Causality, Nonlocality, and Negative Refraction.
Forcella, Davide; Prada, Claire; Carminati, Rémi
2017-03-31
The importance of spatial nonlocality in the description of negative refraction in electromagnetic materials has been put forward recently. We develop a theory of negative refraction in homogeneous and isotropic media, based on first principles, and that includes nonlocality in its full generality. The theory shows that both dissipation and spatial nonlocality are necessary conditions for the existence of negative refraction. It also provides a sufficient condition in materials with weak spatial nonlocality. These fundamental results should have broad implications in the theoretical and practical analyses of negative refraction of electromagnetic and other kinds of waves.
The medial prefrontal cortex is involved in spatial memory retrieval under partial-cue conditions.
Jo, Yong Sang; Park, Eun Hye; Kim, Il Hwan; Park, Soon Kwon; Kim, Hyun; Kim, Hyun Taek; Choi, June-Seek
2007-12-05
Brain circuits involved in pattern completion, or retrieval of memory from fragmented cues, were investigated. Using different versions of the Morris water maze, we explored the roles of the CA3 subregion of the hippocampus and the medial prefrontal cortex (mPFC) in spatial memory retrieval under various conditions. In a hidden platform task, both CA3 and mPFC lesions disrupted memory retrieval under partial-cue, but not under full-cue, conditions. For a delayed matching-to-place task, CA3 lesions produced a deficit in both forming and recalling spatial working memory regardless of extramaze cue conditions. In contrast, damage to mPFC impaired memory retrieval only when a fraction of cues was available. To corroborate the lesion study, we examined the expression of the immediate early gene c-fos in mPFC and the hippocampus. After training of spatial reference memory in full-cue conditions for 6 d, the same training procedure in the absence of all cues except one increased the number of Fos-immunoreactive cells in mPFC and CA3. Furthermore, mPFC inactivation with muscimol, a GABA agonist, blocked memory retrieval in the degraded-cue environment. However, mPFC-lesioned animals initially trained in a single-cue environment had no difficulty in retrieving spatial memory when the number of cues was increased, demonstrating that contextual change per se did not impair the behavioral performance of the mPFC-lesioned animals. Together, these findings strongly suggest that pattern completion requires interactions between mPFC and the hippocampus, in which mPFC plays significant roles in retrieving spatial information maintained in the hippocampus for efficient navigation.
Dancing with the SNARC: Measuring spatial-numerical associations on a digital dance mat.
Fischer, Ursula; Moeller, Korbinian; Class, Friderike; Huber, Stefan; Cress, Ulrike; Nuerk, Hans-Christoph
2016-12-01
According to the concept of embodied numerosity, bodily experiences influence the way in which we process numerical magnitude. The development of this influence could be anchored in the spatial ordering of numbers along a mental number line representation, which is measured by effects of spatial-numerical associations. The aim of this study was to investigate whether horizontally oriented full-body movement and visual presentation of a number line both contribute to spatial-numerical associations in children. We presented fourth-graders with 2 magnitude comparison tasks that differed in the relevance of magnitude information. In both tasks, we varied the amount of bodily movement in different response conditions (responding verbally, with a foot tap, or by jumping) and the visual presentation (items were presented with or without a number line). From the data, we calculated 2 spatial-numerical effects and expected to find the strongest effects if a full-body response was combined with a number line presentation. The 2 effects were differentially influenced by response modalities, but not presentation. The SNARC (= Spatial Numerical Association of Response Codes) effect was present in all conditions and was not influenced by our manipulations. In contrast, a new relative numerical congruity effect was influenced by the variations in responses in accordance with our hypotheses. The relative numerical congruity effect results suggest that responses involving bodily movement increase activation of spatial-numerical associations compared to verbal responses. These results are the first to demonstrate such an influence in a full-body approach in elementary schoolchildren. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Reduced vision selectively impairs spatial updating in fall-prone older adults.
Barrett, Maeve M; Doheny, Emer P; Setti, Annalisa; Maguinness, Corrina; Foran, Timothy G; Kenny, Rose Anne; Newell, Fiona N
2013-01-01
The current study examined the role of vision in spatial updating and its potential contribution to an increased risk of falls in older adults. Spatial updating was assessed using a path integration task in fall-prone and healthy older adults. Specifically, participants conducted a triangle completion task in which they were guided along two sides of a triangular route and were then required to return, unguided, to the starting point. During the task, participants could either clearly view their surroundings (full vision) or visuo-spatial information was reduced by means of translucent goggles (reduced vision). Path integration performance was measured by calculating the distance and angular deviation from the participant's return point relative to the starting point. Gait parameters for the unguided walk were also recorded. We found equivalent performance across groups on all measures in the full vision condition. In contrast, in the reduced vision condition, where participants had to rely on interoceptive cues to spatially update their position, fall-prone older adults made significantly larger distance errors relative to healthy older adults. However, there were no other performance differences between fall-prone and healthy older adults. These findings suggest that fall-prone older adults, compared to healthy older adults, have greater difficulty in reweighting other sensory cues for spatial updating when visual information is unreliable.
Silverstein, S M; All, S D; Kasi, R; Berten, S; Essex, B; Lathrop, K L; Little, D M
2010-07-01
People with schizophrenia demonstrate perceptual organization impairments, and these are thought to contribute to their face processing difficulties. We examined the neural substrates of emotionally neutral face processing in schizophrenia by investigating neural activity under three stimulus conditions: faces characterized by the full spectrum of spatial frequencies, faces with low spatial frequency information removed [high spatial frequency (HSF) condition], and faces with high spatial frequency information removed [low spatial frequency (LSF) condition]. Face perception in the HSF condition is more reliant on local feature processing whereas perception in the LSF condition requires greater reliance on global form processing. Past studies of perceptual organization in schizophrenia indicate that patients perform relatively more poorly with degraded stimuli but also that, when global information is absent, patients may perform better than controls because of their relatively increased ability to initially process individual features. Therefore, we hypothesized that people with schizophrenia (n=14) would demonstrate greater face processing difficulties than controls (n=13) in the LSF condition, whereas they would demonstrate a smaller difference or superior performance in the HSF condition. In a gender-discrimination task, behavioral data indicated high levels of accuracy for both groups, with a trend toward an interaction involving higher patient performance in the HSF condition and poorer patient performance in the LSF condition. Patients demonstrated greater activity in the fusiform gyrus compared to controls in both degraded conditions. These data suggest that impairments in basic integration abilities may be compensated for by relatively increased activity in this region.
Uncovering Spatial Variation in Acoustic Environments Using Sound Mapping.
Job, Jacob R; Myers, Kyle; Naghshineh, Koorosh; Gill, Sharon A
2016-01-01
Animals select and use habitats based on environmental features relevant to their ecology and behavior. For animals that use acoustic communication, the sound environment itself may be a critical feature, yet acoustic characteristics are not commonly measured when describing habitats and as a result, how habitats vary acoustically over space and time is poorly known. Such considerations are timely, given worldwide increases in anthropogenic noise combined with rapidly accumulating evidence that noise hampers the ability of animals to detect and interpret natural sounds. Here, we used microphone arrays to record the sound environment in three terrestrial habitats (forest, prairie, and urban) under ambient conditions and during experimental noise introductions. We mapped sound pressure levels (SPLs) over spatial scales relevant to diverse taxa to explore spatial variation in acoustic habitats and to evaluate the number of microphones needed within arrays to capture this variation under both ambient and noisy conditions. Even at small spatial scales and over relatively short time spans, SPLs varied considerably, especially in forest and urban habitats, suggesting that quantifying and mapping acoustic features could improve habitat descriptions. Subset maps based on input from 4, 8, 12 and 16 microphones differed slightly (< 2 dBA/pixel) from those based on full arrays of 24 microphones under ambient conditions across habitats. Map differences were more pronounced with noise introductions, particularly in forests; maps made from only 4-microphones differed more (> 4 dBA/pixel) from full maps than the remaining subset maps, but maps with input from eight microphones resulted in smaller differences. Thus, acoustic environments varied over small spatial scales and variation could be mapped with input from 4-8 microphones. Mapping sound in different environments will improve understanding of acoustic environments and allow us to explore the influence of spatial variation in sound on animal ecology and behavior.
Dynamic full-scalability conversion in scalable video coding
NASA Astrophysics Data System (ADS)
Lee, Dong Su; Bae, Tae Meon; Thang, Truong Cong; Ro, Yong Man
2007-02-01
For outstanding coding efficiency with scalability functions, SVC (Scalable Video Coding) is being standardized. SVC can support spatial, temporal and SNR scalability and these scalabilities are useful to provide a smooth video streaming service even in a time varying network such as a mobile environment. But current SVC is insufficient to support dynamic video conversion with scalability, thereby the adaptation of bitrate to meet a fluctuating network condition is limited. In this paper, we propose dynamic full-scalability conversion methods for QoS adaptive video streaming in SVC. To accomplish full scalability dynamic conversion, we develop corresponding bitstream extraction, encoding and decoding schemes. At the encoder, we insert the IDR NAL periodically to solve the problems of spatial scalability conversion. At the extractor, we analyze the SVC bitstream to get the information which enable dynamic extraction. Real time extraction is achieved by using this information. Finally, we develop the decoder so that it can manage the changing scalability. Experimental results showed that dynamic full-scalability conversion was verified and it was necessary for time varying network condition.
Statistical Compression for Climate Model Output
NASA Astrophysics Data System (ADS)
Hammerling, D.; Guinness, J.; Soh, Y. J.
2017-12-01
Numerical climate model simulations run at high spatial and temporal resolutions generate massive quantities of data. As our computing capabilities continue to increase, storing all of the data is not sustainable, and thus is it important to develop methods for representing the full datasets by smaller compressed versions. We propose a statistical compression and decompression algorithm based on storing a set of summary statistics as well as a statistical model describing the conditional distribution of the full dataset given the summary statistics. We decompress the data by computing conditional expectations and conditional simulations from the model given the summary statistics. Conditional expectations represent our best estimate of the original data but are subject to oversmoothing in space and time. Conditional simulations introduce realistic small-scale noise so that the decompressed fields are neither too smooth nor too rough compared with the original data. Considerable attention is paid to accurately modeling the original dataset-one year of daily mean temperature data-particularly with regard to the inherent spatial nonstationarity in global fields, and to determining the statistics to be stored, so that the variation in the original data can be closely captured, while allowing for fast decompression and conditional emulation on modest computers.
Catalysts at work: From integral to spatially resolved X-ray absorption spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grunwaldt, Jan-Dierk; Kimmerle, Bertram; Baiker, Alfons
2009-09-25
Spectroscopic studies on heterogeneous catalysts have mostly been done in an integral mode. However, in many cases spatial variations in catalyst structure can occur, e.g. during impregnation of pre-shaped particles, during reaction in a catalytic reactor, or in microstructured reactors as the present overview shows. Therefore, spatially resolved molecular information on a microscale is required for a comprehensive understanding of theses systems, partly in ex situ studies, partly under stationary reaction conditions and in some cases even under dynamic reaction conditions. Among the different available techniques, X-ray absorption spectroscopy (XAS) is a well-suited tool for this purpose as the differentmore » selected examples highlight. Two different techniques, scanning and full-field X-ray microscopy/tomography, are described and compared. At first, the tomographic structure of impregnated alumina pellets is presented using full-field transmission microtomography and compared to the results obtained with a scanning X-ray microbeam technique to analyse the catalyst bed inside a catalytic quartz glass reactor. On the other hand, by using XAS in scanning microtomography, the structure and the distribution of Cu(0), Cu(I), Cu(II) species in a Cu/ZnO catalyst loaded in a quartz capillary microreactor could be reconstructed quantitatively on a virtual section through the reactor. An illustrating example for spatially resolved XAS under reaction conditions is the partial oxidation of methane over noble metal-based catalysts. In order to obtain spectroscopic information on the spatial variation of the oxidation state of the catalyst inside the reactor XAS spectra were recorded by scanning with a micro-focussed beam along the catalyst bed. Alternatively, full-field transmission imaging was used to efficiently determine the distribution of the oxidation state of a catalyst inside a reactor under reaction conditions. The new technical approaches together with quantitative data analysis and an appropriate in situ catalytic experiment allowed drawing important conclusions on the reaction mechanism, and the analytical strategy might be similarly applied in other case studies. The corresponding temperature profiles and the catalytic performance were measured by means of an IR-camera and mass spectrometric analysis. In a more advanced experiment the ignition process of the partial oxidation of methane was followed in a spatiotemporal manner which demonstrates that spatially resolved spectroscopic information can even be obtained in the subsecond scale.« less
Expertise differences in anticipatory judgements during a temporally and spatially occluded task.
Causer, Joe; Smeeton, Nicholas J; Williams, A Mark
2017-01-01
There is contradictory evidence surrounding the role of critical cues in the successful anticipation of penalty kicks in soccer. In the current study, skilled and less-skilled soccer goalkeepers were required to anticipate when viewing penalty kicks that were both spatially (full body; hip region) and temporally (-160 ms, -80 ms before, foot-ball contact) occluded. The skilled group outperformed the less-skilled group in all conditions. Participants performed better in the full body condition when compared to hip region condition. Performance in the hip only condition was significantly better than chance for the skilled group across all occlusion conditions. However, the less-skilled group were no better than chance in the hip condition for the early occlusion points when predicting direction and height. Later temporal occlusion conditions were associated with increased performance both in the correct response and correct direction analyses, but not for correct height. These data suggest that postural information solely from the hip region may be used by skilled goalkeepers to make accurate predictions of penalty kick direction, however, information from other sources are needed in order to make predictions of height. Findings demonstrate how the importance of anticipation cues evolve over time, which has implications for the design of training programs to enhance perceptual-cognitive skill.
Indoor Spatial Updating With Impaired Vision
Legge, Gordon E.; Granquist, Christina; Baek, Yihwa; Gage, Rachel
2016-01-01
Purpose Spatial updating is the ability to keep track of position and orientation while moving through an environment. We asked how normally sighted and visually impaired subjects compare in spatial updating and in estimating room dimensions. Methods Groups of 32 normally sighted, 16 low-vision, and 16 blind subjects estimated the dimensions of six rectangular rooms. Updating was assessed by guiding the subjects along three-segment paths in the rooms. At the end of each path, they estimated the distance and direction to the starting location, and to a designated target. Spatial updating was tested in five conditions ranging from free viewing to full auditory and visual deprivation. Results The normally sighted and low-vision groups did not differ in their accuracy for judging room dimensions. Correlations between estimated size and physical size were high. Accuracy of low-vision performance was not correlated with acuity, contrast sensitivity, or field status. Accuracy was lower for the blind subjects. The three groups were very similar in spatial-updating performance, and exhibited only weak dependence on the nature of the viewing conditions. Conclusions People with a wide range of low-vision conditions are able to judge room dimensions as accurately as people with normal vision. Blind subjects have difficulty in judging the dimensions of quiet rooms, but some information is available from echolocation. Vision status has little impact on performance in simple spatial updating; proprioceptive and vestibular cues are sufficient. PMID:27978556
Indoor Spatial Updating With Impaired Vision.
Legge, Gordon E; Granquist, Christina; Baek, Yihwa; Gage, Rachel
2016-12-01
Spatial updating is the ability to keep track of position and orientation while moving through an environment. We asked how normally sighted and visually impaired subjects compare in spatial updating and in estimating room dimensions. Groups of 32 normally sighted, 16 low-vision, and 16 blind subjects estimated the dimensions of six rectangular rooms. Updating was assessed by guiding the subjects along three-segment paths in the rooms. At the end of each path, they estimated the distance and direction to the starting location, and to a designated target. Spatial updating was tested in five conditions ranging from free viewing to full auditory and visual deprivation. The normally sighted and low-vision groups did not differ in their accuracy for judging room dimensions. Correlations between estimated size and physical size were high. Accuracy of low-vision performance was not correlated with acuity, contrast sensitivity, or field status. Accuracy was lower for the blind subjects. The three groups were very similar in spatial-updating performance, and exhibited only weak dependence on the nature of the viewing conditions. People with a wide range of low-vision conditions are able to judge room dimensions as accurately as people with normal vision. Blind subjects have difficulty in judging the dimensions of quiet rooms, but some information is available from echolocation. Vision status has little impact on performance in simple spatial updating; proprioceptive and vestibular cues are sufficient.
Repetition Blindness for Natural Images of Objects with Viewpoint Changes
Buffat, Stéphane; Plantier, Justin; Roumes, Corinne; Lorenceau, Jean
2013-01-01
When stimuli are repeated in a rapid serial visual presentation (RSVP), observers sometimes fail to report the second occurrence of a target. This phenomenon is referred to as “repetition blindness” (RB). We report an RSVP experiment with photographs in which we manipulated object viewpoints between the first and second occurrences of a target (0°, 45°, or 90° changes), and spatial frequency (SF) content. Natural images were spatially filtered to produce low, medium, or high SF stimuli. RB was observed for all filtering conditions. Surprisingly, for full-spectrum (FS) images, RB increased significantly as the viewpoint reached 90°. For filtered images, a similar pattern of results was found for all conditions except for medium SF stimuli. These findings suggest that object recognition in RSVP are subtended by viewpoint-specific representations for all spatial frequencies except medium ones. PMID:23346069
A comprehensive approach to assess conditions in the Great Lakes nearshore zone has been lacking for decades. We had the opportunity to conduct a pilot survey in Lake Erie (45 sites) in summer 2009 and to develop a full survey across the 5 lakes (~400 sites) as part of the US N...
Parametric spatiotemporal oscillation in reaction-diffusion systems.
Ghosh, Shyamolina; Ray, Deb Shankar
2016-03-01
We consider a reaction-diffusion system in a homogeneous stable steady state. On perturbation by a time-dependent sinusoidal forcing of a suitable scaling parameter the system exhibits parametric spatiotemporal instability beyond a critical threshold frequency. We have formulated a general scheme to calculate the threshold condition for oscillation and the range of unstable spatial modes lying within a V-shaped region reminiscent of Arnold's tongue. Full numerical simulations show that depending on the specificity of nonlinearity of the models, the instability may result in time-periodic stationary patterns in the form of standing clusters or spatially localized breathing patterns with characteristic wavelengths. Our theoretical analysis of the parametric oscillation in reaction-diffusion system is corroborated by full numerical simulation of two well-known chemical dynamical models: chlorite-iodine-malonic acid and Briggs-Rauscher reactions.
Parametric spatiotemporal oscillation in reaction-diffusion systems
NASA Astrophysics Data System (ADS)
Ghosh, Shyamolina; Ray, Deb Shankar
2016-03-01
We consider a reaction-diffusion system in a homogeneous stable steady state. On perturbation by a time-dependent sinusoidal forcing of a suitable scaling parameter the system exhibits parametric spatiotemporal instability beyond a critical threshold frequency. We have formulated a general scheme to calculate the threshold condition for oscillation and the range of unstable spatial modes lying within a V-shaped region reminiscent of Arnold's tongue. Full numerical simulations show that depending on the specificity of nonlinearity of the models, the instability may result in time-periodic stationary patterns in the form of standing clusters or spatially localized breathing patterns with characteristic wavelengths. Our theoretical analysis of the parametric oscillation in reaction-diffusion system is corroborated by full numerical simulation of two well-known chemical dynamical models: chlorite-iodine-malonic acid and Briggs-Rauscher reactions.
Winsler, Kurt; Holcomb, Phillip J; Midgley, Katherine J; Grainger, Jonathan
2017-01-01
Previous studies have shown that different spatial frequency information processing streams interact during the recognition of visual stimuli. However, it is a matter of debate as to the contributions of high and low spatial frequency (HSF and LSF) information for visual word recognition. This study examined the role of different spatial frequencies in visual word recognition using event-related potential (ERP) masked priming. EEG was recorded from 32 scalp sites in 30 English-speaking adults in a go/no-go semantic categorization task. Stimuli were white characters on a neutral gray background. Targets were uppercase five letter words preceded by a forward-mask (#######) and a 50 ms lowercase prime. Primes were either the same word (repeated) or a different word (un-repeated) than the subsequent target and either contained only high, only low, or full spatial frequency information. Additionally within each condition, half of the prime-target pairs were high lexical frequency, and half were low. In the full spatial frequency condition, typical ERP masked priming effects were found with an attenuated N250 (sub-lexical) and N400 (lexical-semantic) for repeated compared to un-repeated primes. For HSF primes there was a weaker N250 effect which interacted with lexical frequency, a significant reversal of the effect around 300 ms, and an N400-like effect for only high lexical frequency word pairs. LSF primes did not produce any of the classic ERP repetition priming effects, however they did elicit a distinct early effect around 200 ms in the opposite direction of typical repetition effects. HSF information accounted for many of the masked repetition priming ERP effects and therefore suggests that HSFs are more crucial for word recognition. However, LSFs did produce their own pattern of priming effects indicating that larger scale information may still play a role in word recognition.
Neelon, Brian; Gelfand, Alan E.; Miranda, Marie Lynn
2013-01-01
Summary Researchers in the health and social sciences often wish to examine joint spatial patterns for two or more related outcomes. Examples include infant birth weight and gestational length, psychosocial and behavioral indices, and educational test scores from different cognitive domains. We propose a multivariate spatial mixture model for the joint analysis of continuous individual-level outcomes that are referenced to areal units. The responses are modeled as a finite mixture of multivariate normals, which accommodates a wide range of marginal response distributions and allows investigators to examine covariate effects within subpopulations of interest. The model has a hierarchical structure built at the individual level (i.e., individuals are nested within areal units), and thus incorporates both individual- and areal-level predictors as well as spatial random effects for each mixture component. Conditional autoregressive (CAR) priors on the random effects provide spatial smoothing and allow the shape of the multivariate distribution to vary flexibly across geographic regions. We adopt a Bayesian modeling approach and develop an efficient Markov chain Monte Carlo model fitting algorithm that relies primarily on closed-form full conditionals. We use the model to explore geographic patterns in end-of-grade math and reading test scores among school-age children in North Carolina. PMID:26401059
Effects of Spatial Scale on Cognitive Play in Preschool Children.
ERIC Educational Resources Information Center
Delong, Alton J.; And Others
1994-01-01
Examined effects of a reduced-scale play environment on the temporal aspects of complex play behavior. Children playing with playdough in a 7 x 5 x 5-foot structure began complex play more quickly, played in longer segments, and spent slightly more time in complex play than when in full-size conditions, suggesting that scale-reduced environments…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suh, In-Saeng; Mathews, Grant J.; Haywood, J. Reese
The spatially conformally flat approximation (CFA) is a viable method to deduce initial conditions for the subsequent evolution of binary neutron stars employing the full Einstein equations. Here in this paper, we analyze the viability of the CFA for the general relativistic hydrodynamic initial conditions of binary neutron stars. We illustrate the stability of the conformally flat condition on the hydrodynamics by numerically evolving ~100 quasicircular orbits. We illustrate the use of this approximation for orbiting neutron stars in the quasicircular orbit approximation to demonstrate the equation of state dependence of these initial conditions and how they might affect themore » emergent gravitational wave frequency as the stars approach the innermost stable circular orbit.« less
NASA Astrophysics Data System (ADS)
Xu, Yi; Rose, Kenneth A.; Chai, Fei; Chavez, Francisco P.; Ayón, Patricia
2015-11-01
We used a 3-dimensional individual-based model (3-D IBM) of Peruvian anchovy to examine how spatial variation in environmental conditions affects larval and juvenile growth and survival, and recruitment. Temperature, velocity, and phytoplankton and zooplankton concentrations generated from a coupled hydrodynamic Nutrients-Phytoplankton-Zooplankton-Detritus (NPZD) model, mapped to a three dimensional rectangular grid, were used to simulate anchovy populations. The IBM simulated individuals as they progressed from eggs to recruitment at 10 cm. Eggs and yolk-sac larvae were followed hourly through the processes of development, mortality, and movement (advection), and larvae and juveniles were followed daily through the processes of growth, mortality, and movement (advection plus behavior). A bioenergetics model was used to grow larvae and juveniles. The NPZD model provided prey fields which influence both food consumption rate as well as behavior mediated movement with individuals going to grids cells having optimal growth conditions. We compared predicted recruitment for monthly cohorts for 1990 through 2004 between the full 3-D IBM and a point (0-D) model that used spatially-averaged environmental conditions. The 3-D and 0-D versions generated similar interannual patterns in monthly recruitment for 1991-2004, with the 3-D results yielding consistently higher survivorship. Both versions successfully captured the very poor recruitment during the 1997-1998 El Niño event. Higher recruitment in the 3-D simulations was due to higher survival during the larval stage resulting from individuals searching for more favorable temperatures that lead to faster growth rates. The strong effect of temperature was because both model versions provided saturating food conditions for larval and juvenile anchovies. We conclude with a discussion of how explicit treatment of spatial variation affected simulated recruitment, other examples of fisheries modeling analyses that have used a similar approach to assess the influence of spatial variation, and areas for further model development.
Effects Of Spatial Variability In Marshes On Coastal Erosion Under Storm Conditions
NASA Astrophysics Data System (ADS)
Lunghino, B.; Suckale, J.; Fringer, O. B.; Maldonado, S.; Ferreira, C.; Marras, S.; Mandel, T.
2016-12-01
To quantify the contribution of marshes in protecting coastlines, engineers and planners need to evaluate how variability in marsh characteristics and storm conditions affect erosion in the inundation zone. Previous studies show that spatial patterns in marshes significantly affect flow and sediment transport under normal tidal conditions [1, 2]. This study investigates the effect of spatial variability on floodplain sediment transport under a range of extreme hydrodynamic conditions that occur during storm events. We model the hydrodynamics of storm surge conditions on an idealized coastal floodplain by solving the 2D shallow water equations. We approximate the effect of vegetation on hydrodynamics as a constant drag coefficient. The model calculates suspended sediment transport with the advection-diffusion equation and updates morphology with erosional and depositional fluxes. We conduct numerical experiments in which we vary both the scale of the storm event and the spatial patterns of vegetation and evaluate the impact on erosion and deposition on the floodplain. We find that the alongshore extent of the vegetation is the primary control on the net volume of sediment eroded. Scour occurs in narrow channels between vegetated areas, but this does not significantly alter the net volume of sediment transported. Deposition occurs in vegetated areas under the full range of flow velocities we test. These results suggest that resolving all variability in vegetation is not necessary to quantify net sediment transport volumes at the floodplain scale. Increasing the scale of the storm event does not alter the role of spatial variability. References [1] Meire, D. W., Kondziolka, J. M., and Nepf, H. M. Interaction between neighboring vegetation patches: Impact on flow and deposition. Water Resources Research 50, 5 (2014), 3809-3825. [2] Temmerman, S., Bouma, T., Govers, G., Wang, Z., De Vries, M., and Her- man, P. Impact of vegetation on flow routing and sedimentation patterns: Three-dimensional modeling for a tidal marsh. Journal of Geophysical Research: Earth Surface 110, F4 (2005).
NASA Technical Reports Server (NTRS)
Thomas, S. D.; Holst, T. L.
1985-01-01
A full-potential steady transonic wing flow solver has been modified so that freestream density and residual are captured in regions of constant velocity. This numerically precise freestream consistency is obtained by slightly altering the differencing scheme without affecting the implicit solution algorithm. The changes chiefly affect the fifteen metrics per grid point, which are computed once and stored. With this new method, the outer boundary condition is captured accurately, and the smoothness of the solution is especially improved near regions of grid discontinuity.
Saager, Rolf B; Balu, Mihaela; Crosignani, Viera; Sharif, Ata; Durkin, Anthony J; Kelly, Kristen M; Tromberg, Bruce J
2015-06-01
The combined use of nonlinear optical microscopy and broadband reflectance techniques to assess melanin concentration and distribution thickness in vivo over the full range of Fitzpatrick skin types is presented. Twelve patients were measured using multiphoton microscopy (MPM) and spatial frequency domain spectroscopy (SFDS) on both dorsal forearm and volar arm, which are generally sun-exposed and non-sun-exposed areas, respectively. Both MPM and SFDS measured melanin volume fractions between (skin type I non-sun-exposed) and 20% (skin type VI sun exposed). MPM measured epidermal (anatomical) thickness values ~30-65 μm, while SFDS measured melanin distribution thickness based on diffuse optical path length. There was a strong correlation between melanin concentration and melanin distribution (epidermal) thickness measurements obtained using the two techniques. While SFDS does not have the ability to match the spatial resolution of MPM, this study demonstrates that melanin content as quantified using SFDS is linearly correlated with epidermal melanin as measured using MPM (R² = 0.8895). SFDS melanin distribution thickness is correlated to MPM values (R² = 0.8131). These techniques can be used individually and/or in combination to advance our understanding and guide therapies for pigmentation-related conditions as well as light-based treatments across a full range of skin types.
Using a GIS model to assess terrestrial salamander response to alternative forest management plans
Eric J. Gustafson; Nathan L. Murphy; Thomas R. Crow
2001-01-01
A GIS model predicting the spatial distribution of terrestrial salamander abundance based on topography and forest age was developed using parameters derived from the literature. The model was tested by sampling salamander abundance across the full range of site conditions used in the model. A regression of the predictions of our GIS model against these sample data...
Congenital blindness limits allocentric to egocentric switching ability.
Ruggiero, Gennaro; Ruotolo, Francesco; Iachini, Tina
2018-03-01
Many everyday spatial activities require the cooperation or switching between egocentric (subject-to-object) and allocentric (object-to-object) spatial representations. The literature on blind people has reported that the lack of vision (congenital blindness) may limit the capacity to represent allocentric spatial information. However, research has mainly focused on the selective involvement of egocentric or allocentric representations, not the switching between them. Here we investigated the effect of visual deprivation on the ability to switch between spatial frames of reference. To this aim, congenitally blind (long-term visual deprivation), blindfolded sighted (temporary visual deprivation) and sighted (full visual availability) participants were compared on the Ego-Allo switching task. This task assessed the capacity to verbally judge the relative distances between memorized stimuli in switching (from egocentric-to-allocentric: Ego-Allo; from allocentric-to-egocentric: Allo-Ego) and non-switching (only-egocentric: Ego-Ego; only-allocentric: Allo-Allo) conditions. Results showed a difficulty in congenitally blind participants when switching from allocentric to egocentric representations, not when the first anchor point was egocentric. In line with previous results, a deficit in processing allocentric representations in non-switching conditions also emerged. These findings suggest that the allocentric deficit in congenital blindness may determine a difficulty in simultaneously maintaining and combining different spatial representations. This deficit alters the capacity to switch between reference frames specifically when the first anchor point is external and not body-centered.
Jäger, Christoph G; Borchardt, Dietrich
2018-04-07
In riverine ecosystems primary production is principally possible in two habitats: in the benthic layer by sessile algae and in the surface water by planktonic algae being transported downstream. The relevance of these two habitats generally changes along the rivers' continuum. However, analyses of the interaction of algae in these two habitats and their controlling factors in riverine ecosystems are, so far, very rare. We use a simplified advection-diffusion model system combined with ecological process kinetics to analyse the interaction of benthic and planktonic algae and nutrients along idealised streams and rivers at regional to large scales. Because many of the underlying processes affecting algal dynamics are influenced by depth, we focus particularly on the impact of river depth on this interaction. At constant environmental conditions all state variables approach stable spatial equilibria along the river, independent of the boundary conditions at the upstream end. Because our model is very robust against changes of turbulent diffusion and stream velocity, these spatial equilibria can be analysed by a simplified ordinary differential equation (ode) version of our model. This model variant reveals that at shallower river depths, phytoplankton can exist only when it is subsidised by detaching benthic algae, and in turn, at deeper river depths, benthic algae can exist only in low biomasses which are subsidised by sinking planktonic algae. We generalise the spatial dynamics of the model system using different conditions at the upstream end of the model, which mimic various natural or anthropogenic factors (pristine source, dam, inflow of a waste water treatment plant, and dilution from e.g. a tributary) and analyse how these scenarios influence different aspects of the longitudinal spatial dynamics of the full spatial model: the relation of spatial equilibrium to spatial maximum, the distance to the spatial maximum, and the response length. Generally, our results imply that shallow systems recover within significantly shorter distances from spatially distinct disturbances when compared to deep systems, independent of the type of disturbance. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Analysis of the Conformally Flat Approximation for Binary Neutron Star Initial Conditions
Suh, In-Saeng; Mathews, Grant J.; Haywood, J. Reese; ...
2017-01-09
The spatially conformally flat approximation (CFA) is a viable method to deduce initial conditions for the subsequent evolution of binary neutron stars employing the full Einstein equations. Here in this paper, we analyze the viability of the CFA for the general relativistic hydrodynamic initial conditions of binary neutron stars. We illustrate the stability of the conformally flat condition on the hydrodynamics by numerically evolving ~100 quasicircular orbits. We illustrate the use of this approximation for orbiting neutron stars in the quasicircular orbit approximation to demonstrate the equation of state dependence of these initial conditions and how they might affect themore » emergent gravitational wave frequency as the stars approach the innermost stable circular orbit.« less
NASA Astrophysics Data System (ADS)
Johansen, Kasper; Grove, James; Denham, Robert; Phinn, Stuart
2013-01-01
Stream bank condition is an important physical form indicator for streams related to the environmental condition of riparian corridors. This research developed and applied an approach for mapping bank condition from airborne light detection and ranging (LiDAR) and high-spatial resolution optical image data in a temperate forest/woodland/urban environment. Field observations of bank condition were related to LiDAR and optical image-derived variables, including bank slope, plant projective cover, bank-full width, valley confinement, bank height, bank top crenulation, and ground vegetation cover. Image-based variables, showing correlation with the field measurements of stream bank condition, were used as input to a cumulative logistic regression model to estimate and map bank condition. The highest correlation was achieved between field-assessed bank condition and image-derived average bank slope (R2=0.60, n=41), ground vegetation cover (R=0.43, n=41), bank width/height ratio (R=0.41, n=41), and valley confinement (producer's accuracy=100%, n=9). Cross-validation showed an average misclassification error of 0.95 from an ordinal scale from 0 to 4 using the developed model. This approach was developed to support the remotely sensed mapping of stream bank condition for 26,000 km of streams in Victoria, Australia, from 2010 to 2012.
Finite time step and spatial grid effects in δf simulation of warm plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sturdevant, Benjamin J., E-mail: benjamin.j.sturdevant@gmail.com; Department of Applied Mathematics, University of Colorado at Boulder, Boulder, CO 80309; Parker, Scott E.
2016-01-15
This paper introduces a technique for analyzing time integration methods used with the particle weight equations in δf method particle-in-cell (PIC) schemes. The analysis applies to the simulation of warm, uniform, periodic or infinite plasmas in the linear regime and considers the collective behavior similar to the analysis performed by Langdon for full-f PIC schemes [1,2]. We perform both a time integration analysis and spatial grid analysis for a kinetic ion, adiabatic electron model of ion acoustic waves. An implicit time integration scheme is studied in detail for δf simulations using our weight equation analysis and for full-f simulations usingmore » the method of Langdon. It is found that the δf method exhibits a CFL-like stability condition for low temperature ions, which is independent of the parameter characterizing the implicitness of the scheme. The accuracy of the real frequency and damping rate due to the discrete time and spatial schemes is also derived using a perturbative method. The theoretical analysis of numerical error presented here may be useful for the verification of simulations and for providing intuition for the design of new implicit time integration schemes for the δf method, as well as understanding differences between δf and full-f approaches to plasma simulation.« less
Black hole formation from the gravitational collapse of a nonspherical network of structures
NASA Astrophysics Data System (ADS)
Delgado Gaspar, Ismael; Hidalgo, Juan Carlos; Sussman, Roberto A.; Quiros, Israel
2018-05-01
We examine the gravitational collapse and black hole formation of multiple nonspherical configurations constructed from Szekeres dust models with positive spatial curvature that smoothly match to a Schwarzschild exterior. These configurations are made of an almost spherical central core region surrounded by a network of "pancake-like" overdensities and voids with spatial positions prescribed through standard initial conditions. We show that a full collapse into a focusing singularity, without shell crossings appearing before the formation of an apparent horizon, is not possible unless the full configuration becomes exactly or almost spherical. Seeking for black hole formation, we demand that shell crossings are covered by the apparent horizon. This requires very special fine-tuned initial conditions that impose very strong and unrealistic constraints on the total black hole mass and full collapse time. As a consequence, nonspherical nonrotating dust sources cannot furnish even minimally realistic toy models of black hole formation at astrophysical scales: demanding realistic collapse time scales yields huge unrealistic black hole masses, while simulations of typical astrophysical black hole masses collapse in unrealistically small times. We note, however, that the resulting time-mass constraint is compatible with early Universe models of primordial black hole formation, suitable in early dust-like environments. Finally, we argue that the shell crossings appearing when nonspherical dust structures collapse are an indicator that such structures do not form galactic mass black holes but virialize into stable stationary objects.
Saager, Rolf B.; Balu, Mihaela; Crosignani, Viera; Sharif, Ata; Durkin, Anthony J.; Kelly, Kristen M.; Tromberg, Bruce J.
2015-01-01
Abstract. The combined use of nonlinear optical microscopy and broadband reflectance techniques to assess melanin concentration and distribution thickness in vivo over the full range of Fitzpatrick skin types is presented. Twelve patients were measured using multiphoton microscopy (MPM) and spatial frequency domain spectroscopy (SFDS) on both dorsal forearm and volar arm, which are generally sun-exposed and non-sun-exposed areas, respectively. Both MPM and SFDS measured melanin volume fractions between ∼5% (skin type I non-sun-exposed) and 20% (skin type VI sun exposed). MPM measured epidermal (anatomical) thickness values ∼30–65 μm, while SFDS measured melanin distribution thickness based on diffuse optical path length. There was a strong correlation between melanin concentration and melanin distribution (epidermal) thickness measurements obtained using the two techniques. While SFDS does not have the ability to match the spatial resolution of MPM, this study demonstrates that melanin content as quantified using SFDS is linearly correlated with epidermal melanin as measured using MPM (R2=0.8895). SFDS melanin distribution thickness is correlated to MPM values (R2=0.8131). These techniques can be used individually and/or in combination to advance our understanding and guide therapies for pigmentation-related conditions as well as light-based treatments across a full range of skin types. PMID:26065839
Suprathreshold contrast summation over area using drifting gratings.
McDougall, Thomas J; Dickinson, J Edwin; Badcock, David R
2018-04-01
This study investigated contrast summation over area for moving targets applied to a fixed-size contrast pedestal-a technique originally developed by Meese and Summers (2007) to demonstrate strong spatial summation of contrast for static patterns at suprathreshold contrast levels. Target contrast increments (drifting gratings) were applied to either the entire 20% contrast pedestal (a full fixed-size drifting grating), or in the configuration of a checkerboard pattern in which the target increment was applied to every alternate check region. These checked stimuli are known as "Battenberg patterns" and the sizes of the checks were varied (within a fixed overall area), across conditions, to measure summation behavior. Results showed that sensitivity to an increment covering the full pedestal was significantly higher than that for the Battenberg patterns (areal summation). Two observers showed strong summation across all check sizes (0.71°-3.33°), and for two other observers the summation ratio dropped to levels consistent with probability summation once check size reached 2.00°. Therefore, areal summation with moving targets does operate at high contrast, and is subserved by relatively large receptive fields covering a square area extending up to at least 3.33° × 3.33° for some observers. Previous studies in which the spatial structure of the pedestal and target covaried were unable to demonstrate spatial summation, potentially due to increasing amounts of suppression from gain-control mechanisms which increases as pedestal size increases. This study shows that when this is controlled, by keeping the pedestal the same across all conditions, extensive summation can be demonstrated.
NASA Astrophysics Data System (ADS)
Zanarini, Alessandro
2018-01-01
The progress of optical systems gives nowadays at disposal on lightweight structures complex dynamic measurements and modal tests, each with its own advantages, drawbacks and preferred usage domains. It is thus more easy than before to obtain highly spatially defined vibration patterns for many applications in vibration engineering, testing and general product development. The potential of three completely different technologies is here benchmarked on a common test rig and advanced applications. SLDV, dynamic ESPI and hi-speed DIC are here first deployed in a complex and unique test on the estimation of FRFs with high spatial accuracy from a thin vibrating plate. The latter exhibits a broad band dynamics and high modal density in the common frequency domain where the techniques can find an operative intersection. A peculiar point-wise comparison is here addressed by means of discrete geometry transforms to put all the three technologies on trial at each physical point of the surface. Full field measurement technologies cannot estimate only displacement fields on a refined grid, but can exploit the spatial consistency of the results through neighbouring locations by means of numerical differentiation operators in the spatial domain to obtain rotational degrees of freedom and superficial dynamic strain distributions, with enhanced quality, compared to other technologies in literature. Approaching the task with the aid of superior quality receptance maps from the three different full field gears, this work calculates and compares rotational and dynamic strain FRFs. Dynamic stress FRFs can be modelled directly from the latter, by means of a constitutive model, avoiding the costly and time-consuming steps of building and tuning a numerical dynamic model of a flexible component or a structure in real life conditions. Once dynamic stress FRFs are obtained, spectral fatigue approaches can try to predict the life of a component in many excitation conditions. Different spectral shaping of the excitation can easily be used to enhance the comparison in the framework of any of the spectral approaches for fatigue life calculations, highlighting benefits and drawbacks of a direct experimental approach to failure and risk assessment in structural dynamics when dealing with complex patterns in real-life testing. Are optical measurements and spatially dense datasets really effective in advanced model updating of lightweight structures with complex structural dynamics? The noise shown in the raw signal of some experiments may pose issues in proficiently exploiting the added data in a fruitful model updating procedure. Model updating results are here compared between scanning and native full field technologies, with comments and details on the test rig, on the advantages and drawbacks of the approaches. The identification of EMA models highlights the increasing quality of shapes that can be obtained from native full field high resolution gears, against that (some time unexpectedly poor) of SLDV tested.
Multivariate spatial models of excess crash frequency at area level: case of Costa Rica.
Aguero-Valverde, Jonathan
2013-10-01
Recently, areal models of crash frequency have being used in the analysis of various area-wide factors affecting road crashes. On the other hand, disease mapping methods are commonly used in epidemiology to assess the relative risk of the population at different spatial units. A natural next step is to combine these two approaches to estimate the excess crash frequency at area level as a measure of absolute crash risk. Furthermore, multivariate spatial models of crash severity are explored in order to account for both frequency and severity of crashes and control for the spatial correlation frequently found in crash data. This paper aims to extent the concept of safety performance functions to be used in areal models of crash frequency. A multivariate spatial model is used for that purpose and compared to its univariate counterpart. Full Bayes hierarchical approach is used to estimate the models of crash frequency at canton level for Costa Rica. An intrinsic multivariate conditional autoregressive model is used for modeling spatial random effects. The results show that the multivariate spatial model performs better than its univariate counterpart in terms of the penalized goodness-of-fit measure Deviance Information Criteria. Additionally, the effects of the spatial smoothing due to the multivariate spatial random effects are evident in the estimation of excess equivalent property damage only crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Analysis of AIRS and IASI System Performance Under Clear and Cloudy Conditions
NASA Technical Reports Server (NTRS)
Aumann, Hartmut H.; Strow, L. Larrabee
2010-01-01
The radiometric and spectral system performance of space-borne infrared radiometers is generally specified and analyzed under strictly cloud-free, spatially uniform and warm conditions, with the assumption that the observed performance applies to the full dynamic range under clear and cloudy conditions and that random noise cancels for the evaluation of the radiometric accuracy. Such clear conditions are found in only one percent of the data. Ninety nine percent of the data include clouds, which produce spatially highly non-uniform scenes with 11 micrometers window brightness temperatures as low as 200K. We use AIRS and IASI radiance spectra to compare system performance under clear and a wide range of cloudy conditions. Although the two instruments are in polar orbits, with the ascending nodes separated by four hours, daily averages already reveal surprisingly similar measurements. The AIRS and IASI radiometric performance based on the mean of large numbers of observation is comparable and agrees within 200 mK over a wide range of temperatures. There are also some unexpected differences at the 200 -500 mK level, which are of significance for climate applications. The results were verified with data from July 2007 through January 2010, but many can already be gleaned from the analysis of a single day of data.
Intrinsic coincident full-Stokes polarimeter using stacked organic photovoltaics.
Yang, Ruonan; Sen, Pratik; O'Connor, B T; Kudenov, M W
2017-02-20
An intrinsic coincident full-Stokes polarimeter is demonstrated by using strain-aligned polymer-based organic photovoltaics (OPVs) that can preferentially absorb certain polarized states of incident light. The photovoltaic-based polarimeter is capable of measuring four Stokes parameters by cascading four semitransparent OPVs in series along the same optical axis. This in-line polarimeter concept potentially ensures high temporal and spatial resolution with higher radiometric efficiency as compared to the existing polarimeter architecture. Two wave plates were incorporated into the system to modulate the S3 Stokes parameter so as to reduce the condition number of the measurement matrix and maximize the measured signal-to-noise ratio. Radiometric calibration was carried out to determine the measurement matrix. The polarimeter presented in this paper demonstrated an average RMS error of 0.84% for reconstructed Stokes vectors after normalized to S0. A theoretical analysis of the minimum condition number of the four-cell OPV design showed that for individually optimized OPV cells, a condition number of 2.4 is possible.
Phased Acoustic Array Measurements of a 5.75 Percent Hybrid Wing Body Aircraft
NASA Technical Reports Server (NTRS)
Burnside, Nathan J.; Horne, William C.; Elmer, Kevin R.; Cheng, Rui; Brusniak, Leon
2016-01-01
Detailed acoustic measurements of the noise from the leading-edge Krueger flap of a 5.75 percent Hybrid Wing Body (HWB) aircraft model were recently acquired with a traversing phased microphone array in the AEDC NFAC (Arnold Engineering Development Complex, National Full Scale Aerodynamics Complex) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. The spatial resolution of the array was sufficient to distinguish between individual support brackets over the full-scale frequency range of 100 to 2875 Hertz. For conditions representative of landing and take-off configuration, the noise from the brackets dominated other sources near the leading edge. Inclusion of flight-like brackets for select conditions highlights the importance of including the correct number of leading-edge high-lift device brackets with sufficient scale and fidelity. These measurements will support the development of new predictive models.
Conditional probability of rainfall extremes across multiple durations
NASA Astrophysics Data System (ADS)
Le, Phuong Dong; Leonard, Michael; Westra, Seth
2017-04-01
The conditional probability that extreme rainfall will occur at one location given that it is occurring at another location is critical in engineering design and management circumstances including planning of evacuation routes and the sitting of emergency infrastructure. A challenge with this conditional simulation is that in many situations the interest is not so much the conditional distributions of rainfall of the same duration at two locations, but rather the conditional distribution of flooding in two neighbouring catchments, which may be influenced by rainfall of different critical durations. To deal with this challenge, a model that can consider both spatial and duration dependence of extremes is required. The aim of this research is to develop a model that can take account both spatial dependence and duration dependence into the dependence structure of extreme rainfalls. To achieve this aim, this study is a first attempt at combining extreme rainfall for multiple durations within a spatial extreme model framework based on max-stable process theory. Max-stable processes provide a general framework for modelling multivariate extremes with spatial dependence for just a single duration extreme rainfall. To achieve dependence across multiple timescales, this study proposes a new approach that includes addition elements representing duration dependence of extremes to the covariance matrix of max-stable model. To improve the efficiency of calculation, a re-parameterization proposed by Koutsoyiannis et al. (1998) is used to reduce the number of parameters necessary to be estimated. This re-parameterization enables the GEV parameters to be represented as a function of timescale. A stepwise framework has been adopted to achieve the overall aims of this research. Firstly, the re-parameterization is used to define a new set of common parameters for marginal distribution across multiple durations. Secondly, spatial interpolation of the new parameter set is used to estimate marginal parameters across the full spatial domain. Finally, spatial interpolation result is used as initial condition to estimate dependence parameters via a likelihood function of max-stable model for multiple durations. The Hawkesbury-Nepean catchment near Sydney in Australia was selected as case study for this research. This catchment has 25 sub-daily rain gauges with the minimum record length of 24 years over a region of 300 km × 300 km area. The re-parameterization was applied for each station for durations from 1 hour to 24 hours and then is evaluated by comparing with the at-site fitted GEV. The evaluation showed that the average R2 for all station is around 0.80 with the range from 0.26 to 1.0. The output of re-parameterization then was used to construct the spatial surface based on covariates including longitude, latitude, and elevation. The dependence model showed good agreements between empirical extremal coefficient and theoretical extremal coefficient for multiple durations. For the overall model, a leave-one-out cross-validation for all stations showed it works well for 20 out of 25 stations. The potential application of this model framework was illustrated through a conditional map of return period and return level across multiple durations, both of which are important for engineering design and management.
Optical design of the lightning imager for MTG
NASA Astrophysics Data System (ADS)
Lorenzini, S.; Bardazzi, R.; Di Giampietro, M.; Feresin, F.; Taccola, M.; Cuevas, L. P.
2017-11-01
The Lightning Imager for Meteosat Third Generation is an optical payload with on-board data processing for the detection of lightning. The instrument will provide a global monitoring of lightning events over the full Earth disk from geostationary orbit and will operate in day and night conditions. The requirements of the large field of view together with the high detection efficiency with small and weak optical pulses superimposed to a much brighter and highly spatial and temporal variable background (full operation during day and night conditions, seasonal variations and different albedos between clouds oceans and lands) are driving the design of the optical instrument. The main challenge is to distinguish a true lightning from false events generated by random noise (e.g. background shot noise) or sun glints diffusion or signal variations originated by microvibrations. This can be achieved thanks to a `multi-dimensional' filtering, simultaneously working on the spectral, spatial and temporal domains. The spectral filtering is achieved with a very narrowband filter centred on the bright lightning O2 triplet line (777.4 nm +/- 0.17 nm). The spatial filtering is achieved with a ground sampling distance significantly smaller (between 4 and 5 km at sub satellite pointing) than the dimensions of a typical lightning pulse. The temporal filtering is achieved by sampling continuously the Earth disk within a period close to 1 ms. This paper presents the status of the optical design addressing the trade-off between different configurations and detailing the design and the analyses of the current baseline. Emphasis is given to the discussion of the design drivers and the solutions implemented in particular concerning the spectral filtering and the optimisation of the signal to noise ratio.
Optimizing Nanoscale Quantitative Optical Imaging of Subfield Scattering Targets
Henn, Mark-Alexander; Barnes, Bryan M.; Zhou, Hui; Sohn, Martin; Silver, Richard M.
2016-01-01
The full 3-D scattered field above finite sets of features has been shown to contain a continuum of spatial frequency information, and with novel optical microscopy techniques and electromagnetic modeling, deep-subwavelength geometrical parameters can be determined. Similarly, by using simulations, scattering geometries and experimental conditions can be established to tailor scattered fields that yield lower parametric uncertainties while decreasing the number of measurements and the area of such finite sets of features. Such optimized conditions are reported through quantitative optical imaging in 193 nm scatterfield microscopy using feature sets up to four times smaller in area than state-of-the-art critical dimension targets. PMID:27805660
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuyama, S.; Mimura, H.; Yumoto, H.
We developed a high-spatial-resolution scanning x-ray fluorescence microscope (SXFM) using Kirkpatrick-Baez mirrors. As a result of two-dimensional focusing tests at BL29XUL of SPring-8, the full width at half maximum of the focused beam was achieved to be 50x30 nm{sup 2} (VxH) under the best focusing conditions. The measured beam profiles were in good agreement with simulated results. Moreover, beam size was controllable within the wide range of 30-1400 nm by changing the virtual source size, although photon flux and size were in a trade-off relationship. To demonstrate SXFM performance, a fine test chart fabricated using focused ion beam system wasmore » observed to determine the best spatial resolution. The element distribution inside a logo mark of SPring-8 in the test chart, which has a minimum linewidth of approximately 50-60 nm, was visualized with a spatial resolution better than 30 nm using the smallest focused x-ray beam.« less
O'Leary, C A; Perry, E; Bayard, A; Wainger, L; Boynton, W R
2015-10-01
One consequence of nutrient-induced eutrophication in shallow estuarine waters is the occurrence of hypoxia and anoxia that has serious impacts on biota, habitats, and biogeochemical cycles of important elements. Because of the important role of dissolved oxygen (DO) on these ecosystem features, a variety of DO criteria have been established as indicators of system condition. However, DO dynamics are complex and vary on time scales ranging from diel to decadal and spatial scales from meters to multiple kilometers. Because of these complexities, determining DO criteria attainment or failure remains difficult. We propose a method for linking two common measurement technologies for shallow water DO criteria assessment using a Chesapeake Bay tributary as a test case. Dataflow© is a spatially intensive (30-60-m collection intervals) system used to map surface water conditions at the whole estuary scale, and ConMon is a high-frequency (15-min collection intervals) fixed station approach. The former technology is effective with spatial descriptions but poor regarding temporal resolution, while the latter provides excellent temporal but very limited spatial resolution. Our methodology for combining the strengths of these measurement technologies involved a sequence of steps. First, a statistical model of surface water DO dynamics, based on temporally intense ConMon data, was developed. The results of this model were used to calculate daily DO minimum concentrations. Second, this model was then inserted into Dataflow©-generated spatial maps of DO conditions and used to adjust measured DO concentrations to daily minimum concentrations. This information was used to assess DO criteria compliance at the full tributary scale. Model results indicated that it is vital to consider the short-term time scale DO criteria across both space and time concurrently. Large fluctuations in DO occurred within a 24-h time period, and DO dynamics varied across the length and width of the tributary. The overall result provided a more detailed and realistic characterization of the shallow water DO minimum conditions that have the potential to be extended to other tributaries and regions. Broader applications of this model include instantaneous DO criteria assessment, utilizing this model in combination with aerial remote sensing, and developing DO amplitude as an indicator of impaired water bodies.
Protopapa, Foteini; Siettos, Constantinos I; Evdokimidis, Ioannis; Smyrnis, Nikolaos
2014-01-01
We employed spectral Granger causality analysis on a full set of 56 electroencephalographic recordings acquired during the execution of either a 2D movement pointing or a perceptual (yes/no) change detection task with memory and non-memory conditions. On the basis of network characteristics across frequency bands, we provide evidence for the full dissociation of the corresponding cognitive processes. Movement-memory trial types exhibited higher degree nodes during the first 2 s of the delay period, mainly at central, left frontal and right-parietal areas. Change detection-memory trial types resulted in a three-peak temporal pattern of the total degree with higher degree nodes emerging mainly at central, right frontal, and occipital areas. Functional connectivity networks resulting from non-memory trial types were characterized by more sparse structures for both tasks. The movement-memory trial types encompassed an apparent coarse flow from frontal to parietal areas while the opposite flow from occipital, parietal to central and frontal areas was evident for the change detection-memory trial types. The differences among tasks and conditions were more profound in α (8-12 Hz) and β (12-30 Hz) and less in γ (30-45 Hz) band. Our results favor the hypothesis which considers spatial working memory as a by-product of specific mental processes that engages common brain areas under different network organizations.
Simulations of spray autoignition and flame establishment with two-dimensional CMC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Y.M.; Boulouchos, K.; De Paola, G.
2005-12-01
The unsteady two-dimensional conditional moment closure (CMC) model with first-order closure of the chemistry and supplied with standard models for the conditional convection and turbulent diffusion terms has been interfaced with a commercial engine CFD code and analyzed with two numerical methods, an 'exact' calculation with the method of lines and a faster fractional-step method. The aim was to examine the sensitivity of the predictions to the operator splitting errors and to identify the extent to which spatial transport terms are important for spray autoignition problems. Despite the underlying simplifications, solution of the full CMC equations allows a single modelmore » to be used for the autoignition, flame propagation ('premixed mode'), and diffusion flame mode of diesel combustion, which makes CMC a good candidate model for practical engine calculations. It was found that (i) the conditional averages have significant spatial gradients before ignition and during the premixed mode and (ii) that the inclusion of physical-space transport affects the calculation of the autoignition delay time, both of which suggest that volume-averaged CMC approaches may be inappropriate for diesel-like problems. A balance of terms in the CMC equation before and after autoignition shows the relative magnitude of spatial transport and allows conjectures on the structure of the premixed phase of diesel combustion. Very good agreement with available experimental data is found concerning ignition delays and the effect of background air turbulence on them.« less
Peter R. Robichaud
1997-01-01
Geostatistics provides a method to describe the spatial continuity of many natural phenomena. Spatial models are based upon the concept of scaling, kriging and conditional simulation. These techniques were used to describe the spatially-varied surface conditions on timber harvest and burned hillslopes. Geostatistical techniques provided estimates of the ground cover (...
Material removal and surface figure during pad polishing of fused silica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suratwala, T I; Feit, M D; Steele, W A
2009-05-04
The material removal and surface figure after ceria pad polishing of fused silica glass have been measured and analyzed as a function of kinematics, loading conditions, and polishing time. Also, the friction at the workpiece/lap interface, the slope of the workpiece relative to the lap plane, and lap viscoelastic properties have been measured and correlated to material removal. The results show that the relative velocity between the workpiece & lap (determined by the kinematics) and the pressure distribution determine the spatial and temporal material removal and hence the final surface figure of the workpiece. In the case where the appliedmore » loading and relative velocity distribution over the workpiece are spatially uniform, a significant non-uniform spatial material removal from the workpiece surface is observed. This is due to a non-uniform pressure distribution resulting from: (1) a moment caused by a pivot point and interface friction forces; (2) viscoelastic relaxation of the polyurethane lap; and (3) a physical workpiece/lap interface mismatch. Both the kinematics and these contributions to the pressure distribution are quantitatively described, and then combined to form a spatial and temporal Preston model & code for material removal (called Surface Figure or SurF{copyright}). The surface figure simulations are consistent with the experiment for a wide variety of polishing conditions. This study is an important step towards deterministic full-aperture polishing, which would allow optical glass fabrication to be performed in a more repeatable, less iterative, and hence more economical manner.« less
Assessing the hydrologic response to wildfires in mountainous regions
NASA Astrophysics Data System (ADS)
Havel, Aaron; Tasdighi, Ali; Arabi, Mazdak
2018-04-01
This study aims to understand the hydrologic responses to wildfires in mountainous regions at various spatial scales. The Soil and Water Assessment Tool (SWAT) was used to evaluate the hydrologic responses of the upper Cache la Poudre Watershed in Colorado to the 2012 High Park and Hewlett wildfire events. A baseline SWAT model was established to simulate the hydrology of the study area between the years 2000 and 2014. A procedure involving land use and curve number updating was implemented to assess the effects of wildfires. Application of the proposed procedure provides the ability to simulate the hydrologic response to wildfires seamlessly through mimicking the dynamic of the changes due to wildfires. The wildfire effects on curve numbers were determined comparing the probability distribution of curve numbers after calibrating the model for pre- and post-wildfire conditions. Daily calibration and testing of the model produced very good
results. No-wildfire and wildfire scenarios were created and compared to quantify changes in average annual total runoff volume, water budgets, and full streamflow statistics at different spatial scales. At the watershed scale, wildfire conditions showed little impact on the hydrologic responses. However, a runoff increase up to 75 % was observed between the scenarios in sub-watersheds with high burn intensity. Generally, higher surface runoff and decreased subsurface flow were observed under post-wildfire conditions. Flow duration curves developed for burned sub-watersheds using full streamflow statistics showed that less frequent streamflows become greater in magnitude. A linear regression model was developed to assess the relationship between percent burned area and runoff increase in Cache la Poudre Watershed. A strong (R2 > 0.8) and significant (p < 0.001) positive correlation was determined between runoff increase and percentage of burned area upstream. This study showed that the effects of wildfires on hydrology of a watershed are scale-dependent. Also, using full streamflow statistics through application of flow duration curves revealed that the wildfires had a higher effect on peak flows, which may increase the risk of flash floods in post-wildfire conditions.
Continuous joint measurement and entanglement of qubits in remote cavities
NASA Astrophysics Data System (ADS)
Motzoi, Felix; Whaley, K. Birgitta; Sarovar, Mohan
2015-09-01
We present a first-principles theoretical analysis of the entanglement of two superconducting qubits in spatially separated microwave cavities by a sequential (cascaded) probe of the two cavities with a coherent mode, that provides a full characterization of both the continuous measurement induced dynamics and the entanglement generation. We use the SLH formalism to derive the full quantum master equation for the coupled qubits and cavities system, within the rotating wave and dispersive approximations, and conditioned equations for the cavity fields. We then develop effective stochastic master equations for the dynamics of the qubit system in both a polaronic reference frame and a reduced representation within the laboratory frame. We compare simulations with and analyze tradeoffs between these two representations, including the onset of a non-Markovian regime for simulations in the reduced representation. We provide conditions for ensuring persistence of entanglement and show that using shaped pulses enables these conditions to be met at all times under general experimental conditions. The resulting entanglement is shown to be robust with respect to measurement imperfections and loss channels. We also study the effects of qubit driving and relaxation dynamics during a weak measurement, as a prelude to modeling measurement-based feedback control in this cascaded system.
NASA Astrophysics Data System (ADS)
Wells, Conrad; Olczak, Gene; Merle, Cormic; Dey, Tom; Waldman, Mark; Whitman, Tony; Wick, Eric; Peer, Aaron
2010-08-01
The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) consists of a 6.6 m clear aperture, allreflective, three-mirror anastigmat. The 18-segment primary mirror (PM) presents unique and challenging assembly, integration, alignment and testing requirements. A full aperture center of curvature optical test is performed in cryogenic vacuum conditions at the integrated observatory level to verify PM performance requirements. The Center of Curvature Optical Assembly (CoCOA), designed and being built by ITT satisfies the requirements for this test. The CoCOA contains a multi wave interferometer, patented reflective null lens, actuation for alignment, full in situ calibration capability, coarse and fine alignment sensing systems, as well as a system for monitoring changes in the PM to CoCOA distance. Two wave front calibration tests are utilized to verify the low and Mid/High spatial frequencies, overcoming the limitations of the standard null/hologram configuration in its ability to resolve mid and high spatial frequencies. This paper will introduce the systems level architecture and optical test layout for the CoCOA.
Super-resolution imaging by resonant tunneling in anisotropic acoustic metamaterials.
Liu, Aiping; Zhou, Xiaoming; Huang, Guoliang; Hu, Gengkai
2012-10-01
The resonant tunneling effects that could result in complete transmission of evanescent waves are examined in acoustic metamaterials of anisotropic effective mass. The tunneling conditions are first derived for the metamaterials composed of classical mass-in-mass structures. It is found that the tunneling transmission occurs when the total length of metamaterials is an integral number of half-wavelengths of the periodic Bloch wave. Due to the local resonance of building units of metamaterials, the Bloch waves are spatially modulated within the periodic structures, leading to the resonant tunneling occurring in the low-frequency region. The metamaterial slab lens with anisotropic effective mass is designed by which the physics of resonant tunneling and the features for evanescent field manipulations are examined. The designed lens interacts with evanescent waves in the way of the propagating wavenumber weakly dependent on the spatial frequency of evanescent waves. Full-wave simulations validate the imaging performance of the proposed lens with the spatial resolution beyond the diffraction limit.
In situ X-ray-based imaging of nano materials
Weker, Johanna Nelson; Huang, Xiaojing; Toney, Michael F.
2016-02-13
We study functional nanomaterials that are heterogeneous and understanding their behavior during synthesis and operation requires high resolution diagnostic imaging tools that can be used in situ. Over the past decade, huge progress has been made in the development of X-ray based imaging, including full field and scanning microscopy and their analogs in coherent diffractive imaging. Currently, spatial resolution of about 10 nm and time resolution of sub-seconds are achievable. For catalysis, X-ray imaging allows tracking of particle chemistry under reaction conditions. In energy storage, in situ X-ray imaging of electrode particles is providing important insight into degradation processes. Recently,more » both spatial and temporal resolutions are improving to a few nm and milliseconds and these developments will open up unprecedented opportunities.« less
Data Base Management Systems Panel Workshop: Executive summary
NASA Technical Reports Server (NTRS)
1979-01-01
Data base management systems (DBMS) for space acquired and associated data are discussed. The full range of DBMS needs is covered including acquiring, managing, storing, archiving, accessing and dissemination of data for an application. Existing bottlenecks in DBMS operations, expected developments in the field of remote sensing, communications, and computer science are discussed, and an overview of existing conditions and expected problems is presented. The requirements for a proposed spatial information system and characteristics of a comprehensive browse facility for earth observations applications are included.
2015-12-07
Wallen, B., K.M. Smits and S.E. Howington. Thermal conductivity of binary sand mixtures evaluated through the full range of saturation. Hydrology Days...and T.H. Illangasekare. 2011. Thermal conductivity of soils as affected by temperature, Proceedings from Hydrology Days. Colorado State University...is mixed with very fine soil). Although it is well known that the apparent thermal conductivity (λ) of partially wet soil is a function of water (θ
NASA Technical Reports Server (NTRS)
Kurtz, Nathan T.; Markus, Thorsten; Cavalieri, Donald J.; Sparling, Lynn C.; Krabill, William B.; Gasiewski, Albin J.; Sonntag, John G.
2009-01-01
Combinations of sea ice freeboard and snow depth measurements from satellite data have the potential to provide a means to derive global sea ice thickness values. However, large differences in spatial coverage and resolution between the measurements lead to uncertainties when combining the data. High resolution airborne laser altimeter retrievals of snow-ice freeboard and passive microwave retrievals of snow depth taken in March 2006 provide insight into the spatial variability of these quantities as well as optimal methods for combining high resolution satellite altimeter measurements with low resolution snow depth data. The aircraft measurements show a relationship between freeboard and snow depth for thin ice allowing the development of a method for estimating sea ice thickness from satellite laser altimetry data at their full spatial resolution. This method is used to estimate snow and ice thicknesses for the Arctic basin through the combination of freeboard data from ICESat, snow depth data over first-year ice from AMSR-E, and snow depth over multiyear ice from climatological data. Due to the non-linear dependence of heat flux on ice thickness, the impact on heat flux calculations when maintaining the full resolution of the ICESat data for ice thickness estimates is explored for typical winter conditions. Calculations of the basin-wide mean heat flux and ice growth rate using snow and ice thickness values at the 70 m spatial resolution of ICESat are found to be approximately one-third higher than those calculated from 25 km mean ice thickness values.
Full Spatial Resolution Infrared Sounding Application in the Preconvection Environment
NASA Astrophysics Data System (ADS)
Liu, C.; Liu, G.; Lin, T.
2013-12-01
Advanced infrared (IR) sounders such as the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) provide atmospheric temperature and moisture profiles with high vertical resolution and high accuracy in preconvection environments. The derived atmospheric stability indices such as convective available potential energy (CAPE) and lifted index (LI) from advanced IR soundings can provide critical information 1 ; 6 h before the development of severe convective storms. Three convective storms are selected for the evaluation of applying AIRS full spatial resolution soundings and the derived products on providing warning information in the preconvection environments. In the first case, the AIRS full spatial resolution soundings revealed local extremely high atmospheric instability 3 h ahead of the convection on the leading edge of a frontal system, while the second case demonstrates that the extremely high atmospheric instability is associated with the local development of severe thunderstorm in the following hours. The third case is a local severe storm that occurred on 7-8 August 2010 in Zhou Qu, China, which caused more than 1400 deaths and left another 300 or more people missing. The AIRS full spatial resolution LI product shows the atmospheric instability 3.5 h before the storm genesis. The CAPE and LI from AIRS full spatial resolution and operational AIRS/AMSU soundings along with Geostationary Operational Environmental Satellite (GOES) Sounder derived product image (DPI) products were analyzed and compared. Case studies show that full spatial resolution AIRS retrievals provide more useful warning information in the preconvection environments for determining favorable locations for convective initiation (CI) than do the coarser spatial resolution operational soundings and lower spectral resolution GOES Sounder retrievals. The retrieved soundings are also tested in a regional data assimilation WRF 3D-var system to evaluate the potential assist in the NWP model.
Potgieter, Sarah; Pinto, Ameet; Sigudu, Makhosazana; du Preez, Hein; Ncube, Esper; Venter, Stephanus
2018-08-01
Long-term spatial-temporal investigations of microbial dynamics in full-scale drinking water distribution systems are scarce. These investigations can reveal the process, infrastructure, and environmental factors that influence the microbial community, offering opportunities to re-think microbial management in drinking water systems. Often, these insights are missed or are unreliable in short-term studies, which are impacted by stochastic variabilities inherent to large full-scale systems. In this two-year study, we investigated the spatial and temporal dynamics of the microbial community in a large, full scale South African drinking water distribution system that uses three successive disinfection strategies (i.e. chlorination, chloramination and hypochlorination). Monthly bulk water samples were collected from the outlet of the treatment plant and from 17 points in the distribution system spanning nearly 150 km and the bacterial community composition was characterised by Illumina MiSeq sequencing of the V4 hypervariable region of the 16S rRNA gene. Like previous studies, Alpha- and Betaproteobacteria dominated the drinking water bacterial communities, with an increase in Betaproteobacteria post-chloramination. In contrast with previous reports, the observed richness, diversity, and evenness of the bacterial communities were higher in the winter months as opposed to the summer months in this study. In addition to temperature effects, the seasonal variations were also likely to be influenced by changes in average water age in the distribution system and corresponding changes in disinfectant residual concentrations. Spatial dynamics of the bacterial communities indicated distance decay, with bacterial communities becoming increasingly dissimilar with increasing distance between sampling locations. These spatial effects dampened the temporal changes in the bulk water community and were the dominant factor when considering the entire distribution system. However, temporal variations were consistently stronger as compared to spatial changes at individual sampling locations and demonstrated seasonality. This study emphasises the need for long-term studies to comprehensively understand the temporal patterns that would otherwise be missed in short-term investigations. Furthermore, systematic long-term investigations are particularly critical towards determining the impact of changes in source water quality, environmental conditions, and process operations on the changes in microbial community composition in the drinking water distribution system. Copyright © 2018 Elsevier Ltd. All rights reserved.
NMDA Receptors Are Not Required for Pattern Completion During Associative Memory Recall
Gu, Yiran; Cui, Zhenzhong; Tsien, Joe Z.
2011-01-01
Pattern completion, the ability to retrieve complete memories initiated by subsets of external cues, has been a major focus of many computation models. A previously study reports that such pattern completion requires NMDA receptors in the hippocampus. However, such a claim was derived from a non-inducible gene knockout experiment in which the NMDA receptors were absent throughout all stages of memory processes as well as animal's adult life. This raises the critical question regarding whether the previously described results were truly resulting from the requirement of the NMDA receptors in retrieval. Here, we have examined the role of the NMDA receptors in pattern completion via inducible knockout of NMDA receptors limited to the memory retrieval stage. By using two independent mouse lines, we found that inducible knockout mice, lacking NMDA receptor in either forebrain or hippocampus CA1 region at the time of memory retrieval, exhibited normal recall of associative spatial reference memory regardless of whether retrievals took place under full-cue or partial-cue conditions. Moreover, systemic antagonism of NMDA receptor during retention tests also had no effect on full-cue or partial-cue recall of spatial water maze memories. Thus, both genetic and pharmacological experiments collectively demonstrate that pattern completion during spatial associative memory recall does not require the NMDA receptor in the hippocampus or forebrain. PMID:21559402
NASA Astrophysics Data System (ADS)
Wang, Yuan; Wu, Rongsheng
2001-12-01
Theoretical argumentation for so-called suitable spatial condition is conducted by the aid of homotopy framework to demonstrate that the proposed boundary condition does guarantee that the over-specification boundary condition resulting from an adjoint model on a limited-area is no longer an issue, and yet preserve its well-poseness and optimal character in the boundary setting. The ill-poseness of over-specified spatial boundary condition is in a sense, inevitable from an adjoint model since data assimilation processes have to adapt prescribed observations that used to be over-specified at the spatial boundaries of the modeling domain. In the view of pragmatic implement, the theoretical framework of our proposed condition for spatial boundaries indeed can be reduced to the hybrid formulation of nudging filter, radiation condition taking account of ambient forcing, together with Dirichlet kind of compatible boundary condition to the observations prescribed in data assimilation procedure. All of these treatments, no doubt, are very familiar to mesoscale modelers.
Comparison of Spatial Correlation Parameters between Full and Model Scale Launch Vehicles
NASA Technical Reports Server (NTRS)
Kenny, Jeremy; Giacomoni, Clothilde
2016-01-01
The current vibro-acoustic analysis tools require specific spatial correlation parameters as input to define the liftoff acoustic environment experienced by the launch vehicle. Until recently these parameters have not been very well defined. A comprehensive set of spatial correlation data were obtained during a scale model acoustic test conducted in 2014. From these spatial correlation data, several parameters were calculated: the decay coefficient, the diffuse to propagating ratio, and the angle of incidence. Spatial correlation data were also collected on the EFT-1 flight of the Delta IV vehicle which launched on December 5th, 2014. A comparison of the spatial correlation parameters from full scale and model scale data will be presented.
Schorer, Jörg; Rienhoff, Rebecca; Fischer, Lennart; Baker, Joseph
2013-09-01
The importance of perceptual-cognitive expertise in sport has been repeatedly demonstrated. In this study we examined the role of different sources of visual information (i.e., foveal versus peripheral) in anticipating volleyball attack positions. Expert (n = 11), advanced (n = 13) and novice (n = 16) players completed an anticipation task that involved predicting the location of volleyball attacks. Video clips of volleyball attacks (n = 72) were spatially and temporally occluded to provide varying amounts of information to the participant. In addition, participants viewed the attacks under three visual conditions: full vision, foveal vision only, and peripheral vision only. Analysis of variance revealed significant between group differences in prediction accuracy with higher skilled players performing better than lower skilled players. Additionally, we found significant differences between temporal and spatial occlusion conditions. Both of those factors interacted separately, but not combined with expertise. Importantly, for experts the sum of both fields of vision was superior to either source in isolation. Our results suggest different sources of visual information work collectively to facilitate expert anticipation in time-constrained sports and reinforce the complexity of expert perception.
Connectopic mapping with resting-state fMRI.
Haak, Koen V; Marquand, Andre F; Beckmann, Christian F
2018-04-15
Brain regions are often topographically connected: nearby locations within one brain area connect with nearby locations in another area. Mapping these connection topographies, or 'connectopies' in short, is crucial for understanding how information is processed in the brain. Here, we propose principled, fully data-driven methods for mapping connectopies using functional magnetic resonance imaging (fMRI) data acquired at rest by combining spectral embedding of voxel-wise connectivity 'fingerprints' with a novel approach to spatial statistical inference. We apply the approach in human primary motor and visual cortex, and show that it can trace biologically plausible, overlapping connectopies in individual subjects that follow these regions' somatotopic and retinotopic maps. As a generic mechanism to perform inference over connectopies, the new spatial statistics approach enables rigorous statistical testing of hypotheses regarding the fine-grained spatial profile of functional connectivity and whether that profile is different between subjects or between experimental conditions. The combined framework offers a fundamental alternative to existing approaches to investigating functional connectivity in the brain, from voxel- or seed-pair wise characterizations of functional association, towards a full, multivariate characterization of spatial topography. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Wang, Xun-Li; An, Ke; Cai, Lu; Feng, Zhili; Nagler, Stephen E.; Daniel, Claus; Rhodes, Kevin J.; Stoica, Alexandru D.; Skorpenske, Harley D.; Liang, Chengdu; Zhang, Wei; Kim, Joon; Qi, Yue; Harris, Stephen J.
