectrometry‐based proteomics from 38 peer‐reviewed scientific publications from 2002 to November 2015 was created. We also developed a nosology system for the classification of muscle proteins based on localization and function. Such inventory of proteins should serve as a useful background reference for future research on changes in muscle proteome assessed by quantitative mass spectrometry‐based proteomic approaches that occur with ageing and diseases. This classification and compilation of the human skeletal muscle proteome can be used for the identification and quantification of proteins in skeletal muscle to discover new mechanisms for sarcopenia and specific muscle diseases that can be targeted for the prevention and treatment. PMID:27897395
Mäenpää, Helena; Autti-Rämö, Ilona; Varho, Tarja; Forsten, Wivi; Haataja, Leena
2017-03-01
To develop a national consensus on outcome measures that define functional ability in children with cerebral palsy (CP) according to the International Classification of Functioning, Disability and Health (ICF) framework. The project started in 2008 in neuropaediatric units of two university hospitals and one outpatient clinic. Each professional group selected representatives to be knowledge brokers for their own specialty. Based on the evidence, expert opinion, and the ICF framework, multiprofessional teams selected the most valid measures used in clinical practice (2009-2010). Data from 269 children with CP were analysed, classified by the Gross Motor Function Classification System, Manual Ability Classification System, and Communication Function Classification System, and evaluated. The process aimed at improving and unifying clinical practice in Finland through a national consensus on the core set of measures. The selected measures were presented by professional groups, and consensus was reached on the recommended core set of measures to be used in all hospitals treating children with CP in Finland. A national consensus on relevant and feasible measures is essential for identifying differences in the effectiveness of local practices, and for conducting multisite intervention studies. This project showed that multiprofessional rehabilitation practices can be improved through respect for and inclusion of everyone involved. © 2016 Mac Keith Press.
Methods and potentials for using satellite image classification in school lessons
NASA Astrophysics Data System (ADS)
Voss, Kerstin; Goetzke, Roland; Hodam, Henryk
2011-11-01
The FIS project - FIS stands for Fernerkundung in Schulen (Remote Sensing in Schools) - aims at a better integration of the topic "satellite remote sensing" in school lessons. According to this, the overarching objective is to teach pupils basic knowledge and fields of application of remote sensing. Despite the growing significance of digital geomedia, the topic "remote sensing" is not broadly supported in schools. Often, the topic is reduced to a short reflection on satellite images and used only for additional illustration of issues relevant for the curriculum. Without addressing the issue of image data, this can hardly contribute to the improvement of the pupils' methodical competences. Because remote sensing covers more than simple, visual interpretation of satellite images, it is necessary to integrate remote sensing methods like preprocessing, classification and change detection. Dealing with these topics often fails because of confusing background information and the lack of easy-to-use software. Based on these insights, the FIS project created different simple analysis tools for remote sensing in school lessons, which enable teachers as well as pupils to be introduced to the topic in a structured way. This functionality as well as the fields of application of these analysis tools will be presented in detail with the help of three different classification tools for satellite image classification.
Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation
NASA Technical Reports Server (NTRS)
Rouse, J. W., Jr. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Emphasis has been given to an inventory of land resource types and land use at the ten Great Plains Corridor test sites. A resource and land use classification system was developed which uses available soil survey information and interpretations from NASA obtained high flight aerial photography to locate discrete areas of similar rangeland vegetation. Existing classification systems, even those developed for use with remote sensor data, were found to be inadequate for this project. This system is expected to be of general use for remote sensing related to land use and management. It has specific applicability to any effort aimed at regional use of ERTS-1 MSS digital data products. A preliminary assessment of the relative importance of rangelands in the Great Plains Corridor states indicates that the value of the livestock industry supported by this resource exceeds 23 billion dollars. The development of a Rangeland Feed Conditions index for this region could be used by more than 400,000 farm and ranch operators involved in the production of more than 40% of the nation's beef and much of the country's grain.
Gordijn, Sanne J; Korteweg, Fleurisca J; Erwich, Jan Jaap H M; Holm, Jozien P; van Diem, Mariet Th; Bergman, Klasien A; Timmer, Albertus
2009-06-01
Many classification systems for perinatal mortality are available, all with their own strengths and weaknesses: none of them has been universally accepted. We present a systematic multilayered approach for the analysis of perinatal mortality based on information related to the moment of death, the conditions associated with death and the underlying cause of death, using a combination of representatives of existing classification systems. We compared the existing classification systems regarding their definition of the perinatal period, level of complexity, inclusion of maternal, foetal and/or placental factors and whether they focus at a clinical or pathological viewpoint. Furthermore, we allocated the classification systems to one of three categories: 'when', 'what' or 'why', dependent on whether the allocation of the individual cases of perinatal mortality is based on the moment of death ('when'), the clinical conditions associated with death ('what'), or the underlying cause of death ('why'). A multilayered approach for the analysis and classification of perinatal mortality is possible by using combinations of existing systems; for example the Wigglesworth or Nordic Baltic ('when'), ReCoDe ('what') and Tulip ('why') classification systems. This approach is useful not only for in depth analysis of perinatal mortality in the developed world but also for analysis of perinatal mortality in the developing countries, where resources to investigate death are often limited.
Working Smart: The Los Angeles Workplace Literacy Project. Final Report.
ERIC Educational Resources Information Center
Los Angeles Unified School District, CA. Div. of Adult and Occupational Education.
The Working Smart workplace literacy project was sponsored by a public school district and several profit and nonprofit companies and conducted for the hotel and food industry in the Los Angeles area. Literacy instruction was merged with job requirements of the customer service job classifications. Videodisc courseware was developed, as were…
Proceedings of the 14th Annual Software Engineering Workshop
NASA Technical Reports Server (NTRS)
1989-01-01
Several software related topics are presented. Topics covered include studies and experiment at the Software Engineering Laboratory at the Goddard Space Flight Center, predicting project success from the Software Project Management Process, software environments, testing in a reuse environment, domain directed reuse, and classification tree analysis using the Amadeus measurement and empirical analysis.
1985-11-01
Public Utilities Regulatory Policies Act ( PURPA ) criteria for classification as a "Qualifying Facility" (QF). 11. Visual effect of intermittent...the public utility of electric power produced by the cogenerator. The operating standard of PURPA requires that a new QF must produce at least 5% of
Riparian and wetland plant community types of the Shoshone National Forest
Gillian Walford; George Jones; Walt Fertig; Sabine Mellman-Brown; Kent E. Houston
2001-01-01
This classification of riparian and wetland plant communities in the Shoshone National Forest was a cooperative project between the Wyoming Natural Diversity Database (WYNDD) of The Nature Conservancy and the Shoshone National Forest. This project identifies groups of plant species that commonly occur together in particular environmental settings. Each such group of...
Ethnic Heritage and Language Schools in America. Studies in American Folklife, No. 4.
ERIC Educational Resources Information Center
Bradunas, Elena; Topping, Brett, Ed.
This book reports the findings of the Ethnic Heritage and Language Schools Project undertaken by the American Folklife Center in 1982. Twenty-one researchers used participant observation to study ethnic schools in different parts of the United States. The project studied schools that correspond to Fishman's classification of ethnic education…
Understanding Molecular-Ion Neutral Atom Collisions for the Production of Ultracold Molecular Ions
2014-02-03
SECURITY CLASSIFICATION OF: This project was superseded and replaced by another ARO-funded project of the same name, which is still continuing. The goal...cooled atoms," IOTA -COST Workshop on molecular ions, Arosa, Switzerland. 5. E.R. Hudson, "Sympathetic cooling of molecules with laser cooled
The research from this REMAP project produced results that demonstrate various stages of an assessment strategy and produced tools including an inventory classification, field methods and multimetric biotic indices that are now available for use by environmental resource managers...
Mapping lava flow textures using three-dimensional measures of surface roughness
NASA Astrophysics Data System (ADS)
Mallonee, H. C.; Kobs-Nawotniak, S. E.; McGregor, M.; Hughes, S. S.; Neish, C.; Downs, M.; Delparte, D.; Lim, D. S. S.; Heldmann, J. L.
2016-12-01
Lava flow emplacement conditions are reflected in the surface textures of a lava flow; unravelling these conditions is crucial to understanding the eruptive history and characteristics of basaltic volcanoes. Mapping lava flow textures using visual imagery alone is an inherently subjective process, as these images generally lack the resolution needed to make these determinations. Our team has begun mapping lava flow textures using visual spectrum imagery, which is an inherently subjective process involving the challenge of identifying transitional textures such as rubbly and slabby pāhoehoe, as these textures are similar in appearance and defined qualitatively. This is particularly problematic for interpreting planetary lava flow textures, where we have more limited data. We present a tool to objectively classify lava flow textures based on quantitative measures of roughness, including the 2D Hurst exponent, RMS height, and 2D:3D surface area ratio. We collected aerial images at Craters of the Moon National Monument (COTM) using Unmanned Aerial Vehicles (UAVs) in 2015 and 2016 as part of the FINESSE (Field Investigations to Enable Solar System Science and Exploration) and BASALT (Biologic Analog Science Associated with Lava Terrains) research projects. The aerial images were stitched together to create Digital Terrain Models (DTMs) with resolutions on the order of centimeters. The DTMs were evaluated by the classification tool described above, with output compared against field assessment of the texture. Further, the DTMs were downsampled and reevaluated to assess the efficacy of the classification tool at data resolutions similar to current datasets from other planetary bodies. This tool allows objective classification of lava flow texture, which enables more accurate interpretations of flow characteristics. This work also gives context for interpretations of flows with comparatively low data resolutions, such as those on the Moon and Mars. Textural maps based on quantitative measures of roughness are a valuable asset for studies of lava flows on Earth and other planetary bodies.
St Sauver, Jennifer L; Warner, David O; Yawn, Barbara P; Jacobson, Debra J; McGree, Michaela E; Pankratz, Joshua J; Melton, L Joseph; Roger, Véronique L; Ebbert, Jon O; Rocca, Walter A
2013-01-01
To describe the prevalence of nonacute conditions among patients seeking health care in a defined US population, emphasizing age, sex, and ethnic differences. The Rochester Epidemiology Project (REP) medical records linkage system was used to identify all residents of Olmsted County, Minnesota, on April 1, 2009, who had consented to review of their medical records for research (142,377 patients). We then electronically extracted all International Classification of Diseases, Ninth Revision codes noted in the records of these patients by any health care institution between January 1, 2005, and December 31, 2009. We grouped International Classification of Diseases, Ninth Revision codes into clinical classification codes and then into 47 broader disease groups associated with health-related quality of life. Age- and sex-specific prevalence was estimated by dividing the number of individuals within each group by the corresponding age- and sex-specific population. Patients within a group who had multiple codes were counted only once. We included a total of 142,377 patients, 75,512 (53%) of whom were female. Skin disorders (42.7%), osteoarthritis and joint disorders (33.6%), back problems (23.9%), disorders of lipid metabolism (22.4%), and upper respiratory tract disease (22.1%, excluding asthma) were the most prevalent disease groups in this population. Ten of the 15 most prevalent disease groups were more common in women in almost all age groups, whereas disorders of lipid metabolism, hypertension, and diabetes were more common in men. Additionally, the prevalence of 7 of the 10 most common groups increased with advancing age. Prevalence also varied across ethnic groups (whites, blacks, and Asians). Our findings suggest areas for focused research that may lead to better health care delivery and improved population health. Copyright © 2013 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
An Optimization-based Framework to Learn Conditional Random Fields for Multi-label Classification
Naeini, Mahdi Pakdaman; Batal, Iyad; Liu, Zitao; Hong, CharmGil; Hauskrecht, Milos
2015-01-01
This paper studies multi-label classification problem in which data instances are associated with multiple, possibly high-dimensional, label vectors. This problem is especially challenging when labels are dependent and one cannot decompose the problem into a set of independent classification problems. To address the problem and properly represent label dependencies we propose and study a pairwise conditional random Field (CRF) model. We develop a new approach for learning the structure and parameters of the CRF from data. The approach maximizes the pseudo likelihood of observed labels and relies on the fast proximal gradient descend for learning the structure and limited memory BFGS for learning the parameters of the model. Empirical results on several datasets show that our approach outperforms several multi-label classification baselines, including recently published state-of-the-art methods. PMID:25927015
NASA Astrophysics Data System (ADS)
Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor
2015-09-01
Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.
Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor
2015-09-01
Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.
Implementation of standardized nomenclature in the electronic medical record.
Klehr, Joan; Hafner, Jennifer; Spelz, Leah Mylrea; Steen, Sara; Weaver, Kathy
2009-01-01
To describe a customized electronic medical record documentation system which provides an electronic health record, Epic, which was implemented in December 2006 using standardized taxonomies for nursing documentation. Descriptive data is provided regarding the development, implementation, and evaluation processes for the electronic medical record system. Nurses used standardized nursing nomenclature including NANDA-I diagnoses, Nursing Interventions Classification, and Nursing Outcomes Classification in a measurable and user-friendly format using the care plan activity. Key factors in the success of the project included close collaboration among staff nurses and information technology staff, ongoing support and encouragement from the vice president/chief nursing officer, the ready availability of expert resources, and nursing ownership of the project. Use of this evidence-based documentation enhanced institutional leadership in clinical documentation.
An overview of cancer research in South African academic and research institutions, 2013 - 2014.
Moodley, Jennifer; Stefan, D Cristina; Sewram, Vikash; Ruff, Paul; Freeman, Melvyn; Asante-Shongwe, Kwanele
2016-05-10
Cancer is emerging as a critical public health problem in South Africa (SA). Recognising the importance of research in addressing the cancer burden, the Ministerial Advisory Committee on the Prevention and Control of Cancer (MACC) research working group undertook a review of the current cancer research landscape in SA and related this to the cancer burden. Academic and research institutions in SA were contacted to provide information on the titles of all current and recently completed (2013/2014) cancer research projects. Three MACC research working group members used the project titles to independently classify the projects by type of research (basic, clinical and public health - projects could be classified in more than one category) and disease site. A more detailed classification of projects addressing the five most common cancers diagnosed in males and females in SA was conducted using an adapted Common Scientific Outline (CSO) categorisation. Information was available on 556 cancer research projects. Overall, 301 projects were classified as clinical, 254 as basic science and 71 as public health research. The most common cancers being researched were cancers of the breast (n=95 projects) and cervix (n=43), leukaemia (n=36), non-Hodgkin's lymphoma (n=35) and lung cancer (n=23). Classification of the five most common cancers in males and females in SA, using the adapted CSO categories, showed that the majority of projects related to treatment, with relatively few projects on prevention, survivorship and patient perspectives. Our findings established that there is a dearth of public health cancer research in SA.
NASA Astrophysics Data System (ADS)
Ahmed, H. O. A.; Wong, M. L. D.; Nandi, A. K.
2018-01-01
Condition classification of rolling element bearings in rotating machines is important to prevent the breakdown of industrial machinery. A considerable amount of literature has been published on bearing faults classification. These studies aim to determine automatically the current status of a roller element bearing. Of these studies, methods based on compressed sensing (CS) have received some attention recently due to their ability to allow one to sample below the Nyquist sampling rate. This technology has many possible uses in machine condition monitoring and has been investigated as a possible approach for fault detection and classification in the compressed domain, i.e., without reconstructing the original signal. However, previous CS based methods have been found to be too weak for highly compressed data. The present paper explores computationally, for the first time, the effects of sparse autoencoder based over-complete sparse representations on the classification performance of highly compressed measurements of bearing vibration signals. For this study, the CS method was used to produce highly compressed measurements of the original bearing dataset. Then, an effective deep neural network (DNN) with unsupervised feature learning algorithm based on sparse autoencoder is used for learning over-complete sparse representations of these compressed datasets. Finally, the fault classification is achieved using two stages, namely, pre-training classification based on stacked autoencoder and softmax regression layer form the deep net stage (the first stage), and re-training classification based on backpropagation (BP) algorithm forms the fine-tuning stage (the second stage). The experimental results show that the proposed method is able to achieve high levels of accuracy even with extremely compressed measurements compared with the existing techniques.
Classification of movement disorders.
Fahn, Stanley
2011-05-01
The classification of movement disorders has evolved. Even the terminology has shifted, from an anatomical one of extrapyramidal disorders to a phenomenological one of movement disorders. The history of how this shift came about is described. The history of both the definitions and the classifications of the various neurologic conditions is then reviewed. First is a review of movement disorders as a group; then, the evolving classifications for 3 of them--parkinsonism, dystonia, and tremor--are covered in detail. Copyright © 2011 Movement Disorder Society.
A practical classification of untoward drug effects.
Gysling, E.; Heisler, S.
1975-01-01
All drug effects can be explained as results of complex interactions between the drug, the patient and his condition, and additional extrinsic factors. On the basis of these three "determinants", a practical classification of untoward drug effects (UDE) is suggested. UDE lists using this classification would fulfill the physician's informational needs better than the material with which he is presently provided. PMID:1148971
Classification by Using Multispectral Point Cloud Data
NASA Astrophysics Data System (ADS)
Liao, C. T.; Huang, H. H.
2012-07-01
Remote sensing images are generally recorded in two-dimensional format containing multispectral information. Also, the semantic information is clearly visualized, which ground features can be better recognized and classified via supervised or unsupervised classification methods easily. Nevertheless, the shortcomings of multispectral images are highly depending on light conditions, and classification results lack of three-dimensional semantic information. On the other hand, LiDAR has become a main technology for acquiring high accuracy point cloud data. The advantages of LiDAR are high data acquisition rate, independent of light conditions and can directly produce three-dimensional coordinates. However, comparing with multispectral images, the disadvantage is multispectral information shortage, which remains a challenge in ground feature classification through massive point cloud data. Consequently, by combining the advantages of both LiDAR and multispectral images, point cloud data with three-dimensional coordinates and multispectral information can produce a integrate solution for point cloud classification. Therefore, this research acquires visible light and near infrared images, via close range photogrammetry, by matching images automatically through free online service for multispectral point cloud generation. Then, one can use three-dimensional affine coordinate transformation to compare the data increment. At last, the given threshold of height and color information is set as threshold in classification.
Galaxy Zoo: quantitative visual morphological classifications for 48 000 galaxies from CANDELS
NASA Astrophysics Data System (ADS)
Simmons, B. D.; Lintott, Chris; Willett, Kyle W.; Masters, Karen L.; Kartaltepe, Jeyhan S.; Häußler, Boris; Kaviraj, Sugata; Krawczyk, Coleman; Kruk, S. J.; McIntosh, Daniel H.; Smethurst, R. J.; Nichol, Robert C.; Scarlata, Claudia; Schawinski, Kevin; Conselice, Christopher J.; Almaini, Omar; Ferguson, Henry C.; Fortson, Lucy; Hartley, William; Kocevski, Dale; Koekemoer, Anton M.; Mortlock, Alice; Newman, Jeffrey A.; Bamford, Steven P.; Grogin, N. A.; Lucas, Ray A.; Hathi, Nimish P.; McGrath, Elizabeth; Peth, Michael; Pforr, Janine; Rizer, Zachary; Wuyts, Stijn; Barro, Guillermo; Bell, Eric F.; Castellano, Marco; Dahlen, Tomas; Dekel, Avishai; Ownsworth, Jamie; Faber, Sandra M.; Finkelstein, Steven L.; Fontana, Adriano; Galametz, Audrey; Grützbauch, Ruth; Koo, David; Lotz, Jennifer; Mobasher, Bahram; Mozena, Mark; Salvato, Mara; Wiklind, Tommy
2017-02-01
We present quantified visual morphologies of approximately 48 000 galaxies observed in three Hubble Space Telescope legacy fields by the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and classified by participants in the Galaxy Zoo project. 90 per cent of galaxies have z ≤ 3 and are observed in rest-frame optical wavelengths by CANDELS. Each galaxy received an average of 40 independent classifications, which we combine into detailed morphological information on galaxy features such as clumpiness, bar instabilities, spiral structure, and merger and tidal signatures. We apply a consensus-based classifier weighting method that preserves classifier independence while effectively down-weighting significantly outlying classifications. After analysing the effect of varying image depth on reported classifications, we also provide depth-corrected classifications which both preserve the information in the deepest observations and also enable the use of classifications at comparable depths across the full survey. Comparing the Galaxy Zoo classifications to previous classifications of the same galaxies shows very good agreement; for some applications, the high number of independent classifications provided by Galaxy Zoo provides an advantage in selecting galaxies with a particular morphological profile, while in others the combination of Galaxy Zoo with other classifications is a more promising approach than using any one method alone. We combine the Galaxy Zoo classifications of `smooth' galaxies with parametric morphologies to select a sample of featureless discs at 1 ≤ z ≤ 3, which may represent a dynamically warmer progenitor population to the settled disc galaxies seen at later epochs.
