Sample records for condition monitoring techniques

  1. Distributed condition monitoring techniques of optical fiber composite power cable in smart grid

    NASA Astrophysics Data System (ADS)

    Sun, Zhihui; Liu, Yuan; Wang, Chang; Liu, Tongyu

    2011-11-01

    Optical fiber composite power cable such as optical phase conductor (OPPC) is significant for the development of smart grid. This paper discusses the distributed cable condition monitoring techniques of the OPPC, which adopts embedded single-mode fiber as the sensing medium. By applying optical time domain reflection and laser Raman scattering, high-resolution spatial positioning and high-precision distributed temperature measurement is executed. And the OPPC cable condition parameters including temperature and its location, current carrying capacity, and location of fracture and loss can be monitored online. OPPC cable distributed condition monitoring experimental system is set up, and the main parts including pulsed fiber laser, weak Raman signal reception, high speed acquisition and cumulative average processing, temperature demodulation and current carrying capacity analysis are introduced. The distributed cable condition monitoring techniques of the OPPC is significant for power transmission management and security.

  2. A real time study on condition monitoring of distribution transformer using thermal imager

    NASA Astrophysics Data System (ADS)

    Mariprasath, T.; Kirubakaran, V.

    2018-05-01

    The transformer is one of the critical apparatus in the power system. At any cost, a few minutes of outages harshly influence the power system. Hence, prevention-based maintenance technique is very essential. The continuous conditioning and monitoring technology significantly increases the life span of the transformer, as well as reduces the maintenance cost. Hence, conditioning and monitoring of transformer's temperature are very essential. In this paper, a critical review has been made on various conditioning and monitoring techniques. Furthermore, a new method, hot spot indication technique, is discussed. Also, transformer's operating condition is monitored by using thermal imager. From the thermal analysis, it is inferred that major hotspot locations are appearing at connection lead out; also, the bushing of the transformer is the very hottest spot in transformer, so monitoring the level of oil is essential. Alongside, real time power quality analysis has been carried out using the power analyzer. It shows that industrial drives are injecting current harmonics to the distribution network, which causes the power quality problem on the grid. Moreover, the current harmonic limit has exceeded the IEEE standard limit. Hence, the adequate harmonics suppression technique is need an hour.

  3. Monitoring Knowledge Base (MKB)

    EPA Pesticide Factsheets

    The Monitoring Knowledge Base (MKB) is a compilation of emissions measurement and monitoring techniques associated with air pollution control devices, industrial process descriptions, and permitting techniques, including flexible permit development. Using MKB, one can gain a comprehensive understanding of emissions sources, control devices, and monitoring techniques, enabling one to determine appropriate permit terms and conditions.

  4. Wilderness campsite monitoring methods: a sourcebook

    Treesearch

    David N. Cole

    1989-01-01

    Summarizes information on techniques available for monitoring the condition of campsites, particularly those in wilderness. A variety of techniques are described and evaluated; sources of information are also listed. Problems with existing monitoring systems and places where refinement of technique is required are highlighted.

  5. Comparison of multispectral remote-sensing techniques for monitoring subsurface drain conditions. [Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Goettelman, R. C.; Grass, L. B.; Millard, J. P.; Nixon, P. R.

    1983-01-01

    The following multispectral remote-sensing techniques were compared to determine the most suitable method for routinely monitoring agricultural subsurface drain conditions: airborne scanning, covering the visible through thermal-infrared (IR) portions of the spectrum; color-IR photography; and natural-color photography. Color-IR photography was determined to be the best approach, from the standpoint of both cost and information content. Aerial monitoring of drain conditions for early warning of tile malfunction appears practical. With careful selection of season and rain-induced soil-moisture conditions, extensive regional surveys are possible. Certain locations, such as the Imperial Valley, Calif., are precluded from regional monitoring because of year-round crop rotations and soil stratification conditions. Here, farms with similar crops could time local coverage for bare-field and saturated-soil conditions.

  6. Combination of process and vibration data for improved condition monitoring of industrial systems working under variable operating conditions

    NASA Astrophysics Data System (ADS)

    Ruiz-Cárcel, C.; Jaramillo, V. H.; Mba, D.; Ottewill, J. R.; Cao, Y.

    2016-01-01

    The detection and diagnosis of faults in industrial processes is a very active field of research due to the reduction in maintenance costs achieved by the implementation of process monitoring algorithms such as Principal Component Analysis, Partial Least Squares or more recently Canonical Variate Analysis (CVA). Typically the condition of rotating machinery is monitored separately using vibration analysis or other specific techniques. Conventional vibration-based condition monitoring techniques are based on the tracking of key features observed in the measured signal. Typically steady-state loading conditions are required to ensure consistency between measurements. In this paper, a technique based on merging process and vibration data is proposed with the objective of improving the detection of mechanical faults in industrial systems working under variable operating conditions. The capabilities of CVA for detection and diagnosis of faults were tested using experimental data acquired from a compressor test rig where different process faults were introduced. Results suggest that the combination of process and vibration data can effectively improve the detectability of mechanical faults in systems working under variable operating conditions.

  7. Improved Signal Processing Technique Leads to More Robust Self Diagnostic Accelerometer System

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Lekki, John; Jaros, Dave; Riggs, Terrence; Evans, Kenneth P.

    2010-01-01

    The self diagnostic accelerometer (SDA) is a sensor system designed to actively monitor the health of an accelerometer. In this case an accelerometer is considered healthy if it can be determined that it is operating correctly and its measurements may be relied upon. The SDA system accomplishes this by actively monitoring the accelerometer for a variety of failure conditions including accelerometer structural damage, an electrical open circuit, and most importantly accelerometer detachment. In recent testing of the SDA system in emulated engine operating conditions it has been found that a more robust signal processing technique was necessary. An improved accelerometer diagnostic technique and test results of the SDA system utilizing this technique are presented here. Furthermore, the real time, autonomous capability of the SDA system to concurrently compensate for effects from real operating conditions such as temperature changes and mechanical noise, while monitoring the condition of the accelerometer health and attachment, will be demonstrated.

  8. 77 FR 24228 - Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... Used in Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... guide, (RG) 1.218, ``Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants... of electric cables for nuclear power plants. RG 1.218 is not intended to be prescriptive, instead it...

  9. Infrared thermography for condition monitoring - A review

    NASA Astrophysics Data System (ADS)

    Bagavathiappan, S.; Lahiri, B. B.; Saravanan, T.; Philip, John; Jayakumar, T.

    2013-09-01

    Temperature is one of the most common indicators of the structural health of equipment and components. Faulty machineries, corroded electrical connections, damaged material components, etc., can cause abnormal temperature distribution. By now, infrared thermography (IRT) has become a matured and widely accepted condition monitoring tool where the temperature is measured in real time in a non-contact manner. IRT enables early detection of equipment flaws and faulty industrial processes under operating condition thereby, reducing system down time, catastrophic breakdown and maintenance cost. Last three decades witnessed a steady growth in the use of IRT as a condition monitoring technique in civil structures, electrical installations, machineries and equipment, material deformation under various loading conditions, corrosion damages and welding processes. IRT has also found its application in nuclear, aerospace, food, paper, wood and plastic industries. With the advent of newer generations of infrared camera, IRT is becoming a more accurate, reliable and cost effective technique. This review focuses on the advances of IRT as a non-contact and non-invasive condition monitoring tool for machineries, equipment and processes. Various conditions monitoring applications are discussed in details, along with some basics of IRT, experimental procedures and data analysis techniques. Sufficient background information is also provided for the beginners and non-experts for easy understanding of the subject.

  10. Vibro-acoustic condition monitoring of Internal Combustion Engines: A critical review of existing techniques

    NASA Astrophysics Data System (ADS)

    Delvecchio, S.; Bonfiglio, P.; Pompoli, F.

    2018-01-01

    This paper deals with the state-of-the-art strategies and techniques based on vibro-acoustic signals that can monitor and diagnose malfunctions in Internal Combustion Engines (ICEs) under both test bench and vehicle operating conditions. Over recent years, several authors have summarized what is known in critical reviews mainly focused on reciprocating machines in general or on specific signal processing techniques: no attempts to deal with IC engine condition monitoring have been made. This paper first gives a brief summary of the generation of sound and vibration in ICEs in order to place further discussion on fault vibro-acoustic diagnosis in context. An overview of the monitoring and diagnostic techniques described in literature using both vibration and acoustic signals is also provided. Different faulty conditions are described which affect combustion, mechanics and the aerodynamics of ICEs. The importance of measuring acoustic signals, as opposed to vibration signals, is due since the former seem to be more suitable for implementation on on-board monitoring systems in view of their non-intrusive behaviour, capability in simultaneously capturing signatures from several mechanical components and because of the possibility of detecting faults affecting airborne transmission paths. In view of the recent needs of the industry to (-) optimize component structural durability adopting long-life cycles, (-) verify the engine final status at the end of the assembly line and (-) reduce the maintenance costs monitoring the ICE life during vehicle operations, monitoring and diagnosing system requests are continuously growing up. The present review can be considered a useful guideline for test engineers in understanding which types of fault can be diagnosed by using vibro-acoustic signals in sufficient time in both test bench and operating conditions and which transducer and signal processing technique (of which the essential background theory is here reported) could be considered the most reliable and informative to be implemented for the fault in question.

  11. Anomaly Detection Techniques with Real Test Data from a Spinning Turbine Engine-Like Rotor

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Woike, Mark R.; Oza, Nikunj C.; Matthews, Bryan L.

    2012-01-01

    Online detection techniques to monitor the health of rotating engine components are becoming increasingly attractive to aircraft engine manufacturers in order to increase safety of operation and lower maintenance costs. Health monitoring remains a challenge to easily implement, especially in the presence of scattered loading conditions, crack size, component geometry, and materials properties. The current trend, however, is to utilize noninvasive types of health monitoring or nondestructive techniques to detect hidden flaws and mini-cracks before any catastrophic event occurs. These techniques go further to evaluate material discontinuities and other anomalies that have grown to the level of critical defects that can lead to failure. Generally, health monitoring is highly dependent on sensor systems capable of performing in various engine environmental conditions and able to transmit a signal upon a predetermined crack length, while acting in a neutral form upon the overall performance of the engine system.

  12. Investigation of piezoelectric impedance-based health monitoring of structure interface debonding

    NASA Astrophysics Data System (ADS)

    Xiao, Li; Chen, Guofeng; Chen, Xiaoming; Qu, Wenzhong

    2016-04-01

    Various damages might occur during the solid rocket motor (SRM) manufacturing/operational phase, and the debonding of propellant/insulator/composite case interfaces is one of damage types which determine the life of a motor. The detection of such interface debonding damage will be beneficial for developing techniques for reliable nondestructive evaluation (NDE) and structural health monitoring (SHM). Piezoelectric sensors are widely used for structural health monitoring technique. In particular, electromechanical impedance (EMI) techniques give simple and low-cost solutions for detecting damage in various structures. In this work, piezoelectric EMI structural health monitoring technique is applied to identify the debonding condition of propellant/insulator interface structure using finite element method and experimental investigation. A three-dimensional coupled field finite element model is developed using the software ANSYS and the harmonic analysis is conducted for high-frequency impedance analysis procedure. In the experimental study, the impedance signals were measured from PZT and MFC sensors outside attached to composite case monitoring the different debonding conditions between the propellant and insulator. Root mean square deviation (RMSD) based damage index is conducted to quantify the changes i n impedance for different de bonding conditions and frequency range. Simulation and experimental results confirmed that the EMI technique can be used effectively for detecting the debonding damage in SRM and is expected to be useful for future application of real SRM's SHM.

  13. Differential thermal voltammetry for tracking of degradation in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wu, Billy; Yufit, Vladimir; Merla, Yu; Martinez-Botas, Ricardo F.; Brandon, Nigel P.; Offer, Gregory J.

    2015-01-01

    Monitoring of lithium-ion batteries is of critical importance in electric vehicle applications in order to manage the operational condition of the cells. Measurements on a vehicle often involve current, voltage and temperature which enable in-situ diagnostic techniques. This paper presents a novel diagnostic technique, termed differential thermal voltammetry, which is capable of monitoring the state of the battery using voltage and temperature measurements in galvanostatic operating modes. This tracks battery degradation through phase transitions, and the resulting entropic heat, occurring in the electrodes. Experiments to monitor battery degradation using the new technique are compared with a pseudo-2D cell model. Results show that the differential thermal voltammetry technique provides information comparable to that of slow rate cyclic voltammetry at shorter timescale and with load conditions easier to replicate in a vehicle.

  14. Fluorescence excitation-emission matrix spectroscopy for degradation monitoring of machinery lubricants

    NASA Astrophysics Data System (ADS)

    Sosnovski, Oleg; Suresh, Pooja; Dudelzak, Alexander E.; Green, Benjamin

    2018-02-01

    Lubrication oil is a vital component of heavy rotating machinery defining the machine's health, operational safety and effectiveness. Recently, the focus has been on developing sensors that provide real-time/online monitoring of oil condition/lubricity. Industrial practices and standards for assessing oil condition involve various analytical methods. Most these techniques are unsuitable for online applications. The paper presents the results of studying degradation of antioxidant additives in machinery lubricants using Fluorescence Excitation-Emission Matrix (EEM) Spectroscopy and Machine Learning techniques. EEM Spectroscopy is capable of rapid and even standoff sensing; it is potentially applicable to real-time online monitoring.

  15. Real-Time Condition Monitoring and Fault Diagnosis of Gear Train Systems Using Instantaneous Angular Speed (IAS) Analysis

    NASA Astrophysics Data System (ADS)

    Sait, Abdulrahman S.

    This dissertation presents a reliable technique for monitoring the condition of rotating machinery by applying instantaneous angular speed (IAS) analysis. A new analysis of the effects of changes in the orientation of the line of action and the pressure angle of the resultant force acting on gear tooth profile of spur gear under different levels of tooth damage is utilized. The analysis and experimental work discussed in this dissertation provide a clear understating of the effects of damage on the IAS by analyzing the digital signals output of rotary incremental optical encoder. A comprehensive literature review of state of the knowledge in condition monitoring and fault diagnostics of rotating machinery, including gearbox system is presented. Progress and new developments over the past 30 years in failure detection techniques of rotating machinery including engines, bearings and gearboxes are thoroughly reviewed. This work is limited to the analysis of a gear train system with gear tooth surface faults utilizing angular motion analysis technique. Angular motion data were acquired using an incremental optical encoder. Results are compared to a vibration-based technique. The vibration data were acquired using an accelerometer. The signals were obtained and analyzed in the phase domains using signal averaging to determine the existence and position of faults on the gear train system. Forces between the mating teeth surfaces are analyzed and simulated to validate the influence of the presence of damage on the pressure angle and the IAS. National Instruments hardware is used and NI LabVIEW software code is developed for real-time, online condition monitoring systems and fault detection techniques. The sensitivity of optical encoders to gear fault detection techniques is experimentally investigated by applying IAS analysis under different gear damage levels and different operating conditions. A reliable methodology is developed for selecting appropriate testing/operating conditions of a rotating system to generate an alarm system for damage detection.

  16. Feasibility Study of a Rotorcraft Health and Usage Monitoring System (HUMS): Usage and Structural Life Monitoring Evaluation

    NASA Technical Reports Server (NTRS)

    Dickson, B.; Cronkhite, J.; Bielefeld, S.; Killian, L.; Hayden, R.

    1996-01-01

    The objective of this study was to evaluate two techniques, Flight Condition Recognition (FCR) and Flight Load Synthesis (FIS), for usage monitoring and assess the potential benefits of extending the retirement intervals of life-limited components, thus reducing the operator's maintenance and replacement costs. Both techniques involve indirect determination of loads using measured flight parameters and subsequent fatigue analysis to calculate the life expended on the life-limited components. To assess the potential benefit of usage monitoring, the two usage techniques were compared to current methods of component retirement. In addition, comparisons were made with direct load measurements to assess the accuracy of the two techniques.

  17. Feasibility Study of a Rotorcraft Health and Usage Monitoring System ( HUMS): Usage and Structural Life Monitoring Evaluation

    NASA Technical Reports Server (NTRS)

    Dickson, B.; Cronkhite, J.; Bielefeld, S.; Killian, L.; Hayden, R.

    1996-01-01

    The objective of this study was to evaluate two techniques, Flight Condition Recognition (FCR) and Flight Load Synthesis (FLS), for usage monitoring and assess the potential benefits of extending the retirement intervals of life-limited components, thus reducing the operator's maintenance and replacement costs. Both techniques involve indirect determination of loads using measured flight parameters and subsequent fatigue analysis to calculate the life expended on the life-limited components. To assess the potential benefit of usage monitoring, the two usage techniques were compared to current methods of component retirement. In addition, comparisons were made with direct load measurements to assess the accuracy of the two techniques. The data that was used for the evaluation of the usage monitoring techniques was collected under an independent HUMS Flight trial program, using a commercially available HUMS and data recording system. The usage data collect from the HUMS trial aircraft was analyzed off-line using PC-based software that included the FCR and FLS techniques. In the future, if the technique prove feasible, usage monitoring would be incorporated into the onboard HUMS.

  18. Adaptive noise cancelling and time-frequency techniques for rail surface defect detection

    NASA Astrophysics Data System (ADS)

    Liang, B.; Iwnicki, S.; Ball, A.; Young, A. E.

    2015-03-01

    Adaptive noise cancelling (ANC) is a technique which is very effective to remove additive noises from the contaminated signals. It has been widely used in the fields of telecommunication, radar and sonar signal processing. However it was seldom used for the surveillance and diagnosis of mechanical systems before late of 1990s. As a promising technique it has gradually been exploited for the purpose of condition monitoring and fault diagnosis. Time-frequency analysis is another useful tool for condition monitoring and fault diagnosis purpose as time-frequency analysis can keep both time and frequency information simultaneously. This paper presents an ANC and time-frequency application for railway wheel flat and rail surface defect detection. The experimental results from a scaled roller test rig show that this approach can significantly reduce unwanted interferences and extract the weak signals from strong background noises. The combination of ANC and time-frequency analysis may provide us one of useful tools for condition monitoring and fault diagnosis of railway vehicles.

  19. Non-invasive, photonics-based diagnostic, imaging, monitoring, and light delivery techniques for the recognition, quantification and treatment of malignant and chronic inflammatory conditions

    NASA Astrophysics Data System (ADS)

    Davies, N.; Davies-Shaw, D.; Shaw, J. D.

    2007-02-01

    We report firsthand on innovative developments in non-invasive, biophotonic techniques for a wide range of diagnostic, imaging and treatment options, including the recognition and quantification of cancerous, pre-cancerous cells and chronic inflammatory conditions. These techniques have benefited from the ability to target the affected site by both monochromatic light and broad multiple wavelength spectra. The employment of such wavelength or color-specific properties embraces the fluorescence stimulation of various photosensitizing drugs, and the instigation and detection of identified fluorescence signatures attendant upon laser induced fluorescence (LIF) phenomena as transmitted and propagated by precancerous, cancerous and normal tissue. In terms of tumor imaging and therapeutic and treatment options, we have exploited the abilities of various wavelengths to penetrate to different depths, through different types of tissues, and have explored quantifiable absorption and reflection characteristics upon which diagnostic assumptions can be reliably based and formulated. These biophotonic-based diagnostic, sensing and imaging techniques have also benefited from, and have been further enhanced by, the integrated ability to provide various power levels to be employed at various stages in the procedure. Applications are myriad, including non-invasive, non destructive diagnosis of in vivo cell characteristics and functions; light-based tissue analysis; real-time monitoring and mapping of brain function and of tumor growth; real time monitoring of the surgical completeness of tumor removal during laser-imaged/guided brain resection; diagnostic procedures based on fluorescence life-time monitoring, the monitoring of chronic inflammatory conditions (including rheumatoid arthritis), and continuous blood glucose monitoring in the control of diabetes.

  20. Bridge scour monitoring methods at three sites in Wisconsin

    USGS Publications Warehouse

    Walker, John F.; Hughes, Peter E.

    2005-01-01

    Of the nearly 11,500 bridges in Wisconsin, 89 have been assessed with critical scour conditions. The U.S. Geological Survey, in cooperation with the Wisconsin Department of Transportation, the Marathon County Highway Department, and the Jefferson County Highway Department, performed routine monitoring of streambed elevations for three bridges. Two monitoring approaches were employed: (1) manual monitoring using moderately simple equipment, and (2) automated monitoring, using moderately sophisticated electronic equipment. The results from all three sites demonstrate that both techniques can produce reasonable measurements of streambed elevation. The manual technique has a lower annual operating cost, and is useful for cases where documentation of long-term trends is desired. The automated technique has a higher annual operating cost and is useful for real-time monitoring of episodic events with short time durations. 

