Client-Friendly Forecasting: Seasonal Runoff Predictions Using Out-of-the-Box Indices
NASA Astrophysics Data System (ADS)
Weil, P.
2013-12-01
For more than a century, statistical relationships have been recognized between atmospheric conditions at locations separated by thousands of miles, referred to as teleconnections. Some of the recognized teleconnections provide useful information about expected hydrologic conditions, so certain records of atmospheric conditions are quantified and published as hydroclimate indices. Certain hydroclimate indices can serve as strong leading indicators of climate patterns over North America and can be used to make skillful forecasts of seasonal runoff. The methodology described here creates a simple-to-use model that utilizes easily accessed data to make forecasts of April through September runoff months before the runoff season begins. For this project, forecasting models were developed for two snowmelt-driven river systems in Colorado and Wyoming. In addition to the global hydroclimate indices, the methodology uses several local hydrologic variables including the previous year's drought severity, headwater snow water equivalent and the reservoir contents for the major reservoirs in each basin. To improve the skill of the forecasts, logistic regression is used to develop a model that provides the likelihood that a year will fall into the upper, middle or lower tercile of historical flows. Categorical forecasting has two major advantages over modeling of specific flow amounts: (1) with less prediction outcomes models tend to have better predictive skill and (2) categorical models are very useful to clients and agencies with specific flow thresholds that dictate major changes in water resources management. The resulting methodology and functional forecasting model product is highly portable, applicable to many major river systems and easily explained to a non-technical audience.
NASA Astrophysics Data System (ADS)
Park, Sumin; Im, Jungho; Park, Seonyeong
2016-04-01
A drought occurs when the condition of below-average precipitation in a region continues, resulting in prolonged water deficiency. A drought can last for weeks, months or even years, so can have a great influence on various ecosystems including human society. In order to effectively reduce agricultural and economic damage caused by droughts, drought monitoring and forecasts are crucial. Drought forecast research is typically conducted using in situ observations (or derived indices such as Standardized Precipitation Index (SPI)) and physical models. Recently, satellite remote sensing has been used for short term drought forecasts in combination with physical models. In this research, drought intensification was predicted using satellite-derived drought indices such as Normalized Difference Drought Index (NDDI), Normalized Multi-band Drought Index (NMDI), and Scaled Drought Condition Index (SDCI) generated from Moderate Resolution Imaging Spectroradiometer (MODIS) and Tropical Rainfall Measuring Mission (TRMM) products over the Korean Peninsula. Time series of each drought index at the 8 day interval was investigated to identify drought intensification patterns. Drought condition at the previous time step (i.e., 8 days before) and change in drought conditions between two previous time steps (e.g., between 16 days and 8 days before the time step to forecast) Results show that among three drought indices, SDCI provided the best performance to predict drought intensification compared to NDDI and NMDI through qualitative assessment. When quantitatively compared with SPI, SDCI showed a potential to be used for forecasting short term drought intensification. Finally this research provided a SDCI-based equation to predict short term drought intensification optimized over the Korean Peninsula.
The Use of Ambient Humidity Conditions to Improve Influenza Forecast
NASA Astrophysics Data System (ADS)
Shaman, J. L.; Kandula, S.; Yang, W.; Karspeck, A. R.
2017-12-01
Laboratory and epidemiological evidence indicate that ambient humidity modulates the survival and transmission of influenza. Here we explore whether the inclusion of humidity forcing in mathematical models describing influenza transmission improves the accuracy of forecasts generated with those models. We generate retrospective forecasts for 95 cities over 10 seasons in the United States and assess both forecast accuracy and error. Overall, we find that humidity forcing improves forecast performance and that forecasts generated using daily climatological humidity forcing generally outperform forecasts that utilize daily observed humidity forcing. These findings hold for predictions of outbreak peak intensity, peak timing, and incidence over 2- and 4-week horizons. The results indicate that use of climatological humidity forcing is warranted for current operational influenza forecast and provide further evidence that humidity modulates rates of influenza transmission.
NASA Astrophysics Data System (ADS)
Bonaccorso, Brunella; Cancelliere, Antonino
2015-04-01
In the present study two probabilistic models for short-medium term drought forecasting able to include information provided by teleconnection indices are proposed and applied to Sicily region (Italy). Drought conditions are expressed in terms of the Standardized Precipitation-Evapotranspiration Index (SPEI) at different aggregation time scales. More specifically, a multivariate approach based on normal distribution is developed in order to estimate: 1) on the one hand transition probabilities to future SPEI drought classes and 2) on the other hand, SPEI forecasts at a generic time horizon M, as functions of past values of SPEI and the selected teleconnection index. To this end, SPEI series at 3, 4 and 6 aggregation time scales for Sicily region are extracted from the Global SPEI database, SPEIbase , available at Web repository of the Spanish National Research Council (http://sac.csic.es/spei/database.html), and averaged over the study area. In particular, SPEIbase v2.3 with spatial resolution of 0.5° lat/lon and temporal coverage between January 1901 and December 2013 is used. A preliminary correlation analysis is carried out to investigate the link between the drought index and different teleconnection patterns, namely: the North Atlantic Oscillation (NAO), the Scandinavian (SCA) and the East Atlantic-West Russia (EA-WR) patterns. Results of such analysis indicate a strongest influence of NAO on drought conditions in Sicily with respect to other teleconnection indices. Then, the proposed forecasting methodology is applied and the skill in forecasting of the proposed models is quantitatively assessed through the application of a simple score approach and of performance indices. Results indicate that inclusion of NAO index generally enhance model performance thus confirming the suitability of the models for short- medium term forecast of drought conditions.
NASA Astrophysics Data System (ADS)
Brown, James; Seo, Dong-Jun
2010-05-01
Operational forecasts of hydrometeorological and hydrologic variables often contain large uncertainties, for which ensemble techniques are increasingly used. However, the utility of ensemble forecasts depends on the unbiasedness of the forecast probabilities. We describe a technique for quantifying and removing biases from ensemble forecasts of hydrometeorological and hydrologic variables, intended for use in operational forecasting. The technique makes no a priori assumptions about the distributional form of the variables, which is often unknown or difficult to model parametrically. The aim is to estimate the conditional cumulative distribution function (ccdf) of the observed variable given a (possibly biased) real-time ensemble forecast from one or several forecasting systems (multi-model ensembles). The technique is based on Bayesian optimal linear estimation of indicator variables, and is analogous to indicator cokriging (ICK) in geostatistics. By developing linear estimators for the conditional expectation of the observed variable at many thresholds, ICK provides a discrete approximation of the full ccdf. Since ICK minimizes the conditional error variance of the indicator expectation at each threshold, it effectively minimizes the Continuous Ranked Probability Score (CRPS) when infinitely many thresholds are employed. However, the ensemble members used as predictors in ICK, and other bias-correction techniques, are often highly cross-correlated, both within and between models. Thus, we propose an orthogonal transform of the predictors used in ICK, which is analogous to using their principal components in the linear system of equations. This leads to a well-posed problem in which a minimum number of predictors are used to provide maximum information content in terms of the total variance explained. The technique is used to bias-correct precipitation ensemble forecasts from the NCEP Global Ensemble Forecast System (GEFS), for which independent validation results are presented. Extension to multimodel ensembles from the NCEP GFS and Short Range Ensemble Forecast (SREF) systems is also proposed.
Sensitivity of Forecast Skill to Different Objective Analysis Schemes
NASA Technical Reports Server (NTRS)
Baker, W. E.
1979-01-01
Numerical weather forecasts are characterized by rapidly declining skill in the first 48 to 72 h. Recent estimates of the sources of forecast error indicate that the inaccurate specification of the initial conditions contributes substantially to this error. The sensitivity of the forecast skill to the initial conditions is examined by comparing a set of real-data experiments whose initial data were obtained with two different analysis schemes. Results are presented to emphasize the importance of the objective analysis techniques used in the assimilation of observational data.
NASA Astrophysics Data System (ADS)
Owens, M. J.; Riley, P.; Horbury, T. S.
2017-05-01
Effective space-weather prediction and mitigation requires accurate forecasting of near-Earth solar-wind conditions. Numerical magnetohydrodynamic models of the solar wind, driven by remote solar observations, are gaining skill at forecasting the large-scale solar-wind features that give rise to near-Earth variations over days and weeks. There remains a need for accurate short-term (hours to days) solar-wind forecasts, however. In this study we investigate the analogue ensemble (AnEn), or "similar day", approach that was developed for atmospheric weather forecasting. The central premise of the AnEn is that past variations that are analogous or similar to current conditions can be used to provide a good estimate of future variations. By considering an ensemble of past analogues, the AnEn forecast is inherently probabilistic and provides a measure of the forecast uncertainty. We show that forecasts of solar-wind speed can be improved by considering both speed and density when determining past analogues, whereas forecasts of the out-of-ecliptic magnetic field [BN] are improved by also considering the in-ecliptic magnetic-field components. In general, the best forecasts are found by considering only the previous 6 - 12 hours of observations. Using these parameters, the AnEn provides a valuable probabilistic forecast for solar-wind speed, density, and in-ecliptic magnetic field over lead times from a few hours to around four days. For BN, which is central to space-weather disturbance, the AnEn only provides a valuable forecast out to around six to seven hours. As the inherent predictability of this parameter is low, this is still likely a marked improvement over other forecast methods. We also investigate the use of the AnEn in forecasting geomagnetic indices Dst and Kp. The AnEn provides a valuable probabilistic forecast of both indices out to around four days. We outline a number of future improvements to AnEn forecasts of near-Earth solar-wind and geomagnetic conditions.
The use of ambient humidity conditions to improve influenza forecast.
Shaman, Jeffrey; Kandula, Sasikiran; Yang, Wan; Karspeck, Alicia
2017-11-01
Laboratory and epidemiological evidence indicate that ambient humidity modulates the survival and transmission of influenza. Here we explore whether the inclusion of humidity forcing in mathematical models describing influenza transmission improves the accuracy of forecasts generated with those models. We generate retrospective forecasts for 95 cities over 10 seasons in the United States and assess both forecast accuracy and error. Overall, we find that humidity forcing improves forecast performance (at 1-4 lead weeks, 3.8% more peak week and 4.4% more peak intensity forecasts are accurate than with no forcing) and that forecasts generated using daily climatological humidity forcing generally outperform forecasts that utilize daily observed humidity forcing (4.4% and 2.6% respectively). These findings hold for predictions of outbreak peak intensity, peak timing, and incidence over 2- and 4-week horizons. The results indicate that use of climatological humidity forcing is warranted for current operational influenza forecast.
The use of ambient humidity conditions to improve influenza forecast
Kandula, Sasikiran; Karspeck, Alicia
2017-01-01
Laboratory and epidemiological evidence indicate that ambient humidity modulates the survival and transmission of influenza. Here we explore whether the inclusion of humidity forcing in mathematical models describing influenza transmission improves the accuracy of forecasts generated with those models. We generate retrospective forecasts for 95 cities over 10 seasons in the United States and assess both forecast accuracy and error. Overall, we find that humidity forcing improves forecast performance (at 1–4 lead weeks, 3.8% more peak week and 4.4% more peak intensity forecasts are accurate than with no forcing) and that forecasts generated using daily climatological humidity forcing generally outperform forecasts that utilize daily observed humidity forcing (4.4% and 2.6% respectively). These findings hold for predictions of outbreak peak intensity, peak timing, and incidence over 2- and 4-week horizons. The results indicate that use of climatological humidity forcing is warranted for current operational influenza forecast. PMID:29145389
Model Forecast Skill and Sensitivity to Initial Conditions in the Seasonal Sea Ice Outlook
NASA Technical Reports Server (NTRS)
Blanchard-Wrigglesworth, E.; Cullather, R. I.; Wang, W.; Zhang, J.; Bitz, C. M.
2015-01-01
We explore the skill of predictions of September Arctic sea ice extent from dynamical models participating in the Sea Ice Outlook (SIO). Forecasts submitted in August, at roughly 2 month lead times, are skillful. However, skill is lower in forecasts submitted to SIO, which began in 2008, than in hindcasts (retrospective forecasts) of the last few decades. The multimodel mean SIO predictions offer slightly higher skill than the single-model SIO predictions, but neither beats a damped persistence forecast at longer than 2 month lead times. The models are largely unsuccessful at predicting each other, indicating a large difference in model physics and/or initial conditions. Motivated by this, we perform an initial condition sensitivity experiment with four SIO models, applying a fixed -1 m perturbation to the initial sea ice thickness. The significant range of the response among the models suggests that different model physics make a significant contribution to forecast uncertainty.
NASA Astrophysics Data System (ADS)
Singh, Shailesh Kumar; Zammit, Christian; Hreinsson, Einar; Woods, Ross; Clark, Martyn; Hamlet, Alan
2013-04-01
Increased access to water is a key pillar of the New Zealand government plan for economic growths. Variable climatic conditions coupled with market drivers and increased demand on water resource result in critical decision made by water managers based on climate and streamflow forecast. Because many of these decisions have serious economic implications, accurate forecast of climate and streamflow are of paramount importance (eg irrigated agriculture and electricity generation). New Zealand currently does not have a centralized, comprehensive, and state-of-the-art system in place for providing operational seasonal to interannual streamflow forecasts to guide water resources management decisions. As a pilot effort, we implement and evaluate an experimental ensemble streamflow forecasting system for the Waitaki and Rangitata River basins on New Zealand's South Island using a hydrologic simulation model (TopNet) and the familiar ensemble streamflow prediction (ESP) paradigm for estimating forecast uncertainty. To provide a comprehensive database for evaluation of the forecasting system, first a set of retrospective model states simulated by the hydrologic model on the first day of each month were archived from 1972-2009. Then, using the hydrologic simulation model, each of these historical model states was paired with the retrospective temperature and precipitation time series from each historical water year to create a database of retrospective hindcasts. Using the resulting database, the relative importance of initial state variables (such as soil moisture and snowpack) as fundamental drivers of uncertainties in forecasts were evaluated for different seasons and lead times. The analysis indicate that the sensitivity of flow forecast to initial condition uncertainty is depend on the hydrological regime and season of forecast. However initial conditions do not have a large impact on seasonal flow uncertainties for snow dominated catchments. Further analysis indicates that this result is valid when the hindcast database is conditioned by ENSO classification. As a result hydrological forecasts based on ESP technique, where present initial conditions with histological forcing data are used may be plausible for New Zealand catchments.
Operational forecasting of human-biometeorological conditions
NASA Astrophysics Data System (ADS)
Giannaros, T. M.; Lagouvardos, K.; Kotroni, V.; Matzarakis, A.
2018-03-01
This paper presents the development of an operational forecasting service focusing on human-biometeorological conditions. The service is based on the coupling of numerical weather prediction models with an advanced human-biometeorological model. Human thermal perception and stress forecasts are issued on a daily basis for Greece, in both point and gridded format. A user-friendly presentation approach is adopted for communicating the forecasts to the public via the worldwide web. The development of the presented service highlights the feasibility of replacing standard meteorological parameters and/or indices used in operational weather forecasting activities for assessing the thermal environment. This is of particular significance for providing effective, human-biometeorology-oriented, warnings for both heat waves and cold outbreaks.
Integrating predictive information into an agro-economic model to guide agricultural management
NASA Astrophysics Data System (ADS)
Zhang, Y.; Block, P.
2016-12-01
Skillful season-ahead climate predictions linked with responsive agricultural planning and management have the potential to reduce losses, if adopted by farmers, particularly for rainfed-dominated agriculture such as in Ethiopia. Precipitation predictions during the growing season in major agricultural regions of Ethiopia are used to generate predicted climate yield factors, which reflect the influence of precipitation amounts on crop yields and serve as inputs into an agro-economic model. The adapted model, originally developed by the International Food Policy Research Institute, produces outputs of economic indices (GDP, poverty rates, etc.) at zonal and national levels. Forecast-based approaches, in which farmers' actions are in response to forecasted conditions, are compared with no-forecast approaches in which farmers follow business as usual practices, expecting "average" climate conditions. The effects of farmer adoption rates, including the potential for reduced uptake due to poor predictions, and increasing forecast lead-time on economic outputs are also explored. Preliminary results indicate superior gains under forecast-based approaches.
NASA Astrophysics Data System (ADS)
Beckers, J.; Weerts, A.; Tijdeman, E.; Welles, E.; McManamon, A.
2013-12-01
To provide reliable and accurate seasonal streamflow forecasts for water resources management several operational hydrologic agencies and hydropower companies around the world use the Extended Streamflow Prediction (ESP) procedure. The ESP in its original implementation does not accommodate for any additional information that the forecaster may have about expected deviations from climatology in the near future. Several attempts have been conducted to improve the skill of the ESP forecast, especially for areas which are affected by teleconnetions (e,g. ENSO, PDO) via selection (Hamlet and Lettenmaier, 1999) or weighting schemes (Werner et al., 2004; Wood and Lettenmaier, 2006; Najafi et al., 2012). A disadvantage of such schemes is that they lead to a reduction of the signal to noise ratio of the probabilistic forecast. To overcome this, we propose a resampling method conditional on climate indices to generate meteorological time series to be used in the ESP. The method can be used to generate a large number of meteorological ensemble members in order to improve the statistical properties of the ensemble. The effectiveness of the method was demonstrated in a real-time operational hydrologic seasonal forecasts system for the Columbia River basin operated by the Bonneville Power Administration. The forecast skill of the k-nn resampler was tested against the original ESP for three basins at the long-range seasonal time scale. The BSS and CRPSS were used to compare the results to those of the original ESP method. Positive forecast skill scores were found for the resampler method conditioned on different indices for the prediction of spring peak flows in the Dworshak and Hungry Horse basin. For the Libby Dam basin however, no improvement of skill was found. The proposed resampling method is a promising practical approach that can add skill to ESP forecasts at the seasonal time scale. Further improvement is possible by fine tuning the method and selecting the most informative climate indices for the region of interest.
NASA Astrophysics Data System (ADS)
Schmidt, T.; Kalisch, J.; Lorenz, E.; Heinemann, D.
2015-10-01
Clouds are the dominant source of variability in surface solar radiation and uncertainty in its prediction. However, the increasing share of solar energy in the world-wide electric power supply increases the need for accurate solar radiation forecasts. In this work, we present results of a shortest-term global horizontal irradiance (GHI) forecast experiment based on hemispheric sky images. A two month dataset with images from one sky imager and high resolutive GHI measurements from 99 pyranometers distributed over 10 km by 12 km is used for validation. We developed a multi-step model and processed GHI forecasts up to 25 min with an update interval of 15 s. A cloud type classification is used to separate the time series in different cloud scenarios. Overall, the sky imager based forecasts do not outperform the reference persistence forecasts. Nevertheless, we find that analysis and forecast performance depend strongly on the predominant cloud conditions. Especially convective type clouds lead to high temporal and spatial GHI variability. For cumulus cloud conditions, the analysis error is found to be lower than that introduced by a single pyranometer if it is used representatively for the whole area in distances from the camera larger than 1-2 km. Moreover, forecast skill is much higher for these conditions compared to overcast or clear sky situations causing low GHI variability which is easier to predict by persistence. In order to generalize the cloud-induced forecast error, we identify a variability threshold indicating conditions with positive forecast skill.
Evaluation of Clear-Air Turbulence Diagnostics: GTG in Korea
NASA Astrophysics Data System (ADS)
Kim, J.-H.; Chun, H.-Y.; Jang, W.; Sharman, R. D.
2009-04-01
Turbulence forecasting algorithm, the Graphical Turbulence Guidance (GTG) system developed at NCAR (Sharman et al., 2006), is evaluated with available turbulence observations (e.g. pilot reports; PIREPs) reported in South Korea during the recent 4 years (2003-2007). Clear-air turbulence (CAT) is extracted from PIREPs by using cloud-to-ground lightning flash data from Korean Meteorological Administration (KMA). The GTG system includes several steps. First, 45 turbulence indices are calculated in the East Asian region near Korean peninsula using the Regional Data Assimilation and Prediction System (RDAPS) analysis data with 30 km horizontal grid spacing provided by KMA. Second, 10 CAT indices that performed ten best forecasting score are selected. The scoring method is based on the probability of detection, which is calculated using PIREPs exclusively of moderate-or-greater intensity. Various statistical examinations and sensitivity tests of the GTG system are performed by yearly and seasonally classified PIREPs in South Korea. Performance of GTG is more consistent and stable than that of any individual diagnostic in each year and season. In addition, current-year forecasting based on yearly PIREPs is better than adjacent-year forecasting and year-after-year forecasting. Seasonal forecasting is generally better than yearly forecasting, because selected CAT indices in each season represent meteorological condition much more properly than applying the selected CAT indices to all seasons. Wintertime forecasting is the best among the four seasonal forecastings. This is likely due to that the GTG system consists of many CAT indices related to jet stream, and turbulence associated with the jet can be most activated in wintertime under strong jet magnitude. On the other hand, summertime forecasting skill is much less than in wintertime. To acquire better performance for summertime forecasting, it is likely to develop more turbulence indices related to, for example, convections. By sensitivity test to the number of combined indices, it is found that yearly and seasonal GTG is the best when about 7 CAT indices are combined.
Impact of AIRS Thermodynamic Profile on Regional Weather Forecast
NASA Technical Reports Server (NTRS)
Chou, Shih-Hung; Zavodsky, Brad; Jedlovee, Gary
2010-01-01
Prudent assimilation of AIRS thermodynamic profiles and quality indicators can improve initial conditions for regional weather models. AIRS-enhanced analysis has warmer and moister PBL. Forecasts with AIRS profiles are generally closer to NAM analyses than CNTL. Assimilation of AIRS leads to an overall QPF improvement in 6-h accumulated precipitation forecasts. Including AIRS profiles in assimilation process enhances the moist instability and produces stronger updrafts and a better precipitation forecast than the CNTL run.
Added value of dynamical downscaling of winter seasonal forecasts over North America
NASA Astrophysics Data System (ADS)
Tefera Diro, Gulilat; Sushama, Laxmi
2017-04-01
Skillful seasonal forecasts have enormous potential benefits for socio-economic sectors that are sensitive to weather and climate conditions, as the early warning routines could reduce the vulnerability of such sectors. In this study, individual ensemble members of the ECMWF global ensemble seasonal forecasts are dynamically downscaled to produce ensemble of regional seasonal forecasts over North America using the fifth generation Canadian Regional Climate Model (CRCM5). CRCM5 forecasts are initialized on November 1st of each year and are integrated for four months for the 1991-2001 period at 0.22 degree resolution to produce a one-month lead-time forecast. The initial conditions for atmospheric variables are obtained from ERA-Interim reanalysis, whereas the initial conditions for land surface are obtained from a separate ERA-interim driven CRCM5 simulation with spectral nudging applied to the interior domain. The global and regional ensemble forecasts were then verified to investigate the skill and economic benefits of dynamical downscaling. Results indicate that both the global and regional climate models produce skillful precipitation forecast over the southern Great Plains and eastern coasts of the U.S and skillful temperature forecasts over the northern U.S. and most of Canada. In comparison to ECMWF forecasts, CRCM5 forecasts improved the temperature forecast skill over most part of the domain, but the improvements for precipitation is limited to regions with complex topography, where it improves the frequency of intense daily precipitation. CRCM5 forecast also yields a better economic value compared to ECMWF precipitation forecasts, for users whose cost to loss ratio is smaller than 0.5.
Siedlecki, Samantha A.; Kaplan, Isaac C.; Hermann, Albert J.; Nguyen, Thanh Tam; Bond, Nicholas A.; Newton, Jan A.; Williams, Gregory D.; Peterson, William T.; Alin, Simone R.; Feely, Richard A.
2016-01-01
Resource managers at the state, federal, and tribal levels make decisions on a weekly to quarterly basis, and fishers operate on a similar timeframe. To determine the potential of a support tool for these efforts, a seasonal forecast system is experimented with here. JISAO’s Seasonal Coastal Ocean Prediction of the Ecosystem (J-SCOPE) features dynamical downscaling of regional ocean conditions in Washington and Oregon waters using a combination of a high-resolution regional model with biogeochemistry and forecasts from NOAA’s Climate Forecast System (CFS). Model performance and predictability were examined for sea surface temperature (SST), bottom temperature, bottom oxygen, pH, and aragonite saturation state through model hindcasts, reforecast, and forecast comparisons with observations. Results indicate J-SCOPE forecasts have measurable skill on seasonal timescales. Experiments suggest that seasonal forecasting of ocean conditions important for fisheries is possible with the right combination of components. Those components include regional predictability on seasonal timescales of the physical environment from a large-scale model, a high-resolution regional model with biogeochemistry that simulates seasonal conditions in hindcasts, a relationship with local stakeholders, and a real-time observational network. Multiple efforts and approaches in different regions would advance knowledge to provide additional tools to fishers and other stakeholders. PMID:27273473
NASA Astrophysics Data System (ADS)
Siedlecki, Samantha A.; Kaplan, Isaac C.; Hermann, Albert J.; Nguyen, Thanh Tam; Bond, Nicholas A.; Newton, Jan A.; Williams, Gregory D.; Peterson, William T.; Alin, Simone R.; Feely, Richard A.
2016-06-01
Resource managers at the state, federal, and tribal levels make decisions on a weekly to quarterly basis, and fishers operate on a similar timeframe. To determine the potential of a support tool for these efforts, a seasonal forecast system is experimented with here. JISAO’s Seasonal Coastal Ocean Prediction of the Ecosystem (J-SCOPE) features dynamical downscaling of regional ocean conditions in Washington and Oregon waters using a combination of a high-resolution regional model with biogeochemistry and forecasts from NOAA’s Climate Forecast System (CFS). Model performance and predictability were examined for sea surface temperature (SST), bottom temperature, bottom oxygen, pH, and aragonite saturation state through model hindcasts, reforecast, and forecast comparisons with observations. Results indicate J-SCOPE forecasts have measurable skill on seasonal timescales. Experiments suggest that seasonal forecasting of ocean conditions important for fisheries is possible with the right combination of components. Those components include regional predictability on seasonal timescales of the physical environment from a large-scale model, a high-resolution regional model with biogeochemistry that simulates seasonal conditions in hindcasts, a relationship with local stakeholders, and a real-time observational network. Multiple efforts and approaches in different regions would advance knowledge to provide additional tools to fishers and other stakeholders.
Siedlecki, Samantha A; Kaplan, Isaac C; Hermann, Albert J; Nguyen, Thanh Tam; Bond, Nicholas A; Newton, Jan A; Williams, Gregory D; Peterson, William T; Alin, Simone R; Feely, Richard A
2016-06-07
Resource managers at the state, federal, and tribal levels make decisions on a weekly to quarterly basis, and fishers operate on a similar timeframe. To determine the potential of a support tool for these efforts, a seasonal forecast system is experimented with here. JISAO's Seasonal Coastal Ocean Prediction of the Ecosystem (J-SCOPE) features dynamical downscaling of regional ocean conditions in Washington and Oregon waters using a combination of a high-resolution regional model with biogeochemistry and forecasts from NOAA's Climate Forecast System (CFS). Model performance and predictability were examined for sea surface temperature (SST), bottom temperature, bottom oxygen, pH, and aragonite saturation state through model hindcasts, reforecast, and forecast comparisons with observations. Results indicate J-SCOPE forecasts have measurable skill on seasonal timescales. Experiments suggest that seasonal forecasting of ocean conditions important for fisheries is possible with the right combination of components. Those components include regional predictability on seasonal timescales of the physical environment from a large-scale model, a high-resolution regional model with biogeochemistry that simulates seasonal conditions in hindcasts, a relationship with local stakeholders, and a real-time observational network. Multiple efforts and approaches in different regions would advance knowledge to provide additional tools to fishers and other stakeholders.
NASA Astrophysics Data System (ADS)
Schmidt, Thomas; Kalisch, John; Lorenz, Elke; Heinemann, Detlev
2016-03-01
Clouds are the dominant source of small-scale variability in surface solar radiation and uncertainty in its prediction. However, the increasing share of solar energy in the worldwide electric power supply increases the need for accurate solar radiation forecasts. In this work, we present results of a very short term global horizontal irradiance (GHI) forecast experiment based on hemispheric sky images. A 2-month data set with images from one sky imager and high-resolution GHI measurements from 99 pyranometers distributed over 10 km by 12 km is used for validation. We developed a multi-step model and processed GHI forecasts up to 25 min with an update interval of 15 s. A cloud type classification is used to separate the time series into different cloud scenarios. Overall, the sky-imager-based forecasts do not outperform the reference persistence forecasts. Nevertheless, we find that analysis and forecast performance depends strongly on the predominant cloud conditions. Especially convective type clouds lead to high temporal and spatial GHI variability. For cumulus cloud conditions, the analysis error is found to be lower than that introduced by a single pyranometer if it is used representatively for the whole area in distances from the camera larger than 1-2 km. Moreover, forecast skill is much higher for these conditions compared to overcast or clear sky situations causing low GHI variability, which is easier to predict by persistence. In order to generalize the cloud-induced forecast error, we identify a variability threshold indicating conditions with positive forecast skill.
NASA Astrophysics Data System (ADS)
Abbot, John; Marohasy, Jennifer
2017-11-01
General circulation models, which forecast by first modelling actual conditions in the atmosphere and ocean, are used extensively for monthly rainfall forecasting. We show how more skilful monthly and seasonal rainfall forecasts can be achieved through the mining of historical climate data using artificial neural networks (ANNs). This technique is demonstrated for two agricultural regions of Australia: the wheat belt of Western Australia and the sugar growing region of coastal Queensland. The most skilful monthly rainfall forecasts measured in terms of Ideal Point Error (IPE), and a score relative to climatology, are consistently achieved through the use of ANNs optimized for each month individually, and also by choosing to input longer historical series of climate indices. Using the longer series restricts the number of climate indices that can be used.
Consistency between the global and regional modeling components of CAMS over Europe.
NASA Astrophysics Data System (ADS)
Katragkou, Eleni; Akritidis, Dimitrios; Kontos, Serafim; Zanis, Prodromos; Melas, Dimitrios; Engelen, Richard; Plu, Matthieu; Eskes, Henk
2017-04-01
The Copernicus Atmosphere Monitoring Service (CAMS) is a component of the European Earth Observation programme Copernicus. CAMS consists of two major forecast and analysis systems: i) the CAMS global near-real time service, based on the ECMWF Integrated Forecast System (C-IFS), which provides daily analyses and forecasts of reactive trace gases, greenhouse gases and aerosol concentrations ii) a regional ensemble (ENS) for European air quality, compiled and disseminated by Météo-France, which consists of seven ensemble members. The boundaries from the regional ensemble members are extracted from the global CAMS forecast product. This work reports on the consistency between the global and regional modeling components of CAMS, and the impact of global CAMS boundary conditions on regional forecasts. The current analysis includes ozone (O3) carbon monoxide (CO) and aerosol (PM10/PM2.5) forecasts. The comparison indicates an overall good agreement between the global C-IFS and the regional ENS patterns for O3 and CO, especially above 250m altitude, indicating that the global boundary conditions are efficiently included in the regional ensemble simulations. As expected, differences are found within the PBL, with lower/higher C-IFS O3/CO concentrations over continental Europe with respect to ENS.
Closing Schools without Enraging the Public.
ERIC Educational Resources Information Center
Orrell, Donald B.
In the late 1970's, declining enrollment in Raytown, Missouri, prompted the school board to employ an outside consulting firm to prepare a 10-year comprehensive demographic forecast. The enrollment forecast clearly indicated that the decline would continue. A facility utilization study found that the overall physical condition of the schools was…
Drought forecasting in Luanhe River basin involving climatic indices
NASA Astrophysics Data System (ADS)
Ren, Weinan; Wang, Yixuan; Li, Jianzhu; Feng, Ping; Smith, Ronald J.
2017-11-01
Drought is regarded as one of the most severe natural disasters globally. This is especially the case in Tianjin City, Northern China, where drought can affect economic development and people's livelihoods. Drought forecasting, the basis of drought management, is an important mitigation strategy. In this paper, we evolve a probabilistic forecasting model, which forecasts transition probabilities from a current Standardized Precipitation Index (SPI) value to a future SPI class, based on conditional distribution of multivariate normal distribution to involve two large-scale climatic indices at the same time, and apply the forecasting model to 26 rain gauges in the Luanhe River basin in North China. The establishment of the model and the derivation of the SPI are based on the hypothesis of aggregated monthly precipitation that is normally distributed. Pearson correlation and Shapiro-Wilk normality tests are used to select appropriate SPI time scale and large-scale climatic indices. Findings indicated that longer-term aggregated monthly precipitation, in general, was more likely to be considered normally distributed and forecasting models should be applied to each gauge, respectively, rather than to the whole basin. Taking Liying Gauge as an example, we illustrate the impact of the SPI time scale and lead time on transition probabilities. Then, the controlled climatic indices of every gauge are selected by Pearson correlation test and the multivariate normality of SPI, corresponding climatic indices for current month and SPI 1, 2, and 3 months later are demonstrated using Shapiro-Wilk normality test. Subsequently, we illustrate the impact of large-scale oceanic-atmospheric circulation patterns on transition probabilities. Finally, we use a score method to evaluate and compare the performance of the three forecasting models and compare them with two traditional models which forecast transition probabilities from a current to a future SPI class. The results show that the three proposed models outperform the two traditional models and involving large-scale climatic indices can improve the forecasting accuracy.
NASA Astrophysics Data System (ADS)
Haguma, D.; Leconte, R.
2017-12-01
Spatial and temporal water resources variability are associated with large-scale pressure and circulation anomalies known as teleconnections that influence the pattern of the atmospheric circulation. Teleconnection indices have been used successfully to forecast streamflow in short term. However, in some watersheds, classical methods cannot establish relationships between seasonal streamflow and teleconnection indices because of weak correlation. In this study, machine learning algorithms have been applied for seasonal streamflow forecast using teleconnection indices. Machine learning offers an alternative to classical methods to address the non-linear relationship between streamflow and teleconnection indices the context non-stationary climate. Two machine learning algorithms, random forest (RF) and support vector machine (SVM), with teleconnection indices associated with North American climatology, have been used to forecast inflows for one and two leading seasons for the Romaine River and Manicouagan River watersheds, located in Quebec, Canada. The indices are Pacific-North America (PNA), North Atlantic Oscillation (NAO), El Niño-Southern Oscillation (ENSO), Arctic Oscillation (AO) and Pacific Decadal Oscillation (PDO). The results showed that the machine learning algorithms have an important predictive power for seasonal streamflow for one and two leading seasons. The RF performed better for training and SVM generally have better results with high predictive capability for testing. The RF which is an ensemble method, allowed to assess the uncertainty of the forecast. The integration of teleconnection indices responds to the seasonal forecast of streamflow in the conditions of the non-stationarity the climate, although the teleconnection indices have a weak correlation with streamflow.
NASA Astrophysics Data System (ADS)
van Dijk, Albert I. J. M.; Peña-Arancibia, Jorge L.; Wood, Eric F.; Sheffield, Justin; Beck, Hylke E.
2013-05-01
Ideally, a seasonal streamflow forecasting system would ingest skilful climate forecasts and propagate these through calibrated hydrological models initialized with observed catchment conditions. At global scale, practical problems exist in each of these aspects. For the first time, we analyzed theoretical and actual skill in bimonthly streamflow forecasts from a global ensemble streamflow prediction (ESP) system. Forecasts were generated six times per year for 1979-2008 by an initialized hydrological model and an ensemble of 1° resolution daily climate estimates for the preceding 30 years. A post-ESP conditional sampling method was applied to 2.6% of forecasts, based on predictive relationships between precipitation and 1 of 21 climate indices prior to the forecast date. Theoretical skill was assessed against a reference run with historic forcing. Actual skill was assessed against streamflow records for 6192 small (<10,000 km2) catchments worldwide. The results show that initial catchment conditions provide the main source of skill. Post-ESP sampling enhanced skill in equatorial South America and Southeast Asia, particularly in terms of tercile probability skill, due to the persistence and influence of the El Niño Southern Oscillation. Actual skill was on average 54% of theoretical skill but considerably more for selected regions and times of year. The realized fraction of the theoretical skill probably depended primarily on the quality of precipitation estimates. Forecast skill could be predicted as the product of theoretical skill and historic model performance. Increases in seasonal forecast skill are likely to require improvement in the observation of precipitation and initial hydrological conditions.
Nonlinear time series modeling and forecasting the seismic data of the Hindu Kush region
NASA Astrophysics Data System (ADS)
Khan, Muhammad Yousaf; Mittnik, Stefan
2018-01-01
In this study, we extended the application of linear and nonlinear time models in the field of earthquake seismology and examined the out-of-sample forecast accuracy of linear Autoregressive (AR), Autoregressive Conditional Duration (ACD), Self-Exciting Threshold Autoregressive (SETAR), Threshold Autoregressive (TAR), Logistic Smooth Transition Autoregressive (LSTAR), Additive Autoregressive (AAR), and Artificial Neural Network (ANN) models for seismic data of the Hindu Kush region. We also extended the previous studies by using Vector Autoregressive (VAR) and Threshold Vector Autoregressive (TVAR) models and compared their forecasting accuracy with linear AR model. Unlike previous studies that typically consider the threshold model specifications by using internal threshold variable, we specified these models with external transition variables and compared their out-of-sample forecasting performance with the linear benchmark AR model. The modeling results show that time series models used in the present study are capable of capturing the dynamic structure present in the seismic data. The point forecast results indicate that the AR model generally outperforms the nonlinear models. However, in some cases, threshold models with external threshold variables specification produce more accurate forecasts, indicating that specification of threshold time series models is of crucial importance. For raw seismic data, the ACD model does not show an improved out-of-sample forecasting performance over the linear AR model. The results indicate that the AR model is the best forecasting device to model and forecast the raw seismic data of the Hindu Kush region.
NASA Astrophysics Data System (ADS)
Kruglova, Ekaterina; Kulikova, Irina; Khan, Valentina; Tischenko, Vladimir
2017-04-01
The subseasonal predictability of low-frequency modes and the atmospheric circulation regimes is investigated based on the using of outputs from global Semi-Lagrangian (SL-AV) model of the Hydrometcentre of Russia and Institute of Numerical Mathematics of Russian Academy of Science. Teleconnection indices (AO, WA, EA, NAO, EU, WP, PNA) are used as the quantitative characteristics of low-frequency variability to identify zonal and meridional flow regimes with focus on control distribution of high impact weather patterns in the Northern Eurasia. The predictability of weekly and monthly averaged indices is estimated by the methods of diagnostic verification of forecast and reanalysis data covering the hindcast period, and also with the use of the recommended WMO quantitative criteria. Characteristics of the low frequency variability have been discussed. Particularly, it is revealed that the meridional flow regimes are reproduced by SL-AV for summer season better comparing to winter period. It is shown that the model's deterministic forecast (ensemble mean) skill at week 1 (days 1-7) is noticeably better than that of climatic forecasts. The decrease of skill scores at week 2 (days 8-14) and week 3( days 15-21) is explained by deficiencies in the modeling system and inaccurate initial conditions. It was noticed the slightly improvement of the skill of model at week 4 (days 22-28), when the condition of atmosphere is more determined by the flow of energy from the outside. The reliability of forecasts of monthly (days 1-30) averaged indices is comparable to that at week 1 (days 1-7). Numerical experiments demonstrated that the forecast accuracy can be improved (thus the limit of practical predictability can be extended) through the using of probabilistic approach based on ensemble forecasts. It is shown that the quality of forecasts of the regimes of circulation like blocking is higher, than that of zonal flow.
Prediction of fog/visibility over India using NWP Model
NASA Astrophysics Data System (ADS)
Singh, Aditi; George, John P.; Iyengar, Gopal Raman
2018-03-01
Frequent occurrence of fog in different parts of northern India is common during the winter months of December and January. Low visibility conditions due to fog disrupt normal public life. Visibility conditions heavily affect both surface and air transport. A number of flights are either diverted or cancelled every year during the winter season due to low visibility conditions, experienced at different airports of north India. Thus, fog and visibility forecasts over plains of north India become very important during winter months. This study aims to understand the ability of a NWP model (NCMRWF, Unified Model, NCUM) with a diagnostic visibility scheme to forecast visibility over plains of north India. The present study verifies visibility forecasts obtained from NCUM against the INSAT-3D fog images and visibility observations from the METAR reports of different stations in the plains of north India. The study shows that the visibility forecast obtained from NCUM can provide reasonably good indication of the spatial extent of fog in advance of one day. The fog intensity is also predicted fairly well. The study also verifies the simple diagnostic model for fog which is driven by NWP model forecast of surface relative humidity and wind speed. The performance of NWP model forecast of visibility is found comparable to that from simple fog model driven by NWP forecast of relative humidity and wind speed.
A Groundwater Resource Index (GRI) for drought monitoring and forecasting in a mediterranean climate
NASA Astrophysics Data System (ADS)
Mendicino, Giuseppe; Senatore, Alfonso; Versace, Pasquale
2008-08-01
SummaryDrought indices are essential elements of an efficient drought watching system, aimed at providing a concise overall picture of drought conditions. Owing to its simplicity, time-flexibility and standardization, the Standardized Precipitation Index (SPI) has become a very widely used meteorological index, even if it is not able to account for effects of aquifers, soil, land use characteristics, canopy growth and temperature anomalies. Many other drought indices have been developed over the years, with monitoring and forecasting purposes, also with the purpose of taking advantage of the opportunities offered by remote sensing and improved general circulation models (GCMs). Moreover, some aggregated indices aimed at capturing the different features of drought have been proposed, but very few drought indices are focused on the groundwater resource status. In this paper a novel Groundwater Resource Index (GRI) is presented as a reliable tool useful in a multi-analysis approach for monitoring and forecasting drought conditions. The GRI is derived from a simple distributed water balance model, and has been tested in a Mediterranean region, characterized by different geo-lithological conditions mainly affecting the summer hydrologic response of the catchments to winter precipitation. The analysis of the GRI characteristics shows a high spatial variability and, compared to the SPI through spectral analysis, a significant sensitivity to the lithological characterization of the analyzed region. Furthermore, the GRI shows a very high auto-correlation during summer months, useful for forecasting purposes. The capability of the proposed index in forecasting summer droughts was tested analyzing the correlation of the GRI April values with the mean summer runoff values of some river basins (obtaining a mean correlation value of 0.60) and with the summer NDVI values of several forested areas, where correlation values greater than 0.77 were achieved. Moreover, its performance was evaluated in forecasting the major historic drought events, finding that the GRI is a better predictor than the SPI in order to predispose adequate actions for facing summer drought, with just one year missed and no false alarms observed.
NASA Astrophysics Data System (ADS)
Tippett, Michael K.; Ranganathan, Meghana; L'Heureux, Michelle; Barnston, Anthony G.; DelSole, Timothy
2017-05-01
Here we examine the skill of three, five, and seven-category monthly ENSO probability forecasts (1982-2015) from single and multi-model ensemble integrations of the North American Multimodel Ensemble (NMME) project. Three-category forecasts are typical and provide probabilities for the ENSO phase (El Niño, La Niña or neutral). Additional forecast categories indicate the likelihood of ENSO conditions being weak, moderate or strong. The level of skill observed for differing numbers of forecast categories can help to determine the appropriate degree of forecast precision. However, the dependence of the skill score itself on the number of forecast categories must be taken into account. For reliable forecasts with same quality, the ranked probability skill score (RPSS) is fairly insensitive to the number of categories, while the logarithmic skill score (LSS) is an information measure and increases as categories are added. The ignorance skill score decreases to zero as forecast categories are added, regardless of skill level. For all models, forecast formats and skill scores, the northern spring predictability barrier explains much of the dependence of skill on target month and forecast lead. RPSS values for monthly ENSO forecasts show little dependence on the number of categories. However, the LSS of multimodel ensemble forecasts with five and seven categories show statistically significant advantages over the three-category forecasts for the targets and leads that are least affected by the spring predictability barrier. These findings indicate that current prediction systems are capable of providing more detailed probabilistic forecasts of ENSO phase and amplitude than are typically provided.
NASA Astrophysics Data System (ADS)
Regonda, Satish Kumar; Seo, Dong-Jun; Lawrence, Bill; Brown, James D.; Demargne, Julie
2013-08-01
We present a statistical procedure for generating short-term ensemble streamflow forecasts from single-valued, or deterministic, streamflow forecasts produced operationally by the U.S. National Weather Service (NWS) River Forecast Centers (RFCs). The resulting ensemble streamflow forecast provides an estimate of the predictive uncertainty associated with the single-valued forecast to support risk-based decision making by the forecasters and by the users of the forecast products, such as emergency managers. Forced by single-valued quantitative precipitation and temperature forecasts (QPF, QTF), the single-valued streamflow forecasts are produced at a 6-h time step nominally out to 5 days into the future. The single-valued streamflow forecasts reflect various run-time modifications, or "manual data assimilation", applied by the human forecasters in an attempt to reduce error from various sources in the end-to-end forecast process. The proposed procedure generates ensemble traces of streamflow from a parsimonious approximation of the conditional multivariate probability distribution of future streamflow given the single-valued streamflow forecast, QPF, and the most recent streamflow observation. For parameter estimation and evaluation, we used a multiyear archive of the single-valued river stage forecast produced operationally by the NWS Arkansas-Red River Basin River Forecast Center (ABRFC) in Tulsa, Oklahoma. As a by-product of parameter estimation, the procedure provides a categorical assessment of the effective lead time of the operational hydrologic forecasts for different QPF and forecast flow conditions. To evaluate the procedure, we carried out hindcasting experiments in dependent and cross-validation modes. The results indicate that the short-term streamflow ensemble hindcasts generated from the procedure are generally reliable within the effective lead time of the single-valued forecasts and well capture the skill of the single-valued forecasts. For smaller basins, however, the effective lead time is significantly reduced by short basin memory and reduced skill in the single-valued QPF.
NASA Astrophysics Data System (ADS)
Delorit, Justin; Cristian Gonzalez Ortuya, Edmundo; Block, Paul
2017-09-01
In many semi-arid regions, multisectoral demands often stress available water supplies. Such is the case in the Elqui River valley of northern Chile, which draws on a limited-capacity reservoir to allocate 25 000 water rights. Delayed infrastructure investment forces water managers to address demand-based allocation strategies, particularly in dry years, which are realized through reductions in the volume associated with each water right. Skillful season-ahead streamflow forecasts have the potential to inform managers with an indication of future conditions to guide reservoir allocations. This work evaluates season-ahead statistical prediction models of October-January (growing season) streamflow at multiple lead times associated with manager and user decision points, and links predictions with a reservoir allocation tool. Skillful results (streamflow forecasts outperform climatology) are produced for short lead times (1 September: ranked probability skill score (RPSS) of 0.31, categorical hit skill score of 61 %). At longer lead times, climatological skill exceeds forecast skill due to fewer observations of precipitation. However, coupling the 1 September statistical forecast model with a sea surface temperature phase and strength statistical model allows for equally skillful categorical streamflow forecasts to be produced for a 1 May lead, triggered for 60 % of years (1950-2015), suggesting forecasts need not be strictly deterministic to be useful for water rights holders. An early (1 May) categorical indication of expected conditions is reinforced with a deterministic forecast (1 September) as more observations of local variables become available. The reservoir allocation model is skillful at the 1 September lead (categorical hit skill score of 53 %); skill improves to 79 % when categorical allocation prediction certainty exceeds 80 %. This result implies that allocation efficiency may improve when forecasts are integrated into reservoir decision frameworks. The methods applied here advance the understanding of the mechanisms and timing responsible for moisture transport to the Elqui Valley and provide a unique application of streamflow forecasting in the prediction of water right allocations.
Forecasting of Seasonal Rainfall using ENSO and IOD teleconnection with Classification Models
NASA Astrophysics Data System (ADS)
De Silva, T.; Hornberger, G. M.
2017-12-01
Seasonal to annual forecasts of precipitation patterns are very important for water infrastructure management. In particular, such forecasts can be used to inform decisions about the operation of multipurpose reservoir systems in the face of changing climate conditions. Success in making useful forecasts often is achieved by considering climate teleconnections such as the El-Nino-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) as related to sea surface temperature variations. We present an analysis to explore the utility of using rainfall relationships in Sri Lanka with ENSO and IOD to predict rainfall to the Mahaweli, river basin. Forecasting of rainfall as classes - above normal, normal, and below normal - can be useful for water resource management decision making. Quadratic discrimination analysis (QDA) and random forest models are used to identify the patterns of rainfall classes with respect to ENSO and IOD indices. These models can be used to forecast the likelihood of areal rainfall anomalies using predicted climate indices. Results can be used for decisions regarding allocation of water for agriculture and electricity generation within the Mahaweli project of Sri Lanka.
NASA Technical Reports Server (NTRS)
Keitz, J. F.
1982-01-01
The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 3 of the four major tasks included in the study. Task 3 compares flight plans developed on the Suitland forecast with actual data observed by the aircraft (and averaged over 10 degree segments). The results show that the average difference between the forecast and observed wind speed is 9 kts. without considering direction, and the average difference in the component of the forecast wind parallel to the direction of the observed wind is 13 kts. - both indicating that the Suitland forecast underestimates the wind speeds. The Root Mean Square (RMS) vector error is 30.1 kts. The average absolute difference in direction between the forecast and observed wind is 26 degrees and the temperature difference is 3 degree Centigrade. These results indicate that the forecast model as well as the verifying analysis used to develop comparison flight plans in Tasks 1 and 2 is a limiting factor and that the average potential fuel savings or penalty are up to 3.6 percent depending on the direction of flight.
Air Pollution Forecasts: An Overview
Bai, Lu; Wang, Jianzhou; Lu, Haiyan
2018-01-01
Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies. PMID:29673227
Air Pollution Forecasts: An Overview.
Bai, Lu; Wang, Jianzhou; Ma, Xuejiao; Lu, Haiyan
2018-04-17
Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies.
Performance of Vegetation Indices for Wheat Yield Forecasting for Punjab, Pakistan
NASA Astrophysics Data System (ADS)
Dempewolf, J.; Becker-Reshef, I.; Adusei, B.; Barker, B.
2013-12-01
Forecasting wheat yield in major producer countries early in the growing season allows better planning for harvest deficits and surplus with implications for food security, world market transactions, sustaining adequate grain stocks, policy making and other matters. Remote sensing imagery is well suited for yield forecasting over large areas. The Normalized Difference Vegetation Index (NDVI) has been the most-used spectral index derived from remote sensing imagery for assessing crop condition of major crops and forecasting crop yield. Many authors have found that the highest correlation between NDVI and yield of wheat crops occurs at the height of the growing season when NDVI values and photosynthetic activity of the wheat plants are at their relative maximum. At the same time NDVI saturates in very dense and vigorous (healthy, green) canopies such as wheat fields during the seasonal peak and shows significantly reduced sensitivity to further increases in photosynthetic activity. In this study we compare the performance of different vegetation indices derived from space-borne red and near-infrared spectral reflectance measurements for wheat yield forecasting in the Punjab Province, Pakistan. Areas covered by wheat crop each year were determined using a time series of MODIS 8-day composites at 250 m resolution converted to temporal metrics and classified using a bagged decision tree approach, driven by classified multi-temporal Landsat scenes. Within the wheat areas we analyze and compare wheat yield forecasts derived from three different satellite-based vegetation indices at the peak of the growing season. We regressed in turn NDVI, Wide Dynamic Range Vegetation Index (WDRVI) and the Vegetation Condition Index (VCI) from the four years preceding the wheat growing season 2011/12 against reported yield values and applied the regression equations to forecast wheat yield for the 2011/12 season per district for each of 36 Punjab districts. Yield forecasts overall corresponded well with reported values. NDVI-based forecasts showed high correlations of r squared = 0.881 and RMSE 11%. The VCI performed similarly well with r squared = 0.886 and RMSE 11%. WDRVI performed better than either of the other indices with r squared = 0.909 and RMSE 10%, probably due to the increased sensitivity of the index at high values. Wheat yields in Pakistan show on average a slow but steady annual increase but overall are comparatively stable due to the fact that the majority of fields are irrigated. The next steps in this study will be to compare NDVI- with WDRVI-based yield forecasts in other environments dominated by rain-fed agriculture, such as Ukraine, Australia and the United States.
Seasonal forecasts for the agricultural sector in Peru through user-tailored indices
NASA Astrophysics Data System (ADS)
Sedlmeier, Katrin; Gubler, Stefanie; Spierig, Christoph; Quevedo, Karim; Escajadillo, Yury; Avalos, Griña; Liniger, Mark A.; Schwierz, Cornelia
2017-04-01
In the agricultural sector, the demand for seasonal forecast information is high since agriculture depends strongly on climatic conditions during the growing season. Unfavorable weather and climate events, such as droughts or frost events, can lead to crop losses and thereby to large economic damages or life-threatening conditions in case of subsistence farming. The generally used presentation form of tercile probabilities of seasonally averaged meteorological quantities are not specific enough for end users. More user-tailored seasonal information is necessary. For example, warmer than average temperatures might be favorable for a crop as long as they remain below a plant-specific critical threshold. If, on the other hand, too many days show temperatures above this critical threshold, a mitigation action such as e.g. changing the crop type would be required. In the framework of the CLIMANDES project (a pilot project of the Global Framework for Climate Services led by WMO [http://www.wmo.int/gfcs/climandes]), user-tailored seasonal forecast products are developed for the agricultural sector in the Peruvian Andes. Such products include indices such as e.g. the frost risk, the occurrence of long dry periods, or the start of the rainy season which is crucial to schedule sowing. Furthermore, more specific indices derived from crop requirement studies are elaborated such as the number of days exceeding or falling below plant specific temperature thresholds for given phenological stages. The applicability of these products highly depends on forecast skill. In this study, the potential predictability and the skill of selected indicators are presented using seasonal hindcast data of the ECMWF system 4 for Peru during the time period 1981-2010. Furthermore, the influence of ENSO on the prediction skill is investigated. In this study, reanalysis data, ground measurements, and a gridded precipitation dataset are used for verification. The results indicate that temperature-based indicators show sizeable skill in the Peruvian highlands while precipitation-based forecasts are much more challenging.
NASA Astrophysics Data System (ADS)
Yang, Tiantian; Asanjan, Ata Akbari; Welles, Edwin; Gao, Xiaogang; Sorooshian, Soroosh; Liu, Xiaomang
2017-04-01
Reservoirs are fundamental human-built infrastructures that collect, store, and deliver fresh surface water in a timely manner for many purposes. Efficient reservoir operation requires policy makers and operators to understand how reservoir inflows are changing under different hydrological and climatic conditions to enable forecast-informed operations. Over the last decade, the uses of Artificial Intelligence and Data Mining [AI & DM] techniques in assisting reservoir streamflow subseasonal to seasonal forecasts have been increasing. In this study, Random Forest [RF), Artificial Neural Network (ANN), and Support Vector Regression (SVR) are employed and compared with respect to their capabilities for predicting 1 month-ahead reservoir inflows for two headwater reservoirs in USA and China. Both current and lagged hydrological information and 17 known climate phenomenon indices, i.e., PDO and ENSO, etc., are selected as predictors for simulating reservoir inflows. Results show (1) three methods are capable of providing monthly reservoir inflows with satisfactory statistics; (2) the results obtained by Random Forest have the best statistical performances compared with the other two methods; (3) another advantage of Random Forest algorithm is its capability of interpreting raw model inputs; (4) climate phenomenon indices are useful in assisting monthly or seasonal forecasts of reservoir inflow; and (5) different climate conditions are autocorrelated with up to several months, and the climatic information and their lags are cross correlated with local hydrological conditions in our case studies.
P.88 Regional Precipitation Forecast with Atmospheric Infrared Sounder (AIRS) Profiles
NASA Technical Reports Server (NTRS)
Chou, Shih-Hung; Zavodsky, Bradley; Jedlovec, Gary
2010-01-01
Prudent assimulation of AIRS thermodynamic profiles and quality indicators can improve initial conditions for regional weather models. In general, AIRS-enhanced analysis more closely resembles radiosondes than the CNTL; forecasts with AIRS profiles are generally closer to NAM analyses than CNTL for sensible weather parameters (not shown here). Assimilation of AIRS leads to an overall QPF improvement in 6-h accumulated precipitation forecases. Including AIRS profiles in assimilation process enhances the low-level instability and produces stronger updrafts and a better precipitation forecast than the CNTL run.
Seasonal Drought Prediction: Advances, Challenges, and Future Prospects
NASA Astrophysics Data System (ADS)
Hao, Zengchao; Singh, Vijay P.; Xia, Youlong
2018-03-01
Drought prediction is of critical importance to early warning for drought managements. This review provides a synthesis of drought prediction based on statistical, dynamical, and hybrid methods. Statistical drought prediction is achieved by modeling the relationship between drought indices of interest and a suite of potential predictors, including large-scale climate indices, local climate variables, and land initial conditions. Dynamical meteorological drought prediction relies on seasonal climate forecast from general circulation models (GCMs), which can be employed to drive hydrological models for agricultural and hydrological drought prediction with the predictability determined by both climate forcings and initial conditions. Challenges still exist in drought prediction at long lead time and under a changing environment resulting from natural and anthropogenic factors. Future research prospects to improve drought prediction include, but are not limited to, high-quality data assimilation, improved model development with key processes related to drought occurrence, optimal ensemble forecast to select or weight ensembles, and hybrid drought prediction to merge statistical and dynamical forecasts.
NASA Technical Reports Server (NTRS)
Tapiador, Francisco; Tao, Wei-Kuo; Angelis, Carlos F.; Martinez, Miguel A.; Cecilia Marcos; Antonio Rodriguez; Hou, Arthur; Jong Shi, Jain
2012-01-01
Ensembles of numerical model forecasts are of interest to operational early warning forecasters as the spread of the ensemble provides an indication of the uncertainty of the alerts, and the mean value is deemed to outperform the forecasts of the individual models. This paper explores two ensembles on a severe weather episode in Spain, aiming to ascertain the relative usefulness of each one. One ensemble uses sensible choices of physical parameterizations (precipitation microphysics, land surface physics, and cumulus physics) while the other follows a perturbed initial conditions approach. The results show that, depending on the parameterizations, large differences can be expected in terms of storm location, spatial structure of the precipitation field, and rain intensity. It is also found that the spread of the perturbed initial conditions ensemble is smaller than the dispersion due to physical parameterizations. This confirms that in severe weather situations operational forecasts should address moist physics deficiencies to realize the full benefits of the ensemble approach, in addition to optimizing initial conditions. The results also provide insights into differences in simulations arising from ensembles of weather models using several combinations of different physical parameterizations.
Adaptive use of research aircraft data sets for hurricane forecasts
NASA Astrophysics Data System (ADS)
Biswas, M. K.; Krishnamurti, T. N.
2008-02-01
This study uses an adaptive observational strategy for hurricane forecasting. It shows the impacts of Lidar Atmospheric Sensing Experiment (LASE) and dropsonde data sets from Convection and Moisture Experiment (CAMEX) field campaigns on hurricane track and intensity forecasts. The following cases are used in this study: Bonnie, Danielle and Georges of 1998 and Erin, Gabrielle and Humberto of 2001. A single model run for each storm is carried out using the Florida State University Global Spectral Model (FSUGSM) with the European Center for Medium Range Weather Forecasts (ECMWF) analysis as initial conditions, in addition to 50 other model runs where the analysis is randomly perturbed for each storm. The centers of maximum variance of the DLM heights are located from the forecast error variance fields at the 84-hr forecast. Back correlations are then performed using the centers of these maximum variances and the fields at the 36-hr forecast. The regions having the highest correlations in the vicinity of the hurricanes are indicative of regions from where the error growth emanates and suggests the need for additional observations. Data sets are next assimilated in those areas that contain high correlations. Forecasts are computed using the new initial conditions for the storm cases, and track and intensity skills are then examined with respect to the control forecast. The adaptive strategy is capable of identifying sensitive areas where additional observations can help in reducing the hurricane track forecast errors. A reduction of position error by approximately 52% for day 3 of forecast (averaged over 7 storm cases) over the control runs is observed. The intensity forecast shows only a slight positive impact due to the model’s coarse resolution.
NASA Astrophysics Data System (ADS)
Doyle, Chris
2014-01-01
The Vancouver 2010 Winter Olympics were held from 12 to 28 February 2010, and the Paralympic events followed 2 weeks later. During the Games, the weather posed a grave threat to the viability of one venue and created significant complications for the event schedule at others. Forecasts of weather with lead times ranging from minutes to days helped organizers minimize disruptions to sporting events and helped ensure all medal events were successfully completed. Of comparable importance, however, were the scenarios and forecasts of probable weather for the winter in advance of the Games. Forecasts of mild conditions at the time of the Games helped the Games' organizers mitigate what would have been very serious potential consequences for at least one venue. Snowmaking was one strategy employed well in advance of the Games to prepare for the expected conditions. This short study will focus on how operational decisions were made by the Games' organizers on the basis of both climatological and snowmaking forecasts during the pre-Games winter. An attempt will be made to quantify, economically, the value of some of the snowmaking forecasts made for the Games' operators. The results obtained indicate that although the economic value of the snowmaking forecast was difficult to determine, the Games' organizers valued the forecast information greatly. This suggests that further development of probabilistic forecasts for applications like pre-Games snowmaking would be worthwhile.
NASA Astrophysics Data System (ADS)
Spirig, Christoph; Bhend, Jonas
2015-04-01
Climate information indices (CIIs) represent a way to communicate climate conditions to specific sectors and the public. As such, CIIs provide actionable information to stakeholders in an efficient way. Due to their non-linear nature, such CIIs can behave differently than the underlying variables, such as temperature. At the same time, CIIs do not involve impact models with different sources of uncertainties. As part of the EU project EUPORIAS (EUropean Provision Of Regional Impact Assessment on a Seasonal-to-decadal timescale) we have developed examples of seasonal forecasts of CIIs. We present forecasts and analyses of the skill of seasonal forecasts for CIIs that are relevant to a variety of economic sectors and a range of stakeholders: heating and cooling degree days as proxies for energy demand, various precipitation and drought-related measures relevant to agriculture and hydrology, a wild fire index, a climate-driven mortality index and wind-related indices tailored to renewable energy producers. Common to all examples is the finding of limited forecast skill over Europe, highlighting the challenge for providing added-value services to stakeholders operating in Europe. The reasons for the lack of forecast skill vary: often we find little skill in the underlying variable(s) precisely in those areas that are relevant for the CII, in other cases the nature of the CII is particularly demanding for predictions, as seen in the case of counting measures such as frost days or cool nights. On the other hand, several results suggest there may be some predictability in sub-regions for certain indices. Several of the exemplary analyses show potential for skillful forecasts and prospect for improvements by investing in post-processing. Furthermore, those cases for which CII forecasts showed similar skill values as those of the underlying meteorological variables, forecasts of CIIs provide added value from a user perspective.
NASA Astrophysics Data System (ADS)
Curceac, S.; Ternynck, C.; Ouarda, T.
2015-12-01
Over the past decades, a substantial amount of research has been conducted to model and forecast climatic variables. In this study, Nonparametric Functional Data Analysis (NPFDA) methods are applied to forecast air temperature and wind speed time series in Abu Dhabi, UAE. The dataset consists of hourly measurements recorded for a period of 29 years, 1982-2010. The novelty of the Functional Data Analysis approach is in expressing the data as curves. In the present work, the focus is on daily forecasting and the functional observations (curves) express the daily measurements of the above mentioned variables. We apply a non-linear regression model with a functional non-parametric kernel estimator. The computation of the estimator is performed using an asymmetrical quadratic kernel function for local weighting based on the bandwidth obtained by a cross validation procedure. The proximities between functional objects are calculated by families of semi-metrics based on derivatives and Functional Principal Component Analysis (FPCA). Additionally, functional conditional mode and functional conditional median estimators are applied and the advantages of combining their results are analysed. A different approach employs a SARIMA model selected according to the minimum Akaike (AIC) and Bayessian (BIC) Information Criteria and based on the residuals of the model. The performance of the models is assessed by calculating error indices such as the root mean square error (RMSE), relative RMSE, BIAS and relative BIAS. The results indicate that the NPFDA models provide more accurate forecasts than the SARIMA models. Key words: Nonparametric functional data analysis, SARIMA, time series forecast, air temperature, wind speed
NASA Astrophysics Data System (ADS)
Zhou, Feifan; Yamaguchi, Munehiko; Qin, Xiaohao
2016-07-01
This paper investigates the possible sources of errors associated with tropical cyclone (TC) tracks forecasted using the Global/Regional Assimilation and Prediction System (GRAPES). The GRAPES forecasts were made for 16 landfalling TCs in the western North Pacific basin during the 2008 and 2009 seasons, with a forecast length of 72 hours, and using the default initial conditions ("initials", hereafter), which are from the NCEP-FNL dataset, as well as ECMWF initials. The forecasts are compared with ECMWF forecasts. The results show that in most TCs, the GRAPES forecasts are improved when using the ECMWF initials compared with the default initials. Compared with the ECMWF initials, the default initials produce lower intensity TCs and a lower intensity subtropical high, but a higher intensity South Asia high and monsoon trough, as well as a higher temperature but lower specific humidity at the TC center. Replacement of the geopotential height and wind fields with the ECMWF initials in and around the TC center at the initial time was found to be the most efficient way to improve the forecasts. In addition, TCs that showed the greatest improvement in forecast accuracy usually had the largest initial uncertainties in TC intensity and were usually in the intensifying phase. The results demonstrate the importance of the initial intensity for TC track forecasts made using GRAPES, and indicate the model is better in describing the intensifying phase than the decaying phase of TCs. Finally, the limit of the improvement indicates that the model error associated with GRAPES forecasts may be the main cause of poor forecasts of landfalling TCs. Thus, further examinations of the model errors are required.
Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA
NASA Technical Reports Server (NTRS)
Dreher, Joseph G.; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry
2009-01-01
The peak winds near the surface are an important forecast element for space shuttle landings. As defined in the Flight Rules (FR), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings, and is required to issue surface average and 10-minute peak wind speed forecasts. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMU) developed a PC-based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center (KSC; Lambert 2003). However, the shuttle occasionally may land at Edwards Air Force Base (EAFB) in southern California when weather conditions at KSC in Florida are not acceptable, so SMG forecasters requested a similar tool be developed for EAFB.
The Art and Science of Long-Range Space Weather Forecasting
NASA Technical Reports Server (NTRS)
Hathaway, David H.; Wilson, Robert M.
2006-01-01
Long-range space weather forecasts are akin to seasonal forecasts of terrestrial weather. We don t expect to forecast individual events but we do hope to forecast the underlying level of activity important for satellite operations and mission pl&g. Forecasting space weather conditions years or decades into the future has traditionally been based on empirical models of the solar cycle. Models for the shape of the cycle as a function of its amplitude become reliable once the amplitude is well determined - usually two to three years after minimum. Forecasting the amplitude of a cycle well before that time has been more of an art than a science - usually based on cycle statistics and trends. Recent developments in dynamo theory -the theory explaining the generation of the Sun s magnetic field and the solar activity cycle - have now produced models with predictive capabilities. Testing these models with historical sunspot cycle data indicates that these predictions may be highly reliable one, or even two, cycles into the future.
NASA Technical Reports Server (NTRS)
Garner, Gregory G.; Thompson, Anne M.
2013-01-01
An ensemble statistical post-processor (ESP) is developed for the National Air Quality Forecast Capability (NAQFC) to address the unique challenges of forecasting surface ozone in Baltimore, MD. Air quality and meteorological data were collected from the eight monitors that constitute the Baltimore forecast region. These data were used to build the ESP using a moving-block bootstrap, regression tree models, and extreme-value theory. The ESP was evaluated using a 10-fold cross-validation to avoid evaluation with the same data used in the development process. Results indicate that the ESP is conditionally biased, likely due to slight overfitting while training the regression tree models. When viewed from the perspective of a decision-maker, the ESP provides a wealth of additional information previously not available through the NAQFC alone. The user is provided the freedom to tailor the forecast to the decision at hand by using decision-specific probability thresholds that define a forecast for an ozone exceedance. Taking advantage of the ESP, the user not only receives an increase in value over the NAQFC, but also receives value for An ensemble statistical post-processor (ESP) is developed for the National Air Quality Forecast Capability (NAQFC) to address the unique challenges of forecasting surface ozone in Baltimore, MD. Air quality and meteorological data were collected from the eight monitors that constitute the Baltimore forecast region. These data were used to build the ESP using a moving-block bootstrap, regression tree models, and extreme-value theory. The ESP was evaluated using a 10-fold cross-validation to avoid evaluation with the same data used in the development process. Results indicate that the ESP is conditionally biased, likely due to slight overfitting while training the regression tree models. When viewed from the perspective of a decision-maker, the ESP provides a wealth of additional information previously not available through the NAQFC alone. The user is provided the freedom to tailor the forecast to the decision at hand by using decision-specific probability thresholds that define a forecast for an ozone exceedance. Taking advantage of the ESP, the user not only receives an increase in value over the NAQFC, but also receives value for
Forecasting seasonal hydrologic response in major river basins
NASA Astrophysics Data System (ADS)
Bhuiyan, A. M.
2014-05-01
Seasonal precipitation variation due to natural climate variation influences stream flow and the apparent frequency and severity of extreme hydrological conditions such as flood and drought. To study hydrologic response and understand the occurrence of extreme hydrological events, the relevant forcing variables must be identified. This study attempts to assess and quantify the historical occurrence and context of extreme hydrologic flow events and quantify the relation between relevant climate variables. Once identified, the flow data and climate variables are evaluated to identify the primary relationship indicators of hydrologic extreme event occurrence. Existing studies focus on developing basin-scale forecasting techniques based on climate anomalies in El Nino/La Nina episodes linked to global climate. Building on earlier work, the goal of this research is to quantify variations in historical river flows at seasonal temporal-scale, and regional to continental spatial-scale. The work identifies and quantifies runoff variability of major river basins and correlates flow with environmental forcing variables such as El Nino, La Nina, sunspot cycle. These variables are expected to be the primary external natural indicators of inter-annual and inter-seasonal patterns of regional precipitation and river flow. Relations between continental-scale hydrologic flows and external climate variables are evaluated through direct correlations in a seasonal context with environmental phenomenon such as sun spot numbers (SSN), Southern Oscillation Index (SOI), and Pacific Decadal Oscillation (PDO). Methods including stochastic time series analysis and artificial neural networks are developed to represent the seasonal variability evident in the historical records of river flows. River flows are categorized into low, average and high flow levels to evaluate and simulate flow variations under associated climate variable variations. Results demonstrated not any particular method is suited to represent scenarios leading to extreme flow conditions. For selected flow scenarios, the persistence model performance may be comparable to more complex multivariate approaches, and complex methods did not always improve flow estimation. Overall model performance indicates inclusion of river flows and forcing variables on average improve model extreme event forecasting skills. As a means to further refine the flow estimation, an ensemble forecast method is implemented to provide a likelihood-based indication of expected river flow magnitude and variability. Results indicate seasonal flow variations are well-captured in the ensemble range, therefore the ensemble approach can often prove efficient in estimating extreme river flow conditions. The discriminant prediction approach, a probabilistic measure to forecast streamflow, is also adopted to derive model performance. Results show the efficiency of the method in terms of representing uncertainties in the forecasts.
The Development of New Solar Indices for use in Thermospheric Density Modeling
NASA Technical Reports Server (NTRS)
Tobiska, W. Kent; Bouwer, S. Dave; Bowman, Bruce R.
2006-01-01
New solar indices have been developed to improve thermospheric density modeling for research and operational purposes. Out of 11 new and 4 legacy indices and proxies, we have selected three (F10.7, S10.7, and M10.7) for use in the new JB2006 empirical thermospheric density model. In this work, we report on the development of these solar irradiance indices. The rationale for their use, their definitions, and their characteristics, including the ISO 21348 spectral category and sub-category, wavelength range, solar source temperature region, solar source feature, altitude region of terrestrial atmosphere absorption at unit optical depth, and terrestrial atmosphere thermal processes in the region of maximum energy absorption, are described. We also summarize for each solar index, the facility and instrument(s) used to observe the solar emission, the time frame over which the data exist, the measurement cadence, the data latency, and the research as well as operational availability. The new solar indices are provided in forecast (http://SpaceWx.com) as well as real-time and historical (http://sol.spacenvironment.net/jb2006/) time frames. We describe the forecast methodology, compare results with actual data for active and quiet solar conditions, and compare improvements in F10.7 forecasting with legacy High Accuracy Satellite Drag Model (HASDM) and NOAA SEC forecasts.
Evaluation of the CFSv2 CMIP5 decadal predictions
NASA Astrophysics Data System (ADS)
Bombardi, Rodrigo J.; Zhu, Jieshun; Marx, Lawrence; Huang, Bohua; Chen, Hua; Lu, Jian; Krishnamurthy, Lakshmi; Krishnamurthy, V.; Colfescu, Ioana; Kinter, James L.; Kumar, Arun; Hu, Zeng-Zhen; Moorthi, Shrinivas; Tripp, Patrick; Wu, Xingren; Schneider, Edwin K.
2015-01-01
Retrospective decadal forecasts were undertaken using the Climate Forecast System version 2 (CFSv2) as part of Coupled Model Intercomparison Project 5. Decadal forecasts were performed separately by the National Center for Environmental Prediction (NCEP) and by the Center for Ocean-Land-Atmosphere Studies (COLA), with the centers using two different analyses for the ocean initial conditions the NCEP Climate Forecast System Reanalysis (CFSR) and the NEMOVAR-COMBINE analysis. COLA also examined the sensitivity to the inclusion of forcing by specified volcanic aerosols. Biases in the CFSv2 for both sets of initial conditions include cold midlatitude sea surface temperatures, and rapid melting of sea ice associated with warm polar oceans. Forecasts from the NEMOVAR-COMBINE analysis showed strong weakening of the Atlantic Meridional Overturning Circulation (AMOC), eventually approaching the weaker AMOC associated with CFSR. The decadal forecasts showed high predictive skill over the Indian, the western Pacific, and the Atlantic Oceans and low skill over the central and eastern Pacific. The volcanic forcing shows only small regional differences in predictability of surface temperature at 2m (T2m) in comparison to forecasts without volcanic forcing, especially over the Indian Ocean. An ocean heat content (OHC) budget analysis showed that the OHC has substantial memory, indicating potential for the decadal predictability of T2m; however, the model has a systematic drift in global mean OHC. The results suggest that the reduction of model biases may be the most productive path towards improving the model's decadal forecasts.
Preisler, H.K.; Burgan, R.E.; Eidenshink, J.C.; Klaver, Jacqueline M.; Klaver, R.W.
2009-01-01
The current study presents a statistical model for assessing the skill of fire danger indices and for forecasting the distribution of the expected numbers of large fires over a given region and for the upcoming week. The procedure permits development of daily maps that forecast, for the forthcoming week and within federal lands, percentiles of the distributions of (i) number of ignitions; (ii) number of fires above a given size; (iii) conditional probabilities of fires greater than a specified size, given ignition. As an illustration, we used the methods to study the skill of the Fire Potential Index an index that incorporates satellite and surface observations to map fire potential at a national scale in forecasting distributions of large fires. ?? 2009 IAWF.
A national-scale seasonal hydrological forecast system: development and evaluation over Britain
NASA Astrophysics Data System (ADS)
Bell, Victoria A.; Davies, Helen N.; Kay, Alison L.; Brookshaw, Anca; Scaife, Adam A.
2017-09-01
Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better) rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (hindcasts
) from the GloSea5 model (1996 to 2009) are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean) rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region). Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 %) in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows), whereas for the 3-month ahead lead time, GloSea5 forecasts account for ˜ 70 % of the forecast skill (mostly in areas of high rainfall to the north and west) and only 30 % of the skill arises from hydrological memory (typically groundwater-dominated areas). Given the high spatial heterogeneity in typical patterns of UK rainfall and evaporation, future development of skilful spatially distributed seasonal forecasts could lead to substantial improvements in seasonal flow forecast capability, potentially benefitting practitioners interested in predicting hydrological extremes, not only in the UK but also across Europe.
Forecasting Tehran stock exchange volatility; Markov switching GARCH approach
NASA Astrophysics Data System (ADS)
Abounoori, Esmaiel; Elmi, Zahra (Mila); Nademi, Younes
2016-03-01
This paper evaluates several GARCH models regarding their ability to forecast volatility in Tehran Stock Exchange (TSE). These include GARCH models with both Gaussian and fat-tailed residual conditional distribution, concerning their ability to describe and forecast volatility from 1-day to 22-day horizon. Results indicate that AR(2)-MRSGARCH-GED model outperforms other models at one-day horizon. Also, the AR(2)-MRSGARCH-GED as well as AR(2)-MRSGARCH-t models outperform other models at 5-day horizon. In 10 day horizon, three models of AR(2)-MRSGARCH outperform other models. Concerning 22 day forecast horizon, results indicate no differences between MRSGARCH models with that of standard GARCH models. Regarding Risk management out-of-sample evaluation (95% VaR), a few models seem to provide reasonable and accurate VaR estimates at 1-day horizon, with a coverage rate close to the nominal level. According to the risk management loss functions, there is not a uniformly most accurate model.
Initial conditions and ENSO prediction using a coupled ocean-atmosphere model
NASA Astrophysics Data System (ADS)
Larow, T. E.; Krishnamurti, T. N.
1998-01-01
A coupled ocean-atmosphere initialization scheme using Newtonian relaxation has been developed for the Florida State University coupled ocean-atmosphere global general circulation model. The initialization scheme is used to initialize the coupled model for seasonal forecasting the boreal summers of 1987 and 1988. The atmosphere model is a modified version of the Florida State University global spectral model, resolution T-42. The ocean general circulation model consists of a slightly modified version of the Hamburg's climate group model described in Latif (1987) and Latif et al. (1993). The coupling is synchronous with information exchanged every two model hours. Using ECMWF atmospheric daily analysis and observed monthly mean SSTs, two, 1-year, time-dependent, Newtonian relaxation were performed using the coupled model prior to conducting the seasonal forecasts. The coupled initializations were conducted from 1 June 1986 to 1 June 1987 and from 1 June 1987 to 1 June 1988. Newtonian relaxation was applied to the prognostic atmospheric vorticity, divergence, temperature and dew point depression equations. In the ocean model the relaxation was applied to the surface temperature. Two, 10-member ensemble integrations were conducted to examine the impact of the coupled initialization on the seasonal forecasts. The initial conditions used for the ensembles are the ocean's final state after the initialization and the atmospheric initial conditions are ECMWF analysis. Examination of the SST root mean square error and anomaly correlations between observed and forecasted SSTs in the Niño-3 and Niño-4 regions for the 2 seasonal forecasts, show closer agreement between the initialized forecast than two, 10-member non-initialized ensemble forecasts. The main conclusion here is that a single forecast with the coupled initialization outperforms, in SST anomaly prediction, against each of the control forecasts (members of the ensemble) which do not include such an initialization, indicating possible importance for the inclusion of the atmosphere during the coupled initialization.
Sources of seasonal water-supply forecast skill in the western US
Dettinger, Michael
2007-01-01
Many water supplies in the western US depend on water that is stored in snowpacks and reservoirs during the cool, wet seasons for release and use in the following warm seasons. Managers of these water supplies must decide each winter how much water will be available in subsequent seasons so that they can proactively capture and store water and can make reliable commitments for later deliveries. Long-lead water-supply forecasts are thus important components of water managers' decisionmaking. Present-day operational water-supply forecasts draw skill from observations of the amount of water in upland snowpacks, along with estimates of the amount of water otherwise available (often via surrogates for antecedent precipitation, soil moisture or baseflows). Occasionally, the historical hydroclimatic influences of various global climate conditions may be factored in to forecasts. The relative contributions of (potential) forecast skill for January-March and April-July seasonal water- supply availability from these sources are mapped across the western US as lag correlations among elements of the inputs and outputs from a physically based, regional land-surface hydrology model of the western US from 1950-1999. Information about snow-water contents is the most valuable predictor for forecasts made through much of the cool-season but, before the snows begin to fall, indices of El Nino-Southern Oscillation are the primary source of whatever meager skill is available. The contributions to forecast skill made available by knowledge of antecedent flows (a traditional predictor) and soil moisture at the time the long-lead forecast is issued are compared, to gain insights into the potential usefulness of new soil-moisture monitoring options in the region. When similar computations are applied to simulated flows under historical conditions, but with a uniform +2°C warming imposed, the widespread diminution of snowpacks reduces forecast skills, although skill contributed by measures of antecedent moisture conditions (soil moisture or baseflows) grow in stature, relative to snowpacks, in partial compensation. Forecast skills, e.g., of March forecasts for April-July water supplies from those parts of the region that yield the majority of the runoff, decline by an average of about 15% of captured variance in response to the imposed warming.
Verification of National Weather Service spot forecasts using surface observations
NASA Astrophysics Data System (ADS)
Lammers, Matthew Robert
Software has been developed to evaluate National Weather Service spot forecasts issued to support prescribed burns and early-stage wildfires. Fire management officials request spot forecasts from National Weather Service Weather Forecast Offices to provide detailed guidance as to atmospheric conditions in the vicinity of planned prescribed burns as well as wildfires that do not have incident meteorologists on site. This open source software with online display capabilities is used to examine an extensive set of spot forecasts of maximum temperature, minimum relative humidity, and maximum wind speed from April 2009 through November 2013 nationwide. The forecast values are compared to the closest available surface observations at stations installed primarily for fire weather and aviation applications. The accuracy of the spot forecasts is compared to those available from the National Digital Forecast Database (NDFD). Spot forecasts for selected prescribed burns and wildfires are used to illustrate issues associated with the verification procedures. Cumulative statistics for National Weather Service County Warning Areas and for the nation are presented. Basic error and accuracy metrics for all available spot forecasts and the entire nation indicate that the skill of the spot forecasts is higher than that available from the NDFD, with the greatest improvement for maximum temperature and the least improvement for maximum wind speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carson, K.S.
The presence of overpopulation or unsustainable population growth may place pressure on the food and water supplies of countries in sensitive areas of the world. Severe air or water pollution may place additional pressure on these resources. These pressures may generate both internal and international conflict in these areas as nations struggle to provide for their citizens. Such conflicts may result in United States intervention, either unilaterally, or through the United Nations. Therefore, it is in the interests of the United States to identify potential areas of conflict in order to properly train and allocate forces. The purpose of thismore » research is to forecast the probability of conflict in a nation as a function of it s environmental conditions. Probit, logit and ordered probit models are employed to forecast the probability of a given level of conflict. Data from 95 countries are used to estimate the models. Probability forecasts are generated for these 95 nations. Out-of sample forecasts are generated for an additional 22 nations. These probabilities are then used to rank nations from highest probability of conflict to lowest. The results indicate that the dependence of a nation`s economy on agriculture, the rate of deforestation, and the population density are important variables in forecasting the probability and level of conflict. These results indicate that environmental variables do play a role in generating or exacerbating conflict. It is unclear that the United States military has any direct role in mitigating the environmental conditions that may generate conflict. A more important role for the military is to aid in data gathering to generate better forecasts so that the troops are adequntely prepared when conflicts arises.« less
The potential predictability of fire danger provided by ECMWF forecast
NASA Astrophysics Data System (ADS)
Di Giuseppe, Francesca
2017-04-01
The European Forest Fire Information System (EFFIS), is currently being developed in the framework of the Copernicus Emergency Management Services to monitor and forecast fire danger in Europe. The system provides timely information to civil protection authorities in 38 nations across Europe and mostly concentrates on flagging regions which might be at high danger of spontaneous ignition due to persistent drought. The daily predictions of fire danger conditions are based on the US Forest Service National Fire Danger Rating System (NFDRS), the Canadian forest service Fire Weather Index Rating System (FWI) and the Australian McArthur (MARK-5) rating systems. Weather forcings are provided in real time by the European Centre for Medium range Weather Forecasts (ECMWF) forecasting system. The global system's potential predictability is assessed using re-analysis fields as weather forcings. The Global Fire Emissions Database (GFED4) provides 11 years of observed burned areas from satellite measurements and is used as a validation dataset. The fire indices implemented are good predictors to highlight dangerous conditions. High values are correlated with observed fire and low values correspond to non observed events. A more quantitative skill evaluation was performed using the Extremal Dependency Index which is a skill score specifically designed for rare events. It revealed that the three indices were more skilful on a global scale than the random forecast to detect large fires. The performance peaks in the boreal forests, in the Mediterranean, the Amazon rain-forests and southeast Asia. The skill-scores were then aggregated at country level to reveal which nations could potentiallty benefit from the system information in aid of decision making and fire control support. Overall we found that fire danger modelling based on weather forecasts, can provide reasonable predictability over large parts of the global landmass.