Prevalence of Primary Sjögren's Syndrome in a US Population-Based Cohort.
Maciel, Gabriel; Crowson, Cynthia S; Matteson, Eric L; Cornec, Divi
2017-10-01
To report the point prevalence of primary Sjögren's syndrome (SS) in the first US population-based study. Cases of all potential primary SS patients living in Olmsted County, Minnesota, on January 1, 2015, were retrieved using Rochester Epidemiology Project resources, and ascertained by manual medical records review. Primary SS cases were defined according to physician diagnosis. The use of diagnostic tests was assessed and the performance of classification criteria was evaluated. The number of prevalent cases in 2015 was also projected based on 1976-2005 incidence data from the same source population. A total of 106 patients with primary SS were included in the study: 86% were female, with a mean ± SD age of 64.6 ± 15.2 years, and a mean ± SD disease duration of 10.5 ± 8.4 years. A majority were anti-SSA positive (75%) and/or anti-SSB positive (58%), but only 22% met American-European Consensus Group or American College of Rheumatology criteria, because the other tests required for disease classification (ocular dryness objective assessment, salivary gland functional or morphologic tests, or salivary gland biopsy) were rarely performed in clinical practice. According to the physician diagnosis, the age- and sex-adjusted prevalence of primary SS was 10.3 per 10,000 inhabitants, but according to classification criteria, this prevalence was only 2.2 per 10,000. The analysis based on previous incidence data projected a similar 2015 prevalence rate of 11.0 per 10,000. The prevalence of primary SS in this geographically well-defined population was estimated to be between 2 and 10 per 10,000 inhabitants. Physicians rarely used tests included in the classification criteria to diagnose the disease in this community setting. © 2016, American College of Rheumatology.
Liston, Adam D; De Munck, Jan C; Hamandi, Khalid; Laufs, Helmut; Ossenblok, Pauly; Duncan, John S; Lemieux, Louis
2006-07-01
Simultaneous acquisition of EEG and fMRI data enables the investigation of the hemodynamic correlates of interictal epileptiform discharges (IEDs) during the resting state in patients with epilepsy. This paper addresses two issues: (1) the semi-automation of IED classification in statistical modelling for fMRI analysis and (2) the improvement of IED detection to increase experimental fMRI efficiency. For patients with multiple IED generators, sensitivity to IED-correlated BOLD signal changes can be improved when the fMRI analysis model distinguishes between IEDs of differing morphology and field. In an attempt to reduce the subjectivity of visual IED classification, we implemented a semi-automated system, based on the spatio-temporal clustering of EEG events. We illustrate the technique's usefulness using EEG-fMRI data from a subject with focal epilepsy in whom 202 IEDs were visually identified and then clustered semi-automatically into four clusters. Each cluster of IEDs was modelled separately for the purpose of fMRI analysis. This revealed IED-correlated BOLD activations in distinct regions corresponding to three different IED categories. In a second step, Signal Space Projection (SSP) was used to project the scalp EEG onto the dipoles corresponding to each IED cluster. This resulted in 123 previously unrecognised IEDs, the inclusion of which, in the General Linear Model (GLM), increased the experimental efficiency as reflected by significant BOLD activations. We have also shown that the detection of extra IEDs is robust in the face of fluctuations in the set of visually detected IEDs. We conclude that automated IED classification can result in more objective fMRI models of IEDs and significantly increased sensitivity.
Novel Therapy for Bone Regeneration in Large Segmental Defects
2017-12-01
HC, Giannoudis PV. Fat embolism and IM nailing. Injury. 2006;37(Suppl 4):S1–2. 38. Wenda K, Ritter G, Degreif J, Rudigier J. Pathogenesis of pul...morphogenetic protein (BMP), thrombopoietin (TPO), therapy, fracture healing, bone regeneration, minipig, pig 16. SECURITY CLASSIFICATION OF: 17... fracture healing, bone regeneration, minipig, pig 3. OVERALL PROJECT SUMMARY: Project start date 30/09/2013 Project end date 29/09/2017 (with 1 year NCE
Globalization and WMD Proliferation Networks: The Policy Landscape
2006-07-01
scientific advances, it moved to shut down this network by classifying all information relating to the Manhattan Project . This security action had only...As with the U.S. efforts during World War II to deny access to Manhattan Project Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...the scientific discoveries paving the way for the atomic bomb, as well as of the U.S. government’s subsequent classification of Manhattan Project information
Through thick and thin: quantitative classification of photometric observing conditions on Paranal
NASA Astrophysics Data System (ADS)
Kerber, Florian; Querel, Richard R.; Neureiter, Bianca; Hanuschik, Reinhard
2016-07-01
A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer is used to monitor sky conditions over ESO's Paranal observatory. It provides measurements of precipitable water vapour (PWV) at 183 GHz, which are being used in Service Mode for scheduling observations that can take advantage of favourable conditions for infrared (IR) observations. The instrument also contains an IR camera measuring sky brightness temperature at 10.5 μm. It is capable of detecting cold and thin, even sub-visual, cirrus clouds. We present a diagnostic diagram that, based on a sophisticated time series analysis of these IR sky brightness data, allows for the automatic and quantitative classification of photometric observing conditions over Paranal. The method is highly sensitive to the presence of even very thin clouds but robust against other causes of sky brightness variations. The diagram has been validated across the complete range of conditions that occur over Paranal and we find that the automated process provides correct classification at the 95% level. We plan to develop our method into an operational tool for routine use in support of ESO Science Operations.
1989-01-01
FEB 2 2 1990 Stephen Walter Andrews, D.M.D. The University of North Carolina at Chapel Hill Department of Orthodontics School of Dentistry 1989 Robert...PROJECT TASK WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO. 11. TITLE (Include Security Classification) (UNCLASSIFIED) SURFACE MODIFICATION OF ORTHODONTIC ...Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE AFIT/CI "OVERPRINT" SURFACE MODIFICATION OF ORTHODONTIC BRACKET MODELS VIA ION
1994-02-01
Wijting , 1976). However, missing critical job elements may lead the J-coefficient to underestimate validity (Mossholder & Arvey, 1984), and variation...should be able to approximate the validity estimates derived empirically. Research on the J-Coefficient (Dickinson & Wijting , 1976) and the SYNVAL project...Measur.ment 8, 71-82. Dickinson, T. L, & Wijting , J. P. Q976). Poiiyvcapturingasaprocedute for synLthetic vraidation. Paper preented at the meeting of the
1991-08-01
being used in both current and long-range research programs that are expected to make the Army more effective in matching the requirements for first- and... make substantial improvements to the existing selection and classifi- cation system. xi IMPROVING THE SELECTION, CLASSIFICATION, AND UTILIZATION OF...basis for new methods of allocating personnel, and making near-real-time decisions on the best match between characteristics of an individual enlistee
International Classification for Nursing Practice (ICNP)
Warren, Judith J.; Coenen, Amy
1998-01-01
The International Classification for Nursing Practice (ICNP) is a collaborative project under the auspices of the International Council of Nurses. The alpha version ia available online for comment in preparation for the release of the beta version in 1999. The authors answer the most-frequently asked questions about the ICNP and encourage nurses in the United States to participate in the revision by sending comments and suggestions to the American Nurses Association. PMID:9670130
Predicting Tillage Patterns in the Tiffin River Watershed Using Remote Sensing Methods
NASA Astrophysics Data System (ADS)
Brooks, C.; McCarty, J. L.; Dean, D. B.; Mann, B. F.
2012-12-01
Previous research in tillage mapping has focused primarily on utilizing low to no-cost, moderate (30 m to 15 m) resolution satellite data. Successful data processing techniques published in the scientific literature have focused on extracting and/or classifying tillage patterns through manipulation of spectral bands. For instance, Daughtry et al. (2005) evaluated several spectral indices for crop residue cover using satellite multispectral and hyperspectral data and to categorize soil tillage intensity in agricultural fields. A weak to moderate relationship between Landsat Thematic Mapper (TM) indices and crop residue cover was found; similar results were reported in Minnesota. Building on the findings from the scientific literature and previous work done by MTRI in the heavily agricultural Tiffin watershed of northwest Ohio and southeast Michigan, a decision tree classifier approach (also referred to as a classification tree) was used, linking several satellite data to on-the-ground tillage information in order to boost classification results. This approach included five tillage indices and derived products. A decision tree methodology enabled the development of statistically optimized (i.e., minimizing misclassification rates) classification algorithms at various desired time steps: monthly, seasonally, and annual over the 2006-2010 time period. Due to their flexibility, processing speed, and availability within all major remote sensing and statistical software packages, decision trees can ingest several data inputs from multiple sensors and satellite products, selecting only the bands, band ratios, indices, and products that further reduce misclassification errors. The project team created crop-specific tillage pattern classification trees whereby a training data set (~ 50% of available ground data) was created for production of the actual decision tree and a validation data set was set aside (~ 50% of available ground data) in order to assess the accuracy of the classification. A seasonal time step was used, optimizing a decision tree based on seasonal ground data for tillage patterns and satellite data and products for years 2006 through 2010. Annual crop type maps derived by the project team and the USDA Cropland Data Layer project was used an input to understand locations of corn, soybeans, wheat, etc. on a yearly basis. As previously stated, the robustness of the decision tree approach is the ability to implement various satellite data and products across temporal, spectral, and spatial resolutions, thereby improving the resulting classification and providing a reliable method that is not sensor-dependent. Tillage pattern classification from satellite imagery is not a simple task and has proven a challenge to previous researchers investigating this remote sensing topic. The team's decision tree method produced a practical, usable output within a focused project time period. Daughtry, C.S.T., Hunt Jr., E.R., Doraiswamy, P.C., McMurtrey III, J.E. 2005. Remote sensing the spatial distribution of crop residues. Agron. J. 97, 864-871.
NASA Astrophysics Data System (ADS)
Trigunasih, N. M.; Lanya, I.; Subadiyasa, N. N.; Hutauruk, J.
2018-02-01
Increasing number and activity of the population to meet the needs of their lives greatly affect the utilization of land resources. Land needs for activities of the population continue to grow, while the availability of land is limited. Therefore, there will be changes in land use. As a result, the problems faced by land degradation and conversion of agricultural land become non-agricultural. The objectives of this research are: (1) to determine parameter of spatial numerical classification of sustainable food agriculture in Badung Regency and Denpasar City (2) to know the projection of food balance in Badung Regency and Denpasar City in 2020, 2030, 2040, and 2050 (3) to specify of function of spatial numerical classification in the making of zonation model of sustainable agricultural land area in Badung regency and Denpasar city (4) to determine the appropriate model of the area to protect sustainable agricultural land in spatial and time scale in Badung and Denpasar regencies. The method used in this research was quantitative method include: survey, soil analysis, spatial data development, geoprocessing analysis (spatial analysis of overlay and proximity analysis), interpolation of raster digital elevation model data, and visualization (cartography). Qualitative methods consisted of literature studies, and interviews. The parameters observed for a total of 11 parameters Badung regency and Denpasar as much as 9 parameters. Numerical classification parameter analysis results used the standard deviation and the mean of the population data and projections relationship rice field in the food balance sheet by modelling. The result of the research showed that, the number of different numerical classification parameters in rural areas (Badung) and urban areas (Denpasar), in urban areas the number of parameters is less than the rural areas. The based on numerical classification weighting and scores generate population distribution parameter analysis results of a standard deviation and average value. Numerical classification produced 5 models, which was divided into three zones are sustainable neighbourhood, buffer and converted in Denpasar and Badung. The results of Population curve parameter analysis in Denpasar showed normal curve, in contrast to the Badung regency showed abnormal curve, therefore Denpasar modeling carried out throughout the region, while in the Badung regency modeling done in each district. Relationship modelling and projections lands role in food balance in Badung views of sustainable land area whereas in Denpasar seen from any connection to the green open spaces in the spatial plan Denpasar 2011-2031. Modelling in Badung (rural) is different in Denpasar (urban), as well as population curve parameter analysis results in Badung showed abnormal curve while in Denpasar showed normal curve. Relationship modelling and projections lands role in food balance in the Badung regency sustainable in terms of land area, while in Denpasar in terms of linkages with urban green space in Denpasar City’s regional landuse plan of 2011-2031.
Evaluating technology for marine inspectors
NASA Astrophysics Data System (ADS)
Hansen, Kurt A.
1996-11-01
The Coast Guard is responsible for the safety of thousands of vessels which carry passengers and cargo throughout the US. The Research and Development Center has had several projects with the objective of identifying advanced technologies that can increase the safety and efficiency of vessel inspections, especially structural surveys. The aim is to find technologies which will increase inspection coverage while still providing a complete and accurate condition of the vessel. One project focused on the basic technology items such as improved lighting, improved monitors to determine air quality, and use of visual enhancements such as binoculars and night-vision equipment which the inspectors could use directly. It continued on to more advanced nondestructive and visual methodologies which may not find the actual damage, but will indicate the most likely location to the inspector. These included magnetic climbers, robotics, advanced video camera systems and fiber- optic videoscopes, laser ultrasonics and climbing inspectors which utilize mountaineering techniques. Most of these advanced methods are more likely to be used by independent surveyors, classification societies or others hired by the vessel owners and operators. The Coast Guard needs to evaluate the effectiveness of these techniques to ensure the reliability of the information received and to bring some of the technology to the attention of owners and operators. Another project begun this year is investigating the nondestructive evaluation of metal fasteners in wooden boats. This paper provides an overview of these projects.
Housing improvement projects in Indonesia: responding to local demand.
Josodipoero, R I
2003-06-01
For more than three decades, environmental health programmes in Indonesia have emphasized prevention and treatment of the high incidence of disease among villagers. One of the main causes of disease is the unhygienic conditions of typical rural houses - two-room constructions with dirt floors and walls of lightly fired bricks or woven bamboo skins. While most houses have few or no windows, the occupants frequently cook, eat, sleep and even keep animals in a single room. The main objective of the housing improvement programme was to improve air circulation and introduce more sunlight to kill bacteria, avoid dampness and eliminate smoke from cooking. The programme encourages villagers to construct a permanent floor, enlarge existing windows or insert new windows for good ventilation. This presentation will share the 'success stories' of housing improvement projects in Indonesia that adopted demand-responsive approaches instead of the conventional 'supply approach'. Through exercises like Wealth Classification and Social Mapping, a demand-responsive approach lets the community decide who is eligible for assistance, resulting in higher participation and accurate information on community demand and on materials needed. In addition to the successes, the failures will be discussed at field level. This presentation will discuss the lessons learned from: the World Bank-funded Kalisemut Case Study; government's Family Welfare Movement; Plan International's project in Yogyakarta, and AusAID-funded Sustainable Development through Community Participation Project in Lombok.
Rotationally Invariant Image Representation for Viewing Direction Classification in Cryo-EM
Zhao, Zhizhen; Singer, Amit
2014-01-01
We introduce a new rotationally invariant viewing angle classification method for identifying, among a large number of cryo-EM projection images, similar views without prior knowledge of the molecule. Our rotationally invariant features are based on the bispectrum. Each image is denoised and compressed using steerable principal component analysis (PCA) such that rotating an image is equivalent to phase shifting the expansion coefficients. Thus we are able to extend the theory of bispectrum of 1D periodic signals to 2D images. The randomized PCA algorithm is then used to efficiently reduce the dimensionality of the bispectrum coefficients, enabling fast computation of the similarity between any pair of images. The nearest neighbors provide an initial classification of similar viewing angles. In this way, rotational alignment is only performed for images with their nearest neighbors. The initial nearest neighbor classification and alignment are further improved by a new classification method called vector diffusion maps. Our pipeline for viewing angle classification and alignment is experimentally shown to be faster and more accurate than reference-free alignment with rotationally invariant K-means clustering, MSA/MRA 2D classification, and their modern approximations. PMID:24631969
Sunspot Pattern Classification using PCA and Neural Networks (Poster)
NASA Technical Reports Server (NTRS)
Rajkumar, T.; Thompson, D. E.; Slater, G. L.
2005-01-01
The sunspot classification scheme presented in this paper is considered as a 2-D classification problem on archived datasets, and is not a real-time system. As a first step, it mirrors the Zuerich/McIntosh historical classification system and reproduces classification of sunspot patterns based on preprocessing and neural net training datasets. Ultimately, the project intends to move from more rudimentary schemes, to develop spatial-temporal-spectral classes derived by correlating spatial and temporal variations in various wavelengths to the brightness fluctuation spectrum of the sun in those wavelengths. Once the approach is generalized, then the focus will naturally move from a 2-D to an n-D classification, where "n" includes time and frequency. Here, the 2-D perspective refers both to the actual SOH0 Michelson Doppler Imager (MDI) images that are processed, but also refers to the fact that a 2-D matrix is created from each image during preprocessing. The 2-D matrix is the result of running Principal Component Analysis (PCA) over the selected dataset images, and the resulting matrices and their eigenvalues are the objects that are stored in a database, classified, and compared. These matrices are indexed according to the standard McIntosh classification scheme.
Automated lidar-derived canopy height estimates for the Upper Mississippi River System
Hlavacek, Enrika
2015-01-01
Land cover/land use (LCU) classifications serve as important decision support products for researchers and land managers. The LCU classifications produced by the U.S. Geological Survey’s Upper Midwest Environmental Sciences Center (UMESC) include canopy height estimates that are assigned through manual aerial photography interpretation techniques. In an effort to improve upon these techniques, this project investigated the use of high-density lidar data for the Upper Mississippi River System to determine canopy height. An ArcGIS tool was developed to automatically derive height modifier information based on the extent of land cover features for forest classes. The measurement of canopy height included a calculation of the average height from lidar point cloud data as well as the inclusion of a local maximum filter to identify individual tree canopies. Results were compared to original manually interpreted height modifiers and to field survey data from U.S. Forest Service Forest Inventory and Analysis plots. This project demonstrated the effectiveness of utilizing lidar data to more efficiently assign height modifier attributes to LCU classifications produced by the UMESC.
NASA Astrophysics Data System (ADS)
1988-08-01
This Register is intended to serve as a source of information on research which is being conducted in all fields (both natural and human sciences) in the Republic of South Africa. New and current research projects that were commenced or modified during 1986 and 1987, on which information was received by the compilers until January 1988, are included, with the exception of confidential projects. Project titles and keywords are presented in the language as supplied, and the classifications are based on those provided by the primary sources.