  1. ASSESSMENT OF DYNAMIC PRA TECHNIQUES WITH INDUSTRY AVERAGE COMPONENT PERFORMANCE DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Vaibhav; Agarwal, Vivek; Gribok, Andrei V.

    In the nuclear industry, risk monitors are intended to provide a point-in-time estimate of the system risk given the current plant configuration. Current risk monitors are limited in that they do not properly take into account the deteriorating states of plant equipment, which are unit-specific. Current approaches to computing risk monitors use probabilistic risk assessment (PRA) techniques, but the assessment is typically a snapshot in time. Living PRA models attempt to address limitations of traditional PRA models in a limited sense by including temporary changes in plant and system configurations. However, information on plant component health are not considered. Thismore » often leaves risk monitors using living PRA models incapable of conducting evaluations with dynamic degradation scenarios evolving over time. There is a need to develop enabling approaches to solidify risk monitors to provide time and condition-dependent risk by integrating traditional PRA models with condition monitoring and prognostic techniques. This paper presents estimation of system risk evolution over time by integrating plant risk monitoring data with dynamic PRA methods incorporating aging and degradation. Several online, non-destructive approaches have been developed for diagnosing plant component conditions in nuclear industry, i.e., condition indication index, using vibration analysis, current signatures, and operational history [1]. In this work the component performance measures at U.S. commercial nuclear power plants (NPP) [2] are incorporated within the various dynamic PRA methodologies [3] to provide better estimates of probability of failures. Aging and degradation is modeled within the Level-1 PRA framework and is applied to several failure modes of pumps and can be extended to a range of components, viz. valves, generators, batteries, and pipes.« less

  2. Using Color, Texture and Object-Based Image Analysis of Multi-Temporal Camera Data to Monitor Soil Aggregate Breakdown

    PubMed Central

    Ymeti, Irena; van der Werff, Harald; Shrestha, Dhruba Pikha; Jetten, Victor G.; Lievens, Caroline; van der Meer, Freek

    2017-01-01

    Remote sensing has shown its potential to assess soil properties and is a fast and non-destructive method for monitoring soil surface changes. In this paper, we monitor soil aggregate breakdown under natural conditions. From November 2014 to February 2015, images and weather data were collected on a daily basis from five soils susceptible to detachment (Silty Loam with various organic matter content, Loam and Sandy Loam). Three techniques that vary in image processing complexity and user interaction were tested for the ability of monitoring aggregate breakdown. Considering that the soil surface roughness causes shadow cast, the blue/red band ratio is utilized to observe the soil aggregate changes. Dealing with images with high spatial resolution, image texture entropy, which reflects the process of soil aggregate breakdown, is used. In addition, the Huang thresholding technique, which allows estimation of the image area occupied by soil aggregate, is performed. Our results show that all three techniques indicate soil aggregate breakdown over time. The shadow ratio shows a gradual change over time with no details related to weather conditions. Both the entropy and the Huang thresholding technique show variations of soil aggregate breakdown responding to weather conditions. Using data obtained with a regular camera, we found that freezing–thawing cycles are the cause of soil aggregate breakdown. PMID:28556803

  3. Using Color, Texture and Object-Based Image Analysis of Multi-Temporal Camera Data to Monitor Soil Aggregate Breakdown.

    PubMed

    Ymeti, Irena; van der Werff, Harald; Shrestha, Dhruba Pikha; Jetten, Victor G; Lievens, Caroline; van der Meer, Freek

    2017-05-30

    Remote sensing has shown its potential to assess soil properties and is a fast and non-destructive method for monitoring soil surface changes. In this paper, we monitor soil aggregate breakdown under natural conditions. From November 2014 to February 2015, images and weather data were collected on a daily basis from five soils susceptible to detachment (Silty Loam with various organic matter content, Loam and Sandy Loam). Three techniques that vary in image processing complexity and user interaction were tested for the ability of monitoring aggregate breakdown. Considering that the soil surface roughness causes shadow cast, the blue/red band ratio is utilized to observe the soil aggregate changes. Dealing with images with high spatial resolution, image texture entropy, which reflects the process of soil aggregate breakdown, is used. In addition, the Huang thresholding technique, which allows estimation of the image area occupied by soil aggregate, is performed. Our results show that all three techniques indicate soil aggregate breakdown over time. The shadow ratio shows a gradual change over time with no details related to weather conditions. Both the entropy and the Huang thresholding technique show variations of soil aggregate breakdown responding to weather conditions. Using data obtained with a regular camera, we found that freezing-thawing cycles are the cause of soil aggregate breakdown.

  4. Intracranial pressure and cerebral perfusion pressure monitoring in non-TBI patients: special considerations.

    PubMed

    Helbok, Raimund; Olson, DaiWai M; Le Roux, Peter D; Vespa, Paul

    2014-12-01

    The effect of intracranial pressure (ICP) and the role of ICP monitoring are best studied in traumatic brain injury (TBI). However, a variety of acute neurologic illnesses e.g., subarachnoid hemorrhage, intracerebral hemorrhage, ischemic stroke, meningitis/encephalitis, and select metabolic disorders, e.g., liver failure and malignant, brain tumors can affect ICP. The purpose of this paper is to review the literature about ICP monitoring in conditions other than TBI and to provide recommendations how the technique may be used in patient management. A PubMed search between 1980 and September 2013 identified 989 articles; 225 of which were reviewed in detail. The technique used to monitor ICP in non-TBI conditions is similar to that used in TBI; however, indications for ICP monitoring often are intertwined with the presence of obstructive hydrocephalus and hence the use of ventricular catheters is more frequent. Increased ICP can adversely affect outcome, particularly when it fails to respond to treatment. However, patients with elevated ICP can still have favorable outcomes. Although the influence of ICP-based care on outcome in non-TBI conditions appears less robust than in TBI, monitoring ICP and cerebral perfusion pressure can play a role in guiding therapy in select patients.

  5. Repeatability of riparian vegetation sampling methods: how useful are these techniques for broad-scale, long-term monitoring?

    Treesearch

    Marc C. Coles-Ritchie; Richard C. Henderson; Eric K. Archer; Caroline Kennedy; Jeffrey L. Kershner

    2004-01-01

    Tests were conducted to evaluate variability among observers for riparian vegetation data collection methods and data reduction techniques. The methods are used as part of a largescale monitoring program designed to detect changes in riparian resource conditions on Federal lands. Methods were evaluated using agreement matrices, the Bray-Curtis dissimilarity metric, the...

  6. Annotated bibliography of remote sensing methods for monitoring desertification

    USGS Publications Warehouse

    Walker, A.S.; Robinove, Charles J.

    1981-01-01

    Remote sensing techniques are valuable for locating, assessing, and monitoring desertification. Remotely sensed data provide a permanent record of the condition of the land in a format that allows changes in land features and condition to be measured. The annotated bibliography of 118 items discusses remote sensing methods that may be applied to desertification studies.

  7. Electrical Resistance Technique to Monitor SiC Composite Detection

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Morscher, Gregory; Xia, Zhenhai

    2008-01-01

    Ceramic matrix composites are suitable for high temperature structural applications such as turbine airfoils and hypersonic thermal protection systems. The employment of these materials in such applications is limited by the ability to process components reliable and to accurately monitor and predict damage evolution that leads to failure under stressed-oxidation conditions. Current nondestructive methods such as ultrasound, x-ray, and thermal imaging are limited in their ability to quantify small scale, transverse, in-plane, matrix cracks developed over long-time creep and fatigue conditions. Electrical resistance of SiC/SiC composites is one technique that shows special promise towards this end. Since both the matrix and the fibers are conductive, changes in matrix or fiber properties should relate to changes in electrical conductivity along the length of a specimen or part. The effect of matrix cracking on electrical resistivity for several composite systems will be presented and some initial measurements performed at elevated temperatures under stress-rupture conditions. The implications towards electrical resistance as a technique applied to composite processing, damage detection (health monitoring), and life-modeling will be discussed.

  8. Fiber Bragg Gratings, IT Techniques and Strain Gauge Validation for Strain Calculation on Aged Metal Specimens

    PubMed Central

    Montero, Ander; de Ocariz, Idurre Saez; Lopez, Ion; Venegas, Pablo; Gomez, Javier; Zubia, Joseba

    2011-01-01

    This paper studies the feasibility of calculating strains in aged F114 steel specimens with Fiber Bragg Grating (FBG) sensors and infrared thermography (IT) techniques. Two specimens have been conditioned under extreme temperature and relative humidity conditions making comparative tests of stress before and after aging using different adhesives. Moreover, a comparison has been made with IT techniques and conventional methods for calculating stresses in F114 steel. Implementation of Structural Health Monitoring techniques on real aircraft during their life cycle requires a study of the behaviour of FBG sensors and their wiring under real conditions, before using them for a long time. To simulate aging, specimens were stored in a climate chamber at 70 °C and 90% RH for 60 days. This study is framed within the Structural Health Monitoring (SHM) and Non Destructuve Evaluation (NDE) research lines, integrated into the avionics area maintained by the Aeronautical Technologies Centre (CTA) and the University of the Basque Country (UPV/EHU). PMID:22346619

  9. Monitoring volcanic thermal activity by Robust Satellite Techniques: achievements and perspectives

    NASA Astrophysics Data System (ADS)

    Tramutoli, V.; Marchese, F.; Mazzeo, G.; Pergola, N.

    2009-12-01

    Satellite data have been increasingly used in last decades to study active volcanoes and to monitor thermal activity variation in space-time domain. Several satellite techniques and original methods have been developed and tested, devoted to hotspot detection and thermal monitoring. Among them, a multi-temporal approach, named RST (Robust Satellite Techniques), has shown high performances in detecting hotspots, with a low false positive rate under different observational and atmospheric conditions, providing also a potential toward low-level thermal anomalies which may announce incoming eruptions. As the RST scheme is intrinsically exportable on different geographic areas and satellite sensors, it has been applied and tested on a number of volcanoes and in different environmental conditions. This work presents major results and outcomes of studies carried out on Etna and Stromboli (Italy), Merapi (Java Indonesia), Asamayama (Japan), Jebel Al Tair (Yemen) by using different satellite systems and sensors (e.g. NOAA-AVHRR, EOS-MODIS, MSG-SEVIRI). Performances on hotspot detection, early warning and real-time monitoring, together with capabilities in possible thermal precursor identification, will be presented and discussed.

  10. Investigation of the cross-ship comparison monitoring method of failure detection in the HIMAT RPRV. [digital control techniques using airborne microprocessors

    NASA Technical Reports Server (NTRS)

    Wolf, J. A.

    1978-01-01

    The Highly maneuverable aircraft technology (HIMAT) remotely piloted research vehicle (RPRV) uses cross-ship comparison monitoring of the actuator RAM positions to detect a failure in the aileron, canard, and elevator control surface servosystems. Some possible sources of nuisance trips for this failure detection technique are analyzed. A FORTRAN model of the simplex servosystems and the failure detection technique were utilized to provide a convenient means of changing parameters and introducing system noise. The sensitivity of the technique to differences between servosystems and operating conditions was determined. The cross-ship comparison monitoring method presently appears to be marginal in its capability to detect an actual failure and to withstand nuisance trips.

  11. Applying next-generation DNA sequencing technology to aquatic bioassessment

    EPA Science Inventory

    The growing challenges for environmental monitoring and assessment have pushed standard techniques to the limits of their application. Current biological monitoring programs often require considerable time and workload to provide environmental condition assessments. New molecular...

  12. Audio signal analysis for tool wear monitoring in sheet metal stamping

    NASA Astrophysics Data System (ADS)

    Ubhayaratne, Indivarie; Pereira, Michael P.; Xiang, Yong; Rolfe, Bernard F.

    2017-02-01

    Stamping tool wear can significantly degrade product quality, and hence, online tool condition monitoring is a timely need in many manufacturing industries. Even though a large amount of research has been conducted employing different sensor signals, there is still an unmet demand for a low-cost easy to set up condition monitoring system. Audio signal analysis is a simple method that has the potential to meet this demand, but has not been previously used for stamping process monitoring. Hence, this paper studies the existence and the significance of the correlation between emitted sound signals and the wear state of sheet metal stamping tools. The corrupting sources generated by the tooling of the stamping press and surrounding machinery have higher amplitudes compared to that of the sound emitted by the stamping operation itself. Therefore, a newly developed semi-blind signal extraction technique was employed as a pre-processing technique to mitigate the contribution of these corrupting sources. The spectral analysis results of the raw and extracted signals demonstrate a significant qualitative relationship between wear progression and the emitted sound signature. This study lays the basis for employing low-cost audio signal analysis in the development of a real-time industrial tool condition monitoring system.

  13. A remote condition monitoring system for wind-turbine based DG systems

    NASA Astrophysics Data System (ADS)

    Ma, X.; Wang, G.; Cross, P.; Zhang, X.

    2012-05-01

    In this paper, a remote condition monitoring system is proposed, which fundamentally consists of real-time monitoring modules on the plant side, a remote support centre and the communications between them. The paper addresses some of the key issues related on the monitoring system, including i) the implementation and configuration of a VPN connection, ii) an effective database system to be able to handle huge amount of monitoring data, and iii) efficient data mining techniques to convert raw data into useful information for plant assessment. The preliminary results have demonstrated that the proposed system is practically feasible and can be deployed to monitor the emerging new energy generation systems.

  14. Fault identification and localization for Ethernet Passive Optical Network using L-band ASE source and various types of fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Naim, Nani Fadzlina; Bakar, A. Ashrif A.; Ab-Rahman, Mohammad Syuhaimi

    2018-01-01

    This paper presents a centralized and fault localization technique for Ethernet Passive Optical Access Network. This technique employs L-band Amplified Spontaneous Emission (ASE) as the monitoring source and various fiber Bragg Gratings (FBGs) as the fiber's identifier. An FBG with a unique combination of Bragg wavelength, reflectivity and bandwidth is inserted at each distribution fiber. The FBG reflection spectrum will be analyzed using an optical spectrum analyzer (OSA) to monitor the condition of the distribution fiber. Various FBGs reflection spectra is employed to optimize the limited bandwidth of monitoring source, thus allows more fibers to be monitored. Basically, one Bragg wavelength is shared by two distinct FBGs with different reflectivity and bandwidth. The experimental result shows that the system is capable to monitor up to 32 customers with OSNR value of ∼1.2 dB and monitoring power received of -24 dBm. This centralized and simple monitoring technique demonstrates a low power, cost efficient and low bandwidth requirement system.

  15. Recent advances in electronic nose techniques for monitoring of fermentation process.

    PubMed

    Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai

    2015-12-01

    Microbial fermentation process is often sensitive to even slight changes of conditions that may result in unacceptable end-product quality. Thus, the monitoring of the process is critical for discovering unfavorable deviations as early as possible and taking the appropriate measures. However, the use of traditional analytical techniques is often time-consuming and labor-intensive. In this sense, the most effective way of developing rapid, accurate and relatively economical method for quality assurance in microbial fermentation process is the use of novel chemical sensor systems. Electronic nose techniques have particular advantages in non-invasive monitoring of microbial fermentation process. Therefore, in this review, we present an overview of the most important contributions dealing with the quality control in microbial fermentation process using the electronic nose techniques. After a brief description of the fundamentals of the sensor techniques, some examples of potential applications of electronic nose techniques monitoring are provided, including the implementation of control strategies and the combination with other monitoring tools (i.e. sensor fusion). Finally, on the basis of the review, the electronic nose techniques are critically commented, and its strengths and weaknesses being highlighted. In addition, on the basis of the observed trends, we also propose the technical challenges and future outlook for the electronic nose techniques.

  16. Real-Time Impact Visualization Inspection of Aerospace Composite Structures with Distributed Sensors.

    PubMed

    Si, Liang; Baier, Horst

    2015-07-08

    For the future design of smart aerospace structures, the development and application of a reliable, real-time and automatic monitoring and diagnostic technique is essential. Thus, with distributed sensor networks, a real-time automatic structural health monitoring (SHM) technique is designed and investigated to monitor and predict the locations and force magnitudes of unforeseen foreign impacts on composite structures and to estimate in real time mode the structural state when impacts occur. The proposed smart impact visualization inspection (IVI) technique mainly consists of five functional modules, which are the signal data preprocessing (SDP), the forward model generator (FMG), the impact positioning calculator (IPC), the inverse model operator (IMO) and structural state estimator (SSE). With regard to the verification of the practicality of the proposed IVI technique, various structure configurations are considered, which are a normal CFRP panel and another CFRP panel with "orange peel" surfaces and a cutout hole. Additionally, since robustness against several background disturbances is also an essential criterion for practical engineering demands, investigations and experimental tests are carried out under random vibration interfering noise (RVIN) conditions. The accuracy of the predictions for unknown impact events on composite structures using the IVI technique is validated under various structure configurations and under changing environmental conditions. The evaluated errors all fall well within a satisfactory limit range. Furthermore, it is concluded that the IVI technique is applicable for impact monitoring, diagnosis and assessment of aerospace composite structures in complex practical engineering environments.

  17. Real-Time Impact Visualization Inspection of Aerospace Composite Structures with Distributed Sensors

    PubMed Central

    Si, Liang; Baier, Horst

    2015-01-01

    For the future design of smart aerospace structures, the development and application of a reliable, real-time and automatic monitoring and diagnostic technique is essential. Thus, with distributed sensor networks, a real-time automatic structural health monitoring (SHM) technique is designed and investigated to monitor and predict the locations and force magnitudes of unforeseen foreign impacts on composite structures and to estimate in real time mode the structural state when impacts occur. The proposed smart impact visualization inspection (IVI) technique mainly consists of five functional modules, which are the signal data preprocessing (SDP), the forward model generator (FMG), the impact positioning calculator (IPC), the inverse model operator (IMO) and structural state estimator (SSE). With regard to the verification of the practicality of the proposed IVI technique, various structure configurations are considered, which are a normal CFRP panel and another CFRP panel with “orange peel” surfaces and a cutout hole. Additionally, since robustness against several background disturbances is also an essential criterion for practical engineering demands, investigations and experimental tests are carried out under random vibration interfering noise (RVIN) conditions. The accuracy of the predictions for unknown impact events on composite structures using the IVI technique is validated under various structure configurations and under changing environmental conditions. The evaluated errors all fall well within a satisfactory limit range. Furthermore, it is concluded that the IVI technique is applicable for impact monitoring, diagnosis and assessment of aerospace composite structures in complex practical engineering environments. PMID:26184196

  18. Techniques for monitoring and controlling yaw attitude of a GPS satellite

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M. (Inventor); Bar-Sever, Yoaz (Inventor); Zumberge, James (Inventor); Bertiger, William I. (Inventor); Muellerschoen, Ronald J. (Inventor); Wu, Sien-Chong (Inventor); Hurst, Kenneth (Inventor); Blewitt, Geoff (Inventor); Yunck, Thomas (Inventor); Thornton, Catherine (Inventor)

    2001-01-01

    Techniques for monitoring and controlling yawing of a GPS satellite in an orbit that has an eclipsing portion out of the sunlight based on the orbital conditions of the GPS satellite. In one embodiment, a constant yaw bias is generated in the attitude control system of the GPS satellite to control the yawing of the GPS satellite when it is in the shadow of the earth.

  19. Reusable rocket engine optical condition monitoring

    NASA Technical Reports Server (NTRS)

    Wyett, L.; Maram, J.; Barkhoudarian, S.; Reinert, J.

    1987-01-01

    Plume emission spectrometry and optical leak detection are described as two new applications of optical techniques to reusable rocket engine condition monitoring. Plume spectrometry has been used with laboratory flames and reusable rocket engines to characterize both the nominal combustion spectra and anomalous spectra of contaminants burning in these plumes. Holographic interferometry has been used to identify leaks and quantify leak rates from reusable rocket engine joints and welds.

  20. In Situ Monitoring of Chemical Reactions at a Solid-Water Interface by Femtosecond Acoustics.

    PubMed

    Shen, Chih-Chiang; Weng, Meng-Yu; Sheu, Jinn-Kong; Yao, Yi-Ting; Sun, Chi-Kuang

    2017-11-02

    Chemical reactions at a solid-liquid interface are of fundamental importance. Interfacial chemical reactions occur not only at the very interface but also in the subsurface area, while existing monitoring techniques either provide limited spatial resolution or are applicable only for the outmost atomic layer. Here, with the aid of the time-domain analysis with femtosecond acoustics, we demonstrate a subatomic-level-resolution technique to longitudinally monitor chemical reactions at solid-water interfaces, capable of in situ monitoring even the subsurface area under atmospheric conditions. Our work was proven by monitoring the already-known anode oxidation process occurring during photoelectrochemical water splitting. Furthermore, whenever the oxide layer thickness equals an integer  number of the effective atomic layer thickness, the measured acoustic echo will show higher signal-to-noise ratios with reduced speckle noise, indicating the quantum-like behavior of this coherent-phonon-based technique.