NASA Astrophysics Data System (ADS)
Mailhot, J.; Milbrandt, J. A.; Giguère, A.; McTaggart-Cowan, R.; Erfani, A.; Denis, B.; Glazer, A.; Vallée, M.
2014-01-01
Environment Canada ran an experimental numerical weather prediction (NWP) system during the Vancouver 2010 Winter Olympic and Paralympic Games, consisting of nested high-resolution (down to 1-km horizontal grid-spacing) configurations of the GEM-LAM model, with improved geophysical fields, cloud microphysics and radiative transfer schemes, and several new diagnostic products such as density of falling snow, visibility, and peak wind gust strength. The performance of this experimental NWP system has been evaluated in these winter conditions over complex terrain using the enhanced mesoscale observing network in place during the Olympics. As compared to the forecasts from the operational regional 15-km GEM model, objective verification generally indicated significant added value of the higher-resolution models for near-surface meteorological variables (wind speed, air temperature, and dewpoint temperature) with the 1-km model providing the best forecast accuracy. Appreciable errors were noted in all models for the forecasts of wind direction and humidity near the surface. Subjective assessment of several cases also indicated that the experimental Olympic system was skillful at forecasting meteorological phenomena at high-resolution, both spatially and temporally, and provided enhanced guidance to the Olympic forecasters in terms of better timing of precipitation phase change, squall line passage, wind flow channeling, and visibility reduction due to fog and snow.
NASA Astrophysics Data System (ADS)
Bernier, Natacha B.; Bélair, Stéphane; Bilodeau, Bernard; Tong, Linying
2014-01-01
A dynamical model was experimentally implemented to provide high resolution forecasts at points of interests in the 2010 Vancouver Olympics and Paralympics Region. In a first experiment, GEM-Surf, the near surface and land surface modeling system, is driven by operational atmospheric forecasts and used to refine the surface forecasts according to local surface conditions such as elevation and vegetation type. In this simple form, temperature and snow depth forecasts are improved mainly as a result of the better representation of real elevation. In a second experiment, screen level observations and operational atmospheric forecasts are blended to drive a continuous cycle of near surface and land surface hindcasts. Hindcasts of the previous day conditions are then regarded as today's optimized initial conditions. Hence, in this experiment, given observations are available, observation driven hindcasts continuously ensure that daily forecasts are issued from improved initial conditions. GEM-Surf forecasts obtained from improved short-range hindcasts produced using these better conditions result in improved snow depth forecasts. In a third experiment, assimilation of snow depth data is applied to further optimize GEM-Surf's initial conditions, in addition to the use of blended observations and forecasts for forcing. Results show that snow depth and summer temperature forecasts are further improved by the addition of snow depth data assimilation.
Time-Hierarchical Clustering and Visualization of Weather Forecast Ensembles.
Ferstl, Florian; Kanzler, Mathias; Rautenhaus, Marc; Westermann, Rudiger
2017-01-01
We propose a new approach for analyzing the temporal growth of the uncertainty in ensembles of weather forecasts which are started from perturbed but similar initial conditions. As an alternative to traditional approaches in meteorology, which use juxtaposition and animation of spaghetti plots of iso-contours, we make use of contour clustering and provide means to encode forecast dynamics and spread in one single visualization. Based on a given ensemble clustering in a specified time window, we merge clusters in time-reversed order to indicate when and where forecast trajectories start to diverge. We present and compare different visualizations of the resulting time-hierarchical grouping, including space-time surfaces built by connecting cluster representatives over time, and stacked contour variability plots. We demonstrate the effectiveness of our visual encodings with forecast examples of the European Centre for Medium-Range Weather Forecasts, which convey the evolution of specific features in the data as well as the temporally increasing spatial variability.
NASA Astrophysics Data System (ADS)
Shaman, J.; Stieglitz, M.; Zebiak, S.; Cane, M.; Day, J. F.
2002-12-01
We present an ensemble local hydrologic forecast derived from the seasonal forecasts of the International Research Institute (IRI) for Climate Prediction. Three- month seasonal forecasts were used to resample historical meteorological conditions and generate ensemble forcing datasets for a TOPMODEL-based hydrology model. Eleven retrospective forecasts were run at a Florida and New York site. Forecast skill was assessed for mean area modeled water table depth (WTD), i.e. near surface soil wetness conditions, and compared with WTD simulated with observed data. Hydrology model forecast skill was evident at the Florida site but not at the New York site. At the Florida site, persistence of hydrologic conditions and local skill of the IRI seasonal forecast contributed to the local hydrologic forecast skill. This forecast will permit probabilistic prediction of future hydrologic conditions. At the Florida site, we have also quantified the link between modeled WTD (i.e. drought) and the amplification and transmission of St. Louis Encephalitis virus (SLEV). We derive an empirical relationship between modeled land surface wetness and levels of SLEV transmission associated with human clinical cases. We then combine the seasonal forecasts of local, modeled WTD with this empirical relationship and produce retrospective probabilistic seasonal forecasts of epidemic SLEV transmission in Florida. Epidemic SLEV transmission forecast skill is demonstrated. These findings will permit real-time forecast of drought and resultant SLEV transmission in Florida.
Sensitivity of a Simulated Derecho Event to Model Initial Conditions
NASA Astrophysics Data System (ADS)
Wang, Wei
2014-05-01
Since 2003, the MMM division at NCAR has been experimenting cloud-permitting scale weather forecasting using Weather Research and Forecasting (WRF) model. Over the years, we've tested different model physics, and tried different initial and boundary conditions. Not surprisingly, we found that the model's forecasts are more sensitive to the initial conditions than model physics. In 2012 real-time experiment, WRF-DART (Data Assimilation Research Testbed) at 15 km was employed to produce initial conditions for twice-a-day forecast at 3 km. On June 29, this forecast system captured one of the most destructive derecho event on record. In this presentation, we will examine forecast sensitivity to different model initial conditions, and try to understand the important features that may contribute to the success of the forecast.
A probabilistic drought forecasting framework: A combined dynamical and statistical approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Hongxiang; Moradkhani, Hamid; Zarekarizi, Mahkameh
In order to improve drought forecasting skill, this study develops a probabilistic drought forecasting framework comprised of dynamical and statistical modeling components. The novelty of this study is to seek the use of data assimilation to quantify initial condition uncertainty with the Monte Carlo ensemble members, rather than relying entirely on the hydrologic model or land surface model to generate a single deterministic initial condition, as currently implemented in the operational drought forecasting systems. Next, the initial condition uncertainty is quantified through data assimilation and coupled with a newly developed probabilistic drought forecasting model using a copula function. The initialmore » condition at each forecast start date are sampled from the data assimilation ensembles for forecast initialization. Finally, seasonal drought forecasting products are generated with the updated initial conditions. This study introduces the theory behind the proposed drought forecasting system, with an application in Columbia River Basin, Pacific Northwest, United States. Results from both synthetic and real case studies suggest that the proposed drought forecasting system significantly improves the seasonal drought forecasting skills and can facilitate the state drought preparation and declaration, at least three months before the official state drought declaration.« less
Two-step forecast of geomagnetic storm using coronal mass ejection and solar wind condition
Kim, R-S; Moon, Y-J; Gopalswamy, N; Park, Y-D; Kim, Y-H
2014-01-01
To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz ≤ −5 nT or Ey ≥ 3 mV/m for t≥ 2 h for moderate storms with minimum Dst less than −50 nT) and a Dst model developed by Temerin and Li (2002, 2006) (TL model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90%) than the forecasts based on the TL model (87%). However, the latter produces better forecasts for 24 nonstorm events (88%), while the former correctly forecasts only 71% of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80%) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (∩), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81%) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (∪), all geomagnetic storms are correctly forecasted. PMID:26213515
Two-step forecast of geomagnetic storm using coronal mass ejection and solar wind condition.
Kim, R-S; Moon, Y-J; Gopalswamy, N; Park, Y-D; Kim, Y-H
2014-04-01
To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study ( B z ≤ -5 nT or E y ≥ 3 mV/m for t ≥ 2 h for moderate storms with minimum Dst less than -50 nT) and a Dst model developed by Temerin and Li (2002, 2006) (TL model). Using 55 CME- Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90%) than the forecasts based on the TL model (87%). However, the latter produces better forecasts for 24 nonstorm events (88%), while the former correctly forecasts only 71% of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80%) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (∩), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81%) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (∪), all geomagnetic storms are correctly forecasted.
Entropy Econometrics for combining regional economic forecasts: A Data-Weighted Prior Estimator
NASA Astrophysics Data System (ADS)
Fernández-Vázquez, Esteban; Moreno, Blanca
2017-10-01
Forecast combination has been studied in econometrics for a long time, and the literature has shown the superior performance of forecast combination over individual predictions. However, there is still controversy on which is the best procedure to specify the forecast weights. This paper explores the possibility of using a procedure based on Entropy Econometrics, which allows setting the weights for the individual forecasts as a mixture of different alternatives. In particular, we examine the ability of the Data-Weighted Prior Estimator proposed by Golan (J Econom 101(1):165-193, 2001) to combine forecasting models in a context of small sample sizes, a relative common scenario when dealing with time series for regional economies. We test the validity of the proposed approach using a simulation exercise and a real-world example that aims at predicting gross regional product growth rates for a regional economy. The forecasting performance of the Data-Weighted Prior Estimator proposed is compared with other combining methods. The simulation results indicate that in scenarios of heavily ill-conditioned datasets the approach suggested dominates other forecast combination strategies. The empirical results are consistent with the conclusions found in the numerical experiment.
The analysis of rapidly developing fog at the Kennedy Space Center
NASA Technical Reports Server (NTRS)
Wheeler, Mark M.; Atchison, Michael K.; Schumann, Robin; Taylor, Greg E.; Yersavich, Ann; Warburton, John D.
1994-01-01
This report documents fog precursors and fog climatology at Kennedy Space Center (KSC) Florida from 1986 to 1990. The major emphasis of this report focuses on rapidly developing fog events that would affect the less than 7-statute mile visibility rule for End-Of-Mission (EOM) Shuttle landing at KSC (Rule 4-64(A)). The Applied Meteorology Unit's (AMU's) work is to: develop a data base for study of fog associated weather conditions relating to violations of this landing constraint; develop forecast techniques or rules-of-thumb to determine whether or not current conditions are likely to result in an acceptable condition at landing; validate the forecast techniques; and transition techniques to operational use. As part of the analysis the fog events were categorized as either advection, pre-frontal or radiation. As a result of these analyses, the AMU developed a fog climatological data base, identified fog precursors and developed forecaster tools and decision trees. The fog climatological analysis indicates that during the fog season (October to April) there is a higher risk for a visibility violation at KSC during the early morning hours (0700 to 1200 UTC), while 95 percent of all fog events have dissipated by 1600 UTC. A high number of fog events are characterized by a westerly component to the surface wind at KSC (92 percent) and 83 percent of the fog events had fog develop west of KSC first (up to 2 hours). The AMU developed fog decision trees and forecaster tools that would help the forecaster identify fog precursors up to 12 hours in advance. Using the decision trees as process tools ensures the important meteorological data are not overlooked in the forecast process. With these tools and a better understanding of fog formation in the local KSC area, the Shuttle weather support forecaster should be able to give the Launch and Flight Directors a better KSC fog forecast with more confidence.
NASA Astrophysics Data System (ADS)
Pokhrel, Samir; Saha, Subodh Kumar; Dhakate, Ashish; Rahman, Hasibur; Chaudhari, Hemantkumar S.; Salunke, Kiran; Hazra, Anupam; Sujith, K.; Sikka, D. R.
2016-04-01
A detailed analysis of sensitivity to the initial condition for the simulation of the Indian summer monsoon using retrospective forecast by the latest version of the Climate Forecast System version-2 (CFSv2) is carried out. This study primarily focuses on the tropical region of Indian and Pacific Ocean basin, with special emphasis on the Indian land region. The simulated seasonal mean and the inter-annual standard deviations of rainfall, upper and lower level atmospheric circulations and Sea Surface Temperature (SST) tend to be more skillful as the lead forecast time decreases (5 month lead to 0 month lead time i.e. L5-L0). In general spatial correlation (bias) increases (decreases) as forecast lead time decreases. This is further substantiated by their averaged value over the selected study regions over the Indian and Pacific Ocean basins. The tendency of increase (decrease) of model bias with increasing (decreasing) forecast lead time also indicates the dynamical drift of the model. Large scale lower level circulation (850 hPa) shows enhancement of anomalous westerlies (easterlies) over the tropical region of the Indian Ocean (Western Pacific Ocean), which indicates the enhancement of model error with the decrease in lead time. At the upper level circulation (200 hPa) biases in both tropical easterly jet and subtropical westerlies jet tend to decrease as the lead time decreases. Despite enhancement of the prediction skill, mean SST bias seems to be insensitive to the initialization. All these biases are significant and together they make CFSv2 vulnerable to seasonal uncertainties in all the lead times. Overall the zeroth lead (L0) seems to have the best skill, however, in case of Indian summer monsoon rainfall (ISMR), the 3 month lead forecast time (L3) has the maximum ISMR prediction skill. This is valid using different independent datasets, wherein these maximum skill scores are 0.64, 0.42 and 0.57 with respect to the Global Precipitation Climatology Project, CPC Merged Analysis of Precipitation and the India Meteorological Department precipitation dataset respectively for L3. Despite significant El-Niño Southern Oscillation (ENSO) spring predictability barrier at L3, the ISMR skill score is highest at L3. Further, large scale zonal wind shear (Webster-Yang index) and SST over Niño3.4 region is best at L1 and L0. This implies that predictability aspect of ISMR is controlled by factors other than ENSO and Indian Ocean Dipole. Also, the model error (forecast error) outruns the error acquired by the inadequacies in the initial conditions (predictability error). Thus model deficiency is having more serious consequences as compared to the initial condition error for the seasonal forecast. All the model parameters show the increase in the predictability error as the lead decreases over the equatorial eastern Pacific basin and peaks at L2, then it further decreases. The dynamical consistency of both the forecast and the predictability error among all the variables indicates that these biases are purely systematic in nature and improvement of the physical processes in the CFSv2 may enhance the overall predictability.
Mesoscale data assimilation for a local severe rainfall event with the NHM-LETKF system
NASA Astrophysics Data System (ADS)
Kunii, M.
2013-12-01
This study aims to improve forecasts of local severe weather events through data assimilation and ensemble forecasting approaches. Here, the local ensemble transform Kalman filter (LETKF) is implemented with the Japan Meteorological Agency's nonhydrostatic model (NHM). The newly developed NHM-LETKF contains an adaptive inflation scheme and a spatial covariance localization scheme with physical distance. One-way nested analysis in which a finer-resolution LETKF is conducted by using the outputs of an outer model also becomes feasible. These new contents should enhance the potential of the LETKF for convective scale events. The NHM-LETKF is applied to a local severe rainfall event in Japan in 2012. Comparison of the root mean square errors between the model first guess and analysis reveals that the system assimilates observations appropriately. Analysis ensemble spreads indicate a significant increase around the time torrential rainfall occurred, which would imply an increase in the uncertainty of environmental fields. Forecasts initialized with LETKF analyses successfully capture intense rainfalls, suggesting that the system can work effectively for local severe weather. Investigation of probabilistic forecasts by ensemble forecasting indicates that this could become a reliable data source for decision making in the future. A one-way nested data assimilation scheme is also tested. The experiment results demonstrate that assimilation with a finer-resolution model provides an advantage in the quantitative precipitation forecasting of local severe weather conditions.
NASA Astrophysics Data System (ADS)
Krakovsky, Y. M.; Luzgin, A. N.; Mikhailova, E. A.
2018-05-01
At present, cyber-security issues associated with the informatization objects of industry occupy one of the key niches in the state management system. As a result of functional disruption of these systems via cyberattacks, an emergency may arise related to loss of life, environmental disasters, major financial and economic damage, or disrupted activities of cities and settlements. When cyberattacks occur with high intensity, in these conditions there is the need to develop protection against them, based on machine learning methods. This paper examines interval forecasting and presents results with a pre-set intensity level. The interval forecasting is carried out based on a probabilistic cluster model. This method involves forecasting of one of the two predetermined intervals in which a future value of the indicator will be located; probability estimates are used for this purpose. A dividing bound of these intervals is determined by a calculation method based on statistical characteristics of the indicator. Source data are used that includes a number of hourly cyberattacks using a honeypot from March to September 2013.
An investigation into incident duration forecasting for FleetForward
DOT National Transportation Integrated Search
2000-08-01
Traffic condition forecasting is the process of estimating future traffic conditions based on current and archived data. Real-time forecasting is becoming an important tool in Intelligent Transportation Systems (ITS). This type of forecasting allows ...
So, Rita; Teakles, Andrew; Baik, Jonathan; Vingarzan, Roxanne; Jones, Keith
2018-05-01
Visibility degradation, one of the most noticeable indicators of poor air quality, can occur despite relatively low levels of particulate matter when the risk to human health is low. The availability of timely and reliable visibility forecasts can provide a more comprehensive understanding of the anticipated air quality conditions to better inform local jurisdictions and the public. This paper describes the development of a visibility forecasting modeling framework, which leverages the existing air quality and meteorological forecasts from Canada's operational Regional Air Quality Deterministic Prediction System (RAQDPS) for the Lower Fraser Valley of British Columbia. A baseline model (GM-IMPROVE) was constructed using the revised IMPROVE algorithm based on unprocessed forecasts from the RAQDPS. Three additional prototypes (UMOS-HYB, GM-MLR, GM-RF) were also developed and assessed for forecast performance of up to 48 hr lead time during various air quality and meteorological conditions. Forecast performance was assessed by examining their ability to provide both numerical and categorical forecasts in the form of 1-hr total extinction and Visual Air Quality Ratings (VAQR), respectively. While GM-IMPROVE generally overestimated extinction more than twofold, it had skill in forecasting the relative species contribution to visibility impairment, including ammonium sulfate and ammonium nitrate. Both statistical prototypes, GM-MLR and GM-RF, performed well in forecasting 1-hr extinction during daylight hours, with correlation coefficients (R) ranging from 0.59 to 0.77. UMOS-HYB, a prototype based on postprocessed air quality forecasts without additional statistical modeling, provided reasonable forecasts during most daylight hours. In terms of categorical forecasts, the best prototype was approximately 75 to 87% correct, when forecasting for a condensed three-category VAQR. A case study, focusing on a poor visual air quality yet low Air Quality Health Index episode, illustrated that the statistical prototypes were able to provide timely and skillful visibility forecasts with lead time up to 48 hr. This study describes the development of a visibility forecasting modeling framework, which leverages the existing air quality and meteorological forecasts from Canada's operational Regional Air Quality Deterministic Prediction System. The main applications include tourism and recreation planning, input into air quality management programs, and educational outreach. Visibility forecasts, when supplemented with the existing air quality and health based forecasts, can assist jurisdictions to anticipate the visual air quality impacts as perceived by the public, which can potentially assist in formulating the appropriate air quality bulletins and recommendations.
NASA Astrophysics Data System (ADS)
Khade, Vikram; Kurian, Jaison; Chang, Ping; Szunyogh, Istvan; Thyng, Kristen; Montuoro, Raffaele
2017-05-01
This paper demonstrates the potential of ocean ensemble forecasting in the Gulf of Mexico (GoM). The Bred Vector (BV) technique with one week rescaling frequency is implemented on a 9 km resolution version of the Regional Ocean Modelling System (ROMS). Numerical experiments are carried out by using the HYCOM analysis products to define the initial conditions and the lateral boundary conditions. The growth rates of the forecast uncertainty are estimated to be about 10% of initial amplitude per week. By carrying out ensemble forecast experiments with and without perturbed surface forcing, it is demonstrated that in the coastal regions accounting for uncertainties in the atmospheric forcing is more important than accounting for uncertainties in the ocean initial conditions. In the Loop Current region, the initial condition uncertainties, are the dominant source of the forecast uncertainty. The root-mean-square error of the Lagrangian track forecasts at the 15-day forecast lead time can be reduced by about 10 - 50 km using the ensemble mean Eulerian forecast of the oceanic flow for the computation of the tracks, instead of the single-initial-condition Eulerian forecast.
NASA Astrophysics Data System (ADS)
Renko, Tanja; Ivušić, Sarah; Telišman Prtenjak, Maja; Šoljan, Vinko; Horvat, Igor
2018-03-01
In this study, a synoptic and mesoscale analysis was performed and Szilagyi's waterspout forecasting method was tested on ten waterspout events in the period of 2013-2016. Data regarding waterspout occurrences were collected from weather stations, an online survey at the official website of the National Meteorological and Hydrological Service of Croatia and eyewitness reports from newspapers and the internet. Synoptic weather conditions were analyzed using surface pressure fields, 500 hPa level synoptic charts, SYNOP reports and atmospheric soundings. For all observed waterspout events, a synoptic type was determined using the 500 hPa geopotential height chart. The occurrence of lightning activity was determined from the LINET lightning database, and waterspouts were divided into thunderstorm-related and "fair weather" ones. Mesoscale characteristics (with a focus on thermodynamic instability indices) were determined using the high-resolution (500 m grid length) mesoscale numerical weather model and model results were compared with the available observations. Because thermodynamic instability indices are usually insufficient for forecasting waterspout activity, the performance of the Szilagyi Waterspout Index (SWI) was tested using vertical atmospheric profiles provided by the mesoscale numerical model. The SWI successfully forecasted all waterspout events, even the winter events. This indicates that the Szilagyi's waterspout prognostic method could be used as a valid prognostic tool for the eastern Adriatic.
Forecasting European Droughts using the North American Multi-Model Ensemble (NMME)
NASA Astrophysics Data System (ADS)
Thober, Stephan; Kumar, Rohini; Samaniego, Luis; Sheffield, Justin; Schäfer, David; Mai, Juliane
2015-04-01
Soil moisture droughts have the potential to diminish crop yields causing economic damage or even threatening the livelihood of societies. State-of-the-art drought forecasting systems incorporate seasonal meteorological forecasts to estimate future drought conditions. Meteorological forecasting skill (in particular that of precipitation), however, is limited to a few weeks because of the chaotic behaviour of the atmosphere. One of the most important challenges in drought forecasting is to understand how the uncertainty in the atmospheric forcings (e.g., precipitation and temperature) is further propagated into hydrologic variables such as soil moisture. The North American Multi-Model Ensemble (NMME) provides the latest collection of a multi-institutional seasonal forecasting ensemble for precipitation and temperature. In this study, we analyse the skill of NMME forecasts for predicting European drought events. The monthly NMME forecasts are downscaled to daily values to force the mesoscale hydrological model (mHM). The mHM soil moisture forecasts obtained with the forcings of the dynamical models are then compared against those obtained with the Ensemble Streamflow Prediction (ESP) approach. ESP recombines historical meteorological forcings to create a new ensemble forecast. Both forecasts are compared against reference soil moisture conditions obtained using observation based meteorological forcings. The study is conducted for the period from 1982 to 2009 and covers a large part of the Pan-European domain (10°W to 40°E and 35°N to 55°N). Results indicate that NMME forecasts are better at predicting the reference soil moisture variability as compared to ESP. For example, NMME explains 50% of the variability in contrast to only 31% by ESP at a six-month lead time. The Equitable Threat Skill Score (ETS), which combines the hit and false alarm rates, is analysed for drought events using a 0.2 threshold of a soil moisture percentile index. On average, the NMME based ensemble forecasts have consistently higher skill than the ESP based ones (ETS of 13% as compared to 5% at a six-month lead time). Additionally, the ETS ensemble spread of NMME forecasts is considerably narrower than that of ESP; the lower boundary of the NMME ensemble spread coincides most of the time with the ensemble median of ESP. Among the NMME models, NCEP-CFSv2 outperforms the other models in terms of ETS most of the time. Removing the three worst performing models does not deteriorate the ensemble performance (neither in skill nor in spread), but would substantially reduce the computational resources required in an operational forecasting system. For major European drought events (e.g., 1990, 1992, 2003, and 2007), NMME forecasts tend to underestimate area under drought and drought magnitude during times of drought development. During drought recovery, this underestimation is weaker for area under drought or even reversed into an overestimation for drought magnitude. This indicates that the NMME models are too wet during drought development and too dry during drought recovery. In summary, soil moisture drought forecasts by NMME are more skillful than those of an ESP based approach. However, they still show systematic biases in reproducing the observed drought dynamics during drought development and recovery.
NASA Astrophysics Data System (ADS)
Seibert, Mathias; Merz, Bruno; Apel, Heiko
2017-03-01
The Limpopo Basin in southern Africa is prone to droughts which affect the livelihood of millions of people in South Africa, Botswana, Zimbabwe and Mozambique. Seasonal drought early warning is thus vital for the whole region. In this study, the predictability of hydrological droughts during the main runoff period from December to May is assessed using statistical approaches. Three methods (multiple linear models, artificial neural networks, random forest regression trees) are compared in terms of their ability to forecast streamflow with up to 12 months of lead time. The following four main findings result from the study. 1. There are stations in the basin at which standardised streamflow is predictable with lead times up to 12 months. The results show high inter-station differences of forecast skill but reach a coefficient of determination as high as 0.73 (cross validated). 2. A large range of potential predictors is considered in this study, comprising well-established climate indices, customised teleconnection indices derived from sea surface temperatures and antecedent streamflow as a proxy of catchment conditions. El Niño and customised indices, representing sea surface temperature in the Atlantic and Indian oceans, prove to be important teleconnection predictors for the region. Antecedent streamflow is a strong predictor in small catchments (with median 42 % explained variance), whereas teleconnections exert a stronger influence in large catchments. 3. Multiple linear models show the best forecast skill in this study and the greatest robustness compared to artificial neural networks and random forest regression trees, despite their capabilities to represent nonlinear relationships. 4. Employed in early warning, the models can be used to forecast a specific drought level. Even if the coefficient of determination is low, the forecast models have a skill better than a climatological forecast, which is shown by analysis of receiver operating characteristics (ROCs). Seasonal statistical forecasts in the Limpopo show promising results, and thus it is recommended to employ them as complementary to existing forecasts in order to strengthen preparedness for droughts.
Fire danger assessment using ECMWF weather prediction system
NASA Astrophysics Data System (ADS)
Di Giuseppe, Francesca; Pappemberger, Florian; Wetterhall, Fredrik
2015-04-01
Weather plays a major role in the birth, growth and death of a wildfire wherever there is availability of combustible vegetation and suitable terrain topography. Prolonged dry periods creates favourable conditions for ignitions, wind can then increase the fire spread, while higher relative humidity, and precipitation (rain or snow) may decrease or extinguish it altogether. The European Forest Fire Information System (EFFIS), started in 2011 under the lead of the European Joint Research Centre (JRC) to monitor and forecast fire danger and fire behaviour in Europe. In 2012 a collaboration with the European Centre for Medium range Weather Forecast (ECMWF) was established to explore the potential of using state of the art weather forecast systems as driving forcing for the calculations of fire risk indices. From this collaboration in 2013 the EC-fire system was born. It implements the three most commonly used fire danger rating systems (NFDRS, FWI and MARK-5) and it is both initialised and forced by gridded atmospheric fields provided either by ECMWF re-analysis or ECMWF ensemble prediction systems. For consistency invariant fields (i.e fuel maps, vegetation cover, topogarphy) and real-time weather information are all provided on the same grid. Similarly global climatological vegetation stage conditions for each day of the year are provided by remote satellite observations. These climatological static maps substitute the traditional man judgement in an effort to create an automated procedure that can work in places where local observations are not available. The system has been in operation for the last year providing an ensemble of daily forecasts for fire indices with lead-times up to 10 days over Europe and Globally. An important part of the system is provided by its (re)-analysis dataset obtained by using the (re)-analysis forcings as drivers to calculate the fire risk indices. This is a crucial part of the whole chain since these fields are used to establish the initial conditions from which the forecast is subsequently run. The reanalysis dataset goes back to year 1980 (the starting year of ERA-Interim integrations) and is updated in quasi real time. In addition of providing the staring point for the operational forecasts it is a very useful dataset for the scope of calibration and verification of the system. Assuming reanalysis fields are good proxies for observations then, by comparison with fire events which really occurred, this dataset can be used to assess the potential predictability of fire risk indices. In this work we will introduce the EC-fire system. Then the reanalysis dataset will be used to identify regions of high fire risk predictability and where the system might be in need of further refinement.
Bridging groundwater models and decision support with a Bayesian network
Fienen, Michael N.; Masterson, John P.; Plant, Nathaniel G.; Gutierrez, Benjamin T.; Thieler, E. Robert
2013-01-01
Resource managers need to make decisions to plan for future environmental conditions, particularly sea level rise, in the face of substantial uncertainty. Many interacting processes factor in to the decisions they face. Advances in process models and the quantification of uncertainty have made models a valuable tool for this purpose. Long-simulation runtimes and, often, numerical instability make linking process models impractical in many cases. A method for emulating the important connections between model input and forecasts, while propagating uncertainty, has the potential to provide a bridge between complicated numerical process models and the efficiency and stability needed for decision making. We explore this using a Bayesian network (BN) to emulate a groundwater flow model. We expand on previous approaches to validating a BN by calculating forecasting skill using cross validation of a groundwater model of Assateague Island in Virginia and Maryland, USA. This BN emulation was shown to capture the important groundwater-flow characteristics and uncertainty of the groundwater system because of its connection to island morphology and sea level. Forecast power metrics associated with the validation of multiple alternative BN designs guided the selection of an optimal level of BN complexity. Assateague island is an ideal test case for exploring a forecasting tool based on current conditions because the unique hydrogeomorphological variability of the island includes a range of settings indicative of past, current, and future conditions. The resulting BN is a valuable tool for exploring the response of groundwater conditions to sea level rise in decision support.
Regional Model Nesting Within GFS Daily Forecasts Over West Africa
NASA Technical Reports Server (NTRS)
Druyan, Leonard M.; Fulakeza, Matthew; Lonergan, Patrick; Worrell, Ruben
2010-01-01
The study uses the RM3, the regional climate model at the Center for Climate Systems Research of Columbia University and the NASA/Goddard Institute for Space Studies (CCSR/GISS). The paper evaluates 30 48-hour RM3 weather forecasts over West Africa during September 2006 made on a 0.5 grid nested within 1 Global Forecast System (GFS) global forecasts. September 2006 was the Special Observing Period #3 of the African Monsoon Multidisciplinary Analysis (AMMA). Archived GFS initial conditions and lateral boundary conditions for the simulations from the US National Weather Service, National Oceanographic and Atmospheric Administration were interpolated four times daily. Results for precipitation forecasts are validated against Tropical Rainfall Measurement Mission (TRMM) satellite estimates and data from the Famine Early Warning System (FEWS), which includes rain gauge measurements, and forecasts of circulation are compared to reanalysis 2. Performance statistics for the precipitation forecasts include bias, root-mean-square errors and spatial correlation coefficients. The nested regional model forecasts are compared to GFS forecasts to gauge whether nesting provides additional realistic information. They are also compared to RM3 simulations driven by reanalysis 2, representing high potential skill forecasts, to gauge the sensitivity of results to lateral boundary conditions. Nested RM3/GFS forecasts generate excessive moisture advection toward West Africa, which in turn causes prodigious amounts of model precipitation. This problem is corrected by empirical adjustments in the preparation of lateral boundary conditions and initial conditions. The resulting modified simulations improve on the GFS precipitation forecasts, achieving time-space correlations with TRMM of 0.77 on the first day and 0.63 on the second day. One realtime RM3/GFS precipitation forecast made at and posted by the African Centre of Meteorological Application for Development (ACMAD) in Niamey, Niger is shown.
The impact of underwater glider observations in the forecast of Hurricane Gonzalo (2014)
NASA Astrophysics Data System (ADS)
Goni, G. J.; Domingues, R. M.; Kim, H. S.; Domingues, R. M.; Halliwell, G. R., Jr.; Bringas, F.; Morell, J. M.; Pomales, L.; Baltes, R.
2017-12-01
The tropical Atlantic basin is one of seven global regions where tropical cyclones (TC) are commonly observed to originate and intensify from June to November. On average, approximately 12 TCs travel through the region every year, frequently affecting coastal, and highly populated areas. In an average year, 2 to 3 of them are categorized as intense hurricanes. Given the appropriate atmospheric conditions, TC intensification has been linked to ocean conditions, such as increased ocean heat content and enhanced salinity stratification near the surface. While errors in hurricane track forecasts have been reduced during the last years, errors in intensity forecasts remain mostly unchanged. Several studies have indicated that the use of in situ observations has the potential to improve the representation of the ocean to correctly initialize coupled hurricane intensity forecast models. However, a sustained in situ ocean observing system in the tropical North Atlantic Ocean and Caribbean Sea dedicated to measuring subsurface thermal and salinity fields in support of TC intensity studies and forecasts has yet to be implemented. Autonomous technologies offer new and cost-effective opportunities to accomplish this objective. We highlight here a partnership effort that utilize underwater gliders to better understand air-sea processes during high wind events, and are particularly geared towards improving hurricane intensity forecasts. Results are presented for Hurricane Gonzalo (2014), where glider observations obtained in the tropical Atlantic: Helped to provide an accurate description of the upper ocean conditions, that included the presence of a low salinity barrier layer; Allowed a detailed analysis of the upper ocean response to hurricane force winds of Gonzalo; Improved the initialization of the ocean in a coupled ocean-atmosphere numerical model; and together with observations from other ocean observing platforms, substantially reduced the error in intensity forecast using the HYCOM-HWRF model. Data collected by this project are transmitted in real-time to the Global Telecommunication System, distributed through the institutional web pages, by the IOOS Glider Data Assembly Center, and by NCEI, and assimilated in real-time numerical weather forecast models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xuejun; Tang, Qiuhong; Liu, Xingcai
Real-time monitoring and predicting drought development with several months in advance is of critical importance for drought risk adaptation and mitigation. In this paper, we present a drought monitoring and seasonal forecasting framework based on the Variable Infiltration Capacity (VIC) hydrologic model over Southwest China (SW). The satellite precipitation data are used to force VIC model for near real-time estimate of land surface hydrologic conditions. As initialized with satellite-aided monitoring, the climate model-based forecast (CFSv2_VIC) and ensemble streamflow prediction (ESP)-based forecast (ESP_VIC) are both performed and evaluated through their ability in reproducing the evolution of the 2009/2010 severe drought overmore » SW. The results show that the satellite-aided monitoring is able to provide reasonable estimate of forecast initial conditions (ICs) in a real-time manner. Both of CFSv2_VIC and ESP_VIC exhibit comparable performance against the observation-based estimates for the first month, whereas the predictive skill largely drops beyond 1-month. Compared to ESP_VIC, CFSv2_VIC shows better performance as indicated by the smaller ensemble range. This study highlights the value of this operational framework in generating near real-time ICs and giving a reliable prediction with 1-month ahead, which has great implications for drought risk assessment, preparation and relief.« less
NASA Astrophysics Data System (ADS)
Hong, X.; Reynolds, C. A.; Doyle, J. D.
2016-12-01
In this study, two-sets of monthly forecasts for the period during the Dynamics of Madden-Julian Oscillation (MJO)/Cooperative Indian Ocean Experiment of Intraseasonal Variability (DAYNAMO/CINDY) in November 2011 are examined. Each set includes three forecasts with the first set from Navy Global Environmental Model (NAVGEM) and the second set from Navy's non-hydrostatic Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS®1). Three NAVGEM monthly forecasts have used sea surface temperature (SST) from persistent at the initial time, from Navy Coupled Ocean Data Assimilation (NCODA) analysis, and from coupled NAVGEM-Hybrid Coordinate Ocean Model (HYCOM) forecasts. Examination found that NAVGEM can predict the MJO at 20-days lead time using SST from analysis and from coupled NAVGEM-HYCOM but cannot predict the MJO using the persistent SST, in which a clear circumnavigating signal is absent. Three NAVGEM monthly forecasts are then applied as lateral boundary conditions for three COAMPS monthly forecasts. The results show that all COAMPS runs, including using lateral boundary conditions from the NAVGEM that is without the MJO signal, can predict the MJO. Vertically integrated moisture anomaly and 850-hPa wind anomaly in all COAMPS runs have indicated strong anomalous equatorial easterlies associated with Rossby wave prior to the MJO initiation. Strong surface heat fluxes and turbulence kinetic energy have promoted the convective instability and triggered anomalous ascending motion, which deepens moist boundary layer and develops deep convection into the upper troposphere to form the MJO phase. The results have suggested that air-sea interaction process is important for the initiation and development of the MJO. 1COAMPS® is a registered trademark of the Naval Research Laboratory
NASA Astrophysics Data System (ADS)
Lopez, Patricia; Verkade, Jan; Weerts, Albrecht; Solomatine, Dimitri
2014-05-01
Hydrological forecasting is subject to many sources of uncertainty, including those originating in initial state, boundary conditions, model structure and model parameters. Although uncertainty can be reduced, it can never be fully eliminated. Statistical post-processing techniques constitute an often used approach to estimate the hydrological predictive uncertainty, where a model of forecast error is built using a historical record of past forecasts and observations. The present study focuses on the use of the Quantile Regression (QR) technique as a hydrological post-processor. It estimates the predictive distribution of water levels using deterministic water level forecasts as predictors. This work aims to thoroughly verify uncertainty estimates using the implementation of QR that was applied in an operational setting in the UK National Flood Forecasting System, and to inter-compare forecast quality and skill in various, differing configurations of QR. These configurations are (i) 'classical' QR, (ii) QR constrained by a requirement that quantiles do not cross, (iii) QR derived on time series that have been transformed into the Normal domain (Normal Quantile Transformation - NQT), and (iv) a piecewise linear derivation of QR models. The QR configurations are applied to fourteen hydrological stations on the Upper Severn River with different catchments characteristics. Results of each QR configuration are conditionally verified for progressively higher flood levels, in terms of commonly used verification metrics and skill scores. These include Brier's probability score (BS), the continuous ranked probability score (CRPS) and corresponding skill scores as well as the Relative Operating Characteristic score (ROCS). Reliability diagrams are also presented and analysed. The results indicate that none of the four Quantile Regression configurations clearly outperforms the others.
Basic tasks for improving spectral-acoustic forecasting of dynamic phenomena in coal mines
NASA Astrophysics Data System (ADS)
Shadrin, A. V.; Kontrimas, A. A.
2017-09-01
A number of tasks for improving the spectral-acoustic method for forecasting dynamic phenomena and controlling stress condition in coalmines is considered. They are: considering the influence of a gas factor on the danger indicator, dependence of a relative pressure coefficient on the distance between the source and the receiver of the probing acoustic signal, correct selection of operating frequencies, the importance of developing the techniques for defining the critical value of the outburst danger index The influence of the rock mass stress condition ahead of the preliminary opening face on the relative pressure coefficient defined for installing the sound receiver in the wall of the opening behind the opening face is also justified in the article.
Two-Step Forecast of Geomagnetic Storm Using Coronal Mass Ejection and Solar Wind Condition
NASA Technical Reports Server (NTRS)
Kim, R.-S.; Moon, Y.-J.; Gopalswamy, N.; Park, Y.-D.; Kim, Y.-H.
2014-01-01
To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz = -5 nT or Ey = 3 mV/m for t = 2 h for moderate storms with minimum Dst less than -50 nT) (i.e. Magnetic Field Magnitude, B (sub z) less than or equal to -5 nanoTeslas or duskward Electrical Field, E (sub y) greater than or equal to 3 millivolts per meter for time greater than or equal to 2 hours for moderate storms with Minimum Disturbance Storm Time, Dst less than -50 nanoTeslas) and a Dst model developed by Temerin and Li (2002, 2006) (TL [i.e. Temerin Li] model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90 percent) than the forecasts based on the TL model (87 percent). However, the latter produces better forecasts for 24 nonstorm events (88 percent), while the former correctly forecasts only 71 percent of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80 percent) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (n, i.e. cap operator - the intersection set that is comprised of all the elements that are common to both), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81 percent) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (?, i.e. cup operator - the union set that is comprised of all the elements of either or both), all geomagnetic storms are correctly forecasted.
Extended-Range Forecasts at Climate Prediction Center: Current Status and Future Plans
NASA Astrophysics Data System (ADS)
Kumar, A.
2016-12-01
Motivated by a user need to provide forecast information on extended-range time-scales (i.e., weeks 2-4), in recent years Climate Prediction Center (CPC) has made considerable efforts towards developing and testing the feasibility for developing the required forecasts. The forecasts targeting this particular time-scale face a unique challenge in that while the forecast skill due to atmospheric initial conditions is small (because of rapid decay in the memory associated with the atmospheric initial conditions), short time averages for which forecasts are made do not benefit from skill associated with anomalous boundary conditions either. Despite these challenges, CPC has embarked on providing an experimental outlook for weeks 3-4 average. The talk will summarize the current status of CPC's current suite of extended-range forecast products, and further, will discuss some future plans.
Use of High-resolution WRF Simulations to Forecast Lightning Threat
NASA Technical Reports Server (NTRS)
McCaul, William E.; LaCasse, K.; Goodman, S. J.
2006-01-01
Recent observational studies have confirmed the existence of a robust statistical relationship between lightning flash rates and the amount of large precipitating ice hydrometeors in storms. This relationship is exploited, in conjunction with the capabilities of recent forecast models such as WRF, to forecast the threat of lightning from convective storms using the output fields from the model forecasts. The simulated vertical flux of graupel at -15C is used in this study as a proxy for charge separation processes and their associated lightning risk. Six-h simulations are conducted for a number of case studies for which three-dimensional lightning validation data from the North Alabama Lightning Mapping Array are available. Experiments indicate that initialization of the WRF model on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity and reflectivity fields, and METAR and ACARS data yield the most realistic simulations. An array of subjective and objective statistical metrics are employed to document the utility of the WRF forecasts. The simulation results are also compared to other more traditional means of forecasting convective storms, such as those based on inspection of the convective available potential energy field.
NASA Technical Reports Server (NTRS)
Keitz, J. F.
1982-01-01
The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 4 of the four major tasks included in the study. Task 4 uses flight plan segment wind and temperature differences as indicators of dates and geographic areas for which significant forecast errors may have occurred. An in-depth analysis is then conducted for the days identified. The analysis show that significant errors occur in the operational forecast on 15 of the 33 arbitrarily selected days included in the study. Wind speeds in an area of maximum winds are underestimated by at least 20 to 25 kts. on 14 of these days. The analysis also show that there is a tendency to repeat the same forecast errors from prog to prog. Also, some perceived forecast errors from the flight plan comparisons could not be verified by visual inspection of the corresponding National Meteorological Center forecast and analyses charts, and it is likely that they are the result of weather data interpolation techniques or some other data processing procedure in the airlines' flight planning systems.
NASA Astrophysics Data System (ADS)
Wang, Pei; Li, Jun; Li, Zhenglong; Lim, Agnes H. N.; Li, Jinlong; Schmit, Timothy J.; Goldberg, Mitchell D.
2017-12-01
Hyperspectral infrared (IR) sounders provide high vertical resolution atmospheric sounding information that can improve the forecast skill in numerical weather prediction. Commonly, only clear radiances are assimilated, because IR sounder observations are highly affected by clouds. A cloud-clearing (CC) technique, which removes the cloud effects from an IR cloudy field of view (FOV) and derives the cloud-cleared radiances (CCRs) or clear-sky equivalent radiances, can be an alternative yet effective way to take advantage of the thermodynamic information from cloudy skies in data assimilation. This study develops a Visible Infrared Imaging Radiometer Suite (VIIRS)-based CC method for deriving Cross-track Infrared Sounder (CrIS) CCRs under partially cloudy conditions. Due to the lack of absorption bands on VIIRS, two important quality control steps are implemented in the CC process. Validation using VIIRS clear radiances indicates that the CC method can effectively obtain the CrIS CCRs for FOVs with partial cloud cover. To compare the impacts from assimilation of CrIS original radiances and CCRs, three experiments are carried out on two storm cases, Hurricane Joaquin (2015) and Hurricane Matthew (2016), using Gridpoint Statistical Interpolation assimilation system and Weather Research and Forecasting-Advanced Research Version models. At the analysis time, more CrIS observations are assimilated when using CrIS CCRs than with CrIS original radiances. Comparing temperature, specific humidity, and U/V winds with radiosondes indicates that the data impacts are growing larger with longer time forecasts (beyond 72 h forecast). Hurricane track forecasts also show improvements from the assimilation of CrIS CCRs due to better weather system forecasts. The impacts of CCRs on intensity are basically neutral with mixed positive and negative results.
NASA Astrophysics Data System (ADS)
Siek, M. B.; Solomatine, D. P.
2009-04-01
Storm surge modeling has rapidly developed considerably over the past 30 years. A number of significant advances on operational storm surge models have been implemented and tested, consisting of: refining computational grids, calibrating the model, using a better numerical scheme (i.e. more realistic model physics for air-sea interaction), implementing data assimilation and ensemble model forecasts. This paper addresses the performance comparison between the existing European storm surge models and the recently developed methods of nonlinear dynamics and chaos theory in forecasting storm surge dynamics. The chaotic model is built using adaptive local models based on the dynamical neighbours in the reconstructed phase space of observed time series data. The comparison focused on the model accuracy in forecasting a recently extreme storm surge in the North Sea on November 9th, 2007 that hit the coastlines of several European countries. The combination of a high tide, north-westerly winds exceeding 50 mph and low pressure produced an exceptional storm tide. The tidal level was exceeded 3 meters above normal sea levels. Flood warnings were issued for the east coast of Britain and the entire Dutch coast. The Maeslant barrier's two arc-shaped steel doors in the Europe's biggest port of Rotterdam was closed for the first time since its construction in 1997 due to this storm surge. In comparison to the chaotic model performance, the forecast data from several European physically-based storm surge models were provided from: BSH Germany, DMI Denmark, DNMI Norway, KNMI Netherlands and MUMM Belgium. The performance comparison was made over testing datasets for two periods/conditions: non-stormy period (1-Sep-2007 till 14-Oct-2007) and stormy period (15-Oct-2007 till 20-Nov-2007). A scalar chaotic model with optimized parameters was developed by utilizing an hourly training dataset of observations (11-Sep-2005 till 31-Aug-2007). The comparison results indicated the chaotic model yields better forecasts than the existing European storm surge models. The best performance of European storm surge models for non-storm and storm conditions was achieved by KNMI (with Kalman filter data assimilation) and BSH with errors of 8.95cm and 10.92cm, respectively. Whereas the chaotic model can provide 6 and 48 hours forecasts with errors of 3.10cm and 8.55cm for non-storm condition and 5.04cm and 15.21cm for storm condition, respectively. The chaotic model can provide better forecasts primarily due to the fact that the chaotic model forecasting are estimated by local models which model and identify the similar development of storm surges in the past. In practice, the chaotic model can serve as a reliable and accurate model to support decision-makers in operational ship navigation and flood forecasting.
High-Resolution Hydrological Sub-Seasonal Forecasting for Water Resources Management Over Europe
NASA Astrophysics Data System (ADS)
Wood, E. F.; Wanders, N.; Pan, M.; Sheffield, J.; Samaniego, L. E.; Thober, S.; Kumar, R.; Prudhomme, C.; Houghton-Carr, H.
2017-12-01
For decision-making at the sub-seasonal and seasonal time scale, hydrological forecasts with a high temporal and spatial resolution are required by water managers. So far such forecasts have been unavailable due to 1) lack of availability of meteorological seasonal forecasts, 2) coarse temporal resolution of meteorological seasonal forecasts, requiring temporal downscaling, 3) lack of consistency between observations and seasonal forecasts, requiring bias-correction. The EDgE (End-to-end Demonstrator for improved decision making in the water sector in Europe) project commissioned by the ECMWF (C3S) created a unique dataset of hydrological seasonal forecasts derived from four global climate models (CanCM4, FLOR-B01, ECMF, LFPW) in combination with four global hydrological models (PCR-GLOBWB, VIC, mHM, Noah-MP), resulting in 208 forecasts for any given day. The forecasts provide a daily temporal and 5-km spatial resolution, and are bias corrected against E-OBS meteorological observations. The forecasts are communicated to stakeholders via Sectoral Climate Impact Indicators (SCIIs), created in collaboration with the end-user community of the EDgE project (e.g. the percentage of ensemble realizations above the 10th percentile of monthly river flow, or below the 90th). Results show skillful forecasts for discharge from 3 months to 6 months (latter for N Europe due to snow); for soil moisture up to three months due precipitation forecast skill and short initial condition memory; and for groundwater greater than 6 months (lowest skill in western Europe.) The SCIIs are effective in communicating both forecast skill and uncertainty. Overall the new system provides an unprecedented ensemble for seasonal forecasts with significant skill over Europe to support water management. The consistency in both the GCM forecasts and the LSM parameterization ensures a stable and reliable forecast framework and methodology, even if additional GCMs or LSMs are added in the future.
NASA Astrophysics Data System (ADS)
Zhang, Rong; Zhang, Yijun; Xu, Liangtao; Zheng, Dong; Yao, Wen
2017-08-01
A large number of observational analyses have shown that lightning data can be used to indicate areas of deep convection. It is important to assimilate observed lightning data into numerical models, so that more small-scale information can be incorporated to improve the quality of the initial condition and the subsequent forecasts. In this study, the empirical relationship between flash rate, water vapor mixing ratio, and graupel mixing ratio was used to adjust the model relative humidity, which was then assimilated by using the three-dimensional variational data assimilation system of the Weather Research and Forecasting model in cycling mode at 10-min intervals. To find the appropriate assimilation time-window length that yielded significant improvement in both the initial conditions and subsequent forecasts, four experiments with different assimilation time-window lengths were conducted for a squall line case that occurred on 10 July 2007 in North China. It was found that 60 min was the appropriate assimilation time-window length for this case, and longer assimilation window length was unnecessary since no further improvement was present. Forecasts of 1-h accumulated precipitation during the assimilation period and the subsequent 3-h accumulated precipitation were significantly improved compared with the control experiment without lightning data assimilation. The simulated reflectivity was optimal after 30 min of the forecast, it remained optimal during the following 42 min, and the positive effect from lightning data assimilation began to diminish after 72 min of the forecast. Overall, the improvement from lightning data assimilation can be maintained for about 3 h.
NASA Astrophysics Data System (ADS)
Singhofen, P.
2017-12-01
The National Water Model (NWM) is a remarkable undertaking. The foundation of the NWM is a 1 square kilometer grid which is used for near real-time modeling and flood forecasting of most rivers and streams in the contiguous United States. However, the NWM falls short in highly urbanized areas with complex drainage infrastructure. To overcome these shortcomings, the presenter proposes to leverage existing local hyper-resolution H&H models and adapt the NWM forcing data to them. Gridded near real-time rainfall, short range forecasts (18-hour) and medium range forecasts (10-day) during Hurricane Irma are applied to numerous detailed H&H models in highly urbanized areas of the State of Florida. Coastal and inland models are evaluated. Comparisons of near real-time rainfall data are made with observed gaged data and the ability to predict flooding in advance based on forecast data is evaluated. Preliminary findings indicate that the near real-time rainfall data is consistently and significantly lower than observed data. The forecast data is more promising. For example, the medium range forecast data provides 2 - 3 days advanced notice of peak flood conditions to a reasonable level of accuracy in most cases relative to both timing and magnitude. Short range forecast data provides about 12 - 14 hours advanced notice. Since these are hyper-resolution models, flood forecasts can be made at the street level, providing emergency response teams with valuable information for coordinating and dispatching limited resources.
Statistical and dynamical forecast of regional precipitation after mature phase of ENSO
NASA Astrophysics Data System (ADS)
Sohn, S.; Min, Y.; Lee, J.; Tam, C.; Ahn, J.
2010-12-01
While the seasonal predictability of general circulation models (GCMs) has been improved, the current model atmosphere in the mid-latitude does not respond correctly to external forcing such as tropical sea surface temperature (SST), particularly over the East Asia and western North Pacific summer monsoon regions. In addition, the time-scale of prediction scope is considerably limited and the model forecast skill still is very poor beyond two weeks. Although recent studies indicate that coupled model based multi-model ensemble (MME) forecasts show the better performance, the long-lead forecasts exceeding 9 months still show a dramatic decrease of the seasonal predictability. This study aims at diagnosing the dynamical MME forecasts comprised of the state of art 1-tier models as well as comparing them with the statistical model forecasts, focusing on the East Asian summer precipitation predictions after mature phase of ENSO. The lagged impact of El Nino as major climate contributor on the summer monsoon in model environments is also evaluated, in the sense of the conditional probabilities. To evaluate the probability forecast skills, the reliability (attributes) diagram and the relative operating characteristics following the recommendations of the World Meteorological Organization (WMO) Standardized Verification System for Long-Range Forecasts are used in this study. The results should shed light on the prediction skill for dynamical model and also for the statistical model, in forecasting the East Asian summer monsoon rainfall with a long-lead time.
Social Indicators and Social Forecasting.
ERIC Educational Resources Information Center
Johnston, Denis F.
The paper identifies major types of social indicators and explains how they can be used in social forecasting. Social indicators are defined as statistical measures relating to major areas of social concern and/or individual well being. Examples of social indicators are projections, forecasts, outlook statements, time-series statistics, and…
The Mauna Kea Weather Center: Custom Atmospheric Forecasting Support for Mauna Kea
NASA Astrophysics Data System (ADS)
Businger, Steven
2011-03-01
The success of operations at Mauna Kea Observatories is strongly influenced by weather conditions. The Mauna Kea Weather Center, an interdisciplinary research program, was established in 1999 to develop and provide custom weather support for Mauna Kea Observatories. The operational forecasting goals of the program are to facilitate the best possible use of favorable atmospheric conditions for scientific benefit and to ensure operational safety. During persistent clear periods, astronomical observing quality varies substantially due to changes in the vertical profiles of temperature, wind, moisture, and turbulence. Cloud and storm systems occasionally cause adverse or even hazardous conditions. A dedicated, daily, real-time mesoscale numerical modeling effort provides crucial forecast guidance in both cases. Several key atmospheric variables are forecast with sufficient skill to be of operational and scientific benefit to the telescopes on Mauna Kea. Summit temperature forecasts allow mirrors to be set to the ambient temperature to reduce image distortion. Precipitable water forecasts allow infrared observations to be prioritized according to atmospheric opacity. Forecasts of adverse and hazardous conditions protect the safety of personnel and allow for scheduling of maintenance when observing is impaired by cloud. The research component of the project continues to improve the accuracy and content of the forecasts. In particular, case studies have resulted in operational forecasts of astronomical observing quality, or seeing.
Wave ensemble forecast in the Western Mediterranean Sea, application to an early warning system.
NASA Astrophysics Data System (ADS)
Pallares, Elena; Hernandez, Hector; Moré, Jordi; Espino, Manuel; Sairouni, Abdel
2015-04-01
The Western Mediterranean Sea is a highly heterogeneous and variable area, as is reflected on the wind field, the current field, and the waves, mainly in the first kilometers offshore. As a result of this variability, the wave forecast in these regions is quite complicated to perform, usually with some accuracy problems during energetic storm events. Moreover, is in these areas where most of the economic activities take part, including fisheries, sailing, tourism, coastal management and offshore renewal energy platforms. In order to introduce an indicator of the probability of occurrence of the different sea states and give more detailed information of the forecast to the end users, an ensemble wave forecast system is considered. The ensemble prediction systems have already been used in the last decades for the meteorological forecast; to deal with the uncertainties of the initial conditions and the different parametrizations used in the models, which may introduce some errors in the forecast, a bunch of different perturbed meteorological simulations are considered as possible future scenarios and compared with the deterministic forecast. In the present work, the SWAN wave model (v41.01) has been implemented for the Western Mediterranean sea, forced with wind fields produced by the deterministic Global Forecast System (GFS) and Global Ensemble Forecast System (GEFS). The wind fields includes a deterministic forecast (also named control), between 11 and 21 ensemble members, and some intelligent member obtained from the ensemble, as the mean of all the members. Four buoys located in the study area, moored in coastal waters, have been used to validate the results. The outputs include all the time series, with a forecast horizon of 8 days and represented in spaghetti diagrams, the spread of the system and the probability at different thresholds. The main goal of this exercise is to be able to determine the degree of the uncertainty of the wave forecast, meaningful between the 5th and the 8th day of the prediction. The information obtained is then included in an early warning system, designed in the framework of the European project iCoast (ECHO/SUB/2013/661009) with the aim of set alarms in coastal areas depending on the wave conditions, the sea level, the flooding and the run up in the coast.
Hay, L.E.; McCabe, G.J.; Clark, M.P.; Risley, J.C.
2009-01-01
The accuracy of streamflow forecasts depends on the uncertainty associated with future weather and the accuracy of the hydrologic model that is used to produce the forecasts. We present a method for streamflow forecasting where hydrologic model parameters are selected based on the climate state. Parameter sets for a hydrologic model are conditioned on an atmospheric pressure index defined using mean November through February (NDJF) 700-hectoPascal geopotential heights over northwestern North America [Pressure Index from Geopotential heights (PIG)]. The hydrologic model is applied in the Sprague River basin (SRB), a snowmelt-dominated basin located in the Upper Klamath basin in Oregon. In the SRB, the majority of streamflow occurs during March through May (MAM). Water years (WYs) 1980-2004 were divided into three groups based on their respective PIG values (high, medium, and low PIG). Low (high) PIG years tend to have higher (lower) than average MAM streamflow. Four parameter sets were calibrated for the SRB, each using a different set of WYs. The initial set used WYs 1995-2004 and the remaining three used WYs defined as high-, medium-, and low-PIG years. Two sets of March, April, and May streamflow volume forecasts were made using Ensemble Streamflow Prediction (ESP). The first set of ESP simulations used the initial parameter set. Because the PIG is defined using NDJF pressure heights, forecasts starting in March can be made using the PIG parameter set that corresponds with the year being forecasted. The second set of ESP simulations used the parameter set associated with the given PIG year. Comparison of the ESP sets indicates that more accuracy and less variability in volume forecasts may be possible when the ESP is conditioned using the PIG. This is especially true during the high-PIG years (low-flow years). ?? 2009 American Water Resources Association.
NASA Astrophysics Data System (ADS)
Liechti, K.; Panziera, L.; Germann, U.; Zappa, M.
2013-10-01
This study explores the limits of radar-based forecasting for hydrological runoff prediction. Two novel radar-based ensemble forecasting chains for flash-flood early warning are investigated in three catchments in the southern Swiss Alps and set in relation to deterministic discharge forecasts for the same catchments. The first radar-based ensemble forecasting chain is driven by NORA (Nowcasting of Orographic Rainfall by means of Analogues), an analogue-based heuristic nowcasting system to predict orographic rainfall for the following eight hours. The second ensemble forecasting system evaluated is REAL-C2, where the numerical weather prediction COSMO-2 is initialised with 25 different initial conditions derived from a four-day nowcast with the radar ensemble REAL. Additionally, three deterministic forecasting chains were analysed. The performance of these five flash-flood forecasting systems was analysed for 1389 h between June 2007 and December 2010 for which NORA forecasts were issued, due to the presence of orographic forcing. A clear preference was found for the ensemble approach. Discharge forecasts perform better when forced by NORA and REAL-C2 rather then by deterministic weather radar data. Moreover, it was observed that using an ensemble of initial conditions at the forecast initialisation, as in REAL-C2, significantly improved the forecast skill. These forecasts also perform better then forecasts forced by ensemble rainfall forecasts (NORA) initialised form a single initial condition of the hydrological model. Thus the best results were obtained with the REAL-C2 forecasting chain. However, for regions where REAL cannot be produced, NORA might be an option for forecasting events triggered by orographic precipitation.
Satellite altimetry and the intensification of Hurricane Katrina
NASA Astrophysics Data System (ADS)
Scharroo, Remko; Smith, Walter H. F.; Lillibridge, John L.
Remotely sensed infrared images of Hurricane Katrina taken on 26, 27, and 28 August 2005 (Figure 1, left panels) show the aerial extent of the cloud cover and the central “eye” increasing as the storm that swamped areas of the U.S. Gulf Coast intensified. Computer animations of such image sequences show forecasters the tracks of storms and are a familiar staple of weather news. Less well known is the role that satellite altimetry plays both in forecasting conditions that can intensify a tropical storm and in observing the storm conditions at the sea surface.Satellite altimeter data indicate that Katrina intensified over areas of anomalously high dynamic topography rather than areas of unusually warm surface waters. Altimeter data from Katrina also for the first time observed the building of a storm surge.
Application of recurrent neural networks for drought projections in California
NASA Astrophysics Data System (ADS)
Le, J. A.; El-Askary, H. M.; Allali, M.; Struppa, D. C.
2017-05-01
We use recurrent neural networks (RNNs) to investigate the complex interactions between the long-term trend in dryness and a projected, short but intense, period of wetness due to the 2015-2016 El Niño. Although it was forecasted that this El Niño season would bring significant rainfall to the region, our long-term projections of the Palmer Z Index (PZI) showed a continuing drought trend, contrasting with the 1998-1999 El Niño event. RNN training considered PZI data during 1896-2006 that was validated against the 2006-2015 period to evaluate the potential of extreme precipitation forecast. We achieved a statistically significant correlation of 0.610 between forecasted and observed PZI on the validation set for a lead time of 1 month. This gives strong confidence to the forecasted precipitation indicator. The 2015-2016 El Niño season proved to be relatively weak as compared with the 1997-1998, with a peak PZI anomaly of 0.242 standard deviations below historical averages, continuing drought conditions.
NASA Astrophysics Data System (ADS)
Wanders, Niko; Wada, Yoshihide
2015-12-01
Long-term hydrological forecasts are important to increase our resilience and preparedness to extreme hydrological events. The skill in these forecasts is still limited due to large uncertainties inherent in hydrological models and poor predictability of long-term meteorological conditions. Here we show that strong (lagged) correlations exist between four different major climate oscillation modes and modeled and observed discharge anomalies over a 100 year period. The strongest correlations are found between the El Niño-Southern Oscillation signal and river discharge anomalies all year round, while North Atlantic Oscillation and Antarctic Oscillation time series are strongly correlated with winter discharge anomalies. The correlation signal is significant for periods up to 5 years for some regions, indicating a high added value of this information for long-term hydrological forecasting. The results suggest that long-term hydrological forecasting could be significantly improved by including the climate oscillation signals and thus improve our preparedness for hydrological extremes in the near future.
NASA Astrophysics Data System (ADS)
Aalto, J.; Karjalainen, O.; Hjort, J.; Luoto, M.
2018-05-01
Mean annual ground temperature (MAGT) and active layer thickness (ALT) are key to understanding the evolution of the ground thermal state across the Arctic under climate change. Here a statistical modeling approach is presented to forecast current and future circum-Arctic MAGT and ALT in relation to climatic and local environmental factors, at spatial scales unreachable with contemporary transient modeling. After deploying an ensemble of multiple statistical techniques, distance-blocked cross validation between observations and predictions suggested excellent and reasonable transferability of the MAGT and ALT models, respectively. The MAGT forecasts indicated currently suitable conditions for permafrost to prevail over an area of 15.1 ± 2.8 × 106 km2. This extent is likely to dramatically contract in the future, as the results showed consistent, but region-specific, changes in ground thermal regime due to climate change. The forecasts provide new opportunities to assess future Arctic changes in ground thermal state and biogeochemical feedback.
John A. Stanturf; Scott L. Goodrick
2013-01-01
Key FindingsClimate forecasts indicate that the Southâs spring and fall wildfire seasons will be extended.Prescribed fires, currently conducted on roughly a 3 to 5 year rotation across much of the South, would need to become more frequent if conditions become drier.Major wildfire events, such as the 2007...
Heat wave over India during summer 2015: an assessment of real time extended range forecast
NASA Astrophysics Data System (ADS)
Pattanaik, D. R.; Mohapatra, M.; Srivastava, A. K.; Kumar, Arun
2017-08-01
Hot winds are the marked feature of summer season in India during late spring preceding the climatological onset of the monsoon season in June. Some years the conditions becomes very vulnerable with the maximum temperature ( T max) exceeding 45 °C for many days over parts of north-western, eastern coastal states of India and Indo-Gangetic plain. During summer of 2015 (late May to early June) eastern coastal states, central and northwestern parts of India experienced severe heat wave conditions leading to loss of thousands of human life in extreme high temperature conditions. It is not only the loss of human life but also the animals and birds were very vulnerable to this extreme heat wave conditions. In this study, an attempt is made to assess the performance of real time extended range forecast (forecast up to 3 weeks) of this scorching T max based on the NCEP's Climate Forecast System (CFS) latest version coupled model (CFSv2). The heat wave condition was very severe during the week from 22 to 28 May with subsequent week from 29 May to 4 June also witnessed high T max over many parts of central India including eastern coastal states of India. The 8 ensemble members of operational CFSv2 model are used once in a week to prepare the weekly bias corrected deterministic (ensemble mean) T max forecast for 3 weeks valid from Friday to Thursday coinciding with the heat wave periods of 2015. Using the 8 ensemble members separately and the CFSv2 corresponding hindcast climatology the probability of above and below normal T max is also prepared for the same 3 weeks. The real time deterministic and probabilistic forecasts did indicate impending heat wave over many parts of India during late May and early June of 2015 associated with strong northwesterly wind over main land mass of India, delaying the sea breeze, leading to heat waves over eastern coastal regions of India. Thus, the capability of coupled model in providing early warning of such killer heat wave can be very useful to the disaster managers to take appropriate actions to minimize the loss of life and property due to such high T max.
Analyses and forecasts of a tornadic supercell outbreak using a 3DVAR system ensemble
NASA Astrophysics Data System (ADS)
Zhuang, Zhaorong; Yussouf, Nusrat; Gao, Jidong
2016-05-01
As part of NOAA's "Warn-On-Forecast" initiative, a convective-scale data assimilation and prediction system was developed using the WRF-ARW model and ARPS 3DVAR data assimilation technique. The system was then evaluated using retrospective short-range ensemble analyses and probabilistic forecasts of the tornadic supercell outbreak event that occurred on 24 May 2011 in Oklahoma, USA. A 36-member multi-physics ensemble system provided the initial and boundary conditions for a 3-km convective-scale ensemble system. Radial velocity and reflectivity observations from four WSR-88Ds were assimilated into the ensemble using the ARPS 3DVAR technique. Five data assimilation and forecast experiments were conducted to evaluate the sensitivity of the system to data assimilation frequencies, in-cloud temperature adjustment schemes, and fixed- and mixed-microphysics ensembles. The results indicated that the experiment with 5-min assimilation frequency quickly built up the storm and produced a more accurate analysis compared with the 10-min assimilation frequency experiment. The predicted vertical vorticity from the moist-adiabatic in-cloud temperature adjustment scheme was larger in magnitude than that from the latent heat scheme. Cycled data assimilation yielded good forecasts, where the ensemble probability of high vertical vorticity matched reasonably well with the observed tornado damage path. Overall, the results of the study suggest that the 3DVAR analysis and forecast system can provide reasonable forecasts of tornadic supercell storms.
A comparison of GLAS SAT and NMC high resolution NOSAT forecasts from 19 and 11 February 1976
NASA Technical Reports Server (NTRS)
Atlas, R.
1979-01-01
A subjective comparison of the Goddard Laboratory for Atmospheric Sciences (GLAS) and the National Meteorological Center (NMC) high resolution model forecasts is presented. Two cases where NMC's operational model in 1976 had serious difficulties in forecasting for the United States were examined. For each of the cases, the GLAS model forecasts from initial conditions which included satellite sounding data were compared directly to the NMC higher resolution model forecasts, from initial conditions which excluded the satellite data. The comparison showed that the GLAS satellite forecasts significantly improved upon the current NMC operational model's predictions in both cases.
NASA Astrophysics Data System (ADS)
Slater, Louise J.; Villarini, Gabriele; Bradley, Allen A.
2016-08-01
This paper examines the forecasting skill of eight Global Climate Models from the North-American Multi-Model Ensemble project (CCSM3, CCSM4, CanCM3, CanCM4, GFDL2.1, FLORb01, GEOS5, and CFSv2) over seven major regions of the continental United States. The skill of the monthly forecasts is quantified using the mean square error skill score. This score is decomposed to assess the accuracy of the forecast in the absence of biases (potential skill) and in the presence of conditional (slope reliability) and unconditional (standardized mean error) biases. We summarize the forecasting skill of each model according to the initialization month of the forecast and lead time, and test the models' ability to predict extended periods of extreme climate conducive to eight `billion-dollar' historical flood and drought events. Results indicate that the most skillful predictions occur at the shortest lead times and decline rapidly thereafter. Spatially, potential skill varies little, while actual model skill scores exhibit strong spatial and seasonal patterns primarily due to the unconditional biases in the models. The conditional biases vary little by model, lead time, month, or region. Overall, we find that the skill of the ensemble mean is equal to or greater than that of any of the individual models. At the seasonal scale, the drought events are better forecast than the flood events, and are predicted equally well in terms of high temperature and low precipitation. Overall, our findings provide a systematic diagnosis of the strengths and weaknesses of the eight models over a wide range of temporal and spatial scales.
Use of High-Resolution WRF Simulations to Forecast Lightning Threat
NASA Technical Reports Server (NTRS)
McCaul, E. W., Jr.; LaCasse, K.; Goodman, S. J.; Cecil, D. J.
2008-01-01
Recent observational studies have confirmed the existence of a robust statistical relationship between lightning flash rates and the amount of large precipitating ice hydrometeors aloft in storms. This relationship is exploited, in conjunction with the capabilities of cloud-resolving forecast models such as WRF, to forecast explicitly the threat of lightning from convective storms using selected output fields from the model forecasts. The simulated vertical flux of graupel at -15C and the shape of the simulated reflectivity profile are tested in this study as proxies for charge separation processes and their associated lightning risk. Our lightning forecast method differs from others in that it is entirely based on high-resolution simulation output, without reliance on any climatological data. short [6-8 h) simulations are conducted for a number of case studies for which three-dmmensional lightning validation data from the North Alabama Lightning Mapping Array are available. Experiments indicate that initialization of the WRF model on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity fields, and METAR and ACARS data y&eld satisfactory simulations. __nalyses of the lightning threat fields suggests that both the graupel flux and reflectivity profile approaches, when properly calibrated, can yield reasonable lightning threat forecasts, although an ensemble approach is probably desirable in order to reduce the tendency for misplacement of modeled storms to hurt the accuracy of the forecasts. Our lightning threat forecasts are also compared to other more traditional means of forecasting thunderstorms, such as those based on inspection of the convective available potential energy field.
An overview of health forecasting.
Soyiri, Ireneous N; Reidpath, Daniel D
2013-01-01
Health forecasting is a novel area of forecasting, and a valuable tool for predicting future health events or situations such as demands for health services and healthcare needs. It facilitates preventive medicine and health care intervention strategies, by pre-informing health service providers to take appropriate mitigating actions to minimize risks and manage demand. Health forecasting requires reliable data, information and appropriate analytical tools for the prediction of specific health conditions or situations. There is no single approach to health forecasting, and so various methods have often been adopted to forecast aggregate or specific health conditions. Meanwhile, there are no defined health forecasting horizons (time frames) to match the choices of health forecasting methods/approaches that are often applied. The key principles of health forecasting have not also been adequately described to guide the process. This paper provides a brief introduction and theoretical analysis of health forecasting. It describes the key issues that are important for health forecasting, including: definitions, principles of health forecasting, and the properties of health data, which influence the choices of health forecasting methods. Other matters related to the value of health forecasting, and the general challenges associated with developing and using health forecasting services are discussed. This overview is a stimulus for further discussions on standardizing health forecasting approaches and methods that will facilitate health care and health services delivery.
NASA Astrophysics Data System (ADS)
Koutroulis, Aristeidis; Grillakis, Manolis; Tsanis, Ioannis
2017-04-01
Seasonal prediction is recently at the center of the forecasting research efforts, especially for regions that are projected to be severely affected by global warming. The value of skillful seasonal forecasts can be considerable for many sectors and especially for the agricultural in which water users and managers can benefit to better anticipate against drought conditions. Here we present the first reflections from the user/stakeholder interactions and the design of a tailored drought decision support system in an attempt to bring seasonal predictions into local practice for the Messara valley located in the central-south area of Crete, Greece. Findings from interactions with the users and stakeholders reveal that although long range and seasonal predictions are not used, there is a strong interest for this type of information. The increase in the skill of short range weather predictions is also of great interest. The drought monitoring and prediction tool under development that support local water and agricultural management will include (a) sources of skillful short to medium term forecast information, (b) tailored drought monitoring and forecasting indices for the local groundwater aquifer and rain-fed agriculture, and (c) seasonal inflow forecasts for the local dam through hydrologic simulation to support management of freshwater resources and drought impacts on irrigated agriculture.
The Impact of Soil Moisture Initialization On Seasonal Precipitation Forecasts
NASA Technical Reports Server (NTRS)
Koster, R. D.; Suarez, M. J.; Tyahla, L.; Houser, Paul (Technical Monitor)
2002-01-01
Some studies suggest that the proper initialization of soil moisture in a forecasting model may contribute significantly to the accurate prediction of seasonal precipitation, especially over mid-latitude continents. In order for the initialization to have any impact at all, however, two conditions must be satisfied: (1) the initial soil moisture anomaly must be "remembered" into the forecasted season, and (2) the atmosphere must respond in a predictable way to the soil moisture anomaly. In our previous studies, we identified the key land surface and atmospheric properties needed to satisfy each condition. Here, we tie these studies together with an analysis of an ensemble of seasonal forecasts. Initial soil moisture conditions for the forecasts are established by forcing the land surface model with realistic precipitation prior to the start of the forecast period. As expected, the impacts on forecasted precipitation (relative to an ensemble of runs that do not utilize soil moisture information) tend to be localized over the small fraction of the earth with all of the required land and atmosphere properties.
Exploring What Determines the Use of Forecasts of Varying Time Periods in Guanacaste, Costa Rica
NASA Astrophysics Data System (ADS)
Babcock, M.; Wong-Parodi, G.; Grossmann, I.; Small, M. J.
2016-12-01
Weather and climate forecasts are promoted as ways to improve water management, especially in the face of changing environmental conditions. However, studies indicate many stakeholders who may benefit from such information do not use it. This study sought to better understand which personal factors (e.g., trust in forecast sources, perceptions of accuracy) were important determinants of the use of 4-day, 3-month, and 12-month rainfall forecasts by stakeholders in water management-related sectors in the seasonally dry province of Guanacaste, Costa Rica. From August to October 2015, we surveyed 87 stakeholders from a mix of government agencies, local water committees, large farms, tourist businesses, environmental NGO's, and the public. The result of an exploratory factor analysis suggests that trust in "informal" forecast sources (traditional methods, family advice) and in "formal" sources (government, university and private company science) are independent of each other. The result of logistic regression analyses suggest that 1) greater understanding of forecasts is associated with a greater probability of 4-day and 3-month forecast use, but not 12-month forecast use, 2) a greater probability of 3-month forecast use is associated with a lower level of trust in "informal" sources, and 3), feeling less secure about water resources, and regularly using many sources of information (and specifically formal meetings and reports) are each associated with a greater probability of using 12-month forecasts. While limited by the sample size, and affected by the factoring method and regression model assumptions, these results do appear to suggest that while forecasts of all times scales are used to some extent, local decision makers' decisions to use 4-day and 3-month forecasts appear to be more intrinsically motivated (based on their level of understanding and trust) and the use of 12-month forecasts seems to be more motivated by a sense of requirement or mandate.
14 CFR 135.219 - IFR: Destination airport weather minimums.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false IFR: Destination airport weather minimums... VFR/IFR Operating Limitations and Weather Requirements § 135.219 IFR: Destination airport weather... latest weather reports or forecasts, or any combination of them, indicate that weather conditions at the...
14 CFR 135.219 - IFR: Destination airport weather minimums.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false IFR: Destination airport weather minimums... VFR/IFR Operating Limitations and Weather Requirements § 135.219 IFR: Destination airport weather... latest weather reports or forecasts, or any combination of them, indicate that weather conditions at the...
14 CFR 135.219 - IFR: Destination airport weather minimums.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false IFR: Destination airport weather minimums... VFR/IFR Operating Limitations and Weather Requirements § 135.219 IFR: Destination airport weather... latest weather reports or forecasts, or any combination of them, indicate that weather conditions at the...
14 CFR 135.219 - IFR: Destination airport weather minimums.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false IFR: Destination airport weather minimums... VFR/IFR Operating Limitations and Weather Requirements § 135.219 IFR: Destination airport weather... latest weather reports or forecasts, or any combination of them, indicate that weather conditions at the...
14 CFR 135.219 - IFR: Destination airport weather minimums.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false IFR: Destination airport weather minimums... VFR/IFR Operating Limitations and Weather Requirements § 135.219 IFR: Destination airport weather... latest weather reports or forecasts, or any combination of them, indicate that weather conditions at the...
NASA Astrophysics Data System (ADS)
Kneringer, Philipp; Dietz, Sebastian; Mayr, Georg J.; Zeileis, Achim
2017-04-01
Low-visibility conditions have a large impact on aviation safety and economic efficiency of airports and airlines. To support decision makers, we develop a statistical probabilistic nowcasting tool for the occurrence of capacity-reducing operations related to low visibility. The probabilities of four different low visibility classes are predicted with an ordered logistic regression model based on time series of meteorological point measurements. Potential predictor variables for the statistical models are visibility, humidity, temperature and wind measurements at several measurement sites. A stepwise variable selection method indicates that visibility and humidity measurements are the most important model inputs. The forecasts are tested with a 30 minute forecast interval up to two hours, which is a sufficient time span for tactical planning at Vienna Airport. The ordered logistic regression models outperform persistence and are competitive with human forecasters.
Assimilation of water temperature and discharge data for ensemble water temperature forecasting
NASA Astrophysics Data System (ADS)
Ouellet-Proulx, Sébastien; Chimi Chiadjeu, Olivier; Boucher, Marie-Amélie; St-Hilaire, André
2017-11-01
Recent work demonstrated the value of water temperature forecasts to improve water resources allocation and highlighted the importance of quantifying their uncertainty adequately. In this study, we perform a multisite cascading ensemble assimilation of discharge and water temperature on the Nechako River (Canada) using particle filters. Hydrological and thermal initial conditions were provided to a rainfall-runoff model, coupled to a thermal module, using ensemble meteorological forecasts as inputs to produce 5 day ensemble thermal forecasts. Results show good performances of the particle filters with improvements of the accuracy of initial conditions by more than 65% compared to simulations without data assimilation for both the hydrological and the thermal component. All thermal forecasts returned continuous ranked probability scores under 0.8 °C when using a set of 40 initial conditions and meteorological forecasts comprising 20 members. A greater contribution of the initial conditions to the total uncertainty of the system for 1-dayforecasts is observed (mean ensemble spread = 1.1 °C) compared to meteorological forcings (mean ensemble spread = 0.6 °C). The inclusion of meteorological uncertainty is critical to maintain reliable forecasts and proper ensemble spread for lead times of 2 days and more. This work demonstrates the ability of the particle filters to properly update the initial conditions of a coupled hydrological and thermal model and offers insights regarding the contribution of two major sources of uncertainty to the overall uncertainty in thermal forecasts.
Burnell, Owen W.; Connell, Sean D.; Irving, Andrew D.; Watling, Jennifer R.; Russell, Bayden D.
2014-01-01
Rising atmospheric CO2 is increasing the availability of dissolved CO2 in the ocean relative to HCO3−. Currently, many marine primary producers use HCO3− for photosynthesis, but this is energetically costly. Increasing passive CO2 uptake relative to HCO3− pathways could provide energy savings, leading to increased productivity and growth of marine plants. Inorganic carbon-uptake mechanisms in the seagrass Amphibolis antarctica were determined using the carbonic anhydrase inhibitor acetazolamide (AZ) and the buffer tris(hydroxymethyl)aminomethane (TRIS). Amphibolis antarctica seedlings were also maintained in current and forecasted CO2 concentrations to measure their physiology and growth. Photosynthesis of A. antarctica was significantly reduced by AZ and TRIS, indicating utilization of HCO3−-uptake mechanisms. When acclimated plants were switched between CO2 treatments, the photosynthetic rate was dependent on measurement conditions but not growth conditions, indicating a dynamic response to changes in dissolved CO2 concentration, rather than lasting effects of acclimation. At forecast CO2 concentrations, seedlings had a greater maximum electron transport rate (1.4-fold), photosynthesis (2.1-fold), below-ground biomass (1.7-fold) and increase in leaf number (2-fold) relative to plants in the current CO2 concentration. The greater increase in photosynthesis (measured as O2 production) compared with the electron transport rate at forecasted CO2 concentration suggests that photosynthetic efficiency increased, possibly due to a decrease in photorespiration. Thus, it appears that the photosynthesis and growth of seagrasses reliant on energetically costly HCO3− acquisition, such as A. antarctica, might increase at forecasted CO2 concentrations. Greater growth might enhance the future prosperity and rehabilitation of these important habitat-forming plants, which have experienced declines of global significance. PMID:27293673
Burnell, Owen W; Connell, Sean D; Irving, Andrew D; Watling, Jennifer R; Russell, Bayden D
2014-01-01
Rising atmospheric CO2 is increasing the availability of dissolved CO2 in the ocean relative to HCO3 (-). Currently, many marine primary producers use HCO3 (-) for photosynthesis, but this is energetically costly. Increasing passive CO2 uptake relative to HCO3 (-) pathways could provide energy savings, leading to increased productivity and growth of marine plants. Inorganic carbon-uptake mechanisms in the seagrass Amphibolis antarctica were determined using the carbonic anhydrase inhibitor acetazolamide (AZ) and the buffer tris(hydroxymethyl)aminomethane (TRIS). Amphibolis antarctica seedlings were also maintained in current and forecasted CO2 concentrations to measure their physiology and growth. Photosynthesis of A. antarctica was significantly reduced by AZ and TRIS, indicating utilization of HCO3 (-)-uptake mechanisms. When acclimated plants were switched between CO2 treatments, the photosynthetic rate was dependent on measurement conditions but not growth conditions, indicating a dynamic response to changes in dissolved CO2 concentration, rather than lasting effects of acclimation. At forecast CO2 concentrations, seedlings had a greater maximum electron transport rate (1.4-fold), photosynthesis (2.1-fold), below-ground biomass (1.7-fold) and increase in leaf number (2-fold) relative to plants in the current CO2 concentration. The greater increase in photosynthesis (measured as O2 production) compared with the electron transport rate at forecasted CO2 concentration suggests that photosynthetic efficiency increased, possibly due to a decrease in photorespiration. Thus, it appears that the photosynthesis and growth of seagrasses reliant on energetically costly HCO3 (-) acquisition, such as A. antarctica, might increase at forecasted CO2 concentrations. Greater growth might enhance the future prosperity and rehabilitation of these important habitat-forming plants, which have experienced declines of global significance.