The African Union and Conflict Management
2006-03-02
USAWC STRATEGY RESEARCH PROJECT THE AFRICAN UNION AND CONFLICT MANAGEMENT by Lieutenant Colonel Flemming Mathiasen Royal Danish Army Colonel Patrick...AUTHOR: Lieutenant Colonel Flemming Mathiasen TITLE: The African Union and Conflict Management FORMAT: Strategy Research Project DATE: 2 March 2006...WORD COUNT: 5850 PAGES: 28 KEY TERMS: African Union, Africa, Conflict Management , Capabilities CLASSIFICATION: Unclassified Africa is a continent with a
15 CFR 747.4 - Steps you must follow to apply for a SIRL.
Code of Federal Regulations, 2010 CFR
2010-01-01
... classifications, where available, as this will assist BIS to rule upon the application quickly. (2) Form BIS-748P... entity, the contract or work order which formed the basis of the transaction, and any identification number or project code for that contract or work order; (3) Explanation of how the project will...
ERIC Educational Resources Information Center
Nedwek, Brian P.; Neal, John E.
This study developed a classification scheme to critically compare performance assessment projects at higher education universities in North America and Europe. Performance indicators and assessment initiatives were compared using nine basic dimensions: (1) locus of control, (2) degree of governmental involvement, (3) focus of performance…
Scalable metagenomic taxonomy classification using a reference genome database
Ames, Sasha K.; Hysom, David A.; Gardner, Shea N.; Lloyd, G. Scott; Gokhale, Maya B.; Allen, Jonathan E.
2013-01-01
Motivation: Deep metagenomic sequencing of biological samples has the potential to recover otherwise difficult-to-detect microorganisms and accurately characterize biological samples with limited prior knowledge of sample contents. Existing metagenomic taxonomic classification algorithms, however, do not scale well to analyze large metagenomic datasets, and balancing classification accuracy with computational efficiency presents a fundamental challenge. Results: A method is presented to shift computational costs to an off-line computation by creating a taxonomy/genome index that supports scalable metagenomic classification. Scalable performance is demonstrated on real and simulated data to show accurate classification in the presence of novel organisms on samples that include viruses, prokaryotes, fungi and protists. Taxonomic classification of the previously published 150 giga-base Tyrolean Iceman dataset was found to take <20 h on a single node 40 core large memory machine and provide new insights on the metagenomic contents of the sample. Availability: Software was implemented in C++ and is freely available at http://sourceforge.net/projects/lmat Contact: allen99@llnl.gov Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23828782
Entanglement classification with algebraic geometry
NASA Astrophysics Data System (ADS)
Sanz, M.; Braak, D.; Solano, E.; Egusquiza, I. L.
2017-05-01
We approach multipartite entanglement classification in the symmetric subspace in terms of algebraic geometry, its natural language. We show that the class of symmetric separable states has the structure of a Veronese variety and that its k-secant varieties are SLOCC invariants. Thus SLOCC classes gather naturally into families. This classification presents useful properties such as a linear growth of the number of families with the number of particles, and nesting, i.e. upward consistency of the classification. We attach physical meaning to this classification through the required interaction length of parent Hamiltonians. We show that the states W N and GHZ N are in the same secant family and that, effectively, the former can be obtained in a limit from the latter. This limit is understood in terms of tangents, leading to a refinement of the previous families. We compute explicitly the classification of symmetric states with N≤slant4 qubits in terms of both secant families and its refinement using tangents. This paves the way to further use of projective varieties in algebraic geometry to solve open problems in entanglement theory.
NASA Astrophysics Data System (ADS)
Nitze, Ingmar; Barrett, Brian; Cawkwell, Fiona
2015-02-01
The analysis and classification of land cover is one of the principal applications in terrestrial remote sensing. Due to the seasonal variability of different vegetation types and land surface characteristics, the ability to discriminate land cover types changes over time. Multi-temporal classification can help to improve the classification accuracies, but different constraints, such as financial restrictions or atmospheric conditions, may impede their application. The optimisation of image acquisition timing and frequencies can help to increase the effectiveness of the classification process. For this purpose, the Feature Importance (FI) measure of the state-of-the art machine learning method Random Forest was used to determine the optimal image acquisition periods for a general (Grassland, Forest, Water, Settlement, Peatland) and Grassland specific (Improved Grassland, Semi-Improved Grassland) land cover classification in central Ireland based on a 9-year time-series of MODIS Terra 16 day composite data (MOD13Q1). Feature Importances for each acquisition period of the Enhanced Vegetation Index (EVI) and Normalised Difference Vegetation Index (NDVI) were calculated for both classification scenarios. In the general land cover classification, the months December and January showed the highest, and July and August the lowest separability for both VIs over the entire nine-year period. This temporal separability was reflected in the classification accuracies, where the optimal choice of image dates outperformed the worst image date by 13% using NDVI and 5% using EVI on a mono-temporal analysis. With the addition of the next best image periods to the data input the classification accuracies converged quickly to their limit at around 8-10 images. The binary classification schemes, using two classes only, showed a stronger seasonal dependency with a higher intra-annual, but lower inter-annual variation. Nonetheless anomalous weather conditions, such as the cold winter of 2009/2010 can alter the temporal separability pattern significantly. Due to the extensive use of the NDVI for land cover discrimination, the findings of this study should be transferrable to data from other optical sensors with a higher spatial resolution. However, the high impact of outliers from the general climatic pattern highlights the limitation of spatial transferability to locations with different climatic and land cover conditions. The use of high-temporal, moderate resolution data such as MODIS in conjunction with machine-learning techniques proved to be a good base for the prediction of image acquisition timing for optimal land cover classification results.
NASA Astrophysics Data System (ADS)
Jaferzadeh, Keyvan; Moon, Inkyu
2016-12-01
The classification of erythrocytes plays an important role in the field of hematological diagnosis, specifically blood disorders. Since the biconcave shape of red blood cell (RBC) is altered during the different stages of hematological disorders, we believe that the three-dimensional (3-D) morphological features of erythrocyte provide better classification results than conventional two-dimensional (2-D) features. Therefore, we introduce a set of 3-D features related to the morphological and chemical properties of RBC profile and try to evaluate the discrimination power of these features against 2-D features with a neural network classifier. The 3-D features include erythrocyte surface area, volume, average cell thickness, sphericity index, sphericity coefficient and functionality factor, MCH and MCHSD, and two newly introduced features extracted from the ring section of RBC at the single-cell level. In contrast, the 2-D features are RBC projected surface area, perimeter, radius, elongation, and projected surface area to perimeter ratio. All features are obtained from images visualized by off-axis digital holographic microscopy with a numerical reconstruction algorithm, and four categories of biconcave (doughnut shape), flat-disc, stomatocyte, and echinospherocyte RBCs are interested. Our experimental results demonstrate that the 3-D features can be more useful in RBC classification than the 2-D features. Finally, we choose the best feature set of the 2-D and 3-D features by sequential forward feature selection technique, which yields better discrimination results. We believe that the final feature set evaluated with a neural network classification strategy can improve the RBC classification accuracy.
Selective classification for improved robustness of myoelectric control under nonideal conditions.
Scheme, Erik J; Englehart, Kevin B; Hudgins, Bernard S
2011-06-01
Recent literature in pattern recognition-based myoelectric control has highlighted a disparity between classification accuracy and the usability of upper limb prostheses. This paper suggests that the conventionally defined classification accuracy may be idealistic and may not reflect true clinical performance. Herein, a novel myoelectric control system based on a selective multiclass one-versus-one classification scheme, capable of rejecting unknown data patterns, is introduced. This scheme is shown to outperform nine other popular classifiers when compared using conventional classification accuracy as well as a form of leave-one-out analysis that may be more representative of real prosthetic use. Additionally, the classification scheme allows for real-time, independent adjustment of individual class-pair boundaries making it flexible and intuitive for clinical use.
Classification of stillbirths is an ongoing dilemma.
Nappi, Luigi; Trezza, Federica; Bufo, Pantaleo; Riezzo, Irene; Turillazzi, Emanuela; Borghi, Chiara; Bonaccorsi, Gloria; Scutiero, Gennaro; Fineschi, Vittorio; Greco, Pantaleo
2016-10-01
To compare different classification systems in a cohort of stillbirths undergoing a comprehensive workup; to establish whether a particular classification system is most suitable and useful in determining cause of death, purporting the lowest percentage of unexplained death. Cases of stillbirth at gestational age 22-41 weeks occurring at the Department of Gynecology and Obstetrics of Foggia University during a 4 year period were collected. The World Health Organization (WHO) diagnosis of stillbirth was used. All the data collection was based on the recommendations of an Italian diagnostic workup for stillbirth. Two expert obstetricians reviewed all cases and classified causes according to five classification systems. Relevant Condition at Death (ReCoDe) and Causes Of Death and Associated Conditions (CODAC) classification systems performed best in retaining information. The ReCoDe system provided the lowest rate of unexplained stillbirth (14%) compared to de Galan-Roosen (16%), CODAC (16%), Tulip (18%), Wigglesworth (62%). Classification of stillbirth is influenced by the multiplicity of possible causes and factors related to fetal death. Fetal autopsy, placental histology and cytogenetic analysis are strongly recommended to have a complete diagnostic evaluation. Commonly employed classification systems performed differently in our experience, the most satisfactory being the ReCoDe. Given the rate of "unexplained" cases, none can be considered optimal and further efforts are necessary to work out a clinically useful system.
Condition Monitoring for Helicopter Data. Appendix A
NASA Technical Reports Server (NTRS)
Wen, Fang; Willett, Peter; Deb, Somnath
2000-01-01
In this paper the classical "Westland" set of empirical accelerometer helicopter data is analyzed with the aim of condition monitoring for diagnostic purposes. The goal is to determine features for failure events from these data, via a proprietary signal processing toolbox, and to weigh these according to a variety of classification algorithms. As regards signal processing, it appears that the autoregressive (AR) coefficients from a simple linear model encapsulate a great deal of information in a relatively few measurements; it has also been found that augmentation of these by harmonic and other parameters can improve classification significantly. As regards classification, several techniques have been explored, among these restricted Coulomb energy (RCE) networks, learning vector quantization (LVQ), Gaussian mixture classifiers and decision trees. A problem with these approaches, and in common with many classification paradigms, is that augmentation of the feature dimension can degrade classification ability. Thus, we also introduce the Bayesian data reduction algorithm (BDRA), which imposes a Dirichlet prior on training data and is thus able to quantify probability of error in an exact manner, such that features may be discarded or coarsened appropriately.
NASA Astrophysics Data System (ADS)
Setiyoko, A.; Dharma, I. G. W. S.; Haryanto, T.
2017-01-01
Multispectral data and hyperspectral data acquired from satellite sensor have the ability in detecting various objects on the earth ranging from low scale to high scale modeling. These data are increasingly being used to produce geospatial information for rapid analysis by running feature extraction or classification process. Applying the most suited model for this data mining is still challenging because there are issues regarding accuracy and computational cost. This research aim is to develop a better understanding regarding object feature extraction and classification applied for satellite image by systematically reviewing related recent research projects. A method used in this research is based on PRISMA statement. After deriving important points from trusted sources, pixel based and texture-based feature extraction techniques are promising technique to be analyzed more in recent development of feature extraction and classification.
A Descriptive Genetic Classification for Glaciovolcanoes
NASA Astrophysics Data System (ADS)
Edwards, B. R.; Russell, K.; Porritt, L. A.
2014-12-01
We review the recently published descriptive genetic classification for glaciovolcanoes (Russell et al., Quat Sci Rv, 2014). The new classification uses 'tuya' as a root word for all glaciovolcanic edifices, and with modifiers that make the classification descriptive (e.g., andesitic, lava-dominated, flat topped tuya). Although tuyas can range in composition from basaltic to rhyolitic, many of the characteristics diagnostic of glaciovolcanic environments are largely independent of lava composition (e.g., edifice morphology, columnar jointing patterns, glass distributions, pyroclast shapes). Tuya subtypes are first classified on the basis of variations in edifice-scale morphologies (e.g., conical tuya) then, on the proportions of the essential lithofacies (e.g., tephra-dominated conical tuya), and lastly on magma composition (e.g., basaltic, tephra-dominated, conical tuya). The lithofacies associations within tuyas broadly record the interplay between magmatic and glaciohydraulic conditions extent during the active phases of the eruption, including the dominant style of eruption (e.g., explosive vs. effusive). We present nine distinct, endmember models for glaciovolcanic edifices that simultaneously record changes in eruption conditions (explosive, transitional, effusive) for different general glaciohydraulic conditions (closed/sealed, leaky/partly sealed, open/well-drained). To date we have identified potential examples for 7 of the 9 models. Use of a simplified, descriptive classification scheme for glaciovolcanoes will facilitate communications amongst volcanologists and planetary scientists and the use of tuyas for recovering critical paleo-environmental information, particularly the local glaciohydraulics extent during eruptions.
Influence of leaching conditions for ecotoxicological classification of ash.
Stiernström, S; Enell, A; Wik, O; Hemström, K; Breitholtz, M
2014-02-01
The Waste Framework Directive (WFD; 2008/98/EC) states that classification of hazardous ecotoxicological properties of wastes (i.e. criteria H-14), should be based on the Community legislation on chemicals (i.e. CLP Regulation 1272/2008). However, harmonizing the waste and chemical classification may involve drastic changes related to choice of leaching tests as compared to e.g. the current European standard for ecotoxic characterization of waste (CEN 14735). The primary aim of the present study was therefore to evaluate the influence of leaching conditions, i.e. pH (inherent pH (∼10), and 7), liquid to solid (L/S) ratio (10 and 1000 L/kg) and particle size (<4 mm, <1 mm, and <0.125 mm), for subsequent chemical analysis and ecotoxicity testing in relation to classification of municipal waste incineration bottom ash. The hazard potential, based on either comparisons between element levels in leachate and literature toxicity data or ecotoxicity testing of the leachates, was overall significantly higher at low particle size (<0.125 mm) as compared to particle fractions <1mm and <4mm, at pH 10 as compared to pH 7, and at L/S 10 as compared to L/S 1000. These results show that the choice of leaching conditions is crucial for H-14 classification of ash and must be carefully considered in deciding on future guidance procedures in Europe. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effects of classification context on categorization in natural categories.
Hampton, James A; Dubois, Danièle; Yeh, Wenchi
2006-10-01
The patterns of classification of borderline instances of eight common taxonomic categories were examined under three different instructional conditions to test two predictions: first, that lack of a specified context contributes to vagueness in categorization, and second, that altering the purpose of classification can lead to greater or lesser dependence on similarity in classification. The instructional conditions contrasted purely pragmatic with more technical/quasi-legal contexts as purposes for classification, and these were compared with a no-context control. The measures of category vagueness were between-subjects disagreement and within-subjects consistency, and the measures of similarity-based categorization were category breadth and the correlation of instance categorization probability with mean rated typicality, independently measured in a neutral context. Contrary to predictions, none of the measures of vagueness, reliability, category breadth, or correlation with typicality were generally affected by the instructional setting as a function of pragmatic versus technical purposes. Only one subcondition, in which a situational context was implied in addition to a purposive context, produced a significant change in categorization. Further experiments demonstrated that the effect of context was not increased when participants talked their way through the task, and that a technical context did not elicit more all-or-none categorization than did a pragmatic context. These findings place an important boundary condition on the effects of instructional context on conceptual categorization.
HMM for hyperspectral spectrum representation and classification with endmember entropy vectors
NASA Astrophysics Data System (ADS)
Arabi, Samir Y. W.; Fernandes, David; Pizarro, Marco A.
2015-10-01
The Hyperspectral images due to its good spectral resolution are extensively used for classification, but its high number of bands requires a higher bandwidth in the transmission data, a higher data storage capability and a higher computational capability in processing systems. This work presents a new methodology for hyperspectral data classification that can work with a reduced number of spectral bands and achieve good results, comparable with processing methods that require all hyperspectral bands. The proposed method for hyperspectral spectra classification is based on the Hidden Markov Model (HMM) associated to each Endmember (EM) of a scene and the conditional probabilities of each EM belongs to each other EM. The EM conditional probability is transformed in EM vector entropy and those vectors are used as reference vectors for the classes in the scene. The conditional probability of a spectrum that will be classified is also transformed in a spectrum entropy vector, which is classified in a given class by the minimum ED (Euclidian Distance) among it and the EM entropy vectors. The methodology was tested with good results using AVIRIS spectra of a scene with 13 EM considering the full 209 bands and the reduced spectral bands of 128, 64 and 32. For the test area its show that can be used only 32 spectral bands instead of the original 209 bands, without significant loss in the classification process.
Vincent, Ann; Brimmer, Dana J.; Whipple, Mary O.; Jones, James F.; Boneva, Roumiana; Lahr, Brian D.; Maloney, Elizabeth; St. Sauver, Jennifer L.; Reeves, William C.
2012-01-01
Objective To estimate the prevalence and incidence of chronic fatigue syndrome in Olmsted County, Minnesota, using the 1994 case definition and describe exclusionary and comorbid conditions observed in patients who presented for evaluation of long-standing fatigue. Patients and Methods We conducted a retrospective medical record review of potential cases of chronic fatigue syndrome identified from January 1, 1998, through December 31, 2002, using the Rochester Epidemiology Project, a population-based database. Patients were classified as having chronic fatigue syndrome if the medical record review documented fatigue of 6 months' duration, at least 4 of 8 chronic fatigue syndrome–defining symptoms, and symptoms that interfered with daily work or activities. Patients not meeting all of the criteria were classified as having insufficient/idiopathic fatigue. Results We identified 686 potential patients with chronic fatigue, 2 of whom declined consent for medical record review. Of the remaining 684 patients, 151 (22%) met criteria for chronic fatigue syndrome or insufficient/idiopathic fatigue. The overall prevalence and incidence of chronic fatigue syndrome and insufficient/idiopathic fatigue were 71.34 per 100,000 persons and 13.16 per 100,000 person-years vs 73.70 per 100,000 persons and 13.58 per 100,000 person-years, respectively. The potential cases included 482 patients (70%) who had an exclusionary condition, and almost half the patients who met either criterion had at least one nonexclusionary comorbid condition. Conclusion The incidence and prevalence of chronic fatigue syndrome and insufficient/idiopathic fatigue are relatively low in Olmsted County. Careful clinical evaluation to identify whether fatigue could be attributed to exclusionary or comorbid conditions rather than chronic fatigue syndrome itself will ensure appropriate assessment for patients without chronic fatigue syndrome. PMID:23140977
Hyperspectral imaging for detection of black tip damage in wheat kernels
NASA Astrophysics Data System (ADS)
Delwiche, Stephen R.; Yang, I.-Chang; Kim, Moon S.
2009-05-01
A feasibility study was conducted on the use of hyperspectral imaging to differentiate sound wheat kernels from those with the fungal condition called black point or black tip. Individual kernels of hard red spring wheat were loaded in indented slots on a blackened machined aluminum plate. Damage conditions, determined by official (USDA) inspection, were either sound (no damage) or damaged by the black tip condition alone. Hyperspectral imaging was separately performed under modes of reflectance from white light illumination and fluorescence from UV light (~380 nm) illumination. By cursory inspection of wavelength images, one fluorescence wavelength (531 nm) was selected for image processing and classification analysis. Results indicated that with this one wavelength alone, classification accuracy can be as high as 95% when kernels are oriented with their dorsal side toward the camera. It is suggested that improvement in classification can be made through the inclusion of multiple wavelength images.