2012-01-01
We report an in-situ neutron diffraction study of a large format pouch battery cell. The succession of Li-Graphite intercalation phases was fully captured under an 1C charge-discharge condition (i.e., charge to full capacity in 1 hour). However, the lithiation and dilithiation pathways are distinctively different and, unlike in slowing charging experiments with which the Li-Graphite phase diagram was established, no LiC24 phase was found during charge at 1C rate. Approximately 75 mol. % of the graphite converts to LiC6 at full charge, and a lattice dilation as large as 4% was observed during a charge-discharge cycle. Our work demonstrates the potential of in-situ, time and spatially resolved neutron diffraction study of the dynamic chemical and structural changes in “real-world” batteries under realistic cycling conditions, which should provide microscopic insights on degradation and the important role of diffusion kinetics in energy storage materials. PMID:23087812
Füzy, Anna; Bothe, Hermann; Molnár, Edit; Biró, Borbála
2014-03-01
AMF (arbuscular mycorrhizal fungi) colonization of the grass chalk false-brome (Brachypodium pinnatum (L.) P. B.) was studied in selected habitats under spatially different light regimes: (a) shade condition under oak trees, (b) half shade in a shrubby area and (c) full-sun conditions on unshaded grassland. This study assessed the variations in AMF colonization of the grass dependent on the light supply in field habitats. Soil, root and shoot samples were collected four times during the vegetation period (in June, July, September and October). Root colonization, root and shoot biomass as well as soil water content were determined. The highest rate of AMF colonization was detected in June under half-sun and full-sun conditions, where about 50% of the roots were colonized. The average amount of arbuscules was less than 20% in the roots at the three sites, with the highest number of arbuscules in June, under half-sun and full-sun conditions, however, not under the trees. Overall, best mycorrhizal colonization occurred during summer, and its rate decreased in autumn. This tendency inversely correlated with the amount of precipitation, and thus with the water content of soils. The high colonization rate of the examined root samples, and also its seasonal fluctuation, might reflect the importance of the symbiosis where inorganic nutrients and water are the growth-limiting factors. The marginal AMF colonization of chalk false-brome under shade conditions indicates that plants do not use AMF under all stress conditions. When low light limits photosynthesis and thus growth of the plants, they dispense with the colonization of AMF in order to save the expenditure of organic carbon. Copyright © 2013 Elsevier GmbH. All rights reserved.
Improving chemical species tomography of turbulent flows using covariance estimation.
Grauer, Samuel J; Hadwin, Paul J; Daun, Kyle J
2017-05-01
Chemical species tomography (CST) experiments can be divided into limited-data and full-rank cases. Both require solving ill-posed inverse problems, and thus the measurement data must be supplemented with prior information to carry out reconstructions. The Bayesian framework formalizes the role of additive information, expressed as the mean and covariance of a joint-normal prior probability density function. We present techniques for estimating the spatial covariance of a flow under limited-data and full-rank conditions. Our results show that incorporating a covariance estimate into CST reconstruction via a Bayesian prior increases the accuracy of instantaneous estimates. Improvements are especially dramatic in real-time limited-data CST, which is directly applicable to many industrially relevant experiments.
Spatially-varied erosion modeling using WEPP for timber harvested and burned hillslopes
Peter R. Robichaud; T. M. Monroe
1997-01-01
Spatially-varied hydrologic surface conditions exist on steep hillslopes after timber harvest operation and site preparation burning treatments. Site preparation burning creates low- and high-severity burn surface conditions or disturbances. In this study, a hillslope was divided into multiple combinations of surface conditions to determine how their spatial...
Paladini, Rebecca E.; Diana, Lorenzo; Zito, Giuseppe A.; Nyffeler, Thomas; Wyss, Patric; Mosimann, Urs P.; Müri, René M.; Nef, Tobias
2018-01-01
Cross-modal spatial cueing can affect performance in a visual search task. For example, search performance improves if a visual target and an auditory cue originate from the same spatial location, and it deteriorates if they originate from different locations. Moreover, it has recently been postulated that multisensory settings, i.e., experimental settings, in which critical stimuli are concurrently presented in different sensory modalities (e.g., visual and auditory), may trigger asymmetries in visuospatial attention. Thereby, a facilitation has been observed for visual stimuli presented in the right compared to the left visual space. However, it remains unclear whether auditory cueing of attention differentially affects search performance in the left and the right hemifields in audio-visual search tasks. The present study investigated whether spatial asymmetries would occur in a search task with cross-modal spatial cueing. Participants completed a visual search task that contained no auditory cues (i.e., unimodal visual condition), spatially congruent, spatially incongruent, and spatially non-informative auditory cues. To further assess participants’ accuracy in localising the auditory cues, a unimodal auditory spatial localisation task was also administered. The results demonstrated no left/right asymmetries in the unimodal visual search condition. Both an additional incongruent, as well as a spatially non-informative, auditory cue resulted in lateral asymmetries. Thereby, search times were increased for targets presented in the left compared to the right hemifield. No such spatial asymmetry was observed in the congruent condition. However, participants’ performance in the congruent condition was modulated by their tone localisation accuracy. The findings of the present study demonstrate that spatial asymmetries in multisensory processing depend on the validity of the cross-modal cues, and occur under specific attentional conditions, i.e., when visual attention has to be reoriented towards the left hemifield. PMID:29293637
Modality dependence and intermodal transfer in the Corsi Spatial Sequence Task: Screen vs. Floor.
Röser, Andrea; Hardiess, Gregor; Mallot, Hanspeter A
2016-07-01
Four versions of the Corsi Spatial Sequence Task (CSST) were tested in a complete within-subject design, investigating whether participants' performance depends on the modality of task presentation and reproduction that put different demands on spatial processing. Presentation of the sequence (encoding phase) and the reproduction (recall phase) were each carried out either on a computer screen or on the floor of a room, involving actual walking in the recall phase. Combinations of the two different encoding and recall procedures result in the modality conditions Screen-Screen, Screen-Floor, Floor-Screen, and Floor-Floor. Results show the expected decrease in performance with increasing sequence length, which is likely due to processing limitations of working memory. We also found differences in performance between the modality conditions indicating different involvements of spatial working memory processes. Participants performed best in the Screen-Screen modality condition. Floor-Screen and Floor-Floor modality conditions require additional working memory resources for reference frame transformation and spatial updating, respectively; the resulting impairment of the performance was about the same in these two conditions. Finally, the Screen-Floor modality condition requires both types of additional spatial demands and led to the poorest performance. Therefore, we suggest that besides the well-known spatial requirements of CSST, additional working memory resources are demanded in walking CSST supporting processes such as spatial updating, mental rotation, reference frame transformation, and the control of walking itself.
Tuschy, Benjamin; Berlit, Sebastian; Brade, Joachim; Sütterlin, Marc; Hornemann, Amadeus
2014-01-01
To investigate the clinical assessment of a full high-definition (HD) three-dimensional robot-assisted laparoscopic device in gynaecological surgery. This study included 70 women who underwent gynaecological laparoscopic procedures. Demographic parameters, type and duration of surgery and perioperative complications were analyzed. Fifteen surgeons were postoperatively interviewed regarding their assessment of this new system with a standardized questionnaire. The clinical assessment revealed that three-dimensional full-HD visualisation is comfortable and improves spatial orientation and hand-to-eye coordination. The majority of the surgeons stated they would prefer a three-dimensional system to a conventional two-dimensional device and stated that the robotic camera arm led to more relaxed working conditions. Three-dimensional laparoscopy is feasible, comfortable and well-accepted in daily routine. The three-dimensional visualisation improves surgeons' hand-to-eye coordination, intracorporeal suturing and fine dissection. The combination of full-HD three-dimensional visualisation with the robotic camera arm results in very high image quality and stability.
Catlett, Gentry A.; Rech, Jason A.; Pigati, Jeffrey S.; Al Kuisi, Mustafa; Li, Shanying; Honke, Jeffrey S.
2017-01-01
organic matter in sediments for radiocarbon dating and apply it to playa sediments recovered from a 2.35m sediment core from a small playa in southern Jordan. Based on 14C ages of the organic concentrate fraction, the playa was active from ~29 to 21 ka, coincident with the last major high stand of Paleolake Lisan and wet conditions recorded by other paleoclimatic proxies in the southernmost Levant during the last full glacial period (35–20 ka). The timing and spatial pattern of these records suggests that the increased moisture was likely derived from more frequent and deeper eastern Mediterranean (EM) cyclones associated with the intensification of the westerlies. The presence of full glacial pluvial deposits in southern Jordan (29°N), and the lack of similarly aged deposits in the northern Arabian Peninsula to the south, suggests that the southerly limit of the incursion of EM cyclones during last full glacial period was ~28°N.
NASA Astrophysics Data System (ADS)
Ma, Yi; Lee, Eric Wai Ming; Shi, Meng; Kwok Kit Yuen, Richard
2018-03-01
Spatial memory is a critical navigation support tool for disoriented evacuees during evacuation under adverse environmental conditions such as dark or smoky conditions. Owing to the complexity of memory, it is challenging to understand the effect of spatial memory on pedestrian evacuation quantitatively. In this study, we propose a simple method to quantitatively represent the evacueeʼs spatial memory about the emergency exit, model the evacuation of pedestrians under the guidance of the spatial memory, and investigate the effect of the evacueeʼs spatial memory on the evacuation from theoretical and physical perspectives. The result shows that (i) a good memory can significantly assist the evacuation of pedestrians under poor visibility conditions, and the evacuation can always succeed when the degree of the memory exceeds a threshold (\\varphi > 0.5); (ii) the effect of memory is superior to that of “follow-the-crowd” under the same environmental conditions; (iii) in the case of multiple exits, the difference in the degree of the memory between evacuees has a significant effect (the greater the difference, the faster the evacuation) for the evacuation under poor visibility conditions. Our study provides a new quantitative insight into the effect of spatial memory on crowd evacuation under poor visibility conditions. Project supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (Grant No. 11203615).
A Tale of Two Types of Perspective Taking: Sex Differences in Spatial Ability.
Tarampi, Margaret R; Heydari, Nahal; Hegarty, Mary
2016-11-01
Sex differences in favor of males have been documented in measures of spatial perspective taking. In this research, we examined whether social factors (i.e., stereotype threat and the inclusion of human figures in tasks) account for these differences. In Experiment 1, we evaluated performance when perspective-taking tests were framed as measuring either spatial or social (empathetic) perspective-taking abilities. In the spatial condition, tasks were framed as measures of spatial ability on which males have an advantage. In the social condition, modified tasks contained human figures and were framed as measures of empathy on which females have an advantage. Results showed a sex difference in favor of males in the spatial condition but not the social condition. Experiments 2 and 3 indicated that both stereotype threat and including human figures contributed to these effects. Results suggest that females may underperform on spatial tests in part because of negative performance expectations and the character of the spatial tests rather than because of actual lack of abilities. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Yang, Ruonan; Sen, Pratik; O'Connor, B. T.; Kudenov, M. W.
2017-08-01
An intrinsic coincident full-Stokes polarimeter is demonstrated by using stain-aligned polymer-based organic photovoltaics (OPVs) which can preferentially absorb certain polarized states of incident light. The photovoltaic-based polarimeter is capable of measuring four stokes parameters by cascading four semitransparent OPVs in series along the same optical axis. Two wave plates were incorporated into the system to modulate the S3 stokes parameter so as to reduce the condition number of the measurement matrix. The model for the full-Stokes polarimeter was established and validated, demonstrating an average RMS error of 0.84%. The optimization, based on minimizing the condition number of the 4-cell OPV design, showed that a condition number of 2.4 is possible. Performance of this in-line polarimeter concept was compared to other polarimeter architectures, including Division of Time (DoT), Division of Amplitude (DoAm), Division of Focal Plane (DoFP), and Division of Aperture (DoA) from signal-to-noise ratio (SNR) perspective. This in-line polarimeter concept has the potential to enable both high temporal (as compared with a DoT polarimeter) and high spatial resolution (as compared with DoFP and DoA polarimeters). We conclude that the intrinsic design has the same √2 SNR advantage as the DoAm polarimeter, but with greater compactness.
Full 2D observation of water surface elevation from SWOT under different flow conditions
NASA Astrophysics Data System (ADS)
Domeneghetti, Alessio; Schumann, Guy; Rui, Wei; Durand, Michael; Pavelsky, Tamlin
2016-04-01
The upcoming Surface Water and Ocean Topography (SWOT) satellite mission is a joint project of NASA, Centre National d'Etudes Spatiales (CNES, France), the Canadian Space Agency, and the Space Agency of the UK that will provide a first global, high-resolution observation of ocean and terrestrial water surface heights. Characterized by an observation swath of 120 km and an orbit repeat interval of about 21 days, SWOT will provide unprecedented bi-dimensional observations of rivers wider than 50-100 m. Despite many research activities that have investigated potential uses of remotely sensed data from SWOT, potentials and limitations of the spatial observations provided by the satellite mission for flood modeling still remain poorly understood and investigated. In this study we present a first analysis of the spatial observation of water surface elevation that is expected from SWOT for a 140 km reach of the middle-lower portion of the Po River, in Northern Italy. The river stretch is characterized by a main channel varying from 200-500 m in width and a floodplain that can be as wide as 5 km and that is delimited by a system of major embankments. The reconstruction of the hydraulic behavior of the Po River is performed by means of a quasi-2d model built with detailed topographic and bathymetric information (LiDAR, 2 m resolution), while the simulation of the spatial observation sensed by SWOT is performed with a SWOT simulator that mimics the satellite sensor characteristics. Referring to water surface elevations associated with different flow conditions (maximum, minimum and average flow reproduced by means of the quasi-2d numerical model) this work provides a first characterization of the spatial observations provided by SWOT and highlights the strengths and limitations of the expected products. By referring to a real river reach the analysis provides a credible example of the type of spatial observations that will be available after launch of SWOT and offers a first evaluation of the possible effects of river embankments, river width and river topography under different hydraulic conditions. Results of the study characterize the expected accuracy of the upcoming SWOT mission and provide additional insights towards more appropriate exploitation of future potential hydrologic data.
Spatial large-eddy simulations of contrail formation in the wake of an airliner
NASA Astrophysics Data System (ADS)
Paoli, R.
2015-12-01
Contrails and contrail-cirrus are the most uncertain contributors to aviation radiative forcing. In order to reduce this uncertainty one needs to gain more knowledge on the physicochemical processes occurring in the aircraft plume, which eventually lead to the transformation of contrails into cirrus. To that end, the accurate prediction of the number of activated particles and their spatial and size distributions at the end of the jet regime may be helpful to initialize simulations in the following vortex regime. We present the results from spatial large-eddy simulations (LES) of contrail formation in the near-field wake of a generic (but full-scale) airliner that is representative of those used in long-haul flights in current fleets. The flow around the aircraft has been computed using a RANS code taking into account the full geometry that include the engines and the aerodynamic set-up for cruise conditions. The data have been reconstructed at a plane closely behind the trailing edge of the wing and used as inflow boundary conditions for the LES. We employ fully compressible 3D LES coupled to Lagrangian microphysical module that tracks parcels of ice particles individually. The ice microphysical model is simple yet it contains the basic thermodynamic ingredients to model soot activation and water vapor deposition. Compared to one-dimensional models or even RANS, LES allow for more accurate predictions of the mixing between exhaust and ambient air. Hence, the number of activated particles and the ice growth rate can be also determined with higher accuracy. This is particularly crucial for particles located at the edge of the jet that experience large gradients of temperature and humidity. The results of the fully coupled LES (where the gas phase and the particles are solved together) are compared to offline simulations where the ice microphysics model is run using thermodynamic data from pre-calculated particle trajectories extracted from inert LES (where ice microphysics has been switched off).
Display device-adapted video quality-of-experience assessment
NASA Astrophysics Data System (ADS)
Rehman, Abdul; Zeng, Kai; Wang, Zhou
2015-03-01
Today's viewers consume video content from a variety of connected devices, including smart phones, tablets, notebooks, TVs, and PCs. This imposes significant challenges for managing video traffic efficiently to ensure an acceptable quality-of-experience (QoE) for the end users as the perceptual quality of video content strongly depends on the properties of the display device and the viewing conditions. State-of-the-art full-reference objective video quality assessment algorithms do not take into account the combined impact of display device properties, viewing conditions, and video resolution while performing video quality assessment. We performed a subjective study in order to understand the impact of aforementioned factors on perceptual video QoE. We also propose a full reference video QoE measure, named SSIMplus, that provides real-time prediction of the perceptual quality of a video based on human visual system behaviors, video content characteristics (such as spatial and temporal complexity, and video resolution), display device properties (such as screen size, resolution, and brightness), and viewing conditions (such as viewing distance and angle). Experimental results have shown that the proposed algorithm outperforms state-of-the-art video quality measures in terms of accuracy and speed.
Bibee, Jacqueline M.; Stecker, G. Christopher
2016-01-01
Spatial judgments are often dominated by low-frequency binaural cues and onset cues when binaural cues vary across the spectrum and duration, respectively, of a brief sound. This study combined these dimensions to assess the spectrotemporal weighting of binaural information. Listeners discriminated target interaural time difference (ITD) and interaural level difference (ILD) carried by the onset, offset, or full duration of a 4-kHz Gabor click train with a 2-ms period in the presence or absence of a diotic 500-Hz interferer tone. ITD and ILD thresholds were significantly elevated by the interferer in all conditions and by a similar amount to previous reports for static cues. Binaural interference was dramatically greater for ITD targets lacking onset cues compared to onset and full-duration conditions. Binaural interference for ILD targets was similar across dynamic-cue conditions. These effects mirror the baseline discriminability of dynamic ITD and ILD cues [Stecker and Brown. (2010). J. Acoust. Soc. Am. 127, 3092–3103], consistent with stronger interference for less-robust/higher-variance cues. The results support the view that binaural cue integration occurs simultaneously across multiple variance-weighted dimensions, including time and frequency. PMID:27794286
Bibee, Jacqueline M; Stecker, G Christopher
2016-10-01
Spatial judgments are often dominated by low-frequency binaural cues and onset cues when binaural cues vary across the spectrum and duration, respectively, of a brief sound. This study combined these dimensions to assess the spectrotemporal weighting of binaural information. Listeners discriminated target interaural time difference (ITD) and interaural level difference (ILD) carried by the onset, offset, or full duration of a 4-kHz Gabor click train with a 2-ms period in the presence or absence of a diotic 500-Hz interferer tone. ITD and ILD thresholds were significantly elevated by the interferer in all conditions and by a similar amount to previous reports for static cues. Binaural interference was dramatically greater for ITD targets lacking onset cues compared to onset and full-duration conditions. Binaural interference for ILD targets was similar across dynamic-cue conditions. These effects mirror the baseline discriminability of dynamic ITD and ILD cues [Stecker and Brown. (2010). J. Acoust. Soc. Am. 127, 3092-3103], consistent with stronger interference for less-robust/higher-variance cues. The results support the view that binaural cue integration occurs simultaneously across multiple variance-weighted dimensions, including time and frequency.
NASA Astrophysics Data System (ADS)
Hermans, Thomas; Nguyen, Frédéric; Klepikova, Maria; Dassargues, Alain; Caers, Jef
2018-04-01
In theory, aquifer thermal energy storage (ATES) systems can recover in winter the heat stored in the aquifer during summer to increase the energy efficiency of the system. In practice, the energy efficiency is often lower than expected from simulations due to spatial heterogeneity of hydraulic properties or non-favorable hydrogeological conditions. A proper design of ATES systems should therefore consider the uncertainty of the prediction related to those parameters. We use a novel framework called Bayesian Evidential Learning (BEL) to estimate the heat storage capacity of an alluvial aquifer using a heat tracing experiment. BEL is based on two main stages: pre- and postfield data acquisition. Before data acquisition, Monte Carlo simulations and global sensitivity analysis are used to assess the information content of the data to reduce the uncertainty of the prediction. After data acquisition, prior falsification and machine learning based on the same Monte Carlo are used to directly assess uncertainty on key prediction variables from observations. The result is a full quantification of the posterior distribution of the prediction conditioned to observed data, without any explicit full model inversion. We demonstrate the methodology in field conditions and validate the framework using independent measurements.
The cerebellum: a new key structure in the navigation system
Rochefort, Christelle; Lefort, Julie M.; Rondi-Reig, Laure
2013-01-01
Early investigations of cerebellar function focused on motor learning, in particular on eyeblink conditioning and adaptation of the vestibulo-ocular reflex, and led to the general view that cerebellar long-term depression (LTD) at parallel fiber (PF)–Purkinje cell (PC) synapses is the neural correlate of cerebellar motor learning. Thereafter, while the full complexity of cerebellar plasticities was being unraveled, cerebellar involvement in more cognitive tasks—including spatial navigation—was further investigated. However, cerebellar implication in spatial navigation remains a matter of debate because motor deficits frequently associated with cerebellar damage often prevent the dissociation between its role in spatial cognition from its implication in motor function. Here, we review recent findings from behavioral and electrophysiological analyses of cerebellar mutant mouse models, which show that the cerebellum might participate in the construction of hippocampal spatial representation map (i.e., place cells) and thereby in goal-directed navigation. These recent advances in cerebellar research point toward a model in which computation from the cerebellum could be required for spatial representation and would involve the integration of multi-source self-motion information to: (1) transform the reference frame of vestibular signals and (2) distinguish between self- and externally-generated vestibular signals. We eventually present herein anatomical and functional connectivity data supporting a cerebello-hippocampal interaction. Whilst a direct cerebello-hippocampal projection has been suggested, recent investigations rather favor a multi-synaptic pathway involving posterior parietal and retrosplenial cortices, two regions critically involved in spatial navigation. PMID:23493515
Ultrahigh resolution photographic films for X-ray/EUV/FUV astronomy
NASA Technical Reports Server (NTRS)
Hoover, Richard B.; Walker, Arthur B. C., Jr.; Deforest, Craig E.; Watts, Richard; Tarrio, Charles
1993-01-01
The quest for ultrahigh resolution full-disk images of the sun at soft X-ray/EUV/FUV wavelengths has increased the demand for photographic films with broad spectral sensitivity, high spatial resolution, and wide dynamic range. These requirements were made more stringent by the recent development of multilayer telescopes and coronagraphs capable of operating at normal incidence at soft X-ray/EUV wavelengths. Photographic films are the only detectors now available with the information storage capacity and dynamic range such as is required for recording images of the solar disk and corona simultaneously with sub arc second spatial resolution. During the Stanford/MSFC/LLNL Rocket X-Ray Spectroheliograph and Multi-Spectral Solar Telescope Array (MSSTA) programs, we utilized photographic films to obtain high resolution full-disk images of the sun at selected soft X-ray/EUV/FUV wavelengths. In order to calibrate our instrumentation for quantitative analysis of our solar data and to select the best emulsions and processing conditions for the MSSTA reflight, we recently tested several photographic films. These studies were carried out at the NIST SURF II synchrotron and the Stanford Synchrotron Radiation Laboratory. In this paper, we provide the results of those investigations.
The Flora Mission for Ecosystem Composition, Disturbance and Productivity
NASA Technical Reports Server (NTRS)
Asner, Gregory P.; Knox, Robert G.; Green, Robert O.; Ungar, Stephen G.
2005-01-01
Global land use and climate variability alter ecosystem conditions - including structure, function, and biological diversity - at a pace that requires unambiguous observations from satellite vantage points. Current global measurements are limited to general land cover, some disturbances, vegetation leaf area index, and canopy energy absorption. Flora is a pathfinding mission that provides new measurements of ecosystem structure, function, and diversity to understand the spatial and temporal dynamics of human and natural disturbances, and the biogeochemical and physiological responses of ecosystems to disturbance. The mission relies upon high-fidelity imaging spectroscopy to deliver full optical spectrum measurements (400-2500 nm) of the global land surface on a monthly time step at 45 meter spatial resolution for three years. The Flora measurement objectives are: (i) fractional cover of biological materials, (ii) canopy water content, (iii) vegetation pigments and light-use efficiency, (iv) plant functional types, (v) fire fuel load and fuel moisture content, and (vi) disturbance occurrence, type and intensity. These measurements are made using a multi-parameter, spectroscopic analysis approach afforded by observation of the full optical spectrum. Combining these measurements, along with additional observations from multispectral sensors, Flora will far advance global studies and models of ecosystem dynamics and change.
Temporal and spatial intermittencies within Newtonian turbulence
NASA Astrophysics Data System (ADS)
Kushwaha, Anubhav; Graham, Michael
2015-11-01
Direct numerical simulations of a pressure driven turbulent flow are performed in a large rectangular channel. Intermittent high- and low-drag regimes within turbulence that have earlier been found to exist temporally in minimal channels have been observed both spatially and temporally in full-size turbulent flows. These intermittent regimes, namely, ''active'' and ''hibernating'' turbulence, display very different structural and statistical features. We adopt a very simple sampling technique to identify these intermittent intervals, both temporally and spatially, and present differences between them in terms of simple quantities like mean-velocity, wall-shear stress and flow structures. By conditionally sampling of the low wall-shear stress events in particular, we show that the Maximum Drag Reduction (MDR) velocity profile, that occurs in viscoelastic flows, can also be approached in a Newtonian-fluid flow in the absence of any additives. This suggests that the properties of polymer drag reduction are inherent to all flows and their occurrence is just enhanced by the addition of polymers. We also show how the intermittencies within turbulence vary with Reynolds number. The work was supported by AFOSR grant FA9550-15-1-0062.
A Big Spatial Data Processing Framework Applying to National Geographic Conditions Monitoring
NASA Astrophysics Data System (ADS)
Xiao, F.
2018-04-01
In this paper, a novel framework for spatial data processing is proposed, which apply to National Geographic Conditions Monitoring project of China. It includes 4 layers: spatial data storage, spatial RDDs, spatial operations, and spatial query language. The spatial data storage layer uses HDFS to store large size of spatial vector/raster data in the distributed cluster. The spatial RDDs are the abstract logical dataset of spatial data types, and can be transferred to the spark cluster to conduct spark transformations and actions. The spatial operations layer is a series of processing on spatial RDDs, such as range query, k nearest neighbor and spatial join. The spatial query language is a user-friendly interface which provide people not familiar with Spark with a comfortable way to operation the spatial operation. Compared with other spatial frameworks, it is highlighted that comprehensive technologies are referred for big spatial data processing. Extensive experiments on real datasets show that the framework achieves better performance than traditional process methods.
Spatial Factors in the Integration of Speed Information
NASA Technical Reports Server (NTRS)
Verghese, P.; Stone, L. S.; Hargens, Alan R. (Technical Monitor)
1995-01-01
We reported that, for a 21FC task with multiple Gabor patches in each interval, thresholds for speed discrimination decreased with the number of patches, while simply increasing the area of a single patch produced no such effect. This result could be explained by multiple patches reducing spatial uncertainty. However, the fact that thresholds decrease with number even when the patches are in fixed positions argues against this explanation. We therefore performed additional experiments to explore the lack of an area effect. Three observers did a 21FC speed discrimination task with 6 Gabor patches in each interval, and were asked to pick the interval in which the gratings moved faster. The 50% contrast patches were placed on a circle at 4 deg. eccentricity, either equally spaced and maximally separated (hexagonal array), or closely-spaced, in consecutive positions (string of pearls). For the string-of-pearls condition, the grating phases were either random, or consistent with a full-field grating viewed through multiple Gaussian windows. When grating phases were random, the thresholds for the hexagonal and string-of-pearls layouts were indistinguishable. For the string-of-pearls layout, thresholds in the consistent-phase condition were higher by 15 +/- 6% than in the random-phase condition. (Thresholds increased by 57 +/- 7% in going from 6 patches to a single patch of equivalent area.). For random-phase patches, the lower thresholds for 6 patches does not depend on a specific spacing or spatial layout. Multiple, closely-spaced, consistent-phase patches that can be interpreted as a single grating, result in thresholds closer to that produced by a single patch. Together, our results suggest that object segmentation may play a role in the integration of speed information.
Controls on desert dune activity - a geospatial approach
NASA Astrophysics Data System (ADS)
Lancaster, N.; Hesse, P. P.
2017-12-01
Desert and other inland dunes occur on a wide spectrum of activity (defined loosely as the proportion of the surface area subject to sand movement) from unvegetated to sparsely vegetated "active" dunes through discontinuously vegetated inactive dunes to completely vegetated and degraded dunes. Many of the latter are relicts of past climatic conditions. Although field studies and modeling of the interactions between winds, vegetation cover, and dune activity can provide valuable insights, the response of dune systems to climate change and variability past, present, and future has until now been hampered by the lack of pertinent observational data on geomorphic and climatic boundary conditions and dune activity status for most dune areas. We have developed GIS-based approach that permits analysis of boundary conditions and controls on dune activity at a range of spatial scales from dunefield to global. In this approach, the digital mapping of dune field and sand sea extent has been combined with systematic observations of dune activity at 0.2° intervals from high resolution satellite image data, resulting in four classes of activity. 1 km resolution global gridded datasets for the aridity index (AI); precipitation, satellite-derived percent vegetation cover; and estimates of sand transport potential (DP) were re-sampled for each 0.2° grid cell, and dune activity was compared to vegetation cover, sand transport potential, precipitation, and the aridity index. Results so far indicate that there are broad-scale relationships between dunefield mean activity, climate, and vegetation cover. However, the scatter in the data suggest that other local factors may be at work. Intra-dune field patterns are complex in many cases. Overall, much more work needs to be done to gain a full understanding of controls at different spatial and temporal scales, which can be faciliated by this spatial database.
Heteroskedasticity as a leading indicator of desertification in spatially explicit data.
Seekell, David A; Dakos, Vasilis
2015-06-01
Regime shifts are abrupt transitions between alternate ecosystem states including desertification in arid regions due to drought or overgrazing. Regime shifts may be preceded by statistical anomalies such as increased autocorrelation, indicating declining resilience and warning of an impending shift. Tests for conditional heteroskedasticity, a type of clustered variance, have proven powerful leading indicators for regime shifts in time series data, but an analogous indicator for spatial data has not been evaluated. A spatial analog for conditional heteroskedasticity might be especially useful in arid environments where spatial interactions are critical in structuring ecosystem pattern and process. We tested the efficacy of a test for spatial heteroskedasticity as a leading indicator of regime shifts with simulated data from spatially extended vegetation models with regular and scale-free patterning. These models simulate shifts from extensive vegetative cover to bare, desert-like conditions. The magnitude of spatial heteroskedasticity increased consistently as the modeled systems approached a regime shift from vegetated to desert state. Relative spatial autocorrelation, spatial heteroskedasticity increased earlier and more consistently. We conclude that tests for spatial heteroskedasticity can contribute to the growing toolbox of early warning indicators for regime shifts analyzed with spatially explicit data.
NASA Technical Reports Server (NTRS)
Lillesand, T. M.; Werth, L. F. (Principal Investigator)
1980-01-01
A 25% improvement in average classification accuracy was realized by processing double-date vs. single-date data. Under the spectrally and spatially complex site conditions characterizing the geographical area used, further improvement in wetland classification accuracy is apparently precluded by the spectral and spatial resolution restrictions of the LANDSAT MSS. Full scene analysis of scanning densitometer data extracted from scale infrared photography failed to permit discrimination of many wetland and nonwetland cover types. When classification of photographic data was limited to wetland areas only, much more detailed and accurate classification could be made. The integration of conventional image interpretation (to simply delineate wetland boundaries) and machine assisted classification (to discriminate among cover types present within the wetland areas) appears to warrant further research to study the feasibility and cost of extending this methodology over a large area using LANDSAT and/or small scale photography.
Van der Merwe, Deon; Price, Kevin P
2015-03-27
Harmful algal blooms (HABs) degrade water quality and produce toxins. The spatial distribution of HAbs may change rapidly due to variations wind, water currents, and population dynamics. Risk assessments, based on traditional sampling methods, are hampered by the sparseness of water sample data points, and delays between sampling and the availability of results. There is a need for local risk assessment and risk management at the spatial and temporal resolution relevant to local human and animal interactions at specific sites and times. Small, unmanned aircraft systems can gather color-infrared reflectance data at appropriate spatial and temporal resolutions, with full control over data collection timing, and short intervals between data gathering and result availability. Data can be interpreted qualitatively, or by generating a blue normalized difference vegetation index (BNDVI) that is correlated with cyanobacterial biomass densities at the water surface, as estimated using a buoyant packed cell volume (BPCV). Correlations between BNDVI and BPCV follow a logarithmic model, with r(2)-values under field conditions from 0.77 to 0.87. These methods provide valuable information that is complimentary to risk assessment data derived from traditional risk assessment methods, and could help to improve risk management at the local level.
Van der Merwe, Deon; Price, Kevin P.
2015-01-01
Harmful algal blooms (HABs) degrade water quality and produce toxins. The spatial distribution of HAbs may change rapidly due to variations wind, water currents, and population dynamics. Risk assessments, based on traditional sampling methods, are hampered by the sparseness of water sample data points, and delays between sampling and the availability of results. There is a need for local risk assessment and risk management at the spatial and temporal resolution relevant to local human and animal interactions at specific sites and times. Small, unmanned aircraft systems can gather color-infrared reflectance data at appropriate spatial and temporal resolutions, with full control over data collection timing, and short intervals between data gathering and result availability. Data can be interpreted qualitatively, or by generating a blue normalized difference vegetation index (BNDVI) that is correlated with cyanobacterial biomass densities at the water surface, as estimated using a buoyant packed cell volume (BPCV). Correlations between BNDVI and BPCV follow a logarithmic model, with r2-values under field conditions from 0.77 to 0.87. These methods provide valuable information that is complimentary to risk assessment data derived from traditional risk assessment methods, and could help to improve risk management at the local level. PMID:25826055
Optimization of Variable-Depth Liner Configurations for Increased Broadband Noise Reduction
NASA Technical Reports Server (NTRS)
Jones, M. G.; Watson, W. R.; Nark, D. M.; Schiller, N. H.; Born, J. C.
2016-01-01
This paper employs three acoustic propagation codes to explore variable-depth liner configurations for the NASA Langley Grazing Flow Impedance Tube (GFIT). The initial study demonstrates that a variable impedance can acceptably be treated as a uniform impedance if the spatial extent over which this variable impedance occurs is less than one-third of a wavelength of the incident sound. A constrained optimization study is used to design a variable-depth liner and to select an optimization metric. It also provides insight regarding how much attenuation can be achieved with variable-depth liners. Another optimization study is used to design a liner with much finer chamber depth resolution for the Mach 0.0 and 0.3 test conditions. Two liners are designed based on spatial rearrangement of chambers from this liner to determine whether the order is critical. Propagation code predictions suggest this is not the case. Both liners are fabricated via additive manufacturing and tested in the GFIT for the Mach 0.0 condition. Predicted and measured attenuations compare favorably across the full frequency range. These results clearly suggest that the chambers can be arranged in any order, thus offering the potential for innovative liner designs to minimize depth and weight.
Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging
Redding, Brandon; Cerjan, Alexander; Huang, Xue; Lee, Minjoo Larry; Stone, A. Douglas; Choma, Michael A.; Cao, Hui
2015-01-01
The spatial coherence of laser sources has limited their application to parallel imaging and projection due to coherent artifacts, such as speckle. In contrast, traditional incoherent light sources, such as thermal sources or light emitting diodes (LEDs), provide relatively low power per independent spatial mode. Here, we present a chip-scale, electrically pumped semiconductor laser based on a novel design, demonstrating high power per mode with much lower spatial coherence than conventional laser sources. The laser resonator was fabricated with a chaotic, D-shaped cavity optimized to achieve highly multimode lasing. Lasing occurs simultaneously and independently in ∼1,000 modes, and hence the total emission exhibits very low spatial coherence. Speckle-free full-field imaging is demonstrated using the chaotic cavity laser as the illumination source. The power per mode of the sample illumination is several orders of magnitude higher than that of a LED or thermal light source. Such a compact, low-cost source, which combines the low spatial coherence of a LED with the high spectral radiance of a laser, could enable a wide range of high-speed, full-field imaging and projection applications. PMID:25605946
Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging.
Redding, Brandon; Cerjan, Alexander; Huang, Xue; Lee, Minjoo Larry; Stone, A Douglas; Choma, Michael A; Cao, Hui
2015-02-03
The spatial coherence of laser sources has limited their application to parallel imaging and projection due to coherent artifacts, such as speckle. In contrast, traditional incoherent light sources, such as thermal sources or light emitting diodes (LEDs), provide relatively low power per independent spatial mode. Here, we present a chip-scale, electrically pumped semiconductor laser based on a novel design, demonstrating high power per mode with much lower spatial coherence than conventional laser sources. The laser resonator was fabricated with a chaotic, D-shaped cavity optimized to achieve highly multimode lasing. Lasing occurs simultaneously and independently in ∼1,000 modes, and hence the total emission exhibits very low spatial coherence. Speckle-free full-field imaging is demonstrated using the chaotic cavity laser as the illumination source. The power per mode of the sample illumination is several orders of magnitude higher than that of a LED or thermal light source. Such a compact, low-cost source, which combines the low spatial coherence of a LED with the high spectral radiance of a laser, could enable a wide range of high-speed, full-field imaging and projection applications.
Influence of acute stress on spatial tasks in humans.
Richardson, Anthony E; VanderKaay Tomasulo, Melissa M
2011-07-06
Few studies have investigated the relationship between stress and spatial performance in humans. In this study, participants were exposed to an acute laboratory stressor (Star Mirror Tracing Task) or a control condition (watching a nature video) and then performed two spatial tasks. In the first task, participants navigated through a virtual reality (VR) environment and then returned to the environment to make directional judgments relating to the learned targets. In the second task, perspective taking, participants made directional judgments to targets after imagined body rotations with respect to a map. Compared to the control condition, participants in the Stress condition showed increases in heart rate and systolic and diastolic blood pressure indicating sympathetic adrenal medulla (SAM) axis activation. Participants in the Stress condition also reported being more anxious, angry, frustrated, and irritated than participants in the Non-Stress condition. Salivary cortisol did not differ between conditions, indicating no significant hypothalamic-pituitary-adrenocortical (HPA) axis involvement. In the VR task, memory encoding was unaffected as directional error was similar in both conditions; however, participants in the Stress condition responded more slowly, which may be due to increases in negative affect, SAM disruption in spatial memory retrieval through catecholamine release, or a combination of both factors. In the perspective taking task, participants were also slower to respond after stress, suggesting interference in the ability to adopt new spatial orientations. Additionally, sex differences were observed in that men had greater accuracy on both spatial tasks, but no significant Sex by Stress condition interactions were demonstrated. Copyright © 2011 Elsevier Inc. All rights reserved.
Object recognition with severe spatial deficits in Williams syndrome: sparing and breakdown.
Landau, Barbara; Hoffman, James E; Kurz, Nicole
2006-07-01
Williams syndrome (WS) is a rare genetic disorder that results in severe visual-spatial cognitive deficits coupled with relative sparing in language, face recognition, and certain aspects of motion processing. Here, we look for evidence for sparing or impairment in another cognitive system-object recognition. Children with WS, normal mental-age (MA) and chronological age-matched (CA) children, and normal adults viewed pictures of a large range of objects briefly presented under various conditions of degradation, including canonical and unusual orientations, and clear or blurred contours. Objects were shown as either full-color views (Experiment 1) or line drawings (Experiment 2). Across both experiments, WS and MA children performed similarly in all conditions while CA children performed better than both WS group and MA groups with unusual views. This advantage, however, was eliminated when images were also blurred. The error types and relative difficulty of different objects were similar across all participant groups. The results indicate selective sparing of basic mechanisms of object recognition in WS, together with developmental delay or arrest in recognition of objects from unusual viewpoints. These findings are consistent with the growing literature on brain abnormalities in WS which points to selective impairment in the parietal areas of the brain. As a whole, the results lend further support to the growing literature on the functional separability of object recognition mechanisms from other spatial functions, and raise intriguing questions about the link between genetic deficits and cognition.
Wahn, Basil; König, Peter
2015-01-01
Humans continuously receive and integrate information from several sensory modalities. However, attentional resources limit the amount of information that can be processed. It is not yet clear how attentional resources and multisensory processing are interrelated. Specifically, the following questions arise: (1) Are there distinct spatial attentional resources for each sensory modality? and (2) Does attentional load affect multisensory integration? We investigated these questions using a dual task paradigm: participants performed two spatial tasks (a multiple object tracking task and a localization task), either separately (single task condition) or simultaneously (dual task condition). In the multiple object tracking task, participants visually tracked a small subset of several randomly moving objects. In the localization task, participants received either visual, auditory, or redundant visual and auditory location cues. In the dual task condition, we found a substantial decrease in participants' performance relative to the results of the single task condition. Importantly, participants performed equally well in the dual task condition regardless of the location cues' modality. This result suggests that having spatial information coming from different modalities does not facilitate performance, thereby indicating shared spatial attentional resources for the auditory and visual modality. Furthermore, we found that participants integrated redundant multisensory information similarly even when they experienced additional attentional load in the dual task condition. Overall, findings suggest that (1) visual and auditory spatial attentional resources are shared and that (2) audiovisual integration of spatial information occurs in an pre-attentive processing stage.
The Development of Spatial Skills through Interventions Involving Block Building Activities
ERIC Educational Resources Information Center
Casey, Beth M.; Andrews, Nicole; Schindler, Holly; Kersh, Joanne E.; Samper, Alexandra; Copley, Juanita
2008-01-01
This study investigated the use of block-building interventions to develop spatial-reasoning skills in kindergartners. Two intervention conditions and a control condition were included to determine, first, whether the block building activities themselves benefited children's spatial skills, and secondly, whether a story context further improved…
Obstacle Crossing Differences Between Blind and Blindfolded Subjects After Haptic Exploration.
Forner-Cordero, Arturo; Garcia, Valéria D; Rodrigues, Sérgio T; Duysens, Jacques
2016-01-01
Little is known about the ability of blind people to cross obstacles after they have explored haptically their size and position. Long-term absence of vision may affect spatial cognition in the blind while their extensive experience with the use of haptic information for guidance may lead to compensation strategies. Seven blind and 7 sighted participants (with vision available and blindfolded) walked along a flat pathway and crossed an obstacle after a haptic exploration. Blind and blindfolded subjects used different strategies to cross the obstacle. After the first 20 trials the blindfolded subjects reduced the distance between the foot and the obstacle at the toe-off instant, while the blind behaved as the subjects with full vision. Blind and blindfolded participants showed larger foot clearance than participants with vision. At foot landing the hip was more behind the foot in the blindfolded condition, while there were no differences between the blind and the vision conditions. For several parameters of the obstacle crossing task, blind people were more similar to subjects with full vision indicating that the blind subjects were able to compensate for the lack of vision.
Gudde, Harmen B; Griffiths, Debra; Coventry, Kenny R
2018-02-19
The memory game paradigm is a behavioral procedure to explore the relationship between language, spatial memory, and object knowledge. Using two different versions of the paradigm, spatial language use and memory for object location are tested under different, experimentally manipulated conditions. This allows us to tease apart proposed models explaining the influence of object knowledge on spatial language (e.g., spatial demonstratives), and spatial memory, as well as understanding the parameters that affect demonstrative choice and spatial memory more broadly. Key to the development of the method was the need to collect data on language use (e.g., spatial demonstratives: "this/that") and spatial memory data under strictly controlled conditions, while retaining a degree of ecological validity. The language version (section 3.1) of the memory game tests how conditions affect language use. Participants refer verbally to objects placed at different locations (e.g., using spatial demonstratives: "this/that red circle"). Different parameters can be experimentally manipulated: the distance from the participant, the position of a conspecific, and for example whether the participant owns, knows, or sees the object while referring to it. The same parameters can be manipulated in the memory version of the memory game (section 3.2). This version tests the effects of the different conditions on object-location memory. Following object placement, participants get 10 seconds to memorize the object's location. After the object and location cues are removed, participants verbally direct the experimenter to move a stick to indicate where the object was. The difference between the memorized and the actual location shows the direction and strength of the memory error, allowing comparisons between the influences of the respective parameters.
Wang, Guangxing; Murphy, Dana; Oller, Adam; Howard, Heidi R; Anderson, Alan B; Rijal, Santosh; Myers, Natalie R; Woodford, Philip
2014-07-01
The effects of military training activities on the land condition of Army installations vary spatially and temporally. Training activities observably degrade land condition while also increasing biodiversity and stabilizing ecosystems. Moreover, other anthropogenic activities regularly occur on military lands such as prescribed burns and agricultural haying-adding to the dynamics of land condition. Thus, spatially and temporally assessing the impacts of military training, prescribed burning, agricultural haying, and their interactions is critical to the management of military lands. In this study, the spatial distributions and patterns of military training-induced disturbance frequency were derived using plot observation and point observation-based method, at Fort Riley, Kansas from 1989 to 2001. Moreover, spatial and variance analysis of cumulative impacts due to military training, burning, haying, and their interactions on the land condition of Fort Riley were conducted. The results showed that: (1) low disturbance intensity dominated the majority of the study area with exception of concentrated training within centralized areas; (2) high and low values of disturbance frequency were spatially clustered and had spatial patterns that differed significantly from a random distribution; and (3) interactions between prescribed burning and agricultural haying were not significant in terms of either soil erosion or disturbance intensity although their means and variances differed significantly between the burned and non-burned areas and between the hayed and non-hayed areas.
Spatial-simultaneous working memory and selective interference in Down syndrome.
Lanfranchi, Silvia; Mammarella, Irene C; Carretti, Barbara
2015-01-01
Several studies have suggested that individuals with Down syndrome (DS) have impairments in some aspects of the visuospatial domain. It has been reported that they are particularly impaired in the spatial-simultaneous working memory (WM) even in advantageous conditions such as when information is grouped to form a configuration. This study aimed to assess the performance of individuals with DS carrying out a spatial-simultaneous WM task in single and dual selective interference conditions in order to better explore the characteristics of their impairment in this area. Groups of individuals with DS and mentally age-matched typically developing (TD) children were asked to carry out a spatial-simultaneous WM task in a single- and in two dual-task conditions. In the single condition, the participants were required to recall an increasing number of positions of red squares presented simultaneously in a matrix. In the dual-task conditions, together with the spatial-simultaneous WM task, the participants were asked to carry out an articulatory suppression task or a tapping task. As has already been shown in other studies, individuals with DS were found to be impaired in carrying out a spatial-simultaneous WM task and showed a worse performance with respect to the TD group in both the conditions. These findings indicate that individuals with DS use the same coding modality as TD children of the same mental age. Just as the TD children, they performed lower in the dual- than in the single-task condition and there was no difference between the verbal and visuospatial conditions.
Numerical simulation of swept-wing flows
NASA Technical Reports Server (NTRS)
Reed, Helen L.
1991-01-01
Efforts of the last six months to computationally model the transition process characteristics of flow over swept wings are described. Specifically, the crossflow instability and crossflow/Tollmien-Schlichting wave interactions are analyzed through the numerical solution of the full 3D Navier-Stokes equations including unsteadiness, curvature, and sweep. This approach is chosen because of the complexity of the problem and because it appears that linear stability theory is insufficient to explain the discrepancies between different experiments and between theory and experiment. The leading edge region of a swept wing is considered in a 3D spatial simulation with random disturbances as the initial conditions.
Post, Eric; Forchhammer, Mads C
2004-06-22
According to ecological theory, populations whose dynamics are entrained by environmental correlation face increased extinction risk as environmental conditions become more synchronized spatially. This prediction is highly relevant to the study of ecological consequences of climate change. Recent empirical studies have indicated, for example, that large-scale climate synchronizes trophic interactions and population dynamics over broad spatial scales in freshwater and terrestrial systems. Here, we present an analysis of century-scale, spatially replicated data on local weather and the population dynamics of caribou in Greenland. Our results indicate that spatial autocorrelation in local weather has increased with large-scale climatic warming. This increase in spatial synchrony of environmental conditions has been matched, in turn, by an increase in the spatial synchrony of local caribou populations toward the end of the 20th century. Our results indicate that spatial synchrony in environmental conditions and the populations influenced by them are highly variable through time and can increase with climatic warming. We suggest that if future warming can increase population synchrony, it may also increase extinction risk.
NASA Astrophysics Data System (ADS)
Feldbrugge, Job; van de Weygaert, Rien; Hidding, Johan; Feldbrugge, Joost
2018-05-01
We present a general formalism for identifying the caustic structure of a dynamically evolving mass distribution, in an arbitrary dimensional space. The identification of caustics in fluids with Hamiltonian dynamics, viewed in Lagrangian space, corresponds to the classification of singularities in Lagrangian catastrophe theory. On the basis of this formalism we develop a theoretical framework for the dynamics of the formation of the cosmic web, and specifically those aspects that characterize its unique nature: its complex topological connectivity and multiscale spinal structure of sheetlike membranes, elongated filaments and compact cluster nodes. Given the collisionless nature of the gravitationally dominant dark matter component in the universe, the presented formalism entails an accurate description of the spatial organization of matter resulting from the gravitationally driven formation of cosmic structure. The present work represents a significant extension of the work by Arnol'd et al. [1], who classified the caustics that develop in one- and two-dimensional systems that evolve according to the Zel'dovich approximation. His seminal work established the defining role of emerging singularities in the formation of nonlinear structures in the universe. At the transition from the linear to nonlinear structure evolution, the first complex features emerge at locations where different fluid elements cross to establish multistream regions. Involving a complex folding of the 6-D sheetlike phase-space distribution, it manifests itself in the appearance of infinite density caustic features. The classification and characterization of these mass element foldings can be encapsulated in caustic conditions on the eigenvalue and eigenvector fields of the deformation tensor field. In this study we introduce an alternative and transparent proof for Lagrangian catastrophe theory. This facilitates the derivation of the caustic conditions for general Lagrangian fluids, with arbitrary dynamics. Most important in the present context is that it allows us to follow and describe the full three-dimensional geometric and topological complexity of the purely gravitationally evolving nonlinear cosmic matter field. While generic and statistical results can be based on the eigenvalue characteristics, one of our key findings is that of the significance of the eigenvector field of the deformation field for outlining the entire spatial structure of the caustic skeleton emerging from a primordial density field. In this paper we explicitly consider the caustic conditions for the three-dimensional Zel'dovich approximation, extending earlier work on those for one- and two-dimensional fluids towards the full spatial richness of the cosmic web. In an accompanying publication, we apply this towards a full three-dimensional study of caustics in the formation of the cosmic web and evaluate in how far it manages to outline and identify the intricate skeletal features in the corresponding N-body simulations.
Guigueno, Mélanie F.; MacDougall-Shackleton, Scott A.; Sherry, David F.
2015-01-01
Spatial cognition in females and males can differ in species in which there are sex-specific patterns in the use of space. Brown-headed cowbirds are brood parasites that show a reversal of sex-typical space use often seen in mammals. Female cowbirds, search for, revisit and parasitize hosts nests, have a larger hippocampus than males and have better memory than males for a rewarded location in an open spatial environment. In the current study, we tested female and male cowbirds in breeding and non-breeding conditions on a touchscreen delayed-match-to-sample task using both spatial and colour stimuli. Our goal was to determine whether sex differences in spatial memory in cowbirds generalizes to all spatial tasks or is task-dependant. Both sexes performed better on the spatial than on the colour touchscreen task. On the spatial task, breeding males outperformed breeding females. On the colour task, females and males did not differ, but females performed better in breeding condition than in non-breeding condition. Although female cowbirds were observed to outperform males on a previous larger-scale spatial task, males performed better than females on a task testing spatial memory in the cowbirds’ immediate visual field. Spatial abilities in cowbirds can favour males or females depending on the type of spatial task, as has been observed in mammals, including humans. PMID:26083573
Piponnier, Jean-Claude; Hanssens, Jean-Marie; Faubert, Jocelyn
2009-01-14
To examine the respective roles of central and peripheral vision in the control of posture, body sway amplitude (BSA) and postural perturbations (given by velocity root mean square or vRMS) were calculated in a group of 19 healthy young adults. The stimulus was a 3D tunnel, either static or moving sinusoidally in the anterior-posterior direction. There were nine visual field conditions: four central conditions (4, 7, 15, and 30 degrees); four peripheral conditions (central occlusions of 4, 7, 15, and 30 degrees); and a full visual field condition (FF). The virtual tunnel respected all the aspects of a real physical tunnel (i.e., stereoscopy and size increase with proximity). The results show that, under static conditions, central and peripheral visual fields appear to have equal importance for the control of stance. In the presence of an optic flow, peripheral vision plays a crucial role in the control of stance, since it is responsible for a compensatory sway, whereas central vision has an accessory role that seems to be related to spatial orientation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malin, Martha J.; Bartol, Laura J.; DeWerd, Larry A., E-mail: mmalin@wisc.edu, E-mail: ladewerd@wisc.edu
2015-05-15
Purpose: To investigate why dose-rate constants for {sup 125}I and {sup 103}Pd seeds computed using the spectroscopic technique, Λ{sub spec}, differ from those computed with standard Monte Carlo (MC) techniques. A potential cause of these discrepancies is the spectroscopic technique’s use of approximations of the true fluence distribution leaving the source, φ{sub full}. In particular, the fluence distribution used in the spectroscopic technique, φ{sub spec}, approximates the spatial, angular, and energy distributions of φ{sub full}. This work quantified the extent to which each of these approximations affects the accuracy of Λ{sub spec}. Additionally, this study investigated how the simplified water-onlymore » model used in the spectroscopic technique impacts the accuracy of Λ{sub spec}. Methods: Dose-rate constants as described in the AAPM TG-43U1 report, Λ{sub full}, were computed with MC simulations using the full source geometry for each of 14 different {sup 125}I and 6 different {sup 103}Pd source models. In addition, the spectrum emitted along the perpendicular bisector of each source was simulated in vacuum using the full source model and used to compute Λ{sub spec}. Λ{sub spec} was compared to Λ{sub full} to verify the discrepancy reported by Rodriguez and Rogers. Using MC simulations, a phase space of the fluence leaving the encapsulation of each full source model was created. The spatial and angular distributions of φ{sub full} were extracted from the phase spaces and were qualitatively compared to those used by φ{sub spec}. Additionally, each phase space was modified to reflect one of the approximated distributions (spatial, angular, or energy) used by φ{sub spec}. The dose-rate constant resulting from using approximated distribution i, Λ{sub approx,i}, was computed using the modified phase space and compared to Λ{sub full}. For each source, this process was repeated for each approximation in order to determine which approximations used in the spectroscopic technique affect the accuracy of Λ{sub spec}. Results: For all sources studied, the angular and spatial distributions of φ{sub full} were more complex than the distributions used in φ{sub spec}. Differences between Λ{sub spec} and Λ{sub full} ranged from −0.6% to +6.4%, confirming the discrepancies found by Rodriguez and Rogers. The largest contribution to the discrepancy was the assumption of isotropic emission in φ{sub spec}, which caused differences in Λ of up to +5.3% relative to Λ{sub full}. Use of the approximated spatial and energy distributions caused smaller average discrepancies in Λ of −0.4% and +0.1%, respectively. The water-only model introduced an average discrepancy in Λ of −0.4%. Conclusions: The approximations used in φ{sub spec} caused discrepancies between Λ{sub approx,i} and Λ{sub full} of up to 7.8%. With the exception of the energy distribution, the approximations used in φ{sub spec} contributed to this discrepancy for all source models studied. To improve the accuracy of Λ{sub spec}, the spatial and angular distributions of φ{sub full} could be measured, with the measurements replacing the approximated distributions. The methodology used in this work could be used to determine the resolution that such measurements would require by computing the dose-rate constants from phase spaces modified to reflect φ{sub full} binned at different spatial and angular resolutions.« less
Ohyama, Junji; Watanabe, Katsumi
2016-01-01
We examined how the temporal and spatial predictability of a task-irrelevant visual event affects the detection and memory of a visual item embedded in a continuously changing sequence. Participants observed 11 sequentially presented letters, during which a task-irrelevant visual event was either present or absent. Predictabilities of spatial location and temporal position of the event were controlled in 2 × 2 conditions. In the spatially predictable conditions, the event occurred at the same location within the stimulus sequence or at another location, while, in the spatially unpredictable conditions, it occurred at random locations. In the temporally predictable conditions, the event timing was fixed relative to the order of the letters, while in the temporally unpredictable condition; it could not be predicted from the letter order. Participants performed a working memory task and a target detection reaction time (RT) task. Memory accuracy was higher for a letter simultaneously presented at the same location as the event in the temporally unpredictable conditions, irrespective of the spatial predictability of the event. On the other hand, the detection RTs were only faster for a letter simultaneously presented at the same location as the event when the event was both temporally and spatially predictable. Thus, to facilitate ongoing detection processes, an event must be predictable both in space and time, while memory processes are enhanced by temporally unpredictable (i.e., surprising) events. Evidently, temporal predictability has differential effects on detection and memory of a visual item embedded in a sequence of images. PMID:26869966
Ohyama, Junji; Watanabe, Katsumi
2016-01-01
We examined how the temporal and spatial predictability of a task-irrelevant visual event affects the detection and memory of a visual item embedded in a continuously changing sequence. Participants observed 11 sequentially presented letters, during which a task-irrelevant visual event was either present or absent. Predictabilities of spatial location and temporal position of the event were controlled in 2 × 2 conditions. In the spatially predictable conditions, the event occurred at the same location within the stimulus sequence or at another location, while, in the spatially unpredictable conditions, it occurred at random locations. In the temporally predictable conditions, the event timing was fixed relative to the order of the letters, while in the temporally unpredictable condition; it could not be predicted from the letter order. Participants performed a working memory task and a target detection reaction time (RT) task. Memory accuracy was higher for a letter simultaneously presented at the same location as the event in the temporally unpredictable conditions, irrespective of the spatial predictability of the event. On the other hand, the detection RTs were only faster for a letter simultaneously presented at the same location as the event when the event was both temporally and spatially predictable. Thus, to facilitate ongoing detection processes, an event must be predictable both in space and time, while memory processes are enhanced by temporally unpredictable (i.e., surprising) events. Evidently, temporal predictability has differential effects on detection and memory of a visual item embedded in a sequence of images.
Cues for the control of ocular accommodation and vergence during postnatal human development.
Bharadwaj, Shrikant R; Candy, T Rowan
2008-12-22
Accommodation and vergence help maintain single and focused visual experience while an object moves in depth. The relative importance of retinal blur and disparity, the primary sensory cues to accommodation and vergence, is largely unknown during development; a period when growth of the eye and head necessitate continual recalibration of egocentric space. Here we measured the developmental importance of retinal disparity in 192 typically developing subjects (1.9 months to 46 years). Subjects viewed high-contrast cartoon targets with naturalistic spatial frequency spectra while their accommodation and vergence responses were measured from both eyes using a PowerRefractor. Accommodative gain was reduced during monocular viewing relative to full binocular viewing, even though the fixating eye generated comparable tracking eye movements in the two conditions. This result was consistent across three forms of monocular occlusion. The accommodative gain was lowest in infants and only reached adult levels by 7 to 10 years of age. As expected, the gain of vergence was also reduced in monocular conditions. When 4- to 6-year-old children read 20/40-sized letters, their monocular accommodative gain reached adult-like levels. In summary, binocular viewing appears necessary under naturalistic viewing conditions to generate full accommodation and vergence responses in typically developing humans.
Cues for the control of ocular accommodation and vergence during postnatal human development
Bharadwaj, Shrikant R.; Candy, T. Rowan
2009-01-01
Accommodation and vergence help maintain single and focused visual experience while an object moves in depth. The relative importance of retinal blur and disparity, the primary sensory cues to accommodation and vergence, is largely unknown during development; a period when growth of the eye and head necessitate continual recalibration of egocentric space. Here we measured the developmental importance of retinal disparity in 192 typically developing subjects (1.9 months to 46 years). Subjects viewed high-contrast cartoon targets with naturalistic spatial frequency spectra while their accommodation and vergence responses were measured from both eyes using a PowerRefractor. Accommodative gain was reduced during monocular viewing relative to full binocular viewing, even though the fixating eye generated comparable tracking eye movements in the two conditions. This result was consistent across three forms of monocular occlusion. The accommodative gain was lowest in infants and only reached adult levels by 7 to 10 years of age. As expected, the gain of vergence was also reduced in monocular conditions. When 4- to 6-year-old children read 20/40-sized letters, their monocular accommodative gain reached adult-like levels. In summary, binocular viewing appears necessary under naturalistic viewing conditions to generate full accommodation and vergence responses in typically developing humans. PMID:19146280
Biased Feedback in Spatial Recall Yields a Violation of Delta Rule Learning
Lipinski, John; Spencer, John P.; Samuelson, Larissa K.
2010-01-01
This study investigates whether inductive processes influencing spatial memory performance generalize to supervised learning scenarios with differential feedback. After providing a location memory response in a spatial recall task, participants received visual feedback showing the target location. In critical blocks, feedback was systematically biased either 4° towards the vertical axis (Towards condition) or 4° further away from the vertical axis (Away condition). Results showed that the weaker teaching signal (i.e., a smaller difference between the remembered location and the feedback location) in the Away condition produced a stronger experience-dependent change over blocks than in the Towards condition. This violates delta rule learning. Subsequent simulations of the Dynamic Field Theory of spatial cognition provide a theoretically unified account of these results. PMID:20702881
Biased feedback in spatial recall yields a violation of delta rule learning.
Lipinski, John; Spencer, John P; Samuelson, Larissa K
2010-08-01
This study investigates whether inductive processes influencing spatial memory performance generalize to supervised learning scenarios with differential feedback. After providing a location memory response in a spatial recall task, participants received visual feedback showing the target location. In critical blocks, feedback was systematically biased either 4 degrees toward the vertical axis (toward condition) or 4 degrees farther away from the vertical axis (away condition). Results showed that the weaker teaching signal (i.e., a smaller difference between the remembered location and the feedback location) produced a stronger experience-dependent change over blocks in the away condition than in the toward condition. This violates delta rule learning. Subsequent simulations of the dynamic field theory of spatial cognition provide a theoretically unified account of these results.
McDonald, Robert J; Balog, R J; Lee, Justin Q; Stuart, Emily E; Carrels, Brianna B; Hong, Nancy S
2018-10-01
The ventral hippocampus (vHPC) has been implicated in learning and memory functions that seem to differ from its dorsal counterpart. The goal of this series of experiments was to provide further insight into the functional contributions of the vHPC. Our previous work implicated the vHPC in spatial learning, inhibitory learning, and fear conditioning to context. However, the specific role of vHPC on these different forms of learning are not clear. Accordingly, we assessed the effects of neurotoxic lesions of the ventral hippocampus on retention of a conditioned inhibitory association, early versus late spatial navigation in the water task, and discriminative fear conditioning to context under high ambiguity conditions. The results showed that the vHPC was necessary for the expression of conditioned inhibition, early spatial learning, and discriminative fear conditioning to context when the paired and unpaired contexts have high cue overlap. We argue that this pattern of effects, combined with previous work, suggests a key role for vHPC in the utilization of broad contextual representations for inhibition and discriminative memory in high ambiguity conditions. Copyright © 2018 Elsevier B.V. All rights reserved.
Molina-Viedma, Ángel Jesús; López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A; Rodríguez-Ahlquist, Javier; Iglesias-Vallejo, Manuel
2018-02-02
In real aircraft structures the comfort and the occupational performance of crewmembers and passengers are affected by the presence of noise. In this sense, special attention is focused on mechanical and material design for isolation and vibration control. Experimental characterization and, in particular, experimental modal analysis, provides information for adequate cabin noise control. Traditional sensors employed in the aircraft industry for this purpose are invasive and provide a low spatial resolution. This paper presents a methodology for experimental modal characterization of a front fuselage full-scale demonstrator using high-speed 3D digital image correlation, which is non-invasive, ensuring that the structural response is unperturbed by the instrumentation mass. Specifically, full-field measurements on the passenger window area were conducted when the structure was excited using an electrodynamic shaker. The spectral analysis of the measured time-domain displacements made it possible to identify natural frequencies and full-field operational deflection shapes. Changes in the modal parameters due to cabin pressurization and the behavior of different local structural modifications were assessed using this methodology. The proposed full-field methodology allowed the characterization of relevant dynamic response patterns, complementing the capabilities provided by accelerometers.
López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A.; Rodríguez-Ahlquist, Javier; Iglesias-Vallejo, Manuel
2018-01-01
In real aircraft structures the comfort and the occupational performance of crewmembers and passengers are affected by the presence of noise. In this sense, special attention is focused on mechanical and material design for isolation and vibration control. Experimental characterization and, in particular, experimental modal analysis, provides information for adequate cabin noise control. Traditional sensors employed in the aircraft industry for this purpose are invasive and provide a low spatial resolution. This paper presents a methodology for experimental modal characterization of a front fuselage full-scale demonstrator using high-speed 3D digital image correlation, which is non-invasive, ensuring that the structural response is unperturbed by the instrumentation mass. Specifically, full-field measurements on the passenger window area were conducted when the structure was excited using an electrodynamic shaker. The spectral analysis of the measured time-domain displacements made it possible to identify natural frequencies and full-field operational deflection shapes. Changes in the modal parameters due to cabin pressurization and the behavior of different local structural modifications were assessed using this methodology. The proposed full-field methodology allowed the characterization of relevant dynamic response patterns, complementing the capabilities provided by accelerometers. PMID:29393897
Silva, Carlos José de Paula; Moura, Ana Clara Mourão; Paiva, Paula Cristina Pelli; Ferreira, Raquel Conceição; Silvestrini, Rafaella Almeida; Vargas, Andréa Maria Duarte; de Paula, Liliam Pacheco Pinto; Naves, Marcelo Drummond; Ferreira, Efigênia Ferreira e
2015-01-01
The aim of the present study was to analyze the spatial pattern of cases of maxillofacial injuries caused by interpersonal violence, based on the location of the victim’s residence, and to investigate the existence of conditions of socio-spatial vulnerability in these areas. This is a cross-sectional study, using the data of victims attended in three emergency hospitals in Belo Horizonte-Brazil between January 2008 and December 2010. Based on the process of spatial signature, the socio-spatial condition of the victims was identified according to data from census tracts. The spatial distribution trends of the addresses of victims were analyzed using Kernel maps and Ripley’s K function. Multicriteria analysis was used to analyze the territorial insertion of victims, using a combination of variables to obtain the degree of socio-spatial vulnerability. The residences of the victims were distributed in an aggregated manner in urban areas, with a confidence level of 99%. The highest densities were found in areas of unfavorable socioeconomic conditions and, to a lesser extent, areas with worse residential and neighborhood infrastructure. Spatial clusters of households formed in slums with a significant level of socio-spatial vulnerability. Explanations of the living conditions in segregated urban areas and analysis of the concentration of more vulnerable populations should be a priority in the development of public health and safety policies. PMID:26274320
Van der Lubbe, Rob H J; Blom, Jorian H G; De Kleine, Elian; Bohlmeijer, Ernst T
2017-02-01
We examined whether sustained vs. transient spatial attention differentially affect the processing of electrical nociceptive stimuli. Cued nociceptive stimuli of a relevant intensity (low or high) on the left or right forearm required a foot pedal press. The cued side varied trial wise in the transient attention condition, while it remained constant during a series of trials in the sustained attention condition. The orienting phase preceding the nociceptive stimuli was examined by focusing on lateralized EEG activity. ERPs were computed to examine the influence of spatial attention on the processing of the nociceptive stimuli. Results for the orienting phase showed increased ipsilateral alpha and beta power above somatosensory areas in both the transient and the sustained attention conditions, which may reflect inhibition of ipsilateral and/or disinhibition of contralateral somatosensory areas. Cued nociceptive stimuli evoked a larger N130 than uncued stimuli, both in the transient and the sustained attention conditions. Support for increased efficiency of spatial attention in the sustained attention condition was obtained for the N180 and the P540 component. We concluded that spatial attention is more efficient in the case of sustained than in the case of transient spatial attention. Copyright © 2016 Elsevier B.V. All rights reserved.
An hourly regression model for ultrafine particles in a near-highway urban area
Patton, Allison P.; Collins, Caitlin; Naumova, Elena N.; Zamore, Wig; Brugge, Doug; Durant, John L.
2015-01-01
Estimating ultrafine particle number concentrations (PNC) near highways for exposure assessment in chronic health studies requires models capable of capturing PNC spatial and temporal variations over the course of a full year. The objectives of this work were to describe the relationship between near-highway PNC and potential predictors, and to build and validate hourly log-linear regression models. PNC was measured near Interstate 93 (I-93) in Somerville, MA (USA) using a mobile monitoring platform driven for 234 hours on 43 days between August 2009 and September 2010. Compared to urban background, PNC levels were consistently elevated within 100–200 m of I-93, with gradients impacted by meteorological and traffic conditions. Temporal and spatial variables including wind speed and direction, temperature, highway traffic, and distance to I-93 and major roads contributed significantly to the full regression model. Cross-validated model R2 values ranged from 0.38–0.47, with higher values achieved (0.43–0.53) when short-duration PNC spikes were removed. The model predicts highest PNC near major roads and on cold days with low wind speeds. The model allows estimation of hourly ambient PNC at 20-m resolution in a near-highway neighborhood. PMID:24559198
Action-angle formulation of generalized, orbit-based, fast-ion diagnostic weight functions
NASA Astrophysics Data System (ADS)
Stagner, L.; Heidbrink, W. W.
2017-09-01
Due to the usually complicated and anisotropic nature of the fast-ion distribution function, diagnostic velocity-space weight functions, which indicate the sensitivity of a diagnostic to different fast-ion velocities, are used to facilitate the analysis of experimental data. Additionally, when velocity-space weight functions are discretized, a linear equation relating the fast-ion density and the expected diagnostic signal is formed. In a technique known as velocity-space tomography, many measurements can be combined to create an ill-conditioned system of linear equations that can be solved using various computational methods. However, when velocity-space weight functions (which by definition ignore spatial dependencies) are used, velocity-space tomography is restricted, both by the accuracy of its forward model and also by the availability of spatially overlapping diagnostic measurements. In this work, we extend velocity-space weight functions to a full 6D generalized coordinate system and then show how to reduce them to a 3D orbit-space without loss of generality using an action-angle formulation. Furthermore, we show how diagnostic orbit-weight functions can be used to infer the full fast-ion distribution function, i.e., orbit tomography. In depth derivations of orbit weight functions for the neutron, neutral particle analyzer, and fast-ion D-α diagnostics are also shown.
Tang, Xiaoyu; Li, Chunlin; Li, Qi; Gao, Yulin; Yang, Weiping; Yang, Jingjing; Ishikawa, Soushirou; Wu, Jinglong
2013-10-11
Utilizing the high temporal resolution of event-related potentials (ERPs), we examined how visual spatial or temporal cues modulated the auditory stimulus processing. The visual spatial cue (VSC) induces orienting of attention to spatial locations; the visual temporal cue (VTC) induces orienting of attention to temporal intervals. Participants were instructed to respond to auditory targets. Behavioral responses to auditory stimuli following VSC were faster and more accurate than those following VTC. VSC and VTC had the same effect on the auditory N1 (150-170 ms after stimulus onset). The mean amplitude of the auditory P1 (90-110 ms) in VSC condition was larger than that in VTC condition, and the mean amplitude of late positivity (300-420 ms) in VTC condition was larger than that in VSC condition. These findings suggest that modulation of auditory stimulus processing by visually induced spatial or temporal orienting of attention were different, but partially overlapping. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Spectral-Spatial Scale Invariant Feature Transform for Hyperspectral Images.
Al-Khafaji, Suhad Lateef; Jun Zhou; Zia, Ali; Liew, Alan Wee-Chung
2018-02-01
Spectral-spatial feature extraction is an important task in hyperspectral image processing. In this paper we propose a novel method to extract distinctive invariant features from hyperspectral images for registration of hyperspectral images with different spectral conditions. Spectral condition means images are captured with different incident lights, viewing angles, or using different hyperspectral cameras. In addition, spectral condition includes images of objects with the same shape but different materials. This method, which is named spectral-spatial scale invariant feature transform (SS-SIFT), explores both spectral and spatial dimensions simultaneously to extract spectral and geometric transformation invariant features. Similar to the classic SIFT algorithm, SS-SIFT consists of keypoint detection and descriptor construction steps. Keypoints are extracted from spectral-spatial scale space and are detected from extrema after 3D difference of Gaussian is applied to the data cube. Two descriptors are proposed for each keypoint by exploring the distribution of spectral-spatial gradient magnitude in its local 3D neighborhood. The effectiveness of the SS-SIFT approach is validated on images collected in different light conditions, different geometric projections, and using two hyperspectral cameras with different spectral wavelength ranges and resolutions. The experimental results show that our method generates robust invariant features for spectral-spatial image matching.
NASA Astrophysics Data System (ADS)
Itoh, M.; Kosugi, Y.; Takanashi, S.; Hayashi, Y.; Kanemitsu, S.; Osaka, K.; Tani, M.; Nik, A. R.
2010-09-01
To clarify the factors controlling temporal and spatial variations of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes, we investigated these gas fluxes and environmental factors in a tropical rainforest in Peninsular Malaysia. Temporal variation of CO2 flux in a 2-ha plot was positively related to soil water condition and rainfall history. Spatially, CO2 flux was negatively related to soil water condition. When CO2 flux hotspots were included, no other environmental factors such as soil C or N concentrations showed any significant correlation. Although the larger area sampled in the present study complicates explanations of spatial variation of CO2 flux, our results support a previously reported bipolar relationship between the temporal and spatial patterns of CO2 flux and soil water condition observed at the study site in a smaller study plot. Flux of CH4 was usually negative with little variation, resulting in the soil at our study site functioning as a CH4 sink. Both temporal and spatial variations of CH4 flux were positively related to the soil water condition. Soil N concentration was also related to the spatial distribution of CH4 flux. Some hotspots were observed, probably due to CH4 production by termites, and these hotspots obscured the relationship between both temporal and spatial variations of CH4 flux and environmental factors. Temporal variation of N2O flux and soil N2O concentration was large and significantly related to the soil water condition, or in a strict sense, to rainfall history. Thus, the rainfall pattern controlled wet season N2O production in soil and its soil surface flux. Spatially, large N2O emissions were detected in wet periods at wetter and anaerobic locations, and were thus determined by soil physical properties. Our results showed that, even in Southeast Asian rainforests where distinct dry and wet seasons do not exist, variation in the soil water condition related to rainfall history controlled the temporal variations of soil CO2 flux, CH4 uptake, and N2O emission. The soil water condition associated with soil hydraulic properties was also the important controlling factor of the spatial distributions of these gas fluxes.