  1. Applying monitoring, verification, and accounting techniques to a real-world, enhanced oil recovery operational CO2 leak

    USGS Publications Warehouse

    Wimmer, B.T.; Krapac, I.G.; Locke, R.; Iranmanesh, A.

    2011-01-01

    The use of carbon dioxide (CO2) for enhanced oil recovery (EOR) is being tested for oil fields in the Illinois Basin, USA. While this technology has shown promise for improving oil production, it has raised some issues about the safety of CO2 injection and storage. The Midwest Geological Sequestration Consortium (MGSC) organized a Monitoring, Verification, and Accounting (MVA) team to develop and deploy monitoring programs at three EOR sites in Illinois, Indiana, and Kentucky, USA. MVA goals include establishing baseline conditions to evaluate potential impacts from CO2 injection, demonstrating that project activities are protective of human health and the environment, and providing an accurate accounting of stored CO2. This paper focuses on the use of MVA techniques in monitoring a small CO2 leak from a supply line at an EOR facility under real-world conditions. The ability of shallow monitoring techniques to detect and quantify a CO2 leak under real-world conditions has been largely unproven. In July of 2009, a leak in the pipe supplying pressurized CO2 to an injection well was observed at an MGSC EOR site located in west-central Kentucky. Carbon dioxide was escaping from the supply pipe located approximately 1 m underground. The leak was discovered visually by site personnel and injection was halted immediately. At its largest extent, the hole created by the leak was approximately 1.9 m long by 1.7 m wide and 0.7 m deep in the land surface. This circumstance provided an excellent opportunity to evaluate the performance of several monitoring techniques including soil CO2 flux measurements, portable infrared gas analysis, thermal infrared imagery, and aerial hyperspectral imagery. Valuable experience was gained during this effort. Lessons learned included determining 1) hyperspectral imagery was not effective in detecting this relatively small, short-term CO2 leak, 2) even though injection was halted, the leak remained dynamic and presented a safety risk concern during monitoring activities and, 3) the atmospheric and soil monitoring techniques used were relatively cost-effective, easily and rapidly deployable, and required minimal manpower to set up and maintain for short-term assessments. However, characterization of CO2 distribution near the land surface resulting from a dynamic leak with widely variable concentrations and fluxes was challenging. ?? 2011 Published by Elsevier Ltd.

  2. A review on prognostic techniques for non-stationary and non-linear rotating systems

    NASA Astrophysics Data System (ADS)

    Kan, Man Shan; Tan, Andy C. C.; Mathew, Joseph

    2015-10-01

    The field of prognostics has attracted significant interest from the research community in recent times. Prognostics enables the prediction of failures in machines resulting in benefits to plant operators such as shorter downtimes, higher operation reliability, reduced operations and maintenance cost, and more effective maintenance and logistics planning. Prognostic systems have been successfully deployed for the monitoring of relatively simple rotating machines. However, machines and associated systems today are increasingly complex. As such, there is an urgent need to develop prognostic techniques for such complex systems operating in the real world. This review paper focuses on prognostic techniques that can be applied to rotating machinery operating under non-linear and non-stationary conditions. The general concept of these techniques, the pros and cons of applying these methods, as well as their applications in the research field are discussed. Finally, the opportunities and challenges in implementing prognostic systems and developing effective techniques for monitoring machines operating under non-stationary and non-linear conditions are also discussed.

  3. Monitoring of the microhemodynamic in an aggressive clinical behavior of cerebral hemorrhage using dynamic light scattering techniques

    NASA Astrophysics Data System (ADS)

    Vilensky, M. A.; Semyachkina-Glushkovskaya, O. V.; Timoshina, P. A.; Berdnikova, V. A.; Kuznetsova, Y. V.; Semyachkin-Glushkovsky, I. A.; Agafonov, D. N.; Tuchin, V. V.

    2012-06-01

    This paper presents the results of experimental study of full field laser speckle imaging due to cortex microcirculation state monitoring for laboratory rats under conditions of stroke and the introduction of agents. Three groups of experimental animals from five animals in each group were studied. The behavior of blood flow, studied by speckle imaging technique, matched the expected physiological response to an impact.

  4. Monitoring Engine Vibrations And Spectrum Of Exhaust

    NASA Technical Reports Server (NTRS)

    Martinez, Carol L.; Randall, Michael R.; Reinert, John W.

    1991-01-01

    Real-time computation of intensities of peaks in visible-light emission spectrum of exhaust combined with real-time spectrum analysis of vibrations into developmental monitoring technique providing up-to-the-second information on conditions of critical bearings in engine. Conceived to monitor conditions of bearings in turbopump suppling oxygen to Space Shuttle main engine, based on observations that both vibrations in bearings and intensities of visible light emitted at specific wavelengths by exhaust plume of engine indicate wear and incipient failure of bearings. Applicable to monitoring "health" of other machinery via spectra of vibrations and electromagnetic emissions from exhausts. Concept related to one described in "Monitoring Bearing Vibrations For Signs Of Damage", (MFS-29734).

  5. Advanced Signal Processing for High Temperatures Health Monitoring of Condensed Water Height in Steam Pipes

    NASA Technical Reports Server (NTRS)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Takano, Nobuyuki; Bao, Xiaoqi

    2013-01-01

    An advanced signal processing methodology is being developed to monitor the height of condensed water thru the wall of a steel pipe while operating at temperatures as high as 250deg. Using existing techniques, previous study indicated that, when the water height is low or there is disturbance in the environment, the predicted water height may not be accurate. In recent years, the use of the autocorrelation and envelope techniques in the signal processing has been demonstrated to be a very useful tool for practical applications. In this paper, various signal processing techniques including the auto correlation, Hilbert transform, and the Shannon Energy Envelope methods were studied and implemented to determine the water height in the steam pipe. The results have shown that the developed method provides a good capability for monitoring the height in the regular conditions. An alternative solution for shallow water or no water conditions based on a developed hybrid method based on Hilbert transform (HT) with a high pass filter and using the optimized windowing technique is suggested. Further development of the reported methods would provide a powerful tool for the identification of the disturbances of water height inside the pipe.

  6. Application of Multiregressive Linear Models, Dynamic Kriging Models and Neural Network Models to Predictive Maintenance of Hydroelectric Power Systems

    NASA Astrophysics Data System (ADS)

    Lucifredi, A.; Mazzieri, C.; Rossi, M.

    2000-05-01

    Since the operational conditions of a hydroelectric unit can vary within a wide range, the monitoring system must be able to distinguish between the variations of the monitored variable caused by variations of the operation conditions and those due to arising and progressing of failures and misoperations. The paper aims to identify the best technique to be adopted for the monitoring system. Three different methods have been implemented and compared. Two of them use statistical techniques: the first, the linear multiple regression, expresses the monitored variable as a linear function of the process parameters (independent variables), while the second, the dynamic kriging technique, is a modified technique of multiple linear regression representing the monitored variable as a linear combination of the process variables in such a way as to minimize the variance of the estimate error. The third is based on neural networks. Tests have shown that the monitoring system based on the kriging technique is not affected by some problems common to the other two models e.g. the requirement of a large amount of data for their tuning, both for training the neural network and defining the optimum plane for the multiple regression, not only in the system starting phase but also after a trivial operation of maintenance involving the substitution of machinery components having a direct impact on the observed variable. Or, in addition, the necessity of different models to describe in a satisfactory way the different ranges of operation of the plant. The monitoring system based on the kriging statistical technique overrides the previous difficulties: it does not require a large amount of data to be tuned and is immediately operational: given two points, the third can be immediately estimated; in addition the model follows the system without adapting itself to it. The results of the experimentation performed seem to indicate that a model based on a neural network or on a linear multiple regression is not optimal, and that a different approach is necessary to reduce the amount of work during the learning phase using, when available, all the information stored during the initial phase of the plant to build the reference baseline, elaborating, if it is the case, the raw information available. A mixed approach using the kriging statistical technique and neural network techniques could optimise the result.

  7. Chemiluminescence as a condition monitoring method for thermal aging and lifetime prediction of an HTPB elastomer.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillen, Kenneth Todd; Minier, Leanna M. G.; Celina, Mathias C.

    Chemiluminescence (CL) has been applied as a condition monitoring technique to assess aging related changes in a hydroxyl-terminated-polybutadiene based polyurethane elastomer. Initial thermal aging of this polymer was conducted between 110 and 50 C. Two CL methods were applied to examine the degradative changes that had occurred in these aged samples: isothermal 'wear-out' experiments under oxygen yielding initial CL intensity and 'wear-out' time data, and temperature ramp experiments under inert conditions as a measure of previously accumulated hydroperoxides or other reactive species. The sensitivities of these CL features to prior aging exposure of the polymer were evaluated on the basismore » of qualifying this method as a quick screening technique for quantification of degradation levels. Both the techniques yielded data representing the aging trends in this material via correlation with mechanical property changes. Initial CL rates from the isothermal experiments are the most sensitive and suitable approach for documenting material changes during the early part of thermal aging.« less

  8. Cole-Cole, linear and multivariate modeling of capacitance data for on-line monitoring of biomass.

    PubMed

    Dabros, Michal; Dennewald, Danielle; Currie, David J; Lee, Mark H; Todd, Robert W; Marison, Ian W; von Stockar, Urs

    2009-02-01

    This work evaluates three techniques of calibrating capacitance (dielectric) spectrometers used for on-line monitoring of biomass: modeling of cell properties using the theoretical Cole-Cole equation, linear regression of dual-frequency capacitance measurements on biomass concentration, and multivariate (PLS) modeling of scanning dielectric spectra. The performance and robustness of each technique is assessed during a sequence of validation batches in two experimental settings of differing signal noise. In more noisy conditions, the Cole-Cole model had significantly higher biomass concentration prediction errors than the linear and multivariate models. The PLS model was the most robust in handling signal noise. In less noisy conditions, the three models performed similarly. Estimates of the mean cell size were done additionally using the Cole-Cole and PLS models, the latter technique giving more satisfactory results.

  9. Determining soil hydrologic characteristics on a remote forest watershed by continuous monitoring of soil water pressures, rainfall and runoff.

    Treesearch

    L.R. Ahuja; S. A. El-Swaify

    1979-01-01

    Continuous monitoring of soil-water pressures, rainfall and runoff under natural conditions was tested as a technique for determining soil hydrologic characteristics of a remote forest watershed plot. A completely battery-powered (and thus portable) pressure transducer–scanner–recorder system was assembled for monitoring of soil-water pressures in...

  10. Engineering considerations for corrosion monitoring of gas gathering pipeline systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braga, T.G.; Asperger, R.G.

    1987-01-01

    Proper corrosion monitoring of gas gathering pipelines requires a system review to determine the appropriate monitor locations and types of monitoring techniques. This paper develops and discusses a classification of conditions such as flow regime and gas composition. Also discussed are junction categories which, for corrosion monitoring, need to be considered from two points of view. The first is related to fluid flow in the line and the second is related corrosion inhibitor movement along the pipeline. The appropriate application of the various monitoring techniques such as coupons, hydrogen detectors, electrical resistance probe and linear polarization probes are discussed inmore » relation to flow regime and gas composition. Problems caused by semi-conduction from iron sulfide are considered. Advantages and disadvantages of fluid gathering methods such as pots and flow-through drips are discussed in relation to their reliability as on-line monitoring locations.« less

  11. Usefulness of LANDSAT data for monitoring plant development and range conditions in California's annual grassland

    NASA Technical Reports Server (NTRS)

    Carneggie, D. M.; Degloria, S. D.; Colwell, R. N.

    1975-01-01

    A network of sampling sites throughout the annual grassland region of California was established to correlate plant growth stages and forage production to climatic and other environmental factors. Plant growth and range conditions were further related to geographic location and seasonal variations. A sequence of LANDSAT data was obtained covering critical periods in the growth cycle. This was analyzed by both photointerpretation and computer aided techniques. Image characteristics and spectral reflectance data were then related to forage production, range condition, range site and changing growth conditions. It was determined that repeat sequences with LANDSAT color composite images do provide a means for monitoring changes in range condition. Spectral radiance data obtained from magnetic tape can be used to determine quantitatively the critical stages in the forage growth cycle. A computer ratioing technique provided a sensitive indicator of changes in growth stages and an indication of the relative differences in forage production between range sites.

  12. Capacitive Sensing for Non-Invasive Breathing and Heart Monitoring in Non-Restrained, Non-Sedated Laboratory Mice.

    PubMed

    González-Sánchez, Carlos; Fraile, Juan-Carlos; Pérez-Turiel, Javier; Damm, Ellen; Schneider, Jochen G; Zimmermann, Heiko; Schmitt, Daniel; Ihmig, Frank R

    2016-07-07

    Animal testing plays a vital role in biomedical research. Stress reduction is important for improving research results and increasing the welfare and the quality of life of laboratory animals. To estimate stress we believe it is of great importance to develop non-invasive techniques for monitoring physiological signals during the transport of laboratory animals, thereby allowing the gathering of information on the transport conditions, and, eventually, the improvement of these conditions. Here, we study the suitability of commercially available electric potential integrated circuit (EPIC) sensors, using both contact and contactless techniques, for monitoring the heart rate and breathing rate of non-restrained, non-sedated laboratory mice. The design has been tested under different scenarios with the aim of checking the plausibility of performing contactless capture of mouse heart activity (ideally with an electrocardiogram). First experimental results are shown.

  13. Lithium-ion battery diagnostic and prognostic techniques

    DOEpatents

    Singh, Harmohan N.

    2009-11-03

    Embodiments provide a method and a system for determining cell imbalance condition of a multi-cell battery including a plurality of cell strings. To determine a cell imbalance condition, a charge current is applied to the battery and is monitored during charging. The charging time for each cell string is determined based on the monitor of the charge current. A charge time difference of any two cell strings in the battery is used to determine the cell imbalance condition by comparing with a predetermined acceptable charge time difference for the cell strings.

  14. Thick-film acoustic emission sensors for use in structurally integrated condition-monitoring applications.

    PubMed

    Pickwell, Andrew J; Dorey, Robert A; Mba, David

    2011-09-01

    Monitoring the condition of complex engineering structures is an important aspect of modern engineering, eliminating unnecessary work and enabling planned maintenance, preventing failure. Acoustic emissions (AE) testing is one method of implementing continuous nondestructive structural health monitoring. A novel thick-film (17.6 μm) AE sensor is presented. Lead zirconate titanate thick films were fabricated using a powder/sol composite ink deposition technique and mechanically patterned to form a discrete thick-film piezoelectric AE sensor. The thick-film sensor was benchmarked against a commercial AE device and was found to exhibit comparable responses to simulated acoustic emissions.

  15. A PLL-based resampling technique for vibration analysis in variable-speed wind turbines with PMSG: A bearing fault case

    NASA Astrophysics Data System (ADS)

    Pezzani, Carlos M.; Bossio, José M.; Castellino, Ariel M.; Bossio, Guillermo R.; De Angelo, Cristian H.

    2017-02-01

    Condition monitoring in permanent magnet synchronous machines has gained interest due to the increasing use in applications such as electric traction and power generation. Particularly in wind power generation, non-invasive condition monitoring techniques are of great importance. Usually, in such applications the access to the generator is complex and costly, while unexpected breakdowns results in high repair costs. This paper presents a technique which allows using vibration analysis for bearing fault detection in permanent magnet synchronous generators used in wind turbines. Given that in wind power applications the generator rotational speed may vary during normal operation, it is necessary to use special sampling techniques to apply spectral analysis of mechanical vibrations. In this work, a resampling technique based on order tracking without measuring the rotor position is proposed. To synchronize sampling with rotor position, an estimation of the rotor position obtained from the angle of the voltage vector is proposed. This angle is obtained from a phase-locked loop synchronized with the generator voltages. The proposed strategy is validated by laboratory experimental results obtained from a permanent magnet synchronous generator. Results with single point defects in the outer race of a bearing under variable speed and load conditions are presented.

  16. Propulsion health monitoring of a turbine engine disk using spin test data

    NASA Astrophysics Data System (ADS)

    Abdul-Aziz, Ali; Woike, Mark; Oza, Nikunj; Matthews, Bryan; Baakilini, George

    2010-03-01

    On line detection techniques to monitor the health of rotating engine components are becoming increasingly attractive options to aircraft engine companies in order to increase safety of operation and lower maintenance costs. Health monitoring remains a challenging feature to easily implement, especially, in the presence of scattered loading conditions, crack size, component geometry and materials properties. The current trend, however, is to utilize noninvasive types of health monitoring or nondestructive techniques to detect hidden flaws and mini cracks before any catastrophic event occurs. These techniques go further to evaluate materials' discontinuities and other anomalies that have grown to the level of critical defects which can lead to failure. Generally, health monitoring is highly dependent on sensor systems that are capable of performing in various engine environmental conditions and able to transmit a signal upon a predetermined crack length, while acting in a neutral form upon the overall performance of the engine system. Efforts are under way at NASA Glenn Research Center through support of the Intelligent Vehicle Health Management Project (IVHM) to develop and implement such sensor technology for a wide variety of applications. These efforts are focused on developing high temperature, wireless, low cost and durable products. Therefore, in an effort to address the technical issues concerning health monitoring of a rotor disk, this paper considers data collected from an experimental study using high frequency capacitive sensor technology to capture blade tip clearance and tip timing measurements in a rotating engine-like-disk-to predict the disk faults and assess its structural integrity. The experimental results collected at a range of rotational speeds from tests conducted at the NASA Glenn Research Center's Rotordynamics Laboratory will be evaluated using multiple data-driven anomaly detection techniques to identify anomalies in the disk. This study is expected to present a select evaluation of online health monitoring of a rotating disk using these high caliber sensors and test the capability of the in-house spin system.

  17. Condition monitoring of turning process using infrared thermography technique - An experimental approach

    NASA Astrophysics Data System (ADS)

    Prasad, Balla Srinivasa; Prabha, K. Aruna; Kumar, P. V. S. Ganesh

    2017-03-01

    In metal cutting machining, major factors that affect the cutting tool life are machine tool vibrations, tool tip/chip temperature and surface roughness along with machining parameters like cutting speed, feed rate, depth of cut, tool geometry, etc., so it becomes important for the manufacturing industry to find the suitable levels of process parameters for obtaining maintaining tool life. Heat generation in cutting was always a main topic to be studied in machining. Recent advancement in signal processing and information technology has resulted in the use of multiple sensors for development of the effective monitoring of tool condition monitoring systems with improved accuracy. From a process improvement point of view, it is definitely more advantageous to proactively monitor quality directly in the process instead of the product, so that the consequences of a defective part can be minimized or even eliminated. In the present work, a real time process monitoring method is explored using multiple sensors. It focuses on the development of a test bed for monitoring the tool condition in turning of AISI 316L steel by using both coated and uncoated carbide inserts. Proposed tool condition monitoring (TCM) is evaluated in the high speed turning using multiple sensors such as Laser Doppler vibrometer and infrared thermography technique. The results indicate the feasibility of using the dominant frequency of the vibration signals for the monitoring of high speed turning operations along with temperatures gradient. A possible correlation is identified in both regular and irregular cutting tool wear. While cutting speed and feed rate proved to be influential parameter on the depicted temperatures and depth of cut to be less influential. Generally, it is observed that lower heat and temperatures are generated when coated inserts are employed. It is found that cutting temperatures are gradually increased as edge wear and deformation developed.

  18. EC MoDeRn Project: In-situ Demonstration of Innovative Monitoring Technologies for Geological Disposal - 12053

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breen, B.J.; Garcia-Sineriz, J.L.; Maurer, H.