Global drought outlook by means of seasonal forecasts
NASA Astrophysics Data System (ADS)
Ziese, Markus; Fröhlich, Kristina; Rustemeier, Elke; Becker, Andreas
2017-04-01
Droughts are naturally occurring phenomena which are caused by a shortage of available water due to lower than normal precipitation and/or above normal evaporation. Depending on the length of the droughts, several sectors are affected starting with agriculture, then river and ground water levels and finally socio-economic losses at the long end of the spectrum of drought persistence. Droughts are extreme events that affect much larger areas and last much longer than floods, but are less geared towards media than floods being more short-scale in persistence and impacts. Finally the slow onset of droughts make the detection and early warning of their beginning difficult and time is lost for preparatory measures. Drought indices are developed to detect and classify droughts based on (meteorological) observations and possible additional information tailored to specific user needs, e.g. in agriculture, hydrology and other sectors. Not all drought indices can be utilized for global applications as not all input parameters are available at this scale. Therefore the Global Precipitation Climatology Centre (GPCC) developed a drought index as combination of the Standardized Drought Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI), the GPCC-DI. The GPCC-DI is applied to drought monitoring and retrospective analyses on a global scale. As the Deutscher Wetterdienst (DWD) operates a seasonal forecast system in cooperation with Max-Planck-Institute for Meteorology Hamburg and University of Hamburg, these data are also used for an outlook of drought conditions by means of the GPCC-DI. The reliability of seasonal precipitation forecasts is limited, so the drought outlook is available only for forecast months two to four. Based on the GPCC-DI, DWD provides a retrospective analysis, near-real-time monitoring and outlook of drought conditions on a global scale and regular basis.
Near-term probabilistic forecast of significant wildfire events for the Western United States
Haiganoush K. Preisler; Karin L. Riley; Crystal S. Stonesifer; Dave E. Calkin; Matt Jolly
2016-01-01
Fire danger and potential for large fires in the United States (US) is currently indicated via several forecasted qualitative indices. However, landscape-level quantitative forecasts of the probability of a large fire are currently lacking. In this study, we present a framework for forecasting large fire occurrence - an extreme value event - and evaluating...
NASA Astrophysics Data System (ADS)
Liu, Y.; Zhang, Y.; Wood, A.; Lee, H. S.; Wu, L.; Schaake, J. C.
2016-12-01
Seasonal precipitation forecasts are a primary driver for seasonal streamflow prediction that is critical for a range of water resources applications, such as reservoir operations and drought management. However, it is well known that seasonal precipitation forecasts from climate models are often biased and also too coarse in spatial resolution for hydrologic applications. Therefore, post-processing procedures such as downscaling and bias correction are often needed. In this presentation, we discuss results from a recent study that applies a two-step methodology to downscale and correct the ensemble mean precipitation forecasts from the Climate Forecast System (CFS). First, CFS forecasts are downscaled and bias corrected using monthly reforecast analogs: we identify past precipitation forecasts that are similar to the current forecast, and then use the finer-scale observational analysis fields from the corresponding dates to represent the post-processed ensemble forecasts. Second, we construct the posterior distribution of forecast precipitation from the post-processed ensemble by integrating climate indices: a correlation analysis is performed to identify dominant climate indices for the study region, which are then used to weight the analysis analogs selected in the first step using a Bayesian approach. The methodology is applied to the California Nevada River Forecast Center (CNRFC) and the Middle Atlantic River Forecast Center (MARFC) regions for 1982-2015, using the North American Land Data Assimilation System (NLDAS-2) precipitation as the analysis. The results from cross validation show that the post-processed CFS precipitation forecast are considerably more skillful than the raw CFS with the analog approach only. Integrating climate indices can further improve the skill if the number of ensemble members considered is large enough; however, the improvement is generally limited to the first couple of months when compared against climatology. Impacts of various factors such as ensemble size, lead time, and choice of climate indices will also be discussed.
National Weather Service Forecast Office - Honolulu, Hawai`i
Locations - Coastal Forecast Kauai Northwest Waters Kauai Windward Waters Kauai Leeward Waters Kauai Channel Oahu Forecast Oahu Surf Forecast Coastal Wind Observations Buoy Reports, and current weather conditions for selected locations tides, sunrise and sunset information Coastal Waters Forecast general weather
Developing global climate anomalies suggest potential disease risks for 2006-2007.
Anyamba, Assaf; Chretien, Jean-Paul; Small, Jennifer; Tucker, Compton J; Linthicum, Kenneth J
2006-12-28
El Niño/Southern Oscillation (ENSO) related climate anomalies have been shown to have an impact on infectious disease outbreaks. The Climate Prediction Center of the National Oceanic and Atmospheric Administration (NOAA/CPC) has recently issued an unscheduled El Niño advisory, indicating that warmer than normal sea surface temperatures across the equatorial eastern Pacific may have pronounced impacts on global tropical precipitation patterns extending into the northern hemisphere particularly over North America. Building evidence of the links between ENSO driven climate anomalies and infectious diseases, particularly those transmitted by insects, can allow us to provide improved long range forecasts of an epidemic or epizootic. We describe developing climate anomalies that suggest potential disease risks using satellite generated data. Sea surface temperatures (SSTs) in the equatorial east Pacific ocean have anomalously increased significantly during July - October 2006 indicating the typical development of El Niño conditions. The persistence of these conditions will lead to extremes in global-scale climate anomalies as has been observed during similar conditions in the past. Positive Outgoing Longwave Radiation (OLR) anomalies, indicative of severe drought conditions, have been observed across all of Indonesia, Malaysia and most of the Philippines, which are usually the first areas to experience ENSO-related impacts. This dryness can be expected to continue, on average, for the remainder of 2006 continuing into the early part of 2007. During the period November 2006 - January 2007 climate forecasts indicate that there is a high probability for above normal rainfall in the central and eastern equatorial Pacific Islands, the Korean Peninsula, the U.S. Gulf Coast and Florida, northern South America and equatorial east Africa. Taking into consideration current observations and climate forecast information, indications are that the following regions are at increased risk for disease outbreaks: Indonesia, Malaysia, Thailand and most of the southeast Asia Islands for increased dengue fever transmission and increased respiratory illness; Coastal Peru, Ecuador, Venezuela, and Colombia for increased risk of malaria; Bangladesh and coastal India for elevated risk of cholera; East Africa for increased risk of a Rift Valley fever outbreak and elevated malaria; southwest USA for increased risk for hantavirus pulmonary syndrome and plague; southern California for increased West Nile virus transmission; and northeast Brazil for increased dengue fever and respiratory illness. The current development of El Niño conditions has significant implications for global public health. Extremes in climate events with above normal rainfall and flooding in some regions and extended drought periods in other regions will occur. Forecasting disease is critical for timely and efficient planning of operational control programs. In this paper we describe developing global climate anomalies that suggest potential disease risks that will give decision makers additional tools to make rational judgments concerning implementation of disease prevention and mitigation strategies.
Long-term climate forcing in loggerhead sea turtle nesting.
Van Houtan, Kyle S; Halley, John M
2011-04-27
The long-term variability of marine turtle populations remains poorly understood, limiting science and management. Here we use basin-scale climate indices and regional surface temperatures to estimate loggerhead sea turtle (Caretta caretta) nesting at a variety of spatial and temporal scales. Borrowing from fisheries research, our models investigate how oceanographic processes influence juvenile recruitment and regulate population dynamics. This novel approach finds local populations in the North Pacific and Northwest Atlantic are regionally synchronized and strongly correlated to ocean conditions--such that climate models alone explain up to 88% of the observed changes over the past several decades. In addition to its performance, climate-based modeling also provides mechanistic forecasts of historical and future population changes. Hindcasts in both regions indicate climatic conditions may have been a factor in recent declines, but future forecasts are mixed. Available climatic data suggests the Pacific population will be significantly reduced by 2040, but indicates the Atlantic population may increase substantially. These results do not exonerate anthropogenic impacts, but highlight the significance of bottom-up oceanographic processes to marine organisms. Future studies should consider environmental baselines in assessments of marine turtle population variability and persistence.
Advanced, Cost-Based Indices for Forecasting the Generation of Photovoltaic Power
NASA Astrophysics Data System (ADS)
Bracale, Antonio; Carpinelli, Guido; Di Fazio, Annarita; Khormali, Shahab
2014-01-01
Distribution systems are undergoing significant changes as they evolve toward the grids of the future, which are known as smart grids (SGs). The perspective of SGs is to facilitate large-scale penetration of distributed generation using renewable energy sources (RESs), encourage the efficient use of energy, reduce systems' losses, and improve the quality of power. Photovoltaic (PV) systems have become one of the most promising RESs due to the expected cost reduction and the increased efficiency of PV panels and interfacing converters. The ability to forecast power-production information accurately and reliably is of primary importance for the appropriate management of an SG and for making decisions relative to the energy market. Several forecasting methods have been proposed, and many indices have been used to quantify the accuracy of the forecasts of PV power production. Unfortunately, the indices that have been used have deficiencies and usually do not directly account for the economic consequences of forecasting errors in the framework of liberalized electricity markets. In this paper, advanced, more accurate indices are proposed that account directly for the economic consequences of forecasting errors. The proposed indices also were compared to the most frequently used indices in order to demonstrate their different, improved capability. The comparisons were based on the results obtained using a forecasting method based on an artificial neural network. This method was chosen because it was deemed to be one of the most promising methods available due to its capability for forecasting PV power. Numerical applications also are presented that considered an actual PV plant to provide evidence of the forecasting performances of all of the indices that were considered.
The Impact of Atmospheric InfraRed Sounder (AIRS) Profiles on Short-term Weather Forecasts
NASA Technical Reports Server (NTRS)
Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William
2007-01-01
The Atmospheric Infrared Sounder (AIRS), together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced spacebased atmospheric sounding systems. The combined AlRS/AMSU system provides radiance measurements used to retrieve temperature profiles with an accuracy of 1 K over 1 km layers under both clear and partly cloudy conditions, while the accuracy of the derived humidity profiles is 15% in 2 km layers. Critical to the successful use of AIRS profiles for weather and climate studies is the use of profile quality indicators and error estimates provided with each profile Aside form monitoring changes in Earth's climate, one of the objectives of AIRS is to provide sounding information of sufficient accuracy such that the assimilation of the new observations, especially in data sparse region, will lead to an improvement in weather forecasts. The purpose of this paper is to describe a procedure to optimally assimilate highresolution AIRS profile data in a regional analysis/forecast model. The paper will focus on the impact of AIRS profiles on a rapidly developing east coast storm and will also discuss preliminary results for a 30-day forecast period, simulating a quasi-operation environment. Temperature and moisture profiles were obtained from the prototype version 5.0 EOS science team retrieval algorithm which includes explicit error information for each profile. The error profile information was used to select the highest quality temperature and moisture data for every profile location and pressure level for assimilation into the ARPS Data Analysis System (ADAS). The AIRS-enhanced analyses were used as initial fields for the Weather Research and Forecast (WRF) system used by the SPORT project for regional weather forecast studies. The ADASWRF system will be run on CONUS domain with an emphasis on the east coast. The preliminary assessment of the impact of the AIRS profiles will focus on quality control issues associated with AIRS, intelligent use of the quality indicators, and forecast verification.
NASA Astrophysics Data System (ADS)
Cacciamani, C.; Cesari, D.; Grazzini, F.; Paccagnella, T.; Pantone, M.
In this paper we describe the results of several numerical experiments performed with the limited area model LAMBO, based on a 1989 version of the NCEP (National Center for Environmental Prediction) ETA model, operational at ARPA-SMR since 1993. The experiments have been designed to assess the impact of different horizontal resolutions and initial conditions on the quality and detail of the forecast, especially as regards the precipitation field in the case of severe flood events. For initial conditions we developed a mesoscale data assimilation scheme, based on the nudging technique. The scheme makes use of upper air and surface meteorological observations to modify ECMWF (European Centre for Medium Range Weather Forecast) operational analyses, used as first-guess fields, in order to better describe smaller scales features, mainly in the lower troposphere. Three flood cases in the Alpine and Mediterranean regions have been simulated with LAMBO, using a horizontal grid spacing of 15 and 5km and starting either from ECMWF initialised analysis or from the result of our mesoscale analysis procedure. The results show that increasing the resolution generally improves the forecast, bringing the precipitation peaks in the flooded areas close to the observed values without producing many spurious precipitation patterns. The use of mesoscale analysis produces a more realistic representation of precipitation patterns giving a further improvement to the forecast of precipitation. Furthermore, when simulations are started from mesoscale analysis, some model-simulated thermodynamic indices show greater vertical instability just in the regions where strongest precipitation occurred.
NASA Astrophysics Data System (ADS)
Lim, Kyo-Sun Sunny; Lim, Jong-Myoung; Shin, Hyeyum Hailey; Hong, Jinkyu; Ji, Young-Yong; Lee, Wanno
2018-06-01
A substantial over-prediction bias at low-to-moderate wind speeds in the Weather Research and Forecasting (WRF) model has been reported in the previous studies. Low-level wind fields play an important role in dispersion of air pollutants, including radionuclides, in a high-resolution WRF framework. By implementing two subgrid-scale orography parameterizations (Jimenez and Dudhia in J Appl Meteorol Climatol 51:300-316, 2012; Mass and Ovens in WRF model physics: problems, solutions and a new paradigm for progress. Preprints, 2010 WRF Users' Workshop, NCAR, Boulder, Colo. http://www.mmm.ucar.edu/wrf/users/workshops/WS2010/presentations/session%204/4-1_WRFworkshop2010Final.pdf, 2010), we tried to compare the performance of parameterizations and to enhance the forecast skill of low-level wind fields over the central western part of South Korea. Even though both subgrid-scale orography parameterizations significantly alleviated the positive bias at 10-m wind speed, the parameterization by Jimenez and Dudhia revealed a better forecast skill in wind speed under our modeling configuration. Implementation of the subgrid-scale orography parameterizations in the model did not affect the forecast skills in other meteorological fields including 10-m wind direction. Our study also brought up the problem of discrepancy in the definition of "10-m" wind between model physics parameterizations and observations, which can cause overestimated winds in model simulations. The overestimation was larger in stable conditions than in unstable conditions, indicating that the weak diurnal cycle in the model could be attributed to the representation error.
Evaluation Of Statistical Models For Forecast Errors From The HBV-Model
NASA Astrophysics Data System (ADS)
Engeland, K.; Kolberg, S.; Renard, B.; Stensland, I.
2009-04-01
Three statistical models for the forecast errors for inflow to the Langvatn reservoir in Northern Norway have been constructed and tested according to how well the distribution and median values of the forecasts errors fit to the observations. For the first model observed and forecasted inflows were transformed by the Box-Cox transformation before a first order autoregressive model was constructed for the forecast errors. The parameters were conditioned on climatic conditions. In the second model the Normal Quantile Transformation (NQT) was applied on observed and forecasted inflows before a similar first order autoregressive model was constructed for the forecast errors. For the last model positive and negative errors were modeled separately. The errors were first NQT-transformed before a model where the mean values were conditioned on climate, forecasted inflow and yesterday's error. To test the three models we applied three criterions: We wanted a) the median values to be close to the observed values; b) the forecast intervals to be narrow; c) the distribution to be correct. The results showed that it is difficult to obtain a correct model for the forecast errors, and that the main challenge is to account for the auto-correlation in the errors. Model 1 and 2 gave similar results, and the main drawback is that the distributions are not correct. The 95% forecast intervals were well identified, but smaller forecast intervals were over-estimated, and larger intervals were under-estimated. Model 3 gave a distribution that fits better, but the median values do not fit well since the auto-correlation is not properly accounted for. If the 95% forecast interval is of interest, Model 2 is recommended. If the whole distribution is of interest, Model 3 is recommended.
NASA Astrophysics Data System (ADS)
Karlovits, G. S.; Villarini, G.; Bradley, A.; Vecchi, G. A.
2014-12-01
Forecasts of seasonal precipitation and temperature can provide information in advance of potentially costly disruptions caused by flood and drought conditions. The consequences of these adverse hydrometeorological conditions may be mitigated through informed planning and response, given useful and skillful forecasts of these conditions. However, the potential value and applicability of these forecasts is unavoidably linked to their forecast quality. In this work we evaluate the skill of four global circulation models (GCMs) part of the North American Multi-Model Ensemble (NMME) project in forecasting seasonal precipitation and temperature over the continental United States. The GCMs we consider are the Geophysical Fluid Dynamics Laboratory (GFDL)-CM2.1, NASA Global Modeling and Assimilation Office (NASA-GMAO)-GEOS-5, The Center for Ocean-Land-Atmosphere Studies - Rosenstiel School of Marine & Atmospheric Science (COLA-RSMAS)-CCSM3, Canadian Centre for Climate Modeling and Analysis (CCCma) - CanCM4. These models are available at a resolution of 1-degree and monthly, with a minimum forecast lead time of nine months, up to one year. These model ensembles are compared against gridded monthly temperature and precipitation data created by the PRISM Climate Group, which represent the reference observation dataset in this work. Aspects of forecast quality are quantified using a diagnostic skill score decomposition that allows the evaluation of the potential skill and conditional and unconditional biases associated with these forecasts. The evaluation of the decomposed GCM forecast skill over the continental United States, by season and by lead time allows for a better understanding of the utility of these models for flood and drought predictions. Moreover, it also represents a diagnostic tool that could provide model developers feedback about strengths and weaknesses of their models.
Environmental Assessment for Lake Ashtabula Winter Drawdown, Barnes County, North Dakota
2013-07-31
However, the target drawdown level may be altered by other conditions, such as the fall soil moisture and the National Weather Service spring flood...will soak into the soil rather than run off into the reservoir. If the NWS forecasts indicate that spring flooding will be minimal, the drawdown...been over-estimated, soil moisture conditions may have been unexpectedly dry, or snowmelt may occur very gradually, minimizing runoff. The rules for
Recurrence in Major Depression: A Conceptual Analysis
ERIC Educational Resources Information Center
Monroe, Scott M.; Harkness, Kate L.
2011-01-01
Theory and research on major depression have increasingly assumed a recurrent and chronic disease model. Yet not all people who become depressed suffer recurrences, suggesting that depression is also an acute, time-limited condition. However, few if any risk indicators are available to forecast which of the initially depressed will or will not…
14 CFR 121.613 - Dispatch or flight release under IFR or over the top.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Dispatch or flight release under IFR or over the top. 121.613 Section 121.613 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... appropriate weather reports or forecasts, or any combination thereof, indicate that the weather conditions...
14 CFR 121.613 - Dispatch or flight release under IFR or over the top.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Dispatch or flight release under IFR or over the top. 121.613 Section 121.613 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... appropriate weather reports or forecasts, or any combination thereof, indicate that the weather conditions...
14 CFR 121.613 - Dispatch or flight release under IFR or over the top.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Dispatch or flight release under IFR or over the top. 121.613 Section 121.613 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... appropriate weather reports or forecasts, or any combination thereof, indicate that the weather conditions...
14 CFR 121.613 - Dispatch or flight release under IFR or over the top.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Dispatch or flight release under IFR or over the top. 121.613 Section 121.613 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... appropriate weather reports or forecasts, or any combination thereof, indicate that the weather conditions...
14 CFR 121.613 - Dispatch or flight release under IFR or over the top.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Dispatch or flight release under IFR or over the top. 121.613 Section 121.613 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... appropriate weather reports or forecasts, or any combination thereof, indicate that the weather conditions...
Regional Air Quality forecAST (RAQAST) Over the U.S
NASA Astrophysics Data System (ADS)
Yoshida, Y.; Choi, Y.; Zeng, T.; Wang, Y.
2005-12-01
A regional chemistry and transport modeling system is used to provide 48-hour forecast of the concentrations of ozone and its precursors over the United States. Meteorological forecast is conducted using the NCAR/Penn State MM5 model. The regional chemistry and transport model simulates the sources, transport, chemistry, and deposition of 24 chemical tracers. The lateral and upper boundary conditions of trace gas concentrations are specified using the monthly mean output from the global GEOS-CHEM model. The initial and boundary conditions for meteorological fields are taken from the NOAA AVN forecast. The forecast has been operational since August, 2003. Model simulations are evaluated using surface, aircraft, and satellite measurements in the A'hindcast' mode. The next step is an automated forecast evaluation system.
NASA Astrophysics Data System (ADS)
Ciabatta, Luca; Brocca, Luca; Ponziani, Francesco; Berni, Nicola; Stelluti, Marco; Moramarco, Tommaso
2014-05-01
The Umbria Region, located in Central Italy, is one of the most landslide risk prone area in Italy, almost yearly affected by landslides events at different spatial scales. For early warning procedures aimed at the assessment of the hydrogeological risk, the rainfall thresholds represent the main tool for the Italian Civil Protection System. As shown in previous studies, soil moisture plays a key-role in landslides triggering. In fact, acting on the pore water pressure, soil moisture influences the rainfall amount needed for activating a landslide. In this work, an operational physically-based early warning system, named PRESSCA, that takes into account soil moisture for the definition of rainfall thresholds is presented. Specifically, the soil moisture conditions are evaluated in PRESSCA by using a distributed soil water balance model that is recently coupled with near real-time satellite soil moisture product obtained from ASCAT (Advanced SCATterometer) and from in-situ monitoring data. The integration of three different sources of soil moisture information allows to estimate the most accurate possible soil moisture condition. Then, both observed and forecasted rainfall data are compared with the soil moisture-based thresholds in order to obtain risk indicators over a grid of ~ 5 km. These indicators are then used for the daily hydrogeological risk evaluation and management by the Civil Protection regional service, through the sharing/delivering of near real-time landslide risk scenarios (also through an open source web platform: www.cfumbria.it). On the 11th-12th November, 2013, Umbria Region was hit by an exceptional rainfall event with up to 430mm/72hours that resulted in significant economic damages, but fortunately no casualties among the population. In this study, the results during the rainfall event of PRESSCA system are described, by underlining the model capability to reproduce, two days in advance, landslide risk scenarios in good spatial and temporal agreement with the occurred actual conditions. High-resolution risk scenarios (100mx100m), obtained by coupling PRESSCA forecasts with susceptibility and vulnerability layers, are also produced. The results show good relationship between the PRESSCA forecast and the reported landslides to the Civil Protection Service during the rainfall event, confirming the system robustness. The good forecasts of PRESSCA system have surely contributed to start well in advance the Civil Protection operations (alerting local authorities and population).
NASA Astrophysics Data System (ADS)
Lantz, K. O.; Long, C. S.; Buller, D.; Berwick, M.; Buller, M.; Kane, I.; Shane, J.
2012-12-01
The UV Index (UVI) is a measure of the skin-damaging UV radiation levels at the Earth's surface. Clouds, haze, air pollution, total ozone, surface elevation, and ground reflectivity affect the levels of UV radiation reaching the ground. The global UV Index was developed as a simple tool to educate the public for taking precautions when exposed to UV radiation to avoid sun-burning, which has been linked to the development of skin cancer. The purpose of this study was to validate an algorithm to modify a cloud-free UV Index forecast for cloud conditions as observed by adults in real-time. The cloud attenuation algorithm is used in a smart-phone application to modify a clear-sky UV Index forecast. In the United States, the Climate Prediction Center of the National Oceanic and Atmospheric Administration's (NOAA) issues a daily UV Index Forecast. The NOAA UV Index is an hourly forecast for a 0.5 x 0.5 degree area and thus has a degree of uncertainty. Cloud cover varies temporally and spatially over short times and distances as weather conditions change and can have a large impact on the UV radiation. The smart-phone application uses the cloud-based UV Index forecast as the default but allows the user to modify a cloud-free UV Index forecast when the predicted sky conditions do not match observed conditions. Eighty four (n=84) adults were recruited to participate in the study through advertisements posted online and in a university e-newsletter. Adults were screened for eligibility (i.e., 18 or older, capable to traveling to test site, had a smart phone with a data plan to access online observation form). A sky observation measure was created to assess cloud fraction. The adult volunteers selected from among four photographs the image that best matched the cloud conditions they observed. Images depicted no clouds (clear sky), thin high clouds, partly cloudy sky, and thick clouds (sky completely overcast). When thin high clouds or partly cloudy images were selected, adults estimated the percentage of the sky covered by clouds. Cloud fraction was calculated by assigning 0% if the clear-sky image was selected, 100% if the overcast thick cloud image was selected, and 10% to 90% as indicated by adults, if high thin clouds or partly cloudy images were selected. The observed cloud fraction from the adult volunteers was compared to the cloud fraction determined by a Total Sky Imager. A cloud modification factor based on the observed cloud fraction was applied to the cloud-free UV Index forecast. This result was compared to the NOAA cloudy sky UV Index forecast and to the concurrent UV Index measurements from three broadband UV radiometers and a Brewer spectrophotometer calibrated using NIST traceable standards.
NASA Astrophysics Data System (ADS)
Zhu, Kefeng; Xue, Ming
2016-11-01
On 21 July 2012, an extreme rainfall event that recorded a maximum rainfall amount over 24 hours of 460 mm, occurred in Beijing, China. Most operational models failed to predict such an extreme amount. In this study, a convective-permitting ensemble forecast system (CEFS), at 4-km grid spacing, covering the entire mainland of China, is applied to this extreme rainfall case. CEFS consists of 22 members and uses multiple physics parameterizations. For the event, the predicted maximum is 415 mm d-1 in the probability-matched ensemble mean. The predicted high-probability heavy rain region is located in southwest Beijing, as was observed. Ensemble-based verification scores are then investigated. For a small verification domain covering Beijing and its surrounding areas, the precipitation rank histogram of CEFS is much flatter than that of a reference global ensemble. CEFS has a lower (higher) Brier score and a higher resolution than the global ensemble for precipitation, indicating more reliable probabilistic forecasting by CEFS. Additionally, forecasts of different ensemble members are compared and discussed. Most of the extreme rainfall comes from convection in the warm sector east of an approaching cold front. A few members of CEFS successfully reproduce such precipitation, and orographic lift of highly moist low-level flows with a significantly southeasterly component is suggested to have played important roles in producing the initial convection. Comparisons between good and bad forecast members indicate a strong sensitivity of the extreme rainfall to the mesoscale environmental conditions, and, to less of an extent, the model physics.
Assessment of reservoir system variable forecasts
NASA Astrophysics Data System (ADS)
Kistenmacher, Martin; Georgakakos, Aris P.
2015-05-01
Forecast ensembles are a convenient means to model water resources uncertainties and to inform planning and management processes. For multipurpose reservoir systems, forecast types include (i) forecasts of upcoming inflows and (ii) forecasts of system variables and outputs such as reservoir levels, releases, flood damage risks, hydropower production, water supply withdrawals, water quality conditions, navigation opportunities, and environmental flows, among others. Forecasts of system variables and outputs are conditional on forecasted inflows as well as on specific management policies and can provide useful information for decision-making processes. Unlike inflow forecasts (in ensemble or other forms), which have been the subject of many previous studies, reservoir system variable and output forecasts are not formally assessed in water resources management theory or practice. This article addresses this gap and develops methods to rectify potential reservoir system forecast inconsistencies and improve the quality of management-relevant information provided to stakeholders and managers. The overarching conclusion is that system variable and output forecast consistency is critical for robust reservoir management and needs to be routinely assessed for any management model used to inform planning and management processes. The above are demonstrated through an application from the Sacramento-American-San Joaquin reservoir system in northern California.
Seasonal Prediction with the GEOS GCM
NASA Technical Reports Server (NTRS)
Suarez, Max; Schubert, S.; Chang, Y.
1999-01-01
A number of ensembles of seasonal forecasts have recently been completed as part of NASA's Seasonal to Interannual Prediction Project (NSIPP). The focus is on the extratropical response of the atmosphere to observed SST anomalies during boreal winter. Each prediction consists of nine forecasts starting from slightly different initial conditions. Forecasts are done for every winter from 1981 to 1995 using Version 2 of the GEOS GCM. Comparisons with six long-term integrations (1978-1995) using the same model are used to separate the contributions of initial and boundary conditions to forecast skill. The forecasts also allow us to isolate the SSt forced response (the signal) from the atmosphere's natural variability (the noise).
Weighting of NMME temperature and precipitation forecasts across Europe
NASA Astrophysics Data System (ADS)
Slater, Louise J.; Villarini, Gabriele; Bradley, A. Allen
2017-09-01
Multi-model ensemble forecasts are obtained by weighting multiple General Circulation Model (GCM) outputs to heighten forecast skill and reduce uncertainties. The North American Multi-Model Ensemble (NMME) project facilitates the development of such multi-model forecasting schemes by providing publicly-available hindcasts and forecasts online. Here, temperature and precipitation forecasts are enhanced by leveraging the strengths of eight NMME GCMs (CCSM3, CCSM4, CanCM3, CanCM4, CFSv2, GEOS5, GFDL2.1, and FLORb01) across all forecast months and lead times, for four broad climatic European regions: Temperate, Mediterranean, Humid-Continental and Subarctic-Polar. We compare five different approaches to multi-model weighting based on the equally weighted eight single-model ensembles (EW-8), Bayesian updating (BU) of the eight single-model ensembles (BU-8), BU of the 94 model members (BU-94), BU of the principal components of the eight single-model ensembles (BU-PCA-8) and BU of the principal components of the 94 model members (BU-PCA-94). We assess the forecasting skill of these five multi-models and evaluate their ability to predict some of the costliest historical droughts and floods in recent decades. Results indicate that the simplest approach based on EW-8 preserves model skill, but has considerable biases. The BU and BU-PCA approaches reduce the unconditional biases and negative skill in the forecasts considerably, but they can also sometimes diminish the positive skill in the original forecasts. The BU-PCA models tend to produce lower conditional biases than the BU models and have more homogeneous skill than the other multi-models, but with some loss of skill. The use of 94 NMME model members does not present significant benefits over the use of the 8 single model ensembles. These findings may provide valuable insights for the development of skillful, operational multi-model forecasting systems.
Forecasting distribution of numbers of large fires
Eidenshink, Jeffery C.; Preisler, Haiganoush K.; Howard, Stephen; Burgan, Robert E.
2014-01-01
Systems to estimate forest fire potential commonly utilize one or more indexes that relate to expected fire behavior; however they indicate neither the chance that a large fire will occur, nor the expected number of large fires. That is, they do not quantify the probabilistic nature of fire danger. In this work we use large fire occurrence information from the Monitoring Trends in Burn Severity project, and satellite and surface observations of fuel conditions in the form of the Fire Potential Index, to estimate two aspects of fire danger: 1) the probability that a 1 acre ignition will result in a 100+ acre fire, and 2) the probabilities of having at least 1, 2, 3, or 4 large fires within a Predictive Services Area in the forthcoming week. These statistical processes are the main thrust of the paper and are used to produce two daily national forecasts that are available from the U.S. Geological Survey, Earth Resources Observation and Science Center and via the Wildland Fire Assessment System. A validation study of our forecasts for the 2013 fire season demonstrated good agreement between observed and forecasted values.
An intercomparison of approaches for improving operational seasonal streamflow forecasts
NASA Astrophysics Data System (ADS)
Mendoza, Pablo A.; Wood, Andrew W.; Clark, Elizabeth; Rothwell, Eric; Clark, Martyn P.; Nijssen, Bart; Brekke, Levi D.; Arnold, Jeffrey R.
2017-07-01
For much of the last century, forecasting centers around the world have offered seasonal streamflow predictions to support water management. Recent work suggests that the two major avenues to advance seasonal predictability are improvements in the estimation of initial hydrologic conditions (IHCs) and the incorporation of climate information. This study investigates the marginal benefits of a variety of methods using IHCs and/or climate information, focusing on seasonal water supply forecasts (WSFs) in five case study watersheds located in the US Pacific Northwest region. We specify two benchmark methods that mimic standard operational approaches - statistical regression against IHCs and model-based ensemble streamflow prediction (ESP) - and then systematically intercompare WSFs across a range of lead times. Additional methods include (i) statistical techniques using climate information either from standard indices or from climate reanalysis variables and (ii) several hybrid/hierarchical approaches harnessing both land surface and climate predictability. In basins where atmospheric teleconnection signals are strong, and when watershed predictability is low, climate information alone provides considerable improvements. For those basins showing weak teleconnections, custom predictors from reanalysis fields were more effective in forecast skill than standard climate indices. ESP predictions tended to have high correlation skill but greater bias compared to other methods, and climate predictors failed to substantially improve these deficiencies within a trace weighting framework. Lower complexity techniques were competitive with more complex methods, and the hierarchical expert regression approach introduced here (hierarchical ensemble streamflow prediction - HESP) provided a robust alternative for skillful and reliable water supply forecasts at all initialization times. Three key findings from this effort are (1) objective approaches supporting methodologically consistent hindcasts open the door to a broad range of beneficial forecasting strategies; (2) the use of climate predictors can add to the seasonal forecast skill available from IHCs; and (3) sample size limitations must be handled rigorously to avoid over-trained forecast solutions. Overall, the results suggest that despite a rich, long heritage of operational use, there remain a number of compelling opportunities to improve the skill and value of seasonal streamflow predictions.
NASA Astrophysics Data System (ADS)
Gelfan, Alexander; Moreido, Vsevolod
2017-04-01
Ensemble hydrological forecasting allows for describing uncertainty caused by variability of meteorological conditions in the river basin for the forecast lead-time. At the same time, in snowmelt-dependent river basins another significant source of uncertainty relates to variability of initial conditions of the basin (snow water equivalent, soil moisture content, etc.) prior to forecast issue. Accurate long-term hydrological forecast is most crucial for large water management systems, such as the Cheboksary reservoir (the catchment area is 374 000 sq.km) located in the Middle Volga river in Russia. Accurate forecasts of water inflow volume, maximum discharge and other flow characteristics are of great value for this basin, especially before the beginning of the spring freshet season that lasts here from April to June. The semi-distributed hydrological model ECOMAG was used to develop long-term ensemble forecast of daily water inflow into the Cheboksary reservoir. To describe variability of the meteorological conditions and construct ensemble of possible weather scenarios for the lead-time of the forecast, two approaches were applied. The first one utilizes 50 weather scenarios observed in the previous years (similar to the ensemble streamflow prediction (ESP) procedure), the second one uses 1000 synthetic scenarios simulated by a stochastic weather generator. We investigated the evolution of forecast uncertainty reduction, expressed as forecast efficiency, over various consequent forecast issue dates and lead time. We analyzed the Nash-Sutcliffe efficiency of inflow hindcasts for the period 1982 to 2016 starting from 1st of March with 15 days frequency for lead-time of 1 to 6 months. This resulted in the forecast efficiency matrix with issue dates versus lead-time that allows for predictability identification of the basin. The matrix was constructed separately for observed and synthetic weather ensembles.
Monitoring and seasonal forecasting of meteorological droughts
NASA Astrophysics Data System (ADS)
Dutra, Emanuel; Pozzi, Will; Wetterhall, Fredrik; Di Giuseppe, Francesca; Magnusson, Linus; Naumann, Gustavo; Barbosa, Paulo; Vogt, Jurgen; Pappenberger, Florian
2015-04-01
Near-real time drought monitoring can provide decision makers valuable information for use in several areas, such as water resources management, or international aid. Unfortunately, a major constraint in current drought outlooks is the lack of reliable monitoring capability for observed precipitation globally in near-real time. Furthermore, drought monitoring systems requires a long record of past observations to provide mean climatological conditions. We address these constraints by developing a novel drought monitoring approach in which monthly mean precipitation is derived from short-range using ECMWF probabilistic forecasts and then merged with the long term precipitation climatology of the Global Precipitation Climatology Centre (GPCC) dataset. Merging the two makes available a real-time global precipitation product out of which the Standardized Precipitation Index (SPI) can be estimated and used for global or regional drought monitoring work. This approach provides stability in that by-passes problems of latency (lags) in having local rain-gauge measurements available in real time or lags in satellite precipitation products. Seasonal drought forecasts can also be prepared using the common methodology and based upon two data sources used to provide initial conditions (GPCC and the ECMWF ERA-Interim reanalysis (ERAI) combined with either the current ECMWF seasonal forecast or a climatology based upon ensemble forecasts. Verification of the forecasts as a function of lead time revealed a reduced impact on skill for: (i) long lead times using different initial conditions, and (ii) short lead times using different precipitation forecasts. The memory effect of initial conditions was found to be 1 month lead time for the SPI-3, 3 to 4 months for the SPI-6 and 5 months for the SPI-12. Results show that dynamical forecasts of precipitation provide added value, a skill similar to or better than climatological forecasts. In some cases, particularly for long SPI time scales, it is very difficult to improve on the use of climatological forecasts. However, results presented regionally and globally pinpoint several regions in the world where drought onset forecasting is feasible and skilful.
NASA Astrophysics Data System (ADS)
Brown, James D.; Wu, Limin; He, Minxue; Regonda, Satish; Lee, Haksu; Seo, Dong-Jun
2014-11-01
Retrospective forecasts of precipitation, temperature, and streamflow were generated with the Hydrologic Ensemble Forecast Service (HEFS) of the U.S. National Weather Service (NWS) for a 20-year period between 1979 and 1999. The hindcasts were produced for two basins in each of four River Forecast Centers (RFCs), namely the Arkansas-Red Basin RFC, the Colorado Basin RFC, the California-Nevada RFC, and the Middle Atlantic RFC. Precipitation and temperature forecasts were produced with the HEFS Meteorological Ensemble Forecast Processor (MEFP). Inputs to the MEFP comprised ;raw; precipitation and temperature forecasts from the frozen (circa 1997) version of the NWS Global Forecast System (GFS) and a climatological ensemble, which involved resampling historical observations in a moving window around the forecast valid date (;resampled climatology;). In both cases, the forecast horizon was 1-14 days. This paper outlines the hindcasting and verification strategy, and then focuses on the quality of the temperature and precipitation forecasts from the MEFP. A companion paper focuses on the quality of the streamflow forecasts from the HEFS. In general, the precipitation forecasts are more skillful than resampled climatology during the first week, but comprise little or no skill during the second week. In contrast, the temperature forecasts improve upon resampled climatology at all forecast lead times. However, there are notable differences among RFCs and for different seasons, aggregation periods and magnitudes of the observed and forecast variables, both for precipitation and temperature. For example, the MEFP-GFS precipitation forecasts show the highest correlations and greatest skill in the California Nevada RFC, particularly during the wet season (November-April). While generally reliable, the MEFP forecasts typically underestimate the largest observed precipitation amounts (a Type-II conditional bias). As a statistical technique, the MEFP cannot detect, and thus appropriately correct for, conditions that are undetected by the GFS. The calibration of the MEFP to provide reliable and skillful forecasts of a range of precipitation amounts (not only large amounts) is a secondary factor responsible for these Type-II conditional biases. Interpretation of the verification results leads to guidance on the expected performance and limitations of the MEFP, together with recommendations on future enhancements.
NASA Astrophysics Data System (ADS)
Nigro, M. A.; Cassano, J. J.; Wille, J.; Bromwich, D. H.; Lazzara, M. A.
2015-12-01
An accurate representation of the atmospheric boundary layer in numerical weather prediction models is important for predicting turbulence and energy exchange in the atmosphere. This study uses two years of observations from a 30-m automatic weather station (AWS) installed on the Ross Ice Shelf, Antarctica to evaluate forecasts from the Antarctic Mesoscale Prediction System (AMPS), a numerical weather prediction system based on the polar version of the Weather Research and Forecasting (Polar WRF) model that uses the MYJ planetary boundary layer scheme and that primarily supports the extensive aircraft operations of the U.S. Antarctic Program. The 30-m AWS has six levels of instrumentation, providing vertical profiles of temperature, wind speed, and wind direction. The observations show the atmospheric boundary layer over the Ross Ice Shelf is stable approximately 80% of the time, indicating the influence of the permanent ice surface in this region. The observations from the AWS are further analyzed using the method of self-organizing maps (SOM) to identify the range of potential temperature profiles that occur over the Ross Ice Shelf. The SOM analysis identified 30 patterns, which range from strong inversions to slightly unstable profiles. The corresponding AMPS forecasts were evaluated for each of the 30 patterns to understand the accuracy of the AMPS near surface layer under different atmospheric conditions. The results indicate that under stable conditions AMPS with MYJ under predicts the inversion strength by as much as 7.4 K over the 30-m depth of the tower and over predicts the near surface wind speed by as much as 3.8 m s-1. Conversely, under slightly unstable conditions, AMPS predicts both the inversion strength and near surface wind speeds with reasonable accuracy.
Climatic Forecasting of Net Infiltration at Yucca Mountain, Using Analogue Meteorological Data
NASA Astrophysics Data System (ADS)
Faybishenko, B.
2005-12-01
Net infiltration is a key hydrologic parameter that, throughout the unsaturated zone, controls the rate of deep percolation, the groundwater recharge, radionuclide transport, and seepage into underground tunnels. Because net infiltration is largely affected by climatic conditions, future changes in climatic conditions will potentially alter net infiltration. The objectives of this presentation are to: (1) Present a conceptual model and a semi-empirical approach for regional climatic forecasting of net infiltration, based on precipitation and temperature data from analogue meteorological stations; and (2) Demonstrate the results of forecasting net infiltration for future climates - interglacial, monsoon and glacial - over the Yucca Mountain region for a period of 500,000 years. Calculations of net infiltration were performed using a modified Budyko's water-balance model, and potential evapotranspiration was evaluated from the temperature-based Thornthwaite formula. (Both Budyko's and Thornthwaite's formulae have been used broadly in hydrological studies.) The results of these calculations were used for ranking net infiltration, along with aridity and precipitation-effectiveness (P-E) indices, for future climatic scenarios. Using this approach, we determined a general trend of increasing net infiltration from the present-day (interglacial) climate to the monsoon, intermediate (glacial transition) climate, a trend that continued into the glacial climate time frame. The ranking of aridity and P-E indices is practically the same as that for net infiltration. Validation of the computed net infiltration rates yielded a good match with other field and modeling study results related to groundwater recharge and net infiltration evaluation.
Debiasing affective forecasting errors with targeted, but not representative, experience narratives.
Shaffer, Victoria A; Focella, Elizabeth S; Scherer, Laura D; Zikmund-Fisher, Brian J
2016-10-01
To determine whether representative experience narratives (describing a range of possible experiences) or targeted experience narratives (targeting the direction of forecasting bias) can reduce affective forecasting errors, or errors in predictions of experiences. In Study 1, participants (N=366) were surveyed about their experiences with 10 common medical events. Those who had never experienced the event provided ratings of predicted discomfort and those who had experienced the event provided ratings of actual discomfort. Participants making predictions were randomly assigned to either the representative experience narrative condition or the control condition in which they made predictions without reading narratives. In Study 2, participants (N=196) were again surveyed about their experiences with these 10 medical events, but participants making predictions were randomly assigned to either the targeted experience narrative condition or the control condition. Affective forecasting errors were observed in both studies. These forecasting errors were reduced with the use of targeted experience narratives (Study 2) but not representative experience narratives (Study 1). Targeted, but not representative, narratives improved the accuracy of predicted discomfort. Public collections of patient experiences should favor stories that target affective forecasting biases over stories representing the range of possible experiences. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A Comparison of the Forecast Skills among Three Numerical Models
NASA Astrophysics Data System (ADS)
Lu, D.; Reddy, S. R.; White, L. J.
2003-12-01
Three numerical weather forecast models, MM5, COAMPS and WRF, operating with a joint effort of NOAA HU-NCAS and Jackson State University (JSU) during summer 2003 have been chosen to study their forecast skills against observations. The models forecast over the same region with the same initialization, boundary condition, forecast length and spatial resolution. AVN global dataset have been ingested as initial conditions. Grib resolution of 27 km is chosen to represent the current mesoscale model. The forecasts with the length of 36h are performed to output the result with 12h interval. The key parameters used to evaluate the forecast skill include 12h accumulated precipitation, sea level pressure, wind, surface temperature and dew point. Precipitation is evaluated statistically using conventional skill scores, Threat Score (TS) and Bias Score (BS), for different threshold values based on 12h rainfall observations whereas other statistical methods such as Mean Error (ME), Mean Absolute Error(MAE) and Root Mean Square Error (RMSE) are applied to other forecast parameters.
Seasonal Water Balance Forecasts for Drought Early Warning in Ethiopia
NASA Astrophysics Data System (ADS)
Spirig, Christoph; Bhend, Jonas; Liniger, Mark
2016-04-01
Droughts severely impact Ethiopian agricultural production. Successful early warning for drought conditions in the upcoming harvest season therefore contributes to better managing food shortages arising from adverse climatic conditions. So far, however, meteorological seasonal forecasts have not been used in Ethiopia's national food security early warning system (i.e. the LEAP platform). Here we analyse the forecast quality of seasonal forecasts of total rainfall and of the meteorological water balance as a proxy for plant available water. We analyse forecast skill of June to September rainfall and water balance from dynamical seasonal forecast systems, the ECMWF System4 and EC-EARTH global forecasting systems. Rainfall forecasts outperform forecasts assuming a stationary climate mainly in north-eastern Ethiopia - an area that is particularly vulnerable to droughts. Forecasts of the water balance index seem to be even more skilful and thus more useful than pure rainfall forecasts. The results vary though for different lead times and skill measures employed. We further explore the potential added value of dynamically downscaling the forecasts through several dynamical regional climate models made available through the EU FP7 project EUPORIAS. Preliminary results suggest that dynamically downscaled seasonal forecasts are not significantly better compared with seasonal forecasts from the global models. We conclude that seasonal forecasts of a simple climate index such as the water balance have the potential to benefit drought early warning in Ethiopia, both due to its positive predictive skill and higher usefulness than seasonal mean quantities.
Model Error Estimation for the CPTEC Eta Model
NASA Technical Reports Server (NTRS)
Tippett, Michael K.; daSilva, Arlindo
1999-01-01
Statistical data assimilation systems require the specification of forecast and observation error statistics. Forecast error is due to model imperfections and differences between the initial condition and the actual state of the atmosphere. Practical four-dimensional variational (4D-Var) methods try to fit the forecast state to the observations and assume that the model error is negligible. Here with a number of simplifying assumption, a framework is developed for isolating the model error given the forecast error at two lead-times. Two definitions are proposed for the Talagrand ratio tau, the fraction of the forecast error due to model error rather than initial condition error. Data from the CPTEC Eta Model running operationally over South America are used to calculate forecast error statistics and lower bounds for tau.
ERIC Educational Resources Information Center
Collazo, Andres; And Others
Since a great number of variables influence future educational outcomes, forecasting possible trends is a complex task. One such model, the cross-impact matrix, has been developed. The use of this matrix in forecasting future values of social indicators of educational outcomes is described. Variables associated with educational outcomes are used…
NASA Astrophysics Data System (ADS)
Soltanzadeh, I.; Azadi, M.; Vakili, G. A.
2011-07-01
Using Bayesian Model Averaging (BMA), an attempt was made to obtain calibrated probabilistic numerical forecasts of 2-m temperature over Iran. The ensemble employs three limited area models (WRF, MM5 and HRM), with WRF used with five different configurations. Initial and boundary conditions for MM5 and WRF are obtained from the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) and for HRM the initial and boundary conditions come from analysis of Global Model Europe (GME) of the German Weather Service. The resulting ensemble of seven members was run for a period of 6 months (from December 2008 to May 2009) over Iran. The 48-h raw ensemble outputs were calibrated using BMA technique for 120 days using a 40 days training sample of forecasts and relative verification data. The calibrated probabilistic forecasts were assessed using rank histogram and attribute diagrams. Results showed that application of BMA improved the reliability of the raw ensemble. Using the weighted ensemble mean forecast as a deterministic forecast it was found that the deterministic-style BMA forecasts performed usually better than the best member's deterministic forecast.
Communicating weather forecast uncertainty: Do individual differences matter?
Grounds, Margaret A; Joslyn, Susan L
2018-03-01
Research suggests that people make better weather-related decisions when they are given numeric probabilities for critical outcomes (Joslyn & Leclerc, 2012, 2013). However, it is unclear whether all users can take advantage of probabilistic forecasts to the same extent. The research reported here assessed key cognitive and demographic factors to determine their relationship to the use of probabilistic forecasts to improve decision quality. In two studies, participants decided between spending resources to prevent icy conditions on roadways or risk a larger penalty when freezing temperatures occurred. Several forecast formats were tested, including a control condition with the night-time low temperature alone and experimental conditions that also included the probability of freezing and advice based on expected value. All but those with extremely low numeracy scores made better decisions with probabilistic forecasts. Importantly, no groups made worse decisions when probabilities were included. Moreover, numeracy was the best predictor of decision quality, regardless of forecast format, suggesting that the advantage may extend beyond understanding the forecast to general decision strategy issues. This research adds to a growing body of evidence that numerical uncertainty estimates may be an effective way to communicate weather danger to general public end users. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Forecasting of dissolved oxygen in the Guanting reservoir using an optimized NGBM (1,1) model.
An, Yan; Zou, Zhihong; Zhao, Yanfei
2015-03-01
An optimized nonlinear grey Bernoulli model was proposed by using a particle swarm optimization algorithm to solve the parameter optimization problem. In addition, each item in the first-order accumulated generating sequence was set in turn as an initial condition to determine which alternative would yield the highest forecasting accuracy. To test the forecasting performance, the optimized models with different initial conditions were then used to simulate dissolved oxygen concentrations in the Guanting reservoir inlet and outlet (China). The empirical results show that the optimized model can remarkably improve forecasting accuracy, and the particle swarm optimization technique is a good tool to solve parameter optimization problems. What's more, the optimized model with an initial condition that performs well in in-sample simulation may not do as well as in out-of-sample forecasting. Copyright © 2015. Published by Elsevier B.V.
System learning approach to assess sustainability and ...
This paper presents a methodology that combines the power of an Artificial Neural Network and Information Theory to forecast variables describing the condition of a regional system. The novelty and strength of this approach is in the application of Fisher information, a key method in Information Theory, to preserve trends in the historical data and prevent over fitting projections. The methodology was applied to demographic, environmental, food and energy consumption, and agricultural production in the San Luis Basin regional system in Colorado, U.S.A. These variables are important for tracking conditions in human and natural systems. However, available data are often so far out of date that they limit the ability to manage these systems. Results indicate that the approaches developed provide viable tools for forecasting outcomes with the aim of assisting management toward sustainable trends. This methodology is also applicable for modeling different scenarios in other dynamic systems. Indicators are indispensable for tracking conditions in human and natural systems, however, available data is sometimes far out of date and limit the ability to gauge system status. Techniques like regression and simulation are not sufficient because system characteristics have to be modeled ensuring over simplification of complex dynamics. This work presents a methodology combining the power of an Artificial Neural Network and Information Theory to capture patterns in a real dyna
Reardon, Blase; Lundy, Chris
2004-01-01
The annual spring opening of the Going-to-the-Sun Road in Glacier National Park presents a unique avalanche forecasting challenge. The highway traverses dozens of avalanche paths mid-track in a 23-kilometer section that crosses the Continental Divide. Workers removing seasonal snow and avalanche debris are exposed to paths that can produce avalanches of destructive class 4. The starting zones for most slide paths are within proposed Wilderness, and explosive testing or control are not currently used. Spring weather along the Divide is highly variable; rain-on-snow events are common, storms can bring several feet of new snow as late as June, and temperature swings can be dramatic. Natural avalanches - dry and wet slab, dry and wet loose, and glide avalanches - present a wide range of hazards and forecasting issues. This paper summarizes the forecasting program instituted in 2002 for the annual snow removal operations. It focuses on tools and techniques for forecasting natural wet snow avalanches by incorporating two case studies, including a widespread climax wet slab cycle in 2003. We examine weather and snowpack conditions conducive to wet snow avalanches, indicators for instability, and suggest a conceptual model for wet snow stability in a northern intermountain snow climate.
Impact of Seasonal Forecasts on Agriculture
NASA Astrophysics Data System (ADS)
Aldor-Noiman, S. C.
2014-12-01
More extreme and volatile weather conditions are a threat to U.S. agricultural productivity today, as multiple environmental conditions during the growing season impact crop yields. That's why farmers' agronomic management decisions are dominated by consideration for near, medium and seasonal forecasts of climate. The Climate Corporation aims to help farmers around the world protect and improve their farming operations by providing agronomic decision support tools that leverage forecasts on multiple timescales to provide valuable insights directly to farmers. In this talk, we will discuss the impact of accurate seasonal forecasts on major decisions growers face each season. We will also discuss assessment and evaluation of seasonal forecasts in the context of agricultural applications.
NASA Astrophysics Data System (ADS)
Stepanek, Adam J.
The prospect for skillful long-term predictions of atmospheric conditions known to directly contribute to the onset and maintenance of severe convective storms remains unclear. A thorough assessment of the capability for a global climate model such as the Climate Forecast System Version 2 (CFSv2) to skillfully represent parameters related to severe weather has the potential to significantly improve medium- to long-range outlooks vital to risk managers. Environmental convective available potential energy (CAPE) and deep-layer vertical wind shear (DLS) can be used to distinguish an atmosphere conducive to severe storms from one supportive of primarily non-severe 'ordinary' convection. As such, this research concentrates on the predictability of CAPE, DLS, and a product of the two parameters (CAPEDLS) by the CFSv2 with a specific focus on the subseasonal timescale. Individual month-long verification periods from the Climate Forecast System reanalysis (CFSR) dataset are measured against a climatological standard using cumulative distribution function (CDF) and area-under-the-CDF (AUCDF) techniques designed mitigate inherent model biases while concurrently assessing the entire distribution of a given parameter in lieu of a threshold-based approach. Similar methods imposed upon the CFS reforecast (CFSRef) and operational CFSv2 allow for comparisons elucidating both spatial and temporal trends in skill using correlation coefficients, proportion correct metrics, Heidke skill score (HSS), and root-mean-square-error (RMSE) statistics. Key results show the CFSv2-based output often demonstrates skill beyond a climatologically-based threshold when the forecast is notably anomalous from the 29-year (1982-2010) mean CFSRef prediction (exceeding one standard deviation at grid point level). CFSRef analysis indicates enhanced skill during the months of April and June (relative to May) and for predictions of DLS. Furthermore, years exhibiting skill in terms of RMSE are shown to possess certain correlations with El Nino-Southern Oscillation conditions from the preceding winter and concurrent Madden Julian Oscillation activity. Applying results gleaned from the CFSRef analysis to the operational CFSv2 (2011-16) indicates predictive skill can be increased by isolating forecasts meeting multiple parameter-based relationships.
Identifying needs for streamflow forecasting in the Incomati basin, Southern Africa
NASA Astrophysics Data System (ADS)
Sunday, Robert; Werner, Micha; Masih, Ilyas; van der Zaag, Pieter
2013-04-01
Despite being widely recognised as an efficient tool in the operational management of water resources, rainfall and streamflow forecasts are currently not utilised in water management practice in the Incomati Basin in Southern Africa. Although, there have been initiatives for forecasting streamflow in the Sabie and Crocodile sub-basins, the outputs of these have found little use because of scepticism on the accuracy and reliability of the information, or the relevance of the information provided to the needs of the water managers. The process of improving these forecasts is underway, but as yet the actual needs of the forecasts are unclear and scope of the ongoing initiatives remains very limited. In this study questionnaires and focused group interviews were used to establish the need, potential use, benefit and required accuracy of rainfall and streamflow forecasts in the Incomati Basin. Thirty five interviews were conducted with professionals engaged in water sector and detailed discussions were held with water institutions, including the Inkomati Catchment Management Agency (ICMA), Komati Basin Water Authority (KOBWA), South African Weather Service (SAWS), water managers, dam operators, water experts, farmers and other water users in the Basin. Survey results show that about 97% of the respondents receive weather forecasts. In contrast to expectations, only 5% have access to the streamflow forecast. In the weather forecast, the most important variables were considered to be rainfall and temperature at daily and weekly time scales. Moreover, forecasts of global climatic indices such as El Niño or La Niña were neither received nor demanded. There was limited demand and/or awareness of flood and drought forecasts including the information on their linkages with global climatic indices. While the majority of respondents indicate the need and indeed use the weather forecast, the provision, communication and interpretation were in general found to be with too little detail and clarity. In some cases this was attributed to the short time and space allotted in media such as television and newspapers respectively. Major uses of the weather forecast were made in personal planning i.e., travelling (29%) and dressing (23%). The usefulness in water sector was reported for water allocation (23%), farming (11%) and flood monitoring (9%), but was considered as a factor having minor influence on the actual decision making in operational water management mainly due to uncertainty of the weather forecast, difference in the time scale and institutional arrangements. In the incidences where streamflow forecasts were received (5% of the cases), its application in decision making was not carried out due to high uncertainty. Moreover, dam operators indicated weekly streamflow forecast as very important in releasing water for agriculture but this was not the format in which forecasts were available to them. Generally, users affirmed the accuracy and benefits of weather forecasts and had no major concerns on the impacts of wrong forecasts. However, respondents indicated the need to improve the accuracy and accessibility of the forecast. Likewise, water managers expressed the need for both rainfall and flow forecasts but indicated that they face hindrances due to financial and human resource constraints. This shows that there is a need to strengthen water related forecasts and the consequent uses in the basin. This can be done through collaboration among forecasting and water organisations such as the SAWS, Research Institutions and users like ICMA, KOBWA and farmers. Collaboration between the meteorology and water resources sectors is important to establish consistent forecast information. The forecasts themselves should be detailed and user specific to ensure these are indeed used and can answer to the needs of the users.
NASA Astrophysics Data System (ADS)
Arumugam, S.; Mazrooei, A.; Lakshmi, V.; Wood, A.
2017-12-01
Subseasonal-to-seasonal (S2S) forecasts of soil moisture and streamflow provides critical information for water and agricultural systems to support short-term planning and mangement. This study evaluates the role of observed streamflow and remotely-sensed soil moisture from SMAP (Soil Moisture Active Passive) mission in improving S2S streamflow and soil moisture forecasting using data assimilation (DA). We first show the ability to forecast soil moisture at monthly-to-seaasonal time scale by forcing climate forecasts with NASA's Land Information System and then compares the developed soil moisture forecast with the SMAP data over the Southeast US. Our analyses show significant skill in forecasting real-time soil moisture over 1-3 months using climate information. We also show that the developed soil moisture forecasts capture the observed severe drought conditions (2007-2008) over the Southeast US. Following that, we consider both SMAP data and observed streamflow for improving S2S streamflow and soil moisture forecasts for a pilot study area, Tar River basin, in NC. Towards this, we consider variational assimilation (VAR) of gauge-measured daily streamflow data in improving initial hydrologic conditions of Variable Infiltration Capacity (VIC) model. The utility of data assimilation is then assessed in improving S2S forecasts of streamflow and soil moisture through a retrospective analyses. Furthermore, the optimal frequency of data assimilation and optimal analysis window (number of past observations to use) are also assessed in order to achieve the maximum improvement in S2S forecasts of streamflow and soil moisture. Potential utility of updating initial conditions using DA and providing skillful forcings are also discussed.
NASA Technical Reports Server (NTRS)
Hou, Arthur Y.; Zhang, Sara Q.; deSilva, Arlindo M.
2000-01-01
Global reanalyses currently contain significant errors in the primary fields of the hydrological cycle such as precipitation, evaporation, moisture, and the related cloud fields, especially in the tropics. The Data Assimilation Office (DAO) at the NASA Goddard Space Flight Center has been exploring the use of tropical rainfall and total precipitable water (TPW) observations from the TRMM Microwave Imager (TMI) and the Special Sensor Microwave/ Imager (SSM/I) instruments to improve short-range forecast and reanalyses. We describe a "1+1"D procedure for assimilating 6-hr averaged rainfall and TPW in the Goddard Earth Observing System (GEOS) Data Assimilation System (DAS). The algorithm is based on a 6-hr time integration of a column version of the GEOS DAS, hence the "1+1"D designation. The scheme minimizes the least-square differences between the observed TPW and rain rates and those produced by the column model over the 6-hr analysis window. This 1+lD scheme, in its generalization to four dimensions, is related to the standard 4D variational assimilation but uses analysis increments instead of the initial condition as the control variable. Results show that assimilating the TMI and SSM/I rainfall and TPW observations improves not only the precipitation and moisture fields but also key climate parameters such as clouds, the radiation, the upper-tropospheric moisture, and the large-scale circulation in the tropics. In particular, assimilating these data reduce the state-dependent systematic errors in the assimilated products. The improved analysis also provides better initial conditions for short-range forecasts, but the improvements in forecast are less than improvements in the time-averaged assimilation fields, indicating that using these data types is effective in correcting biases and other errors of the forecast model in data assimilation.
NASA Technical Reports Server (NTRS)
Hou, Arthur Y.; Zhang, Sara Q.; daSilva, Arlindo M.
1999-01-01
Global reanalyses currently contain significant errors in the primary fields of the hydrological cycle such as precipitation, evaporation, moisture, and the related cloud fields, especially in the tropics. The Data Assimilation Office (DAO) at the NASA Goddard Space Flight Center has been exploring the use of tropical rainfall and total precipitable water (TPW) observations from the TRMM Microwave Imager (TMI) and the Special Sensor Microwave/ Imager (SSM/I) instruments to improve short-range forecast and reanalyses. We describe a 1+1D procedure for assimilating 6-hr averaged rainfall and TPW in the Goddard Earth Observing System (GEOS) Data Assimilation System (DAS). The algorithm is based on a 6-hr time integration of a column version of the GEOS DAS, hence the 1+1D designation. The scheme minimizes the least-square differences between the observed TPW and rain rates and those produced by the column model over the 6-hr analysis window. This 1+1D scheme, in its generalization to four dimensions, is related to the standard 4D variational assimilation but uses analysis increments instead of the initial condition as the control variable. Results show that assimilating the TMI and SSW rainfall and TPW observations improves not only the precipitation and moisture fields but also key climate parameters such as clouds, the radiation, the upper-tropospheric moisture, and the large-scale circulation in the tropics. In particular, assimilating these data reduce the state-dependent systematic errors in the assimilated products. The improved analysis also provides better initial conditions for short-range forecasts, but the improvements in forecast are less than improvements in the time-averaged assimilation fields, indicating that using these data types is effective in correcting biases and other errors of the forecast model in data assimilation.
NASA Astrophysics Data System (ADS)
Abhilash, S.; Sahai, A. K.; Borah, N.; Chattopadhyay, R.; Joseph, S.; Sharmila, S.; De, S.; Goswami, B. N.; Kumar, Arun
2014-05-01
An ensemble prediction system (EPS) is devised for the extended range prediction (ERP) of monsoon intraseasonal oscillations (MISO) of Indian summer monsoon (ISM) using National Centers for Environmental Prediction Climate Forecast System model version 2 at T126 horizontal resolution. The EPS is formulated by generating 11 member ensembles through the perturbation of atmospheric initial conditions. The hindcast experiments were conducted at every 5-day interval for 45 days lead time starting from 16th May to 28th September during 2001-2012. The general simulation of ISM characteristics and the ERP skill of the proposed EPS at pentad mean scale are evaluated in the present study. Though the EPS underestimates both the mean and variability of ISM rainfall, it simulates the northward propagation of MISO reasonably well. It is found that the signal-to-noise ratio of the forecasted rainfall becomes unity by about 18 days. The potential predictability error of the forecasted rainfall saturates by about 25 days. Though useful deterministic forecasts could be generated up to 2nd pentad lead, significant correlations are found even up to 4th pentad lead. The skill in predicting large-scale MISO, which is assessed by comparing the predicted and observed MISO indices, is found to be ~17 days. It is noted that the prediction skill of actual rainfall is closely related to the prediction of large-scale MISO amplitude as well as the initial conditions related to the different phases of MISO. An analysis of categorical prediction skills reveals that break is more skillfully predicted, followed by active and then normal. The categorical probability skill scores suggest that useful probabilistic forecasts could be generated even up to 4th pentad lead.
Space Monitoring Data Center at Moscow State University
NASA Astrophysics Data System (ADS)
Kalegaev, Vladimir; Bobrovnikov, Sergey; Barinova, Vera; Myagkova, Irina; Shugay, Yulia; Barinov, Oleg; Dolenko, Sergey; Mukhametdinova, Ludmila; Shiroky, Vladimir
Space monitoring data center of Moscow State University provides operational information on radiation state of the near-Earth space. Internet portal http://swx.sinp.msu.ru/ gives access to the actual data characterizing the level of solar activity, geomagnetic and radiation conditions in the magnetosphere and heliosphere in the real time mode. Operational data coming from space missions (ACE, GOES, ELECTRO-L1, Meteor-M1) at L1, LEO and GEO and from the Earth’s surface are used to represent geomagnetic and radiation state of near-Earth environment. On-line database of measurements is also maintained to allow quick comparison between current conditions and conditions experienced in the past. The models of space environment working in autonomous mode are used to generalize the information obtained from observations on the whole magnetosphere. Interactive applications and operational forecasting services are created on the base of these models. They automatically generate alerts on particle fluxes enhancements above the threshold values, both for SEP and relativistic electrons using data from LEO orbits. Special forecasting services give short-term forecast of SEP penetration to the Earth magnetosphere at low altitudes, as well as relativistic electron fluxes at GEO. Velocities of recurrent high speed solar wind streams on the Earth orbit are predicted with advance time of 3-4 days on the basis of automatic estimation of the coronal hole areas detected on the images of the Sun received from the SDO satellite. By means of neural network approach, Dst and Kp indices online forecasting 0.5-1.5 hours ahead, depending on solar wind and the interplanetary magnetic field, measured by ACE satellite, is carried out. Visualization system allows representing experimental and modeling data in 2D and 3D.
Seasonal Forecasts of Extreme Conditions for Wildland Fire Management in Alaska using NMME
NASA Astrophysics Data System (ADS)
Bhatt, U. S.; Bieniek, P.; Thoman, R.; York, A.; Ziel, R.
2016-12-01
The summer of 2015 was the second largest Alaska fire season since 1950 where approximately the land area of Massachusetts burned. The record fire year of 2004 resulted in 6.5 million acres burned and was costly from property loss (> 35M) and emergency personnel (> 17M). In addition to requiring significant resources, wildfire smoke impacts air quality in Alaska and downstream into North America. Fires in Alaska result from lightning strikes coupled with persistent (extreme) dry warm conditions in remote areas with limited fire management and the seasonal climate/weather determine the extent of the fire season in Alaska. Fire managers rely on weather/climate outlooks for allocating staff and resources from days to a season in advance. Though currently few tested products are available at the seasonal scale. Probabilistic forecasts of the expected seasonal climate/weather would aid tremendously in the planning process. Advanced knowledge of both lightning and fuel conditions would assist managers in planning resource allocation for the upcoming season. For fuel conditions, the Canadian Forest Fire Weather Index System (CFFWIS) has been used since 1992 because it better suits the Alaska fire regime than the standard US National Fire Danger Rating System (NFDRS). This CFFWIS is based on early afternoon values of 2-m air temperature, relative humidity, and 10-m winds and daily total precipitation. Extremes of these indices and the variables are used to calculate these indices will be defined in reference to fire weather for the boreal forest. The CFFWIS will be applied and evaluated for the NMME hindcasts. This study will evaluate the quality of the forecasts comparing the hindcast NMME CFFWIS to acres burned in Alaska. Spatial synoptic patterns in the NMME related to fire weather extremes will be constructed using self-organized maps and probabilities of occurrence will be evaluated against acres burned.
Econometric Models for Forecasting of Macroeconomic Indices
ERIC Educational Resources Information Center
Sukhanova, Elena I.; Shirnaeva, Svetlana Y.; Mokronosov, Aleksandr G.
2016-01-01
The urgency of the research topic was stipulated by the necessity to carry out an effective controlled process by the economic system which can hardly be imagined without indices forecasting characteristic of this system. An econometric model is a safe tool of forecasting which makes it possible to take into consideration the trend of indices…
Using Landslide Failure Forecast Models in Near Real Time: the Mt. de La Saxe case-study
NASA Astrophysics Data System (ADS)
Manconi, Andrea; Giordan, Daniele
2014-05-01
Forecasting the occurrence of landslide phenomena in space and time is a major scientific challenge. The approaches used to forecast landslides mainly depend on the spatial scale analyzed (regional vs. local), the temporal range of forecast (long- vs. short-term), as well as the triggering factor and the landslide typology considered. By focusing on short-term forecast methods for large, deep seated slope instabilities, the potential time of failure (ToF) can be estimated by studying the evolution of the landslide deformation over time (i.e., strain rate) provided that, under constant stress conditions, landslide materials follow creep mechanism before reaching rupture. In the last decades, different procedures have been proposed to estimate ToF by considering simplified empirical and/or graphical methods applied to time series of deformation data. Fukuzono, 1985 proposed a failure forecast method based on the experience performed during large scale laboratory experiments, which were aimed at observing the kinematic evolution of a landslide induced by rain. This approach, known also as the inverse-velocity method, considers the evolution over time of the inverse value of the surface velocity (v) as an indicator of the ToF, by assuming that failure approaches while 1/v tends to zero. Here we present an innovative method to aimed at achieving failure forecast of landslide phenomena by considering near-real-time monitoring data. Starting from the inverse velocity theory, we analyze landslide surface displacements on different temporal windows, and then apply straightforward statistical methods to obtain confidence intervals on the time of failure. Our results can be relevant to support the management of early warning systems during landslide emergency conditions, also when the predefined displacement and/or velocity thresholds are exceeded. In addition, our statistical approach for the definition of confidence interval and forecast reliability can be applied also to different failure forecast methods. We applied for the first time the herein presented approach in near real time during the emergency scenario relevant to the reactivation of the La Saxe rockslide, a large mass wasting menacing the population of Courmayeur, northern Italy, and the important European route E25. We show how the application of simplified but robust forecast models can be a convenient method to manage and support early warning systems during critical situations. References: Fukuzono T. (1985), A New Method for Predicting the Failure Time of a Slope, Proc. IVth International Conference and Field Workshop on Landslides, Tokyo.
A Wind Forecasting System for Energy Application
NASA Astrophysics Data System (ADS)
Courtney, Jennifer; Lynch, Peter; Sweeney, Conor
2010-05-01
Accurate forecasting of available energy is crucial for the efficient management and use of wind power in the national power grid. With energy output critically dependent upon wind strength there is a need to reduce the errors associated wind forecasting. The objective of this research is to get the best possible wind forecasts for the wind energy industry. To achieve this goal, three methods are being applied. First, a mesoscale numerical weather prediction (NWP) model called WRF (Weather Research and Forecasting) is being used to predict wind values over Ireland. Currently, a gird resolution of 10km is used and higher model resolutions are being evaluated to establish whether they are economically viable given the forecast skill improvement they produce. Second, the WRF model is being used in conjunction with ECMWF (European Centre for Medium-Range Weather Forecasts) ensemble forecasts to produce a probabilistic weather forecasting product. Due to the chaotic nature of the atmosphere, a single, deterministic weather forecast can only have limited skill. The ECMWF ensemble methods produce an ensemble of 51 global forecasts, twice a day, by perturbing initial conditions of a 'control' forecast which is the best estimate of the initial state of the atmosphere. This method provides an indication of the reliability of the forecast and a quantitative basis for probabilistic forecasting. The limitation of ensemble forecasting lies in the fact that the perturbed model runs behave differently under different weather patterns and each model run is equally likely to be closest to the observed weather situation. Models have biases, and involve assumptions about physical processes and forcing factors such as underlying topography. Third, Bayesian Model Averaging (BMA) is being applied to the output from the ensemble forecasts in order to statistically post-process the results and achieve a better wind forecasting system. BMA is a promising technique that will offer calibrated probabilistic wind forecasts which will be invaluable in wind energy management. In brief, this method turns the ensemble forecasts into a calibrated predictive probability distribution. Each ensemble member is provided with a 'weight' determined by its relative predictive skill over a training period of around 30 days. Verification of data is carried out using observed wind data from operational wind farms. These are then compared to existing forecasts produced by ECMWF and Met Eireann in relation to skill scores. We are developing decision-making models to show the benefits achieved using the data produced by our wind energy forecasting system. An energy trading model will be developed, based on the rules currently used by the Single Electricity Market Operator for energy trading in Ireland. This trading model will illustrate the potential for financial savings by using the forecast data generated by this research.
NASA Astrophysics Data System (ADS)
Shukla, S.; Husak, G. J.; Funk, C. C.; Verdin, J. P.
2015-12-01
The USAID's Famine Early Warning Systems Network (FEWS NET) provides seasonal assessments of crop conditions over the Greater Horn of Africa (GHA) and other food insecure regions. These assessments and current livelihood, nutrition, market conditions and conflicts are used to generate food security scenarios that help national, regional and local decision makers target their resources and mitigate socio-economic losses. Among the various tools that FEWS NET uses is the FAO's Water Requirement Satisfaction Index (WRSI). The WRSI is a simple yet powerful crop assessment model that incorporates current moisture conditions (at the time of the issuance of forecast), precipitation scenarios, potential evapotranspiration and crop parameters to categorize crop conditions into different classes ranging from "failure" to "very good". The WRSI tool has been shown to have a good agreement with local crop yields in the GHA region. At present, the precipitation scenarios used to drive the WRSI are based on either a climatological forecast (that assigns equal chances of occurrence to all possible scenarios and has no skill over the forecast period) or a sea-surface temperature anomaly based scenario (which at best have skill at the seasonal scale). In both cases, the scenarios fail to capture the skill that can be attained by initial atmospheric conditions (i.e., medium-range weather forecasts). During the middle of a cropping season, when a week or two of poor rains can have a devastating effect, two weeks worth of skillful precipitation forecasts could improve the skill of the crop scenarios. With this working hypothesis, we examine the value of incorporating medium-range weather forecasts in improving the skill of crop scenarios in the GHA region. We use the NCEP's Global Ensemble Forecast system (GEFS) weather forecasts and examine the skill of crop scenarios generated using the GEFS weather forecasts with respect to the scenarios based solely on the climatological forecast. The period of analysis is from 1985-2010 (over which the reforecasts of GEFS is available) and the focus season is October-November-December. We examine the improvement (if any) in long-term skill, and present results for several recent drought events in the region.
High-resolution weather forecasting is affected by many aspects, i.e. model initial conditions, subgrid-scale cumulus convection and cloud microphysics schemes. Recent 12km grid studies using the Weather Research and Forecasting (WRF) model have identified the importance of inco...
NASA Technical Reports Server (NTRS)
Koster, Randal; Walker, Greg; Mahanama, Sarith; Reichle, Rolf
2012-01-01
Continental-scale offline simulations with a land surface model are used to address two important issues in the forecasting of large-scale seasonal streamflow: (i) the extent to which errors in soil moisture initialization degrade streamflow forecasts, and (ii) the extent to which the downscaling of seasonal precipitation forecasts, if it could be done accurately, would improve streamflow forecasts. The reduction in streamflow forecast skill (with forecasted streamflow measured against observations) associated with adding noise to a soil moisture field is found to be, to first order, proportional to the average reduction in the accuracy of the soil moisture field itself. This result has implications for streamflow forecast improvement under satellite-based soil moisture measurement programs. In the second and more idealized ("perfect model") analysis, precipitation downscaling is found to have an impact on large-scale streamflow forecasts only if two conditions are met: (i) evaporation variance is significant relative to the precipitation variance, and (ii) the subgrid spatial variance of precipitation is adequately large. In the large-scale continental region studied (the conterminous United States), these two conditions are met in only a somewhat limited area.
NASA Astrophysics Data System (ADS)
Turner, Sean; Galelli, Stefano; Wilcox, Karen
2015-04-01
Water reservoir systems are often affected by recurring large-scale ocean-atmospheric anomalies, known as teleconnections, that cause prolonged periods of climatological drought. Accurate forecasts of these events -- at lead times in the order of weeks and months -- may enable reservoir operators to take more effective release decisions to improve the performance of their systems. In practice this might mean a more reliable water supply system, a more profitable hydropower plant or a more sustainable environmental release policy. To this end, climate indices, which represent the oscillation of the ocean-atmospheric system, might be gainfully employed within reservoir operating models that adapt the reservoir operation as a function of the climate condition. This study develops a Stochastic Dynamic Programming (SDP) approach that can incorporate climate indices using a Hidden Markov Model. The model simulates the climatic regime as a hidden state following a Markov chain, with the state transitions driven by variation in climatic indices, such as the Southern Oscillation Index. Time series analysis of recorded streamflow data reveals the parameters of separate autoregressive models that describe the inflow to the reservoir under three representative climate states ("normal", "wet", "dry"). These models then define inflow transition probabilities for use in a classic SDP approach. The key advantage of the Hidden Markov Model is that it allows conditioning the operating policy not only on the reservoir storage and the antecedent inflow, but also on the climate condition, thus potentially allowing adaptability to a broader range of climate conditions. In practice, the reservoir operator would effect a water release tailored to a specific climate state based on available teleconnection data and forecasts. The approach is demonstrated on the operation of a realistic, stylised water reservoir with carry-over capacity in South-East Australia. Here teleconnections relating to both the El Niño Southern Oscillation and the Indian Ocean Dipole influence local hydro-meteorological processes; statistically significant lag correlations have already been established. Simulation of the derived operating policies, which are benchmarked against standard policies conditioned on the reservoir storage and the antecedent inflow, demonstrates the potential of the proposed approach. Future research will further develop the model for sensitivity analysis and regional studies examining the economic value of incorporating long range forecasts into reservoir operation.
How can we deal with ANN in flood forecasting? As a simulation model or updating kernel!
NASA Astrophysics Data System (ADS)
Hassan Saddagh, Mohammad; Javad Abedini, Mohammad
2010-05-01
Flood forecasting and early warning, as a non-structural measure for flood control, is often considered to be the most effective and suitable alternative to mitigate the damage and human loss caused by flood. Forecast results which are output of hydrologic, hydraulic and/or black box models should secure accuracy of flood values and timing, especially for long lead time. The application of the artificial neural network (ANN) in flood forecasting has received extensive attentions in recent years due to its capability to capture the dynamics inherent in complex processes including flood. However, results obtained from executing plain ANN as simulation model demonstrate dramatic reduction in performance indices as lead time increases. This paper is intended to monitor the performance indices as it relates to flood forecasting and early warning using two different methodologies. While the first method employs a multilayer neural network trained using back-propagation scheme to forecast output hydrograph of a hypothetical river for various forecast lead time up to 6.0 hr, the second method uses 1D hydrodynamic MIKE11 model as forecasting model and multilayer neural network as updating kernel to monitor and assess the performance indices compared to ANN alone in light of increase in lead time. Results presented in both graphical and tabular format indicate superiority of MIKE11 coupled with ANN as updating kernel compared to ANN as simulation model alone. While plain ANN produces more accurate results for short lead time, the errors increase expeditiously for longer lead time. The second methodology provides more accurate and reliable results for longer forecast lead time.
Uncertainty forecasts improve weather-related decisions and attenuate the effects of forecast error.
Joslyn, Susan L; LeClerc, Jared E
2012-03-01
Although uncertainty is inherent in weather forecasts, explicit numeric uncertainty estimates are rarely included in public forecasts for fear that they will be misunderstood. Of particular concern are situations in which precautionary action is required at low probabilities, often the case with severe events. At present, a categorical weather warning system is used. The work reported here tested the relative benefits of several forecast formats, comparing decisions made with and without uncertainty forecasts. In three experiments, participants assumed the role of a manager of a road maintenance company in charge of deciding whether to pay to salt the roads and avoid a potential penalty associated with icy conditions. Participants used overnight low temperature forecasts accompanied in some conditions by uncertainty estimates and in others by decision advice comparable to categorical warnings. Results suggested that uncertainty information improved decision quality overall and increased trust in the forecast. Participants with uncertainty forecasts took appropriate precautionary action and withheld unnecessary action more often than did participants using deterministic forecasts. When error in the forecast increased, participants with conventional forecasts were reluctant to act. However, this effect was attenuated by uncertainty forecasts. Providing categorical decision advice alone did not improve decisions. However, combining decision advice with uncertainty estimates resulted in the best performance overall. The results reported here have important implications for the development of forecast formats to increase compliance with severe weather warnings as well as other domains in which one must act in the face of uncertainty. PsycINFO Database Record (c) 2012 APA, all rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voisin, Nathalie; Pappenberger, Florian; Lettenmaier, D. P.
2011-08-15
A 10-day globally applicable flood prediction scheme was evaluated using the Ohio River basin as a test site for the period 2003-2007. The Variable Infiltration Capacity (VIC) hydrology model was initialized with the European Centre for Medium Range Weather Forecasts (ECMWF) analysis temperatures and wind, and Tropical Rainfall Monitoring Mission Multi Satellite Precipitation Analysis (TMPA) precipitation up to the day of forecast. In forecast mode, the VIC model was then forced with a calibrated and statistically downscaled ECMWF ensemble prediction system (EPS) 10-day ensemble forecast. A parallel set up was used where ECMWF EPS forecasts were interpolated to the spatialmore » scale of the hydrology model. Each set of forecasts was extended by 5 days using monthly mean climatological variables and zero precipitation in order to account for the effect of initial conditions. The 15-day spatially distributed ensemble runoff forecasts were then routed to four locations in the basin, each with different drainage areas. Surrogates for observed daily runoff and flow were provided by the reference run, specifically VIC simulation forced with ECMWF analysis fields and TMPA precipitation fields. The flood prediction scheme using the calibrated and downscaled ECMWF EPS forecasts was shown to be more accurate and reliable than interpolated forecasts for both daily distributed runoff forecasts and daily flow forecasts. Initial and antecedent conditions dominated the flow forecasts for lead times shorter than the time of concentration depending on the flow forecast amounts and the drainage area sizes. The flood prediction scheme had useful skill for the 10 following days at all sites.« less
Advances in air quality prediction with the use of integrated systems
NASA Astrophysics Data System (ADS)
Dragani, R.; Benedetti, A.; Engelen, R. J.; Peuch, V. H.
2017-12-01
Recent years have seen the rise of global operational atmospheric composition forecasting systems for several applications including climate monitoring, provision of boundary conditions for regional air quality forecasting, energy sector applications, to mention a few. Typically, global forecasts are provided in the medium-range up to five days ahead and are initialized with an analysis based on satellite data. In this work we present the latest advances in data assimilation using the ECMWF's 4D-Var system extended to atmospheric composition which is currently operational under the Copernicus Atmosphere Monitoring Service of the European Commission. The service is based on acquisition of all relevant data available in near-real-time, the processing of these datasets in the assimilation and the subsequent dissemination of global forecasts at ECMWF. The global forecasts are used by the CAMS regional models as boundary conditions for the European forecasts based on a multi-model ensemble. The global forecasts are also used to provide boundary conditions for other parts of the world (e.g., China) and are freely available to all interested entities. Some of the regional models also perform assimilation of satellite and ground-based observations. All products are assessed, validated and made publicly available on https://atmosphere.copernicus.eu/.