Barth, Albert D; Waldner, Cheryl L
2002-04-01
Breeding soundness evaluation records from 2110 beef bulls, for the period of 1986 to 1999, were analyzed to determine the prevalence and importance of factors affecting breeding soundness classification. The percentage of all bulls classified as satisfactory ranged from 49.0% in January to 73.3% in May. The percentage of physically normal bulls with satisfactory semen quality ranged from 65.7% in January to 87.5% in June. Poor body condition or excessive body condition, below average or below the recommended minimum scrotal circumference, lameness, and severe scrotal frostbite significantly reduced the probability of a satisfactory breeding soundness classification. The percentage of sperm with midpiece defects declined significantly and the percentage of sperm with head defects increased significantly with the approach of summer. Photoperiod, cold stress, poor or excessive body condition, and reduced feed quality may interact to reduce semen quality in the winter months.
1986-08-01
SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTIONAVAILABILITY OF REPORT N/A \\pproved for public release, 21b. OECLASS FI) CAT ) ON/OOWNGRAOING SCMEOLLE...from this set of projections. The Convolution Back-Projection (CBP) algorithm is widely used technique in Computer Aide Tomography ( CAT ). In this work...University of Illinois at Urbana-Champaign. 1985 Ac % DTICEl_ FCTE " AUG 1 11986 Urbana. Illinois U,) I A NEW METHOD OF SYNTHETIC APERTURE RADAR IMAGE
1987-06-15
GENERAL DYNAMICS FORT WORTH DIVISION INDUSTRIAL TECHNOLOGY00 N MODERNIZATION PROGRAM Phase 2 Final Project Report DT C JUNO 7 1989J1K PROJECT 20...CLASSIFICATION O THIS PAGE All other editions are obsolete. unclassified Honeywell JUNE 15, 1987 GENERAL DYNAMICS FORT WORTH DIVISION INDUSTRIAL ...SYSTEMIEQUIPMENT/MACHINING SPECIFICATIONS 33 9 VENDOR/ INDUSTRY ANALYSIS FINDING 39 10 MIS REQUIREMENTS/IMPROVEMENTS 45 11 COST BENEFIT ANALYSIS 48 12 IMPLEMENTATION
Safety equipment list for the 241-SY-101 RAPID mitigation project
DOE Office of Scientific and Technical Information (OSTI.GOV)
MORRIS, K.L.
1999-06-29
This document provides the safety classification for the safety (safety class and safety RAPID Mitigation Project. This document is being issued as the project SEL until the supporting authorization basis documentation, this document will be superseded by the TWRS SEL (LMHC 1999), documentation istlralized. Upon implementation of the authorization basis significant) structures, systems, and components (SSCS) associated with the 241-SY-1O1 which will be updated to include the information contained herein.
Reliable Classification of Geologic Surfaces Using Texture Analysis
NASA Astrophysics Data System (ADS)
Foil, G.; Howarth, D.; Abbey, W. J.; Bekker, D. L.; Castano, R.; Thompson, D. R.; Wagstaff, K.
2012-12-01
Communication delays and bandwidth constraints are major obstacles for remote exploration spacecraft. Due to such restrictions, spacecraft could make use of onboard science data analysis to maximize scientific gain, through capabilities such as the generation of bandwidth-efficient representative maps of scenes, autonomous instrument targeting to exploit targets of opportunity between communications, and downlink prioritization to ensure fast delivery of tactically-important data. Of particular importance to remote exploration is the precision of such methods and their ability to reliably reproduce consistent results in novel environments. Spacecraft resources are highly oversubscribed, so any onboard data analysis must provide a high degree of confidence in its assessment. The TextureCam project is constructing a "smart camera" that can analyze surface images to autonomously identify scientifically interesting targets and direct narrow field-of-view instruments. The TextureCam instrument incorporates onboard scene interpretation and mapping to assist these autonomous science activities. Computer vision algorithms map scenes such as those encountered during rover traverses. The approach, based on a machine learning strategy, trains a statistical model to recognize different geologic surface types and then classifies every pixel in a new scene according to these categories. We describe three methods for increasing the precision of the TextureCam instrument. The first uses ancillary data to segment challenging scenes into smaller regions having homogeneous properties. These subproblems are individually easier to solve, preventing uncertainty in one region from contaminating those that can be confidently classified. The second involves a Bayesian approach that maximizes the likelihood of correct classifications by abstaining from ambiguous ones. We evaluate these two techniques on a set of images acquired during field expeditions in the Mojave Desert. Finally, the algorithm was expanded to perform robust texture classification across a wide range of lighting conditions. We characterize both the increase in precision achieved using different input data representations as well as the range of conditions under which reliable performance can be achieved. An ensemble learning approach is used to increase performance by leveraging the illumination-dependent statistics of an image. Our results show that the three algorithmic modifications lead to a significant increase in classification performance as well as an increase in precision using an adjustable and human-understandable metric of confidence.
The 7th lung cancer TNM classification and staging system: Review of the changes and implications.
Mirsadraee, Saeed; Oswal, Dilip; Alizadeh, Yalda; Caulo, Andrea; van Beek, Edwin
2012-04-28
Lung cancer is the most common cause of death from cancer in males, accounting for more than 1.4 million deaths in 2008. It is a growing concern in China, Asia and Africa as well. Accurate staging of the disease is an important part of the management as it provides estimation of patient's prognosis and identifies treatment sterategies. It also helps to build a database for future staging projects. A major revision of lung cancer staging has been announced with effect from January 2010. The new classification is based on a larger surgical and non-surgical cohort of patients, and thus more accurate in terms of outcome prediction compared to the previous classification. There are several original papers regarding this new classification which give comprehensive description of the methodology, the changes in the staging and the statistical analysis. This overview is a simplified description of the changes in the new classification and their potential impact on patients' treatment and prognosis.
A Case Study in Integrating Multiple E-commerce Standards via Semantic Web Technology
NASA Astrophysics Data System (ADS)
Yu, Yang; Hillman, Donald; Setio, Basuki; Heflin, Jeff
Internet business-to-business transactions present great challenges in merging information from different sources. In this paper we describe a project to integrate four representative commercial classification systems with the Federal Cataloging System (FCS). The FCS is used by the US Defense Logistics Agency to name, describe and classify all items under inventory control by the DoD. Our approach uses the ECCMA Open Technical Dictionary (eOTD) as a common vocabulary to accommodate all different classifications. We create a semantic bridging ontology between each classification and the eOTD to describe their logical relationships in OWL DL. The essential idea is that since each classification has formal definitions in a common vocabulary, we can use subsumption to automatically integrate them, thus mitigating the need for pairwise mappings. Furthermore our system provides an interactive interface to let users choose and browse the results and more importantly it can translate catalogs that commit to these classifications using compiled mapping results.
Shu, Lin-Jie; Yang, Yu-Liang
2017-11-14
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a reliable and rapid technique applied widely in the identification and classification of microbes. MALDI-TOF MS has been used to identify many endospore-forming Bacillus species; however, endospores affect the identification accuracy when using MALDI-TOF MS because they change the protein composition of samples. Since culture conditions directly influence endospore formation and Bacillus growth, in this study we clarified how culture conditions influence the classification of Bacillus species by using MALDI-TOF MS. We analyzed members of the Bacillus subtilis group and Bacillus cereus group using different incubation periods, temperatures and media. Incubation period was found to affect mass spectra due to endospores which were observed mixing with vegetative cells after 24 hours. Culture temperature also resulted in different mass spectra profiles depending on the temperature best suited growth and sporulation. Conversely, the four common media for Bacillus incubation, Luria-Bertani agar, nutrient agar, plate count agar and brain-heart infusion agar did not result in any significant differences in mass spectra profiles. Profiles in the range m/z 1000-3000 were found to provide additional data to the standard ribosomal peptide/protein region m/z 3000-15000 profiles to enable easier differentiation of some highly similar species and the identification of new strains under fresh culture conditions. In summary, control of culture conditions is vital for Bacillus identification and classification by MALDI-TOF MS.
Simulation of Sentinel-2A Red Edge Bands with RPAS Based Multispectral Data
NASA Astrophysics Data System (ADS)
Davids, Corine; Storvold, Rune; Haarpaintner, Jorg; Arnason, Kolbeinn
2016-08-01
Very high spatial and spectral resolution multispectral data was collected over the Hallormstađur test site in eastern Iceland using a fixed wing remotely piloted aerial system as part of the EU FP7 project North State (www.northstatefp7.eu). The North State project uses forest variable estimates derived from optical and radar satellite data as either input or validation for carbon flux models. The RPAS data from the Hallormsstađur forest test site in Iceland is here used to simulate Landsat and Sentinel-2A data and to explore the advantages of the new Sentinel-2A red edge bands for forest vegetation mapping. Simple supervised classification shows that the inclusion of the red edge bands improves the tree species classification considerably.
Classification images for localization performance in ramp-spectrum noise.
Abbey, Craig K; Samuelson, Frank W; Zeng, Rongping; Boone, John M; Eckstein, Miguel P; Myers, Kyle
2018-05-01
This study investigates forced localization of targets in simulated images with statistical properties similar to trans-axial sections of x-ray computed tomography (CT) volumes. A total of 24 imaging conditions are considered, comprising two target sizes, three levels of background variability, and four levels of frequency apodization. The goal of the study is to better understand how human observers perform forced-localization tasks in images with CT-like statistical properties. The transfer properties of CT systems are modeled by a shift-invariant transfer function in addition to apodization filters that modulate high spatial frequencies. The images contain noise that is the combination of a ramp-spectrum component, simulating the effect of acquisition noise in CT, and a power-law component, simulating the effect of normal anatomy in the background, which are modulated by the apodization filter as well. Observer performance is characterized using two psychophysical techniques: efficiency analysis and classification image analysis. Observer efficiency quantifies how much diagnostic information is being used by observers to perform a task, and classification images show how that information is being accessed in the form of a perceptual filter. Psychophysical studies from five subjects form the basis of the results. Observer efficiency ranges from 29% to 77% across the different conditions. The lowest efficiency is observed in conditions with uniform backgrounds, where significant effects of apodization are found. The classification images, estimated using smoothing windows, suggest that human observers use center-surround filters to perform the task, and these are subjected to a number of subsequent analyses. When implemented as a scanning linear filter, the classification images appear to capture most of the observer variability in efficiency (r 2 = 0.86). The frequency spectra of the classification images show that frequency weights generally appear bandpass in nature, with peak frequency and bandwidth that vary with statistical properties of the images. In these experiments, the classification images appear to capture important features of human-observer performance. Frequency apodization only appears to have a significant effect on performance in the absence of anatomical variability, where the observers appear to underweight low spatial frequencies that have relatively little noise. Frequency weights derived from the classification images generally have a bandpass structure, with adaptation to different conditions seen in the peak frequency and bandwidth. The classification image spectra show relatively modest changes in response to different levels of apodization, with some evidence that observers are attempting to rebalance the apodized spectrum presented to them. © 2018 American Association of Physicists in Medicine.
Studies of Millimeter-Wave Diffraction Devices and Materials
1984-12-28
7.0 REFERENCES 1. Andrenko, S . d., Devyatkov, Acad. N. D., and Shestopalov, V. P., "Millimeter Field Band Antenna Arrays", Dokl. Akad. 4auk SSSR, Vol... S UNCLASSTFIED I* .RIT.Y CL.ASSIFICATION OF THIS PAGE REPORT DOCUMENTATION PAGE :kFPOO- SEURITY CLASSIFICATION 1-b. RESTRICTIVE MARKINGS .EM...State and ZIP Code) 10. SOURCE OF FUNDIN.G NOS. ______ C)c \\~ S PROGRAM PROJECT TASK WORK UNIT 2~~V \\~ ~(~ELEMENT NO. NO. No. NO. ATEinciude Security
1989-06-01
Science Unclassified SECURITY CLASSIFICATION OF THIS PAGE REPORT DOCUMENTATION PAGE la. REPORT SECURITY CLASS’r!CATION )b RESTRICTIVE MARKINGS UNCLASSIFIED...2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; Zb. DECLASSIFICATION I DOWNGRADING SCHEDULE...ZIP Code) 10 SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT Monterey, CA. 93943 FLEMENT NO. NO. NO ACCESSION NO. 11. TITLE (Include Security
Approximation in Optimal Control and Identification of Large Space Structures.
1985-01-01
I ease I Cr ’. ’. -4 . r*_...1- UN(D aSIFIED SECURITY CLAS.’ICATION OF fHIS P^.GE REPORT DOCUMENTATION PAGE 1 REPORT SECURITY CLASSIFICATION 1...RESTRICTIVE MARKINGS UNCLASSIFIED 2 SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution 2b...NOS. PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO. NO. NO Bolling AFB DC 20332-6448 61102F 2304 Al 11. TITLE IlnRCiude Security Claas.ifcation
A comprehensive catalogue and classification of human thermal climate indices
NASA Astrophysics Data System (ADS)
de Freitas, C. R.; Grigorieva, E. A.
2015-01-01
The very large number of human thermal climate indices that have been proposed over the past 100 years or so is a manifestation of the perceived importance within the scientific community of the thermal environment and the desire to quantify it. Schemes used differ in approach according to the number of variables taken into account, the rationale employed, the relative sophistication of the underlying body-atmosphere heat exchange theory and the particular design for application. They also vary considerably in type and quality, as well as in several other aspects. Reviews appear in the literature, but they cover a limited number of indices. A project that produces a comprehensive documentation, classification and overall evaluation of the full range of existing human thermal climate indices has never been attempted. This paper deals with documentation and classification. A subsequent report will focus on evaluation. Here a comprehensive register of 162 thermal indices is assembled and a sorting scheme devised that groups them according to eight primary classification classes. It is the first stage in a project to organise and evaluate the full range of all human thermal climate indices. The work, when completed, will make it easier for users to reflect on the merits of all available thermal indices. It will be simpler to locate and compare indices and decide which is most appropriate for a particular application or investigation.
NASA Astrophysics Data System (ADS)
Phinyomark, A.; Hu, H.; Phukpattaranont, P.; Limsakul, C.
2012-01-01
The classification of upper-limb movements based on surface electromyography (EMG) signals is an important issue in the control of assistive devices and rehabilitation systems. Increasing the number of EMG channels and features in order to increase the number of control commands can yield a high dimensional feature vector. To cope with the accuracy and computation problems associated with high dimensionality, it is commonplace to apply a processing step that transforms the data to a space of significantly lower dimensions with only a limited loss of useful information. Linear discriminant analysis (LDA) has been successfully applied as an EMG feature projection method. Recently, a number of extended LDA-based algorithms have been proposed, which are more competitive in terms of both classification accuracy and computational costs/times with classical LDA. This paper presents the findings of a comparative study of classical LDA and five extended LDA methods. From a quantitative comparison based on seven multi-feature sets, three extended LDA-based algorithms, consisting of uncorrelated LDA, orthogonal LDA and orthogonal fuzzy neighborhood discriminant analysis, produce better class separability when compared with a baseline system (without feature projection), principle component analysis (PCA), and classical LDA. Based on a 7-dimension time domain and time-scale feature vectors, these methods achieved respectively 95.2% and 93.2% classification accuracy by using a linear discriminant classifier.
Kandarova, H; Letasiova, S; Adriaens, E; Guest, R; Willoughby, J A; Drzewiecka, A; Gruszka, K; Alépée, Nathalie; Verstraelen, Sandra; Van Rompay, An R
2018-06-01
Assessment of the acute eye irritation potential is part of the international regulatory requirements for testing of chemicals. The objective of the CON4EI project was to develop tiered testing strategies for eye irritation assessment. A set of 80 reference chemicals (38 liquids and 42 solids) was tested with eight different methods. Here, the results obtained with the EpiOcular™ Eye Irritation Test (EIT), adopted as OECD TG 492, are shown. The primary aim of this study was to evaluate of the performance of the test method to discriminate between chemicals not requiring classification for serious eye damage/eye irritancy (No Category) and chemicals requiring classification and labelling. In addition, the predictive capacity in terms of in vivo drivers of classification (i.e. corneal opacity, conjunctival redness and persistence at day 21) was investigated. EpiOcular™ EIT achieved a sensitivity of 97%, a specificity of 87% and accuracy of 95% and also confirmed its excellent reproducibility (100%) from the original validation. The assay was applicable to all chemical categories tested in this project and its performance was not limited to the particular driver of the classification. In addition to the existing prediction model for dichotomous categorization, a new prediction model for Cat 1 is suggested. Copyright © 2017. Published by Elsevier Ltd.
A comprehensive catalogue and classification of human thermal climate indices.
de Freitas, C R; Grigorieva, E A
2015-01-01
The very large number of human thermal climate indices that have been proposed over the past 100 years or so is a manifestation of the perceived importance within the scientific community of the thermal environment and the desire to quantify it. Schemes used differ in approach according to the number of variables taken into account, the rationale employed, the relative sophistication of the underlying body-atmosphere heat exchange theory and the particular design for application. They also vary considerably in type and quality, as well as in several other aspects. Reviews appear in the literature, but they cover a limited number of indices. A project that produces a comprehensive documentation, classification and overall evaluation of the full range of existing human thermal climate indices has never been attempted. This paper deals with documentation and classification. A subsequent report will focus on evaluation. Here a comprehensive register of 162 thermal indices is assembled and a sorting scheme devised that groups them according to eight primary classification classes. It is the first stage in a project to organise and evaluate the full range of all human thermal climate indices. The work, when completed, will make it easier for users to reflect on the merits of all available thermal indices. It will be simpler to locate and compare indices and decide which is most appropriate for a particular application or investigation.
Adebileje, Sikiru Afolabi; Ghasemi, Keyvan; Aiyelabegan, Hammed Tanimowo; Saligheh Rad, Hamidreza
2017-04-01
Proton magnetic resonance spectroscopy is a powerful noninvasive technique that complements the structural images of cMRI, which aids biomedical and clinical researches, by identifying and visualizing the compositions of various metabolites within the tissues of interest. However, accurate classification of proton magnetic resonance spectroscopy is still a challenging issue in clinics due to low signal-to-noise ratio, overlapping peaks of metabolites, and the presence of background macromolecules. This paper evaluates the performance of a discriminate dictionary learning classifiers based on projective dictionary pair learning method for brain gliomas proton magnetic resonance spectroscopy spectra classification task, and the result were compared with the sub-dictionary learning methods. The proton magnetic resonance spectroscopy data contain a total of 150 spectra (74 healthy, 23 grade II, 23 grade III, and 30 grade IV) from two databases. The datasets from both databases were first coupled together, followed by column normalization. The Kennard-Stone algorithm was used to split the datasets into its training and test sets. Performance comparison based on the overall accuracy, sensitivity, specificity, and precision was conducted. Based on the overall accuracy of our classification scheme, the dictionary pair learning method was found to outperform the sub-dictionary learning methods 97.78% compared with 68.89%, respectively. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Broderick, Ciaran; Fealy, Rowan
2013-04-01
Circulation type classifications (CTCs) compiled as part of the COST733 Action, entitled 'Harmonisation and Application of Weather Type Classifications for European Regions', are examined for their synoptic and climatological applicability to Ireland based on their ability to characterise surface temperature and precipitation. In all 16 different objective classification schemes, representative of four different methodological approaches to circulation typing (optimization algorithms, threshold based methods, eigenvector techniques and leader algorithms) are considered. Several statistical metrics which variously quantify the ability of CTCs to discretize daily data into well-defined homogeneous groups are used to evaluate and compare different approaches to synoptic typing. The records from 14 meteorological stations located across the island of Ireland are used in the study. The results indicate that while it was not possible to identify a single optimum classification or approach to circulation typing - conditional on the location and surface variables considered - a number of general assertions regarding the performance of different schemes can be made. The findings for surface temperature indicate that that those classifications based on predefined thresholds (e.g. Litynski, GrossWetterTypes and original Lamb Weather Type) perform well, as do the Kruizinga and Lund classification schemes. Similarly for precipitation predefined type classifications return high skill scores, as do those classifications derived using some optimization procedure (e.g. SANDRA, Self Organizing Maps and K-Means clustering). For both temperature and precipitation the results generally indicate that the classifications perform best for the winter season - reflecting the closer coupling between large-scale circulation and surface conditions during this period. In contrast to the findings for temperature, spatial patterns in the performance of classifications were more evident for precipitation. In the case of this variable those more westerly synoptic stations open to zonal airflow and less influenced by regional scale forcings generally exhibited a stronger link with large-scale circulation.