    2012-07-01

    Monitoring to provide information on the evolution of geological disposal presents several challenges. The 4-year, euros M 5, EC MoDeRn Project (http://www.modern-fp7.eu/), which commenced in 2009, addresses monitoring processes, state-of-the-art technology and innovative research and development of monitoring techniques. This paper discusses some of the key drivers for the development of innovative monitoring techniques and provides outlines of the demonstration programmes being conducted within MoDeRn. The aim is to develop these innovative monitoring techniques and to demonstrate them under realistic conditions present in underground laboratories. These demonstration projects, applying a range of different monitoring techniques, are being carried out atmore » underground research facilities in different geological environments at HADES URL in Belgium (plastic clay), Bure in France (indurated clay) and at Grimsel Test Site (granite) in Switzerland. These are either built upon existing infrastructure (EC ESDRED Low pH shotcrete and TEM experiments at Grimsel; and PRACLAY experiment and underground galleries in HADES) or will be attached to infrastructure that is being developed and financed by resources outside of this project (mock-up disposal cell in Bure). At Grimsel Test Site, cross-hole and hole-to-tunnel seismic methods are being employed as a means to monitor induced changes in an artificially saturated bentonite wall confined behind a shotcrete plug. Recognising the limitations for travel-time tomography for monitoring a disposal cell, full waveform inversion techniques are being employed to enhance the capacity to monitor remote from the excavation. At the same Grimsel location, an investigation will be conducted of the potential for using a high frequency wireless (HFW) sensor network embedded within the barrier system; this will include the possibility of providing energy remotely to isolated sensors. At the HADES URL, the monitoring programme will utilise the PRACLAY gallery equipped to simulate a disposal gallery for heat-generating high-level waste evaluating fibre-optic based sensing techniques, including distributed sensing for thermal distribution and long-term reliability in harsh conditions. It also includes the potential to improve the treatment of signals from micro-seismic monitoring to enable enhanced understanding of the evolution around the gallery following its excavation due to ventilation, saturation and heating, and to image a water-bearing concretion layer. HADES URL will also be used to test wireless techniques to transmit monitoring data from the underground to the surface. The main focus of this contribution is to evaluate magneto-inductive data transmission; and to optimise energy usage. At the Bure underground facility in France, monitoring systems have been developed and will be embedded into the steel liner for the mock-up high-level waste disposal tunnel. The aim of this programme is to establish the capacity to conduct integrated monitoring activities inside the disposal cell, on the cell liner and in the near-field and to assess the capability of the monitoring to withstand construction and liner emplacement procedures. These projects, which are supported by focused development and testing of the monitoring systems, will allow the testing of both the effectiveness of these techniques applied to disposal situations and to understand the limits of these monitoring technologies. This approach should also enhance the confidence of key stakeholders in the ability to understand/confirm the changes occurring within a disposal cell. In addition, remote or 'non-intrusive' monitoring technologies are evaluated to provide a means of enhancing understanding of what is occurring in an isolated disposal cell. The projects also test solutions for embedded monitoring systems in challenging (risk of damage) situations. The outputs from this work will lead to improved understanding of these state-of-the-art techniques and allow focused development of those techniques beneficial to future monitoring programmes. It is also planned, as part of the MoDeRn programme of stakeholder engagement to show some of these monitoring demonstrations to lay stakeholders in order to receive their feed-back on the approach taken and their views on the value of this work. This feedback will help improve our understanding of how this work and future work on monitoring can be more effectively communicated. (authors)« less

  19. Method for assessing motor insulation on operating motors

    DOEpatents

    Kueck, John D.; Otaduy, Pedro J.

    1997-01-01

    A method for monitoring the condition of electrical-motor-driven devices. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques.

  20. Wireless AE Event and Environmental Monitoring for Wind Turbine Blades at Low Sampling Rates

    NASA Astrophysics Data System (ADS)

    Bouzid, Omar M.; Tian, Gui Y.; Cumanan, K.; Neasham, J.

    Integration of acoustic wireless technology in structural health monitoring (SHM) applications introduces new challenges due to requirements of high sampling rates, additional communication bandwidth, memory space, and power resources. In order to circumvent these challenges, this chapter proposes a novel solution through building a wireless SHM technique in conjunction with acoustic emission (AE) with field deployment on the structure of a wind turbine. This solution requires a low sampling rate which is lower than the Nyquist rate. In addition, features extracted from aliased AE signals instead of reconstructing the original signals on-board the wireless nodes are exploited to monitor AE events, such as wind, rain, strong hail, and bird strike in different environmental conditions in conjunction with artificial AE sources. Time feature extraction algorithm, in addition to the principal component analysis (PCA) method, is used to extract and classify the relevant information, which in turn is used to classify or recognise a testing condition that is represented by the response signals. This proposed novel technique yields a significant data reduction during the monitoring process of wind turbine blades.

  1. Ultrasonic technique for monitoring of liquid density variations

    NASA Astrophysics Data System (ADS)

    Kazys, R.; Rekuviene, R.; Sliteris, R.; Mazeika, L.; Zukauskas, E.

    2015-01-01

    A novel ultrasonic measurement technique for density measurements of different liquids in extreme conditions has been developed. The proposed density measurement method is based on transformation of the acoustic impedance of the measured liquid. The higher accuracy of measurements is achieved by means of the λ/4 acoustic matching layer between the load and the ultrasonic waveguide transducer. Introduction of the matching layer enhances sensitivity of the measurement system. Sometimes, the density measurements must be performed in very complex conditions: high temperature (up to 200 °C), pressure (up to 10 MPa), and high chemical activity of the medium under measurement. In this case, the special geometry metal waveguides are proposed to use in order to protect the piezoelectric transducer surface from influence of a high temperature. The experimental set-up of technique was calibrated using the reference liquids with different densities: ethyl ether, ethyl alcohol, distilled water, and different concentration (20%, 40%, and 60%) sugar-water solutions. The uncertainty of measurements is less than 1%. The proposed measurement method was verified in real conditions by monitoring the density of a melted polypropylene during manufacturing process.

  2. Informal and formal trail monitoring protocols and baseline conditions: Acadia National Park

    USGS Publications Warehouse

    Marion, Jeffrey L.; Wimpey, Jeremy F.; Park, L.

    2011-01-01

    At Acadia National Park, changing visitor use levels and patterns have contributed to an increasing degree of visitor use impacts to natural and cultural resources. To better understand the extent and severity of these resource impacts and identify effective management techniques, the park sponsored this research to develop monitoring protocols, collect baseline data, and identify suggestions for management strategies. Formal and informal trails were surveyed and their resource conditions were assessed and characterized to support park planning and management decision-making.

  3. Monitoring of Lactobacillus fermentation process by using ion chromatography with a series piezoelectric quartz crystal detector.

    PubMed

    Zhang, J; Xie, Y; Dai, X; Wei, W

    2001-03-01

    A new method monitoring Lactobacillus fermentation process, which combines ion chromatography (IC) with a series piezoelectric quartz crystal (SPQC) technique, is presented in this paper. Monitoring of the fermentation process was realized by examining the rate of production of lactic acid. An automatic membrane dialyser was used for the pretreatment of the sample in on-line monitoring. A mixture of p-hydroxybenzoic acid and N,N-diethylethanolamine was adopted as mobile phase and its flow rate was 0.8 ml/min. The effects of some fermentation conditions were also discussed in detail. Accordingly, the optimal fermentation conditions were obtained. This method is simple and convenient while the results obtained are accurate and reliable.

  4. Condition monitoring and fault diagnosis of motor bearings using undersampled vibration signals from a wireless sensor network

    NASA Astrophysics Data System (ADS)

    Lu, Siliang; Zhou, Peng; Wang, Xiaoxian; Liu, Yongbin; Liu, Fang; Zhao, Jiwen

    2018-02-01

    Wireless sensor networks (WSNs) which consist of miscellaneous sensors are used frequently in monitoring vital equipment. Benefiting from the development of data mining technologies, the massive data generated by sensors facilitate condition monitoring and fault diagnosis. However, too much data increase storage space, energy consumption, and computing resource, which can be considered fatal weaknesses for a WSN with limited resources. This study investigates a new method for motor bearings condition monitoring and fault diagnosis using the undersampled vibration signals acquired from a WSN. The proposed method, which is a fusion of the kurtogram, analog domain bandpass filtering, bandpass sampling, and demodulated resonance technique, can reduce the sampled data length while retaining the monitoring and diagnosis performance. A WSN prototype was designed, and simulations and experiments were conducted to evaluate the effectiveness and efficiency of the proposed method. Experimental results indicated that the sampled data length and transmission time of the proposed method result in a decrease of over 80% in comparison with that of the traditional method. Therefore, the proposed method indicates potential applications on condition monitoring and fault diagnosis of motor bearings installed in remote areas, such as wind farms and offshore platforms.

  5. Mie Lidar for Aerosols and Clouds Monitoring at Otlica Observatory

    NASA Astrophysics Data System (ADS)

    Gao, F.; Stanič, S.; Bergant, K.; Filipčič, A.; Veberič, D.; Forte, B.

    2009-04-01

    Aerosol and cloud densities are the most important atmospheric parameters, which significantly influence the atmospheric conditions. The study of their spatial and temporal properties can provide detailed information about the transport processes of the air masses. In recent years, lidar techniques for remote sensing of the atmospheric parameters have been greatly improved. Like the lidar systems of the Pierre Auger Observatory in Argentina (35.2S, 69.1W, 1400 m a.s.l.), the Mie lidar built at Otlica Observatory (45.93N, 13.91E, 945 m a.s.l.) in Slovenia employs the same hardware, including the transmitter, the receiver, and the DAQ system. Due to its high-power laser, large-diameter telescope, and photon-counting data-acquisition technique, the Mie lidar has the potential ability to measure the tropospheric and stratospheric atmospheric conditions, and is suitable for monitoring the changes of the cirrus clouds and atmospheric boundary layer. We have been performing routine atmospheric monitoring experiments with the Otlica Mie lidar since September 2008. Using the techniques of event-averaging, noise-elimination, and data-gluing, the far end of lidar probing range is extended from 30 km up to 40 km. The extinction profiles are calculated using the Klett method and the time-height-intensity plots were made. They clearly show the evolution of atmospheric conditions, especially the motion of the cirrus clouds above Otlica.

  6. A novel interferometric characterization technique for 3D analyses at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Roshanghias, Ali; Bardong, Jochen; Pulko, Jozef; Binder, Alfred

    2018-04-01

    Advanced optical measurement techniques are always of interest for the characterization of engineered surfaces. When pressure or temperature modules are also incorporated, these techniques will turn into robust and versatile methodologies for various applications such as performance monitoring of devices in service conditions. However, some microelectromechanical systems (MEMS) and MOEMS devices require performance monitoring at their final stage, i.e. enclosed or packaged. That necessitates measurements through a protective liquid, plastic, or glass, whereas the conventional objective lenses are not designed for such media. Correspondingly, in the current study, the development and tailoring of a 3D interferometer as a means for measuring the topography of reflective surfaces under transmissive media is sought. For topography measurements through glass, water and oil, compensation glass plates were designed and incorporated into the Michelson type interferometer objectives. Moreover, a customized chamber set-up featuring an optical access for the observation of the topographical changes at increasing pressure and temperature conditions was constructed and integrated into the apparatus. Conclusively, the in situ monitoring of the elastic deformation of sensing microstructures inside MEMS packages was achieved. These measurements were performed at a defined pressure (0–100 bar) and temperature (25 °C–180 °C).

  7. Monitoring airborne molecular contamination: a quantitative and qualitative comparison of real-time and grab-sampling techniques

    NASA Astrophysics Data System (ADS)

    Shupp, Aaron M.; Rodier, Dan; Rowley, Steven

    2007-03-01

    Monitoring and controlling Airborne Molecular Contamination (AMC) has become essential in deep ultraviolet (DUV) photolithography for both optimizing yields and protecting tool optics. A variety of technologies have been employed for both real-time and grab-sample monitoring. Real-time monitoring has the advantage of quickly identifying "spikes" and upset conditions, while 2 - 24 hour plus grab sampling allows for extremely low detection limits by concentrating the mass of the target contaminant over a period of time. Employing a combination of both monitoring techniques affords the highest degree of control, lowest detection limits, and the most detailed data possible in terms of speciation. As happens with many technologies, there can be concern regarding the accuracy and agreement between real-time and grab-sample methods. This study utilizes side by side comparisons of two different real-time monitors operating in parallel with both liquid impingers and dry sorbent tubes to measure NIST traceable gas standards as well as real world samples. By measuring in parallel, a truly valid comparison is made between methods while verifying the results against a certified standard. The final outcome for this investigation is that a dry sorbent tube grab-sample technique produced results that agreed in terms of accuracy with NIST traceable standards as well as the two real-time techniques Ion Mobility Spectrometry (IMS) and Pulsed Fluorescence Detection (PFD) while a traditional liquid impinger technique showed discrepancies.

  8. Conductive ink print on PA66 gear for manufacturing condition monitoring sensors

    NASA Astrophysics Data System (ADS)

    Futagawa, Shintaro; Iba, Daisuke; Kamimoto, Takahiro; Nakamura, Morimasa; Miura, Nanako; Iizuka, Takashi; Masuda, Arata; Sone, Akira; Moriwaki, Ichiro

    2018-03-01

    Failures detection of rotating machine elements, such as gears, is an important issue. The purpose of this study was to try to solve this issue by printing conductive ink on gears to manufacture condition-monitoring sensors. In this work, three types of crack detection sensor were designed and the sprayed conductive ink was directly sintered on polyimide (PI) - coated polyamide (PA) 66 gears by laser. The result showed that it was possible to produce narrow circuit lines of the conductive ink including Ag by laser sintering technique and the complex shape sensors on the lateral side of the PA66 gears, module 1.0 mm and tooth number 48. A preliminary operation test was carried out for investigation of the function of the sensors. As a result of the test, the sensors printed in this work should be effective for detecting cracks at tooth root of the gears and will allow for the development of better equipment and detection techniques for health monitoring of gears.

  9. Method for assessing motor insulation on operating motors

    DOEpatents

    Kueck, J.D.; Otaduy, P.J.

    1997-03-18

    A method for monitoring the condition of electrical-motor-driven devices is disclosed. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques. 15 figs.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramuhalli, Pradeep; Hirt, Evelyn H.; Dib, Gerges

    This project involved the development of enhanced risk monitors (ERMs) for active components in Advanced Reactor (AdvRx) designs by integrating real-time information about equipment condition with risk monitors. Health monitoring techniques in combination with predictive estimates of component failure based on condition and risk monitors can serve to indicate the risk posed by continued operation in the presence of detected degradation. This combination of predictive health monitoring based on equipment condition assessment and risk monitors can also enable optimization of maintenance scheduling with respect to the economics of plant operation. This report summarizes PNNL’s multi-year project on the development andmore » evaluation of an ERM concept for active components while highlighting FY2016 accomplishments. Specifically, this report provides a status summary of the integration and demonstration of the prototypic ERM framework with the plant supervisory control algorithms being developed at Oak Ridge National Laboratory (ORNL), and describes additional case studies conducted to assess sensitivity of the technology to different quantities. Supporting documentation on the software package to be provided to ONRL is incorporated in this report.« less

  11. Geophysical monitoring in a hydrocarbon reservoir

    NASA Astrophysics Data System (ADS)

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the environmental footprint of the shale-gas exploration and exploitation.

  12. Damage detection methodology under variable load conditions based on strain field pattern recognition using FBGs, nonlinear principal component analysis, and clustering techniques

    NASA Astrophysics Data System (ADS)

    Sierra-Pérez, Julián; Torres-Arredondo, M.-A.; Alvarez-Montoya, Joham

    2018-01-01

    Structural health monitoring consists of using sensors integrated within structures together with algorithms to perform load monitoring, damage detection, damage location, damage size and severity, and prognosis. One possibility is to use strain sensors to infer structural integrity by comparing patterns in the strain field between the pristine and damaged conditions. In previous works, the authors have demonstrated that it is possible to detect small defects based on strain field pattern recognition by using robust machine learning techniques. They have focused on methodologies based on principal component analysis (PCA) and on the development of several unfolding and standardization techniques, which allow dealing with multiple load conditions. However, before a real implementation of this approach in engineering structures, changes in the strain field due to conditions different from damage occurrence need to be isolated. Since load conditions may vary in most engineering structures and promote significant changes in the strain field, it is necessary to implement novel techniques for uncoupling such changes from those produced by damage occurrence. A damage detection methodology based on optimal baseline selection (OBS) by means of clustering techniques is presented. The methodology includes the use of hierarchical nonlinear PCA as a nonlinear modeling technique in conjunction with Q and nonlinear-T 2 damage indices. The methodology is experimentally validated using strain measurements obtained by 32 fiber Bragg grating sensors bonded to an aluminum beam under dynamic bending loads and simultaneously submitted to variations in its pitch angle. The results demonstrated the capability of the methodology for clustering data according to 13 different load conditions (pitch angles), performing the OBS and detecting six different damages induced in a cumulative way. The proposed methodology showed a true positive rate of 100% and a false positive rate of 1.28% for a 99% of confidence.

  13. Technologies of Student Testing for Learning Quality Evaluation in the System of Higher Education

    ERIC Educational Resources Information Center

    Bayukova, Nadezhda Olegovna; Kareva, Ludmila Alexandrovna; Rudometova, Liliya Tarasovna; Shlangman, Marina Konstantinovna; Yarantseva, Natalia Vladislavovna

    2015-01-01

    The paper deals with technology of students' achievement in the area of educational activities, methods, techniques, forms and conditions of monitoring knowledge quality in accordance with the requirements of Russian higher education system modernization. The authors propose methodic techniques of students' training for testing based on innovative…

  14. In-line mixing states monitoring of suspensions using ultrasonic reflection technique.

    PubMed

    Zhan, Xiaobin; Yang, Yili; Liang, Jian; Zou, Dajun; Zhang, Jiaqi; Feng, Luyi; Shi, Tielin; Li, Xiwen

    2016-02-01

    Based on the measurement of echo signal changes caused by different concentration distributions in the mixing process, a simple ultrasonic reflection technique is proposed for in-line monitoring of the mixing states of suspensions in an agitated tank in this study. The relation between the echo signals and the concentration of suspensions is studied, and the mixing process of suspensions is tracked by in-line measurement of ultrasonic echo signals using two ultrasonic sensors. Through the analysis of echo signals over time, the mixing states of suspensions are obtained, and the homogeneity of suspensions is quantified. With the proposed technique, the effects of impeller diameter and agitation speed on the mixing process are studied, and the optimal agitation speed and the minimum mixing time to achieve the maximum homogeneity are acquired under different operating conditions and design parameters. The proposed technique is stable and feasible and shows great potential for in-line monitoring of mixing states of suspensions. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Sampling and analysis techniques for monitoring serum for trace elements.

    PubMed

    Ericson, S P; McHalsky, M L; Rabinow, B E; Kronholm, K G; Arceo, C S; Weltzer, J A; Ayd, S W

    1986-07-01

    We describe techniques for controlling contamination in the sampling and analysis of human serum for trace metals. The relatively simple procedures do not require clean-room conditions. The atomic absorption and atomic emission methods used have been applied in studying zinc, copper, chromium, manganese, molybdenum, selenium, and aluminum concentrations. Values obtained for a group of 16 normal subjects agree with the most reliable values reported in the literature, obtained by much more elaborate techniques. All of these metals can be measured in 3 to 4 mL of serum. The methods may prove especially useful in monitoring concentrations of essential trace elements in blood of patients being maintained on total parenteral nutrition.

  16. In situ monitoring of the integrity of bonded repair patches on aircraft and civil infrastructures

    NASA Astrophysics Data System (ADS)

    Kumar, Amrita; Roach, Dennis; Beard, Shawn; Qing, Xinlin; Hannum, Robert

    2006-03-01

    Monitoring the continued health of aircraft subsystems and identifying problems before they affect airworthiness has been a long-term goal of the aviation industry. Because in-service conditions and failure modes experienced by structures are generally complex and unknown, conservative calendar-based or usage-based scheduled maintenance practices are overly time-consuming, labor-intensive and expensive. Metal structures such as helicopters and other transportation systems are likely to develop fatigue cracks under cyclic loads and corrosive service environments. Early detection of cracks is a key element to prevent catastrophic failure and prolong structural life. Furthermore, as structures age, maintenance service frequency and costs increase while performance and availability decrease. Current non-destructive inspection (NDI) techniques that can potentially be used for this purpose typically involve complex, time-intensive procedures, which are labor-intensive and expensive. Most techniques require access to the damaged area on at least one side, and sometimes on both sides. This can be very difficult for monitoring of certain inaccessible regions. In those cases, inspection may require removal of access panels or even structural disassembly. Once access has been obtained, automated inspection techniques likely will not be practical due to the bulk of the required equipment. Results obtained from these techniques may also be sensitive to the sweep speed, tool orientation, and downward pressure. This can be especially problematic for hand-held inspection tools where none of these parameters is mechanically controlled. As a result, data can vary drastically from one inspection to the next, from one technician to the next, and even from one sweep to the next. Structural health monitoring (SHM) offers the promise of a paradigm shift from schedule-driven maintenance to condition-based maintenance (CBM) of assets. Sensors embedded permanently in aircraft safety critical structures that can monitor damage can provide for improved reliability and streamlining of aircraft maintenance. Early detection of damage such as fatigue crack initiation can improve personnel safety and prolong service life. This paper presents the testing of an acousto-ultrasonic piezoelectric sensor based structural health monitoring system for real-time monitoring of fatigue cracks and disbonds in bonded repairs. The system utilizes a network of distributed miniature piezoelectric sensors/actuators embedded on a thin dielectric carrier film, to query, monitor and evaluate the condition of a structure. The sensor layers are extremely flexible and can be integrated with any type of metal or composite structure. Diagnostic signals obtained from a structure during structural monitoring are processed by a portable diagnostic unit. With appropriate diagnostic software, the signals can be analyzed to ascertain the integrity of the structure being monitored. Details on the system, its integration and examples of detection of fatigue crack and disbond growth and quantification for bonded repairs will be presented here.