NASA Astrophysics Data System (ADS)
Ashe, Josie; Luscombe, David; Grand-Clement, Emilie; Gatis, Naomi; Anderson, Karen; Brazier, Richard
2014-05-01
The Exmoor/Dartmoor Mires Project is a peatland restoration programme focused on the geoclimatically marginal blanket bogs of South West England. In order to better understand the hydrological functioning of degraded/restored peatlands and support land management decisions across these uplands, this study is providing robust spatially distributed, hydrological monitoring at a high temporal resolution and in near real time. This paper presents the conceptual framework and experimental design for three hydrological monitoring arrays situated in headwater catchments dominated by eroding and drained blanket peatland. Over 250 individual measurements are collected at a high temporal resolution (15 minute time-step) via sensors integrated within a remote telemetry system. These are sent directly to a dedicated server over VHF and GPRS mobile networks. Sensors arrays are distributed at varying spatial scales throughout the studied catchments and record multiple parameters including: water table depth, channel flow, temperature, conductivity and pH measurements. A full suite of meteorological sensors and ten spatially distributed automatic flow based water samplers are also connected to the telemetry system and controlled remotely. This paper will highlight the challenges and solutions to obtaining these data in exceptionally remote and harsh field conditions over long (multi annual) temporal scales.
NASA Astrophysics Data System (ADS)
Wan, L. G.; Lin, Q.; Bian, D. J.; Ren, Q. K.; Xiao, Y. B.; Lu, W. X.
2018-02-01
In order to reveal the spatial difference of the bacterial community structure in the Micro-pressure Air-lift Loop Reactor, the activated sludge bacterial at five different representative sites in the reactor were studied by denaturing gradient gel electrophoresis (DGGE). The results of DGGE showed that the difference of environmental conditions (such as substrate concentration, dissolved oxygen and PH, etc.) resulted in different diversity and similarity of microbial flora in different spatial locations. The Shannon-Wiener diversity index of the total bacterial samples from five sludge samples varied from 0.92 to 1.28, the biodiversity index was the smallest at point 5, and the biodiversity index was the highest at point 2. The similarity of the flora between the point 2, 3 and 4 was 80% or more, respectively. The similarity of the flora between the point 5 and the other samples was below 70%, and the similarity of point 2 was only 59.2%. Due to the different contribution of different strains to the removal of pollutants, it can give full play to the synergistic effect of bacterial degradation of pollutants, and further improve the efficiency of sewage treatment.
NASA Astrophysics Data System (ADS)
Ghate, V. P.; Albrecht, B. A.; Fairall, C. W.; Miller, M. A.; Brewer, A.
2010-12-01
Turbulence in the stratocumulus topped marine boundary layer (BL) is an important factor that is closely connected to both the cloud macro- and micro-physical characteristics, which can substantially affect their radiaitve properties. Data collected by ship borne instruments on the R/V Ronald H. Brown on November 27, 2008 as a part of the VAMOS Ocean-Cloud-Atmosphere-Land-Study Regional Experiment (VOCALS-Rex) are analyzed to study the turbulence structure of a stratocumulus topped marine BL. The first half of the analyzed 24 hour period was characterized by a coupled BL topped by a precipitating stratocumulus cloud; the second half had clear sky conditions with a decoupled BL. The motion stabilized vertically pointing W-band Doppler cloud radar reported the full Doppler spectrum at a temporal and spatial resolution of 3 Hz and 25 m respectively. The collocated motion stabilized Doppler lidar was operating at 2 micron wavelength and reported the Signal to Noise Ratio (SNR) and Doppler velocity at temporal and spatial resolution of 2 Hz and 30 m respectively. Data from the cloud Doppler radar and Doppler lidar were combined to yield the turbulence structure of entire BL in both cloudy and clear sky conditions. Retrievals were performed to remove the contribution of precipitating drizzle drops to the mean Doppler velocity measured by the radar. Hourly profiles of vertical velocity variance suggested high BL variance during coupled BL conditions and low variance during decoupled BL conditions. Some of the terms in second and third moment budget of vertical velocity are calculated and their diurnal evolution is explored.
Importance of spatial autocorrelation in modeling bird distributions at a continental scale
Bahn, V.; O'Connor, R.J.; Krohn, W.B.
2006-01-01
Spatial autocorrelation in species' distributions has been recognized as inflating the probability of a type I error in hypotheses tests, causing biases in variable selection, and violating the assumption of independence of error terms in models such as correlation or regression. However, it remains unclear whether these problems occur at all spatial resolutions and extents, and under which conditions spatially explicit modeling techniques are superior. Our goal was to determine whether spatial models were superior at large extents and across many different species. In addition, we investigated the importance of purely spatial effects in distribution patterns relative to the variation that could be explained through environmental conditions. We studied distribution patterns of 108 bird species in the conterminous United States using ten years of data from the Breeding Bird Survey. We compared the performance of spatially explicit regression models with non-spatial regression models using Akaike's information criterion. In addition, we partitioned the variance in species distributions into an environmental, a pure spatial and a shared component. The spatially-explicit conditional autoregressive regression models strongly outperformed the ordinary least squares regression models. In addition, partialling out the spatial component underlying the species' distributions showed that an average of 17% of the explained variation could be attributed to purely spatial effects independent of the spatial autocorrelation induced by the underlying environmental variables. We concluded that location in the range and neighborhood play an important role in the distribution of species. Spatially explicit models are expected to yield better predictions especially for mobile species such as birds, even in coarse-grained models with a large extent. ?? Ecography.
NASA Astrophysics Data System (ADS)
Campbell, A.; Lautz, L.; Hoke, G. D.
2017-12-01
Prior work shows that spatial differences in naturally-occurring methane concentrations in shallow groundwater in the Marcellus Shale region are correlated with water type (e.g. Ca-HCO3 vs Na-HCO3) and landscape position (e.g. valley vs upland). However, little is known about how naturally-occurring methane in groundwater varies through time, particularly on a seasonal or monthly time scale, and how temporal variability is related to seasonal changes in climate. Extensive development of the Marcellus shale gas play in northeastern Pennsylvania limits opportunities for measuring baseline water quality through time. In contrast, a ban on hydraulic fracturing in NY affords an opportunity for characterizing baseline temporal variability in methane concentrations. The objective of this study is to characterize temporal variability of naturally-occurring methane in shallow groundwater in the Marcellus region, and how such temporal variability is correlated to other well characteristics, such as water type, landscape position, and climatic conditions. We worked with homeowners to sample 11 domestic wells monthly in the Marcellus Shale region of NY for methane concentrations and major ions for a full year. Wells were grouped according to the primary source of methane (e.g. thermogenic vs microbial) based upon δ13C-DIC, δ13C-CH4, and δD-CH4 isotopes. The full dataset and the grouped data were analyzed to assess how well climatic conditions, water type, and landscape position correlate with variability of methane concentrations through time. These data provide information on within year and between year variability of methane, as well as spatial variability between wells, which fills a data gap and can be used to inform policy regulations.
NASA Astrophysics Data System (ADS)
Podgornova, O.; Leaney, S.; Liang, L.
2018-07-01
Extracting medium properties from seismic data faces some limitations due to the finite frequency content of the data and restricted spatial positions of the sources and receivers. Some distributions of the medium properties make low impact on the data (including none). If these properties are used as the inversion parameters, then the inverse problem becomes overparametrized, leading to ambiguous results. We present an analysis of multiparameter resolution for the linearized inverse problem in the framework of elastic full-waveform inversion. We show that the spatial and multiparameter sensitivities are intertwined and non-sensitive properties are spatial distributions of some non-trivial combinations of the conventional elastic parameters. The analysis accounts for the Hessian information and frequency content of the data; it is semi-analytical (in some scenarios analytical), easy to interpret and enhances results of the widely used radiation pattern analysis. Single-type scattering is shown to have limited sensitivity, even for full-aperture data. Finite-frequency data lose multiparameter sensitivity at smooth and fine spatial scales. Also, we establish ways to quantify a spatial-multiparameter coupling and demonstrate that the theoretical predictions agree well with the numerical results.
Ehinger, Benedikt V.; Fischer, Petra; Gert, Anna L.; Kaufhold, Lilli; Weber, Felix; Pipa, Gordon; König, Peter
2014-01-01
In everyday life, spatial navigation involving locomotion provides congruent visual, vestibular, and kinesthetic information that need to be integrated. Yet, previous studies on human brain activity during navigation focus on stationary setups, neglecting vestibular and kinesthetic feedback. The aim of our work is to uncover the influence of those sensory modalities on cortical processing. We developed a fully immersive virtual reality setup combined with high-density mobile electroencephalography (EEG). Participants traversed one leg of a triangle, turned on the spot, continued along the second leg, and finally indicated the location of their starting position. Vestibular and kinesthetic information was provided either in combination, as isolated sources of information, or not at all within a 2 × 2 full factorial intra-subjects design. EEG data were processed by clustering independent components, and time-frequency spectrograms were calculated. In parietal, occipital, and temporal clusters, we detected alpha suppression during the turning movement, which is associated with a heightened demand of visuo-attentional processing and closely resembles results reported in previous stationary studies. This decrease is present in all conditions and therefore seems to generalize to more natural settings. Yet, in incongruent conditions, when different sensory modalities did not match, the decrease is significantly stronger. Additionally, in more anterior areas we found that providing only vestibular but no kinesthetic information results in alpha increase. These observations demonstrate that stationary experiments omit important aspects of sensory feedback. Therefore, it is important to develop more natural experimental settings in order to capture a more complete picture of neural correlates of spatial navigation. PMID:24616681
Ehinger, Benedikt V; Fischer, Petra; Gert, Anna L; Kaufhold, Lilli; Weber, Felix; Pipa, Gordon; König, Peter
2014-01-01
In everyday life, spatial navigation involving locomotion provides congruent visual, vestibular, and kinesthetic information that need to be integrated. Yet, previous studies on human brain activity during navigation focus on stationary setups, neglecting vestibular and kinesthetic feedback. The aim of our work is to uncover the influence of those sensory modalities on cortical processing. We developed a fully immersive virtual reality setup combined with high-density mobile electroencephalography (EEG). Participants traversed one leg of a triangle, turned on the spot, continued along the second leg, and finally indicated the location of their starting position. Vestibular and kinesthetic information was provided either in combination, as isolated sources of information, or not at all within a 2 × 2 full factorial intra-subjects design. EEG data were processed by clustering independent components, and time-frequency spectrograms were calculated. In parietal, occipital, and temporal clusters, we detected alpha suppression during the turning movement, which is associated with a heightened demand of visuo-attentional processing and closely resembles results reported in previous stationary studies. This decrease is present in all conditions and therefore seems to generalize to more natural settings. Yet, in incongruent conditions, when different sensory modalities did not match, the decrease is significantly stronger. Additionally, in more anterior areas we found that providing only vestibular but no kinesthetic information results in alpha increase. These observations demonstrate that stationary experiments omit important aspects of sensory feedback. Therefore, it is important to develop more natural experimental settings in order to capture a more complete picture of neural correlates of spatial navigation.
NASA Astrophysics Data System (ADS)
Belik, Anton; Vasenev, Ivan; Jablonskikh, Lidia; Bozhko, Svetlana
2017-04-01
The crop yield is the most important indicator of the efficiency of agricultural production. It is the function that depends on a large number of groups of independent variables, such as the weather, soil fertility and overall culture agriculture. A huge number of combinations of these factors contribute to the formation of high spatial variety of crop yields within small areas, includes the slope agrolandscapes in Kursk region. Spatial variety of yield leads to a significant reduction in the efficiency of agriculture. In this connection, evaluation and analysis of the factors, which limits the yield of field crops is a very urgent proble in agroecology. The research was conducted in the period of 2003-2004 on a representative field. The typical and leached chernozems with the varying thickness and of erosion degree are dominated in soil cover. At the time of field research studied areas were busy by barley. The reseached soils have an average and increased fertility level. Chernozem typical full-face, and the leached contain an average of 4.5-6% humus, close to neutral pH, favorable values of physico-chemical parameters, medium and high content of nutrients. The eroded chernozems differs agrogenic marked declining in fertility parameters. The diversity of meso- and micro-relief in the fields and soil cover influence to significant spatial variety of fertility. For example the content of nutrients in the soil variation can be up to 5-fold level. High spatial heterogeneity of soils fertility ifluence to barley yield variety. During research on the productivity of the field varied in the range of 20-43 c/ha, and 7-44 c/ha (2004). Analysis of the factors, which limited the yield of barley, showed that the first priorities occupy unregulated characterises: slope angle and the classification of soils (subtype and race of chernozem and the difference in the degree of erosion), which determines the development of erosion processes and redistribution available to plants form of moisture. As a rule, the maximum yield of barley is marked on most flat areas covered with chernozem leached and typical with the full profile. The contain of nutrients usually takes 3-4 levels of limitation. The significance of a particular element is determined by the characteristics of the particular agro-ecological homogeneous area. Most, however, the value in the 2003 - 2004's. plants were available forms of phosphorus and potassium Thus, in terms of slope agricultural landscapes of the Kursk region, there is increased spatial varety of fertility and barley yields. This priority among the limiting factors are soils and agro-ecological conditions. Significant influence of agrochemical parameters are shown within the homogeneous agroecological regions. In this regard system of precision agriculture has a great prospects for acquiring practical, and must to imply the adaptation of existing agricultural technologies to change the conditions of cultivation of field crops within fields.
NASA Technical Reports Server (NTRS)
Kayanickupuram, A. J.; Ramos, K. A.; Cordova, M. L.; Wood, S. J.
2009-01-01
The need to resolve new patterns of sensory feedback in altered gravitoinertial environments requires cognitive processes to develop appropriate reference frames for spatial orientation awareness. The purpose of this study was to examine deficits in spatial cognitive performance during adaptation to conflicting tilt-translation stimuli. Fourteen subjects were tilted within a lighted enclosure that simultaneously translated at one of 3 frequencies. Tilt and translation motion was synchronized to maintain the resultant gravitoinertial force aligned with the longitudinal body axis, resulting in a mismatch analogous to spaceflight in which the canals and vision signal tilt while the otoliths do not. Changes in performance on different spatial cognitive tasks were compared 1) without motion, 2) with tilt motion alone (pitch at 0.15, 0.3 and 0.6 Hz or roll at 0.3 Hz), and 3) with conflicting tilt-translation motion. The adaptation paradigm was continued for up to 30 min or until the onset of nausea. The order of the adaptation conditions were counter-balanced across 4 different test sessions. There was a significant effect of stimulus frequency on both motion sickness and spatial cognitive performance. Only 3 of 14 were able to complete the full 30 min protocol at 0.15 Hz, while 7 of 14 completed 0.3 Hz and 13 of 14 completed 0.6 Hz. There were no changes in simple visual-spatial cognitive tests, e.g., mental rotation or match-to-sample. There were significant deficits during 0.15 Hz adaptation in both accuracy and reaction time during a spatial reference task in which subjects are asked to identify a match of a 3D reoriented cube assemblage. Our results are consistent with antidotal reports of cognitive impairment that are common during sensorimotor adaptation with G-transitions. We conclude that these cognitive deficits stem from the ambiguity of spatial reference frames for central processing of inertial motion cues.
What aspects of vision facilitate haptic processing?
Millar, Susanna; Al-Attar, Zainab
2005-12-01
We investigate how vision affects haptic performance when task-relevant visual cues are reduced or excluded. The task was to remember the spatial location of six landmarks that were explored by touch in a tactile map. Here, we use specially designed spectacles that simulate residual peripheral vision, tunnel vision, diffuse light perception, and total blindness. Results for target locations differed, suggesting additional effects from adjacent touch cues. These are discussed. Touch with full vision was most accurate, as expected. Peripheral and tunnel vision, which reduce visuo-spatial cues, differed in error pattern. Both were less accurate than full vision, and significantly more accurate than touch with diffuse light perception, and touch alone. The important finding was that touch with diffuse light perception, which excludes spatial cues, did not differ from touch without vision in performance accuracy, nor in location error pattern. The contrast between spatially relevant versus spatially irrelevant vision provides new, rather decisive, evidence against the hypothesis that vision affects haptic processing even if it does not add task-relevant information. The results support optimal integration theories, and suggest that spatial and non-spatial aspects of vision need explicit distinction in bimodal studies and theories of spatial integration.
NASA Technical Reports Server (NTRS)
Colarco, P. R.; Kahn, R. A.; Remer, L. A.; Levy, R. C.
2014-01-01
We use the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite aerosol optical thickness (AOT) product to assess the impact of reduced swath width on global and regional AOT statistics and trends. Alongtrack and across-track sampling strategies are employed, in which the full MODIS data set is sub-sampled with various narrow-swath (approximately 400-800 km) and single pixel width (approximately 10 km) configurations. Although view-angle artifacts in the MODIS AOT retrieval confound direct comparisons between averages derived from different sub-samples, careful analysis shows that with many portions of the Earth essentially unobserved, spatial sampling introduces uncertainty in the derived seasonal-regional mean AOT. These AOT spatial sampling artifacts comprise up to 60%of the full-swath AOT value under moderate aerosol loading, and can be as large as 0.1 in some regions under high aerosol loading. Compared to full-swath observations, narrower swath and single pixel width sampling exhibits a reduced ability to detect AOT trends with statistical significance. On the other hand, estimates of the global, annual mean AOT do not vary significantly from the full-swath values as spatial sampling is reduced. Aggregation of the MODIS data at coarse grid scales (10 deg) shows consistency in the aerosol trends across sampling strategies, with increased statistical confidence, but quantitative errors in the derived trends are found even for the full-swath data when compared to high spatial resolution (0.5 deg) aggregations. Using results of a model-derived aerosol reanalysis, we find consistency in our conclusions about a seasonal-regional spatial sampling artifact in AOT Furthermore, the model shows that reduced spatial sampling can amount to uncertainty in computed shortwave top-ofatmosphere aerosol radiative forcing of 2-3 W m(sup-2). These artifacts are lower bounds, as possibly other unconsidered sampling strategies would perform less well. These results suggest that future aerosol satellite missions having significantly less than full-swath viewing are unlikely to sample the true AOT distribution well enough to obtain the statistics needed to reduce uncertainty in aerosol direct forcing of climate.
NASA Astrophysics Data System (ADS)
Puzyrev, Vladimir; Torres-Verdín, Carlos; Calo, Victor
2018-05-01
The interpretation of resistivity measurements acquired in high-angle and horizontal wells is a critical technical problem in formation evaluation. We develop an efficient parallel 3-D inversion method to estimate the spatial distribution of electrical resistivity in the neighbourhood of a well from deep directional electromagnetic induction measurements. The methodology places no restriction on the spatial distribution of the electrical resistivity around arbitrary well trajectories. The fast forward modelling of triaxial induction measurements performed with multiple transmitter-receiver configurations employs a parallel direct solver. The inversion uses a pre-conditioned gradient-based method whose accuracy is improved using the Wolfe conditions to estimate optimal step lengths at each iteration. The large transmitter-receiver offsets, used in the latest generation of commercial directional resistivity tools, improve the depth of investigation to over 30 m from the wellbore. Several challenging synthetic examples confirm the feasibility of the full 3-D inversion-based interpretations for these distances, hence enabling the integration of resistivity measurements with seismic amplitude data to improve the forecast of the petrophysical and fluid properties. Employing parallel direct solvers for the triaxial induction problems allows for large reductions in computational effort, thereby opening the possibility to invert multiposition 3-D data in practical CPU times.
MacNab, Ying C
2016-08-01
This paper concerns with multivariate conditional autoregressive models defined by linear combination of independent or correlated underlying spatial processes. Known as linear models of coregionalization, the method offers a systematic and unified approach for formulating multivariate extensions to a broad range of univariate conditional autoregressive models. The resulting multivariate spatial models represent classes of coregionalized multivariate conditional autoregressive models that enable flexible modelling of multivariate spatial interactions, yielding coregionalization models with symmetric or asymmetric cross-covariances of different spatial variation and smoothness. In the context of multivariate disease mapping, for example, they facilitate borrowing strength both over space and cross variables, allowing for more flexible multivariate spatial smoothing. Specifically, we present a broadened coregionalization framework to include order-dependent, order-free, and order-robust multivariate models; a new class of order-free coregionalized multivariate conditional autoregressives is introduced. We tackle computational challenges and present solutions that are integral for Bayesian analysis of these models. We also discuss two ways of computing deviance information criterion for comparison among competing hierarchical models with or without unidentifiable prior parameters. The models and related methodology are developed in the broad context of modelling multivariate data on spatial lattice and illustrated in the context of multivariate disease mapping. The coregionalization framework and related methods also present a general approach for building spatially structured cross-covariance functions for multivariate geostatistics. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Chérigier, L.; Czarnetzki, U.; Luggenhölscher, D.; Schulz-von der Gathen, V.; Döbele, H. F.
1999-01-01
Absolute atomic hydrogen densities were measured in the gaseous electronics conference reference cell parallel plate reactor by Doppler-free two-photon absorption laser induced fluorescence spectroscopy (TALIF) at λ=205 nm. The capacitively coupled radio frequency discharge was operated at 13.56 MHz in pure hydrogen under various input power and pressure conditions. The Doppler-free excitation technique with an unfocused laser beam together with imaging the fluorescence radiation by an intensified charge coupled device camera allows instantaneous spatial resolution along the radial direction. Absolute density calibration is obtained with the aid of a flow tube reactor and titration with NO2. The influence of spatial intensity inhomogenities along the laser beam and subsequent fluorescence are corrected by TALIF in xenon. A full mapping of the absolute density distribution between the electrodes was obtained. The detection limit for atomic hydrogen amounts to about 2×1018 m-3. The dissociation degree is of the order of a few percent.
Numerical solution of the quantum Lenard-Balescu equation for a non-degenerate one-component plasma
Scullard, Christian R.; Belt, Andrew P.; Fennell, Susan C.; ...
2016-09-01
We present a numerical solution of the quantum Lenard-Balescu equation using a spectral method, namely an expansion in Laguerre polynomials. This method exactly conserves both particles and kinetic energy and facilitates the integration over the dielectric function. To demonstrate the method, we solve the equilibration problem for a spatially homogeneous one-component plasma with various initial conditions. Unlike the more usual Landau/Fokker-Planck system, this method requires no input Coulomb logarithm; the logarithmic terms in the collision integral arise naturally from the equation along with the non-logarithmic order-unity terms. The spectral method can also be used to solve the Landau equation andmore » a quantum version of the Landau equation in which the integration over the wavenumber requires only a lower cutoff. We solve these problems as well and compare them with the full Lenard-Balescu solution in the weak-coupling limit. Finally, we discuss the possible generalization of this method to include spatial inhomogeneity and velocity anisotropy.« less
A spatial analysis of social and economic determinants of tuberculosis in Brazil.
Harling, Guy; Castro, Marcia C
2014-01-01
We investigated the spatial distribution, and social and economic correlates, of tuberculosis in Brazil between 2002 and 2009 using municipality-level age/sex-standardized tuberculosis notification data. Rates were very strongly spatially autocorrelated, being notably high in urban areas on the eastern seaboard and in the west of the country. Non-spatial ecological regression analyses found higher rates associated with urbanicity, population density, poor economic conditions, household crowding, non-white population and worse health and healthcare indicators. These associations remained in spatial conditional autoregressive models, although the effect of poverty appeared partially confounded by urbanicity, race and spatial autocorrelation, and partially mediated by household crowding. Our analysis highlights both the multiple relationships between socioeconomic factors and tuberculosis in Brazil, and the importance of accounting for spatial factors in analysing socioeconomic determinants of tuberculosis. © 2013 Published by Elsevier Ltd.
MOD3D: a model for incorporating MODTRAN radiative transfer into 3D simulations
NASA Astrophysics Data System (ADS)
Berk, Alexander; Anderson, Gail P.; Gossage, Brett N.
2001-08-01
MOD3D, a rapid and accurate radiative transport algorithm, is being developed for application to 3D simulations. MOD3D couples to optical property databases generated by the MODTRAN4 Correlated-k (CK) band model algorithm. The Beer's Law dependence of the CK algorithm provides for proper coupling of illumination and line-of-sight paths. Full 3D spatial effects are modeled by scaling and interpolating optical data to local conditions. A C++ version of MOD3D has been integrated into JMASS for calculation of path transmittances, thermal emission and single scatter solar radiation. Results from initial validation efforts are presented.
Flux-vector splitting algorithm for chain-rule conservation-law form
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Nguyen, H. L.; Willis, E. A.; Steinthorsson, E.; Li, Z.
1991-01-01
A flux-vector splitting algorithm with Newton-Raphson iteration was developed for the 'full compressible' Navier-Stokes equations cast in chain-rule conservation-law form. The algorithm is intended for problems with deforming spatial domains and for problems whose governing equations cannot be cast in strong conservation-law form. The usefulness of the algorithm for such problems was demonstrated by applying it to analyze the unsteady, two- and three-dimensional flows inside one combustion chamber of a Wankel engine under nonfiring conditions. Solutions were obtained to examine the algorithm in terms of conservation error, robustness, and ability to handle complex flows on time-dependent grid systems.
Application of IR imaging for free-surface velocity measurement in liquid-metal systems
Hvasta, M. G.; Kolemen, E.; Fisher, A.
2017-01-05
Measuring free-surface, liquid-metal flow velocity is challenging to do in a reliable and accurate manner. This paper presents a non-invasive, easily calibrated method of measuring the surface velocities of open-channel liquid-metal flows using an IR camera. Unlike other spatially limited methods, this IR camera particle tracking technique provides full field-of-view data that can be used to better understand open-channel flows and determine surface boundary conditions. Lastly, this method could be implemented and automated for a wide range of liquid-metal experiments, even if they operate at high-temperatures or within strong magnetic fields.
NASA Astrophysics Data System (ADS)
Carnell, E. J.; Misselbrook, T. H.; Dore, A. J.; Sutton, M. A.; Dragosits, U.
2017-09-01
The effects of atmospheric nitrogen (N) deposition are evident in terrestrial ecosystems worldwide, with eutrophication and acidification leading to significant changes in species composition. Substantial reductions in N deposition from nitrogen oxides emissions have been achieved in recent decades. By contrast, ammonia (NH3) emissions from agriculture have not decreased substantially and are typically highly spatially variable, making efficient mitigation challenging. One solution is to target NH3 mitigation measures spatially in source landscapes to maximize the benefits for nature conservation. The paper develops an approach to link national scale data and detailed local data to help identify suitable measures for spatial targeting of local sources near designated Special Areas of Conservation (SACs). The methodology combines high-resolution national data on emissions, deposition and source attribution with local data on agricultural management and site conditions. Application of the methodology for the full set of 240 SACs in England found that agriculture contributes ∼45 % of total N deposition. Activities associated with cattle farming represented 54 % of agricultural NH3 emissions within 2 km of the SACs, making them a major contributor to local N deposition, followed by mineral fertiliser application (21 %). Incorporation of local information on agricultural management practices at seven example SACs provided the means to correct outcomes compared with national-scale emission factors. The outcomes show how national scale datasets can provide information on N deposition threats at landscape to national scales, while local-scale information helps to understand the feasibility of mitigation measures, including the impact of detailed spatial targeting on N deposition rates to designated sites.
Spatial interpolation of forest conditions using co-conditional geostatistical simulation
H. Todd Mowrer
2000-01-01
In recent work the author used the geostatistical Monte Carlo technique of sequential Gaussian simulation (s.G.s.) to investigate uncertainty in a GIS analysis of potential old-growth forest areas. The current study compares this earlier technique to that of co-conditional simulation, wherein the spatial cross-correlations between variables are included. As in the...
NASA Astrophysics Data System (ADS)
Tzou, J. C.; Ward, M. J.
2018-06-01
Spot patterns, whereby the activator field becomes spatially localized near certain dynamically-evolving discrete spatial locations in a bounded multi-dimensional domain, is a common occurrence for two-component reaction-diffusion (RD) systems in the singular limit of a large diffusivity ratio. In previous studies of 2-D localized spot patterns for various specific well-known RD systems, the domain boundary was assumed to be impermeable to both the activator and inhibitor, and the reaction-kinetics were assumed to be spatially uniform. As an extension of this previous theory, we use formal asymptotic methods to study the existence, stability, and slow dynamics of localized spot patterns for the singularly perturbed 2-D Brusselator RD model when the domain boundary is only partially impermeable, as modeled by an inhomogeneous Robin boundary condition, or when there is an influx of inhibitor across the domain boundary. In our analysis, we will also allow for the effect of a spatially variable bulk feed term in the reaction kinetics. By applying our extended theory to the special case of one-spot patterns and ring patterns of spots inside the unit disk, we provide a detailed analysis of the effect on spot patterns of these three different sources of heterogeneity. In particular, when there is an influx of inhibitor across the boundary of the unit disk, a ring pattern of spots can become pinned to a ring-radius closer to the domain boundary. Under a Robin condition, a quasi-equilibrium ring pattern of spots is shown to exhibit a novel saddle-node bifurcation behavior in terms of either the inhibitor diffusivity, the Robin constant, or the ambient background concentration. A spatially variable bulk feed term, with a concentrated source of "fuel" inside the domain, is shown to yield a saddle-node bifurcation structure of spot equilibria, which leads to qualitatively new spot-pinning behavior. Results from our asymptotic theory are validated from full numerical simulations of the Brusselator model.
Jamie M. Lydersen; Malcolm P. North; Eric E. Knapp; Brandon M. Collins
2013-01-01
Fire suppression and past logging have dramatically altered forest conditions in many areas, but changes to within-stand tree spatial patterns over time are not as well understood. The few studies available suggest that variability in tree spatial patterns is an important structural feature of forests with intact frequent fire regimes that should be incorporated in...
NASA Astrophysics Data System (ADS)
Mirić, J.; Bošnjaković, D.; Simonović, I.; Petrović, Z. Lj; Dujko, S.
2016-12-01
Electron attachment often imposes practical difficulties in Monte Carlo simulations, particularly under conditions of extensive losses of seed electrons. In this paper, we discuss two rescaling procedures for Monte Carlo simulations of electron transport in strongly attaching gases: (1) discrete rescaling, and (2) continuous rescaling. The two procedures are implemented in our Monte Carlo code with an aim of analyzing electron transport processes and attachment induced phenomena in sulfur-hexafluoride (SF6) and trifluoroiodomethane (CF3I). Though calculations have been performed over the entire range of reduced electric fields E/n 0 (where n 0 is the gas number density) where experimental data are available, the emphasis is placed on the analysis below critical (electric gas breakdown) fields and under conditions when transport properties are greatly affected by electron attachment. The present calculations of electron transport data for SF6 and CF3I at low E/n 0 take into account the full extent of the influence of electron attachment and spatially selective electron losses along the profile of electron swarm and attempts to produce data that may be used to model this range of conditions. The results of Monte Carlo simulations are compared to those predicted by the publicly available two term Boltzmann solver BOLSIG+. A multitude of kinetic phenomena in electron transport has been observed and discussed using physical arguments. In particular, we discuss two important phenomena: (1) the reduction of the mean energy with increasing E/n 0 for electrons in \\text{S}{{\\text{F}}6} and (2) the occurrence of negative differential conductivity (NDC) in the bulk drift velocity only for electrons in both \\text{S}{{\\text{F}}6} and CF3I. The electron energy distribution function, spatial variations of the rate coefficient for electron attachment and average energy as well as spatial profile of the swarm are calculated and used to understand these phenomena.
NASA Astrophysics Data System (ADS)
Yang, Pengliang; Brossier, Romain; Métivier, Ludovic; Virieux, Jean
2016-10-01
In this paper, we study 3-D multiparameter full waveform inversion (FWI) in viscoelastic media based on the generalized Maxwell/Zener body including arbitrary number of attenuation mechanisms. We present a frequency-domain energy analysis to establish the stability condition of a full anisotropic viscoelastic system, according to zero-valued boundary condition and the elastic-viscoelastic correspondence principle: the real-valued stiffness matrix becomes a complex-valued one in Fourier domain when seismic attenuation is taken into account. We develop a least-squares optimization approach to linearly relate the quality factor with the anelastic coefficients by estimating a set of constants which are independent of the spatial coordinates, which supplies an explicit incorporation of the parameter Q in the general viscoelastic wave equation. By introducing the Lagrangian multipliers into the matrix expression of the wave equation with implicit time integration, we build a systematic formulation of multiparameter FWI for full anisotropic viscoelastic wave equation, while the equivalent form of the state and adjoint equation with explicit time integration is available to be resolved efficiently. In particular, this formulation lays the foundation for the inversion of the parameter Q in the time domain with full anisotropic viscoelastic properties. In the 3-D isotropic viscoelastic settings, the anelastic coefficients and the quality factors using bulk and shear moduli parametrization can be related to the counterparts using P and S velocity. Gradients with respect to any other parameter of interest can be found by chain rule. Pioneering numerical validations as well as the real applications of this most generic framework will be carried out to disclose the potential of viscoelastic FWI when adequate high-performance computing resources and the field data are available.
The effect of perceptual load on tactile spatial attention: Evidence from event-related potentials.
Gherri, Elena; Berreby, Fiona
2017-10-15
To investigate whether tactile spatial attention is modulated by perceptual load, behavioural and electrophysiological measures were recorded during two spatial cuing tasks in which the difficulty of the target/non-target discrimination was varied (High and Low load tasks). Moreover, to study whether attentional modulations by load are sensitive to the availability of visual information, the High and Low load tasks were carried out under both illuminated and darkness conditions. ERPs to cued and uncued non-targets were compared as a function of task (High vs. Low load) and illumination condition (Light vs. Darkness). Results revealed that the locus of tactile spatial attention was determined by a complex interaction between perceptual load and illumination conditions during sensory-specific stages of processing. In the Darkness, earlier effects of attention were present in the High load than in the Low load task, while no difference between tasks emerged in the Light. By contrast, increased load was associated with stronger attention effects during later post-perceptual processing stages regardless of illumination conditions. These findings demonstrate that ERP correlates of tactile spatial attention are strongly affected by the perceptual load of the target/non-target discrimination. However, differences between illumination conditions show that the impact of load on tactile attention depends on the presence of visual information. Perceptual load is one of the many factors that contribute to determine the effects of spatial selectivity in touch. Copyright © 2017 Elsevier B.V. All rights reserved.
Mammarella, Irene C; Meneghetti, Chiara; Pazzaglia, Francesca; Cornoldi, Cesare
2014-01-01
The present study investigated the difficulties encountered by children with non-verbal learning disability (NLD) and reading disability (RD) when processing spatial information derived from descriptions, based on the assumption that both groups should find it more difficult than matched controls, but for different reasons, i.e., due to a memory encoding difficulty in cases of RD and to spatial information comprehension problems in cases of NLD. Spatial descriptions from both survey and route perspectives were presented to 9-12-year-old children divided into three groups: NLD (N = 12); RD (N = 12), and typically developing controls (TD; N = 15); then participants completed a sentence verification task and a memory for locations task. The sentence verification task was presented in two conditions: in one the children could refer to the text while answering the questions (i.e., text present condition), and in the other the text was withdrawn (i.e., text absent condition). Results showed that the RD group benefited from the text present condition, but was impaired to the same extent as the NLD group in the text absent condition, suggesting that the NLD children's difficulty is due mainly to their poor comprehension of spatial descriptions, while the RD children's difficulty is due more to a memory encoding problem. These results are discussed in terms of their implications in the neuropsychological profiles of children with NLD or RD, and the processes involved in spatial descriptions.
Introduction to the Special Issue on Visual Working Memory
Wolfe, Jeremy M
2014-01-01
Objects are not represented individually in visual working memory (VWM), but in relation to the contextual information provided by other memorized objects. We studied whether the contextual information provided by the spatial configuration of all memorized objects is viewpoint-dependent. We ran two experiments asking participants to detect changes in locations between memory and probe for one object highlighted in the probe image. We manipulated the changes in viewpoint between memory and probe (Exp. 1: 0°, 30°, 60°; Exp. 2: 0°, 60°), as well as the spatial configuration visible in the probe image (Exp. 1: full configuration, partial configuration; Exp. 2: full configuration, no configuration). Location change detection was higher with the full spatial configuration than with the partial configuration or with no spatial configuration at viewpoint changes of 0°, thus replicating previous findings on the nonindependent representations of individual objects in VWM. Most importantly, the effect of spatial configurations decreased with increasing viewpoint changes, suggesting a viewpoint-dependent representation of contextual information in VWM. We discuss these findings within the context of this special issue, in particular whether research performed within the slots-versus-resources debate and research on the effects of contextual information might focus on two different storage systems within VWM. PMID:25341647
Effects of spatial training on transitive inference performance in humans and rhesus monkeys
Gazes, Regina Paxton; Lazareva, Olga F.; Bergene, Clara N.; Hampton, Robert R.
2015-01-01
It is often suggested that transitive inference (TI; if A>B and B>C then A>C) involves mentally representing overlapping pairs of stimuli in a spatial series. However, there is little direct evidence to unequivocally determine the role of spatial representation in TI. We tested whether humans and rhesus monkeys use spatial representations in TI by training them to organize seven images in a vertical spatial array. Then, we presented subjects with a TI task using these same images. The implied TI order was either congruent or incongruent with the order of the trained spatial array. Humans in the congruent condition learned premise pairs more quickly, and were faster and more accurate in critical probe tests, suggesting that the spatial arrangement of images learned during spatial training influenced subsequent TI performance. Monkeys first trained in the congruent condition also showed higher test trial accuracy when the spatial and inferred orders were congruent. These results directly support the hypothesis that humans solve TI problems by spatial organization, and suggest that this cognitive mechanism for inference may have ancient evolutionary roots. PMID:25546105
Effect of Different Ground Scenarios on Flow Structure of a Rotor At Hover Condition
NASA Astrophysics Data System (ADS)
Kocak, Goktug; Nalbantoglu, Volkan; Yavuz, Mehmet Metin
2017-11-01
The ground effect of a scaled model rotor at hover condition was investigated experimentally in a confined environment. Different ground effect scenarios including full, partial, and inclined conditions, compared to out of ground condition, were characterized qualitatively and quantitatively using laser illuminated smoke visualization and Laser Doppler Anemometry measurements. The results indicate that the presence of the ground affects the flow regime near the blade tip by changing the spatial extent and the path of the vortex core. After the impingement of the wake to the ground, highly unsteady and turbulent wake is observed. Both the mean and the root mean square of the induced velocity increase toward the blade tip. In line with this, the spectral power of the dominant frequency in the velocity fluctuations significantly increases toward the blade tip. All these observations are witnessed in all ground effect conditions tested in the present study. Considering the inclined ground effect in particular, it is observed that the mean induced velocities of the high side (mountain) are higher compared to the velocities of the low side (valley) in contrast to the general trend observed in the present study where the ground effect reduces the induced velocity.
Spatial and temporal order memory in Korsakoff patients.
Postma, Albert; Van Asselen, Marieke; Keuper, Olga; Wester, Arie J; Kessels, Roy P C
2006-05-01
This study directly compared how well Korsakoff patients can process spatial and temporal order information in memory under conditions that included presentation of only a single feature (i.e., temporal or spatial information), combined spatiotemporal presentation, and combined spatiotemporal order recall. Korsakoff patients were found to suffer comparable spatial and temporal order recall deficits. Of interest, recall of a single feature was the same when only spatial or temporal information was presented compared to conditions that included combined spatiotemporal, presentation and recall. In contrast, control participants performed worse when they have to recall both spatial and temporal order compared to when they have to recall only one of these features. These findings together indicate that spatial and temporal information are not automatically integrated. Korsakoff patients have profound problems in coding the feature at hand. Moreover, their lower recall of both features at the same time suggests that Korsakoff patients are impaired in binding different contextual attributes together in memory.
NASA Technical Reports Server (NTRS)
Saleeb, A. F.; Prabhu, M.; Arnold, S. M. (Technical Monitor)
2002-01-01
Recently, a conceptually simple approach, based on the notion of defect energy in material space has been developed and extensively studied (from the theoretical and computational standpoints). The present study focuses on its evaluation from the viewpoint of damage localization capabilities in case of two-dimensional plates; i.e., spatial pattern recognition on surfaces. To this end, two different experimental modal test results are utilized; i.e., (1) conventional modal testing using (white noise) excitation and accelerometer-type sensors and (2) pattern recognition using Electronic speckle pattern interferometry (ESPI), a full field method capable of analyzing the mechanical vibration of complex structures. Unlike the conventional modal testing technique (using contacting accelerometers), these emerging ESPI technologies operate in a non-contacting mode, can be used even under hazardous conditions with minimal or no presence of noise and can simultaneously provide measurements for both translations and rotations. Results obtained have clearly demonstrated the robustness and versatility of the global NDE scheme developed. The vectorial character of the indices used, which enabled the extraction of distinct patterns for localizing damages proved very useful. In the context of the targeted pattern recognition paradigm, two algorithms were developed for the interrogation of test measurements; i.e., intensity contour maps for the damaged index, and the associated defect energy vector field plots.
NASA Technical Reports Server (NTRS)
Begault, Durand R.
1993-01-01
The advantage of a head-up auditory display was evaluated in a preliminary experiment designed to measure and compare the acquisition time for capturing visual targets under two auditory conditions: standard one-earpiece presentation and two-earpiece three-dimensional (3D) audio presentation. Twelve commercial airline crews were tested under full mission simulation conditions at the NASA-Ames Man-Vehicle Systems Research Facility advanced concepts flight simulator. Scenario software generated visual targets corresponding to aircraft that would activate a traffic collision avoidance system (TCAS) aural advisory; the spatial auditory position was linked to the visual position with 3D audio presentation. Results showed that crew members using a 3D auditory display acquired targets approximately 2.2 s faster than did crew members who used one-earpiece head- sets, but there was no significant difference in the number of targets acquired.
Gomi, T.; Johnson, A.C.; Deal, R.L.; Hennon, P.E.; Orlikowska, E.H.; Wipfli, M.S.
2006-01-01
Factors (riparian stand condition, management regimes, and channel properties) affecting distributions of wood, detritus (leaves and branches), and sediment were examined in headwater streams draining young-growth red alder (Alnus rubra Bong.) - conifer riparian forests (40 years old) remained in channels and provided sites for sediment and organic matter storage. Despite various alder-conifer mixtures and past harvesting effects, the abundance of large wood, fine wood, and detritus accumulations significantly decreased with increasing channel bank-full width (0.5-3.5 m) along relatively short channel distances (up to 700 m). Changes in wood, detritus, and sediment accumulations together with changes in riparian stand characteristics create spatial and temporal variability of in-channel conditions in headwater systems. A component of alder within young-growth riparian forests may benefit both wood production and biological recovery in disturbed headwater stream channels. ?? 2006 NRC.
Brunetti, Riccardo; Del Gatto, Claudia; Cavallina, Clarissa; Farina, Benedetto; Delogu, Franco
2018-05-01
The Corsi Block Tapping Task is a widespread test used to assess spatial working memory. Previous research hypothesized that the discrepancy found in some cases between the traditional and the digital (touchscreen) version of the Corsi block tapping task may be due to a direct motor resonance between the experimenter's and the participant's hand movements. However, we hypothesize that this discrepancy might be due to extra movement-related information included in the traditional version, lacking in the digital one. We investigated the effects of such task-irrelevant information using eCorsi, a touchscreen version of the task. In Experiment 1, we manipulate timing in sequence presentation, creating three conditions. In the Congruent condition, the inter-stimulus intervals reflected the physical distance in which the stimuli were spatially placed: The longer the spatial distance, the longer the temporal interval. In the Incongruent condition the timing changed randomly. Finally, in the Isochronous condition every stimulus appeared after a fixed interval, independently from its spatial position. The results showed a performance enhancement in the Congruent condition, suggesting an incidental spatio-temporal binding. In Experiment 2, we added straight lines between each location in the sequences: In the Trajectories condition participants saw trajectories from one spatial position to the other during sequence presentation, while a condition without such trajectories served as control. Results showed better performances in the Trajectories condition. We suggest that the timing and trajectories information play a significant role in the discrepancies found between the traditional and the touchscreen version of the Corsi Block Tapping Task, without the necessity of explanations involving direct motor resonance (e.g. seeing an actual hand moving) as a causal factor.
Dominic, Christopher Cyril Sandeep; Szakasits, Megan; Dean, Lisa O; Ducoste, Joel J
2013-01-01
Sanitary sewer overflows are caused by the accumulation of insoluble calcium salts of fatty acids, which are formed by the reaction between fats, oils and grease (FOG) and calcium found in wastewaters. Different sewer structural configurations (i.e., manholes, pipes, wet wells), which vary spatially, along with other obstructions (roots intrusion) and pipe deformations (pipe sags), may influence the detrimental buildup of FOG deposits. The purpose of this study was to quantify the spatial variation in FOG deposit formation and accumulation in a pilot-scale sewer collection system. The pilot system contained straight pipes, manholes, roots intrusion, and a pipe sag. Calcium and oil were injected into the system and operated at alkaline (pH = 10) and neutral (pH = 7) pH conditions. Results showed that solid accumulations were slightly higher at neutral pH. Fourier transform infrared (FTIR) analysis on the solids samples confirmed that the solids were indeed calcium-based fatty acid salts. However, the fatty acid profiles of the solids deviated from the profile found from FOG deposits in sewer systems, which were primarily saturated fatty acids. These results confirm the work done previously by researchers and suggest an alternative fate of unsaturated fatty acids that does not lead to their incorporation in FOG deposits in full-scale sewer systems.
Counseling Interactions as a Function of Spatial-Environmental Conditions.
ERIC Educational Resources Information Center
Lecomte, Conrad; And Others
1981-01-01
Investigated the effects of selected spatial-environmental conditions on counselor and counselee interview behaviors. Rated excerpts from initial sessions. Results indicated significant effects of distance on counselor concreteness, lighting on counselor communication of cognitive sets and distance on counselee affective self-disclosure in later…
Color constancy influenced by unnatural spatial structure.
Mizokami, Yoko; Yaguchi, Hirohisa
2014-04-01
The recognition of spatial structures is important for color constancy because we cannot identify an object's color under different illuminations without knowing which space it is in and how that space is illuminated. To show the importance of the natural structure of environments on color constancy, we investigated the way in which color appearance was affected by unnatural viewing conditions in which a spatial structure was distorted. Observers judged the color of a test patch placed in the center of a small room illuminated by white or reddish lights, as well as two rooms illuminated by white and reddish light, respectively. In the natural viewing condition, an observer saw the room(s) through a viewing window, whereas in an unnatural viewing condition, the scene structure was scrambled by a kaleidoscope-type viewing box. Results of single room condition with one illuminant color showed little difference in color constancy between the two viewing conditions. However, it decreased in the two-rooms condition with a more complex arrangement of space and illumination. The patch's appearance under the unnatural viewing condition was more influenced by simultaneous contrast than its appearance under the natural viewing condition. It also appears that color appearance under white illumination is more stable compared to that under reddish illumination. These findings suggest that natural spatial structure plays an important role for color constancy in a complex environment.
NASA Astrophysics Data System (ADS)
Dahl, Jeremy J.; Pinton, Gianmarco F.; Lediju, Muyinatu; Trahey, Gregg E.
2011-03-01
In the last 20 years, the number of suboptimal and inadequate ultrasound exams has increased. This trend has been linked to the increasing population of overweight and obese individuals. The primary causes of image degradation in these individuals are often attributed to phase aberration and clutter. Phase aberration degrades image quality by distorting the transmitted and received pressure waves, while clutter degrades image quality by introducing incoherent acoustical interference into the received pressure wavefront. Although significant research efforts have pursued the correction of image degradation due to phase aberration, few efforts have characterized or corrected image degradation due to clutter. We have developed a novel imaging technique that is capable of differentiating ultrasonic signals corrupted by acoustical interference. The technique, named short-lag spatial coherence (SLSC) imaging, is based on the spatial coherence of the received ultrasonic wavefront at small spatial distances across the transducer aperture. We demonstrate comparative B-mode and SLSC images using full-wave simulations that include the effects of clutter and show that SLSC imaging generates contrast-to-noise ratios (CNR) and signal-to-noise ratios (SNR) that are significantly better than B-mode imaging under noise-free conditions. In the presence of noise, SLSC imaging significantly outperforms conventional B-mode imaging in all image quality metrics. We demonstrate the use of SLSC imaging in vivo and compare B-mode and SLSC images of human thyroid and liver.
Lin, Yu-Pin; Chu, Hone-Jay; Wang, Cheng-Long; Yu, Hsiao-Hsuan; Wang, Yung-Chieh
2009-01-01
This study applies variogram analyses of normalized difference vegetation index (NDVI) images derived from SPOT HRV images obtained before and after the ChiChi earthquake in the Chenyulan watershed, Taiwan, as well as images after four large typhoons, to delineate the spatial patterns, spatial structures and spatial variability of landscapes caused by these large disturbances. The conditional Latin hypercube sampling approach was applied to select samples from multiple NDVI images. Kriging and sequential Gaussian simulation with sufficient samples were then used to generate maps of NDVI images. The variography of NDVI image results demonstrate that spatial patterns of disturbed landscapes were successfully delineated by variogram analysis in study areas. The high-magnitude Chi-Chi earthquake created spatial landscape variations in the study area. After the earthquake, the cumulative impacts of typhoons on landscape patterns depended on the magnitudes and paths of typhoons, but were not always evident in the spatiotemporal variability of landscapes in the study area. The statistics and spatial structures of multiple NDVI images were captured by 3,000 samples from 62,500 grids in the NDVI images. Kriging and sequential Gaussian simulation with the 3,000 samples effectively reproduced spatial patterns of NDVI images. However, the proposed approach, which integrates the conditional Latin hypercube sampling approach, variogram, kriging and sequential Gaussian simulation in remotely sensed images, efficiently monitors, samples and maps the effects of large chronological disturbances on spatial characteristics of landscape changes including spatial variability and heterogeneity.
Dung Tuan Nguyen
2012-01-01
Forest harvest scheduling has been modeled using deterministic and stochastic programming models. Past models seldom address explicit spatial forest management concerns under the influence of natural disturbances. In this research study, we employ multistage full recourse stochastic programming models to explore the challenges and advantages of building spatial...
ERIC Educational Resources Information Center
Smith, Glenn Gordon; Gerretson, Helen; Olkun, Sinan; Yuan, Yuan; Dogbey, James; Erdem, Aliye
2009-01-01
This study investigated how female elementary education pre-service teachers in the United States, Turkey and Taiwan learned spatial skills from structured activities involving discrete, as opposed to continuous, transformations in interactive computer programs, and how these activities transferred to non-related standardized tests of spatial…
Leibold, Mathew A; Loeuille, Nicolas
2015-12-01
Metacommunity theory indicates that variation in local community structure can be partitioned into components including those related to local environmental conditions vs. spatial effects and that these can be quantified using statistical methods based on variation partitioning. It has been hypothesized that joint associations of community composition with environment and space could be due to patch dynamics involving colonization-extinction processes in environmentally heterogeneous landscapes but this has yet to be theoretically shown. We develop a two-patch, type-two, species competition model in such a "harlequin" landscape (where different patches have different environments) to evaluate how composition is related to environmental and spatial effects as a function of background extinction rate. Using spatially implicit analytical models, we find that the environmental association of community composition declines with extinction rate as expected. Using spatially explicit simulation models, we further find that there is an increase in the spatial structure with extinction due to spatial patterning into clusters that are not related to environmental conditions but that this increase is limited. Natural metacommunities often show both environment and spatial determination even under conditions of relatively high isolation and these could be more easily explained by our model than alternative metacommunity models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, Glenn Edward; Song, Xuehang; Ye, Ming
A new approach is developed to delineate the spatial distribution of discrete facies (geological units that have unique distributions of hydraulic, physical, and/or chemical properties) conditioned not only on direct data (measurements directly related to facies properties, e.g., grain size distribution obtained from borehole samples) but also on indirect data (observations indirectly related to facies distribution, e.g., hydraulic head and tracer concentration). Our method integrates for the first time ensemble data assimilation with traditional transition probability-based geostatistics. The concept of level set is introduced to build shape parameterization that allows transformation between discrete facies indicators and continuous random variables. Themore » spatial structure of different facies is simulated by indicator models using conditioning points selected adaptively during the iterative process of data assimilation. To evaluate the new method, a two-dimensional semi-synthetic example is designed to estimate the spatial distribution and permeability of two distinct facies from transient head data induced by pumping tests. The example demonstrates that our new method adequately captures the spatial pattern of facies distribution by imposing spatial continuity through conditioning points. The new method also reproduces the overall response in hydraulic head field with better accuracy compared to data assimilation with no constraints on spatial continuity on facies.« less
Application of a Chimera Full Potential Algorithm for Solving Aerodynamic Problems
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Kwak, Dochan (Technical Monitor)
1997-01-01
A numerical scheme utilizing a chimera zonal grid approach for solving the three dimensional full potential equation is described. Special emphasis is placed on describing the spatial differencing algorithm around the chimera interface. Results from two spatial discretization variations are presented; one using a hybrid first-order/second-order-accurate scheme and the second using a fully second-order-accurate scheme. The presentation is highlighted with a number of transonic wing flow field computations.
Measurement Effects in Studying Reactions to Spatial Invasions.
ERIC Educational Resources Information Center
Becker, Franklin D.; Mayo, Clara
Two concepts predominate in studies of spatial invasion: territoriality (personalization and defense of a fixed spatial area) and personal space (a portable area surrounding the individual, which is responsive to environmental change). Spatial invasions were carried out by occupying a marked seat (invade condition), and adjacent seat (adjacent…
New Mexico Tech landmine, UXO, IED detection sensor test facility: measurements in real field soils
NASA Astrophysics Data System (ADS)
Hendrickx, Jan M. H.; Alkov, Nicole; Hong, Sung-ho; Van Dam, Remke L.; Kleissl, Jan; Shannon, Heather; Meason, John; Borchers, Brian; Harmon, Russell S.
2006-05-01
Modeling studies and experimental work have demonstrated that the dynamic behavior of soil physical properties has a significant effect on most sensors for the detection of buried land mines. An outdoor test site has been constructed allowing full control over soil water content and continuous monitoring of important soil properties and environmental conditions. Time domain reflectometry sensors and thermistors measure soil water1 content and temperature, respectively, at different depths above and below the land mines as well as in homogeneous soil away from the land mines. During the two-year operation of the test-site, the soils have evolved to reflect real field soil conditions. This paper compares visual observations as well as ground-penetrating radar and thermal infrared measurements at this site taken immediately after construction in early 2004 with measurements from early 2006. The visual observations reveal that the 2006 soil surfaces exhibit a much higher spatial variability due to the development of mini-reliefs, "loose" and "connected" soil crusts, cracks in clay soils, and vegetation. Evidence is presented that the increased variability of soil surface characteristics leads to a higher natural spatial variability of soil surface temperatures and, thus, to a lower probability to detect landmines using thermal imagery. No evidence was found that the soil surface changes affect the GPR signatures of landmines under the soil conditions encountered in this study. The New Mexico Tech outdoor Landmine Detection Sensor Test Facility is easily accessible and anyone interested is welcome to use it for sensor testing.
NASA Astrophysics Data System (ADS)
Gawuć, Lech
2017-04-01
Urban Heat Island (UHI) is a direct consequence of altered energy balance in urban areas (Oke 1982). There has been a significant effort put into an understanding of air temperature variability in urban areas and underlying mechanisms (Arnfield 2003, Grimmond 2006, Stewart 2011, Barlow 2014). However, studies that are concerned on surface temperature are less frequent. Therefore, Voogt & Oke (2003) proposed term "Surface Urban Heat Island (SUHI)", which is analogical to UHI and it is defined as a difference in land surface temperature (LST) between urban and rural areas. SUHI is a phenomenon that is not only concerned with high spatial variability, but also with high temporal variability (Weng and Fu 2014). In spite of the fact that satellite remote sensing techniques give a full spatial pattern over a vast area, such measurements are strictly limited to cloudless conditions during a satellite overpass (Sobrino et al., 2012). This significantly reduces the availability and applicability of satellite LST observations, especially over areas and seasons with high cloudiness occurrence. Also, the surface temperature is influenced by synoptic conditions (e.g., wind and humidity) (Gawuc & Struzewska 2016). Hence, utilising single observations is not sufficient to obtain a full image of spatiotemporal variability of urban LST and SUHI intensity (Gawuc & Struzewska 2016). One of the possible solutions would be a utilisation of time-series of LST data, which could be useful to monitor the UHI growth of individual cities and thus, to reveal the impact of urbanisation on local climate (Tran et al., 2006). The relationship between UHI and synoptic conditions have been summarised by Arnfield (2003). However, similar analyses conducted for urban LST and SUHI are lacking. We will present analyses of the relationship between time series of remotely-sensed LST and SUHI intensity and in-situ meteorological observations collected by road weather stations network, namely: road surface kinetic temperature, wind speed, air temperature, soil temperature at a depth of 30 cm, road surface condition, relative humidity. Also, as there are wind speed and temperature observations at different heights available, we will calculate sensible heat flux in order to relate it to the intensity of SUHI.
Susong, D.; Marks, D.; Garen, D.
1999-01-01
Topographically distributed energy- and water-balance models can accurately simulate both the development and melting of a seasonal snowcover in the mountain basins. To do this they require time-series climate surfaces of air temperature, humidity, wind speed, precipitation, and solar and thermal radiation. If data are available, these parameters can be adequately estimated at time steps of one to three hours. Unfortunately, climate monitoring in mountain basins is very limited, and the full range of elevations and exposures that affect climate conditions, snow deposition, and melt is seldom sampled. Detailed time-series climate surfaces have been successfully developed using limited data and relatively simple methods. We present a synopsis of the tools and methods used to combine limited data with simple corrections for the topographic controls to generate high temporal resolution time-series images of these climate parameters. Methods used include simulations, elevational gradients, and detrended kriging. The generated climate surfaces are evaluated at points and spatially to determine if they are reasonable approximations of actual conditions. Recommendations are made for the addition of critical parameters and measurement sites into routine monitoring systems in mountain basins.Topographically distributed energy- and water-balance models can accurately simulate both the development and melting of a seasonal snowcover in the mountain basins. To do this they require time-series climate surfaces of air temperature, humidity, wind speed, precipitation, and solar and thermal radiation. If data are available, these parameters can be adequately estimated at time steps of one to three hours. Unfortunately, climate monitoring in mountain basins is very limited, and the full range of elevations and exposures that affect climate conditions, snow deposition, and melt is seldom sampled. Detailed time-series climate surfaces have been successfully developed using limited data and relatively simple methods. We present a synopsis of the tools and methods used to combine limited data with simple corrections for the topographic controls to generate high temporal resolution time-series images of these climate parameters. Methods used include simulations, elevational gradients, and detrended kriging. The generated climate surfaces are evaluated at points and spatially to determine if they are reasonable approximations of actual conditions. Recommendations are made for the addition of critical parameters and measurement sites into routine monitoring systems in mountain basins.
NASA Astrophysics Data System (ADS)
Moor, Valery K.; Erysheva, Elena A.
2018-03-01
High-rise buildings play an important role in the spatial structure, composition and image of the city, as they are its spatial dominants and landmarks. The conditions of high-rise buildings perception in an urbanized landscape are changing in depending on the landscape-morphological conditions (the relief, the existence of the water area and the character of the coastline). Regularities of high-rise buildings' spatial organization in various natural-landscape situations are considered in the research; the basic principles of high-rise elements inclusion in structure of the urbanized landscape providing their harmonious interaction are formulated.
Best, Virginia; Mason, Christine R.; Swaminathan, Jayaganesh; Roverud, Elin; Kidd, Gerald
2017-01-01
In many situations, listeners with sensorineural hearing loss demonstrate reduced spatial release from masking compared to listeners with normal hearing. This deficit is particularly evident in the “symmetric masker” paradigm in which competing talkers are located to either side of a central target talker. However, there is some evidence that reduced target audibility (rather than a spatial deficit per se) under conditions of spatial separation may contribute to the observed deficit. In this study a simple “glimpsing” model (applied separately to each ear) was used to isolate the target information that is potentially available in binaural speech mixtures. Intelligibility of these glimpsed stimuli was then measured directly. Differences between normally hearing and hearing-impaired listeners observed in the natural binaural condition persisted for the glimpsed condition, despite the fact that the task no longer required segregation or spatial processing. This result is consistent with the idea that the performance of listeners with hearing loss in the spatialized mixture was limited by their ability to identify the target speech based on sparse glimpses, possibly as a result of some of those glimpses being inaudible. PMID:28147587
Klopp, Christine; Garcia, Carlos; Schulman, Allan H; Ward, Christopher P; Tartar, Jaime L
2012-01-01
Spatial learning is shown to be influenced by acute stress in both human and other animals. However, the intricacies of this relationship are unclear. Based on prior findings we hypothesized that compared to a control condition, a social stress condition would not affect spatial learning performance despite elevated biochemical markers of stress. The present study tested the effects of social stress in human males and females on a subsequent spatial learning task. Social stress induction consisted of evaluative stress (the Trier Social Stress Test, TSST) compared to a placebo social stress. Compared to the placebo condition, the TSST resulted in significantly elevated cortisol and alpha amylase levels at multiple time points following stress induction. In accord, cognitive appraisal measures also showed that participants in the TSST group experienced greater perceived stress compared to the placebo group. However, there were no group differences in performance on a spatial learning task. Our findings suggest that unlike physiological stress, social stress does not result in alterations in spatial learning in humans. It is possible that moderate social evaluative stress in humans works to prevent acute stress-mediated alterations in hippocampal learning processes..
Typograph: Multiscale Spatial Exploration of Text Documents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endert, Alexander; Burtner, Edwin R.; Cramer, Nicholas O.
2013-12-01
Visualizing large document collections using a spatial layout of terms can enable quick overviews of information. However, these metaphors (e.g., word clouds, tag clouds, etc.) often lack interactivity to explore the information and the location and rendering of the terms are often not based on mathematical models that maintain relative distances from other information based on similarity metrics. Further, transitioning between levels of detail (i.e., from terms to full documents) can be challanging. In this paper, we present Typograph, a multi-scale spatial exploration visualization for large document collections. Based on the term-based visualization methods, Typograh enables multipel levels of detailmore » (terms, phrases, snippets, and full documents) within the single spatialization. Further, the information is placed based on their relative similarity to other information to create the “near = similar” geography metaphor. This paper discusses the design principles and functionality of Typograph and presents a use case analyzing Wikipedia to demonstrate usage.« less
Knowledge of response location alone is not sufficient to generate social inhibition of return.
Welsh, Timothy N; Manzone, Joseph; McDougall, Laura
2014-11-01
Previous research has revealed that the inhibition of return (IOR) effect emerges when individuals respond to a target at the same location as their own previous response or the previous response of a co-actor. The latter social IOR effect is thought to occur because the observation of co-actor's response evokes a representation of that action in the observer and that the observation-evoked response code subsequently activates the inhibitory mechanisms underlying IOR. The present study was conducted to determine if knowledge of the co-actor's response alone is sufficient to evoke social IOR. Pairs of participants completed responses to targets that appeared at different button locations. Button contact generated location-contingent auditory stimuli (high and low tones in Experiment 1 and colour words in Experiment 2). In the Full condition, the observer saw the response and heard the auditory stimuli. In the Auditory Only condition, the observer did not see the co-actor's response, but heard the auditory stimuli generated via button contact to indicate response endpoint. It was found that, although significant individual and social IOR effects emerged in the Full conditions, there were no social IOR effects in the Auditory Only conditions. These findings suggest that knowledge of the co-actor's response alone via auditory information is not sufficient to activate the inhibitory processes leading to IOR. The activation of the mechanisms that lead to social IOR seems to be dependent on processing channels that code the spatial characteristics of action. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lecompte, M. A.; Heaps, J. F.; Williams, F. H.
Imaging the earth from Geostationary Earth Orbit (GEO) allows frequent updates of environmental conditions within an observable hemisphere at time and spatial scales appropriate to the most transient observable terrestrial phenomena. Coverage provided by current GEO Meteorological Satellites (METSATS) fails to fully exploit this advantage due primarily to obsolescent technology and also institutional inertia. With the full benefit of GEO based imaging unrealized, rapidly evolving phenomena, occurring at the smallest spatial and temporal scales that frequently have significant environmental impact remain unobserved. These phenomena may be precursors for the most destructive natural processes that adversely effect society. Timely distribution of information derived from "real-time" observations thus may provide opportunities to mitigate much of the damage to life and property that would otherwise occur. AstroVision International's AVStar Earth monitoring system is designed to overcome the current limitations if GEO Earth coverage and to provide real time monitoring of changes to the Earth's complete atmospheric, land and marine surface environments including fires, volcanic events, lightning and meteoritic events on a "live," true color, and multispectral basis. The understanding of severe storm dynamics and its coupling to the earth's electro-sphere will be greatly enhanced by observations at unprecedented sampling frequencies and spatial resolution. Better understanding of these natural phenomena and AVStar operational real-time coverage may also benefit society through improvements in severe weather prediction and warning. AstroVision's AVStar system, designed to provide this capability with the first of a constellation of GEO- based commercial environmental monitoring satellites to be launched in late 2003 will be discussed, including spatial and temporal resolution, spectral coverage with applications and an inventory of the potential benefits to society, science, commerce and education.
Kilpatrick, Adam D.; Lewis, Megan M.; Ostendorf, Bertram
2015-01-01
A need exists in arid rangelands for effective monitoring of the impacts of grazing management on vegetation cover. Monitoring methods which utilize remotely-sensed imagery may have comprehensive spatial and temporal sampling, but do not necessarily control for spatial variation of natural variables, such as landsystem, vegetation type, soil type and rainfall. We use the inverse of the red band from Landsat TM satellite imagery to determine levels of vegetation cover in a 22,672km2 area of arid rangeland in central South Australia. We interpret this wealth of data using a cross-fence comparison methodology, allowing us to rank paddocks (fields) in the study region according to effectiveness of grazing management. The cross-fence comparison methodology generates and solves simultaneous equations of the relationship between each paddock and all other paddocks, derived from pairs of cross-fence sample points. We compare this ranking from two image dates separated by six years, during which management changes are known to have taken place. Changes in paddock rank resulting from the cross-fence comparison method show strong correspondence to those predicted by grazing management in this region, with a significant difference between the two common management types; a change from full stocking rate to light 20% stocking regime (Major Stocking Reduction) and maintenance of full 100% stocking regime (Full Stocking Maintained) (P = 0.00000132). While no paddocks had a known increase in stocking rate during the study period, many had a reduction or complete removal in stock numbers, and many also experienced removals of pest species, such as rabbits, and other ecosystem restoration activities. These paddocks generally showed an improvement in rank compared to paddocks where the stocking regime remained relatively unchanged. For the first time, this method allows us to rank non-adjacent paddocks in a rangeland region relative to each other, while controlling for natural spatio-temporal variables such as rainfall, soil type, and vegetation community distributions, due to the nature of the cross-fence experimental design, and the spatially comprehensive data available in satellite imagery. This method provides a potential tool to aid land managers in decision making processes, particularly with regard to stocking rates. PMID:26565801
Zhang, Jing; Yuan, Changan; Huang, Guohua; Zhao, Yinjun; Ren, Wenyi; Cao, Qizhi; Li, Jianying; Jin, Mingwu
2018-01-01
A snapshot imaging polarimeter using spatial modulation can encode four Stokes parameters allowing instantaneous polarization measurement from a single interferogram. However, the reconstructed polarization images could suffer a severe aliasing signal if the high-frequency component of the intensity image is prominent and occurs in the polarization channels, and the reconstructed intensity image also suffers reduction of spatial resolution due to low-pass filtering. In this work, a method using two anti-phase snapshots is proposed to address the two problems simultaneously. The full-resolution target image and the pure interference fringes can be obtained from the sum and the difference of the two anti-phase interferograms, respectively. The polarization information reconstructed from the pure interference fringes does not contain the aliasing signal from the high-frequency component of the object intensity image. The principles of the method are derived and its feasibility is tested by both computer simulation and a verification experiment. This work provides a novel method for spatially modulated imaging polarization technology with two snapshots to simultaneously reconstruct a full-resolution object intensity image and high-quality polarization components. PMID:29714224
White, Ian R.; Kennen, Jonathan G.; May, Jason T.; Brown, Larry R.; Cuffney, Thomas F.; Jones, Kimberly A.; Orlando, James L.
2014-01-01
We developed independent predictive disturbance models for a full regional data set and four individual ecoregions (Full Region vs. Individual Ecoregion models) to evaluate effects of spatial scale on the assessment of human landscape modification, on predicted response of stream biota, and the effect of other possible confounding factors, such as watershed size and elevation, on model performance. We selected macroinvertebrate sampling sites for model development (n = 591) and validation (n = 467) that met strict screening criteria from four proximal ecoregions in the northeastern U.S.: North Central Appalachians, Ridge and Valley, Northeastern Highlands, and Northern Piedmont. Models were developed using boosted regression tree (BRT) techniques for four macroinvertebrate metrics; results were compared among ecoregions and metrics. Comparing within a region but across the four macroinvertebrate metrics, the average richness of tolerant taxa (RichTOL) had the highest R2 for BRT models. Across the four metrics, final BRT models had between four and seven explanatory variables and always included a variable related to urbanization (e.g., population density, percent urban, or percent manmade channels), and either a measure of hydrologic runoff (e.g., minimum April, average December, or maximum monthly runoff) and(or) a natural landscape factor (e.g., riparian slope, precipitation, and elevation), or a measure of riparian disturbance. Contrary to our expectations, Full Region models explained nearly as much variance in the macroinvertebrate data as Individual Ecoregion models, and taking into account watershed size or elevation did not appear to improve model performance. As a result, it may be advantageous for bioassessment programs to develop large regional models as a preliminary assessment of overall disturbance conditions as long as the range in natural landscape variability is not excessive.
Waite, Ian R.; Kennen, Jonathan G.; May, Jason T.; Brown, Larry R.; Cuffney, Thomas F.; Jones, Kimberly A.; Orlando, James L.
2014-01-01
We developed independent predictive disturbance models for a full regional data set and four individual ecoregions (Full Region vs. Individual Ecoregion models) to evaluate effects of spatial scale on the assessment of human landscape modification, on predicted response of stream biota, and the effect of other possible confounding factors, such as watershed size and elevation, on model performance. We selected macroinvertebrate sampling sites for model development (n = 591) and validation (n = 467) that met strict screening criteria from four proximal ecoregions in the northeastern U.S.: North Central Appalachians, Ridge and Valley, Northeastern Highlands, and Northern Piedmont. Models were developed using boosted regression tree (BRT) techniques for four macroinvertebrate metrics; results were compared among ecoregions and metrics. Comparing within a region but across the four macroinvertebrate metrics, the average richness of tolerant taxa (RichTOL) had the highest R2 for BRT models. Across the four metrics, final BRT models had between four and seven explanatory variables and always included a variable related to urbanization (e.g., population density, percent urban, or percent manmade channels), and either a measure of hydrologic runoff (e.g., minimum April, average December, or maximum monthly runoff) and(or) a natural landscape factor (e.g., riparian slope, precipitation, and elevation), or a measure of riparian disturbance. Contrary to our expectations, Full Region models explained nearly as much variance in the macroinvertebrate data as Individual Ecoregion models, and taking into account watershed size or elevation did not appear to improve model performance. As a result, it may be advantageous for bioassessment programs to develop large regional models as a preliminary assessment of overall disturbance conditions as long as the range in natural landscape variability is not excessive. PMID:24675770
Fickert, T.; Friend, D.; Gruninger, F.; Molnia, B.; Richter, M.
2007-01-01
This study proposes a new hypothesis: Debris-covered glaciers served as Pleistocene biological refugia. This is based on detailed studies of vascular plant growth on six debris-mantled glaciers, literally around the world, as well as many casual observations also across the globe. We find that such glaciers are quite common and are distributed globally. Using Carbon Glacier, Mount Rainier, U.S.A., as a type locality and case study, we show aspects of the floristic and structural diversity as well as spatial patterns of plant growth on the glacier surface. Migration strategies, root characteristics, and origin and dispersal strategies for vascular plant species are documented. Also reported are special microclimatic conditions in these areas allowing for this remarkable plant ecology. We find that alpine taxa can grow considerably below their usual altitudinal niche due to the cooler subsurface soil temperatures found on glacial debris with ice underneath, and that may have significantly altered the spatial distribution of such flora during full glacial conditions. This in turn creates previously undocumented areas from which alpine, and perhaps arctic, plant species reestablished in post-glacial time. This hypothesis is complementary to both the nunatak hypothesis and tabula rasa theory and possibly helps solve the ongoing controversy between them. ?? 2007 Regents of the University of Colorado.
Liu, Yan; Li, Yang; Yang, Yun; Jian, Ji
2014-05-01
Vegetation and bare soil were collected in the areas of Miyaluo district in northwest of Sichuan province, the Qilian Mountains in Qinghai province and northern areas of Xinjiang during the years of 2007 and 2013. Then these data were converted to spectral reflectance by applying sensor response function of MODIS and HJ-1B respectively within the range of visible light, near-infrared and shortwave infrared. Comprehensive analysis was made on spectral characteristics and reflectivity similarities and differences of different sensors between old and new snowmelt, under the condition of different snow depth and different snow cover. The conclusions can be drawn That is, there exists high consistency of spectral response between new snow and dirty snow for each sensor in the visible wavelength range, also it is true for bare soil and low vegetation. However, low consistency happens to other types of snow; especially snowmelt and frozen snow. The range of NDSI is relatively stable under the condition of different snow depth for full snow cover and the trend of NDSI shows great consistency for different sensors; NDSI threshold method for monitoring snow by using MODIS and HJ-1B data showed very obvious difference in spatial scales, which is a reasonable explanation of the existence of mixed pixels.
NASA Astrophysics Data System (ADS)
Pechlivanidis, Ilias; McIntyre, Neil; Wheater, Howard
2017-04-01
Rainfall, one of the main inputs in hydrological modeling, is a highly heterogeneous process over a wide range of scales in space, and hence the ignorance of the spatial rainfall information could affect the simulated streamflow. Calibration of hydrological model parameters is rarely a straightforward task due to parameter equifinality and parameters' 'nature' to compensate for other uncertainties, i.e. structural and forcing input. In here, we analyse the significance of spatial variability of rainfall on streamflow as a function of catchment scale and type, and antecedent conditions using the continuous time, semi-distributed PDM hydrological model at the Upper Lee catchment, UK. The impact of catchment scale and type is assessed using 11 nested catchments ranging in scale from 25 to 1040 km2, and further assessed by artificially changing the catchment characteristics and translating these to model parameters with uncertainty using model regionalisation. Synthetic rainfall events are introduced to directly relate the change in simulated streamflow to the spatial variability of rainfall. Overall, we conclude that the antecedent catchment wetness and catchment type play an important role in controlling the significance of the spatial distribution of rainfall on streamflow. Results show a relationship between hydrograph characteristics (streamflow peak and volume) and the degree of spatial variability of rainfall for the impermeable catchments under dry antecedent conditions, although this decreases at larger scales; however this sensitivity is significantly undermined under wet antecedent conditions. Although there is indication that the impact of spatial rainfall on streamflow varies as a function of catchment scale, the variability of antecedent conditions between the synthetic catchments seems to mask this significance. Finally, hydrograph responses to different spatial patterns in rainfall depend on assumptions used for model parameter estimation and also the spatial variation in parameters indicating the need of an uncertainty framework in such investigation.