COMPARISON OF GEOGRAPHIC CLASSIFICATION SCHEMES FOR MID-ATLANTIC STREAM FISH ASSEMBLAGES
Understanding the influence of geographic factors in structuring fish assemblages is crucial to developing a comprehensive assessment of stream conditions. We compared the classification strengths (CS) of geographic groups (ecoregions and catchments), stream order, and groups bas...
Psychological factors affecting medical condition: a new proposal for DSM-V.
Fava, Giovanni A; Fabbri, Stefania; Sirri, Laura; Wise, Thomas N
2007-01-01
The DSM category of "psychological factors affecting medical condition" had virtually no impact on clinical practice. However, several clinically relevant psychosomatic syndromes have been described in the literature: disease phobia, persistent somatization, conversion symptoms, illness denial, demoralization, and irritable mood. These syndromes, in addition to the DSM definition of hypochondriasis, can yield clinical specification in the category of "psychological factors affecting medical condition" and eliminate the need for the highly criticized DSM classification of somatoform disorders. This new classification is supported by a growing body of research evidence and is in line with psychosomatic medicine as a recognized subspecialty.
A Study of Current World Telecommunications and a Projection of the Future
1992-09-01
SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO. 11. TITLE (Include Security Classification) A STUDY OF CURRENT...51 b. Integrated Services Digital Network 53 c. Network Switching ...... ........... 54 d. SS7 ...54 Table IX PERCENTAGE OF CO WITH SS7 CAPABILITY FOR THE GROUP OF SEVEN ............. .................. 55 Table X TRENDS, FORECAST IN
ERIC Educational Resources Information Center
Holmstrom, Linda; Vollmer, Brigitte; Tedroff, Kristina; Islam, Mominul; Persson, Jonas Ke; Kits, Annika; Forssberg, Hans; Eliasson, Ann-Christin
2010-01-01
Aim: To investigate relationships between hand function, brain lesions, and corticomotor projections in children with unilateral cerebral palsy (CP). Method: The study included 17 children (nine males, eight females; mean age 11.4 [SD 2.4] range 7-16y), with unilateral CP at Gross Motor Function Classification System level I and Manual Ability…
Marine Mammals and Active Sonar
2005-10-01
Stafford , K. M., C. G. Fox, and D. S. Clark. 1998 . Long - range acoustic detection , localization of blue whale calls in the northeast...signal processing generated by other projects. The current effort on detection , classification, and localization of northern right whales as well as a...causal mechanisms of sonar-related beaked whale strandings. ONR is funding various research projects including passive acoustic detection
Command Decision-Making: Experience Counts
2005-03-18
USAWC STRATEGY RESEARCH PROJECT COMMAND DECISION - MAKING : EXPERIENCE COUNTS by Lieutenant Colonel Kelly A. Wolgast United States Army Colonel Charles...1. REPORT DATE 18 MAR 2005 2. REPORT TYPE 3. DATES COVERED - 4. TITLE AND SUBTITLE Command Decision Making Experience Counts 5a. CONTRACT...Colonel Kelly A. Wolgast TITLE: Command Decision - making : Experience Counts FORMAT: Strategy Research Project DATE: 18 March 2005 PAGES: 30 CLASSIFICATION
Dynamic Routing and Coordination in Multi-Agent Networks
2016-06-10
SECURITY CLASSIFICATION OF: Supported by this project, we designed innovative routing, planning and coordination strategies for robotic networks and...tasks partitioned among robots , in what order are they to be performed, and along which deterministic routes or according to which stochastic rules do...individual robots move. The fundamental novelties and our recent breakthroughs supported by this project are manifold: (1) the application 1
Effect of Aptitude on the Performance of Army Communications Operators
1992-01-01
equipment is usually concentrated at the highest echelons of command. 9 SLOWER 1 RT-773GRC-103(V) DA-437 GRC- 103M ~ (SYSTEM 1) ANGRC.153(V (SYSTEM 2) OA...Sg EU. ’-44 rh Ca- REFERENCES Campbell, John P. (ed.), "Project A: The U.S. Army Selection and Classification Project," Personnel Psychology, Vol. 43(2
NASA Astrophysics Data System (ADS)
Prasetyo, Yudo; Ardi Gunawan, Setyo; Maksum, Zia Ul
2016-11-01
Semarang is the biggest city in central Java-Indonesia which has a rapid and massive infrastructure development nowadays. In order to control water resources and flood, the local goverment has been built east and west flood canal in Kaligarang and West Semarang River. One of main problem in Semarang city is the lack of fresh water in dry season because ground water is not rechargeable well. Rechargeable groundwater ability depends on underground water recharge rate and catchment area condition. The objective of the study is to determine condition and classification of water catchment area in Semarang city. The catchment area conditions will be determine by five parameters as follows soil type, land use, slope, ground water potential and rainfall intensity. In this study, we use three methods approach to solve the problem which is segmentation classification to acquire land use classification from high resolution imagery using nearest neighborhood algorithm, Interferometric Synthetic Aperture Radar (SAR) to derive DTM from SAR Imagery and multi criteria weighting and spatial analysis using GIS method. There are three types optical image (ALOS PRISM, SPOT-6 and ALOS PALSAR) to calculate water catchment area condition in Semarang city. For final result, this research will divide the water catchment into six criteria as follows good, naturally normal, early critical, a little bit critical, critical and very critical condition. The result shows that water catchment area condition is in an early critical condition around 2607,523 Ha (33,17 %), naturally normal condition around 1507,674 Ha (19,18 %), a little bit critical condition around 1452,931 Ha (18,48 %), good with 1157,04 Ha (14,72 %), critical with 1058,639 Ha (13,47 %) and very critical with 75,0387 Ha (0,95 %). The distribution of water catchment area conditions in West and East Flood Canal have an irreguler pattern. In northern area of watershed consists of begin to critical, naturally normal and good condition. Meanwhile in southern area of watershed consists of a little bit critical, critical and very critical condition.
NASA Astrophysics Data System (ADS)
Karacostas, Theodore S.; Bampzelis, Dimitrios; Karipidou, Symela; Pytharoulis, Ioannis; Tegoulias, Ioannis; Kartsios, Stergios; Kotsopoulos, Stylianos; Pakalidou, Nikoletta
2015-04-01
The objective on this study is to identify and categorize the daily synoptic circulation patterns encountered between the two periods, in near-present (2001-2010) and future (2041-2050), over the greater area of central and northern Greece, under the "DAPHNE" project (www.daphne-meteo.gr). The followed up statistical analyses and comparisons are focus on the demonstration of the differences in the frequency of occurrences of the synoptic situations between the two time periods, aiming at mitigating drought in central Greece by means of Weather Modification. Actually, within the context of the project, the daily synoptic circulation patterns encountered during the near-present ten-year period are identified and classified according to Karacostas et al. (1992) synoptic classification, into ten distinct synoptic conditions, based on the isobaric level of 500hPa. A similar procedure is adopted for the future period 2041-2050, by developing the mid-tropospheric synoptic circulation patterns through the RegCM3 regional climate model, under the IPCC scenario A1B. Results indicate that certain differences exist between near-present and future frequency distribution of occurrences of the synoptic situations over the study area. The northwest (NW) and southwest (SW) synoptic circulation patterns remain the most frequent synoptic conditions observed for both examined periods. The low pressure system activity over the area exhibit significant decrease during the future period, as it is depicted from the inter-comparison of the frequencies of the closed low (L-2) and cut-off low (L-3) systems. On the other hand, the unorganized synoptic conditions, which are mostly identified as high-low patterns (H-L), appear to increase considerably. The frequencies of zonal flow (ZON) and those of synoptic conditions associated with the presence of high-pressure system over the area, that is (H-1) and (H-2), remain almost unchanged between the two periods. The impact of the aforementioned differences in the frequencies of the synoptic conditions during the future period is examined on a yearly and seasonal basis. The contribution of each synoptic condition on the annual precipitation amounts are estimated for the near-present period, which coupled with the altered frequencies of the synoptic conditions for the future period, result to the future projected annual precipitation amounts. Possible decrease in precipitation amounts is indicated during the future period, as a result of the reduction in the frequencies of certain synoptic conditions associated with high amount of precipitation during the near-present conditions. Acknowledgments: This research work is part of DAPHNE project (11SYN_8_1088_TPE) which is co-funded by the European Union (European Regional Development Fund) and Greek National Funds, through the action "COOPERATION 2011: Partnerships of Production and Research Institutions in Focused Research and Technology Sectors" in the framework of the operational programme "Competitiveness and Enterpreneurship" and Regions in Transition (OPC II, NSRF 2007-2013).
A European classification of services for long-term care—the EU-project eDESDE-LTC
Weber, Germain; Brehmer, Barbara; Zeilinger, Elisabeth; Salvador-Carulla, Luis
2009-01-01
Purpose and theory The eDESDE-LTC project aims at developing an operational system for coding, mapping and comparing services for long-term care (LTC) across EU. The projects strategy is to improve EU listing and access to relevant sources of healthcare information via development of SEMANTIC INTER-OPERABILITY in eHEALTH (coding and listing of services for LTC); to increase access to relevant sources of information on LTC services, and to improve linkages between national and regional websites; to foster cooperation with international organizations (OECD). Methods This operational system will include a standard classification of main types of care for persons with LTC needs and an instrument for mapping and standard description of services. These instruments are based on previous classification systems for mental health services (ESMS), disabilities services (DESDE) and ageing services (DESDAE). A Delphi panel made by seven partners developed a DESDE-LTC beta version, which was translated into six languages. The feasibility of DESDE-LTC is tested in six countries using national focal groups. Then the final version will be developed by the Delphi panel, a webpage, training material and course will be carried out. Results and conclusions The eDESDE-LTC system will be piloted in two EU countries (Spain and Bulgaria). Evaluation will focus primarily on usability and impact analysis. Discussion The added value of this project is related to the right of “having access to high-quality healthcare when and where it is needed” by EU citizens. Due to semantic variability and service complexity, existing national listings of services do not provide an adequate framework for patient mobility.
SkyDiscovery: Humans and Machines Working Together
NASA Astrophysics Data System (ADS)
Donalek, Ciro; Fang, K.; Drake, A. J.; Djorgovski, S. G.; Graham, M. J.; Mahabal, A.; Williams, R.
2011-01-01
Synoptic sky surveys are now discovering tens to hundreds of transient events every clear night, and that data rate is expected to increase dramatically as we move towards the LSST. A key problem is classification of transients, which determines their scientific interest and possible follow-up. Some of the relevant information is contextual, and easily recognizable by humans looking at images, but it is very hard to encode in the data pipelines. Crowdsourcing (aka Citizen Science) provides one possible way to gather such information. SkyDiscovery.org is a website that allows experts and citizen science enthusiasts to work together and share information in a collaborative scientific discovery environment. Currently there are two projects running on the website. In the Event Classification project users help finding candidate transients through a series of questions related to the images shown. Event classification depends very much form the contextual information and humans are remarkably effective at recognizing noise in incomplete heterogeneous data and figuring out which contextual information is important. In the SNHunt project users are requested to look for new objects appearing on images of galaxies taken by the Catalina Real-time Transient Survey, in order to find all the supernovae occurring in nearby bright galaxies. Images are served alongside with other tools that can help the discovery. A multi level approach allows the complexity of the interface to be tailored to the expertise level of the user. An entry level user can just review images and validate events as being real, while a more advanced user would be able to interact with the data associated to an event. The data gathered will not be only analyzed and used directly for some specific science project, but also to train well-defined algorithms to be used in automating such data analysis in the future.
1987-01-01
DESIGNS FOR THE ACCELERATED CAT -ASVAB * PROJECT Peter H. Stoloff DTIC’- , " SELECTE -NOV 2 3 987 A Division of Hudson Institute CENTER FOR NAVAL ANALYSES...65153M C0031 SI TITLE (Include Security Classification) Equivalent-Groups Versus Single-Group Equating Designs For The Accelerated CAT -ASVAB Project...GROUP ACAP (Accelerated CAT -ASVAB Program), Aptitude tests, ASVAB (Armed 05 10 Services Vocational Aptitude Battery), CAT (Computerized Adaptive Test
Coast Guard: Progress Being Made on Deepwater Project, but Risks Remain
2001-05-01
Risks Remain GAO-01-564 Form SF298 Citation Data Report Date ("DD MON YYYY") 00MAY2001 Report Type N/A Dates Covered (from... to) ("DD MON YYYY...34) Title and Subtitle COAST GUARD: Progress Being Made on Deepwater Project, but Risks Remain Contract or Grant Number Program Element Number Authors...for this project. As agreed with your office, this report focuses on the major risks facing the Subject Terms Document Classification unclassified
CRP Henri Tudor at TREC 2014: Combining Search Results for Clinical Decision Support
2014-11-01
their pairwise semantic similarity. Acknowledgments This work has been done in the context of the GECAMed2 R&D project (“ Gestion de Cabinets Médicaux...AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) CR SANTEC, Public Research...NIST) and the Defense Advanced Research Projects Agency (DARPA). 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
Li, Pengfei; Jiang, Yongying; Xiang, Jiawei
2014-01-01
To deal with the difficulty to obtain a large number of fault samples under the practical condition for mechanical fault diagnosis, a hybrid method that combined wavelet packet decomposition and support vector classification (SVC) is proposed. The wavelet packet is employed to decompose the vibration signal to obtain the energy ratio in each frequency band. Taking energy ratios as feature vectors, the pattern recognition results are obtained by the SVC. The rolling bearing and gear fault diagnostic results of the typical experimental platform show that the present approach is robust to noise and has higher classification accuracy and, thus, provides a better way to diagnose mechanical faults under the condition of small fault samples. PMID:24688361
A task-difficulty artifact in subliminal priming.
Pratte, Michael S; Rouder, Jeffrey N
2009-08-01
Subliminal priming is said to occur when a subliminal prime influences the classification of a subsequent target. Most subliminal-priming claims are based on separate target- and prime-classification tasks. Because primes are intended to be subliminal, the prime-classification task is difficult, and the target-classification task is easy. To assess whether this task-difficulty difference accounts for previous claims of subliminal priming, we manipulated the ease of the prime-classification task by intermixing long-duration (visible) primes with short-duration (near liminal) ones. In Experiment 1, this strategy of intermixing long-duration primes raised classification of the short-duration ones. In Experiments 2 and 3, prime duration was lowered in such a way that prime classification was at chance in intermixed presentations. Under these conditions, we failed to observe any priming effects; hence, previous demonstrations of subliminal priming may simply have reflected a task-difficulty artifact.
Effects of granularity on the natural classification of loose cover layer rock
NASA Astrophysics Data System (ADS)
Zhang, Shuhui; Wang, Peng; Zhang, Zhiqiang
2018-03-01
In the sublevel caving method, with developing depth of underground mines increasing, the ore loss and dilution is become more and more remarkable that is due to the natural classification of loose cover layer rock. Therefore, this paper researches that granularity are one of the main factors affecting the natural classification, and carries out a physical simulation experiment of loose cover layer rock granularity effects of natural classification. Through the experiment we found that granularity has important effect on natural classification. Under the condition of the same weight, we found the closer of granularities that consist of cover layer rock, the less prone to natural classification. Otherwise, it will be prone to natural classification. This study has a guiding significance for a mine, forming a scientific and reasonable cover layer rock, and reducing the ore loss and dilution in the mining process.
Oregon Hydrologic Landscapes: An Approach for Broadscale Hydrologic Classification
Gaged streams represent only a small percentage of watershed hydrologic conditions throughout the Unites States and globe, but there is a growing need for hydrologic classification systems that can serve as the foundation for broad-scale assessments of the hydrologic functions of...
An Inventory and Classification of Coastal Wetlands of the Laurentian Great Lakes
This inventory and classification of DRM/riverine coastal wetlands is needed for doing a probability based selection for assessments of this valued aquatic resource across large areas, e.g., by states for 305B reports of coastal wetland condition.
Impervious surfaces mapping using high resolution satellite imagery
NASA Astrophysics Data System (ADS)
Shirmeen, Tahmina
In recent years, impervious surfaces have emerged not only as an indicator of the degree of urbanization, but also as an indicator of environmental quality. As impervious surface area increases, storm water runoff increases in velocity, quantity, temperature and pollution load. Any of these attributes can contribute to the degradation of natural hydrology and water quality. Various image processing techniques have been used to identify the impervious surfaces, however, most of the existing impervious surface mapping tools used moderate resolution imagery. In this project, the potential of standard image processing techniques to generate impervious surface data for change detection analysis using high-resolution satellite imagery was evaluated. The city of Oxford, MS was selected as the study site for this project. Standard image processing techniques, including Normalized Difference Vegetation Index (NDVI), Principal Component Analysis (PCA), a combination of NDVI and PCA, and image classification algorithms, were used to generate impervious surfaces from multispectral IKONOS and QuickBird imagery acquired in both leaf-on and leaf-off conditions. Accuracy assessments were performed, using truth data generated by manual classification, with Kappa statistics and Zonal statistics to select the most appropriate image processing techniques for impervious surface mapping. The performance of selected image processing techniques was enhanced by incorporating Soil Brightness Index (SBI) and Greenness Index (GI) derived from Tasseled Cap Transformed (TCT) IKONOS and QuickBird imagery. A time series of impervious surfaces for the time frame between 2001 and 2007 was made using the refined image processing techniques to analyze the changes in IS in Oxford. It was found that NDVI and the combined NDVI--PCA methods are the most suitable image processing techniques for mapping impervious surfaces in leaf-off and leaf-on conditions respectively, using high resolution multispectral imagery. It was also found that IS data generated by these techniques can be refined by removing the conflicting dry soil patches using SBI and GI obtained from TCT of the same imagery used for IS data generation. The change detection analysis of the IS time series shows that Oxford experienced the major changes in IS from the year 2001 to 2004 and 2006 to 2007.
Assessment of government tribology programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, M.B.; Levinson, T.M.
1985-09-01
An assessment has been made to determine current tribology research and development work sponsored or conducted by the government. Data base surveys and discussions were conducted to isolate current projects sponsored primarily by 21 different government organizations. These projects were classified by subject, objective, energy relevance, type of research, phenomenon being investigated, variables being studied, type of motion, materials and application. An abstract of each project was prepared which included the classification, sponsor, performing organization and a project description. It was found that current work is primarily materials oriented to meet military requirements. Other than the high temperature programs verymore » few of the tribology projects accomplish energy related objectives.« less
NASA Astrophysics Data System (ADS)
Gallart, F.; Prat, N.; García-Roger, E. M.; Latron, J.; Rieradevall, M.; Llorens, P.; Barberá, G. G.; Brito, D.; De Girolamo, A. M.; Lo Porto, A.; Buffagni, A.; Erba, S.; Neves, R.; Nikolaidis, N. P.; Perrin, J. L.; Querner, E. P.; Quiñonero, J. M.; Tournoud, M. G.; Tzoraki, O.; Skoulikidis, N.; Gómez, R.; Sánchez-Montoya, M. M.; Froebrich, J.