  17. Remote personal health monitoring with radio waves

    NASA Astrophysics Data System (ADS)

    Nguyen, Andrew

    2008-03-01

    We present several techniques utilizing radio-frequency identification (RFID) technology for personal health monitoring. One technique involves using RFID sensors external to the human body, while another technique uses both internal and external RFID sensors. Simultaneous monitoring of many patients in a hospital setting can also be done using networks of RFID sensors. All the monitoring are done wirelessly, either continuously or periodically in any interval, in which the sensors collect information on human parts such as the lungs or heart and transmit this information to a router, PC or PDA device connected to the internet, from which patient's condition can be diagnosed and viewed by authorized medical professionals in remote locations. Instantaneous information allows medical professionals to intervene properly and timely to prevent possible catastrophic effects to patients. The continuously monitored information provides medical professionals more complete and long-term studies of patients. All of these result in not only enhancement of the health treatment quality but also significant reduction of medical expenditure. These techniques demonstrate that health monitoring of patients can be done wirelessly at any time and any place without interfering with the patients' normal activities. Implementing the RFID technology would not only help reduce the enormous and significantly growing medical costs in the U.S.A., but also help improve the health treatment capability as well as enhance the understanding of long-term personal health and illness.

  18. FEASIBILITY STUDY FOR IDENTIFICATION OF STATIC AND DYNAMIC EXPOSURE USING CCD IMAGING TECHNIQUE FOR Caso4:Dy TL DOSEMETERS.

    PubMed

    Srivastava, Kshama; Soin, Seepika; Sapra, B K; Ratna, P; Datta, D

    2017-11-01

    The occupational exposure incurred by the radiation workers due to the external radiation is estimated using personal dosemeter placed on the human body during the monitoring period. In certain situations, it is required to determine whether the dosemeter alone was exposed accidentally/intentionally in radiation field (static exposure) or was exposed while being worn by a worker moving in his workplace (dynamic exposure). The present thermoluminscent (TL) based personnel monitoring systems are not capable of distinguishing between the above stated (static and dynamic) exposure conditions. The feasibility of a new methodology developed using the charge coupled device based imaging technique for identification of the static/dynamic exposure of CaSO4:Dy based TL detectors for low energy photons has been investigated. The techniques for the qualitative and the quantitative assessments of the exposure conditions are presented in this paper. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michelsen, H. A.; Schulz, C.; Smallwood, G. J.

    The understanding of soot formation in combustion processes and the optimization of practical combustion systems require in situ measurement techniques that can provide important characteristics, such as particle concentrations and sizes, under a variety of conditions. Of equal importance are techniques suitable for characterizing soot particles produced from incomplete combustion and emitted into the environment. Also, the production of engineered nanoparticles, such as carbon blacks, may benefit from techniques that allow for online monitoring of these processes.

  20. Advanced magnetic resonance imaging of neurodegenerative diseases.

    PubMed

    Agosta, Federica; Galantucci, Sebastiano; Filippi, Massimo

    2017-01-01

    Magnetic resonance imaging (MRI) is playing an increasingly important role in the study of neurodegenerative diseases, delineating the structural and functional alterations determined by these conditions. Advanced MRI techniques are of special interest for their potential to characterize the signature of each neurodegenerative condition and aid both the diagnostic process and the monitoring of disease progression. This aspect will become crucial when disease-modifying (personalized) therapies will be established. MRI techniques are very diverse and go from the visual inspection of MRI scans to more complex approaches, such as manual and automatic volume measurements, diffusion tensor MRI, and functional MRI. All these techniques allow us to investigate the different features of neurodegeneration. In this review, we summarize the most recent advances concerning the use of MRI in some of the most important neurodegenerative conditions, putting an emphasis on the advanced techniques.

  1. Information support of monitoring of technical condition of buildings in construction risk area

    NASA Astrophysics Data System (ADS)

    Skachkova, M. E.; Lepihina, O. Y.; Ignatova, V. V.

    2018-05-01

    The paper presents the results of the research devoted to the development of a model of information support of monitoring buildings technical condition; these buildings are located in the construction risk area. As a result of the visual and instrumental survey, as well as the analysis of existing approaches and techniques, attributive and cartographic databases have been created. These databases allow monitoring defects and damages of buildings located in a 30-meter risk area from the object under construction. The classification of structures and defects of these buildings under survey is presented. The functional capabilities of the developed model and the field of it practical applications are determined.

  2. Large Area Crop Inventory Experiment (LACIE). Detecting and monitoring agricultural vegetative water stress over large areas using LANDSAT digital data. [Great Plains

    NASA Technical Reports Server (NTRS)

    Thompson, D. R.; Wehmanen, O. A. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. The Green Number Index technique which uses LANDSAT digital data from 5X6 nautical mile sampling frames was expanded to evaluate its usefulness in detecting and monitoring vegetative water stress over the Great Plains. At known growth stages for wheat, segments were classified as drought or non drought. Good agreement was found between the 18 day remotely sensed data and a weekly ground-based crop moisture index. Operational monitoring of the 1977 U.S.S.R. and Australian wheat crops indicated drought conditions. Drought isoline maps produced by the Green Number Index technique were in good agreement with conventional sources.

  3. Engineering Software for Interoperability through Use of Enterprise Architecture Techniques

    DTIC Science & Technology

    2003-03-01

    Response Home/ Business Security . To detect flood conditions (i.e. excess water levels) within the monitored area and alert authorities, as necessary...Response; Fire Detection & Response; and Flood Detection & Response. Functional Area Description Intruder Detection & Response Home/ Business ... Security . To monitor and detect unauthorized entry into the secured area and sound alarms/alert authorities, as necessary. Fire Detection

  4. Predictive maintenance of critical equipment in industrial processes

    NASA Astrophysics Data System (ADS)

    Hashemian, Hashem M.

    This dissertation is an account of present and past research and development (R&D) efforts conducted by the author to develop and implement new technology for predictive maintenance and equipment condition monitoring in industrial processes. In particular, this dissertation presents the design of an integrated condition-monitoring system that incorporates the results of three current R&D projects with a combined funding of $2.8 million awarded to the author by the U.S. Department of Energy (DOE). This system will improve the state of the art in equipment condition monitoring and has applications in numerous industries including chemical and petrochemical plants, aviation and aerospace, electric power production and distribution, and a variety of manufacturing processes. The work that is presented in this dissertation is unique in that it introduces a new class of condition-monitoring methods that depend predominantly on the normal output of existing process sensors. It also describes current R&D efforts to develop data acquisition systems and data analysis algorithms and software packages that use the output of these sensors to determine the condition and health of industrial processes and their equipment. For example, the output of a pressure sensor in an operating plant can be used not only to indicate the pressure, but also to verify the calibration and response time of the sensor itself and identify anomalies in the process such as blockages, voids, and leaks that can interfere with accurate measurement of process parameters or disturb the plant's operation, safety, or reliability. Today, process data are typically collected at a rate of one sample per second (1 Hz) or slower. If this sampling rate is increased to 100 samples per second or higher, much more information can be extracted from the normal output of a process sensor and then used for condition monitoring, equipment performance measurements, and predictive maintenance. A fast analog-to-digital (A/D) converter can bring this about when it is combined with a large data storage unit to save the massive volume of data that will result from fast data sampling. Due to recent advances in electronics and computer technologies, fast A/Ds and large data storage units are now readily available and very affordable. Furthermore, advanced signal processing and interpretation techniques are readily available in commercial packages that provide fast Fourier transform (FFT) and wavelet analysis, correlation and cross-correlation results, application-specific neural networks, fuzzy data clustering, and other techniques to help arrive at test results quickly. When existing process sensors are not available to provide the necessary data, wireless sensors can be deployed to fill the gap. It is understood that wireless sensors are still evolving, but an assessment of these sensors performed under one of the R&D projects described in this dissertation shows that they are ready to play a positive role in equipment and process condition monitoring in industrial installations. Another class of predictive maintenance and condition-monitoring technologies now available is called by a number of names, such as "non-destructive examination," "non-destructive testing," "non-destructive inspection," or "in-service inspection" methods. These methods are not described in this dissertation as they are a separate discipline of their own and require a different set of skills to be implemented in an industrial process. They are nevertheless mentioned here to acknowledge their availability for predictive maintenance and to recognize their prominence as an important class of condition-monitoring techniques. These methods are used for detecting defects such as cracks, corrosion, and wear in metals, plastics, composites, ceramics, and other material except for wood and paper products. Some of these techniques are also used in medical diagnostics.

  5. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    NASA Astrophysics Data System (ADS)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  6. Ultrasonic non invasive techniques for microbiological instrumentation

    NASA Astrophysics Data System (ADS)

    Elvira, L.; Sierra, C.; Galán, B.; Resa, P.

    2010-01-01

    Non invasive techniques based on ultrasounds have advantageous features to study, characterize and monitor microbiological and enzymatic reactions. These processes may change the sound speed, viscosity or particle distribution size of the medium where they take place, which makes possible their analysis using ultrasonic techniques. In this work, two different systems for the analysis of microbiological liquid media based on ultrasounds are presented. In first place, an industrial application based on an ultrasonic monitoring technique for microbiological growth detection in milk is shown. Such a system may improve the quality control strategies in food production factories, being able to decrease the time required to detect possible contaminations in packed products. Secondly, a study about the growing of the Escherichia coli DH5 α in different conditions is presented. It is shown that the use of ultrasonic non invasive characterization techniques in combination with other conventional measurements like optical density provides complementary information about the metabolism of these bacteria.

  7. Husbandry of wild-caught song sparrows (Melospiza melodia).

    PubMed

    Smith, Lori; Hallager, Sara; Kendrick, Erin; Hope, Katharine; Danner, Raymond M

    2018-05-08

    Conservation and research efforts occasionally rely upon bringing wild animals into human care to establish breeding programs and to understand their biology. Wild-caught birds may have husbandry requirements that differ from captive-reared animals due, in part, to their social development in the wild and potential exposure to novel pathogens. We developed husbandry techniques to minimize stress and monitor health in a population of wild-caught song sparrows (Melospiza melodia). We describe enclosure conditions, diet and enrichment, and best practices for stress reduction. In addition, we describe several health monitoring strategies, including assessing feces quality, body condition scores, and specific signs of infection. These techniques led to successful housing of song sparrows during formal behavioral and developmental studies. This information will be useful for guiding the husbandry of wild-caught passerine birds in the future. © 2018 Wiley Periodicals, Inc.

  8. Real time automatic detection of bearing fault in induction machine using kurtogram analysis.

    PubMed

    Tafinine, Farid; Mokrani, Karim

    2012-11-01

    A proposed signal processing technique for incipient real time bearing fault detection based on kurtogram analysis is presented in this paper. The kurtogram is a fourth-order spectral analysis tool introduced for detecting and characterizing non-stationarities in a signal. This technique starts from investigating the resonance signatures over selected frequency bands to extract the representative features. The traditional spectral analysis is not appropriate for non-stationary vibration signal and for real time diagnosis. The performance of the proposed technique is examined by a series of experimental tests corresponding to different bearing conditions. Test results show that this signal processing technique is an effective bearing fault automatic detection method and gives a good basis for an integrated induction machine condition monitor.

  9. Stability of monitoring weak changes in multiply scattering media with ambient noise correlation: laboratory experiments.

    PubMed

    Hadziioannou, Céline; Larose, Eric; Coutant, Olivier; Roux, Philippe; Campillo, Michel

    2009-06-01

    Previous studies have shown that small changes can be monitored in a scattering medium by observing phase shifts in the coda. Passive monitoring of weak changes through ambient noise correlation has already been applied to seismology, acoustics, and engineering. Usually, this is done under the assumption that a properly reconstructed Green function (GF), as well as stable background noise sources, is necessary. In order to further develop this monitoring technique, a laboratory experiment was performed in the 2.5 MHz range in a gel with scattering inclusions, comparing an active (pulse-echo) form of monitoring to a passive (correlation) one. Present results show that temperature changes in the medium can be observed even if the GF of the medium is not reconstructed. Moreover, this article establishes that the GF reconstruction in the correlations is not a necessary condition: The only condition to monitoring with correlation (passive experiment) is the relative stability of the background noise structure.

  10. Noninvasive pulmonary artery pressure monitoring by EIT: a model-based feasibility study.

    PubMed

    Proença, Martin; Braun, Fabian; Solà, Josep; Thiran, Jean-Philippe; Lemay, Mathieu

    2017-06-01

    Current monitoring modalities for patients with pulmonary hypertension (PH) are limited to invasive solutions. A novel approach for the noninvasive and unsupervised monitoring of pulmonary artery pressure (PAP) in patients with PH was proposed and investigated. The approach was based on the use of electrical impedance tomography (EIT), a noninvasive and safe monitoring technique, and was tested through simulations on a realistic 4D bio-impedance model of the human thorax. Changes in PAP were induced in the model by simulating multiple types of hypertensive conditions. A timing parameter physiologically linked to the PAP via the so-called pulse wave velocity principle was automatically estimated from the EIT data. It was found that changes in PAP could indeed be reliably monitored by EIT, irrespective of the pathophysiological condition that caused them. If confirmed clinically, these findings could open the way for a new generation of noninvasive PAP monitoring solutions for the follow-up of patients with PH.

  11. Clinical review: Neuromonitoring - an update

    PubMed Central

    2013-01-01

    Critically ill patients are frequently at risk of neurological dysfunction as a result of primary neurological conditions or secondary insults. Determining which aspects of brain function are affected and how best to manage the neurological dysfunction can often be difficult and is complicated by the limited information that can be gained from clinical examination in such patients and the effects of therapies, notably sedation, on neurological function. Methods to measure and monitor brain function have evolved considerably in recent years and now play an important role in the evaluation and management of patients with brain injury. Importantly, no single technique is ideal for all patients and different variables will need to be monitored in different patients; in many patients, a combination of monitoring techniques will be needed. Although clinical studies support the physiologic feasibility and biologic plausibility of management based on information from various monitors, data supporting this concept from randomized trials are still required. PMID:23320763

  12. Correlate Life Predictions and Condition Indicators in Helicopter Tail Gearbox Bearings

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Bolander, Nathan; Haynes, Chris; Branning, Jeremy; Wade, Daniel R.

    2010-01-01

    Research to correlate bearing remaining useful life (RUL) predictions with Helicopter Health Usage Monitoring Systems (HUMS) condition indicators (CI) to indicate the damage state of a transmission component has been developed. Condition indicators were monitored and recorded on UH-60M (Black Hawk) tail gearbox output shaft thrust bearings, which had been removed from helicopters and installed in a bearing spall propagation test rig. Condition indicators monitoring the tail gearbox output shaft thrust bearings in UH-60M helicopters were also recorded from an on-board HUMS. The spal-lpropagation data collected in the test rig was used to generate condition indicators for bearing fault detection. A damage progression model was also developed from this data. Determining the RUL of this component in a helicopter requires the CI response to be mapped to the damage state. The data from helicopters and a test rig were analyzed to determine if bearing remaining useful life predictions could be correlated with HUMS condition indicators (CI). Results indicate data fusion analysis techniques can be used to map the CI response to the damage levels.

  13. Monitoring of Wind Turbine Gearbox Condition through Oil and Wear Debris Analysis: A Full-Scale Testing Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Shuangwen

    Despite the wind industry's dramatic development during the past decade, it is still challenged by premature turbine subsystem/component failures, especially for turbines rated above 1 MW. Because a crane is needed for each replacement, gearboxes have been a focal point for improvement in reliability and availability. Condition monitoring (CM) is a technique that can help improve these factors, leading to reduced turbine operation and maintenance costs and, subsequently, lower cost of energy for wind power. Although technical benefits of CM for the wind industry are normally recognized, there is a lack of published information on the advantages and limitations ofmore » each CM technique confirmed by objective data from full-scale tests. This article presents first-hand oil and wear debris analysis results obtained through tests that were based on full-scale wind turbine gearboxes rated at 750 kW. The tests were conducted at the 2.5-MW dynamometer test facility at the National Wind Technology Center at the National Renewable Energy Laboratory. The gearboxes were tested in three conditions: run-in, healthy, and damaged. The investigated CM techniques include real-time oil condition and wear debris monitoring, both inline and online sensors, and offline oil sample and wear debris analysis, both onsite and offsite laboratories. The reported results and observations help increase wind industry awareness of the benefits and limitations of oil and debris analysis technologies and highlight the challenges in these technologies and other tribological fields for the Society of Tribologists and Lubrication Engineers and other organizations to help address, leading to extended gearbox service life.« less

  14. Conditioning stimulation techniques for enhancement of transcranially elicited evoked motor responses.

    PubMed

    Journée, H-L; Polak, H E; De Kleuver, M

    2007-12-01

    In spite of the use of multipulse, transcranial electrical stimulation (TES) is still insufficient in a subgroup of patients to elicit motor-evoked potentials during intraoperative neurophysiological monitoring (IONM). Classic facilitation methods used in awake patients are precluded under general anaesthesia. Conditioning techniques can be used in this situation. To present clinical experimental data and models of motor-neuron (MN) excitability for homonymous and heteronymous conditioning and discuss their applications in IONM. Data were obtained in a prospective study on multipulse TES-conditioning of the monosynaptic H-reflex and double multipulse TES. The principle of facilitation by conditioning stimulation is to apply a test stimulus when motor neurons (MNs) have been made maximally excitable by a conditioning stimulus. Both conditioning and test stimuli recruit separate populations of MNs. The overlapping fraction of MNs controls the efficacy of facilitation. Heteronymous conditioning stimulation, which is performed at a different site from the test stimulus, is illustrated by the TES-conditioned H-reflex (HR). Autonomous conditioning stimulation, which is performed at the same stimulation site, is illustrated by double-train TES (dt-TES). The facilitating curves obtained by conditioning stimulation are often 3-modal and show peaks of facilitation at short intertrain intervals (S-ITIs) of 10ms and between 15 and 20ms and at longer intertrain intervals (L-ITI) of over 100ms. The facilitation curves from HR and dt-TES are not always identical since different alphaMN pools are involved. Dt-TES is often successful in neurologically impaired patients whereas facilitation of the HR can be used when conditioned by TES at subthreshold levels allowing continuous IONM without movement in the surgical field. Alternatively, facilitation by conditioning from peripheral-nerve stimulation can be used for selective transmission of subthreshold TES motor responses to peripheral muscles, permitting motor-monitoring by a so-called selective motor-gating technique. Facilitation techniques offer many possibilities in IONM by enhancing low-amplitude TES-MEP responses. They can also selectively enhance responses in a few muscle groups for the reduction of movement.