Reconciling spatial and temporal soil moisture effects on afternoon rainfall
Guillod, Benoit P.; Orlowsky, Boris; Miralles, Diego G.; Teuling, Adriaan J.; Seneviratne, Sonia I.
2015-01-01
Soil moisture impacts on precipitation have been strongly debated. Recent observational evidence of afternoon rain falling preferentially over land parcels that are drier than the surrounding areas (negative spatial effect), contrasts with previous reports of a predominant positive temporal effect. However, whether spatial effects relating to soil moisture heterogeneity translate into similar temporal effects remains unknown. Here we show that afternoon precipitation events tend to occur during wet and heterogeneous soil moisture conditions, while being located over comparatively drier patches. Using remote-sensing data and a common analysis framework, spatial and temporal correlations with opposite signs are shown to coexist within the same region and data set. Positive temporal coupling might enhance precipitation persistence, while negative spatial coupling tends to regionally homogenize land surface conditions. Although the apparent positive temporal coupling does not necessarily imply a causal relationship, these results reconcile the notions of moisture recycling with local, spatially negative feedbacks. PMID:25740589
The Influence of Endogenous and Exogenous Spatial Attention on Decision Confidence.
Kurtz, Phillipp; Shapcott, Katharine A; Kaiser, Jochen; Schmiedt, Joscha T; Schmid, Michael C
2017-07-25
Spatial attention allows us to make more accurate decisions about events in our environment. Decision confidence is thought to be intimately linked to the decision making process as confidence ratings are tightly coupled to decision accuracy. While both spatial attention and decision confidence have been subjected to extensive research, surprisingly little is known about the interaction between these two processes. Since attention increases performance it might be expected that confidence would also increase. However, two studies investigating the effects of endogenous attention on decision confidence found contradictory results. Here we investigated the effects of two distinct forms of spatial attention on decision confidence; endogenous attention and exogenous attention. We used an orientation-matching task, comparing the two attention conditions (endogenous and exogenous) to a control condition without directed attention. Participants performed better under both attention conditions than in the control condition. Higher confidence ratings than the control condition were found under endogenous attention but not under exogenous attention. This finding suggests that while attention can increase confidence ratings, it must be voluntarily deployed for this increase to take place. We discuss possible implications of this relative overconfidence found only during endogenous attention with respect to the theoretical background of decision confidence.
NASA Astrophysics Data System (ADS)
Cai, Zhe; Jiang, Fei; Chen, Jingming; Jiang, Ziqiang
2017-04-01
China has been suffering from severe particulate matter (PM) pollution in recent years. Both pollution area and pollution levels are increasing gradually. The PM pollution episodes not only occur in the traditional developed areas like Yangtze River Delta (YRD) and Beijing-Tianjin-Hebei (BTH) region, but also frequently happen in the whole eastern coastal provinces (ECPs) of China. Based on hourly PM2.5 concentrations during December 2013 February 2014 of 55 cities located in the ECPs, we investigated the spatial and temporal variabilities of PM2.5 concentrations and the corresponding meteorological conditions during winter. The results shown that basically the seasonal mean concentrations over the whole ECPs exceeded the China's national standard of 75 μg/m3, and the most polluted area with mean concentrations greater than 150 μg/m3 were located in the southwest of Hebei and the west of Shandong provinces. From December to February, there was a decrease trend for the PM2.5 pollution in most areas, especially in the YRD region, while the PM2.5 concentrations over north of Hebei province increased. The spatial distributions and monthly variations are strongly related to the weather conditions. Overall, severe PM pollution was corresponding to a stable weather condition, i.e., small Sea Level Pressure (SLP) gradient, lower Planetary Boundary Layer (PBL) height and weaker wind fields. Statistics shown that the changes of mean PM2.5 concentrations over the ECPs region usually lagged behind the variations of PBL height and wind speeds about 12 18 hours. The variations of weather conditions could explain about 71% (R2) of the overall changes of PM2.5 concentrations in the ECPs region. This study gives a full insight into the PM2.5 pollution in the area of eastern coastal provinces of China during winter, which would be helpful to predict and control the PM2.5 pollution for this area in the future.
Spatial Release from Masking in Children: Effects of Simulated Unilateral Hearing Loss
Corbin, Nicole E.; Buss, Emily; Leibold, Lori J.
2016-01-01
Objectives The purpose of this study was twofold: 1) to determine the effect of an acute simulated unilateral hearing loss on children’s spatial release from masking in two-talker speech and speech-shaped noise, and 2) to develop a procedure to be used in future studies that will assess spatial release from masking in children who have permanent unilateral hearing loss. There were three main predictions. First, spatial release from masking was expected to be larger in two-talker speech than speech-shaped noise. Second, simulated unilateral hearing loss was expected to worsen performance in all listening conditions, but particularly in the spatially separated two-talker speech masker. Third, spatial release from masking was expected to be smaller for children than for adults in the two-talker masker. Design Participants were 12 children (8.7 to 10.9 yrs) and 11 adults (18.5 to 30.4 yrs) with normal bilateral hearing. Thresholds for 50%-correct recognition of Bamford-Kowal-Bench sentences were measured adaptively in continuous two-talker speech or speech-shaped noise. Target sentences were always presented from a loudspeaker at 0° azimuth. The masker stimulus was either co-located with the target or spatially separated to +90° or −90° azimuth. Spatial release from masking was quantified as the difference between thresholds obtained when the target and masker were co-located and thresholds obtained when the masker was presented from +90° or − 90°. Testing was completed both with and without a moderate simulated unilateral hearing loss, created with a foam earplug and supra-aural earmuff. A repeated-measures design was used to compare performance between children and adults, and performance in the no-plug and simulated-unilateral-hearing-loss conditions. Results All listeners benefited from spatial separation of target and masker stimuli on the azimuth plane in the no-plug listening conditions; this benefit was larger in two-talker speech than in speech-shaped noise. In the simulated-unilateral-hearing-loss conditions, a positive spatial release from masking was observed only when the masker was presented ipsilateral to the simulated unilateral hearing loss. In the speech-shaped noise masker, spatial release from masking in the no-plug condition was similar to that obtained when the masker was presented ipsilateral to the simulated unilateral hearing loss. In contrast, in the two-talker speech masker, spatial release from masking in the no-plug condition was much larger than that obtained when the masker was presented ipsilateral to the simulated unilateral hearing loss. When either masker was presented contralateral to the simulated unilateral hearing loss, spatial release from masking was negative. This pattern of results was observed for both children and adults, although children performed more poorly overall. Conclusions Children and adults with normal bilateral hearing experience greater spatial release from masking for a two-talker speech than a speech-shaped noise masker. Testing in a two-talker speech masker revealed listening difficulties in the presence of disrupted binaural input that were not observed in a speech-shaped noise masker. This procedure offers promise for the assessment of spatial release from masking in children with permanent unilateral hearing loss. PMID:27787392
Tiitinen, Hannu; Salminen, Nelli H; Palomäki, Kalle J; Mäkinen, Ville T; Alku, Paavo; May, Patrick J C
2006-03-20
In an attempt to delineate the assumed 'what' and 'where' processing streams, we studied the processing of spatial sound in the human cortex by using magnetoencephalography in the passive and active recording conditions and two kinds of spatial stimuli: individually constructed, highly realistic spatial (3D) stimuli and stimuli containing interaural time difference (ITD) cues only. The auditory P1m, N1m, and P2m responses of the event-related field were found to be sensitive to the direction of sound source in the azimuthal plane. In general, the right-hemispheric responses to spatial sounds were more prominent than the left-hemispheric ones. The right-hemispheric P1m and N1m responses peaked earlier for sound sources in the contralateral than for sources in the ipsilateral hemifield and the peak amplitudes of all responses reached their maxima for contralateral sound sources. The amplitude of the right-hemispheric P2m response reflected the degree of spatiality of sound, being twice as large for the 3D than ITD stimuli. The results indicate that the right hemisphere is specialized in the processing of spatial cues in the passive recording condition. Minimum current estimate (MCE) localization revealed that temporal areas were activated both in the active and passive condition. This initial activation, taking place at around 100 ms, was followed by parietal and frontal activity at 180 and 200 ms, respectively. The latter activations, however, were specific to attentional engagement and motor responding. This suggests that parietal activation reflects active responding to a spatial sound rather than auditory spatial processing as such.
2014-01-01
This study evaluates a spatial-filtering algorithm as a method to improve speech reception for cochlear-implant (CI) users in reverberant environments with multiple noise sources. The algorithm was designed to filter sounds using phase differences between two microphones situated 1 cm apart in a behind-the-ear hearing-aid capsule. Speech reception thresholds (SRTs) were measured using a Coordinate Response Measure for six CI users in 27 listening conditions including each combination of reverberation level (T60 = 0, 270, and 540 ms), number of noise sources (1, 4, and 11), and signal-processing algorithm (omnidirectional response, dipole-directional response, and spatial-filtering algorithm). Noise sources were time-reversed speech segments randomly drawn from the Institute of Electrical and Electronics Engineers sentence recordings. Target speech and noise sources were processed using a room simulation method allowing precise control over reverberation times and sound-source locations. The spatial-filtering algorithm was found to provide improvements in SRTs on the order of 6.5 to 11.0 dB across listening conditions compared with the omnidirectional response. This result indicates that such phase-based spatial filtering can improve speech reception for CI users even in highly reverberant conditions with multiple noise sources. PMID:25330772
NASA Technical Reports Server (NTRS)
Tapiador, Francisco; Tao, Wei-Kuo; Angelis, Carlos F.; Martinez, Miguel A.; Cecilia Marcos; Antonio Rodriguez; Hou, Arthur; Jong Shi, Jain
2012-01-01
Ensembles of numerical model forecasts are of interest to operational early warning forecasters as the spread of the ensemble provides an indication of the uncertainty of the alerts, and the mean value is deemed to outperform the forecasts of the individual models. This paper explores two ensembles on a severe weather episode in Spain, aiming to ascertain the relative usefulness of each one. One ensemble uses sensible choices of physical parameterizations (precipitation microphysics, land surface physics, and cumulus physics) while the other follows a perturbed initial conditions approach. The results show that, depending on the parameterizations, large differences can be expected in terms of storm location, spatial structure of the precipitation field, and rain intensity. It is also found that the spread of the perturbed initial conditions ensemble is smaller than the dispersion due to physical parameterizations. This confirms that in severe weather situations operational forecasts should address moist physics deficiencies to realize the full benefits of the ensemble approach, in addition to optimizing initial conditions. The results also provide insights into differences in simulations arising from ensembles of weather models using several combinations of different physical parameterizations.
Martínez-Membrives, Esther; López-Aumatell, Regina; Blázquez, Gloria; Cañete, Toni; Tobeña, Adolf; Fernández-Teruel, Alberto
2015-05-15
To characterize learning/memory profiles for the first time in the genetically heterogeneous NIH-HS rat stock, and to examine whether these are associated with anxiety, we evaluated NIH-HS rats for spatial learning/memory in the Morris water maze (MWM) and in the following anxiety/fear tests: the elevated zero-maze (ZM; unconditioned anxiety), a context-conditioned fear test and the acquisition of two-way active avoidance (conditioned anxiety). NIH-HS rats were compared with the Roman High- (RHA-I) and Low-Avoidance (RLA-I) rat strains, given the well-known differences between the Roman strains/lines in anxiety-related behavior and in spatial learning/memory. The results show that: (i) As expected, RLA-I rats were more anxious in the ZM test, displayed more frequent context-conditioned freezing episodes and fewer avoidances than RHA-I rats. (ii) Scores of NIH-HS rats in these tests/tasks mostly fell in between those of the Roman rat strains, and were usually closer to the values of the RLA-I strain. (iii) Pigmented NIH-HS (only a small part of NIH-HS rats were albino) rats were the best spatial learners and displayed better spatial memory than the other three (RHA-I, RLA-I and NIH-HS albino) groups. (iv) Albino NIH-HS and RLA-I rats also showed better learning/memory than the RHA-I strain. (v) Within the NIH-HS stock, the most anxious rats in the ZM test presented the best learning and/or memory efficiency (regardless of pigmentation). In summary, NIH-HS rats display a high performance in spatial learning/memory tasks and a passive coping strategy when facing conditioned conflict situations. In addition, unconditioned anxiety in NIH-HS rats predicts better spatial learning/memory. Copyright © 2015 Elsevier Inc. All rights reserved.
Learning outdoors: male lizards show flexible spatial learning under semi-natural conditions
Noble, Daniel W. A.; Carazo, Pau; Whiting, Martin J.
2012-01-01
Spatial cognition is predicted to be a fundamental component of fitness in many lizard species, and yet some studies suggest that it is relatively slow and inflexible. However, such claims are based on work conducted using experimental designs or in artificial contexts that may underestimate their cognitive abilities. We used a biologically realistic experimental procedure (using simulated predatory attacks) to study spatial learning and its flexibility in the lizard Eulamprus quoyii in semi-natural outdoor enclosures under similar conditions to those experienced by lizards in the wild. To evaluate the flexibility of spatial learning, we conducted a reversal spatial-learning task in which positive and negative reinforcements of learnt spatial stimuli were switched. Nineteen (32%) male lizards learnt both tasks within 10 days (spatial task mean: 8.16 ± 0.69 (s.e.) and reversal spatial task mean: 10.74 ± 0.98 (s.e.) trials). We demonstrate that E. quoyii are capable of flexible spatial learning and suggest that future studies focus on a range of lizard species which differ in phylogeny and/or ecology, using biologically relevant cognitive tasks, in an effort to bridge the cognitive divide between ecto- and endotherms. PMID:23075525
Much of the literature and attention on the analysis of ecological change is focused on detecting temporal trends at single sites. Of equal importance is the change in spatial condition across the landscape. For example, are there more hypereutrophic lakes in the U.S. now than th...
Multisensory Cues Capture Spatial Attention Regardless of Perceptual Load
ERIC Educational Resources Information Center
Santangelo, Valerio; Spence, Charles
2007-01-01
We compared the ability of auditory, visual, and audiovisual (bimodal) exogenous cues to capture visuo-spatial attention under conditions of no load versus high perceptual load. Participants had to discriminate the elevation (up vs. down) of visual targets preceded by either unimodal or bimodal cues under conditions of high perceptual load (in…
Consistent assessments of biological condition are needed across multiple ecoregions to provide a greater understanding of the spatial extent of environmental degradation. However, consistent assessments at large geographic scales are often hampered by lack of uniformity in data ...
Erickson, Kirk I.; Prakash, Ruchika Shaurya; Kim, Jennifer S.; Sutton, Bradley P.; Colcombe, Stanley J.; Kramer, Arthur F.
2010-01-01
Models of selective attention predict that focused attention to spatially contiguous stimuli may result in enhanced activity in areas of cortex specialized for processing task-relevant and task-irrelevant information. We examined this hypothesis by localizing color-sensitive areas (CSA) and word and letter sensitive areas of cortex and then examining modulation of these regions during performance of a modified version of the Stroop task in which target and distractors are spatially coincident. We report that only the incongruent condition with the highest cognitive demand showed increased activity in CSA relative to other conditions, indicating an attentional enhancement in target processing areas. We also found an enhancement of activity in one region sensitive to word/letter processing during the most cognitively demanding incongruent condition indicating greater processing of the distractor dimension. Correlations with performance revealed that top-down modulation during the task was critical for effective filtering of irrelevant information in conflict conditions. These results support predictions made by models of selective attention and suggest an important mechanism of top-down attentional control in spatially contiguous stimuli. PMID:18804123
Lin, Yu-Pin; Chu, Hone-Jay; Huang, Yu-Long; Tang, Chia-Hsi; Rouhani, Shahrokh
2011-06-01
This study develops a stratified conditional Latin hypercube sampling (scLHS) approach for multiple, remotely sensed, normalized difference vegetation index (NDVI) images. The objective is to sample, monitor, and delineate spatiotemporal landscape changes, including spatial heterogeneity and variability, in a given area. The scLHS approach, which is based on the variance quadtree technique (VQT) and the conditional Latin hypercube sampling (cLHS) method, selects samples in order to delineate landscape changes from multiple NDVI images. The images are then mapped for calibration and validation by using sequential Gaussian simulation (SGS) with the scLHS selected samples. Spatial statistical results indicate that in terms of their statistical distribution, spatial distribution, and spatial variation, the statistics and variograms of the scLHS samples resemble those of multiple NDVI images more closely than those of cLHS and VQT samples. Moreover, the accuracy of simulated NDVI images based on SGS with scLHS samples is significantly better than that of simulated NDVI images based on SGS with cLHS samples and VQT samples, respectively. However, the proposed approach efficiently monitors the spatial characteristics of landscape changes, including the statistics, spatial variability, and heterogeneity of NDVI images. In addition, SGS with the scLHS samples effectively reproduces spatial patterns and landscape changes in multiple NDVI images.
Damped-driven granular chains: An ideal playground for dark breathers and multibreathers
NASA Astrophysics Data System (ADS)
Chong, C.; Li, F.; Yang, J.; Williams, M. O.; Kevrekidis, I. G.; Kevrekidis, P. G.; Daraio, C.
2014-03-01
By applying an out-of-phase actuation at the boundaries of a uniform chain of granular particles, we demonstrate experimentally that time-periodic and spatially localized structures with a nonzero background (so-called dark breathers) emerge for a wide range of parameter values and initial conditions. We demonstrate a remarkable control over the number of breathers within the multibreather pattern that can be "dialed in" by varying the frequency or amplitude of the actuation. The values of the frequency (or amplitude) where the transition between different multibreather states occurs are predicted accurately by the proposed theoretical model, which is numerically shown to support exact dark breather and multibreather solutions. Moreover, we visualize detailed temporal and spatial profiles of breathers and, especially, of multibreathers using a full-field probing technology and enable a systematic favorable comparison among theory, computation, and experiments. A detailed bifurcation analysis reveals that the dark and multibreather families are connected in a "snaking" pattern, providing a roadmap for the identification of such fundamental states and their bistability in the laboratory.
Marbjerg, Gerd; Brunskog, Jonas; Jeong, Cheol-Ho; Nilsson, Erling
2015-09-01
A model, combining acoustical radiosity and the image source method, including phase shifts on reflection, has been developed. The model is denoted Phased Acoustical Radiosity and Image Source Method (PARISM), and it has been developed in order to be able to model both specular and diffuse reflections with complex-valued and angle-dependent boundary conditions. This paper mainly describes the combination of the two models and the implementation of the angle-dependent boundary conditions. It furthermore describes how a pressure impulse response is obtained from the energy-based acoustical radiosity by regarding the model as being stochastic. Three methods of implementation are proposed and investigated, and finally, recommendations are made for their use. Validation of the image source method is done by comparison with finite element simulations of a rectangular room with a porous absorber ceiling. Results from the full model are compared with results from other simulation tools and with measurements. The comparisons of the full model are done for real-valued and angle-independent surface properties. The proposed model agrees well with both the measured results and the alternative theories, and furthermore shows a more realistic spatial variation than energy-based methods due to the fact that interference is considered.
Qu, Xingda
2014-10-27
Though it is well recognized that gait characteristics are affected by concurrent cognitive tasks, how different working memory components contribute to dual task effects on gait is still unknown. The objective of the present study was to investigate dual-task effects on gait characteristics, specifically the application of cognitive tasks involving different working memory components. In addition, we also examined age-related differences in such dual-task effects. Three cognitive tasks (i.e. 'Random Digit Generation', 'Brooks' Spatial Memory', and 'Counting Backward') involving different working memory components were examined. Twelve young (6 males and 6 females, 20 ~ 25 years old) and 12 older participants (6 males and 6 females, 60 ~ 72 years old) took part in two phases of experiments. In the first phase, each cognitive task was defined at three difficulty levels, and perceived difficulty was compared across tasks. The cognitive tasks perceived to be equally difficult were selected for the second phase. In the second phase, four testing conditions were defined, corresponding to a baseline and the three equally difficult cognitive tasks. Participants walked on a treadmill at their self-selected comfortable speed in each testing condition. Body kinematics were collected during treadmill walking, and gait characteristics were assessed using spatial-temporal gait parameters. Application of the concurrent Brooks' Spatial Memory task led to longer step times compared to the baseline condition. Larger step width variability was observed in both the Brooks' Spatial Memory and Counting Backward dual-task conditions than in the baseline condition. In addition, cognitive task effects on step width variability differed between two age groups. In particular, the Brooks' Spatial Memory task led to significantly larger step width variability only among older adults. These findings revealed that cognitive tasks involving the visuo-spatial sketchpad interfered with gait more severely in older versus young adults. Thus, dual-task training, in which a cognitive task involving the visuo-spatial sketchpad (e.g. the Brooks' Spatial Memory task) is concurrently performed with walking, could be beneficial to mitigate impairments in gait among older adults.
Li, Zhan; Schaefer, Michael; Strahler, Alan; Schaaf, Crystal; Jupp, David
2018-04-06
The Dual-Wavelength Echidna Lidar (DWEL), a full waveform terrestrial laser scanner (TLS), has been used to scan a variety of forested and agricultural environments. From these scanning campaigns, we summarize the benefits and challenges given by DWEL's novel coaxial dual-wavelength scanning technology, particularly for the three-dimensional (3D) classification of vegetation elements. Simultaneous scanning at both 1064 nm and 1548 nm by DWEL instruments provides a new spectral dimension to TLS data that joins the 3D spatial dimension of lidar as an information source. Our point cloud classification algorithm explores the utilization of both spectral and spatial attributes of individual points from DWEL scans and highlights the strengths and weaknesses of each attribute domain. The spectral and spatial attributes for vegetation element classification each perform better in different parts of vegetation (canopy interior, fine branches, coarse trunks, etc.) and under different vegetation conditions (dead or live, leaf-on or leaf-off, water content, etc.). These environmental characteristics of vegetation, convolved with the lidar instrument specifications and lidar data quality, result in the actual capabilities of spectral and spatial attributes to classify vegetation elements in 3D space. The spectral and spatial information domains thus complement each other in the classification process. The joint use of both not only enhances the classification accuracy but also reduces its variance across the multiple vegetation types we have examined, highlighting the value of the DWEL as a new source of 3D spectral information. Wider deployment of the DWEL instruments is in practice currently held back by challenges in instrument development and the demands of data processing required by coaxial dual- or multi-wavelength scanning. But the simultaneous 3D acquisition of both spectral and spatial features, offered by new multispectral scanning instruments such as the DWEL, opens doors to study biophysical and biochemical properties of forested and agricultural ecosystems at more detailed scales.
Dorsal Hippocampus Function in Learning and Expressing a Spatial Discrimination
ERIC Educational Resources Information Center
White, Norman M.; Gaskin, Stephane
2006-01-01
Learning to discriminate between spatial locations defined by two adjacent arms of a radial maze in the conditioned cue preference paradigm requires two kinds of information: latent spatial learning when the rats explore the maze with no food available, and learning about food availability in two spatial locations when the rats are then confined…
ERIC Educational Resources Information Center
Hirai, Masahiro; Hiraki, Kazuo
2006-01-01
We investigated how the spatiotemporal structure of animations of biological motion (BM) affects brain activity. We measured event-related potentials (ERPs) during the perception of BM under four conditions: normal spatial and temporal structure; scrambled spatial and normal temporal structure; normal spatial and scrambled temporal structure; and…
Detonator Performance Characterization Using Multi-Frame Laser Schlieren Imaging
NASA Astrophysics Data System (ADS)
Clarke, S. A.; Landon, C. D.; Murphy, M. J.; Martinez, M. E.; Mason, T. A.; Thomas, K. A.
2009-12-01
Several experiments that are part of a phased plan to understand the evolution of detonation in a detonator from initiation shock through run to detonation to full detonation to transition to booster and booster detonation will be presented. High speed laser schlieren movies have been used to study several explosive initiation events, such as exploding bridgewires (EBW), exploding foil initiators (EFI) (or slappers), direct optical initiation (DOI), and electrostatic discharge (ESD). Additionally, a series of tests have been performed on "cut-back" detonators with varying initial pressing (IP) heights. We have also used this diagnostic to visualize a range of EBW, EFI, and DOI full-up detonators. Future applications to other explosive events such as boosters and IHE booster evaluation will be discussed. The EPIC hydrodynamic code has been used to analyze the shock fronts from the schlieren images to reverse calculate likely boundary or initial conditions to determine the temporal-spatial pressure profile across the output face of the detonator. LA-UR-05099
Using Schlieren Visualization to Track Detonator Performance
NASA Astrophysics Data System (ADS)
Clarke, S. A.; Bolme, C. A.; Murphy, M. J.; Landon, C. D.; Mason, T. A.; Adrian, R. J.; Akinci, A. A.; Martinez, M. E.; Thomas, K. A.
2007-12-01
Several experiments will be presented that are part of a phased plan to understand the evolution of detonation in a detonator from initiation shock through run to detonation, to full detonation, to transition, to booster and booster detonation. High-speed multiframe schlieren imagery has been used to study several explosive initiation events, such as exploding bridgewires (EBWs), exploding foil initiators (EFIs or "slappers"), direct optical initiation (DOI), and electrostatic discharge. Additionally, a series of tests has been performed on "cut-back" detonators with varying initial pressing heights. We have also used this diagnostic to visualize a range of EBW, EFI, and DOI full-up detonators. Future applications to other explosive events, such as boosters and insensitive high explosives booster evaluation, will be discussed. The EPIC finite element code has been used to analyze the shock fronts from the schlieren images to solve iteratively for consistent boundary or initial conditions to determine the temporal-spatial pressure profile across the output face of the detonator.
Using Schlieren Visualization to Track Detonator Performance
NASA Astrophysics Data System (ADS)
Clarke, Steven; Thomas, Keith; Martinez, Michael; Akinci, Adrian; Murphy, Michael; Adrian, Ronald
2007-06-01
Several experiments that are part of a phased plan to understand the evolution of detonation in a detonator from initiation shock through run to detonation to full detonation to transition to booster and booster detonation will be presented. High Speed Laser Schlieren Movies have been used to study several explosive initiation events, such as exploding bridgewires (EBW), Exploding Foil Initiators (EFI) (or slappers), Direct Optical Initiation (DOI), and ElectroStatic Discharge (ESD). Additionally, a series of tests have been performed on ``cut-back'' detonators with varying initial pressing (IP) heights. We have also used this diagnostic to visualize a range of EBW, EFI, and DOI full-up detonators. Future applications to other explosive events such as boosters and IHE booster evaluation will be discussed. EPIC Hydrodynamic code has been used to analyze the shock fronts from the Schlieren images to reverse calculate likely boundary or initial conditions to determine the temporal-spatial pressure profile across the output face of the detonator. LA-UR-07-1229
NASA Technical Reports Server (NTRS)
Amar, Adam J.; Blackwell, Ben F.; Edwards, Jack R.
2007-01-01
The development and verification of a one-dimensional material thermal response code with ablation is presented. The implicit time integrator, control volume finite element spatial discretization, and Newton's method for nonlinear iteration on the entire system of residual equations have been implemented and verified for the thermochemical ablation of internally decomposing materials. This study is a continuation of the work presented in "One-Dimensional Ablation with Pyrolysis Gas Flow Using a Full Newton's Method and Finite Control Volume Procedure" (AIAA-2006-2910), which described the derivation, implementation, and verification of the constant density solid energy equation terms and boundary conditions. The present study extends the model to decomposing materials including decomposition kinetics, pyrolysis gas flow through the porous char layer, and a mixture (solid and gas) energy equation. Verification results are presented for the thermochemical ablation of a carbon-phenolic ablator which involves the solution of the entire system of governing equations.
NASA Technical Reports Server (NTRS)
Zhao, Feng; Yang, Xiaoyuan; Strahler, Alan H.; Schaaf, Crystal L.; Yao, Tian; Wang, Zhuosen; Roman, Miguel O.; Woodcock, Curtis E.; Ni-Meister, Wenge; Jupp, David L. B.;
2013-01-01
Foliage profiles retrieved froma scanning, terrestrial, near-infrared (1064 nm), full-waveformlidar, the Echidna Validation Instrument (EVI), agree well with those obtained from an airborne, near-infrared, full-waveform, large footprint lidar, the Lidar Vegetation Imaging Sensor (LVIS). We conducted trials at 5 plots within a conifer stand at Sierra National Forest in August, 2008. Foliage profiles retrieved from these two lidar systems are closely correlated (e.g., r = 0.987 at 100 mhorizontal distances) at large spatial coverage while they differ significantly at small spatial coverage, indicating the apparent scanning perspective effect on foliage profile retrievals. Alsowe noted the obvious effects of local topography on foliage profile retrievals, particularly on the topmost height retrievals. With a fine spatial resolution and a small beam size, terrestrial lidar systems complement the strengths of the airborne lidars by making a detailed characterization of the crowns from a small field site, and thereby serving as a validation tool and providing localized tuning information for future airborne and spaceborne lidar missions.
Herndon, Carl L; Horodyski, MaryBeth; Vincent, Heather K
2017-10-01
This study examined whether epidural injection-induced anesthesia acutely and positively affected temporal spatial parameters of gait in patients with chronic low back pain (LBP) due to lumbar spinal stenosis. Twenty-five patients (61.7±13.6years) who were obtaining lumbar epidural injections for stenosis-related LBP participated. Oswestry Disability Index (ODI) scores, Medical Outcomes Short Form (SF-36) scores, 11-point Numerical pain rating (NRS pain ) scores, and temporal spatial parameters of walking gait were obtained prior to, and 11-point Numerical pain rating (NRS pain ) scores, and temporal spatial parameters of walking gait were obtained after the injection. Gait parameters were measured using an instrumented gait mat. Patients received transforaminal epidural injections in the L1-S1 vertebral range (1% lidocaine, corticosteroid) under fluoroscopic guidance. Patients with post-injection NRS pain ratings of "0" or values greater than "0" were stratified into two groups: 1) full pain relief, or 2) partial pain relief, respectively. Post-injection, 48% (N=12) of patients reported full pain relief. ODI scores were higher in patients with full pain relief (55.3±21.4 versus 33.7 12.8; p=0.008). Post-injection, stride length and step length variability were significantly improved in the patients with full pain relief compared to those with partial pain relief. Effect sizes between full and partial pain relief for walking velocity, step length, swing time, stride and step length variability were medium to large (Cohen's d>0.50). Patients with LBP can gain immediate gait improvements from complete pain relief from transforaminal epidural anesthetic injections for LBP, which could translate to better stability and lower fall risk. Copyright © 2017 Elsevier B.V. All rights reserved.
Kubo, Kin-ya; Yamada, Yukiko; Iinuma, Mitsuo; Iwaku, Fumihiko; Tamura, Yasuo; Watanabe, Kazuko; Nakamura, Hiroyuki; Onozuka, Minoru
2007-03-06
We examined the effect of occlusal disharmony in senescence-accelerated (SAMP8) mice on plasma corticosterone levels, hippocampal neuron number, and spatial performance in the water maze. The bite-raised condition was associated with an accelerated age-related decline in spatial memory, increased plasma corticosterone levels, and a decreased number of neurons in the hippocampal CA3 region. The findings suggest that the bite-raised condition in aged SAMP8 mice induces hippocampal neuron loss, thereby leading to senile memory deficits.
The upper spatial limit for perception of displacement is affected by preceding motion.
Stefanova, Miroslava; Mateeff, Stefan; Hohnsbein, Joachim
2009-03-01
The upper spatial limit D(max) for perception of apparent motion of a random dot pattern may be strongly affected by another, collinear, motion that precedes it [Mateeff, S., Stefanova, M., &. Hohnsbein, J. (2007). Perceived global direction of a compound of real and apparent motion. Vision Research, 47, 1455-1463]. In the present study this phenomenon was studied with two-dimensional motion stimuli. A random dot pattern moved alternately in the vertical and oblique direction (zig-zag motion). The vertical motion was of 1.04 degrees length; it was produced by three discrete spatial steps of the dots. Thereafter the dots were displaced by a single spatial step in oblique direction. Each motion lasted for 57ms. The upper spatial limit for perception of the oblique motion was measured under two conditions: the vertical component of the oblique motion and the vertical motion were either in the same or in opposite directions. It was found that the perception of the oblique motion was strongly influenced by the relative direction of the vertical motion that preceded it; in the "same" condition the upper spatial limit was much shorter than in the "opposite" condition. Decreasing the speed of the vertical motion reversed this effect. Interpretations based on networks of motion detectors and on Gestalt theory are discussed.
Subiaul, Francys; Patterson, Eric M; Schilder, Brian; Renner, Elizabeth; Barr, Rachel
2015-11-01
In contrast to other primates, human children's imitation performance goes from low to high fidelity soon after infancy. Are such changes associated with the development of other forms of learning? We addressed this question by testing 215 children (26-59 months) on two social conditions (imitation, emulation) - involving a demonstration - and two asocial conditions (trial-and-error, recall) - involving individual learning - using two touchscreen tasks. The tasks required responding to either three different pictures in a specific picture order (Cognitive: Airplane→Ball→Cow) or three identical pictures in a specific spatial order (Motor-Spatial: Up→Down→Right). There were age-related improvements across all conditions and imitation, emulation and recall performance were significantly better than trial-and-error learning. Generalized linear models demonstrated that motor-spatial imitation fidelity was associated with age and motor-spatial emulation performance, but cognitive imitation fidelity was only associated with age. While this study provides evidence for multiple imitation mechanisms, the development of one of those mechanisms - motor-spatial imitation - may be bootstrapped by the development of another social learning skill - motor-spatial emulation. Together, these findings provide important clues about the development of imitation, which is arguably a distinctive feature of the human species. © 2014 John Wiley & Sons Ltd.
Point-and-stare operation and high-speed image acquisition in real-time hyperspectral imaging
NASA Astrophysics Data System (ADS)
Driver, Richard D.; Bannon, David P.; Ciccone, Domenic; Hill, Sam L.
2010-04-01
The design and optical performance of a small-footprint, low-power, turnkey, Point-And-Stare hyperspectral analyzer, capable of fully automated field deployment in remote and harsh environments, is described. The unit is packaged for outdoor operation in an IP56 protected air-conditioned enclosure and includes a mechanically ruggedized fully reflective, aberration-corrected hyperspectral VNIR (400-1000 nm) spectrometer with a board-level detector optimized for point and stare operation, an on-board computer capable of full system data-acquisition and control, and a fully functioning internal hyperspectral calibration system for in-situ system spectral calibration and verification. Performance data on the unit under extremes of real-time survey operation and high spatial and high spectral resolution will be discussed. Hyperspectral acquisition including full parameter tracking is achieved by the addition of a fiber-optic based downwelling spectral channel for solar illumination tracking during hyperspectral acquisition and the use of other sensors for spatial and directional tracking to pinpoint view location. The system is mounted on a Pan-And-Tilt device, automatically controlled from the analyzer's on-board computer, making the HyperspecTM particularly adaptable for base security, border protection and remote deployments. A hyperspectral macro library has been developed to control hyperspectral image acquisition, system calibration and scene location control. The software allows the system to be operated in a fully automatic mode or under direct operator control through a GigE interface.
Abu-Akel, A; Reniers, R L E P; Wood, S J
2016-09-01
Patients with schizophrenia show impairments in working-memory and visual-spatial processing, but little is known about the dynamic interplay between the two. To provide insight into this important question, we examined the effect of positive and negative symptom expressions in healthy adults on perceptual processing while concurrently performing a working-memory task that requires the allocations of various degrees of cognitive resources. The effect of positive and negative symptom expressions in healthy adults (N = 91) on perceptual processing was examined in a dual-task paradigm of visual-spatial working memory (VSWM) under three conditions of cognitive load: a baseline condition (with no concurrent working-memory demand), a low VSWM load condition, and a high VSWM load condition. Participants overall performed more efficiently (i.e., faster) with increasing cognitive load. This facilitation in performance was unrelated to symptom expressions. However, participants with high-negative, low-positive symptom expressions were less accurate in the low VSWM condition compared to the baseline and the high VSWM load conditions. Attenuated, subclinical expressions of psychosis affect cognitive performance that is impaired in schizophrenia. The "resource limitations hypothesis" may explain the performance of the participants with high-negative symptom expressions. The dual-task of visual-spatial processing and working memory may be beneficial to assessing the cognitive phenotype of individuals with high risk for schizophrenia spectrum disorders.
Safi, Sare; Rahimi, Anoushiravan; Raeesi, Afsaneh; Safi, Hamid; Aghazadeh Amiri, Mohammad; Malek, Mojtaba; Yaseri, Mehdi; Haeri, Mohammad; Middleton, Frank A; Solessio, Eduardo; Ahmadieh, Hamid
2017-01-01
To evaluate the ability of contrast sensitivity (CS) to discriminate loss of visual function in diabetic subjects with no clinical signs of retinopathy relative to that of normal subjects. In this prospective cross-sectional study, we measured CS in 46 diabetic subjects with a mean age of 48±6 years, a best-corrected visual acuity of 20/20 and no signs of diabetic retinopathy. The CS in these subjects was compared with CS measurements in 46 normal control subjects at four spatial frequencies (3, 6, 12, 18 cycles per degree) under moderate (500 lux) and dim (less than 2 lux) background light conditions. CS was approximately 0.16 log units lower in patients with diabetes relative to controls both in moderate and in dim background light conditions. Logistic regression classification and receiver operating characteristic curve analysis indicated that CS analysis using two light conditions was more accurate (0.78) overall compared with CS analysis using only a single illumination condition (accuracy values were 0.67 and 0.70 in moderate and dim light conditions, respectively). Our results showed that patients with diabetes without clinical signs of retinopathy exhibit a uniform loss in CS at all spatial frequencies tested. Measuring the loss in CS at two spatial frequencies (3 and 6 cycles per degree) and two light conditions (moderate and dim) is sufficiently robust to classify diabetic subjects with no retinopathy versus control subjects.
Spatial Working Memory Ability in Individuals at Ultra High Risk for Psychosis
Goghari, Vina M.; Brett, Caroline; Tabraham, Paul; Johns, Louise; Valmaggia, Lucia; Broome, Matthew; Woolley, James; Bramon, Elvira; Howes, Oliver
2014-01-01
The goal of this investigation was to clarify the nature of spatial working memory difficulties in individuals at ultra high risk (UHR) for psychosis. We evaluated spatial working memory and intelligence in 96 individuals at UHR for psychosis, 28 patients with first episode psychosis (FEP), and 23 healthy controls. Fourteen UHR individuals developed a psychotic disorder during follow-up. Compared to controls, the UHR group was impaired in both the short-term maintenance of material and in the effective use of strategy, but not more immediate memory. These impairments were not as severe as those in the FEP group, as the UHR group performed better than the FEP group. A similar pattern of results was found for the intelligence measures. Discriminant function analyses demonstrated short-term maintenance of material significantly differentiated the UHR and healthy control groups even when accounting for full scale intelligence quotient (IQ); whereas full scale IQ significantly differentiated the UHR and FEP groups and FEP and control groups. Notably, within the UHR group, impaired spatial working memory performance was associated with lower global functioning, but not full scale IQ. The subgroup of UHR individuals who later developed psychosis was not significantly more impaired on any aspect of working memory performance than the group of UHR individuals who did not develop psychosis. Given, the relationship between spatial working memory deficits and functional outcome, these results indicate that cognitive remediation could be useful in individuals at UHR for psychosis to potentially improve functioning. PMID:24398256
Numerical Treatment of the Boltzmann Equation for Self-Propelled Particle Systems
NASA Astrophysics Data System (ADS)
Thüroff, Florian; Weber, Christoph A.; Frey, Erwin
2014-10-01
Kinetic theories constitute one of the most promising tools to decipher the characteristic spatiotemporal dynamics in systems of actively propelled particles. In this context, the Boltzmann equation plays a pivotal role, since it provides a natural translation between a particle-level description of the system's dynamics and the corresponding hydrodynamic fields. Yet, the intricate mathematical structure of the Boltzmann equation substantially limits the progress toward a full understanding of this equation by solely analytical means. Here, we propose a general framework to numerically solve the Boltzmann equation for self-propelled particle systems in two spatial dimensions and with arbitrary boundary conditions. We discuss potential applications of this numerical framework to active matter systems and use the algorithm to give a detailed analysis to a model system of self-propelled particles with polar interactions. In accordance with previous studies, we find that spatially homogeneous isotropic and broken-symmetry states populate two distinct regions in parameter space, which are separated by a narrow region of spatially inhomogeneous, density-segregated moving patterns. We find clear evidence that these three regions in parameter space are connected by first-order phase transitions and that the transition between the spatially homogeneous isotropic and polar ordered phases bears striking similarities to liquid-gas phase transitions in equilibrium systems. Within the density-segregated parameter regime, we find a novel stable limit-cycle solution of the Boltzmann equation, which consists of parallel lanes of polar clusters moving in opposite directions, so as to render the overall symmetry of the system's ordered state nematic, despite purely polar interactions on the level of single particles.
Landscape analysis of methane flux across complex terrain
NASA Astrophysics Data System (ADS)
Kaiser, K. E.; McGlynn, B. L.; Dore, J. E.
2014-12-01
Greenhouse gas (GHG) fluxes into and out of the soil are influenced by environmental conditions resulting in landscape-mediated patterns of spatial heterogeneity. The temporal variability of inputs (e.g. precipitation) and internal redistribution (e.g. groundwater flow) and dynamics (e.g. microbial communities) make predicating these fluxes challenging. Complex terrain can provide a laboratory for improving understanding of the spatial patterns, temporal dynamics, and drivers of trace gas flux rates, requisite to constraining current GHG budgets and future scenarios. Our research builds on previous carbon cycle research at the USFS Tenderfoot Creek Experimental Forest, Little Belt Mountains, Montana that highlighted the relationships between landscape position and seasonal CO2 efflux, induced by the topographic redistribution of water. Spatial patterns and landscape scale mediation of CH4 fluxes in seasonally aerobic soils have not yet been elucidated. We measured soil methane concentrations and fluxes across a full range of landscape positions, leveraging topographic and seasonal gradients, to examine the relationships between environmental variables, hydrologic dynamics, and CH4 production and consumption. We determined that a threshold of ~30% VWC distinguished the direction of flux at individual time points, with the riparian area and uplands having distinct source/sink characteristics respectively. Riparian locations were either strong sources or fluctuated between sink and source behavior, resulting in near neutral seasonal flux. Upland sites however, exhibited significant relationships between sink strength and topographic/energy balance indices. Our results highlight spatial and temporal coherence to landscape scale heterogeneity of CH4 dynamics that can improve estimates of landscape scale CH4 balances and sensitivity to change.
Postfire environmental conditions influence the spatial pattern of regeneration for Pinus ponderosa
V. H. Bonnet; Anna Schoettle; W. D. Shepperd
2005-01-01
Regeneration of ponderosa pine after fire depends on the patterns of seed availability and the environmental conditions that define safe sites for seedling establishment. A transect approach was applied in 2002 to determine the spatial distribution of regeneration from unburned to burned areas within the landscape impacted by the Jasper Fire of 2000 in the...
Developmental Changes in the Effect of Verbal, Non-verbal, and Spatial-Positional Cues for Memory
ERIC Educational Resources Information Center
Derevensky, Jeffrey
1976-01-01
Sixty kindergarten, sixty second grade, and sixty fourth grade students performed several memory tasks under one of six conditions. The conditions differed as to the method of presentation of information. The study focused on developmental changes in children's use of verbal, nonverbal, and spatial-positional cues for memory. (Editor)
Santora, Jarrod A; Schroeder, Isaac D; Field, John C; Wells, Brian K; Sydeman, William J
Studies of predator–prey demographic responses and the physical drivers of such relationships are rare, yet essential for predicting future changes in the structure and dynamics of marine ecosystems. Here, we hypothesize that predator–prey relationships vary spatially in association with underlying physical ocean conditions, leading to observable changes in demographic rates, such as reproduction. To test this hypothesis, we quantified spatio-temporal variability in hydrographic conditions, krill, and forage fish to model predator (seabird) demographic responses over 18 years (1990–2007). We used principal component analysis and spatial correlation maps to assess coherence among ocean conditions, krill, and forage fish, and generalized additive models to quantify interannual variability in seabird breeding success relative to prey abundance. The first principal component of four hydrographic measurements yielded an index that partitioned “warm/weak upwelling” and “cool/strong upwelling” years. Partitioning of krill and forage fish time series among shelf and oceanic regions yielded spatially explicit indicators of prey availability. Krill abundance within the oceanic region was remarkably consistent between years, whereas krill over the shelf showed marked interannual fluctuations in relation to ocean conditions. Anchovy abundance varied on the shelf, and was greater in years of strong stratification, weak upwelling and warmer temperatures. Spatio-temporal variability of juvenile forage fish co-varied strongly with each other and with krill, but was weakly correlated with hydrographic conditions. Demographic responses between seabirds and prey availability revealed spatially variable associations indicative of the dynamic nature of “predator–habitat” relationships. Quantification of spatially explicit demographic responses, and their variability through time, demonstrate the possibility of delineating specific critical areas where the implementation of protective measures could maintain functions and productivity of central place foraging predators.
Shafiei Sabet, Saeed; Van Dooren, Dirk; Slabbekoorn, Hans
2016-05-01
Aquatic and terrestrial habitats are heterogeneous by nature with respect to sound and light conditions. Fish may extract signals and exploit cues from both ambient modalities and they may also select their sound and light level of preference in free-ranging conditions. In recent decades, human activities in or near water have altered natural soundscapes and caused nocturnal light pollution to become more widespread. Artificial sound and light may cause anxiety, deterrence, disturbance or masking, but few studies have addressed in any detail how fishes respond to spatial variation in these two modalities. Here we investigated whether sound and light affected spatial distribution and swimming behavior of individual zebrafish that had a choice between two fish tanks: a treatment tank and a quiet and light escape tank. The treatments concerned a 2 × 2 design with noisy or quiet conditions and dim or bright light. Sound and light treatments did not induce spatial preferences for the treatment or escape tank, but caused various behavioral changes in both spatial distribution and swimming behavior within the treatment tank. Sound exposure led to more freezing and less time spent near the active speaker. Dim light conditions led to a lower number of crossings, more time spent in the upper layer and less time spent close to the tube for crossing. No interactions were found between sound and light conditions. This study highlights the potential relevance for studying multiple modalities when investigating fish behavior and further studies are needed to investigate whether similar patterns can be found for fish behavior in free-ranging conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dependence of auditory spatial updating on vestibular, proprioceptive, and efference copy signals
Genzel, Daria; Firzlaff, Uwe; Wiegrebe, Lutz
2016-01-01
Humans localize sounds by comparing inputs across the two ears, resulting in a head-centered representation of sound-source position. When the head moves, information about head movement must be combined with the head-centered estimate to correctly update the world-centered sound-source position. Spatial updating has been extensively studied in the visual system, but less is known about how head movement signals interact with binaural information during auditory spatial updating. In the current experiments, listeners compared the world-centered azimuthal position of two sound sources presented before and after a head rotation that depended on condition. In the active condition, subjects rotated their head by ∼35° to the left or right, following a pretrained trajectory. In the passive condition, subjects were rotated along the same trajectory in a rotating chair. In the cancellation condition, subjects rotated their head as in the active condition, but the chair was counter-rotated on the basis of head-tracking data such that the head effectively remained fixed in space while the body rotated beneath it. Subjects updated most accurately in the passive condition but erred in the active and cancellation conditions. Performance is interpreted as reflecting the accuracy of perceived head rotation across conditions, which is modeled as a linear combination of proprioceptive/efference copy signals and vestibular signals. Resulting weights suggest that auditory updating is dominated by vestibular signals but with significant contributions from proprioception/efference copy. Overall, results shed light on the interplay of sensory and motor signals that determine the accuracy of auditory spatial updating. PMID:27169504
Dependence of auditory spatial updating on vestibular, proprioceptive, and efference copy signals.
Genzel, Daria; Firzlaff, Uwe; Wiegrebe, Lutz; MacNeilage, Paul R
2016-08-01
Humans localize sounds by comparing inputs across the two ears, resulting in a head-centered representation of sound-source position. When the head moves, information about head movement must be combined with the head-centered estimate to correctly update the world-centered sound-source position. Spatial updating has been extensively studied in the visual system, but less is known about how head movement signals interact with binaural information during auditory spatial updating. In the current experiments, listeners compared the world-centered azimuthal position of two sound sources presented before and after a head rotation that depended on condition. In the active condition, subjects rotated their head by ∼35° to the left or right, following a pretrained trajectory. In the passive condition, subjects were rotated along the same trajectory in a rotating chair. In the cancellation condition, subjects rotated their head as in the active condition, but the chair was counter-rotated on the basis of head-tracking data such that the head effectively remained fixed in space while the body rotated beneath it. Subjects updated most accurately in the passive condition but erred in the active and cancellation conditions. Performance is interpreted as reflecting the accuracy of perceived head rotation across conditions, which is modeled as a linear combination of proprioceptive/efference copy signals and vestibular signals. Resulting weights suggest that auditory updating is dominated by vestibular signals but with significant contributions from proprioception/efference copy. Overall, results shed light on the interplay of sensory and motor signals that determine the accuracy of auditory spatial updating. Copyright © 2016 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Croft, Holly; Anderson, Karen; Kuhn, Nikolaus J.
2010-05-01
The ability to quantitatively and spatially assess soil surface roughness is important in geomorphology and land degradation studies. Soils can experience rapid structural degradation in response to land cover changes, resulting in increased susceptibility to erosion and a loss of Soil Organic Matter (SOM). Changes in soil surface condition can also alter sediment detachment, transport and deposition processes, infiltration rates and surface runoff characteristics. Deriving spatially distributed quantitative information on soil surface condition for inclusion in hydrological and soil erosion models is therefore paramount. However, due to the time and resources involved in using traditional field sampling techniques, there is a lack of spatially distributed information on soil surface condition. Laser techniques can provide data for a rapid three dimensional representation of the soil surface at a fine spatial resolution. This provides the ability to capture changes at the soil surface associated with aggregate breakdown, flow routing, erosion and sediment re-distribution. Semi-variogram analysis of the laser data can be used to represent spatial dependence within the dataset; providing information about the spatial character of soil surface structure. This experiment details the ability of semi-variogram analysis to spatially describe changes in soil surface condition. Soil for three soil types (silt, silt loam and silty clay) was sieved to produce aggregates between 1 mm and 16 mm in size and placed evenly in sample trays (25 x 20 x 2 cm). Soil samples for each soil type were exposed to five different durations of artificial rainfall, to produce progressively structurally degraded soil states. A calibrated laser profiling instrument was used to measure surface roughness over a central 10 x 10 cm plot of each soil state, at 2 mm sample spacing. The laser data were analysed within a geostatistical framework, where semi-variogram analysis quantitatively represented the change in soil surface structure during crusting. The laser data were also used to create digital surface models (DSM) of the soil states for visual comparison. This research has shown that aggregate breakdown and soil crusting can be shown quantitatively by a decrease in sill variance (silt soil: 11.67 (control) to 1.08 (after 90 mins rainfall)). Features present within semi-variograms were spatially linked to features at the soil surface, such as soil cracks, tillage lines and areas of deposition. Directional semi-variograms were used to provide a spatially orientated component, where the directional sill variance associated with a soil crack was shown to increase from 7.95 to 19.33. Periodicity within semi-variogram was also shown to quantify the spatial scale of soil cracking networks and potentially surface flowpaths; an average distance between soil cracks of 37 mm closely corresponded to the distance of 38 mm shown in the semi-variogram. The results provide a strong basis for the future retrieval of spatio-temporal variations in soil surface condition. Furthermore, the presence of process-based information on hydrological pathways within semi-variograms may work towards an inclusion of geostatisically-derived information in land surface models and the understanding of complex surface processes at different spatial scales.
NASA Astrophysics Data System (ADS)
Dugin, A. V.; Zel'dovich, Boris Ya; Il'inykh, P. N.; Liberman, V. S.; Nesterkin, O. P.
1992-11-01
The higher spatial harmonics of the photorefractive response have been studied theoretically and experimentally for gratings written by phase-locked detection in an alternating external field. The conditions for writing higher spatial harmonics are derived analytically. The amplitude of the second spatial harmonic has been found experimentally as a function of the spatial frequency in two Bi12TiO20 crystals.
Temporal and spatial foliations of spacetimes.
NASA Astrophysics Data System (ADS)
Herold, H.
For the solution of initial-value problems in numerical relativity usually the (3+1) splitting of Einstein's equations is employed. An important part of this splitting is the choice of the temporal gauge condition. In order to estimate the quality of time-evolution schemes, different time slicings of given well-known spherically symmetric spacetimes have been studied. Besides the maximal slicing condition the harmonic slicing prescription has been used to calculate temporal foliations of the Schwarzschild and the Oppenheimer-Snyder spacetime. Additionally, the author has studied a recently proposed, geometrically motivated spatial gauge condition, which is defined by considering the foliations of the three-dimensional space-like hypersurfaces by 2-surfaces of constant mean extrinsic curvature. Apart from the equations for the shift vector, which can be derived for this gauge condition, he has investigated such spatial foliations for well-known stationary axially symmetric spacetimes, namely for the Kerr metric and for numerically determined solutions for rapidly rotating neutron stars.
NASA Astrophysics Data System (ADS)
Gu, Huaying; Liu, Zhixue; Weng, Yingliang
2017-04-01
The present study applies the multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) with spatial effects approach for the analysis of the time-varying conditional correlations and contagion effects among global real estate markets. A distinguishing feature of the proposed model is that it can simultaneously capture the spatial interactions and the dynamic conditional correlations compared with the traditional MGARCH models. Results reveal that the estimated dynamic conditional correlations have exhibited significant increases during the global financial crisis from 2007 to 2009, thereby suggesting contagion effects among global real estate markets. The analysis further indicates that the returns of the regional real estate markets that are in close geographic and economic proximities exhibit strong co-movement. In addition, evidence of significantly positive leverage effects in global real estate markets is also determined. The findings have significant implications on global portfolio diversification opportunities and risk management practices.
Spatial resolution and chest nodule detection: an interesting incidental finding
NASA Astrophysics Data System (ADS)
Toomey, R. J.; McEntee, M. F.; Ryan, J. T.; Evanoff, M. G.; Hayes, A.; Brennan, P. C.
2010-02-01
This study reports an incidental finding from a larger work. It examines the relationship between spatial resolution and nodule detection for chest radiographs. Twelve examining radiologists with the American Board of Radiology read thirty chest radiographs in two conditions - full (1500 × 1500 pixel) resolution, and 300 × 300 pixel resolution linearly interpolated to 1500 × 1500 pixels. All images were surrounded by a 10-pixel sharp grey border to aid in focussing the observer's eye when viewing the comparatively unsharp interpolated images. Fifteen of the images contained a single simulated pulmonary nodule. Observers were asked to rate their confidence that a nodule was present on each radiograph on a scale of 1 (least confidence, certain no lesion is present) to 6 (most confidence, certain a lesion was present). All other abnormalities were to be ignored. No windowing, levelling or magnification of the images was permitted and viewing distance was constrained to approximately 70cm. Images were displayed on a 3 megapixel greyscale monitor. Receiver operating characteristic (ROC) analysis was applied to the results of the readings using the Dorfman-Berbaum-Metz multiplereader, multiple-case method. No statistically significant differences were found with either readers and cases treated as random or with cases treated as fixed. Low spatial frequency information appears to be sufficient for the detection of chest lesion of the type used in this study.
Analysis of dark matter axion clumps with spherical symmetry
NASA Astrophysics Data System (ADS)
Schiappacasse, Enrico D.; Hertzberg, Mark P.
2018-01-01
Recently there has been much interest in the spatial distribution of light scalar dark matter, especially axions, throughout the universe. When the local gravitational interactions between the scalar modes are sufficiently rapid, it can cause the field to re-organize into a BEC of gravitationally bound clumps. While these clumps are stable when only gravitation is included, the picture is complicated by the presence of the axion's attractive self-interactions, which can potentially cause the clumps to collapse. Here we perform a detailed stability analysis to determine under what conditions the clumps are stable. In this paper we focus on spherical configurations, leaving aspherical configurations for future work. We identify branches of clump solutions of the axion-gravity-self-interacting system and study their stability properties. We find that clumps that are (spatially) large are stable, while clumps that are (spatially) small are unstable and may collapse. Furthermore, there is a maximum number of particles that can be in a clump. We map out the full space of solutions, which includes quasi-stable axitons, and clarify how a recent claim in the literature of a new ultra-dense branch of stable solutions rests on an invalid use of the non-relativistic approximation. We also consider repulsive self-interactions that may arise from a generic scalar dark matter candidate, finding a single stable branch that extends to arbitrary particle number.
Mitigation of X-ray damage in macromolecular crystallography by submicrometre line focusing.
Finfrock, Y Zou; Stern, Edward A; Alkire, R W; Kas, Joshua J; Evans-Lutterodt, Kenneth; Stein, Aaron; Duke, Norma; Lazarski, Krzysztof; Joachimiak, Andrzej
2013-08-01
Reported here are measurements of the penetration depth and spatial distribution of photoelectron (PE) damage excited by 18.6 keV X-ray photons in a lysozyme crystal with a vertical submicrometre line-focus beam of 0.7 µm full-width half-maximum (FWHM). The experimental results determined that the penetration depth of PEs is 5 ± 0.5 µm with a monotonically decreasing spatial distribution shape, resulting in mitigation of diffraction signal damage. This does not agree with previous theoretical predication that the mitigation of damage requires a peak of damage outside the focus. A new improved calculation provides some qualitative agreement with the experimental results, but significant errors still remain. The mitigation of radiation damage by line focusing was measured experimentally by comparing the damage in the X-ray-irradiated regions of the submicrometre focus with the large-beam case under conditions of equal exposure and equal volumes of the protein crystal, and a mitigation factor of 4.4 ± 0.4 was determined. The mitigation of radiation damage is caused by spatial separation of the dominant PE radiation-damage component from the crystal region of the line-focus beam that contributes the diffraction signal. The diffraction signal is generated by coherent scattering of incident X-rays (which introduces no damage), while the overwhelming proportion of damage is caused by PE emission as X-ray photons are absorbed.
Trophic interactions induce spatial self-organization of microbial consortia on rough surfaces.
Wang, Gang; Or, Dani
2014-10-24
The spatial context of microbial interactions common in natural systems is largely absent in traditional pure culture-based microbiology. The understanding of how interdependent microbial communities assemble and coexist in limited spatial domains remains sketchy. A mechanistic model of cell-level interactions among multispecies microbial populations grown on hydrated rough surfaces facilitated systematic evaluation of how trophic dependencies shape spatial self-organization of microbial consortia in complex diffusion fields. The emerging patterns were persistent irrespective of initial conditions and resilient to spatial and temporal perturbations. Surprisingly, the hydration conditions conducive for self-assembly are extremely narrow and last only while microbial cells remain motile within thin aqueous films. The resulting self-organized microbial consortia patterns could represent optimal ecological templates for the architecture that underlie sessile microbial colonies on natural surfaces. Understanding microbial spatial self-organization offers new insights into mechanisms that sustain small-scale soil microbial diversity; and may guide the engineering of functional artificial microbial consortia.
Sports training enhances visuo-spatial cognition regardless of open-closed typology
Hsieh, Shu-Shih; Chen, Kuan-Fu; Chang, Yu-Kai
2017-01-01
The aim of this study was to investigate the effects of open and closed sport participation on visuo-spatial attention and memory performance among young adults. Forty-eight young adults—16 open-skill athletes, 16 closed-skill athletes, and 16 non-athletes controls—were recruited for the study. Both behavioral performance and event-related potential (ERP) measurement were assessed when participants performed non-delayed and delayed match-to-sample task that tested visuo-spatial attention and memory processing. Results demonstrated that regardless of training typology, the athlete groups exhibited shorter reaction times in both the visuo-spatial attention and memory conditions than the control group with no existence of speed-accuracy trade-off. Similarly, a larger P3 amplitudes were observed in both athlete groups than in the control group for the visuo-spatial memory condition. These findings suggest that sports training, regardless of typology, are associated with superior visuo-spatial attention and memory performance, and more efficient neural resource allocation in memory processing. PMID:28560098
Internal and external spatial attention examined with lateralized EEG power spectra.
Van der Lubbe, Rob H J; Bundt, Carsten; Abrahamse, Elger L
2014-10-02
Several authors argued that retrieval of an item from visual short term memory (internal spatial attention) and focusing attention on an externally presented item (external spatial attention) are similar. Part of the neuroimaging support for this view may be due to the employed experimental procedures. Furthermore, as internal spatial attention may have a more induced than evoked nature some effects may not have been visible in event related analyses of the electroencephalogram (EEG), which limits the possibility to demonstrate differences. In the current study, a colored frame cued which stimulus, one out of four presented in separate quadrants, required a response, which depended on the form of the cued stimulus (circle or square). Importantly, the frame occurred either before (precue), simultaneously with (simultaneous cue), or after the stimuli (postcue). The precue and simultaneous cue condition both concern external attention, while the postcue condition implies the involvement of internal spatial attention. Event-related lateralizations (ERLs), reflecting evoked effects, and lateralized power spectra (LPS), reflecting both evoked and induced effects, were determined. ERLs revealed a posterior contralateral negativity (PCN) only in the precue condition. LPS analyses on the raw EEG showed early increased contralateral theta power at posterior sites and later increased ipsilateral alpha power at occipito-temporal sites in all cue conditions. Responses were faster when the internally or externally attended location corresponded with the required response side than when not. These findings provide further support for the view that internal and external spatial attention share their underlying mechanism. Copyright © 2014 Elsevier B.V. All rights reserved.
What is the spatial sampling of MISR?
Atmospheric Science Data Center
2014-12-08
... spatial resolution of the sensors without exceeding the data transfer quotas, MISR can be operated in two different data acquisition modes: ... data at the full resolution, but only for limited periods of time and therefore for limited regions, typically about 300 km in length (along ...
Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses.
Griffith, Daniel A; Peres-Neto, Pedro R
2006-10-01
Recently, analytical approaches based on the eigenfunctions of spatial configuration matrices have been proposed in order to consider explicitly spatial predictors. The present study demonstrates the usefulness of eigenfunctions in spatial modeling applied to ecological problems and shows equivalencies of and differences between the two current implementations of this methodology. The two approaches in this category are the distance-based (DB) eigenvector maps proposed by P. Legendre and his colleagues, and spatial filtering based upon geographic connectivity matrices (i.e., topology-based; CB) developed by D. A. Griffith and his colleagues. In both cases, the goal is to create spatial predictors that can be easily incorporated into conventional regression models. One important advantage of these two approaches over any other spatial approach is that they provide a flexible tool that allows the full range of general and generalized linear modeling theory to be applied to ecological and geographical problems in the presence of nonzero spatial autocorrelation.
NASA Astrophysics Data System (ADS)
Khaki, M.; Schumacher, M.; Forootan, E.; Kuhn, M.; Awange, J. L.; van Dijk, A. I. J. M.
2017-10-01
Assimilation of terrestrial water storage (TWS) information from the Gravity Recovery And Climate Experiment (GRACE) satellite mission can provide significant improvements in hydrological modelling. However, the rather coarse spatial resolution of GRACE TWS and its spatially correlated errors pose considerable challenges for achieving realistic assimilation results. Consequently, successful data assimilation depends on rigorous modelling of the full error covariance matrix of the GRACE TWS estimates, as well as realistic error behavior for hydrological model simulations. In this study, we assess the application of local analysis (LA) to maximize the contribution of GRACE TWS in hydrological data assimilation. For this, we assimilate GRACE TWS into the World-Wide Water Resources Assessment system (W3RA) over the Australian continent while applying LA and accounting for existing spatial correlations using the full error covariance matrix. GRACE TWS data is applied with different spatial resolutions including 1° to 5° grids, as well as basin averages. The ensemble-based sequential filtering technique of the Square Root Analysis (SQRA) is applied to assimilate TWS data into W3RA. For each spatial scale, the performance of the data assimilation is assessed through comparison with independent in-situ ground water and soil moisture observations. Overall, the results demonstrate that LA is able to stabilize the inversion process (within the implementation of the SQRA filter) leading to less errors for all spatial scales considered with an average RMSE improvement of 54% (e.g., 52.23 mm down to 26.80 mm) for all the cases with respect to groundwater in-situ measurements. Validating the assimilated results with groundwater observations indicates that LA leads to 13% better (in terms of RMSE) assimilation results compared to the cases with Gaussian errors assumptions. This highlights the great potential of LA and the use of the full error covariance matrix of GRACE TWS estimates for improved data assimilation results.
Xia, Jing; Nooraei, Nazanin; Kalluri, Sridhar; Edwards, Brent
2015-04-01
This study investigated whether spatial separation between talkers helps reduce cognitive processing load, and how hearing impairment interacts with the cognitive load of individuals listening in multi-talker environments. A dual-task paradigm was used in which performance on a secondary task (visual tracking) served as a measure of the cognitive load imposed by a speech recognition task. Visual tracking performance was measured under four conditions in which the target and the interferers were distinguished by (1) gender and spatial location, (2) gender only, (3) spatial location only, and (4) neither gender nor spatial location. Results showed that when gender cues were available, a 15° spatial separation between talkers reduced the cognitive load of listening even though it did not provide further improvement in speech recognition (Experiment I). Compared to normal-hearing listeners, large individual variability in spatial release of cognitive load was observed among hearing-impaired listeners. Cognitive load was lower when talkers were spatially separated by 60° than when talkers were of different genders, even though speech recognition was comparable in these two conditions (Experiment II). These results suggest that a measure of cognitive load might provide valuable insight into the benefit of spatial cues in multi-talker environments.
Meneghetti, Chiara; Labate, Enia; Pazzaglia, Francesca; Hamilton, Colin; Gyselinck, Valérie
2017-05-01
This study examines the involvement of spatial and visual working memory (WM) in the construction of flexible spatial models derived from survey and route descriptions. Sixty young adults listened to environment descriptions, 30 from a survey perspective and the other 30 from a route perspective, while they performed spatial (spatial tapping [ST]) and visual (dynamic visual noise [DVN]) secondary tasks - believed to overload the spatial and visual working memory (WM) components, respectively - or no secondary task (control, C). Their mental representations of the environment were tested by free recall and a verification test with both route and survey statements. Results showed that, for both recall tasks, accuracy was worse in the ST than in the C or DVN conditions. In the verification test, the effect of both ST and DVN was a decreasing accuracy for sentences testing spatial relations from the opposite perspective to the one learnt than if the perspective was the same; only ST had a stronger interference effect than the C condition for sentences from the opposite perspective from the one learnt. Overall, these findings indicate that both visual and spatial WM, and especially the latter, are involved in the construction of perspective-flexible spatial models. © 2016 The British Psychological Society.
Grot, Stéphanie; Leclerc, Marie-Eve; Luck, David
2018-05-23
We designed an fMRI study to pinpoint the neural correlates of active and passive binding in working memory. Participants were instructed to memorize three words and three spatial locations. In the passive binding condition, words and spatial locations were directly presented as bound. Conversely, in the active binding condition, words and spatial locations were presented as separated, and participants were directed to intentionally create associations between them. Our results showed that participants performed better on passive binding relative to active binding. FMRI analysis revealed that both binding conditions induced greater activity within the hippocampus. Additionally, our analyses divulged regions specifically engaged in passive and active binding. Altogether, these data allow us to propose the hippocampus as a central candidate for working memory binding. When needed, a frontal-parietal network can contribute to the rearrangement of information. These findings may inform theories of working memory binding. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Rooney, M.; Stambaugh, M. C.
2016-12-01
Wildfire occurrence in the forested ecosystems of the southcentral United States is driven by conditions of drought. Historically, fire intervals varied temporally and spatially - forced by climate, humans, and environmental conditions. Thus, proxy records are required to assess the relationships between fire occurrence, drought, and the El Niño Southern Oscillation (ENSO). Fire scar data from tree-rings are well-suited to assess historical fire regimes in this region, paired with reconstructions of drought and ENSO that have been developed from networks of ring-width chronologies across the United States. This study combines fire-scar data from twelve different sites in the southcentral United States, including two new fire-history reconstructions. Fire data incorporates 665 fires across Eastern Oklahoma and Northern Texas from 1637-2014. These robust reconstructions of post oak (Quercus stellata) evaluate the variability in fire activity and its association to drought and ENSO. Climate-explained growth variance in post-oak chronologies is strong in this region, providing powerful proxy information in the derived chronologies. In general, most fires occur during the La Niña portion of the ENSO cycle. Many severe fires correspond with drought, and results from super-posed epoch analysis suggest a significant relationship between fire event years and drought conditions in the full period of record. Analysis reveals differences in the relationships of fire, drought and ENSO through time, corresponding to changes in human settlement in the region. Understanding the spatial and temporal relationships that exist between fire occurrence, drought, and ENSO aid in quantifying disturbance characteristics and their associations to climate in the forested ecosystems of the southcentral United States.
Sneider, Jennifer Tropp; Sava, Simona; Rogowska, Jadwiga; Yurgelun-Todd, Deborah A
2011-10-01
The hippocampus plays a significant role in spatial memory processing, with sex differences being prominent on various spatial tasks. This study examined sex differences in healthy adults, using functional magnetic resonance imaging (fMRI) in areas implicated in spatial processing during navigation of a virtual analogue of the Morris water-maze. There were three conditions: learning, hidden, and visible control. There were no significant differences in performance measures. However, sex differences were found in regional brain activation during learning in the right hippocampus, right parahippocampal gyrus, and the cingulate cortex. During the hidden condition, the hippocampus, parahippocampal gyrus, and cingulate cortex were activated in both men and women. Additional brain areas involved in spatial processing may be recruited in women when learning information about the environment, by utilizing external cues (landmarks) more than do men, contributing to the observed sex differences in brain activation.
NASA Astrophysics Data System (ADS)
Avramov-Zamurovic, S.; Nelson, C.
2018-10-01
We report on experiments where spatially partially coherent laser beams with flat top intensity profiles were propagated underwater. Two scenarios were explored: still water and mechanically moved entrained salt scatterers. Gaussian, fully spatially coherent beams, and Multi-Gaussian Schell model beams with varying degrees of spatial coherence were used in the experiments. The main objective of our study was the exploration of the scintillation performance of scalar beams, with both vertical and horizontal polarizations, and the comparison with electromagnetic beams that have a randomly varying polarization. The results from our investigation show up to a 50% scintillation index reduction for the case with electromagnetic beams. In addition, we observed that the fully coherent beam performance deteriorates significantly relative to the spatially partially coherent beams when the conditions become more complex, changing from still water conditions to the propagation through mechanically moved entrained salt scatterers.
NASA Astrophysics Data System (ADS)
Warren, K.; Eppes, M.-C.; Swami, S.; Garbini, J.; Putkonen, J.
2013-11-01
The rates and processes that lead to non-tectonic rock fracture on Earth's surface are widely debated but poorly understood. Few, if any, studies have made the direct observations of rock fracturing under natural conditions that are necessary to directly address this problem. An instrumentation design that enables concurrent high spatial and temporal monitoring resolution of (1) diurnal environmental conditions of a natural boulder and its surroundings in addition to (2) the fracturing of that boulder under natural full-sun exposure is described herein. The surface of a fluvially transported granite boulder was instrumented with (1) six acoustic emission (AE) sensors that record micro-crack associated, elastic wave-generated activity within the three-dimensional space of the boulder, (2) eight rectangular rosette foil strain gages to measure surface strain, (3) eight thermocouples to measure surface temperature, and (4) one surface moisture sensor. Additionally, a soil moisture probe and a full weather station that measures ambient temperature, relative humidity, wind speed, wind direction, barometric pressure, insolation, and precipitation were installed adjacent to the test boulder. AE activity was continuously monitored by one logger while all other variables were acquired by a separate logger every 60 s. The protocols associated with the instrumentation, data acquisition, and analysis are discussed in detail. During the first four months, the deployed boulder experienced almost 12 000 AE events, the majority of which occur in the afternoon when temperatures are decreasing. This paper presents preliminary data that illustrates data validity and typical patterns and behaviors observed. This system offers the potential to (1) obtain an unprecedented record of the natural conditions under which rocks fracture and (2) decipher the mechanical processes that lead to rock fracture at a variety of temporal scales under a range of natural conditions.
NASA Astrophysics Data System (ADS)
Warren, K.; Eppes, M.-C.; Swami, S.; Garbini, J.; Putkonen, J.
2013-07-01
The rates and processes that lead to non-tectonic rock fracture on the Earth's surface are widely debated but poorly understood. Few, if any, studies have made the direct observations of rock fracturing under natural conditions that are necessary to directly address this problem. An instrumentation design that enables concurrent high spatial and temporal monitoring resolution of (1) diurnal environmental conditions of a natural boulder and its surroundings in addition to (2) the fracturing of that boulder under natural full-sun exposure is described herein. The surface of a fluvially transported granite boulder was instrumented with (1) six acoustic emission (AE) sensors that record micro-crack associated, elastic wave-generated activity within the three-dimensional space of the boulder, (2) eight rectangular rosette foil strain gages to measure surface strain, (3) eight thermocouples to measure surface temperature, and (4) one surface moisture sensor. Additionally, a soil moisture probe and a full weather station that measures ambient temperature, relative humidity, wind speed, wind direction, barometric pressure, insolation, and precipitation were installed adjacent to the test boulder. AE activity was continuously monitored by one logger while all other variables were acquired by a separate logger every 60 s. The protocols associated with the instrumentation, data acquisition, and analyses are discussed in detail. During the first four months, the deployed boulder experienced almost 12 000 AE events, the majority of which occur in the afternoon when temperatures are decreasing. This paper presents preliminary data that illustrates data validity and typical patterns and behaviors observed. This system offers the potential to (1) obtain an unprecedented record of the natural conditions under which rocks fracture and (2) decipher the mechanical processes that lead to rock fracture at a variety of temporal scales under a range of natural conditions.
Effects of spatially displaced feedback on remote manipulation tasks
NASA Technical Reports Server (NTRS)
Manahan, Meera K.; Stuart, Mark A.; Bierschwale, John M.; Hwang, Ellen Y.; Legendre, A. J.
1992-01-01
Several studies have been performed to determine the effects on computer and direct manipulation task performance when viewing conditions are spatially displaced. Whether results from these studies can be directly applied to remote manipulation tasks is quenstionable. The objective of this evaluation was to determine the effects of reversed, inverted, and inverted/reversed views on remote manipulation task performance using two 3-Degree of Freedom (DOF) hand controllers and a replica position hand controller. Results showed that trials using the inverted viewing condition showed the worst performance, followed by the inverted/reversed view and the reversed view when using the 2x3 DOF. However, these differences were not significant. The inverted and inverted/reversed viewing conditions were significantly worse than the normal and reversed viewing conditions when using the Kraft Replica. A second evaluation was conducted in which additional trials were performed with each viewing condition to determine the long term effects of spatially displaced views on task performance for the hand controllers. Results of the second evaluation indicated that there was more of a difference in performance between the perturbed viewing conditions and the normal viewing condition with the Kraft Replica than with the 2x3 DOF.