2012-09-01
Temporary streams are those water courses that undergo the recurrent cessation of flow or the complete drying of their channel. The structure and composition of biological communities in temporary stream reaches are strongly dependent on the temporal changes of the aquatic habitats determined by the hydrological conditions. Therefore, the structural and functional characteristics of aquatic fauna to assess the ecological quality of a temporary stream reach cannot be used without taking into account the controls imposed by the hydrological regime. This paper develops methods for analysing temporary streams' aquatic regimes, based on the definition of six aquatic states that summarize the transient sets of mesohabitats occurring on a given reach at a particular moment, depending on the hydrological conditions: Hyperrheic, Eurheic, Oligorheic, Arheic, Hyporheic and Edaphic. When the hydrological conditions lead to a change in the aquatic state, the structure and composition of the aquatic community changes according to the new set of available habitats. We used the water discharge records from gauging stations or simulations with rainfall-runoff models to infer the temporal patterns of occurrence of these states in the Aquatic States Frequency Graph we developed. The visual analysis of this graph is complemented by the development of two metrics which describe the permanence of flow and the seasonal predictability of zero flow periods. Finally, a classification of temporary streams in four aquatic regimes in terms of their influence over the development of aquatic life is updated from the existing classifications, with stream aquatic regimes defined as Permanent, Temporary-pools, Temporary-dry and Episodic. While aquatic regimes describe the long-term overall variability of the hydrological conditions of the river section and have been used for many years by hydrologists and ecologists, aquatic states describe the availability of mesohabitats in given periods that determine the presence of different biotic assemblages. This novel concept links hydrological and ecological conditions in a unique way. All these methods were implemented with data from eight temporary streams around the Mediterranean within the MIRAGE project. Their application was a precondition to assessing the ecological quality of these streams.
Shahly, Victoria; Berglund, Patricia A; Coulouvrat, Catherine; Fitzgerald, Timothy; Hajak, Goeran; Roth, Thomas; Shillington, Alicia C; Stephenson, Judith J; Walsh, James K; Kessler, Ronald C
2012-10-01
Insomnia is a common and seriously impairing condition that often goes unrecognized. To examine associations of broadly defined insomnia (ie, meeting inclusion criteria for a diagnosis from International Statistical Classification of Diseases, 10th Revision, DSM-IV, or Research Diagnostic Criteria/International Classification of Sleep Disorders, Second Edition) with costly workplace accidents and errors after excluding other chronic conditions among workers in the America Insomnia Survey (AIS). A national cross-sectional telephone survey (65.0% cooperation rate) of commercially insured health plan members selected from the more than 34 million in the HealthCore Integrated Research Database. Four thousand nine hundred ninety-one employed AIS respondents. Costly workplace accidents or errors in the 12 months before the AIS interview were assessed with one question about workplace accidents "that either caused damage or work disruption with a value of $500 or more" and another about other mistakes "that cost your company $500 or more." Current insomnia with duration of at least 12 months was assessed with the Brief Insomnia Questionnaire, a validated (area under the receiver operating characteristic curve, 0.86 compared with diagnoses based on blinded clinical reappraisal interviews), fully structured diagnostic interview. Eighteen other chronic conditions were assessed with medical/pharmacy claims records and validated self-report scales. Insomnia had a significant odds ratio with workplace accidents and/or errors controlled for other chronic conditions (1.4). The odds ratio did not vary significantly with respondent age, sex, educational level, or comorbidity. The average costs of insomnia-related accidents and errors ($32 062) were significantly higher than those of other accidents and errors ($21 914). Simulations estimated that insomnia was associated with 7.2% of all costly workplace accidents and errors and 23.7% of all the costs of these incidents. These proportions are higher than for any other chronic condition, with annualized US population projections of 274 000 costly insomnia-related workplace accidents and errors having a combined value of US $31.1 billion. Effectiveness trials are needed to determine whether expanded screening, outreach, and treatment of workers with insomnia would yield a positive return on investment for employers.
Exploring the CAESAR database using dimensionality reduction techniques
NASA Astrophysics Data System (ADS)
Mendoza-Schrock, Olga; Raymer, Michael L.
2012-06-01
The Civilian American and European Surface Anthropometry Resource (CAESAR) database containing over 40 anthropometric measurements on over 4000 humans has been extensively explored for pattern recognition and classification purposes using the raw, original data [1-4]. However, some of the anthropometric variables would be impossible to collect in an uncontrolled environment. Here, we explore the use of dimensionality reduction methods in concert with a variety of classification algorithms for gender classification using only those variables that are readily observable in an uncontrolled environment. Several dimensionality reduction techniques are employed to learn the underlining structure of the data. These techniques include linear projections such as the classical Principal Components Analysis (PCA) and non-linear (manifold learning) techniques, such as Diffusion Maps and the Isomap technique. This paper briefly describes all three techniques, and compares three different classifiers, Naïve Bayes, Adaboost, and Support Vector Machines (SVM), for gender classification in conjunction with each of these three dimensionality reduction approaches.
Implementing Classification on a Munitions Response Project
2011-12-01
Detection Dig List IVS/Seed Site Planning Decisions Dig All Anomalies Site Characterization Implementing Classification on a Munitions Response...Details ● Seed emplacement ● EM61-MK2 detection survey RTK GPS ● Select anomalies for further investigation ● Collect cued data using MetalMapper...5.2 mV in channel 2 938 anomalies selected ● All QC seeds detected using this threshold Some just inside the 60-cm halo ● IVS reproducibility
Classification of PSN J12015272-1852183 as a young type Ic SN
NASA Astrophysics Data System (ADS)
Harutyunyan, A.; Benetti, S.; Pastorello, A.; Cappellaro, E.; Tomasella, L.; Ochner, P.; Turatto, M.
2013-06-01
We report the spectroscopic classification (range 335-785 nm; resolution 1.5 nm) of PSN J12015272-1852183 discovered by the CHASE project on June 22.12 UT. The spectrogram obtained on June 23.88 UT with the TNG Telescope (+Dolores), shows that this is a type-Ic supernova. A good match is found with the type-Ic supernova 1994I (Millard et al 1999, ApJ 527, 746) at about six days before maximum light.
Seera, Manjeevan; Lim, Chee Peng; Ishak, Dahaman; Singh, Harapajan
2012-01-01
In this paper, a novel approach to detect and classify comprehensive fault conditions of induction motors using a hybrid fuzzy min-max (FMM) neural network and classification and regression tree (CART) is proposed. The hybrid model, known as FMM-CART, exploits the advantages of both FMM and CART for undertaking data classification and rule extraction problems. A series of real experiments is conducted, whereby the motor current signature analysis method is applied to form a database comprising stator current signatures under different motor conditions. The signal harmonics from the power spectral density are extracted as discriminative input features for fault detection and classification with FMM-CART. A comprehensive list of induction motor fault conditions, viz., broken rotor bars, unbalanced voltages, stator winding faults, and eccentricity problems, has been successfully classified using FMM-CART with good accuracy rates. The results are comparable, if not better, than those reported in the literature. Useful explanatory rules in the form of a decision tree are also elicited from FMM-CART to analyze and understand different fault conditions of induction motors.
[Adolescent scoliosis : From deformity to treatment].
Schulze, A; Schrading, S; Betsch, M; Quack, V; Tingart, M
2015-11-01
Scoliosis affects up to 6 % of the population. The resulting spine deformity, the increasing risk of back pain, cosmetic aspects, pulmonary disorders if the Cobb angle is > 80°, and the progress of the deformity to > 50° after the end of growth indicate non-operative or operative therapy. In daily clinical practice, the classifications of scoliosis allow the therapy to be adapted. Classifications consider deformity, topography of the scoliosis, and the age at diagnosis. This publication gives an overview of the relevant and most common classifications in the treatment of adolescent scoliosis. For evaluation, the deformity measurement on the coronary radiographic projection of the total spine (Cobb angle) is relevant to therapy. The classification of topography, form, and the sagittal profile of the deformity of the spine are useful for preoperative planning of the fusion level. Classifications that take into account the age at the time of the diagnosis of scoliosis differentiate among early onset scoliosis (younger than 10 years of age), adolescent scoliosis (up to the end of growth), and adult scoliosis. Early onset scoliosis is subdivided by age and etiology. Therapy is derived from the classification of clinical and radiological findings. Classifications that take into account clinical and radiological parameters are essential components of modern scoliosis therapy.
NASA Astrophysics Data System (ADS)
Pereira, A. A.; Gironas, J. A.; Passalacqua, P.; Mejia, A.; Niemann, J. D.
2017-12-01
Previous work has shown that lithological, tectonic and climatic processes have a major influence in shaping the geomorphology of river networks. Accordingly, quantitative classification methods have been developed to identify and characterize network types (dendritic, parallel, pinnate, rectangular and trellis) based solely on the self-affinity of their planform properties, computed from available Digital Elevation Model (DEM) data. In contrast, this research aim is to include both horizontal and vertical properties to evaluate a quantitative classification method for river networks. We include vertical properties to consider the unique surficial conditions (e.g., large and steep height drops, volcanic activity, and complexity of stream networks) of the Andes Mountains. Furthermore, the goal of the research is also to explain the implications and possible relations between the hydro-geomorphological properties and climatic conditions. The classification method is applied to 42 basins in the southern Andes in Chile, ranging in size from 208 Km2 to 8,000 Km2. The planform metrics include the incremental drainage area, stream course irregularity and junction angles, while the vertical metrics include the hypsometric curve and the slope-area relationship. We introduce new network structures (Brush, Funnel and Low Sinuosity Rectangular), possibly unique to the Andes, that can be quantitatively differentiated from previous networks identified in other geographic regions. Then, this research evaluates the effect that excluding different Strahler order streams has on the horizontal properties and therefore in the classification. We found that climatic conditions are not only linked to horizontal parameters, but also to vertical ones, finding significant correlation between climatic variables (average near-surface temperature and rainfall) and vertical measures (parameters associated with the hypsometric curve and slope-area relation). The proposed classification shows differences among basins previously classified as the same type, which are not noticeable in their horizontal properties and helps reduce misclassifications within the old clusters. Additional hydro-geomorphological metrics are to be considered in the classification method to improve the effectiveness of it.
Large-scale classification of traffic signs under real-world conditions
NASA Astrophysics Data System (ADS)
Hazelhoff, Lykele; Creusen, Ivo; van de Wouw, Dennis; de With, Peter H. N.
2012-02-01
Traffic sign inventories are important to governmental agencies as they facilitate evaluation of traffic sign locations and are beneficial for road and sign maintenance. These inventories can be created (semi-)automatically based on street-level panoramic images. In these images, object detection is employed to detect the signs in each image, followed by a classification stage to retrieve the specific sign type. Classification of traffic signs is a complicated matter, since sign types are very similar with only minor differences within the sign, a high number of different signs is involved and multiple distortions occur, including variations in capturing conditions, occlusions, viewpoints and sign deformations. Therefore, we propose a method for robust classification of traffic signs, based on the Bag of Words approach for generic object classification. We extend the approach with a flexible, modular codebook to model the specific features of each sign type independently, in order to emphasize at the inter-sign differences instead of the parts common for all sign types. Additionally, this allows us to model and label the present false detections. Furthermore, analysis of the classification output provides the unreliable results. This classification system has been extensively tested for three different sign classes, covering 60 different sign types in total. These three data sets contain the sign detection results on street-level panoramic images, extracted from a country-wide database. The introduction of the modular codebook shows a significant improvement for all three sets, where the system is able to classify about 98% of the reliable results correctly.
Classification of Tree Species in Overstorey Canopy of Subtropical Forest Using QuickBird Images.
Lin, Chinsu; Popescu, Sorin C; Thomson, Gavin; Tsogt, Khongor; Chang, Chein-I
2015-01-01
This paper proposes a supervised classification scheme to identify 40 tree species (2 coniferous, 38 broadleaf) belonging to 22 families and 36 genera in high spatial resolution QuickBird multispectral images (HMS). Overall kappa coefficient (OKC) and species conditional kappa coefficients (SCKC) were used to evaluate classification performance in training samples and estimate accuracy and uncertainty in test samples. Baseline classification performance using HMS images and vegetation index (VI) images were evaluated with an OKC value of 0.58 and 0.48 respectively, but performance improved significantly (up to 0.99) when used in combination with an HMS spectral-spatial texture image (SpecTex). One of the 40 species had very high conditional kappa coefficient performance (SCKC ≥ 0.95) using 4-band HMS and 5-band VIs images, but, only five species had lower performance (0.68 ≤ SCKC ≤ 0.94) using the SpecTex images. When SpecTex images were combined with a Visible Atmospherically Resistant Index (VARI), there was a significant improvement in performance in the training samples. The same level of improvement could not be replicated in the test samples indicating that a high degree of uncertainty exists in species classification accuracy which may be due to individual tree crown density, leaf greenness (inter-canopy gaps), and noise in the background environment (intra-canopy gaps). These factors increase uncertainty in the spectral texture features and therefore represent potential problems when using pixel-based classification techniques for multi-species classification.
NASA Astrophysics Data System (ADS)
Geelen, Christopher D.; Wijnhoven, Rob G. J.; Dubbelman, Gijs; de With, Peter H. N.
2015-03-01
This research considers gender classification in surveillance environments, typically involving low-resolution images and a large amount of viewpoint variations and occlusions. Gender classification is inherently difficult due to the large intra-class variation and interclass correlation. We have developed a gender classification system, which is successfully evaluated on two novel datasets, which realistically consider the above conditions, typical for surveillance. The system reaches a mean accuracy of up to 90% and approaches our human baseline of 92.6%, proving a high-quality gender classification system. We also present an in-depth discussion of the fundamental differences between SVM and RF classifiers. We conclude that balancing the degree of randomization in any classifier is required for the highest classification accuracy. For our problem, an RF-SVM hybrid classifier exploiting the combination of HSV and LBP features results in the highest classification accuracy of 89.9 0.2%, while classification computation time is negligible compared to the detection time of pedestrians.
Improving condition severity classification with an efficient active learning based framework
Nissim, Nir; Boland, Mary Regina; Tatonetti, Nicholas P.; Elovici, Yuval; Hripcsak, George; Shahar, Yuval; Moskovitch, Robert
2017-01-01
Classification of condition severity can be useful for discriminating among sets of conditions or phenotypes, for example when prioritizing patient care or for other healthcare purposes. Electronic Health Records (EHRs) represent a rich source of labeled information that can be harnessed for severity classification. The labeling of EHRs is expensive and in many cases requires employing professionals with high level of expertise. In this study, we demonstrate the use of Active Learning (AL) techniques to decrease expert labeling efforts. We employ three AL methods and demonstrate their ability to reduce labeling efforts while effectively discriminating condition severity. We incorporate three AL methods into a new framework based on the original CAESAR (Classification Approach for Extracting Severity Automatically from Electronic Health Records) framework to create the Active Learning Enhancement framework (CAESAR-ALE). We applied CAESAR-ALE to a dataset containing 516 conditions of varying severity levels that were manually labeled by seven experts. Our dataset, called the “CAESAR dataset,” was created from the medical records of 1.9 million patients treated at Columbia University Medical Center (CUMC). All three AL methods decreased labelers’ efforts compared to the learning methods applied by the original CAESER framework in which the classifier was trained on the entire set of conditions; depending on the AL strategy used in the current study, the reduction ranged from 48% to 64% that can result in significant savings, both in time and money. As for the PPV (precision) measure, CAESAR-ALE achieved more than 13% absolute improvement in the predictive capabilities of the framework when classifying conditions as severe. These results demonstrate the potential of AL methods to decrease the labeling efforts of medical experts, while increasing accuracy given the same (or even a smaller) number of acquired conditions. We also demonstrated that the methods included in the CAESAR-ALE framework (Exploitation and Combination_XA) are more robust to the use of human labelers with different levels of professional expertise. PMID:27016383
Improving condition severity classification with an efficient active learning based framework.
Nissim, Nir; Boland, Mary Regina; Tatonetti, Nicholas P; Elovici, Yuval; Hripcsak, George; Shahar, Yuval; Moskovitch, Robert
2016-06-01
Classification of condition severity can be useful for discriminating among sets of conditions or phenotypes, for example when prioritizing patient care or for other healthcare purposes. Electronic Health Records (EHRs) represent a rich source of labeled information that can be harnessed for severity classification. The labeling of EHRs is expensive and in many cases requires employing professionals with high level of expertise. In this study, we demonstrate the use of Active Learning (AL) techniques to decrease expert labeling efforts. We employ three AL methods and demonstrate their ability to reduce labeling efforts while effectively discriminating condition severity. We incorporate three AL methods into a new framework based on the original CAESAR (Classification Approach for Extracting Severity Automatically from Electronic Health Records) framework to create the Active Learning Enhancement framework (CAESAR-ALE). We applied CAESAR-ALE to a dataset containing 516 conditions of varying severity levels that were manually labeled by seven experts. Our dataset, called the "CAESAR dataset," was created from the medical records of 1.9 million patients treated at Columbia University Medical Center (CUMC). All three AL methods decreased labelers' efforts compared to the learning methods applied by the original CAESER framework in which the classifier was trained on the entire set of conditions; depending on the AL strategy used in the current study, the reduction ranged from 48% to 64% that can result in significant savings, both in time and money. As for the PPV (precision) measure, CAESAR-ALE achieved more than 13% absolute improvement in the predictive capabilities of the framework when classifying conditions as severe. These results demonstrate the potential of AL methods to decrease the labeling efforts of medical experts, while increasing accuracy given the same (or even a smaller) number of acquired conditions. We also demonstrated that the methods included in the CAESAR-ALE framework (Exploitation and Combination_XA) are more robust to the use of human labelers with different levels of professional expertise. Copyright © 2016 Elsevier Inc. All rights reserved.
Tanno, L K; Calderon, M A; Demoly, P
2016-05-01
Since 2013, an international collaboration of Allergy Academies, including first the World Allergy Organization (WAO), the American Academy of Allergy Asthma and Immunology (AAAAI), and the European Academy of Allergy and Clinical Immunology (EAACI), and then the American College of Allergy, Asthma and Immunology (ACAAI), the Latin American Society of Allergy, Asthma and Immunology (SLAAI), and the Asia Pacific Association of Allergy, Asthma and Clinical Immunology (APAAACI), has spent tremendous efforts to have a better and updated classification of allergic and hypersensitivity conditions in the forthcoming International Classification of Diseases (ICD)-11 version by providing evidences and promoting actions for the need for changes. The latest action was the implementation of a classification proposal of hypersensitivity/allergic diseases built by crowdsourcing the Allergy Academy leaderships. Following bilateral discussions with the representatives of the ICD-11 revision, a face-to-face meeting was held at the United Nations Office in Geneva and a simplification process of the hypersensitivity/allergic disorders classification was carried out to better fit the ICD structure. We are here presenting the end result of what we consider to be a model of good collaboration between the World Health Organization and a specialty. We strongly believe that the outcomes of all past and future actions will impact positively the recognition of the allergy specialty as well as the quality improvement of healthcare system for allergic and hypersensitivity conditions worldwide. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Santa Ana Forecasting and Classification
NASA Astrophysics Data System (ADS)
Rolinski, T.; Eichhorn, D.; D'Agostino, B. J.; Vanderburg, S.; Means, J. D.