  15. Some advances/results in monitoring road cracks from 2D pavement images within the scope of the collaborative FP7 TRIMM project

    NASA Astrophysics Data System (ADS)

    Baltazart, Vincent; Moliard, Jean-Marc; Amhaz, Rabih; Wright, Dean; Jethwa, Manish

    2015-04-01

    Monitoring road surface conditions is an important issue in many countries. Several projects have looked into this issue in recent years, including TRIMM 2011-2014. The objective of such projects has been to detect surface distresses, like cracking, raveling and water ponding, in order to plan effective road maintenance and to afford a better sustainability of the pavement. The monitoring of cracking conventionally focuses on open cracks on the surface of the pavement, as opposed to reflexive cracks embedded in the pavement materials. For monitoring surface condition, in situ human visual inspection has been gradually replaced by automatic image data collection at traffic speed. Off-line image processing techniques have been developed for monitoring surface condition in support of human visual control. Full automation of crack monitoring has been approached with caution, and depends on a proper manual assessment of the performance. This work firstly presents some aspects of the current state of monitoring that have been reported so far in the literature and in previous projects: imaging technology and image processing techniques. Then, the work presents the two image processing techniques that have been developed within the scope of the TRIMM project to automatically detect pavement cracking from images. The first technique is a heuristic approach (HA) based on the search for gradient within the image. It was originally developed to process pavement images from the French imaging device, Aigle-RN. The second technique, the Minimal Path Selection (MPS) method, has been developed within an ongoing PhD work at IFSTTAR. The proposed new technique provides a fine and accurate segmentation of the crack pattern along with the estimation of the crack width. HA has been assessed against the field data collection provided by Yotta and TRL with the imaging device Tempest 2. The performance assessment has been threefold: first it was performed against the reference data set including 130 km of pavement images over UK roads, second over a few selected short sections of contiguous pavement images, and finally over a few sample images as a case study. The performance of MPS has been assessed against an older image data base. Pixel-based PGT was available to provide the most sensitive performance assessment. MPS has shown its ability to provide a very accurate cracking pattern without reducing the image resolution on the segmented images. Thus, it allows measurement of the crack width; it is found to behave more robustly against the image texture and better matched for dealing with low contrast pavement images. The benchmarking of seven automatic segmentation techniques has been provided at both the pixel and the grid levels. The performance assessment includes three minimal path selection algorithms, namely MPS, Free Form Anisotropy (FFA), one geodesic contour with automatic selection of points of interests (GC-POI), HA, and two Markov-based methods. Among others, MPS approach reached the best performance at the pixel level while it is matched to the FFA approach at the grid level. Finally, the project has emphasized the need for a reliable ground truth data collection. Owing to its accuracy, MPS may serve as a reference benchmark for other methods to provide the automatic segmentation of pavement images at the pixel level and beyond. As a counterpart, MPS requires a reduction in the computing time. Keywords: cracking, automatic segmentation, image processing, pavement, surface distress, monitoring, DICE, performance

  16. Framework for Structural Online Health Monitoring of Aging and Degradation of Secondary Systems due to some Aspects of Erosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gribok, Andrei; Patnaik, Sobhan; Williams, Christian

    This report describes the current state of research related to critical aspects of erosion and selected aspects of degradation of secondary components in nuclear power plants. The report also proposes a framework for online health monitoring of aging and degradation of secondary components. The framework consists of an integrated multi-sensor modality system which can be used to monitor different piping configurations under different degradation conditions. The report analyses the currently known degradation mechanisms and available predictive models. Based on this analysis, the structural health monitoring framework is proposed. The Light Water Reactor Sustainability Program began to evaluate technologies that couldmore » be used to perform online monitoring of piping and other secondary system structural components in commercial NPPs. These online monitoring systems have the potential to identify when a more detailed inspection is needed using real-time measurements, rather than at a pre-determined inspection interval. This transition to condition-based, risk informed automated maintenance will contribute to a significant reduction of operations and maintenance costs that account for the majority of nuclear power generation costs. There is unanimous agreement between industry experts and academic researchers that identifying and prioritizing inspection locations in secondary piping systems (for example, in raw water piping or diesel piping) would eliminate many excessive in-service inspections. The proposed structural health monitoring framework takes aim at answering this challenge by combining long-range guided wave technologies with other monitoring techniques, which can significantly increase the inspection length and pinpoint the locations that degraded the most. More widely, the report suggests research efforts aimed at developing, validating, and deploying online corrosion monitoring techniques for complex geometries, which are pervasive in NPPs.« less

  17. Analysis of remote reflectin spectroscopy to monitor plant health

    NASA Technical Reports Server (NTRS)

    Woodhouse, R.; Heeb, M.; Berry, W.; Hoshizaki, T.; Wood, M.

    1994-01-01

    Remote non-contact reflection spectroscopy is examined as a method for detecting stress in Controlled Ecological Life Support System (CELSS) type crops. Lettuce (Latuca Sativa L. cv. Waldmans Green) and wheat (Triticum Aestivum L. cv. Yecora Rojo) were grown hydroponically. Copper and zinc treatments provided toxic conditions. Nitrogen, phosphorous, and potassium treatments were used for deficiency conditions. Water stress was also induced in test plants. Reflectance spectra were obtained in the visible and near infrared (400nm to 2600nm) wavebands. Numerous effects of stress conditions can be observed in the collected spectra and this technique appears to have promise as a remote monitor of plant health, but significant research remains to be conducted to realize the promise.

  18. A Demonstration of Concrete Structural Health Monitoring Framework for Degradation due to Alkali-Silica Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahadevan, Sankaran; Agarwal, Vivek; Neal, Kyle

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This ongoing research project is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in a nuclear power plant that is subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of fourmore » elements: monitoring, data analytics, uncertainty quantification and prognosis. This report focuses on degradation caused by ASR (alkali-silica reaction). Controlled specimens were prepared to develop accelerated ASR degradation. Different monitoring techniques – thermography, digital image correlation (DIC), mechanical deformation measurements, nonlinear impact resonance acoustic spectroscopy (NIRAS), and vibro-acoustic modulation (VAM) -- were used to detect the damage caused by ASR. Heterogeneous data from the multiple techniques was used for damage diagnosis and prognosis, and quantification of the associated uncertainty using a Bayesian network approach. Additionally, MapReduce technique has been demonstrated with synthetic data. This technique can be used in future to handle large amounts of observation data obtained from the online monitoring of realistic structures.« less

  19. Monitoring of surface velocity of hyper-concentrated flow in a laboratory flume by means of fully-digital PIV

    NASA Astrophysics Data System (ADS)

    Termini, Donatella; Di Leonardo, Alice

    2016-04-01

    High flow conditions, which are generally characterized by high sediment concentrations, do not permit the use of traditional measurement equipment. Traditional techniques usually are based on the intrusive measure of the vertical profile of flow velocity and on the linking of water depth with the discharge through the rating curve. The major disadvantage of these measurement techniques is that they are difficult to use and not safe for operators especially in high flow conditions. The point is that, as literature shows (see as an example Moramarco and Termini, 2015), especially in such conditions, the measurement of surface velocity distribution is important to evaluate the mean flow velocity and, thus, the flow discharge. In the last decade, image-based techniques have been increasingly used for surface velocity measurements (among others Joeau et al., 2008). Experimental program has been recently conducted at the Hydraulic laboratory of the Department of Civil, Environmental, Aerospatial and of Materials Engineering (DICAM) - University of Palermo (Italy) in order to analyze the propagation phenomenon of hyper-concentrated flow in a defense channel. The experimental apparatus includes a high-precision camera and a system allowing the images recording. This paper investigates the utility and the efficiency of the digital image-technique for remote monitoring of surface velocity in hyper-concentrated flow by the aid of data collected during experiments conducted in the laboratory flume. In particular the present paper attention is focused on the estimation procedure of the velocity vectors and on their sensitivity with parameters (number of images, spatial resolution of interrogation area,) of the images processing procedure. References Jodeau M., A. Hauet, A. Paquier, Le Coz J., Dramais G., Application and evaluation of LS-PIV technique for the monitoring of river surface in high flow conditions, Flow Measurements and Instrumentation, Vol.19, No.2, 2008, pp.117-127. Moramarco T., Termini D., Entropic approach to estimate the mean flow velocity: experimental investigation in laboratory flumes, Environmental Fluid mechanics, Vol. 15, No.1, 2015.

  20. Analysis of Acoustic Emission Parameters from Corrosion of AST Bottom Plate in Field Testing

    NASA Astrophysics Data System (ADS)

    Jomdecha, C.; Jirarungsatian, C.; Suwansin, W.

    Field testing of aboveground storage tank (AST) to monitor corrosion of the bottom plate is presented in this chapter. AE testing data of the ten AST with different sizes, materials, and products were employed to monitor the bottom plate condition. AE sensors of 30 and 150 kHz were used to monitor the corrosion activity of up to 24 channels including guard sensors. Acoustic emission (AE) parameters were analyzed to explore the AE parameter patterns of occurring corrosion compared to the laboratory results. Amplitude, count, duration, and energy were main parameters of analysis. Pattern recognition technique with statistical was implemented to eliminate the electrical and environmental noises. The results showed the specific AE patterns of corrosion activities related to the empirical results. In addition, plane algorithm was utilized to locate the significant AE events from corrosion. Both results of parameter patterns and AE event locations can be used to interpret and locate the corrosion activities. Finally, basic statistical grading technique was used to evaluate the bottom plate condition of the AST.

  1. Process tool monitoring and matching using interferometry technique

    NASA Astrophysics Data System (ADS)

    Anberg, Doug; Owen, David M.; Mileham, Jeffrey; Lee, Byoung-Ho; Bouche, Eric

    2016-03-01

    The semiconductor industry makes dramatic device technology changes over short time periods. As the semiconductor industry advances towards to the 10 nm device node, more precise management and control of processing tools has become a significant manufacturing challenge. Some processes require multiple tool sets and some tools have multiple chambers for mass production. Tool and chamber matching has become a critical consideration for meeting today's manufacturing requirements. Additionally, process tools and chamber conditions have to be monitored to ensure uniform process performance across the tool and chamber fleet. There are many parameters for managing and monitoring tools and chambers. Particle defect monitoring is a well-known and established example where defect inspection tools can directly detect particles on the wafer surface. However, leading edge processes are driving the need to also monitor invisible defects, i.e. stress, contamination, etc., because some device failures cannot be directly correlated with traditional visualized defect maps or other known sources. Some failure maps show the same signatures as stress or contamination maps, which implies correlation to device performance or yield. In this paper we present process tool monitoring and matching using an interferometry technique. There are many types of interferometry techniques used for various process monitoring applications. We use a Coherent Gradient Sensing (CGS) interferometer which is self-referencing and enables high throughput measurements. Using this technique, we can quickly measure the topography of an entire wafer surface and obtain stress and displacement data from the topography measurement. For improved tool and chamber matching and reduced device failure, wafer stress measurements can be implemented as a regular tool or chamber monitoring test for either unpatterned or patterned wafers as a good criteria for improved process stability.

  2. Novel optoacoustic system for noninvasive continuous monitoring of cerebral venous blood oxygenation

    NASA Astrophysics Data System (ADS)

    Petrov, Yuriy; Petrov, Irene Y.; Prough, Donald S.; Esenaliev, Rinat O.

    2012-02-01

    Traumatic brain injury (TBI) and spinal cord injury are a major cause of death for individuals under 50 years of age. In the USA alone, 150,000 patients per year suffer moderate or severe TBI. Moreover, TBI is a major cause of combatrelated death. Monitoring of cerebral venous blood oxygenation is critically important for management of TBI patients because cerebral venous blood oxygenation below 50% results in death or severe neurologic complications. At present, there is no technique for noninvasive, accurate monitoring of this clinically important variable. We proposed to use optoacoustic technique for noninvasive monitoring of cerebral venous blood oxygenation by probing cerebral veins such as the superior sagittal sinus (SSS) and validated it in animal studies. In this work, we developed a novel, medical grade optoacoustic system for continuous, real-time cerebral venous blood oxygenation monitoring and tested it in human subjects at normal conditions and during hyperventilation to simulate changes that may occur in patients with TBI. We designed and built a highly-sensitive optoacoustic probe for SSS signal detection. Continuous measurements were performed in the near infrared spectral range and the SSS oxygenation absolute values were automatically calculated in real time using a special algorithm developed by our group. Continuous measurements performed at normal conditions and during hyperventilation demonstrated that hyperventilation resulted in approximately 12% decrease of cerebral venous blood oxygenation.

  3. Signal Processing for Determining Water Height in Steam Pipes with Dynamic Surface Conditions

    NASA Technical Reports Server (NTRS)

    Lih, Shyh-Shiuh; Lee, Hyeong Jae; Bar-Cohen, Yoseph

    2015-01-01

    An enhanced signal processing method based on the filtered Hilbert envelope of the auto-correlation function of the wave signal has been developed to monitor the height of condensed water through the steel wall of steam pipes with dynamic surface conditions. The developed signal processing algorithm can also be used to estimate the thickness of the pipe to determine the cut-off frequency for the low pass filter frequency of the Hilbert Envelope. Testing and analysis results by using the developed technique for dynamic surface conditions are presented. A multiple array of transducers setup and methodology are proposed for both the pulse-echo and pitch-catch signals to monitor the fluctuation of the water height due to disturbance, water flow, and other anomaly conditions.

  4. Remote in vivo stress assessment of aquatic animals with microencapsulated biomarkers for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Gurkov, Anton; Shchapova, Ekaterina; Bedulina, Daria; Baduev, Boris; Borvinskaya, Ekaterina; Meglinski, Igor; Timofeyev, Maxim

    2016-11-01

    Remote in vivo scanning of physiological parameters is a major trend in the development of new tools for the fields of medicine and animal physiology. For this purpose, a variety of implantable optical micro- and nanosensors have been designed for potential medical applications. At the same time, the important area of environmental sciences has been neglected in the development of techniques for remote physiological measurements. In the field of environmental monitoring and related research, there is a constant demand for new effective and quick techniques for the stress assessment of aquatic animals, and the development of proper methods for remote physiological measurements in vivo may significantly increase the precision and throughput of analyses in this field. In the present study, we apply pH-sensitive microencapsulated biomarkers to remotely monitor the pH of haemolymph in vivo in endemic amphipods from Lake Baikal, and we compare the suitability of this technique for stress assessment with that of common biochemical methods. For the first time, we demonstrate the possibility of remotely detecting a change in a physiological parameter in an aquatic organism under ecologically relevant stressful conditions and show the applicability of techniques using microencapsulated biomarkers for remote physiological measurements in environmental monitoring.

  5. Monitoring earthen dams and levees with ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Planès, T.; Mooney, M.; Rittgers, J. B.; Kanning, W.; Draganov, D.

    2017-12-01

    Internal erosion is a major cause of failure of earthen dams and levees and is difficult to detect at an early stage by traditional visual inspection techniques. The passive and non-invasive ambient-noise correlation technique could help detect and locate internal changes taking place within these structures. First, we apply this passive seismic method to monitor a canal embankment model submitted to piping erosion, in laboratory-controlled conditions. We then present the monitoring of a sea levee in the Netherlands. A 150m-long section of the dike shows sandboils in the drainage ditch located downstream of the levee. These sandboils are the sign of concentrated seepage and potential initiation of internal erosion in the structure. Using the ambient-noise correlation technique, we retrieve surface waves propagating along the crest of the dike. Temporal variations of the seismic wave velocity are then computed during the tide cycle. These velocity variations are correlated with local in-situ pore water pressure measurements and are possibly influenced by the presence of concentrated seepage paths.

  6. Self-Monitoring vs. Implementation Intentions: a Comparison of Behaviour Change Techniques to Improve Sleep Hygiene and Sleep Outcomes in Students.

    PubMed

    Mairs, Lucinda; Mullan, Barbara

    2015-10-01

    This study seeks to investigate and compare the efficacy of self-monitoring and implementation intentions-two post-intentional behaviour change techniques-for improving sleep hygiene behaviours and sleep outcomes in university students. Seventy-two undergraduate students completed baseline measures of four sleep hygiene behaviours (making the sleep environment restful, avoiding going to bed hungry/thirsty, avoiding stress/anxiety-provoking activities near bed time and avoiding caffeine in the evening), as well as the Pittsburgh sleep quality index (PSQI) and the insomnia severity index (ISI). Participants were randomly assigned to an active-control diary-keeping, self-monitoring condition or completed implementation intentions for each behaviour. Post-intervention measurement was completed 2 weeks after baseline. Repeated measures analyses of variance found significant main effects of time for improvements in making the sleep environment restful and avoiding going to bed hungry or thirsty, as well as PSQI and ISI scores. Non-significant interactions suggested no group differences on any variable, except for increasing avoidance of stress and anxiety-provoking activities before bed time, for which only implementation intentions were found to be effective. Attrition was higher amongst self-monitoring participants. Both self-monitoring and implementation intentions appear to be promising behaviour change techniques for improving sleep hygiene and sleep. Future research should examine the acceptability of the two behaviour change techniques and the relationship with differential attrition, as well as effect size variations according to behaviour and technique. Researchers should investigate potential additive or interactive effects of the techniques, as they could be utilised in a complementary manner to target different processes in effecting behaviour change.

  7. Instabilities and turbulence in highly ionized plasmas in a magnetic field

    NASA Technical Reports Server (NTRS)

    Jennings, W. C.

    1972-01-01

    Physical mechanisms were considered which are responsible for plasma turbulence and the establishment of necessary conditions for energy exchange and transfer in the frequency spectrum. In addition, work was performed to better understand the drift instability in the highly inhomogeneous Rensselaer arc, and methods to suppress this instability using feedback stabilization techniques. Correlation techniques were refined to study plasma turbulence, the diffusion wave technique for monitoring cross-field diffusion was extended to include regimes of high turbulence levels, and a technique for coupling stabilizing RF power to the Rensselaer arc was developed.

  8. In-situ thermoelectric temperature monitoring and "Closed-loop integrated control" system for concentrator photovoltaic-thermoelectric hybrid receivers

    NASA Astrophysics Data System (ADS)

    Rolley, Matthew H.; Sweet, Tracy K. N.; Min, Gao

    2017-09-01

    This work demonstrates a new technique that capitalizes on the inherent flexibility of the thermoelectric module to provide a multifunctional platform, and exhibits a unique advantage only available within CPV-TE hybrid architectures. This system is the first to use the thermoelectric itself for hot-side temperature feedback to a PID control system, needing no additional thermocouple or thermistor to be attached to the cell - eliminating shading, and complex mechanical designs for mounting. Temperature measurement accuracy and thermoelectric active cooling functionality is preserved. Dynamic "per-cell" condition monitoring and protection is feasible using this technique, with direct cell-specific temperature measurement accurate to 1°C demonstrated over the entire experimental range. The extrapolation accuracy potential of the technique was also evaluated.

  9. Cointegration as a data normalization tool for structural health monitoring applications

    NASA Astrophysics Data System (ADS)

    Harvey, Dustin Y.; Todd, Michael D.

    2012-04-01

    The structural health monitoring literature has shown an abundance of features sensitive to various types of damage in laboratory tests. However, robust feature extraction in the presence of varying operational and environmental conditions has proven to be one of the largest obstacles in the development of practical structural health monitoring systems. Cointegration, a technique adapted from the field of econometrics, has recently been introduced to the SHM field as one solution to the data normalization problem. Response measurements and feature histories often show long-run nonstationarity due to fluctuating temperature, load conditions, or other factors that leads to the occurrence of false positives. Cointegration theory allows nonstationary trends common to two or more time series to be modeled and subsequently removed. Thus, the residual retains sensitivity to damage with dependence on operational and environmental variability removed. This study further explores the use of cointegration as a data normalization tool for structural health monitoring applications.

  10. High Temperatures Health Monitoring of the Condensed Water Height in Steam Pipe Systems

    NASA Technical Reports Server (NTRS)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Takano, Nobuyuki; Ostlund, Patrick; Blosiu, Julian

    2013-01-01

    Ultrasonic probes were designed, fabricated and tested for high temperature health monitoring system. The goal of this work was to develop the health monitoring system that can determine the height level of the condensed water through the pipe wall at high temperature up to 250 deg while accounting for the effects of surface perturbation. Among different ultrasonic probe designs, 2.25 MHz probes with air backed configuration provide satisfactory results in terms of sensitivity, receiving reflections from the target through the pipe wall. A series of tests were performed using the air-backed probes under irregular conditions, such as surface perturbation and surface disturbance at elevated temperature, to qualify the developed ultrasonic system. The results demonstrate that the fabricated air-backed probes combined with advanced signal processing techniques offer the capability of health monitoring of steam pipe under various operating conditions.

  11. Early warning and crop condition assessment research

    NASA Technical Reports Server (NTRS)

    Boatwright, G. O.; Whitehead, V. S.

    1986-01-01

    The Early Warning Crop Condition Assessment Project of AgRISTARS was a multiagency and multidisciplinary effort. Its mission and objectives were centered around development and testing of remote-sensing techniques that enhance operational methodologies for global crop-condition assessments. The project developed crop stress indicators models that provide data filter and alert capabilities for monitoring global agricultural conditions. The project developed a technique for using NOAA-n satellite advanced very-high-resolution radiometer (AVHRR) data for operational crop-condition assessments. This technology was transferred to the Foreign Agricultural Service of the USDA. The project developed a U.S. Great Plains data base that contains various meteorological parameters and vegetative index numbers (VIN) derived from AVHRR satellite data. It developed cloud screening techniques and scan angle correction models for AVHRR data. It also developed technology for using remotely acquired thermal data for crop water stress indicator modeling. The project provided basic technology including spectral characteristics of soils, water, stressed and nonstressed crop and range vegetation, solar zenith angle, and atmospheric and canopy structure effects.