Sandi, Carmen; Merino, José J; Cordero, M Isabel; Kruyt, Nyika D; Murphy, Keith J; Regan, Ciaran M
2003-09-15
Cell adhesion molecule function is involved in hippocampal synaptic plasticity and associated with memory consolidation. At the infragranular zone of the dentate gyrus, neurons expressing the polysialylated form of the neural cell adhesion molecule (NCAM PSA) transiently increase their frequency 12 hours after training in different tasks. Using immunohistochemical procedures, we investigated NCAM polysialylation following training in a contextual fear conditioning paradigm that employed increasing shock intensities to separately model stressful and traumatic experiences in adult male Wistar rats. Fear conditioning with a stressful.4-mA stimulus resulted in an increased frequency of dentate polysialylated neurons, the magnitude of which was indistinguishable from that observed following water maze training. By contrast, training with a traumatic 1-mA stimulus resulted in a significant decrease in the frequency of polysialylated neurons at the 12 hours posttraining time. Whereas sequential training in the water maze paradigm followed by fear conditioning resulted in potentiated consolidation of spatial information when conditioning involved a.4-mA stimulus, amnesia for spatial learning occurred when conditioning was performed with a 1-mA stimulus. These results suggest traumatic fear conditioning suppresses NCAM-PSA-mediated plasticity and the concomitant inability to store the trace of recently acquired information.
ERIC Educational Resources Information Center
Hommuk, Karita; Bachmann, Talis
2009-01-01
The problem of feature binding has been examined under conditions of distributed attention or with spatially dispersed stimuli. We studied binding by asking whether selective attention to a feature of a masked object enables perceptual access to the other features of that object using conditions in which spatial attention was directed at a single…
NASA Astrophysics Data System (ADS)
Luo, Yao; Wu, Mei-Ping; Wang, Ping; Duan, Shu-Ling; Liu, Hao-Jun; Wang, Jin-Long; An, Zhan-Feng
2015-09-01
The full magnetic gradient tensor (MGT) refers to the spatial change rate of the three field components of the geomagnetic field vector along three mutually orthogonal axes. The tensor is of use to geological mapping, resources exploration, magnetic navigation, and others. However, it is very difficult to measure the full magnetic tensor gradient using existing engineering technology. We present a method to use triaxial aeromagnetic gradient measurements for deriving the full MGT. The method uses the triaxial gradient data and makes full use of the variation of the magnetic anomaly modulus in three dimensions to obtain a self-consistent magnetic tensor gradient. Numerical simulations show that the full MGT data obtained with the proposed method are of high precision and satisfy the requirements of data processing. We selected triaxial aeromagnetic gradient data from the Hebei Province for calculating the full MGT. Data processing shows that using triaxial tensor gradient data allows to take advantage of the spatial rate of change of the total field in three dimensions and suppresses part of the independent noise in the aeromagnetic gradient. The calculated tensor components have improved resolution, and the transformed full tensor gradient satisfies the requirement of geological mapping and interpretation.
NASA Astrophysics Data System (ADS)
Trawinski, P. R.; Mackay, D. S.
2009-03-01
The objective of this study is to quantify and model spatial dependence in mosquito vector populations and develop predictions for unsampled locations using geostatistics. Mosquito control program trap sites are often located too far apart to detect spatial dependence but the results show that integration of spatial data over time for Cx. pipiens-restuans and according to meteorological conditions for Ae. vexans enables spatial analysis of sparse sample data. This study shows that mosquito abundance is spatially correlated and that spatial dependence differs between Cx. pipiens-restuans and Ae. vexans mosquitoes.
Spatial Sampling of Weather Data for Regional Crop Yield Simulations
NASA Technical Reports Server (NTRS)
Van Bussel, Lenny G. J.; Ewert, Frank; Zhao, Gang; Hoffmann, Holger; Enders, Andreas; Wallach, Daniel; Asseng, Senthold; Baigorria, Guillermo A.; Basso, Bruno; Biernath, Christian;
2016-01-01
Field-scale crop models are increasingly applied at spatio-temporal scales that range from regions to the globe and from decades up to 100 years. Sufficiently detailed data to capture the prevailing spatio-temporal heterogeneity in weather, soil, and management conditions as needed by crop models are rarely available. Effective sampling may overcome the problem of missing data but has rarely been investigated. In this study the effect of sampling weather data has been evaluated for simulating yields of winter wheat in a region in Germany over a 30-year period (1982-2011) using 12 process-based crop models. A stratified sampling was applied to compare the effect of different sizes of spatially sampled weather data (10, 30, 50, 100, 500, 1000 and full coverage of 34,078 sampling points) on simulated wheat yields. Stratified sampling was further compared with random sampling. Possible interactions between sample size and crop model were evaluated. The results showed differences in simulated yields among crop models but all models reproduced well the pattern of the stratification. Importantly, the regional mean of simulated yields based on full coverage could already be reproduced by a small sample of 10 points. This was also true for reproducing the temporal variability in simulated yields but more sampling points (about 100) were required to accurately reproduce spatial yield variability. The number of sampling points can be smaller when a stratified sampling is applied as compared to a random sampling. However, differences between crop models were observed including some interaction between the effect of sampling on simulated yields and the model used. We concluded that stratified sampling can considerably reduce the number of required simulations. But, differences between crop models must be considered as the choice for a specific model can have larger effects on simulated yields than the sampling strategy. Assessing the impact of sampling soil and crop management data for regional simulations of crop yields is still needed.
NASA Astrophysics Data System (ADS)
Brill, Dominik; Jankaew, Kruawun; Brückner, Helmut
2016-04-01
Since optically stimulated luminescence (OSL) dating is time consuming and cost intensive, age information available for individual study sites is usually restricted to significantly less than 100 ages. In particular the interpretation of complex depositional systems with temporally and spatially diverse sedimentation histories may suffer from the effects of a poor spatial resolution or an ineffective distribution of chronological data. In these cases, time and cost efficient approaches that provide reasonable dating accuracy are required to substitute or complement full luminescence dating. For the sandy beach-ridge plain of Phra Thong Island, Thailand, which is chronologically constrained by a set of approximately 50 luminescence ages, we evaluated the potential (i) of luminescence profiling using a portable luminescence reader, and (ii) of standardized growth curves (SGCs) to improve the resolution and sampling strategy of OSL dating in coastal settings. Although SGCs are related to some shortcomings in dating accuracy, and luminescence profiling with even the favorable conditions provided by the homogeneous sandy stratigraphy of the beach-ridge plain does not equal full luminescence dating, both approaches are capable of reproducing some of the main chronostratigraphic features of the island. This includes the differentiation between Holocene and last interglacial ridges, as well as the identification of the general east-west progradation and some (but not all) of several 1500-2000 year hiatuses within the Holocene sediment succession. However, while both approaches can successfully identify relative chronological trends, robust absolute age estimates can only be achieved by considering the highly variable dosimetry, which is the main contributing factor to bulk luminescence signals apart from deposition age on Phra Thong Island. At Phra Thong, portable reader signals as a proxy for palaeodoses combined with sample-specific dose rates proved as the best compromise between rapid data acquisition and adequate dating accuracy.
NASA Technical Reports Server (NTRS)
Phillips, Rachel; Madhavan, Poornima
2010-01-01
The purpose of this research was to examine the impact of environmental distractions on human trust and utilization of automation during the process of visual search. Participants performed a computer-simulated airline luggage screening task with the assistance of a 70% reliable automated decision aid (called DETECTOR) both with and without environmental distractions. The distraction was implemented as a secondary task in either a competing modality (visual) or non-competing modality (auditory). The secondary task processing code either competed with the luggage screening task (spatial code) or with the automation's textual directives (verbal code). We measured participants' system trust, perceived reliability of the system (when a target weapon was present and absent), compliance, reliance, and confidence when agreeing and disagreeing with the system under both distracted and undistracted conditions. Results revealed that system trust was lower in the visual-spatial and auditory-verbal conditions than in the visual-verbal and auditory-spatial conditions. Perceived reliability of the system (when the target was present) was significantly higher when the secondary task was visual rather than auditory. Compliance with the aid increased in all conditions except for the auditory-verbal condition, where it decreased. Similar to the pattern for trust, reliance on the automation was lower in the visual-spatial and auditory-verbal conditions than in the visual-verbal and auditory-spatial conditions. Confidence when agreeing with the system decreased with the addition of any kind of distraction; however, confidence when disagreeing increased with the addition of an auditory secondary task but decreased with the addition of a visual task. A model was developed to represent the research findings and demonstrate the relationship between secondary task modality, processing code, and automation use. Results suggest that the nature of environmental distractions influence interaction with automation via significant effects on trust and system utilization. These findings have implications for both automation design and operator training.
Sani-Kast, Nicole; Scheringer, Martin; Slomberg, Danielle; Labille, Jérôme; Praetorius, Antonia; Ollivier, Patrick; Hungerbühler, Konrad
2015-12-01
Engineered nanoparticle (ENP) fate models developed to date - aimed at predicting ENP concentration in the aqueous environment - have limited applicability because they employ constant environmental conditions along the modeled system or a highly specific environmental representation; both approaches do not show the effects of spatial and/or temporal variability. To address this conceptual gap, we developed a novel modeling strategy that: 1) incorporates spatial variability in environmental conditions in an existing ENP fate model; and 2) analyzes the effect of a wide range of randomly sampled environmental conditions (representing variations in water chemistry). This approach was employed to investigate the transport of nano-TiO2 in the Lower Rhône River (France) under numerous sets of environmental conditions. The predicted spatial concentration profiles of nano-TiO2 were then grouped according to their similarity by using cluster analysis. The analysis resulted in a small number of clusters representing groups of spatial concentration profiles. All clusters show nano-TiO2 accumulation in the sediment layer, supporting results from previous studies. Analysis of the characteristic features of each cluster demonstrated a strong association between the water conditions in regions close to the ENP emission source and the cluster membership of the corresponding spatial concentration profiles. In particular, water compositions favoring heteroaggregation between the ENPs and suspended particulate matter resulted in clusters of low variability. These conditions are, therefore, reliable predictors of the eventual fate of the modeled ENPs. The conclusions from this study are also valid for ENP fate in other large river systems. Our results, therefore, shift the focus of future modeling and experimental research of ENP environmental fate to the water characteristic in regions near the expected ENP emission sources. Under conditions favoring heteroaggregation in these regions, the fate of the ENPs can be readily predicted. Copyright © 2014 Elsevier B.V. All rights reserved.
Kahilainen, Aapo; van Nouhuys, Saskya; Schulz, Torsti; Saastamoinen, Marjo
2018-04-23
Habitat fragmentation and climate change are both prominent manifestations of global change, but there is little knowledge on the specific mechanisms of how climate change may modify the effects of habitat fragmentation, for example, by altering dynamics of spatially structured populations. The long-term viability of metapopulations is dependent on independent dynamics of local populations, because it mitigates fluctuations in the size of the metapopulation as a whole. Metapopulation viability will be compromised if climate change increases spatial synchrony in weather conditions associated with population growth rates. We studied a recently reported increase in metapopulation synchrony of the Glanville fritillary butterfly (Melitaea cinxia) in the Finnish archipelago, to see if it could be explained by an increase in synchrony of weather conditions. For this, we used 23 years of butterfly survey data together with monthly weather records for the same period. We first examined the associations between population growth rates within different regions of the metapopulation and weather conditions during different life-history stages of the butterfly. We then examined the association between the trends in the synchrony of the weather conditions and the synchrony of the butterfly metapopulation dynamics. We found that precipitation from spring to late summer are associated with the M. cinxia per capita growth rate, with early summer conditions being most important. We further found that the increase in metapopulation synchrony is paralleled by an increase in the synchrony of weather conditions. Alternative explanations for spatial synchrony, such as increased dispersal or trophic interactions with a specialist parasitoid, did not show paralleled trends and are not supported. The climate driven increase in M. cinxia metapopulation synchrony suggests that climate change can increase extinction risk of spatially structured populations living in fragmented landscapes by altering their dynamics. © 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Beginning inflation in an inhomogeneous universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
East, William E.; Kleban, Matthew; Linde, Andrei
Using numerical solutions of the full Einstein field equations coupled to a scalar inflaton field in 3+1 dimensions, we study the conditions under which a universe that is initially expanding, highly inhomogeneous and dominated by gradient energy can transition to an inflationary period. If the initial scalar field variations are contained within a sufficiently flat region of the inflaton potential, and the universe is spatially flat or open on average, inflation will occur following the dilution of the gradient and kinetic energy due to expansion. This is the case even when the scale of the inhomogeneities is comparable to themore » initial Hubble length, and overdense regions collapse and form black holes, because underdense regions continue expanding, allowing inflation to eventually begin. In conclusion, this establishes that inflation can arise from highly inhomogeneous initial conditions and solve the horizon and flatness problems, at least as long as the variations in the scalar field do not include values that exceed the inflationary plateau.« less
Beginning inflation in an inhomogeneous universe
East, William E.; Kleban, Matthew; Linde, Andrei; ...
2016-09-06
Using numerical solutions of the full Einstein field equations coupled to a scalar inflaton field in 3+1 dimensions, we study the conditions under which a universe that is initially expanding, highly inhomogeneous and dominated by gradient energy can transition to an inflationary period. If the initial scalar field variations are contained within a sufficiently flat region of the inflaton potential, and the universe is spatially flat or open on average, inflation will occur following the dilution of the gradient and kinetic energy due to expansion. This is the case even when the scale of the inhomogeneities is comparable to themore » initial Hubble length, and overdense regions collapse and form black holes, because underdense regions continue expanding, allowing inflation to eventually begin. In conclusion, this establishes that inflation can arise from highly inhomogeneous initial conditions and solve the horizon and flatness problems, at least as long as the variations in the scalar field do not include values that exceed the inflationary plateau.« less
Beginning inflation in an inhomogeneous universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
East, William E.; Kleban, Matthew; Linde, Andrei
Using numerical solutions of the full Einstein field equations coupled to a scalar inflaton field in 3+1 dimensions, we study the conditions under which a universe that is initially expanding, highly inhomogeneous and dominated by gradient energy can transition to an inflationary period. If the initial scalar field variations are contained within a sufficiently flat region of the inflaton potential, and the universe is spatially flat or open on average, inflation will occur following the dilution of the gradient and kinetic energy due to expansion. This is the case even when the scale of the inhomogeneities is comparable to themore » initial Hubble length, and overdense regions collapse and form black holes, because underdense regions continue expanding, allowing inflation to eventually begin. This establishes that inflation can arise from highly inhomogeneous initial conditions and solve the horizon and flatness problems, at least as long as the variations in the scalar field do not include values that exceed the inflationary plateau.« less
Harmonics rejection in pixelated interferograms using spatio-temporal demodulation.
Padilla, J M; Servin, M; Estrada, J C
2011-09-26
Pixelated phase-mask interferograms have become an industry standard in spatial phase-shifting interferometry. These pixelated interferograms allow full wavefront encoding using a single interferogram. This allows the study of fast dynamic events in hostile mechanical environments. Recently an error-free demodulation method for ideal pixelated interferograms was proposed. However, non-ideal conditions in interferometry may arise due to non-linear response of the CCD camera, multiple light paths in the interferometer, etc. These conditions generate non-sinusoidal fringes containing harmonics which degrade the phase estimation. Here we show that two-dimensional Fourier demodulation of pixelated interferograms rejects most harmonics except the complex ones at {-3(rd), +5(th), -7(th), +9(th), -11(th),…}. We propose temporal phase-shifting to remove these remaining harmonics. In particular, a 2-step phase-shifting algorithm is used to eliminate the -3(rd) and +5(th) complex harmonics, while a 3-step one is used to remove the -3(rd), +5<(th), -7(th) and +9(th) complex harmonics. © 2011 Optical Society of America
Spatial elements of mortality risk in old-growth forests
Das, Adrian; Battles, John; van Mantgem, Phillip J.; Stephenson, Nathan L.
2008-01-01
For many species of long-lived organisms, such as trees, survival appears to be the most critical vital rate affecting population persistence. However, methods commonly used to quantify tree death, such as relating tree mortality risk solely to diameter growth, almost certainly do not account for important spatial processes. Our goal in this study was to detect and, if present, to quantify the relevance of such processes. For this purpose, we examined purely spatial aspects of mortality for four species, Abies concolor, Abies magnifica, Calocedrus decurrens, and Pinus lambertiana, in an old-growth conifer forest in the Sierra Nevada of California, USA. The analysis was performed using data from nine fully mapped long-term monitoring plots.In three cases, the results unequivocally supported the inclusion of spatial information in models used to predict mortality. For Abies concolor, our results suggested that growth rate may not always adequately capture increased mortality risk due to competition. We also found evidence of a facilitative effect for this species, with mortality risk decreasing with proximity to conspecific neighbors. For Pinus lambertiana, mortality risk increased with density of conspecific neighbors, in keeping with a mechanism of increased pathogen or insect pressure (i.e., a Janzen-Connell type effect). Finally, we found that models estimating risk of being crushed were strongly improved by the inclusion of a simple index of spatial proximity.Not only did spatial indices improve models, those improvements were relevant for mortality prediction. For P. lambertiana, spatial factors were important for estimation of mortality risk regardless of growth rate. For A. concolor, although most of the population fell within spatial conditions in which mortality risk was well described by growth, trees that died occurred outside those conditions in a disproportionate fashion. Furthermore, as stands of A. concolor become increasingly dense, such spatial factors are likely to become increasingly important. In general, models that fail to account for spatial pattern are at risk of failure as conditions change.
2007-03-01
time. This is a very powerful tool in determining fine spatial resolution , as boundary conditions are not only updated at every timestep, but the ...HIGH RESOLUTION MESOSCALE WEATHER DATA IMPROVEMENT TO SPATIAL EFFECTS FOR DOSE-RATE CONTOUR PLOT PREDICTIONS THESIS Christopher P...11 1 HIGH RESOLUTION MESOSCALE WEATHER DATA IMPROVEMENT TO SPATIAL EFFECTS FOR DOSE-RATE CONTOUR PLOT
Research on mixed network architecture collaborative application model
NASA Astrophysics Data System (ADS)
Jing, Changfeng; Zhao, Xi'an; Liang, Song
2009-10-01
When facing complex requirements of city development, ever-growing spatial data, rapid development of geographical business and increasing business complexity, collaboration between multiple users and departments is needed urgently, however conventional GIS software (such as Client/Server model or Browser/Server model) are not support this well. Collaborative application is one of the good resolutions. Collaborative application has four main problems to resolve: consistency and co-edit conflict, real-time responsiveness, unconstrained operation, spatial data recoverability. In paper, application model called AMCM is put forward based on agent and multi-level cache. AMCM can be used in mixed network structure and supports distributed collaborative. Agent is an autonomous, interactive, initiative and reactive computing entity in a distributed environment. Agent has been used in many fields such as compute science and automation. Agent brings new methods for cooperation and the access for spatial data. Multi-level cache is a part of full data. It reduces the network load and improves the access and handle of spatial data, especially, in editing the spatial data. With agent technology, we make full use of its characteristics of intelligent for managing the cache and cooperative editing that brings a new method for distributed cooperation and improves the efficiency.
Spatial-temporal event detection in climate parameter imagery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKenna, Sean Andrew; Gutierrez, Karen A.
Previously developed techniques that comprise statistical parametric mapping, with applications focused on human brain imaging, are examined and tested here for new applications in anomaly detection within remotely-sensed imagery. Two approaches to analysis are developed: online, regression-based anomaly detection and conditional differences. These approaches are applied to two example spatial-temporal data sets: data simulated with a Gaussian field deformation approach and weekly NDVI images derived from global satellite coverage. Results indicate that anomalies can be identified in spatial temporal data with the regression-based approach. Additionally, la Nina and el Nino climatic conditions are used as different stimuli applied to themore » earth and this comparison shows that el Nino conditions lead to significant decreases in NDVI in both the Amazon Basin and in Southern India.« less
Stocking rate effects on spatial heterogeneity in vegetation cover in a grazing-resistant grassland
USDA-ARS?s Scientific Manuscript database
Spatial patterns in rangeland vegetation serve as indicators of rangeland condition and are an important component of wildlife habitat. We illustrate the use of very-large-scale aerial photography (VLSA) to quantify spatial patterns in bare soil of the northeastern Colorado shortgrass steppe. Using ...
Grazing intensity and spatial heterogeneity in bare soil in a grazing-resistant grassland
USDA-ARS?s Scientific Manuscript database
Spatial patterns in rangeland vegetation serve as indicators of rangeland condition and are an important component of wildlife habitat. We illustrate the use of very-large-scale aerial photography (VLSA) to quantify spatial patterns in bare soil of the northeastern Colorado shortgrass steppe. Using ...
Variability of growing degree days in Poland in response to ongoing climate changes in Europe.
Wypych, Agnieszka; Sulikowska, Agnieszka; Ustrnul, Zbigniew; Czekierda, Danuta
2017-01-01
An observed increase in air temperature can lead to significant changes in the phenology of plants and, consequently, changes in agricultural production. The aim of the study was to evaluate the spatial differentiation of thermal resources in Poland and their variability during a period of changing thermal conditions in Europe. Since the variability of thermal conditions is of paramount importance for perennial crops, the study focused on apple, plum, and cherry orchard regions in Poland. The analysis was conducted for the period of 1951-2010 using air temperature daily data. Thermal resources have been defined using the growing degree days (GDD) index calculated independently for the whole year and during in frost-free season for three air temperature thresholds: 0, 5, and 10 °C, which determine the non-winter period, growing season, and the period of full plant growth, respectively. In addition, due to the high significance for perennials in particular, the incidence and intensity of frost during flowering were calculated. In this study, a detailed analysis of the spatial differentiation of thermal resources was first performed, followed by an evaluation of long-term variability and associated change patterns. The obtained results confirmed an increase in thermal resources in Poland as a consequence of the lengthening of the growing season. However, the frequency and intensity of spring frost, especially during flowering or even during ripening of plants, remain a threat to harvests in both the eastern and western parts of the country.
Li, Juanhua; Wu, Chao; Zheng, Yingjun; Li, Ruikeng; Li, Xuanzi; She, Shenglin; Wu, Haibo; Peng, Hongjun; Ning, Yuping; Li, Liang
2017-09-17
The superior temporal gyrus (STG) is involved in speech recognition against informational masking under cocktail-party-listening conditions. Compared to healthy listeners, people with schizophrenia perform worse in speech recognition under informational speech-on-speech masking conditions. It is not clear whether the schizophrenia-related vulnerability to informational masking is associated with certain changes in FC of the STG with some critical brain regions. Using sparse-sampling fMRI design, this study investigated the differences between people with schizophrenia and healthy controls in FC of the STG for target-speech listening against informational speech-on-speech masking, when a listening condition with either perceived spatial separation (PSS, with a spatial release of informational masking) or perceived spatial co-location (PSC, without the spatial release) between target speech and masking speech was introduced. The results showed that in healthy participants, but not participants with schizophrenia, the contrast of either the PSS or PSC condition against the masker-only condition induced an enhancement of functional connectivity (FC) of the STG with the left superior parietal lobule and the right precuneus. Compared to healthy participants, participants with schizophrenia showed declined FC of the STG with the bilateral precuneus, right SPL, and right supplementary motor area. Thus, FC of the STG with the parietal areas is normally involved in speech listening against informational masking under either the PSS or PSC conditions, and declined FC of the STG in people with schizophrenia with the parietal areas may be associated with the increased vulnerability to informational masking. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Safi, Sare; Rahimi, Anoushiravan; Raeesi, Afsaneh; Safi, Hamid; Aghazadeh Amiri, Mohammad; Malek, Mojtaba; Yaseri, Mehdi; Haeri, Mohammad; Middleton, Frank A; Solessio, Eduardo; Ahmadieh, Hamid
2017-01-01
Objective To evaluate the ability of contrast sensitivity (CS) to discriminate loss of visual function in diabetic subjects with no clinical signs of retinopathy relative to that of normal subjects. Research design and methods In this prospective cross-sectional study, we measured CS in 46 diabetic subjects with a mean age of 48±6 years, a best-corrected visual acuity of 20/20 and no signs of diabetic retinopathy. The CS in these subjects was compared with CS measurements in 46 normal control subjects at four spatial frequencies (3, 6, 12, 18 cycles per degree) under moderate (500 lux) and dim (less than 2 lux) background light conditions. Results CS was approximately 0.16 log units lower in patients with diabetes relative to controls both in moderate and in dim background light conditions. Logistic regression classification and receiver operating characteristic curve analysis indicated that CS analysis using two light conditions was more accurate (0.78) overall compared with CS analysis using only a single illumination condition (accuracy values were 0.67 and 0.70 in moderate and dim light conditions, respectively). Conclusions Our results showed that patients with diabetes without clinical signs of retinopathy exhibit a uniform loss in CS at all spatial frequencies tested. Measuring the loss in CS at two spatial frequencies (3 and 6 cycles per degree) and two light conditions (moderate and dim) is sufficiently robust to classify diabetic subjects with no retinopathy versus control subjects. PMID:28878937
Oudman, Erik; Van der Stigchel, Stefan; Nijboer, Tanja C W; Wijnia, Jan W; Seekles, Maaike L; Postma, Albert
2016-03-01
Korsakoff's syndrome (KS) is characterized by explicit amnesia, but relatively spared implicit memory. The aim of this study was to assess to what extent KS patients can acquire spatial information while performing a spatial navigation task. Furthermore, we examined whether residual spatial acquisition in KS was based on automatic or effortful coding processes. Therefore, 20 KS patients and 20 matched healthy controls performed six tasks on spatial navigation after they navigated through a residential area. Ten participants per group were instructed to pay close attention (intentional condition), while 10 received mock instructions (incidental condition). KS patients showed hampered performance on a majority of tasks, yet their performance was superior to chance level on a route time and distance estimation tasks, a map drawing task and a route walking task. Performance was relatively spared on the route distance estimation task, but there were large variations between participants. Acquisition in KS was automatic rather than effortful, since no significant differences were obtained between the intentional and incidental condition on any task, whereas for the healthy controls, the intention to learn was beneficial for the map drawing task and the route walking task. The results of this study suggest that KS patients are still able to acquire spatial information during navigation on multiple domains despite the presence of the explicit amnesia. Residual acquisition is most likely based on automatic coding processes. © 2014 The British Psychological Society.
Attention is necessary for subliminal instrumental conditioning.
Mastropasqua, Tommaso; Turatto, Massimo
2015-08-10
The capacity of humans and other animals to provide appropriate responses to stimuli anticipating motivationally significant events is exemplified by instrumental conditioning. Interestingly, in humans instrumental conditioning can occur also for subliminal outcome-predicting stimuli. However, it remains unclear whether attention is necessary for subliminal instrumental conditioning to take place. In two experiments, human participants had to learn to collect rewards (monetary gains) while avoiding punishments (monetary losses), on the basis of subliminal outcome-predicting cues. We found that instrumental conditioning can proceed subconsciously only if spatial attention is aligned with the subliminal cue. Conversely, if spatial attention is briefly diverted from the subliminal cue, then instrumental conditioning is blocked. In humans, attention but not awareness is therefore mandatory for instrumental conditioning, thus revealing a dissociation between awareness and attention in the control of motivated behavior.
Johnson, Adam G.; Engott, John A.; Bassiouni, Maoya; Rotzoll, Kolja
2014-12-14
Demand for freshwater on the Island of Maui is expected to grow. To evaluate the availability of fresh groundwater, estimates of groundwater recharge are needed. A water-budget model with a daily computation interval was developed and used to estimate the spatial distribution of recharge on Maui for average climate conditions (1978–2007 rainfall and 2010 land cover) and for drought conditions (1998–2002 rainfall and 2010 land cover). For average climate conditions, mean annual recharge for Maui is about 1,309 million gallons per day, or about 44 percent of precipitation (rainfall and fog interception). Recharge for average climate conditions is about 39 percent of total water inflow consisting of precipitation, irrigation, septic leachate, and seepage from reservoirs and cesspools. Most recharge occurs on the wet, windward slopes of Haleakalā and on the wet, uplands of West Maui Mountain. Dry, coastal areas generally have low recharge. In the dry isthmus, however, irrigated fields have greater recharge than nearby unirrigated areas. For drought conditions, mean annual recharge for Maui is about 1,010 million gallons per day, which is 23 percent less than recharge for average climate conditions. For individual aquifer-system areas used for groundwater management, recharge for drought conditions is about 8 to 51 percent less than recharge for average climate conditions. The spatial distribution of rainfall is the primary factor determining spatially distributed recharge estimates for most areas on Maui. In wet areas, recharge estimates are also sensitive to water-budget parameters that are related to runoff, fog interception, and forest-canopy evaporation. In dry areas, recharge estimates are most sensitive to irrigated crop areas and parameters related to evapotranspiration.
Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring.
Carroll, Carlos; Johnson, Devin S; Dunk, Jeffrey R; Zielinski, William J
2010-12-01
Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence-absence data derived from regional monitoring programs to develop models with both landscape and site-level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence-absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad-scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km(2) hexagons), can increase the relevance of habitat models to multispecies conservation planning. Journal compilation © 2010 Society for Conservation Biology. No claim to original US government works.
Li, Xiaobo; Thermenos, Heidi W; Wu, Ziyan; Momura, Yoko; Wu, Kai; Keshavan, Matcheri; Seidman, Lawrence; DeLisi, Lynn E
2016-10-01
Working memory impairment (especially in verbal and spatial domains) is the core neurocognitive impairment in schizophrenia and the familial high-risk (FHR) population. Inconsistent results have been reported in clinical and neuroimaging studies examining the verbal- and spatial-memory deficits in the FHR subjects, due to sample differences and lack of understanding on interactions of the brain regions for processing verbal- and spatial-working memory. Functional MRI data acquired during a verbal- vs. spatial-memory task were included from 51 young adults [26 FHR and 25 controls]. Group comparisons were conducted in brain activation patterns responding to 1) verbal-memory condition (A), 2) spatial-memory condition (B), 3) verbal higher than spatial (A-B), 4) spatial higher than verbal (B-A), 5) conjunction of brain regions that were activated during both A and B (A∧B). Group difference of the laterality index (LI) in inferior frontal lobe for condition A was also assessed. Compared to controls, the FHR group exhibited significantly decreased brain activity in left inferior frontal during A, and significantly stronger involvement of ACC, PCC, paracentral gyrus for the contrast of A-B. The LI showed a trend of reduced left-higher-than-right pattern for verbal-memory processing in the HR group. Our findings suggest that in the entire functional brain network for working-memory processing, verbal information processing associated brain pathways are significantly altered in people at familial high risk for developing schizophrenia. Future studies will need to examine whether these alterations may indicate vulnerability for predicting the onset of Schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of motion on speech recognition.
Davis, Timothy J; Grantham, D Wesley; Gifford, René H
2016-07-01
The benefit of spatial separation for talkers in a multi-talker environment is well documented. However, few studies have examined the effect of talker motion on speech recognition. In the current study, we evaluated the effects of (1) motion of the target or distracters, (2) a priori information about the target and distracter spatial configurations, and (3) target and distracter location. In total, seventeen young adults with normal hearing were tested in a large anechoic chamber in two experiments. In Experiment 1, seven stimulus conditions were tested using the Coordinate Response Measure (Bolia et al., 2000) speech corpus, in which subjects were required to report the key words in a target sentence presented simultaneously with two distracter sentences. As in previous studies, there was a significant improvement in key word identification for conditions in which the target and distracters were spatially separated as compared to the co-located conditions. In addition, 1) motion of either talker or distracter resulted in improved performance compared to stationary presentation (talker motion yielded significantly better performance than distracter motion) 2) a priori information regarding stimulus configuration was not beneficial, and 3) performance was significantly better with key words at 0° azimuth as compared to -60° (on the listener's left). Experiment 2 included two additional conditions designed to assess whether the benefit of motion observed in Experiment 1 was due to the motion itself or to the fact that the motion conditions introduced small spatial separations in the target and distracter key words. Results showed that small spatial separations (on the order of 5-8°) resulted in improved performance (relative to co-located key words) whether the sentences were moving or stationary. These results suggest that in the presence of distracting messages, motion of either target or distracters and/or small spatial separation of the key words may be beneficial for sound source segregation and thus for improved speech recognition. Copyright © 2016 Elsevier B.V. All rights reserved.
Eustaquio-Martín, Almudena; Stohl, Joshua S.; Wolford, Robert D.; Schatzer, Reinhold; Wilson, Blake S.
2016-01-01
Objectives: In natural hearing, cochlear mechanical compression is dynamically adjusted via the efferent medial olivocochlear reflex (MOCR). These adjustments probably help understanding speech in noisy environments and are not available to the users of current cochlear implants (CIs). The aims of the present study are to: (1) present a binaural CI sound processing strategy inspired by the control of cochlear compression provided by the contralateral MOCR in natural hearing; and (2) assess the benefits of the new strategy for understanding speech presented in competition with steady noise with a speech-like spectrum in various spatial configurations of the speech and noise sources. Design: Pairs of CI sound processors (one per ear) were constructed to mimic or not mimic the effects of the contralateral MOCR on compression. For the nonmimicking condition (standard strategy or STD), the two processors in a pair functioned similarly to standard clinical processors (i.e., with fixed back-end compression and independently of each other). When configured to mimic the effects of the MOCR (MOC strategy), the two processors communicated with each other and the amount of back-end compression in a given frequency channel of each processor in the pair decreased/increased dynamically (so that output levels dropped/increased) with increases/decreases in the output energy from the corresponding frequency channel in the contralateral processor. Speech reception thresholds in speech-shaped noise were measured for 3 bilateral CI users and 2 single-sided deaf unilateral CI users. Thresholds were compared for the STD and MOC strategies in unilateral and bilateral listening conditions and for three spatial configurations of the speech and noise sources in simulated free-field conditions: speech and noise sources colocated in front of the listener, speech on the left ear with noise in front of the listener, and speech on the left ear with noise on the right ear. In both bilateral and unilateral listening, the electrical stimulus delivered to the test ear(s) was always calculated as if the listeners were wearing bilateral processors. Results: In both unilateral and bilateral listening conditions, mean speech reception thresholds were comparable with the two strategies for colocated speech and noise sources, but were at least 2 dB lower (better) with the MOC than with the STD strategy for spatially separated speech and noise sources. In unilateral listening conditions, mean thresholds improved with increasing the spatial separation between the speech and noise sources regardless of the strategy but the improvement was significantly greater with the MOC strategy. In bilateral listening conditions, thresholds improved significantly with increasing the speech-noise spatial separation only with the MOC strategy. Conclusions: The MOC strategy (1) significantly improved the intelligibility of speech presented in competition with a spatially separated noise source, both in unilateral and bilateral listening conditions; (2) produced significant spatial release from masking in bilateral listening conditions, something that did not occur with fixed compression; and (3) enhanced spatial release from masking in unilateral listening conditions. The MOC strategy as implemented here, or a modified version of it, may be usefully applied in CIs and in hearing aids. PMID:26862711
Lopez-Poveda, Enrique A; Eustaquio-Martín, Almudena; Stohl, Joshua S; Wolford, Robert D; Schatzer, Reinhold; Wilson, Blake S
2016-01-01
In natural hearing, cochlear mechanical compression is dynamically adjusted via the efferent medial olivocochlear reflex (MOCR). These adjustments probably help understanding speech in noisy environments and are not available to the users of current cochlear implants (CIs). The aims of the present study are to: (1) present a binaural CI sound processing strategy inspired by the control of cochlear compression provided by the contralateral MOCR in natural hearing; and (2) assess the benefits of the new strategy for understanding speech presented in competition with steady noise with a speech-like spectrum in various spatial configurations of the speech and noise sources. Pairs of CI sound processors (one per ear) were constructed to mimic or not mimic the effects of the contralateral MOCR on compression. For the nonmimicking condition (standard strategy or STD), the two processors in a pair functioned similarly to standard clinical processors (i.e., with fixed back-end compression and independently of each other). When configured to mimic the effects of the MOCR (MOC strategy), the two processors communicated with each other and the amount of back-end compression in a given frequency channel of each processor in the pair decreased/increased dynamically (so that output levels dropped/increased) with increases/decreases in the output energy from the corresponding frequency channel in the contralateral processor. Speech reception thresholds in speech-shaped noise were measured for 3 bilateral CI users and 2 single-sided deaf unilateral CI users. Thresholds were compared for the STD and MOC strategies in unilateral and bilateral listening conditions and for three spatial configurations of the speech and noise sources in simulated free-field conditions: speech and noise sources colocated in front of the listener, speech on the left ear with noise in front of the listener, and speech on the left ear with noise on the right ear. In both bilateral and unilateral listening, the electrical stimulus delivered to the test ear(s) was always calculated as if the listeners were wearing bilateral processors. In both unilateral and bilateral listening conditions, mean speech reception thresholds were comparable with the two strategies for colocated speech and noise sources, but were at least 2 dB lower (better) with the MOC than with the STD strategy for spatially separated speech and noise sources. In unilateral listening conditions, mean thresholds improved with increasing the spatial separation between the speech and noise sources regardless of the strategy but the improvement was significantly greater with the MOC strategy. In bilateral listening conditions, thresholds improved significantly with increasing the speech-noise spatial separation only with the MOC strategy. The MOC strategy (1) significantly improved the intelligibility of speech presented in competition with a spatially separated noise source, both in unilateral and bilateral listening conditions; (2) produced significant spatial release from masking in bilateral listening conditions, something that did not occur with fixed compression; and (3) enhanced spatial release from masking in unilateral listening conditions. The MOC strategy as implemented here, or a modified version of it, may be usefully applied in CIs and in hearing aids.
Boundary-induced pattern formation from uniform temporal oscillation
NASA Astrophysics Data System (ADS)
Kohsokabe, Takahiro; Kaneko, Kunihiko
2018-04-01
Pattern dynamics triggered by fixing a boundary is investigated. By considering a reaction-diffusion equation that has a unique spatially uniform and limit cycle attractor under a periodic or Neumann boundary condition, and then by choosing a fixed boundary condition, we found three novel phases depending on the ratio of diffusion constants of activator to inhibitor: transformation of temporally periodic oscillation into a spatially periodic fixed pattern, travelling wave emitted from the boundary, and aperiodic spatiotemporal dynamics. The transformation into a fixed, periodic pattern is analyzed by crossing of local nullclines at each spatial point, shifted by diffusion terms, as is analyzed by using recursive equations, to obtain the spatial pattern as an attractor. The generality of the boundary-induced pattern formation as well as its relevance to biological morphogenesis is discussed.
NASA Astrophysics Data System (ADS)
Hasyim, Fuad; Subagio, Habib; Darmawan, Mulyanto
2016-06-01
A preparation of spatial planning documents require basic geospatial information and thematic accuracies. Recently these issues become important because spatial planning maps are impartial attachment of the regional act draft on spatial planning (PERDA). The needs of geospatial information in the preparation of spatial planning maps preparation can be divided into two major groups: (i). basic geospatial information (IGD), consist of of Indonesia Topographic maps (RBI), coastal and marine environmental maps (LPI), and geodetic control network and (ii). Thematic Geospatial Information (IGT). Currently, mostly local goverment in Indonesia have not finished their regulation draft on spatial planning due to some constrain including technical aspect. Some constrain in mapping of spatial planning are as follows: the availability of large scale ofbasic geospatial information, the availability of mapping guidelines, and human resources. Ideal conditions to be achieved for spatial planning maps are: (i) the availability of updated geospatial information in accordance with the scale needed for spatial planning maps, (ii) the guideline of mapping for spatial planning to support local government in completion their PERDA, and (iii) capacity building of local goverment human resources to completed spatial planning maps. The OMP strategies formulated to achieve these conditions are: (i) accelerating of IGD at scale of 1:50,000, 1: 25,000 and 1: 5,000, (ii) to accelerate mapping and integration of Thematic Geospatial Information (IGT) through stocktaking availability and mapping guidelines, (iii) the development of mapping guidelines and dissemination of spatial utilization and (iv) training of human resource on mapping technology.
NASA Astrophysics Data System (ADS)
Singla, Neeru; Dubey, Kavita; Srivastava, Vishal; Ahmad, Azeem; Mehta, D. S.
2018-02-01
We developed an automated high-resolution full-field spatial coherence tomography (FF-SCT) microscope for quantitative phase imaging that is based on the spatial, rather than the temporal, coherence gating. The Red and Green color laser light was used for finding the quantitative phase images of unstained human red blood cells (RBCs). This study uses morphological parameters of unstained RBCs phase images to distinguish between normal and infected cells. We recorded the single interferogram by a FF-SCT microscope for red and green color wavelength and average the two phase images to further reduced the noise artifacts. In order to characterize anemia infected from normal cells different morphological features were extracted and these features were used to train machine learning ensemble model to classify RBCs with high accuracy.
Romañach, Stephanie; Watling, James I.; Fletcher, Robert J.; Speroterra, Carolina; Bucklin, David N.; Brandt, Laura A.; Pearlstine, Leonard G.; Escribano, Yesenia; Mazzotti, Frank J.
2014-01-01
Climate change poses new challenges for natural resource managers. Predictive modeling of species–environment relationships using climate envelope models can enhance our understanding of climate change effects on biodiversity, assist in assessment of invasion risk by exotic organisms, and inform life-history understanding of individual species. While increasing interest has focused on the role of uncertainty in future conditions on model predictions, models also may be sensitive to the initial conditions on which they are trained. Although climate envelope models are usually trained using data on contemporary climate, we lack systematic comparisons of model performance and predictions across alternative climate data sets available for model training. Here, we seek to fill that gap by comparing variability in predictions between two contemporary climate data sets to variability in spatial predictions among three alternative projections of future climate. Overall, correlations between monthly temperature and precipitation variables were very high for both contemporary and future data. Model performance varied across algorithms, but not between two alternative contemporary climate data sets. Spatial predictions varied more among alternative general-circulation models describing future climate conditions than between contemporary climate data sets. However, we did find that climate envelope models with low Cohen's kappa scores made more discrepant spatial predictions between climate data sets for the contemporary period than did models with high Cohen's kappa scores. We suggest conservation planners evaluate multiple performance metrics and be aware of the importance of differences in initial conditions for spatial predictions from climate envelope models.
NASA Astrophysics Data System (ADS)
Marsh, C.; Pomeroy, J. W.; Wheater, H. S.
2016-12-01
There is a need for hydrological land surface schemes that can link to atmospheric models, provide hydrological prediction at multiple scales and guide the development of multiple objective water predictive systems. Distributed raster-based models suffer from an overrepresentation of topography, leading to wasted computational effort that increases uncertainty due to greater numbers of parameters and initial conditions. The Canadian Hydrological Model (CHM) is a modular, multiphysics, spatially distributed modelling framework designed for representing hydrological processes, including those that operate in cold-regions. Unstructured meshes permit variable spatial resolution, allowing coarse resolutions at low spatial variability and fine resolutions as required. Model uncertainty is reduced by lessening the necessary computational elements relative to high-resolution rasters. CHM uses a novel multi-objective approach for unstructured triangular mesh generation that fulfills hydrologically important constraints (e.g., basin boundaries, water bodies, soil classification, land cover, elevation, and slope/aspect). This provides an efficient spatial representation of parameters and initial conditions, as well as well-formed and well-graded triangles that are suitable for numerical discretization. CHM uses high-quality open source libraries and high performance computing paradigms to provide a framework that allows for integrating current state-of-the-art process algorithms. The impact of changes to model structure, including individual algorithms, parameters, initial conditions, driving meteorology, and spatial/temporal discretization can be easily tested. Initial testing of CHM compared spatial scales and model complexity for a spring melt period at a sub-arctic mountain basin. The meshing algorithm reduced the total number of computational elements and preserved the spatial heterogeneity of predictions.
Improving left spatial neglect through music scale playing.
Bernardi, Nicolò Francesco; Cioffi, Maria Cristina; Ronchi, Roberta; Maravita, Angelo; Bricolo, Emanuela; Zigiotto, Luca; Perucca, Laura; Vallar, Giuseppe
2017-03-01
The study assessed whether the auditory reference provided by a music scale could improve spatial exploration of a standard musical instrument keyboard in right-brain-damaged patients with left spatial neglect. As performing music scales involves the production of predictable successive pitches, the expectation of the subsequent note may facilitate patients to explore a larger extension of space in the left affected side, during the production of music scales from right to left. Eleven right-brain-damaged stroke patients with left spatial neglect, 12 patients without neglect, and 12 age-matched healthy participants played descending scales on a music keyboard. In a counterbalanced design, the participants' exploratory performance was assessed while producing scales in three feedback conditions: With congruent sound, no-sound, or random sound feedback provided by the keyboard. The number of keys played and the timing of key press were recorded. Spatial exploration by patients with left neglect was superior with congruent sound feedback, compared to both Silence and Random sound conditions. Both the congruent and incongruent sound conditions were associated with a greater deceleration in all groups. The frame provided by the music scale improves exploration of the left side of space, contralateral to the right hemisphere, damaged in patients with left neglect. Performing a scale with congruent sounds may trigger at some extent preserved auditory and spatial multisensory representations of successive sounds, thus influencing the time course of space scanning, and ultimately resulting in a more extensive spatial exploration. These findings offer new perspectives also for the rehabilitation of the disorder. © 2015 The British Psychological Society.
Gramann, Klaus; Hoepner, Paul; Karrer-Gauss, Katja
2017-01-01
Spatial cognitive skills deteriorate with the increasing use of automated GPS navigation and a general decrease in the ability to orient in space might have further impact on independence, autonomy, and quality of life. In the present study we investigate whether modified navigation instructions support incidental spatial knowledge acquisition. A virtual driving environment was used to examine the impact of modified navigation instructions on spatial learning while using a GPS navigation assistance system. Participants navigated through a simulated urban and suburban environment, using navigation support to reach their destination. Driving performance as well as spatial learning was thereby assessed. Three navigation instruction conditions were tested: (i) a control group that was provided with classical navigation instructions at decision points, and two other groups that received navigation instructions at decision points including either (ii) additional irrelevant information about landmarks or (iii) additional personally relevant information (i.e., individual preferences regarding food, hobbies, etc.), associated with landmarks. Driving performance revealed no differences between navigation instructions. Significant improvements were observed in both modified navigation instruction conditions on three different measures of spatial learning and memory: subsequent navigation of the initial route without navigation assistance, landmark recognition, and sketch map drawing. Future navigation assistance systems could incorporate modified instructions to promote incidental spatial learning and to foster more general spatial cognitive abilities. Such systems might extend mobility across the lifespan. PMID:28243219
Design rules for quasi-linear nonlinear optical structures
NASA Astrophysics Data System (ADS)
Lytel, Richard; Mossman, Sean M.; Kuzyk, Mark G.
2015-09-01
The maximization of the intrinsic optical nonlinearities of quantum structures for ultrafast applications requires a spectrum scaling as the square of the energy eigenstate number or faster. This is a necessary condition for an intrinsic response approaching the fundamental limits. A second condition is a design generating eigenstates whose ground and lowest excited state probability densities are spatially separated to produce large differences in dipole moments while maintaining a reasonable spatial overlap to produce large off-diagonal transition moments. A structure whose design meets both conditions will necessarily have large first or second hyperpolarizabilities. These two conditions are fundamental heuristics for the design of any nonlinear optical structure.
NASA Astrophysics Data System (ADS)
Rossi, Marco; Pierron, Fabrice; Forquin, Pascal
2014-02-01
Ultra-high speed (UHS) cameras allow us to acquire images typically up to about 1 million frames s-1 for a full spatial resolution of the order of 1 Mpixel. Different technologies are available nowadays to achieve these performances, an interesting one is the so-called in situ storage image sensor architecture where the image storage is incorporated into the sensor chip. Such an architecture is all solid state and does not contain movable devices as occurs, for instance, in the rotating mirror UHS cameras. One of the disadvantages of this system is the low fill factor (around 76% in the vertical direction and 14% in the horizontal direction) since most of the space in the sensor is occupied by memory. This peculiarity introduces a series of systematic errors when the camera is used to perform full-field strain measurements. The aim of this paper is to develop an experimental procedure to thoroughly characterize the performance of such kinds of cameras in full-field deformation measurement and identify the best operative conditions which minimize the measurement errors. A series of tests was performed on a Shimadzu HPV-1 UHS camera first using uniform scenes and then grids under rigid movements. The grid method was used as full-field measurement optical technique here. From these tests, it has been possible to appropriately identify the camera behaviour and utilize this information to improve actual measurements.
Earnest, Arul; Hock Ong, Marcus Eng; Shahidah, Nur; Min Ng, Wen; Foo, Chuanyang; Nott, David John
2012-01-01
The main objective of this study was to establish the spatial variation in ambulance response times for out-of-hospital cardiac arrests (OHCAs) in the city-state of Singapore. The secondary objective involved studying the relationships between various covariates, such as traffic condition and time and day of collapse, and ambulance response times. The study design was observational and ecological in nature. Data on OHCAs were collected from a nationally representative database for the period October 2001 to October 2004. We used the conditional autoregressive (CAR) model to analyze the data. Within the Bayesian framework of analysis, we used a Weibull regression model that took into account spatial random effects. The regression model was used to study the independent effects of each covariate. Our results showed that there was spatial heterogeneity in the ambulance response times in Singapore. Generally, areas in the far outskirts (suburbs), such as Boon Lay (in the west) and Sembawang (in the north), fared badly in terms of ambulance response times. This improved when adjusted for key covariates, including distance from the nearest fire station. Ambulance response time was also associated with better traffic conditions, weekend OHCAs, distance from the nearest fire station, and OHCAs occurring during nonpeak driving hours. For instance, the hazard ratio for good ambulance response time was 2.35 (95% credible interval [CI] 1.97-2.81) when traffic conditions were light and 1.72 (95% CI 1.51-1.97) when traffic conditions were moderate, as compared with heavy traffic. We found a clear spatial gradient for ambulance response times, with far-outlying areas' exhibiting poorer response times. Our study highlights the utility of this novel approach, which may be helpful for planning emergency medical services and public emergency responses.
NASA Astrophysics Data System (ADS)
Wang, Daosheng; Zhang, Jicai; He, Xianqiang; Chu, Dongdong; Lv, Xianqing; Wang, Ya Ping; Yang, Yang; Fan, Daidu; Gao, Shu
2018-01-01
Model parameters in the suspended cohesive sediment transport models are critical for the accurate simulation of suspended sediment concentrations (SSCs). Difficulties in estimating the model parameters still prevent numerical modeling of the sediment transport from achieving a high level of predictability. Based on a three-dimensional cohesive sediment transport model and its adjoint model, the satellite remote sensing data of SSCs during both spring tide and neap tide, retrieved from Geostationary Ocean Color Imager (GOCI), are assimilated to synchronously estimate four spatially and temporally varying parameters in the Hangzhou Bay in China, including settling velocity, resuspension rate, inflow open boundary conditions and initial conditions. After data assimilation, the model performance is significantly improved. Through several sensitivity experiments, the spatial and temporal variation tendencies of the estimated model parameters are verified to be robust and not affected by model settings. The pattern for the variations of the estimated parameters is analyzed and summarized. The temporal variations and spatial distributions of the estimated settling velocity are negatively correlated with current speed, which can be explained using the combination of flocculation process and Stokes' law. The temporal variations and spatial distributions of the estimated resuspension rate are also negatively correlated with current speed, which are related to the grain size of the seabed sediments under different current velocities. Besides, the estimated inflow open boundary conditions reach the local maximum values near the low water slack conditions and the estimated initial conditions are negatively correlated with water depth, which is consistent with the general understanding. The relationships between the estimated parameters and the hydrodynamic fields can be suggestive for improving the parameterization in cohesive sediment transport models.
Three-dimensional spatially curved local Bessel beams generated by metasurface
NASA Astrophysics Data System (ADS)
Liu, Dawei; Wu, Jiawen; Cheng, Bo; Li, Hongliang
2018-03-01
We propose a reflective metasurface based on an artificial admittance modulation surface to generate three-dimensional spatially curved beams. The phase acquisition utilized to modulate this sinusoidally varying surface admittance combines the enveloping theory of differential geometry and the method for producing two-dimensional Bessel beams. The metasurface is fabricated, and the comparison between the full-wave simulations and experimental results demonstrates good performance of three-dimensional spatially curved beams generated by the metasurface.
Seedling establishment and physiological responses to temporal and spatial soil moisture changes
Jeremy Pinto; John D. Marshall; Kas Dumroese; Anthony S. Davis; Douglas R. Cobos
2016-01-01
In many forests of the world, the summer season (temporal element) brings drought conditions causing low soil moisture in the upper soil profile (spatial element) - a potentially large barrier to seedling establishment. We evaluated the relationship between initial seedling root depth, temporal and spatial changes in soil moisture during drought after...
Dopamine Transporter Genotype Predicts Attentional Asymmetry in Healthy Adults
ERIC Educational Resources Information Center
Newman, Daniel P.; O'Connell, Redmond G.; Nathan, Pradeep J.; Bellgrove, Mark A.
2012-01-01
A number of recent studies suggest that DNA variation in the dopamine transporter gene (DAT1) influences spatial attention asymmetry in clinical populations such as ADHD, but confirmation in non-clinical samples is required. Since non-spatial factors such as attentional load have been shown to influence spatial biases in clinical conditions, here…
Differential Age Effects on Spatial and Visual Working Memory
ERIC Educational Resources Information Center
Oosterman, Joukje M.; Morel, Sascha; Meijer, Lisette; Buvens, Cleo; Kessels, Roy P. C.; Postma, Albert
2011-01-01
The present study was intended to compare age effects on visual and spatial working memory by using two versions of the same task that differed only in presentation mode. The working memory task contained both a simultaneous and a sequential presentation mode condition, reflecting, respectively, visual and spatial working memory processes. Young…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jincheng; Kim, Tong-Ho; Jiao, Wenyuan
Recent work has shown that Bi incorporation increases during molecular beam epitaxy (MBE) when surface processes are kinetically limited through increased growth rate. Herein we explore how the structural and optical properties of GaAs{sub 1−x}Bi{sub x} films are modified when grown under conditions with varying degrees of kinetic limitations realized through growth temperature and growth rate changes. Within the typical window of MBE growth conditions for GaAs{sub 1−x}Bi{sub x}, we compare films with similar (∼3%) compositions grown under conditions of reduced kinetic limitations, i.e., relatively low gallium supersaturation achieved at higher temperatures (∼350 °C) and lower growth rates (∼0.5 μm/h), tomore » those grown farther from equilibrium, specifically, higher supersaturation achieved at lower growth temperatures (∼290 °C) and higher growth rates (∼1.4 μm/h). Both the x-ray diffraction full width at half maximum of the omega-2theta scan and the 300 K photoluminescence intensity increase when samples are grown under less kinetically limited conditions. We interpret these findings in relation to the incorporation of Bi-related microstructural defects that are more readily formed during less kinetically limited growth. These defects lead to enhanced luminescence efficiency due to the spatial localization of carriers.« less
Nishino, Ken; Nakamura, Mutsuko; Matsumoto, Masayuki; Tanno, Osamu; Nakauchi, Shigeki
2011-03-28
We previously proposed a filter that could detect cosmetic foundations with high discrimination accuracy [Opt. Express 19, 6020 (2011)]. This study extends the filter's functionality to the quantification of the amount of foundation and applies the filter for the assessment of spatial distributions of foundation under realistic facial conditions. Human faces that are applied with quantitatively controlled amounts of cosmetic foundations were measured using the filter. A calibration curve between pixel values of the image and the amount of foundation was created. The optical filter was applied to visualize spatial foundation distributions under realistic facial conditions, which clearly indicated areas on the face where foundation remained even after cleansing. Results confirm that the proposed filter could visualize and nondestructively inspect the foundation distributions.
A Bayesian kriging approach for blending satellite and ground precipitation observations
Verdin, Andrew P.; Rajagopalan, Balaji; Kleiber, William; Funk, Christopher C.
2015-01-01
Drought and flood management practices require accurate estimates of precipitation. Gauge observations, however, are often sparse in regions with complicated terrain, clustered in valleys, and of poor quality. Consequently, the spatial extent of wet events is poorly represented. Satellite-derived precipitation data are an attractive alternative, though they tend to underestimate the magnitude of wet events due to their dependency on retrieval algorithms and the indirect relationship between satellite infrared observations and precipitation intensities. Here we offer a Bayesian kriging approach for blending precipitation gauge data and the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates for Central America, Colombia, and Venezuela. First, the gauge observations are modeled as a linear function of satellite-derived estimates and any number of other variables—for this research we include elevation. Prior distributions are defined for all model parameters and the posterior distributions are obtained simultaneously via Markov chain Monte Carlo sampling. The posterior distributions of these parameters are required for spatial estimation, and thus are obtained prior to implementing the spatial kriging model. This functional framework is applied to model parameters obtained by sampling from the posterior distributions, and the residuals of the linear model are subject to a spatial kriging model. Consequently, the posterior distributions and uncertainties of the blended precipitation estimates are obtained. We demonstrate this method by applying it to pentadal and monthly total precipitation fields during 2009. The model's performance and its inherent ability to capture wet events are investigated. We show that this blending method significantly improves upon the satellite-derived estimates and is also competitive in its ability to represent wet events. This procedure also provides a means to estimate a full conditional distribution of the “true” observed precipitation value at each grid cell.
NASA Astrophysics Data System (ADS)
Troch, Peter A.; Pangle, Luke; Niu, Guo-Yue; Dontsova, Katerina; Barron-Gafford, Greg; van Haren, Joost; Pavao-Zuckerman, Mitch
2014-05-01
The Landscape Evolution Observatory (LEO) at Biosphere 2-The University of Arizona consists of three identical, sloping, 333 m2 convergent landscapes inside a 5,000 m2 environmentally controlled facility. These engineered landscapes contain 1-meter depth of basaltic tephra, ground to homogenous loamy sand that will undergo physical, chemical, and mineralogical changes over many years. Each landscape contains a spatially dense sensor and sampler network capable of resolving meter-scale lateral heterogeneity and sub-meter scale vertical heterogeneity in moisture, energy and carbon states and fluxes. The density of sensors and frequency at which they can be polled allows for data collection at spatial and temporal scales that are impossible in natural field settings. Embedded solution and gas samplers allow for quantification of biogeochemical processes, and facilitate the use of chemical tracers to study water movement at very high spatial resolutions. Each ~600 metric ton landscape has load cells embedded into the structure to measure changes in total system mass with 0.05% full-scale repeatability (equivalent to less than 1 cm of precipitation). This facilitates the real time accounting of hydrological partitioning at the hillslope scale. Each hillslope is equipped with an engineered rain system capable of raining at rates between 3 and 45 mm/hr in a range of spatial patterns. The rain systems are capable of creating long-term steady state conditions or running complex simulations. The precipitation water supply storage system is flexibly designed to facilitate addition of tracers at constant or time-varying rates for any of the three hillslopes. This presentation will discuss detection of early landscape evolution in terms of hydrological, geochemical and microbial processes through controlled experimentation, data analysis, and numerical modeling during the commissioning phase of the first hillslope at LEO.
Wakefield, C B
2010-10-01
Ichthyoplankton sampling and ovarian characteristics were used to elucidate whether the reproductive cycles of a spawning aggregation of snapper Pagrus auratus in a nearshore marine embayment were temporally and spatially specific and related with environmental conditions. The reproductive dynamics of this aggregation were studied over four consecutive years (2001-2004). Spawning occurred between September and January each year, when water temperatures ranged from 15·8 to 23·1° C. In all 4 years, the cumulative egg densities in Cockburn Sound were highest when water temperatures were between the narrow range of 19-20° C. The spawning fraction of females was monthly bimodal and peaked during new and the full moons at 96-100% and c. 75%, respectively. The backcalculated ages of P. auratus eggs collected from 16 ichthyoplankton surveys demonstrated that P. auratus in Cockburn Sound spawn at night during the 3 h following the high tide. The spatial distributions of P. auratus eggs in Cockburn Sound during the peak reproductive period in all 4 years were consistent, further implying spawning was temporally and spatially specific. High concentrations of recently spawned eggs (8-16 h old) demonstrated spawning also occurred within the adjacent marine embayments of Owen Anchorage and Warnbro Sound. Water circulation in Cockburn and Warnbro Sounds resembled an eddy that was most prominent during the period of highest egg densities, thereby facilitating the retention of eggs in these areas. The reproductive cycles of P. auratus described in this study have assisted managers with the appropriate temporal and spatial scale for a closed fishing season to protect these spawning aggregations. © 2010 The Author. Journal compilation © 2010 The Fisheries Society of the British Isles.
Modelling temporal and spatial dynamics of benthic fauna in North-West-European shelf seas
NASA Astrophysics Data System (ADS)
Lessin, Gennadi; Bruggeman, Jorn; Artioli, Yuri; Butenschön, Momme; Blackford, Jerry
2017-04-01
Benthic zones of shallow shelf seas receive high amounts of organic material. Physical processes such as resuspension, as well as complex transformations mediated by diverse faunal and microbial communities, define fate of this material, which can be returned to the water column, reworked within sediments or ultimately buried. In recent years, numerical models of various complexity and serving different goals have been developed and applied in order to better understand and predict dynamics of benthic processes. ERSEM includes explicit parameterisations of several groups of benthic biota, which makes it particularly applicable for studies of benthic biodiversity, biological interactions within sediments and benthic-pelagic coupling. To assess model skill in reproducing temporal (inter-annual and seasonal) dynamics of major benthic macrofaunal groups, 1D model simulation results were compared with data from the Western Channel Observatory (WCO) benthic survey. The benthic model was forced with organic matter deposition rates inferred from observed phytoplankton abundance and model parameters were subsequently recalibrated. Based on model results and WCO data comparison, deposit-feeders exert clear seasonal variability, while for suspension-feeders inter-annual variability is more pronounced. Spatial distribution of benthic fauna was investigated using results of a full-scale NEMO-ERSEM hindcast simulation of the North-West European Shelf Seas area, covering the period of 1981-2014. Results suggest close relationship between spatial distribution of biomass of benthic faunal functional groups in relation to bathymetry, hydrodynamic conditions and organic matter supply. Our work highlights that it is feasible to construct, implement and validate models that explicitly include functional groups of benthic macrofauna. Moreover, the modelling approach delivers detailed information on benthic biogeochemistry and food-web at spatial and temporal scales that are unavailable through other sources but highly relevant to marine management, planning and policy.
Hover performance tests of full scale variable geometry rotors
NASA Technical Reports Server (NTRS)
Rorke, J. B.
1976-01-01
Full scale whirl tests were conducted to determine the effects of interblade spatial relationships and pitch variations on the hover performance and acoustic signature of a 6-blade main rotor system. The variable geometry rotor (VGR) variations from the conventional baseline were accomplished by: (1) shifting the axial position of alternate blades by one chord-length to form two tip path planes; and (2) varying the relative azimuthal spacing from the upper rotor to the lagging hover rotor in four increments from 25.2 degrees to 62.1 degrees. For each of these four configurations, the differential collective pitch between upper and lower rotors was set at + or - 1 deg, 0 deg and -1 deg. Hover performance data for all configurations were acquired at blade tip Mach numbers of 0.523 and 0.45. Acoustic data were recorded at all test conditions, but analyzed only at 0 deg differential pitch at the higher rotor speed. The VGR configurations tested demonstrated improvements in thrust at constant power as high as 6 percent. Reductions of 3 PNdb in perceived noise level and of 4 db in blade passage frequency noise level were achieved at the higher thrust levels. Consistent correlation exists between performance and acoustic improvements. For any given azimuth spacing, performance was consistently better for the differential pitch condition of + or - 1 degree, i.e. with the upper rotor pitch one degree higher than the lower rotor.
Attention is necessary for subliminal instrumental conditioning
Mastropasqua, Tommaso; Turatto, Massimo
2015-01-01
The capacity of humans and other animals to provide appropriate responses to stimuli anticipating motivationally significant events is exemplified by instrumental conditioning. Interestingly, in humans instrumental conditioning can occur also for subliminal outcome-predicting stimuli. However, it remains unclear whether attention is necessary for subliminal instrumental conditioning to take place. In two experiments, human participants had to learn to collect rewards (monetary gains) while avoiding punishments (monetary losses), on the basis of subliminal outcome-predicting cues. We found that instrumental conditioning can proceed subconsciously only if spatial attention is aligned with the subliminal cue. Conversely, if spatial attention is briefly diverted from the subliminal cue, then instrumental conditioning is blocked. In humans, attention but not awareness is therefore mandatory for instrumental conditioning, thus revealing a dissociation between awareness and attention in the control of motivated behavior. PMID:26257144
Taillade, Mathieu; N'Kaoua, Bernard; Sauzéon, Hélène
2016-01-01
The present study investigated the effect of aging on direct navigation measures and self-reported ones according to the real-virtual test manipulation. Navigation (wayfinding tasks) and spatial memory (paper-pencil tasks) performances, obtained either in real-world or in virtual-laboratory test conditions, were compared between young (n = 32) and older (n = 32) adults who had self-rated their everyday navigation behavior (SBSOD scale). Real age-related differences were observed in navigation tasks as well as in paper-pencil tasks, which investigated spatial learning relative to the distinction between survey-route knowledge. The manipulation of test conditions (real vs. virtual) did not change these age-related differences, which are mostly explained by age-related decline in both spatial abilities and executive functioning (measured with neuropsychological tests). In contrast, elderly adults did not differ from young adults in their self-reporting relative to everyday navigation, suggesting some underestimation of navigation difficulties by elderly adults. Also, spatial abilities in young participants had a mediating effect on the relations between actual and self-reported navigation performance, but not for older participants. So, it is assumed that the older adults carried out the navigation task with fewer available spatial abilities compared to young adults, resulting in inaccurate self-estimates. PMID:26834666
Taillade, Mathieu; N'Kaoua, Bernard; Sauzéon, Hélène
2015-01-01
The present study investigated the effect of aging on direct navigation measures and self-reported ones according to the real-virtual test manipulation. Navigation (wayfinding tasks) and spatial memory (paper-pencil tasks) performances, obtained either in real-world or in virtual-laboratory test conditions, were compared between young (n = 32) and older (n = 32) adults who had self-rated their everyday navigation behavior (SBSOD scale). Real age-related differences were observed in navigation tasks as well as in paper-pencil tasks, which investigated spatial learning relative to the distinction between survey-route knowledge. The manipulation of test conditions (real vs. virtual) did not change these age-related differences, which are mostly explained by age-related decline in both spatial abilities and executive functioning (measured with neuropsychological tests). In contrast, elderly adults did not differ from young adults in their self-reporting relative to everyday navigation, suggesting some underestimation of navigation difficulties by elderly adults. Also, spatial abilities in young participants had a mediating effect on the relations between actual and self-reported navigation performance, but not for older participants. So, it is assumed that the older adults carried out the navigation task with fewer available spatial abilities compared to young adults, resulting in inaccurate self-estimates.
Spatio-temporal conditional inference and hypothesis tests for neural ensemble spiking precision
Harrison, Matthew T.; Amarasingham, Asohan; Truccolo, Wilson
2014-01-01
The collective dynamics of neural ensembles create complex spike patterns with many spatial and temporal scales. Understanding the statistical structure of these patterns can help resolve fundamental questions about neural computation and neural dynamics. Spatio-temporal conditional inference (STCI) is introduced here as a semiparametric statistical framework for investigating the nature of precise spiking patterns from collections of neurons that is robust to arbitrarily complex and nonstationary coarse spiking dynamics. The main idea is to focus statistical modeling and inference, not on the full distribution of the data, but rather on families of conditional distributions of precise spiking given different types of coarse spiking. The framework is then used to develop families of hypothesis tests for probing the spatio-temporal precision of spiking patterns. Relationships among different conditional distributions are used to improve multiple hypothesis testing adjustments and to design novel Monte Carlo spike resampling algorithms. Of special note are algorithms that can locally jitter spike times while still preserving the instantaneous peri-stimulus time histogram (PSTH) or the instantaneous total spike count from a group of recorded neurons. The framework can also be used to test whether first-order maximum entropy models with possibly random and time-varying parameters can account for observed patterns of spiking. STCI provides a detailed example of the generic principle of conditional inference, which may be applicable in other areas of neurostatistical analysis. PMID:25380339
Blue colour preference in honeybees distracts visual attention for learning closed shapes.
Morawetz, Linde; Svoboda, Alexander; Spaethe, Johannes; Dyer, Adrian G
2013-10-01
Spatial vision is an important cue for how honeybees (Apis mellifera) find flowers, and previous work has suggested that spatial learning in free-flying bees is exclusively mediated by achromatic input to the green photoreceptor channel. However, some data suggested that bees may be able to use alternative channels for shape processing, and recent work shows conditioning type and training length can significantly influence bee learning and cue use. We thus tested the honeybees' ability to discriminate between two closed shapes considering either absolute or differential conditioning, and using eight stimuli differing in their spectral characteristics. Consistent with previous work, green contrast enabled reliable shape learning for both types of conditioning, but surprisingly, we found that bees trained with appetitive-aversive differential conditioning could additionally use colour and/or UV contrast to enable shape discrimination. Interestingly, we found that a high blue contrast initially interferes with bee shape learning, probably due to the bees innate preference for blue colours, but with increasing experience bees can learn a variety of spectral and/or colour cues to facilitate spatial learning. Thus, the relationship between bee pollinators and the spatial and spectral cues that they use to find rewarding flowers appears to be a more rich visual environment than previously thought.
Aurally aided visual search performance in a dynamic environment
NASA Astrophysics Data System (ADS)
McIntire, John P.; Havig, Paul R.; Watamaniuk, Scott N. J.; Gilkey, Robert H.
2008-04-01
Previous research has repeatedly shown that people can find a visual target significantly faster if spatial (3D) auditory displays direct attention to the corresponding spatial location. However, previous research has only examined searches for static (non-moving) targets in static visual environments. Since motion has been shown to affect visual acuity, auditory acuity, and visual search performance, it is important to characterize aurally-aided search performance in environments that contain dynamic (moving) stimuli. In the present study, visual search performance in both static and dynamic environments is investigated with and without 3D auditory cues. Eight participants searched for a single visual target hidden among 15 distracting stimuli. In the baseline audio condition, no auditory cues were provided. In the 3D audio condition, a virtual 3D sound cue originated from the same spatial location as the target. In the static search condition, the target and distractors did not move. In the dynamic search condition, all stimuli moved on various trajectories at 10 deg/s. The results showed a clear benefit of 3D audio that was present in both static and dynamic environments, suggesting that spatial auditory displays continue to be an attractive option for a variety of aircraft, motor vehicle, and command & control applications.
Modeling Spatial Dependence of Rainfall Extremes Across Multiple Durations
NASA Astrophysics Data System (ADS)
Le, Phuong Dong; Leonard, Michael; Westra, Seth
2018-03-01
Determining the probability of a flood event in a catchment given that another flood has occurred in a nearby catchment is useful in the design of infrastructure such as road networks that have multiple river crossings. These conditional flood probabilities can be estimated by calculating conditional probabilities of extreme rainfall and then transforming rainfall to runoff through a hydrologic model. Each catchment's hydrological response times are unlikely to be the same, so in order to estimate these conditional probabilities one must consider the dependence of extreme rainfall both across space and across critical storm durations. To represent these types of dependence, this study proposes a new approach for combining extreme rainfall across different durations within a spatial extreme value model using max-stable process theory. This is achieved in a stepwise manner. The first step defines a set of common parameters for the marginal distributions across multiple durations. The parameters are then spatially interpolated to develop a spatial field. Storm-level dependence is represented through the max-stable process for rainfall extremes across different durations. The dependence model shows a reasonable fit between the observed pairwise extremal coefficients and the theoretical pairwise extremal coefficient function across all durations. The study demonstrates how the approach can be applied to develop conditional maps of the return period and return level across different durations.
Shining X-rays on catalysts at work
NASA Astrophysics Data System (ADS)
Grunwaldt, J.-D.
2009-11-01
Structure-performance relationships gained by studying catalysts at work are considered the key to further development of catalysts underlined here by a brief overview on our research in this area. The partial oxidation of methane to hydrogen and carbon monoxide over Pt- and Rh-based catalysts and the total combustion of hydrocarbons demonstrate the importance of structural identification of catalysts in its working state and the measurement of the catalytic performance at the same time. Moreover, proper cell design is a key both here and in liquid phase reactions including preparation or high pressure reactions. In several cases structural changes during preparation, activation and reaction occur on a subminute scale or the catalyst structure varies inside a reactor as a result of temperature or concentration gradients. This, additionally, requires time and spatial resolution. Examples from time-resolved QEXAFS studies during the partial oxidation of methane over Pt- and Rh-based catalysts demonstrate some of the recent developments of the technique (use not only of Si(111) but also Si(311) crystals, angular encoder, full EXAFS spectra at subsecond recording time, and modulation excitation spectroscopy). In order to obtain spectroscopic information on the oxidation state inside a microreactor, scanning and full field X-ray microscopy with X-ray absorption spectroscopic contrast were achieved under reaction conditions. If a microbeam is applied, fast scanning techniques like QEXAFS are required. In this way, even X-ray absorption spectroscopic tomographic images of a slice of a microreactor were obtained. The studies were recently extended to spatiotemporal studies that give important insight into the dynamics of the catalyst structure in a spatial manner with subsecond time-resolution.
Ricca, Mark A.; Van Vuren, Dirk H.; Weckerly, Floyd W.; Williams, Jeffrey C.; Miles, A. Keith
2014-01-01
Large mammalian herbivores introduced to islands without predators are predicted to undergo irruptive population and spatial dynamics, but only a few well-documented case studies support this paradigm. We used the Riney-Caughley model as a framework to test predictions of irruptive population growth and spatial expansion of caribou (Rangifer tarandus granti) introduced to Adak Island in the Aleutian archipelago of Alaska in 1958 and 1959. We utilized a time series of spatially explicit counts conducted on this population intermittently over a 54-year period. Population size increased from 23 released animals to approximately 2900 animals in 2012. Population dynamics were characterized by two distinct periods of irruptive growth separated by a long time period of relative stability, and the catalyst for the initial irruption was more likely related to annual variation in hunting pressure than weather conditions. An unexpected pattern resembling logistic population growth occurred between the peak of the second irruption in 2005 and the next survey conducted seven years later in 2012. Model simulations indicated that an increase in reported harvest alone could not explain the deceleration in population growth, yet high levels of unreported harvest combined with increasing density-dependent feedbacks on fecundity and survival were the most plausible explanation for the observed population trend. No studies of introduced island Rangifer have measured a time series of spatial use to the extent described in this study. Spatial use patterns during the post-calving season strongly supported Riney-Caughley model predictions, whereby high-density core areas expanded outwardly as population size increased. During the calving season, caribou displayed marked site fidelity across the full range of population densities despite availability of other suitable habitats for calving. Finally, dispersal and reproduction on neighboring Kagalaska Island represented a new dispersal front for irruptive dynamics and a new challenge for resource managers. The future demography of caribou on both islands is far from certain, yet sustained and significant hunting pressure should be a vital management tool.
Assessing and correcting spatial representativeness of tower eddy-covariance flux measurements
NASA Astrophysics Data System (ADS)
Metzger, S.; Xu, K.; Desai, A. R.; Taylor, J. R.; Kljun, N.; Blanken, P.; Burns, S. P.; Scott, R. L.