A framework for improving a seasonal hydrological forecasting system using sensitivity analysis
NASA Astrophysics Data System (ADS)
Arnal, Louise; Pappenberger, Florian; Smith, Paul; Cloke, Hannah
2017-04-01
Seasonal streamflow forecasts are of great value for the socio-economic sector, for applications such as navigation, flood and drought mitigation and reservoir management for hydropower generation and water allocation to agriculture and drinking water. However, as we speak, the performance of dynamical seasonal hydrological forecasting systems (systems based on running seasonal meteorological forecasts through a hydrological model to produce seasonal hydrological forecasts) is still limited in space and time. In this context, the ESP (Ensemble Streamflow Prediction) remains an attractive forecasting method for seasonal streamflow forecasting as it relies on forcing a hydrological model (starting from the latest observed or simulated initial hydrological conditions) with historical meteorological observations. This makes it cheaper to run than a standard dynamical seasonal hydrological forecasting system, for which the seasonal meteorological forecasts will first have to be produced, while still producing skilful forecasts. There is thus the need to focus resources and time towards improvements in dynamical seasonal hydrological forecasting systems which will eventually lead to significant improvements in the skill of the streamflow forecasts generated. Sensitivity analyses are a powerful tool that can be used to disentangle the relative contributions of the two main sources of errors in seasonal streamflow forecasts, namely the initial hydrological conditions (IHC; e.g., soil moisture, snow cover, initial streamflow, among others) and the meteorological forcing (MF; i.e., seasonal meteorological forecasts of precipitation and temperature, input to the hydrological model). Sensitivity analyses are however most useful if they inform and change current operational practices. To this end, we propose a method to improve the design of a seasonal hydrological forecasting system. This method is based on sensitivity analyses, informing the forecasters as to which element of the forecasting chain (i.e., IHC or MF) could potentially lead to the highest increase in seasonal hydrological forecasting performance, after each forecast update.
Sufficient Forecasting Using Factor Models
Fan, Jianqing; Xue, Lingzhou; Yao, Jiawei
2017-01-01
We consider forecasting a single time series when there is a large number of predictors and a possible nonlinear effect. The dimensionality was first reduced via a high-dimensional (approximate) factor model implemented by the principal component analysis. Using the extracted factors, we develop a novel forecasting method called the sufficient forecasting, which provides a set of sufficient predictive indices, inferred from high-dimensional predictors, to deliver additional predictive power. The projected principal component analysis will be employed to enhance the accuracy of inferred factors when a semi-parametric (approximate) factor model is assumed. Our method is also applicable to cross-sectional sufficient regression using extracted factors. The connection between the sufficient forecasting and the deep learning architecture is explicitly stated. The sufficient forecasting correctly estimates projection indices of the underlying factors even in the presence of a nonparametric forecasting function. The proposed method extends the sufficient dimension reduction to high-dimensional regimes by condensing the cross-sectional information through factor models. We derive asymptotic properties for the estimate of the central subspace spanned by these projection directions as well as the estimates of the sufficient predictive indices. We further show that the natural method of running multiple regression of target on estimated factors yields a linear estimate that actually falls into this central subspace. Our method and theory allow the number of predictors to be larger than the number of observations. We finally demonstrate that the sufficient forecasting improves upon the linear forecasting in both simulation studies and an empirical study of forecasting macroeconomic variables. PMID:29731537
NASA Astrophysics Data System (ADS)
Owens, Mathew J.; Riley, Pete
2017-11-01
Long lead-time space-weather forecasting requires accurate prediction of the near-Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near-Sun solar wind and magnetic field conditions provide the inner boundary condition to three-dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics-based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near-Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near-Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near-Sun solar wind speed at a range of latitudes about the sub-Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun-Earth line. Propagating these conditions to Earth by a three-dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one-dimensional "upwind" scheme is used. The variance in the resulting near-Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996-2016, the upwind ensemble is found to provide a more "actionable" forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large).
Owens, Mathew J; Riley, Pete
2017-11-01
Long lead-time space-weather forecasting requires accurate prediction of the near-Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near-Sun solar wind and magnetic field conditions provide the inner boundary condition to three-dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics-based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near-Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near-Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near-Sun solar wind speed at a range of latitudes about the sub-Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun-Earth line. Propagating these conditions to Earth by a three-dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one-dimensional "upwind" scheme is used. The variance in the resulting near-Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996-2016, the upwind ensemble is found to provide a more "actionable" forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large).
Riley, Pete
2017-01-01
Abstract Long lead‐time space‐weather forecasting requires accurate prediction of the near‐Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near‐Sun solar wind and magnetic field conditions provide the inner boundary condition to three‐dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics‐based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near‐Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near‐Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near‐Sun solar wind speed at a range of latitudes about the sub‐Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun‐Earth line. Propagating these conditions to Earth by a three‐dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one‐dimensional “upwind” scheme is used. The variance in the resulting near‐Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996–2016, the upwind ensemble is found to provide a more “actionable” forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large). PMID:29398982
NASA Astrophysics Data System (ADS)
Spennemann, Pablo; Rivera, Juan Antonio; Osman, Marisol; Saulo, Celeste; Penalba, Olga
2017-04-01
The importance of forecasting extreme wet and dry conditions from weeks to months in advance relies on the need to prevent considerable socio-economic losses, mainly in regions of large populations and where agriculture is a key value for the economies, like Southern South America (SSA). Therefore, to improve the understanding of the performance and uncertainties of seasonal soil moisture and precipitation forecasts over SSA, this study aims to: 1) perform a general assessment of the Climate Forecast System version-2 (CFSv2) soil moisture and precipitation forecasts; and 2) evaluate the CFSv2 ability to represent an extreme drought event merging observations with forecasted Standardized Precipitation Index (SPI) and the Standardized Soil Moisture Anomalies (SSMA) based on GLDAS-2.0 simulations. Results show that both SPI and SSMA forecast skill are regionally and seasonally dependent. In general a fast degradation of the forecasts skill is observed as the lead time increases with no significant metrics for forecast lead times longer than 2 months. Based on the assessment of the 2008-2009 extreme drought event it is evident that the CFSv2 forecasts have limitations regarding the identification of drought onset, duration, severity and demise, considering both meteorological (SPI) and agricultural (SSMA) drought conditions. These results have some implications upon the use of seasonal forecasts to assist agricultural practices in SSA, given that forecast skill is still too low to be useful for lead times longer than 2 months.
NASA Astrophysics Data System (ADS)
Materia, Stefano; Borrelli, Andrea; Bellucci, Alessio; Alessandri, Andrea; Di Pietro, Pierluigi; Athanasiadis, Panagiotis; Navarra, Antonio; Gualdi, Silvio
2014-05-01
The impact of land surface and atmosphere initialization on the forecast skill of a seasonal prediction system is investigated, and an effort to disentangle the role played by the individual components to the global predictability is done, via a hierarchy of seasonal forecast experiments performed under different initialization strategies. A realistic atmospheric initial state allows an improved equilibrium between the ocean and overlying atmosphere, mitigating the coupling shock and possibly increasing the model predictive skill in the ocean. In fact, in a few regions characterized by strong air-sea coupling, the atmosphere initial condition affects the forecast skill for several months. In particular, the ENSO region, the eastern tropical Atlantic and the North Pacific benefit significantly from the atmosphere initialization. On mainland, the impact of atmospheric initial conditions is detected in the early phase of the forecast, while the quality of land surface initialization affects the forecast skill in the following lead seasons. The winter forecast in the high latitude plains of Siberia and Canada benefit from the snow initialization, while the impact of soil moisture initial state is particularly effective in the Mediterranean region, in central Asia and Australia. However, initialization through land surface reanalysis does not systematically guarantee an enhancement of the predictive skill: the quality of the forecast is sometimes higher for the non-constrained model. Overall, the introduction of a realistic initialization of land surface and atmosphere substantially increases skill and accuracy. However, further developments in the operating procedure for land surface initialization are required for more accurate seasonal forecasts.
NASA Astrophysics Data System (ADS)
Barik, M. G.; Hogue, T. S.; Franz, K. J.; He, M.
2011-12-01
The National Oceanic and Atmospheric Administration's (NOAA's) River Forecast Centers (RFCs) issue hydrologic forecasts related to flood events, reservoir operations for water supply, streamflow regulation, and recreation on the nation's streams and rivers. The RFCs use the National Weather Service River Forecast System (NWSRFS) for streamflow forecasting which relies on a coupled snow model (i.e. SNOW17) and rainfall-runoff model (i.e. SAC-SMA) in snow-dominated regions of the US. Errors arise in various steps of the forecasting system from input data, model structure, model parameters, and initial states. The goal of the current study is to undertake verification of potential improvements in the SNOW17-SAC-SMA modeling framework developed for operational streamflow forecasts. We undertake verification for a range of parameters sets (i.e. RFC, DREAM (Differential Evolution Adaptive Metropolis)) as well as a data assimilation (DA) framework developed for the coupled models. Verification is also undertaken for various initial conditions to observe the influence of variability in initial conditions on the forecast. The study basin is the North Fork America River Basin (NFARB) located on the western side of the Sierra Nevada Mountains in northern California. Hindcasts are verified using both deterministic (i.e. Nash Sutcliffe efficiency, root mean square error, and joint distribution) and probabilistic (i.e. reliability diagram, discrimination diagram, containing ratio, and Quantile plots) statistics. Our presentation includes comparison of the performance of different optimized parameters and the DA framework as well as assessment of the impact associated with the initial conditions used for streamflow forecasts for the NFARB.
Forecasting conditional climate-change using a hybrid approach
Esfahani, Akbar Akbari; Friedel, Michael J.
2014-01-01
A novel approach is proposed to forecast the likelihood of climate-change across spatial landscape gradients. This hybrid approach involves reconstructing past precipitation and temperature using the self-organizing map technique; determining quantile trends in the climate-change variables by quantile regression modeling; and computing conditional forecasts of climate-change variables based on self-similarity in quantile trends using the fractionally differenced auto-regressive integrated moving average technique. The proposed modeling approach is applied to states (Arizona, California, Colorado, Nevada, New Mexico, and Utah) in the southwestern U.S., where conditional forecasts of climate-change variables are evaluated against recent (2012) observations, evaluated at a future time period (2030), and evaluated as future trends (2009–2059). These results have broad economic, political, and social implications because they quantify uncertainty in climate-change forecasts affecting various sectors of society. Another benefit of the proposed hybrid approach is that it can be extended to any spatiotemporal scale providing self-similarity exists.
Selective inspection planning with ageing forecast for sewer types.
Baur, R; Herz, R
2002-01-01
Investments in sewer rehabilitation must be based on inspection and evaluation of sewer conditions with respect to the severity of sewer damage and to environmental risks. This paper deals with the problems of forecasting the condition of sewers in a network from a small sample of inspected sewers. Transition functions from one into the next poorer condition class, which were empirically derived from this sample, are used to forecast the condition of sewers. By the same procedure, transition functions were subsequently calibrated for sub-samples of different types of sewers. With these transition functions, the most probable date of entering a critical condition class can be forecast from sewer characteristics, such as material, period of construction, location, use for waste and/or storm water, profile, diameter and gradient. Results are shown for the estimates about the actual condition of the Dresden sewer network and its deterioration in case of doing nothing about it. A procedure is proposed for scheduling the inspection dates for sewers which have not yet been inspected and for those which have been inspected before.
a system approach to the long term forecasting of the climat data in baikal region
NASA Astrophysics Data System (ADS)
Abasov, N.; Berezhnykh, T.
2003-04-01
The Angara river running from Baikal with a cascade of hydropower plants built on it plays a peculiar role in economy of the region. With view of high variability of water inflow into the rivers and lakes (long-term low water periods and catastrophic floods) that is due to climatic peculiarities of the water resource formation, a long-term forecasting is developed and applied for risk decreasing at hydropower plants. Methodology and methods of long-term forecasting of natural-climatic processes employs some ideas of the research schools by Academician I.P.Druzhinin and Prof. A.P.Reznikhov and consists in detailed investigation of cause-effect relations, finding out physical analogs and their application to formalized methods of long-term forecasting. They are divided into qualitative (background method; method of analogs based on solar activity), probabilistic and approximative methods (analog-similarity relations; discrete-continuous model). These forecasting methods have been implemented in the form of analytical aids of the information-forecasting software "GIPSAR" that provides for some elements of artificial intelligence. Background forecasts of the runoff of the Ob, the Yenisei, the Angara Rivers in the south of Siberia are based on space-time regularities that were revealed on taking account of the phase shifts in occurrence of secular maxima and minima on integral-difference curves of many-year hydrological processes in objects compared. Solar activity plays an essential role in investigations of global variations of climatic processes. Its consideration in the method of superimposed epochs has allowed a conclusion to be made on the higher probability of the low-water period in the actual inflow to Lake Baikal that takes place on the increasing branch of solar activity of its 11-year cycle. The higher probability of a high-water period is observed on the decreasing branch of solar activity from the 2nd to the 5th year after its maximum. Probabilistic method of forecasting (with a year in advance) is based on the property of alternation of series of years with increase and decrease in the observed indicators (characteristic indices) of natural processes. Most of the series (98.4-99.6%) are represented by series of one to three years. The problem of forecasting is divided into two parts: 1) qualitative forecast of the probability that the started series will either continue or be replaced by a new series during the next year that is based on the frequency characteristics of series of years with increase or decrease of the forecasted sequence); 2) quantitative estimate of the forecasted value in the form of a curve of conditional frequencies is made on the base of intra-sequence interrelations among hydrometeorological elements by their differentiation with respect to series of years of increase or decrease, by construction of particular curves of conditional frequencies of the runoff for each expected variant of series development and by subsequent construction a generalized curve. Approximative learning methods form forecasted trajectories of the studied process indices for a long-term perspective. The method of analog-similarity relations is based on the fact that long periods of observations reveal some similarities in the character of variability of indices for some fragments of the sequence x (t) by definite criteria. The idea of the method is to estimate similarity of such fragments of the sequence that have been called the analogs. The method applies multistage optimization of both external parameters (e.g. the number of iterations of the sliding averaging needed to decompose the sequence into two components: the smoothed one with isolated periodic oscillations and the residual or random one). The method is applicable to current terms of forecasts and ending with the double solar cycle. Using a special procedure of integration, it separates terms with the best results for the given optimization subsample. Several optimal vectors of parameters obtained are tested on the examination (verifying) subsample. If the procedure is successful, the forecast is immediately made by integration of several best solutions. Peculiarities of forecasting extreme processes. Methods of long-term forecasting allow the sufficiently reliable forecasts to be made within the interval of xmin+Δ_1, xmax - Δ_2 (i.e. in the interval of medium values of indices). Meanwhile, in the intervals close to extreme ones, reliability of forecasts is substantially lower. While for medium values the statistics of the100-year sequence gives acceptable results owing to a sufficiently large number of revealed analogs that correspond to prognostic samples, for extreme values the situation is quite different, first of all by virtue of poverty of statistical data. Decreasing the values of Δ_1,Δ_2: Δ_1,Δ_2 rightarrow 0 (by including them into optimization parameters of the considered forecasting methods) could be one of the ways to improve reliability of forecasts. Partially, such an approach has been realized in the method of analog-similarity relations, giving the possibility to form a range of possible forecasted trajectories in two variants - from the minimum possible trajectory to the maximum possible one. Reliability of long-term forecasts. Both the methodology and the methods considered above have been realized as the information-forecasting system "GIPSAR". The system includes some tools implementing several methods of forecasting, analysis of initial and forecasted information, a developed database, a set of tools for verification of algorithms, additional information on the algorithms of statistical processing of sequences (sliding averaging, integral-difference curves, etc.), aids to organize input of initial information (in its various forms) as well as aids to draw up output prognostic documents. Risk management. The normal functioning of the Angara cascade is periodically interrupted by risks of two types that take place in the Baikal, the Bratsk and Ust-Ilimsk reservoirs: long low-water periods and sudden periods of extremely high water levels. For example, low-water periods, observed in the reservoirs of the Angara cascade can be classified under four risk categories : 1 - acceptable (negligible reduction of electric power generation by hydropower plants; certain difficulty in meeting environmental and navigation requirements); 2 - significant (substantial reduction of electric power generation by hydropower plants; certain restriction on water releases for navigation; violation of environmental requirements in some years); 3 - emergency (big losses in electric power generation; limited electricity supply to large consumers; significant restriction of water releases for navigation; threat of exposure of drinkable water intake works; violation of environmental requirements for a number of years); 4 - catastrophic (energy crisis; social crisis exposure of drinkable water intake works; termination of navigation; environmental catastrophe). Management of energy systems consists in operative, many-year regulation and perspective planning and has to take into account the analysis of operative data (water reserves in reservoirs), long-term statistics and relations among natural processes and also forecasts - short-term (for a day, week, decade), long-term and/or super-long-term (from a month to several decades). Such natural processes as water inflow to reservoirs, air temperatures during heating periods depend in turn on external factors: prevailing types of atmospheric circulation, intensity of the 11- and 22-year cycles of solar activity, volcanic activity, interaction between the ocean and atmosphere, etc. Until recently despite the formed scientific schools on long-term forecasting (I.P.Druzhinin, A.P.Reznikhov) the energy system management has been based on specially drawn dispatching schedules and long-term hydrometeorological forecasts only without attraction of perspective forecasted indices. Insertion of a parallel block of forecast (based on the analysis of data on natural processes and special methods of forecasting) into the scheme can largely smooth unfavorable consequences from the impact of natural processes on sustainable development of energy systems and especially on its safe operation. However, the requirements to reliability and accuracy of long-term forecasts significantly increase. The considered approach to long term forecasting can be used for prediction: mean winter and summer air temperatures, droughts and wood fires.
Evaluation of statistical models for forecast errors from the HBV model
NASA Astrophysics Data System (ADS)
Engeland, Kolbjørn; Renard, Benjamin; Steinsland, Ingelin; Kolberg, Sjur
2010-04-01
SummaryThree statistical models for the forecast errors for inflow into the Langvatn reservoir in Northern Norway have been constructed and tested according to the agreement between (i) the forecast distribution and the observations and (ii) median values of the forecast distribution and the observations. For the first model observed and forecasted inflows were transformed by the Box-Cox transformation before a first order auto-regressive model was constructed for the forecast errors. The parameters were conditioned on weather classes. In the second model the Normal Quantile Transformation (NQT) was applied on observed and forecasted inflows before a similar first order auto-regressive model was constructed for the forecast errors. For the third model positive and negative errors were modeled separately. The errors were first NQT-transformed before conditioning the mean error values on climate, forecasted inflow and yesterday's error. To test the three models we applied three criterions: we wanted (a) the forecast distribution to be reliable; (b) the forecast intervals to be narrow; (c) the median values of the forecast distribution to be close to the observed values. Models 1 and 2 gave almost identical results. The median values improved the forecast with Nash-Sutcliffe R eff increasing from 0.77 for the original forecast to 0.87 for the corrected forecasts. Models 1 and 2 over-estimated the forecast intervals but gave the narrowest intervals. Their main drawback was that the distributions are less reliable than Model 3. For Model 3 the median values did not fit well since the auto-correlation was not accounted for. Since Model 3 did not benefit from the potential variance reduction that lies in bias estimation and removal it gave on average wider forecasts intervals than the two other models. At the same time Model 3 on average slightly under-estimated the forecast intervals, probably explained by the use of average measures to evaluate the fit.
Nesting large-eddy simulations within mesoscale simulations for wind energy applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundquist, J K; Mirocha, J D; Chow, F K
2008-09-08
With increasing demand for more accurate atmospheric simulations for wind turbine micrositing, for operational wind power forecasting, and for more reliable turbine design, simulations of atmospheric flow with resolution of tens of meters or higher are required. These time-dependent large-eddy simulations (LES), which resolve individual atmospheric eddies on length scales smaller than turbine blades and account for complex terrain, are possible with a range of commercial and open-source software, including the Weather Research and Forecasting (WRF) model. In addition to 'local' sources of turbulence within an LES domain, changing weather conditions outside the domain can also affect flow, suggesting thatmore » a mesoscale model provide boundary conditions to the large-eddy simulations. Nesting a large-eddy simulation within a mesoscale model requires nuanced representations of turbulence. Our group has improved the Weather and Research Forecasting model's (WRF) LES capability by implementing the Nonlinear Backscatter and Anisotropy (NBA) subfilter stress model following Kosovic (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005). We have also implemented an immersed boundary method (IBM) in WRF to accommodate complex terrain. These new models improve WRF's LES capabilities over complex terrain and in stable atmospheric conditions. We demonstrate approaches to nesting LES within a mesoscale simulation for farms of wind turbines in hilly regions. Results are sensitive to the nesting method, indicating that care must be taken to provide appropriate boundary conditions, and to allow adequate spin-up of turbulence in the LES domain.« less
Advanced solar irradiances applied to satellite and ionospheric operational systems
NASA Astrophysics Data System (ADS)
Tobiska, W. Kent; Schunk, Robert; Eccles, Vince; Bouwer, Dave
Satellite and ionospheric operational systems require solar irradiances in a variety of time scales and spectral formats. We describe the development of a system using operational grade solar irradiances that are applied to empirical thermospheric density models and physics-based ionospheric models used by operational systems that require a space weather characterization. The SOLAR2000 (S2K) and SOLARFLARE (SFLR) models developed by Space Environment Technologies (SET) provide solar irradiances from the soft X-rays (XUV) through the Far Ultraviolet (FUV) spectrum. The irradiances are provided as integrated indices for the JB2006 empirical atmosphere density models and as line/band spectral irradiances for the physics-based Ionosphere Forecast Model (IFM) developed by the Space Environment Corporation (SEC). We describe the integration of these irradiances in historical, current epoch, and forecast modes through the Communication Alert and Prediction System (CAPS). CAPS provides real-time and forecast HF radio availability for global and regional users and global total electron content (TEC) conditions.
NASA Astrophysics Data System (ADS)
Sinha, T.; Arumugam, S.
2012-12-01
Seasonal streamflow forecasts contingent on climate forecasts can be effectively utilized in updating water management plans and optimize generation of hydroelectric power. Streamflow in the rainfall-runoff dominated basins critically depend on forecasted precipitation in contrast to snow dominated basins, where initial hydrological conditions (IHCs) are more important. Since precipitation forecasts from Atmosphere-Ocean-General Circulation Models are available at coarse scale (~2.8° by 2.8°), spatial and temporal downscaling of such forecasts are required to implement land surface models, which typically runs on finer spatial and temporal scales. Consequently, multiple sources are introduced at various stages in predicting seasonal streamflow. Therefore, in this study, we addresses the following science questions: 1) How do we attribute the errors in monthly streamflow forecasts to various sources - (i) model errors, (ii) spatio-temporal downscaling, (iii) imprecise initial conditions, iv) no forecasts, and (iv) imprecise forecasts? and 2) How does monthly streamflow forecast errors propagate with different lead time over various seasons? In this study, the Variable Infiltration Capacity (VIC) model is calibrated over Apalachicola River at Chattahoochee, FL in the southeastern US and implemented with observed 1/8° daily forcings to estimate reference streamflow during 1981 to 2010. The VIC model is then forced with different schemes under updated IHCs prior to forecasting period to estimate relative mean square errors due to: a) temporally disaggregation, b) spatial downscaling, c) Reverse Ensemble Streamflow Prediction (imprecise IHCs), d) ESP (no forecasts), and e) ECHAM4.5 precipitation forecasts. Finally, error propagation under different schemes are analyzed with different lead time over different seasons.
Bridge Frost Prediction by Heat and Mass Transfer Methods
NASA Astrophysics Data System (ADS)
Greenfield, Tina M.; Takle, Eugene S.
2006-03-01
Frost on roadways and bridges can present hazardous conditions to motorists, particularly when it occurs in patches or on bridges when adjacent roadways are clear of frost. To minimize materials costs, vehicle corrosion, and negative environmental impacts, frost-suppression chemicals should be applied only when, where, and in the appropriate amounts needed to maintain roadways in a safe condition for motorists. Accurate forecasts of frost onset times, frost intensity, and frost disappearance (e.g., melting or sublimation) are needed to help roadway maintenance personnel decide when, where, and how much frost-suppression chemical to use. A finite-difference algorithm (BridgeT) has been developed that simulates vertical heat transfer in a bridge based on evolving meteorological conditions at its top and bottom as supplied by a weather forecast model. BridgeT simulates bridge temperatures at numerous points within the bridge (including its upper and lower surface) at each time step of the weather forecast model and calculates volume per unit area (i.e., depth) of deposited, melted, or sublimed frost. This model produces forecasts of bridge surface temperature, frost depth, and bridge condition (i.e., dry, wet, icy/snowy). Bridge frost predictions and bridge surface temperature are compared with observed and measured values to assess BridgeT's skill in forecasting bridge frost and associated conditions.
Evaluation of a wildfire smoke forecasting system as a tool for public health protection.
Yao, Jiayun; Brauer, Michael; Henderson, Sarah B
2013-10-01
Exposure to wildfire smoke has been associated with cardiopulmonary health impacts. Climate change will increase the severity and frequency of smoke events, suggesting a need for enhanced public health protection. Forecasts of smoke exposure can facilitate public health responses. We evaluated the utility of a wildfire smoke forecasting system (BlueSky) for public health protection by comparing its forecasts with observations and assessing their associations with population-level indicators of respiratory health in British Columbia, Canada. We compared BlueSky PM2.5 forecasts with PM2.5 measurements from air quality monitors, and BlueSky smoke plume forecasts with plume tracings from National Oceanic and Atmospheric Administration Hazard Mapping System remote sensing data. Daily counts of the asthma drug salbutamol sulfate dispensations and asthma-related physician visits were aggregated for each geographic local health area (LHA). Daily continuous measures of PM2.5 and binary measures of smoke plume presence, either forecasted or observed, were assigned to each LHA. Poisson regression was used to estimate the association between exposure measures and health indicators. We found modest agreement between forecasts and observations, which was improved during intense fire periods. A 30-μg/m3 increase in BlueSky PM2.5 was associated with an 8% increase in salbutamol dispensations and a 5% increase in asthma-related physician visits. BlueSky plume coverage was associated with 5% and 6% increases in the two health indicators, respectively. The effects were similar for observed smoke, and generally stronger in very smoky areas. BlueSky forecasts showed modest agreement with retrospective measures of smoke and were predictive of respiratory health indicators, suggesting they can provide useful information for public health protection.
NASA Astrophysics Data System (ADS)
Kutty, Govindan; Sandeep, S.; Vinodkumar; Nhaloor, Sreejith
2017-07-01
Indian summer monsoon rainfall is characterized by large intra-seasonal fluctuations in the form of active and break spells in rainfall. This study investigates the role of soil moisture and vegetation on 30-h precipitation forecasts during the break monsoon period using Weather Research and Forecast (WRF) model. The working hypothesis is that reduced rainfall, clear skies, and wet soil condition during the break monsoon period enhance land-atmosphere coupling over central India. Sensitivity experiments are conducted with modified initial soil moisture and vegetation. The results suggest that an increase in antecedent soil moisture would lead to an increase in precipitation, in general. The precipitation over the core monsoon region has increased by enhancing forest cover in the model simulations. Parameters such as Lifting Condensation Level, Level of Free Convection, and Convective Available Potential Energy indicate favorable atmospheric conditions for convection over forests, when wet soil conditions prevail. On spatial scales, the precipitation is more sensitive to soil moisture conditions over northeastern parts of India. Strong horizontal gradient in soil moisture and orographic uplift along the upslopes of Himalaya enhanced rainfall over the east of Indian subcontinent.
Economic indicators selection for crime rates forecasting using cooperative feature selection
NASA Astrophysics Data System (ADS)
Alwee, Razana; Shamsuddin, Siti Mariyam Hj; Salleh Sallehuddin, Roselina
2013-04-01
Features selection in multivariate forecasting model is very important to ensure that the model is accurate. The purpose of this study is to apply the Cooperative Feature Selection method for features selection. The features are economic indicators that will be used in crime rate forecasting model. The Cooperative Feature Selection combines grey relational analysis and artificial neural network to establish a cooperative model that can rank and select the significant economic indicators. Grey relational analysis is used to select the best data series to represent each economic indicator and is also used to rank the economic indicators according to its importance to the crime rate. After that, the artificial neural network is used to select the significant economic indicators for forecasting the crime rates. In this study, we used economic indicators of unemployment rate, consumer price index, gross domestic product and consumer sentiment index, as well as data rates of property crime and violent crime for the United States. Levenberg-Marquardt neural network is used in this study. From our experiments, we found that consumer price index is an important economic indicator that has a significant influence on the violent crime rate. While for property crime rate, the gross domestic product, unemployment rate and consumer price index are the influential economic indicators. The Cooperative Feature Selection is also found to produce smaller errors as compared to Multiple Linear Regression in forecasting property and violent crime rates.
Parametrisation of initial conditions for seasonal stream flow forecasting in the Swiss Rhine basin
NASA Astrophysics Data System (ADS)
Schick, Simon; Rössler, Ole; Weingartner, Rolf
2016-04-01
Current climate forecast models show - to the best of our knowledge - low skill in forecasting climate variability in Central Europe at seasonal lead times. When it comes to seasonal stream flow forecasting, initial conditions thus play an important role. Here, initial conditions refer to the catchments moisture at the date of forecast, i.e. snow depth, stream flow and lake level, soil moisture content, and groundwater level. The parametrisation of these initial conditions can take place at various spatial and temporal scales. Examples are the grid size of a distributed model or the time aggregation of predictors in statistical models. Therefore, the present study aims to investigate the extent to which the parametrisation of initial conditions at different spatial scales leads to differences in forecast errors. To do so, we conduct a forecast experiment for the Swiss Rhine at Basel, which covers parts of Germany, Austria, and Switzerland and is southerly bounded by the Alps. Seasonal mean stream flow is defined for the time aggregation of 30, 60, and 90 days and forecasted at 24 dates within the calendar year, i.e. at the 1st and 16th day of each month. A regression model is employed due to the various anthropogenic effects on the basins hydrology, which often are not quantifiable but might be grasped by a simple black box model. Furthermore, the pool of candidate predictors consists of antecedent temperature, precipitation, and stream flow only. This pragmatic approach follows the fact that observations of variables relevant for hydrological storages are either scarce in space or time (soil moisture, groundwater level), restricted to certain seasons (snow depth), or regions (lake levels, snow depth). For a systematic evaluation, we therefore focus on the comprehensive archives of meteorological observations and reanalyses to estimate the initial conditions via climate variability prior to the date of forecast. The experiment itself is based on four different approaches, whose differences in model skill were estimated within a rigorous cross-validation framework for the period 1982-2013: The predictands are regressed on antecedent temperature, precipitation, and stream flow. Here, temperature and precipitation constitute basin averages out of the E-OBS gridded data set. As in 1., but temperature and precipitation are used at the E-OBS grid scale (0.25 degree in longitude and latitude) without spatial averaging. As in 1., but the regression model is applied to 66 gauged subcatchments of the Rhine basin. Forecasts for these subcatchments are then simply summed and upscaled to the area of the Rhine basin. As in 3., but the forecasts at the subcatchment scale are additionally weighted in terms of hydrological representativeness of the corresponding subcatchment.
NASA Astrophysics Data System (ADS)
Clark, E.; Wood, A.; Nijssen, B.; Clark, M. P.
2017-12-01
Short- to medium-range (1- to 7-day) streamflow forecasts are important for flood control operations and in issuing potentially life-save flood warnings. In the U.S., the National Weather Service River Forecast Centers (RFCs) issue such forecasts in real time, depending heavily on a manual data assimilation (DA) approach. Forecasters adjust model inputs, states, parameters and outputs based on experience and consideration of a range of supporting real-time information. Achieving high-quality forecasts from new automated, centralized forecast systems will depend critically on the adequacy of automated DA approaches to make analogous corrections to the forecasting system. Such approaches would further enable systematic evaluation of real-time flood forecasting methods and strategies. Toward this goal, we have implemented a real-time Sequential Importance Resampling particle filter (SIR-PF) approach to assimilate observed streamflow into simulated initial hydrologic conditions (states) for initializing ensemble flood forecasts. Assimilating streamflow alone in SIR-PF improves simulated streamflow and soil moisture during the model spin up period prior to a forecast, with consequent benefits for forecasts. Nevertheless, it only consistently limits error in simulated snow water equivalent during the snowmelt season and in basins where precipitation falls primarily as snow. We examine how the simulated initial conditions with and without SIR-PF propagate into 1- to 7-day ensemble streamflow forecasts. Forecasts are evaluated in terms of reliability and skill over a 10-year period from 2005-2015. The focus of this analysis is on how interactions between hydroclimate and SIR-PF performance impact forecast skill. To this end, we examine forecasts for 5 hydroclimatically diverse basins in the western U.S. Some of these basins receive most of their precipitation as snow, others as rain. Some freeze throughout the mid-winter while others experience significant mid-winter melt events. We describe the methodology and present seasonal and inter-basin variations in DA-enhanced forecast skill.
NASA Astrophysics Data System (ADS)
Sivavaraprasad, G.; Venkata Ratnam, D.
2017-07-01
Ionospheric delay is one of the major atmospheric effects on the performance of satellite-based radio navigation systems. It limits the accuracy and availability of Global Positioning System (GPS) measurements, related to critical societal and safety applications. The temporal and spatial gradients of ionospheric total electron content (TEC) are driven by several unknown priori geophysical conditions and solar-terrestrial phenomena. Thereby, the prediction of ionospheric delay is challenging especially over Indian sub-continent. Therefore, an appropriate short/long-term ionospheric delay forecasting model is necessary. Hence, the intent of this paper is to forecast ionospheric delays by considering day to day, monthly and seasonal ionospheric TEC variations. GPS-TEC data (January 2013-December 2013) is extracted from a multi frequency GPS receiver established at K L University, Vaddeswaram, Guntur station (geographic: 16.37°N, 80.37°E; geomagnetic: 7.44°N, 153.75°E), India. An evaluation, in terms of forecasting capabilities, of three ionospheric time delay models - an Auto Regressive Moving Average (ARMA) model, Auto Regressive Integrated Moving Average (ARIMA) model, and a Holt-Winter's model is presented. The performances of these models are evaluated through error measurement analysis during both geomagnetic quiet and disturbed days. It is found that, ARMA model is effectively forecasting the ionospheric delay with an accuracy of 82-94%, which is 10% more superior to ARIMA and Holt-Winter's models. Moreover, the modeled VTEC derived from International Reference Ionosphere, IRI (IRI-2012) model and new global TEC model, Neustrelitz TEC Model (NTCM-GL) have compared with forecasted VTEC values of ARMA, ARIMA and Holt-Winter's models during geomagnetic quiet days. The forecast results are indicating that ARMA model would be useful to set up an early warning system for ionospheric disturbances at low latitude regions.
NASA Astrophysics Data System (ADS)
Beguería, S.
2017-12-01
While large efforts are devoted to developing crop status monitoring and yield forecasting systems trough the use of Earth observation data (mostly remotely sensed satellite imagery) and observational and modeled weather data, here we focus on the information value of qualitative data on crop status from direct observations made by humans. This kind of data has a high value as it reflects the expert opinion of individuals directly involved in the development of the crop. However, they have issues that prevent their direct use in crop monitoring and yield forecasting systems, such as their non-spatially explicit nature, or most importantly their qualitative nature. Indeed, while the human brain is good at categorizing the status of physical systems in terms of qualitative scales (`very good', `good', `fair', etcetera), it has difficulties in quantifying it in physical units. This has prevented the incorporation of this kind of data into systems that make extensive use of numerical information. Here we show an example of using qualitative crop condition data to estimate yields of the most important crops in the US early in the season. We use USDA weekly crop condition reports, which are based on a sample of thousands of reporters including mostly farmers and people in direct contact with them. These reporters provide subjective evaluations of crop conditions, in a scale including five levels ranging from `very poor' to `excellent'. The USDA report indicates, for each state, the proportion of reporters fort each condition level. We show how is it possible to model the underlying non-observed quantitative variable that reflects the crop status on each state, and how this model is consistent across states and years. Furthermore, we show how this information can be used to monitor the status of the crops and to produce yield forecasts early in the season. Finally, we discuss approaches for blending this information source with other, more classical earth data sources such as remote sensing or weather data, in the context of hierarchical regression models.
Value of Forecaster in the Loop
2014-09-01
forecast system IFR instrument flight rules IMC instrument meteorological conditions LAMP Localized Aviation Model Output Statistics Program METOC...obtaining valuable experience. Additional factors have impacted the Navy weather forecast process. There has been a the realignment of the meteorology...forecasts that are assessed, it may be a relatively small number that have direct impact on the decision-making process. Whether the value is minimal or
Temporal Characteristics of Electron Flux Events at Geosynchronous Orbit
NASA Astrophysics Data System (ADS)
Olson, D. K.; Larsen, B.; Henderson, M. G.
2017-12-01
Geosynchronous satellites such as the LANL-GEO fleet are exposed to hazardous conditions when they encounter regions of hot, intense plasma such as that from the plasma sheet. These conditions can lead to the build-up of charge on the surface of a spacecraft, with undesired, and often dangerous, side effects. Observation of electron flux levels at geosynchronous orbit (GEO) with multiple satellites provides a unique view of plasma sheet access to that region. Flux "events", or periods when fluxes are elevated continuously above the LANL-GEO spacecraft charging threshold, can be characterized by duration in two dimensions: a spatial dimension of local time, describing the duration of an event from the perspective of a single spacecraft, and a temporal dimension describing the duration in time in which high energy plasma sheet particles have access to geosynchronous orbit. We examine the statistical properties of the temporal duration of 8 keV electron flux events at geosynchronous orbit over a twelve-year period. These results, coupled with the spatial duration characteristics, provide the key information needed to formulate a statistical model for forecasting the electron flux conditions at GEO that are correlated with LANL-GEO surface charging. Forecasting models are an essential component to understanding space weather and mitigating the dangers of surface charging on our satellites. We also examine the correlation of flux event durations with solar wind parameters and geomagnetic indices, identifying the data needed to improve upon a statistical forecasting model
Forecast of jet engine exhaust emissions for future high altitude commercial aircraft
NASA Technical Reports Server (NTRS)
Grobman, J.; Ingebo, R. D.
1974-01-01
Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high altitude cruise conditions are presented. The forecasts are based on: (1) current knowledge of emission characteristics of combustors and augmentors; (2) the current status of combustion research in emission reduction technology; (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft. Results are presented for cruise conditions in terms of an emission index, g pollutant/kg fuel. Two sets of engine exhaust emission predictions are presented: the first, based on an independent NASA study and the second, based on the consensus of an ad hoc committee composed of industry, university, and government representatives. The consensus forecasts are in general agreement with the NASA forecasts.
Forecast of jet engine exhaust emissions for future high altitude commercial aircraft
NASA Technical Reports Server (NTRS)
Grobman, J.; Ingebo, R. D.
1974-01-01
Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high altitude cruise conditions are presented. The forecasts are based on: (1) current knowledge of emission characteristics of combustors and augmentors; (2) the current status of combustion research in emission reduction technology; and (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft. Results are presented for cruise conditions in terms of an emission index, g pollutant/kg fuel. Two sets of engine exhaust emission predictions are presented: the first, based on an independent NASA study and the second, based on the consensus of an ad hoc committee composed of industry, university, and government representatives. The consensus forecasts are in general agreement with the NASA forecasts.
48 CFR 232.072-3 - Cash flow forecasts.
Code of Federal Regulations, 2013 CFR
2013-10-01
... forecasts is a strong indicator of serious managerial deficiencies or potential contract cost or performance... the causes of any differences. (d) Cash flow forecasts must— (1) Show the origin and use of all...
48 CFR 232.072-3 - Cash flow forecasts.
Code of Federal Regulations, 2011 CFR
2011-10-01
... forecasts is a strong indicator of serious managerial deficiencies or potential contract cost or performance... the causes of any differences. (d) Cash flow forecasts must— (1) Show the origin and use of all...
48 CFR 232.072-3 - Cash flow forecasts.
Code of Federal Regulations, 2014 CFR
2014-10-01
... forecasts is a strong indicator of serious managerial deficiencies or potential contract cost or performance... the causes of any differences. (d) Cash flow forecasts must— (1) Show the origin and use of all...
48 CFR 232.072-3 - Cash flow forecasts.
Code of Federal Regulations, 2012 CFR
2012-10-01
... forecasts is a strong indicator of serious managerial deficiencies or potential contract cost or performance... the causes of any differences. (d) Cash flow forecasts must— (1) Show the origin and use of all...
NASA Astrophysics Data System (ADS)
Onken, Reiner
2017-04-01
The Regional Ocean Modeling System (ROMS) has been employed to explore the sensitivity of the forecast skill of mixed-layer properties to initial conditions, boundary conditions, and vertical mixing parameterisations. The initial and lateral boundary conditions were provided by the Mediterranean Forecasting System (MFS) or by the MERCATOR global ocean circulation model via one-way nesting; the initial conditions were additionally updated through the assimilation of observations. Nowcasts and forecasts from the weather forecast models COSMO-ME and COSMO-IT, partly melded with observations, served as surface boundary conditions. The vertical mixing was parameterised by the GLS (generic length scale) scheme Umlauf and Burchard (2003) in four different set-ups. All ROMS forecasts were validated against the observations which were taken during the REP14-MED survey to the west of Sardinia. Nesting ROMS in MERCATOR and updating the initial conditions through data assimilation provided the best agreement of the predicted mixed-layer properties with the time series from a moored thermistor chain. Further improvement was obtained by the usage of COSMO-ME atmospheric forcing, which was melded with real observations, and by the application of the k-ω vertical mixing scheme with increased vertical eddy diffusivity. The predicted temporal variability of the mixed-layer temperature was reasonably well correlated with the observed variability, while the modelled variability of the mixed-layer depth exhibited only agreement with the observations near the diurnal frequency peak. For the forecasted horizontal variability, reasonable agreement was found with observations from a ScanFish section, but only for the mesoscale wave number band; the observed sub-mesoscale variability was not reproduced by ROMS.
Methods and Techniques of Revenue Forecasting.
ERIC Educational Resources Information Center
Caruthers, J. Kent; Wentworth, Cathi L.
1997-01-01
Revenue forecasting is the critical first step in most college and university budget-planning processes. While it seems a straightforward exercise, effective forecasting requires consideration of a number of interacting internal and external variables, including demographic trends, economic conditions, and broad social priorities. The challenge…
Falkenberg, Laura J; Russell, Bayden D; Connell, Sean D
2012-01-01
Foundation species, such as kelp, exert disproportionately strong community effects and persist, in part, by dominating taxa that inhibit their regeneration. Human activities which benefit their competitors, however, may reduce stability of communities, increasing the probability of phase-shifts. We tested whether a foundation species (kelp) would continue to inhibit a key competitor (turf-forming algae) under moderately increased local (nutrient) and near-future forecasted global pollution (CO(2)). Our results reveal that in the absence of kelp, local and global pollutants combined to cause the greatest cover and mass of turfs, a synergistic response whereby turfs increased more than would be predicted by adding the independent effects of treatments (kelp absence, elevated nutrients, forecasted CO(2)). The positive effects of nutrient and CO(2) enrichment on turfs were, however, inhibited by the presence of kelp, indicating the competitive effect of kelp was stronger than synergistic effects of moderate enrichment of local and global pollutants. Quantification of physicochemical parameters within experimental mesocosms suggests turf inhibition was likely due to an effect of kelp on physical (i.e. shading) rather than chemical conditions. Such results indicate that while forecasted climates may increase the probability of phase-shifts, maintenance of intact populations of foundation species could enable the continued strength of interactions and persistence of communities.
Trichothecene mycotoxins and their determinants in settled dust related to grain production.
Nordby, Karl-Christian; Halstensen, Anne Straumfors; Elen, Oleif; Clasen, Per-Erik; Langseth, Wenche; Kristensen, Petter; Eduard, Wijnand
2004-01-01
We hypothesise that inhalant exposure to mycotoxins causes developmental outcomes and certain hormone-related cancers that are associated with grain farming in an epidemiological study. The aim of the present study was to identify and validate determinants of measured trichothecene mycotoxins in grain dust as work environmental trichothecene exposure indicators. Settled grain dust was collected in 92 Norwegian farms during seasons of 1999 and 2000. Production characteristics and climatic data were studied as determinants of trichothecenes in settled dust samples obtained during the production of barley (N = 59), oats (N = 32), and spring wheat (N = 13). Median concentrations of trichothecenes in grain dust were <20, 54, and < 50 mg/kg (ranges < 20-340, < 30-2400, and < 50-1200) for deoxynivalenol (DON), HT-2 toxin (HT-2) and T-2 toxin (T-2) respectively. Late blight potato rot (fungal) forecasts have been broadcast in Norway to help prevent this potato disease. Fungal forecasts representing wet, temperate, and humid meteorological conditions were identified as strong determinants of trichothecene mycotoxins in settled grain dust in this study. Differences in cereal species, production properties and districts contributed less to explain mycotoxin concentrations. Fungal forecasts are validated as indicators of mycotoxin exposure of grain farmers and their use in epidemiological studies may be warranted.
Evolving forecasting classifications and applications in health forecasting
Soyiri, Ireneous N; Reidpath, Daniel D
2012-01-01
Health forecasting forewarns the health community about future health situations and disease episodes so that health systems can better allocate resources and manage demand. The tools used for developing and measuring the accuracy and validity of health forecasts commonly are not defined although they are usually adapted forms of statistical procedures. This review identifies previous typologies used in classifying the forecasting methods commonly used in forecasting health conditions or situations. It then discusses the strengths and weaknesses of these methods and presents the choices available for measuring the accuracy of health-forecasting models, including a note on the discrepancies in the modes of validation. PMID:22615533
Evaluation of a Wildfire Smoke Forecasting System as a Tool for Public Health Protection
Brauer, Michael; Henderson, Sarah B.
2013-01-01
Background: Exposure to wildfire smoke has been associated with cardiopulmonary health impacts. Climate change will increase the severity and frequency of smoke events, suggesting a need for enhanced public health protection. Forecasts of smoke exposure can facilitate public health responses. Objectives: We evaluated the utility of a wildfire smoke forecasting system (BlueSky) for public health protection by comparing its forecasts with observations and assessing their associations with population-level indicators of respiratory health in British Columbia, Canada. Methods: We compared BlueSky PM2.5 forecasts with PM2.5 measurements from air quality monitors, and BlueSky smoke plume forecasts with plume tracings from National Oceanic and Atmospheric Administration Hazard Mapping System remote sensing data. Daily counts of the asthma drug salbutamol sulfate dispensations and asthma-related physician visits were aggregated for each geographic local health area (LHA). Daily continuous measures of PM2.5 and binary measures of smoke plume presence, either forecasted or observed, were assigned to each LHA. Poisson regression was used to estimate the association between exposure measures and health indicators. Results: We found modest agreement between forecasts and observations, which was improved during intense fire periods. A 30-μg/m3 increase in BlueSky PM2.5 was associated with an 8% increase in salbutamol dispensations and a 5% increase in asthma-related physician visits. BlueSky plume coverage was associated with 5% and 6% increases in the two health indicators, respectively. The effects were similar for observed smoke, and generally stronger in very smoky areas. Conclusions: BlueSky forecasts showed modest agreement with retrospective measures of smoke and were predictive of respiratory health indicators, suggesting they can provide useful information for public health protection. Citation: Yao J, Brauer M, Henderson SB. 2013. Evaluation of a wildfire smoke forecasting system as a tool for public health protection. Environ Health Perspect 121:1142–1147; http://dx.doi.org/10.1289/ehp.1306768 PMID:23906969
C. Sean Dolter
2006-01-01
This paper reports on an initiative referred to as the Biodiversity Assessment Project (BAP). A suite of tools is being developed to assist forest managers in assessing the predicted future forest conditions of Newfoundland and Labradorâs forests under a variety of management scenarios. Since 1999, the Western Newfoundland Model Forest partnership...
Forecasting of the electrical actuators condition using stator’s current signals
NASA Astrophysics Data System (ADS)
Kruglova, T. N.; Yaroshenko, I. V.; Rabotalov, N. N.; Melnikov, M. A.
2017-02-01
This article describes a forecasting method for electrical actuators realized through the combination of Fourier transformation and neural network techniques. The method allows finding the value of diagnostic functions in the iterating operating cycle and the number of operational cycles in time before the BLDC actuator fails. For forecasting of the condition of the actuator, we propose a hierarchical structure of the neural network aiming to reduce the training time of the neural network and improve estimation accuracy.
Seasonal Predictions with the GEOS GCM
NASA Technical Reports Server (NTRS)
Schubert, Siegfried; Chang, Yehui; Suarez, Max
1999-01-01
A number of ensembles of seasonal forecasts have recently been completed as part of NASA's Seasonal to Interannual Prediction Project (NSIPP). The focus is on the extratropical response of the atmosphere to observed Surface Sea Temperature (SST) anomalies during boreal winter. The prediction experiments consist of nine forecasts starting from slightly different initial conditions for each year of the 15 year period 1981-95, employing version 2 of the Goddard Earth Observing System (GEOS) atmospheric Global Circulation Models (GCM). The initial conditions are obtained from the NASA GEOS-1 reanalysis data. Comparisons with a companion set of six long-term simulations with observed SST (starting in 1978, so they have no memory of the initial conditions for the periods of interest) are used to assess the relative contributions of the initial conditions and SST anomalies to forecast skill ranging from daily to seasonal time scales. The ensembles are used to isolate the signal, and to assess the nature of the inherent variability (noise) of the forecasts.
NASA Astrophysics Data System (ADS)
Khajehei, Sepideh; Moradkhani, Hamid
2015-04-01
Producing reliable and accurate hydrologic ensemble forecasts are subject to various sources of uncertainty, including meteorological forcing, initial conditions, model structure, and model parameters. Producing reliable and skillful precipitation ensemble forecasts is one approach to reduce the total uncertainty in hydrological applications. Currently, National Weather Prediction (NWP) models are developing ensemble forecasts for various temporal ranges. It is proven that raw products from NWP models are biased in mean and spread. Given the above state, there is a need for methods that are able to generate reliable ensemble forecasts for hydrological applications. One of the common techniques is to apply statistical procedures in order to generate ensemble forecast from NWP-generated single-value forecasts. The procedure is based on the bivariate probability distribution between the observation and single-value precipitation forecast. However, one of the assumptions of the current method is fitting Gaussian distribution to the marginal distributions of observed and modeled climate variable. Here, we have described and evaluated a Bayesian approach based on Copula functions to develop an ensemble precipitation forecast from the conditional distribution of single-value precipitation forecasts. Copula functions are known as the multivariate joint distribution of univariate marginal distributions, which are presented as an alternative procedure in capturing the uncertainties related to meteorological forcing. Copulas are capable of modeling the joint distribution of two variables with any level of correlation and dependency. This study is conducted over a sub-basin in the Columbia River Basin in USA using the monthly precipitation forecasts from Climate Forecast System (CFS) with 0.5x0.5 Deg. spatial resolution to reproduce the observations. The verification is conducted on a different period and the superiority of the procedure is compared with Ensemble Pre-Processor approach currently used by National Weather Service River Forecast Centers in USA.
NASA Astrophysics Data System (ADS)
Kim, Yongku; Seo, Young-Kyo; Baek, Sung-Ok
2013-12-01
Although large quantities of air pollutants are released into the atmosphere, they are partially monitored and routinely assessed for their health implications. This paper proposes a statistical model describing the temporal behavior of hazardous air pollutants (HAPs), which can have negative effects on human health. Benzo[a]pyrene (BaP) is selected for statistical modeling. The proposed model incorporates the linkage between BaP and meteorology and is specifically formulated to identify meteorological effects and allow for seasonal trends. The model is used to estimate and forecast temporal fields of BaP conditional on observed (or forecasted) meteorological conditions, including temperature, precipitation, wind speed, and air quality. The effects of BaP on human health are examined by characterizing health indicators, namely the cancer risk and the hazard quotient. The model provides useful information for the optimal monitoring period and projection of future BaP concentrations for both industrial and residential areas in Korea.
A Machine LearningFramework to Forecast Wave Conditions
NASA Astrophysics Data System (ADS)
Zhang, Y.; James, S. C.; O'Donncha, F.
2017-12-01
Recently, significant effort has been undertaken to quantify and extract wave energy because it is renewable, environmental friendly, abundant, and often close to population centers. However, a major challenge is the ability to accurately and quickly predict energy production, especially across a 48-hour cycle. Accurate forecasting of wave conditions is a challenging undertaking that typically involves solving the spectral action-balance equation on a discretized grid with high spatial resolution. The nature of the computations typically demands high-performance computing infrastructure. Using a case-study site at Monterey Bay, California, a machine learning framework was trained to replicate numerically simulated wave conditions at a fraction of the typical computational cost. Specifically, the physics-based Simulating WAves Nearshore (SWAN) model, driven by measured wave conditions, nowcast ocean currents, and wind data, was used to generate training data for machine learning algorithms. The model was run between April 1st, 2013 and May 31st, 2017 generating forecasts at three-hour intervals yielding 11,078 distinct model outputs. SWAN-generated fields of 3,104 wave heights and a characteristic period could be replicated through simple matrix multiplications using the mapping matrices from machine learning algorithms. In fact, wave-height RMSEs from the machine learning algorithms (9 cm) were less than those for the SWAN model-verification exercise where those simulations were compared to buoy wave data within the model domain (>40 cm). The validated machine learning approach, which acts as an accurate surrogate for the SWAN model, can now be used to perform real-time forecasts of wave conditions for the next 48 hours using available forecasted boundary wave conditions, ocean currents, and winds. This solution has obvious applications to wave-energy generation as accurate wave conditions can be forecasted with over a three-order-of-magnitude reduction in computational expense. The low computational cost (and by association low computer-power requirement) means that the machine learning algorithms could be installed on a wave-energy converter as a form of "edge computing" where a device could forecast its own 48-hour energy production.
National Weather Service Forecast Office - Honolulu, Hawai`i
Locations - Coastal Forecast Kauai Northwest Waters Kauai Windward Waters Kauai Leeward Waters Kauai Channel Coastal Wind Observations Buoy Reports, and current weather conditions for selected locations tides , sunrise and sunset information Coastal Waters Forecast general weather overview Tropical information
Congdon, B S; Coutts, B A; Jones, R A C; Renton, M
2017-09-15
An empirical model was developed to forecast Pea seed-borne mosaic virus (PSbMV) incidence at a critical phase of the annual growing season to predict yield loss in field pea crops sown under Mediterranean-type conditions. The model uses pre-growing season rainfall to calculate an index of aphid abundance in early-August which, in combination with PSbMV infection level in seed sown, is used to forecast virus crop incidence. Using predicted PSbMV crop incidence in early-August and day of sowing, PSbMV transmission from harvested seed was also predicted, albeit less accurately. The model was developed so it provides forecasts before sowing to allow sufficient time to implement control recommendations, such as having representative seed samples tested for PSbMV transmission rate to seedlings, obtaining seed with minimal PSbMV infection or of a PSbMV-resistant cultivar, and implementation of cultural management strategies. The model provides a disease forecast risk indication, taking into account predicted percentage yield loss to PSbMV infection and economic factors involved in field pea production. This disease risk forecast delivers location-specific recommendations regarding PSbMV management to end-users. These recommendations will be delivered directly to end-users via SMS alerts with links to web support that provide information on PSbMV management options. This modelling and decision support system approach would likely be suitable for use in other world regions where field pea is grown in similar Mediterranean-type environments. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pattanayak, Sujata; Mohanty, U. C.
2018-06-01
The paper intends to present the development of the extended weather research forecasting data assimilation (WRFDA) system in the framework of the non-hydrostatic mesoscale model core of weather research forecasting system (WRF-NMM), as an imperative aspect of numerical modeling studies. Though originally the WRFDA provides improved initial conditions for advanced research WRF, we have successfully developed a unified WRFDA utility that can be used by the WRF-NMM core, as well. After critical evaluation, it has been strategized to develop a code to merge WRFDA framework and WRF-NMM output. In this paper, we have provided a few selected implementations and initial results through single observation test, and background error statistics like eigenvalues, eigenvector and length scale among others, which showcase the successful development of extended WRFDA code for WRF-NMM model. Furthermore, the extended WRFDA system is applied for the forecast of three severe cyclonic storms: Nargis (27 April-3 May 2008), Aila (23-26 May 2009) and Jal (4-8 November 2010) formed over the Bay of Bengal. Model results are compared and contrasted within the analysis fields and later on with high-resolution model forecasts. The mean initial position error is reduced by 33% with WRFDA as compared to GFS analysis. The vector displacement errors in track forecast are reduced by 33, 31, 30 and 20% to 24, 48, 72 and 96 hr forecasts respectively, in data assimilation experiments as compared to control run. The model diagnostics indicates successful implementation of WRFDA within the WRF-NMM system.
Forecasting surface-layer atmospheric parameters at the Large Binocular Telescope site
NASA Astrophysics Data System (ADS)
Turchi, Alessio; Masciadri, Elena; Fini, Luca
2017-04-01
In this paper, we quantify the performance of an automated weather forecast system implemented on the Large Binocular Telescope (LBT) site at Mt Graham (Arizona) in forecasting the main atmospheric parameters close to the ground. The system employs a mesoscale non-hydrostatic numerical model (Meso-Nh). To validate the model, we compare the forecasts of wind speed, wind direction, temperature and relative humidity close to the ground with the respective values measured by instrumentation installed on the telescope dome. The study is performed over a large sample of nights uniformly distributed over 2 yr. The quantitative analysis is done using classical statistical operators [bias, root-mean-square error (RMSE) and σ] and contingency tables, which allows us to extract complementary key information, such as the percentage of correct detections (PC) and the probability of obtaining a correct detection within a defined interval of values (POD). The results of our study indicate that the model performance in forecasting the atmospheric parameters we have just cited are very good, in some cases excellent: RMSE for temperature is below 1°C, for relative humidity it is 14 per cent and for the wind speed it is around 2.5 m s-1. The relative error of the RMSE for wind direction varies from 9 to 17 per cent depending on the wind speed conditions. This work is performed in the context of the ALTA (Advanced LBT Turbulence and Atmosphere) Center project, whose final goal is to provide forecasts of all the atmospheric parameters and the optical turbulence to support LBT observations, adaptive optics facilities and interferometric facilities.
David N. Wear
2011-01-01
Accurately forecasting future forest conditions and the implications for ecosystem services depends on understanding land use dynamics. In support of the 2010 Renewable Resources Planning Act (RPA) Assessment, we forecast changes in land uses for the coterminous United States in response to three scenarios. Our land use models forecast urbanization in response to the...
National Weather Service Forecast Office Guam Home
National Alerts Text Current Conditions Observations Satellite Hydrology River & Lake AHPS Radar Imagery AAFB (Guam) AAFB (Guam) Dial up CONUS Radar Forecasts Activity Planner Guam Public Marine Aviation ; Weather Topics: Local Alerts, Current Conditions, Radar, Satellite, Climate, W-GUM.Webmaster@noaa.gov
NASA Astrophysics Data System (ADS)
Pathiraja, S.; Anghileri, D.; Burlando, P.; Sharma, A.; Marshall, L.; Moradkhani, H.
2018-03-01
The global prevalence of rapid and extensive land use change necessitates hydrologic modelling methodologies capable of handling non-stationarity. This is particularly true in the context of Hydrologic Forecasting using Data Assimilation. Data Assimilation has been shown to dramatically improve forecast skill in hydrologic and meteorological applications, although such improvements are conditional on using bias-free observations and model simulations. A hydrologic model calibrated to a particular set of land cover conditions has the potential to produce biased simulations when the catchment is disturbed. This paper sheds new light on the impacts of bias or systematic errors in hydrologic data assimilation, in the context of forecasting in catchments with changing land surface conditions and a model calibrated to pre-change conditions. We posit that in such cases, the impact of systematic model errors on assimilation or forecast quality is dependent on the inherent prediction uncertainty that persists even in pre-change conditions. Through experiments on a range of catchments, we develop a conceptual relationship between total prediction uncertainty and the impacts of land cover changes on the hydrologic regime to demonstrate how forecast quality is affected when using state estimation Data Assimilation with no modifications to account for land cover changes. This work shows that systematic model errors as a result of changing or changed catchment conditions do not always necessitate adjustments to the modelling or assimilation methodology, for instance through re-calibration of the hydrologic model, time varying model parameters or revised offline/online bias estimation.
Weather Forecasting Systems and Methods
NASA Technical Reports Server (NTRS)
Mecikalski, John (Inventor); MacKenzie, Wayne M., Jr. (Inventor); Walker, John Robert (Inventor)
2014-01-01
A weather forecasting system has weather forecasting logic that receives raw image data from a satellite. The raw image data has values indicative of light and radiance data from the Earth as measured by the satellite, and the weather forecasting logic processes such data to identify cumulus clouds within the satellite images. For each identified cumulus cloud, the weather forecasting logic applies interest field tests to determine a score indicating the likelihood of the cumulus cloud forming precipitation and/or lightning in the future within a certain time period. Based on such scores, the weather forecasting logic predicts in which geographic regions the identified cumulus clouds will produce precipitation and/or lighting within during the time period. Such predictions may then be used to provide a weather map thereby providing users with a graphical illustration of the areas predicted to be affected by precipitation within the time period.
Multilayer Stock Forecasting Model Using Fuzzy Time Series
Javedani Sadaei, Hossein; Lee, Muhammad Hisyam
2014-01-01
After reviewing the vast body of literature on using FTS in stock market forecasting, certain deficiencies are distinguished in the hybridization of findings. In addition, the lack of constructive systematic framework, which can be helpful to indicate direction of growth in entire FTS forecasting systems, is outstanding. In this study, we propose a multilayer model for stock market forecasting including five logical significant layers. Every single layer has its detailed concern to assist forecast development by reconciling certain problems exclusively. To verify the model, a set of huge data containing Taiwan Stock Index (TAIEX), National Association of Securities Dealers Automated Quotations (NASDAQ), Dow Jones Industrial Average (DJI), and S&P 500 have been chosen as experimental datasets. The results indicate that the proposed methodology has the potential to be accepted as a framework for model development in stock market forecasts using FTS. PMID:24605058
Prediction of ENSO episodes using canonical correlation analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnston, A.G.; Ropelewski, C.F.
Canonical correlation analysis (CCA) is explored as a multivariate linear statistical methodology with which to forecast fluctuations of the El Nino/Southern Oscillation (ENSO) in real time. CCA is capable of identifying critical sequences of predictor patterns that tend to evolve into subsequent pattern that can be used to form a forecast. The CCA model is used to forecast the 3-month mean sea surface temperature (SST) in several regions of the tropical Pacific and Indian oceans for projection times of 0 to 4 seasons beyond the immediately forthcoming season. The predictor variables, representing the climate situation in the four consecutive 3-monthmore » periods ending at the time of the forecast, are (1) quasi-global seasonal mean sea level pressure (SLP) and (2) SST in the predicted regions themselves. Forecast skill is estimated using cross-validation, and persistence is used as the primary skill control measure. Results indicate that a large region in the eastern equatorial Pacific (120[degrees]-170[degrees] W longitude) has the highest overall predictability, with excellent skill realized for winter forecasts made at the end of summer. CCA outperforms persistence in this region under most conditions, and does noticeably better with the SST included as a predictor in addition to the SLP. It is demonstrated that better forecast performance at the longer lead times would be obtained if some significantly earlier (i.e., up to 4 years) predictor data were included, because the ability to predict the lower-frequency ENSO phase changes would increase. The good performance of the current system at shorter lead times appears to be based largely on the ability to predict ENSO evolution for events already in progress. The forecasting of the eastern tropical Pacific SST using CCA is now done routinely on a monthly basis for a O-, 1-, and 2-season lead at the Climate Analysis Center.« less
NASA Astrophysics Data System (ADS)
Tang, L.; Titov, V. V.; Chamberlin, C. D.
2009-12-01
The study describes the development, testing and applications of site-specific tsunami inundation models (forecast models) for use in NOAA's tsunami forecast and warning system. The model development process includes sensitivity studies of tsunami wave characteristics in the nearshore and inundation, for a range of model grid setups, resolutions and parameters. To demonstrate the process, four forecast models in Hawaii, at Hilo, Kahului, Honolulu, and Nawiliwili are described. The models were validated with fourteen historical tsunamis and compared with numerical results from reference inundation models of higher resolution. The accuracy of the modeled maximum wave height is greater than 80% when the observation is greater than 0.5 m; when the observation is below 0.5 m the error is less than 0.3 m. The error of the modeled arrival time of the first peak is within 3% of the travel time. The developed forecast models were further applied to hazard assessment from simulated magnitude 7.5, 8.2, 8.7 and 9.3 tsunamis based on subduction zone earthquakes in the Pacific. The tsunami hazard assessment study indicates that use of a seismic magnitude alone for a tsunami source assessment is inadequate to achieve such accuracy for tsunami amplitude forecasts. The forecast models apply local bathymetric and topographic information, and utilize dynamic boundary conditions from the tsunami source function database, to provide site- and event-specific coastal predictions. Only by combining a Deep-ocean Assessment and Reporting of Tsunami-constrained tsunami magnitude with site-specific high-resolution models can the forecasts completely cover the evolution of earthquake-generated tsunami waves: generation, deep ocean propagation, and coastal inundation. Wavelet analysis of the tsunami waves suggests the coastal tsunami frequency responses at different sites are dominated by the local bathymetry, yet they can be partially related to the locations of the tsunami sources. The study also demonstrates the nonlinearity between offshore and nearshore maximum wave amplitudes.
Some Advances in Downscaling Probabilistic Climate Forecasts for Agricultural Decision Support
NASA Astrophysics Data System (ADS)
Han, E.; Ines, A.
2015-12-01
Seasonal climate forecasts, commonly provided in tercile-probabilities format (below-, near- and above-normal), need to be translated into more meaningful information for decision support of practitioners in agriculture. In this paper, we will present two new novel approaches to temporally downscale probabilistic seasonal climate forecasts: one non-parametric and another parametric method. First, the non-parametric downscaling approach called FResampler1 uses the concept of 'conditional block sampling' of weather data to create daily weather realizations of a tercile-based seasonal climate forecasts. FResampler1 randomly draws time series of daily weather parameters (e.g., rainfall, maximum and minimum temperature and solar radiation) from historical records, for the season of interest from years that belong to a certain rainfall tercile category (e.g., being below-, near- and above-normal). In this way, FResampler1 preserves the covariance between rainfall and other weather parameters as if conditionally sampling maximum and minimum temperature and solar radiation if that day is wet or dry. The second approach called predictWTD is a parametric method based on a conditional stochastic weather generator. The tercile-based seasonal climate forecast is converted into a theoretical forecast cumulative probability curve. Then the deviates for each percentile is converted into rainfall amount or frequency or intensity to downscale the 'full' distribution of probabilistic seasonal climate forecasts. Those seasonal deviates are then disaggregated on a monthly basis and used to constrain the downscaling of forecast realizations at different percentile values of the theoretical forecast curve. As well as the theoretical basis of the approaches we will discuss sensitivity analysis (length of data and size of samples) of them. In addition their potential applications for managing climate-related risks in agriculture will be shown through a couple of case studies based on actual seasonal climate forecasts for: rice cropping in the Philippines and maize cropping in India and Kenya.
Bayesian analyses of seasonal runoff forecasts
NASA Astrophysics Data System (ADS)
Krzysztofowicz, R.; Reese, S.
1991-12-01
Forecasts of seasonal snowmelt runoff volume provide indispensable information for rational decision making by water project operators, irrigation district managers, and farmers in the western United States. Bayesian statistical models and communication frames have been researched in order to enhance the forecast information disseminated to the users, and to characterize forecast skill from the decision maker's point of view. Four products are presented: (i) a Bayesian Processor of Forecasts, which provides a statistical filter for calibrating the forecasts, and a procedure for estimating the posterior probability distribution of the seasonal runoff; (ii) the Bayesian Correlation Score, a new measure of forecast skill, which is related monotonically to the ex ante economic value of forecasts for decision making; (iii) a statistical predictor of monthly cumulative runoffs within the snowmelt season, conditional on the total seasonal runoff forecast; and (iv) a framing of the forecast message that conveys the uncertainty associated with the forecast estimates to the users. All analyses are illustrated with numerical examples of forecasts for six gauging stations from the period 1971 1988.
NASA Astrophysics Data System (ADS)
Pytlak, E.; McManamon, A.; Hughes, S. P.; Van Der Zweep, R. A.; Butcher, P.; Karafotias, C.; Beckers, J.; Welles, E.
2016-12-01
Numerous studies have documented the impacts that large scale weather patterns and climate phenomenon like the El Niño Southern Oscillation (ENSO), Pacific-North American (PNA) Pattern, and others can have on seasonal temperature and precipitation in the Columbia River Basin (CRB). While far from perfect in terms of seasonal predictability in specific locations, these intra-annual weather and climate signal do tilt the odds toward different temperature and precipitation outcomes, which in turn can have impacts on seasonal snowpacks, streamflows and water supply in large river basins like the CRB. We hypothesize that intraseasonal climate signals and long wave jet stream patterns can be objectively incorporated into what it is otherwise a climatology-based set of Ensemble Streamflow Forecasts, and can increase the predictive skill and utility of these forecasts used for mid-range hydropower planning. The Bonneville Power Administration (BPA) and Deltares have developed a subsampling-resampling method to incorporate climate mode information into the Ensemble Streamflow Prediction (ESP) forecasts (Beckers, et al., 2016). Since 2015, BPA and Deltares USA have experimented with this method in pre-operational use, using five objective multivariate climate indices that appear to have the greatest predictive value for seasonal temperature and precipitation in the CRB. The indices are used to objectively select historical weather from about twenty analog years in the 66-year (1949-2015) historical ESP set. These twenty scenarios then serve as the starting point to generate monthly synthetic weather and streamflow time series to return to a set of 66 streamflow traces. Our poster will share initial results from the 2015 and 2016 water years, which included large swings in the Quasi-Biennial Oscillation, persistent blocking jet stream patterns, and the development of a strong El Niño event. While the results are very preliminary and for only two seasons, there may be some value in incorporating objectively-identified climate signals into ESP-based streamflow forecasts.Beckers, J. V. L., Weerts, A. H., Tijdeman, E., and Welles, E.: ENSO-Conditioned Weather Resampling Method for Seasonal Ensemble Streamflow Prediction, Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-72, in review, 2016.
NASA Astrophysics Data System (ADS)
Messina, F.; Meselhe, E. A.; Buckman, L.; Twight, D.
2017-12-01
Louisiana coastal zone is one of the most productive and dynamic eco-geomorphic systems in the world. This unique natural environment has been alternated by human activities and natural processes such as sea level rise, subsidence, dredging of canals for oil and gas production, the Mississippi River levees which don't allow the natural river sediment. As a result of these alterations land loss, erosion and flood risk are becoming real issues for Louisiana. Costal authorities have been studying the benefits and effects of several restoration projects, e.g. freshwater and sediment diversions. The protection of communities, wildlife and of the unique environments is a high priority in this region. The Water Institute of the Gulf, together with Deltares, has developed a forecasting and information system for a pilot location in Coastal Louisiana, specifically for Barataria Bay and Breton Sound Basins in the Mississippi River Deltaic Plain. The system provides a 7-day forecast of water level, salinity, and temperature, under atmospheric and coastal forecasted conditions, such as freshwater riverine inflow, rainfall, evaporation, wind, and tide. The system also forecasts nutrient distribution (e.g., Chla and dissolved oxygen) and sediment transport. The Flood Early Warning System FEWS is used as a platform to import multivariate data from several sources, use them to monitor the pilot location and to provide boundary conditions to the model. A hindcast model is applied to compare the model results to the observed data, and to provide the initial condition to the forecast model. This system represents a unique tool which provides valuable information regarding the overall conditions of the basins. It offers the opportunity to adaptively manage existing and planned diversions to meet certain salinity and water level targets or thresholds while maximizing land-building goals. Moreover, water quality predictions provide valuable information on the current ecological conditions of the area. Real time observations and model predictions can be used as guidance to decision makers regarding the operation of control structures in response to forecasted weather or river flood events. Coastal communities can benefit from water level, salinity and water quality forecast to manage their activities.
A stochastic post-processing method for solar irradiance forecasts derived from NWPs models
NASA Astrophysics Data System (ADS)
Lara-Fanego, V.; Pozo-Vazquez, D.; Ruiz-Arias, J. A.; Santos-Alamillos, F. J.; Tovar-Pescador, J.
2010-09-01
Solar irradiance forecast is an important area of research for the future of the solar-based renewable energy systems. Numerical Weather Prediction models (NWPs) have proved to be a valuable tool for solar irradiance forecasting with lead time up to a few days. Nevertheless, these models show low skill in forecasting the solar irradiance under cloudy conditions. Additionally, climatic (averaged over seasons) aerosol loading are usually considered in these models, leading to considerable errors for the Direct Normal Irradiance (DNI) forecasts during high aerosols load conditions. In this work we propose a post-processing method for the Global Irradiance (GHI) and DNI forecasts derived from NWPs. Particularly, the methods is based on the use of Autoregressive Moving Average with External Explanatory Variables (ARMAX) stochastic models. These models are applied to the residuals of the NWPs forecasts and uses as external variables the measured cloud fraction and aerosol loading of the day previous to the forecast. The method is evaluated for a set one-moth length three-days-ahead forecast of the GHI and DNI, obtained based on the WRF mesoscale atmospheric model, for several locations in Andalusia (Southern Spain). The Cloud fraction is derived from MSG satellite estimates and the aerosol loading from the MODIS platform estimates. Both sources of information are readily available at the time of the forecast. Results showed a considerable improvement of the forecasting skill of the WRF model using the proposed post-processing method. Particularly, relative improvement (in terms of the RMSE) for the DNI during summer is about 20%. A similar value is obtained for the GHI during the winter.
NASA Astrophysics Data System (ADS)
Zhao, Tongtiegang; Liu, Pan; Zhang, Yongyong; Ruan, Chengqing
2017-09-01
Global climate model (GCM) forecasts are an integral part of long-range hydroclimatic forecasting. We propose to use clustering to explore anomaly correlation, which indicates the performance of raw GCM forecasts, in the three-dimensional space of latitude, longitude, and initialization time. Focusing on a certain period of the year, correlations for forecasts initialized at different preceding periods form a vector. The vectors of anomaly correlation across different GCM grid cells are clustered to reveal how GCM forecasts perform as time progresses. Through the case study of Climate Forecast System Version 2 (CFSv2) forecasts of summer precipitation in China, we observe that the correlation at a certain cell oscillates with lead time and can become negative. The use of clustering reveals two meaningful patterns that characterize the relationship between anomaly correlation and lead time. For some grid cells in Central and Southwest China, CFSv2 forecasts exhibit positive correlations with observations and they tend to improve as time progresses. This result suggests that CFSv2 forecasts tend to capture the summer precipitation induced by the East Asian monsoon and the South Asian monsoon. It also indicates that CFSv2 forecasts can potentially be applied to improving hydrological forecasts in these regions. For some other cells, the correlations are generally close to zero at different lead times. This outcome implies that CFSv2 forecasts still have plenty of room for further improvement. The robustness of the patterns has been tested using both hierarchical clustering and k-means clustering and examined with the Silhouette score.
Forecast first: An argument for groundwater modeling in reverse
White, Jeremy
2017-01-01
Numerical groundwater models are important compo-nents of groundwater analyses that are used for makingcritical decisions related to the management of ground-water resources. In this support role, models are oftenconstructed to serve a specific purpose that is to provideinsights, through simulation, related to a specific func-tion of a complex aquifer system that cannot be observeddirectly (Anderson et al. 2015).For any given modeling analysis, several modelinput datasets must be prepared. Herein, the datasetsrequired to simulate the historical conditions are referredto as the calibration model, and the datasets requiredto simulate the model’s purpose are referred to as theforecast model. Future groundwater conditions or otherunobserved aspects of the groundwater system may besimulated by the forecast model—the outputs of interestfrom the forecast model represent the purpose of themodeling analysis. Unfortunately, the forecast model,needed to simulate the purpose of the modeling analysis,is seemingly an afterthought—calibration is where themajority of time and effort are expended and calibrationis usually completed before the forecast model is evenconstructed. Herein, I am proposing a new groundwatermodeling workflow, referred to as the “forecast first”workflow, where the forecast model is constructed at anearlier stage in the modeling analysis and the outputsof interest from the forecast model are evaluated duringsubsequent tasks in the workflow.
Improving wave forecasting by integrating ensemble modelling and machine learning
NASA Astrophysics Data System (ADS)
O'Donncha, F.; Zhang, Y.; James, S. C.
2017-12-01
Modern smart-grid networks use technologies to instantly relay information on supply and demand to support effective decision making. Integration of renewable-energy resources with these systems demands accurate forecasting of energy production (and demand) capacities. For wave-energy converters, this requires wave-condition forecasting to enable estimates of energy production. Current operational wave forecasting systems exhibit substantial errors with wave-height RMSEs of 40 to 60 cm being typical, which limits the reliability of energy-generation predictions thereby impeding integration with the distribution grid. In this study, we integrate physics-based models with statistical learning aggregation techniques that combine forecasts from multiple, independent models into a single "best-estimate" prediction of the true state. The Simulating Waves Nearshore physics-based model is used to compute wind- and currents-augmented waves in the Monterey Bay area. Ensembles are developed based on multiple simulations perturbing input data (wave characteristics supplied at the model boundaries and winds) to the model. A learning-aggregation technique uses past observations and past model forecasts to calculate a weight for each model. The aggregated forecasts are compared to observation data to quantify the performance of the model ensemble and aggregation techniques. The appropriately weighted ensemble model outperforms an individual ensemble member with regard to forecasting wave conditions.
Forecasts of forest conditions
Robert Huggett; David N. Wear; Ruhong Li; John Coulston; Shan Liu
2013-01-01
Key FindingsAmong the five forest management types, only planted pine is expected to increase in area. In 2010 planted pine comprised 19 percent of southern forests. By 2060, planted pine is forecasted to comprise somewhere between 24 and 36 percent of forest area.Although predicted rates of change vary, all forecasts reveal...
National Centers for Environmental Prediction (NCEP)
Tropical Marine Fire Weather Forecast Maps Unified Surface Analysis Climate Climate Prediction Climate forecasts of hazardous flight conditions at all levels within domestic and international air space. Climate Prediction Center monitors and forecasts short-term climate fluctuations and provides information on the
NASA Astrophysics Data System (ADS)
Rhee, Jinyoung; Kim, Gayoung; Im, Jungho
2017-04-01
Three regions of Indonesia with different rainfall characteristics were chosen to develop drought forecast models based on machine learning. The 6-month Standardized Precipitation Index (SPI6) was selected as the target variable. The models' forecast skill was compared to the skill of long-range climate forecast models in terms of drought accuracy and regression mean absolute error (MAE). Indonesian droughts are known to be related to El Nino Southern Oscillation (ENSO) variability despite of regional differences as well as monsoon, local sea surface temperature (SST), other large-scale atmosphere-ocean interactions such as Indian Ocean Dipole (IOD) and Southern Pacific Convergence Zone (SPCZ), and local factors including topography and elevation. Machine learning models are thus to enhance drought forecast skill by combining local and remote SST and remote sensing information reflecting initial drought conditions to the long-range climate forecast model results. A total of 126 machine learning models were developed for the three regions of West Java (JB), West Sumatra (SB), and Gorontalo (GO) and six long-range climate forecast models of MSC_CanCM3, MSC_CanCM4, NCEP, NASA, PNU, POAMA as well as one climatology model based on remote sensing precipitation data, and 1 to 6-month lead times. When compared the results between the machine learning models and the long-range climate forecast models, West Java and Gorontalo regions showed similar characteristics in terms of drought accuracy. Drought accuracy of the long-range climate forecast models were generally higher than the machine learning models with short lead times but the opposite appeared for longer lead times. For West Sumatra, however, the machine learning models and the long-range climate forecast models showed similar drought accuracy. The machine learning models showed smaller regression errors for all three regions especially with longer lead times. Among the three regions, the machine learning models developed for Gorontalo showed the highest drought accuracy and the lowest regression error. West Java showed higher drought accuracy compared to West Sumatra, while West Sumatra showed lower regression error compared to West Java. The lower error in West Sumatra may be because of the smaller sample size used for training and evaluation for the region. Regional differences of forecast skill are determined by the effect of ENSO and the following forecast skill of the long-range climate forecast models. While shown somewhat high in West Sumatra, relative importance of remote sensing variables was mostly low in most cases. High importance of the variables based on long-range climate forecast models indicates that the forecast skill of the machine learning models are mostly determined by the forecast skill of the climate models.
NASA Astrophysics Data System (ADS)
Di, Zhenhua; Duan, Qingyun; Wang, Chen; Ye, Aizhong; Miao, Chiyuan; Gong, Wei
2018-03-01
Forecasting skills of the complex weather and climate models have been improved by tuning the sensitive parameters that exert the greatest impact on simulated results based on more effective optimization methods. However, whether the optimal parameter values are still work when the model simulation conditions vary, which is a scientific problem deserving of study. In this study, a highly-effective optimization method, adaptive surrogate model-based optimization (ASMO), was firstly used to tune nine sensitive parameters from four physical parameterization schemes of the Weather Research and Forecasting (WRF) model to obtain better summer precipitation forecasting over the Greater Beijing Area in China. Then, to assess the applicability of the optimal parameter values, simulation results from the WRF model with default and optimal parameter values were compared across precipitation events, boundary conditions, spatial scales, and physical processes in the Greater Beijing Area. The summer precipitation events from 6 years were used to calibrate and evaluate the optimal parameter values of WRF model. Three boundary data and two spatial resolutions were adopted to evaluate the superiority of the calibrated optimal parameters to default parameters under the WRF simulations with different boundary conditions and spatial resolutions, respectively. Physical interpretations of the optimal parameters indicating how to improve precipitation simulation results were also examined. All the results showed that the optimal parameters obtained by ASMO are superior to the default parameters for WRF simulations for predicting summer precipitation in the Greater Beijing Area because the optimal parameters are not constrained by specific precipitation events, boundary conditions, and spatial resolutions. The optimal values of the nine parameters were determined from 127 parameter samples using the ASMO method, which showed that the ASMO method is very highly-efficient for optimizing WRF model parameters.
NASA Astrophysics Data System (ADS)
Wang, L.; Kerr, L. A.; Bridger, E.
2016-02-01
Changes in species distributions have been widely associated with climate change. Understanding how ocean temperatures influence species distributions is critical for elucidating the role of climate in ecosystem change as well as for forecasting how species may be distributed in the future. As such, species distribution modeling (SDM) is increasingly useful in marine ecosystems research, as it can enable estimation of the likelihood of encountering marine fish in space or time as a function of a set of environmental and ecosystem conditions. Many traditional SDM approaches are applied to species data collected through standardized methods that include both presence and absence records, but are incapable of using presence-only data, such as those collected from fisheries or through citizen science programs. Maximum entropy (MaxEnt) models provide promising tools as they can predict species distributions from incomplete information (presence-only data). We developed a MaxEnt framework to relate the occurrence records of several marine fish species (e.g. Atlantic herring, Atlantic mackerel, and butterfish) to environmental conditions. Environmental variables derived from remote sensing, such as monthly average sea surface temperature (SST), are matched with fish species data, and model results indicate the relative occurrence rate of the species as a function of the environmental variables. The results can be used to provide hindcasts of where species might have been in the past in relation to historical environmental conditions, nowcasts in relation to current conditions, and forecasts of future species distributions. In this presentation, we will assess the relative influence of several environmental factors on marine fish species distributions, and evaluate the effects of data coverage on these presence-only models. We will also discuss how the information from species distribution forecasts can support climate adaptation planning in marine fisheries.