  12. Non-invasive glucose monitoring in patients with diabetes: a novel system based on impedance spectroscopy.

    PubMed

    Caduff, A; Dewarrat, F; Talary, M; Stalder, G; Heinemann, L; Feldman, Yu

    2006-12-15

    The aim of this work was to evaluate the performance of a novel non-invasive continuous glucose-monitoring system based on impedance spectroscopy (IS) in patients with diabetes. Ten patients with type 1 diabetes (mean+/-S.D., age 28+/-8 years, BMI 24.2+/-3.2 kg/m(2) and HbA(1C) 7.3+/-1.6%) and five with type 2 diabetes (age 61+/-8 years, BMI 27.5+/-3.2 kg/m(2) and HbA(1C) 8.3+/-1.8%) took part in this study, which comprised a glucose clamp experiment followed by a 7-day outpatient evaluation. The measurements obtained by the NI-CGMD and the reference blood glucose-measuring techniques were evaluated using retrospective data evaluation procedures. Under less controlled outpatient conditions a correlation coefficient of r=0.640 and a standard error of prediction (SEP) of 45 mg dl(-1) with a total of 590 paired glucose measurements was found (versus r=0.926 and a SEP of 26 mg dl(-1) under controlled conditions). Clark error grid analyses (EGA) showed 56% of all values in zone A, 37% in B and 7% in C-E. In conclusion, these results indicate that IS in the used technical setting allows retrospective, continuous and truly non-invasive glucose monitoring under defined conditions for patients with diabetes. Technical advances and developments are needed to expand on this concept to bring the results from the outpatient study closer to those in the experimental section of the study. Further studies will not only help to evaluate the performance and limitations of using such a technique for non non-invasive glucose monitoring but also help to verify technical extensions towards a IS-based concept that offers improved performance under real life operating conditions.

  13. Two-parameter monitoring in a lab-on-valve manifold, applied to intracellular H2O2 measurements.

    PubMed

    Lähdesmäki, Ilkka; Chocholous, Petr; Carroll, Andrea D; Anderson, Judy; Rabinovitch, Peter S; Ruzicka, Jaromir

    2009-07-01

    This work introduces, for the first time, simultaneous monitoring of fluorescence and absorbance using Bead Injection in a Lab-on-valve format. The aim of the paper is to show that when the target species, cells immobilized on a stationary phase, are exposed to reagents under well-controlled reaction conditions, dual monitoring yields valuable information. The applicability of this technique is demonstrated by the development of a Bead Injection method for automated measurement of cell density and intracellular hydrogen peroxide.

  14. Automatic detection and classification of damage zone(s) for incorporating in digital image correlation technique

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sudipta; Deb, Debasis

    2016-07-01

    Digital image correlation (DIC) is a technique developed for monitoring surface deformation/displacement of an object under loading conditions. This method is further refined to make it capable of handling discontinuities on the surface of the sample. A damage zone is referred to a surface area fractured and opened in due course of loading. In this study, an algorithm is presented to automatically detect multiple damage zones in deformed image. The algorithm identifies the pixels located inside these zones and eliminate them from FEM-DIC processes. The proposed algorithm is successfully implemented on several damaged samples to estimate displacement fields of an object under loading conditions. This study shows that displacement fields represent the damage conditions reasonably well as compared to regular FEM-DIC technique without considering the damage zones.

  15. An efficient recursive least square-based condition monitoring approach for a rail vehicle suspension system

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.; Alfi, S.; Bruni, S.

    2016-06-01

    A model-based condition monitoring strategy for the railway vehicle suspension is proposed in this paper. This approach is based on recursive least square (RLS) algorithm focusing on the deterministic 'input-output' model. RLS has Kalman filtering feature and is able to identify the unknown parameters from a noisy dynamic system by memorising the correlation properties of variables. The identification of suspension parameter is achieved by machine learning of the relationship between excitation and response in a vehicle dynamic system. A fault detection method for the vertical primary suspension is illustrated as an instance of this condition monitoring scheme. Simulation results from the rail vehicle dynamics software 'ADTreS' are utilised as 'virtual measurements' considering a trailer car of Italian ETR500 high-speed train. The field test data from an E464 locomotive are also employed to validate the feasibility of this strategy for the real application. Results of the parameter identification performed indicate that estimated suspension parameters are consistent or approximate with the reference values. These results provide the supporting evidence that this fault diagnosis technique is capable of paving the way for the future vehicle condition monitoring system.

  16. Fabric phase sorptive extraction: Two practical sample pretreatment techniques for brominated flame retardants in water.

    PubMed

    Huang, Guiqi; Dong, Sheying; Zhang, Mengfei; Zhang, Haihan; Huang, Tinglin

    2016-09-15

    Sample pretreatment is the critical section for residue monitoring of hazardous pollutants. In this paper, using the cellulose fabric as host matrix, three extraction sorbents such as poly (tetrahydrofuran) (PTHF), poly (ethylene glycol) (PEG) and poly (dimethyldiphenylsiloxane) (PDMDPS), were prepared on the surface of the cellulose fabric. Two practical extraction techniques including stir bar fabric phase sorptive extraction (stir bar-FPSE) and magnetic stir fabric phase sorptive extraction (magnetic stir-FPSE) have been designed, which allow stirring of fabric phase sorbent during the whole extraction process. In the meantime, three brominated flame retardants (BFRs) [tetrabromobisphenol A (TBBPA), tetrabromobisphenol A bisallylether (TBBPA-BAE), tetrabromobisphenol A bis(2,3-dibromopropyl)ether (TBBPA-BDBPE)] in the water sample were selected as model analytes for the practical evaluation of the proposed two techniques using high-performance liquid chromatography (HPLC). Moreover, various experimental conditions affecting extraction process such as the type of fabric phase, extraction time, the amount of salt and elution conditions were also investigated. Due to the large sorbent loading capacity and unique stirring performance, both techniques possessed high extraction capability and fast extraction equilibrium. Under the optimized conditions, high recoveries (90-99%) and low limits of detection (LODs) (0.01-0.05 μg L(-1)) were achieved. In addition, the reproducibility was obtained by evaluating the intraday and interday precisions with relative standard deviations (RSDs) less than 5.1% and 6.8%, respectively. The results indicated that two pretreatment techniques were promising and practical for monitoring of hazardous pollutants in the water sample. Due to low solvent consumption and high repeated use performance, proposed techniques also could meet green analytical criteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications

    DOE PAGES

    Michelsen, H. A.; Schulz, C.; Smallwood, G. J.; ...

    2015-09-09

    The understanding of soot formation in combustion processes and the optimization of practical combustion systems require in situ measurement techniques that can provide important characteristics, such as particle concentrations and sizes, under a variety of conditions. Of equal importance are techniques suitable for characterizing soot particles produced from incomplete combustion and emitted into the environment. Also, the production of engineered nanoparticles, such as carbon blacks, may benefit from techniques that allow for online monitoring of these processes.

  18. Detection of Chamber Conditioning Through Optical Emission and Impedance Measurements

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.; Rao, M. V. V. S.; Sharma, Surendra P.; Meyyappan, Meyya

    2001-01-01

    During oxide etch processes, buildup of fluorocarbon residues on reactor sidewalls can cause run-to-run drift and will necessitate some time for conditioning and seasoning of the reactor. Though diagnostics can be applied to study and understand these phenomena, many of them are not practical for use in an industrial reactor. For instance, measurements of ion fluxes and energy by mass spectrometry show that the buildup of insulating fluorocarbon films on the reactor surface will cause a shift in both ion energy and current in an argon plasma. However, such a device cannot be easily integrated into a processing system. The shift in ion energy and flux will be accompanied by an increase in the capacitance of the plasma sheath. The shift in sheath capacitance can be easily measured by a common commercially available impedance probe placed on the inductive coil. A buildup of film on the chamber wall is expected to affect the production of fluorocarbon radicals, and thus the presence of such species in the optical emission spectrum of the plasma can be monitored as well. These two techniques are employed on a GEC (Gaseous Electronics Conference) Reference Cell to assess the validity of optical emission and impedance monitoring as a metric of chamber conditioning. These techniques are applied to experimental runs with CHF3 and CHF3/O2/Ar plasmas, with intermediate monitoring of pure argon plasmas as a reference case for chamber conditions.

  19. Pattern-recognition techniques applied to performance monitoring of the DSS 13 34-meter antenna control assembly

    NASA Technical Reports Server (NTRS)

    Mellstrom, J. A.; Smyth, P.

    1991-01-01

    The results of applying pattern recognition techniques to diagnose fault conditions in the pointing system of one of the Deep Space network's large antennas, the DSS 13 34-meter structure, are discussed. A previous article described an experiment whereby a neural network technique was used to identify fault classes by using data obtained from a simulation model of the Deep Space Network (DSN) 70-meter antenna system. Described here is the extension of these classification techniques to the analysis of real data from the field. The general architecture and philosophy of an autonomous monitoring paradigm is described and classification results are discussed and analyzed in this context. Key features of this approach include a probabilistic time-varying context model, the effective integration of signal processing and system identification techniques with pattern recognition algorithms, and the ability to calibrate the system given limited amounts of training data. Reported here are recognition accuracies in the 97 to 98 percent range for the particular fault classes included in the experiments.

  20. The Multi-Isotope Process (MIP) Monitor Project: FY13 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, David E.; Coble, Jamie B.; Jordan, David V.

    The Multi-Isotope Process (MIP) Monitor provides an efficient approach to monitoring the process conditions in reprocessing facilities in support of the goal of “… (minimization of) the risks of nuclear proliferation and terrorism.” The MIP Monitor measures the distribution of the radioactive isotopes in product and waste streams of a nuclear reprocessing facility. These isotopes are monitored online by gamma spectrometry and compared, in near-real-time, to spectral patterns representing “normal” process conditions using multivariate analysis and pattern recognition algorithms. The combination of multivariate analysis and gamma spectroscopy allows us to detect small changes in the gamma spectrum, which may indicatemore » changes in process conditions. By targeting multiple gamma-emitting indicator isotopes, the MIP Monitor approach is compatible with the use of small, portable, relatively high-resolution gamma detectors that may be easily deployed throughout an existing facility. The automated multivariate analysis can provide a level of data obscurity, giving a built-in information barrier to protect sensitive or proprietary operational data. Proof-of-concept simulations and experiments have been performed in previous years to demonstrate the validity of this tool in a laboratory setting for systems representing aqueous reprocessing facilities. However, pyroprocessing is emerging as an alternative to aqueous reprocessing techniques.« less

  1. Dynamically monitoring the gene expression of dual fluorophore in the cell cycle with quantitative spectrum analysis

    NASA Astrophysics Data System (ADS)

    Lee, Ja-Yun; Wu, Tzong-Yuan; Hsu, I.-Jen

    2008-04-01

    The cloning and transcription techniques on gene cloned fluorescent proteins have been widely used in many applications. They have been used as reporters of some conditions in a series of reactions. However, it is usually difficult to monitor the specific target with the exactly number of proteins during the process in turbid media, especially at micrometer scales. We successfully revealed an alternative way to monitor the cell cycle behavior and quantitatively analyzed the target cells with green and red fluorescent proteins (GFP and RFP) during different phases of the cell cycle by quantitatively analyzing its behavior and also monitoring its spatial distribution.

  2. Department of Defense Fiscal Year (FY) 2005 Budget Estimates. Research, Development, Test and Evaluation, Defense-Wide. Volume 1 - Defense Advanced Research Projects Agency

    DTIC Science & Technology

    2004-02-01

    UNCLASSIFIED − Conducted experiments to determine the usability of general-purpose anomaly detection algorithms to monitor a large, complex military...reaction and detection modules to perform tailored analysis sequences to monitor environmental conditions, health hazards and physiological states...scalability of lab proven anomaly detection techniques for intrusion detection in real world high volume environments. Narrative Title FY 2003

  3. Advances in Intracranial Pressure Monitoring and Its Significance in Managing Traumatic Brain Injury

    PubMed Central

    Kawoos, Usmah; McCarron, Richard M.; Auker, Charles R.; Chavko, Mikulas

    2015-01-01

    Intracranial pressure (ICP) measurements are essential in evaluation and treatment of neurological disorders such as subarachnoid and intracerebral hemorrhage, ischemic stroke, hydrocephalus, meningitis/encephalitis, and traumatic brain injury (TBI). The techniques of ICP monitoring have evolved from invasive to non-invasive—with both limitations and advantages. Some limitations of the invasive methods include short-term monitoring, risk of infection, restricted mobility of the subject, etc. The invasiveness of a method limits the frequency of ICP evaluation in neurological conditions like hydrocephalus, thus hampering the long-term care of patients with compromised ICP. Thus, there has been substantial interest in developing noninvasive techniques for assessment of ICP. Several approaches were reported, although none seem to provide a complete solution due to inaccuracy. ICP measurements are fundamental for immediate care of TBI patients in the acute stages of severe TBI injury. In severe TBI, elevated ICP is associated with mortality or poor clinical outcome. ICP monitoring in conjunction with other neurological monitoring can aid in understanding the pathophysiology of brain damage. This review article presents: (a) the significance of ICP monitoring; (b) ICP monitoring methods (invasive and non-invasive); and (c) the role of ICP monitoring in the management of brain damage, especially TBI. PMID:26690122

  4. Development of a Test Protocol for Spacecraft Post-Fire Atmospheric Cleanup and Monitoring

    NASA Technical Reports Server (NTRS)

    Zuniga, David; Hornung, Steven D.; Haas, Jon P.; Graf, John C.

    2009-01-01

    Detecting and extinguishing fires, along with post-fire atmospheric cleaning and monitoring, are vital components of a spacecraft fire response system. Preliminary efforts focused on the technology evaluation of these systems under realistic conditions are described in this paper. While the primary objective of testing is to determine a smoke mitigation filter s performance, supplemental evaluations measuring the smoke-filled chamber handheld commercial off-the-shelf (COTS) atmospheric monitoring devices (combustion product monitors) are also conducted. The test chamber consists of a 1.4 cubic meter (50 cu. ft.) volume containing a smoke generator. The fuel used to generate the smoke is a mixture of polymers in quantities representative of materials involved in a circuit board fire as a typical spacecraft fire. Two fire conditions were examined: no flame and flame. No flame events are produced by pyrolyzing the fuel mixture in a quartz tube furnace with forced ventilation to produce a white, lingering-type smoke. Flame events ignite the smoke at the outlet of the tube furnace producing combustion characterized by a less opaque smoke with black soot. Electrochemical sensor measurements showed carbon monoxide is a major indicator of each fire. Acid gas measurements were recorded, but cross interferents are currently uncharacterized. Electrochemical sensor measurements and sample acquisition techniques from photoacoustic sensors are being improved. Overall, this research shows fire characterization using traditional analytical chemistry techniques is required to verify measurements recorded using COTS atmospheric monitoring devices.

  5. Remote monitoring of heart failure: benefits for therapeutic decision making.

    PubMed

    Martirosyan, Mihran; Caliskan, Kadir; Theuns, Dominic A M J; Szili-Torok, Tamas

    2017-07-01

    Chronic heart failure is a cardiovascular disorder with high prevalence and incidence worldwide. The course of heart failure is characterized by periods of stability and instability. Decompensation of heart failure is associated with frequent and prolonged hospitalizations and it worsens the prognosis for the disease and increases cardiovascular mortality among affected patients. It is therefore important to monitor these patients carefully to reveal changes in their condition. Remote monitoring has been designed to facilitate an early detection of adverse events and to minimize regular follow-up visits for heart failure patients. Several new devices have been developed and introduced to the daily practice of cardiology departments worldwide. Areas covered: Currently, special tools and techniques are available to perform remote monitoring. Concurrently there are a number of modern cardiac implantable electronic devices that incorporate a remote monitoring function. All the techniques that have a remote monitoring function are discussed in this paper in detail. All the major studies on this subject have been selected for review of the recent data on remote monitoring of HF patients and demonstrate the role of remote monitoring in the therapeutic decision making for heart failure patients. Expert commentary: Remote monitoring represents a novel intensified follow-up strategy of heart failure management. Overall, theoretically, remote monitoring may play a crucial role in the early detection of heart failure progression and may improve the outcome of patients.

  6. Global geochemical problems

    NASA Technical Reports Server (NTRS)

    Harriss, R. C.

    1980-01-01

    Application of remote sensing techniques to the solution of geochemical problems is considered with emphasis on the 'carbon-cycle'. The problem of carbon dioxide sinks and the areal extent of coral reefs are treated. In order to assess the problems cited it is suggested that remote sensing techniques be utilized to: (1)monitor globally the carbonate and bicarbonate concentrations in surface waters of the world ocean; (2)monitor the freshwater and oceanic biomass and associated dissolved organic carbon; (3) inventory the coral reef areas and types and the associated oceanographic climatic conditions; and (4)measure the heavy metal fluxes from forested and vegetated areas, from volcanos, from different types of crustal rocks, from soils, and from sea surfaces.

  7. Adaptable piezoelectric hemispherical composite strips using a scalable groove technique for a self-powered muscle monitoring system.

    PubMed

    Alluri, Nagamalleswara Rao; Vivekananthan, Venkateswaran; Chandrasekhar, Arunkumar; Kim, Sang-Jae

    2018-01-18

    Contrary to traditional planar flexible piezoelectric nanogenerators (PNGs), highly adaptable hemispherical shape-flexible piezoelectric composite strip (HS-FPCS) based PNGs are required to harness/measure non-linear surface motions. Therefore, a feasible, cost-effective and less-time consuming groove technique was developed to fabricate adaptable HS-FPCSs with multiple lengths. A single HS-CSPNG generates 130 V/0.8 μA and can also work as a self-powered muscle monitoring system (SP-MMS) to measure maximum human body part movements, i.e., spinal cord, throat, jaw, elbow, knee, foot stress, palm hand/finger force and inhale/exhale breath conditions at a time or at variable time intervals.

  8. Spacecraft Charge Monitor

    NASA Astrophysics Data System (ADS)

    Goembel, L.

    2003-12-01

    We are currently developing a flight prototype Spacecraft Charge Monitor (SCM) with support from NASA's Small Business Innovation Research (SBIR) program. The device will use a recently proposed high energy-resolution electron spectroscopic technique to determine spacecraft floating potential. The inspiration for the technique came from data collected by the Atmosphere Explorer (AE) satellites in the 1970s. The data available from the AE satellites indicate that the SCM may be able to determine spacecraft floating potential to within 0.1 V under certain conditions. Such accurate measurement of spacecraft charge could be used to correct biases in space plasma measurements. The device may also be able to measure spacecraft floating potential in the solar wind and in orbit around other planets.

  9. An Intelligent Harmonic Synthesis Technique for Air-Gap Eccentricity Fault Diagnosis in Induction Motors

    NASA Astrophysics Data System (ADS)

    Li, De Z.; Wang, Wilson; Ismail, Fathy

    2017-11-01

    Induction motors (IMs) are commonly used in various industrial applications. To improve energy consumption efficiency, a reliable IM health condition monitoring system is very useful to detect IM fault at its earliest stage to prevent operation degradation, and malfunction of IMs. An intelligent harmonic synthesis technique is proposed in this work to conduct incipient air-gap eccentricity fault detection in IMs. The fault harmonic series are synthesized to enhance fault features. Fault related local spectra are processed to derive fault indicators for IM air-gap eccentricity diagnosis. The effectiveness of the proposed harmonic synthesis technique is examined experimentally by IMs with static air-gap eccentricity and dynamic air-gap eccentricity states under different load conditions. Test results show that the developed harmonic synthesis technique can extract fault features effectively for initial IM air-gap eccentricity fault detection.

  10. TIGER TM : Intelligent continuous monitoring of gas turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKay, I.; Hibbert, J.; Milne, R.