2014-12-01
Estimating the landscape-scale exchange of ecologically relevant trace gas and energy fluxes from tower eddy-covariance (EC) measurements is often complicated by surface heterogeneity. For example, a tower EC measurement may represent less than 1% of a grid cell resolved by mechanistic models (order 100-1000 km2). In particular for data assimilation or comparison with large-scale observations, it is hence critical to assess and correct the spatial representativeness of tower EC measurements. We present a procedure that determines from a single EC tower the spatio-temporally explicit flux field of its surrounding. The underlying principle is to extract the relationship between biophysical drivers and ecological responses from measurements under varying environmental conditions. For this purpose, high-frequency EC flux processing and source area calculations (≈60 h-1) are combined with remote sensing retrievals of land surface properties and subsequent machine learning. Methodological details are provided in our companion presentation "Towards the spatial rectification of tower-based eddy-covariance flux observations". We apply the procedure to one year of data from each of four AmeriFlux sites under different climate and ecological environments: Lost Creek shrub fen wetland, Niwot Ridge subalpine conifer, Park Falls mixed forest, and Santa Rita mesquite savanna. We find that heat fluxes from the Park Falls 122-m-high EC measurement and from a surrounding 100 km2 target area differ up to 100 W m-2, or 65%. Moreover, 85% and 24% of the EC flux observations are adequate surrogates of the mean surface-atmosphere exchange and its spatial variability across a 900 km2 target area, respectively, at 5% significance and 80% representativeness levels. Alternatively, the resulting flux grids can be summarized as probability density functions, and used to inform mechanistic models directly with the mean flux value and its spatial variability across a model grid cell. Lastly, for each site we evaluate the applicability of the procedure based on a full bottom-up uncertainty budget.
A Spatially Distinct History of the Development of California Groundfish Fisheries
Miller, Rebecca R.; Field, John C.; Santora, Jarrod A.; Schroeder, Isaac D.; Huff, David D.; Key, Meisha; Pearson, Don E.; MacCall, Alec D.
2014-01-01
During the past century, commercial fisheries have expanded from small vessels fishing in shallow, coastal habitats to a broad suite of vessels and gears that fish virtually every marine habitat on the globe. Understanding how fisheries have developed in space and time is critical for interpreting and managing the response of ecosystems to the effects of fishing, however time series of spatially explicit data are typically rare. Recently, the 1933–1968 portion of the commercial catch dataset from the California Department of Fish and Wildlife was recovered and digitized, completing the full historical series for both commercial and recreational datasets from 1933–2010. These unique datasets include landing estimates at a coarse 10 by 10 minute “grid-block” spatial resolution and extends the entire length of coastal California up to 180 kilometers from shore. In this study, we focus on the catch history of groundfish which were mapped for each grid-block using the year at 50% cumulative catch and total historical catch per habitat area. We then constructed generalized linear models to quantify the relationship between spatiotemporal trends in groundfish catches, distance from ports, depth, percentage of days with wind speed over 15 knots, SST and ocean productivity. Our results indicate that over the history of these fisheries, catches have taken place in increasingly deeper habitat, at a greater distance from ports, and in increasingly inclement weather conditions. Understanding spatial development of groundfish fisheries and catches in California are critical for improving population models and for evaluating whether implicit stock assessment model assumptions of relative homogeneity of fisheries removals over time and space are reasonable. This newly reconstructed catch dataset and analysis provides a comprehensive appreciation for the development of groundfish fisheries with respect to commonly assumed trends of global fisheries patterns that are typically constrained by a lack of long-term spatial datasets. PMID:24967973
Binaural Speech Understanding With Bilateral Cochlear Implants in Reverberation.
Kokkinakis, Kostas
2018-03-08
The purpose of this study was to investigate whether bilateral cochlear implant (CI) listeners who are fitted with clinical processors are able to benefit from binaural advantages under reverberant conditions. Another aim of this contribution was to determine whether the magnitude of each binaural advantage observed inside a highly reverberant environment differs significantly from the magnitude measured in a near-anechoic environment. Ten adults with postlingual deafness who are bilateral CI users fitted with either Nucleus 5 or Nucleus 6 clinical sound processors (Cochlear Corporation) participated in this study. Speech reception thresholds were measured in sound field and 2 different reverberation conditions (0.06 and 0.6 s) as a function of the listening condition (left, right, both) and the noise spatial location (left, front, right). The presence of the binaural effects of head-shadow, squelch, summation, and spatial release from masking in the 2 different reverberation conditions tested was determined using nonparametric statistical analysis. In the bilateral population tested, when the ambient reverberation time was equal to 0.6 s, results indicated strong positive effects of head-shadow and a weaker spatial release from masking advantage, whereas binaural squelch and summation contributed no statistically significant benefit to bilateral performance under this acoustic condition. These findings are consistent with those of previous studies, which have demonstrated that head-shadow yields the most pronounced advantage in noise. The finding that spatial release from masking produced little to almost no benefit in bilateral listeners is consistent with the hypothesis that additive reverberation degrades spatial cues and negatively affects binaural performance. The magnitude of 4 different binaural advantages was measured on the same group of bilateral CI subjects fitted with clinical processors in 2 different reverberation conditions. The results of this work demonstrate the impeding properties of reverberation on binaural speech understanding. In addition, results indicate that CI recipients who struggle in everyday listening environments are also more likely to benefit less in highly reverberant environments from their bilateral processors.
Rapid mapping of hurricane damage to forests
Erik M. Nielsen
2009-01-01
The prospects for producing rapid, accurate delineations of the spatial extent of forest wind damage were evaluated using Hurricane Katrina as a test case. A damage map covering the full spatial extent of Katrina?s impact was produced from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery using higher resolution training data. Forest damage...
Window Presentation Styles and User's Spatial Ability.
ERIC Educational Resources Information Center
Bastecki, Victoria L.; Berry, Louis H.
The purpose of this study was to examine the effects of spatial ability level and window presentation style of tiled and overlapped computer displays on the achievement of dental hygiene students. Participants were 43 first-term Dental Hygiene students enrolled full-time at a University School of Dental Medicine. Phase one of this project…
Effects of voluntary and automatic control of center of pressure sway during quiet standing.
Ueta, Kozo; Okada, Yohei; Nakano, Hideki; Osumi, Michihiro; Morioka, Shu
2015-01-01
The authors investigated the effects of voluntary and automatic control on the spatial variables (envelope area, maximal amplitude, and root mean square [RMS]) of center of pressure (COP) displacement during quiet standing and identified differences in their postural control strategies (mean velocity [MV], mean power frequency [MPF], and power density). COP data were recorded under relaxed (experimental control), still (voluntary control), and dual (automatic control) conditions. RMS was significantly lower in the still and dual conditions than in the relaxed condition. MV, MPF, and power density were significantly higher in the still condition than in the dual condition. These results indicate that both voluntary and automatic control decrease the spatial variables of COP displacement; however, their postural control strategies are different.
Conrad, Cheryl D.; McLaughlin, Katie J.; Harman, James S.; Foltz, Cainan; Wieczorek, Lindsay; Lightner, Elizabeth; Wright, Ryan L.
2007-01-01
We previously found that chronic stress conditions producing CA3 dendritic retraction and spatial memory deficits make the hippocampus vulnerable to the neurotoxin ibotenic acid (IBO). The purpose of this study was to determine whether exposure to chronic corticosterone (CORT) under conditions that produce CA3 dendritic retraction would enhance CA3 susceptibility to IBO. Male Sprague Dawley rats were chronically treated for 21 d with CORT in drinking water (400 μg/ml), and half were given daily injections of phenytoin (40 mg/kg), an antiepileptic drug that prevents CA3 dendritic retraction. Three days after treatments stopped, IBO was infused into the CA3 region. Conditions producing CA3 dendritic retraction (CORT and vehicle) exacerbated IBO-induced CA3 damage compared with conditions in which CA3 dendritic retraction was not observed (vehicle and vehicle, vehicle and phenytoin, CORT and phenytoin). Additionally, spatial recognition memory was assessed using the Y-maze, revealing that conditions producing CA3 dendritic retraction failed to impair spatial recognition memory. Furthermore, CORT levels in response to a potentially mild stressor (injection and Y-maze exposure) stayed at basal levels and failed to differ among key groups (vehicle and vehicle, CORT and vehicle, CORT and phenytoin), supporting the interpretations that CORT levels were unlikely to have been elevated during IBO infusion and that the neuroprotective actions of phenytoin were not through CORT alterations. These data are the first to show that conditions with prolonged glucocorticoid elevations leading to structural changes in hippocampal dendritic arbors can make the hippocampus vulnerable to neurotoxic challenges. These findings have significance for many disorders with elevated glucocorticoids that include depression, schizophrenia, Alzheimer’s disease, and Cushing’s disease. PMID:17670974
Spatial and numerical abilities without a complete natural language.
Hyde, Daniel C; Winkler-Rhoades, Nathan; Lee, Sang-Ah; Izard, Veronique; Shapiro, Kevin A; Spelke, Elizabeth S
2011-04-01
We studied the cognitive abilities of a 13-year-old deaf child, deprived of most linguistic input from late infancy, in a battery of tests designed to reveal the nature of numerical and geometrical abilities in the absence of a full linguistic system. Tests revealed widespread proficiency in basic symbolic and non-symbolic numerical computations involving the use of both exact and approximate numbers. Tests of spatial and geometrical abilities revealed an interesting patchwork of age-typical strengths and localized deficits. In particular, the child performed extremely well on navigation tasks involving geometrical or landmark information presented in isolation, but very poorly on otherwise similar tasks that required the combination of the two types of spatial information. Tests of number- and space-specific language revealed proficiency in the use of number words and deficits in the use of spatial terms. This case suggests that a full linguistic system is not necessary to reap the benefits of linguistic vocabulary on basic numerical tasks. Furthermore, it suggests that language plays an important role in the combination of mental representations of space. Copyright © 2010 Elsevier Ltd. All rights reserved.
Giudice, Nicholas A.; Betty, Maryann R.; Loomis, Jack M.
2012-01-01
This research examines whether visual and haptic map learning yield functionally equivalent spatial images in working memory, as evidenced by similar encoding bias and updating performance. In three experiments, participants learned four-point routes either by seeing or feeling the maps. At test, blindfolded participants made spatial judgments about the maps from imagined perspectives that were either aligned or misaligned with the maps as represented in working memory. Results from Experiments 1 and 2 revealed a highly similar pattern of latencies and errors between visual and haptic conditions. These findings extend the well known alignment biases for visual map learning to haptic map learning, provide further evidence of haptic updating, and most importantly, show that learning from the two modalities yields very similar performance across all conditions. Experiment 3 found the same encoding biases and updating performance with blind individuals, demonstrating that functional equivalence cannot be due to visual recoding and is consistent with an amodal hypothesis of spatial images. PMID:21299331
van Mantgem, P.J.; Schwilk, D.W.
2009-01-01
Fire is an important feature of many forest ecosystems, although the quantification of its effects is compromised by the large scale at which fire occurs and its inherent unpredictability. A recurring problem is the use of subsamples collected within individual burns, potentially resulting in spatially autocorrelated data. Using subsamples from six different fires (and three unburned control areas) we show little evidence for strong spatial autocorrelation either before or after burning for eight measures of forest conditions (both fuels and vegetation). Additionally, including a term for spatially autocorrelated errors provided little improvement for simple linear models contrasting the effects of early versus late season burning. While the effects of spatial autocorrelation should always be examined, it may not always greatly influence assessments of fire effects. If high patch scale variability is common in Sierra Nevada mixed conifer forests, even following more than a century of fire exclusion, treatments designed to encourage further heterogeneity in forest conditions prior to the reintroduction of fire will likely be unnecessary.
NASA Astrophysics Data System (ADS)
Hyer, E. J.; Schmidt, C. C.; Hoffman, J.; Giglio, L.; Peterson, D. A.
2013-12-01
Polar and geostationary satellites are used operationally for fire detection and smoke source estimation by many near-real-time operational users, including operational forecast centers around the globe. The input satellite radiance data are processed by data providers to produce Level-2 and Level -3 fire detection products, but processing these data into spatially and temporally consistent estimates of fire activity requires a substantial amount of additional processing. The most significant processing steps are correction for variable coverage of the satellite observations, and correction for conditions that affect the detection efficiency of the satellite sensors. We describe a system developed by the Naval Research Laboratory (NRL) that uses the full raster information from the entire constellation to diagnose detection opportunities, calculate corrections for factors such as angular dependence of detection efficiency, and generate global estimates of fire activity at spatial and temporal scales suitable for atmospheric modeling. By incorporating these improved fire observations, smoke emissions products, such as NRL's FLAMBE, are able to produce improved estimates of global emissions. This talk provides an overview of the system, demonstrates the achievable improvement over older methods, and describes challenges for near-real-time implementation.
Individual wealth-based selection supports cooperation in spatial public goods games
NASA Astrophysics Data System (ADS)
Chen, Xiaojie; Szolnoki, Attila
2016-09-01
In a social dilemma game group members are allowed to decide if they contribute to the joint venture or not. As a consequence, defectors, who do not invest but only enjoy the mutual benefit, prevail and the system evolves onto the tragedy of the common state. This unfortunate scenario can be avoided if participation is not obligatory but only happens with a given probability. But what if we also consider a player’s individual wealth when to decide about participation? To address this issue we propose a model in which the probabilistic participation in the public goods game is combined with a conditional investment mode that is based on individual wealth: if a player’s wealth exceeds a threshold value then it is qualified and can participate in the joint venture. Otherwise, the participation is forbidden in the investment interactions. We show that if only probabilistic participation is considered, spatially structured populations cannot support cooperation better than well-mixed populations where full defection state can also be avoided for small participation probabilities. By adding the wealth-based criterion of participation, however, structured populations are capable to augment network reciprocity relevantly and allow cooperator strategy to dominate in a broader parameter interval.
Information theoretic approach for assessing image fidelity in photon-counting arrays.
Narravula, Srikanth R; Hayat, Majeed M; Javidi, Bahram
2010-02-01
The method of photon-counting integral imaging has been introduced recently for three-dimensional object sensing, visualization, recognition and classification of scenes under photon-starved conditions. This paper presents an information-theoretic model for the photon-counting imaging (PCI) method, thereby providing a rigorous foundation for the merits of PCI in terms of image fidelity. This, in turn, can facilitate our understanding of the demonstrated success of photon-counting integral imaging in compressive imaging and classification. The mutual information between the source and photon-counted images is derived in a Markov random field setting and normalized by the source-image's entropy, yielding a fidelity metric that is between zero and unity, which respectively corresponds to complete loss of information and full preservation of information. Calculations suggest that the PCI fidelity metric increases with spatial correlation in source image, from which we infer that the PCI method is particularly effective for source images with high spatial correlation; the metric also increases with the reduction in photon-number uncertainty. As an application to the theory, an image-classification problem is considered showing a congruous relationship between the fidelity metric and classifier's performance.
NASA Astrophysics Data System (ADS)
Li, Jingkui; Zhang, Linjie; Zhang, Hao; Zhao, Jianming; Jia, Suotang
2015-09-01
We prepare nS (n = 49) cesium Rydberg atoms by two-photon excitation in a standard magnetooptical trap to obtain the spatial distribution of the Rydberg atoms by measuring the time-of-flight (TOF) spectra in the case of a low Rydberg density. We analyze the time evolution of the ultracold nS Rydberg atoms distribution by changing the delay time of the pulsed ionization field, defined as the duration from the moment of switching off the excitation lasers to the time of switching on the ionization field. TOF spectra of Rydberg atoms are observed as a function of the delay time and initial Rydberg atomic density. The corresponding full widths at half maximum (FWHMs) are obtained by fitting the spectra with a Gaussian profile. The FWHM decreases with increasing delay time at a relatively high Rydberg atom density (>5 × 107/cm3) because of the decreasing Coulomb interaction between released charges during their flight to the detector. The temperature of the cold atoms is deduced from the dependence of the TOF spectra on the delay time under the condition of low Rydberg atom density.
Evaluation of process errors in bed load sampling using a Dune Model
Gomez, Basil; Troutman, Brent M.
1997-01-01
Reliable estimates of the streamwide bed load discharge obtained using sampling devices are dependent upon good at-a-point knowledge across the full width of the channel. Using field data and information derived from a model that describes the geometric features of a dune train in terms of a spatial process observed at a fixed point in time, we show that sampling errors decrease as the number of samples collected increases, and the number of traverses of the channel over which the samples are collected increases. It also is preferable that bed load sampling be conducted at a pace which allows a number of bed forms to pass through the sampling cross section. The situations we analyze and simulate pertain to moderate transport conditions in small rivers. In such circumstances, bed load sampling schemes typically should involve four or five traverses of a river, and the collection of 20–40 samples at a rate of five or six samples per hour. By ensuring that spatial and temporal variability in the transport process is accounted for, such a sampling design reduces both random and systematic errors and hence minimizes the total error involved in the sampling process.
Callewaert, Francois; Butun, Serkan; Li, Zhongyang; Aydin, Koray
2016-01-01
The objective-first inverse-design algorithm is used to design an ultra-compact optical diode. Based on silicon and air only, this optical diode relies on asymmetric spatial mode conversion between the left and right ports. The first even mode incident from the left port is transmitted to the right port after being converted into an odd mode. On the other hand, same mode incident from the right port is reflected back by the optical diode dielectric structure. The convergence and performance of the algorithm are studied, along with a transform method that converts continuous permittivity medium into a binary material design. The optimal device is studied with full-wave electromagnetic simulations to compare its behavior under right and left incidences, in 2D and 3D settings as well. A parametric study is designed to understand the impact of the design space size and initial conditions on the optimized devices performance. A broadband optical diode behavior is observed after optimization, with a large rejection ratio between the two transmission directions. This illustrates the potential of the objective-first inverse-design method to design ultra-compact broadband photonic devices. PMID:27586852
Fetsch, Christopher R; Wang, Sentao; Gu, Yong; Deangelis, Gregory C; Angelaki, Dora E
2007-01-17
Heading perception is a complex task that generally requires the integration of visual and vestibular cues. This sensory integration is complicated by the fact that these two modalities encode motion in distinct spatial reference frames (visual, eye-centered; vestibular, head-centered). Visual and vestibular heading signals converge in the primate dorsal subdivision of the medial superior temporal area (MSTd), a region thought to contribute to heading perception, but the reference frames of these signals remain unknown. We measured the heading tuning of MSTd neurons by presenting optic flow (visual condition), inertial motion (vestibular condition), or a congruent combination of both cues (combined condition). Static eye position was varied from trial to trial to determine the reference frame of tuning (eye-centered, head-centered, or intermediate). We found that tuning for optic flow was predominantly eye-centered, whereas tuning for inertial motion was intermediate but closer to head-centered. Reference frames in the two unimodal conditions were rarely matched in single neurons and uncorrelated across the population. Notably, reference frames in the combined condition varied as a function of the relative strength and spatial congruency of visual and vestibular tuning. This represents the first investigation of spatial reference frames in a naturalistic, multimodal condition in which cues may be integrated to improve perceptual performance. Our results compare favorably with the predictions of a recent neural network model that uses a recurrent architecture to perform optimal cue integration, suggesting that the brain could use a similar computational strategy to integrate sensory signals expressed in distinct frames of reference.
Spatial Memory by Blind and Sighted Children
ERIC Educational Resources Information Center
Millar, Susanna
1975-01-01
Non-verbal recall of haptically presented spatial positions by three age groups of blind and sighted children was tested under conditions varying cuing, recall type and stimulus position in a within-subject design. (Editor)
Violent crime in San Antonio, Texas: an application of spatial epidemiological methods.
Sparks, Corey S
2011-12-01
Violent crimes are rarely considered a public health problem or investigated using epidemiological methods. But patterns of violent crime and other health conditions are often affected by similar characteristics of the built environment. In this paper, methods and perspectives from spatial epidemiology are used in an analysis of violent crimes in San Antonio, TX. Bayesian statistical methods are used to examine the contextual influence of several aspects of the built environment. Additionally, spatial regression models using Bayesian model specifications are used to examine spatial patterns of violent crime risk. Results indicate that the determinants of violent crime depend on the model specification, but are primarily related to the built environment and neighborhood socioeconomic conditions. Results are discussed within the context of a rapidly growing urban area with a diverse population. Copyright © 2011 Elsevier Ltd. All rights reserved.
A multi-directional backlight for a wide-angle, glasses-free three-dimensional display.
Fattal, David; Peng, Zhen; Tran, Tho; Vo, Sonny; Fiorentino, Marco; Brug, Jim; Beausoleil, Raymond G
2013-03-21
Multiview three-dimensional (3D) displays can project the correct perspectives of a 3D image in many spatial directions simultaneously. They provide a 3D stereoscopic experience to many viewers at the same time with full motion parallax and do not require special glasses or eye tracking. None of the leading multiview 3D solutions is particularly well suited to mobile devices (watches, mobile phones or tablets), which require the combination of a thin, portable form factor, a high spatial resolution and a wide full-parallax view zone (for short viewing distance from potentially steep angles). Here we introduce a multi-directional diffractive backlight technology that permits the rendering of high-resolution, full-parallax 3D images in a very wide view zone (up to 180 degrees in principle) at an observation distance of up to a metre. The key to our design is a guided-wave illumination technique based on light-emitting diodes that produces wide-angle multiview images in colour from a thin planar transparent lightguide. Pixels associated with different views or colours are spatially multiplexed and can be independently addressed and modulated at video rate using an external shutter plane. To illustrate the capabilities of this technology, we use simple ink masks or a high-resolution commercial liquid-crystal display unit to demonstrate passive and active (30 frames per second) modulation of a 64-view backlight, producing 3D images with a spatial resolution of 88 pixels per inch and full-motion parallax in an unprecedented view zone of 90 degrees. We also present several transparent hand-held prototypes showing animated sequences of up to six different 200-view images at a resolution of 127 pixels per inch.
Impact of Basal Conditions on Grounding-Line Retreat
NASA Astrophysics Data System (ADS)
Koellner, S. J.; Parizek, B. R.; Alley, R. B.; Muto, A.; Holschuh, N.; Nowicki, S.
2017-12-01
An often-made assumption included in ice-sheet models used for sea-level projections is that basal rheology is constant throughout the domain of the simulation. The justification in support of this assumption is that physical data for determining basal rheology is limited and a constant basal flow law can adequately approximate current as well as past behavior of an ice-sheet. Prior studies indicate that beneath Thwaites Glacier (TG) there is a ridge-and-valley bedrock structure which likely promotes deformation of soft tills within the troughs and sliding, more akin to creep, over the harder peaks; giving rise to a spatially variable basal flow law. Furthermore, it has been shown that the stability of an outlet glacier varies with the assumed basal rheology, so accurate projections almost certainly need to account for basal conditions. To test the impact of basal conditions on grounding-line evolution forced by ice-shelf perturbations, we modified the PSU 2-D flowline model to enable the inclusion of spatially variable basal rheology along an idealized bedrock profile akin to TG. Synthetic outlet glacier "data" were first generated under steady-state conditions assuming a constant basal flow law and a constant basal friction coefficient field on either a linear or bumpy sloping bed. In following standard procedures, a suite of models were then initialized by assuming different basal rheologies and then determining the basal friction coefficients that produce surface velocities matching those from the synthetic "data". After running each of these to steady state, the standard and full suite of models were forced by drastically reducing ice-shelf buttressing through side-shear and prescribed basal-melting perturbations. In agreement with previous findings, results suggest a more plastic basal flow law enhances stability in response to ice-shelf perturbations by flushing ice from farther upstream to sustain the grounding-zone mass balance required to prolong the current grounding-line position. Mixed rheology beds tend to mimic the retreat of the higher-exponent bed, a behavior enhanced over bumps as the stabilizing ridges tap into ice from local valleys. Thus, accounting for variable basal conditions in ice-sheet model projections is critical for improving both the timing and magnitude of retreat.
Spatial attention does not require preattentive grouping.
Vecera, S P; Behrmann, M
1997-01-01
Does spatial attention follow a full preattentive analysis of the visual field, or can attention select from ungrouped regions of the visual field? We addressed this question by testing an apperceptive agnosic patient, J. W., in tasks involving both spatial selection and preattentive grouping. Results suggest that J.W. had intact spatial attention: He was faster to detect targets appearing at cued location relative to targets appearing at uncued locations. However, his preattentive processes were severely disrupted. Gestalt grouping and symmetry perception, both thought to involve preattentive processes, were impaired in J. W. Also, he could not use gestalt grouping cues to guide spatial attention. These results suggest that spatial attention is not completely dependent on preattentive grouping processes. We argue that preattentive grouping processes and spatial attention may mutually constrain one another in guiding the attentional selection of visual stimuli but that these 2 processes are isolated from one another.
Toba, Monica N; Rabuffetti, Marco; Duret, Christophe; Pradat-Diehl, Pascale; Gainotti, Guido; Bartolomeo, Paolo
2018-01-31
Visual neglect is a disabling consequence of right hemisphere damage, whereby patients fail to detect left-sided objects. Its precise mechanisms are debated, but there is some consensus that distinct component deficits may variously associate and interact in different patients. Here we used a touch-screen based procedure to study two putative component deficits of neglect, rightward "magnetic" attraction of attention and impaired spatial working memory, in a group of 47 right brain-damaged patients, of whom 33 had signs of left neglect. Patients performed a visual search task on three distinct conditions, whereby touched targets could (1) be tagged, (2) disappear or (3) show no change. Magnetic attraction of attention was defined as more left neglect on the tag condition than on the disappear condition, where right-sided disappeared targets could not capture patients' attention. Impaired spatial working memory should instead produce more neglect on the no change condition, where no external cue indicated that a target had already been explored, than on the tag condition. Using a specifically developed analysis algorithm, we identified significant differences of performance between the critical conditions. Neglect patients as a group performed better on the disappear condition than on the no change condition and also better in the tag condition comparing with the no change condition. No difference was found between the tag condition and the disappear condition. Some of our neglect patients had dissociated patterns of performance, with predominant magnetic attraction or impaired spatial working memory. Anatomical results issued from both grey matter analysis and fiber tracking were consistent with the typical patterns of fronto-parietal and occipito-frontal disconnection in neglect, but did not identify lesional patterns specifically associated with one or another deficit, thus suggesting the possible co-localization of attentional and working memory processes in fronto-parietal networks. These findings give support to the hypothesis of the co-occurrence of distinct cognitive deficits in visual neglect and stress the necessity of multi-component models of visuospatial disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Morey, Candice C.; Miron, Monica D.
2016-01-01
Among models of working memory, there is not yet a consensus about how to describe functions specific to storing verbal or visual-spatial memories. We presented aural-verbal and visual-spatial lists simultaneously and sometimes cued one type of information after presentation, comparing accuracy in conditions with and without informative…
Similarity in Spatial Origin of Information Facilitates Cue Competition and Interference
ERIC Educational Resources Information Center
Amundson, Jeffrey C.; Miller, Ralph R.
2007-01-01
Two lick suppression studies were conducted with water-deprived rats to investigate the influence of spatial similarity in cue interaction. Experiment 1 assessed the influence of similarity of the spatial origin of competing cues in a blocking procedure. Greater blocking was observed in the condition in which the auditory blocking cue and the…
Spatial patterning of fuels and fire hazard across a central U.S. deciduous forest region
Michael C. Stambaugh; Daniel C. Dey; Richard P. Guyette; Hong S. He; Joseph M. Marschall
2011-01-01
Information describing spatial and temporal variability of forest fuel conditions is essential to assessing overall fire hazard and risk. Limited information exists describing spatial characteristics of fuels in the eastern deciduous forest region, particularly in dry oak-dominated regions that historically burned relatively frequently. From an extensive fuels survey...
Safrani, Avner; Abdulhalim, Ibrahim
2011-06-20
Longitudinal spatial coherence (LSC) is determined by the spatial frequency content of an optical beam. The use of lenses with a high numerical aperture (NA) in full-field optical coherence tomography and a narrowband light source makes the LSC length much shorter than the temporal coherence length, hence suggesting that high-resolution 3D images of biological and multilayered samples can be obtained based on the low LSC. A simplified model is derived, supported by experimental results, which describes the expected interference output signal of multilayered samples when high-NA lenses are used together with a narrowband light source. An expression for the correction factor for the layer thickness determination is found valid for high-NA objectives. Additionally, the method was applied to a strongly scattering layer, demonstrating the potential of this method for high-resolution imaging of scattering media.
Building Complex Kondo Impurities by Manipulating Entangled Spin Chains.
Choi, Deung-Jang; Robles, Roberto; Yan, Shichao; Burgess, Jacob A J; Rolf-Pissarczyk, Steffen; Gauyacq, Jean-Pierre; Lorente, Nicolás; Ternes, Markus; Loth, Sebastian
2017-10-11
The creation of molecule-like structures in which magnetic atoms interact controllably is full of potential for the study of complex or strongly correlated systems. Here, we create spin chains in which a strongly correlated Kondo state emerges from magnetic coupling of transition-metal atoms. We build chains up to ten atoms in length by placing Fe and Mn atoms on a Cu 2 N surface with a scanning tunneling microscope. The atoms couple antiferromagnetically via superexchange interaction through the nitrogen atom network of the surface. The emergent Kondo resonance is spatially distributed along the chain. Its strength can be controlled by mixing atoms of different transition metal elements and manipulating their spatial distribution. We show that the Kondo screening of the full chain by the electrons of the nonmagnetic substrate depends on the interatomic entanglement of the spins in the chain, demonstrating the prerequisites to build and probe spatially extended strongly correlated nanostructures.
Demi, L; van Dongen, K W A; Verweij, M D
2011-03-01
Experimental data reveals that attenuation is an important phenomenon in medical ultrasound. Attenuation is particularly important for medical applications based on nonlinear acoustics, since higher harmonics experience higher attenuation than the fundamental. Here, a method is presented to accurately solve the wave equation for nonlinear acoustic media with spatially inhomogeneous attenuation. Losses are modeled by a spatially dependent compliance relaxation function, which is included in the Westervelt equation. Introduction of absorption in the form of a causal relaxation function automatically results in the appearance of dispersion. The appearance of inhomogeneities implies the presence of a spatially inhomogeneous contrast source in the presented full-wave method leading to inclusion of forward and backward scattering. The contrast source problem is solved iteratively using a Neumann scheme, similar to the iterative nonlinear contrast source (INCS) method. The presented method is directionally independent and capable of dealing with weakly to moderately nonlinear, large scale, three-dimensional wave fields occurring in diagnostic ultrasound. Convergence of the method has been investigated and results for homogeneous, lossy, linear media show full agreement with the exact results. Moreover, the performance of the method is demonstrated through simulations involving steered and unsteered beams in nonlinear media with spatially homogeneous and inhomogeneous attenuation. © 2011 Acoustical Society of America
NASA Technical Reports Server (NTRS)
Shi, Y.; Zhang, J.; Reid, J. S.; Hyer, E. J.; Eck, T. F.; Holben, B. N.; Kahn, R. A.
2011-01-01
AErosol RObotic NETwork (AERONET) data are the primary benchmark for evaluating satellite-retrieved aerosol properties. However, despite its extensive coverage, the representativeness of the AERONET data is rarely discussed. Indeed, many studies have shown that satellite retrieval biases have a significant degree of spatial correlation that may be problematic for higher-level processes or inverse-emissions-modeling studies. To consider these issues and evaluate relative performance in regions of few surface observations, cross-comparisons between the Aerosol Optical Depth (AOD) products of operational MODIS Collection 5.1 Dark Target (DT) and operational MODIS Collection 5.1 Deep Blue (DB) with MISR version 22 were conducted. Through such comparisons, we can observe coherent spatial features of the AOD bias while side-stepping the full analysis required for determining when or where either retrieval is more correct. We identify regions where MODIS to MISR AOD ratios were found to be above 1.4 and below 0.7. Regions where lower boundary condition uncertainty is likely to be a dominant factor include portions of Western North America, the Andes mountains, Saharan Africa, the Arabian Peninsula, and Central Asia. Similarly, microphysical biases may be an issue in South America, and specific parts of Southern Africa, India Asia, East Asia, and Indonesia. These results help identify high-priority locations for possible future deployments of both in situ and ground based remote sensing measurements. The Supplement includes a km1 file.
NASA Astrophysics Data System (ADS)
Li, Zengguang; Ye, Zhenjiang; Wan, Rong
2015-12-01
Surveys were conducted in five voyages in Haizhou Bay and its adjacent coastal area from March to December 2011 during full moon spring tides. The ichthyoplankton assemblages and the environmental factors that affect their spatial and seasonal patterns were determined. Totally 35 and 12 fish egg and larvae taxa were identified, respectively. Over the past several decades, the egg and larval species composition has significantly changed in Haizhou Bay and its adjacent waters, most likely corresponding with the alteration of fishery resources, which are strongly affected by anthropogenic activities and climate change. The Bray-Curtis dissimilarity index identified four assemblages: near-shore bay assemblage, middle bay assemblage and two closely related assemblages (near-shore/middle bay assemblage and middle/edge of bay assemblage). The primary species of each assemblage principally reflected the spawning strategies of adult fish. The near-shore bay assemblage generally occurred in near-shore bay, with depths measuring <20 m, and the middle bay assemblage generally occurred in the middle of bay, with depths measuring 20 to 40 m. Spatial and seasonal variations in ichthyoplankton in each assemblage were determined by interactions between biological behavioral traits and oceanographic features, particularly the variation of local conditions within the constraint of a general reproductive strategy. The results of Spearman's rank correlation analysis indicated that both fish egg and larval abundance were positively correlated with depth, which is critical to the oceanographic features in Haizhou Bay.
Hamiltonian BFV-BRST theory of closed quantum cosmological models
NASA Astrophysics Data System (ADS)
Kamenshchik, A. Yu.; Lyakhovich, S. L.
1997-02-01
We introduce and study a new discrete basis of gravity constraints by making use of harmonic expansion for closed cosmological models. The full set of constraints is split into area-preserving spatial diffeomorphisms, forming closed subalgebra, and Virasoro-like generators. Operational Hamiltonian BFV-BRST quantization is performed in the framework of perturbative expansion in the dimensionless parameter, which is a positive power of the ratio of Planckian volume to the volume of the Universe. For the (N + 1)-dimensional generalization of stationary closed Bianchi-I cosmology the nilpotency condition for the BRST operator is examined in the first quantum approximation. It turns out that a certain relationship between the dimensionality of the space and the spectrum of matter fields emerges from the requirement of quantum consistency of the model.
Hamiltonian BFV-BRST theory of closed quantum cosmological models
NASA Astrophysics Data System (ADS)
Kamenshchik, A. Yu.; Lyakhovich, S. L.
1997-08-01
We introduce and study a new discrete basis of gravity constraints by making use of the harmonic expansion for closed cosmological models. The full set of constraints is split into area-preserving spatial diffeomorphisms, forming a closed subalgebra, and Virasoro-like generators. The operatorial Hamiltonian BFV-BRST quantization is performed in the framework of a perturbative expansion in the dimensionless parameter which is a positive power of the ratio of the Planck volume to the volume of the Universe. For the (N + 1) - dimensional generalization of a stationary closed Bianchi-I cosmology the nilpotency condition for the BRST operator is examined in the first quantum approximation. It turns out that a relationship between the dimensionality of the space and the spectrum of matter fields emerges from the requirement of quantum consistency of the model.
Spatial and temporal patterns of mass bleaching of corals in the Anthropocene
NASA Astrophysics Data System (ADS)
Hughes, Terry P.; Anderson, Kristen D.; Connolly, Sean R.; Heron, Scott F.; Kerry, James T.; Lough, Janice M.; Baird, Andrew H.; Baum, Julia K.; Berumen, Michael L.; Bridge, Tom C.; Claar, Danielle C.; Eakin, C. Mark; Gilmour, James P.; Graham, Nicholas A. J.; Harrison, Hugo; Hobbs, Jean-Paul A.; Hoey, Andrew S.; Hoogenboom, Mia; Lowe, Ryan J.; McCulloch, Malcolm T.; Pandolfi, John M.; Pratchett, Morgan; Schoepf, Verena; Torda, Gergely; Wilson, Shaun K.
2018-01-01
Tropical reef systems are transitioning to a new era in which the interval between recurrent bouts of coral bleaching is too short for a full recovery of mature assemblages. We analyzed bleaching records at 100 globally distributed reef locations from 1980 to 2016. The median return time between pairs of severe bleaching events has diminished steadily since 1980 and is now only 6 years. As global warming has progressed, tropical sea surface temperatures are warmer now during current La Niña conditions than they were during El Niño events three decades ago. Consequently, as we transition to the Anthropocene, coral bleaching is occurring more frequently in all El Niño–Southern Oscillation phases, increasing the likelihood of annual bleaching in the coming decades.
NASA Technical Reports Server (NTRS)
Liu, Chao-Qun; Shan, H.; Jiang, L.
1999-01-01
Numerical investigation of flow separation over a NACA 0012 airfoil at large angles of attack has been carried out. The numerical calculation is performed by solving the full Navier-Stokes equations in generalized curvilinear coordinates. The second-order LU-SGS implicit scheme is applied for time integration. This scheme requires no tridiagonal inversion and is capable of being completely vectorized, provided the corresponding Jacobian matrices are properly selected. A fourth-order centered compact scheme is used for spatial derivatives. In order to reduce numerical oscillation, a sixth-order implicit filter is employed. Non-reflecting boundary conditions are imposed at the far-field and outlet boundaries to avoid possible non-physical wave reflection. Complex flow separation and vortex shedding phenomenon have been observed and discussed.
Diffraction-Induced Bidimensional Talbot Self-Imaging with Full Independent Period Control
NASA Astrophysics Data System (ADS)
Guillet de Chatellus, Hugues; Romero Cortés, Luis; Deville, Antonin; Seghilani, Mohamed; Azaña, José
2017-03-01
We predict, formulate, and observe experimentally a generalized version of the Talbot effect that allows one to create diffraction-induced self-images of a periodic two-dimensional (2D) waveform with arbitrary control of the image spatial periods. Through the proposed scheme, the periods of the output self-image are multiples of the input ones by any desired integer or fractional factor, and they can be controlled independently across each of the two wave dimensions. The concept involves conditioning the phase profile of the input periodic wave before free-space diffraction. The wave energy is fundamentally preserved through the self-imaging process, enabling, for instance, the possibility of the passive amplification of the periodic patterns in the wave by a purely diffractive effect, without the use of any active gain.
Diffraction-Induced Bidimensional Talbot Self-Imaging with Full Independent Period Control.
Guillet de Chatellus, Hugues; Romero Cortés, Luis; Deville, Antonin; Seghilani, Mohamed; Azaña, José
2017-03-31
We predict, formulate, and observe experimentally a generalized version of the Talbot effect that allows one to create diffraction-induced self-images of a periodic two-dimensional (2D) waveform with arbitrary control of the image spatial periods. Through the proposed scheme, the periods of the output self-image are multiples of the input ones by any desired integer or fractional factor, and they can be controlled independently across each of the two wave dimensions. The concept involves conditioning the phase profile of the input periodic wave before free-space diffraction. The wave energy is fundamentally preserved through the self-imaging process, enabling, for instance, the possibility of the passive amplification of the periodic patterns in the wave by a purely diffractive effect, without the use of any active gain.
NASA Technical Reports Server (NTRS)
Nakagawa, Y.
1981-01-01
The method described as the method of nearcharacteristics by Nakagawa (1980) is renamed the method of projected characteristics. Making full use of properties of the projected characteristics, a new and simpler formulation is developed. As a result, the formulation for the examination of the general three-dimensional problems is presented. It is noted that since in practice numerical solutions must be obtained, the final formulation is given in the form of difference equations. The possibility of including effects of viscous and ohmic dissipations in the formulation is considered, and the physical interpretation is discussed. A systematic manner is then presented for deriving physically self-consistent, time-dependent boundary equations for MHD initial boundary problems. It is demonstrated that the full use of the compatibility equations (differential equations relating variations at two spatial locations and times) is required in determining the time-dependent boundary conditions. In order to provide a clear physical picture as an example, the evolution of axisymmetric global magnetic field by photospheric differential rotation is considered.
SYNTHESIS OF SPATIAL DATA FOR DECISION-MAKING
EPA'S Regional Vulnerability Assessment Program (ReVA) has developed a web-based statistical tool that synthesizes available spatial data into indices of condition, vulnerability (risk, considering cumulative effects), and feasibility of management options. The Environmental Deci...
Beyond Conceptual Knowledge: The Impact of Children’s Theory-of-Mind on Dyadic Spatial Tasks
Viana, Karine M. P.; Zambrana, Imac M.; Karevold, Evalill B.; Pons, Francisco
2016-01-01
Recent studies show that Theory of Mind (ToM) has implications for children’s social competences and psychological well-being. Nevertheless, although it is well documented that children overall take advantage when they have to resolve cognitive problems together with a partner, whether individual difference in ToM is one of the mechanisms that could explain cognitive performances produced in social interaction has received little attention. This study examines to what extent ToM explains children’s spatial performances in a dyadic situation. The sample includes 66 boys and girls between the ages of 5–9 years, who were tested for their ToM and for their competence to resolve a Spatial task involving mental rotation and spatial perspective taking, first individually and then in a dyadic condition. Results showed, in accordance with previous research, that children performed better on the Spatial task when they resolved it with a partner. Specifically, children’s ToM was a better predictor of their spatial performances in the dyadic condition than their age, gender, and spatial performances in the individual setting. The findings are discussed in terms of the relation between having a conceptual understanding of the mind and the practical implications of this knowledge for cognitive performances in social interaction regarding mental rotation and spatial perspective taking. PMID:27812344
An inverse approach to determining spatially varying arterial compliance using ultrasound imaging
NASA Astrophysics Data System (ADS)
Mcgarry, Matthew; Li, Ronny; Apostolakis, Iason; Nauleau, Pierre; Konofagou, Elisa E.
2016-08-01
The mechanical properties of arteries are implicated in a wide variety of cardiovascular diseases, many of which are expected to involve a strong spatial variation in properties that can be depicted by diagnostic imaging. A pulse wave inverse problem (PWIP) is presented, which can produce spatially resolved estimates of vessel compliance from ultrasound measurements of the vessel wall displacements. The 1D equations governing pulse wave propagation in a flexible tube are parameterized by the spatially varying properties, discrete cosine transform components of the inlet pressure boundary conditions, viscous loss constant and a resistance outlet boundary condition. Gradient descent optimization is used to fit displacements from the model to the measured data by updating the model parameters. Inversion of simulated data showed that the PWIP can accurately recover the correct compliance distribution and inlet pressure under realistic conditions, even under high simulated measurement noise conditions. Silicone phantoms with known compliance contrast were imaged with a clinical ultrasound system. The PWIP produced spatially and quantitatively accurate maps of the phantom compliance compared to independent static property estimates, and the known locations of stiff inclusions (which were as small as 7 mm). The PWIP is necessary for these phantom experiments as the spatiotemporal resolution, measurement noise and compliance contrast does not allow accurate tracking of the pulse wave velocity using traditional approaches (e.g. 50% upstroke markers). Results from simulations indicate reflections generated from material interfaces may negatively affect wave velocity estimates, whereas these reflections are accounted for in the PWIP and do not cause problems.
Contextual cueing effects despite spatially cued target locations.
Schankin, Andrea; Schubö, Anna
2010-07-01
Reaction times (RT) to targets are faster in repeated displays relative to novel ones when the spatial arrangement of the distracting items predicts the target location (contextual cueing). It is assumed that visual-spatial attention is guided more efficiently to the target resulting in reduced RTs. In the present experiment, contextual cueing even occurred when the target location was previously peripherally cued. Electrophysiologically, repeated displays elicited an enhanced N2pc component in both conditions and resulted in an earlier onset of the stimulus-locked lateralized readiness potential (s-LRP) in the cued condition and in an enhanced P3 in the uncued condition relative to novel displays. These results indicate that attentional guidance is less important than previously assumed but that other cognitive processes, such as attentional selection (N2pc) and response-related processes (s-LRP, P3) are facilitated by context familiarity.
Augmented Reality as a Countermeasure for Sleep Deprivation.
Baumeister, James; Dorrlan, Jillian; Banks, Siobhan; Chatburn, Alex; Smith, Ross T; Carskadon, Mary A; Lushington, Kurt; Thomas, Bruce H
2016-04-01
Sleep deprivation is known to have serious deleterious effects on executive functioning and job performance. Augmented reality has an ability to place pertinent information at the fore, guiding visual focus and reducing instructional complexity. This paper presents a study to explore how spatial augmented reality instructions impact procedural task performance on sleep deprived users. The user study was conducted to examine performance on a procedural task at six time points over the course of a night of total sleep deprivation. Tasks were provided either by spatial augmented reality-based projections or on an adjacent monitor. The results indicate that participant errors significantly increased with the monitor condition when sleep deprived. The augmented reality condition exhibited a positive influence with participant errors and completion time having no significant increase when sleep deprived. The results of our study show that spatial augmented reality is an effective sleep deprivation countermeasure under laboratory conditions.
NASA Astrophysics Data System (ADS)
Gao, Xinya; Wang, Yonghong; Li, Junrui; Dan, Xizuo; Wu, Sijin; Yang, Lianxiang
2017-06-01
It is difficult to measure absolute three-dimensional deformation using traditional digital speckle pattern interferometry (DSPI) when the boundary condition of an object being tested is not exactly given. In practical applications, the boundary condition cannot always be specifically provided, limiting the use of DSPI in real-world applications. To tackle this problem, a DSPI system that is integrated by the spatial carrier method and a color camera has been established. Four phase maps are obtained simultaneously by spatial carrier color-digital speckle pattern interferometry using four speckle interferometers with different illumination directions. One out-of-plane and two in-plane absolute deformations can be acquired simultaneously without knowing the boundary conditions using the absolute deformation extraction algorithm based on four phase maps. Finally, the system is proved by experimental results through measurement of the deformation of a flat aluminum plate with a groove.
Move to learn: Integrating spatial information from multiple viewpoints.
Holmes, Corinne A; Newcombe, Nora S; Shipley, Thomas F
2018-05-11
Recalling a spatial layout from multiple orientations - spatial flexibility - is challenging, even when the global configuration can be viewed from a single vantage point, but more so when it must be viewed piecemeal. In the current study, we examined whether experiencing the transition between multiple viewpoints enhances spatial memory and flexible recall for a spatial configuration viewed simultaneously (Exp. 1) and sequentially (Exp. 2), whether the type of transition matters, and whether action provides an additional advantage over passive experience. In Experiment 1, participants viewed an array of dollhouse furniture from four viewpoints, but with all furniture simultaneously visible. In Experiment 2, participants viewed the same array piecemeal, from four partitioned viewpoints that allowed for viewing only a segment at a time. The transition between viewpoints involved rotation of the array or participant movement around it. Rotation and participant movement were passively experienced or actively generated. The control condition presented the dollhouse as a series of static views. Across both experiments, participant movement significantly enhanced spatial memory relative to array rotation or static views. However, in Exp. 2, there was a further advantage for actively walking around the array compared to being passively pushed. These findings suggest that movement around a stable environment is key to spatial memory and flexible recall, with action providing an additional boost to the integration of temporally segmented spatial events. Thus, spatial memory may be more flexible than prior data indicate, when studied under more natural acquisition conditions. Copyright © 2018 Elsevier B.V. All rights reserved.
Pinard, F; Makune, S E; Campagne, P; Mwangi, J
2016-11-01
Based on time and spatial dynamic considerations, this study evaluates the potential role of short- and long-distance dispersal in the spread of coffee wilt disease (CWD) in a large commercial Robusta coffee estate in Uganda (Kaweri, 1,755 ha) over a 4-year period (2008 to 2012). In monthly surveys, total disease incidence, expansion of infection foci, and the occurrence of isolated infected trees were recorded and submitted to spatial analysis. Incidence was higher and disease progression faster in old coffee plantings compared with young plantings, indicating a lack of efficiency of roguing for reducing disease development in old plantings. At large spatial scale (approximately 1 km), Moran indices (both global and local) revealed the existence of clusters characterized by contrasting disease incidences. This suggested that local environmental conditions were heterogeneous or there were spatial interactions among blocks. At finer spatial scale (approximately 200 m), O-ring statistics revealed positive correlation between distant infection sites across distances as great as 60 m. Although these observations indicate the role of short-distance dispersal in foci expansion, dispersal at greater distances (>20 m) appeared to also contribute to both initiation of new foci and disease progression at coarser spatial scales. Therefore, our results suggested the role of aerial dispersal in CWD progression.
Object versus spatial visual mental imagery in patients with schizophrenia
Aleman, André; de Haan, Edward H.F.; Kahn, René S.
2005-01-01
Objective Recent research has revealed a larger impairment of object perceptual discrimination than of spatial perceptual discrimination in patients with schizophrenia. It has been suggested that mental imagery may share processing systems with perception. We investigated whether patients with schizophrenia would show greater impairment regarding object imagery than spatial imagery. Methods Forty-four patients with schizophrenia and 20 healthy control subjects were tested on a task of object visual mental imagery and on a task of spatial visual mental imagery. Both tasks included a condition in which no imagery was needed for adequate performance, but which was in other respects identical to the imagery condition. This allowed us to adjust for nonspecific differences in individual performance. Results The results revealed a significant difference between patients and controls on the object imagery task (F1,63 = 11.8, p = 0.001) but not on the spatial imagery task (F1,63 = 0.14, p = 0.71). To test for a differential effect, we conducted a 2 (patients v. controls) х 2 (object task v. spatial task) analysis of variance. The interaction term was statistically significant (F1,62 = 5.2, p = 0.026). Conclusions Our findings suggest a differential dysfunction of systems mediating object and spatial visual mental imagery in schizophrenia. PMID:15644999
Law, Jane
2016-01-01
Intrinsic conditional autoregressive modeling in a Bayeisan hierarchical framework has been increasingly applied in small-area ecological studies. This study explores the specifications of spatial structure in this Bayesian framework in two aspects: adjacency, i.e., the set of neighbor(s) for each area; and (spatial) weight for each pair of neighbors. Our analysis was based on a small-area study of falling injuries among people age 65 and older in Ontario, Canada, that was aimed to estimate risks and identify risk factors of such falls. In the case study, we observed incorrect adjacencies information caused by deficiencies in the digital map itself. Further, when equal weights was replaced by weights based on a variable of expected count, the range of estimated risks increased, the number of areas with probability of estimated risk greater than one at different probability thresholds increased, and model fit improved. More importantly, significance of a risk factor diminished. Further research to thoroughly investigate different methods of variable weights; quantify the influence of specifications of spatial weights; and develop strategies for better defining spatial structure of a map in small-area analysis in Bayesian hierarchical spatial modeling is recommended. PMID:29546147
Cometary atmospheres: Modeling the spatial distribution of observed neutral radicals
NASA Technical Reports Server (NTRS)
Combi, M. R.
1985-01-01
Progress on modeling the spatial distributions of cometary radicals is described. The Monte Carlo particle-trajectory model was generalized to include the full time dependencies of initial comet expansion velocities, nucleus vaporization rates, photochemical lifetimes and photon emission rates which enter the problem through the comet's changing heliocentric distance and velocity. The effect of multiple collisions in the transition zone from collisional coupling to true free flow were also included. Currently available observations of the spatial distributions of the neutral radicals, as well as the latest available photochemical data were re-evaluated. Preliminary exploratory model results testing the effects of various processes on observable spatial distributions are also discussed.
On the Nexus of the Spatial Dynamics of Global Urbanization and the Age of the City
Scheuer, Sebastian; Haase, Dagmar; Volk, Martin
2016-01-01
A number of concepts exist regarding how urbanization can be described as a process. Understanding this process that affects billions of people and its future development in a spatial manner is imperative to address related issues such as human quality of life. In the focus of spatially explicit studies on urbanization is typically a city, a particular urban region, an agglomeration. However, gaps remain in spatially explicit global models. This paper addresses that issue by examining the spatial dynamics of urban areas over time, for a full coverage of the world. The presented model identifies past, present and potential future hotspots of urbanization as a function of an urban area's spatial variation and age, whose relation could be depicted both as a proxy and as a path of urban development. PMID:27490199
On the Nexus of the Spatial Dynamics of Global Urbanization and the Age of the City.
Scheuer, Sebastian; Haase, Dagmar; Volk, Martin
2016-01-01
A number of concepts exist regarding how urbanization can be described as a process. Understanding this process that affects billions of people and its future development in a spatial manner is imperative to address related issues such as human quality of life. In the focus of spatially explicit studies on urbanization is typically a city, a particular urban region, an agglomeration. However, gaps remain in spatially explicit global models. This paper addresses that issue by examining the spatial dynamics of urban areas over time, for a full coverage of the world. The presented model identifies past, present and potential future hotspots of urbanization as a function of an urban area's spatial variation and age, whose relation could be depicted both as a proxy and as a path of urban development.
The spatial unmasking of speech: evidence for within-channel processing of interaural time delay.
Edmonds, Barrie A; Culling, John F
2005-05-01
Across-frequency processing by common interaural time delay (ITD) in spatial unmasking was investigated by measuring speech reception thresholds (SRTs) for high- and low-frequency bands of target speech presented against concurrent speech or a noise masker. Experiment 1 indicated that presenting one of these target bands with an ITD of +500 micros and the other with zero ITD (like the masker) provided some release from masking, but full binaural advantage was only measured when both target bands were given an ITD of + 500 micros. Experiment 2 showed that full binaural advantage could also be achieved when the high- and low-frequency bands were presented with ITDs of equal but opposite magnitude (+/- 500 micros). In experiment 3, the masker was also split into high- and low-frequency bands with ITDs of equal but opposite magnitude (+/-500 micros). The ITD of the low-frequency target band matched that of the high-frequency masking band and vice versa. SRTs indicated that, as long as the target and masker differed in ITD within each frequency band, full binaural advantage could be achieved. These results suggest that the mechanism underlying spatial unmasking exploits differences in ITD independently within each frequency channel.
Equally sloped tomography based X-ray full-field nano-CT at Shanghai Synchrotron Radiation Facility
NASA Astrophysics Data System (ADS)
Wang, Yudan; Ren, Yuqi; Zhou, Guangzhao; Du, Guohao; Xie, Honglan; Deng, Biao; Xiao, Tiqiao
2018-07-01
X-ray full-field nano-computed tomography (nano-CT) has non-destructive three-dimensional imaging capabilities with high spatial resolution, and has been widely applied to investigate morphology and structures in various areas. Conventional tomography reconstructs a 3D object from a large number of equal-angle projections. For nano-CT, it takes long collecting time due to the large projection numbers and long exposure time. Here, equally-sloped tomography (EST) based nano-CT was implemented and constructed on X-ray imaging beamline at the Shanghai Synchrotron Radiation Facility (SSRF) to overcome or alleviate these difficulties. Preliminary results show that hard TXM with the spatial resolution of 100 nm and the EST-based nano-CT with the ability of 3D nano non-destructive characterization have been realized. This technique promotes hard X-ray imaging capability to nano scales at SSRF and could have applications in many fields including nanomaterials, new energy and life sciences. The study will be helpful for the construction of the new full field X-ray nano-imaging beamline with the spatial resolution of 20 nm at SSRF phase II project.
Differential Deposition for Surface Figure Corrections in Grazing Incidence X-Ray Optics
NASA Technical Reports Server (NTRS)
Ramsey, Brian D.; Kilaru, Kiranmayee; Atkins, Carolyn; Gubarev, Mikhail V.; Broadway, David M.
2015-01-01
Differential deposition corrects the low- and mid- spatial-frequency deviations in the axial figure of Wolter-type grazing incidence X-ray optics. Figure deviations is one of the major contributors to the achievable angular resolution. Minimizing figure errors can significantly improve the imaging quality of X-ray optics. Material of varying thickness is selectively deposited, using DC magnetron sputtering, along the length of optic to minimize figure deviations. Custom vacuum chambers are built that can incorporate full-shell and segmented Xray optics. Metrology data of preliminary corrections on a single meridian of full-shell x-ray optics show an improvement of mid-spatial frequencies from 6.7 to 1.8 arc secs HPD. Efforts are in progress to correct a full-shell and segmented optics and to verify angular-resolution improvement with X-ray testing.
The significance of spatial resolution: Identifying forest cover from satellite data
Dumitru Salajanu; Charles E. Olson
2001-01-01
Twenty-five years ago, a National Academy of Sciences report identified species identification as a requirement if satellite data are to reach their full potential in forest inventory and monitoring; the report suggested that improving spatial resolution to 10 meters would probably be required (Committee on Remote Sensing Programs for Earth Resource Surveys [CORSPERS]...
The influence of informational masking in reverberant, multi-talker environments.
Westermann, Adam; Buchholz, Jörg M
2015-08-01
The relevance of informational masking (IM) in real-world listening is not well understood. In literature, IM effects of up to 10 dB in measured speech reception thresholds (SRTs) are reported. However, these experiments typically employed simplified spatial configurations and speech corpora that magnified confusions. In this study, SRTs were measured with normal hearing subjects in a simulated cafeteria environment. The environment was reproduced by a 41-channel 3D-loudspeaker array. The target talker was 2 m in front of the listener and masking talkers were either spread throughout the room or colocated with the target. Three types of maskers were realized: one with the same talker as the target (maximum IM), one with talkers different from the target, and one with unintelligible, noise-vocoded talkers (minimal IM). Overall, SRTs improved for the spatially distributed conditions compared to the colocated conditions. Within the spatially distributed conditions, there was no significant difference between thresholds with the different- and vocoded-talker maskers. Conditions with the same-talker masker were the only conditions with substantially higher thresholds, especially in the colocated conditions. These results suggest that IM related to target-masker confusions, at least for normal-hearing listeners, is of low relevance in real-life listening.
NASA Astrophysics Data System (ADS)
Wang, N.; Shen, Y.; Yang, D.; Bao, X.; Li, J.; Zhang, W.
2017-12-01
Accurate and efficient forward modeling methods are important for high resolution full waveform inversion. Compared with the elastic case, solving anelastic wave equation requires more computational time, because of the need to compute additional material-independent anelastic functions. A numerical scheme with a large Courant-Friedrichs-Lewy (CFL) condition number enables us to use a large time step to simulate wave propagation, which improves computational efficiency. In this work, we apply the fourth-order strong stability preserving Runge-Kutta method with an optimal CFL coeffiecient to solve the anelastic wave equation. We use a fourth order DRP/opt MacCormack scheme for the spatial discretization, and we approximate the rheological behaviors of the Earth by using the generalized Maxwell body model. With a larger CFL condition number, we find that the computational efficient is significantly improved compared with the traditional fourth-order Runge-Kutta method. Then, we apply the scattering-integral method for calculating travel time and amplitude sensitivity kernels with respect to velocity and attenuation structures. For each source, we carry out one forward simulation and save the time-dependent strain tensor. For each station, we carry out three `backward' simulations for the three components and save the corresponding strain tensors. The sensitivity kernels at each point in the medium are the convolution of the two sets of the strain tensors. Finally, we show several synthetic tests to verify the effectiveness of the strong stability preserving Runge-Kutta method in generating accurate synthetics in full waveform modeling, and in generating accurate strain tensors for calculating sensitivity kernels at regional and global scales.
ERIC Educational Resources Information Center
Mammarella, Nicola; Fairfield, Beth; Di Domenico, Alberto
2013-01-01
Two experiments examined the effects of spatial and temporal contiguities in a working memory binding task that required participants to remember coloured objects. In Experiment 1, a black and white drawing and a corresponding phrase that indicated its colour perceptually were either near or far (spatial study condition), while in Experiment 2,…
Melisa L. Holman; David L. Peterson
2006-01-01
We compared annual basal area increment (BAI) at different spatial scales among all size classes and species at diverse locations in the wet western and dry northeastern Olympic Mountains. Weak growth correlations at small spatial scales (average R = 0.084-0.406) suggest that trees are responding to local growth conditions. However, significant...
ERIC Educational Resources Information Center
Collin, Charles A.; Liu, Chang Hong; Troje, Nikolaus F.; McMullen, Patricia A.; Chaudhuri, Avi
2004-01-01
Previous studies have suggested that face identification is more sensitive to variations in spatial frequency content than object recognition, but none have compared how sensitive the 2 processes are to variations in spatial frequency overlap (SFO). The authors tested face and object matching accuracy under varying SFO conditions. Their results…
Su, Zhi-Wen; Liao, Jia-Yi; Zhang, Hui; Zhang, Tao; Wu, Fan; Tian, Xiao-Hua; Zhang, Fei-Tong; Sun, Wei-Wen; Cui, Qi-Liang
2015-06-22
The present study investigated whether a high-protein diet affects spatial learning and memory in premature rats via modulation of mammalian target of rapamycin (mTOR) signaling. Pre- and full-term Sprague-Dawley pups were fed a normal (18% protein) or high-protein (30% protein) diet (HPD) for 6 or 8 weeks after weaning. Spatial learning and memory were tested in the Morris water maze at week 6 and 8. The activation of mTOR signaling pathway components was evaluated by western blotting. Spatial memory performance of premature rats consuming a normal and HPD was lower than that of full-term rats on the same diet at 6 weeks, and was associated with lower levels of ribosomal protein S6 kinase p70 subtype (p70S6K) and initiation factor 4E-binding protein 1 (4EBP1) phosphorylation in the hippocampus. Spatial memory was improved in 8-week-old premature rats on an HPD as compared to those on a normal diet. Premature rats on an HPD had p70S6K and 4EBP1 phosphorylation levels in the hippocampus that were comparable to those of full-term rats on an HPD. Long-term consumption of a protein-rich diet can restore the impairment in learning and memory in pre-term rats via upregulation of mTOR/p70S6K signaling. Copyright © 2015 Elsevier B.V. All rights reserved.
Pattern masking: the importance of remote spatial frequencies and their phase alignment.
Huang, Pi-Chun; Maehara, Goro; May, Keith A; Hess, Robert F
2012-02-16
To assess the effects of spatial frequency and phase alignment of mask components in pattern masking, target threshold vs. mask contrast (TvC) functions for a sine-wave grating (S) target were measured for five types of mask: a sine-wave grating (S), a square-wave grating (Q), a missing fundamental square-wave grating (M), harmonic complexes consisting of phase-scrambled harmonics of a square wave (Qp), and harmonic complexes consisting of phase-scrambled harmonics of a missing fundamental square wave (Mp). Target and masks had the same fundamental frequency (0.46 cpd) and the target was added in phase with the fundamental frequency component of the mask. Under monocular viewing conditions, the strength of masking depends on phase relationships among mask spatial frequencies far removed from that of the target, at least 3 times the target frequency, only when there are common target and mask spatial frequencies. Under dichoptic viewing conditions, S and Q masks produced similar masking to each other and the phase-scrambled masks (Qp and Mp) produced less masking. The results suggest that pattern masking is spatial frequency broadband in nature and sensitive to the phase alignments of spatial components.
Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.
1992-01-01
A thin film structure for providing predetermined electric field boundary conditions. A thin film configuration is disposed on an insulator substrate in a selected spatial pattern with substantially uniform electrically resistive character in each of the different areas of the spatial pattern.
Gruen, D.M.; Young, C.E.; Pellin, M.J.
1992-03-17
A thin film structure for providing predetermined electric field boundary conditions. A thin film configuration is disposed on an insulator substrate in a selected spatial pattern with substantially uniform electrically resistive character in each of the different areas of the spatial pattern.
Spatial distributions of biophysical conditions on the Ohio River
Conceptually, landscape and hydrogeomorphic features associated with large floodplain river ecosystems impose spatial organization on river biota, nutrients, and habitat. We examined whether resulting patchiness was evident in basin and riparian landcover, water chemistry, fish a...
Improving balance by performing a secondary cognitive task.
Swan, Laurie; Otani, Hajime; Loubert, Peter V; Sheffert, Sonya M; Dunbar, Gary L
2004-02-01
Contrary to general findings in the attention and memory literature, some studies have shown that performing a secondary cognitive task produces an improvement in balance performance. The purpose of the present experiment was to investigate under what condition such an improvement would occur. Young and older adults were asked to hold as still as possible on a platform that measured sway while performing or not performing the encoding phase of the Brooks' (1967) spatial or non-spatial memory task. The difficulty of maintaining balance was manipulated by varying the availability of visual input and sway-referenced motion of the platform. Sway scores were computed based on the distance between the individual pressure centres and the average centre of pressure during each 20-s trial. The results indicated that both the spatial and non-spatial memory tasks improved balance for older adults under the most difficult balance condition.
Piccardi, L; Nori, R; Boccia, M; Barbetti, S; Verde, P; Guariglia, C; Ferlazzo, F
2015-08-01
In the present study, we used single- and dual-task conditions to investigate the nature of topographical working memory to better understand what type of task can hamper performance during navigation. During dual-task conditions, we considered four different sources of interference: motor (M), spatial motor (SM), verbal (i.e. articulatory suppression AS) and spatial environmental (SE). In order to assess the nature of topographical working memory, we used the Walking Corsi Test, asking the participants to perform two tasks simultaneously (M, SM, AS and SE). Our results showed that only spatial-environmental interference hampers the execution of a topographical working memory task, suggesting a task-domain-specific effect. We also found general gender differences in the topographical working memory capabilities: men were more proficient than women, regardless of the type of interferences. However, like men, women performed worse when a spatial-environmental interference was present.
NASA Astrophysics Data System (ADS)
Bellesia, Giovanni; Bales, Benjamin B.
2016-10-01
We investigate, via Brownian dynamics simulations, the reaction dynamics of a generic, nonlinear chemical network under spatial confinement and crowding conditions. In detail, the Willamowski-Rossler chemical reaction system has been "extended" and considered as a prototype reaction-diffusion system. Our results are potentially relevant to a number of open problems in biophysics and biochemistry, such as the synthesis of primitive cellular units (protocells) and the definition of their role in the chemical origin of life and the characterization of vesicle-mediated drug delivery processes. More generally, the computational approach presented in this work makes the case for the use of spatial stochastic simulation methods for the study of biochemical networks in vivo where the "well-mixed" approximation is invalid and both thermal and intrinsic fluctuations linked to the possible presence of molecular species in low number copies cannot be averaged out.
Fear Conditioning is Disrupted by Damage to the Postsubiculum
Robinson, Siobhan; Bucci, David J.
2011-01-01
The hippocampus plays a central role in spatial and contextual learning and memory, however relatively little is known about the specific contributions of parahippocampal structures that interface with the hippocampus. The postsubiculum (PoSub) is reciprocally connected with a number of hippocampal, parahippocampal and subcortical structures that are involved in spatial learning and memory. In addition, behavioral data suggest that PoSub is needed for optimal performance during tests of spatial memory. Together, these data suggest that PoSub plays a prominent role in spatial navigation. Currently it is unknown whether the PoSub is needed for other forms of learning and memory that also require the formation of associations among multiple environmental stimuli. To address this gap in the literature we investigated the role of PoSub in Pavlovian fear conditioning. In Experiment 1 male rats received either lesions of PoSub or Sham surgery prior to training in a classical fear conditioning procedure. On the training day a tone was paired with foot shock three times. Conditioned fear to the training context was evaluated 24 hr later by placing rats back into the conditioning chamber without presenting any tones or shocks. Auditory fear was assessed on the third day by presenting the auditory stimulus in a novel environment (no shock). PoSub-lesioned rats exhibited impaired acquisition of the conditioned fear response as well as impaired expression of contextual and auditory fear conditioning. In Experiment 2, PoSub lesions were made 1 day after training to specifically assess the role of PoSub in fear memory. No deficits in the expression of contextual fear were observed, but freezing to the tone was significantly reduced in PoSub-lesioned rats compared to shams. Together, these results indicate that PoSub is necessary for normal acquisition of conditioned fear, and that PoSub contributes to the expression of auditory but not contextual fear memory. PMID:22076971
Linking Resilience of Aquatic Species to Watershed Condition
NASA Astrophysics Data System (ADS)
Flitcroft, R. L.
2017-12-01
Watershed condition means different things to different people. From the perspective of aquatic ecology, watershed condition may be interpreted to mean the capacity of a watershed to support life history diversity of native species. Diversity in expression of life history is thought to confer resilience allowing portions of the broader population to survive stressful conditions. Different species have different life history strategies, many of which were developed through adaptation to regional or local environmental conditions and natural disturbance regimes. By reviewing adaptation strategies for species of interest at regional scales, characteristics of watersheds that confer resilience may be determined. Such assessments must be completed at multiple levels of spatial organization (i.e. sub-watershed, watershed, region) allowing assessments to be inferred across broad spatial extents. In a project on the Wenatchee River watershed, we guided models of wildfire effects on bull trout and spring Chinook from a meta-population perspective to determine risks to survival at local and population scales over multiple extents of spatial organization. In other work in the Oregon Coast Range, we found that historic landslides continue to exert habitat-forming pressure at local scales, leading to patchiness in distribution of habitats for different life stages of coho salmon. Further, climate change work in Oregon estuaries identified different vulnerabilities in terms of juvenile rearing habitat depending on the species of interest and the intensity of future changes in climate. All of these studies point to the importance of considering physical conditions in watersheds at multiple spatial extents from the perspective of native aquatic species in order to understand risks to long-term survival. The broader implications of watershed condition, from this perspective, is the determination of physical attributes that confer resilience to native biota. This may require regionally specific metrics, and across-species synthesis of survival strategies and environmental conditions that confer resilience.
Teurlai, Magali; Menkès, Christophe Eugène; Cavarero, Virgil; Degallier, Nicolas; Descloux, Elodie; Grangeon, Jean-Paul; Guillaumot, Laurent; Libourel, Thérèse; Lucio, Paulo Sergio; Mathieu-Daudé, Françoise; Mangeas, Morgan
2015-12-01
Understanding the factors underlying the spatio-temporal distribution of infectious diseases provides useful information regarding their prevention and control. Dengue fever spatio-temporal patterns result from complex interactions between the virus, the host, and the vector. These interactions can be influenced by environmental conditions. Our objectives were to analyse dengue fever spatial distribution over New Caledonia during epidemic years, to identify some of the main underlying factors, and to predict the spatial evolution of dengue fever under changing climatic conditions, at the 2100 horizon. We used principal component analysis and support vector machines to analyse and model the influence of climate and socio-economic variables on the mean spatial distribution of 24,272 dengue cases reported from 1995 to 2012 in thirty-three communes of New Caledonia. We then modelled and estimated the future evolution of dengue incidence rates using a regional downscaling of future climate projections. The spatial distribution of dengue fever cases is highly heterogeneous. The variables most associated with this observed heterogeneity are the mean temperature, the mean number of people per premise, and the mean percentage of unemployed people, a variable highly correlated with people's way of life. Rainfall does not seem to play an important role in the spatial distribution of dengue cases during epidemics. By the end of the 21st century, if temperature increases by approximately 3 °C, mean incidence rates during epidemics could double. In New Caledonia, a subtropical insular environment, both temperature and socio-economic conditions are influencing the spatial spread of dengue fever. Extension of this study to other countries worldwide should improve the knowledge about climate influence on dengue burden and about the complex interplay between different factors. This study presents a methodology that can be used as a step by step guide to model dengue spatial heterogeneity in other countries.
Teurlai, Magali; Menkès, Christophe Eugène; Cavarero, Virgil; Degallier, Nicolas; Descloux, Elodie; Grangeon, Jean-Paul; Guillaumot, Laurent; Libourel, Thérèse; Lucio, Paulo Sergio; Mathieu-Daudé, Françoise; Mangeas, Morgan
2015-01-01
Background/Objectives Understanding the factors underlying the spatio-temporal distribution of infectious diseases provides useful information regarding their prevention and control. Dengue fever spatio-temporal patterns result from complex interactions between the virus, the host, and the vector. These interactions can be influenced by environmental conditions. Our objectives were to analyse dengue fever spatial distribution over New Caledonia during epidemic years, to identify some of the main underlying factors, and to predict the spatial evolution of dengue fever under changing climatic conditions, at the 2100 horizon. Methods We used principal component analysis and support vector machines to analyse and model the influence of climate and socio-economic variables on the mean spatial distribution of 24,272 dengue cases reported from 1995 to 2012 in thirty-three communes of New Caledonia. We then modelled and estimated the future evolution of dengue incidence rates using a regional downscaling of future climate projections. Results The spatial distribution of dengue fever cases is highly heterogeneous. The variables most associated with this observed heterogeneity are the mean temperature, the mean number of people per premise, and the mean percentage of unemployed people, a variable highly correlated with people's way of life. Rainfall does not seem to play an important role in the spatial distribution of dengue cases during epidemics. By the end of the 21st century, if temperature increases by approximately 3°C, mean incidence rates during epidemics could double. Conclusion In New Caledonia, a subtropical insular environment, both temperature and socio-economic conditions are influencing the spatial spread of dengue fever. Extension of this study to other countries worldwide should improve the knowledge about climate influence on dengue burden and about the complex interplay between different factors. This study presents a methodology that can be used as a step by step guide to model dengue spatial heterogeneity in other countries. PMID:26624008
Bourbonnais, Mathieu L; Nelson, Trisalyn A; Cattet, Marc R L; Darimont, Chris T; Stenhouse, Gordon B
2013-01-01
Non-invasive measures for assessing long-term stress in free ranging mammals are an increasingly important approach for understanding physiological responses to landscape conditions. Using a spatially and temporally expansive dataset of hair cortisol concentrations (HCC) generated from a threatened grizzly bear (Ursus arctos) population in Alberta, Canada, we quantified how variables representing habitat conditions and anthropogenic disturbance impact long-term stress in grizzly bears. We characterized spatial variability in male and female HCC point data using kernel density estimation and quantified variable influence on spatial patterns of male and female HCC stress surfaces using random forests. Separate models were developed for regions inside and outside of parks and protected areas to account for substantial differences in anthropogenic activity and disturbance within the study area. Variance explained in the random forest models ranged from 55.34% to 74.96% for males and 58.15% to 68.46% for females. Predicted HCC levels were higher for females compared to males. Generally, high spatially continuous female HCC levels were associated with parks and protected areas while low-to-moderate levels were associated with increased anthropogenic disturbance. In contrast, male HCC levels were low in parks and protected areas and low-to-moderate in areas with increased anthropogenic disturbance. Spatial variability in gender-specific HCC levels reveal that the type and intensity of external stressors are not uniform across the landscape and that male and female grizzly bears may be exposed to, or perceive, potential stressors differently. We suggest observed spatial patterns of long-term stress may be the result of the availability and distribution of foods related to disturbance features, potential sexual segregation in available habitat selection, and may not be influenced by sources of mortality which represent acute traumas. In this wildlife system and others, conservation and management efforts can benefit by understanding spatial- and gender-based stress responses to landscape conditions.
Bourbonnais, Mathieu L.; Nelson, Trisalyn A.; Cattet, Marc R. L.; Darimont, Chris T.; Stenhouse, Gordon B.