NASA Technical Reports Server (NTRS)
Prive, Nikki C.; Errico, Ronald M.
2013-01-01
A series of experiments that explore the roles of model and initial condition error in numerical weather prediction are performed using an observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA/GMAO). The use of an OSSE allows the analysis and forecast errors to be explicitly calculated, and different hypothetical observing networks can be tested with ease. In these experiments, both a full global OSSE framework and an 'identical twin' OSSE setup are utilized to compare the behavior of the data assimilation system and evolution of forecast skill with and without model error. The initial condition error is manipulated by varying the distribution and quality of the observing network and the magnitude of observation errors. The results show that model error has a strong impact on both the quality of the analysis field and the evolution of forecast skill, including both systematic and unsystematic model error components. With a realistic observing network, the analysis state retains a significant quantity of error due to systematic model error. If errors of the analysis state are minimized, model error acts to rapidly degrade forecast skill during the first 24-48 hours of forward integration. In the presence of model error, the impact of observation errors on forecast skill is small, but in the absence of model error, observation errors cause a substantial degradation of the skill of medium range forecasts.
NASA Astrophysics Data System (ADS)
Ouyang, Huei-Tau
2017-07-01
Three types of model for forecasting inundation levels during typhoons were optimized: the linear autoregressive model with exogenous inputs (LARX), the nonlinear autoregressive model with exogenous inputs with wavelet function (NLARX-W) and the nonlinear autoregressive model with exogenous inputs with sigmoid function (NLARX-S). The forecast performance was evaluated by three indices: coefficient of efficiency, error in peak water level and relative time shift. Historical typhoon data were used to establish water-level forecasting models that satisfy all three objectives. A multi-objective genetic algorithm was employed to search for the Pareto-optimal model set that satisfies all three objectives and select the ideal models for the three indices. Findings showed that the optimized nonlinear models (NLARX-W and NLARX-S) outperformed the linear model (LARX). Among the nonlinear models, the optimized NLARX-W model achieved a more balanced performance on the three indices than the NLARX-S models and is recommended for inundation forecasting during typhoons.
NASA Astrophysics Data System (ADS)
Saide, Pablo E.; Carmichael, Gregory R.; Spak, Scott N.; Gallardo, Laura; Osses, Axel E.; Mena-Carrasco, Marcelo A.; Pagowski, Mariusz
2011-05-01
This study presents a system to predict high pollution events that develop in connection with enhanced subsidence due to coastal lows, particularly in winter over Santiago de Chile. An accurate forecast of these episodes is of interest since the local government is entitled by law to take actions in advance to prevent public exposure to PM10 concentrations in excess of 150 μg m -3 (24 h running averages). The forecasting system is based on accurately simulating carbon monoxide (CO) as a PM10/PM2.5 surrogate, since during episodes and within the city there is a high correlation (over 0.95) among these pollutants. Thus, by accurately forecasting CO, which behaves closely to a tracer on this scale, a PM estimate can be made without involving aerosol-chemistry modeling. Nevertheless, the very stable nocturnal conditions over steep topography associated with maxima in concentrations are hard to represent in models. Here we propose a forecast system based on the WRF-Chem model with optimum settings, determined through extensive testing, that best describe both meteorological and air quality available measurements. Some of the important configurations choices involve the boundary layer (PBL) scheme, model grid resolution (both vertical and horizontal), meteorological initial and boundary conditions and spatial and temporal distribution of the emissions. A forecast for the 2008 winter is performed showing that this forecasting system is able to perform similarly to the authority decision for PM10 and better than persistence when forecasting PM10 and PM2.5 high pollution episodes. Problems regarding false alarm predictions could be related to different uncertainties in the model such as day to day emission variability, inability of the model to completely resolve the complex topography and inaccuracy in meteorological initial and boundary conditions. Finally, according to our simulations, emissions from previous days dominate episode concentrations, which highlights the need for 48 h forecasts that can be achieved by the system presented here. This is in fact the largest advantage of the proposed system.
Broadcast media and the dissemination of weather information
NASA Technical Reports Server (NTRS)
Byrnes, J.
1973-01-01
Although television is the public's most preferred source of weather information, it fails to provide weather reports to those groups who seek the information early in the day and during the day. The result is that many people most often use radio as a source of information, yet preferring the medium of television. The public actively seeks weather information from both radio and TV stations, usually seeking information on current conditions and short range forecasts. forecasts. Nearly all broadcast stations surveyed were eager to air severe weather bulletins quickly and often. Interest in Nowcasting was high among radio and TV broadcasters, with a significant portion indicating a willingness to pay something for the service. However, interest among TV stations in increasing the number of daily reports was small.
FORWINE - Statistical Downscaling of Seasonal forecasts for wine
NASA Astrophysics Data System (ADS)
Cardoso, Rita M.; Soares, Pedro M. M.; Miranda, Pedro M. A.
2016-04-01
The most renowned viticulture regions in the Iberian Peninsula have a long standing tradition in winemaking and are considered world-class grapevine (Vitis Vinifera L.) producing regions. Portugal is the 11th wine producer in the world, with internationally acclaimed wines, such as Port wine, and vineyards across the whole territory. Climate is widely acknowledged of one of the most important factors for grapevine development and growth (Fraga et al. 2014a and b; Jackson et al. 1993; Keller 2010). During the growing season (April-October in the Northern Hemisphere) of this perennial and deciduous crop, the climatic conditions are responsible for numerous morphologically and physiological changes. Anomalously low February-March mean temperature, anomalously high May mean temperature and anomalously high March precipitation tend to be favourable to wine production in the Douro Valley. Seasonal forecast of precipitation and temperature tailored to fit critical thresholds, for crucial seasons, can be used to inform management practices (viz. phytosanitary measures, land operations, marketing campaigns) and develop a wine production forecast. Statistical downscaling of precipitation, maximum, minimum temperatures is used to model wine production following Santos et al. (2013) and to calculate bioclimatic indices. The skill of the ensemble forecast is evaluated through anomaly correlation, ROC area, spread-error ratio and CRPS
Varela, Sara; Larkin, Daniel J.; Phelps, Nicholas B. D.
2017-01-01
Starry stonewort (Nitellopsis obtusa) is an alga that has emerged as an aquatic invasive species of concern in the United States. Where established, starry stonewort can interfere with recreational uses of water bodies and potentially have ecological impacts. Incipient invasion of starry stonewort in Minnesota provides an opportunity to predict future expansion in order to target early detection and strategic management. We used ecological niche models to identify suitable areas for starry stonewort in Minnesota based on global occurrence records and present-day and future climate conditions. We assessed sensitivity of forecasts to different parameters, using four emission scenarios (i.e., RCP 2.6, RCP 4.5, RCP 6, and RCP 8.5) from five future climate models (i.e., CCSM, GISS, IPSL, MIROC, and MRI). From our niche model analyses, we found that (i) occurrences from the entire range, instead of occurrences restricted to the invaded range, provide more informed models; (ii) default settings in Maxent did not provide the best model; (iii) the model calibration area and its background samples impact model performance; (iv) model projections to future climate conditions should be restricted to analogous environments; and (v) forecasts in future climate conditions should include different future climate models and model calibration areas to better capture uncertainty in forecasts. Under present climate, the most suitable areas for starry stonewort are predicted to be found in central and southeastern Minnesota. In the future, suitable areas for starry stonewort are predicted to shift in geographic range under some future climate models and to shrink under others, with most permutations indicating a net decrease of the species’ suitable range. Our suitability maps can serve to design short-term plans for surveillance and education, while future climate models suggest a plausible reduction of starry stonewort spread in the long-term if the trends in climate warming remain. PMID:28704433
Romero-Alvarez, Daniel; Escobar, Luis E; Varela, Sara; Larkin, Daniel J; Phelps, Nicholas B D
2017-01-01
Starry stonewort (Nitellopsis obtusa) is an alga that has emerged as an aquatic invasive species of concern in the United States. Where established, starry stonewort can interfere with recreational uses of water bodies and potentially have ecological impacts. Incipient invasion of starry stonewort in Minnesota provides an opportunity to predict future expansion in order to target early detection and strategic management. We used ecological niche models to identify suitable areas for starry stonewort in Minnesota based on global occurrence records and present-day and future climate conditions. We assessed sensitivity of forecasts to different parameters, using four emission scenarios (i.e., RCP 2.6, RCP 4.5, RCP 6, and RCP 8.5) from five future climate models (i.e., CCSM, GISS, IPSL, MIROC, and MRI). From our niche model analyses, we found that (i) occurrences from the entire range, instead of occurrences restricted to the invaded range, provide more informed models; (ii) default settings in Maxent did not provide the best model; (iii) the model calibration area and its background samples impact model performance; (iv) model projections to future climate conditions should be restricted to analogous environments; and (v) forecasts in future climate conditions should include different future climate models and model calibration areas to better capture uncertainty in forecasts. Under present climate, the most suitable areas for starry stonewort are predicted to be found in central and southeastern Minnesota. In the future, suitable areas for starry stonewort are predicted to shift in geographic range under some future climate models and to shrink under others, with most permutations indicating a net decrease of the species' suitable range. Our suitability maps can serve to design short-term plans for surveillance and education, while future climate models suggest a plausible reduction of starry stonewort spread in the long-term if the trends in climate warming remain.
NASA Astrophysics Data System (ADS)
Rowley, C. D.; Hogan, P. J.; Martin, P.; Thoppil, P.; Wei, M.
2017-12-01
An extended range ensemble forecast system is being developed in the US Navy Earth System Prediction Capability (ESPC), and a global ocean ensemble generation capability to represent uncertainty in the ocean initial conditions has been developed. At extended forecast times, the uncertainty due to the model error overtakes the initial condition as the primary source of forecast uncertainty. Recently, stochastic parameterization or stochastic forcing techniques have been applied to represent the model error in research and operational atmospheric, ocean, and coupled ensemble forecasts. A simple stochastic forcing technique has been developed for application to US Navy high resolution regional and global ocean models, for use in ocean-only and coupled atmosphere-ocean-ice-wave ensemble forecast systems. Perturbation forcing is added to the tendency equations for state variables, with the forcing defined by random 3- or 4-dimensional fields with horizontal, vertical, and temporal correlations specified to characterize different possible kinds of error. Here, we demonstrate the stochastic forcing in regional and global ensemble forecasts with varying perturbation amplitudes and length and time scales, and assess the change in ensemble skill measured by a range of deterministic and probabilistic metrics.
Alternative Approaches to Land Initialization for Seasonal Precipitation and Temperature Forecasts
NASA Technical Reports Server (NTRS)
Koster, Randal; Suarez, Max; Liu, Ping; Jambor, Urszula
2004-01-01
The seasonal prediction system of the NASA Global Modeling and Assimilation Office is used to generate ensembles of summer forecasts utilizing realistic soil moisture initialization. To derive the realistic land states, we drive offline the system's land model with realistic meteorological forcing over the period 1979-1993 (in cooperation with the Global Land Data Assimilation System project at GSFC) and then extract the state variables' values on the chosen forecast start dates. A parallel series of forecast ensembles is performed with a random (though climatologically consistent) set of land initial conditions; by comparing the two sets of ensembles, we can isolate the impact of land initialization on forecast skill from that of the imposed SSTs. The base initialization experiment is supplemented with several forecast ensembles that use alternative initialization techniques. One ensemble addresses the impact of minimizing climate drift in the system through the scaling of the initial conditions, and another is designed to isolate the importance of the precipitation signal from that of all other signals in the antecedent offline forcing. A third ensemble includes a more realistic initialization of the atmosphere along with the land initialization. The impact of each variation on forecast skill is quantified.
Verification of Meteorological and Oceanographic Ensemble Forecasts in the U.S. Navy
NASA Astrophysics Data System (ADS)
Klotz, S.; Hansen, J.; Pauley, P.; Sestak, M.; Wittmann, P.; Skupniewicz, C.; Nelson, G.
2013-12-01
The Navy Ensemble Forecast Verification System (NEFVS) has been promoted recently to operational status at the U.S. Navy's Fleet Numerical Meteorology and Oceanography Center (FNMOC). NEFVS processes FNMOC and National Centers for Environmental Prediction (NCEP) meteorological and ocean wave ensemble forecasts, gridded forecast analyses, and innovation (observational) data output by FNMOC's data assimilation system. The NEFVS framework consists of statistical analysis routines, a variety of pre- and post-processing scripts to manage data and plot verification metrics, and a master script to control application workflow. NEFVS computes metrics that include forecast bias, mean-squared error, conditional error, conditional rank probability score, and Brier score. The system also generates reliability and Receiver Operating Characteristic diagrams. In this presentation we describe the operational framework of NEFVS and show examples of verification products computed from ensemble forecasts, meteorological observations, and forecast analyses. The construction and deployment of NEFVS addresses important operational and scientific requirements within Navy Meteorology and Oceanography. These include computational capabilities for assessing the reliability and accuracy of meteorological and ocean wave forecasts in an operational environment, for quantifying effects of changes and potential improvements to the Navy's forecast models, and for comparing the skill of forecasts from different forecast systems. NEFVS also supports the Navy's collaboration with the U.S. Air Force, NCEP, and Environment Canada in the North American Ensemble Forecast System (NAEFS) project and with the Air Force and the National Oceanic and Atmospheric Administration (NOAA) in the National Unified Operational Prediction Capability (NUOPC) program. This program is tasked with eliminating unnecessary duplication within the three agencies, accelerating the transition of new technology, such as multi-model ensemble forecasting, to U.S. Department of Defense use, and creating a superior U.S. global meteorological and oceanographic prediction capability. Forecast verification is an important component of NAEFS and NUOPC. Distribution Statement A: Approved for Public Release; distribution is unlimited
Verification of Meteorological and Oceanographic Ensemble Forecasts in the U.S. Navy
NASA Astrophysics Data System (ADS)
Klotz, S. P.; Hansen, J.; Pauley, P.; Sestak, M.; Wittmann, P.; Skupniewicz, C.; Nelson, G.
2012-12-01
The Navy Ensemble Forecast Verification System (NEFVS) has been promoted recently to operational status at the U.S. Navy's Fleet Numerical Meteorology and Oceanography Center (FNMOC). NEFVS processes FNMOC and National Centers for Environmental Prediction (NCEP) meteorological and ocean wave ensemble forecasts, gridded forecast analyses, and innovation (observational) data output by FNMOC's data assimilation system. The NEFVS framework consists of statistical analysis routines, a variety of pre- and post-processing scripts to manage data and plot verification metrics, and a master script to control application workflow. NEFVS computes metrics that include forecast bias, mean-squared error, conditional error, conditional rank probability score, and Brier score. The system also generates reliability and Receiver Operating Characteristic diagrams. In this presentation we describe the operational framework of NEFVS and show examples of verification products computed from ensemble forecasts, meteorological observations, and forecast analyses. The construction and deployment of NEFVS addresses important operational and scientific requirements within Navy Meteorology and Oceanography (METOC). These include computational capabilities for assessing the reliability and accuracy of meteorological and ocean wave forecasts in an operational environment, for quantifying effects of changes and potential improvements to the Navy's forecast models, and for comparing the skill of forecasts from different forecast systems. NEFVS also supports the Navy's collaboration with the U.S. Air Force, NCEP, and Environment Canada in the North American Ensemble Forecast System (NAEFS) project and with the Air Force and the National Oceanic and Atmospheric Administration (NOAA) in the National Unified Operational Prediction Capability (NUOPC) program. This program is tasked with eliminating unnecessary duplication within the three agencies, accelerating the transition of new technology, such as multi-model ensemble forecasting, to U.S. Department of Defense use, and creating a superior U.S. global meteorological and oceanographic prediction capability. Forecast verification is an important component of NAEFS and NUOPC.
NASA Astrophysics Data System (ADS)
Ayscue, Emily P.
This study profiles the coastal tourism sector, a large and diverse consumer of climate and weather information. It is crucial to provide reliable, accurate and relevant resources for the climate and weather-sensitive portions of this stakeholder group in order to guide them in capitalizing on current climate and weather conditions and to prepare them for potential changes. An online survey of tourism business owners, managers and support specialists was conducted within the eight North Carolina oceanfront counties asking respondents about forecasts they use and for what purposes as well as why certain forecasts are not used. Respondents were also asked about their perceived dependency of their business on climate and weather as well as how valuable different forecasts are to their decision-making. Business types represented include: Agriculture, Outdoor Recreation, Accommodations, Food Services, Parks and Heritage, and Other. Weekly forecasts were the most popular forecasts with Monthly and Seasonal being the least used. MANOVA and ANOVA analyses revealed outdoor-oriented businesses (Agriculture and Outdoor Recreation) as perceiving themselves significantly more dependent on climate and weather than indoor-oriented ones (Food Services and Accommodations). Outdoor businesses also valued short-range forecasts significantly more than indoor businesses. This suggests a positive relationship between perceived climate and weather dependency and forecast value. The low perceived dependency and value of short-range forecasts of indoor businesses presents an opportunity to create climate and weather information resources directed at how they can capitalize on positive climate and weather forecasts and how to counter negative effects with forecasted adverse conditions. The low use of long-range forecasts among all business types can be related to the low value placed on these forecasts. However, these forecasts are still important in that they are used to make more financially risky decisions such as investment decisions.
NASA Astrophysics Data System (ADS)
Meißner, Dennis; Klein, Bastian; Ionita, Monica
2017-12-01
Traditionally, navigation-related forecasts in central Europe cover short- to medium-range lead times linked to the travel times of vessels to pass the main waterway bottlenecks leaving the loading ports. Without doubt, this aspect is still essential for navigational users, but in light of the growing political intention to use the free capacity of the inland waterway transport in Europe, additional lead time supporting strategic decisions is more and more in demand. However, no such predictions offering extended lead times of several weeks up to several months currently exist for considerable parts of the European waterway network. This paper describes the set-up of a monthly to seasonal forecasting system for the German stretches of the international waterways of the Rhine, Danube and Elbe rivers. Two competitive forecast approaches have been implemented: the dynamical set-up forces a hydrological model with post-processed outputs from ECMWF general circulation model System 4, whereas the statistical approach is based on the empirical relationship (teleconnection
) of global oceanic, climate and regional hydro-meteorological data with river flows. The performance of both forecast methods is evaluated in relation to the climatological forecast (ensemble of historical streamflow) and the well-known ensemble streamflow prediction approach (ESP, ensemble based on historical meteorology) using common performance indicators (correlation coefficient; mean absolute error, skill score; mean squared error, skill score; and continuous ranked probability, skill score) and an impact-based evaluation quantifying the potential economic gain. The following four key findings result from this study: (1) as former studies for other regions of central Europe indicate, the accuracy and/or skill of the meteorological forcing used has a larger effect than the quality of initial hydrological conditions for relevant stations along the German waterways. (2) Despite the predictive limitations on longer lead times in central Europe, this study reveals the existence of a valuable predictability of streamflow on monthly up to seasonal timescales along the Rhine, upper Danube and Elbe waterways, and the Elbe achieves the highest skill and economic value. (3) The more physically based and the statistical approach are able to improve the predictive skills and economic value compared to climatology and the ESP approach. The specific forecast skill highly depends on the forecast location, the lead time and the season. (4) Currently, the statistical approach seems to be most skilful for the three waterways investigated. The lagged relationship between the monthly and/or seasonal streamflow and the climatic and/or oceanic variables vary between 1 month (e.g. local precipitation, temperature and soil moisture) up to 6 months (e.g. sea surface temperature). Besides focusing on improving the forecast methodology, especially by combining the individual approaches, the focus is on developing useful forecast products on monthly to seasonal timescales for waterway transport and to operationalize the related forecasting service.
NASA Astrophysics Data System (ADS)
Lorente, Pablo; Sotillo, Marcos G.; Gutknecht, Elodie; Dabrowski, Tomasz; Aouf, Lotfi; Toledano, Cristina; Amo-Baladron, Arancha; Aznar, Roland; De Pascual, Alvaro; Levier, Bruno; Bowyer, Peter; Rainaud, Romain; Alvarez-Fanjul, Enrique
2017-04-01
The IBI-MFC (Iberia-Biscay-Ireland Monitoring & Forecasting Centre) has been providing daily ocean model estimates and forecasts of diverse physical parameters for the IBI regional seas since 2011, first in the frame of MyOcean projects and later as part of the Copernicus Marine Environment Monitoring Service (CMEMS). By April 2017, coincident with the V3 CMEMS Service Release, the IBI-MFC will extend their near real time (NRT) forecast capabilities. Two new operational IBI forecast systems will be operationally run to generate high resolution biochemical (BIO) and wave (WAV) products on the IBI area. The IBI-NRT-BIO forecast system, based on a 1/36° NEMO-PISCES model application, is run once a week coupled with the IBI physical forecast solution and nested to the CMEMS GLOBAL-BIO solution. On the other hand, the IBI-NRT-WAV system, based on a MeteoFrance-WAM 10km resolution model application, runs twice a day using ECMWF wind forcing. Among other novelties related to the evolution of the IBI physical (PHY) solution, it is worthwhile mentioning the provision, as part of the IBI-NRT-PHY product daily updated, of three-dimensional hourly data on specific areas within the IBI domain. The delivery of these new hourly data along the whole water column has been achieved after the request from IBI users, in order to foster downscaling approaches by providing coherent open boundary conditions to any potential high-resolution coastal model nested to IBI regional solution. An extensive skill assessment of IBI-NRT forecast products has been conducted through the NARVAL (North Atlantic Regional VALidation) web tool, by means of the automatic computation of statistical metrics and quality indicators. By now, this tool has been focused on the validation of the IBI-NRT-PHY system. Nowadays, NARVAL is facing a significant upgrade to validate the aforementioned new biogeochemical and wave IBI products. To this aim, satellite derived observations of chlorophyll and significant wave height will be used, together with in-situ wave parameters measured by mooring buoys. Within this validation framework, special emphasis has been placed on the intercomparison of different forecast model solutions in overlapping areas in order to evaluate models' performances and prognostic capabilities. This common uncertainty estimates of IBI and other model solution is currently performed by NARVAL using both CMEMS forecast model sources (i.e. GLOBAL-MFC, MED-MFC and NWS-MFC) and non-CMEMS operational forecast solutions (mostly downstream application nested to the IBI solution). With respect to the IBI multi-year (MY) products, it is worth mentioning that the actual biogeochemical and physical reanalysis products will be re-run along year 2017, extending its time coverage backwards until 1992. Based on these IBI-MY products, a variety of climatic indicators related to essential oceanographic processes (i.e. western coastal upwelling or the Mediterranean Outflow Water) are currently being computed.
Case study of a severe windstorm over Slovakia and Hungary on 25 June 2008
NASA Astrophysics Data System (ADS)
Simon, André; Kaňák, Ján; Sokol, Alois; Putsay, Mária; Uhrínová, Lucia; Csirmaz, Kálmán; Okon, Ľuboslav; Habrovský, Richard
2011-06-01
A system of thunderstorms approached the Slovakia and Hungary in the late evening hours of 25 June 2008, causing extensive damage and peak wind gusts up to 40 m/s. This study examines the macro- and mesosynoptic conditions for the windstorm using soundings, analyses, and forecasts of numerical models (ALADIN, ECMWF). A derecho-like character of the event is discussed. Meteosat Second Generation imagery and convective indices inferred from satellite and model data are used to assess the humidity distribution and the conditional instability of the thunderstorm environment. An intrusion of the environmental dry air into the convective system and intensification of downdrafts is considered to be one of the reasons for the damaging winds observed at some areas. This is supported by the radar imagery showing a sudden drop of radar reflectivity and creation of line echo wave patterns and bow echoes. A numerical simulation provided by the non-hydrostatic MM5 model indicated the development of meso-γ scale vortices embedded in the convective system. The genesis and a possible role of such vortices in creating rear-inflow jets and intensifying the low level winds are investigated with the help of the vorticity equation and several other diagnostic parameters. In addition, the effect of various physical parameterisations on the forecast of the windstorm is evaluated.
NASA Astrophysics Data System (ADS)
Rothman, D. S.; Siraj, A.; Hughes, B.
2013-12-01
The international research community is currently in the process of developing new scenarios for climate change research. One component of these scenarios are the Shared Socio-economic Pathways (SSPs), which describe a set of possible future socioeconomic conditions. These are presented in narrative storylines with associated quantitative drivers. The core quantitative drivers include total population, average GDP per capita, educational attainment, and urbanization at the global, regional, and national levels. At the same time there have been calls, particularly by the IAV community, for the SSPs to include additional quantitative information on other key social factors, such as income inequality, governance, health, and access to key infrastructures, which are discussed in the narratives. The International Futures system (IFs), based at the Pardee Center at the University of Denver, is able to provide forecasts of many of these indicators. IFs cannot use the SSP drivers as exogenous inputs, but we are able to create development pathways that closely reproduce the core quantitative drivers defined by the different SSPs, as well as incorporating assumptions on other key driving factors described in the qualitative narratives. In this paper, we present forecasts for additional quantitative indicators based upon the implementation of the SSP development pathways in IFs. These results will be of value to many researchers.
NASA Technical Reports Server (NTRS)
Lambert, Winifred C.; Merceret, Francis J. (Technical Monitor)
2002-01-01
This report describes the results of the ANU's (Applied Meteorology Unit) Short-Range Statistical Forecasting task for peak winds. The peak wind speeds are an important forecast element for the Space Shuttle and Expendable Launch Vehicle programs. The Keith Weather Squadron and the Spaceflight Meteorology Group indicate that peak winds are challenging to forecast. The Applied Meteorology Unit was tasked to develop tools that aid in short-range forecasts of peak winds at tower sites of operational interest. A 7 year record of wind tower data was used in the analysis. Hourly and directional climatologies by tower and month were developed to determine the seasonal behavior of the average and peak winds. In all climatologies, the average and peak wind speeds were highly variable in time. This indicated that the development of a peak wind forecasting tool would be difficult. Probability density functions (PDF) of peak wind speed were calculated to determine the distribution of peak speed with average speed. These provide forecasters with a means of determining the probability of meeting or exceeding a certain peak wind given an observed or forecast average speed. The climatologies and PDFs provide tools with which to make peak wind forecasts that are critical to safe operations.
NASA Astrophysics Data System (ADS)
Jayasinghe, S.; Dutta, R.; Basnayake, S. B.; Granger, S. L.; Andreadis, K. M.; Das, N.; Markert, K. N.; Cutter, P. G.; Towashiraporn, P.; Anderson, E.
2017-12-01
The Lower Mekong Region has been experiencing frequent and prolonged droughts resulting in severe damage to agricultural production leading to food insecurity and impacts on livelihoods of the farming communities. Climate variability further complicates the situation by making drought harder to forecast. The Regional Drought and Crop Yield Information System (RDCYIS), developed by SERVIR-Mekong, helps decision makers to take effective measures through monitoring, analyzing and forecasting of drought conditions and providing early warnings to farmers to make adjustments to cropping calendars. The RDCYIS is built on regionally calibrated Regional Hydrologic Extreme Assessment System (RHEAS) framework that integrates the Variable Infiltration Capacity (VIC) and Decision Support System for Agro-technology Transfer (DSSAT) models, allowing both nowcast and forecast of drought. The RHEAS allows ingestion of numerus freely available earth observation and ground observation data to generate and customize drought related indices, variables and crop yield information for better decision making. The Lower Mekong region has experienced severe drought in 2016 encompassing the region's worst drought in 90 years. This paper presents the simulation of the 2016 drought event using RDCYIS based on its hindcast and forecast capabilities. The regionally calibrated RDCYIS can help capture salient features of drought through a variety of drought indices, soil variables, energy balance variables and water balance variables. The RDCYIS is capable of assimilating soil moisture data from different satellite products and perform ensemble runs to further reduce the uncertainty of it outputs. The calibrated results have correlation coefficient around 0.73 and NSE between 0.4-0.5. Based on the acceptable results of the retrospective runs, the system has the potential to generate reliable drought monitoring and forecasting information to improve decision-makings at operational, technological and institutional level of mandated institutes of lower Mekong countries. This is turn would help countries to prepare for and respond to drought situations by taking short and long-term risk mitigation measures such as adjusting cropping calendars, rainwater harvesting, and so on.
NASA Astrophysics Data System (ADS)
Halperin, D.; Hart, R. E.; Fuelberg, H. E.; Cossuth, J.
2013-12-01
Predicting tropical cyclone (TC) genesis has been a vexing problem for forecasters. While the literature describes environmental conditions which are necessary for TC genesis, predicting if and when a specific disturbance will organize and become a TC remains a challenge. As recently as 5-10 years ago, global models possessed little if any skill in forecasting TC genesis. However, due to increased resolution and more advanced model parameterizations, we have reached the point where global models can provide useful TC genesis guidance to operational forecasters. A recent study evaluated five global models' ability to predict TC genesis out to four days over the North Atlantic basin (Halperin et al. 2013). The results indicate that the models are indeed able to capture the genesis time and location correctly a fair percentage of the time. The study also uncovered model biases. For example, probability of detection and false alarm rate varies spatially within the basin. Also, as expected, the models' performance decreases with increasing lead time. In order to explain these and other biases, it is useful to analyze the model-indicated genesis events further to determine whether or not there are systematic differences between successful forecasts (hits), false alarms, and miss events. This study will examine composites of a number of physically-relevant environmental parameters (e.g., magnitude of vertical wind shear, aerially averaged mid-level relative humidity) and disturbance-based parameters (e.g., 925 hPa maximum wind speed, vertical alignment of relative vorticity) among each TC genesis event classification (i.e., hit, false alarm, miss). We will use standard statistical tests (e.g., Student's t test, Mann-Whitney-U Test) to calculate whether or not any differences are statistically significant. We also plan to discuss how these composite results apply to a few illustrative case studies. The results may help determine which aspects of the forecast are (in)correct and whether the incorrect aspects can be bias-corrected. This, in turn, may allow us to further enhance probabilistic forecasts of TC genesis.
NASA Astrophysics Data System (ADS)
Pokhrel, Prafulla; Wang, Q. J.; Robertson, David E.
2013-10-01
Seasonal streamflow forecasts are valuable for planning and allocation of water resources. In Australia, the Bureau of Meteorology employs a statistical method to forecast seasonal streamflows. The method uses predictors that are related to catchment wetness at the start of a forecast period and to climate during the forecast period. For the latter, a predictor is selected among a number of lagged climate indices as candidates to give the "best" model in terms of model performance in cross validation. This study investigates two strategies for further improvement in seasonal streamflow forecasts. The first is to combine, through Bayesian model averaging, multiple candidate models with different lagged climate indices as predictors, to take advantage of different predictive strengths of the multiple models. The second strategy is to introduce additional candidate models, using rainfall and sea surface temperature predictions from a global climate model as predictors. This is to take advantage of the direct simulations of various dynamic processes. The results show that combining forecasts from multiple statistical models generally yields more skillful forecasts than using only the best model and appears to moderate the worst forecast errors. The use of rainfall predictions from the dynamical climate model marginally improves the streamflow forecasts when viewed over all the study catchments and seasons, but the use of sea surface temperature predictions provide little additional benefit.
Forecasting of hourly load by pattern recognition in a small area power system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehdashti-Shahrokh, A.
1982-01-01
An intuitive, logical, simple and efficient method of forecasting hourly load in a small area power system is presented. A pattern recognition approach is used in developing the forecasting model. Pattern recognition techniques are powerful tools in the field of artificial intelligence (cybernetics) and simulate the way the human brain operates to make decisions. Pattern recognition is generally used in analysis of processes where the total physical nature behind the process variation is unkown but specific kinds of measurements explain their behavior. In this research basic multivariate analyses, in conjunction with pattern recognition techniques, are used to develop a linearmore » deterministic model to forecast hourly load. This method assumes that load patterns in the same geographical area are direct results of climatological changes (weather sensitive load), and have occurred in the past as a result of similar climatic conditions. The algorithm described in here searches for the best possible pattern from a seasonal library of load and weather data in forecasting hourly load. To accommodate the unpredictability of weather and the resulting load, the basic twenty-four load pattern was divided into eight three-hour intervals. This division was made to make the model adaptive to sudden climatic changes. The proposed method offers flexible lead times of one to twenty-four hours. The results of actual data testing had indicated that this proposed method is computationally efficient, highly adaptive, with acceptable data storage size and accuracy that is comparable to many other existing methods.« less
Huang, Yuanyuan; Jiang, Jiang; Ma, Shuang; ...
2017-08-18
We report that accurate simulation of soil thermal dynamics is essential for realistic prediction of soil biogeochemical responses to climate change. To facilitate ecological forecasting at the Spruce and Peatland Responses Under Climatic and Environmental change site, we incorporated a soil temperature module into a Terrestrial ECOsystem (TECO) model by accounting for surface energy budget, snow dynamics, and heat transfer among soil layers and during freeze-thaw events. We conditioned TECO with detailed soil temperature and snow depth observations through data assimilation before the model was used for forecasting. The constrained model reproduced variations in observed temperature from different soil layers,more » the magnitude of snow depth, the timing of snowfall and snowmelt, and the range of frozen depth. The conditioned TECO forecasted probabilistic distributions of soil temperature dynamics in six soil layers, snow, and frozen depths under temperature treatments of +0.0, +2.25, +4.5, +6.75, and +9.0°C. Air warming caused stronger elevation in soil temperature during summer than winter due to winter snow and ice. And soil temperature increased more in shallow soil layers in summer in response to air warming. Whole ecosystem warming (peat + air warmings) generally reduced snow and frozen depths. The accuracy of forecasted snow and frozen depths relied on the precision of weather forcing. Uncertainty is smaller for forecasting soil temperature but large for snow and frozen depths. Lastly, timely and effective soil thermal forecast, constrained through data assimilation that combines process-based understanding and detailed observations, provides boundary conditions for better predictions of future biogeochemical cycles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yuanyuan; Jiang, Jiang; Ma, Shuang
We report that accurate simulation of soil thermal dynamics is essential for realistic prediction of soil biogeochemical responses to climate change. To facilitate ecological forecasting at the Spruce and Peatland Responses Under Climatic and Environmental change site, we incorporated a soil temperature module into a Terrestrial ECOsystem (TECO) model by accounting for surface energy budget, snow dynamics, and heat transfer among soil layers and during freeze-thaw events. We conditioned TECO with detailed soil temperature and snow depth observations through data assimilation before the model was used for forecasting. The constrained model reproduced variations in observed temperature from different soil layers,more » the magnitude of snow depth, the timing of snowfall and snowmelt, and the range of frozen depth. The conditioned TECO forecasted probabilistic distributions of soil temperature dynamics in six soil layers, snow, and frozen depths under temperature treatments of +0.0, +2.25, +4.5, +6.75, and +9.0°C. Air warming caused stronger elevation in soil temperature during summer than winter due to winter snow and ice. And soil temperature increased more in shallow soil layers in summer in response to air warming. Whole ecosystem warming (peat + air warmings) generally reduced snow and frozen depths. The accuracy of forecasted snow and frozen depths relied on the precision of weather forcing. Uncertainty is smaller for forecasting soil temperature but large for snow and frozen depths. Lastly, timely and effective soil thermal forecast, constrained through data assimilation that combines process-based understanding and detailed observations, provides boundary conditions for better predictions of future biogeochemical cycles.« less
Impact of the 4 April 2014 Saharan dust outbreak on the photovoltaic power generation in Germany
NASA Astrophysics Data System (ADS)
Rieger, Daniel; Steiner, Andrea; Bachmann, Vanessa; Gasch, Philipp; Förstner, Jochen; Deetz, Konrad; Vogel, Bernhard; Vogel, Heike
2017-11-01
The importance for reliable forecasts of incoming solar radiation is growing rapidly, especially for those countries with an increasing share in photovoltaic (PV) power production. The reliability of solar radiation forecasts depends mainly on the representation of clouds and aerosol particles absorbing and scattering radiation. Especially under extreme aerosol conditions, numerical weather prediction has a systematic bias in the solar radiation forecast. This is caused by the design of numerical weather prediction models, which typically account for the direct impact of aerosol particles on radiation using climatological mean values and the impact on cloud formation assuming spatially and temporally homogeneous aerosol concentrations. These model deficiencies in turn can lead to significant economic losses under extreme aerosol conditions. For Germany, Saharan dust outbreaks occurring 5 to 15 times per year for several days each are prominent examples for conditions, under which numerical weather prediction struggles to forecast solar radiation adequately. We investigate the impact of mineral dust on the PV-power generation during a Saharan dust outbreak over Germany on 4 April 2014 using ICON-ART, which is the current German numerical weather prediction model extended by modules accounting for trace substances and related feedback processes. We find an overall improvement of the PV-power forecast for 65 % of the pyranometer stations in Germany. Of the nine stations with very high differences between forecast and measurement, eight stations show an improvement. Furthermore, we quantify the direct radiative effects and indirect radiative effects of mineral dust. For our study, direct effects account for 64 %, indirect effects for 20 % and synergistic interaction effects for 16 % of the differences between the forecast including mineral dust radiative effects and the forecast neglecting mineral dust.
NASA Astrophysics Data System (ADS)
Singh, Shailesh Kumar
2014-05-01
Streamflow forecasts are essential for making critical decision for optimal allocation of water supplies for various demands that include irrigation for agriculture, habitat for fisheries, hydropower production and flood warning. The major objective of this study is to explore the Ensemble Streamflow Prediction (ESP) based forecast in New Zealand catchments and to highlights the present capability of seasonal flow forecasting of National Institute of Water and Atmospheric Research (NIWA). In this study a probabilistic forecast framework for ESP is presented. The basic assumption in ESP is that future weather pattern were experienced historically. Hence, past forcing data can be used with current initial condition to generate an ensemble of prediction. Small differences in initial conditions can result in large difference in the forecast. The initial state of catchment can be obtained by continuously running the model till current time and use this initial state with past forcing data to generate ensemble of flow for future. The approach taken here is to run TopNet hydrological models with a range of past forcing data (precipitation, temperature etc.) with current initial conditions. The collection of runs is called the ensemble. ESP give probabilistic forecasts for flow. From ensemble members the probability distributions can be derived. The probability distributions capture part of the intrinsic uncertainty in weather or climate. An ensemble stream flow prediction which provide probabilistic hydrological forecast with lead time up to 3 months is presented for Rangitata, Ahuriri, and Hooker and Jollie rivers in South Island of New Zealand. ESP based seasonal forecast have better skill than climatology. This system can provide better over all information for holistic water resource management.
Improving Seasonal Crop Monitoring and Forecasting for Soybean and Corn in Iowa
NASA Astrophysics Data System (ADS)
Togliatti, K.; Archontoulis, S.; Dietzel, R.; VanLoocke, A.
2016-12-01
Accurately forecasting crop yield in advance of harvest could greatly benefit farmers, however few evaluations have been conducted to determine the effectiveness of forecasting methods. We tested one such method that used a combination of short-term weather forecasting from the Weather Research and Forecasting Model (WRF) to predict in season weather variables, such as, maximum and minimum temperature, precipitation and radiation at 4 different forecast lengths (2 weeks, 1 week, 3 days, and 0 days). This forecasted weather data along with the current and historic (previous 35 years) data from the Iowa Environmental Mesonet was combined to drive Agricultural Production Systems sIMulator (APSIM) simulations to forecast soybean and corn yields in 2015 and 2016. The goal of this study is to find the forecast length that reduces the variability of simulated yield predictions while also increasing the accuracy of those predictions. APSIM simulations of crop variables were evaluated against bi-weekly field measurements of phenology, biomass, and leaf area index from early and late planted soybean plots located at the Agricultural Engineering and Agronomy Research Farm in central Iowa as well as the Northwest Research Farm in northwestern Iowa. WRF model predictions were evaluated against observed weather data collected at the experimental fields. Maximum temperature was the most accurately predicted variable, followed by minimum temperature and radiation, and precipitation was least accurate according to RMSE values and the number of days that were forecasted within a 20% error of the observed weather. Our analysis indicated that for the majority of months in the growing season the 3 day forecast performed the best. The 1 week forecast came in second and the 2 week forecast was the least accurate for the majority of months. Preliminary results for yield indicate that the 2 week forecast is the least variable of the forecast lengths, however it also is the least accurate. The 3 day and 1 week forecast have a better accuracy, with an increase in variability.
NASA Astrophysics Data System (ADS)
Lopes, Sílvia R. C.; Prass, Taiane S.
2014-05-01
Here we present a theoretical study on the main properties of Fractionally Integrated Exponential Generalized Autoregressive Conditional Heteroskedastic (FIEGARCH) processes. We analyze the conditions for the existence, the invertibility, the stationarity and the ergodicity of these processes. We prove that, if { is a FIEGARCH(p,d,q) process then, under mild conditions, { is an ARFIMA(q,d,0) with correlated innovations, that is, an autoregressive fractionally integrated moving average process. The convergence order for the polynomial coefficients that describes the volatility is presented and results related to the spectral representation and to the covariance structure of both processes { and { are discussed. Expressions for the kurtosis and the asymmetry measures for any stationary FIEGARCH(p,d,q) process are also derived. The h-step ahead forecast for the processes {, { and { are given with their respective mean square error of forecast. The work also presents a Monte Carlo simulation study showing how to generate, estimate and forecast based on six different FIEGARCH models. The forecasting performance of six models belonging to the class of autoregressive conditional heteroskedastic models (namely, ARCH-type models) and radial basis models is compared through an empirical application to Brazilian stock market exchange index.
Climatological Observations for Maritime Prediction and Analysis Support Service (COMPASS)
NASA Astrophysics Data System (ADS)
OConnor, A.; Kirtman, B. P.; Harrison, S.; Gorman, J.
2016-02-01
Current US Navy forecasting systems cannot easily incorporate extended-range forecasts that can improve mission readiness and effectiveness; ensure safety; and reduce cost, labor, and resource requirements. If Navy operational planners had systems that incorporated these forecasts, they could plan missions using more reliable and longer-term weather and climate predictions. Further, using multi-model forecast ensembles instead of single forecasts would produce higher predictive performance. Extended-range multi-model forecast ensembles, such as those available in the North American Multi-Model Ensemble (NMME), are ideal for system integration because of their high skill predictions; however, even higher skill predictions can be produced if forecast model ensembles are combined correctly. While many methods for weighting models exist, the best method in a given environment requires expert knowledge of the models and combination methods.We present an innovative approach that uses machine learning to combine extended-range predictions from multi-model forecast ensembles and generate a probabilistic forecast for any region of the globe up to 12 months in advance. Our machine-learning approach uses 30 years of hindcast predictions to learn patterns of forecast model successes and failures. Each model is assigned a weight for each environmental condition, 100 km2 region, and day given any expected environmental information. These weights are then applied to the respective predictions for the region and time of interest to effectively stitch together a single, coherent probabilistic forecast. Our experimental results demonstrate the benefits of our approach to produce extended-range probabilistic forecasts for regions and time periods of interest that are superior, in terms of skill, to individual NMME forecast models and commonly weighted models. The probabilistic forecast leverages the strengths of three NMME forecast models to predict environmental conditions for an area spanning from San Diego, CA to Honolulu, HI, seven months in-advance. Key findings include: weighted combinations of models are strictly better than individual models; machine-learned combinations are especially better; and forecasts produced using our approach have the highest rank probability skill score most often.
Verification of ECMWF System 4 for seasonal hydrological forecasting in a northern climate
NASA Astrophysics Data System (ADS)
Bazile, Rachel; Boucher, Marie-Amélie; Perreault, Luc; Leconte, Robert
2017-11-01
Hydropower production requires optimal dam and reservoir management to prevent flooding damage and avoid operation losses. In a northern climate, where spring freshet constitutes the main inflow volume, seasonal forecasts can help to establish a yearly strategy. Long-term hydrological forecasts often rely on past observations of streamflow or meteorological data. Another alternative is to use ensemble meteorological forecasts produced by climate models. In this paper, those produced by the ECMWF (European Centre for Medium-Range Forecast) System 4 are examined and bias is characterized. Bias correction, through the linear scaling method, improves the performance of the raw ensemble meteorological forecasts in terms of continuous ranked probability score (CRPS). Then, three seasonal ensemble hydrological forecasting systems are compared: (1) the climatology of simulated streamflow, (2) the ensemble hydrological forecasts based on climatology (ESP) and (3) the hydrological forecasts based on bias-corrected ensemble meteorological forecasts from System 4 (corr-DSP). Simulated streamflow computed using observed meteorological data is used as benchmark. Accounting for initial conditions is valuable even for long-term forecasts. ESP and corr-DSP both outperform the climatology of simulated streamflow for lead times from 1 to 5 months depending on the season and watershed. Integrating information about future meteorological conditions also improves monthly volume forecasts. For the 1-month lead time, a gain exists for almost all watersheds during winter, summer and fall. However, volume forecasts performance for spring varies from one watershed to another. For most of them, the performance is close to the performance of ESP. For longer lead times, the CRPS skill score is mostly in favour of ESP, even if for many watersheds, ESP and corr-DSP have comparable skill. Corr-DSP appears quite reliable but, in some cases, under-dispersion or bias is observed. A more complex bias-correction method should be further investigated to remedy this weakness and take more advantage of the ensemble forecasts produced by the climate model. Overall, in this study, bias-corrected ensemble meteorological forecasts appear to be an interesting source of information for hydrological forecasting for lead times up to 1 month. They could also complement ESP for longer lead times.
NASA Astrophysics Data System (ADS)
Barodka, Siarhei; Kliutko, Yauhenia; Krasouski, Alexander; Papko, Iryna; Svetashev, Alexander; Turishev, Leonid
2013-04-01
Nowadays numerical simulation of thundercloud formation processes is of great interest as an actual problem from the practical point of view. Thunderclouds significantly affect airplane flights, and mesoscale weather forecast has much to contribute to facilitate the aviation forecast procedures. An accurate forecast can certainly help to avoid aviation accidents due to weather conditions. The present study focuses on modelling of the convective clouds development and thunder clouds detection on the basis of mesoscale atmospheric processes simulation, aiming at significantly improving the aeronautical forecast. In the analysis, the primary weather radar information has been used to be further adapted for mesoscale forecast systems. Two types of domains have been selected for modelling: an internal one (with radius of 8 km), and an external one (with radius of 300 km). The internal domain has been directly applied to study the local clouds development, and the external domain data has been treated as initial and final conditions for cloud cover formation. The domain height has been chosen according to the civil aviation forecast data (i.e. not exceeding 14 km). Simulations of weather conditions and local clouds development have been made within selected domains with the WRF modelling system. In several cases, thunderclouds are detected within the convective clouds. To specify the given category of clouds, we employ a simulation technique of solid phase formation processes in the atmosphere. Based on modelling results, we construct vertical profiles indicating the amount of solid phase in the atmosphere. Furthermore, we obtain profiles demonstrating the amount of ice particles and large particles (hailstones). While simulating the processes of solid phase formation, we investigate vertical and horizontal air flows. Consequently, we attempt to separate the total amount of solid phase into categories of small ice particles, large ice particles and hailstones. Also, we strive to reveal and differentiate the basic atmospheric parameters of sublimation and coagulation processes, aiming to predict ice particles precipitation. To analyze modelling results we apply the VAPOR three-dimensional visualization package. For the chosen domains, a diurnal synoptic situation has been simulated, including rain, sleet, ice pellets, and hail. As a result, we have obtained a large scope of data describing various atmospheric parameters: cloud cover, major wind components, basic levels of isobaric surfaces, and precipitation rate. Based on this data, we show both distinction in precipitation formation due to various heights and its differentiation of the ice particles. The relation between particle rise in the atmosphere and its size is analyzed: at 8-10 km altitude large ice particles, resulted from coagulation, dominate, while at 6-7 km altitude one can find snow and small ice particles formed by condensation growth. Also, mechanical trajectories of solid precipitation particles for various ice formation processes have been calculated.
USDA-ARS?s Scientific Manuscript database
Meteorological conditions are important factors in the development of fungal diseases in winter wheat and are the main inputs of the decision support systems used to forecast disease and thus determine timing for efficacious fungicide application. This study uses the Fourier transform method (FTM) t...
Spatial Ensemble Postprocessing of Precipitation Forecasts Using High Resolution Analyses
NASA Astrophysics Data System (ADS)
Lang, Moritz N.; Schicker, Irene; Kann, Alexander; Wang, Yong
2017-04-01
Ensemble prediction systems are designed to account for errors or uncertainties in the initial and boundary conditions, imperfect parameterizations, etc. However, due to sampling errors and underestimation of the model errors, these ensemble forecasts tend to be underdispersive, and to lack both reliability and sharpness. To overcome such limitations, statistical postprocessing methods are commonly applied to these forecasts. In this study, a full-distributional spatial post-processing method is applied to short-range precipitation forecasts over Austria using Standardized Anomaly Model Output Statistics (SAMOS). Following Stauffer et al. (2016), observation and forecast fields are transformed into standardized anomalies by subtracting a site-specific climatological mean and dividing by the climatological standard deviation. Due to the need of fitting only a single regression model for the whole domain, the SAMOS framework provides a computationally inexpensive method to create operationally calibrated probabilistic forecasts for any arbitrary location or for all grid points in the domain simultaneously. Taking advantage of the INCA system (Integrated Nowcasting through Comprehensive Analysis), high resolution analyses are used for the computation of the observed climatology and for model training. The INCA system operationally combines station measurements and remote sensing data into real-time objective analysis fields at 1 km-horizontal resolution and 1 h-temporal resolution. The precipitation forecast used in this study is obtained from a limited area model ensemble prediction system also operated by ZAMG. The so called ALADIN-LAEF provides, by applying a multi-physics approach, a 17-member forecast at a horizontal resolution of 10.9 km and a temporal resolution of 1 hour. The performed SAMOS approach statistically combines the in-house developed high resolution analysis and ensemble prediction system. The station-based validation of 6 hour precipitation sums shows a mean improvement of more than 40% in CRPS when compared to bilinearly interpolated uncalibrated ensemble forecasts. The validation on randomly selected grid points, representing the true height distribution over Austria, still indicates a mean improvement of 35%. The applied statistical model is currently set up for 6-hourly and daily accumulation periods, but will be extended to a temporal resolution of 1-3 hours within a new probabilistic nowcasting system operated by ZAMG.
Accuracy of forecasts in strategic intelligence
Mandel, David R.; Barnes, Alan
2014-01-01
The accuracy of 1,514 strategic intelligence forecasts abstracted from intelligence reports was assessed. The results show that both discrimination and calibration of forecasts was very good. Discrimination was better for senior (versus junior) analysts and for easier (versus harder) forecasts. Miscalibration was mainly due to underconfidence such that analysts assigned more uncertainty than needed given their high level of discrimination. Underconfidence was more pronounced for harder (versus easier) forecasts and for forecasts deemed more (versus less) important for policy decision making. Despite the observed underconfidence, there was a paucity of forecasts in the least informative 0.4–0.6 probability range. Recalibrating the forecasts substantially reduced underconfidence. The findings offer cause for tempered optimism about the accuracy of strategic intelligence forecasts and indicate that intelligence producers aim to promote informativeness while avoiding overstatement. PMID:25024176
Seasonal forecast of St. Louis encephalitis virus transmission, Florida.
Shaman, Jeffrey; Day, Jonathan F; Stieglitz, Marc; Zebiak, Stephen; Cane, Mark
2004-05-01
Disease transmission forecasts can help minimize human and domestic animal health risks by indicating where disease control and prevention efforts should be focused. For disease systems in which weather-related variables affect pathogen proliferation, dispersal, or transmission, the potential for disease forecasting exists. We present a seasonal forecast of St. Louis encephalitis virus transmission in Indian River County, Florida. We derive an empiric relationship between modeled land surface wetness and levels of SLEV transmission in humans. We then use these data to forecast SLEV transmission with a seasonal lead. Forecast skill is demonstrated, and a real-time seasonal forecast of epidemic SLEV transmission is presented. This study demonstrates how weather and climate forecast skill-verification analyses may be applied to test the predictability of an empiric disease forecast model.
Seasonal Forecast of St. Louis Encephalitis Virus Transmission, Florida
Day, Jonathan F.; Stieglitz, Marc; Zebiak, Stephen; Cane, Mark
2004-01-01
Disease transmission forecasts can help minimize human and domestic animal health risks by indicating where disease control and prevention efforts should be focused. For disease systems in which weather-related variables affect pathogen proliferation, dispersal, or transmission, the potential for disease forecasting exists. We present a seasonal forecast of St. Louis encephalitis virus transmission in Indian River County, Florida. We derive an empirical relationship between modeled land surface wetness and levels of SLEV transmission in humans. We then use these data to forecast SLEV transmission with a seasonal lead. Forecast skill is demonstrated, and a real-time seasonal forecast of epidemic SLEV transmission is presented. This study demonstrates how weather and climate forecast skill verification analyses may be applied to test the predictability of an empirical disease forecast model. PMID:15200812
Development of a dust deposition forecast model for a mine tailings impoundment
NASA Astrophysics Data System (ADS)
Stovern, Michael
Wind erosion, transport and deposition of particulate matter can have significant impacts on the environment. It is observed that about 40% of the global land area and 30% of the earth's population lives in semiarid environments which are especially susceptible to wind erosion and airborne transport of contaminants. With the increased desertification caused by land use changes, anthropogenic activities and projected climate change impacts windblown dust will likely become more significant. An important anthropogenic source of windblown dust in this region is associated with mining operations including tailings impoundments. Tailings are especially susceptible to erosion due to their fine grain composition, lack of vegetative coverage and high height compared to the surrounding topography. This study is focused on emissions, dispersion and deposition of windblown dust from the Iron King mine tailings in Dewey-Humboldt, Arizona, a Superfund site. The tailings impoundment is heavily contaminated with lead and arsenic and is located directly adjacent to the town of Dewey-Humboldt. The study includes in situ field measurements, computational fluid dynamic modeling and the development of a windblown dust deposition forecasting model that predicts deposition patterns of dust originating from the tailings impoundment. Two instrumented eddy flux towers were setup on the tailings impoundment to monitor the aeolian and meteorological conditions. The in situ observations were used in conjunction with a computational fluid dynamic (CFD) model to simulate the transport of windblown dust from the mine tailings to the surrounding region. The CFD model simulations include gaseous plume dispersion to simulate the transport of the fine aerosols, while individual particle transport was used to track the trajectories of larger particles and to monitor their deposition locations. The CFD simulations were used to estimate deposition of tailings dust and identify topographic mechanisms that influence deposition. Simulation results indicated that particles preferentially deposit in regions of topographic upslope. In addition, turbulent wind fields enhanced deposition in the wake region downwind of the tailings. This study also describes a deposition forecasting model (DFM) that can be used to forecast the transport and deposition of windblown dust originating from a mine tailings impoundment. The DFM uses in situ observations from the tailings and theoretical simulations of aerosol transport to parameterize the model. The model was verified through the use of inverted-disc deposition samplers. The deposition forecasting model was initialized using data from an operational Weather Research and Forecasting (WRF) model and the forecast deposition patterns were compared to the inverted-disc samples through gravimetric, chemical composition and lead isotopic analysis. The DFM was verified over several month-long observing periods by comparing transects of arsenic and lead tracers measured by the samplers to the DFM PM27 forecast. Results from the sampling periods indicated that the DFM was able to accurately capture the regional deposition patterns of the tailings dust up to 1 km. Lead isotopes were used for source apportionment and showed spatial patterns consistent with the DFM and the observed weather conditions. By providing reasonably accurate estimates of contaminant deposition rates, the DFM can improve the assessment of human health impacts caused by windblown dust from the Iron King tailings impoundment.
A Pro-active Real-time Forecasting and Decision Support System for Daily Management of Marine Works
NASA Astrophysics Data System (ADS)
Bollen, Mark; Leyssen, Gert; Smets, Steven; De Wachter, Tom
2016-04-01
Marine Works involving turbidity generating activities (eg. dredging, dredge spoil placement) can generate environmental stress in and around a project area in the form of sediment plumes causing light reduction and sedimentation. If these works are situated near sensitive habitats like sea-grass beds, coral reefs or sensitive human activities eg. aquaculture farms or water intakes, or if contaminants are present in the water soil environmental scrutiny is advised. Environmental Regulations can impose limitations to these activities in the form of turbidity thresholds, spill budgets, contaminant levels. Breaching environmental regulations can result in increased monitoring, adaptation of the works planning and production rates and ultimately in a (temporary) stop of activities all of which entail time and cost impacts for a contractor and/or client. Sediment plume behaviour is governed by the dredging process, soil properties and ambient conditions (currents, water depth) and can be modelled. Usually this is done during the preparatory EIA phase of a project, for estimation of environmental impact based on climatic scenarios. An operational forecasting tool is developed to adapt marine work schedules to the real-time circumstances and thus evade exceedance of critical threshold levels at sensitive areas. The forecasting system is based on a Python-based workflow manager with a MySQL database and a Django frontend web tool for user interaction and visualisation of the model results. The core consists of a numerical hydrodynamic model with sediment transport module (Mike21 from DHI). This model is driven by space and time varying wind fields and wave boundary conditions, and turbidity inputs (suspended sediment source terms) based on marine works production rates and soil properties. The resulting threshold analysis allows the operator to indicate potential impact at the sensitive areas and instigate an adaption of the marine work schedule if needed. In order to use this toolbox in real-time situations and facilitate forecasting of impacts of planned dredge works, the following operational online functionalities are implemented: • Automated fetch and preparation of the input data, including 7 day forecast wind and wave fields and real-time measurements, and user defined the turbidity inputs based on scheduled marine works. • Generate automated forecasts and running user configurable scenarios at the same time in parallel. • Export and convert the model results, time series and maps, into a standardized format (netcdf). • Automatic analysis and processing of model results, including the calculation of indicator turbidity values and the exceedance analysis of threshold levels at the different sensitive areas. Data assimilation with the real time on site turbidity measurements is implemented in this threshold analysis. • Pre-programmed generation of animated sediment plumes, specific charts and pdf reports to allow a rapid interpretation of the model results by the operators and facilitating decision making in the operational planning. The performed marine works, resulting from the marine work schedule proposed by the forecasting system, are evaluated by a threshold analysis on the validated turbidity measurements on the sensitive sites. This machine learning loop allows a check of the system in order to evaluate forecast and model uncertainties.
Mitigating randomness of consumer preferences under certain conditional choices
NASA Astrophysics Data System (ADS)
Bothos, John M. A.; Thanos, Konstantinos-Georgios; Papadopoulou, Eirini; Daveas, Stelios; Thomopoulos, Stelios C. A.
2017-05-01
Agent-based crowd behaviour consists a significant field of research that has drawn a lot of attention in recent years. Agent-based crowd simulation techniques have been used excessively to forecast the behaviour of larger or smaller crowds in terms of certain given conditions influenced by specific cognition models and behavioural rules and norms, imposed from the beginning. Our research employs conditional event algebra, statistical methodology and agent-based crowd simulation techniques in developing a behavioural econometric model about the selection of certain economic behaviour by a consumer that faces a spectre of potential choices when moving and acting in a multiplex mall. More specifically we try to analyse the influence of demographic, economic, social and cultural factors on the economic behaviour of a certain individual and then we try to link its behaviour with the general behaviour of the crowds of consumers in multiplex malls using agent-based crowd simulation techniques. We then run our model using Generalized Least Squares and Maximum Likelihood methods to come up with the most probable forecast estimations, regarding the agent's behaviour. Our model is indicative about the formation of consumers' spectre of choices in multiplex malls under the condition of predefined preferences and can be used as a guide for further research in this area.
NASA Astrophysics Data System (ADS)
Plumley, William J.
1994-01-01
Before World War II, weather forecasters had little knowledge of upper-air wind patterns above 20000 feet. Data were seldom avai able at these heights, and the need was not great because commercial aircraft seldom flew at these altitudes. The war in the Pacific changed all that. Wind forecasts for 30000 feet plus became urgent to support the XXI Bomber Command in its bombing mission over Japan.The U.S. Army Air Force Pacific Ocean Area (AAFPOA) placed a Weather Central in the Marianas Islands in 1944 (Saipan in 1944 and Guam in 1945) to provide forecasting support for this mission. A forecasting procedure was put into operation that combined the elements known as "single-station forecasting" and an advanced procedure that used "altirmeter corrections" to analyze upper-airdata and make prognoses. Upper-air charts were drawn for constant pressure surfaces rather than constant height surfaces. The constant pressure surfaces were tied together by means of the atmospheric temperature field represented by specific temperature anomalies between pressure surfaces. Wind forecasts over the Marianas-Japan route made use of space cross sections that provided the data to forecast winds at each 5000-ft level to 35000 ft along the mission flight path. The new procedures allowed the forecaster to construct internally consistent meteorological charts in three dimensions in regions of sparse data.Army air force pilots and their crews from the Marianas were among the first to experience the extreme wind conditions now known as the "jet stream". Air force forecasters demonstrated that, with experience, such winds could reasonably be forecast under difficult operational conditions.
NASA Astrophysics Data System (ADS)
Pendlebury, Diane; Gravel, Sylvie; Moran, Michael D.; Lupu, Alexandru
2018-02-01
A regional air quality forecast model, GEM-MACH, is used to examine the conditions under which a limited-area air quality model can accurately forecast near-surface ozone concentrations during stratospheric intrusions. Periods in 2010 and 2014 with known stratospheric intrusions over North America were modelled using four different ozone lateral boundary conditions obtained from a seasonal climatology, a dynamically-interpolated monthly climatology, global air quality forecasts, and global air quality reanalyses. It is shown that the mean bias and correlation in surface ozone over the course of a season can be improved by using time-varying ozone lateral boundary conditions, particularly through the correct assignment of stratospheric vs. tropospheric ozone along the western lateral boundary (for North America). Part of the improvement in surface ozone forecasts results from improvements in the characterization of near-surface ozone along the lateral boundaries that then directly impact surface locations near the boundaries. However, there is an additional benefit from the correct characterization of the location of the tropopause along the western lateral boundary such that the model can correctly simulate stratospheric intrusions and their associated exchange of ozone from stratosphere to troposphere. Over a three-month period in spring 2010, the mean bias was seen to improve by as much as 5 ppbv and the correlation by 0.1 depending on location, and on the form of the chemical lateral boundary condition.
September Arctic Sea Ice minimum prediction - a new skillful statistical approach
NASA Astrophysics Data System (ADS)
Ionita-Scholz, Monica; Grosfeld, Klaus; Scholz, Patrick; Treffeisen, Renate; Lohmann, Gerrit
2017-04-01
Sea ice in both Polar Regions is an important indicator for the expression of global climate change and its polar amplification. Consequently, a broad interest exists on sea ice, its coverage, variability and long term change. Knowledge on sea ice requires high quality data on ice extent, thickness and its dynamics. However, its predictability is complex and it depends on various climate and oceanic parameters and conditions. In order to provide insights into the potential development of a monthly/seasonal signal of sea ice evolution, we developed a robust statistical model based on ocean heat content, sea surface temperature and different atmospheric variables to calculate an estimate of the September Sea ice extent (SSIE) on monthly time scale. Although previous statistical attempts at monthly/seasonal forecasts of SSIE show a relatively reduced skill, we show here that more than 92% (r = 0.96) of the September sea ice extent can be predicted at the end of May by using previous months' climate and oceanic conditions. The skill of the model increases with a decrease in the time lag used for the forecast. At the end of August, our predictions are even able to explain 99% of the SSIE. Our statistical model captures both the general trend as well as the interannual variability of the SSIE. Moreover, it is able to properly forecast the years with extreme high/low SSIE (e.g. 1996/ 2007, 2012, 2013). Besides its forecast skill for SSIE, the model could provide a valuable tool for identifying relevant regions and climate parameters that are important for the sea ice development in the Arctic and for detecting sensitive and critical regions in global coupled climate models with focus on sea ice formation.
NASA Astrophysics Data System (ADS)
Verkade, J. S.; Brown, J. D.; Reggiani, P.; Weerts, A. H.
2013-09-01
The ECMWF temperature and precipitation ensemble reforecasts are evaluated for biases in the mean, spread and forecast probabilities, and how these biases propagate to streamflow ensemble forecasts. The forcing ensembles are subsequently post-processed to reduce bias and increase skill, and to investigate whether this leads to improved streamflow ensemble forecasts. Multiple post-processing techniques are used: quantile-to-quantile transform, linear regression with an assumption of bivariate normality and logistic regression. Both the raw and post-processed ensembles are run through a hydrologic model of the river Rhine to create streamflow ensembles. The results are compared using multiple verification metrics and skill scores: relative mean error, Brier skill score and its decompositions, mean continuous ranked probability skill score and its decomposition, and the ROC score. Verification of the streamflow ensembles is performed at multiple spatial scales: relatively small headwater basins, large tributaries and the Rhine outlet at Lobith. The streamflow ensembles are verified against simulated streamflow, in order to isolate the effects of biases in the forcing ensembles and any improvements therein. The results indicate that the forcing ensembles contain significant biases, and that these cascade to the streamflow ensembles. Some of the bias in the forcing ensembles is unconditional in nature; this was resolved by a simple quantile-to-quantile transform. Improvements in conditional bias and skill of the forcing ensembles vary with forecast lead time, amount, and spatial scale, but are generally moderate. The translation to streamflow forecast skill is further muted, and several explanations are considered, including limitations in the modelling of the space-time covariability of the forcing ensembles and the presence of storages.
NASA Astrophysics Data System (ADS)
Shukla, S.; McEvoy, D.; Hobbins, M.; Husak, G. J.; Huntington, J. L.; Funk, C.; Verdin, J.; Macharia, D.
2017-12-01
The Famine Early Warning Systems Network (FEWS NET) team provides food insecurity outlooks for several developing countries in Africa, Central Asia, and Central America. Thus far in terms of agroclimatic conditions that influence food insecurity, FEWS NET's primary focus has been on the seasonal precipitation forecasts while not adequately accounting for the atmospheric evaporative demand, which is also directly related to agricultural production and hence food insecurity, and is most often estimated by reference evapotranspiration (ETo). This presentation reports on the development of a new global ETo seasonal reforecast and skill evaluation with a particular emphasis on the potential use of this dataset by the FEWS NET to support food insecurity early warning. The ETo reforecasts span the 1982-2009 period and are calculated following ASCE's formulation of Penman-Monteith method driven by seasonal climate forecasts of monthly mean temperature, humidity, wind speed, and solar radiation from NCEP's CFSv2 and NASA's GEOS-5 models. The skill evaluation using deterministic and probabilistic scores focuses on the December-February (DJF), March-May (MAM), June-August (JJA) and September-November (SON) seasons. The results indicate that ETo forecasts are a promising tool for early warning of drought and food insecurity. The FEWS NET regions with promising level of skill (correlation >0.35 at lead times of 3 months) include Northern Sub-Saharan Africa (DJF, dry season), Central America (DJF, dry season), parts of East Africa (JJA, wet Season), Southern Africa (JJA, dry season), and Central Asia (MAM, wet season). A case study over parts of East Africa for the JJA season shows that, in combination with the precipitation forecasts, ETo forecasts could have provided early warning of recent severe drought events (e.g., 2002, 2004, 2009) that contributed to substantial food insecurity in the region.
The NRL relocatable ocean/acoustic ensemble forecast system
NASA Astrophysics Data System (ADS)
Rowley, C.; Martin, P.; Cummings, J.; Jacobs, G.; Coelho, E.; Bishop, C.; Hong, X.; Peggion, G.; Fabre, J.
2009-04-01
A globally relocatable regional ocean nowcast/forecast system has been developed to support rapid implementation of new regional forecast domains. The system is in operational use at the Naval Oceanographic Office for a growing number of regional and coastal implementations. The new system is the basis for an ocean acoustic ensemble forecast and adaptive sampling capability. We present an overview of the forecast system and the ocean ensemble and adaptive sampling methods. The forecast system consists of core ocean data analysis and forecast modules, software for domain configuration, surface and boundary condition forcing processing, and job control, and global databases for ocean climatology, bathymetry, tides, and river locations and transports. The analysis component is the Navy Coupled Ocean Data Assimilation (NCODA) system, a 3D multivariate optimum interpolation system that produces simultaneous analyses of temperature, salinity, geopotential, and vector velocity using remotely-sensed SST, SSH, and sea ice concentration, plus in situ observations of temperature, salinity, and currents from ships, buoys, XBTs, CTDs, profiling floats, and autonomous gliders. The forecast component is the Navy Coastal Ocean Model (NCOM). The system supports one-way nesting and multiple assimilation methods. The ensemble system uses the ensemble transform technique with error variance estimates from the NCODA analysis to represent initial condition error. Perturbed surface forcing or an atmospheric ensemble is used to represent errors in surface forcing. The ensemble transform Kalman filter is used to assess the impact of adaptive observations on future analysis and forecast uncertainty for both ocean and acoustic properties.
Stochastic Model of Seasonal Runoff Forecasts
NASA Astrophysics Data System (ADS)
Krzysztofowicz, Roman; Watada, Leslie M.
1986-03-01
Each year the National Weather Service and the Soil Conservation Service issue a monthly sequence of five (or six) categorical forecasts of the seasonal snowmelt runoff volume. To describe uncertainties in these forecasts for the purposes of optimal decision making, a stochastic model is formulated. It is a discrete-time, finite, continuous-space, nonstationary Markov process. Posterior densities of the actual runoff conditional upon a forecast, and transition densities of forecasts are obtained from a Bayesian information processor. Parametric densities are derived for the process with a normal prior density of the runoff and a linear model of the forecast error. The structure of the model and the estimation procedure are motivated by analyses of forecast records from five stations in the Snake River basin, from the period 1971-1983. The advantages of supplementing the current forecasting scheme with a Bayesian analysis are discussed.
Regime-dependence of Impacts of Radar Rainfall Data Assimilation
NASA Astrophysics Data System (ADS)
Craig, G. C.; Keil, C.
2009-04-01
Experience from the first operational trials of assimilation of radar data in kilometre scale numerical weather prediction models (operating without cumulus parameterisation) shows that the positive impact of the radar data on convective precipitation forecasts typically decay within a few hours, although certain cases show much longer impacts. Here the impact time of radar data assimilation is related to characteristics of the meteorological environment. This QPF uncertainty is investigated using an ensemble of 10 forecasts at 2.8 km horizontal resolution based on different initial and boundary conditions from a global forecast ensemble. Control forecasts are compared with forecasts where radar reflectivity data is assimilated using latent heat nudging. Examination of different cases of convection in southern Germany suggests that the forecasts can be separated into two regimes using a convective timescale. Short impact times are associated with short convective timescales that are characteristic of equilibrium convection. In this regime the statistical properties of the convection are constrained by the large-scale forcing, and effects of the radar data are lost within a few hours as the convection rapidly returns to equilibrium. When the convective timescale is large (non-equilibrium conditions), the impact of the radar data is longer since convective systems are triggered by the latent heat nudging and are able to persist for many hours in the very unstable conditions present in these cases.
A GLM Post-processor to Adjust Ensemble Forecast Traces
NASA Astrophysics Data System (ADS)
Thiemann, M.; Day, G. N.; Schaake, J. C.; Draijer, S.; Wang, L.
2011-12-01
The skill of hydrologic ensemble forecasts has improved in the last years through a better understanding of climate variability, better climate forecasts and new data assimilation techniques. Having been extensively utilized for probabilistic water supply forecasting, interest is developing to utilize these forecasts in operational decision making. Hydrologic ensemble forecast members typically have inherent biases in flow timing and volume caused by (1) structural errors in the models used, (2) systematic errors in the data used to calibrate those models, (3) uncertain initial hydrologic conditions, and (4) uncertainties in the forcing datasets. Furthermore, hydrologic models have often not been developed for operational decision points and ensemble forecasts are thus not always available where needed. A statistical post-processor can be used to address these issues. The post-processor should (1) correct for systematic biases in flow timing and volume, (2) preserve the skill of the available raw forecasts, (3) preserve spatial and temporal correlation as well as the uncertainty in the forecasted flow data, (4) produce adjusted forecast ensembles that represent the variability of the observed hydrograph to be predicted, and (5) preserve individual forecast traces as equally likely. The post-processor should also allow for the translation of available ensemble forecasts to hydrologically similar locations where forecasts are not available. This paper introduces an ensemble post-processor (EPP) developed in support of New York City water supply operations. The EPP employs a general linear model (GLM) to (1) adjust available ensemble forecast traces and (2) create new ensembles for (nearby) locations where only historic flow observations are available. The EPP is calibrated by developing daily and aggregated statistical relationships form historical flow observations and model simulations. These are then used in operation to obtain the conditional probability density function (PDF) of the observations to be predicted, thus jointly adjusting individual ensemble members. These steps are executed in a normalized transformed space ('z'-space) to account for the strong non-linearity in the flow observations involved. A data window centered on each calibration date is used to minimize impacts from sampling errors and data noise. Testing on datasets from California and New York suggests that the EPP can successfully minimize biases in ensemble forecasts, while preserving the raw forecast skill in a 'days to weeks' forecast horizon and reproducing the variability of climatology for 'weeks to years' forecast horizons.
Toward Seasonal Forecasting of Global Droughts: Evaluation over USA and Africa
NASA Astrophysics Data System (ADS)
Wood, Eric; Yuan, Xing; Roundy, Joshua; Sheffield, Justin; Pan, Ming
2013-04-01
Extreme hydrologic events in the form of droughts are significant sources of social and economic damage. In the United States according to the National Climatic Data Center, the losses from drought exceed US210 billion during 1980-2011, and account for about 24% of all losses from major weather disasters. Internationally, especially for the developing world, drought has had devastating impacts on local populations through food insecurity and famine. Providing reliable drought forecasts with sufficient early warning will help the governments to move from the management of drought crises to the management of drought risk. After working on drought monitoring and forecasting over the USA for over 10 years, the Princeton land surface hydrology group is now developing a global drought monitoring and forecasting system using a dynamical seasonal climate-hydrologic LSM-model (CHM) approach. Currently there is an active debate on the merits of the CHM-based seasonal hydrologic forecasts as compared to Ensemble Streamflow Prediction (ESP). We use NCEP's operational forecast system, the Climate Forecast System version 2 (CFSv2) and its previous version CFSv1, to investigate the value of seasonal climate model forecasts by conducting a set of 27-year seasonal hydrologic hindcasts over the USA. Through Bayesian downscaling, climate models have higher squared correlation (R2) and smaller error than ESP for monthly precipitation averaged over major river basins across the USA, and the forecasts conditional on ENSO show further improvements (out to four months) over river basins in the southern USA. All three approaches have plausible predictions of soil moisture drought frequency over central USA out to six months because of strong soil moisture memory, and seasonal climate models provide better results over central and eastern USA. The R2 of drought extent is higher for arid basins and for the forecasts initiated during dry seasons, but significant improvements from CFSv2 occur in different seasons for different basins. The R2 of drought severity accumulated over USA is higher during winter, and climate models present added value especially at long leads. For countries with sparse networks and weak reporting systems, remote sensing observations can provide the realtime data for the monitoring of drought. More importantly, these datasets are now available for at least a decade, which allows for estimating a climatology against which current conditions can be compared. Based on our established experimental African Drought Monitor (ADM) (see http://hydrology.princeton.edu/~nchaney/ADM_ML), we use the downscaled CFSv2 climate forcings to drive the re-calibrated VIC model and produce 6-month, 20-member ensemble hydrologic forecasts over Africa starting on the 1st of each calendar month during 1982-2007. Our CHM-based seasonal hydrologic forecasts are now being analyzed for its skill in predicting short-term soil moisture droughts over Africa. Besides relying on a single seasonal climate model or a single drought index, preliminary forecast results will be presented using multiple seasonal climate models based on the NOAA-supported National Multi-Model Ensemble (NMME) project, and with multiple drought indices. Results will be presented for the USA NIDIS test beds such as Southeast US and Colorado NIDIS (National Integrated Drought Information System) test beds, and potentially for other regions of the globe.
Ecological forecasting in the presence of abrupt regime shifts
NASA Astrophysics Data System (ADS)
Dippner, Joachim W.; Kröncke, Ingrid
2015-10-01
Regime shifts may cause an intrinsic decrease in the potential predictability of marine ecosystems. In such cases, forecasts of biological variables fail. To improve prediction of long-term variability in environmental variables, we constructed a multivariate climate index and applied it to forecast ecological time series. The concept is demonstrated herein using climate and macrozoobenthos data from the southern North Sea. Special emphasis is given to the influence of selection of length of fitting period to the quality of forecast skill especially in the presence of regime shifts. Our results indicate that the performance of multivariate predictors in biological forecasts is much better than that of single large-scale climate indices, especially in the presence of regime shifts. The approach used to develop the index is generally applicable to all geographical regions in the world and to all areas of marine biology, from the species level up to biodiversity. Such forecasts are of vital interest for practical aspects of the sustainable management of marine ecosystems and the conservation of ecosystem goods and services.
Knowing what to expect, forecasting monthly emergency department visits: A time-series analysis.
Bergs, Jochen; Heerinckx, Philipe; Verelst, Sandra
2014-04-01
To evaluate an automatic forecasting algorithm in order to predict the number of monthly emergency department (ED) visits one year ahead. We collected retrospective data of the number of monthly visiting patients for a 6-year period (2005-2011) from 4 Belgian Hospitals. We used an automated exponential smoothing approach to predict monthly visits during the year 2011 based on the first 5 years of the dataset. Several in- and post-sample forecasting accuracy measures were calculated. The automatic forecasting algorithm was able to predict monthly visits with a mean absolute percentage error ranging from 2.64% to 4.8%, indicating an accurate prediction. The mean absolute scaled error ranged from 0.53 to 0.68 indicating that, on average, the forecast was better compared with in-sample one-step forecast from the naïve method. The applied automated exponential smoothing approach provided useful predictions of the number of monthly visits a year in advance. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Rousseaux, Cecile S.; Gregg, Watson W.
2018-01-01
Using a global ocean biogeochemical model combined with a forecast of physical oceanic and atmospheric variables from the NASA Global Modeling and Assimilation Office, we assess the skill of a chlorophyll concentrations forecast in the Equatorial Pacific for the period 2012-2015 with a focus on the forecast of the onset of the 2015 El Nino event. Using a series of retrospective 9-month hindcasts, we assess the uncertainties of the forecasted chlorophyll by comparing the monthly total chlorophyll concentration from the forecast with the corresponding monthly ocean chlorophyll data from the Suomi-National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (S-NPP VIIRS) satellite. The forecast was able to reproduce the phasing of the variability in chlorophyll concentration in the Equatorial Pacific, including the beginning of the 2015-2016 El Nino. The anomaly correlation coefficient (ACC) was significant (p less than 0.05) for forecast at 1-month (R=0.33), 8-month (R=0.42) and 9-month (R=0.41) lead times. The root mean square error (RMSE) increased from 0.0399 microgram chl L(exp -1) for the 1-month lead forecast to a maximum of 0.0472 microgram chl L(exp -1) for the 9-month lead forecast indicating that the forecast of the amplitude of chlorophyll concentration variability was getting worse. Forecasts with a 3-month lead time were on average the closest to the S-NPP VIIRS data (23% or 0.033 microgram chl L(exp -1)) while the forecast with a 9-month lead time were the furthest (31% or 0.042 microgram chl L(exp -1)). These results indicate the potential for forecasting chlorophyll concentration in this region but also highlights various deficiencies and suggestions for improvements to the current biogeochemical forecasting system. This system provides an initial basis for future applications including the effects of El Nino events on fisheries and other ocean resources given improvements identified in the analysis of these results.
Forecasting Ocean Chlorophyll in the Equatorial Pacific.
Rousseaux, Cecile S; Gregg, Watson W
2017-01-01
Using a global ocean biogeochemical model combined with a forecast of physical oceanic and atmospheric variables from the NASA Global Modeling and Assimilation Office, we assess the skill of a chlorophyll concentrations forecast in the Equatorial Pacific for the period 2012-2015 with a focus on the forecast of the onset of the 2015 El Niño event. Using a series of retrospective 9-month hindcasts, we assess the uncertainties of the forecasted chlorophyll by comparing the monthly total chlorophyll concentration from the forecast with the corresponding monthly ocean chlorophyll data from the Suomi-National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (S-NPP VIIRS) satellite. The forecast was able to reproduce the phasing of the variability in chlorophyll concentration in the Equatorial Pacific, including the beginning of the 2015-2016 El Niño. The anomaly correlation coefficient (ACC) was significant ( p < 0.05) for forecast at 1-month ( R = 0.33), 8-month ( R = 0.42) and 9-month ( R = 0.41) lead times. The root mean square error (RMSE) increased from 0.0399 μg chl L -1 for the 1-month lead forecast to a maximum of 0.0472 μg chl L -1 for the 9-month lead forecast indicating that the forecast of the amplitude of chlorophyll concentration variability was getting worse. Forecasts with a 3-month lead time were on average the closest to the S-NPP VIIRS data (23% or 0.033 μg chl L -1 ) while the forecast with a 9-month lead time were the furthest (31% or 0.042 μg chl L -1 ). These results indicate the potential for forecasting chlorophyll concentration in this region but also highlights various deficiencies and suggestions for improvements to the current biogeochemical forecasting system. This system provides an initial basis for future applications including the effects of El Niño events on fisheries and other ocean resources given improvements identified in the analysis of these results.
Individual versus superensemble forecasts of seasonal influenza outbreaks in the United States.
Yamana, Teresa K; Kandula, Sasikiran; Shaman, Jeffrey
2017-11-01
Recent research has produced a number of methods for forecasting seasonal influenza outbreaks. However, differences among the predicted outcomes of competing forecast methods can limit their use in decision-making. Here, we present a method for reconciling these differences using Bayesian model averaging. We generated retrospective forecasts of peak timing, peak incidence, and total incidence for seasonal influenza outbreaks in 48 states and 95 cities using 21 distinct forecast methods, and combined these individual forecasts to create weighted-average superensemble forecasts. We compared the relative performance of these individual and superensemble forecast methods by geographic location, timing of forecast, and influenza season. We find that, overall, the superensemble forecasts are more accurate than any individual forecast method and less prone to producing a poor forecast. Furthermore, we find that these advantages increase when the superensemble weights are stratified according to the characteristics of the forecast or geographic location. These findings indicate that different competing influenza prediction systems can be combined into a single more accurate forecast product for operational delivery in real time.
Individual versus superensemble forecasts of seasonal influenza outbreaks in the United States
Kandula, Sasikiran; Shaman, Jeffrey
2017-01-01
Recent research has produced a number of methods for forecasting seasonal influenza outbreaks. However, differences among the predicted outcomes of competing forecast methods can limit their use in decision-making. Here, we present a method for reconciling these differences using Bayesian model averaging. We generated retrospective forecasts of peak timing, peak incidence, and total incidence for seasonal influenza outbreaks in 48 states and 95 cities using 21 distinct forecast methods, and combined these individual forecasts to create weighted-average superensemble forecasts. We compared the relative performance of these individual and superensemble forecast methods by geographic location, timing of forecast, and influenza season. We find that, overall, the superensemble forecasts are more accurate than any individual forecast method and less prone to producing a poor forecast. Furthermore, we find that these advantages increase when the superensemble weights are stratified according to the characteristics of the forecast or geographic location. These findings indicate that different competing influenza prediction systems can be combined into a single more accurate forecast product for operational delivery in real time. PMID:29107987
Combining forecast weights: Why and how?