2011-12-01
Southern California experiences wildfires every year, but under certain circumstances these fires grow into extremely large and destructive fires, such as the Cedar Fire of 2003 and the Witch Fire of 2007. The Cedar Fire burned over 1100 km2 , destroyed more than 2200 homes and killed 15 people; the Witch fire burned more than 800 km2, destroyed more than 1000 homes and killed 2 people. Fires can quickly become too large and dangerous to fight if they are accompanied by a very strong "Santa Ana" condition, which is a foehn-like wind that may bring strong winds and very low humidities. However there is an entire range of specific weather conditions that fall into the broad category of Santa Anas, from cold and blustery to hot with very little wind. All types are characterized by clear skies and low humidity. Since the potential for destructive fire is dependent on the characteristics of Santa Anas, as well as the level of fuel moisture, there exists a need for further classification, such as is done with tropical cyclones and after-the-fact with tornadoes. We use surface data and fuel moisture combined with reanalysis to diagnose those conditions that result in Santa Anas with the greatest potential for destructive fires. We use this data to produce a new classification system for Santa Anas. This classification system should be useful for informing the relevant agencies for mitigation and response planning. In the future this same classification may be made available to the general public.
Groenendyk, Derek G.; Ferré, Ty P.A.; Thorp, Kelly R.; Rice, Amy K.
2015-01-01
Soils lie at the interface between the atmosphere and the subsurface and are a key component that control ecosystem services, food production, and many other processes at the Earth’s surface. There is a long-established convention for identifying and mapping soils by texture. These readily available, georeferenced soil maps and databases are used widely in environmental sciences. Here, we show that these traditional soil classifications can be inappropriate, contributing to bias and uncertainty in applications from slope stability to water resource management. We suggest a new approach to soil classification, with a detailed example from the science of hydrology. Hydrologic simulations based on common meteorological conditions were performed using HYDRUS-1D, spanning textures identified by the United States Department of Agriculture soil texture triangle. We consider these common conditions to be: drainage from saturation, infiltration onto a drained soil, and combined infiltration and drainage events. Using a k-means clustering algorithm, we created soil classifications based on the modeled hydrologic responses of these soils. The hydrologic-process-based classifications were compared to those based on soil texture and a single hydraulic property, Ks. Differences in classifications based on hydrologic response versus soil texture demonstrate that traditional soil texture classification is a poor predictor of hydrologic response. We then developed a QGIS plugin to construct soil maps combining a classification with georeferenced soil data from the Natural Resource Conservation Service. The spatial patterns of hydrologic response were more immediately informative, much simpler, and less ambiguous, for use in applications ranging from trafficability to irrigation management to flood control. The ease with which hydrologic-process-based classifications can be made, along with the improved quantitative predictions of soil responses and visualization of landscape function, suggest that hydrologic-process-based classifications should be incorporated into environmental process models and can be used to define application-specific maps of hydrologic function. PMID:26121466
Groenendyk, Derek G; Ferré, Ty P A; Thorp, Kelly R; Rice, Amy K
2015-01-01
Soils lie at the interface between the atmosphere and the subsurface and are a key component that control ecosystem services, food production, and many other processes at the Earth's surface. There is a long-established convention for identifying and mapping soils by texture. These readily available, georeferenced soil maps and databases are used widely in environmental sciences. Here, we show that these traditional soil classifications can be inappropriate, contributing to bias and uncertainty in applications from slope stability to water resource management. We suggest a new approach to soil classification, with a detailed example from the science of hydrology. Hydrologic simulations based on common meteorological conditions were performed using HYDRUS-1D, spanning textures identified by the United States Department of Agriculture soil texture triangle. We consider these common conditions to be: drainage from saturation, infiltration onto a drained soil, and combined infiltration and drainage events. Using a k-means clustering algorithm, we created soil classifications based on the modeled hydrologic responses of these soils. The hydrologic-process-based classifications were compared to those based on soil texture and a single hydraulic property, Ks. Differences in classifications based on hydrologic response versus soil texture demonstrate that traditional soil texture classification is a poor predictor of hydrologic response. We then developed a QGIS plugin to construct soil maps combining a classification with georeferenced soil data from the Natural Resource Conservation Service. The spatial patterns of hydrologic response were more immediately informative, much simpler, and less ambiguous, for use in applications ranging from trafficability to irrigation management to flood control. The ease with which hydrologic-process-based classifications can be made, along with the improved quantitative predictions of soil responses and visualization of landscape function, suggest that hydrologic-process-based classifications should be incorporated into environmental process models and can be used to define application-specific maps of hydrologic function.
Wagner, Edwin E
2008-07-01
I present a formal system that accounts for the misleading distinction between tests formerly termed objective and projective, duly noted by Meyer and Kurtz (2006). Three principles of Response Rightness, Response Latitude and Stimulus Ambiguity are shown to govern, in combination, the formal operating characteristics of tests, producing inevitable overlap between "objective" and "projective" tests and creating at least three "types" of tests historically regarded as being projective in nature. The system resolves many past issues regarding test classification and can be generalized to include all psychological tests.
NASA Astrophysics Data System (ADS)
1988-08-01
This Register is intended to serve as a source of information on research which is being conducted in all fields (both natural and human sciences) in the Republic of South Africa. New and current research projects that were commenced or modified during 1986 and 1987, on which information was received by the compilers until January 1988, are included, with the exception of confidential projects. Project titles and keywords are presented in the language as supplied, and the classifications are based on those provided by the primary sources.
Application of Sensor Fusion to Improve Uav Image Classification
NASA Astrophysics Data System (ADS)
Jabari, S.; Fathollahi, F.; Zhang, Y.
2017-08-01
Image classification is one of the most important tasks of remote sensing projects including the ones that are based on using UAV images. Improving the quality of UAV images directly affects the classification results and can save a huge amount of time and effort in this area. In this study, we show that sensor fusion can improve image quality which results in increasing the accuracy of image classification. Here, we tested two sensor fusion configurations by using a Panchromatic (Pan) camera along with either a colour camera or a four-band multi-spectral (MS) camera. We use the Pan camera to benefit from its higher sensitivity and the colour or MS camera to benefit from its spectral properties. The resulting images are then compared to the ones acquired by a high resolution single Bayer-pattern colour camera (here referred to as HRC). We assessed the quality of the output images by performing image classification tests. The outputs prove that the proposed sensor fusion configurations can achieve higher accuracies compared to the images of the single Bayer-pattern colour camera. Therefore, incorporating a Pan camera on-board in the UAV missions and performing image fusion can help achieving higher quality images and accordingly higher accuracy classification results.
Koua, Dominique; Kuhn-Nentwig, Lucia
2017-01-01
Spider venoms are rich cocktails of bioactive peptides, proteins, and enzymes that are being intensively investigated over the years. In order to provide a better comprehension of that richness, we propose a three-level family classification system for spider venom components. This classification is supported by an exhaustive set of 219 new profile hidden Markov models (HMMs) able to attribute a given peptide to its precise peptide type, family, and group. The proposed classification has the advantages of being totally independent from variable spider taxonomic names and can easily evolve. In addition to the new classifiers, we introduce and demonstrate the efficiency of hmmcompete, a new standalone tool that monitors HMM-based family classification and, after post-processing the result, reports the best classifier when multiple models produce significant scores towards given peptide queries. The combined used of hmmcompete and the new spider venom component-specific classifiers demonstrated 96% sensitivity to properly classify all known spider toxins from the UniProtKB database. These tools are timely regarding the important classification needs caused by the increasing number of peptides and proteins generated by transcriptomic projects. PMID:28786958
TEMPORAL CORRELATION OF CLASSIFICATIONS IN REMOTE SENSING
A bivariate binary model is developed for estimating the change in land cover from satellite images obtained at two different times. The binary classifications of a pixel at the two times are modeled as potentially correlated random variables, conditional on the true states of th...
Defining Genome Project Standards in a New Era of Sequencing
Chain, Patrick
2018-01-16
Patrick Chain of the DOE Joint Genome Institute gives a talk on behalf of the International Genome Sequencing Standards Consortium on the need for intermediate genome classifications between "draft" and "finished".
ERIC Educational Resources Information Center
Proceedings of the ASIS Annual Meeting, 1997
1997-01-01
Presents abstracts of SIG Sessions. Highlights include digital collections; information retrieval methods; public interest/fair use; classification and indexing; electronic publication; funding; globalization; information technology projects; interface design; networking in developing countries; metadata; multilingual databases; networked…
United States Census Bureau Topics Population Latest Information Age and Sex Ancestry Children Mobility Population Estimates Population Projections Race Veterans Economy Latest Information Portal Other Economic Programs Business Latest Information Business Characteristics Classification Codes
United States Census Bureau Topics Population Latest Information Age and Sex Ancestry Children Mobility Population Estimates Population Projections Race Veterans Economy Latest Information Portal Other Economic Programs Business Latest Information Business Characteristics Classification Codes
United States Census Bureau Topics Population Latest Information Age and Sex Ancestry Children Mobility Population Estimates Population Projections Race Veterans Economy Latest Information Portal Other Economic Programs Business Latest Information Business Characteristics Classification Codes
United States Census Bureau Topics Population Latest Information Age and Sex Ancestry Children Mobility Population Estimates Population Projections Race Veterans Economy Latest Information Portal Other Economic Programs Business Latest Information Business Characteristics Classification Codes
United States Census Bureau Topics Population Latest Information Age and Sex Ancestry Children Mobility Population Estimates Population Projections Race Veterans Economy Latest Information Portal Other Economic Programs Business Latest Information Business Characteristics Classification Codes
United States Census Bureau Topics Population Latest Information Age and Sex Ancestry Children Mobility Population Estimates Population Projections Race Veterans Economy Latest Information Portal Other Economic Programs Business Latest Information Business Characteristics Classification Codes
A Fast Algorithm of Convex Hull Vertices Selection for Online Classification.
Ding, Shuguang; Nie, Xiangli; Qiao, Hong; Zhang, Bo
2018-04-01
Reducing samples through convex hull vertices selection (CHVS) within each class is an important and effective method for online classification problems, since the classifier can be trained rapidly with the selected samples. However, the process of CHVS is NP-hard. In this paper, we propose a fast algorithm to select the convex hull vertices, based on the convex hull decomposition and the property of projection. In the proposed algorithm, the quadratic minimization problem of computing the distance between a point and a convex hull is converted into a linear equation problem with a low computational complexity. When the data dimension is high, an approximate, instead of exact, convex hull is allowed to be selected by setting an appropriate termination condition in order to delete more nonimportant samples. In addition, the impact of outliers is also considered, and the proposed algorithm is improved by deleting the outliers in the initial procedure. Furthermore, a dimension convention technique via the kernel trick is used to deal with nonlinearly separable problems. An upper bound is theoretically proved for the difference between the support vector machines based on the approximate convex hull vertices selected and all the training samples. Experimental results on both synthetic and real data sets show the effectiveness and validity of the proposed algorithm.
Gomes, Liliane R.; Gomes, Marcelo; Jung, Bryan; Paniagua, Beatriz; Ruellas, Antonio C.; Gonçalves, João Roberto; Styner, Martin A.; Wolford, Larry; Cevidanes, Lucia
2015-01-01
Abstract. This study aimed to investigate imaging statistical approaches for classifying three-dimensional (3-D) osteoarthritic morphological variations among 169 temporomandibular joint (TMJ) condyles. Cone-beam computed tomography scans were acquired from 69 subjects with long-term TMJ osteoarthritis (OA), 15 subjects at initial diagnosis of OA, and 7 healthy controls. Three-dimensional surface models of the condyles were constructed and SPHARM-PDM established correspondent points on each model. Multivariate analysis of covariance and direction-projection-permutation (DiProPerm) were used for testing statistical significance of the differences between the groups determined by clinical and radiographic diagnoses. Unsupervised classification using hierarchical agglomerative clustering was then conducted. Compared with healthy controls, OA average condyle was significantly smaller in all dimensions except its anterior surface. Significant flattening of the lateral pole was noticed at initial diagnosis. We observed areas of 3.88-mm bone resorption at the superior surface and 3.10-mm bone apposition at the anterior aspect of the long-term OA average model. DiProPerm supported a significant difference between the healthy control and OA group (p-value=0.001). Clinically meaningful unsupervised classification of TMJ condylar morphology determined a preliminary diagnostic index of 3-D osteoarthritic changes, which may be the first step towards a more targeted diagnosis of this condition. PMID:26158119
Netterstrøm, B; Kristensen, T S; Damsgaard, M T; Olsen, O; Sjøl, A
1991-01-01
As part of the World Health Organisation initiated MONICA project, 2000 men and women aged 30, 40, 50, and 60 from the general population were invited to undergo a medical examination with special emphasis on cardiovascular disease. A total of 1504 (75%) participated, 1209 of whom were employed. The participants answered a questionnaire on working, social, and health conditions and underwent clinical examinations that included the measurement of blood pressure and serum cholesterol, triglyceride, high density lipoprotein, fibrinogen, and glycated haemoglobin (HbA1C) concentrations. Using the demand-control model for measuring job strain suggested by Karasek, the employed people were classified according to those who had suffered job strain and those who had not in two different ways. The subjective classification was based on the participants' statements regarding demand and control in their jobs whereas the objective classification was based on job title and mode of payment. More women than men were classified as having high strain jobs. After adjusting for age and sex no significant association was found between coronary risk factors and subjective job strain. A tendency for an association between fibrinogen and job strain was found. Body mass index and HbA1C concentration were significantly associated with objective job strain independent of confounders. PMID:1931727
Semantic Building FAÇADE Segmentation from Airborne Oblique Images
NASA Astrophysics Data System (ADS)
Lin, Y.; Nex, F.; Yang, M. Y.
2018-05-01
With the introduction of airborne oblique camera systems and the improvement of photogrammetric techniques, high-resolution 2D and 3D data can be acquired in urban areas. This high-resolution data allows us to perform detailed investigations on building roofs and façades which can contribute to LoD3 city modeling. Normally, façade segmentation is achieved from terrestrial views. In this paper, we address the problem from aerial views by using high resolution oblique aerial images as the data source in urban areas. In addition to traditional image features, such as RGB and SIFT, normal vector and planarity are also extracted from dense matching point clouds. Then, these 3D geometrical features are projected back to 2D space to assist façade interpretation. Random forest is trained and applied to label façade pixels. Fully connected conditional random field (CRF), capturing long-range spatial interactions, is used as a post-processing to refine our classification results. Its pairwise potential is defined by a linear combination of Gaussian kernels and the CRF model is efficiently solved by mean field approximation. Experiments show that 3D features can significantly improve classification results. Also, fully connected CRF performs well in correcting noisy pixels.
Sweller, Naomi; Hayes, Brett K
2010-08-01
Three studies examined how task demands that impact on attention to typical or atypical category features shape the category representations formed through classification learning and inference learning. During training categories were learned via exemplar classification or by inferring missing exemplar features. In the latter condition inferences were made about missing typical features alone (typical feature inference) or about both missing typical and atypical features (mixed feature inference). Classification and mixed feature inference led to the incorporation of typical and atypical features into category representations, with both kinds of features influencing inferences about familiar (Experiments 1 and 2) and novel (Experiment 3) test items. Those in the typical inference condition focused primarily on typical features. Together with formal modelling, these results challenge previous accounts that have characterized inference learning as producing a focus on typical category features. The results show that two different kinds of inference learning are possible and that these are subserved by different kinds of category representations.
NASA Astrophysics Data System (ADS)
Bontemps, S.; Defourny, P.; Van Bogaert, E.; Weber, J. L.; Arino, O.
2010-12-01
Regular and global land cover mapping contributes to evaluating the impact of human activities on the environment. Jointly supported by the European Space Agency and the European Environmental Agency, the GlobCorine project builds on the GlobCover findings and aims at making the full use of the MERIS time series for frequent land cover monitoring. The GlobCover automated classification approach has been tuned to the pan-European continent and adjusted towards a classification compatible with the Corine typology. The GlobCorine 2005 land cover map has been achieved, validated and made available to a broad- level stakeholder community from the ESA website. A first version of the GlobCorine 2009 map has also been produced, demonstrating the possibility for an operational production of frequent and updated global land cover maps.
Dos Santos, Alex Santana; Valle, Marcos Eduardo
2018-04-01
Autoassociative morphological memories (AMMs) are robust and computationally efficient memory models with unlimited storage capacity. In this paper, we present the max-plus and min-plus projection autoassociative morphological memories (PAMMs) as well as their compositions. Briefly, the max-plus PAMM yields the largest max-plus combination of the stored vectors which is less than or equal to the input. Dually, the vector recalled by the min-plus PAMM corresponds to the smallest min-plus combination which is larger than or equal to the input. Apart from unlimited absolute storage capacity and one step retrieval, PAMMs and their compositions exhibit an excellent noise tolerance. Furthermore, the new memories yielded quite promising results in classification problems with a large number of features and classes. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siegel, S.
An increased level of mathematical sophistication will be needed in the future to be able to handle the spectrum of information as it comes from a broad array of biological systems and other sources. Classification will be an increasingly complex and difficult issue. Several projects that are discussed are being developed by the US Department of Health and Human Services (DHHS), including a directory of risk assessment projects and a directory of exposure information resources.
Cognitive Protocol Stack Design
2015-12-30
SECURITY CLASSIFICATION OF: In the ARO “ Cognitive Protocol Stack Design" project we proposed cognitive networking solutions published in international...areas related to cognitive networking, opening also new lines of research that was not possible to forecast at the beginning of the project. In a...Distribution Unlimited Final Report: Cognitive Protocol Stack Design The views, opinions and/or findings contained in this report are those of the author(s
Chi Zhang; Hanqin Tian; Yuhang Wang; Tao Zeng; Yongqiang Liu
2010-01-01
The model projected ecosystem carbon dynamics were incorporated into the default (contemporary) fuel load map developed by FCCS (Fuel Characteristic Classification System) to estimate the dynamics of fuel load in the Southern United States in response to projected changes in climate and atmosphere (CO2 and nitrogen deposition) from 2002 to 2050. The study results...
Dante Castellanos-Acuña; Kenneth W. Vance-Borland; J. Bradley St. Clair; Andreas Hamann; Javier López-Upton; Erika Gómez-Pineda; Juan Manuel Ortega-Rodríguez; Cuauhtémoc Sáenz-Romero
2018-01-01
Seed zones for forest tree species are a widely used tool in reforestation programs to ensure that seedlings are well adapted to their planting environments. Here, we propose a climate-based seed zone system for Mexico to address observed and projected climate change. The proposed seed zone classification is based on bands of climate variables often related to genetic...