2013-01-01
Non-invasive measures for assessing long-term stress in free ranging mammals are an increasingly important approach for understanding physiological responses to landscape conditions. Using a spatially and temporally expansive dataset of hair cortisol concentrations (HCC) generated from a threatened grizzly bear (Ursus arctos) population in Alberta, Canada, we quantified how variables representing habitat conditions and anthropogenic disturbance impact long-term stress in grizzly bears. We characterized spatial variability in male and female HCC point data using kernel density estimation and quantified variable influence on spatial patterns of male and female HCC stress surfaces using random forests. Separate models were developed for regions inside and outside of parks and protected areas to account for substantial differences in anthropogenic activity and disturbance within the study area. Variance explained in the random forest models ranged from 55.34% to 74.96% for males and 58.15% to 68.46% for females. Predicted HCC levels were higher for females compared to males. Generally, high spatially continuous female HCC levels were associated with parks and protected areas while low-to-moderate levels were associated with increased anthropogenic disturbance. In contrast, male HCC levels were low in parks and protected areas and low-to-moderate in areas with increased anthropogenic disturbance. Spatial variability in gender-specific HCC levels reveal that the type and intensity of external stressors are not uniform across the landscape and that male and female grizzly bears may be exposed to, or perceive, potential stressors differently. We suggest observed spatial patterns of long-term stress may be the result of the availability and distribution of foods related to disturbance features, potential sexual segregation in available habitat selection, and may not be influenced by sources of mortality which represent acute traumas. In this wildlife system and others, conservation and management efforts can benefit by understanding spatial- and gender-based stress responses to landscape conditions. PMID:24386273
Stenemo, Fredrik; Jørgensen, Peter R; Jarvis, Nicholas
2005-09-01
The one-dimensional pesticide fate model MACRO was loose-linked to the three-dimensional discrete fracture/matrix diffusion model FRAC3DVS to describe transport of the pesticide mecoprop in a fractured moraine till and local sand aquifer (5-5.5 m depth) overlying a regional limestone aquifer (16 m depth) at Havdrup, Denmark. Alternative approaches to describe the upper boundary in the groundwater model were examined. Field-scale simulations were run to compare a uniform upper boundary condition with a spatially variable upper boundary derived from Monte-Carlo simulations with MACRO. Plot-scale simulations were run to investigate the influence of the temporal resolution of the upper boundary conditions for fluxes in the groundwater model and the effects of different assumptions concerning the macropore/fracture connectivity between the two models. The influence of within-field variability of leaching on simulated mecoprop concentrations in the local aquifer was relatively small. A fully transient simulation with FRAC3DVS gave 20 times larger leaching to the regional aquifer compared to the case with steady-state water flow, assuming full connectivity with respect to macropores/fractures across the boundary between the two models. For fully transient simulations 'disconnecting' the macropores/fractures at the interface between the two models reduced leaching by a factor 24. A fully connected, transient simulation with FRAC3DVS, with spatially uniform upper boundary fluxes derived from a MACRO simulation with 'effective' parameters is therefore recommended for assessing leaching risks to the regional aquifer, at this, and similar sites.
The spatial extent of polycyclic aromatic hydrocarbons emission in the Herbig star HD 179218
NASA Astrophysics Data System (ADS)
Taha, A. S.; Labadie, L.; Pantin, E.; Matter, A.; Alvarez, C.; Esquej, P.; Grellmann, R.; Rebolo, R.; Telesco, C.; Wolf, S.
2018-04-01
Aim. We investigate, in the mid-infrared, the spatial properties of the polycyclic aromatic hydrocarbons (PAHs) emission in the disk of HD 179218, an intermediate-mass Herbig star at 300 pc. Methods: We obtained mid-infrared images in the PAH-1, PAH-2 and Si-6 filters centered at 8.6, 11.3, and 12.5 μm, and N-band low-resolution spectra using CanariCam on the 10-m Gran Telescopio Canarias (GTC). We compared the point spread function (PSF) profiles measured in the PAH filters to the profile derived in the Si-6 filter, where the thermal continuum emission dominates. We performed radiative transfer modeling of the spectral energy distribution (SED) and produced synthetic images in the three filters to investigate different spatial scenarios. Results: Our data show that the disk emission is spatially resolved in the PAH-1 and PAH-2 filters, while unresolved in the Si-6 filter. Thanks to very good observing conditions, an average full width at half maximum (FWHM) of 0.232'', 0.280'' and 0.293'' is measured in the three filters, respectively. Gaussian disk fitting and quadratic subtraction of the science and calibrator PSFs suggests a lower-limit characteristic angular diameter of the emission of 100 mas, or 30 au. The photometric and spectroscopic results are compatible with previous findings. Our radiative transfer (RT) modeling of the continuum suggests that the resolved emission should result from PAH molecules on the disk atmosphere being UV-excited by the central star. Simple geometrical models of the PAH component compared to the underlying continuum point to a PAH emission uniformly extended out to the physical limits of the disk model. Furthermore, our RT best model of the continuum requires a negative exponent of the surface density power-law, in contrast with earlier modeling pointing to a positive exponent. Conclusions: We have spatially resolved - for the first time to our knowledge - the PAHs emission in the disk of HD 179218 and set constraints on its spatial extent. Based on spatial and spectroscopic considerations as well as on qualitative comparison with IRS 48 and HD 97048, we favor a scenario in which PAHs extend out to large radii across the flared disk surface and are at the same time predominantly in an ionized charge state due to the strong UV radiation field of the 180 L⊙ central star.
Time course of spatial and feature selective attention for partly-occluded objects.
Kasai, Tetsuko; Takeya, Ryuji
2012-07-01
Attention selects objects/groups as the most fundamental units, and this may be achieved by an attention-spreading mechanism. Previous event-related potential (ERP) studies have found that attention-spreading is reflected by a decrease in the N1 spatial attention effect. The present study tested whether the electrophysiological attention effect is associated with the perception of object unity or amodal completion through the use of partly-occluded objects. ERPs were recorded in 14 participants who were required to pay attention to their left or right visual field and to press a button for a target shape in the attended field. Bilateral stimuli were presented rapidly, and were separated, connected, or connected behind an occluder. Behavioral performance in the connected and occluded conditions was worse than that in the separated condition, indicating that attention spread over perceptual object representations after amodal completion. Consistently, the late N1 spatial attention effect (180-220 ms post-stimulus) and the early phase (230-280 ms) of feature selection effects (target N2) at contralateral sites decreased, equally for the occluded and connected conditions, while the attention effect in the early N1 latency (140-180 ms) shifted most positively for the occluded condition. These results suggest that perceptual organization processes for object recognition transiently modulate spatial and feature selection processes in the visual cortex. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wójcik, J.; Kujawska, T.; Nowicki, A.; Lewin, P.A.
2008-01-01
The primary goal of this work was to verify experimentally the applicability of the recently introduced Time-Averaged Wave Envelope (TAWE) method [1] as a tool for fast prediction of four dimensional (4D) pulsed nonlinear pressure fields from arbitrarily shaped acoustic sources in attenuating media. The experiments were performed in water at the fundamental frequency of 2.8 MHz for spherically focused (focal length F = 80 mm) square (20 × 20 mm) and rectangular (10 × 25 mm) sources similar to those used in the design of 1D linear arrays operating with ultrasonic imaging systems. The experimental results obtained with 10-cycle tone bursts at three different excitation levels corresponding to linear, moderately nonlinear and highly nonlinear propagation conditions (0.045, 0.225 and 0.45 MPa on-source pressure amplitude, respectively) were compared with those yielded using the TAWE approach [1]. The comparison of the experimental results and numerical simulations has shown that the TAWE approach is well suited to predict (to within ± 1 dB) both the spatial-temporal and spatial-spectral pressure variations in the pulsed nonlinear acoustic beams. The obtained results indicated that implementation of the TAWE approach enabled shortening of computation time in comparison with the time needed for prediction of the full 4D pulsed nonlinear acoustic fields using a conventional (Fourier-series) approach [2]. The reduction in computation time depends on several parameters, including the source geometry, dimensions, fundamental resonance frequency, excitation level as well as the strength of the medium nonlinearity. For the non-axisymmetric focused transducers mentioned above and excited by a tone burst corresponding to moderately nonlinear and highly nonlinear conditions the execution time of computations was 3 and 12 hours, respectively, when using a 1.5 GHz clock frequency, 32-bit processor PC laptop with 2 GB RAM memory, only. Such prediction of the full 4D pulsed field is not possible when using conventional, Fourier-series scheme as it would require increasing the RAM memory by at least 2 orders of magnitude. PMID:18474387
Montalba, Cristian; Urbina, Jesus; Sotelo, Julio; Andia, Marcelo E; Tejos, Cristian; Irarrazaval, Pablo; Hurtado, Daniel E; Valverde, Israel; Uribe, Sergio
2018-04-01
To assess the variability of peak flow, mean velocity, stroke volume, and wall shear stress measurements derived from 3D cine phase contrast (4D flow) sequences under different conditions of spatial and temporal resolutions. We performed controlled experiments using a thoracic aortic phantom. The phantom was connected to a pulsatile flow pump, which simulated nine physiological conditions. For each condition, 4D flow data were acquired with different spatial and temporal resolutions. The 2D cine phase contrast and 4D flow data with the highest available spatio-temporal resolution were considered as a reference for comparison purposes. When comparing 4D flow acquisitions (spatial and temporal resolution of 2.0 × 2.0 × 2.0 mm 3 and 40 ms, respectively) with 2D phase-contrast flow acquisitions, the underestimation of peak flow, mean velocity, and stroke volume were 10.5, 10 and 5%, respectively. However, the calculated wall shear stress showed an underestimation larger than 70% for the former acquisition, with respect to 4D flow, with spatial and temporal resolution of 1.0 × 1.0 × 1.0 mm 3 and 20 ms, respectively. Peak flow, mean velocity, and stroke volume from 4D flow data are more sensitive to changes of temporal than spatial resolution, as opposed to wall shear stress, which is more sensitive to changes in spatial resolution. Magn Reson Med 79:1882-1892, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Simone, Ashley N; Bédard, Anne-Claude V; Marks, David J; Halperin, Jeffrey M
2016-01-01
The aim of this study was to examine working memory (WM) modalities (visual-spatial and auditory-verbal) and processes (maintenance and manipulation) in children with and without attention-deficit/hyperactivity disorder (ADHD). The sample consisted of 63 8-year-old children with ADHD and an age- and sex-matched non-ADHD comparison group (N=51). Auditory-verbal and visual-spatial WM were assessed using the Digit Span and Spatial Span subtests from the Wechsler Intelligence Scale for Children Integrated - Fourth Edition. WM maintenance and manipulation were assessed via forward and backward span indices, respectively. Data were analyzed using a 3-way Group (ADHD vs. non-ADHD)×Modality (Auditory-Verbal vs. Visual-Spatial)×Condition (Forward vs. Backward) Analysis of Variance (ANOVA). Secondary analyses examined differences between Combined and Predominantly Inattentive ADHD presentations. Significant Group×Condition (p=.02) and Group×Modality (p=.03) interactions indicated differentially poorer performance by those with ADHD on backward relative to forward and visual-spatial relative to auditory-verbal tasks, respectively. The 3-way interaction was not significant. Analyses targeting ADHD presentations yielded a significant Group×Condition interaction (p=.009) such that children with ADHD-Predominantly Inattentive Presentation performed differentially poorer on backward relative to forward tasks compared to the children with ADHD-Combined Presentation. Findings indicate a specific pattern of WM weaknesses (i.e., WM manipulation and visual-spatial tasks) for children with ADHD. Furthermore, differential patterns of WM performance were found for children with ADHD-Predominantly Inattentive versus Combined Presentations. (JINS, 2016, 22, 1-11).
NASA Astrophysics Data System (ADS)
Escobar Gómez, J. D.; Torres-Verdín, C.
2018-03-01
Single-well pressure-diffusion simulators enable improved quantitative understanding of hydraulic-testing measurements in the presence of arbitrary spatial variations of rock properties. Simulators of this type implement robust numerical algorithms which are often computationally expensive, thereby making the solution of the forward modeling problem onerous and inefficient. We introduce a time-domain perturbation theory for anisotropic permeable media to efficiently and accurately approximate the transient pressure response of spatially complex aquifers. Although theoretically valid for any spatially dependent rock/fluid property, our single-phase flow study emphasizes arbitrary spatial variations of permeability and anisotropy, which constitute key objectives of hydraulic-testing operations. Contrary to time-honored techniques, the perturbation method invokes pressure-flow deconvolution to compute the background medium's permeability sensitivity function (PSF) with a single numerical simulation run. Subsequently, the first-order term of the perturbed solution is obtained by solving an integral equation that weighs the spatial variations of permeability with the spatial-dependent and time-dependent PSF. Finally, discrete convolution transforms the constant-flow approximation to arbitrary multirate conditions. Multidimensional numerical simulation studies for a wide range of single-well field conditions indicate that perturbed solutions can be computed in less than a few CPU seconds with relative errors in pressure of <5%, corresponding to perturbations in background permeability of up to two orders of magnitude. Our work confirms that the proposed joint perturbation-convolution (JPC) method is an efficient alternative to analytical and numerical solutions for accurate modeling of pressure-diffusion phenomena induced by Neumann or Dirichlet boundary conditions.
Robust optical flow using adaptive Lorentzian filter for image reconstruction under noisy condition
NASA Astrophysics Data System (ADS)
Kesrarat, Darun; Patanavijit, Vorapoj
2017-02-01
In optical flow for motion allocation, the efficient result in Motion Vector (MV) is an important issue. Several noisy conditions may cause the unreliable result in optical flow algorithms. We discover that many classical optical flows algorithms perform better result under noisy condition when combined with modern optimized model. This paper introduces effective robust models of optical flow by using Robust high reliability spatial based optical flow algorithms using the adaptive Lorentzian norm influence function in computation on simple spatial temporal optical flows algorithm. Experiment on our proposed models confirm better noise tolerance in optical flow's MV under noisy condition when they are applied over simple spatial temporal optical flow algorithms as a filtering model in simple frame-to-frame correlation technique. We illustrate the performance of our models by performing an experiment on several typical sequences with differences in movement speed of foreground and background where the experiment sequences are contaminated by the additive white Gaussian noise (AWGN) at different noise decibels (dB). This paper shows very high effectiveness of noise tolerance models that they are indicated by peak signal to noise ratio (PSNR).
Spatial evolution of quantum mechanical states
NASA Astrophysics Data System (ADS)
Christensen, N. D.; Unger, J. E.; Pinto, S.; Su, Q.; Grobe, R.
2018-02-01
The time-dependent Schrödinger equation is solved traditionally as an initial-time value problem, where its solution is obtained by the action of the unitary time-evolution propagator on the quantum state that is known at all spatial locations but only at t = 0. We generalize this approach by examining the spatial evolution from a state that is, by contrast, known at all times t, but only at one specific location. The corresponding spatial-evolution propagator turns out to be pseudo-unitary. In contrast to the real energies that govern the usual (unitary) time evolution, the spatial evolution can therefore require complex phases associated with dynamically relevant solutions that grow exponentially. By introducing a generalized scalar product, for which the spatial generator is Hermitian, one can show that the temporal integral over the probability current density is spatially conserved, in full analogy to the usual norm of the state, which is temporally conserved. As an application of the spatial propagation formalism, we introduce a spatial backtracking technique that permits us to reconstruct any quantum information about an atom from the ionization data measured at a detector outside the interaction region.
Cazzoli, Dario; Hopfner, Simone; Preisig, Basil; Zito, Giuseppe; Vanbellingen, Tim; Jäger, Michael; Nef, Tobias; Mosimann, Urs; Bohlhalter, Stephan; Müri, René M; Nyffeler, Thomas
2016-11-01
An impairment of the spatial deployment of visual attention during exploration of static (i.e., motionless) stimuli is a common finding after an acute, right-hemispheric stroke. However, less is known about how these deficits: (a) are modulated through naturalistic motion (i.e., without directional, specific spatial features); and, (b) evolve in the subacute/chronic post-stroke phase. In the present study, we investigated free visual exploration in three patient groups with subacute/chronic right-hemispheric stroke and in healthy subjects. The first group included patients with left visual neglect and a left visual field defect (VFD), the second patients with a left VFD but no neglect, and the third patients without neglect or VFD. Eye movements were measured in all participants while they freely explored a traffic scene without (static condition) and with (dynamic condition) naturalistic motion, i.e., cars moving from the right or left. In the static condition, all patient groups showed similar deployment of visual exploration (i.e., as measured by the cumulative fixation duration) as compared to healthy subjects, suggesting that recovery processes took place, with normal spatial allocation of attention. However, the more demanding dynamic condition with moving cars elicited different re-distribution patterns of visual attention, quite similar to those typically observed in acute stroke. Neglect patients with VFD showed a significant decrease of visual exploration in the contralesional space, whereas patients with VFD but no neglect showed a significant increase of visual exploration in the contralesional space. No differences, as compared to healthy subjects, were found in patients without neglect or VFD. These results suggest that naturalistic motion, without directional, specific spatial features, may critically influence the spatial distribution of visual attention in subacute/chronic stroke patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Regional-scale drivers of marine nematode distribution in Southern Ocean continental shelf sediments
NASA Astrophysics Data System (ADS)
Hauquier, Freija; Verleyen, Elie; Tytgat, Bjorn; Vanreusel, Ann
2018-07-01
Many marine meiofauna taxa seem to possess cosmopolitan species distributions, despite their endobenthic lifestyle and restricted long-distance dispersal capacities. In light of this paradox we used a metacommunity framework to study spatial turnover in free-living nematode distribution and assess the importance of local environmental conditions in explaining differences between communities in surface and subsurface sediments of the Southern Ocean continental shelf. We analysed nematode community structure in two sediment layers (0-3 cm and 3-5 cm) of locations maximum 2400 km apart. We first focused on a subset of locations to evaluate whether the genus level is sufficiently taxonomically fine-grained to study large-scale patterns in nematode community structure. We subsequently used redundancy and variation partitioning analyses to quantify the unique and combined effects of local environmental conditions and spatial descriptors on genus-level community composition. Macroecological patterns in community structure were highly congruent at the genus and species level. Nematode community composition was highly divergent between both depth strata, likely as a result of local abiotic conditions. Variation in community structure between the different regions largely stemmed from turnover (i.e. genus/species replacement) rather than nestedness (i.e. genus/species loss). The level of turnover among communities increased with geographic distance and was more pronounced in subsurface layers compared to surface sediments. Variation partitioning analysis revealed that both environmental and spatial predictors significantly explained variation in community structure. Moreover, the shared fraction of both sets of variables was high, which suggested a substantial amount of spatially structured environmental variation. Additionally, the effect of space independent of environment was much higher than the effect of environment independent of space, which shows the importance of including spatial descriptors in meiofauna and nematode community ecology. Large-scale assessment of free-living nematode diversity and abundance in the Southern Ocean shelf zone revealed strong horizontal and vertical spatial structuring in response to local environmental conditions, in combination with (most likely) dispersal limitation.
Jones, K.B.; Neale, A.C.; Wade, T.G.; Wickham, J.D.; Cross, C.L.; Edmonds, C.M.; Loveland, Thomas R.; Nash, M.S.; Riitters, K.H.; Smith, E.R.
2001-01-01
Spatially explicit identification of changes in ecological conditions over large areas is key to targeting and prioritizing areas for environmental protection and restoration by managers at watershed, basin, and regional scales. A critical limitation to this point has been the development of methods to conduct such broad-scale assessments. Field-based methods have proven to be too costly and too inconsistent in their application to make estimates of ecological conditions over large areas. New spatial data derived from satellite imagery and other sources, the development of statistical models relating landscape composition and pattern to ecological endpoints, and geographic information systems (GIS) make it possible to evaluate ecological conditions at multiple scales over broad geographic regions. In this study, we demonstrate the application of spatially distributed models for bird habitat quality and nitrogen yield to streams to assess the consequences of landcover change across the mid-Atlantic region between the 1970s and 1990s. Moreover, we present a way to evaluate spatial concordance between models related to different environmental endpoints. Results of this study should help environmental managers in the mid-Atlantic region target those areas in need of conservation and protection.
Spatial Searching for Solar Physics Data
NASA Astrophysics Data System (ADS)
Hourcle, Joseph; Spencer, J. L.; The VSO Team
2013-07-01
The Virtual Solar Observatory allows searching across many collections of solar physics data, but does not yet allow a researcher to search based on the location and extent of the observation, other than by selecting general categories such as full disk or off limb. High resolution instruments that observe only a portion of the the solar disk require greater specificity than is currently available. We believe that finer-grained spatial searching will allow for improved access to data from existing instruments such as TRACE, XRT and SOT, and well as from upcoming missions such as ATST and IRIS. Our proposed solution should also help scientists to search on the field of view of full-disk images that are out of the Sun-Earth line, such as STEREO/EUVI and obserations from the upcoming Solar Orbiter and Solar Probe Plus missions. We present our current work on cataloging sub field images for spatial searching so that researchers can more easily search for observations of a given feature of interest, with the intent of soliciting information about researcher's requirements and recommendations for further improvements.Abstract (2,250 Maximum Characters): The Virtual Solar Observatory allows searching across many collections of solar physics data, but does not yet allow a researcher to search based on the location and extent of the observation, other than by selecting general categories such as full disk or off limb. High resolution instruments that observe only a portion of the the solar disk require greater specificity than is currently available. We believe that finer-grained spatial searching will allow for improved access to data from existing instruments such as TRACE, XRT and SOT, and well as from upcoming missions such as ATST and IRIS. Our proposed solution should also help scientists to search on the field of view of full-disk images that are out of the Sun-Earth line, such as STEREO/EUVI and obserations from the upcoming Solar Orbiter and Solar Probe Plus missions. We present our current work on cataloging sub field images for spatial searching so that researchers can more easily search for observations of a given feature of interest, with the intent of soliciting information about researcher's requirements and recommendations for further improvements.
Extreme river flow dependence in Northern Scotland
NASA Astrophysics Data System (ADS)
Villoria, M. Franco; Scott, M.; Hoey, T.; Fischbacher-Smith, D.
2012-04-01
Various methods for the spatial analysis of hydrologic data have been developed recently. Here we present results using the conditional probability approach proposed by Keef et al. [Appl. Stat. (2009): 58,601-18] to investigate spatial interdependence in extreme river flows in Scotland. This approach does not require the specification of a correlation function, being mostly suitable for relatively small geographical areas. The work is motivated by the Flood Risk Management Act (Scotland (2009)) which requires maps of flood risk that take account of spatial dependence in extreme river flow. The method is based on two conditional measures of spatial flood risk: firstly the conditional probability PC(p) that a set of sites Y = (Y 1,...,Y d) within a region C of interest exceed a flow threshold Qp at time t (or any lag of t), given that in the specified conditioning site X > Qp; and, secondly the expected number of sites within C that will exceed a flow Qp on average (given that X > Qp). The conditional probabilities are estimated using the conditional distribution of Y |X = x (for large x), which can be modeled using a semi-parametric approach (Heffernan and Tawn [Roy. Statist. Soc. Ser. B (2004): 66,497-546]). Once the model is fitted, pseudo-samples can be generated to estimate functionals of the joint tails of the distribution of (Y,X). Conditional return level plots were directly compared to traditional return level plots thus improving our understanding of the dependence structure of extreme river flow events. Confidence intervals were calculated using block bootstrapping methods (100 replicates). We report results from applying this approach to a set of four rivers (Dulnain, Lossie, Ewe and Ness) in Northern Scotland. These sites were chosen based on data quality, spatial location and catchment characteristics. The river Ness, being the largest (catchment size 1839.1km2) was chosen as the conditioning river. Both the Ewe (441.1km2) and Ness catchments have predominantly impermeable bedrock, with the Ewe's one being very wet. The Lossie(216km2) and Dulnain (272.2km2) both contain significant areas of glacial deposits. River flow in the Dulnain is usually affected by snowmelt. In all cases, the conditional probability of each of the three rivers (Dulnain, Lossie, Ewe) decreases as the event in the conditioning river (Ness) becomes more extreme. The Ewe, despite being the furthest of the three sites from the Ness shows the strongest dependence, with relatively high (>0.4) conditional probabilities even for very extreme events (>0.995). Although the Lossie is closer geographically to the Ness than the Ewe, it shows relatively low conditional probabilities and can be considered independent of the Ness for very extreme events (> 0.990). The conditional probabilities seem to reflect the different catchment characteristics and dominant precipitation generating events, with the Ewe being more similar to the Ness than the other two rivers. This interpretation suggests that the conditional method may yield improved estimates of extreme events, but the approach is time consuming. An alternative model that is easier to implement, using a spatial quantile regression, is currently being investigated, which would also allow the introduction of further covariates, essential as the effects of climate change are incorporated into estimation procedures.
Spatial and Activities Models of Airport Based on GIS and Dynamic Model
NASA Astrophysics Data System (ADS)
Masri, R. M.; Purwaamijaya, I. M.
2017-02-01
The purpose of research were (1) a conceptual, functional model designed and implementation for spatial airports, (2) a causal, flow diagrams and mathematical equations made for airport activity, (3) obtained information on the conditions of space and activities at airports assessment, (4) the space and activities evaluation at airports based on national and international airport services standards, (5) options provided to improve the spatial and airport activities performance become the international standards airport. Descriptive method is used for the research. Husein Sastranegara Airport in Bandung, West Java, Indonesia was study location. The research was conducted on September 2015 to April 2016. A spatial analysis is used to obtain runway, taxiway and building airport geometric information. A system analysis is used to obtain the relationship between components in airports, dynamic simulation activity at airports and information on the results tables and graphs of dynamic model. Airport national and international standard could not be fulfilled by spatial and activity existing condition of Husein Sastranegara. Idea of re-location program is proposed as problem solving for constructing new airport which could be serving international air transportation.
Modulation of spatial Stroop by object-based attention but not by space-based attention.
Luo, Chunming; Lupiáñez, Juan; Funes, María Jesús; Fu, Xiaolan
2010-03-01
Earlier studies have shown that the spatial Stroop effect systematically decreases when a peripheral precue is presented at the same location as the target, compared to an uncued location condition. In this study, two experiments were conducted to explore whether the cueing modulation of spatial Stroop is object based and/or space based. In Experiment 1, we found evidence favouring the view that the cueing modulation of the spatial Stroop effect is entirely object based, as no differences were found in conflict reduction for the same-location and same-object conditions. In Experiment 2, the cue was predictive, and a similar object-based modulation of spatial Stroop was still observed. However, the direction of such modulation was affected by the rectangles' orientation. Overall, the pattern of results obtained favours the object-integration (Lupiáñez & Milliken, 1999; Lupiáñez, Milliken, Solano, Weaver, & Tipper, 2001) and referential-coding accounts (Danziger, Kingstone, & Ward, 2001) and seems to provide evidence against the attention-shift account (Rubichi, Nicoletti, Iani, & Umilta, 1997; Stoffer, 1991).
Goldsworthy, Raymond L.; Delhorne, Lorraine A.; Desloge, Joseph G.; Braida, Louis D.
2014-01-01
This article introduces and provides an assessment of a spatial-filtering algorithm based on two closely-spaced (∼1 cm) microphones in a behind-the-ear shell. The evaluated spatial-filtering algorithm used fast (∼10 ms) temporal-spectral analysis to determine the location of incoming sounds and to enhance sounds arriving from straight ahead of the listener. Speech reception thresholds (SRTs) were measured for eight cochlear implant (CI) users using consonant and vowel materials under three processing conditions: An omni-directional response, a dipole-directional response, and the spatial-filtering algorithm. The background noise condition used three simultaneous time-reversed speech signals as interferers located at 90°, 180°, and 270°. Results indicated that the spatial-filtering algorithm can provide speech reception benefits of 5.8 to 10.7 dB SRT compared to an omni-directional response in a reverberant room with multiple noise sources. Given the observed SRT benefits, coupled with an efficient design, the proposed algorithm is promising as a CI noise-reduction solution. PMID:25096120
Pan, Yi; Soto, David
2010-07-09
Recent research suggests that visual selection can be automatically biased to those stimuli matching the contents of working memory (WM). However, a complete functional account of the interplay between WM and attention remains to be established. In particular, the boundary conditions of the WM effect on selection are unclear. Here, the authors investigate the influence of the focus of spatial attention (i.e., diffused vs. focused) by assessing the effect of spatial precues on attentional capture by WM. Experiments 1 and 2 showed that relative to a neutral condition without memory-matching stimuli, the presence of a memory distractor can trigger attentional capture despite being entirely irrelevant for the attention task but this happened only when the item was actively maintained in WM and not when it was merely repeated. Experiments 3a, 3b and 3c showed that attentional capture by WM can be modulated by endogenous spatial pre-cueing of the incoming target of selection. The authors conclude that WM-driven capture of visual selection is dependent on the focus of spatial attention. Copyright 2009 Elsevier Ltd. All rights reserved.
Sacchi, Emanuele; Sayed, Tarek; El-Basyouny, Karim
2016-09-01
Recently, important advances in road safety statistics have been brought about by methods able to address issues other than the choice of the best error structure for modeling crash data. In particular, accounting for spatial and temporal interdependence, i.e., the notion that the collision occurrence of a site or unit times depend on those of others, has become an important issue that needs further research. Overall, autoregressive models can be used for this purpose as they can specify that the output variable depends on its own previous values and on a stochastic term. Spatial effects have been investigated and applied mostly in the context of developing safety performance functions (SPFs) to relate crash occurrence to highway characteristics. Hence, there is a need for studies that attempt to estimate the effectiveness of safety countermeasures by including the spatial interdependence of road sites within the context of an observational before-after (BA) study. Moreover, the combination of temporal dynamics and spatial effects on crash frequency has not been explored in depth for SPF development. Therefore, the main goal of this research was to carry out a BA study accounting for spatial effects and temporal dynamics in evaluating the effectiveness of a road safety treatment. The countermeasure analyzed was the installation of traffic signals at unsignalized urban/suburban intersections in British Columbia (Canada). The full Bayes approach was selected as the statistical framework to develop the models. The results demonstrated that zone variation was a major component of total crash variability and that spatial effects were alleviated by clustering intersections together. Finally, the methodology used also allowed estimation of the treatment's effectiveness in the form of crash modification factors and functions with time trends. Copyright © 2016 Elsevier Ltd. All rights reserved.
Huang, Shih-Ying; Savic, Dragana; Yang, Jaewon; Shrestha, Uttam; Seo, Youngho
2014-11-01
Simultaneous imaging systems combining positron emission tomography (PET) and magnetic resonance imaging (MRI) have been actively investigated. A PET/MR imaging system (GE Healthcare) comprised of a time-of-flight (TOF) PET system utilizing silicon photomultipliers (SiPMs) and 3-tesla (3T) MRI was recently installed at our institution. The small-ring (60 cm diameter) TOF PET subsystem of this PET/MRI system can generate images with higher spatial resolution compared with conventional PET systems. We have examined theoretically and experimentally the effect of uniform magnetic fields on the spatial resolution for high-energy positron emitters. Positron emitters including 18 F, 124 I, and 68 Ga were simulated in water using the Geant4 Monte Carlo toolkit in the presence of a uniform magnetic field (0, 3, and 7 Tesla). The positron annihilation position was tracked to determine the 3D spatial distribution of the 511-keV gammy ray emission. The full-width at tenth maximum (FWTM) of the positron point spread function (PSF) was determined. Experimentally, 18 F and 68 Ga line source phantoms in air and water were imaged with an investigational PET/MRI system and a PET/CT system to investigate the effect of magnetic field on the spatial resolution of PET. The full-width half maximum (FWHM) of the line spread function (LSF) from the line source was determined as the system spatial resolution. Simulations and experimental results show that the in-plane spatial resolution was slightly improved at field strength as low as 3 Tesla, especially when resolving signal from high-energy positron emitters in the air-tissue boundary.
Dechesne, Arnaud; Badawi, Nora; Aamand, Jens; Smets, Barth F.
2014-01-01
Pesticide biodegradation is a soil microbial function of critical importance for modern agriculture and its environmental impact. While it was once assumed that this activity was homogeneously distributed at the field scale, mounting evidence indicates that this is rarely the case. Here, we critically examine the literature on spatial variability of pesticide biodegradation in agricultural soil. We discuss the motivations, methods, and main findings of the primary literature. We found significant diversity in the approaches used to describe and quantify spatial heterogeneity, which complicates inter-studies comparisons. However, it is clear that the presence and activity of pesticide degraders is often highly spatially variable with coefficients of variation often exceeding 50% and frequently displays non-random spatial patterns. A few controlling factors have tentatively been identified across pesticide classes: they include some soil characteristics (pH) and some agricultural management practices (pesticide application, tillage), while other potential controlling factors have more conflicting effects depending on the site or the pesticide. Evidence demonstrating the importance of spatial heterogeneity on the fate of pesticides in soil has been difficult to obtain but modeling and experimental systems that do not include soil's full complexity reveal that this heterogeneity must be considered to improve prediction of pesticide biodegradation rates or of leaching risks. Overall, studying the spatial heterogeneity of pesticide biodegradation is a relatively new field at the interface of agronomy, microbial ecology, and geosciences and a wealth of novel data is being collected from these different disciplinary perspectives. We make suggestions on possible avenues to take full advantage of these investigations for a better understanding and prediction of the fate of pesticides in soil. PMID:25538691
Analysis of Large Scale Spatial Variability of Soil Moisture Using a Geostatistical Method
2010-01-25
2010 / Accepted: 19 January 2010 / Published: 25 January 2010 Abstract: Spatial and temporal soil moisture dynamics are critically needed to...scale observed and simulated estimates of soil moisture under pre- and post-precipitation event conditions. This large scale variability is a crucial... dynamics is essential in the hydrological and meteorological modeling, improves our understanding of land surface–atmosphere interactions. Spatial and
Twenty years of changes in spatial association and community structure among desert perennials.
Miriti, Maria N
2007-05-01
I present results from analyses of 20 years of spatiotemporal dynamics in a desert perennial community. Plants were identified and mapped in a 1-ha permanent plot in Joshua Tree National Park (California, USA) in 1984. Plant size, mortality, and new seedlings were censused every five years through 2004. Two species, Ambrosia dumosa and Tetracoccus hallii, were dominant based on their relative abundance and ubiquitous distributions. Spatial analysis for distance indices (SADIE) identified regions of significantly high (patches) or low (gaps) densities. I used SADIE to test for (1) transience in the distribution of patches and gaps within species over time and (2) changes in juvenile-adult associations with conspecific adults and adults of the two dominant species over time. Plant performance was quantified in patches and gaps to determine plant responsiveness to local spatial associations. Species identity was found to influence associations between juveniles and adults. Juveniles of all species showed significant positive spatial associations with the dominant A. dumosa but not with T. hallii. The broad distribution of A. dumosa may increase the spatial extent of non-dominant species that are facilitated by this dominant. The spatial location of patches and gaps was generally consistent over time for adults but not juveniles. Observed variability in the locations of juvenile patches and gaps suggested that suitable locations for establishment were broad relative to occupied regions of the habitat, and that conditions for seed germination were independent of conditions for seedling survival. A dramatic change in spatial distributions and associations within and between species occurred after a major drought that influenced data from the final census. Positive associations between juveniles and adults of all species were found independent of previous associations and most species distributions contracted to areas that were previously characterized by low density. By linking performance to spatial distribution, results from this study offer a spatial context for plant-plant interactions within and among species. Community composition could be influenced both by individual species tolerances of abiotic conditions and by the competitive or facilitative interactions individuals exert over neighbors.
NASA Astrophysics Data System (ADS)
Zhang, Huifang; Yang, Minghong; Xu, Xueke; Wu, Lunzhe; Yang, Weiguang; Shao, Jianda
2017-10-01
The surface figure control of the conventional annular polishing system is realized ordinarily by the interaction between the conditioner and the lap. The surface profile of the pitch lap corrected by the marble conditioner has been measured and analyzed as a function of kinematics, loading conditions, and polishing time. The surface profile measuring equipment of the large lap based on laser alignment was developed with the accuracy of about 1μm. The conditioning mechanism of the conditioner is simply determined by the kinematics and fully fitting principle, but the unexpected surface profile deviation of the lap emerged frequently due to numerous influencing factors including the geometrical relationship, the pressure distribution at the conditioner/lap interface. Both factors are quantitatively evaluated and described, and have been combined to develop a spatial and temporal model to simulate the surface profile evolution of pitch lap. The simulations are consistent with the experiments. This study is an important step toward deterministic full-aperture annular polishing, providing a beneficial guidance for the surface profile correction of the pitch lap.
On the road to national mapping and attribution of the processes underlying U.S
Karen Schleeweis; Gretchen G. Moisen; Todd A. Schroeder; Chris Toney; Elizabeth A. Freeman
2015-01-01
Questions regarding the impact of natural and anthropogenic forest change events (temporary and persisting) on energy, water and nutrient cycling, forest sustainability and resilience, and ecosystem services call for a full suite of information on the spatial and temporal trends of forest dynamics. Temporal and spatial patterns of change along with their magnitude and...
Walter, Sabrina; Keitel, Christian; Müller, Matthias M
2016-01-01
Visual attention can be focused concurrently on two stimuli at noncontiguous locations while intermediate stimuli remain ignored. Nevertheless, behavioral performance in multifocal attention tasks falters when attended stimuli fall within one visual hemifield as opposed to when they are distributed across left and right hemifields. This "different-hemifield advantage" has been ascribed to largely independent processing capacities of each cerebral hemisphere in early visual cortices. Here, we investigated how this advantage influences the sustained division of spatial attention. We presented six isoeccentric light-emitting diodes (LEDs) in the lower visual field, each flickering at a different frequency. Participants attended to two LEDs that were spatially separated by an intermediate LED and responded to synchronous events at to-be-attended LEDs. Task-relevant pairs of LEDs were either located in the same hemifield ("within-hemifield" conditions) or separated by the vertical meridian ("across-hemifield" conditions). Flicker-driven brain oscillations, steady-state visual evoked potentials (SSVEPs), indexed the allocation of attention to individual LEDs. Both behavioral performance and SSVEPs indicated enhanced processing of attended LED pairs during "across-hemifield" relative to "within-hemifield" conditions. Moreover, SSVEPs demonstrated effective filtering of intermediate stimuli in "across-hemifield" condition only. Thus, despite identical physical distances between LEDs of attended pairs, the spatial profiles of gain effects differed profoundly between "across-hemifield" and "within-hemifield" conditions. These findings corroborate that early cortical visual processing stages rely on hemisphere-specific processing capacities and highlight their limiting role in the concurrent allocation of visual attention to multiple locations.
Vatland, Shane J.; Gresswell, Robert E.; Poole, Geoffrey C.
2015-01-01
Accurately quantifying stream thermal regimes can be challenging because stream temperatures are often spatially and temporally heterogeneous. In this study, we present a novel modeling framework that combines stream temperature data sets that are continuous in either space or time. Specifically, we merged the fine spatial resolution of thermal infrared (TIR) imagery with hourly data from 10 stationary temperature loggers in a 100 km portion of the Big Hole River, MT, USA. This combination allowed us to estimate summer thermal conditions at a relatively fine spatial resolution (every 100 m of stream length) over a large extent of stream (100 km of stream) during during the warmest part of the summer. Rigorous evaluation, including internal validation, external validation with spatially continuous instream temperature measurements collected from a Langrangian frame of reference, and sensitivity analyses, suggests the model was capable of accurately estimating longitudinal patterns in summer stream temperatures for this system Results revealed considerable spatial and temporal heterogeneity in summer stream temperatures and highlighted the value of assessing thermal regimes at relatively fine spatial and temporal scales. Preserving spatial and temporal variability and structure in abiotic stream data provides a critical foundation for understanding the dynamic, multiscale habitat needs of mobile stream organisms. Similarly, enhanced understanding of spatial and temporal variation in dynamic water quality attributes, including temporal sequence and spatial arrangement, can guide strategic placement of monitoring equipment that will subsequently capture variation in environmental conditions directly pertinent to research and management objectives.
Puerta, Patricia; Hunsicker, Mary E.; Quetglas, Antoni; Álvarez-Berastegui, Diego; Esteban, Antonio; González, María; Hidalgo, Manuel
2015-01-01
Populations of the same species can experience different responses to the environment throughout their distributional range as a result of spatial and temporal heterogeneity in habitat conditions. This highlights the importance of understanding the processes governing species distribution at local scales. However, research on species distribution often averages environmental covariates across large geographic areas, missing variability in population-environment interactions within geographically distinct regions. We used spatially explicit models to identify interactions between species and environmental, including chlorophyll a (Chla) and sea surface temperature (SST), and trophic (prey density) conditions, along with processes governing the distribution of two cephalopods with contrasting life-histories (octopus and squid) across the western Mediterranean Sea. This approach is relevant for cephalopods, since their population dynamics are especially sensitive to variations in habitat conditions and rarely stable in abundance and location. The regional distributions of the two cephalopod species matched two different trophic pathways present in the western Mediterranean Sea, associated with the Gulf of Lion upwelling and the Ebro river discharges respectively. The effects of the studied environmental and trophic conditions were spatially variant in both species, with usually stronger effects along their distributional boundaries. We identify areas where prey availability limited the abundance of cephalopod populations as well as contrasting effects of temperature in the warmest regions. Despite distributional patterns matching productive areas, a general negative effect of Chla on cephalopod densities suggests that competition pressure is common in the study area. Additionally, results highlight the importance of trophic interactions, beyond other common environmental factors, in shaping the distribution of cephalopod populations. Our study presents a valuable approach for understanding the spatially variant ecology of cephalopod populations, which is important for fisheries and ecosystem management. PMID:26201075
Herschlag, Gregory J; Mitran, Sorin; Lin, Guang
2015-06-21
We develop a hierarchy of approximations to the master equation for systems that exhibit translational invariance and finite-range spatial correlation. Each approximation within the hierarchy is a set of ordinary differential equations that considers spatial correlations of varying lattice distance; the assumption is that the full system will have finite spatial correlations and thus the behavior of the models within the hierarchy will approach that of the full system. We provide evidence of this convergence in the context of one- and two-dimensional numerical examples. Lower levels within the hierarchy that consider shorter spatial correlations are shown to be up to three orders of magnitude faster than traditional kinetic Monte Carlo methods (KMC) for one-dimensional systems, while predicting similar system dynamics and steady states as KMC methods. We then test the hierarchy on a two-dimensional model for the oxidation of CO on RuO2(110), showing that low-order truncations of the hierarchy efficiently capture the essential system dynamics. By considering sequences of models in the hierarchy that account for longer spatial correlations, successive model predictions may be used to establish empirical approximation of error estimates. The hierarchy may be thought of as a class of generalized phenomenological kinetic models since each element of the hierarchy approximates the master equation and the lowest level in the hierarchy is identical to a simple existing phenomenological kinetic models.
Brooke, Russell J; Kretzschmar, Mirjam E E; Hackert, Volker; Hoebe, Christian J P A; Teunis, Peter F M; Waller, Lance A
2017-01-01
We develop a novel approach to study an outbreak of Q fever in 2009 in the Netherlands by combining a human dose-response model with geostatistics prediction to relate probability of infection and associated probability of illness to an effective dose of Coxiella burnetii. The spatial distribution of the 220 notified cases in the at-risk population are translated into a smooth spatial field of dose. Based on these symptomatic cases, the dose-response model predicts a median of 611 asymptomatic infections (95% range: 410, 1,084) for the 220 reported symptomatic cases in the at-risk population; 2.78 (95% range: 1.86, 4.93) asymptomatic infections for each reported case. The low attack rates observed during the outbreak range from (Equation is included in full-text article.)to (Equation is included in full-text article.). The estimated peak levels of exposure extend to the north-east from the point source with an increasing proportion of asymptomatic infections further from the source. Our work combines established methodology from model-based geostatistics and dose-response modeling allowing for a novel approach to study outbreaks. Unobserved infections and the spatially varying effective dose can be predicted using the flexible framework without assuming any underlying spatial structure of the outbreak process. Such predictions are important for targeting interventions during an outbreak, estimating future disease burden, and determining acceptable risk levels.
NASA Astrophysics Data System (ADS)
Verstraete, M. M.; Hunt, L. A.; Pinty, B.; Clerici, M.; Scholes, R. J.
2009-12-01
The MISR instrument on NASA's Terra platform has been acquiring data globally and continuously for almost 10 years. A wide range of atmospheric and land products are operationally generated at the LaRC ASDC, at spatial resolutions of 1.1 km or coarser. Yet, the intrinsic spatial resolution of that sensor is 275m and 12 out of the 36 spectro-directional data channels are transmitted to the ground segment at that resolution. Recent algorithmic developments have permitted us to reconstruct reasonable estimates of the other 24 channels and to account for atmospheric effects at the full original spatial resolution. Spectro-directional reflectances have been processed to characterize the anisotropy of observed land surfaces and then optimally estimate various geophysical properties of the environment such as the fluxes of radiation in and out of plant canopies, the albedo, FAPAR, etc. These detailed products allow us to investigate ecological and environmental changes in much greater spatial and thematic detail than was previously possible. The paper outlines the various methodological steps implemented and exhibits concrete results for a region of moderate size (280 by 380 km) in South Africa. Practical downstream applications of this approach include monitoring desertification and biomass burning, documenting urbanization or characterizing the phenology of vegetation.
Collaborative adaptive landscape management (CALM) in rangelands: Discussion of general principles
USDA-ARS?s Scientific Manuscript database
The management of rangeland landscapes involves broad spatial extents, mixed land ownership, and multiple resource objectives. Management outcomes depend on biophysical heterogeneity, highly variable weather conditions, land use legacies, and spatial processes such as wildlife movement, hydrological...
Regional temperature models are needed for characterizing and mapping stream thermal regimes, establishing reference conditions, predicting future impacts and identifying critical thermal refugia. Spatial statistical models have been developed to improve regression modeling techn...
NASA Astrophysics Data System (ADS)
Nambu, Ryogen; Saito, Hajime; Tanaka, Yoshio; Higano, Junya; Kuwahara, Hisami
2012-03-01
There are many studies on spatial distributions of Asari clam Ruditapes philippinarum adults on tidal flats but few have dealt with spatial distributions of newly settled Asari clam (<0.3 mm shell length, indicative of settlement patterns) in relation to physical/topographical conditions on tidal flats. We examined small-scale spatial distributions of newly settled individuals on the Matsunase tidal flat, central Japan, during the low spring tides on two days 29th-30th June 2007, together with the shear stress from waves and currents on the flat. The characteristics of spatial distribution of newly settled Asari clam markedly varied depending on both of hydrodynamic and topographical conditions on the tidal flat. Using generalized linear models (GLMs), factors responsible for affecting newly settled Asari clam density and its spatial distribution were distinguished between sampling days, with "crest" sites always having a negative influence each on the density and the distribution on both sampling days. The continuously recorded data for the wave-current flows at the "crest" site on the tidal flat showed that newly settled Asari clam, as well as bottom sediment particles, at the "crest" site to be easily displaced. Small-scale spatial distributions of newly settled Asari clam changed with more advanced benthic stages in relation to the wave shear stress.
Ward, Jessica L.; Buerkle, Nathan P.; Bee, Mark A.
2013-01-01
Frogs form large choruses during the mating season in which males produce loud advertisement calls to attract females and repel rival males. High background noise levels in these social aggregations can impair vocal perception. In humans, spatial release from masking contributes to our ability to understand speech in noisy social groups. Here, we tested the hypothesis that spatial separation between target signals and ‘chorus-shaped noise’ improves the ability of female gray treefrogs (Hyla chrysoscelis) to perform a behavioral discrimination task based on perceiving differences in the pulsatile structure of advertisement calls. We used two-stimulus choice tests to measure phonotaxis (approach toward sound) in response to calls differing in pulse rate along a biologically relevant continuum between conspecific (50 pulses s−1) and heterospecific (20 pulses s−1) calls. Signals were presented in quiet, in colocated noise, and in spatially separated noise. In quiet conditions, females exhibited robust preferences for calls with relatively faster pulse rates more typical of conspecific calls. Behavioral discrimination between calls differing in pulse rate was impaired in the presence of colocated noise but similar between quiet and spatially separated noise conditions. Our results indicate that spatial release from energetic masking facilitates a biologically important temporal discrimination task in frogs. We discuss these results in light of previous work on spatial release from masking in frogs and other animals. PMID:24055623
The role of right frontal brain regions in integration of spatial relation.
Han, Jiahui; Cao, Bihua; Cao, Yunfei; Gao, Heming; Li, Fuhong
2016-06-01
Previous studies have explored the neural mechanisms of spatial reasoning on a two-dimensional (2D) plane; however, it remains unclear how spatial reasoning is conducted in a three-dimensional (3D) condition. In the present study, we presented 3D geometric objects to 16 adult participants, and asked them to process the spatial relationship between different corners of the geometric objects. In premise-1, the first two corners of a geometric shape (e.g., A vs. B) were displayed. In premise-2, the second and third corners (e.g., B vs. C) were displayed. After integrating the two premises, participants were required to infer the spatial relationship between the first and the third corners (e.g., A and C). Finally, the participants were presented with a conclusion object, and they were required to judge whether the conclusion was true or false based on their inference. The event-related potential evoked by premise-2 revealed that (1) compared with 2D spatial reasoning, 3D reasoning elicited a smaller P3b component, and (2) in the right frontal areas, increased negativities were found in the 3D condition during the N400 and late negative components (LNC). These findings imply that higher brain activity in the right frontal brain regions were related with the integration and maintenance of spatial information in working memory for reasoning. Copyright © 2016 Elsevier Ltd. All rights reserved.
Accommodation and vergence latencies in human infants
Tondel, Grazyna M.; Candy, T. Rowan
2008-01-01
Purpose Achieving simultaneous single and clear visual experience during postnatal development depends on the temporal relationship between accommodation and vergence, in addition to their accuracies. This study was designed to examine one component of the dynamic relationship, the latencies of the responses. Methods Infants and adults were tested in three conditions i) Binocular viewing of a target moving in depth at 5cm/s (closed loop) ii) monocular viewing of the same target (vergence open loop) iii) binocular viewing of a low spatial frequency Difference of Gaussian target during a prism induced step change in retinal disparity (accommodation open loop). Results There was a significant correlation between accommodation and vergence latencies in binocular conditions for infants from 7 to 23 weeks of age. Some of the infants, as young as 7 or 8 weeks, generated adult-like latencies of less than 0.5 s. Latencies in the vergence open loop and accommodation open loop conditions tended to be shorter for the stimulated system than the open loop system in both cases, and all latencies were typically less than 2 seconds across the infant age range. Conclusions Many infants between 7 and 23 weeks of age were able to generate accommodation and vergence responses with latencies of less than a second in full binocular closed loop conditions. The correlation between the latencies in the two systems suggests that they are limited by related factors from the earliest ages tested. PMID:18199466
Accommodation and vergence latencies in human infants.
Tondel, Grazyna M; Candy, T Rowan
2008-02-01
Achieving simultaneous single and clear visual experience during postnatal development depends on the temporal relationship between accommodation and vergence, in addition to their accuracies. This study was designed to examine one component of the dynamic relationship, the latencies of the responses. Infants and adults were tested in three conditions (i) binocular viewing of a target moving in depth at 5 cm/s (closed loop) (ii) monocular viewing of the same target (vergence open loop) (iii) binocular viewing of a low spatial frequency Difference of Gaussian target during a prism induced step change in retinal disparity (accommodation open loop). There was a significant correlation between accommodation and vergence latencies in binocular conditions for infants from 7 to 23 weeks of age. Some of the infants, as young as 7 or 8 weeks, generated adult-like latencies of less than 0.5 s. Latencies in the vergence open loop and accommodation open loop conditions tended to be shorter for the stimulated system than the open loop system in both cases, and all latencies were typically less than 2 s across the infant age range. Many infants between 7 and 23 weeks of age were able to generate accommodation and vergence responses with latencies of less than a second in full binocular closed loop conditions. The correlation between the latencies in the two systems suggests that they are limited by related factors from the earliest ages tested.
NASA Astrophysics Data System (ADS)
Moreau, Paul-Antoine; Mougin-Sisini, Joé; Devaux, Fabrice; Lantz, Eric
2012-07-01
We demonstrate Einstein-Podolsky-Rosen (EPR) entanglement by detecting purely spatial quantum correlations in the near and far fields of spontaneous parametric down-conversion generated in a type-2 beta barium borate crystal. Full-field imaging is performed in the photon-counting regime with an electron-multiplying CCD camera. The data are used without any postselection, and we obtain a violation of Heisenberg inequalities with inferred quantities taking into account all the biphoton pairs in both the near and far fields by integration on the entire two-dimensional transverse planes. This ensures a rigorous demonstration of the EPR paradox in its original position-momentum form.
NASA Astrophysics Data System (ADS)
Wang, Peng; Ebeling, Carl G.; Gerton, Jordan; Menon, Rajesh
In this paper, we demonstrate hyper-spectral imaging of fluorescent microspheres in a scanning-confocal-fluorescence microscope by spatially dispersing the spectra using a novel broadband diffractive optic, and applying a nonlinear optimization technique to extract the full-incident spectra. This broadband diffractive optic has a designed optical efficiency of over 90% across the entire visible spectrum. We used this technique to create two-color images of two fluorophores and also extracted their emission spectra with good fidelity. This method can be extended to image both spatially and spectrally overlapping fluorescent samples. Full control in the number of emission spectra and the feasibility of enhanced imaging speed are demonstrated as well.
NASA Astrophysics Data System (ADS)
Nordtvedt, Kenneth
2018-01-01
In the author's previous publications, a recursive linear algebraic method was introduced for obtaining (without gravitational radiation) the full potential expansions for the gravitational metric field components and the Lagrangian for a general N-body system. Two apparent properties of gravity— Exterior Effacement and Interior Effacement—were defined and fully enforced to obtain the recursive algebra, especially for the motion-independent potential expansions of the general N-body situation. The linear algebraic equations of this method determine the potential coefficients at any order n of the expansions in terms of the lower-order coefficients. Then, enforcing Exterior and Interior Effacement on a selecedt few potential series of the full motion-independent potential expansions, the complete exterior metric field for a single, spherically-symmetric mass source was obtained, producing the Schwarzschild metric field of general relativity. In this fourth paper of this series, the complete spatial metric's motion-independent potentials for N bodies are obtained using enforcement of Interior Effacement and knowledge of the Schwarzschild potentials. From the full spatial metric, the complete set of temporal metric potentials and Lagrangian potentials in the motion-independent case can then be found by transfer equations among the coefficients κ( n, α) → λ( n, ɛ) → ξ( n, α) with κ( n, α), λ( n, ɛ), ξ( n, α) being the numerical coefficients in the spatial metric, the Lagrangian, and the temporal metric potential expansions, respectively.
High resolution aquifer characterization using crosshole GPR full-waveform tomography
NASA Astrophysics Data System (ADS)
Gueting, N.; Vienken, T.; Klotzsche, A.; Van Der Kruk, J.; Vanderborght, J.; Caers, J.; Vereecken, H.; Englert, A.
2016-12-01
Limited knowledge about the spatial distribution of aquifer properties typically constrains our ability to predict subsurface flow and transport. Here, we investigate the value of using high resolution full-waveform inversion of cross-borehole ground penetrating radar (GPR) data for aquifer characterization. By stitching together GPR tomograms from multiple adjacent crosshole planes, we are able to image, with a decimeter scale resolution, the dielectric permittivity and electrical conductivity of an alluvial aquifer along cross-sections of 50 m length and 10 m depth. A logistic regression model is employed to predict the spatial distribution of lithological facies on the basis of the GPR results. Vertical profiles of porosity and hydraulic conductivity from direct-push, flowmeter and grain size data suggest that the GPR predicted facies classification is meaningful with regard to porosity and hydraulic conductivity, even though the distributions of individual facies show some overlap and the absolute hydraulic conductivities from the different methods (direct-push, flowmeter, grain size) differ up to approximately one order of magnitude. Comparison of the GPR predicted facies architecture with tracer test data suggests that the plume splitting observed in a tracer experiment was caused by a hydraulically low-conductive sand layer with a thickness of only a few decimeters. Because this sand layer is identified by GPR full-waveform inversion but not by conventional GPR ray-based inversion we conclude that the improvement in spatial resolution due to full-waveform inversion is crucial to detect small-scale aquifer structures that are highly relevant for solute transport.
NASA Astrophysics Data System (ADS)
Ruf, C. S.; Clarizia, M. P.; Ridley, A. J.; Gleason, S.; O'Brien, A.
2014-12-01
The Cyclone Global Navigation Satellite System (CYGNSS) is the first NASA Earth Ventures spaceborne mission. CYGNSS consists of a constellation of eight small observatories carried into orbit on a single launch vehicle. The eight satellites comprise a constellation that flies closely together to measure the ocean surface wind field with unprecedented temporal resolution and spatial coverage, under all precipitating conditions, and over the full dynamic range of wind speeds experienced in a TC. The 8 CYGNSS observatories will fly in 500 km circular orbits at a common inclination of ~35°. Each observatory includes a Delay Doppler Mapping Instrument (DDMI) consisting of a modified GPS receiver capable of measuring surface scattering, a low gain zenith antenna for measurement of the direct GPS signal, and two high gain nadir antennas for measurement of the weaker scattered signal. Each DDMI is capable of measuring 4 simultaneous bi-static reflections, resulting in a total of 32 wind measurements per second across the globe by the full constellation. Simulation studies will be presented which examine the sampling as functions of various orbit parameters of the constellation. For comparison purposes, a similar analysis is conducted using the sampling of several past and present conventional spaceborne ocean wind scatterometers. Differences in the ability of the sensors to resolve the evolution of the TC inner core will be examined. The CYGNSS observatories are currently in Phase C development. An update on the current status of the mission will be presented, including the expected precision, accuracy and spatial and temporal sampling properties of the retrieved winds.
Aboobakar, Amina; Cartmell, Elise; Stephenson, Tom; Jones, Mark; Vale, Peter; Dotro, Gabriela
2013-02-01
This paper reports findings from online, continuous monitoring of dissolved and gaseous nitrous oxide (N₂O), combined with dissolved oxygen (DO) and ammonia loading, in a full-scale nitrifying activated sludge plant. The study was conducted over eight weeks, at a 210,000 population equivalent sewage treatment works in the UK. Results showed diurnal variability in the gaseous and dissolved N₂O emissions, with hourly averages ranging from 0 to 0.00009 kgN₂O-N/h for dissolved and 0.00077-0.0027 kgN₂O-N/h for gaseous nitrous oxide emissions respectively, per ammonia loading, depending on the time of day. Similarly, the spatial variability was high, with the highest emissions recorded immediately after the anoxic zone and in the final pass of the aeration lane, where ammonia concentrations were typically below 0.5 mg/L. Emissions were shown to be negatively correlated to dissolved oxygen, which fluctuated between 0.5 and 2.5 mgO₂/L, at the control set point of 1.5 mgO₂/L. The resulting dynamic DO conditions are known to favour N₂O production, both by autotrophic and heterotrophic processes in mixed cultures. Average mass emissions from the lane were greater in the gaseous (0.036% of the influent total nitrogen) than in the dissolved (0.01% of the influent total nitrogen) phase, and followed the same diurnal and spatial patterns. Nitrous oxide emissions corresponded to over 34,000 carbon dioxide equivalents/year, adding 13% to the carbon footprint associated with the energy requirements of the monitored lane. A clearer understanding of emissions obtained from real-time data can help towards finding the right balance between improving operational efficiency and saving energy, without increasing N₂O emissions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Spatial and temporal patterns of mass bleaching of corals in the Anthropocene.
Hughes, Terry P; Anderson, Kristen D; Connolly, Sean R; Heron, Scott F; Kerry, James T; Lough, Janice M; Baird, Andrew H; Baum, Julia K; Berumen, Michael L; Bridge, Tom C; Claar, Danielle C; Eakin, C Mark; Gilmour, James P; Graham, Nicholas A J; Harrison, Hugo; Hobbs, Jean-Paul A; Hoey, Andrew S; Hoogenboom, Mia; Lowe, Ryan J; McCulloch, Malcolm T; Pandolfi, John M; Pratchett, Morgan; Schoepf, Verena; Torda, Gergely; Wilson, Shaun K
2018-01-05
Tropical reef systems are transitioning to a new era in which the interval between recurrent bouts of coral bleaching is too short for a full recovery of mature assemblages. We analyzed bleaching records at 100 globally distributed reef locations from 1980 to 2016. The median return time between pairs of severe bleaching events has diminished steadily since 1980 and is now only 6 years. As global warming has progressed, tropical sea surface temperatures are warmer now during current La Niña conditions than they were during El Niño events three decades ago. Consequently, as we transition to the Anthropocene, coral bleaching is occurring more frequently in all El Niño-Southern Oscillation phases, increasing the likelihood of annual bleaching in the coming decades. Copyright © 2018, American Association for the Advancement of Science.
Spectral and spatial shaping of a laser-produced ion beam for radiation-biology experiments
NASA Astrophysics Data System (ADS)
Pommarel, L.; Vauzour, B.; Mégnin-Chanet, F.; Bayart, E.; Delmas, O.; Goudjil, F.; Nauraye, C.; Letellier, V.; Pouzoulet, F.; Schillaci, F.; Romano, F.; Scuderi, V.; Cirrone, G. A. P.; Deutsch, E.; Flacco, A.; Malka, V.
2017-03-01
The study of radiation biology on laser-based accelerators is most interesting due to the unique irradiation conditions they can produce, in terms of peak current and duration of the irradiation. In this paper we present the implementation of a beam transport system to transport and shape the proton beam generated by laser-target interaction for in vitro irradiation of biological samples. A set of four permanent magnet quadrupoles is used to transport and focus the beam, efficiently shaping the spectrum and providing a large and relatively uniform irradiation surface. Real time, absolutely calibrated, dosimetry is installed on the beam line, to enable shot-to-shot control of dose deposition in the irradiated volume. Preliminary results of cell sample irradiation are presented to validate the robustness of the full system.
De Falco, Enrica; Mancini, Emilia; Roscigno, Graziana; Mignola, Enrico; Taglialatela-Scafati, Orazio; Senatore, Felice
2013-12-04
This research was aimed at investigating the essential oil production, chemical composition and biological activity of a crop of pink flowered oregano (Origanum vulgare L. subsp. vulgare L.) under different spatial distribution of the plants (single and binate rows). This plant factor was shown to affect its growth, soil covering, fresh biomass, essential oil amount and composition. In particular, the essential oil percentage was higher for the binate row treatment at the full bloom. The chemical composition of the oils obtained by hydrodistillation was fully characterized by GC and GC-MS. The oil from plants grown in single rows was rich in sabinene, while plants grown in double rows were richer in ocimenes. The essential oils showed antimicrobial action, mainly against Gram-positive pathogens and particularly Bacillus cereus and B. subtilis.
A gyrokinetic one-dimensional scrape-off layer model of an edge-localized mode heat pulse
Shi, E. L.; Hakim, A. H.; Hammett, G. W.
2015-02-03
An electrostatic gyrokinetic-based model is applied to simulate parallel plasma transport in the scrape-off layer to a divertor plate. We focus on a test problem that has been studied previously, using parameters chosen to model a heat pulse driven by an edge-localized mode in JET. Previous work has used direct particle-in-cellequations with full dynamics, or Vlasov or fluid equations with only parallel dynamics. With the use of the gyrokinetic quasineutrality equation and logical sheathboundary conditions, spatial and temporal resolution requirements are no longer set by the electron Debye length and plasma frequency, respectively. Finally, this test problem also helps illustratemore » some of the physics contained in the Hamiltonian form of the gyrokineticequations and some of the numerical challenges in developing an edge gyrokinetic code.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Gridded Model Information Support System (GMISS) is a data base management system for selected Regional Oxidant Model (ROM) input data and species concentrations produced by gridded photochemical air pollution models. The Model Concentration Data Retrieval Subsystem allows State and local air pollution control agencies to retrieve these hourly data for use in support of their regulatory programs. These hourly data may be used to calculate initial and boundary conditions for the Empirical Kinetics Modeling Approach (EKMA). They may be used for other modeling application needs as well as to support evaluation of regional emission controls strategies. Both temporal andmore » spatial subsets of the data may be retrieved. The document describes how to invoke and execute the Model Concentration Data Retrieval Subsystem using the full screen menus.« less
Jupiter Climatological Database from Frequent 5-25 µm Mid-IR Spectral Mapping using IRTF/TEXES
NASA Astrophysics Data System (ADS)
Fletcher, Leigh N.; Orton, Glenn S.; Greathouse, Thomas K.; Sinclair, James; Irwin, Patrick G. J.; Giles, Rohini S.; Encrenaz, Therese; Drossart, Pierre
2015-11-01
We report on the development of a long-term Jovian Climatological Database (JCliD) to explore variability in Jupiter’s atmospheric temperatures, winds, clouds and composition- from long-term seasonal changes to short-term major upheavals. Radiometrically calibrated spectral scan maps of Jupiter have been regularly obtained using the TEXES instrument (Texas Echelon cross Echelle Spectrograph, Lacy et al. 2002, PASP 114, p153-168) between 2012 and 2015. Ten settings between 5 and 25 µm (10-20 cm-1 wide settings at spectral resolutions of 2000-10000) were selected to be sensitive to jovian temperatures (via H2, CH4 and CH3D), tropospheric phosphine and ammonia, tropospheric haze opacity and stratospheric hydrocarbons ethane and acetylene. Diffraction-limited spatial resolutions of 0.6-1.6” were achieved. Observations over consecutive nights allow the creation of full spatial maps for comparison with the visible light record, revealing ephemeral stratospheric wave activity, NEB hotspots, heating at the northern auroral oval, and complex thermal signatures associated with tropospheric vortices, waves and barges. Full spectra are inverted via the NEMESIS retrieval algorithm (Irwin et al., 2008, JSQRT 109, p1136-1150) to map temperatures at multiple altitudes (1-600 mbar), winds, aerosol opacity and gaseous composition. The spatial and spectral resolutions of the resulting maps surpass those obtained during the Cassini flyby of Jupiter in 2000, and permit temporal interpolation to understand the environmental conditions related to the emergence and evolution of discrete features. In December 2014 we find warmer temperatures in the northern stratosphere (a seasonal effect in late northern summer despite Jupiter’s small axial tilt); a hemispheric asymmetry in the tropospheric PH3 distribution due to variations in the vigour of vertical mixing and photolytic shielding; elevated PH3, aerosols and NH3 in the equatorial zone (EZ) related to equatorial uplift; elevated aerosol opacity in the northern and southern tropical zones (NTrZ and STrZ); and enhanced PH3 and aerosols over the Great Red Spot. Maps of retrieved properties will be assembled as a database (JCliD) to aid in the interpretation of Juno data during 2016-2017.
Landon, Matthew K.; Green, Christopher T.; Belitz, Kenneth; Singleton, Michael J.; Esser, Bradley K.
2011-01-01
In a 2,700-km2 area in the eastern San Joaquin Valley, California (USA), data from multiple sources were used to determine interrelations among hydrogeologic factors, reduction-oxidation (redox) conditions, and temporal and spatial distributions of nitrate (NO3), a widely detected groundwater contaminant. Groundwater is predominantly modern, or mixtures of modern water, with detectable NO3 and oxic redox conditions, but some zones have anoxic or mixed redox conditions. Anoxic conditions were associated with long residence times that occurred near the valley trough and in areas of historical groundwater discharge with shallow depth to water. Anoxic conditions also were associated with interactions of shallow, modern groundwater with soils. NO3 concentrations were significantly lower in anoxic than oxic or mixed redox groundwater, primarily because residence times of anoxic waters exceed the duration of increased pumping and fertilizer use associated with modern agriculture. Effects of redox reactions on NO3 concentrations were relatively minor. Dissolved N2 gas data indicated that denitrification has eliminated >5 mg/L NO3–N in about 10% of 39 wells. Increasing NO3 concentrations over time were slightly less prevalent in anoxic than oxic or mixed redox groundwater. Spatial and temporal trends of NO3 are primarily controlled by water and NO3 fluxes of modern land use.
Landon, M.K.; Green, C.T.; Belitz, K.; Singleton, M.J.; Esser, B.K.
2011-01-01
In a 2,700-km2 area in the eastern San Joaquin Valley, California (USA), data from multiple sources were used to determine interrelations among hydrogeologic factors, reduction-oxidation (redox) conditions, and temporal and spatial distributions of nitrate (NO3), a widely detected groundwater contaminant. Groundwater is predominantly modern, or mixtures of modern water, with detectable NO3 and oxic redox conditions, but some zones have anoxic or mixed redox conditions. Anoxic conditions were associated with long residence times that occurred near the valley trough and in areas of historical groundwater discharge with shallow depth to water. Anoxic conditions also were associated with interactions of shallow, modern groundwater with soils. NO3 concentrations were significantly lower in anoxic than oxic or mixed redox groundwater, primarily because residence times of anoxic waters exceed the duration of increased pumping and fertilizer use associated with modern agriculture. Effects of redox reactions on NO3 concentrations were relatively minor. Dissolved N2 gas data indicated that denitrification has eliminated gt;5 mg/L NO3-N in about 10% of 39 wells. Increasing NO3 concentrations over time were slightly less prevalent in anoxic than oxic or mixed redox groundwater. Spatial and temporal trends of NO3 are primarily controlled by water and NO3 fluxes of modern land use. ?? 2011 Springer-Verlag (outside the USA).
Spatial modeling of cell signaling networks.
Cowan, Ann E; Moraru, Ion I; Schaff, James C; Slepchenko, Boris M; Loew, Leslie M
2012-01-01
The shape of a cell, the sizes of subcellular compartments, and the spatial distribution of molecules within the cytoplasm can all control how molecules interact to produce a cellular behavior. This chapter describes how these spatial features can be included in mechanistic mathematical models of cell signaling. The Virtual Cell computational modeling and simulation software is used to illustrate the considerations required to build a spatial model. An explanation of how to appropriately choose between physical formulations that implicitly or explicitly account for cell geometry and between deterministic versus stochastic formulations for molecular dynamics is provided, along with a discussion of their respective strengths and weaknesses. As a first step toward constructing a spatial model, the geometry needs to be specified and associated with the molecules, reactions, and membrane flux processes of the network. Initial conditions, diffusion coefficients, velocities, and boundary conditions complete the specifications required to define the mathematics of the model. The numerical methods used to solve reaction-diffusion problems both deterministically and stochastically are then described and some guidance is provided in how to set up and run simulations. A study of cAMP signaling in neurons ends the chapter, providing an example of the insights that can be gained in interpreting experimental results through the application of spatial modeling. Copyright © 2012 Elsevier Inc. All rights reserved.
Modality specificity and integration in working memory: Insights from visuospatial bootstrapping.
Allen, Richard J; Havelka, Jelena; Falcon, Thomas; Evans, Sally; Darling, Stephen
2015-05-01
The question of how meaningful associations between verbal and spatial information might be utilized to facilitate working memory performance is potentially highly instructive for models of memory function. The present study explored how separable processing capacities within specialized domains might each contribute to this, by examining the disruptive impacts of simple verbal and spatial concurrent tasks on young adults' recall of visually presented digit sequences encountered either in a single location or within a meaningful spatial "keypad" configuration. The previously observed advantage for recall in the latter condition (the "visuospatial bootstrapping effect") consistently emerged across 3 experiments, indicating use of familiar spatial information in boosting verbal memory. The magnitude of this effect interacted with concurrent activity; articulatory suppression during encoding disrupted recall to a greater extent when digits were presented in single locations (Experiment 1), while spatial tapping during encoding had a larger impact on the keypad condition and abolished the visuospatial bootstrapping advantage (Experiment 2). When spatial tapping was performed during recall (Experiment 3), no task by display interaction was observed. Outcomes are discussed within the context of the multicomponent model of working memory, with a particular emphasis on cross-domain storage in the episodic buffer (Baddeley, 2000). (c) 2015 APA, all rights reserved).
Temporary refugia for coral reefs in a warming world
NASA Astrophysics Data System (ADS)
van Hooidonk, R.; Maynard, J. A.; Planes, S.
2013-05-01
Climate-change impacts on coral reefs are expected to include temperature-induced spatially extensive bleaching events. Bleaching causes mortality when temperature stress persists but exposure to bleaching conditions is not expected to be spatially uniform at the regional or global scale. Here we show the first maps of global projections of bleaching conditions based on ensembles of IPCC AR5 (ref. ) models forced with the new Representative Concentration Pathways (RCPs). For the three RCPs with larger CO2 emissions (RCP 4.5, 6.0 and 8.5) the onset of annual bleaching conditions is associated with ~ 510ppm CO2 equivalent; the median year of all locations is 2040 for the fossil-fuel aggressive RCP 8.5. Spatial patterns in the onset of annual bleaching conditions are similar for each of the RCPs. For RCP 8.5, 26% of reef cells are projected to experience annual bleaching conditions more than 5 years later than the median. Some of these temporary refugia include the western Indian Ocean, Thailand, the southern Great Barrier Reef and central French Polynesia. A reduction in the growth of greenhouse-gas emissions corresponding to the difference between RCP 8.5 and 6.0 delays annual bleaching in ~ 23% of reef cells more than two decades, which might conceivably increase the potential for these reefs to cope with these changes.
Training specificity and transfer in time and distance estimation.
Healy, Alice F; Tack, Lindsay Anderson; Schneider, Vivian I; Barshi, Immanuel
2015-07-01
Learning is often specific to the conditions of training, making it important to identify which aspects of the testing environment are crucial to be matched in the training environment. In the present study, we examined training specificity in time and distance estimation tasks that differed only in the focus of processing (FOP). External spatial cues were provided for the distance estimation task and for the time estimation task in one condition, but not in another. The presence of a concurrent alphabet secondary task was manipulated during training and testing in all estimation conditions in Experiment 1. For distance as well as for time estimation in both conditions, training of the primary estimation task was found to be specific to the presence of the secondary task. In Experiments 2 and 3, we examined transfer between one estimation task and another, with no secondary task in either case. When all conditions were equal aside from the FOP instructions, including the presence of external spatial cues, Experiment 2 showed "transfer" between tasks, suggesting that training might not be specific to the FOP. When the external spatial cues were removed from the time estimation task, Experiment 3 showed no transfer between time and distance estimations, suggesting that external task cues influenced the procedures used in the estimation tasks.
Lü, Changwei; He, Jiang; Wang, Bing
2018-02-01
The chemistry of sedimentary organic phosphorus (OP) and its fraction distribution in sediments are greatly influenced by environmental conditions such as terrestrial inputs and runoffs. The linkage of OP with environmental conditions was analyzed on the basis of OP spatial and historical distributions in lake sediments. The redundancy analysis and OP spatial distribution results suggested that both NaOH-OP (OP extracted by NaOH) and Re-OP (residual OP) in surface sediments from the selected 13 lakes reflected the gradient effects of environmental conditions and the autochthonous and/or allochthonous inputs driven by latitude zonality in China. The lake level and salinity of Lake Hulun and the runoff and precipitation of its drainage basin were reconstructed on the basis of the geochemistry index. This work showed that a gradient in weather conditions presented by the latitude zonality in China impacts the OP accumulation through multiple drivers and in many ways. The drivers are mainly precipitation and temperature, governing organic matter (OM) production, degradation rate and transportation in the watershed. Over a long temporal dimension (4000years), the vertical distributions of Re-OP and NaOH-OP based on a dated sediment profile from HLH were largely regulated by the autochthonous and/or allochthonous inputs, which depended on the environmental and climate conditions and anthropogenic activities in the drainage basin. This work provides useful environmental geochemistry information to understand the inherent linkage of OP fractionation with environmental conditions and lake evolution. Copyright © 2017. Published by Elsevier B.V.