NASA Astrophysics Data System (ADS)
Yin, Yip Chee; Kok-Haur, Ng; Hock-Eam, Lim
2012-09-01
This paper proposes a procedure called forecast weight averaging which is a specific combination of forecast weights obtained from different methods of constructing forecast weights for the purpose of improving the accuracy of pseudo out of sample forecasting. It is found that under certain specified conditions, forecast weight averaging can lower the mean squared forecast error obtained from model averaging. In addition, we show that in a linear and homoskedastic environment, this superior predictive ability of forecast weight averaging holds true irrespective whether the coefficients are tested by t statistic or z statistic provided the significant level is within the 10% range. By theoretical proofs and simulation study, we have shown that model averaging like, variance model averaging, simple model averaging and standard error model averaging, each produces mean squared forecast error larger than that of forecast weight averaging. Finally, this result also holds true marginally when applied to business and economic empirical data sets, Gross Domestic Product (GDP growth rate), Consumer Price Index (CPI) and Average Lending Rate (ALR) of Malaysia.
Nishiura, Hiroshi
2011-02-16
Real-time forecasting of epidemics, especially those based on a likelihood-based approach, is understudied. This study aimed to develop a simple method that can be used for the real-time epidemic forecasting. A discrete time stochastic model, accounting for demographic stochasticity and conditional measurement, was developed and applied as a case study to the weekly incidence of pandemic influenza (H1N1-2009) in Japan. By imposing a branching process approximation and by assuming the linear growth of cases within each reporting interval, the epidemic curve is predicted using only two parameters. The uncertainty bounds of the forecasts are computed using chains of conditional offspring distributions. The quality of the forecasts made before the epidemic peak appears largely to depend on obtaining valid parameter estimates. The forecasts of both weekly incidence and final epidemic size greatly improved at and after the epidemic peak with all the observed data points falling within the uncertainty bounds. Real-time forecasting using the discrete time stochastic model with its simple computation of the uncertainty bounds was successful. Because of the simplistic model structure, the proposed model has the potential to additionally account for various types of heterogeneity, time-dependent transmission dynamics and epidemiological details. The impact of such complexities on forecasting should be explored when the data become available as part of the disease surveillance.
NASA Astrophysics Data System (ADS)
Jaiswal, Neeru; Kishtawal, C. M.; Bhomia, Swati
2018-04-01
The southwest (SW) monsoon season (June, July, August and September) is the major period of rainfall over the Indian region. The present study focuses on the development of a new multi-model ensemble approach based on the similarity criterion (SMME) for the prediction of SW monsoon rainfall in the extended range. This approach is based on the assumption that training with the similar type of conditions may provide the better forecasts in spite of the sequential training which is being used in the conventional MME approaches. In this approach, the training dataset has been selected by matching the present day condition to the archived dataset and days with the most similar conditions were identified and used for training the model. The coefficients thus generated were used for the rainfall prediction. The precipitation forecasts from four general circulation models (GCMs), viz. European Centre for Medium-Range Weather Forecasts (ECMWF), United Kingdom Meteorological Office (UKMO), National Centre for Environment Prediction (NCEP) and China Meteorological Administration (CMA) have been used for developing the SMME forecasts. The forecasts of 1-5, 6-10 and 11-15 days were generated using the newly developed approach for each pentad of June-September during the years 2008-2013 and the skill of the model was analysed using verification scores, viz. equitable skill score (ETS), mean absolute error (MAE), Pearson's correlation coefficient and Nash-Sutcliffe model efficiency index. Statistical analysis of SMME forecasts shows superior forecast skill compared to the conventional MME and the individual models for all the pentads, viz. 1-5, 6-10 and 11-15 days.
A composite stability index for dichotomous forecast of thunderstorms
NASA Astrophysics Data System (ADS)
Chaudhuri, Sutapa; Middey, Anirban
2012-12-01
Thunderstorms are the perennial feature of Kolkata (22° 32' N, 88° 20' E), India during the premonsoon season (April-May). Precise forecast of these thunderstorms is essential to mitigate the associated catastrophe due to lightning flashes, strong wind gusts, torrential rain, and occasional hail and tornadoes. The present research provides a composite stability index for forecasting thunderstorms. The forecast quality detection parameters are computed with the available indices during the period from 1997 to 2006 to select the most relevant indices with threshold ranges for the prevalence of such thunderstorms. The analyses reveal that the lifted index (LI) within the range of -5 to -12 °C, convective inhibition energy (CIN) within the range of 0-150 J/kg and convective available potential energy (CAPE) within the ranges of 2,000 to 7,000 J/kg are the most pertinent indices for the prevalence thunderstorms over Kolkata during the premonsoon season. A composite stability index, thunderstorm prediction index (TPI) is formulated with LI, CIN, and CAPE. The statistical skill score analyses show that the accuracy in forecasting such thunderstorms with TPI is 99.67 % with lead time less than 12 h during training the index whereas the accuracies are 89.64 % with LI, 60 % with CIN and 49.8 % with CAPE. The performance diagram supports that TPI has better forecast skill than its individual components. The forecast with TPI is validated with the observation of the India Meteorological Department during the period from 2007 to 2009. The real-time forecast of thunderstorms with TPI is provided for the year 2010.
Techie Quaicoe, Michael; Twenefour, Frank B K; Baah, Emmanuel M; Nortey, Ezekiel N N
2015-01-01
This research article aimed at modeling the variations in the dollar/cedi exchange rate. It examines the applicability of a range of ARCH/GARCH specifications for modeling volatility of the series. The variants considered include the ARMA, GARCH, IGARCH, EGARCH and M-GARCH specifications. The results show that the series was non stationary which resulted from the presence of a unit root in it. The ARMA (1, 1) was found to be the most suitable model for the conditional mean. From the Box-Ljung test statistics x-squared of 1476.338 with p value 0.00217 for squared returns and 16.918 with 0.0153 p values for squared residuals, the null hypothesis of no ARCH effect was rejected at 5% significance level indicating the presence of an ARCH effect in the series. ARMA (1, 1) + GARCH (1, 1) which has all parameters significant was found to be the most suitable model for the conditional mean with conditional variance, thus showing adequacy in describing the conditional mean with variance of the return series at 5% significant level. A 24 months forecast for the mean actual exchange rates and mean returns from January, 2013 to December, 2014 made also showed that the fitted model is appropriate for the data and a depreciating trend of the cedi against the dollar for forecasted period respectively.
NASA Astrophysics Data System (ADS)
Boyarchuk, K. A.; Ivanov-Kholodny, G. S.; Kolomiitsev, O. P.; Surotkin, V. A.
At flooding MOF ``Mir'' the information on forecasting a condition of the upper atmosphere was used. The forecast was carried out on the basis of numerical model of an atmosphere, which was developed in IZMIRAN. This model allows reproducing and predicting a situation in an Earth space, in an atmosphere and an ionosphere, along an orbit of flight of a space vehicle in the various periods of solar-geophysical conditions. Thus preliminary forecasting solar and geomagnetic activity was carried out on the basis of an individual technique. Before the beginning of operation on flooding MOF ``Mir'' it was found out, that solar activity began to accrue catastrophically. The account of the forecast of its development has forced to speed up the moment of flooding to avoid dangerous development of events. It has allowed minimizing a risk factor - ``Mir'' was flooded successful in the commanded area of Pacific Ocean.
Climatic Forecasting of Net Infiltration at Yucca Montain Using Analogue Meteororological Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
B. Faybishenko
At Yucca Mountain, Nevada, future changes in climatic conditions will most likely alter net infiltration, or the drainage below the bottom of the evapotranspiration zone within the soil profile or flow across the interface between soil and the densely welded part of the Tiva Canyon Tuff. The objectives of this paper are to: (a) develop a semi-empirical model and forecast average net infiltration rates, using the limited meteorological data from analogue meteorological stations, for interglacial (present day), and future monsoon, glacial transition, and glacial climates over the Yucca Mountain region, and (b) corroborate the computed net-infiltration rates by comparing themmore » with the empirically and numerically determined groundwater recharge and percolation rates through the unsaturated zone from published data. In this paper, the author presents an approach for calculations of net infiltration, aridity, and precipitation-effectiveness indices, using a modified Budyko's water-balance model, with reference-surface potential evapotranspiration determined from the radiation-based Penman (1948) formula. Results of calculations show that net infiltration rates are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate. The forecasting results indicate the overlap between the ranges of net infiltration for different climates. For example, the mean glacial net-infiltration rate corresponds to the upper-bound glacial transition net infiltration, and the lower-bound glacial net infiltration corresponds to the glacial transition mean net infiltration. Forecasting of net infiltration for different climate states is subject to numerous uncertainties-associated with selecting climate analogue sites, using relatively short analogue meteorological records, neglecting the effects of vegetation and surface runoff and runon on a local scale, as well as possible anthropogenic climate changes.« less
NASA Astrophysics Data System (ADS)
Moore, Robert J.; Wells, Steven C.; Cole, Steven J.
2016-04-01
It has been common for flood forecasting systems to be commissioned at a catchment or regional level in response to local priorities and hydrological conditions, leading to variety in system design and model choice. As systems mature and efficiencies of national management are sought, there can be a drive towards system rationalisation, gaining an overview of model performance and consideration of simplification through model-type convergence. Flood forecasting model assessments, whilst overseen at a national level, may be commissioned and managed at a catchment and regional level, take a variety of forms and be large in number. This presents a challenge when an integrated national assessment is required to guide operational use of flood forecasts and plan future investment in flood forecasting models and supporting hydrometric monitoring. This contribution reports on how a nationally consistent framework for flood forecasting model performance has been developed to embrace many past, ongoing and future assessments for local river systems by engineering consultants across England & Wales. The outcome is a Performance Summary for every site model assessed which, on a single page, contains relevant catchment information for context, a selection of overlain forecast and observed hydrographs and a set of performance statistics with associated displays of novel condensed form. One display provides performance comparison with other models that may exist for the site. The performance statistics include skill scores for forecasting events (flow/level threshold crossings) of differing severity/rarity, indicating their probability and likely timing, which have real value in an operational setting. The local models assessed can be of any type and span rainfall-runoff (conceptual and transfer function) and flow routing (hydrological and hydrodynamic) forms. Also accommodated by the framework is the national G2G (Grid-to-Grid) distributed hydrological model, providing area-wide coverage across the fluvial rivers of England and Wales, which can be assessed at gauged sites. Thus the performance of the national G2G model forecasts can be directly compared with that from the local models. The Performance Summary for each site model is complemented by a national spatial analysis of model performance stratified by model-type, geographical region and forecast lead-time. The map displays provide an extensive evidence-base that can be interrogated, through a Flood Forecasting Model Performance web portal, to reveal fresh insights into comparative performance across locations, lead-times and models. This work was commissioned by the Environment Agency in partnership with Natural Resources Wales and the Flood Forecasting Centre for England and Wales.
System load forecasts for an electric utility. [Hourly loads using Box-Jenkins method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uri, N.D.
This paper discusses forecasting hourly system load for an electric utility using Box-Jenkins time-series analysis. The results indicate that a model based on the method of Box and Jenkins, given its simplicity, gives excellent results over the forecast horizon.
Improving Weather Research and Forecasting Model Initial Conditions via Surface Pressure Analysis
2015-09-01
Obsgrid) that creates input data for the Advanced Research version of the Weather Research and Forecasting model ( WRF -ARW) is modified to perform a...surface pressure objective analysis to allow surface analyses of other fields to be more fully utilized in the WRF -ARW initial conditions. Nested 27-, 9...of surface pressure unnecessarily limits the application of other surface analyses into the WRF initial conditions and contributes to the creation of
Long-Term Climate Forcing in Loggerhead Sea Turtle Nesting
Van Houtan, Kyle S.; Halley, John M.
2011-01-01
The long-term variability of marine turtle populations remains poorly understood, limiting science and management. Here we use basin-scale climate indices and regional surface temperatures to estimate loggerhead sea turtle (Caretta caretta) nesting at a variety of spatial and temporal scales. Borrowing from fisheries research, our models investigate how oceanographic processes influence juvenile recruitment and regulate population dynamics. This novel approach finds local populations in the North Pacific and Northwest Atlantic are regionally synchronized and strongly correlated to ocean conditions—such that climate models alone explain up to 88% of the observed changes over the past several decades. In addition to its performance, climate-based modeling also provides mechanistic forecasts of historical and future population changes. Hindcasts in both regions indicate climatic conditions may have been a factor in recent declines, but future forecasts are mixed. Available climatic data suggests the Pacific population will be significantly reduced by 2040, but indicates the Atlantic population may increase substantially. These results do not exonerate anthropogenic impacts, but highlight the significance of bottom-up oceanographic processes to marine organisms. Future studies should consider environmental baselines in assessments of marine turtle population variability and persistence. PMID:21589639
NASA Astrophysics Data System (ADS)
Tanguy, M.; Prudhomme, C.; Harrigan, S.; Smith, K. A.; Parry, S.
2017-12-01
Forecasting hydrological extremes is challenging, especially at lead times over 1 month for catchments with limited hydrological memory and variable climates. One simple way to derive monthly or seasonal hydrological forecasts is to use historical climate data to drive hydrological models using the Ensemble Streamflow Prediction (ESP) method. This gives a range of possible future streamflow given known initial hydrologic conditions alone. The degree of skill of ESP depends highly on the forecast initialisation month and catchment type. Using dynamic rainfall forecasts as driving data instead of historical data could potentially improve streamflow predictions. A lot of effort is being invested within the meteorological community to improve these forecasts. However, while recent progress shows promise (e.g. NAO in winter), the skill of these forecasts at monthly to seasonal timescales is generally still limited, and the extent to which they might lead to improved hydrological forecasts is an area of active research. Additionally, these meteorological forecasts are currently being produced at 1 month or seasonal time-steps in the UK, whereas hydrological models require forcings at daily or sub-daily time-steps. Keeping in mind these limitations of available rainfall forecasts, the objectives of this study are to find out (i) how accurate monthly dynamical rainfall forecasts need to be to outperform ESP, and (ii) how the method used to disaggregate monthly rainfall forecasts into daily rainfall time series affects results. For the first objective, synthetic rainfall time series were created by increasingly degrading observed data (proxy for a `perfect forecast') from 0 % to +/-50 % error. For the second objective, three different methods were used to disaggregate monthly rainfall data into daily time series. These were used to force a simple lumped hydrological model (GR4J) to generate streamflow predictions at a one-month lead time for over 300 catchments representative of the range of UK's hydro-climatic conditions. These forecasts were then benchmarked against the traditional ESP method. It is hoped that the results of this work will help the meteorological community to identify where to focus their efforts in order to increase the usefulness of their forecasts within hydrological forecasting systems.
Ensemble Streamflow Forecast Improvements in NYC's Operations Support Tool
NASA Astrophysics Data System (ADS)
Wang, L.; Weiss, W. J.; Porter, J.; Schaake, J. C.; Day, G. N.; Sheer, D. P.
2013-12-01
Like most other water supply utilities, New York City's Department of Environmental Protection (DEP) has operational challenges associated with drought and wet weather events. During drought conditions, DEP must maintain water supply reliability to 9 million customers as well as meet environmental release requirements downstream of its reservoirs. During and after wet weather events, DEP must maintain turbidity compliance in its unfiltered Catskill and Delaware reservoir systems and minimize spills to mitigate downstream flooding. Proactive reservoir management - such as release restrictions to prepare for a drought or preventative drawdown in advance of a large storm - can alleviate negative impacts associated with extreme events. It is important for water managers to understand the risks associated with proactive operations so unintended consequences such as endangering water supply reliability with excessive drawdown prior to a storm event are minimized. Probabilistic hydrologic forecasts are a critical tool in quantifying these risks and allow water managers to make more informed operational decisions. DEP has recently completed development of an Operations Support Tool (OST) that integrates ensemble streamflow forecasts, real-time observations, and a reservoir system operations model into a user-friendly graphical interface that allows its water managers to take robust and defensible proactive measures in the face of challenging system conditions. Since initial development of OST was first presented at the 2011 AGU Fall Meeting, significant improvements have been made to the forecast system. First, the monthly AR1 forecasts ('Hirsch method') were upgraded with a generalized linear model (GLM) utilizing historical daily correlations ('Extended Hirsch method' or 'eHirsch'). The development of eHirsch forecasts improved predictive skill over the Hirsch method in the first week to a month from the forecast date and produced more realistic hydrographs on the tail end of high flow periods. These improvements allowed DEP to more effectively manage water quality control and spill mitigation operations immediately after storm events. Later on, post-processed hydrologic forecasts from the National Weather Service (NWS) including the Advanced Hydrologic Prediction Service (AHPS) and the Hydrologic Ensemble Forecast Service (HEFS) were implemented into OST. These forecasts further increased the predictive skill over the initial statistical models as current basin conditions (e.g. soil moisture, snowpack) and meteorological forecasts (with HEFS) are now explicitly represented. With the post-processed HEFS forecasts, DEP may now truly quantify impacts associated with wet weather events on the horizon, rather than relying on statistical representations of current hydrologic trends. This presentation will highlight the benefits of the improved forecasts using examples from actual system operations.
Interval forecasting of cyber-attacks on industrial control systems
NASA Astrophysics Data System (ADS)
Ivanyo, Y. M.; Krakovsky, Y. M.; Luzgin, A. N.
2018-03-01
At present, cyber-security issues of industrial control systems occupy one of the key niches in a state system of planning and management Functional disruption of these systems via cyber-attacks may lead to emergencies related to loss of life, environmental disasters, major financial and economic damage, or disrupted activities of cities and settlements. There is then an urgent need to develop protection methods against cyber-attacks. This paper studied the results of cyber-attack interval forecasting with a pre-set intensity level of cyber-attacks. Interval forecasting is the forecasting of one interval from two predetermined ones in which a future value of the indicator will be obtained. For this, probability estimates of these events were used. For interval forecasting, a probabilistic neural network with a dynamic updating value of the smoothing parameter was used. A dividing bound of these intervals was determined by a calculation method based on statistical characteristics of the indicator. The number of cyber-attacks per hour that were received through a honeypot from March to September 2013 for the group ‘zeppo-norcal’ was selected as the indicator.
Transitioning the Rice Realtime Forecast Models to DSCOVR
NASA Astrophysics Data System (ADS)
Bala, R.; Reiff, P. H.
2016-12-01
The Rice realtime forecast models of global magnetospheric indices Kp, Dst and AE have been actively running at mms.rice.edu/realtime/forecast.html for nearly a decade now. These neural network models were trained using the ACE archival solar wind data while the near-realtime forecasts are provided using instantaneous upwind solar wind data stream measured at the L1 point through ACE. Additionally, the webpage also provide status of the current space weather condition as an additional resource, updating every ten minutes. Furthermore, the subscribers of our space weather alert system, called `spacalrt', have been receiving email notices based on predefined thresholds. One of the gaps that is currently seen in the Rice neural network models lies in the density dependent models using variants of the solar wind pressure. The anomalous behavior in reporting densities in ACE has been a common issue for some time now. Often such behavior is observed when the solar energetic particle that are associated with solar flares or CMEs are Earth directed. Therefore, it is understood that the subsequent measures of the density reported by ACE will be either very low or, at a minimum, contaminated. Under these circumstances, the density-based Rice models typically underpredict. However, the newly launched DSCOVR satellite will help enhance our prediction models with high-quality data; it has real time space weather data available through the NOAA's Space Weather Prediction Center as of July, 2016. We are in the process of transitioning our forecast operations to include data from DSCOVR while running the original ACE data stream in parallel until it lasts. This paper will compare and contrast the forecasted values from the two satellites. Finally, we will discuss our efforts in providing the forecast products for the Rice space weather website that will be a part of the book on "Machine Learning Techniques for Space Weather" to be published by Elsiever.
Drought Prediction for Socio-Cultural Stability Project
NASA Technical Reports Server (NTRS)
Peters-Lidard, Christa; Eylander, John B.; Koster, Randall; Narapusetty, Balachandrudu; Kumar, Sujay; Rodell, Matt; Bolten, John; Mocko, David; Walker, Gregory; Arsenault, Kristi;
2014-01-01
The primary objective of this project is to answer the question: "Can existing, linked infrastructures be used to predict the onset of drought months in advance?" Based on our work, the answer to this question is "yes" with the qualifiers that skill depends on both lead-time and location, and especially with the associated teleconnections (e.g., ENSO, Indian Ocean Dipole) active in a given region season. As part of this work, we successfully developed a prototype drought early warning system based on existing/mature NASA Earth science components including the Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-5) forecasting model, the Land Information System (LIS) land data assimilation software framework, the Catchment Land Surface Model (CLSM), remotely sensed terrestrial water storage from the Gravity Recovery and Climate Experiment (GRACE) and remotely sensed soil moisture products from the Aqua/Advanced Microwave Scanning Radiometer - EOS (AMSR-E). We focused on a single drought year - 2011 - during which major agricultural droughts occurred with devastating impacts in the Texas-Mexico region of North America (TEXMEX) and the Horn of Africa (HOA). Our results demonstrate that GEOS-5 precipitation forecasts show skill globally at 1-month lead, and can show up to 3 months skill regionally in the TEXMEX and HOA areas. Our results also demonstrate that the CLSM soil moisture percentiles are a goof indicator of drought, as compared to the North American Drought Monitor of TEXMEX and a combination of Famine Early Warning Systems Network (FEWS NET) data and Moderate Resolution Imaging Spectrometer (MODIS)'s Normalizing Difference Vegetation Index (NDVI) anomalies over HOA. The data assimilation experiments produced mixed results. GRACE terrestrial water storage (TWS) assimilation was found to significantly improve soil moisture and evapotransportation, as well as drought monitoring via soil moisture percentiles, while AMSR-E soil moisture assimilation produced marginal benefits. We carried out 1-3 month lead-time forecast experiments using GEOS-5 forecasts as input to LIS/CLSM. Based on these forecast experiments, we find that the expected skill in GEOS-5 forecasts from 1-3 months is present in the soil moisture percentiles used to indicate drought. In the case of the HOA drought, the failure of the long rains in April appears in the February 1, March 1 and April 1 initialized forecasts, suggesting that for this case, drought forecasting would have provided some advance warning about the drought conditions observed in 2011. Three key recommendations for follow-up work include: (1) carry out a comprehensive analysis of droughts observed over the entire period of record for GEOS-5 forecasts; (2) continue to analyze the GEOS-5 forecasts in HOA stratifying by anomalies in long and short rains; and (3) continue to include GRACE TWS, Soil Moisture/Ocean Salinity (SMOS) and the upcoming NASA Soil Moisture Active/Passive (SMAP) soil moisture products in a routine activity building on this prototype to further quantify the benefits for drought assessment and prediction.
Accuracy of National Weather Service wind-direction forecasts at Macon and Augusta, Georgia
Leonidas G. Lavdas
1997-01-01
National Weather Service wind forecasts and observations over a nine-year period (1985 to 1993) were analyzed to determine the usefulness of these forecasts for forestry smoke management. Data from Macon, GA indicated that forecasts were accurate to within plus or minus 22.5E about 38 percent of the time. When a wider plus or minus 67.5E window was used, accuracy...
Long-Lead Prediction of the 2015 Fire and Haze Episode in Indonesia
NASA Astrophysics Data System (ADS)
Shawki, Dilshad; Field, Robert D.; Tippett, Michael K.; Saharjo, Bambang Hero; Albar, Israr; Atmoko, Dwi; Voulgarakis, Apostolos
2017-10-01
We conducted a case study of National Centers for Environmental Prediction Climate Forecast System version 2 seasonal model forecast performance over Indonesia in predicting the dry conditions in 2015 that led to severe fire, in comparison to the non-El Niño dry season conditions of 2016. Forecasts of the Drought Code (DC) component of Indonesia's Fire Danger Rating System were examined across the entire equatorial Asia region and for the primary burning regions within it. Our results show that early warning lead times of high observed DC in September and October 2015 varied considerably for different regions. High DC over Southern Kalimantan and Southern New Guinea were predicted with 180 day lead times, whereas Southern Sumatra had lead times of up to only 60 days, which we attribute to the absence in the forecasts of an eastward decrease in Indian Ocean sea surface temperatures. This case study provides the starting point for longer-term evaluation of seasonal fire danger rating forecasts over Indonesia.
NASA Astrophysics Data System (ADS)
Maslova, I.; Ticlavilca, A. M.; McKee, M.
2012-12-01
There has been an increased interest in wavelet-based streamflow forecasting models in recent years. Often overlooked in this approach are the circularity assumptions of the wavelet transform. We propose a novel technique for minimizing the wavelet decomposition boundary condition effect to produce long-term, up to 12 months ahead, forecasts of streamflow. A simulation study is performed to evaluate the effects of different wavelet boundary rules using synthetic and real streamflow data. A hybrid wavelet-multivariate relevance vector machine model is developed for forecasting the streamflow in real-time for Yellowstone River, Uinta Basin, Utah, USA. The inputs of the model utilize only the past monthly streamflow records. They are decomposed into components formulated in terms of wavelet multiresolution analysis. It is shown that the model model accuracy can be increased by using the wavelet boundary rule introduced in this study. This long-term streamflow modeling and forecasting methodology would enable better decision-making and managing water availability risk.
NASA Astrophysics Data System (ADS)
Aksoy, Hafzullah; Dahamsheh, Ahmad
2018-07-01
For forecasting monthly precipitation in an arid region, the feed forward back-propagation, radial basis function and generalized regression artificial neural networks (ANNs) are used in this study. The ANN models are improved after incorporation of a Markov chain-based algorithm (MC-ANNs) with which the percentage of dry months is forecasted perfectly, thus generation of any non-physical negative precipitation is eliminated. Due to the fact that recorded precipitation time series are usually shorter than the length needed for a proper calibration of ANN models, synthetic monthly precipitation data are generated by Thomas-Fiering model to further improve the performance of forecasting. For case studies from Jordan, it is seen that only a slightly better performance is achieved with the use of MC and synthetic data. A conditional statement is, therefore, established and imbedded into the ANN models after the incorporation of MC and support of synthetic data, to substantially improve the ability of the models for forecasting monthly precipitation in arid regions.
A hybrid approach EMD-HW for short-term forecasting of daily stock market time series data
NASA Astrophysics Data System (ADS)
Awajan, Ahmad Mohd; Ismail, Mohd Tahir
2017-08-01
Recently, forecasting time series has attracted considerable attention in the field of analyzing financial time series data, specifically within the stock market index. Moreover, stock market forecasting is a challenging area of financial time-series forecasting. In this study, a hybrid methodology between Empirical Mode Decomposition with the Holt-Winter method (EMD-HW) is used to improve forecasting performances in financial time series. The strength of this EMD-HW lies in its ability to forecast non-stationary and non-linear time series without a need to use any transformation method. Moreover, EMD-HW has a relatively high accuracy and offers a new forecasting method in time series. The daily stock market time series data of 11 countries is applied to show the forecasting performance of the proposed EMD-HW. Based on the three forecast accuracy measures, the results indicate that EMD-HW forecasting performance is superior to traditional Holt-Winter forecasting method.
Fast, Flexible, and Digital: Forecasts for Occupational and Workplace Education.
ERIC Educational Resources Information Center
Ausburn, Lynna J.
2002-01-01
Three Delphi panels of occupational educators (n=16, 9, 12) forecast scenarios for the future of workplace education, which were compared with results of a literature review. Results indicated increasing alignment of practitioners' forecasts for dramatically transformed workplace education with major trends identified in the literature. (Contains…
NASA Astrophysics Data System (ADS)
Smith, P. J.; Beven, K.; Panziera, L.
2012-04-01
The issuing of timely flood alerts may be dependant upon the ability to predict future values of water level or discharge at locations where observations are available. Catchments at risk of flash flooding often have a rapid natural response time, typically less then the forecast lead time desired for issuing alerts. This work focuses on the provision of short-range (up to 6 hours lead time) predictions of discharge in small catchments based on utilising radar forecasts to drive a hydrological model. An example analysis based upon the Verzasca catchment (Ticino, Switzerland) is presented. Parsimonious time series models with a mechanistic interpretation (so called Data-Based Mechanistic model) have been shown to provide reliable accurate forecasts in many hydrological situations. In this study such a model is developed to predict the discharge at an observed location from observed precipitation data. The model is shown to capture the snow melt response at this site. Observed discharge data is assimilated to improve the forecasts, of up to two hours lead time, that can be generated from observed precipitation. To generate forecasts with greater lead time ensemble precipitation forecasts are utilised. In this study the Nowcasting ORographic precipitation in the Alps (NORA) product outlined in more detail elsewhere (Panziera et al. Q. J. R. Meteorol. Soc. 2011; DOI:10.1002/qj.878) is utilised. NORA precipitation forecasts are derived from historical analogues based on the radar field and upper atmospheric conditions. As such, they avoid the need to explicitly model the evolution of the rainfall field through for example Lagrangian diffusion. The uncertainty in the forecasts is represented by characterisation of the joint distribution of the observed discharge, the discharge forecast using the (in operational conditions unknown) future observed precipitation and that forecast utilising the NORA ensembles. Constructing the joint distribution in this way allows the full historic record of data at the site to inform the predictive distribution. It is shown that, in part due to the limited availability of forecasts, the uncertainty in the relationship between the NORA based forecasts and other variates dominated the resulting predictive uncertainty.
NASA Astrophysics Data System (ADS)
Barbetta, Silvia; Coccia, Gabriele; Moramarco, Tommaso; Todini, Ezio
2015-04-01
The negative effects of severe flood events are usually contrasted through structural measures that, however, do not fully eliminate flood risk. Non-structural measures, such as real-time flood forecasting and warning, are also required. Accurate stage/discharge future predictions with appropriate forecast lead-time are sought by decision-makers for implementing strategies to mitigate the adverse effects of floods. Traditionally, flood forecasting has been approached by using rainfall-runoff and/or flood routing modelling. Indeed, both types of forecasts, cannot be considered perfectly representing future outcomes because of lacking of a complete knowledge of involved processes (Todini, 2004). Nonetheless, although aware that model forecasts are not perfectly representing future outcomes, decision makers are de facto implicitly assuming the forecast of water level/discharge/volume, etc. as "deterministic" and coinciding with what is going to occur. Recently the concept of Predictive Uncertainty (PU) was introduced in hydrology (Krzysztofowicz, 1999), and several uncertainty processors were developed (Todini, 2008). PU is defined as the probability of occurrence of the future realization of a predictand (water level/discharge/volume) conditional on: i) prior observations and knowledge, ii) the available information obtained on the future value, typically provided by one or more forecast models. Unfortunately, PU has been frequently interpreted as a measure of lack of accuracy rather than the appropriate tool allowing to take the most appropriate decisions, given a model or several models' forecasts. With the aim to shed light on the benefits for appropriately using PU, a multi-temporal approach based on the MCP approach (Todini, 2008; Coccia and Todini, 2011) is here applied to stage forecasts at sites along the Upper Tiber River. Specifically, the STAge Forecasting-Rating Curve Model Muskingum-based (STAFOM-RCM) (Barbetta et al., 2014) along with the Rating-Curve Model in Real Time (RCM-RT) (Barbetta and Moramarco, 2014) are used to this end. Both models without considering rainfall information explicitly considers, at each time of forecast, the estimate of lateral contribution along the river reach for which the stage forecast is performed at downstream end. The analysis is performed for several reaches using different lead times according to the channel length. Barbetta, S., Moramarco, T., Brocca, L., Franchini, M. and Melone, F. 2014. Confidence interval of real-time forecast stages provided by the STAFOM-RCM model: the case study of the Tiber River (Italy). Hydrological Processes, 28(3),729-743. Barbetta, S. and Moramarco, T. 2014. Real-time flood forecasting by relating local stage and remote discharge. Hydrological Sciences Journal, 59(9 ), 1656-1674. Coccia, G. and Todini, E. 2011. Recent developments in predictive uncertainty assessment based on the Model Conditional Processor approach. Hydrology and Earth System Sciences, 15, 3253-3274. doi:10.5194/hess-15-3253-2011. Krzysztofowicz, R. 1999. Bayesian theory of probabilistic forecasting via deterministic hydrologic model, Water Resour. Res., 35, 2739-2750. Todini, E. 2004. Role and treatment of uncertainty in real-time flood forecasting. Hydrological Processes 18(14), 2743_2746. Todini, E. 2008. A model conditional processor to assess predictive uncertainty in flood forecasting. Intl. J. River Basin Management, 6(2): 123-137.
Quantifying model uncertainty in seasonal Arctic sea-ice forecasts
NASA Astrophysics Data System (ADS)
Blanchard-Wrigglesworth, Edward; Barthélemy, Antoine; Chevallier, Matthieu; Cullather, Richard; Fučkar, Neven; Massonnet, François; Posey, Pamela; Wang, Wanqiu; Zhang, Jinlun; Ardilouze, Constantin; Bitz, Cecilia; Vernieres, Guillaume; Wallcraft, Alan; Wang, Muyin
2017-04-01
Dynamical model forecasts in the Sea Ice Outlook (SIO) of September Arctic sea-ice extent over the last decade have shown lower skill than that found in both idealized model experiments and hindcasts of previous decades. Additionally, it is unclear how different model physics, initial conditions or post-processing techniques contribute to SIO forecast uncertainty. In this work, we have produced a seasonal forecast of 2015 Arctic summer sea ice using SIO dynamical models initialized with identical sea-ice thickness in the central Arctic. Our goals are to calculate the relative contribution of model uncertainty and irreducible error growth to forecast uncertainty and assess the importance of post-processing, and to contrast pan-Arctic forecast uncertainty with regional forecast uncertainty. We find that prior to forecast post-processing, model uncertainty is the main contributor to forecast uncertainty, whereas after forecast post-processing forecast uncertainty is reduced overall, model uncertainty is reduced by an order of magnitude, and irreducible error growth becomes the main contributor to forecast uncertainty. While all models generally agree in their post-processed forecasts of September sea-ice volume and extent, this is not the case for sea-ice concentration. Additionally, forecast uncertainty of sea-ice thickness grows at a much higher rate along Arctic coastlines relative to the central Arctic ocean. Potential ways of offering spatial forecast information based on the timescale over which the forecast signal beats the noise are also explored.
Weather Forecaster Understanding of Climate Models
NASA Astrophysics Data System (ADS)
Bol, A.; Kiehl, J. T.; Abshire, W. E.
2013-12-01
Weather forecasters, particularly those in broadcasting, are the primary conduit to the public for information on climate and climate change. However, many weather forecasters remain skeptical of model-based climate projections. To address this issue, The COMET Program developed an hour-long online lesson of how climate models work, targeting an audience of weather forecasters. The module draws on forecasters' pre-existing knowledge of weather, climate, and numerical weather prediction (NWP) models. In order to measure learning outcomes, quizzes were given before and after the lesson. Preliminary results show large learning gains. For all people that took both pre and post-tests (n=238), scores improved from 48% to 80%. Similar pre/post improvement occurred for National Weather Service employees (51% to 87%, n=22 ) and college faculty (50% to 90%, n=7). We believe these results indicate a fundamental misunderstanding among many weather forecasters of (1) the difference between weather and climate models, (2) how researchers use climate models, and (3) how they interpret model results. The quiz results indicate that efforts to educate the public about climate change need to include weather forecasters, a vital link between the research community and the general public.
Assessment of Predictive Capabilities of L1 Orbiters using Realtime Solar Wind Data
NASA Astrophysics Data System (ADS)
Holmes, J.; Kasper, J. C.; Welling, D. T.
2017-12-01
Realtime measurements of solar wind conditions at L1 point allow us to predict geomagnetic activity at Earth up to an hour in advance. These predictions are quantified in the form of geomagnetic indices such as Kp and Ap, allowing for a concise, standardized prediction and measurement system. For years, the Space Weather Prediction Center used ACE realtime solar wind data to develop its one and four-hour Kp forecasts, but has in the past year switched to using DSCOVR data as its source. In this study, the performance of both orbiters in predicting Kp over the course of one month was assessed in an attempt to determine whether or not switching to DSCOVR data has resulted in improved forecasts. The period of study was chosen to encompass a time when the satellites were close to each other, and when moderate to high activity was observed. Kp predictions were made using the Geospace Model, part of the Space Weather Modeling Framework, to simulate conditions based on observed solar wind parameters. The performance of each satellite was assessed by comparing the model output to observed data.
Dettinger, M.D.; Cayan, D.R.; McCabe, G.J.; Redmond, K.T.
2000-01-01
An analysis of historical floods and seasonal streamflows during years with neutral El NiñoSouthern Oscillation (ENSO) conditions in the tropical Pacific and “negative” states of the North Pacific Oscillation (NPO) in the North Pacific—like those expected next year—indicates that (1) chances of having maximum-daily flows next year that are near the longterm averages in many rivers are enhanced, especially in the western states, (2) chances of having near-average seasonal-average flows also may be enhanced across the country, and (3) locally, chances of large floods and winter-season flows may be enhanced in the extreme Northwest, chances of large winter flows may be diminished in rivers in and around Wisconsin, and chances of large spring flows may be diminished in the interior southwest and southeastern coastal plain. The background, methods, and forecast results that lead to these statements are detailed below, followed by a summary of the successes and failures of last year’s streamflow forecast by Dettinger et al. (1999).
Process-conditioned bias correction for seasonal forecasting: a case-study with ENSO in Peru
NASA Astrophysics Data System (ADS)
Manzanas, R.; Gutiérrez, J. M.
2018-05-01
This work assesses the suitability of a first simple attempt for process-conditioned bias correction in the context of seasonal forecasting. To do this, we focus on the northwestern part of Peru and bias correct 1- and 4-month lead seasonal predictions of boreal winter (DJF) precipitation from the ECMWF System4 forecasting system for the period 1981-2010. In order to include information about the underlying large-scale circulation which may help to discriminate between precipitation affected by different processes, we introduce here an empirical quantile-quantile mapping method which runs conditioned on the state of the Southern Oscillation Index (SOI), which is accurately predicted by System4 and is known to affect the local climate. Beyond the reduction of model biases, our results show that the SOI-conditioned method yields better ROC skill scores and reliability than the raw model output over the entire region of study, whereas the standard unconditioned implementation provides no added value for any of these metrics. This suggests that conditioning the bias correction on simple but well-simulated large-scale processes relevant to the local climate may be a suitable approach for seasonal forecasting. Yet, further research on the suitability of the application of similar approaches to the one considered here for other regions, seasons and/or variables is needed.
Seasonal forecasting of groundwater levels in natural aquifers in the United Kingdom
NASA Astrophysics Data System (ADS)
Mackay, Jonathan; Jackson, Christopher; Pachocka, Magdalena; Brookshaw, Anca; Scaife, Adam
2014-05-01
Groundwater aquifers comprise the world's largest freshwater resource and provide resilience to climate extremes which could become more frequent under future climate changes. Prolonged dry conditions can induce groundwater drought, often characterised by significantly low groundwater levels which may persist for months to years. In contrast, lasting wet conditions can result in anomalously high groundwater levels which result in flooding, potentially at large economic cost. Using computational models to produce groundwater level forecasts allows appropriate management strategies to be considered in advance of extreme events. The majority of groundwater level forecasting studies to date use data-based models, which exploit the long response time of groundwater levels to meteorological drivers and make forecasts based only on the current state of the system. Instead, seasonal meteorological forecasts can be used to drive hydrological models and simulate groundwater levels months into the future. Such approaches have not been used in the past due to a lack of skill in these long-range forecast products. However systems such as the latest version of the Met Office Global Seasonal Forecast System (GloSea5) are now showing increased skill up to a 3-month lead time. We demonstrate the first groundwater level ensemble forecasting system using a multi-member ensemble of hindcasts from GloSea5 between 1996 and 2009 to force 21 simple lumped conceptual groundwater models covering most of the UK's major aquifers. We present the results from this hindcasting study and demonstrate that the system can be used to forecast groundwater levels with some skill up to three months into the future.
Uses and Applications of Climate Forecasts for Power Utilities.
NASA Astrophysics Data System (ADS)
Changnon, Stanley A.; Changnon, Joyce M.; Changnon, David
1995-05-01
The uses and potential applications of climate forecasts for electric and gas utilities were assessed 1) to discern needs for improving climate forecasts and guiding future research, and 2) to assist utilities in making wise use of forecasts. In-depth structured interviews were conducted with 56 decision makers in six utilities to assess existing and potential uses of climate forecasts. Only 3 of the 56 use forecasts. Eighty percent of those sampled envisioned applications of climate forecasts, given certain changes and additional information. Primary applications exist in power trading, load forecasting, fuel acquisition, and systems planning, with slight differences in interests between utilities. Utility staff understand probability-based forecasts but desire climatological information related to forecasted outcomes, including analogs similar to the forecasts, and explanations of the forecasts. Desired lead times vary from a week to three months, along with forecasts of up to four seasons ahead. The new NOAA forecasts initiated in 1995 provide the lead times and longer-term forecasts desired. Major hindrances to use of forecasts are hard-to-understand formats, lack of corporate acceptance, and lack of access to expertise. Recent changes in government regulations altered the utility industry, leading to a more competitive world wherein information about future weather conditions assumes much more value. Outreach efforts by government forecast agencies appear valuable to help achieve the appropriate and enhanced use of climate forecasts by the utility industry. An opportunity for service exists also for the private weather sector.
NASA Astrophysics Data System (ADS)
Blanchard-Wrigglesworth, E.; Barthélemy, A.; Chevallier, M.; Cullather, R.; Fučkar, N.; Massonnet, F.; Posey, P.; Wang, W.; Zhang, J.; Ardilouze, C.; Bitz, C. M.; Vernieres, G.; Wallcraft, A.; Wang, M.
2017-08-01
Dynamical model forecasts in the Sea Ice Outlook (SIO) of September Arctic sea-ice extent over the last decade have shown lower skill than that found in both idealized model experiments and hindcasts of previous decades. Additionally, it is unclear how different model physics, initial conditions or forecast post-processing (bias correction) techniques contribute to SIO forecast uncertainty. In this work, we have produced a seasonal forecast of 2015 Arctic summer sea ice using SIO dynamical models initialized with identical sea-ice thickness in the central Arctic. Our goals are to calculate the relative contribution of model uncertainty and irreducible error growth to forecast uncertainty and assess the importance of post-processing, and to contrast pan-Arctic forecast uncertainty with regional forecast uncertainty. We find that prior to forecast post-processing, model uncertainty is the main contributor to forecast uncertainty, whereas after forecast post-processing forecast uncertainty is reduced overall, model uncertainty is reduced by an order of magnitude, and irreducible error growth becomes the main contributor to forecast uncertainty. While all models generally agree in their post-processed forecasts of September sea-ice volume and extent, this is not the case for sea-ice concentration. Additionally, forecast uncertainty of sea-ice thickness grows at a much higher rate along Arctic coastlines relative to the central Arctic ocean. Potential ways of offering spatial forecast information based on the timescale over which the forecast signal beats the noise are also explored.
NASA Astrophysics Data System (ADS)
Seo, Eunkyo; Lee, Myong-In; Jeong, Jee-Hoon; Koster, Randal D.; Schubert, Siegfried D.; Kim, Hye-Mi; Kim, Daehyun; Kang, Hyun-Suk; Kim, Hyun-Kyung; MacLachlan, Craig; Scaife, Adam A.
2018-05-01
This study uses a global land-atmosphere coupled model, the land-atmosphere component of the Global Seasonal Forecast System version 5, to quantify the degree to which soil moisture initialization could potentially enhance boreal summer surface air temperature forecast skill. Two sets of hindcast experiments are performed by prescribing the observed sea surface temperature as the boundary condition for a 15-year period (1996-2010). In one set of the hindcast experiments (noINIT), the initial soil moisture conditions are randomly taken from a long-term simulation. In the other set (INIT), the initial soil moisture conditions are taken from an observation-driven offline Land Surface Model (LSM) simulation. The soil moisture conditions from the offline LSM simulation are calibrated using the forecast model statistics to minimize the inconsistency between the LSM and the land-atmosphere coupled model in their mean and variability. Results show a higher boreal summer surface air temperature prediction skill in INIT than in noINIT, demonstrating the potential benefit from an accurate soil moisture initialization. The forecast skill enhancement appears especially in the areas in which the evaporative fraction—the ratio of surface latent heat flux to net surface incoming radiation—is sensitive to soil moisture amount. These areas lie in the transitional regime between humid and arid climates. Examination of the extreme 2003 European and 2010 Russian heat wave events reveal that the regionally anomalous soil moisture conditions during the events played an important role in maintaining the stationary circulation anomalies, especially those near the surface.
Water balance models in one-month-ahead streamflow forecasting
Alley, William M.
1985-01-01
Techniques are tested that incorporate information from water balance models in making 1-month-ahead streamflow forecasts in New Jersey. The results are compared to those based on simple autoregressive time series models. The relative performance of the models is dependent on the month of the year in question. The water balance models are most useful for forecasts of April and May flows. For the stations in northern New Jersey, the April and May forecasts were made in order of decreasing reliability using the water-balance-based approaches, using the historical monthly means, and using simple autoregressive models. The water balance models were useful to a lesser extent for forecasts during the fall months. For the rest of the year the improvements in forecasts over those obtained using the simpler autoregressive models were either very small or the simpler models provided better forecasts. When using the water balance models, monthly corrections for bias are found to improve minimum mean-square-error forecasts as well as to improve estimates of the forecast conditional distributions.
Forecasting in foodservice: model development, testing, and evaluation.
Miller, J L; Thompson, P A; Orabella, M M
1991-05-01
This study was designed to develop, test, and evaluate mathematical models appropriate for forecasting menu-item production demand in foodservice. Data were collected from residence and dining hall foodservices at Ohio State University. Objectives of the study were to collect, code, and analyze the data; develop and test models using actual operation data; and compare forecasting results with current methods in use. Customer count was forecast using deseasonalized simple exponential smoothing. Menu-item demand was forecast by multiplying the count forecast by a predicted preference statistic. Forecasting models were evaluated using mean squared error, mean absolute deviation, and mean absolute percentage error techniques. All models were more accurate than current methods. A broad spectrum of forecasting techniques could be used by foodservice managers with access to a personal computer and spread-sheet and database-management software. The findings indicate that mathematical forecasting techniques may be effective in foodservice operations to control costs, increase productivity, and maximize profits.
Solar flare predictions and warnings
NASA Technical Reports Server (NTRS)
White, K. P., III
1972-01-01
The real-time solar monitoring information supplied to support SPARCS equipped rocket launches, the routine collection and analysis of 3.3-mm solar radio maps, short-term flare forecasts based on these maps, longer-term forecasts based on the recurrence of active regions, and an extension of the flare forecasting technique are summarized. Forecasts for expectation of a solar flare of class or = 2F are given and compared with observed flares. A total of 52 plage regions produced all the flares of class or = 1N during the study period. The following results are indicated: of the total of 21 positive forecasts, 3 were correct and 18 were incorrect; of the total of 31 negative forecasts, 3 were incorrect and 28 were correct; of a total of 6 plage regions producing large flares, 3 were correctly forecast and 3 were missed; and of 46 regions not producing any large flares, 18 were incorrectly forecast and 28 were correctly forecast.
Sensor network based solar forecasting using a local vector autoregressive ridge framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, J.; Yoo, S.; Heiser, J.
2016-04-04
The significant improvements and falling costs of photovoltaic (PV) technology make solar energy a promising resource, yet the cloud induced variability of surface solar irradiance inhibits its effective use in grid-tied PV generation. Short-term irradiance forecasting, especially on the minute scale, is critically important for grid system stability and auxiliary power source management. Compared to the trending sky imaging devices, irradiance sensors are inexpensive and easy to deploy but related forecasting methods have not been well researched. The prominent challenge of applying classic time series models on a network of irradiance sensors is to address their varying spatio-temporal correlations duemore » to local changes in cloud conditions. We propose a local vector autoregressive framework with ridge regularization to forecast irradiance without explicitly determining the wind field or cloud movement. By using local training data, our learned forecast model is adaptive to local cloud conditions and by using regularization, we overcome the risk of overfitting from the limited training data. Our systematic experimental results showed an average of 19.7% RMSE and 20.2% MAE improvement over the benchmark Persistent Model for 1-5 minute forecasts on a comprehensive 25-day dataset.« less
Ocean Data Impacts in Global HYCOM
2014-08-01
The purpose of assimilation is to reduce the model initial condition error. Improved initial con- ditions should lead to an improved forecast...the determination of locations where forecast errors are sensitive to the initial conditions are essential for improving the data assimilation system...longwave radiation, total (large scale plus convective) precipitation, ground/sea temperature, zonal and me- ridional wind velocities at 10m, mean sea
Forecasting Future Sea Ice Conditions: A Lagrangian Approach
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Forecasting Future Sea Ice Conditions: A Lagrangian ...GCMs participating in IPCC AR5 agree with observed source region patterns from the satellite- derived dataset. 4- Compare Lagrangian ice... Lagrangian sea-ice back trajectories to estimate thermodynamic and dynamic (advection) ice loss. APPROACH We use a Lagrangian trajectory model to
Evaluation of Regional Extended-Range Prediction for Tropical Waves Using COAMPS®
NASA Astrophysics Data System (ADS)
Hong, X.; Reynolds, C. A.; Doyle, J. D.; May, P. W.; Chen, S.; Flatau, M. K.; O'Neill, L. W.
2014-12-01
The Navy's Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS1) in a two-way coupled mode is used for two-month regional extended-range prediction for the Madden-Julian Oscillation (MJO) and Tropical Cyclone 05 (TC05) that occurred during the DYNAMO period from November to December 2011. Verification and statistics from two experiments with 45-km and 27-km horizontal resolutions indicate that 27-km run provides a better representation of the three MJO events that occurred during this 2-month period, including the two convectively-coupled Kelvin waves associated with the second MJO event as observed. The 27-km run also significantly reduces forecast error after 15-days, reaching a maximum bias reduction of 89% in the third 15-day period due to the well represented MJO propagation over the Maritime Continent. Correlations between the model forecasts and observations or ECMWF analyses show that the MJO suppressed period is more difficult to predict than the active period. In addition, correlation coefficients for cloud liquid water path (CLWP) and precipitation are relatively low for both cases compared to other variables. The study suggests that a good simulation of TC05 and a good simulation of the Kelvin waves and westerly wind bursts are linked. Further research is needed to investigate the capability in regional extended-range forecasts when the lateral boundary conditions are provided from a long-term global forecast to allow for an assessment of potential operational forecast skill. _____________________________________________________ 1COAMPS is a registered trademark of U.S. Naval Research Laboratory
Wave ensemble forecast system for tropical cyclones in the Australian region
NASA Astrophysics Data System (ADS)
Zieger, Stefan; Greenslade, Diana; Kepert, Jeffrey D.
2018-05-01
Forecasting of waves under extreme conditions such as tropical cyclones is vitally important for many offshore industries, but there remain many challenges. For Northwest Western Australia (NW WA), wave forecasts issued by the Australian Bureau of Meteorology have previously been limited to products from deterministic operational wave models forced by deterministic atmospheric models. The wave models are run over global (resolution 1/4∘) and regional (resolution 1/10∘) domains with forecast ranges of + 7 and + 3 day respectively. Because of this relatively coarse resolution (both in the wave models and in the forcing fields), the accuracy of these products is limited under tropical cyclone conditions. Given this limited accuracy, a new ensemble-based wave forecasting system for the NW WA region has been developed. To achieve this, a new dedicated 8-km resolution grid was nested in the global wave model. Over this grid, the wave model is forced with winds from a bias-corrected European Centre for Medium Range Weather Forecast atmospheric ensemble that comprises 51 ensemble members to take into account the uncertainties in location, intensity and structure of a tropical cyclone system. A unique technique is used to select restart files for each wave ensemble member. The system is designed to operate in real time during the cyclone season providing + 10-day forecasts. This paper will describe the wave forecast components of this system and present the verification metrics and skill for specific events.
2011-01-01
Background Real-time forecasting of epidemics, especially those based on a likelihood-based approach, is understudied. This study aimed to develop a simple method that can be used for the real-time epidemic forecasting. Methods A discrete time stochastic model, accounting for demographic stochasticity and conditional measurement, was developed and applied as a case study to the weekly incidence of pandemic influenza (H1N1-2009) in Japan. By imposing a branching process approximation and by assuming the linear growth of cases within each reporting interval, the epidemic curve is predicted using only two parameters. The uncertainty bounds of the forecasts are computed using chains of conditional offspring distributions. Results The quality of the forecasts made before the epidemic peak appears largely to depend on obtaining valid parameter estimates. The forecasts of both weekly incidence and final epidemic size greatly improved at and after the epidemic peak with all the observed data points falling within the uncertainty bounds. Conclusions Real-time forecasting using the discrete time stochastic model with its simple computation of the uncertainty bounds was successful. Because of the simplistic model structure, the proposed model has the potential to additionally account for various types of heterogeneity, time-dependent transmission dynamics and epidemiological details. The impact of such complexities on forecasting should be explored when the data become available as part of the disease surveillance. PMID:21324153
Almanaseer, Naser; Sankarasubramanian, A.; Bales, Jerad
2014-01-01
Recent studies have found a significant association between climatic variability and basin hydroclimatology, particularly groundwater levels, over the southeast United States. The research reported in this paper evaluates the potential in developing 6-month-ahead groundwater-level forecasts based on the precipitation forecasts from ECHAM 4.5 General Circulation Model Forced with Sea Surface Temperature forecasts. Ten groundwater wells and nine streamgauges from the USGS Groundwater Climate Response Network and Hydro-Climatic Data Network were selected to represent groundwater and surface water flows, respectively, having minimal anthropogenic influences within the Flint River Basin in Georgia, United States. The writers employ two low-dimensional models [principle component regression (PCR) and canonical correlation analysis (CCA)] for predicting groundwater and streamflow at both seasonal and monthly timescales. Three modeling schemes are considered at the beginning of January to predict winter (January, February, and March) and spring (April, May, and June) streamflow and groundwater for the selected sites within the Flint River Basin. The first scheme (model 1) is a null model and is developed using PCR for every streamflow and groundwater site using previous 3-month observations (October, November, and December) available at that particular site as predictors. Modeling schemes 2 and 3 are developed using PCR and CCA, respectively, to evaluate the role of precipitation forecasts in improving monthly and seasonal groundwater predictions. Modeling scheme 3, which employs a CCA approach, is developed for each site by considering observed groundwater levels from nearby sites as predictands. The performance of these three schemes is evaluated using two metrics (correlation coefficient and relative RMS error) by developing groundwater-level forecasts based on leave-five-out cross-validation. Results from the research reported in this paper show that using precipitation forecasts in climate models improves the ability to predict the interannual variability of winter and spring streamflow and groundwater levels over the basin. However, significant conditional bias exists in all the three modeling schemes, which indicates the need to consider improved modeling schemes as well as the availability of longer time-series of observed hydroclimatic information over the basin.
Cardiac catheterization laboratory inpatient forecast tool: a prospective evaluation
Flanagan, Eleni; Siddiqui, Sauleh; Appelbaum, Jeff; Kasper, Edward K; Levin, Scott
2016-01-01
Objective To develop and prospectively evaluate a web-based tool that forecasts the daily bed need for admissions from the cardiac catheterization laboratory using routinely available clinical data within electronic medical records (EMRs). Methods The forecast model was derived using a 13-month retrospective cohort of 6384 catheterization patients. Predictor variables such as demographics, scheduled procedures, and clinical indicators mined from free-text notes were input to a multivariable logistic regression model that predicted the probability of inpatient admission. The model was embedded into a web-based application connected to the local EMR system and used to support bed management decisions. After implementation, the tool was prospectively evaluated for accuracy on a 13-month test cohort of 7029 catheterization patients. Results The forecast model predicted admission with an area under the receiver operating characteristic curve of 0.722. Daily aggregate forecasts were accurate to within one bed for 70.3% of days and within three beds for 97.5% of days during the prospective evaluation period. The web-based application housing the forecast model was used by cardiology providers in practice to estimate daily admissions from the catheterization laboratory. Discussion The forecast model identified older age, male gender, invasive procedures, coronary artery bypass grafts, and a history of congestive heart failure as qualities indicating a patient was at increased risk for admission. Diagnostic procedures and less acute clinical indicators decreased patients’ risk of admission. Despite the site-specific limitations of the model, these findings were supported by the literature. Conclusion Data-driven predictive analytics may be used to accurately forecast daily demand for inpatient beds for cardiac catheterization patients. Connecting these analytics to EMR data sources has the potential to provide advanced operational decision support. PMID:26342217
Multivariate Models of Adult Pacific Salmon Returns
Burke, Brian J.; Peterson, William T.; Beckman, Brian R.; Morgan, Cheryl; Daly, Elizabeth A.; Litz, Marisa
2013-01-01
Most modeling and statistical approaches encourage simplicity, yet ecological processes are often complex, as they are influenced by numerous dynamic environmental and biological factors. Pacific salmon abundance has been highly variable over the last few decades and most forecasting models have proven inadequate, primarily because of a lack of understanding of the processes affecting variability in survival. Better methods and data for predicting the abundance of returning adults are therefore required to effectively manage the species. We combined 31 distinct indicators of the marine environment collected over an 11-year period into a multivariate analysis to summarize and predict adult spring Chinook salmon returns to the Columbia River in 2012. In addition to forecasts, this tool quantifies the strength of the relationship between various ecological indicators and salmon returns, allowing interpretation of ecosystem processes. The relative importance of indicators varied, but a few trends emerged. Adult returns of spring Chinook salmon were best described using indicators of bottom-up ecological processes such as composition and abundance of zooplankton and fish prey as well as measures of individual fish, such as growth and condition. Local indicators of temperature or coastal upwelling did not contribute as much as large-scale indicators of temperature variability, matching the spatial scale over which salmon spend the majority of their ocean residence. Results suggest that effective management of Pacific salmon requires multiple types of data and that no single indicator can represent the complex early-ocean ecology of salmon. PMID:23326586
NASA Astrophysics Data System (ADS)
Khajehei, S.; Madadgar, S.; Moradkhani, H.
2014-12-01
The reliability and accuracy of hydrological predictions are subject to various sources of uncertainty, including meteorological forcing, initial conditions, model parameters and model structure. To reduce the total uncertainty in hydrological applications, one approach is to reduce the uncertainty in meteorological forcing by using the statistical methods based on the conditional probability density functions (pdf). However, one of the requirements for current methods is to assume the Gaussian distribution for the marginal distribution of the observed and modeled meteorology. Here we propose a Bayesian approach based on Copula functions to develop the conditional distribution of precipitation forecast needed in deriving a hydrologic model for a sub-basin in the Columbia River Basin. Copula functions are introduced as an alternative approach in capturing the uncertainties related to meteorological forcing. Copulas are multivariate joint distribution of univariate marginal distributions, which are capable to model the joint behavior of variables with any level of correlation and dependency. The method is applied to the monthly forecast of CPC with 0.25x0.25 degree resolution to reproduce the PRISM dataset over 1970-2000. Results are compared with Ensemble Pre-Processor approach as a common procedure used by National Weather Service River forecast centers in reproducing observed climatology during a ten-year verification period (2000-2010).
Seasonal fire danger forecasts for the USA
J. Roads; F. Fujioka; S. Chen; R. Burgan
2005-01-01
The Scripps Experimental Climate Prediction Center has been making experimental, near-real-time, weekly to seasonal fire danger forecasts for the past 5 years. US fire danger forecasts and validations are based on standard indices from the National Fire Danger Rating System (DFDRS), which include the ignition component (IC), energy release component (ER), burning...
NASA Astrophysics Data System (ADS)
Pechlivanidis, Ilias; Crochemore, Louise
2017-04-01
Recent advances in understanding and forecasting of climate have led into skilful seasonal meteorological predictions, which can consequently increase the confidence of hydrological prognosis. The majority of seasonal impact modelling has commonly been conducted at only one or a limited number of basins limiting the potential to understand large systems. Nevertheless, there is a necessity to develop operational seasonal forecasting services at the pan-European scale, capable of addressing the end-user needs. The skill of such forecasting services is subject to a number of sources of uncertainty, i.e. model structure, parameters, and forcing input. In here, we complement the "deep" knowledge from basin based modelling by investigating the relative contributions of initial hydrological conditions (IHCs) and meteorological forcing (MF) to the skill of a seasonal pan-European hydrological forecasting system. We use the Ensemble Streamflow Prediction (ESP) and reverse ESP (revESP) procedure to show a proxy of hydrological forecasting uncertainty due to MF and IHC uncertainties respectively. We further calculate the critical lead time (CLT), as a proxy of the river memory, after which the importance of MFs surpasses the importance of IHCs. We analyze these results in the context of prevailing hydro-climatic conditions for about 35000 European basins. Both model state initialisation (level in surface water, i.e. reservoirs, lakes and wetlands, soil moisture, snow depth) and provision of climatology are based on forcing input derived from the WFDEI product for the period 1981-2010. The analysis shows that the contribution of ICs and MFs to the hydrological forecasting skill varies considerably according to location, season and lead time. This analysis allows clustering of basins in which hydrological forecasting skill may be improved by better estimation of IHCs, e.g. via data assimilation of in-situ and/or satellite observations; whereas in other basins skill improvement depends on better MFs.
NASA Astrophysics Data System (ADS)
Crutchfield, J.
2016-12-01
The presentation will discuss the current status of the International Production Assessment Division of the USDA ForeignAgricultural Service for operational monitoring and forecasting of current crop conditions, and anticipated productionchanges to produce monthly, multi-source consensus reports on global crop conditions including the use of Earthobservations (EO) from satellite and in situ sources.United States Department of Agriculture (USDA) Foreign Agricultural Service (FAS) International Production AssessmentDivision (IPAD) deals exclusively with global crop production forecasting and agricultural analysis in support of the USDAWorld Agricultural Outlook Board (WAOB) lockup process and contributions to the World Agricultural Supply DemandEstimates (WASE) report. Analysts are responsible for discrete regions or countries and conduct in-depth long-termresearch into national agricultural statistics, farming systems, climatic, environmental, and economic factors affectingcrop production. IPAD analysts become highly valued cross-commodity specialists over time, and are routinely soughtout for specialized analyses to support governmental studies. IPAD is responsible for grain, oilseed, and cotton analysison a global basis. IPAD is unique in the tools it uses to analyze crop conditions around the world, including customweather analysis software and databases, satellite imagery and value-added image interpretation products. It alsoincorporates all traditional agricultural intelligence resources into its forecasting program, to make the fullest use ofavailable information in its operational commodity forecasts and analysis. International travel and training play animportant role in learning about foreign agricultural production systems and in developing analyst knowledge andcapabilities.
NASA Astrophysics Data System (ADS)
Brak, B.; Challinor, A.
2011-12-01
Aflatoxins, a group of toxic secondary metabolites produced by some strains of a number of species within Aspergillus section Flavi, contaminate a range of crops grown at latitudes between 40N° and 40S° of the equator. Digestion of food products derived from aflatoxin-contaminated crops may result in acute and chronic health problems in human beings. Countries in sub-Saharan Africa in particular have seen large percentages of the human population exposed to aflatoxin. A recent study showed that over 98% of subjects in West Africa tested positive for aflatoxin biomarkers. According to other research, every year 250,000 people die from hepato-cellular carcinoma related causes due to aflatoxin ingestion in parts of West Africa. Strict aflatoxin levels set by importing countries in accordance with the WTO Agreement on the Application of Sanitary and Phytosanitary Measures (SPS Agreement) also impair the value of agricultural trade. Over the last thirty years this has led to a reduction of African exports of groundnut by 19% despite the consumption of groundnut derived food products going up by 209%. The occurrence of aflatoxin on crops is strongly influenced by weather. Empirical studies in the US have shown that pre-harvest, aflatoxin contamination of groundnuts is induced by conditions of drought stress in combination with soil temperatures between 25°C and 31°C. Post-harvest, aflatoxin production of stored, Aspergillus-contaminated groundnuts is exacerbated in conditions where relative humidity is above 83%. The GLAM crop model was extended to include a soil temperature subroutine and subroutines containing pre- and post-harvest aflatoxin algorithms. The algorithms used to estimate aflatoxin contamination indices are based on findings from multiple empirical studies and the pre-harvest aflatoxin model has been validated for Australian conditions. Hence, there was sufficient scope to use GLAM with these algorithms to answer the foremost research question: Is the skill in seasonal weather forecasting in West Africa (Senegal) sufficient to predict the occurrence of high (median) aflatoxin concentrations in groundnut at harvest and after some period of storage? For multiple locations in Senegal, aflatoxin contamination (AC) indices estimated using observed weather data from 1999-2010 were compared with AC indices based on gridded seasonal weather forecasts for the same location and year. Pearson correlation coefficients for ACobs and ACpred indices were calculated using all locations combined and, if sufficient weather years without missing values were available, for individual locations to test for regional differences in skill.
Assessing skill of a global bimonthly streamflow ensemble prediction system
NASA Astrophysics Data System (ADS)
van Dijk, A. I.; Peña-Arancibia, J.; Sheffield, J.; Wood, E. F.
2011-12-01
Ideally, a seasonal streamflow forecasting system might be conceived of as a system that ingests skillful climate forecasts from general circulation models and propagates these through thoroughly calibrated hydrological models that are initialised using hydrometric observations. In practice, there are practical problems with each of these aspects. Instead, we analysed whether a comparatively simple hydrological model-based Ensemble Prediction System (EPS) can provide global bimonthly streamflow forecasts with some skill and if so, under what circumstances the greatest skill may be expected. The system tested produces ensemble forecasts for each of six annual bimonthly periods based on the previous 30 years of global daily gridded 1° resolution climate variables and an initialised global hydrological model. To incorporate some of the skill derived from ocean conditions, a post-EPS analog method was used to sample from the ensemble based on El Niño Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), North Atlantic Oscillation (NAO) and Pacific Decadal Oscillation (PDO) index values observed prior to the forecast. Forecasts skill was assessed through a hind-casting experiment for the period 1979-2008. Potential skill was calculated with reference to a model run with the actual forcing for the forecast period (the 'perfect' model) and was compared to actual forecast skill calculated for each of the six forecast times for an average 411 Australian and 51 pan-tropical catchments. Significant potential skill in bimonthly forecasts was largely limited to northern regions during the snow melt period, seasonally wet tropical regions at the transition of wet to dry season, and the Indonesian region where rainfall is well correlated to ENSO. The actual skill was approximately 34-50% of the potential skill. We attribute this primarily to limitations in the model structure, parameterisation and global forcing data. Use of better climate forecasts and remote sensing observations of initial catchment conditions should help to increase actual skill in future. Future work also could address the potential skill gain from using weather and climate forecasts and from a calibrated and/or alternative hydrological model or model ensemble. The approach and data might be useful as a benchmark for joint seasonal forecasting experiments planned under GEWEX.
NASA Astrophysics Data System (ADS)
Hamsan, R.; Hafiz, H.; Azlan, A.; Keprawi, M. F.; Malik, A. K. A.; Adamuddin, A.; Abdullah, A. H.; Shafie, A. M.
2018-02-01
This research allows local authorities to project road maintenance in term of activities and financial expenditure through pavement condition assessment and then Highway Development and Management (HDM-4) analysis. Current form of road maintenance carried out by local authority is on reactive manner where corrective actions were taken based on reports recorded. Some went unrecorded hence causing prolonged damages. This causes the local authority unable to project the required cost to maintain the roads. This affects the socio-economy of the surrounding routes. Hence, it is seen, as preventive maintenance of the roads will provide more feasible option in term of work force and finance to the local authority. To overcome this issue, a preventive model was introduced. This was done through pavement condition assessment (PCA) where analysis was done through HDM-4. Nondestructive test and destructive test were conducted in order to provide an indicator to the road's health. This were then analyzed in HDM-4 where the result was benchmarked with maintenance standard. The scope of this research is set to PCA where DT and NDT were performed on the routes of Petaling and the output is analyzed in HDM-4. The result of this research provides a 10 years forecast maintenance budget in maintaining the roads in Petaling. This allows the local authority to perform good practice in term of maintaining the roads while at the same time helps them in forecasting their budget for the upcoming years. This research will have a strong impact on the local socio-economy as well as local road user confidence towards the authority over good practices. This research can be further expanded to other type of roads as well as highway bridges.
2007-09-30
Parvin, D. Koracin, P. Remagnino, A. Nefian, G. Meenakshisundaram, V. Pascucci, J. Zara , J. Molineros, H . Thiesel, and T. Malzbender, Eds., 2006...Remagnino, A. Nefian, G. Meenakshisundaram, V. Pascucci, J. Zara , J. Molineros, H . Thiesel, and T. Malzbender, Eds., 2006: Advances in Visual...indicated a sudden gusty spell of wind, rising to more than 10 m s-1 on 28 February 2002. These conditions are faced by 2 the Fallon
The influence of antecedent conditions on flood risk in sub-Saharan Africa
NASA Astrophysics Data System (ADS)
Bischiniotis, Konstantinos; van den Hurk, Bart; Jongman, Brenden; Coughlan de Perez, Erin; Veldkamp, Ted; de Moel, Hans; Aerts, Jeroen
2018-01-01
Most flood early warning systems have predominantly focused on forecasting floods with lead times of hours or days. However, physical processes during longer timescales can also contribute to flood generation. In this study, we follow a pragmatic approach to analyse the hydro-meteorological pre-conditions of 501 historical damaging floods from 1980 to 2010 in sub-Saharan Africa. These are separated into (a) weather timescale (0-6 days) and (b) seasonal timescale conditions (up to 6 months) before the event. The 7-day precipitation preceding a flood event (PRE7) and the standardized precipitation evapotranspiration index (SPEI) are analysed for the two timescale domains, respectively. Results indicate that high PRE7 does not always generate floods by itself. Seasonal SPEIs, which are not directly correlated with PRE7, exhibit positive (wet) values prior to most flood events across different averaging times, indicating a relationship with flooding. This paper provides evidence that bringing together weather and seasonal conditions can lead to improved flood risk preparedness.
An Operational Short-Term Forecasting System for Regional Hydropower Management
NASA Astrophysics Data System (ADS)
Gronewold, A.; Labuhn, K. A.; Calappi, T. J.; MacNeil, A.
2017-12-01
The Niagara River is the natural outlet of Lake Erie and drains four of the five Great lakes. The river is used to move commerce and is home to both sport fishing and tourism industries. It also provides nearly 5 million kilowatts of hydropower for approximately 3.9 million homes. Due to a complex international treaty and the necessity of balancing water needs for an extensive tourism industry, the power entities operating on the river require detailed and accurate short-term river flow forecasts to maximize power output. A new forecast system is being evaluated that takes advantage of several previously independent components including the NOAA Lake Erie operational Forecast System (LEOFS), a previously developed HEC-RAS model, input from the New York Power Authority(NYPA) and Ontario Power Generation (OPG) and lateral flow forecasts for some of the tributaries provided by the NOAA Northeast River Forecast Center (NERFC). The Corps of Engineers updated the HEC-RAS model of the upper Niagara River to use the output forcing from LEOFS and a planned Grass Island Pool elevation provided by the power entities. The entire system has been integrated at the NERFC; it will be run multiple times per day with results provided to the Niagara River Control Center operators. The new model helps improve discharge forecasts by better accounting for dynamic conditions on Lake Erie. LEOFS captures seiche events on the lake that are often several meters of displacement from still water level. These seiche events translate into flow spikes that HEC-RAS routes downstream. Knowledge of the peak arrival time helps improve operational decisions at the Grass Island Pool. This poster will compare and contrast results from the existing operational flow forecast and the new integrated LEOFS/HEC-RAS forecast. This additional model will supply the Niagara River Control Center operators with multiple forecasts of flow to help improve forecasting under a wider variety of conditions.
WRF simulation of downslope wind events in coastal Santa Barbara County
NASA Astrophysics Data System (ADS)
Cannon, Forest; Carvalho, Leila M. V.; Jones, Charles; Hall, Todd; Gomberg, David; Dumas, John; Jackson, Mark
2017-07-01
The National Weather Service (NWS) considers frequent gusty downslope winds, accompanied by rapid warming and decreased relative humidity, among the most significant weather events affecting southern California coastal areas in the vicinity of Santa Barbara (SB). These extreme conditions, commonly known as "sundowners", have affected the evolution of all major wildfires that impacted SB in recent years. Sundowners greatly increase fire, aviation and maritime navigation hazards and are thus a priority for regional forecasting. Currently, the NWS employs the Weather Research Forecasting (WRF) model at 2 km resolution to complement forecasts at regional-to-local scales. However, no systematic study has been performed to evaluate the skill of WRF in simulating sundowners. This research presents a case study of an 11-day period in spring 2004 during which sundowner events were observed on multiple nights. We perform sensitivity experiments for WRF using available observations for validation and demonstrate that WRF is skillful in representing the general mesoscale structure of these events, though important shortcomings exist. Furthermore, we discuss the generation and evolution of sundowners during the case study using the best performing configuration, and compare these results to hindcasts for two major SB fires. Unique, but similar, profiles of wind and stability are observed over SB between case studies despite considerable differences in large-scale circulation, indicating that common conditions may exist across all events. These findings aid in understanding the evolution of sundowner events and are potentially valuable for event prediction.
Enhanced seasonal forecast skill following stratospheric sudden warmings
NASA Astrophysics Data System (ADS)
Sigmond, M.; Scinocca, J. F.; Kharin, V. V.; Shepherd, T. G.
2013-02-01
Advances in seasonal forecasting have brought widespread socio-economic benefits. However, seasonal forecast skill in the extratropics is relatively modest, prompting the seasonal forecasting community to search for additional sources of predictability. For over a decade it has been suggested that knowledge of the state of the stratosphere can act as a source of enhanced seasonal predictability; long-lived circulation anomalies in the lower stratosphere that follow stratospheric sudden warmings are associated with circulation anomalies in the troposphere that can last up to two months. Here, we show by performing retrospective ensemble model forecasts that such enhanced predictability can be realized in a dynamical seasonal forecast system with a good representation of the stratosphere. When initialized at the onset date of stratospheric sudden warmings, the model forecasts faithfully reproduce the observed mean tropospheric conditions in the months following the stratospheric sudden warmings. Compared with an equivalent set of forecasts that are not initialized during stratospheric sudden warmings, we document enhanced forecast skill for atmospheric circulation patterns, surface temperatures over northern Russia and eastern Canada and North Atlantic precipitation. We suggest that seasonal forecast systems initialized during stratospheric sudden warmings are likely to yield significantly greater forecast skill in some regions.
Medical weather forecast as the risk management facilities of meteopathia with population
NASA Astrophysics Data System (ADS)
Efimenko, Natalya; Chalaya, Elena; Povolotskaia, Nina; Senik, Irina; Topuriya, David
2013-04-01
Frequent cases of extreme deviations of weather conditions and anthropogenic press on the Earth atmosphere are external stressors and provoke the development of meteopathic reactions (DMR) with people suffering from dysadaptation (DA). [EGU2011-6740-3; EGU2012-6103]. The influence of weather factors on the person is multivariate which complicates the search of physiological indicators of this exposure. The results of long-term researches of meteodependence and risks development of weather-conditional pathologic reactions with people suffering from DA (1640 observed people) in various systems and human body subsystems (thermal control, cardiovascular, respiratory, vegetative and central nervous systems) were taken as a principle of calculation methodology of estimation of weather pathogenicity (EWP). This estimation is used in the system of medical weather forecast (MWF) in the resorts of Caucasian Mineral Waters and is marked as an organized structure in prevention of DMR risks. Nowadays MWF efficiency is from 78% to 95% as it depends not only on the performance of models of dynamic, synoptic, heliogeophysical forecasts, but also on the underestimation of environmental factors which often act as dominating stressors. The program of atmospheric global system monitoring and real-time forecasts doesn`t include atmospheric electricity factors, ionization factors, range and chemistry factors of aerosol particles and organic volatile plant matters in atmospheric boundary layer. New fractality researches of control mechanisms processes providing adaptation to external and internal environmental conditions with patients suffering from DA allowed us to understand the meaning of the phenomenon of structural similarity and similarity of physiological response processes to the influence of weather types with similar dominating environmental factors. Particularly, atmospheric conditions should be regarded as stressor natural factors that create deionization conditions of the surface atmosphere. The correlation of the results of the research of external respiration function, cardiovascular and central nervous systems with people suffering from DA (187 people) made in days with favorable weathers, but different in natural anion quantity in the surface atmosphere, allowed us to develop similar physiological processes at the phenomena of natural deionization. When the anions amount reduces from 1255±38 ion/cm3 to 190±13 ion/cm3, we have detected the increase of tension of vegetative index (from 458±24 to 802±44), the decrease in efficiency of neurohumoral regulation (from 0,25±0,08 to 0,06±0,02), the increase of spectrum excitability of cortical activity in the wave range of delta 0 0.4 Hz by 29%, the decrease in cortical activity in the wave range of theta 4 … 8 Hz, alpha 8 … 13 Hz beta 13 … 19 Hz, gamma 19 … 25Hz by 4-10%; the decrease in organism adaptation layer by 14% and integrated health indicator by 18%. We have also detected similar processes in cardiovascular and respiratory systems. So the problem of creation of high-quality system of medical weather forecast for the population demands the performance of interdisciplinary researches in the field of medicine, biology, meteorology and the development of DMR risk management programs at various natural and anthropogenic stressors. The studies were performed by support of the Program "Basic Sciences for Medicine" and RFBR project No.10-05-01014_a.
NASA Astrophysics Data System (ADS)
Whitford, Dennis J.
2002-05-01
Ocean waves are the most recognized phenomena in oceanography. Unfortunately, undergraduate study of ocean wave dynamics and forecasting involves mathematics and physics and therefore can pose difficulties with some students because of the subject's interrelated dependence on time and space. Verbal descriptions and two-dimensional illustrations are often insufficient for student comprehension. Computer-generated visualization and animation offer a visually intuitive and pedagogically sound medium to present geoscience, yet there are very few oceanographic examples. A two-part article series is offered to explain ocean wave forecasting using computer-generated visualization and animation. This paper, Part 1, addresses forecasting of sea wave conditions and serves as the basis for the more difficult topic of swell wave forecasting addressed in Part 2. Computer-aided visualization and animation, accompanied by oral explanation, are a welcome pedagogical supplement to more traditional methods of instruction. In this article, several MATLAB ® software programs have been written to visualize and animate development and comparison of wave spectra, wave interference, and forecasting of sea conditions. These programs also set the stage for the more advanced and difficult animation topics in Part 2. The programs are user-friendly, interactive, easy to modify, and developed as instructional tools. By using these software programs, teachers can enhance their instruction of these topics with colorful visualizations and animation without requiring an extensive background in computer programming.
An Experimental Real-Time Ocean Nowcast/Forecast System for Intra America Seas
NASA Astrophysics Data System (ADS)
Ko, D. S.; Preller, R. H.; Martin, P. J.
2003-04-01
An experimental real-time Ocean Nowcast/Forecast System has been developed for the Intra America Seas (IASNFS). The area of coverage includes the Caribbean Sea, the Gulf of Mexico and the Straits of Florida. The system produces nowcast and up to 72 hours forecast the sea level variation, 3D ocean current, temperature and salinity fields. IASNFS consists an 1/24 degree (~5 km), 41-level sigma-z data-assimilating ocean model based on NCOM. For daily nowcast/forecast the model is restarted from previous nowcast. Once model is restarted it continuously assimilates the synthetic temperature/salinity profiles generated by a data analysis model called MODAS to produce nowcast. Real-time data come from satellite altimeter (GFO, TOPEX/Poseidon, ERS-2) sea surface height anomaly and AVHRR sea surface temperature. Three hourly surface heat fluxes, including solar radiation, wind stresses and sea level air pressure from NOGAPS/FNMOC are applied for surface forcing. Forecasts are produced with available NOGAPS forecasts. Once the nowcast/forecast are produced they are distributed through the Internet via the updated web pages. The open boundary conditions including sea surface elevation, transport, temperature, salinity and currents are provided by the NRL 1/8 degree Global NCOM which is operated daily. An one way coupling scheme is used to ingest those boundary conditions into the IAS model. There are 41 rivers with monthly discharges included in the IASNFS.
A short-term ensemble wind speed forecasting system for wind power applications
NASA Astrophysics Data System (ADS)
Baidya Roy, S.; Traiteur, J. J.; Callicutt, D.; Smith, M.
2011-12-01
This study develops an adaptive, blended forecasting system to provide accurate wind speed forecasts 1 hour ahead of time for wind power applications. The system consists of an ensemble of 21 forecasts with different configurations of the Weather Research and Forecasting Single Column Model (WRFSCM) and a persistence model. The ensemble is calibrated against observations for a 2 month period (June-July, 2008) at a potential wind farm site in Illinois using the Bayesian Model Averaging (BMA) technique. The forecasting system is evaluated against observations for August 2008 at the same site. The calibrated ensemble forecasts significantly outperform the forecasts from the uncalibrated ensemble while significantly reducing forecast uncertainty under all environmental stability conditions. The system also generates significantly better forecasts than persistence, autoregressive (AR) and autoregressive moving average (ARMA) models during the morning transition and the diurnal convective regimes. This forecasting system is computationally more efficient than traditional numerical weather prediction models and can generate a calibrated forecast, including model runs and calibration, in approximately 1 minute. Currently, hour-ahead wind speed forecasts are almost exclusively produced using statistical models. However, numerical models have several distinct advantages over statistical models including the potential to provide turbulence forecasts. Hence, there is an urgent need to explore the role of numerical models in short-term wind speed forecasting. This work is a step in that direction and is likely to trigger a debate within the wind speed forecasting community.
Neural network based short-term load forecasting using weather compensation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, T.W.S.; Leung, C.T.
This paper presents a novel technique for electric load forecasting based on neural weather compensation. The proposed method is a nonlinear generalization of Box and Jenkins approach for nonstationary time-series prediction. A weather compensation neural network is implemented for one-day ahead electric load forecasting. The weather compensation neural network can accurately predict the change of actual electric load consumption from the previous day. The results, based on Hong Kong Island historical load demand, indicate that this methodology is capable of providing a more accurate load forecast with a 0.9% reduction in forecast error.
David N. Wear; Robert Huggett; Ruhong Li; Benjamin Perryman; Shan Liu
2013-01-01
The 626 million acres of forests in the conterminous United States represent significant reserves of biodiversity and terrestrial carbon and provide substantial flows of highly valued ecosystem services, including timber products, watershed protection benefits, and recreation. This report describes forecasts of forest conditions for the conterminous United States in...
Y. Wang; R. Nemani; F. Dieffenbach; K. Stolte; G. Holcomb
2010-01-01
This paper introduces a collaborative multi-agency effort to develop an Appalachian Trail (A.T.) MEGA-Transect Decision Support System (DSS) for monitoring, reporting and forecasting ecological conditions of the A.T. and the surrounding lands. The project is to improve decision-making on management of the A.T. by providing a coherent framework for data integration,...
NASA Astrophysics Data System (ADS)
Li, Weihua; Sankarasubramanian, A.; Ranjithan, R. S.; Brill, E. D.