Attack Helicopter Operations: Art or Science
1991-05-13
ATTACK HELICOPTER OPERATIONS: ART OR SCIENCE ? BY LIEUTENANT COLONEL JAN CALLEN United States Army DISTRIBUTION STATEMENT A: Approved for public release...TASK IWORK UNIT ELEMENT NO. NO. NO. ACCESSION NC 11. TITLE (Include Socurity Classification) Attack Helicopter Operations: Art or Science ? 12. PERSONAL...OPERATIONS: ART OR SCIENCE ? AN INDIVIDUAL STUDY PROJECT by Lieutenant Colonel Jan Callen United States Army Colonel Greg Snelgrove Project Adviser U.S
Glyco-Immune Diagnostic Signatures and Therapeutic Targets of Mesothelioma
2015-09-01
Mesothelioma; Glycan Array; Immunoprofiles; Robotic Arrayer 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT: UU 18. NUMBER OF PAGES 19 19a...PROJECT SUMMARY: General Comments: This project involved novel technology in which biochemically synthesized glycans were robotically printed on glass...include 386 glycans and the platform was known as the PGA-400. (Figure 1) A standard robotic technology for printing a large range of
Impacts of land use/cover classification accuracy on regional climate simulations
NASA Astrophysics Data System (ADS)
Ge, Jianjun; Qi, Jiaguo; Lofgren, Brent M.; Moore, Nathan; Torbick, Nathan; Olson, Jennifer M.
2007-03-01
Land use/cover change has been recognized as a key component in global change. Various land cover data sets, including historically reconstructed, recently observed, and future projected, have been used in numerous climate modeling studies at regional to global scales. However, little attention has been paid to the effect of land cover classification accuracy on climate simulations, though accuracy assessment has become a routine procedure in land cover production community. In this study, we analyzed the behavior of simulated precipitation in the Regional Atmospheric Modeling System (RAMS) over a range of simulated classification accuracies over a 3 month period. This study found that land cover accuracy under 80% had a strong effect on precipitation especially when the land surface had a greater control of the atmosphere. This effect became stronger as the accuracy decreased. As shown in three follow-on experiments, the effect was further influenced by model parameterizations such as convection schemes and interior nudging, which can mitigate the strength of surface boundary forcings. In reality, land cover accuracy rarely obtains the commonly recommended 85% target. Its effect on climate simulations should therefore be considered, especially when historically reconstructed and future projected land covers are employed.
Simon, A.; Doyle, M.; Kondolf, M.; Shields, F.D.; Rhoads, B.; Grant, G.; Fitzpatrick, F.; Juracek, K.; McPhillips, M.; MacBroom, J.
2005-01-01
Over the past 10 years the Rosgen classification system and its associated methods of "natural channel design" have become synonymous (to many without prior knowledge of the field) with the term "stream restoration" and the science of fluvial geomorphology. Since the mid 1990s, this classification approach has become widely, and perhaps dominantly adopted by governmental agencies, particularly those funding restoration projects. For example, in a request for proposals for the restoration of Trout Creek in Montana, the Natural Resources Conservation Service required "experience in the use and application of a stream classification system and its implementation." Similarly, classification systems have been used in evaluation guides for riparian areas and U.S. Forest Service management plans. Most notably, many highly trained geomorphologists and hydraulic engineers are often held suspect, or even thought incorrect, if their approach does not include reference to or application of a classification system. This, combined with the para-professional training provided by some involved in "natural channel design" empower individuals and groups with limited backgrounds in stream and watershed sciences to engineer wholesale re-patterning of stream reaches using 50-year old technology that was never intended for engineering design. At Level I, the Rosgen classification system consists of eight or nine major stream types, based on hydraulic-geometry relations and four other measures of channel shape to distinguish the dimensions of alluvial stream channels as a function of the bankfull stage. Six classes of the particle size of the boundary sediments are used to further sub-divide each of the major stream types, resulting in 48 or 54 stream types. Aside from the difficulty in identifying bankfull stage, particularly in incising channels, and the issue of sampling from two distinct populations (beds and banks) to classify the boundary sediments, the classification provides a consistent and reproducible means for practitioners to describe channel morphology although difficulties have been encountered in lower-gradient stream systems. Use of the scheme to communicate between users or as a conceptual model, however, has not justified its use for engineering design or for predicting river behavior; its use for designing mitigation projects, therefore, seems beyond its technical scope. Copyright ASCE 2005.
Pearce, Gemma; Parke, Hannah L; Pinnock, Hilary; Epiphaniou, Eleni; Bourne, Claire L A; Sheikh, Aziz; Taylor, Stephanie J C
2016-04-01
Supporting self-management is a core response of health care systems globally to the increasing prevalence of long-term conditions. Lack of a comprehensive taxonomy (or classification) of self-management support components hinders characterization and, ultimately, understanding of these frequently complex, multi-component interventions. To develop a comprehensive, descriptive taxonomy of self-management support components. Components were derived from the 969 unique randomized controlled trials described in the 102 systematic reviews and 61 implementation trials, examining 14 diverse long-term conditions included in the Practical Reviews in Self-Management Support (PRISMS) project followed by discussion at an expert stakeholder workshop. The utility of the taxonomy was then tested using a self-management support intervention for cancer survivors. The PRISMS taxonomy comprises 14 components that might be used to support self-management (e.g. information about condition/management, provision of equipment, social support), when delivered to someone with a long-term condition or their carer. Overarching dimensions are delivery mode; personnel delivering the support; intervention targeting; and intensity, frequency and duration of the intervention. The taxonomy does not consider the effectiveness or otherwise of the different components or the overarching dimensions. The PRISMS taxonomy offers a framework to researchers describing self-management support interventions, to reviewers synthesizing evidence and to developers of health services for people with long-term conditions. © The Author(s) 2015.
Crop Identification Technology Assessment for Remote Sensing (CITARS)
NASA Technical Reports Server (NTRS)
Bauer, M. E.; Cary, T. K.; Davis, B. J.; Swain, P. H.
1975-01-01
The results of classifications and experiments performed for the Crop Identification Technology Assessment for Remote Sensing (CITARS) project are summarized. Fifteen data sets were classified using two analysis procedures. One procedure used class weights while the other assumed equal probabilities of occurrence for all classes. In addition, 20 data sets were classified using training statistics from another segment or date. The results of both the local and non-local classifications in terms of classification and proportion estimation are presented. Several additional experiments are described which were performed to provide additional understanding of the CITARS results. These experiments investigated alternative analysis procedures, training set selection and size, effects of multitemporal registration, the spectral discriminability of corn, soybeans, and other, and analysis of aircraft multispectral data.
Nursing's next advance: an internal classification for nursing practice.
Clark, J; Lang, N
1992-01-01
An International Classification of Nursing Practice (ICNP) is needed to support the processes of nursing practice and advance the knowledge necessary for cost-effective delivery of quality nursing care. Below, the authors present their case for developing such a system that will provide nursing with a nomenclature, a language and a classification that can be used to describe and organize nursing data. It is their belief that this landmark project is achievable and that ICN should lead the work in collaboration with its member associations, the World Health Organization and key national, international, governmental and nongovernmental groups. But to ensure that the system will be adaptable across borders, nurses and organizations are being encouraged to share their ideas and research on such a system.
Di Lorenzo, C; Ambrosini, A; Coppola, G; Pierelli, F
2009-01-01
Headache is considered as a common symptom of heat stress disorders (HSD), but no forms of secondary headache from heat exposure are reported in the International Classification of Headache Disorders-2 Edition (ICHD-II). Heat-stroke (HS) is the HSD most severe condition, it may be divided into two forms: classic (due to a long period environmental heat exposure) and exertional (a severe condition caused by strenuous physical exercises in heat environmental conditions). Here we report the case of a patient who developed a headache clinical picture fulfilling the diagnostic criteria for new daily persistent headache (NDPH), after an exertional HS, and discuss about possible pathophysiological mechanisms and classification aspects of headache induced by heat conditions.
Heat stress disorders and headache: a case of new daily persistent headache secondary to heat stroke
Di Lorenzo, C; Ambrosini, A; Coppola, G; Pierelli, F
2009-01-01
Headache is considered as a common symptom of heat stress disorders (HSD), but no forms of secondary headache from heat exposure are reported in the International Classification of Headache Disorders-2 Edition (ICHD-II). Heat-stroke (HS) is the HSD most severe condition, it may be divided into two forms: classic (due to a long period environmental heat exposure) and exertional (a severe condition caused by strenuous physical exercises in heat environmental conditions). Here we report the case of a patient who developed a headache clinical picture fulfilling the diagnostic criteria for new daily persistent headache (NDPH), after an exertional HS, and discuss about possible pathophysiological mechanisms and classification aspects of headache induced by heat conditions. PMID:21686677
29 CFR 511.10 - Subjects and issues.
Code of Federal Regulations, 2011 CFR
2011-07-01
... competitive conditions, will not substantially curtail employment in the industry and will not give any industry in American Samoa a competitive advantage over any industry in the United States outside of... classification and will not give a competitive advantage to any group in that industry. No classification shall...
NASA Astrophysics Data System (ADS)
Albert, L.; Rottensteiner, F.; Heipke, C.
2015-08-01
Land cover and land use exhibit strong contextual dependencies. We propose a novel approach for the simultaneous classification of land cover and land use, where semantic and spatial context is considered. The image sites for land cover and land use classification form a hierarchy consisting of two layers: a land cover layer and a land use layer. We apply Conditional Random Fields (CRF) at both layers. The layers differ with respect to the image entities corresponding to the nodes, the employed features and the classes to be distinguished. In the land cover layer, the nodes represent super-pixels; in the land use layer, the nodes correspond to objects from a geospatial database. Both CRFs model spatial dependencies between neighbouring image sites. The complex semantic relations between land cover and land use are integrated in the classification process by using contextual features. We propose a new iterative inference procedure for the simultaneous classification of land cover and land use, in which the two classification tasks mutually influence each other. This helps to improve the classification accuracy for certain classes. The main idea of this approach is that semantic context helps to refine the class predictions, which, in turn, leads to more expressive context information. Thus, potentially wrong decisions can be reversed at later stages. The approach is designed for input data based on aerial images. Experiments are carried out on a test site to evaluate the performance of the proposed method. We show the effectiveness of the iterative inference procedure and demonstrate that a smaller size of the super-pixels has a positive influence on the classification result.
Dreamers, Poets, Citizens, and Scientists: Motivations for Engaging in GalaxyZoo Citizen Science
NASA Astrophysics Data System (ADS)
Slater, S. J.; Mankowski, T.; Slater, T. F.; CenterAstronomy; Physics Education Research Caper Team
2010-12-01
A particularly successful effort to engage the public in science has been to move the nearly countless galaxies imaged by the Sloan Digital Sky Survey to citizen scientists in a project known widely as Galaxy Zoo (URL; http://www.galaxyzoo.org). To everyone’s surprise, the unexpectedly large participation in the website has caused the data set, numbering over a million images, to be classified multiple times, quicker than the project leader anticipated, and continues to boast a high hit count on the website (15 classifications per second). Within 24 hours of launch, the site was receiving 70,000 classifications an hour, and more than 50 million classifications were received by the project during its first year, from almost 150,000 people. In a parallel effort, the Galaxy Zoo forum was created to handle the flood of emails that occurred alongside the flood of classifications, the team hoping that it would encourage the participants to handle each others' questions. By examining the motivations, methods and appeal of Galaxy Zoo to the participating public, other models of citizen science might be purposefully formulated to take advantage of the success exhibited in Galaxy Zoo. In addition, we want to understand the reasons people engage in science in informal settings in order to better enhance teaching methods in formal settings. Although in the past citizen science has primarily been used as a data collection method, there are many new opportunities contained in citizen science motivations and methods that we can use in future applications. This new and innovative method of online citizen science creates data for researchers of galaxies, but there is a parallel set of underlying data that has not yet been deeply analyzed: the motivations and underlying themes within the population of citizen scientists that could lead us to improve future citizen science projects. To address this, we pursued an investigation of the underlying reasons for the success of Galaxy Zoo revealed by inductively analyzing contributor’s posts and discussions through the accompanying Galaxy Zoo online bulletin board forum - When investigating the data interpretively collected from the Galaxy Zoo forum, what sort of trends emerge as motivations which contribute to the overall success of this citizen science model? Using a grounded theory approach, we learned that many of these motivations originate in the aesthetic power of astronomical images, which Galaxy Zoo successfully harnesses while not compromising the scientific value of the project. From within the data emerged several trends of motivation, the primary being: the sense of community created within the project that promotes professional-amateur collaboration; fulfilling a dream of being an astronomer, physicist, or astronaut; tapping into a potential well of interest created during the space race era; the spiritual aspect generated when the imagination interacts with Galaxy Zoo; and uniting them all, the aesthetic appeal of the galaxy images. In addition, a very powerful tool also emerged as a method of retention unique to Galaxy Zoo. This tool, known as variable ratio reinforcement in behavioral psychology, uses the most appealing images as positive reinforcement to maintain classification rates over time.
Pittock, Sean J; Meldrum, Dara; Hardiman, Orla; Thornton, John; Brennan, Paul; Moroney, Joan T
2003-01-01
This preliminary study investigates the risk factor profile, post stroke complications, and outcome for four OCSP (Oxfordshire Community Stroke Project Classification) subtypes. One hundred seventeen consecutive ischemic stroke patients were clinically classified into 1 of 4 subtypes: total anterior (TACI), partial anterior (PACI), lacunar (LACI), and posterior (POCI) circulation infarcts. Study evaluations were performed at admission, 2 weeks, and 6 months. There was a good correlation between clinical classification and radiological diagnosis if a negative CT head was considered consistent with a lacunar infarction. No significant difference in risk factor profile was observed between subtypes. The TACI group had significantly higher mortality (P < .001), morbidity (P < .001, as per disability scales), length of hospital stay (P < .001), and complications (respiratory tract infection and seizures [P < .01]) as compared to the other three groups which were all similar at the different time points. The only significant difference found was the higher rate of stroke recurrence within the first 6 months in the POCI group (P < .001). The OCSP classification identifies two major groups (TACI and other 3 groups combined) who behave differently with respect to post stroke outcome. Further study with larger numbers of patients and thus greater power will be required to allow better discrimination of OCSP subtypes in respect of risk factors, complications, and outcomes if the OCSP is to be used to stratify patients in clinical trials.
NASA Astrophysics Data System (ADS)
Luo, Juhua; Duan, Hongtao; Ma, Ronghua; Jin, Xiuliang; Li, Fei; Hu, Weiping; Shi, Kun; Huang, Wenjiang
2017-05-01
Spatial information of the dominant species of submerged aquatic vegetation (SAV) is essential for restoration projects in eutrophic lakes, especially eutrophic Taihu Lake, China. Mapping the distribution of SAV species is very challenging and difficult using only multispectral satellite remote sensing. In this study, we proposed an approach to map the distribution of seven dominant species of SAV in Taihu Lake. Our approach involved information on the life histories of the seven SAV species and eight distribution maps of SAV from February to October. The life history information of the dominant SAV species was summarized from the literature and field surveys. Eight distribution maps of the SAV were extracted from eight 30 m HJ-CCD images from February to October in 2013 based on the classification tree models, and the overall classification accuracies for the SAV were greater than 80%. Finally, the spatial distribution of the SAV species in Taihu in 2013 was mapped using multilayer erasing approach. Based on validation, the overall classification accuracy for the seven species was 68.4%, and kappa was 0.6306, which suggests that larger differences in life histories between species can produce higher identification accuracies. The classification results show that Potamogeton malaianus was the most widely distributed species in Taihu Lake, followed by Myriophyllum spicatum, Potamogeton maackianus, Potamogeton crispus, Elodea nuttallii, Ceratophyllum demersum and Vallisneria spiralis. The information is useful for planning shallow-water habitat restoration projects.
Efficient Feature Selection and Classification of Protein Sequence Data in Bioinformatics
Faye, Ibrahima; Samir, Brahim Belhaouari; Md Said, Abas
2014-01-01
Bioinformatics has been an emerging area of research for the last three decades. The ultimate aims of bioinformatics were to store and manage the biological data, and develop and analyze computational tools to enhance their understanding. The size of data accumulated under various sequencing projects is increasing exponentially, which presents difficulties for the experimental methods. To reduce the gap between newly sequenced protein and proteins with known functions, many computational techniques involving classification and clustering algorithms were proposed in the past. The classification of protein sequences into existing superfamilies is helpful in predicting the structure and function of large amount of newly discovered proteins. The existing classification results are unsatisfactory due to a huge size of features obtained through various feature encoding methods. In this work, a statistical metric-based feature selection technique has been proposed in order to reduce the size of the extracted feature vector. The proposed method of protein classification shows significant improvement in terms of performance measure metrics: accuracy, sensitivity, specificity, recall, F-measure, and so forth. PMID:25045727
NASA Astrophysics Data System (ADS)
Gevaert, C. M.; Persello, C.; Sliuzas, R.; Vosselman, G.
2016-06-01
Unmanned Aerial Vehicles (UAVs) are capable of providing very high resolution and up-to-date information to support informal settlement upgrading projects. In order to provide accurate basemaps, urban scene understanding through the identification and classification of buildings and terrain is imperative. However, common characteristics of informal settlements such as small, irregular buildings with heterogeneous roof material and large presence of clutter challenge state-of-the-art algorithms. Especially the dense buildings and steeply sloped terrain cause difficulties in identifying elevated objects. This work investigates how 2D radiometric and textural features, 2.5D topographic features, and 3D geometric features obtained from UAV imagery can be integrated to obtain a high classification accuracy in challenging classification problems for the analysis of informal settlements. It compares the utility of pixel-based and segment-based features obtained from an orthomosaic and DSM with point-based and segment-based features extracted from the point cloud to classify an unplanned settlement in Kigali, Rwanda. Findings show that the integration of 2D and 3D features leads to higher classification accuracies.
Macro scale models for freight railroad terminals.
DOT National Transportation Integrated Search
2016-03-02
The project has developed a yard capacity model for macro-level analysis. The study considers the detailed sequence and scheduling in classification yards and their impacts on yard capacities simulate typical freight railroad terminals, and statistic...
United States Census Bureau Topics Population Latest Information Age and Sex Ancestry Children Mobility Population Estimates Population Projections Race Veterans Economy Latest Information Portal Other Economic Programs Business Latest Information Business Characteristics Classification Codes
United States Census Bureau Topics Population Latest Information Age and Sex Ancestry Children Mobility Population Estimates Population Projections Race Veterans Economy Latest Information Portal Other Economic Programs Business Latest Information Business Characteristics Classification Codes
United States Census Bureau Topics Population Latest Information Age and Sex Ancestry Children Mobility Population Estimates Population Projections Race Veterans Economy Latest Information Portal Other Economic Programs Business Latest Information Business Characteristics Classification Codes
United States Census Bureau Topics Population Latest Information Age and Sex Ancestry Children Mobility Population Estimates Population Projections Race Veterans Economy Latest Information Portal Other Economic Programs Business Latest Information Business Characteristics Classification Codes
United States Census Bureau Topics Population Latest Information Age and Sex Ancestry Children Mobility Population Estimates Population Projections Race Veterans Economy Latest Information Portal Other Economic Programs Business Latest Information Business Characteristics Classification Codes
United States Census Bureau Topics Population Latest Information Age and Sex Ancestry Children Mobility Population Estimates Population Projections Race Veterans Economy Latest Information Portal Other Economic Programs Business Latest Information Business Characteristics Classification Codes
United States Census Bureau Topics Population Latest Information Age and Sex Ancestry Children Mobility Population Estimates Population Projections Race Veterans Economy Latest Information Portal Other Economic Programs Business Latest Information Business Characteristics Classification Codes
United States Census Bureau Topics Population Latest Information Age and Sex Ancestry Children Mobility Population Estimates Population Projections Race Veterans Economy Latest Information Portal Other Economic Programs Business Latest Information Business Characteristics Classification Codes
United States Census Bureau Topics Population Latest Information Age and Sex Ancestry Children Mobility Population Estimates Population Projections Race Veterans Economy Latest Information Portal Other Economic Programs Business Latest Information Business Characteristics Classification Codes