Estimation of Spatial Trends in LAI in Heterogeneous Semi-arid Ecosystems using Full Waveform Lidar
NASA Astrophysics Data System (ADS)
Glenn, N. F.; Ilangakoon, N.; Spaete, L.; Dashti, H.
2017-12-01
Leaf area index (LAI) is a key structural trait that is defined by the plant functional type (PFT) and controlled by prevailing climate- and human-driven ecosystem stresses. Estimates of LAI using remote sensing techniques are limited by the uncertainties of vegetation inter and intra-gap fraction estimates; this is especially the case in sparse, low stature vegetated ecosystems. Small footprint full waveform lidar digitizes the total amount of return energy with the direction information as a near continuous waveform at a high vertical resolution (1 ns). Thus waveform lidar provides additional data matrices to capture vegetation gaps as well as PFTs that can be used to constrain the uncertainties of LAI estimates. In this study, we calculated a radiometrically calibrated full waveform parameter called backscatter cross section, along with other data matrices from the waveform to estimate vegetation gaps across plots (10 m x 10 m) in a semi-arid ecosystem in the western US. The LAI was then estimated using empirical relationships with directional gap fraction. Full waveform-derived gap fraction based LAI showed a high correlation with field observed shrub LAI (R2 = 0.66, RMSE = 0.24) compared to discrete return lidar based LAI (R2 = 0.01, RMSE = 0.5). The data matrices derived from full waveform lidar classified a number of deciduous and evergreen tree species, shrub species, and bare ground with an overall accuracy of 89% at 10 m. A similar analysis was performed at 1m with overall accuracy of 80%. The next step is to use these relationships to map the PFTs LAI at 10 m spatial scale across the larger study regions. The results show the exciting potential of full waveform lidar to identify plant functional types and LAI in low-stature vegetation dominated semi-arid ecosystems, an ecosystem in which many other remote sensing techniques fail. These results can be used to assess ecosystem state, habitat suitability as well as to constrain model uncertainties in vegetation dynamic models with a combination of other remote sensing techniques. Multi-spatial resolution (1 m and 10 m) studies provide basic information on the applicability and detection thresholds of future global satellite sensors designed at coarser spatial resolutions (e.g. GEDI, ICESat-2) in semi-arid ecosystems.
NASA Astrophysics Data System (ADS)
Hernandez, A.; Sánchez-López, G.; Pla-Rabes, S.; Trigo, R.; Toro, M.; Granados, I.; Sáez, A.; Masque, P.; Pueyo, J. J.; Rubio-Inglés, M. J.; Giralt, S.
2016-12-01
The multi-proxy approach from sediments of an Iberian alpine lake allowed us to establish the climatic conditions in the Iberian Central Range (ICR) over the last two millennia. The comparison with other Iberian reconstructions permitted to identify possible forcing climate mechanisms. Climatic conditions would be transmitted to the sediments via the frequency of intense run-off events, derived from rain-on-snow events, and the lake productivity, ruled by ice-cover duration. The early Roman Period (RP; 200 BC - 350 AD) in the ICR was characterized by oscillations of intense run-off events, as a consequence of an alternation between cold and warm periods. From the second half of the RP to the onset of the Early Middle Ages (EMA; 350 - 500 AD) an increase in the intense run-off events suggests warm conditions, although a noticeable decrease during the rest of the EMA (500 - 900 AD) evidences a shift to very cold temperatures in this region. In terms of humidity, both RP and EMA climatic periods displayed a transition from a dry to a wet scenario that led to a decrease in lake productivity. These climatic conditions have been registered by other reconstructions in the Iberian Peninsula (IP), and a North-South humidity gradient could be envisaged, although spatial climatic discrepancies were significant. Precipitation and temperature in the IP present a more homogeneous spatial pattern when the NAO and EA modes have the same sign than when they have the opposite sign. Hence, a predominance of periods with NAO - EA in opposite phases could explain the climatic spatial heterogeneity in the IP during these two periods. The Medieval Climate Anomaly (MCA; 900 - 1300 AD) in the ICR was characterized by warm and dry conditions represented by an increase in exceptional run-off episodes and lake productivity whereas the Little Ice Age (LIA; 1300 - 1850 AD) showed the opposite scenario. Similar climatic conditions were registered in all the IP, reflecting a spatial climatic homogeneity. The climatic conditions attributed to the MCA and the LIA are consistent with a change from a predominant positive phase of the NAO during the MCA to a prevalence negative NAO phase during the LIA. Additionally, a predominance in the coincidence of NAO - EA phases (both modes positive during the MCA and both negative during the LIA) could reinforce this spatial homogeneity.
Effects of ignition location models on the burn patterns of simulated wildfires
Bar-Massada, A.; Syphard, A.D.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.
2011-01-01
Fire simulation studies that use models such as FARSITE often assume that ignition locations are distributed randomly, because spatially explicit information about actual ignition locations are difficult to obtain. However, many studies show that the spatial distribution of ignition locations, whether human-caused or natural, is non-random. Thus, predictions from fire simulations based on random ignitions may be unrealistic. However, the extent to which the assumption of ignition location affects the predictions of fire simulation models has never been systematically explored. Our goal was to assess the difference in fire simulations that are based on random versus non-random ignition location patterns. We conducted four sets of 6000 FARSITE simulations for the Santa Monica Mountains in California to quantify the influence of random and non-random ignition locations and normal and extreme weather conditions on fire size distributions and spatial patterns of burn probability. Under extreme weather conditions, fires were significantly larger for non-random ignitions compared to random ignitions (mean area of 344.5 ha and 230.1 ha, respectively), but burn probability maps were highly correlated (r = 0.83). Under normal weather, random ignitions produced significantly larger fires than non-random ignitions (17.5 ha and 13.3 ha, respectively), and the spatial correlations between burn probability maps were not high (r = 0.54), though the difference in the average burn probability was small. The results of the study suggest that the location of ignitions used in fire simulation models may substantially influence the spatial predictions of fire spread patterns. However, the spatial bias introduced by using a random ignition location model may be minimized if the fire simulations are conducted under extreme weather conditions when fire spread is greatest. ?? 2010 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Feng, Yongjiu; Liu, Yang; Chen, Xinjun
2018-06-01
There are substantial spatial variations in the relationships between catch-per-unit-effort (CPUE) and oceanographic conditions with respect to pelagic species. This study examines the monthly spatiotemporal distribution of CPUE of the neon flying squid, Ommastrephes bartramii, in the Northwest Pacific from July to November during 2004-2013, and analyzes the relationships with oceanographic conditions using a generalized additive model (GAM) and geographically weighted regression (GWR) model. The results show that most of the squids were harvested in waters with sea surface temperature (SST) between 7.6 and 24.6°C, chlorophyll- a (Chl- a) concentration below 1.0 mg m-3, sea surface salinity (SSS) between 32.7 and 34.6, and sea surface height (SSH) between -12.8 and 28.4 cm. The monthly spatial distribution patterns of O. bartramii predicted using GAM and GWR models are similar to observed patterns for all months. There are notable variations in the local coefficients of GWR, indicating the presence of spatial non-stationarity in the relationship between O. bartramii CPUE and oceanographic conditions. The statistical results show that there were nearly equal positive and negative coefficients for Chl- a, more positive than negative coefficients for SST, and more negative than positive coefficients for SSS and SSH. The overall accuracies of the hot spots predicted by GWR exceed 60% (except for October), indicating a good performance of this model and its improvement over GAM. Our study provides a better understanding of the ecological dynamics of O. bartramii CPUE and makes it possible to use GWR to study the spatially nonstationary characteristics of other pelagic species.
Spatial and temporal patterns of coexistence between competing Aedes mosquitoes in urban Florida
Juliano, S. A.
2009-01-01
Understanding mechanisms fostering coexistence between invasive and resident species is important in predicting ecological, economic, or health impacts of invasive species. The mosquito Aedes aegypti coexists at some urban sites in southeastern United States with invasive Aedes albopictus, which is often superior in interspecific competition. We tested predictions for three hypotheses of species coexistence: seasonal condition-specific competition, aggregation among individual water-filled containers, and colonization–competition tradeoff across spatially partitioned habitat patches (cemeteries) that have high densities of containers. We measured spatial and temporal patterns of abundance for both species among water-filled resident cemetery vases and experimentally positioned standard cemetery vases and ovitraps in metropolitan Tampa, Florida. Consistent with the seasonal condition-specific competition hypothesis, abundances of both species in resident and standard cemetery vases were higher early in the wet season (June) versus late in the wet season (September), but the proportional increase of A. albopictus was greater than that of A. aegypti, presumably due to higher dry-season egg mortality and strong wet-season competitive superiority of larval A. albopictus. Spatial partitioning was not evident among cemeteries, a result inconsistent with the colonization-competition tradeoff hypothesis, but both species were highly independently aggregated among standard cemetery vases and ovitraps, which is consistent with the aggregation hypothesis. Densities of A. aegypti but not A. albopictus differed among land use categories, with A. aegypti more abundant in ovitraps in residential areas compared to industrial and commercial areas. Spatial partitioning among land use types probably results from effects of land use on conditions in both terrestrial and aquatic-container environments. These results suggest that both temporal and spatial variation may contribute to local coexistence between these Aedes in urban areas. PMID:19263086
Spatial and temporal patterns of coexistence between competing Aedes mosquitoes in urban Florida.
Leisnham, Paul T; Juliano, S A
2009-05-01
Understanding mechanisms fostering coexistence between invasive and resident species is important in predicting ecological, economic, or health impacts of invasive species. The mosquito Aedes aegypti coexists at some urban sites in southeastern United States with invasive Aedes albopictus, which is often superior in interspecific competition. We tested predictions for three hypotheses of species coexistence: seasonal condition-specific competition, aggregation among individual water-filled containers, and colonization-competition tradeoff across spatially partitioned habitat patches (cemeteries) that have high densities of containers. We measured spatial and temporal patterns of abundance for both species among water-filled resident cemetery vases and experimentally positioned standard cemetery vases and ovitraps in metropolitan Tampa, Florida. Consistent with the seasonal condition-specific competition hypothesis, abundances of both species in resident and standard cemetery vases were higher early in the wet season (June) versus late in the wet season (September), but the proportional increase of A. albopictus was greater than that of A. aegypti, presumably due to higher dry-season egg mortality and strong wet-season competitive superiority of larval A. albopictus. Spatial partitioning was not evident among cemeteries, a result inconsistent with the colonization-competition tradeoff hypothesis, but both species were highly independently aggregated among standard cemetery vases and ovitraps, which is consistent with the aggregation hypothesis. Densities of A. aegypti but not A. albopictus differed among land use categories, with A. aegypti more abundant in ovitraps in residential areas compared to industrial and commercial areas. Spatial partitioning among land use types probably results from effects of land use on conditions in both terrestrial and aquatic-container environments. These results suggest that both temporal and spatial variation may contribute to local coexistence between these Aedes in urban areas.
Spatial and Temporal Dynamics of Pacific Oyster Hemolymph Microbiota across Multiple Scales
Lokmer, Ana; Goedknegt, M. Anouk; Thieltges, David W.; Fiorentino, Dario; Kuenzel, Sven; Baines, John F.; Wegner, K. Mathias
2016-01-01
Unveiling the factors and processes that shape the dynamics of host associated microbial communities (microbiota) under natural conditions is an important part of understanding and predicting an organism's response to a changing environment. The microbiota is shaped by host (i.e., genetic) factors as well as by the biotic and abiotic environment. Studying natural variation of microbial community composition in multiple host genetic backgrounds across spatial as well as temporal scales represents a means to untangle this complex interplay. Here, we combined a spatially-stratified with a longitudinal sampling scheme within differentiated host genetic backgrounds by reciprocally transplanting Pacific oysters between two sites in the Wadden Sea (Sylt and Texel). To further differentiate contingent site from host genetic effects, we repeatedly sampled the same individuals over a summer season to examine structure, diversity and dynamics of individual hemolymph microbiota following experimental removal of resident microbiota by antibiotic treatment. While a large proportion of microbiome variation could be attributed to immediate environmental conditions, we observed persistent effects of antibiotic treatment and translocation suggesting that hemolymph microbial community dynamics is subject to within-microbiome interactions and host population specific factors. In addition, the analysis of spatial variation revealed that the within-site microenvironmental heterogeneity resulted in high small-scale variability, as opposed to large-scale (between-site) stability. Similarly, considerable within-individual temporal variability was in contrast with the overall temporal stability at the site level. Overall, our longitudinal, spatially-stratified sampling design revealed that variation in hemolymph microbiota is strongly influenced by site and immediate environmental conditions, whereas internal microbiome dynamics and oyster-related factors add to their long-term stability. The combination of small and large scale resolution of spatial and temporal observations therefore represents a crucial but underused tool to study host-associated microbiome dynamics. PMID:27630625
NASA Astrophysics Data System (ADS)
Huang, D.; Wang, G.
2014-12-01
Stochastic simulation of spatially distributed ground-motion time histories is important for performance-based earthquake design of geographically distributed systems. In this study, we develop a novel technique to stochastically simulate regionalized ground-motion time histories using wavelet packet analysis. First, a transient acceleration time history is characterized by wavelet-packet parameters proposed by Yamamoto and Baker (2013). The wavelet-packet parameters fully characterize ground-motion time histories in terms of energy content, time- frequency-domain characteristics and time-frequency nonstationarity. This study further investigates the spatial cross-correlations of wavelet-packet parameters based on geostatistical analysis of 1500 regionalized ground motion data from eight well-recorded earthquakes in California, Mexico, Japan and Taiwan. The linear model of coregionalization (LMC) is used to develop a permissible spatial cross-correlation model for each parameter group. The geostatistical analysis of ground-motion data from different regions reveals significant dependence of the LMC structure on regional site conditions, which can be characterized by the correlation range of Vs30 in each region. In general, the spatial correlation and cross-correlation of wavelet-packet parameters are stronger if the site condition is more homogeneous. Using the regional-specific spatial cross-correlation model and cokriging technique, wavelet packet parameters at unmeasured locations can be best estimated, and regionalized ground-motion time histories can be synthesized. Case studies and blind tests demonstrated that the simulated ground motions generally agree well with the actual recorded data, if the influence of regional-site conditions is considered. The developed method has great potential to be used in computational-based seismic analysis and loss estimation in a regional scale.
NASA Astrophysics Data System (ADS)
Yi, Yonghong; Kimball, John S.; Chen, Richard H.; Moghaddam, Mahta; Reichle, Rolf H.; Mishra, Umakant; Zona, Donatella; Oechel, Walter C.
2018-01-01
An important feature of the Arctic is large spatial heterogeneity in active layer conditions, which is generally poorly represented by global models and can lead to large uncertainties in predicting regional ecosystem responses and climate feedbacks. In this study, we developed a spatially integrated modeling and analysis framework combining field observations, local-scale ( ˜ 50 m resolution) active layer thickness (ALT) and soil moisture maps derived from low-frequency (L + P-band) airborne radar measurements, and global satellite environmental observations to investigate the ALT sensitivity to recent climate trends and landscape heterogeneity in Alaska. Modeled ALT results show good correspondence with in situ measurements in higher-permafrost-probability (PP ≥ 70 %) areas (n = 33; R = 0.60; mean bias = 1.58 cm; RMSE = 20.32 cm), but with larger uncertainty in sporadic and discontinuous permafrost areas. The model results also reveal widespread ALT deepening since 2001, with smaller ALT increases in northern Alaska (mean trend = 0.32±1.18 cm yr-1) and much larger increases (> 3 cm yr-1) across interior and southern Alaska. The positive ALT trend coincides with regional warming and a longer snow-free season (R = 0.60 ± 0.32). A spatially integrated analysis of the radar retrievals and model sensitivity simulations demonstrated that uncertainty in the spatial and vertical distribution of soil organic carbon (SOC) was the largest factor affecting modeled ALT accuracy, while soil moisture played a secondary role. Potential improvements in characterizing SOC heterogeneity, including better spatial sampling of soil conditions and advances in remote sensing of SOC and soil moisture, will enable more accurate predictions of active layer conditions and refinement of the modeling framework across a larger domain.
Yi, Yonghong; Kimball, John S.; Chen, Richard; ...
2017-05-30
An important feature of the Arctic is large spatial heterogeneity in active layer conditions, which is generally poorly represented by global models. In this study, we developed a spatially integrated modelling and analysis framework combining field observations, local scale (~ 50 m) active layer thickness (ALT) and soil moisture maps derived from airborne low frequency (L + P-band) radar measurements, and global satellite environmental observations to investigate the ALT sensitivity to recent climate trends and landscape heterogeneity in Alaska. Model simulated ALT results show good correspondence with in-situ measurements in higher permafrost probability (PP ≥ 70 %) areas (n =more » 33, R = 0.60, mean bias = 1.58 cm, RMSE = 20.32 cm). The model results also reveal widespread ALT deepening since 2001, with smaller ALT increases in northern Alaska (mean trend = 0.32 ± 1.18 cm yr -1) and much larger increases (> 3 cm yr -1) across interior and southern Alaska. The positive ALT trend coincides with regional warming and a longer snow-free season (R = 0.60 ± 0.32). Uncertainty in the spatial and vertical distribution of soil organic carbon (SOC) was found to be the most important factor affecting model ALT accuracy. Here, potential improvements in characterizing SOC heterogeneity, including better spatial sampling of soil conditions and advances in remote sensing of SOC and soil moisture, will enable more accurate predictions of permafrost active layer conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Yonghong; Kimball, John S.; Chen, Richard
An important feature of the Arctic is large spatial heterogeneity in active layer conditions, which is generally poorly represented by global models. In this study, we developed a spatially integrated modelling and analysis framework combining field observations, local scale (~ 50 m) active layer thickness (ALT) and soil moisture maps derived from airborne low frequency (L + P-band) radar measurements, and global satellite environmental observations to investigate the ALT sensitivity to recent climate trends and landscape heterogeneity in Alaska. Model simulated ALT results show good correspondence with in-situ measurements in higher permafrost probability (PP ≥ 70 %) areas (n =more » 33, R = 0.60, mean bias = 1.58 cm, RMSE = 20.32 cm). The model results also reveal widespread ALT deepening since 2001, with smaller ALT increases in northern Alaska (mean trend = 0.32 ± 1.18 cm yr -1) and much larger increases (> 3 cm yr -1) across interior and southern Alaska. The positive ALT trend coincides with regional warming and a longer snow-free season (R = 0.60 ± 0.32). Uncertainty in the spatial and vertical distribution of soil organic carbon (SOC) was found to be the most important factor affecting model ALT accuracy. Here, potential improvements in characterizing SOC heterogeneity, including better spatial sampling of soil conditions and advances in remote sensing of SOC and soil moisture, will enable more accurate predictions of permafrost active layer conditions.« less
Yang, Xiao-Ying; Luo, Xing-Zhang; Zheng, Zheng; Fang, Shu-Bo
2012-09-01
Two high-density snap-shot samplings were conducted along the Yincungang canal, one important tributary of the Lake Tai, in April (low flow period) and June (high flow period) of 2010. Geostatistical analysis based on the river network distance was used to analyze the spatial and temporal patterns of the pollutant concentrations along the canal with an emphasis on chemical oxygen demand (COD) and total nitrogen (TN). Study results have indicated: (1) COD and TN concentrations display distinctly different spatial and temporal patterns between the low and high flow periods. COD concentration in June is lower than that in April, while TN concentration has the contrary trend. (2) COD load is relatively constant during the period between the two monitoring periods. The spatial correlation structure of COD is exponential for both April and June, and the change of COD concentration is mainly influenced by hydrological conditions. (3) Nitrogen load from agriculture increased significantly during the period between the two monitoring periods. Large amount of chaotic fertilizing by individual farmers has led to the loss of the spatial correlation among the observed TN concentrations. Hence, changes of TN concentration in June are under the dual influence of agricultural fertilizing and hydrological conditions. In the view of the complex hydrological conditions and serious water pollution in the Lake Taihu region, geostatistical analysis is potentially a useful tool for studying the characteristics of pollutant distribution and making predictions in the region.
The New Bedford Harbor Superfund site long-term monitoring program (1993-2009).
Nelson, William G; Bergen, Barbara J
2012-12-01
New Bedford Harbor (NBH), located in southeastern Massachusetts, was designated as a marine Superfund site in 1983 due to sediment contamination by polychlorinated biphenyls (PCBs). Based on risks to human health and the environment, the first two phases of the site cleanup involved dredging PCB-contaminated sediments from the harbor. Therefore, a long-term monitoring program (LTM) was developed to measure spatial and temporal chemical and biological changes in sediment, water, and biota to assess the effects and effectiveness of the remedial activities. A systematic, probabilistic sampling design was used to select sediment sampling stations. This unbiased design allowed the three segments of the harbor to be compared spatially and temporally to quantify changes resulting from dredging the contaminated sediments. Sediment was collected at each station, and chemical (e.g., PCBs and metals), physical (e.g., grain size), and biological (e.g., benthic community) measurements were conducted on all samples. This paper describes the overall NBH-LTM approach and the results from the five rounds of sample collections. There is a decreasing spatial gradient in sediment PCB concentrations from the northern boundary (upper harbor) to the southern boundary (outer harbor) of the site. Along this same transect, there is an increase in biological condition (e.g., benthic community diversity). Temporally, the contaminant and biological gradients have been maintained since the 1993 baseline collection; however, since the onset of full-scale remediation, PCB concentrations have decreased throughout the site, and one of the benthic community indices has shown significant improvement in the lower and outer harbor areas.
Ex vivo model unravelling cell distribution effect in hydrogels for cartilage repair.
Mouser, Vivian H M; Dautzenberg, Noël M M; Levato, Riccardo; van Rijen, Mattie H P; Dhert, Wouter J A; Malda, Jos; Gawlitta, Debby
2018-01-01
The implantation of chondrocyte-laden hydrogels is a promising cartilage repair strategy. Chondrocytes can be spatially positioned in hydrogels and thus in defects, while current clinical cell therapies introduce chondrocytes in the defect depth. The main aim of this study was to evaluate the effect of spatial chondrocyte distribution on the reparative process. To reduce animal experiments, an ex vivo osteochondral plug model was used and evaluated. The role of the delivered and endogenous cells in the repair process was investigated. Full thickness cartilage defects were created in equine osteochondral plugs. Defects were filled with (A) chondrocytes at the bottom of the defect, covered with a cell-free hydrogel, (B) chondrocytes homogeneously encapsulated in a hydrogel, and (C, D) combinations of A and B with different cell densities. Plugs were cultured for up to 57 days, after which the cartilage and repair tissues were characterized and compared to baseline samples. Additionally, at day 21, the origin of cells in the repair tissue was evaluated. Best outcomes were obtained with conditions C and D, which resulted in well-integrated cartilage-like tissue that completely filled the defect, regardless of the initial cell density. A critical role of the spatial chondrocyte distribution in the repair process was observed. Moreover, the osteochondral plugs stimulated cartilage formation in the hydrogels when cultured in the defects. The resulting repair tissue originated from the delivered cells. These findings confirm the potential of the osteochondral plug model for the optimization of the composition of cartilage implants and for studying repair mechanisms.
Risk and resilience in the late glacial: A case study from the western Mediterranean
NASA Astrophysics Data System (ADS)
Barton, C. Michael; Aura Tortosa, J. Emili; Garcia-Puchol, Oreto; Riel-Salvatore, Julien G.; Gauthier, Nicolas; Vadillo Conesa, Margarita; Pothier Bouchard, Geneviève
2018-03-01
The period spanning the Last Glacial Maximum through early Holocene encompasses dramatic and rapid environmental changes that offered both increased risk and new opportunities to human populations of the Mediterranean zone. The regional effects of global climate change varied spatially with latitude, topography, and distance from a shifting coastline; and human adaptations to these changes played out at these regional scales. To better understand the spatial and temporal dynamics of climate change and human social-ecological-technological systems (or SETS) during the transition from full glacial to interglacial, we carried out a meta-analysis of archaeological and paleoenvironmental datasets across the western Mediterranean region. We compiled information on prehistoric technology, land-use, and hunting strategies from 291 archaeological assemblages, recovered from 122 sites extending from southern Spain, through Mediterranean France, to northern and peninsular Italy, as well as 2,386 radiocarbon dates from across this region. We combine these data on human ecological dynamics with paleoenvironmental information derived from global climate models, proxy data, and estimates of coastlines modeled from sea level estimates and digital terrain. The LGM represents an ecologically predictable period for over much of the western Mediterranean, while the remainder of the Pleistocene was increasingly unpredictable, making it a period of increased ecological risk for hunter-gatherers. In response to increasing spatial and temporal uncertainty, hunter-gatherers reorganized different constituents of their SETS, allowing regional populations to adapt to these conditions up to a point. Beyond this threshold, rapid environmental change resulted in significant demographic change in Mediterranean hunter-gatherer populations.
Huang, Hsu-Chia; Lee, Yen-Tung; Chen, Wen-Yeo; Liang, Caleb
2017-01-01
Self-location—the sense of where I am in space—provides an experiential anchor for one's interaction with the environment. In the studies of full-body illusions, many researchers have defined self-location solely in terms of body-location—the subjective feeling of where my body is. Although this view is useful, there is an issue regarding whether it can fully accommodate the role of 1PP-location—the sense of where my first-person perspective is located in space. In this study, we investigate self-location by comparing body-location and 1PP-location: using a head-mounted display (HMD) and a stereo camera, the subjects watched their own body standing in front of them and received tactile stimulations. We manipulated their senses of body-location and 1PP-location in three different conditions: the participants standing still (Basic condition), asking them to move forward (Walking condition), and swiftly moving the stereo camera away from their body (Visual condition). In the Walking condition, the participants watched their body moving away from their 1PP. In the Visual condition, the scene seen via the HMD was systematically receding. Our data show that, under different manipulations of movement, the spatial unity between 1PP-location and body-location can be temporarily interrupted. Interestingly, we also observed a “double-body effect.” We further suggest that it is better to consider body-location and 1PP-location as interrelated but distinct factors that jointly support the sense of self-location. PMID:28352241
Huang, Hsu-Chia; Lee, Yen-Tung; Chen, Wen-Yeo; Liang, Caleb
2017-01-01
Self-location -the sense of where I am in space-provides an experiential anchor for one's interaction with the environment. In the studies of full-body illusions, many researchers have defined self-location solely in terms of body-location -the subjective feeling of where my body is. Although this view is useful, there is an issue regarding whether it can fully accommodate the role of 1PP-location -the sense of where my first-person perspective is located in space. In this study, we investigate self-location by comparing body-location and 1PP-location: using a head-mounted display (HMD) and a stereo camera, the subjects watched their own body standing in front of them and received tactile stimulations. We manipulated their senses of body-location and 1PP-location in three different conditions: the participants standing still (Basic condition), asking them to move forward (Walking condition), and swiftly moving the stereo camera away from their body (Visual condition). In the Walking condition, the participants watched their body moving away from their 1PP. In the Visual condition, the scene seen via the HMD was systematically receding. Our data show that, under different manipulations of movement, the spatial unity between 1PP-location and body-location can be temporarily interrupted. Interestingly, we also observed a "double-body effect." We further suggest that it is better to consider body-location and 1PP-location as interrelated but distinct factors that jointly support the sense of self-location.
Functional CAR models for large spatially correlated functional datasets.
Zhang, Lin; Baladandayuthapani, Veerabhadran; Zhu, Hongxiao; Baggerly, Keith A; Majewski, Tadeusz; Czerniak, Bogdan A; Morris, Jeffrey S
2016-01-01
We develop a functional conditional autoregressive (CAR) model for spatially correlated data for which functions are collected on areal units of a lattice. Our model performs functional response regression while accounting for spatial correlations with potentially nonseparable and nonstationary covariance structure, in both the space and functional domains. We show theoretically that our construction leads to a CAR model at each functional location, with spatial covariance parameters varying and borrowing strength across the functional domain. Using basis transformation strategies, the nonseparable spatial-functional model is computationally scalable to enormous functional datasets, generalizable to different basis functions, and can be used on functions defined on higher dimensional domains such as images. Through simulation studies, we demonstrate that accounting for the spatial correlation in our modeling leads to improved functional regression performance. Applied to a high-throughput spatially correlated copy number dataset, the model identifies genetic markers not identified by comparable methods that ignore spatial correlations.
Application of GEM-based detectors in full-field XRF imaging
NASA Astrophysics Data System (ADS)
Dąbrowski, W.; Fiutowski, T.; Frączek, P.; Koperny, S.; Lankosz, M.; Mendys, A.; Mindur, B.; Świentek, K.; Wiącek, P.; Wróbel, P. M.
2016-12-01
X-ray fluorescence spectroscopy (XRF) is a commonly used technique for non-destructive elemental analysis of cultural heritage objects. It can be applied to investigations of provenance of historical objects as well as to studies of art techniques. While the XRF analysis can be easily performed locally using standard available equipment there is a growing interest in imaging of spatial distribution of specific elements. Spatial imaging of elemental distrbutions is usually realised by scanning an object with a narrow focused X-ray excitation beam and measuring characteristic fluorescence radiation using a high energy resolution detector, usually a silicon drift detector. Such a technique, called macro-XRF imaging, is suitable for investigation of flat surfaces but it is time consuming because the spatial resolution is basically determined by the spot size of the beam. Another approach is the full-field XRF, which is based on simultaneous irradiation and imaging of large area of an object. The image of the investigated area is projected by a pinhole camera on a position-sensitive and energy dispersive detector. The infinite depth of field of the pinhole camera allows one, in principle, investigation of non-flat surfaces. One of possible detectors to be employed in full-field XRF imaging is a GEM based detector with 2-dimensional readout. In the paper we report on development of an imaging system equipped with a standard 3-stage GEM detector of 10 × 10 cm2 equipped with readout electronics based on dedicated full-custom ASICs and DAQ system. With a demonstrator system we have obtained 2-D spatial resolution of the order of 100 μm and energy resolution at a level of 20% FWHM for 5.9 keV . Limitations of such a detector due to copper fluorescence radiation excited in the copper-clad drift electrode and GEM foils is discussed and performance of the detector using chromium-clad electrodes is reported.
USDA-ARS?s Scientific Manuscript database
Changing environmental conditions result in substantial shifts in the composition of communities. The associated immigration and extinction events are likely constrained by the spatial distribution of species. Still, most studies on environmental change quantify the biotic responses at single spat...
The spatial patterns of subtidal benthic invertebrates and physical-chemical variables in the nearshore Gulf of Maine (Acadian Biogeographic Province) were studied to provide information needed to calibrate benthic indices of environmental condition, determine physical-chemical f...
We attempted to identify spatial patterns and determinants for benthic algal assemblages in Mid-Atlantic streams. Periphyton, water chemistry, stream physical habitat, riparian conditions, and land cover/use in watersheds were characterized at 89 randomly selected stream sites i...
Cross-Sensory Transfer of Reference Frames in Spatial Memory
ERIC Educational Resources Information Center
Kelly, Jonathan W.; Avraamides, Marios N.
2011-01-01
Two experiments investigated whether visual cues influence spatial reference frame selection for locations learned through touch. Participants experienced visual cues emphasizing specific environmental axes and later learned objects through touch. Visual cues were manipulated and haptic learning conditions were held constant. Imagined perspective…
NASA Astrophysics Data System (ADS)
Dobek, Mateusz; Demczuk, Piotr; Nowosad, Marek
2013-06-01
Due to the diversified land relief and presence of numerous gorge dissections intensively used by man largely for recreational purposes, Lublin is a valuable study area in terms of bioclimatology. The results of modelling of the variation of the bioclimatic conditions of Lublin provide information useful e.g. in the economy and spatial planning. The determined features of the city's bioclimate can be a significant element in the selection of locations for new residential and recreational investments. Knowledge on the spatial variation of biometeorological situations positively and negatively influencing the human organism can also find application in activities concerning the improvement of life quality and health protection, as well as in tourism and recreation. The objective of the paper is to present the spatial variation of biometeorological conditions in Lublin based on the example of specified weather scenarios.
PID temperature controller in pig nursery: spatial characterization of thermal environment
NASA Astrophysics Data System (ADS)
de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Menezes de Souza, Zigomar
2018-05-01
The use of enhanced technologies of temperature control can improve the thermal conditions in environments of livestock facilities. The objective of this study was to evaluate the spatial distribution of the thermal environment variables in a pig nursery with a heating system with two temperature control technologies based on the geostatistical analysis. The following systems were evaluated: overhead electrical resistance with Proportional, Integral, and Derivative (PID) controller and overhead electrical resistance with a thermostat. We evaluated the climatic variables: dry bulb temperature (Tbs), air relative humidity (RH), temperature and humidity index (THI), and enthalpy in the winter, at 7:00, 12:00, and 18:00 h. The spatial distribution of these variables was mapped by kriging. The results showed that the resistance heating system with PID controllers improved the thermal comfort conditions in the pig nursery in the coldest hours, maintaining the spatial distribution of the air temperature more homogeneous in the pen. During the hottest weather, neither system provided comfort.
Vibration of a spatial elastica constrained inside a straight tube
NASA Astrophysics Data System (ADS)
Chen, Jen-San; Fang, Joyce
2014-04-01
In this paper we study the dynamic behavior of a clamped-clamped spatial elastica under edge thrust constrained inside a straight cylindrical tube. Attention is focused on the calculation of the natural frequencies and mode shapes of the planar and spatial one-point-contact deformations. The main issue in determining the natural frequencies of a constrained rod is the movement of the contact point during vibration. In order to capture the physical essence of the contact-point movement, an Eulerian description of the equations of motion based on director theory is formulated. After proper linearization of the equations of motion, boundary conditions, and contact conditions, the natural frequencies and mode shapes of the elastica can be obtained by solving a system of eighteen first-order differential equations with shooting method. It is concluded that the planar one-point-contact deformation becomes unstable and evolves to a spatial deformation at a bifurcation point in both displacement and force control procedures.
PID temperature controller in pig nursery: spatial characterization of thermal environment
NASA Astrophysics Data System (ADS)
de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Menezes de Souza, Zigomar
2017-11-01
The use of enhanced technologies of temperature control can improve the thermal conditions in environments of livestock facilities. The objective of this study was to evaluate the spatial distribution of the thermal environment variables in a pig nursery with a heating system with two temperature control technologies based on the geostatistical analysis. The following systems were evaluated: overhead electrical resistance with Proportional, Integral, and Derivative (PID) controller and overhead electrical resistance with a thermostat. We evaluated the climatic variables: dry bulb temperature (Tbs), air relative humidity (RH), temperature and humidity index (THI), and enthalpy in the winter, at 7:00, 12:00, and 18:00 h. The spatial distribution of these variables was mapped by kriging. The results showed that the resistance heating system with PID controllers improved the thermal comfort conditions in the pig nursery in the coldest hours, maintaining the spatial distribution of the air temperature more homogeneous in the pen. During the hottest weather, neither system provided comfort.
The role of low-spatial frequencies in lexical decision and masked priming.
Boden, C; Giaschi, D
2009-04-01
Spatial frequency filtering was used to test the hypotheses that low-spatial frequency information in printed text can: (1) lead to a rapid lexical decision or (2) facilitate word recognition. Adult proficient readers made lexical decisions in unprimed and masked repetition priming experiments with unfiltered, low-pass, high-pass and notch filtered letter strings. In the unprimed experiments, a filtered target was presented for 105 or 400 ms followed by a pattern mask. Sensitivity (d') was lowest for the low-pass filtered targets at both durations with a bias towards a 'non-word' response. Sensitivity was higher in the high-pass and notch filter conditions. In the priming experiments, a forward mask was followed by a filtered prime then an unfiltered target. Primed words, but not non-words, were identified faster than unprimed words in both the low-pass and high-pass filtered conditions. These results do not support a unique role for low-spatial frequency information in either facilitating or making rapid lexical decisions.
Towards a high resolution, integrated hydrology model of North America.
NASA Astrophysics Data System (ADS)
Maxwell, R. M.; Condon, L. E.
2015-12-01
Recent studies demonstrate feedbacks between groundwater dynamics, overland flow, land surface and vegetation processes, and atmospheric boundary layer development that significantly affect local and regional climate across a range of climatic conditions. Furthermore, the type and distribution of vegetation cover alters land-atmosphere water and energy fluxes, as well as runoff generation and overland flow processes. These interactions can result in significant feedbacks on local and regional climate. In mountainous regions, recent research has shown that spatial and temporal variability in annual evapotranspiration, and thus water budgets, is strongly dependent on lateral groundwater flow; however, the full effects of these feedbacks across varied terrain (e.g. from plains to mountains) are not well understood. Here, we present a high-resolution, integrated hydrology model that covers much of continental North America and encompasses the Mississippi and Colorado watersheds. The model is run in a fully-transient manner at hourly temporal resolution incorporating fully-coupled land energy states and fluxes with integrated surface and subsurface hydrology. Connections are seen between hydrologic variables (such as water table depth) and land energy fluxes (such as latent heat) and spatial and temporal scaling is shown to span many orders of magnitude. Using these transient simulations as a proof of concept, we present a vision for future integrated simulation capabilities.
Waiskopf, Nir; Ben-Shahar, Yuval; Banin, Uri
2018-04-14
Hybrid semiconductor-metal nanoparticles (HNPs) manifest unique combined and often synergetic properties stemming from the materials combination. These structures exhibit spatial charge separation across the semiconductor-metal junction upon light absorption, enabling their use as photocatalysts. So far, the main impetus of photocatalysis research in HNPs addresses their functionality in solar fuel generation. Recently, it was discovered that HNPs are functional in efficient photocatalytic generation of reactive oxygen species (ROS). This has opened the path for their implementation in diverse biomedical and industrial applications where high spatially temporally resolved ROS formation is essential. Here, the latest studies on the synergistic characteristics of HNPs are summarized, including their optical, electrical, and chemical properties and their photocatalytic function in the field of solar fuel generation is briefly discussed. Recent studies are then focused concerning photocatalytic ROS formation with HNPs under aerobic conditions. The emergent applications of this capacity are then highlighted, including light-induced modulation of enzymatic activity, photodynamic therapy, antifouling, wound healing, and as novel photoinitiators for 3D-printing. The superb photophysical and photocatalytic properties of HNPs offer already clear advantages for their utility in scenarios requiring on-demand light-induced radical formation and the full potential of HNPs in this context is yet to be revealed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zwick, Harry; Ness, James W.; Loveday, J.; Molchany, Jerome W.; Stuck, Bruce E.
1997-05-01
Laser induced damage to the retina may produce immediate and serious loss in visual acuity as well as subsequent recovery of visual acuity over a 1 to 6 month post exposure period. While acuity may recover, full utilization of the foveal region may not return. In one patient, a superior/temporal preferred retinal location (PRL) was apparent, while a second patient demonstrated significant foveal involvement and contrast sensitivity more reflective of foveal than parafoveal involvement. These conditions of injury wee simulated by using an artificial scotoma technique which optically stabilized a 5 degree opacity in the center of the visual field. The transmission of spatially degraded target information in the scotoma was 0 percent, 5 percent and 95 percent. Contrast sensitivity for the 0 percent and 5 percent transmission scotoma showed broad spatial frequency suppression as opposed to a bipartite contrast sensitivity function with a narrow sensitivity loss at 3 cycles/degree for the 95 percent transmission scotoma. A PRL shift to superior temporal retina with a concomitant change in accommodation was noted as target resolution became more demanding. These findings suggest that restoration of visual acuity in human laser accidents may depend upon the functionality of complex retinal and cortical adaptive mechanisms.
NASA Astrophysics Data System (ADS)
Richardson, Robert R.; Zhao, Shi; Howey, David A.
2016-09-01
Estimating the temperature distribution within Li-ion batteries during operation is critical for safety and control purposes. Although existing control-oriented thermal models - such as thermal equivalent circuits (TEC) - are computationally efficient, they only predict average temperatures, and are unable to predict the spatially resolved temperature distribution throughout the cell. We present a low-order 2D thermal model of a cylindrical battery based on a Chebyshev spectral-Galerkin (SG) method, capable of predicting the full temperature distribution with a similar efficiency to a TEC. The model accounts for transient heat generation, anisotropic heat conduction, and non-homogeneous convection boundary conditions. The accuracy of the model is validated through comparison with finite element simulations, which show that the 2-D temperature field (r, z) of a large format (64 mm diameter) cell can be accurately modelled with as few as 4 states. Furthermore, the performance of the model for a range of Biot numbers is investigated via frequency analysis. For larger cells or highly transient thermal dynamics, the model order can be increased for improved accuracy. The incorporation of this model in a state estimation scheme with experimental validation against thermocouple measurements is presented in the companion contribution (http://www.sciencedirect.com/science/article/pii/S0378775316308163)
First carrot, then stick: how the adaptive hybridization of incentives promotes cooperation
Chen, Xiaojie; Sasaki, Tatsuya; Brännström, Åke; Dieckmann, Ulf
2015-01-01
Social institutions often use rewards and penalties to promote cooperation. Providing incentives tends to be costly, so it is important to find effective and efficient policies for the combined use of rewards and penalties. Most studies of cooperation, however, have addressed rewarding and punishing in isolation and have focused on peer-to-peer sanctioning as opposed to institutional sanctioning. Here, we demonstrate that an institutional sanctioning policy we call ‘first carrot, then stick’ is unexpectedly successful in promoting cooperation. The policy switches the incentive from rewarding to punishing when the frequency of cooperators exceeds a threshold. We find that this policy establishes and recovers full cooperation at lower cost and under a wider range of conditions than either rewards or penalties alone, in both well-mixed and spatial populations. In particular, the spatial dynamics of cooperation make it evident how punishment acts as a ‘booster stage’ that capitalizes on and amplifies the pro-social effects of rewarding. Together, our results show that the adaptive hybridization of incentives offers the ‘best of both worlds’ by combining the effectiveness of rewarding in establishing cooperation with the effectiveness of punishing in recovering it, thereby providing a surprisingly inexpensive and widely applicable method of promoting cooperation. PMID:25551138
Eliyahu, Ilan; Luria, Roy; Hareuveny, Ronen; Margaliot, Menachem; Meiran, Nachshon; Shani, Gad
2006-02-01
The present study examined the effects of exposure to Electromagnetic Radiation emitted by a standard GSM phone at 890 MHz on human cognitive functions. This study attempted to establish a connection between the exposure of a specific area of the brain and the cognitive functions associated with that area. A total of 36 healthy right-handed male subjects performed four distinct cognitive tasks: spatial item recognition, verbal item recognition, and two spatial compatibility tasks. Tasks were chosen according to the brain side they are assumed to activate. All subjects performed the tasks under three exposure conditions: right side, left side, and sham exposure. The phones were controlled by a base station simulator and operated at their full power. We have recorded the reaction times (RTs) and accuracy of the responses. The experiments consisted of two sections, of 1 h each, with a 5 min break in between. The tasks and the exposure regimes were counterbalanced. The results indicated that the exposure of the left side of the brain slows down the left-hand response time, in the second-later-part of the experiment. This effect was apparent in three of the four tasks, and was highly significant in only one of the tests. The exposure intensity and its duration exceeded the common exposure of cellular phone users.
The New Bedford Harbor Superfund Site Long Term ...
Background. New Bedford Harbor (NBH), located in southeastern Massachusetts, was designated as a marine Superfund site in 1983 due to sediment contamination by polychlorinated biphenyls (PCBs). Based on risks to human health and the environment, the first two phases of the site cleanup involved dredging PCB-contaminated sediments from the harbor. Therefore, a long-term monitoring program (LTM) was developed to measure spatial and temporal chemical and biological changes in sediment, water, and biota to assess the effects and effectiveness of the remedial activities. Approach. A systematic, probabilistic sampling design was used to select approximately 70 sediment sampling stations. Sediment was collected at each station and chemical (e.g., PCBs, metals), physical (e.g., grain size), and biological (e.g., benthic community) measurements were conducted on all samples. There have been six sample collections to date: 1993-baseline, 1995-post hot spot removal, 1999-prior to full scale dredging, and then at 5 year intervals: 2004, 2009, and 2014. Mussel (Mytilus edulis) bioaccumulation has also been measured twice yearly. Results. There is a decreasing spatial gradient in sediment PCB concentrations from the northern boundary (upper harbor) to the southern boundary (outer harbor) of the site. Along this same transect, there is an increase in biological condition (e.g., benthic community diversity). Temporally, the contaminant and biological gradients have been
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Animesh, E-mail: animesh@zedat.fu-berlin.de; Delle Site, Luigi, E-mail: dellesite@fu-berlin.de
Quantum effects due to the spatial delocalization of light atoms are treated in molecular simulation via the path integral technique. Among several methods, Path Integral (PI) Molecular Dynamics (MD) is nowadays a powerful tool to investigate properties induced by spatial delocalization of atoms; however, computationally this technique is very demanding. The above mentioned limitation implies the restriction of PIMD applications to relatively small systems and short time scales. One of the possible solutions to overcome size and time limitation is to introduce PIMD algorithms into the Adaptive Resolution Simulation Scheme (AdResS). AdResS requires a relatively small region treated at pathmore » integral level and embeds it into a large molecular reservoir consisting of generic spherical coarse grained molecules. It was previously shown that the realization of the idea above, at a simple level, produced reasonable results for toy systems or simple/test systems like liquid parahydrogen. Encouraged by previous results, in this paper, we show the simulation of liquid water at room conditions where AdResS, in its latest and more accurate Grand-Canonical-like version (GC-AdResS), is merged with two of the most relevant PIMD techniques available in the literature. The comparison of our results with those reported in the literature and/or with those obtained from full PIMD simulations shows a highly satisfactory agreement.« less
Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof.
Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy
2016-05-15
Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%-26% volumetric moisture content) and temperature (21°C-36°C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat heterogeneity. Copyright © 2016 Elsevier B.V. All rights reserved.
Sleeter, Rachel; Acevedo, William; Soulard, Christopher E.; Sleeter, Benjamin M.
2015-01-01
Spatially-explicit state-and-transition simulation models of land use and land cover (LULC) increase our ability to assess regional landscape characteristics and associated carbon dynamics across multiple scenarios. By characterizing appropriate spatial attributes such as forest age and land-use distribution, a state-and-transition model can more effectively simulate the pattern and spread of LULC changes. This manuscript describes the methods and input parameters of the Land Use and Carbon Scenario Simulator (LUCAS), a customized state-and-transition simulation model utilized to assess the relative impacts of LULC on carbon stocks for the conterminous U.S. The methods and input parameters are spatially explicit and describe initial conditions (strata, state classes and forest age), spatial multipliers, and carbon stock density. Initial conditions were derived from harmonization of multi-temporal data characterizing changes in land use as well as land cover. Harmonization combines numerous national-level datasets through a cell-based data fusion process to generate maps of primary LULC categories. Forest age was parameterized using data from the North American Carbon Program and spatially-explicit maps showing the locations of past disturbances (i.e. wildfire and harvest). Spatial multipliers were developed to spatially constrain the location of future LULC transitions. Based on distance-decay theory, maps were generated to guide the placement of changes related to forest harvest, agricultural intensification/extensification, and urbanization. We analyze the spatially-explicit input parameters with a sensitivity analysis, by showing how LUCAS responds to variations in the model input. This manuscript uses Mediterranean California as a regional subset to highlight local to regional aspects of land change, which demonstrates the utility of LUCAS at many scales and applications.
NASA Astrophysics Data System (ADS)
Ng, C. S.; Bhattacharjee, A.
1996-08-01
A sufficient condition is obtained for the development of a finite-time singularity in a highly symmetric Euler flow, first proposed by Kida [J. Phys. Soc. Jpn. 54, 2132 (1995)] and recently simulated by Boratav and Pelz [Phys. Fluids 6, 2757 (1994)]. It is shown that if the second-order spatial derivative of the pressure (pxx) is positive following a Lagrangian element (on the x axis), then a finite-time singularity must occur. Under some assumptions, this Lagrangian sufficient condition can be reduced to an Eulerian sufficient condition which requires that the fourth-order spatial derivative of the pressure (pxxxx) at the origin be positive for all times leading up to the singularity. Analytical as well as direct numerical evaluation over a large ensemble of initial conditions demonstrate that for fixed total energy, pxxxx is predominantly positive with the average value growing with the numbers of modes.
NASA Astrophysics Data System (ADS)
Dods, Joe; Chapman, Sandra; Gjerloev, Jesper
2016-04-01
Quantitative understanding of the full spatial-temporal pattern of space weather is important in order to estimate the ground impact. Geomagnetic indices such as AE track the peak of a geomagnetic storm or substorm, but cannot capture the full spatial-temporal pattern. Observations by the ~100 ground based magnetometers in the northern hemisphere have the potential to capture the detailed evolution of a given space weather event. We present the first analysis of the full available set of ground based magnetometer observations of substorms using dynamical networks. SuperMAG offers a database containing ground station magnetometer data at a cadence of 1min from 100s stations situated across the globe. We use this data to form dynamic networks which capture spatial dynamics on timescales from the fast reconfiguration seen in the aurora, to that of the substorm cycle. Windowed linear cross-correlation between pairs of magnetometer time series along with a threshold is used to determine which stations are correlated and hence connected in the network. Variations in ground conductivity and differences in the response functions of magnetometers at individual stations are overcome by normalizing to long term averages of the cross-correlation. These results are tested against surrogate data in which phases have been randomised. The network is then a collection of connected points (ground stations); the structure of the network and its variation as a function of time quantify the detailed dynamical processes of the substorm. The network properties can be captured quantitatively in time dependent dimensionless network parameters and we will discuss their behaviour for examples of 'typical' substorms and storms. The network parameters provide a detailed benchmark to compare data with models of substorm dynamics, and can provide new insights on the similarities and differences between substorms and how they correlate with external driving and the internal state of the magnetosphere. We can also investigate the solar wind control of the magnetospheric-ionospheric convection system using dynamical networks. The dynamical networks are first interpolated onto a regular grid. Statistically averaged network responses are then formed for a variety of solar wind conditions, including investigating the network response to southward turnings. [1] Dods, J., S. C. Chapman, and J. W. Gjerloev (2015), Network analysis of geomagnetic substorms using the SuperMAG database of ground-based magnetometer stations, J. Geophys. Res. Space Physics, 120, 7774-7784, doi:10.1002/2015JA021456
Freas, C A; Bingman, K; Ladage, L D; Pravosudov, V V
2013-01-01
Variation in environmental conditions associated with differential selection on spatial memory has been hypothesized to result in evolutionary changes in the morphology of the hippocampus, a brain region involved in spatial memory. At the same time, it is well known that the morphology of the hippocampus might also be directly affected by environmental conditions. Understanding the role of environment-based plasticity is therefore critical when investigating potential adaptive evolutionary changes in the hippocampus associated with environmental variation. We previously demonstrated large elevation-related variation in hippocampus morphology in mountain chickadees over an extremely small spatial scale. We hypothesized that this variation is related to differential selection pressures associated with differences in winter climate severity along an elevation gradient, which make different demands on spatial memory used for food cache retrieval. Here, we tested whether such variation is experience based, generated by potential differences in the environment, by comparing the hippocampus morphology of chickadees from different elevations maintained in a uniform captive environment in a laboratory with those sampled directly from the wild. In addition, we compared hippocampal neuron soma size in chickadees sampled directly from the wild with those maintained in laboratory conditions with restricted and unrestricted spatial memory use via manipulation of food-caching experiences to test whether memory use can affect neuron soma size. There were significant elevation-related differences in hippocampus volume and the total number of hippocampal neurons, but not in neuron soma size, in captive birds. Captive environmental conditions were associated with a large reduction in hippocampus volume and neuron soma size, but not in the total number of neurons or in neuron soma size in other telencephalic regions. Restriction of memory use while in laboratory conditions produced no significant effects on hippocampal neuron soma size. Overall our results showed that captivity has a strong effect on hippocampus volume, which could be due, at least partly, to a reduction in neuron soma size specifically in the hippocampus, but it did not override elevation-related differences in hippocampus volume or in the total number of hippocampal neurons. These data are consistent with the idea of the adaptive nature of the elevation-related differences associated with selection on spatial memory, while at the same time demonstrating additional environment-based plasticity in hippocampus volume, but not in neuron numbers. Our results, however, cannot rule out that the differences between elevations might still be driven by some developmental or early posthatching conditions/experiences. © 2013 S. Karger AG, Basel.
Malinina, E S
2014-01-01
The spatial specificity of auditory aftereffect was studied after a short-time adaptation (5 s) to the broadband noise (20-20000 Hz). Adapting stimuli were sequences of noise impulses with the constant amplitude, test stimuli--with the constant and changing amplitude: an increase of amplitude of impulses in sequence was perceived by listeners as approach of the sound source, while a decrease of amplitude--as its withdrawal. The experiments were performed in an anechoic chamber. The auditory aftereffect was estimated under the following conditions: the adapting and test stimuli were presented from the loudspeaker located at a distance of 1.1 m from the listeners (the subjectively near spatial domain) or 4.5 m from the listeners (the subjectively near spatial domain) or 4.5 m from the listeners (the subjectively far spatial domain); the adapting and test stimuli were presented from different distances. The obtained data showed that perception of the imitated movement of the sound source in both spatial domains had the common characteristic peculiarities that manifested themselves both under control conditions without adaptation and after adaptation to noise. In the absence of adaptation for both distances, an asymmetry of psychophysical curves was observed: the listeners estimated the test stimuli more often as approaching. The overestimation by listeners of test stimuli as the approaching ones was more pronounced at their presentation from the distance of 1.1 m, i. e., from the subjectively near spatial domain. After adaptation to noise the aftereffects showed spatial specificity in both spatial domains: they were observed only at the spatial coincidence of adapting and test stimuli and were absent at their separation. The aftereffects observed in two spatial domains were similar in direction and value: the listeners estimated the test stimuli more often as withdrawing as compared to control. The result of such aftereffect was restoration of the symmetry of psychometric curves and of the equiprobable estimation of direction of movement of test signals.
Bennett, James; Marlow, David; Nourian, Fariba; Breay, James; Feng, Amy; Methner, Mark
2018-03-01
Exposure control system performance was evaluated during aircraft paint spraying at a military facility. Computational fluid dynamics (CFD) modeling, tracer gas testing, and exposure monitoring examined contaminant exposure vs. crossflow ventilation velocity. CFD modeling using the RNG k-ϵ turbulence model showed exposures to simulated methyl isobutyl ketone of 294 and 83.6 ppm, as a spatial average of five worker locations, for velocities of 0.508 and 0.381 m/s (100 and 75 fpm), respectively. In tracer gas experiments, observed supply/exhaust velocities of 0.706/0.503 m/s (136/99 fpm) were termed full-flow, and reduced velocities were termed 3/4-flow and half-flow. Half-flow showed higher tracer gas concentrations than 3/4-flow, which had the lowest time-averaged concentration, with difference in log means significant at the 95% confidence level. Half-flow compared to full-flow and 3/4-flow compared to full-flow showed no statistically significant difference. CFD modeling using these ventilation conditions agreed closely with the tracer results for the full-flow and 3/4-flow comparison, yet not for the 3/4-flow and half-flow comparison. Full-flow conditions at the painting facility produced a velocity of 0.528 m/s (104 fpm) midway between supply and exhaust locations, with the supply rate of 94.4 m 3 /s (200,000 cfm) exceeding the exhaust rate of 68.7 m 3 /s (146,000 cfm). Ventilation modifications to correct this imbalance created a midhangar velocity of 0.406 m/s (80.0 fpm). Personal exposure monitoring for two worker groups-sprayers and sprayer helpers ("hosemen")-compared process duration means for the two velocities. Hexavalent chromium (Cr[VI]) exposures were 500 vs. 360 µg/m 3 for sprayers and 120 vs. 170 µg/m 3 for hosemen, for 0.528 m/s (104 fpm) and 0.406 m/s (80.0 fpm), respectively. Hexamethylene diisocyanate (HDI) monomer means were 32.2 vs. 13.3 µg/m 3 for sprayers and 3.99 vs. 8.42 µg/m 3 for hosemen. Crossflow velocities affected exposures inconsistently, and local work zone velocities were much lower. Aircraft painting contaminant control is accomplished better with the unidirectional crossflow ventilation presented here than with other observed configurations. Exposure limit exceedances for this ideal condition reinforce continued use of personal protective equipment.
Sandmann, Henner; Stick, Carsten
2014-01-01
Spatial measurements of the diffusely scattered sky radiance at a seaside resort under clear sky and slightly overcast conditions have been used to calculate the sky radiance distribution across the upper hemisphere. The measurements were done in the summer season when solar UV radiation is highest. The selected wavelengths were 307, 350 and 550 nm representing the UVB, UVA and VIS band. Absolute values of radiance differ considerably between the wavelengths. Normalizing the measured values by use of direct solar radiance made the spatial distributions of unequal sky radiance comparable. The results convey a spatial impression of the different distributions of the radiance at the three wavelengths. Relative scattered radiance intensity is one order of magnitude greater in UVB than in VIS, whereas in UVA lies roughly in between. Under slightly overcast conditions scattered radiance is increased at all three wavelengths by about one order of magnitude. These measurements taken at the seaside underline the importance of diffuse scattered radiance. The effect of shading parts of the sky can be estimated from the distribution of sky radiance. This knowledge might be useful for sun seekers and in the treatment of people staying at the seaside for therapeutic purposes. © 2013 The American Society of Photobiology.
Brown, Holden D.; Amodeo, Dionisio A.; Sweeney, John A.; Ragozzino, Michael E.
2011-01-01
Previous findings indicate treatment with a selective serotonin reuptake inhibitor (SSRI) facilitates behavioral flexibility when conditions require inhibition of a learned response pattern. The present experiment investigated whether acute treatment with the SSRI, escitalopram, affects behavioral flexibility when conditions require inhibition of a naturally-biased response pattern (elevated conflict test) and/or reversal of a learned response pattern (spatial reversal learning). An additional experiment was carried out to determine whether escitalopram, at doses that affected behavioral flexibility, also reduced anxiety as tested in the elevated plus-maze. In each experiment, Long-Evans rats received an intraperitoneal injection of either saline or escitalopram (0.03, 0.3 or 1.0 mg/kg) 30 minutes prior to behavioral testing. Escitalopram, at all doses tested, enhanced acquisition in the elevated conflict test, but did not affect performance in the elevated plus-maze. Escitalopram (0.3 and 1.0 mg/kg) did not alter acquisition of the spatial discrimination, but facilitated reversal learning. In the elevated conflict and spatial reversal learning test, escitalopram enhanced the ability to maintain the relevant strategy after being initially selected. The present findings suggest that enhancing serotonin transmission with a SSRI facilitates inhibitory processes when conditions require a shift away from either a naturally-biased response pattern or a learned choice pattern. PMID:22219222
Liu, Sisi; Liu, Duo; Pan, Zhihui; Xu, Zhengye
2018-03-25
A growing body of research suggests that visual-spatial attention is important for reading achievement. However, few studies have been conducted in non-alphabetic orthographies. This study extended the current research to reading development in Chinese, a logographic writing system known for its visual complexity. Eighty Hong Kong Chinese children were selected and divided into poor reader and typical reader groups, based on their performance on the measures of reading fluency, Chinese character reading, and reading comprehension. The poor and typical readers were matched on age and nonverbal intelligence. A Posner's spatial cueing task was adopted to measure the exogenous and endogenous orienting of visual-spatial attention. Although the typical readers showed the cueing effect in the central cue condition (i.e., responses to targets following valid cues were faster than those to targets following invalid cues), the poor readers did not respond differently in valid and invalid conditions, suggesting an impairment of the endogenous orienting of attention. The two groups, however, showed a similar cueing effect in the peripheral cue condition, indicating intact exogenous orienting in the poor readers. These findings generally supported a link between the orienting of covert attention and Chinese reading, providing evidence for the attentional-deficit theory of dyslexia. Copyright © 2018 John Wiley & Sons, Ltd.
A Gaussian random field model for similarity-based smoothing in Bayesian disease mapping.
Baptista, Helena; Mendes, Jorge M; MacNab, Ying C; Xavier, Miguel; Caldas-de-Almeida, José
2016-08-01
Conditionally specified Gaussian Markov random field (GMRF) models with adjacency-based neighbourhood weight matrix, commonly known as neighbourhood-based GMRF models, have been the mainstream approach to spatial smoothing in Bayesian disease mapping. In the present paper, we propose a conditionally specified Gaussian random field (GRF) model with a similarity-based non-spatial weight matrix to facilitate non-spatial smoothing in Bayesian disease mapping. The model, named similarity-based GRF, is motivated for modelling disease mapping data in situations where the underlying small area relative risks and the associated determinant factors do not vary systematically in space, and the similarity is defined by "similarity" with respect to the associated disease determinant factors. The neighbourhood-based GMRF and the similarity-based GRF are compared and accessed via a simulation study and by two case studies, using new data on alcohol abuse in Portugal collected by the World Mental Health Survey Initiative and the well-known lip cancer data in Scotland. In the presence of disease data with no evidence of positive spatial correlation, the simulation study showed a consistent gain in efficiency from the similarity-based GRF, compared with the adjacency-based GMRF with the determinant risk factors as covariate. This new approach broadens the scope of the existing conditional autocorrelation models. © The Author(s) 2016.
Spatial and Spin Symmetry Breaking in Semidefinite-Programming-Based Hartree-Fock Theory.
Nascimento, Daniel R; DePrince, A Eugene
2018-05-08
The Hartree-Fock problem was recently recast as a semidefinite optimization over the space of rank-constrained two-body reduced-density matrices (RDMs) [ Phys. Rev. A 2014 , 89 , 010502(R) ]. This formulation of the problem transfers the nonconvexity of the Hartree-Fock energy functional to the rank constraint on the two-body RDM. We consider an equivalent optimization over the space of positive semidefinite one-electron RDMs (1-RDMs) that retains the nonconvexity of the Hartree-Fock energy expression. The optimized 1-RDM satisfies ensemble N-representability conditions, and ensemble spin-state conditions may be imposed as well. The spin-state conditions place additional linear and nonlinear constraints on the 1-RDM. We apply this RDM-based approach to several molecular systems and explore its spatial (point group) and spin ( Ŝ 2 and Ŝ 3 ) symmetry breaking properties. When imposing Ŝ 2 and Ŝ 3 symmetry but relaxing point group symmetry, the procedure often locates spatial-symmetry-broken solutions that are difficult to identify using standard algorithms. For example, the RDM-based approach yields a smooth, spatial-symmetry-broken potential energy curve for the well-known Be-H 2 insertion pathway. We also demonstrate numerically that, upon relaxation of Ŝ 2 and Ŝ 3 symmetry constraints, the RDM-based approach is equivalent to real-valued generalized Hartree-Fock theory.
Perceptual asymmetries in greyscales: object-based versus space-based influences.
Thomas, Nicole A; Elias, Lorin J
2012-05-01
Neurologically normal individuals exhibit leftward spatial biases, resulting from object- and space-based biases; however their relative contributions to the overall bias remain unknown. Relative position within the display has not often been considered, with similar spatial conditions being collapsed across. Study 1 used the greyscales task to investigate the influence of relative position and object- and space-based contributions. One image in each greyscale pair was shifted towards the left or the right. A leftward object-based bias moderated by a bias to the centre was expected. Results confirmed this as a left object-based bias occurred in the right visual field, where the left side of the greyscale pairs was located in the centre visual field. Further, only lower visual field images exhibited a significant left bias in the left visual field. The left bias was also stronger when images were partially overlapping in the right visual field, demonstrating the importance of examining proximity. The second study examined whether object-based biases were stronger when actual objects, with directional lighting biases, were used. Direction of luminosity was congruent or incongruent with spatial location. A stronger object-based bias emerged overall; however a leftward bias was seen in congruent conditions and a rightward bias was seen in incongruent conditions. In conditions with significant biases, the lower visual field image was chosen most often. Results show that object- and space-based biases both contribute; however stimulus type allows either space- or object-based biases to be stronger. A lower visual field bias also interacts with these biases, leading the left bias to be eliminated under certain conditions. The complex interaction occurring between frame of reference and visual field makes spatial location extremely important in determining the strength of the leftward bias. Copyright © 2010 Elsevier Srl. All rights reserved.
Urban Public Space Context and Cognitive Psychology Evolution in Information Environment
NASA Astrophysics Data System (ADS)
Feng, Chen; Xu, Hua-wei
2017-11-01
The rapid development of information technology has had a great impact on the understanding of urban environment, which brings different spatially psychological experience. Information and image transmission has been full with the streets, both the physical space and virtual space have been unprecedentedly blended together through pictures, images, electronic media and other tools, which also stimulates people’s vision and psychology and gives birth to a more complex form of urban space. Under the dual role of spatial mediumlization and media spatialization, the psychological cognitive pattern of urban public space context is changing.
Phu, Jack; Kalloniatis, Michael; Khuu, Sieu K.
2018-01-01
Purpose Current clinical perimetric test paradigms present stimuli randomly to various locations across the visual field (VF), inherently introducing spatial uncertainty, which reduces contrast sensitivity. In the present study, we determined the extent to which spatial uncertainty affects contrast sensitivity in glaucoma patients by minimizing spatial uncertainty through attentional cueing. Methods Six patients with open-angle glaucoma and six healthy subjects underwent laboratory-based psychophysical testing to measure contrast sensitivity at preselected locations at two eccentricities (9.5° and 17.5°) with two stimulus sizes (Goldmann sizes III and V) under different cueing conditions: 1, 2, 4, or 8 points verbally cued. Method of Constant Stimuli and a single-interval forced-choice procedure were used to generate frequency of seeing (FOS) curves at locations with and without VF defects. Results At locations with VF defects, cueing minimizes spatial uncertainty and improves sensitivity under all conditions. The effect of cueing was maximal when one point was cued, and rapidly diminished when more points were cued (no change to baseline with 8 points cued). The slope of the FOS curve steepened with reduced spatial uncertainty. Locations with normal sensitivity in glaucomatous eyes had similar performance to that of healthy subjects. There was a systematic increase in uncertainty with the depth of VF loss. Conclusions Sensitivity measurements across the VF are negatively affected by spatial uncertainty, which increases with greater VF loss. Minimizing uncertainty can improve sensitivity at locations of deficit. Translational Relevance Current perimetric techniques introduce spatial uncertainty and may therefore underestimate sensitivity in regions of VF loss. PMID:29600116
Multiseasonal variables in digital image enhancements for geological applications
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Vitorello, I.; Almeidafilho, R.
1984-01-01
Examples of enhanced multiseasonal orbital imagery illustrate the influence of multiseasonal changes in their spatial and spectral attributes, and consequently in their application to structural geology and lithological discrimination. Shadow effects associated with appropriate solar elevation and azimuth effects enhance the spatial attributes but not the spectral. In this case, variations in illumination conditions should be minimized by selecting images with high solar elevation and by the use of techniques that minimize illumination conditions. Multiseasonal imagery should be used in the identification of spectral contrast changes of rock-soil-vegetation associations which can provide evidences of related lithological units and structural features. The extraction of maximum geological information requires, at least, a fall/winter and a spring/summer scene from which spatial, spectral and multiseasonal attributes can be adequately explored.
[Research on the methods for multi-class kernel CSP-based feature extraction].
Wang, Jinjia; Zhang, Lingzhi; Hu, Bei
2012-04-01
To relax the presumption of strictly linear patterns in the common spatial patterns (CSP), we studied the kernel CSP (KCSP). A new multi-class KCSP (MKCSP) approach was proposed in this paper, which combines the kernel approach with multi-class CSP technique. In this approach, we used kernel spatial patterns for each class against all others, and extracted signal components specific to one condition from EEG data sets of multiple conditions. Then we performed classification using the Logistic linear classifier. Brain computer interface (BCI) competition III_3a was used in the experiment. Through the experiment, it can be proved that this approach could decompose the raw EEG singles into spatial patterns extracted from multi-class of single trial EEG, and could obtain good classification results.
NASA Astrophysics Data System (ADS)
Holmes, K. W.; Barrett-Lennard, E. G.; Altman, M.
2011-12-01
Experiments conducted under controlled conditions clearly show that the growth and survival of plants on saltland is affected by both the levels of salinity and waterlogging (or depth to water-table) in the soil. Different plant species thrive under varying combinations of these growth constraints. However in natural settings, short distance spatial variability in soil properties and subtle topographic features often complicate the definition of saline and soil hydrological conditions; additional factors may also overprint the trends identified under controlled conditions, making it difficult to define the physical settings where planting is economically viable. We investigated the establishment and growth of old man saltbush (Atriplex nummularia) in relation to variable soil-landscape conditions across an experimental site in southwestern Australia where the combination of high salinity and occasional seasonal waterlogging ruled out the growth of traditional crops and pastures. Saltbush can be critical supplemental feed in the dry season, providing essential nutrients for sheep in combination with sufficient water and dry feed (hay). We applied a range of modeling approaches including classification and regression trees and generalized linear models to statistically characterize these plant-environment relationships, and extend them spatially using full cover raster covariate datasets. Plant deaths could be consistently predicted (97% correct classification of independent dataset) using a combination of topographic variables, salinity, soil mineralogical information, and depth to the water table. Plant growth patterns were more difficult to predict, particularly after several years of grazing, however variation in plant volume was well-explained with a linear model (r2 = 0.6, P < 0.0001). All types of environmental data were required, supporting the starting hypothesis that saltland pasture success is driven by water movement in the landscape. The final selected covariates for modeling were a digital elevation model and derivatives, soil mineralogy, competitors for water (adjacent trees) and soil salinity (measured with an EM38). Our exploration of strengths and weaknesses of extrapolating simple relationships determined under controlled conditions to the field vindicates the importance of both approaches. Landholders often view the idea of the productive use of saltland with skepticism. The challenge is to use the combined datasets from glasshouse and field experiments to develop information guidelines for landholders that maximize the chances of revegetation success. Water availability, waterlogging, quality of the shallow groundwater, and secondary salinity are dominant processes that impact on agriculture in southwestern Australia. Improving our understanding of their interactions and effect on productivity will help adapt agricultural management to changing environmental conditions in the future.
High-voltage compatible, full-depleted CCD
Holland, Stephen Edward
2007-09-18
A charge coupled device for detecting electromagnetic and particle radiation is described. The device includes a high-resistivity semiconductor substrate, buried channel regions, gate electrode circuitry, and amplifier circuitry. For good spatial resolution and high performance, especially when operated at high voltages with full or nearly full depletion of the substrate, the device can also include a guard ring positioned near channel regions, a biased channel stop, and a biased polysilicon electrode over the channel stop.
Nicholls, Alastair P; Melia, Anne; Farmer, Eric W; Shaw, Gareth; Milne, Tracey; Stedmon, Alex; Sharples, Sarah; Cox, Gemma
2007-07-01
At present, air traffic controllers (ATCOs) exercise strict control over routing authority for aircraft movement in airspace. The onset of a free flight environment, however, may well result in a dramatic change to airspace jurisdictions, with aircraft movements for the large part being governed by aircrew, not ATCOs. The present study examined the impact of such changes on spatial memory for recent and non-recent locations of aircraft represented on a visual display. The experiment contrasted present conditions, in which permission for manoeuvres is granted by ATCOs, with potential free flight conditions, in which aircrew undertake deviations without explicit approval from ATCOs. Results indicated that the ATCO role adopted by participants impacted differently on short-term and long-term spatial representations of aircraft manoeuvres. Although informing participants of impending deviations has beneficial effects on spatial representations in the short term, long-term representations of spatial events are affected deleteriously by the presentation of subsequent information pertaining to other aircraft. This study suggests strongly that recognition of the perceptual and cognitive consequences of changing to a free flight environment is crucial if air safety is not to be jeopardized.
A random spatial network model based on elementary postulates
Karlinger, Michael R.; Troutman, Brent M.
1989-01-01
A model for generating random spatial networks that is based on elementary postulates comparable to those of the random topology model is proposed. In contrast to the random topology model, this model ascribes a unique spatial specification to generated drainage networks, a distinguishing property of some network growth models. The simplicity of the postulates creates an opportunity for potential analytic investigations of the probabilistic structure of the drainage networks, while the spatial specification enables analyses of spatially dependent network properties. In the random topology model all drainage networks, conditioned on magnitude (number of first-order streams), are equally likely, whereas in this model all spanning trees of a grid, conditioned on area and drainage density, are equally likely. As a result, link lengths in the generated networks are not independent, as usually assumed in the random topology model. For a preliminary model evaluation, scale-dependent network characteristics, such as geometric diameter and link length properties, and topologic characteristics, such as bifurcation ratio, are computed for sets of drainage networks generated on square and rectangular grids. Statistics of the bifurcation and length ratios fall within the range of values reported for natural drainage networks, but geometric diameters tend to be relatively longer than those for natural networks.
NASA Astrophysics Data System (ADS)
WANG, P. T.
2015-12-01
Groundwater modeling requires to assign hydrogeological properties to every numerical grid. Due to the lack of detailed information and the inherent spatial heterogeneity, geological properties can be treated as random variables. Hydrogeological property is assumed to be a multivariate distribution with spatial correlations. By sampling random numbers from a given statistical distribution and assigning a value to each grid, a random field for modeling can be completed. Therefore, statistics sampling plays an important role in the efficiency of modeling procedure. Latin Hypercube Sampling (LHS) is a stratified random sampling procedure that provides an efficient way to sample variables from their multivariate distributions. This study combines the the stratified random procedure from LHS and the simulation by using LU decomposition to form LULHS. Both conditional and unconditional simulations of LULHS were develpoed. The simulation efficiency and spatial correlation of LULHS are compared to the other three different simulation methods. The results show that for the conditional simulation and unconditional simulation, LULHS method is more efficient in terms of computational effort. Less realizations are required to achieve the required statistical accuracy and spatial correlation.
Spatial selective attention in a complex auditory environment such as polyphonic music.
Saupe, Katja; Koelsch, Stefan; Rübsamen, Rudolf
2010-01-01
To investigate the influence of spatial information in auditory scene analysis, polyphonic music (three parts in different timbres) was composed and presented in free field. Each part contained large falling interval jumps in the melody and the task of subjects was to detect these events in one part ("target part") while ignoring the other parts. All parts were either presented from the same location (0 degrees; overlap condition) or from different locations (-28 degrees, 0 degrees, and 28 degrees or -56 degrees, 0 degrees, and 56 degrees in the azimuthal plane), with the target part being presented either at 0 degrees or at one of the right-sided locations. Results showed that spatial separation of 28 degrees was sufficient for a significant improvement in target detection (i.e., in the detection of large interval jumps) compared to the overlap condition, irrespective of the position (frontal or right) of the target part. A larger spatial separation of the parts resulted in further improvements only if the target part was lateralized. These data support the notion of improvement in the suppression of interfering signals with spatial sound source separation. Additionally, the data show that the position of the relevant sound source influences auditory performance.