2014-08-01
Regional water supply systems undergo surplus and deficit conditions due to differences in inflow characteristics as well as due to their seasonal demand patterns. This study proposes a framework for regional water management by proposing an interbasin transfer (IBT) model that uses climate-information-based inflow forecast for minimizing the deviations from the end-of-season target storage across the participating pools. Using the ensemble streamflow forecast, the IBT water allocation model was applied for two reservoir systems in the North Carolina Triangle Area. Results show that interbasin transfers initiated by the ensemble streamflow forecast could potentially improve the overall water supply reliability as the demand continues to grow in the Triangle Area. To further understand the utility of climate forecasts in facilitating IBT under different spatial correlation structures between inflows and between the initial storages of the two systems, a synthetic experiment was designed to evaluate the framework under inflow forecast having different skills. Findings from the synthetic study can be summarized as follows: (a) inflow forecasts combined with the proposed IBT optimization model provide improved allocation in comparison to the allocations obtained under the no-transfer scenario as well as under transfers obtained with climatology; (b) spatial correlations between inflows and between initial storages among participating reservoirs could also influence the potential benefits that could be achieved through IBT; (c) IBT is particularly beneficial for systems that experience low correlations between inflows or between initial storages or on both attributes of the regional water supply system. Thus, if both infrastructure and permitting structures exist for promoting interbasin transfers, season-ahead inflow forecasts could provide added benefits in forecasting surplus/deficit conditions among the participating pools in the regional water supply system.
NASA Astrophysics Data System (ADS)
Li, W.; Arumugam, S.; Ranjithan, R. S.; Brill, E. D., Jr.
2014-12-01
Regional water supply systems undergo surplus and deficit conditions due to differences in inflow characteristics as well as due to their seasonal demand patterns. This study presents a framework for regional water management by proposing an Inter-Basin Transfer (IBT) model that uses climate-information-based inflow forecast for minimizing the deviations from the end- of-season target storage across the participating reservoirs. Using the ensemble streamflow forecast, the IBT water allocation model was applied for two reservoir systems in the North Carolina Triangle area. Results show that inter-basin transfers initiated by the ensemble streamflow forecast could potentially improve the overall water supply reliability as the demand continues to grow in the Triangle Area. To further understand the utility of climate forecasts in facilitating IBT under different spatial correlation structures between inflows and between the initial storages of the two systems, a synthetic experiment was designed to evaluate the framework under inflow forecast having different skills. Findings from the synthetic study can be summarized as follows: (a) Inflow forecasts combined with the proposed IBT optimization model provide improved allocation in comparison to the allocations obtained under the no- transfer scenario as well as under transfers obtained with climatology; (b) Spatial correlations between inflows and between initial storages among participating reservoirs could also influence the potential benefits that could be achieved through IBT; (c) IBT is particularly beneficial for systems that experience low correlations between inflows or between initial storages or on both attributes of the regional water supply system. Thus, if both infrastructure and permitting structures exist for promoting inter-basin transfers, season-ahead inflow forecasts could provide added benefits in forecasting surplus/deficit conditions among the participating reservoirs in the regional water supply system.
A new forecast presentation tool for offshore contractors
NASA Astrophysics Data System (ADS)
Jørgensen, M.
2009-09-01
Contractors working off shore are often very sensitive to both sea and weather conditions, and it's essential that they have easy access to reliable information on coming conditions to enable planning of when to start or shut down offshore operations to avoid loss of life and materials. Danish Meteorological Institute, DMI, recently, in cooperation with business partners in the field, developed a new application to accommodate that need. The "Marine Forecast Service” is a browser based forecast presentation tool. It provides an interface for the user to enable easy and quick access to all relevant meteorological and oceanographic forecasts and observations for a given area of interest. Each customer gains access to the application via a standard login/password procedure. Once logged in, the user can inspect animated forecast maps of parameters like wind, gust, wave height, swell and current among others. Supplementing the general maps, the user can choose to look at forecast graphs for each of the locations where the user is running operations. These forecast graphs can also be overlaid with the user's own in situ observations, if such exist. Furthermore, the data from the graphs can be exported as data files that the customer can use in his own applications as he desires. As part of the application, a forecaster's view on the current and near future weather situation is presented to the user as well, adding further value to the information presented through maps and graphs. Among other features of the product, animated radar and satellite images could be mentioned. And finally the application provides the possibility of a "second opinion” through traditional weather charts from another recognized provider of weather forecasts. The presentation will provide more detailed insights into the contents of the applications as well as some of the experiences with the product.
How is the weather? Forecasting inpatient glycemic control
Saulnier, George E; Castro, Janna C; Cook, Curtiss B; Thompson, Bithika M
2017-01-01
Aim: Apply methods of damped trend analysis to forecast inpatient glycemic control. Method: Observed and calculated point-of-care blood glucose data trends were determined over 62 weeks. Mean absolute percent error was used to calculate differences between observed and forecasted values. Comparisons were drawn between model results and linear regression forecasting. Results: The forecasted mean glucose trends observed during the first 24 and 48 weeks of projections compared favorably to the results provided by linear regression forecasting. However, in some scenarios, the damped trend method changed inferences compared with linear regression. In all scenarios, mean absolute percent error values remained below the 10% accepted by demand industries. Conclusion: Results indicate that forecasting methods historically applied within demand industries can project future inpatient glycemic control. Additional study is needed to determine if forecasting is useful in the analyses of other glucometric parameters and, if so, how to apply the techniques to quality improvement. PMID:29134125
NASA Astrophysics Data System (ADS)
Tang, W.; Arellano, A. F., Jr.; Choi, Y.; DiGangi, J. P.; Woo, J. H.; Diskin, G. S.; Agusti-panareda, A.; Parrington, M.; Massart, S.; Lee, M.; Kanaya, Y.; Jang, J.; Lee, Y.; Hong, J.; Flynn, J. H., III; Thompson, A. M.; Kim, D. B.
2017-12-01
Anthropogenic combustion has significant impacts on air quality and climate. To understand anthropogenic combustion, it is critical to model CO2 and CO (key combustion signatures) and their relationships. In this study, we jointly evaluate the Copernicus Atmosphere Monitoring Service (CAMS) free-running 16-km forecast, 9-km forecast initialized with CAMS analysis, and analysis products of CO (80km) and CO2 (40km) to understand how well combustion-related processes and constituent transport are represented in the current system. We use measurements from aircraft, ground sites, and ships during the KORUS-AQ field campaign (May - June 2016), along with satellite observations (MOPITT, IASI, OCO-2, and GOSAT). Airborne measurements by the DC-8 aircraft are classified into five regions: Seoul metropolitan, Taehwa, West Sea, Seoul-Jeju jetway, and Seoul-Busan jetway. The observed CO2, CO, and their relationships varies significantly, and the performance of CAMS products also varies across regions. The three CAMS products perform reasonably well in simulating anthropogenic combustion processes. Overall, CO2 is overestimated while CO is underestimated by CAMS. The 9km forecast product generally has a better performance than the other two, because of its higher model resolution and better initialization conditions. The analysis product also performs better than the 16km forecast. China outflow over West Sea is captured, but CO2 and CO is underestimated in the outflow. According to CAMS, is 10-15 (ppbv/ppmv) for Korea and about 30 for China outflow, indicating anthropogenic combustion in Seoul is more efficient than it is in China. This agrees well with DC-8 aircraft observations. As for ground sites, we find that CO and CO2 measured by the Olympic park and Yonsei (Seoul metropolitan sites) have more regularity in diurnal cycle, and such periodical change is well captured by CAMS. The time series for CO from Baengnyeong, and Fukue (remote sites) are irregular and episodic, which are more related to transport rather than local emissions. CAMS performances over Taehwa site are impacted by both local processes and transport. These comparisons indicate vertical mixing near sources may be an issue for CAMS. Compared to satellite observations, CO analyses show a better agreement, while for CO2, the forecasts are better.
Forecasting drought risks for a water supply storage system using bootstrap position analysis
Tasker, Gary; Dunne, Paul
1997-01-01
Forecasting the likelihood of drought conditions is an integral part of managing a water supply storage and delivery system. Position analysis uses a large number of possible flow sequences as inputs to a simulation of a water supply storage and delivery system. For a given set of operating rules and water use requirements, water managers can use such a model to forecast the likelihood of specified outcomes such as reservoir levels falling below a specified level or streamflows falling below statutory passing flows a few months ahead conditioned on the current reservoir levels and streamflows. The large number of possible flow sequences are generated using a stochastic streamflow model with a random resampling of innovations. The advantages of this resampling scheme, called bootstrap position analysis, are that it does not rely on the unverifiable assumption of normality and it allows incorporation of long-range weather forecasts into the analysis.
Research on regional numerical weather prediction
NASA Technical Reports Server (NTRS)
Kreitzberg, C. W.
1976-01-01
Extension of the predictive power of dynamic weather forecasting to scales below the conventional synoptic or cyclonic scales in the near future is assessed. Lower costs per computation, more powerful computers, and a 100 km mesh over the North American area (with coarser mesh extending beyond it) are noted at present. Doubling the resolution even locally (to 50 km mesh) would entail a 16-fold increase in costs (including vertical resolution and halving the time interval), and constraints on domain size and length of forecast. Boundary conditions would be provided by the surrounding 100 km mesh, and time-varying lateral boundary conditions can be considered to handle moving phenomena. More physical processes to treat, more efficient numerical techniques, and faster computers (improved software and hardware) backing up satellite and radar data could produce further improvements in forecasting in the 1980s. Boundary layer modeling, initialization techniques, and quantitative precipitation forecasting are singled out among key tasks.
NASA Technical Reports Server (NTRS)
Blonski, Slawomir
2007-01-01
This Candidate Solution is based on using active and passive microwave measurements acquired from NASA satellites to improve USDA (U.S. Department of Agriculture) Forest Service forecasting of avalanche danger. Regional Avalanche Centers prepare avalanche forecasts using ground measurements of snowpack and mountain weather conditions. In this Solution, range of the in situ observations is extended by adding remote sensing measurements of snow depth, snow water equivalent, and snowfall rate acquired by satellite missions that include Aqua, CloudSat, future GPM (Global Precipitation Measurement), and the proposed SCLP (Snow and Cold Land Processes). Measurements of snowpack conditions and time evolution are improved by combining the in situ and satellite observations with a snow model. Recurring snow observations from NASA satellites increase accuracy of avalanche forecasting, which helps the public and the managers of public facilities make better avalanche safety decisions.
Semi-arid vegetation response to antecedent climate and water balance windows
Thoma, David P.; Munson, Seth M.; Irvine, Kathryn M.; Witwicki, Dana L.; Bunting, Erin
2016-01-01
Questions Can we improve understanding of vegetation response to water availability on monthly time scales in semi-arid environments using remote sensing methods? What climatic or water balance variables and antecedent windows of time associated with these variables best relate to the condition of vegetation? Can we develop credible near-term forecasts from climate data that can be used to prepare for future climate change effects on vegetation? Location Semi-arid grasslands in Capitol Reef National Park, Utah, USA. Methods We built vegetation response models by relating the normalized difference vegetation index (NDVI) from MODIS imagery in Mar–Nov 2000–2013 to antecedent climate and water balance variables preceding the monthly NDVI observations. We compared how climate and water balance variables explained vegetation greenness and then used a multi-model ensemble of climate and water balance models to forecast monthly NDVI for three holdout years. Results Water balance variables explained vegetation greenness to a greater degree than climate variables for most growing season months. Seasonally important variables included measures of antecedent water input and storage in spring, switching to indicators of drought, input or use in summer, followed by antecedent moisture availability in autumn. In spite of similar climates, there was evidence the grazed grassland showed a response to drying conditions 1 mo sooner than the ungrazed grassland. Lead times were generally short early in the growing season and antecedent window durations increased from 3 mo early in the growing season to 1 yr or more as the growing season progressed. Forecast accuracy for three holdout years using a multi-model ensemble of climate and water balance variables outperformed forecasts made with a naïve NDVI climatology. Conclusions We determined the influence of climate and water balance on vegetation at a fine temporal scale, which presents an opportunity to forecast vegetation response with short lead times. This understanding was obtained through high-frequency vegetation monitoring using remote sensing, which reduces the costs and time necessary for field measurements and can lead to more rapid detection of vegetation changes that could help managers take appropriate actions.
Visualizing Uncertainty for Probabilistic Weather Forecasting based on Reforecast Analogs
NASA Astrophysics Data System (ADS)
Pelorosso, Leandro; Diehl, Alexandra; Matković, Krešimir; Delrieux, Claudio; Ruiz, Juan; Gröeller, M. Eduard; Bruckner, Stefan
2016-04-01
Numerical weather forecasts are prone to uncertainty coming from inaccuracies in the initial and boundary conditions and lack of precision in numerical models. Ensemble of forecasts partially addresses these problems by considering several runs of the numerical model. Each forecast is generated with different initial and boundary conditions and different model configurations [GR05]. The ensembles can be expressed as probabilistic forecasts, which have proven to be very effective in the decision-making processes [DE06]. The ensemble of forecasts represents only some of the possible future atmospheric states, usually underestimating the degree of uncertainty in the predictions [KAL03, PH06]. Hamill and Whitaker [HW06] introduced the "Reforecast Analog Regression" (RAR) technique to overcome the limitations of ensemble forecasting. This technique produces probabilistic predictions based on the analysis of historical forecasts and observations. Visual analytics provides tools for processing, visualizing, and exploring data to get new insights and discover hidden information patterns in an interactive exchange between the user and the application [KMS08]. In this work, we introduce Albero, a visual analytics solution for probabilistic weather forecasting based on the RAR technique. Albero targets at least two different type of users: "forecasters", who are meteorologists working in operational weather forecasting and "researchers", who work in the construction of numerical prediction models. Albero is an efficient tool for analyzing precipitation forecasts, allowing forecasters to make and communicate quick decisions. Our solution facilitates the analysis of a set of probabilistic forecasts, associated statistical data, observations and uncertainty. A dashboard with small-multiples of probabilistic forecasts allows the forecasters to analyze at a glance the distribution of probabilities as a function of time, space, and magnitude. It provides the user with a more accurate measure of forecast uncertainty that could result in better decision-making. It offers different level of abstractions to help with the recalibration of the RAR method. It also has an inspection tool that displays the selected analogs, their observations and statistical data. It gives the users access to inner parts of the method, unveiling hidden information. References [GR05] GNEITING T., RAFTERY A. E.: Weather forecasting with ensemble methods. Science 310, 5746, 248-249, 2005. [KAL03] KALNAY E.: Atmospheric modeling, data assimilation and predictability. Cambridge University Press, 2003. [PH06] PALMER T., HAGEDORN R.: Predictability of weather and climate. Cambridge University Press, 2006. [HW06] HAMILL T. M., WHITAKER J. S.: Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application. Monthly Weather Review 134, 11, 3209-3229, 2006. [DE06] DEITRICK S., EDSALL R.: The influence of uncertainty visualization on decision making: An empirical evaluation. Springer, 2006. [KMS08] KEIM D. A., MANSMANN F., SCHNEIDEWIND J., THOMAS J., ZIEGLER H.: Visual analytics: Scope and challenges. Springer, 2008.
Forecasting SPEI and SPI Drought Indices Using the Integrated Artificial Neural Networks
Maca, Petr; Pech, Pavel
2016-01-01
The presented paper compares forecast of drought indices based on two different models of artificial neural networks. The first model is based on feedforward multilayer perceptron, sANN, and the second one is the integrated neural network model, hANN. The analyzed drought indices are the standardized precipitation index (SPI) and the standardized precipitation evaporation index (SPEI) and were derived for the period of 1948–2002 on two US catchments. The meteorological and hydrological data were obtained from MOPEX experiment. The training of both neural network models was made by the adaptive version of differential evolution, JADE. The comparison of models was based on six model performance measures. The results of drought indices forecast, explained by the values of four model performance indices, show that the integrated neural network model was superior to the feedforward multilayer perceptron with one hidden layer of neurons. PMID:26880875
Forecasting SPEI and SPI Drought Indices Using the Integrated Artificial Neural Networks.
Maca, Petr; Pech, Pavel
2016-01-01
The presented paper compares forecast of drought indices based on two different models of artificial neural networks. The first model is based on feedforward multilayer perceptron, sANN, and the second one is the integrated neural network model, hANN. The analyzed drought indices are the standardized precipitation index (SPI) and the standardized precipitation evaporation index (SPEI) and were derived for the period of 1948-2002 on two US catchments. The meteorological and hydrological data were obtained from MOPEX experiment. The training of both neural network models was made by the adaptive version of differential evolution, JADE. The comparison of models was based on six model performance measures. The results of drought indices forecast, explained by the values of four model performance indices, show that the integrated neural network model was superior to the feedforward multilayer perceptron with one hidden layer of neurons.
NASA Astrophysics Data System (ADS)
Rings, Joerg; Vrugt, Jasper A.; Schoups, Gerrit; Huisman, Johan A.; Vereecken, Harry
2012-05-01
Bayesian model averaging (BMA) is a standard method for combining predictive distributions from different models. In recent years, this method has enjoyed widespread application and use in many fields of study to improve the spread-skill relationship of forecast ensembles. The BMA predictive probability density function (pdf) of any quantity of interest is a weighted average of pdfs centered around the individual (possibly bias-corrected) forecasts, where the weights are equal to posterior probabilities of the models generating the forecasts, and reflect the individual models skill over a training (calibration) period. The original BMA approach presented by Raftery et al. (2005) assumes that the conditional pdf of each individual model is adequately described with a rather standard Gaussian or Gamma statistical distribution, possibly with a heteroscedastic variance. Here we analyze the advantages of using BMA with a flexible representation of the conditional pdf. A joint particle filtering and Gaussian mixture modeling framework is presented to derive analytically, as closely and consistently as possible, the evolving forecast density (conditional pdf) of each constituent ensemble member. The median forecasts and evolving conditional pdfs of the constituent models are subsequently combined using BMA to derive one overall predictive distribution. This paper introduces the theory and concepts of this new ensemble postprocessing method, and demonstrates its usefulness and applicability by numerical simulation of the rainfall-runoff transformation using discharge data from three different catchments in the contiguous United States. The revised BMA method receives significantly lower-prediction errors than the original default BMA method (due to filtering) with predictive uncertainty intervals that are substantially smaller but still statistically coherent (due to the use of a time-variant conditional pdf).
Adjoint Sensitivity Analyses Of Sand And Dust Storms In East Asia
NASA Astrophysics Data System (ADS)
Kay, J.; Kim, H.
2008-12-01
Sand and Dust Storm (SDS) in East Asia, so called Asian dust, is a seasonal meteorological phenomenon. Mostly in spring, dust particles blown into atmosphere in the arid area over northern China desert and Manchuria are transported to East Asia by prevailing flows. Three SDS events in East Asia from 2005 to 2008 are chosen to investigate how sensitive the SDS forecasts to the initial condition uncertainties and thence to suggest the sensitive regions for adaptive observations of the SDS events. Adaptive observations are additional observations in sensitive regions where the observations may have the most impact on the forecast by decreasing the forecast error. Three SDS events are chosen to represent different transport passes from the dust source regions to the Korean peninsula. To investigate the sensitivities to the initial condition, adjoint sensitivities that calculate gradient of the forecast aspect (i.e., response function) with respect to the initial condition are used. The forecast aspects relevant to the SDS transport are forecast error of the surface pressure, surface pressure perturbation, and steering vector of winds in the lower troposphere. Because the surface low pressure system usually plays an important role for SDS transport, the forecast error of the surface pressure and the surface pressure perturbation are chosen as the response function of the adjoint calculation. Another response function relevant to SDS transport is the steering flow over the downstream region (i.e., Korean peninsula) because direction and intensity of the prevailing winds usually determine the intensity and occurrence of the SDS events at the destination. The results show that the sensitive regions for the forecast error of the surface pressure and surface pressure perturbation are initially located in the vicinity of the trough and then propagate eastward as the low system moves eastward. The vertical structures of the adjoint sensitivities are upshear tilted structures, which are typical structures of extratropical cyclones. The adjoint sensitivities for lower tropospheric steering flow are also located near the trough, which confirms that the accurate forecast on the location and movement of the trough is essential to have better forecasts of Asian dust events. More comprehensive results and discussions of the adjoint sensitivity analyses for Asian dust events will be presented in the meeting.
NASA Astrophysics Data System (ADS)
Federico, Ivan; Pinardi, Nadia; Coppini, Giovanni; Oddo, Paolo; Lecci, Rita; Mossa, Michele
2017-01-01
SANIFS (Southern Adriatic Northern Ionian coastal Forecasting System) is a coastal-ocean operational system based on the unstructured grid finite-element three-dimensional hydrodynamic SHYFEM model, providing short-term forecasts. The operational chain is based on a downscaling approach starting from the large-scale system for the entire Mediterranean Basin (MFS, Mediterranean Forecasting System), which provides initial and boundary condition fields to the nested system. The model is configured to provide hydrodynamics and active tracer forecasts both in open ocean and coastal waters of southeastern Italy using a variable horizontal resolution from the open sea (3-4 km) to coastal areas (50-500 m). Given that the coastal fields are driven by a combination of both local (also known as coastal) and deep-ocean forcings propagating along the shelf, the performance of SANIFS was verified both in forecast and simulation mode, first (i) on the large and shelf-coastal scales by comparing with a large-scale survey CTD (conductivity-temperature-depth) in the Gulf of Taranto and then (ii) on the coastal-harbour scale (Mar Grande of Taranto) by comparison with CTD, ADCP (acoustic doppler current profiler) and tide gauge data. Sensitivity tests were performed on initialization conditions (mainly focused on spin-up procedures) and on surface boundary conditions by assessing the reliability of two alternative datasets at different horizontal resolution (12.5 and 6.5 km). The SANIFS forecasts at a lead time of 1 day were compared with the MFS forecasts, highlighting that SANIFS is able to retain the large-scale dynamics of MFS. The large-scale dynamics of MFS are correctly propagated to the shelf-coastal scale, improving the forecast accuracy (+17 % for temperature and +6 % for salinity compared to MFS). Moreover, the added value of SANIFS was assessed on the coastal-harbour scale, which is not covered by the coarse resolution of MFS, where the fields forecasted by SANIFS reproduced the observations well (temperature RMSE equal to 0.11 °C). Furthermore, SANIFS simulations were compared with hourly time series of temperature, sea level and velocity measured on the coastal-harbour scale, showing a good agreement. Simulations in the Gulf of Taranto described a circulation mainly characterized by an anticyclonic gyre with the presence of cyclonic vortexes in shelf-coastal areas. A surface water inflow from the open sea to Mar Grande characterizes the coastal-harbour scale.
NASA Astrophysics Data System (ADS)
Hao, Zengchao; Xia, Youlong; Luo, Lifeng; Singh, Vijay P.; Ouyang, Wei; Hao, Fanghua
2017-08-01
Disastrous impacts of recent drought events around the world have led to extensive efforts in drought monitoring and prediction. Various drought information systems have been developed with different indicators to provide early drought warning. The climate forecast from North American Multimodel Ensemble (NMME) has been among the most salient progress in climate prediction and its application for drought prediction has been considerably growing. Since its development in 1999, the U.S. Drought Monitor (USDM) has played a critical role in drought monitoring with different drought categories to characterize drought severity, which has been employed to aid decision making by a wealth of users such as natural resource managers and authorities. Due to wide applications of USDM, the development of drought prediction with USDM drought categories would greatly aid decision making. This study presented a categorical drought prediction system for predicting USDM drought categories in the U.S., based on the initial conditions from USDM and seasonal climate forecasts from NMME. Results of USDM drought categories predictions in the U.S. demonstrate the potential of the prediction system, which is expected to contribute to operational early drought warning in the U.S.
On the reliability of seasonal climate forecasts.
Weisheimer, A; Palmer, T N
2014-07-06
Seasonal climate forecasts are being used increasingly across a range of application sectors. A recent UK governmental report asked: how good are seasonal forecasts on a scale of 1-5 (where 5 is very good), and how good can we expect them to be in 30 years time? Seasonal forecasts are made from ensembles of integrations of numerical models of climate. We argue that 'goodness' should be assessed first and foremost in terms of the probabilistic reliability of these ensemble-based forecasts; reliable inputs are essential for any forecast-based decision-making. We propose that a '5' should be reserved for systems that are not only reliable overall, but where, in particular, small ensemble spread is a reliable indicator of low ensemble forecast error. We study the reliability of regional temperature and precipitation forecasts of the current operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts, universally regarded as one of the world-leading operational institutes producing seasonal climate forecasts. A wide range of 'goodness' rankings, depending on region and variable (with summer forecasts of rainfall over Northern Europe performing exceptionally poorly) is found. Finally, we discuss the prospects of reaching '5' across all regions and variables in 30 years time.
Self-Organizing Maps-based ocean currents forecasting system.
Vilibić, Ivica; Šepić, Jadranka; Mihanović, Hrvoje; Kalinić, Hrvoje; Cosoli, Simone; Janeković, Ivica; Žagar, Nedjeljka; Jesenko, Blaž; Tudor, Martina; Dadić, Vlado; Ivanković, Damir
2016-03-16
An ocean surface currents forecasting system, based on a Self-Organizing Maps (SOM) neural network algorithm, high-frequency (HF) ocean radar measurements and numerical weather prediction (NWP) products, has been developed for a coastal area of the northern Adriatic and compared with operational ROMS-derived surface currents. The two systems differ significantly in architecture and algorithms, being based on either unsupervised learning techniques or ocean physics. To compare performance of the two methods, their forecasting skills were tested on independent datasets. The SOM-based forecasting system has a slightly better forecasting skill, especially during strong wind conditions, with potential for further improvement when data sets of higher quality and longer duration are used for training.
Self-Organizing Maps-based ocean currents forecasting system
Vilibić, Ivica; Šepić, Jadranka; Mihanović, Hrvoje; Kalinić, Hrvoje; Cosoli, Simone; Janeković, Ivica; Žagar, Nedjeljka; Jesenko, Blaž; Tudor, Martina; Dadić, Vlado; Ivanković, Damir
2016-01-01
An ocean surface currents forecasting system, based on a Self-Organizing Maps (SOM) neural network algorithm, high-frequency (HF) ocean radar measurements and numerical weather prediction (NWP) products, has been developed for a coastal area of the northern Adriatic and compared with operational ROMS-derived surface currents. The two systems differ significantly in architecture and algorithms, being based on either unsupervised learning techniques or ocean physics. To compare performance of the two methods, their forecasting skills were tested on independent datasets. The SOM-based forecasting system has a slightly better forecasting skill, especially during strong wind conditions, with potential for further improvement when data sets of higher quality and longer duration are used for training. PMID:26979129
Forecasting vegetation greenness with satellite and climate data
Ji, Lei; Peters, Albert J.
2004-01-01
A new and unique vegetation greenness forecast (VGF) model was designed to predict future vegetation conditions to three months through the use of current and historical climate data and satellite imagery. The VGF model is implemented through a seasonality-adjusted autoregressive distributed-lag function, based on our finding that the normalized difference vegetation index is highly correlated with lagged precipitation and temperature. Accurate forecasts were obtained from the VGF model in Nebraska grassland and cropland. The regression R2 values range from 0.97-0.80 for 2-12 week forecasts, with higher R2 associated with a shorter prediction. An important application would be to produce real-time forecasts of greenness images.
Highly Improved Predictability in the Forecasting of the East Asian Summer Monsoon
NASA Astrophysics Data System (ADS)
Lee, E.; Chase, T. N.; Rajagopalan, B.
2007-12-01
The East Asian summer monsoon greatly influences the lives and property of about a quarter of all the people in the world. However, the predictability of the monsoon is very low in comparison with that of Indian summer monsoon because of the complexity of the system which involves both tropical and sub-tropical climates. Previous monsoon prediction models emphasized ocean factors as the primary monsoon forcing. Here we show that pre-season land surface cover is at least as important as ocean indices. A new statistical forecast model of the East Asian summer monsoon using land cover conditions in addition to ocean heat sources doubles the predictability relative to a model using ocean factors alone. This work highlights the, as yet, undocumented importance of seasonal land cover in monsoon prediction and the role of the biosphere in the climate system as a whole. We also detail the physical mechanisms involved in these land surface forcings.
NASA Astrophysics Data System (ADS)
Manukalo, V.
2012-12-01
Defining issue The river inundations are the most common and destructive natural hazards in Ukraine. Among non-structural flood management and protection measures a creation of the Early Flood Warning System is extremely important to be able to timely recognize dangerous situations in the flood-prone areas. Hydrometeorological information and forecasts are a core importance in this system. The primary factors affecting reliability and a lead - time of forecasts include: accuracy, speed and reliability with which real - time data are collected. The existing individual conception of monitoring and forecasting resulted in a need in reconsideration of the concept of integrated monitoring and forecasting approach - from "sensors to database and forecasters". Result presentation The Project: "Development of Flood Monitoring and Forecasting in the Ukrainian part of the Dniester River Basin" is presented. The project is developed by the Ukrainian Hydrometeorological Service in a conjunction with the Water Management Agency and the Energy Company "Ukrhydroenergo". The implementation of the Project is funded by the Ukrainian Government and the World Bank. The author is nominated as the responsible person for coordination of activity of organizations involved in the Project. The term of the Project implementation: 2012 - 2014. The principal objectives of the Project are: a) designing integrated automatic hydrometeorological measurement network (including using remote sensing technologies); b) hydrometeorological GIS database construction and coupling with electronic maps for flood risk assessment; c) interface-construction classic numerical database -GIS and with satellite images, and radar data collection; d) providing the real-time data dissemination from observation points to forecasting centers; e) developing hydrometeoroogical forecasting methods; f) providing a flood hazards risk assessment for different temporal and spatial scales; g) providing a dissemination of current information, forecasts and warnings to consumers automatically. Besides scientific and technical issues the implementation of these objectives requires solution of a number of organizational issues. Thus, as a result of the increased complexity of types of hydrometeorological data and in order to develop forecasting methods, a reconsideration of meteorological and hydrological measurement networks should be carried out. The "optimal density of measuring networks" is proposed taking into account principal terms: a) minimizing an uncertainty in characterizing the spacial distribution of hydrometeorological parameters; b) minimizing the Total Life Cycle Cost of creation and maintenance of measurement networks. Much attention will be given to training Ukrainian disaster management authorities from the Ministry of Emergencies and the Water Management Agency to identify the flood hazard risk level and to indicate the best protection measures on the basis of continuous monitoring and forecasts of evolution of meteorological and hydrological conditions in the river basin.
NASA Astrophysics Data System (ADS)
Peterson, D. A.; Hyer, E. J.; Campbell, J. R.; Fromm, M. D.; Hair, J. W.; Butler, C. F.; Fenn, M. A.
2014-12-01
A variety of regional smoke forecasting applications are currently available to identify air quality, visibility, and societal impacts during large fire events. However, these systems typically assume persistent fire activity, and therefore can have large errors before, during, and after short-term periods of extreme fire behavior. This study employs a wide variety of ground, airborne, and satellite observations, including data collected during a major NASA airborne and field campaign, to examine the conditions required for both extreme spread and pyrocumulonimbus (pyroCb) development. Results highlight the importance of upper-level and nocturnal meteorology, as well as the limitations of traditional fire weather indices. Increasing values of fire radiative power (FRP) at the pixel and sub-pixel level are shown to systematically correspond to higher altitude smoke plumes, and an increased probability of injection above the boundary layer. Lidar data collected during the 2013 Rim Fire, one of the most severe fire events in California's history, show that high FRP observed during extreme spread can facilitate long-distance smoke transport, but fails to loft smoke to the altitude of a large pyroCb. The most extreme fire spread was also observed on days without pyroCb activity or significant regional convection. By incorporating additional fire events across North America, conflicting hypotheses surrounding the primary source of moisture during pyroCb development are examined. The majority of large pyroCbs, and therefore the highest direct injection altitude of smoke particles, is shown to occur with conditions very similar to those that produce dry thunderstorms. The current suite of automated forecasting applications predict only general trends in fire behavior, and specifically do not predict (1) extreme fire spread events and (2) injection of smoke to high altitudes. While (1) and (2) are related, results show that they are not predicted by the same set of conditions and variables. The combination of meteorology from numerical forecast models and satellite observations exhibits great potential for improving regional forecasts of fire behavior and smoke production in automated systems, especially in remote areas where detailed observations are unavailable
Adaptive time-variant models for fuzzy-time-series forecasting.
Wong, Wai-Keung; Bai, Enjian; Chu, Alice Wai-Ching
2010-12-01
A fuzzy time series has been applied to the prediction of enrollment, temperature, stock indices, and other domains. Related studies mainly focus on three factors, namely, the partition of discourse, the content of forecasting rules, and the methods of defuzzification, all of which greatly influence the prediction accuracy of forecasting models. These studies use fixed analysis window sizes for forecasting. In this paper, an adaptive time-variant fuzzy-time-series forecasting model (ATVF) is proposed to improve forecasting accuracy. The proposed model automatically adapts the analysis window size of fuzzy time series based on the prediction accuracy in the training phase and uses heuristic rules to generate forecasting values in the testing phase. The performance of the ATVF model is tested using both simulated and actual time series including the enrollments at the University of Alabama, Tuscaloosa, and the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX). The experiment results show that the proposed ATVF model achieves a significant improvement in forecasting accuracy as compared to other fuzzy-time-series forecasting models.
Pappenberger, F; Jendritzky, G; Staiger, H; Dutra, E; Di Giuseppe, F; Richardson, D S; Cloke, H L
2015-03-01
Although over a hundred thermal indices can be used for assessing thermal health hazards, many ignore the human heat budget, physiology and clothing. The Universal Thermal Climate Index (UTCI) addresses these shortcomings by using an advanced thermo-physiological model. This paper assesses the potential of using the UTCI for forecasting thermal health hazards. Traditionally, such hazard forecasting has had two further limitations: it has been narrowly focused on a particular region or nation and has relied on the use of single 'deterministic' forecasts. Here, the UTCI is computed on a global scale, which is essential for international health-hazard warnings and disaster preparedness, and it is provided as a probabilistic forecast. It is shown that probabilistic UTCI forecasts are superior in skill to deterministic forecasts and that despite global variations, the UTCI forecast is skilful for lead times up to 10 days. The paper also demonstrates the utility of probabilistic UTCI forecasts on the example of the 2010 heat wave in Russia.
NASA Astrophysics Data System (ADS)
Schultz, David M.; Anderson, Stuart; Seo-Zindy, Ryo
2013-06-01
For students who major in meteorology, engaging in weather forecasting can motivate learning, develop critical-thinking skills, improve their written communication, and yield better forecasts. Whether such advances apply to students who are not meteorology majors has been less demonstrated. To test this idea, a weather discussion and an eLearning weather forecasting contest were devised for a meteorology course taken by third-year undergraduate earth- and environmental-science students. The discussion consisted of using the recent, present, and future weather to amplify the topics of the week's lectures. Then, students forecasted the next day's high temperature and the probability of precipitation for Woodford, the closest official observing site to Manchester, UK. The contest ran for 10 weeks, and the students received credit for participation. The top students at the end of the contest received bonus points on their final grade. A Web-based forecast contest application was developed to register the students, receive their forecasts, and calculate weekly standings. Students who were successful in the forecast contest were not necessarily those who achieved the highest scores on the tests, demonstrating that the contest was possibly testing different skills than traditional learning. Student evaluations indicate that the weather discussion and contest were reasonably successful in engaging students to learn about the weather outside of the classroom, synthesize their knowledge from the lectures, and improve their practical understanding of the weather. Therefore, students taking a meteorology class, but not majoring in meteorology, can derive academic benefits from weather discussions and forecast contests. Nevertheless, student evaluations also indicate that better integration of the lectures, weather discussions, and the forecasting contests is necessary.
NASA Astrophysics Data System (ADS)
Wood, E. F.; Yuan, X.; Roundy, J. K.; Lettenmaier, D. P.; Mo, K. C.; Xia, Y.; Ek, M. B.
2011-12-01
Extreme hydrologic events in the form of droughts or floods are a significant source of social and economic damage in many parts of the world. Having sufficient warning of extreme events allows managers to prepare for and reduce the severity of their impacts. A hydrologic forecast system can give seasonal predictions that can be used by mangers to make better decisions; however there is still much uncertainty associated with such a system. Therefore it is important to understand the forecast skill of the system before transitioning to operational usage. Seasonal reforecasts (1982 - 2010) from the NCEP Climate Forecast System (both version 1 (CFS) and version 2 (CFSv2), Climate Prediction Center (CPC) outlooks and the European Seasonal Interannual Prediction (EUROSIP) system, are assessed for forecasting skill in drought prediction across the U.S., both singularly and as a multi-model system The Princeton/U Washington national hydrologic monitoring and forecast system is being implemented at NCEP/EMC via their Climate Test Bed as the experimental hydrological forecast system to support U.S. operational drought prediction. Using our system, the seasonal forecasts are biased corrected, downscaled and used to drive the Variable Infiltration Capacity (VIC) land surface model to give seasonal forecasts of hydrologic variables with lead times of up to six months. Results are presented for a number of events, with particular focus on the Apalachicola-Chattahoochee-Flint (ACF) River Basin in the South Eastern United States, which has experienced a number of severe droughts in recent years and is a pilot study basin for the National Integrated Drought Information System (NIDIS). The performance of the VIC land surface model is evaluated using observational forcing when compared to observed streamflow. The effectiveness of the forecast system to predict streamflow and soil moisture is evaluated when compared with observed streamflow and modeled soil moisture driven by observed atmospheric forcing. The forecast skills from the dynamical seasonal models (CFSv1, CFSv2, EUROSIP) and CPC are also compared with forecasts based on the Ensemble Streamflow Prediction (ESP) method, which uses initial conditions and historical forcings to generate seasonal forecasts. The skill of the system to predict drought, drought recovery and related hydrological conditions such as low-flows is assessed, along with quantified uncertainty.
The MSFC Solar Activity Future Estimation (MSAFE) Model
NASA Technical Reports Server (NTRS)
Suggs, Ron
2017-01-01
The Natural Environments Branch of the Engineering Directorate at Marshall Space Flight Center (MSFC) provides solar cycle forecasts for NASA space flight programs and the aerospace community. These forecasts provide future statistical estimates of sunspot number, solar radio 10.7 cm flux (F10.7), and the geomagnetic planetary index, Ap, for input to various space environment models. For example, many thermosphere density computer models used in spacecraft operations, orbital lifetime analysis, and the planning of future spacecraft missions require as inputs the F10.7 and Ap. The solar forecast is updated each month by executing MSAFE using historical and the latest month's observed solar indices to provide estimates for the balance of the current solar cycle. The forecasted solar indices represent the 13-month smoothed values consisting of a best estimate value stated as a 50 percentile value along with approximate +/- 2 sigma values stated as 95 and 5 percentile statistical values. This presentation will give an overview of the MSAFE model and the forecast for the current solar cycle.
A Unified Data Assimilation Strategy for Regional Coupled Atmosphere-Ocean Prediction Systems
NASA Astrophysics Data System (ADS)
Xie, Lian; Liu, Bin; Zhang, Fuqing; Weng, Yonghui
2014-05-01
Improving tropical cyclone (TC) forecasts is a top priority in weather forecasting. Assimilating various observational data to produce better initial conditions for numerical models using advanced data assimilation techniques has been shown to benefit TC intensity forecasts, whereas assimilating large-scale environmental circulation into regional models by spectral nudging or Scale-Selective Data Assimilation (SSDA) has been demonstrated to improve TC track forecasts. Meanwhile, taking into account various air-sea interaction processes by high-resolution coupled air-sea modelling systems has also been shown to improve TC intensity forecasts. Despite the advances in data assimilation and air-sea coupled models, large errors in TC intensity and track forecasting remain. For example, Hurricane Nate (2011) has brought considerable challenge for the TC operational forecasting community, with very large intensity forecast errors (27, 25, and 40 kts for 48, 72, and 96 h, respectively) for the official forecasts. Considering the slow-moving nature of Hurricane Nate, it is reasonable to hypothesize that air-sea interaction processes played a critical role in the intensity change of the storm, and accurate representation of the upper ocean dynamics and thermodynamics is necessary to quantitatively describe the air-sea interaction processes. Currently, data assimilation techniques are generally only applied to hurricane forecasting in stand-alone atmospheric or oceanic model. In fact, most of the regional hurricane forecasting models only included data assimilation techniques for improving the initial condition of the atmospheric model. In such a situation, the benefit of adjustments in one model (atmospheric or oceanic) by assimilating observational data can be compromised by errors from the other model. Thus, unified data assimilation techniques for coupled air-sea modelling systems, which not only simultaneously assimilate atmospheric and oceanic observations into the coupled air-sea modelling system, but also nudging the large-scale environmental flow in the regional model towards global model forecasts are of increasing necessity. In this presentation, we will outline a strategy for an integrated approach in air-sea coupled data assimilation and discuss its benefits and feasibility from incremental results for select historical hurricane cases.
Extended Range Prediction of Indian Summer Monsoon: Current status
NASA Astrophysics Data System (ADS)
Sahai, A. K.; Abhilash, S.; Borah, N.; Joseph, S.; Chattopadhyay, R.; S, S.; Rajeevan, M.; Mandal, R.; Dey, A.
2014-12-01
The main focus of this study is to develop forecast consensus in the extended range prediction (ERP) of monsoon Intraseasonal oscillations using a suit of different variants of Climate Forecast system (CFS) model. In this CFS based Grand MME prediction system (CGMME), the ensemble members are generated by perturbing the initial condition and using different configurations of CFSv2. This is to address the role of different physical mechanisms known to have control on the error growth in the ERP in the 15-20 day time scale. The final formulation of CGMME is based on 21 ensembles of the standalone Global Forecast System (GFS) forced with bias corrected forecasted SST from CFS, 11 low resolution CFST126 and 11 high resolution CFST382. Thus, we develop the multi-model consensus forecast for the ERP of Indian summer monsoon (ISM) using a suite of different variants of CFS model. This coordinated international effort lead towards the development of specific tailor made regional forecast products over Indian region. Skill of deterministic and probabilistic categorical rainfall forecast as well the verification of large-scale low frequency monsoon intraseasonal oscillations has been carried out using hindcast from 2001-2012 during the monsoon season in which all models are initialized at every five days starting from 16May to 28 September. The skill of deterministic forecast from CGMME is better than the best participating single model ensemble configuration (SME). The CGMME approach is believed to quantify the uncertainty in both initial conditions and model formulation. Main improvement is attained in probabilistic forecast which is because of an increase in the ensemble spread, thereby reducing the error due to over-confident ensembles in a single model configuration. For probabilistic forecast, three tercile ranges are determined by ranking method based on the percentage of ensemble members from all the participating models falls in those three categories. CGMME further added value to both deterministic and probability forecast compared to raw SME's and this better skill is probably flows from large spread and improved spread-error relationship. CGMME system is currently capable of generating ER prediction in real time and successfully delivering its experimental operational ER forecast of ISM for the last few years.
Seasonal Forecasting of Fire Weather Based on a New Global Fire Weather Database
NASA Technical Reports Server (NTRS)
Dowdy, Andrew J.; Field, Robert D.; Spessa, Allan C.
2016-01-01
Seasonal forecasting of fire weather is examined based on a recently produced global database of the Fire Weather Index (FWI) system beginning in 1980. Seasonal average values of the FWI are examined in relation to measures of the El Nino-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). The results are used to examine seasonal forecasts of fire weather conditions throughout the world.
NASA Astrophysics Data System (ADS)
Raju, P. V. S.; Potty, Jayaraman; Mohanty, U. C.
2011-09-01
Comprehensive sensitivity analyses on physical parameterization schemes of Weather Research Forecast (WRF-ARW core) model have been carried out for the prediction of track and intensity of tropical cyclones by taking the example of cyclone Nargis, which formed over the Bay of Bengal and hit Myanmar on 02 May 2008, causing widespread damages in terms of human and economic losses. The model performances are also evaluated with different initial conditions of 12 h intervals starting from the cyclogenesis to the near landfall time. The initial and boundary conditions for all the model simulations are drawn from the global operational analysis and forecast products of National Center for Environmental Prediction (NCEP-GFS) available for the public at 1° lon/lat resolution. The results of the sensitivity analyses indicate that a combination of non-local parabolic type exchange coefficient PBL scheme of Yonsei University (YSU), deep and shallow convection scheme with mass flux approach for cumulus parameterization (Kain-Fritsch), and NCEP operational cloud microphysics scheme with diagnostic mixed phase processes (Ferrier), predicts better track and intensity as compared against the Joint Typhoon Warning Center (JTWC) estimates. Further, the final choice of the physical parameterization schemes selected from the above sensitivity experiments is used for model integration with different initial conditions. The results reveal that the cyclone track, intensity and time of landfall are well simulated by the model with an average intensity error of about 8 hPa, maximum wind error of 12 m s-1and track error of 77 km. The simulations also show that the landfall time error and intensity error are decreasing with delayed initial condition, suggesting that the model forecast is more dependable when the cyclone approaches the coast. The distribution and intensity of rainfall are also well simulated by the model and comparable with the TRMM estimates.
Using Seasonal Forecasting Data for Vessel Routing
NASA Astrophysics Data System (ADS)
Bell, Ray; Kirtman, Ben
2017-04-01
We present an assessment of seasonal forecasting of surface wind speed, significant wave height and ocean surface current speed in the North Pacific for potential use of vessel routing from Singapore to San Diego. WaveWatchIII is forced with surface winds and ocean surface currents from the Community Climate System Model 4 (CCSM4) retrospective forecasts for the period of 1982-2015. Several lead time forecasts are used from zero months to six months resulting in 2,720 model years, ensuring the findings from this study are robust. July surface wind speed and significant wave height can be skillfully forecast with a one month lead time, with the western North Pacific being the most predictable region. Beyond May initial conditions (lead time of two months) the El Niño Southern Oscillation (ENSO) Spring predictability barrier limits skill of significant wave height but there is skill for surface wind speed with January initial conditions (lead time of six months). In a separate study of vessel routing between Norfolk, Virginia and Gibraltar we demonstrate the benefit of a multimodel approach using the North American Multimodel Ensemble (NMME). In collaboration with Charles River Analytics an all-encompassing forecast is presented by using machine learning on the various ensembles which can be using used for industry applications.
NASA Astrophysics Data System (ADS)
Zarekarizi, M.; Moradkhani, H.; Yan, H.
2017-12-01
The Operational Probabilistic Drought Forecasting System (OPDFS) is an online tool recently developed at Portland State University for operational agricultural drought forecasting. This is an integrated statistical-dynamical framework issuing probabilistic drought forecasts monthly for the lead times of 1, 2, and 3 months. The statistical drought forecasting method utilizes copula functions in order to condition the future soil moisture values on the antecedent states. Due to stochastic nature of land surface properties, the antecedent soil moisture states are uncertain; therefore, data assimilation system based on Particle Filtering (PF) is employed to quantify the uncertainties associated with the initial condition of the land state, i.e. soil moisture. PF assimilates the satellite soil moisture data to Variable Infiltration Capacity (VIC) land surface model and ultimately updates the simulated soil moisture. The OPDFS builds on the NOAA's seasonal drought outlook by offering drought probabilities instead of qualitative ordinal categories and provides the user with the probability maps associated with a particular drought category. A retrospective assessment of the OPDFS showed that the forecasting of the 2012 Great Plains and 2014 California droughts were possible at least one month in advance. The OPDFS offers a timely assistance to water managers, stakeholders and decision-makers to develop resilience against uncertain upcoming droughts.
NASA Astrophysics Data System (ADS)
Arumugam, S.; Mazrooei, A.; Ward, R.
2017-12-01
Changing climate arising from structured oscillations such as ENSO and rising temperature poses challenging issues in meeting the increasing water demand (due to population growth) for public supply and agriculture over the Southeast US. This together with infrastructural (e.g., most reservoirs being within-year systems) and operational (e.g., static rule curves) constraints requires an integrated approach that seamlessly monitors and forecasts water and soil moisture conditions to support adaptive decision making in water and agricultural sectors. In this talk, we discuss the utility of an integrated drought management portal that both monitors and forecasts streamflow and soil moisture over the southeast US. The forecasts are continuously developed and updated by forcing monthly-to-seasonal climate forecasts with a land surface model for various target basins. The portal also houses a reservoir allocation model that allows water managers to explore different release policies in meeting the system constraints and target storages conditioned on the forecasts. The talk will also demonstrate how past events (e.g., 2007-2008 drought) could be proactively monitored and managed to improve decision making in water and agricultural sectors over the Southeast US. Challenges in utilizing the portal information from institutional and operational perspectives will also be presented.
Land use and water use in the Antelope Valley, California
Templin, William E.; Phillips, Steven P.; Cherry, Daniel E.; DeBortoli, Myrna L.; Haltom, T.C.; McPherson, Kelly R.; Mrozek, C.A.
1995-01-01
Urban land use and water use in the Antelope Valley, California, have increased significantly since development of the valley began in the late 1800's.. Ground water has been a major source of water in this area because of limited local surface-water resources. Ground-water pumpage is reported to have increased from about 29,000 acre-feet in 1919 to about 400,000 acre-feet in the 1950's. Completion of the California Aqueduct to this area in the early 1970's conveyed water from the Sacramento-San Joaquin Delta, about 400 miles to the north. Declines in groundwater levels and increased costs of electrical power in the 1970's resulted in a reduction in the quantity of ground water that was pumped annually for irrigation uses. Total annual reported ground-water pumpage decreased to a low of about 53,200 acre-feet in 1983 and increased to about 91,700 acre-feet in 1991 as a result of rapid urban development and the 1987-92 drought. This increased urban development, in combination with several years of drought, renewed concern about a possible return to extensive depletion of ground-water storage and increased land subsidence.Increased water demands are expected to continue as a result of increased urban development. Water-demand forecasts in 1980 for the Antelope Valley indicated that total annual water demand by 2020 was expected to be about 250,000 acre-feet, with agricultural demand being about 65 percent of this total. In 1990, total water demand was projected to be about 175,000 acre-feet by 2010; however, agricultural water demand was expected to account for only 37 percent of the total demand. New and existing land- and water-use data were collected and compiled during 1992-93 to identify present and historical land and water uses. In 1993, preliminary forecasts for total water demand by 2010 ranged from about 127,500 to 329,000 acre-feet. These wide-ranging estimates indicate that forecasts can change with time as factors that affect water demand change and different forecasting methods are used. The forecasts using the MWD_MAIN (Metropolitan Water District of Southern California Municipal and Industrial Needs) water-demand forecasting system yielded the largest estimates of water demand. These forecasts were based on projections of population growth and other socioeconomic variables. Initial forecasts using the MWD_MAIN forecasting system commonly are considered "interim" or preliminary. Available historical and future socioeconomic data required for the forecasting system are limited for this area. Decisions on local water-resources demand management may be made by members of the Antelope Valley Water Group and other interested parties based on this report, other studies, their best judgement, and cumulative knowledge of local conditions. Potential water-resource management actions in the Antelope Valley include (1) increasing artificial ground-water recharge when excess local runoff (or imported water supplies) are available; (2) implementing water-conservation best-management practices; and (3) optimizing ground-water pumpage throughout the basin.
Is It Going to Rain Today? Understanding the Weather Forecast.
ERIC Educational Resources Information Center
Allsopp, Jim; And Others
1996-01-01
Presents a resource for science teachers to develop a better understanding of weather forecasts, including outlooks, watches, warnings, advisories, severe local storms, winter storms, floods, hurricanes, nonprecipitation hazards, precipitation probabilities, sky condition, and UV index. (MKR)
Telecommunications forecast for ITU Region 2 to the year 1995
NASA Technical Reports Server (NTRS)
Hollansworth, J. E.; Salzman, J. A.; Ramler, J. R.
1985-01-01
Telecommunications activity was studied. The primary objective was to forecast the need for fixed service satellites (FSS) by countries within ITU Region 2 excluding the United States and Greenland. Forecasts of telecommunications equipment needs were developed as a yardstick of the relative level of telecommunications activity among developing countries within the region. A likely scenario for the implementation of domestic and regional communications satellites is forecasted to provide services to and among countries in ITU Region 2. By 1995, it is forecast that 15 fixed service satellites will be implemented. A forecast of the countries requirements indicates that, with the possible exception of Canada, this constellation of satellites will meet these countries' needs to beyond the year 2000.
Performance of univariate forecasting on seasonal diseases: the case of tuberculosis.
Permanasari, Adhistya Erna; Rambli, Dayang Rohaya Awang; Dominic, P Dhanapal Durai
2011-01-01
The annual disease incident worldwide is desirable to be predicted for taking appropriate policy to prevent disease outbreak. This chapter considers the performance of different forecasting method to predict the future number of disease incidence, especially for seasonal disease. Six forecasting methods, namely linear regression, moving average, decomposition, Holt-Winter's, ARIMA, and artificial neural network (ANN), were used for disease forecasting on tuberculosis monthly data. The model derived met the requirement of time series with seasonality pattern and downward trend. The forecasting performance was compared using similar error measure in the base of the last 5 years forecast result. The findings indicate that ARIMA model was the most appropriate model since it obtained the less relatively error than the other model.
Beeler, Cheryl K.; Antes, Alison L.; Wang, Xiaoqian; Caughron, Jared J.; Thiel, Chase E.; Mumford, Michael D.
2010-01-01
This study examined the role of key causal analysis strategies in forecasting and ethical decision-making. Undergraduate participants took on the role of the key actor in several ethical problems and were asked to identify and analyze the causes, forecast potential outcomes, and make a decision about each problem. Time pressure and analytic mindset were manipulated while participants worked through these problems. The results indicated that forecast quality was associated with decision ethicality, and the identification of the critical causes of the problem was associated with both higher quality forecasts and higher ethicality of decisions. Neither time pressure nor analytic mindset impacted forecasts or ethicality of decisions. Theoretical and practical implications of these findings are discussed. PMID:20352056
Artificial Neural Network Models for Long Lead Streamflow Forecasts using Climate Information
NASA Astrophysics Data System (ADS)
Kumar, J.; Devineni, N.
2007-12-01
Information on season ahead stream flow forecasts is very beneficial for the operation and management of water supply systems. Daily streamflow conditions at any particular reservoir primarily depend on atmospheric and land surface conditions including the soil moisture and snow pack. On the other hand recent studies suggest that developing long lead streamflow forecasts (3 months ahead) typically depends on exogenous climatic conditions particularly Sea Surface Temperature conditions (SST) in the tropical oceans. Examples of some oceanic variables are El Nino Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Identification of such conditions that influence the moisture transport into a given basin poses many challenges given the nonlinear dependency between the predictors (SST) and predictand (stream flows). In this study, we apply both linear and nonlinear dependency measures to identify the predictors that influence the winter flows into the Neuse basin. The predictor identification approach here adopted uses simple correlation coefficients to spearman rank correlation measures for detecting nonlinear dependency. All these dependency measures are employed with a lag 3 time series of the high flow season (January - February - March) using 75 years (1928-2002) of stream flows recorded in to the Falls Lake, Neuse River Basin. Developing streamflow forecasts contingent on these exogenous predictors will play an important role towards improved water supply planning and management. Recently, the soft computing techniques, such as artificial neural networks (ANNs) have provided an alternative method to solve complex problems efficiently. ANNs are data driven models which trains on the examples given to it. The ANNs functions as universal approximators and are non linear in nature. This paper presents a study aiming towards using climatic predictors for 3 month lead time streamflow forecast. ANN models representing the physical process of the system are developed between the identified predictors and the predictand. Predictors used are the scores of Principal Components Analysis (PCA). The models were tested and validated. The feed- forward multi-layer perceptron (MLP) type neural networks trained using the back-propagation algorithms are employed in the current study. The performance of the ANN-model forecasts are evaluated using various performance evaluation measures such as correlation coefficient, root mean square error (RMSE). The preliminary results shows that ANNs are efficient to forecast long lead time streamflows using climatic predictors.
Scenario approach for the seasonal forecast of Kharif flows from the Upper Indus Basin
NASA Astrophysics Data System (ADS)
Fraz Ismail, Muhammad; Bogacki, Wolfgang
2018-02-01
Snow and glacial melt runoff are the major sources of water contribution from the high mountainous terrain of the Indus River upstream of the Tarbela reservoir. A reliable forecast of seasonal water availability for the Kharif cropping season (April-September) can pave the way towards better water management and a subsequent boost in the agro-economy of Pakistan. The use of degree-day models in conjunction with satellite-based remote-sensing data for the forecasting of seasonal snow and ice melt runoff has proved to be a suitable approach for data-scarce regions. In the present research, the Snowmelt Runoff Model (SRM) has not only been enhanced by incorporating the glacier (G)
component but also applied for the forecast of seasonal water availability from the Upper Indus Basin (UIB). Excel-based SRM+G takes account of separate degree-day factors for snow and glacier melt processes. All-year simulation runs with SRM+G for the period 2003-2014 result in an average flow component distribution of 53, 21, and 26 % for snow, glacier, and rain, respectively. The UIB has been divided into Upper and Lower parts because of the different climatic conditions in the Tibetan Plateau. The scenario approach for seasonal forecasting, which like the Ensemble Streamflow Prediction method uses historic meteorology as model forcings, has proven to be adequate for long-term water availability forecasts. The accuracy of the forecast with a mean absolute percentage error (MAPE) of 9.5 % could be slightly improved compared to two existing operational forecasts for the UIB, and the bias could be reduced to -2.0 %. However, the association between forecasts and observations as well as the skill in predicting extreme conditions is rather weak for all three models, which motivates further research on the selection of a subset of ensemble members according to forecasted seasonal anomalies.
Post-processing of a low-flow forecasting system in the Thur basin (Switzerland)
NASA Astrophysics Data System (ADS)
Bogner, Konrad; Joerg-Hess, Stefanie; Bernhard, Luzi; Zappa, Massimiliano
2015-04-01
Low-flows and droughts are natural hazards with potentially severe impacts and economic loss or damage in a number of environmental and socio-economic sectors. As droughts develop slowly there is time to prepare and pre-empt some of these impacts. Real-time information and forecasting of a drought situation can therefore be an effective component of drought management. Although Switzerland has traditionally been more concerned with problems related to floods, in recent years some unprecedented low-flow situations have been experienced. Driven by the climate change debate a drought information platform has been developed to guide water resources management during situations where water resources drop below critical low-flow levels characterised by the indices duration (time between onset and offset), severity (cumulative water deficit) and magnitude (severity/duration). However to gain maximum benefit from such an information system it is essential to remove the bias from the meteorological forecast, to derive optimal estimates of the initial conditions, and to post-process the stream-flow forecasts. Quantile mapping methods for pre-processing the meteorological forecasts and improved data assimilation methods of snow measurements, which accounts for much of the seasonal stream-flow predictability for the majority of the basins in Switzerland, have been tested previously. The objective of this study is the testing of post-processing methods in order to remove bias and dispersion errors and to derive the predictive uncertainty of a calibrated low-flow forecast system. Therefore various stream-flow error correction methods with different degrees of complexity have been applied and combined with the Hydrological Uncertainty Processor (HUP) in order to minimise the differences between the observations and model predictions and to derive posterior probabilities. The complexity of the analysed error correction methods ranges from simple AR(1) models to methods including wavelet transformations and support vector machines. These methods have been combined with forecasts driven by Numerical Weather Prediction (NWP) systems with different temporal and spatial resolutions, lead-times and different numbers of ensembles covering short to medium to extended range forecasts (COSMO-LEPS, 10-15 days, monthly and seasonal ENS) as well as climatological forecasts. Additionally the suitability of various skill scores and efficiency measures regarding low-flow predictions will be tested. Amongst others the novel 2afc (2 alternatives forced choices) score and the quantile skill score and its decompositions will be applied to evaluate the probabilistic forecasts and the effects of post-processing. First results of the performance of the low-flow predictions of the hydrological model PREVAH initialised with different NWP's will be shown.
CARICOF - The Caribbean Regional Climate Outlook Forum
NASA Astrophysics Data System (ADS)
Van Meerbeeck, Cedric
2013-04-01
Regional Climate Outlook Forums (RCOFs) are viewed as a critical building block in the Global Framework for Climate Services (GFCS) of the World Meteorological Organization (WMO). The GFCS seeks to extend RCOFs to all vulnerable regions of the world such as the Caribbean, of which the entire population is exposed to water- and heat-related natural hazards. An RCOF is initially intended to identify gaps in information and technical capability; facilitate research cooperation and data exchange within and between regions, and improve coordination within the climate forecasting community. A focus is given on variations in climate conditions on a seasonal timescale. In this view, the relevance of a Caribbean RCOF (CARICOF) is the following: while the seasonality of the climate in the Caribbean has been well documented, major gaps in knowledge exist in terms of the drivers in the shifts of amplitude and phase of seasons (as evidenced from the worst region-wide drought period in recent history during 2009-2010). To address those gaps, CARICOF has brought together National Weather Services (NWSs) from 18 territories under the coordination of the Caribbean Institute for Meteorology and Hydrology (CIMH), to produce region-wide, consensus, seasonal climate outlooks since March 2012. These outlooks include tercile rainfall forecasts, sea and air surface temperature forecasts as well as the likely evolution of the drivers of seasonal climate variability in the region, being amongst others the El Niño Southern Oscillation or tropical Atlantic and Caribbean Sea temperatures. Forecasts for both the national-scale forecasts made by the NWSs and CIMH's regional-scale forecast amalgamate output from several forecasting tools. These currently include: (1) statistical models such as Canonical Correlation Analysis run with the Climate Predictability Tool, providing tercile rainfall forecasts at weather station scale; (2) a global outlooks published by the WMO appointed Global Producing Centres (GPCs). Indications are that the current seasonal forecasting system used by CARICOF has produced reliable outlooks than previously available. Nevertheless, through its forum platform, areas for further development are continuously being defined, which are then implemented through efficient information exchanges between and hands-on training of forecasters. Finally, the disaster research and emergency management communities have shown that effective early warnings of impending hazards need to be complemented by information on the risks actually posed by the hazards and pathways for action. CARICOF is to address this issue by designing the outputs of the seasonal climate outlooks such that they can then effectively feed into an early warning information system of seasonal climate variability related hazards to its constituent countries' and territories major socio-economic sectors.
A 30-day forecast experiment with the GISS model and updated sea surface temperatures
NASA Technical Reports Server (NTRS)
Spar, J.; Atlas, R.; Kuo, E.
1975-01-01
The GISS model was used to compute two parallel global 30-day forecasts for the month January 1974. In one forecast, climatological January sea surface temperatures were used, while in the other observed sea temperatures were inserted and updated daily. A comparison of the two forecasts indicated no clear-cut beneficial effect of daily updating of sea surface temperatures. Despite the rapid decay of daily predictability, the model produced a 30-day mean forecast for January 1974 that was generally superior to persistence and climatology when evaluated over either the globe or the Northern Hemisphere, but not over smaller regions.
Evaluation of the Plant-Craig stochastic convection scheme in an ensemble forecasting system
NASA Astrophysics Data System (ADS)
Keane, R. J.; Plant, R. S.; Tennant, W. J.
2015-12-01
The Plant-Craig stochastic convection parameterization (version 2.0) is implemented in the Met Office Regional Ensemble Prediction System (MOGREPS-R) and is assessed in comparison with the standard convection scheme with a simple stochastic element only, from random parameter variation. A set of 34 ensemble forecasts, each with 24 members, is considered, over the month of July 2009. Deterministic and probabilistic measures of the precipitation forecasts are assessed. The Plant-Craig parameterization is found to improve probabilistic forecast measures, particularly the results for lower precipitation thresholds. The impact on deterministic forecasts at the grid scale is neutral, although the Plant-Craig scheme does deliver improvements when forecasts are made over larger areas. The improvements found are greater in conditions of relatively weak synoptic forcing, for which convective precipitation is likely to be less predictable.
NASA Astrophysics Data System (ADS)
Luchner, Jakob; Anghileri, Daniela; Castelletti, Andrea
2017-04-01
Real-time control of multi-purpose reservoirs can benefit significantly from hydro-meteorological forecast products. Because of their reliability, the most used forecasts range on time scales from hours to few days and are suitable for short-term operation targets such as flood control. In recent years, hydro-meteorological forecasts have become more accurate and reliable on longer time scales, which are more relevant to long-term reservoir operation targets such as water supply. While the forecast quality of such products has been studied extensively, the forecast value, i.e. the operational effectiveness of using forecasts to support water management, has been only relatively explored. It is comparatively easy to identify the most effective forecasting information needed to design reservoir operation rules for flood control but it is not straightforward to identify which forecast variable and lead time is needed to define effective hedging rules for operational targets with slow dynamics such as water supply. The task is even more complex when multiple targets, with diverse slow and fast dynamics, are considered at the same time. In these cases, the relative importance of different pieces of information, e.g. magnitude and timing of peak flow rate and accumulated inflow on different time lags, may vary depending on the season or the hydrological conditions. In this work, we analyze the relationship between operational forecast value and streamflow forecast horizon for different multi-purpose reservoir trade-offs. We use the Information Selection and Assessment (ISA) framework to identify the most effective forecast variables and horizons for informing multi-objective reservoir operation over short- and long-term temporal scales. The ISA framework is an automatic iterative procedure to discriminate the information with the highest potential to improve multi-objective reservoir operating performance. Forecast variables and horizons are selected using a feature selection technique. The technique determines the most informative combination in a multi-variate regression model to the optimal reservoir releases based on perfect information at a fixed objective trade-off. The improved reservoir operation is evaluated against optimal reservoir operation conditioned upon perfect information on future disturbances and basic reservoir operation using only the day of the year and the reservoir level. Different objective trade-offs are selected for analyzing resulting differences in improved reservoir operation and selected forecast variables and horizons. For comparison, the effective streamflow forecast horizon determined by the ISA framework is benchmarked against the performances obtained with a deterministic model predictive control (MPC) optimization scheme. Both the ISA framework and the MPC optimization scheme are applied to the real-world case study of Lake Como, Italy, using perfect streamflow forecast information. The principal operation targets for Lake Como are flood control and downstream water supply which makes its operation a suitable case study. Results provide critical feedback to reservoir operators on the use of long-term streamflow forecasts and to the hydro-meteorological forecasting community with respect to the forecast horizon needed from reliable streamflow forecasts.
Seasonal forecasting of discharge for the Raccoon River, Iowa
NASA Astrophysics Data System (ADS)
Slater, Louise; Villarini, Gabriele; Bradley, Allen; Vecchi, Gabriel
2016-04-01
The state of Iowa (central United States) is regularly afflicted by severe natural hazards such as the 2008/2013 floods and the 2012 drought. To improve preparedness for these catastrophic events and allow Iowans to make more informed decisions about the most suitable water management strategies, we have developed a framework for medium to long range probabilistic seasonal streamflow forecasting for the Raccoon River at Van Meter, a 8900-km2 catchment located in central-western Iowa. Our flow forecasts use statistical models to predict seasonal discharge for low to high flows, with lead forecasting times ranging from one to ten months. Historical measurements of daily discharge are obtained from the U.S. Geological Survey (USGS) at the Van Meter stream gage, and used to compute quantile time series from minimum to maximum seasonal flow. The model is forced with basin-averaged total seasonal precipitation records from the PRISM Climate Group and annual row crop production acreage from the U.S. Department of Agriculture's National Agricultural Statistics Services database. For the forecasts, we use corn and soybean production from the previous year (persistence forecast) as a proxy for the impacts of agricultural practices on streamflow. The monthly precipitation forecasts are provided by eight Global Climate Models (GCMs) from the North American Multi-Model Ensemble (NMME), with lead times ranging from 0.5 to 11.5 months, and a resolution of 1 decimal degree. Additionally, precipitation from the month preceding each season is used to characterize antecedent soil moisture conditions. The accuracy of our modelled (1927-2015) and forecasted (2001-2015) discharge values is assessed by comparison with the observed USGS data. We explore the sensitivity of forecast skill over the full range of lead times, flow quantiles, forecast seasons, and with each GCM. Forecast skill is also examined using different formulations of the statistical models, as well as NMME forecast weighting procedures based on the computed potential skill (historical forecast accuracy) of the different GCMs. We find that the models describe the year-to-year variability in streamflow accurately, as well as the overall tendency towards increasing (and more variable) discharge over time. Surprisingly, forecast skill does not decrease markedly with lead time, and high flows tend to be well predicted, suggesting that these forecasts may have considerable practical applications. Further, the seasonal flow forecast accuracy is substantially improved by weighting the contribution of individual GCMs to the forecasts, and also by the inclusion of antecedent precipitation. Our results can provide critical information for adaptation strategies aiming to mitigate the costs and disruptions arising from flood and drought conditions, and allow us to determine how far in advance skillful forecasts can be issued. The availability of these discharge forecasts would have major societal and economic benefits for hydrology and water resources management, agriculture, disaster forecasts and prevention, energy, finance and insurance, food security, policy-making and public authorities, and transportation.
Volcanic ash modeling with the NMMB-MONARCH-ASH model: quantification of offline modeling errors
NASA Astrophysics Data System (ADS)
Marti, Alejandro; Folch, Arnau
2018-03-01
Volcanic ash modeling systems are used to simulate the atmospheric dispersion of volcanic ash and to generate forecasts that quantify the impacts from volcanic eruptions on infrastructures, air quality, aviation, and climate. The efficiency of response and mitigation actions is directly associated with the accuracy of the volcanic ash cloud detection and modeling systems. Operational forecasts build on offline coupled modeling systems in which meteorological variables are updated at the specified coupling intervals. Despite the concerns from other communities regarding the accuracy of this strategy, the quantification of the systematic errors and shortcomings associated with the offline modeling systems has received no attention. This paper employs the NMMB-MONARCH-ASH model to quantify these errors by employing different quantitative and categorical evaluation scores. The skills of the offline coupling strategy are compared against those from an online forecast considered to be the best estimate of the true outcome. Case studies are considered for a synthetic eruption with constant eruption source parameters and for two historical events, which suitably illustrate the severe aviation disruptive effects of European (2010 Eyjafjallajökull) and South American (2011 Cordón Caulle) volcanic eruptions. Evaluation scores indicate that systematic errors due to the offline modeling are of the same order of magnitude as those associated with the source term uncertainties. In particular, traditional offline forecasts employed in operational model setups can result in significant uncertainties, failing to reproduce, in the worst cases, up to 45-70 % of the ash cloud of an online forecast. These inconsistencies are anticipated to be even more relevant in scenarios in which the meteorological conditions change rapidly in time. The outcome of this paper encourages operational groups responsible for real-time advisories for aviation to consider employing computationally efficient online dispersal models.
Assessment of wind energy potential in Poland
NASA Astrophysics Data System (ADS)
Starosta, Katarzyna; Linkowska, Joanna; Mazur, Andrzej
2014-05-01
The aim of the presentation is to show the suitability of using numerical model wind speed forecasts for the wind power industry applications in Poland. In accordance with the guidelines of the European Union, the consumption of wind energy in Poland is rapidly increasing. According to the report of Energy Regulatory Office from 30 March 2013, the installed capacity of wind power in Poland was 2807MW from 765 wind power stations. Wind energy is strongly dependent on the meteorological conditions. Based on the climatological wind speed data, potential energy zones within the area of Poland have been developed (H. Lorenc). They are the first criterion for assessing the location of the wind farm. However, for exact monitoring of a given wind farm location the prognostic data from numerical model forecasts are necessary. For the practical interpretation and further post-processing, the verification of the model data is very important. Polish Institute Meteorology and Water Management - National Research Institute (IMWM-NRI) runs an operational model COSMO (Consortium for Small-scale Modelling, version 4.8) using two nested domains at horizontal resolutions of 7 km and 2.8 km. The model produces 36 hour and 78 hour forecasts from 00 UTC, for 2.8 km and 7 km domain resolutions respectively. Numerical forecasts were compared with the observation of 60 SYNOP and 3 TEMP stations in Poland, using VERSUS2 (Unified System Verification Survey 2) and R package. For every zone the set of statistical indices (ME, MAE, RMSE) was calculated. Forecast errors for aerological profiles are shown for Polish TEMP stations at Wrocław, Legionowo and Łeba. The current studies are connected with a topic of the COST ES1002 WIRE-Weather Intelligence for Renewable Energies.
Chemical weather forecasting for the Yangtze River Delta
NASA Astrophysics Data System (ADS)
Xie, Y.; Xu, J.; Zhou, G.; Chang, L.; Chen, B.
2016-12-01
Shanghai is one of the largest megacities in the world. With rapid economic growth of the city and its surrounding areas in recent years, air pollution has posed adverse effects on public health and ecosystem. In winter heavy pollution episodes are often associated with PM exceedances under stagnant conditions or transport events, whereas in summer the region frequently experiences elevated O3 levels. Chemical weather prediction systems with the WRF-Chem and CMAQ models are being developed to support air quality and haze forecasting for Shanghai and the Yangtze River Delta region. We will present main components of the modeling system, forecasting products, as well as evaluation results. Evaluation of the WRF-Chem forecasts show the model has generally good ability to capture the temporal variations of O3 and PM2.5. Substantial regional differences exist, with the best performance in Shanghai. Meanwhile, the forecasts tend to degrade during highly polluted episodes and transitional time periods, which highlights the need to improve model representation of key process (e.g. meteorological fields and formation of secondary pollutants). Recent work includes using the ECMWF global model forecasts as chemical boundary conditions for our regional model. We investigate the impact of chemical downscaling, and also compare the results from different models participated in the PANDA (PArtnership with chiNa on space Data) project. Results from ongoing efforts (e.g. chemical weather forecasting driven by SMS regional high resolution NWP) will also be presented.
Effect of Streamflow Forecast Uncertainty on Real-Time Reservoir Operation
NASA Astrophysics Data System (ADS)
Zhao, T.; Cai, X.; Yang, D.
2010-12-01
Various hydrological forecast products have been applied to real-time reservoir operation, including deterministic streamflow forecast (DSF), DSF-based probabilistic streamflow forecast (DPSF), and ensemble streamflow forecast (ESF), which represent forecast uncertainty in the form of deterministic forecast error, deterministic forecast error-based uncertainty distribution, and ensemble forecast errors, respectively. Compared to previous studies that treat these forecast products as ad hoc inputs for reservoir operation models, this paper attempts to model the uncertainties involved in the various forecast products and explores their effect on real-time reservoir operation decisions. In hydrology, there are various indices reflecting the magnitude of streamflow forecast uncertainty; meanwhile, few models illustrate the forecast uncertainty evolution process. This research introduces Martingale Model of Forecast Evolution (MMFE) from supply chain management and justifies its assumptions for quantifying the evolution of uncertainty in streamflow forecast as time progresses. Based on MMFE, this research simulates the evolution of forecast uncertainty in DSF, DPSF, and ESF, and applies the reservoir operation models (dynamic programming, DP; stochastic dynamic programming, SDP; and standard operation policy, SOP) to assess the effect of different forms of forecast uncertainty on real-time reservoir operation. Through a hypothetical single-objective real-time reservoir operation model, the results illustrate that forecast uncertainty exerts significant effects. Reservoir operation efficiency, as measured by a utility function, decreases as the forecast uncertainty increases. Meanwhile, these effects also depend on the type of forecast product being used. In general, the utility of reservoir operation with ESF is nearly as high as the utility obtained with a perfect forecast; the utilities of DSF and DPSF are similar to each other but not as efficient as ESF. Moreover, streamflow variability and reservoir capacity can change the magnitude of the effects of forecast uncertainty, but not the relative merit of DSF, DPSF, and ESF. Schematic diagram of the increase in forecast uncertainty with forecast lead-time and the dynamic updating property of real-time streamflow forecast
NASA Astrophysics Data System (ADS)
Dugar, Sumit; Smith, Paul; Parajuli, Binod; Khanal, Sonu; Brown, Sarah; Gautam, Dilip; Bhandari, Dinanath; Gurung, Gehendra; Shakya, Puja; Kharbuja, RamGopal; Uprety, Madhab
2017-04-01
Operationalising effective Flood Early Warning Systems (EWS) in developing countries like Nepal poses numerous challenges, with complex topography and geology, sparse network of river and rainfall gauging stations and diverse socio-economic conditions. Despite these challenges, simple real-time monitoring based EWSs have been in place for the past decade. A key constraint of these simple systems is the very limited lead time for response - as little as 2-3 hours, especially for rivers originating from steep mountainous catchments. Efforts to increase lead time for early warning are focusing on imbedding forecasts into the existing early warning systems. In 2016, the Nepal Department of Hydrology and Meteorology (DHM) piloted an operational Probabilistic Flood Forecasting Model in major river basins across Nepal. This comprised a low data approach to forecast water levels, developed jointly through a research/practitioner partnership with Lancaster University and WaterNumbers (UK) and the International NGO Practical Action. Using Data-Based Mechanistic Modelling (DBM) techniques, the model assimilated rainfall and water levels to generate localised hourly flood predictions, which are presented as probabilistic forecasts, increasing lead times from 2-3 hours to 7-8 hours. The Nepal DHM has simultaneously started utilizing forecasts from the Global Flood Awareness System (GLoFAS) that provides streamflow predictions at the global scale based upon distributed hydrological simulations using numerical ensemble weather forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts). The aforementioned global and local models have already affected the approach to early warning in Nepal, being operational during the 2016 monsoon in the West Rapti basin in Western Nepal. On 24 July 2016, GLoFAS hydrological forecasts for the West Rapti indicated a sharp rise in river discharge above 1500 m3/sec (equivalent to the river warning level at 5 meters) with 53% probability of exceeding the Medium Level Alert in two days. Rainfall stations upstream of the West Rapti catchment recorded heavy rainfall on 26 July, and localized forecasts from the probabilistic model at 8 am suggested that the water level would cross a pre-determined warning level in the next 3 hours. The Flood Forecasting Section at DHM issued a flood advisory, and disseminated SMS flood alerts to more than 13,000 at-risk people residing along the floodplains. Water levels crossed the danger threshold (5.4 meters) at 11 am, peaking at 8.15 meters at 10 pm. Extension of the warning lead time from probabilistic forecasts was significant in minimising the risk to lives and livelihoods as communities gained extra time to prepare, evacuate and respond. Likewise, longer timescale forecasts from GLoFAS could be potentially linked with no-regret early actions leading to improved preparedness and emergency response. These forecasting tools have contributed to enhance the effectiveness and efficiency of existing community based systems, increasing the lead time for response. Nevertheless, extensive work is required on appropriate ways to interpret and disseminate probabilistic forecasts having longer (2-14 days) and shorter (3-5 hours) time horizon for operational deployment as there are numerous uncertainties associated with predictions.
NASA Astrophysics Data System (ADS)
Morin, C.; Quattrochi, D. A.; Zavodsky, B.; Case, J.
2015-12-01
Dengue fever (DF) is an important mosquito transmitted disease that is strongly influenced by meteorological and environmental conditions. Recent research has focused on forecasting DF case numbers based on meteorological data. However, these forecasting tools have generally relied on empirical models that require long DF time series to train. Additionally, their accuracy has been tested retrospectively, using past meteorological data. Consequently, the operational utility of the forecasts are still in question because the error associated with weather and climate forecasts are not reflected in the results. Using up-to-date weekly dengue case numbers for model parameterization and weather forecast data as meteorological input, we produced weekly forecasts of DF cases in San Juan, Puerto Rico. Each week, the past weeks' case counts were used to re-parameterize a process-based DF model driven with updated weather forecast data to generate forecasts of DF case numbers. Real-time weather forecast data was produced using the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) system enhanced using additional high-resolution NASA satellite data. This methodology was conducted in a weekly iterative process with each DF forecast being evaluated using county-level DF cases reported by the Puerto Rico Department of Health. The one week DF forecasts were accurate especially considering the two sources of model error. First, weather forecasts were sometimes inaccurate and generally produced lower than observed temperatures. Second, the DF model was often overly influenced by the previous weeks DF case numbers, though this phenomenon could be lessened by increasing the number of simulations included in the forecast. Although these results are promising, we would like to develop a methodology to produce longer range forecasts so that public health workers can better prepare for dengue epidemics.
NASA Astrophysics Data System (ADS)
Escriba, P. A.; Callado, A.; Santos, D.; Santos, C.; Simarro, J.; García-Moya, J. A.
2009-09-01
At 00 UTC 24 January 2009 an explosive ciclogenesis originated over the Atlantic Ocean reached its maximum intensity with observed surface pressures lower than 970 hPa on its center and placed at Gulf of Vizcaya. During its path through southern France this low caused strong westerly and north-westerly winds over the Iberian Peninsula higher than 150 km/h at some places. These extreme winds leaved 10 casualties in Spain, 8 of them in Catalonia. The aim of this work is to show whether exists an added value in the short range prediction of the 24 January 2009 strong winds when using the Short Range Ensemble Prediction System (SREPS) of the Spanish Meteorological Agency (AEMET), with respect to the operational forecasting tools. This study emphasizes two aspects of probabilistic forecasting: the ability of a 3-day forecast of warn an extreme windy event and the ability of quantifying the predictability of the event so that giving value to deterministic forecast. Two type of probabilistic forecasts of wind are carried out, a non-calibrated and a calibrated one using Bayesian Model Averaging (BMA). AEMET runs daily experimentally SREPS twice a day (00 and 12 UTC). This system consists of 20 members that are constructed by integrating 5 local area models, COSMO (COSMO), HIRLAM (HIRLAM Consortium), HRM (DWD), MM5 (NOAA) and UM (UKMO), at 25 km of horizontal resolution. Each model uses 4 different initial and boundary conditions, the global models GFS (NCEP), GME (DWD), IFS (ECMWF) and UM. By this way it is obtained a probabilistic forecast that takes into account the initial, the contour and the model errors. BMA is a statistical tool for combining predictive probability functions from different sources. The BMA predictive probability density function (PDF) is a weighted average of PDFs centered on the individual bias-corrected forecasts. The weights are equal to posterior probabilities of the models generating the forecasts and reflect the skill of the ensemble members. Here BMA is applied to provide probabilistic forecasts of wind speed. In this work several forecasts for different time ranges (H+72, H+48 and H+24) of 10 meters wind speed over Catalonia are verified subjectively at one of the instants of maximum intensity, 12 UTC 24 January 2009. On one hand, three probabilistic forecasts are compared, ECMWF EPS, non-calibrated SREPS and calibrated SREPS. On the other hand, the relationship between predictability and skill of deterministic forecast is studied by looking at HIRLAM 0.16 deterministic forecasts of the event. Verification is focused on location and intensity of 10 meters wind speed and 10-minutal measures from AEMET automatic ground stations are used as observations. The results indicate that SREPS is able to forecast three days ahead mean winds higher than 36 km/h and that correctly localizes them with a significant probability of ocurrence in the affected area. The probability is higher after BMA calibration of the ensemble. The fact that probability of strong winds is high allows us to state that the predictability of the event is also high and, as a consequence, deterministic forecasts are more reliable. This is confirmed when verifying HIRLAM deterministic forecasts against observed values.
Weather Avoidance Guidelines for NASA Global Hawk High-Altitude UAS
NASA Technical Reports Server (NTRS)
Cecil, Daniel J.; Zipser, Edward J.; Velden, Chris; Monette, Sarah; Heymsfield, Gerry; Braun, Scott; Newman, Paul; Black, Pete; Black, Michael; Dunion, Jason
2014-01-01
NASA operates two Global Hawk unmanned aircraft systems for Earth Science research projects. In particular, they are used in the Hurricane and Severe Storm Sentinel (HS3) project during 2012, 2013, and 2014 to take measurements from the environment around tropical cyclones, and from directly above tropical cyclones. There is concern that strict adherence to the weather avoidance rules used in 2012 may sacrifice the ability to observe important science targets. We have proposed modifications to these weather avoidance rules that we believe will improve the ability to observe science targets without compromising aircraft safety. The previous guidelines, used in 2012, specified: Do not approach thunderstorms within 25 nm during flight at FL500 or below. When flying above FL500: Do not approach reported lightning within 25NM in areas where cloud tops are reported at FL500 or higher. Aircraft should maintain at least 10000 ft vertical separation from reported lightning if cloud tops are below FL500. No over-flight of cumulus tops higher than FL500. No flight into forecast or reported icing conditions. No flight into forecast or reported moderate or severe turbulence Based on past experience with high-altitude flights over tropical cyclones, we have recommended changing this guidance to: Do not approach thunderstorms within 25 nm during flight at FL500 or below. Aircraft should maintain at least 5000 ft vertical separation from significant convective cloud tops except: a) When cloud tops above FL500: In the event of reported significant lightning activity or indicators of significant overshooting tops, do not approach within 10-25 nm, depending on pilot discretion and advice from Mission Scientist. b) When cloud tops are below FL500, maintain 10000 ft separation from reported significant lightning or indicators of significant overshooting tops. No flight into forecasted or reported icing conditions. No flight into forecasted or reported moderate or severe turbulence The key changes have to do with overflight of high convective cloud tops and those producing lightning. Experience shows that most tropical oceanic convection (including that in tropical cyclones) is relatively gentle even if the cloud tops are quite high, and can be safely overflown. Exceptions are convective elements producing elevated lightning flash rates (more than just the occasional flash, which would trigger avoidance under the previous rules) and significant overshooting cloud tops.
Verification of an ensemble prediction system for storm surge forecast in the Adriatic Sea
NASA Astrophysics Data System (ADS)
Mel, Riccardo; Lionello, Piero
2014-12-01
In the Adriatic Sea, storm surges present a significant threat to Venice and to the flat coastal areas of the northern coast of the basin. Sea level forecast is of paramount importance for the management of daily activities and for operating the movable barriers that are presently being built for the protection of the city. In this paper, an EPS (ensemble prediction system) for operational forecasting of storm surge in the northern Adriatic Sea is presented and applied to a 3-month-long period (October-December 2010). The sea level EPS is based on the HYPSE (hydrostatic Padua Sea elevation) model, which is a standard single-layer nonlinear shallow water model, whose forcings (mean sea level pressure and surface wind fields) are provided by the ensemble members of the ECMWF (European Center for Medium-Range Weather Forecasts) EPS. Results are verified against observations at five tide gauges located along the Croatian and Italian coasts of the Adriatic Sea. Forecast uncertainty increases with the predicted value of the storm surge and with the forecast lead time. The EMF (ensemble mean forecast) provided by the EPS has a rms (root mean square) error lower than the DF (deterministic forecast), especially for short (up to 3 days) lead times. Uncertainty for short lead times of the forecast and for small storm surges is mainly caused by uncertainty of the initial condition of the hydrodynamical model. Uncertainty for large lead times and large storm surges is mainly caused by uncertainty in the meteorological forcings. The EPS spread increases with the rms error of the forecast. For large lead times the EPS spread and the forecast error substantially coincide. However, the EPS spread in this study, which does not account for uncertainty in the initial condition, underestimates the error during the early part of the forecast and for small storm surge values. On the contrary, it overestimates the rms error for large surge values. The PF (probability forecast) of the EPS has a clear skill in predicting the actual probability distribution of sea level, and it outperforms simple "dressed" PF methods. A probability estimate based on the single DF is shown to be inadequate. However, a PF obtained with a prescribed Gaussian distribution and centered on the DF value performs very similarly to the EPS-based PF.
NASA Astrophysics Data System (ADS)
Federico, Ivan; Oddo, Paolo; Pinardi, Nadia; Coppini, Giovanni
2014-05-01
The Southern Adriatic Northern Ionian Forecasting System (SANIFS) operational chain is based on a nesting approach. The large scale model for the entire Mediterranean basin (MFS, Mediterranean Forecasting system, operated by INGV, e.g. Tonani et al. 2008, Oddo et al. 2009) provides lateral open boundary conditions to the regional model for Adriatic and Ionian seas (AIFS, Adriatic Ionian Forecasting System) which provides the open-sea fields (initial conditions and lateral open boundary conditions) to SANIFS. The latter, here presented, is a coastal ocean model based on SHYFEM (Shallow HYdrodynamics Finite Element Model) code, which is an unstructured grid, finite element three-dimensional hydrodynamic model (e.g. Umgiesser et al., 2004, Ferrarin et al., 2013). The SANIFS hydrodynamic model component has been designed to provide accurate information of hydrodynamics and active tracer fields in the coastal waters of Southern Eastern Italy (Apulia, Basilicata and Calabria regions), where the model is characterized by a resolution of about of 200-500 m. The horizontal resolution is also accurate in open-sea areas, where the elements size is approximately 3 km. During the development phase the model has been initialized and forced at the lateral open boundaries through a full nesting strategy directly with the MFS fields. The heat fluxes has been computed by bulk formulae using as input data the operational analyses of European Centre for Medium-Range Weather Forecasts. Short range pre-operational forecast tests have been performed in different seasons to evaluate the robustness of the implemented model in different oceanographic conditions. Model results are validated by means of comparison with MFS operational results and observations. The model is able to reproduce the large-scale oceanographic structures of the area (keeping similar structures of MFS in open sea), while in the coastal area significant improvements in terms of reproduced structures and dynamics are evident.
NASA Astrophysics Data System (ADS)
Wood, E. F.; Yuan, X.; Sheffield, J.; Pan, M.; Roundy, J.
2013-12-01
One of the key recommendations of the WCRP Global Drought Information System (GDIS) workshop is to develop an experimental real-time global monitoring and prediction system. While great advances has been made in global drought monitoring based on satellite observations and model reanalysis data, global drought forecasting has been stranded in part due to the limited skill both in climate forecast models and global hydrologic predictions. Having been working on drought monitoring and forecasting over USA for more than a decade, the Princeton land surface hydrology group is now developing an experimental global drought early warning system that is based on multiple climate forecast models and a calibrated global hydrologic model. In this presentation, we will test its capability in seasonal forecasting of meteorological, agricultural and hydrologic droughts over global major river basins, using precipitation, soil moisture and streamflow forecasts respectively. Based on the joint probability distribution between observations using Princeton's global drought monitoring system and model hindcasts and real-time forecasts from North American Multi-Model Ensemble (NMME) project, we (i) bias correct the monthly precipitation and temperature forecasts from multiple climate forecast models, (ii) downscale them to a daily time scale, and (iii) use them to drive the calibrated VIC model to produce global drought forecasts at a 1-degree resolution. A parallel run using the ESP forecast method, which is based on resampling historical forcings, is also carried out for comparison. Analysis is being conducted over global major river basins, with multiple drought indices that have different time scales and characteristics. The meteorological drought forecast does not have uncertainty from hydrologic models and can be validated directly against observations - making the validation an 'apples-to-apples' comparison. Preliminary results for the evaluation of meteorological drought onset hindcasts indicate that climate models increase drought detectability over ESP by 31%-81%. However, less than 30% of the global drought onsets can be detected by climate models. The missed drought events are associated with weak ENSO signals and lower potential predictability. Due to the high false alarms from climate models, the reliability is more important than sharpness for a skillful probabilistic drought onset forecast. Validations and skill assessments for agricultural and hydrologic drought forecasts are carried out using soil moisture and streamflow output from the VIC land surface model (LSM) forced by a global forcing data set. Given our previous drought forecasting experiences over USA and Africa, validating the hydrologic drought forecasting is a significant challenge for a global drought early warning system.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Mungai, John; Sakwa, Vincent; Kabuchanga, Eric; Zavodsky, Bradley T.; Limaye, Ashutosh S.
2014-01-01
SPoRT/SERVIR/RCMRD/KMS Collaboration: Builds off strengths of each organization. SPoRT: Transition of satellite, modeling and verification capabilities; SERVIR-Africa/RCMRD: International capacity-building expertise; KMS: Operational organization with regional weather forecasting expertise in East Africa. Hypothesis: Improved land-surface initialization over Eastern Africa can lead to better temperature, moisture, and ultimately precipitation forecasts in NWP models. KMS currently initializes Weather Research and Forecasting (WRF) model with NCEP/Global Forecast System (GFS) model 0.5-deg initial / boundary condition data. LIS will provide much higher-resolution land-surface data at a scale more representative to regional WRF configuration. Future implementation of real-time NESDIS/VIIRS vegetation fraction to further improve land surface representativeness.
The value of information as applied to the Landsat Follow-on benefit-cost analysis
NASA Technical Reports Server (NTRS)
Wood, D. B.
1978-01-01
An econometric model was run to compare the current forecasting system with a hypothetical (Landsat Follow-on) space-based system. The baseline current system was a hybrid of USDA SRS domestic forecasts and the best known foreign data. The space-based system improved upon the present Landsat by the higher spatial resolution capability of the thematic mapper. This satellite system is a major improvement for foreign forecasts but no better than SRS for domestic forecasts. The benefit analysis was concentrated on the use of Landsat Follow-on to forecast world wheat production. Results showed that it was possible to quantify the value of satellite information and that there are significant benefits in more timely and accurate crop condition information.
NASA Astrophysics Data System (ADS)
Speciale, A.; Kenney, M. A.; Gerst, M.; Baer, A. E.; DeWitt, D.; Gottschalk, J.; Handel, S.
2017-12-01
The uncertainty of future weather and climate conditions is important for many decisions made in communities and economic sectors. One tool that decision-makers use in gauging this uncertainty is forecasts, especially maps (or visualizations) of probabilistic forecast results. However, visualizing geospatial uncertainty is challenging because including probability introduces an extra variable to represent and probability is often poorly understood by users. Using focus group and survey methods, this study seeks to understand the barriers to using probabilistic temperature and precipitation visualizations for specific decisions in the agriculture, energy, emergency management, and water resource sectors. Preliminary results shown here focus on findings of emergency manager needs. Our experimental design uses National Oceanic and Atmospheric Administration (NOAA's) Climate Prediction Center (CPC) climate outlooks, which produce probabilistic temperature and precipitation forecast visualizations at the 6-10 day, 8-14 day, 3-4 week, and 1 and 3 month timeframes. Users were asked to complete questions related to how they use weather information, how uncertainty is represented, and design elements (e.g., color, contour lines) of the visualizations. Preliminary results from the emergency management sector indicate there is significant confusion on how "normal" weather is defined, boundaries between probability ranges, and meaning of the contour lines. After a complete understandability diagnosis is made using results from all sectors, we will collaborate with CPC to suggest modifications to the climate outlook visualizations. These modifications will then be retested in similar focus groups and web-based surveys to confirm they better meet the needs of users.
What Fraction of Global Fire Activity Can Be Forecast Using Sea Surface Temperatures?
NASA Astrophysics Data System (ADS)
Chen, Y.; Randerson, J. T.; Morton, D. C.; Andela, N.; Giglio, L.
2015-12-01
Variations in sea surface temperatures (SSTs) can influence climate dynamics in local and remote land areas, and thus influence fire-climate interactions that govern burned area. SST information has been recently used in statistical models to create seasonal outlooks of fire season severity in South America and as the initial condition for dynamical model predictions of fire activity in Indonesia. However, the degree to which large-scale ocean-atmosphere interactions can influence burned area in other continental regions has not been systematically explored. Here we quantified the amount of global burned area that can be predicted using SSTs in 14 different oceans regions as statistical predictors. We first examined lagged correlations between GFED4s burned area and the 14 ocean climate indices (OCIs) individually. The maximum correlations from different OCIs were used to construct a global map of fire predictability. About half of the global burned area can be forecast by this approach 3 months before the peak burning month (with a Pearson's r of 0.5 or higher), with the highest levels of predictability in Central America and Equatorial Asia. Several hotspots of predictability were identified using k-means cluster analysis. Within these regions, we tested the improvements of the forecast by using two OCIs from different oceans. Our forecast models were based on near-real-time SST data and may therefore support the development of new seasonal outlooks for fire activity that can aid the sustainable management of these fire-prone ecosystems.
How Clean is your Local Air? Here's an app for that
NASA Astrophysics Data System (ADS)
Maskey, M.; Yang, E.; Christopher, S. A.; Keiser, K.; Nair, U. S.; Graves, S. J.
2011-12-01
Air quality is a vital element of our environment. Accurate and localized air quality information is critical for characterizing environmental impacts at the local and regional levels. Advances in location-aware handheld devices and air quality modeling have enabled a group of UAHuntsville scientists to develop a mobile app, LocalAQI, that informs users of current conditions and forecasts of up to twenty-four hours, of air quality indices. The air quality index is based on Community Multiscale Air Quality Modeling System (CMAQ). UAHuntsville scientists have used satellite remote sensing products as inputs to CMAQ, resulting in forecast guidance for particulate matter air quality. The CMAQ output is processed to compute a standardized air quality index. Currently, the air quality index is available for the eastern half of the United States. LocalAQI consists of two main views: air quality index view and map view. The air quality index view displays current air quality for the zip code of a location of interest. Air quality index value is translated into a color-coded advisory system. In addition, users are able to cycle through available hourly forecasts for a location. This location-aware app defaults to the current air quality of user's location. The map view displays color-coded air quality information for the eastern US with an ability to animate through the available forecasts. The app is developed using a cross-platform native application development tool, appcelerator; hence LocalAQI is available for iOS and Android-based phones and pads.
This study presents the first evaluation of the performance of the Eta-CMAQ air quality forecast model to predict a variety of widely used seasonal mean and cumulative O3 exposure indices associated with vegetation using the U.S. AIRNow O3 observations.
Climate forecasting services: coming down from the ivory tower
NASA Astrophysics Data System (ADS)
Doblas-Reyes, F. J.; Caron, L. P.; Cortesi, N.; Soret, A.; Torralba, V.; Turco, M.; González Reviriego, N.; Jiménez, I.; Terrado, M.
2016-12-01
Subseasonal-to-seasonal (S2S) climate forecasts are increasingly used across a range of application areas (energy, water management, agriculture, health, insurance) through tailored services using the climate services paradigm. In this contribution we show the value of climate forecasting services through several examples of their application in the energy, reinsurance and agriculture sectors. Climate services aim at making climate information action oriented. In a climate forecasting context the task starts with the identification of climate variables, thresholds and events relevant to the users. These elements are then analysed to determine whether they can be both reliably and skilfully predicted at appropriate time scales. In this contribution we assess climate predictions of precipitation, temperature and wind indices from state-of-the-art operational multi-model forecast systems and if they respond to the expectations and requests from a range of users. This requires going beyond the more traditional assessment of monthly mean values to include assessments of global forecast quality of the frequency of warm, cold, windy and wet extremes (e.g. [1], [2]), as well as of using tools like the Euro-Atlantic weather regimes [3]. The forecast quality of extremes is generally similar to or slightly lower than that of monthly or seasonal averages, but offers a kind of information closer to what some users require. In addition to considering local climate variables, we also explore the use of large-scale climate indices, such as ENSO and NAO, that are associated with large regional synchronous variations of wind or tropical storm frequency. These indices help illustrating the relative merits of climate forecast information to users and are the cornerstone of climate stories that engage them in the co-production of climate information. [1] Doblas-Reyes et al, WIREs, 2013 [2] Pepler et al, Weather and Climate Extremes, 2015 [3] Pavan and Doblas-Reyes, Clim Dyn, 2013
On the reliability of seasonal climate forecasts
Weisheimer, A.; Palmer, T. N.
2014-01-01
Seasonal climate forecasts are being used increasingly across a range of application sectors. A recent UK governmental report asked: how good are seasonal forecasts on a scale of 1–5 (where 5 is very good), and how good can we expect them to be in 30 years time? Seasonal forecasts are made from ensembles of integrations of numerical models of climate. We argue that ‘goodness’ should be assessed first and foremost in terms of the probabilistic reliability of these ensemble-based forecasts; reliable inputs are essential for any forecast-based decision-making. We propose that a ‘5’ should be reserved for systems that are not only reliable overall, but where, in particular, small ensemble spread is a reliable indicator of low ensemble forecast error. We study the reliability of regional temperature and precipitation forecasts of the current operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts, universally regarded as one of the world-leading operational institutes producing seasonal climate forecasts. A wide range of ‘goodness’ rankings, depending on region and variable (with summer forecasts of rainfall over Northern Europe performing exceptionally poorly) is found. Finally, we discuss the prospects of reaching ‘5’ across all regions and variables in 30 years time. PMID:24789559
Future sea ice conditions and weather forecasts in the Arctic: Implications for Arctic shipping.
Gascard, Jean-Claude; Riemann-Campe, Kathrin; Gerdes, Rüdiger; Schyberg, Harald; Randriamampianina, Roger; Karcher, Michael; Zhang, Jinlun; Rafizadeh, Mehrad
2017-12-01
The ability to forecast sea ice (both extent and thickness) and weather conditions are the major factors when it comes to safe marine transportation in the Arctic Ocean. This paper presents findings focusing on sea ice and weather prediction in the Arctic Ocean for navigation purposes, in particular along the Northeast Passage. Based on comparison with the observed sea ice concentrations for validation, the best performing Earth system models from the Intergovernmental Panel on Climate Change (IPCC) program (CMIP5-Coupled Model Intercomparison Project phase 5) were selected to provide ranges of potential future sea ice conditions. Our results showed that, despite a general tendency toward less sea ice cover in summer, internal variability will still be large and shipping along the Northeast Passage might still be hampered by sea ice blocking narrow passages. This will make sea ice forecasts on shorter time and space scales and Arctic weather prediction even more important.
Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA
NASA Technical Reports Server (NTRS)
Dreher, Joseph; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry
2008-01-01
The peak winds near the surface are an important forecast element for Space Shuttle landings. As defined in the Shuttle Flight Rules (FRs), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMTJ) developed a personal computer based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak-wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center. However, the shuttle must land at Edwards Air Force Base (EAFB) in southern California when weather conditions at Kennedy Space Center in Florida are not acceptable, so SMG forecasters requested that a similar tool be developed for EAFB. Marshall Space Flight Center (MSFC) personnel archived and performed quality control of 2-minute average and 10-minute peak wind speeds at each tower adjacent to the main runway at EAFB from 1997- 2004. They calculated wind climatologies and probabilities of average peak wind occurrence based on the average speed. The climatologies were calculated for each tower and month, and were stratified by hour, direction, and direction/hour. For the probabilities of peak wind occurrence, MSFC calculated empirical and modeled probabilities of meeting or exceeding specific 10-minute peak wind speeds using probability density functions. The AMU obtained and reformatted the data into Microsoft Excel PivotTables, which allows users to display different values with point-click-drag techniques. The GUT was then created from the PivotTables using Visual Basic for Applications code. The GUI is run through a macro within Microsoft Excel and allows forecasters to quickly display and interpret peak wind climatology and likelihoods in a fast-paced operational environment. A summary of how the peak wind climatologies and probabilities were created and an overview of the GUT will be presented.
Surface wave effect on the upper ocean in marine forecast
NASA Astrophysics Data System (ADS)
Wang, Guansuo; Qiao, Fangli; Xia, Changshui; Zhao, Chang
2015-04-01
An Operational Coupled Forecast System for the seas off China and adjacent (OCFS-C) is constructed based on the paralleled wave-circulation coupled model, which is tested with comprehensive experiments and operational since November 1st, 2007. The main feature of the system is that the wave-induced mixing is considered in circulation model. Daily analyses and three day forecasts of three-dimensional temperature, salinity, currents and wave height are produced. Coverage is global at 1/2 degreed resolution with nested models up to 1/24 degree resolution in China Sea. Daily remote sensing sea surface temperatures (SST) are taken to relax to an analytical product as hot restarting fields for OCFS-C by the Nudging techniques. Forecasting-data inter-comparisons are performed to measure the effectiveness of OCFS-C in predicting upper-ocean quantities including SST, mixed layer depth (MLD) and subsurface temperature. The variety of performance with lead time and real-time is discussed as well using the daily statistic results for SST between forecast and satellite data. Several buoy observations and many Argo profiles are used for this validation. Except the conventional statistical metrics, non-dimension skill scores (SS) is taken to estimate forecast skill. Model SST comparisons with more one year-long SST time series from 2 buoys given a large SS value (more than 0.90). And skill in predicting the seasonal variability of SST is confirmed. Model subsurface temperature comparisons with that from a lot of Argo profiles indicated that OCFS-C has low skill in predicting subsurface temperatures between 80m and 120m. Inter-comparisons of MLD reveal that MLD from model is shallower than that from Argo profiles by about 12m. QCFS-C is successful and steady in predicting MLD. The daily statistic results for SST between 1-d, 2-d and 3-d forecast and data is adopted to describe variability of Skill in predicting SST with lead time or real time. In a word QCFS-C shows reasonable accuracy over a series of studies designed to test ability to predict upper ocean conditions.
Fuzzy State Transition and Kalman Filter Applied in Short-Term Traffic Flow Forecasting
Ming-jun, Deng; Shi-ru, Qu
2015-01-01
Traffic flow is widely recognized as an important parameter for road traffic state forecasting. Fuzzy state transform and Kalman filter (KF) have been applied in this field separately. But the studies show that the former method has good performance on the trend forecasting of traffic state variation but always involves several numerical errors. The latter model is good at numerical forecasting but is deficient in the expression of time hysteretically. This paper proposed an approach that combining fuzzy state transform and KF forecasting model. In considering the advantage of the two models, a weight combination model is proposed. The minimum of the sum forecasting error squared is regarded as a goal in optimizing the combined weight dynamically. Real detection data are used to test the efficiency. Results indicate that the method has a good performance in terms of short-term traffic forecasting. PMID:26779258
Fuzzy State Transition and Kalman Filter Applied in Short-Term Traffic Flow Forecasting.
Deng, Ming-jun; Qu, Shi-ru
2015-01-01
Traffic flow is widely recognized as an important parameter for road traffic state forecasting. Fuzzy state transform and Kalman filter (KF) have been applied in this field separately. But the studies show that the former method has good performance on the trend forecasting of traffic state variation but always involves several numerical errors. The latter model is good at numerical forecasting but is deficient in the expression of time hysteretically. This paper proposed an approach that combining fuzzy state transform and KF forecasting model. In considering the advantage of the two models, a weight combination model is proposed. The minimum of the sum forecasting error squared is regarded as a goal in optimizing the combined weight dynamically. Real detection data are used to test the efficiency. Results indicate that the method has a good performance in terms of short-term traffic forecasting.
How do I know if I’ve improved my continental scale flood early warning system?
NASA Astrophysics Data System (ADS)
Cloke, Hannah L.; Pappenberger, Florian; Smith, Paul J.; Wetterhall, Fredrik
2017-04-01
Flood early warning systems mitigate damages and loss of life and are an economically efficient way of enhancing disaster resilience. The use of continental scale flood early warning systems is rapidly growing. The European Flood Awareness System (EFAS) is a pan-European flood early warning system forced by a multi-model ensemble of numerical weather predictions. Responses to scientific and technical changes can be complex in these computationally expensive continental scale systems, and improvements need to be tested by evaluating runs of the whole system. It is demonstrated here that forecast skill is not correlated with the value of warnings. In order to tell if the system has been improved an evaluation strategy is required that considers both forecast skill and warning value. The combination of a multi-forcing ensemble of EFAS flood forecasts is evaluated with a new skill-value strategy. The full multi-forcing ensemble is recommended for operational forecasting, but, there are spatial variations in the optimal forecast combination. Results indicate that optimizing forecasts based on value rather than skill alters the optimal forcing combination and the forecast performance. Also indicated is that model diversity and ensemble size are both important in achieving best overall performance. The use of several evaluation measures that consider both skill and value is strongly recommended when considering improvements to early warning systems.
NASA Astrophysics Data System (ADS)
Rodo, X.; Lowe, R.; Karczewska-Gibert, A.; Cazelles, B.
2013-12-01
Dengue is a peri-urban mosquito-transmitted disease, ubiquitous in the tropics and the subtropics. The geographic distribution of dengue and its more severe form, dengue haemorrhagic fever (DHF), have expanded dramatically in the last decades and dengue is now considered to be the world's most important arboviral disease. Recent demographic changes have greatly contributed to the acceleration and spread of the disease along with uncontrolled urbanization, population growth and increased air travel, which acts as a mechanism for transporting and exchanging dengue viruses between endemic and epidemic populations. The dengue vector and virus are extremely sensitive to environmental conditions such as temperature, humidity and precipitation that influence mosquito biology, abundance and habitat and the virus replication speed. In order to control the spread of dengue and impede epidemics, decision support systems are required that take into account the multi-faceted array of factors that contribute to increased dengue risk. Due to availability of seasonal climate forecasts, that predict the average climate conditions for forthcoming months/seasons in both time and space, there is an opportunity to incorporate precursory climate information in a dengue decision support system to aid epidemic planning months in advance. Furthermore, oceanic indicators from teleconnected areas in the Pacific and Indian Ocean, that can provide some indication of the likely prevailing climate conditions in certain regions, could potentially extend predictive lead time in a dengue early warning system. In this paper we adopt a spatio-temporal Bayesian modelling framework for dengue in Thailand to support public health decision making. Monthly cases of dengue in the 76 provinces of Thailand for the period 1982-2012 are modelled using a multi-layered approach. Explanatory variables at various spatial and temporal resolutions are incorporated into a hierarchical model in order to make spatio-temporal probabilistic predictions of dengue. Potential risk factors considered include altitude, land cover, proximity to road/rail networks and water bodies, temperature and precipitation, oceanic indicators, intervention activities, air traffic volume, population movement, urbanisation and sanitation indicators. In order to quantify unknown or unmeasured dengue risk factors, we use spatio-temporal random effects in the model framework. This helps identify those available indicators which could significantly contribute to a dengue early warning system. We use this model to quantify the extent to which climate indicators can explain variations in dengue risk. This allows us to assess the potential utility of forecast climate information in a dengue decision support system for Thailand. Taking advantage of lead times of several months provided by climate forecasts, public health officials may be able to more efficiently allocate intervention measures, such as targeted vector control activities and provision of medication to deal with more deadly forms of the disease, well ahead of an imminent dengue epidemic.
Summertime Thunderstorms Prediction in Belarus
NASA Astrophysics Data System (ADS)
Lapo, Palina; Sokolovskaya, Yaroslava; Krasouski, Aliaksandr; Svetashev, Alexander; Turishev, Leonid; Barodka, Siarhei
2015-04-01
Mesoscale modeling with the Weather Research & Forecasting (WRF) system makes it possible to predict thunderstorm formation events by direct numerical simulation. In the present study, we analyze the feasibility and quality of thunderstorm prediction on the territory of Belarus for the summer period of 2014 based on analysis of several characteristic parameters in WRF modeling results that can serve as indicators of thunderstorms formation. These parameters include vertical velocity distribution, convective available potential energy (CAPE), K-index, SWEAT-index, Thompson index, lifted condensation level (LCL), and others, all of them being indicators of favorable atmospheric conditions for thunderstorms development. We perform mesoscale simulations of several cases of thunderstorm development in Belarus with WRF-ARW modeling system using 3 km grid spacing, WSM6 microphysics parameterization and explicit convection (no convective parameterization). Typical modeling duration makes 48 hours, which is equivalent to next-day thunderstorm prediction in operational use. We focus our attention to most prominent cases of intense thunderstorms in Minsk. For validation purposes, we use radar and satellite data in addition to surface observations. In summertime, the territory of Belarus is quite often under the influence of atmospheric fronts and stationary anticyclones. In this study, we subdivide thunderstorm cases under consideration into 2 categories: thunderstorms related to free convection and those related to forced convection processes. Our aim is to study the differences in thunderstorm indicator parameters between these two categories of thunderstorms in order to elaborate a set of parameters that can be used for operational thunderstorm forecasting. For that purpose, we analyze characteristic features of thunderstorms development on cold atmospheric fronts as well as thunderstorms formation in stable air masses. Modeling results demonstrate good predictive skill for thunderstorms development forecasting in summertime, which is even better in cases of atmospheric fronts passage. Integrated use of thunderstorm indicator parameters makes it possible to further improve the predictive skill.
NASA Technical Reports Server (NTRS)
Reynolds, David; Rasch, William; Kozlowski, Daniel; Burks, Jason; Zavodsky, Bradley; Bernardet, Ligia; Jankov, Isidora; Albers, Steve
2014-01-01
The Experimental Regional Ensemble Forecast (ExREF) system is a tool for the development and testing of new Numerical Weather Prediction (NWP) methodologies. ExREF is run in near-realtime by the Global Systems Division (GSD) of the NOAA Earth System Research Laboratory (ESRL) and its products are made available through a website, an ftp site, and via the Unidata Local Data Manager (LDM). The ExREF domain covers most of North America and has 9-km horizontal grid spacing. The ensemble has eight members, all employing WRF-ARW. The ensemble uses a variety of initial conditions from LAPS and the Global Forecasting System (GFS) and multiple boundary conditions from the GFS ensemble. Additionally, a diversity of physical parameterizations is used to increase ensemble spread and to account for the uncertainty in forecasting extreme precipitation events. ExREF has been a component of the Hydrometeorology Testbed (HMT) NWP suite in the 2012-2013 and 2013-2014 winters. A smaller domain covering just the West Coast was created to minimize band-width consumption for the NWS. This smaller domain has and is being distributed to the National Weather Service (NWS) Weather Forecast Office and California Nevada River Forecast Center in Sacramento, California, where it is ingested into the Advanced Weather Interactive Processing System (AWIPS I and II) to provide guidance on the forecasting of extreme precipitation events. This paper will review the cooperative effort employed by NOAA ESRL, NASA SPoRT (Short-term Prediction Research and Transition Center), and the NWS to facilitate the ingest and display of ExREF data utilizing the AWIPS I and II D2D and GFE (Graphical Software Editor) software. Within GFE is a very useful verification software package called BoiVer that allows the NWS to utilize the River Forecast Center's 4 km gridded QPE to compare with all operational NWP models 6-hr QPF along with the ExREF mean 6-hr QPF so the forecasters can build confidence in the use of the ExREF in preparing their rainfall forecasts. Preliminary results will be presented.
Uncertainty estimation of long-range ensemble forecasts of snowmelt flood characteristics
NASA Astrophysics Data System (ADS)
Kuchment, L.
2012-04-01
Long-range forecasts of snowmelt flood characteristics with the lead time of 2-3 months have important significance for regulation of flood runoff and mitigation of flood damages at almost all large Russian rivers At the same time, the application of current forecasting techniques based on regression relationships between the runoff volume and the indexes of river basin conditions can lead to serious errors in forecasting resulted in large economic losses caused by wrong flood regulation. The forecast errors can be caused by complicated processes of soil freezing and soil moisture redistribution, too high rate of snow melt, large liquid precipitation before snow melt. or by large difference of meteorological conditions during the lead-time periods from climatologic ones. Analysis of economic losses had shown that the largest damages could, to a significant extent, be avoided if the decision makers had an opportunity to take into account predictive uncertainty and could use more cautious strategies in runoff regulation. Development of methodology of long-range ensemble forecasting of spring/summer floods which is based on distributed physically-based runoff generation models has created, in principle, a new basis for improving hydrological predictions as well as for estimating their uncertainty. This approach is illustrated by forecasting of the spring-summer floods at the Vyatka River and the Seim River basins. The application of the physically - based models of snowmelt runoff generation give a essential improving of statistical estimates of the deterministic forecasts of the flood volume in comparison with the forecasts obtained from the regression relationships. These models had been used also for the probabilistic forecasts assigning meteorological inputs during lead time periods from the available historical daily series, and from the series simulated by using a weather generator and the Monte Carlo procedure. The weather generator consists of the stochastic models of daily temperature and precipitation. The performance of the probabilistic forecasts were estimated by the ranked probability skill scores. The application of Monte Carlo simulations using weather generator has given better results then using the historical meteorological series.
Space weather at Low Latitudes: Considerations to improve its forecasting
NASA Astrophysics Data System (ADS)
Chau, J. L.; Goncharenko, L.; Valladares, C. E.; Milla, M. A.
2013-05-01
In this work we present a summary of space weather events that are unique to low-latitude regions. Special emphasis will be devoted to events that occur during so-called quiet (magnetically) conditions. One of these events is the occurrence of nighttime F-region irregularities, also known Equatorial Spread F (ESF). When such irregularities occur navigation and communications systems get disrupted or perturbed. After more than 70 years of studies, many features of ESF irregularities (climatology, physical mechanisms, longitudinal dependence, time dependence, etc.) are well known, but so far they cannot be forecast on time scales of minutes to hours. We present a summary of some of these features and some of the efforts being conducted to contribute to their forecasting. In addition to ESF, we have recently identified a clear connection between lower atmospheric forcing and the low latitude variability, particularly during the so-called sudden stratospheric warming (SSW) events. During SSW events and magnetically quiet conditions, we have observed changes in total electron content (TEC) that are comparable to changes that occur during strong magnetically disturbed conditions. We present results from recent events as well as outline potential efforts to forecast the ionospheric effects during these events.
NASA Astrophysics Data System (ADS)
Jutla, A.; Akanda, A. S.; Colwell, R. R.
2014-12-01
Prediction of conditions of an impending disease outbreak remains a challenge but is achievable if the associated and appropriate large scale hydroclimatic process can be estimated in advance. Outbreaks of diarrheal diseases such as cholera, are related to episodic seasonal variability in river discharge in the regions where water and sanitation infrastructure are inadequate and insufficient. However, forecasting river discharge, few months in advance, remains elusive where cholera outbreaks are frequent, probably due to non-availability of geophysical data as well as transboundary water stresses. Here, we show that satellite derived water storage from Gravity Recovery and Climate Experiment Forecasting (GRACE) sensors can provide reliable estimates on river discharge atleast two months in advance over regional scales. Bayesian regression models predicted flooding and drought conditions, a prerequisite for cholera outbreaks, in Bengal Delta with an overall accuracy of 70% for upto 60 days in advance without using any other ancillary ground based data. Forecasting of river discharge will have significant impacts on planning and designing intervention strategies for potential cholera outbreaks in the coastal regions where the disease remain endemic and often fatal.
NASA Astrophysics Data System (ADS)
Efremenko, Vladimir; Belyaevsky, Roman; Skrebneva, Evgeniya
2017-11-01
In article the analysis of electric power consumption and problems of power saving on coal mines are considered. Nowadays the share of conditionally constant costs of electric power for providing safe working conditions underground on coal mines is big. Therefore, the power efficiency of underground coal mining depends on electric power expense of the main technological processes and size of conditionally constant costs. The important direction of increase of power efficiency of coal mining is forecasting of a power consumption and monitoring of electric power expense. One of the main approaches to reducing of electric power costs is increase in accuracy of the enterprise demand in the wholesale electric power market. It is offered to use artificial neural networks to forecasting of day-ahead power consumption with hourly breakdown. At the same time use of neural and indistinct (hybrid) systems on the principles of fuzzy logic, neural networks and genetic algorithms is more preferable. This model allows to do exact short-term forecasts at a small array of input data. A set of the input parameters characterizing mining-and-geological and technological features of the enterprise is offered.
Optimising seasonal streamflow forecast lead time for operational decision making in Australia
NASA Astrophysics Data System (ADS)
Schepen, Andrew; Zhao, Tongtiegang; Wang, Q. J.; Zhou, Senlin; Feikema, Paul
2016-10-01
Statistical seasonal forecasts of 3-month streamflow totals are released in Australia by the Bureau of Meteorology and updated on a monthly basis. The forecasts are often released in the second week of the forecast period, due to the onerous forecast production process. The current service relies on models built using data for complete calendar months, meaning the forecast production process cannot begin until the first day of the forecast period. Somehow, the bureau needs to transition to a service that provides forecasts before the beginning of the forecast period; timelier forecast release will become critical as sub-seasonal (monthly) forecasts are developed. Increasing the forecast lead time to one month ahead is not considered a viable option for Australian catchments that typically lack any predictability associated with snowmelt. The bureau's forecasts are built around Bayesian joint probability models that have antecedent streamflow, rainfall and climate indices as predictors. In this study, we adapt the modelling approach so that forecasts have any number of days of lead time. Daily streamflow and sea surface temperatures are used to develop predictors based on 28-day sliding windows. Forecasts are produced for 23 forecast locations with 0-14- and 21-day lead time. The forecasts are assessed in terms of continuous ranked probability score (CRPS) skill score and reliability metrics. CRPS skill scores, on average, reduce monotonically with increase in days of lead time, although both positive and negative differences are observed. Considering only skilful forecast locations, CRPS skill scores at 7-day lead time are reduced on average by 4 percentage points, with differences largely contained within +5 to -15 percentage points. A flexible forecasting system that allows for any number of days of lead time could benefit Australian seasonal streamflow forecast users by allowing more time for forecasts to be disseminated, comprehended and made use of prior to the commencement of a forecast season. The system would allow for forecasts to be updated if necessary.
Forecasting for a Remote Island: A Class Exercise.
NASA Astrophysics Data System (ADS)
Riordan, Allen J.
2003-06-01
Students enrolled in a satellite meteorology course at North Carolina State University, Raleigh, recently had an unusual opportunity to apply their forecast skills to predict wind and weather conditions for a remote site in the Southern Hemisphere. For about 40 days starting in early February 2001, students used satellite and model guidance to develop forecasts to support a research team stationed on Bouvet Island (54°26S, 3°24E). Internet products together with current output from NCEP's Aviation (AVN) model supported the activity. Wind forecasts were of particular interest to the Bouvet team because violent winds often developed unexpectedly and posed a safety hazard.Results were encouraging in that 24-h wind speed forecasts showed reasonable reliability over a wide range of wind speeds. Forecasts for 48 h showed only marginal skill, however. Two critical events were well forecasted-the major February storm with wind speeds of over 120 kt and a brief calm period following several days of strong winds in early March. The latter forecast proved instrumental in recovering the research team.
Post-processing method for wind speed ensemble forecast using wind speed and direction
NASA Astrophysics Data System (ADS)
Sofie Eide, Siri; Bjørnar Bremnes, John; Steinsland, Ingelin
2017-04-01
Statistical methods are widely applied to enhance the quality of both deterministic and ensemble NWP forecasts. In many situations, like wind speed forecasting, most of the predictive information is contained in one variable in the NWP models. However, in statistical calibration of deterministic forecasts it is often seen that including more variables can further improve forecast skill. For ensembles this is rarely taken advantage of, mainly due to that it is generally not straightforward how to include multiple variables. In this study, it is demonstrated how multiple variables can be included in Bayesian model averaging (BMA) by using a flexible regression method for estimating the conditional means. The method is applied to wind speed forecasting at 204 Norwegian stations based on wind speed and direction forecasts from the ECMWF ensemble system. At about 85 % of the sites the ensemble forecasts were improved in terms of CRPS by adding wind direction as predictor compared to only using wind speed. On average the improvements were about 5 %, but mainly for moderate to strong wind situations. For weak wind speeds adding wind direction had more or less neutral impact.
Evaluation of NU-WRF Rainfall Forecasts for IFloodS
NASA Technical Reports Server (NTRS)
Wu, Di; Peters-Lidard, Christa; Tao, Wei-Kuo; Petersen, Walter
2016-01-01
The Iowa Flood Studies (IFloodS) campaign was conducted in eastern Iowa as a pre- GPM-launch campaign from 1 May to 15 June 2013. During the campaign period, real time forecasts are conducted utilizing NASA-Unified Weather Research and Forecasting (NU-WRF) model to support the everyday weather briefing. In this study, two sets of the NU-WRF rainfall forecasts are evaluated with Stage IV and Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation (QPE), with the objective to understand the impact of Land Surface initialization on the predicted precipitation. NU-WRF is also compared with North American Mesoscale Forecast System (NAM) 12 kilometer forecast. In general, NU-WRF did a good job at capturing individual precipitation events. NU-WRF is also able to replicate a better rainfall spatial distribution compare with NAM. Further sensitivity tests show that the high-resolution makes a positive impact on rainfall forecast. The two sets of NU-WRF simulations produce very close rainfall characteristics. The Land surface initialization do not show significant impact on short term rainfall forecast, and it is largely due to the soil conditions during the field campaign period.
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Walker, Gregory K.; Mahanama, Sarith P.; Reichle, Rolf H.
2013-01-01
Offline simulations over the conterminous United States (CONUS) with a land surface model are used to address two issues relevant to the forecasting of large-scale seasonal streamflow: (i) the extent to which errors in soil moisture initialization degrade streamflow forecasts, and (ii) the extent to which a realistic increase in the spatial resolution of forecasted precipitation would improve streamflow forecasts. The addition of error to a soil moisture initialization field is found to lead to a nearly proportional reduction in streamflow forecast skill. The linearity of the response allows the determination of a lower bound for the increase in streamflow forecast skill achievable through improved soil moisture estimation, e.g., through satellite-based soil moisture measurements. An increase in the resolution of precipitation is found to have an impact on large-scale streamflow forecasts only when evaporation variance is significant relative to the precipitation variance. This condition is met only in the western half of the CONUS domain. Taken together, the two studies demonstrate the utility of a continental-scale land surface modeling system as a tool for addressing the science of hydrological prediction.
ICE CONTROL - Towards optimizing wind energy production during icing events
NASA Astrophysics Data System (ADS)
Dorninger, Manfred; Strauss, Lukas; Serafin, Stefano; Beck, Alexander; Wittmann, Christoph; Weidle, Florian; Meier, Florian; Bourgeois, Saskia; Cattin, René; Burchhart, Thomas; Fink, Martin
2017-04-01
Forecasts of wind power production loss caused by icing weather conditions are produced by a chain of physical models. The model chain consists of a numerical weather prediction model, an icing model and a production loss model. Each element of the model chain is affected by significant uncertainty, which can be quantified using targeted observations and a probabilistic forecasting approach. In this contribution, we present preliminary results from the recently launched project ICE CONTROL, an Austrian research initiative on measurements, probabilistic forecasting, and verification of icing on wind turbine blades. ICE CONTROL includes an experimental field phase, consisting of measurement campaigns in a wind park in Rhineland-Palatinate, Germany, in the winters 2016/17 and 2017/18. Instruments deployed during the campaigns consist of a conventional icing detector on the turbine hub and newly devised ice sensors (eologix Sensor System) on the turbine blades, as well as meteorological sensors for wind, temperature, humidity, visibility, and precipitation type and spectra. Liquid water content and spectral characteristics of super-cooled water droplets are measured using a Fog Monitor FM-120. Three cameras document the icing conditions on the instruments and on the blades. Different modelling approaches are used to quantify the components of the model-chain uncertainties. The uncertainty related to the initial conditions of the weather prediction is evaluated using the existing global ensemble prediction system (EPS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). Furthermore, observation system experiments are conducted with the AROME model and its 3D-Var data assimilation to investigate the impact of additional observations (such as Mode-S aircraft data, SCADA data and MSG cloud mask initialization) on the numerical icing forecast. The uncertainty related to model formulation is estimated from multi-physics ensembles based on the Weather Research and Forecasting model (WRF) by perturbing parameters in the physical parameterization schemes. In addition, uncertainties of the icing model and of its adaptations to the rotating turbine blade are addressed. The model forecasts combined with the suite of instruments and their measurements make it possible to conduct a step-wise verification of all the components of the model chain - a novel aspect compared to similar ongoing and completed forecasting projects.
Forecasting Natural Gas Prices Using Wavelets, Time Series, and Artificial Neural Networks
2015-01-01
Following the unconventional gas revolution, the forecasting of natural gas prices has become increasingly important because the association of these prices with those of crude oil has weakened. With this as motivation, we propose some modified hybrid models in which various combinations of the wavelet approximation, detail components, autoregressive integrated moving average, generalized autoregressive conditional heteroskedasticity, and artificial neural network models are employed to predict natural gas prices. We also emphasize the boundary problem in wavelet decomposition, and compare results that consider the boundary problem case with those that do not. The empirical results show that our suggested approach can handle the boundary problem, such that it facilitates the extraction of the appropriate forecasting results. The performance of the wavelet-hybrid approach was superior in all cases, whereas the application of detail components in the forecasting was only able to yield a small improvement in forecasting performance. Therefore, forecasting with only an approximation component would be acceptable, in consideration of forecasting efficiency. PMID:26539722
NASA Technical Reports Server (NTRS)
Reale, O.; Lau, W. K.; Susskind, J.; Rosenberg, R.
2011-01-01
A set of data assimilation and forecast experiments are performed with the NASA Global data assimilation and forecast system GEOS-5, to compare the impact of different approaches towards assimilation of Advanced Infrared Spectrometer (AIRS) data on the precipitation analysis and forecast skill. The event chosen is an extreme rainfall episode which occurred in late July 11 2010 in Pakistan, causing massive floods along the Indus River Valley. Results show that the assimilation of quality-controlled AIRS temperature retrievals obtained under partly cloudy conditions produce better precipitation analyses, and substantially better 7-day forecasts, than assimilation of clear-sky radiances. The improvement of precipitation forecast skill up to 7 day is very significant in the tropics, and is caused by an improved representation, attributed to cloudy retrieval assimilation, of two contributing mechanisms: the low-level moisture advection, and the concentration of moisture over the area in the days preceding the precipitation peak.
Lavers, David A.; Waliser, Duane E.; Ralph, F. Martin; Dettinger, Michael
2016-01-01
The western United States is vulnerable to socioeconomic disruption due to extreme winter precipitation and floods. Traditionally, forecasts of precipitation and river discharge provide the basis for preparations. Herein we show that earlier event awareness may be possible through use of horizontal water vapor transport (integrated vapor transport (IVT)) forecasts. Applying the potential predictability concept to the National Centers for Environmental Prediction global ensemble reforecasts, across 31 winters, IVT is found to be more predictable than precipitation. IVT ensemble forecasts with the smallest spreads (least forecast uncertainty) are associated with initiation states with anomalously high geopotential heights south of Alaska, a setup conducive for anticyclonic conditions and weak IVT into the western United States. IVT ensemble forecasts with the greatest spreads (most forecast uncertainty) have initiation states with anomalously low geopotential heights south of Alaska and correspond to atmospheric rivers. The greater IVT predictability could provide warnings of impending storminess with additional lead times for hydrometeorological applications.
NCAR's Experimental Real-time Convection-allowing Ensemble Prediction System
NASA Astrophysics Data System (ADS)
Schwartz, C. S.; Romine, G. S.; Sobash, R.; Fossell, K.
2016-12-01
Since April 2015, the National Center for Atmospheric Research's (NCAR's) Mesoscale and Microscale Meteorology (MMM) Laboratory, in collaboration with NCAR's Computational Information Systems Laboratory (CISL), has been producing daily, real-time, 10-member, 48-hr ensemble forecasts with 3-km horizontal grid spacing over the conterminous United States (http://ensemble.ucar.edu). These computationally-intensive, next-generation forecasts are produced on the Yellowstone supercomputer, have been embraced by both amateur and professional weather forecasters, are widely used by NCAR and university researchers, and receive considerable attention on social media. Initial conditions are supplied by NCAR's Data Assimilation Research Testbed (DART) software and the forecast model is NCAR's Weather Research and Forecasting (WRF) model; both WRF and DART are community tools. This presentation will focus on cutting-edge research results leveraging the ensemble dataset, including winter weather predictability, severe weather forecasting, and power outage modeling. Additionally, the unique design of the real-time analysis and forecast system and computational challenges and solutions will be described.
NASA Astrophysics Data System (ADS)
Bordi, I.; Fraedrich, K.; Sutera, A.
2010-06-01
The lead time dependent climates of the ECMWF weather prediction model, initialized with ERA-40 reanalysis, are analysed using 44 years of day-1 to day-10 forecasts of the northern hemispheric 500-hPa geopotential height fields. The study addresses the question whether short-term tendencies have an impact on long-term trends. Comparing climate trends of ERA-40 with those of the forecasts, it seems that the forecast model rapidly loses the memory of initial conditions creating its own climate. All forecast trends show a high degree of consistency. Comparison results suggest that: (i) Only centers characterized by an upward trend are statistical significant when increasing the lead time. (ii) In midilatitudes an upward trend larger than the one observed in the reanalysis characterizes the forecasts, while in the tropics there is a good agreement. (iii) The downward trend in reanalysis at high latitudes characterizes also the day-1 forecast which, however, increasing lead time approaches zero.
Forecasting Natural Gas Prices Using Wavelets, Time Series, and Artificial Neural Networks.
Jin, Junghwan; Kim, Jinsoo
2015-01-01
Following the unconventional gas revolution, the forecasting of natural gas prices has become increasingly important because the association of these prices with those of crude oil has weakened. With this as motivation, we propose some modified hybrid models in which various combinations of the wavelet approximation, detail components, autoregressive integrated moving average, generalized autoregressive conditional heteroskedasticity, and artificial neural network models are employed to predict natural gas prices. We also emphasize the boundary problem in wavelet decomposition, and compare results that consider the boundary problem case with those that do not. The empirical results show that our suggested approach can handle the boundary problem, such that it facilitates the extraction of the appropriate forecasting results. The performance of the wavelet-hybrid approach was superior in all cases, whereas the application of detail components in the forecasting was only able to yield a small improvement in forecasting performance. Therefore, forecasting with only an approximation component would be acceptable, in consideration of forecasting efficiency.
NASA Astrophysics Data System (ADS)
Kamal, S.; Maslowski, W.; Roberts, A.; Osinski, R.; Cassano, J. J.; Seefeldt, M. W.
2017-12-01
The Regional Arctic system model has been developed and used to advance the current state of Arctic modeling and increase the skill of sea ice forecast. RASM is a fully coupled, limited-area model that includes the atmosphere, ocean, sea ice, land hydrology and runoff routing components and the flux coupler to exchange information among them. Boundary conditions are derived from NCEP Climate Forecasting System Reanalyses (CFSR) or Era Iterim (ERA-I) for hindcast simulations or from NCEP Coupled Forecast System Model version 2 (CFSv2) for seasonal forecasts. We have used RASM to produce sea ice forecasts for September 2016 and 2017, in contribution to the Sea Ice Outlook (SIO) of the Sea Ice Prediction Network (SIPN). Each year, we produced three SIOs for the September minimum, initialized on June 1, July 1 and August 1. In 2016, predictions used a simple linear regression model to correct for systematic biases and included the mean September sea ice extent, the daily minimum and the week of the minimum. In 2017, we produced a 12-member ensemble on June 1 and July 1, and 28-member ensemble August 1. The predictions of September 2017 included the pan-Arctic and regional Alaskan sea ice extent, daily and monthly mean pan-Arctic maps of sea ice probability, concentration and thickness. No bias correction was applied to the 2017 forecasts. Finally, we will also discuss future plans for RASM forecasts, which include increased resolution for model components, ecosystem predictions with marine biogeochemistry extensions (mBGC) to the ocean and sea ice components, and feasibility of optional boundary conditions using the Navy Global Environmental Model (NAVGEM).
NASA Astrophysics Data System (ADS)
Slater, L. J.; Villarini, G.; Bradley, A.
2015-12-01
Model predictions of precipitation and temperature are crucial to mitigate the impacts of major flood and drought events through informed planning and response. However, the potential value and applicability of these predictions is inescapably linked to their forecast quality. The North-American Multi-Model Ensemble (NMME) is a multi-agency supported forecasting system for intraseasonal to interannual (ISI) climate predictions. Retrospective forecasts and real-time information are provided by each agency free of charge to facilitate collaborative research efforts for predicting future climate conditions as well as extreme weather events such as floods and droughts. Using the PRISM climate mapping system as the reference data, we examine the skill of five General Circulation Models (GCMs) from the NMME project to forecast monthly and seasonal precipitation and temperature over seven sub-regions of the continental United States. For each model, we quantify the seasonal accuracy of the forecast relative to observed precipitation using the mean square error skill score. This score is decomposed to assess the accuracy of the forecast in the absence of biases (potential skill), and in the presence of conditional (slope reliability) and unconditional (standardized mean error) biases. The quantification of these biases allows us to diagnose each model's skill over a full range temporal and spatial scales. Finally, we test each model's forecasting skill by evaluating its ability to predict extended periods of extreme temperature and precipitation that were conducive to 'billion-dollar' historical flood and drought events in different regions of the continental USA. The forecasting skill of the individual climate models is summarized and presented along with a discussion of different multi-model averaging techniques for predicting such events.
H.K. Preisler; R.E. Burgan; J.C. Eidenshink; J.M. Klaver; R.W. Klaver
2009-01-01
The current study presents a statistical model for assessing the skill of fire danger indices and for forecasting the distribution of the expected numbers of large fires over a given region and for the upcoming week. The procedure permits development of daily maps that forecast, for the forthcoming week and within federal lands, percentiles of the distributions of (i)...
Forecasting United States heartworm Dirofilaria immitis prevalence in dogs.
Bowman, Dwight D; Liu, Yan; McMahan, Christopher S; Nordone, Shila K; Yabsley, Michael J; Lund, Robert B
2016-10-10
This paper forecasts next year's canine heartworm prevalence in the United States from 16 climate, geographic and societal factors. The forecast's construction and an assessment of its performance are described. The forecast is based on a spatial-temporal conditional autoregressive model fitted to over 31 million antigen heartworm tests conducted in the 48 contiguous United States during 2011-2015. The forecast uses county-level data on 16 predictive factors, including temperature, precipitation, median household income, local forest and surface water coverage, and presence/absence of eight mosquito species. Non-static factors are extrapolated into the forthcoming year with various statistical methods. The fitted model and factor extrapolations are used to estimate next year's regional prevalence. The correlation between the observed and model-estimated county-by-county heartworm prevalence for the 5-year period 2011-2015 is 0.727, demonstrating reasonable model accuracy. The correlation between 2015 observed and forecasted county-by-county heartworm prevalence is 0.940, demonstrating significant skill and showing that heartworm prevalence can be forecasted reasonably accurately. The forecast presented herein can a priori alert veterinarians to areas expected to see higher than normal heartworm activity. The proposed methods may prove useful for forecasting other diseases.
Can Regional Climate Models Improve Warm Season Forecasts in the North American Monsoon Region?
NASA Astrophysics Data System (ADS)
Dominguez, F.; Castro, C. L.
2009-12-01
The goal of this work is to improve warm season forecasts in the North American Monsoon Region. To do this, we are dynamically downscaling warm season CFS (Climate Forecast System) reforecasts from 1982-2005 for the contiguous U.S. using the Weather Research and Forecasting (WRF) regional climate model. CFS is the global coupled ocean-atmosphere model used by the Climate Prediction Center (CPC), a branch of the National Center for Environmental Prediction (NCEP), to provide official U.S. seasonal climate forecasts. Recently, NCEP has produced a comprehensive long-term retrospective ensemble CFS reforecasts for the years 1980-2005. These reforecasts show that CFS model 1) has an ability to forecast tropical Pacific SSTs and large-scale teleconnection patterns, at least as evaluated for the winter season; 2) has greater skill in forecasting winter than summer climate; and 3) demonstrates an increase in skill when a greater number of ensembles members are used. The decrease in CFS skill during the warm season is due to the fact that the physical mechanisms of rainfall at this time are more related to mesoscale processes, such as the diurnal cycle of convection, low-level moisture transport, propagation and organization of convection, and surface moisture recycling. In general, these are poorly represented in global atmospheric models. Preliminary simulations for years with extreme summer climate conditions in the western and central U.S. (specifically 1988 and 1993) show that CFS-WRF simulations can provide a more realistic representation of convective rainfall processes. Thus a RCM can potentially add significant value in climate forecasting of the warm season provided the downscaling methodology incorporates the following: 1) spectral nudging to preserve the variability in the large scale circulation while still permitting the development of smaller-scale variability in the RCM; and 2) use of realistic soil moisture initial condition, in this case provided by the North American Regional Reanalysis. With these conditions, downscaled CFS-WRF reforecast simulations can produce realistic continental-scale patterns of warm season precipitation. This includes a reasonable representation of the North American monsoon in the southwest U.S. and northwest Mexico, which is notoriously difficult to represent in a global atmospheric model. We anticipate that this research will help lead the way toward substantially improved real time operational forecasts of North American summer climate with a RCM.
NASA Astrophysics Data System (ADS)
O'Connor, Alison; Kirtman, Benjamin; Harrison, Scott; Gorman, Joe
2016-05-01
The US Navy faces several limitations when planning operations in regard to forecasting environmental conditions. Currently, mission analysis and planning tools rely heavily on short-term (less than a week) forecasts or long-term statistical climate products. However, newly available data in the form of weather forecast ensembles provides dynamical and statistical extended-range predictions that can produce more accurate predictions if ensemble members can be combined correctly. Charles River Analytics is designing the Climatological Observations for Maritime Prediction and Analysis Support Service (COMPASS), which performs data fusion over extended-range multi-model ensembles, such as the North American Multi-Model Ensemble (NMME), to produce a unified forecast for several weeks to several seasons in the future. We evaluated thirty years of forecasts using machine learning to select predictions for an all-encompassing and superior forecast that can be used to inform the Navy's decision planning process.
Monthly mean forecast experiments with the GISS model
NASA Technical Reports Server (NTRS)
Spar, J.; Atlas, R. M.; Kuo, E.
1976-01-01
The GISS general circulation model was used to compute global monthly mean forecasts for January 1973, 1974, and 1975 from initial conditions on the first day of each month and constant sea surface temperatures. Forecasts were evaluated in terms of global and hemispheric energetics, zonally averaged meridional and vertical profiles, forecast error statistics, and monthly mean synoptic fields. Although it generated a realistic mean meridional structure, the model did not adequately reproduce the observed interannual variations in the large scale monthly mean energetics and zonally averaged circulation. The monthly mean sea level pressure field was not predicted satisfactorily, but annual changes in the Icelandic low were simulated. The impact of temporal sea surface temperature variations on the forecasts was investigated by comparing two parallel forecasts for January 1974, one using climatological ocean temperatures and the other observed daily ocean temperatures. The use of daily updated sea surface temperatures produced no discernible beneficial effect.
NASA Astrophysics Data System (ADS)
Keane, Richard J.; Plant, Robert S.; Tennant, Warren J.
2016-05-01
The Plant-Craig stochastic convection parameterization (version 2.0) is implemented in the Met Office Regional Ensemble Prediction System (MOGREPS-R) and is assessed in comparison with the standard convection scheme with a simple stochastic scheme only, from random parameter variation. A set of 34 ensemble forecasts, each with 24 members, is considered, over the month of July 2009. Deterministic and probabilistic measures of the precipitation forecasts are assessed. The Plant-Craig parameterization is found to improve probabilistic forecast measures, particularly the results for lower precipitation thresholds. The impact on deterministic forecasts at the grid scale is neutral, although the Plant-Craig scheme does deliver improvements when forecasts are made over larger areas. The improvements found are greater in conditions of relatively weak synoptic forcing, for which convective precipitation is likely to be less predictable.
NASA Astrophysics Data System (ADS)
Engelen, R. J.; Peuch, V. H.
2017-12-01
The European Copernicus Atmosphere Monitoring Service (CAMS) operationally provides daily forecasts of global atmospheric composition and regional air quality. The global forecasting system is using ECMWF's Integrated Forecasting System (IFS), which is used for numerical weather prediction and which has been extended with modules for atmospheric chemistry, aerosols and greenhouse gases. The regional forecasts are produced by an ensemble of seven operational European air quality models that take their boundary conditions from the global system and provide an ensemble median with ensemble spread as their main output. Both the global and regional forecasting systems are feeding their output into air quality models on a variety of scales in various parts of the world. We will introduce the CAMS service chain and provide illustrations of its use in downstream applications. Both the usage of the daily forecasts and the usage of global and regional reanalyses will be addressed.
Forecasting seasonal influenza with a state-space SIR model.
Osthus, Dave; Hickmann, Kyle S; Caragea, Petruţa C; Higdon, Dave; Del Valle, Sara Y
2017-03-01
Seasonal influenza is a serious public health and societal problem due to its consequences resulting from absenteeism, hospitalizations, and deaths. The overall burden of influenza is captured by the Centers for Disease Control and Prevention's influenza-like illness network, which provides invaluable information about the current incidence. This information is used to provide decision support regarding prevention and response efforts. Despite the relatively rich surveillance data and the recurrent nature of seasonal influenza, forecasting the timing and intensity of seasonal influenza in the U.S. remains challenging because the form of the disease transmission process is uncertain, the disease dynamics are only partially observed, and the public health observations are noisy. Fitting a probabilistic state-space model motivated by a deterministic mathematical model [a susceptible-infectious-recovered (SIR) model] is a promising approach for forecasting seasonal influenza while simultaneously accounting for multiple sources of uncertainty. A significant finding of this work is the importance of thoughtfully specifying the prior, as results critically depend on its specification. Our conditionally specified prior allows us to exploit known relationships between latent SIR initial conditions and parameters and functions of surveillance data. We demonstrate advantages of our approach relative to alternatives via a forecasting comparison using several forecast accuracy metrics.
Improved Modeling Tools Development for High Penetration Solar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washom, Byron; Meagher, Kevin
2014-12-11
One of the significant objectives of the High Penetration solar research is to help the DOE understand, anticipate, and minimize grid operation impacts as more solar resources are added to the electric power system. For Task 2.2, an effective, reliable approach to predicting solar energy availability for energy generation forecasts using the University of California, San Diego (UCSD) Sky Imager technology has been demonstrated. Granular cloud and ramp forecasts for the next 5 to 20 minutes over an area of 10 square miles were developed. Sky images taken every 30 seconds are processed to determine cloud locations and cloud motionmore » vectors yielding future cloud shadow locations respective to distributed generation or utility solar power plants in the area. The performance of the method depends on cloud characteristics. On days with more advective cloud conditions, the developed method outperforms persistence forecasts by up to 30% (based on mean absolute error). On days with dynamic conditions, the method performs worse than persistence. Sky Imagers hold promise for ramp forecasting and ramp mitigation in conjunction with inverter controls and energy storage. The pre-commercial Sky Imager solar forecasting algorithm was documented with licensing information and was a Sunshot website highlight.« less
Predicatbility of windstorm Klaus; sensitivity to PV perturbations
NASA Astrophysics Data System (ADS)
Arbogast, P.; Maynard, K.
2010-09-01
It appears that some short-range weather forecast failures may be attributed to initial conditions errors. In some cases it is possible to anticipate the behavior of the model by comparison between observations and model analyses. In the case of extratropical cyclone development one may qualify the representation of the upper-level precursors described in terms of PV in the initial conditions by comparison with either satellite ozone or water-vapor. A step forward has been made in developing a tool based upon manual modifications of dynamical tropopause (i.e. height of 1.5 PV units) and PV inversion. After five years of experimentations it turns out that the forecasters eventually succeed in improving the forecast of some strong cyclone development. However the present approach is subjective per se. To measure the subjectivity of the procedure a set of 15 experiments has been performed provided by 7 different people (senior forecasters and scientists involved in dynamical meteorology) in order to improve an initial state of the global model ARPEGE leading to a poor forecast of the wind storm Klaus (24 January 2009). This experiment reveals that the manually defined corrections present common features but also a large spread.
Economic benefits of improved meteorological forecasts - The construction industry
NASA Technical Reports Server (NTRS)
Bhattacharyya, R. K.; Greenberg, J. S.
1976-01-01
Estimates are made of the potential economic benefits accruing to particular industries from timely utilization of satellite-derived six-hour weather forecasts, and of economic penalties resulting from failure to utilize such forecasts in day-to-day planning. The cost estimate study is centered on the U.S. construction industry, with results simplified to yes/no 6-hr forecasts on thunderstorm activity and work/no work decisions. Effects of weather elements (thunderstorms, snow and sleet) on various construction operations are indicated. Potential dollar benefits for other industries, including air transportation and other forms of transportation, are diagrammed for comparison. Geosynchronous satellites such as STORMSAT, SEOS, and SMS/GOES are considered as sources of the forecast data.
A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method.
Yang, Jun-He; Cheng, Ching-Hsue; Chan, Chia-Pan
2017-01-01
Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir's water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting model summarily has three foci. First, this study uses five imputation methods to directly delete the missing value. Second, we identified the key variable via factor analysis and then deleted the unimportant variables sequentially via the variable selection method. Finally, the proposed model uses a Random Forest to build the forecasting model of the reservoir's water level. This was done to compare with the listing method under the forecasting error. These experimental results indicate that the Random Forest forecasting model when applied to variable selection with full variables has better forecasting performance than the listing model. In addition, this experiment shows that the proposed variable selection can help determine five forecast methods used here to improve the forecasting capability.
Intermittent Demand Forecasting in a Tertiary Pediatric Intensive Care Unit.
Cheng, Chen-Yang; Chiang, Kuo-Liang; Chen, Meng-Yin
2016-10-01
Forecasts of the demand for medical supplies both directly and indirectly affect the operating costs and the quality of the care provided by health care institutions. Specifically, overestimating demand induces an inventory surplus, whereas underestimating demand possibly compromises patient safety. Uncertainty in forecasting the consumption of medical supplies generates intermittent demand events. The intermittent demand patterns for medical supplies are generally classified as lumpy, erratic, smooth, and slow-moving demand. This study was conducted with the purpose of advancing a tertiary pediatric intensive care unit's efforts to achieve a high level of accuracy in its forecasting of the demand for medical supplies. On this point, several demand forecasting methods were compared in terms of the forecast accuracy of each. The results confirm that applying Croston's method combined with a single exponential smoothing method yields the most accurate results for forecasting lumpy, erratic, and slow-moving demand, whereas the Simple Moving Average (SMA) method is the most suitable for forecasting smooth demand. In addition, when the classification of demand consumption patterns were combined with the demand forecasting models, the forecasting errors were minimized, indicating that this classification framework can play a role in improving patient safety and reducing inventory management costs in health care institutions.
Forecasting Tools Point to Fishing Hotspots
NASA Technical Reports Server (NTRS)
2009-01-01
Private weather forecaster WorldWinds Inc. of Slidell, Louisiana has employed satellite-gathered oceanic data from Marshall Space Flight Center to create a service that is every fishing enthusiast s dream. The company's FishBytes system uses information about sea surface temperature and chlorophyll levels to forecast favorable conditions for certain fish populations. Transmitting the data to satellite radio subscribers, FishBytes provides maps that guide anglers to the areas they are most likely to make their favorite catch.
NASA Astrophysics Data System (ADS)
Liu, Y.; Wu, W.; Zhang, Y.; Kucera, P. A.; Liu, Y.; Pan, L.
2012-12-01
Weather forecasting in the Middle East is challenging because of its complicated geographical nature including massive coastal area and heterogeneous land, and regional spare observational network. Strong air-land-sea interactions form multi-scale weather regimes in the area, which require a numerical weather prediction model capable of properly representing multi-scale atmospheric flow with appropriate initial conditions. The WRF-based Real-Time Four Dimensional Data Assimilation (RTFDDA) system is one of advanced multi-scale weather analysis and forecasting facilities developed at the Research Applications Laboratory (RAL) of NCAR. The forecasting system is applied for the Middle East with careful configuration. To overcome the limitation of the very sparsely available conventional observations in the region, we develop a hybrid data assimilation algorithm combining RTFDDA and WRF-3DVAR, which ingests remote sensing data from satellites and radar. This hybrid data assimilation blends Newtonian nudging FDDA and 3DVAR technology to effectively assimilate both conventional observations and remote sensing measurements and provide improved initial conditions for the forecasting system. For brevity, the forecasting system is called RTF3H (RTFDDA-3DVAR Hybrid). In this presentation, we will discuss the hybrid data assimilation algorithm, and its implementation, and the applications for high-impact weather events in the area. Sensitivity studies are conducted to understand the strength and limitations of this hybrid data assimilation algorithm.
Interevent times in a new alarm-based earthquake forecasting model
NASA Astrophysics Data System (ADS)
Talbi, Abdelhak; Nanjo, Kazuyoshi; Zhuang, Jiancang; Satake, Kenji; Hamdache, Mohamed
2013-09-01
This study introduces a new earthquake forecasting model that uses the moment ratio (MR) of the first to second order moments of earthquake interevent times as a precursory alarm index to forecast large earthquake events. This MR model is based on the idea that the MR is associated with anomalous long-term changes in background seismicity prior to large earthquake events. In a given region, the MR statistic is defined as the inverse of the index of dispersion or Fano factor, with MR values (or scores) providing a biased estimate of the relative regional frequency of background events, here termed the background fraction. To test the forecasting performance of this proposed MR model, a composite Japan-wide earthquake catalogue for the years between 679 and 2012 was compiled using the Japan Meteorological Agency catalogue for the period between 1923 and 2012, and the Utsu historical seismicity records between 679 and 1922. MR values were estimated by sampling interevent times from events with magnitude M ≥ 6 using an earthquake random sampling (ERS) algorithm developed during previous research. Three retrospective tests of M ≥ 7 target earthquakes were undertaken to evaluate the long-, intermediate- and short-term performance of MR forecasting, using mainly Molchan diagrams and optimal spatial maps obtained by minimizing forecasting error defined by miss and alarm rate addition. This testing indicates that the MR forecasting technique performs well at long-, intermediate- and short-term. The MR maps produced during long-term testing indicate significant alarm levels before 15 of the 18 shallow earthquakes within the testing region during the past two decades, with an alarm region covering about 20 per cent (alarm rate) of the testing region. The number of shallow events missed by forecasting was reduced by about 60 per cent after using the MR method instead of the relative intensity (RI) forecasting method. At short term, our model succeeded in forecasting the occurrence region of the 2011 Mw 9.0 Tohoku earthquake, whereas the RI method did not. Cases where a period of quiescent seismicity occurred before the target event often lead to low MR scores, meaning that the target event was not predicted and indicating that our model could be further improved by taking into account quiescent periods in the alarm strategy.
Yu, Tianyi; Beach, Steven R. H.; Philibert, Robert A.
2014-01-01
Telomere length (TL) is an indicator of general systemic aging, with diminished TL associated with several chronic diseases of aging and with heightened mortality risk. Research has begun to focus on the ways in which stress contributes to telomere attrition. The purposes of this study were (a) to establish whether exposure to nonsupportive parenting, defined as high levels of conflict and rancor with low levels of warmth and emotional support, at age 17 would forecast TL 5 years later; and (b) to determine whether participation in an efficacious family-centered prevention program could ameliorate any associations that emerged. Rural African American adolescents participated in the Adults in the Making (AIM) program or a control condition. Primary caregivers provided data on nonsupportive parenting during a pretest when adolescents were age 17. Adolescents provided data on anger at the pretest and at a posttest administered 7 months later. When the youths were age 22, TL was assayed from a blood draw. The results indicated that heightened nonsupportive parenting forecast diminished TL among young adults in the control condition but not among those who participated in AIM; socioeconomic status risk, life stress, and the use of alcohol and cigarettes at age 17, and blood pressure and body mass index at age 22, were controlled. Subsequent exploratory analyses suggested that AIM-induced reductions in adolescents’ anger served as a mediator connecting group assignment to TL. The results suggest that the cellular-level sequelae of nonsupportive parenting and stress are not immutable. PMID:24599483
Project 1990: Educational Planning at the Metropolitan Level.
ERIC Educational Resources Information Center
Swanson, Austin D.; Lamitie, Robert E.
This paper describes a project designed to provide educational decisionmakers with projections of and forecasts about future metropolitan conditions and problems, and information about the implications of alternative ways of solving metropolitan problems. Project components included (1) population and economic projections and forecasts, (2)…
Understanding impacts of climate change on hydrodynamic processes and ecosystem response within the Great Lakes is an important and challenging task. Variability in future climate conditions, uncertainty in rainfall-runoff model forecasts, the potential for land use change, and t...
Monthly streamflow forecasting based on hidden Markov model and Gaussian Mixture Regression
NASA Astrophysics Data System (ADS)
Liu, Yongqi; Ye, Lei; Qin, Hui; Hong, Xiaofeng; Ye, Jiajun; Yin, Xingli
2018-06-01
Reliable streamflow forecasts can be highly valuable for water resources planning and management. In this study, we combined a hidden Markov model (HMM) and Gaussian Mixture Regression (GMR) for probabilistic monthly streamflow forecasting. The HMM is initialized using a kernelized K-medoids clustering method, and the Baum-Welch algorithm is then executed to learn the model parameters. GMR derives a conditional probability distribution for the predictand given covariate information, including the antecedent flow at a local station and two surrounding stations. The performance of HMM-GMR was verified based on the mean square error and continuous ranked probability score skill scores. The reliability of the forecasts was assessed by examining the uniformity of the probability integral transform values. The results show that HMM-GMR obtained reasonably high skill scores and the uncertainty spread was appropriate. Different HMM states were assumed to be different climate conditions, which would lead to different types of observed values. We demonstrated that the HMM-GMR approach can handle multimodal and heteroscedastic data.
NASA Technical Reports Server (NTRS)
Wolfson, N.; Thomasell, A.; Alperson, Z.; Brodrick, H.; Chang, J. T.; Gruber, A.; Ohring, G.
1984-01-01
The impact of introducing satellite temperature sounding data on a numerical weather prediction model of a national weather service is evaluated. A dry five level, primitive equation model which covers most of the Northern Hemisphere, is used for these experiments. Series of parallel forecast runs out to 48 hours are made with three different sets of initial conditions: (1) NOSAT runs, only conventional surface and upper air observations are used; (2) SAT runs, satellite soundings are added to the conventional data over oceanic regions and North Africa; and (3) ALLSAT runs, the conventional upper air observations are replaced by satellite soundings over the entire model domain. The impact on the forecasts is evaluated by three verification methods: the RMS errors in sea level pressure forecasts, systematic errors in sea level pressure forecasts, and errors in subjective forecasts of significant weather elements for a selected portion of the model domain. For the relatively short range of the present forecasts, the major beneficial impacts on the sea level pressure forecasts are found precisely in those areas where the satellite sounding are inserted and where conventional upper air observations are sparse. The RMS and systematic errors are reduced in these regions. The subjective forecasts of significant weather elements are improved with the use of the satellite data. It is found that the ALLSAT forecasts are of a quality comparable to the SAR forecasts.
NASA Technical Reports Server (NTRS)
Balikhin, M. A.; Rodriguez, J. V.; Boynton, R. J.; Walker, S. N.; Aryan, Homayon; Sibeck, D. G.; Billings, S. A.
2016-01-01
Reliable forecasts of relativistic electrons at geostationary orbit (GEO) are important for the mitigation of their hazardous effects on spacecraft at GEO. For a number of years the Space Weather Prediction Center at NOAA has provided advanced online forecasts of the fluence of electrons with energy >2 MeV at GEO using the Relativistic Electron Forecast Model (REFM). The REFM forecasts are based on real-time solar wind speed observations at L1. The high reliability of this forecasting tool serves as a benchmark for the assessment of other forecasting tools. Since 2012 the Sheffield SNB3GEO model has been operating online, providing a 24 h ahead forecast of the same fluxes. In addition to solar wind speed, the SNB3GEO forecasts use solar wind density and interplanetary magnetic field B(sub z) observations at L1. The period of joint operation of both of these forecasts has been used to compare their accuracy. Daily averaged measurements of electron fluxes by GOES 13 have been used to estimate the prediction efficiency of both forecasting tools. To assess the reliability of both models to forecast infrequent events of very high fluxes, the Heidke skill score was employed. The results obtained indicate that SNB3GEO provides a more accurate 1 day ahead forecast when compared to REFM. It is shown that the correction methodology utilized by REFM potentially can improve the SNB3GEO forecast.
Balikhin, M A; Rodriguez, J V; Boynton, R J; Walker, S N; Aryan, H; Sibeck, D G; Billings, S A
2016-01-01
Reliable forecasts of relativistic electrons at geostationary orbit (GEO) are important for the mitigation of their hazardous effects on spacecraft at GEO. For a number of years the Space Weather Prediction Center at NOAA has provided advanced online forecasts of the fluence of electrons with energy >2 MeV at GEO using the Relativistic Electron Forecast Model (REFM). The REFM forecasts are based on real-time solar wind speed observations at L1. The high reliability of this forecasting tool serves as a benchmark for the assessment of other forecasting tools. Since 2012 the Sheffield SNB 3 GEO model has been operating online, providing a 24 h ahead forecast of the same fluxes. In addition to solar wind speed, the SNB 3 GEO forecasts use solar wind density and interplanetary magnetic field B z observations at L1.The period of joint operation of both of these forecasts has been used to compare their accuracy. Daily averaged measurements of electron fluxes by GOES 13 have been used to estimate the prediction efficiency of both forecasting tools. To assess the reliability of both models to forecast infrequent events of very high fluxes, the Heidke skill score was employed. The results obtained indicate that SNB 3 GEO provides a more accurate 1 day ahead forecast when compared to REFM. It is shown that the correction methodology utilized by REFM potentially can improve the SNB 3 GEO forecast.
The MSFC Solar Activity Future Estimation (MSAFE) Model
NASA Technical Reports Server (NTRS)
Suggs, Ron
2017-01-01
The MSAFE model provides forecasts for the solar indices SSN, F10.7, and Ap. These solar indices are used as inputs to space environment models used in orbital spacecraft operations and space mission analysis. Forecasts from the MSAFE model are provided on the MSFC Natural Environments Branch's solar web page and are updated as new monthly observations become available. The MSAFE prediction routine employs a statistical technique that calculates deviations of past solar cycles from the mean cycle and performs a regression analysis to calculate the deviation from the mean cycle of the solar index at the next future time interval. The forecasts are initiated for a given cycle after about 8 to 9 monthly observations from the start of the cycle are collected. A forecast made at the beginning of cycle 24 using the MSAFE program captured the cycle fairly well with some difficulty in discerning the double peak that occurred at solar cycle maximum.
ENSO-based probabilistic forecasts of March-May U.S. tornado and hail activity
NASA Astrophysics Data System (ADS)
Lepore, Chiara; Tippett, Michael K.; Allen, John T.
2017-09-01
Extended logistic regression is used to predict March-May severe convective storm (SCS) activity based on the preceding December-February (DJF) El Niño-Southern Oscillation (ENSO) state. The spatially resolved probabilistic forecasts are verified against U.S. tornado counts, hail events, and two environmental indices for severe convection. The cross-validated skill is positive for roughly a quarter of the U.S. Overall, indices are predicted with more skill than are storm reports, and hail events are predicted with more skill than tornado counts. Skill is higher in the cool phase of ENSO (La Niña like) when overall SCS activity is higher. SCS forecasts based on the predicted DJF ENSO state from coupled dynamical models initialized in October of the previous year extend the lead time with only a modest reduction in skill compared to forecasts based on the observed DJF ENSO state.
General Manpower Forecasts: Some Indications for the Employment Outlook in Student Services.
ERIC Educational Resources Information Center
Brodzinski, Frederick R.
Manpower forecasts, available from the Bureau of Labor Statistics of the U.S. Department of Labor, the U.S. Department of Commerce, the Census Bureau, and the National Center for Education Statistics, indicate that from 1970 to 1990 there will be significant major shifts in the number of Americans in the prime-age group of 25-44 years of age. This…
Heavy rainfall and waterborne disease outbreaks: the Walkerton example.
Auld, Heather; MacIver, D; Klaassen, J
Recent research indicates that excessive rainfall has been a significant contributor to historical waterborne disease outbreaks. The Meteorological Service of Canada, Environment Canada, provided an analysis and testimony to the Walkerton Inquiry on the excessive rainfall events, including an assessment of the historical significance and expected return periods of the rainfall amounts. While the onset of the majority of the Walkerton, Ontario, Escherichia coli O157:H7 and Campylobacter outbreak occurred several days after a heavy rainfall on May 12, the accumulated 5-d rainfall amounts from 8-12 May were particularly significant. These 5-d accumulations could, on average, only be expected once every 60 yr or more in Walkerton and once every 100 yr or so in the heaviest rainfall area to the south of Walkerton. The significant link between excess rainfall and waterborne disease outbreaks, in conjunction with other multiple risk factors, indicates that meteorological and climatological conditions need to be considered by water managers, public health officials, and private citizens as a significant risk factor for water contamination. A system to identify and project the impacts of such challenging or extreme weather conditions on water supply systems could be developed using a combination of weather/climate monitoring information and weather prediction or quantitative precipitation forecast information. The use of weather monitoring and forecast information or a "wellhead alert system" could alert water system and water supply managers on the potential response of their systems to challenging weather conditions and additional requirements to protect health. Similar approaches have recently been used by beach managers in parts of the United States to predict day-to-day water quality for beach advisories.
NASA Astrophysics Data System (ADS)
Bazile, Rachel; Boucher, Marie-Amélie; Perreault, Luc; Leconte, Robert; Guay, Catherine
2017-04-01
Hydro-electricity is a major source of energy for many countries throughout the world, including Canada. Long lead-time streamflow forecasts are all the more valuable as they help decision making and dam management. Different techniques exist for long-term hydrological forecasting. Perhaps the most well-known is 'Extended Streamflow Prediction' (ESP), which considers past meteorological scenarios as possible, often equiprobable, future scenarios. In the ESP framework, those past-observed meteorological scenarios (climatology) are used in turn as the inputs of a chosen hydrological model to produce ensemble forecasts (one member corresponding to each year in the available database). Many hydropower companies, including Hydro-Québec (province of Quebec, Canada) use variants of the above described ESP system operationally for long-term operation planning. The ESP system accounts for the hydrological initial conditions and for the natural variability of the meteorological variables. However, it cannot consider the current initial state of the atmosphere. Climate models can help remedy this drawback. In the context of a changing climate, dynamical forecasts issued from climate models seem to be an interesting avenue to improve upon the ESP method and could help hydropower companies to adapt their management practices to an evolving climate. Long-range forecasts from climate models can also be helpful for water management at locations where records of past meteorological conditions are short or nonexistent. In this study, we compare 7-month hydrological forecasts obtained from climate model outputs to an ESP system. The ESP system mimics the one used operationally at Hydro-Québec. The dynamical climate forecasts are produced by the European Center for Medium range Weather Forecasts (ECMWF) System4. Forecasts quality is assessed using numerical scores such as the Continuous Ranked Probability Score (CRPS) and the Ignorance score and also graphical tools such as the reliability diagram. This study covers 10 nordic watersheds. We show that forecast performance according to the CRPS varies with lead-time but also with the period of the year. The raw forecasts from the ECMWF System4 display important biases for both temperature and precipitation, which need to be corrected. The linear scaling method is used for this purpose and is found effective. Bias correction improves forecasts performance, especially during the summer when the precipitations are over-estimated. According to the CRPS, bias corrected forecasts from System4 show performances comparable to those of the ESP system. However, the Ignorance score, which penalizes the lack of calibration (under-dispersive forecasts in this case) more severely than the CRPS, provides a different outlook for the comparison of the two systems. In fact, according to the Ignorance score, the ESP system outperforms forecasts based on System4 in most cases. This illustrates that the joint use of several metrics is crucial to assess the quality of a forecasts system thoroughly. Globally, ESP provide reliable forecasts which can be over-dispersed whereas bias corrected ECMWF System4 forecasts are sharper but at the risk of missing events.
Data Assimilation as it Relates to the Sea Ice Outlook (SIO) and Prospects for Improvement
NASA Technical Reports Server (NTRS)
Cullather, Richard
2017-01-01
Improved seasonal forecasts of Arctic sea ice are important for regional stakeholders, but also for obtaining a better understanding of the Arctic climate system. An important part of the forecasts is the initial sea ice, ocean, and atmosphere initial conditions. I briefly give an overview of the initial conditions currently being used in seasonal sea ice predictions. I also identify available sources of observational data and prospects for coupled atmosphere/ocean reanalyses.