    1998-07-01

    The field of condition monitoring has been an area of rapid growth, with many specialized techniques being developed to measure or predict the health of a particular item of plant. Much of the most recent work has gone into the diagnosis of problems on rotating machines through the application of vibration analysis techniques. These techniques though useful can have a number of limiting factors, such as the need to install specialized sensors and measurement equipment, or the limited scope of the type of data measured. It was recognized in 1992, that the surveillance and condition monitoring procedures available for criticalmore » plant, such as gas turbines, were not as comprehensive as they might be and that a novel approach was required to give the operator the necessary holistic view of the health of the plant. This would naturally provide an assessment of the maintenance practices required to yield the highest possible availability without the need to install extensive new instrumentation. From the above objective, the TIGER system was designed which utilizes available data from the gas turbine control system or additionally the plant DCS to measure the behavior of the gas turbine and its associated sub systems. These measured parameters are then compared with an internal model of the turbine system and used to diagnose incorrect responses and therefore the item that is at fault, allowing the operator to quickly restart the turbine after a trip or perform condition based maintenance at the next scheduled outage. This philosophy has been built into the TIGER system and the purpose of this paper is to illustrate its functionality and some of the innovative techniques used in the diagnosis of real gas turbine problems. This is achieved by discussing three case studies where TIGER was integral in returning the plant to operation more quickly than can normally be expected.« less

  11. Chemical Sensor Platform for Non-Invasive Monitoring of Activity and Dehydration

    PubMed Central

    Solovei, Dmitry; Žák, Jaromír; Majzlíková, Petra; Sedláček, Jiří; Hubálek, Jaromír

    2015-01-01

    A non-invasive solution for monitoring of the activity and dehydration of organisms is proposed in the work. For this purpose, a wireless standalone chemical sensor platform using two separate measurement techniques has been developed. The first approach for activity monitoring is based on humidity measurement. Our solution uses new humidity sensor based on a nanostructured TiO2 surface for sweat rate monitoring. The second technique is based on monitoring of potassium concentration in urine. High level of potassium concentration denotes clear occurrence of dehydration. Furthermore, a Wireless Body Area Network (WBAN) was developed for this sensor platform to manage data transfer among devices and the internet. The WBAN coordinator controls the sensor devices and collects and stores the measured data. The collected data is particular to individuals and can be shared with physicians, emergency systems or athletes' coaches. Long-time monitoring of activity and potassium concentration in urine can help maintain the appropriate water intake of elderly people or athletes and to send warning signals in the case of near dehydration. The created sensor system was calibrated and tested in laboratory and real conditions as well. The measurement results are discussed. PMID:25594591

  12. A systematic approach for the accurate non-invasive estimation of blood glucose utilizing a novel light-tissue interaction adaptive modelling scheme

    NASA Astrophysics Data System (ADS)

    Rybynok, V. O.; Kyriacou, P. A.

    2007-10-01

    Diabetes is one of the biggest health challenges of the 21st century. The obesity epidemic, sedentary lifestyles and an ageing population mean prevalence of the condition is currently doubling every generation. Diabetes is associated with serious chronic ill health, disability and premature mortality. Long-term complications including heart disease, stroke, blindness, kidney disease and amputations, make the greatest contribution to the costs of diabetes care. Many of these long-term effects could be avoided with earlier, more effective monitoring and treatment. Currently, blood glucose can only be monitored through the use of invasive techniques. To date there is no widely accepted and readily available non-invasive monitoring technique to measure blood glucose despite the many attempts. This paper challenges one of the most difficult non-invasive monitoring techniques, that of blood glucose, and proposes a new novel approach that will enable the accurate, and calibration free estimation of glucose concentration in blood. This approach is based on spectroscopic techniques and a new adaptive modelling scheme. The theoretical implementation and the effectiveness of the adaptive modelling scheme for this application has been described and a detailed mathematical evaluation has been employed to prove that such a scheme has the capability of extracting accurately the concentration of glucose from a complex biological media.

  13. Potential techniques for non-destructive evaluation of cable materials

    NASA Astrophysics Data System (ADS)

    Gillen, Kenneth T.; Clough, Roger L.; Mattson, Bengt; Stenberg, Bengt; Oestman, Erik

    This paper describes the connection between mechanical degradation of common cable materials, in radiation and elevated temperature environments, and density increases caused by the oxidation which leads to this degradation. Two techniques based on density changes are suggested as potential non-destructive evaluation (NDE) procedures which may be applicable to monitoring the mechanical condition of cable materials in power plant environments. The first technique is direct measurement of density changes, via a density gradient column, using small shavings removed from the surface of cable jackets at selected locations. The second technique is computed X-ray tomography, utilizing a portable scanning device.

  14. Monitoring of debris flows and landslides by wired and wireless systems. Experiences from the Catalan Pyrenees.

    NASA Astrophysics Data System (ADS)

    Hürlimann, Marcel; Abancó, Clàudia; Moya, José; Vilajosana, Ignasi; Llosa, Jordi

    2013-04-01

    Sophisticated monitoring of landslides for research purpose has started in the 1990thies in the Catalan Pyrenees. Since then several types of mass movements (large landslides, debris flows, shallow landslides and rock falls) and multiples techniques have been applied. In this contribution, special attention will be given to the debris-flow monitoring system installed since summer 2009 in the Rebaixader catchment, Central Pyrenees. The monitoring system has continuously been improved during the last years and nowadays includes devices studying the three major aspects: 1) initiation, 2) flow dynamics, and 3) accumulation. While some parts of the monitoring network include a traditional wired system, the newer parts were installed using low-power wireless devices. Two major aspects will be discussed. First, results of the Rebaixader monitoring site will be presented. Second, experience regarding the monitoring will be evaluated focussing on technical aspects and the comparison between wired and wireless techniques. In the Rebaixader catchment, 6 debris flows and 11 debris floods were observed between August 2009 and October 2012. Surprisingly, also 4 major rock falls were recorded. The rainfall analysis shows that the debris flows were triggered by short, high-intensity rainstorms with a preliminary threshold of about 15 mm during 1 hour. In addition, there was observed a positive trend between event volume and rainfall amount or intensity. The analysis of the ground vibration signals shows significant differences between the time series recorded at the different geophones. These differences are associated with the geophone location in the channel (distance and material), the mounting or the data acquisition system. For instance, the most downstream geophone, installed in bedrock, shows the clearest debris-flows vibration time series, while the uppermost is the most reliable regarding the detection of rockfalls. An evaluation of wired versus wireless monitoring systems shows that wireless techniques have several advantages. They are generally smaller and due to the wireless condition the selection of the sensor location is not restricted like in the standard wired systems. Additionally, they are simple to install and consume much less power. Importantly, they are also more competitive in terms of pricing versus traditional wired solutions. Nevertheless, the adoption of this new technology has not been straightforward due to the harsh conditions where sensors are usually deployed. The later delayed and complicated the installation of some sensors in the Rebaixader site but allowed us to improve the monitoring solution. Finally, some very recent experiences on the wireless sensor network installed in a shallow landslide in the Pre-Pyrenees confirmed that this technique is a perfect solution not only for monitoring, but also for warning systems.

  15. On the advance of non-invasive techniques implementation for monitoring moisture distribution in cultural heritage: a case study

    NASA Astrophysics Data System (ADS)

    Inmaculada Martínez Garrido, María; Gómez Heras, Miguel; Fort González, Rafael; Valles Iriso, Javier; José Varas Muriel, María

    2015-04-01

    This work presents a case study developed in San Juan Bautista church in Talamanca de Jarama (12th -16th Century), which have been selected as an example of a historical church with a complex construction with subsequent combination of architectural styles and building techniques and materials. These materials have a differential behavior under the influence of external climatic conditions and constructive facts. Many decay processes related to humidity are affecting the building's walls and also have influence in the environmental dynamics inside the building. A methodology for monitoring moisture distribution on stone and masonry walls and floors was performed with different non-invasive techniques as thermal imaging, wireless sensor networks (WSN), portable moisture meter, electrical resistivity tomography (ERT) and ground-penetrating radar (GPR), in order to the evaluate the effectiveness of these techniques for the knowledge of moisture distribution inside the walls and the humidity origin. North and south oriented sections, both on walls and floors, were evaluated and also a general inspection in the church was carried out with different non-invasive techniques. This methodology implies different monitoring stages for a complete knowledge of the implication of outdoors and indoors conditions on the moisture distribution. Each technique is evaluated according to its effectiveness in the detection of decay processes and maintenance costs. Research funded by Geomateriales (S2013/MIT-2914) and Deterioration of stone materials in the interior of historic buildings as a result induced variation of its microclimate (CGL2011-27902) projects. The cooperation received from the Complutense University of Madrid's Research Group Alteración y Conservación de los Materiales Pétreos del Patrimonio (ref. 921349), the Laboratory Network in Science and Technology for Heritage Conservation (RedLabPat, CEI Moncloa) and the Diocese of Alcalá is gratefully acknowledged. MI Martínez-Garrido and M. Gomez-Heras are funded by Moncloa Campus of International Excellence (UPM-UCM, CSIC) PICATA fellowships.

  16. Damage tolerance and structural monitoring for wind turbine blades

    PubMed Central

    McGugan, M.; Pereira, G.; Sørensen, B. F.; Toftegaard, H.; Branner, K.

    2015-01-01

    The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind. PMID:25583858

  17. Correlation between average frequency and RA value (rise time/amplitude) for crack classification of reinforced concrete beam using acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Noorsuhada, M. N.; Abdul Hakeem, Z.; Soffian Noor, M. S.; Noor Syafeekha, M. S.; Azmi, I.

    2017-12-01

    Health monitoring of structures during their service life become a vital thing as it provides crucial information regarding the performance and condition of the structures. Acoustic emission (AE) is one of the non-destructive techniques (NDTs) that could be used to monitor the performance of the structures. Reinforced concrete (RC) beam associated with AE monitoring was monotonically loaded to failure under three-point loading. Correlation between average frequency and RA value (rise time / amplitude) was computed. The relationship was established to classify the crack types that propagated in the RC beam. The crack was classified as tensile crack and shear crack. It was found that the relationship is well matched with the actual crack pattern that appeared on the beam surface. Hence, this relationship is useful for prediction of the crack occurrence in the beam and its performance can be determined.

  18. Feasibility Investigation on the Development of a Structural Damage Diagnostic and Monitoring System for Rocket Engines

    NASA Technical Reports Server (NTRS)

    Shen, Ji Y.; Sharpe, Lonnie, Jr.

    1998-01-01

    The research activity for this project is mainly to investigate the necessity and feasibility to develop a structural health monitoring system for rocket engines, and to carry out a research plan for further development of the system. More than one hundred technical papers have been searched and reviewed during the period. We concluded after this investigation that adding a new module in NASA's existing automated diagnostic system to monitor the healthy condition of rocket engine structures is a crucial task, and it's possible to develop such a system based upon the vibrational-based nondestructive damage assessment techniques. A number of such techniques have been introduced. Their advantages and disadvantages are also discussed. A global research plan has been figured out. As the first step of the overall research plan, a proposal for the next fiscal year has been submitted.

  19. Usefulness of LANDSAT data for monitoring plant development and range conditions in California's annual grassland

    NASA Technical Reports Server (NTRS)

    Carneggie, D. M.; Degloria, S. D.; Colwell, R. N.

    1977-01-01

    A network of sampling sites throughout the annual grassland region was established to correlate plant growth in stages and forage production to climatic and other environmental factors. Plant growth and range conditions were further related to geographic location and seasonal variations. A sequence of LANDSAT data was obtained covering critical periods in the growth cycle. Data were analyzed by both photointerpretation and computer aided techniques. Image characteristics and spectral reflectance data were then related to forage production, range condition, range site, and changing growth conditions.

  20. Quality and monitoring of structural rehabilitation measures , part 2 : review and assessment of non-destructive testing (NDT) techniques.

    DOT National Transportation Integrated Search

    2002-03-01

    As CFRP composites continue to gain acceptance in structural rehabilitation of deteriorating infrastructure, the consequent need for comprehensive and rapid in-situ quality assessment has arisen. Conditioned by the inevitable presence of material-, i...

  1. Trends in non-stationary signal processing techniques applied to vibration analysis of wind turbine drive train - A contemporary survey

    NASA Astrophysics Data System (ADS)

    Uma Maheswari, R.; Umamaheswari, R.

    2017-02-01

    Condition Monitoring System (CMS) substantiates potential economic benefits and enables prognostic maintenance in wind turbine-generator failure prevention. Vibration Monitoring and Analysis is a powerful tool in drive train CMS, which enables the early detection of impending failure/damage. In variable speed drives such as wind turbine-generator drive trains, the vibration signal acquired is of non-stationary and non-linear. The traditional stationary signal processing techniques are inefficient to diagnose the machine faults in time varying conditions. The current research trend in CMS for drive-train focuses on developing/improving non-linear, non-stationary feature extraction and fault classification algorithms to improve fault detection/prediction sensitivity and selectivity and thereby reducing the misdetection and false alarm rates. In literature, review of stationary signal processing algorithms employed in vibration analysis is done at great extent. In this paper, an attempt is made to review the recent research advances in non-linear non-stationary signal processing algorithms particularly suited for variable speed wind turbines.

  2. Acoustic Emission Analysis of Damage Progression in Thermal Barrier Coatings Under Thermal Cyclic Conditions

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Zhu, Dongming; Morscher, Gregory

    2015-01-01

    Damage evolution of electron beam-physical vapor deposited (EBVD-PVD) ZrO2-7 wt.% Y2O3 thermal barrier coatings (TBCs) under thermal cyclic conditions was monitored using an acoustic emission (AE) technique. The coatings were heated using a laser heat flux technique that yields a high reproducibility in thermal loading. Along with AE, real-time thermal conductivity measurements were also taken using infrared thermography. Tests were performed on samples with induced stress concentrations, as well as calcium-magnesium-alumino-silicate (CMAS) exposure, for comparison of damage mechanisms and AE response to the baseline (as-produced) coating. Analysis of acoustic waveforms was used to investigate damage development by comparing when events occurred, AE event frequency, energy content and location. The test results have shown that AE accumulation correlates well with thermal conductivity changes and that AE waveform analysis could be a valuable tool for monitoring coating degradation and provide insight on specific damage mechanisms.

  3. Electrical Resistance as a NDE Technique to Monitor Processing and Damage Accumulation in SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Morscher, Gregory N.; Xia, Zhenhai

    2008-01-01

    Ceramic matrix composites are suitable for high temperature structural applications such as turbine airfoils and hypersonic thermal protection systems. The employment of these materials in such applications is limited by the ability to process components reliable and to accurately monitor and predict damage evolution that leads to failure under stressed-oxidation conditions. Current nondestructive methods such as ultrasound, x-ray, and thermal imaging are limited in their ability to quantify small scale, transverse, in-plane, matrix cracks developed over long-time creep and fatigue conditions. Electrical resistance of SiC/SiC composites is one technique that shows special promise towards this end. Since both the matrix and the fibers are conductive, changes in matrix or fiber properties should relate to changes in electrical conductivity along the length of a specimen or part. Initial efforts to quantify the electrical resistance of different fiber and different matrix SiC/SiC composites will be presented. Also, the effect of matrix cracking on electrical resistivity for several composite systems will be presented. The implications towards electrical resistance as a technique applied to composite processing, damage detection, and life-modeling will be discussed.

  4. Crack detection on wind turbine blades in an operating environment using vibro-acoustic modulation technique

    NASA Astrophysics Data System (ADS)

    Kim, S.; Adams, D. E.; Sohn, H.

    2013-01-01

    As the wind power industry has grown rapidly in the recent decade, maintenance costs have become a significant concern. Due to the high repair costs for wind turbine blades, it is especially important to detect initial blade defects before they become structural failures leading to other potential failures in the tower or nacelle. This research presents a method of detecting cracks on wind turbine blades using the Vibo-Acoustic Modulation technique. Using Vibro-Acoustic Modulation, a crack detection test is conducted on a WHISPER 100 wind turbine in its operating environment. Wind turbines provide the ideal conditions in which to utilize Vibro-Acoustic Modulation because wind turbines experience large structural vibrations. The structural vibration of the wind turbine balde was used as a pumping signal and a PZT was used to generate the probing signal. Because the non-linear portion of the dynamic response is more sensitive to the presence of a crack than the environmental conditions or operating loads, the Vibro-Acoustic Modulation technique can provide a robust structural health monitoring approach for wind turbines. Structural health monitoring can significantly reduce maintenance costs when paired with predictive modeling to minimize unscheduled maintenance.

  5. Different techniques of multispectral data analysis for vegetation fraction retrieval

    NASA Astrophysics Data System (ADS)

    Kancheva, Rumiana; Georgiev, Georgi

    2012-07-01

    Vegetation monitoring is one of the most important applications of remote sensing technologies. In respect to farmlands, the assessment of crop condition constitutes the basis of growth, development, and yield processes monitoring. Plant condition is defined by a set of biometric variables, such as density, height, biomass amount, leaf area index, and etc. The canopy cover fraction is closely related to these variables, and is state-indicative of the growth process. At the same time it is a defining factor of the soil-vegetation system spectral signatures. That is why spectral mixtures decomposition is a primary objective in remotely sensed data processing and interpretation, specifically in agricultural applications. The actual usefulness of the applied methods depends on their prediction reliability. The goal of this paper is to present and compare different techniques for quantitative endmember extraction from soil-crop patterns reflectance. These techniques include: linear spectral unmixing, two-dimensional spectra analysis, spectral ratio analysis (vegetation indices), spectral derivative analysis (red edge position), colorimetric analysis (tristimulus values sum, chromaticity coordinates and dominant wavelength). The objective is to reveal their potential, accuracy and robustness for plant fraction estimation from multispectral data. Regression relationships have been established between crop canopy cover and various spectral estimators.

  6. Novel method for water vapour monitoring using wireless communication networks measurements

    NASA Astrophysics Data System (ADS)

    David, N.; Alpert, P.; Messer, H.

    2009-04-01

    We propose a new technique for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Water vapour plays a crucial part in a variety of atmospheric processes. As the most influential of greenhouse gases, it absorbs long-wave terrestrial radiation. The water vapour cycle of evaporation and recondensation is a major energy redistributing mechanism transferring heat energy from the Earth's surface to the atmosphere. Additionally, humidity has an important role in weather forecasting as a key variable required for initialization of atmospheric models and hazard warning techniques. However, current methods of monitoring humidity suffer from low spatial resolution, high cost or a lack of precision when measuring near ground levels. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, the proposed method can provide moisture observations at high temporal and spatial resolution. Further, the implementation cost is minimal, since the data used is already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which include absence of rain, fog or clouds along the propagation path. We present results from real-data measurements taken from microwave links used in a backhaul cellular network that show very good agreement with surface station humidity measurements.

  7. Compressed-Sensing Reconstruction Based on Block Sparse Bayesian Learning in Bearing-Condition Monitoring

    PubMed Central

    Sun, Jiedi; Yu, Yang; Wen, Jiangtao

    2017-01-01

    Remote monitoring of bearing conditions, using wireless sensor network (WSN), is a developing trend in the industrial field. In complicated industrial environments, WSN face three main constraints: low energy, less memory, and low operational capability. Conventional data-compression methods, which concentrate on data compression only, cannot overcome these limitations. Aiming at these problems, this paper proposed a compressed data acquisition and reconstruction scheme based on Compressed Sensing (CS) which is a novel signal-processing technique and applied it for bearing conditions monitoring via WSN. The compressed data acquisition is realized by projection transformation and can greatly reduce the data volume, which needs the nodes to process and transmit. The reconstruction of original signals is achieved in the host computer by complicated algorithms. The bearing vibration signals not only exhibit the sparsity property, but also have specific structures. This paper introduced the block sparse Bayesian learning (BSBL) algorithm which works by utilizing the block property and inherent structures of signals to reconstruct CS sparsity coefficients of transform domains and further recover the original signals. By using the BSBL, CS reconstruction can be improved remarkably. Experiments and analyses showed that BSBL method has good performance and is suitable for practical bearing-condition monitoring. PMID:28635623

  8. Mapping of sea bottom topography

    NASA Technical Reports Server (NTRS)

    Calkoen, C. J.; Wensink, G. J.; Hesselmans, G. H. F. M.

    1992-01-01

    Under suitable conditions the bottom topography of shallow seas is visible in remote sensing radar imagery. Two experiments were performed to establish which remote sensing technique or combination yields optimal imaging of bottom topography and which hydro-meteorological conditions are favorable. A further goal is to gain experience with these techniques. Two experiments were performed over an area in the North Sea near the measuring platform Meetpost Noordwijk (MPN). The bottom topography in the test area is dominated by sand waves. The crests of the sand waves are perpendicular to the coast line and the dominating (tidal-)current direction. A 4x4 sq km wide section of the test area was studied in more detail. The first experiment was undertaken on 16 Aug. 1989. During the experiment the following remote sensing instruments were used: Landsat-Thematic Mapper, and NASA/JPL Airborne Imaging Radar (AIR). The hydro-meteorological conditions; current, wind, wave, and air and water temperature were monitored by MPN, a ship of Rijkswaterstaat (the OCTANS), and a pitch-and-roll WAVEC-buoy. The second experiment took place on 12 July 1992. During this experiment data were collected with the NASA/JPL polarimetric synthetic aperture radar (SAR), and a five-band helicopter-borne scatterometer. Again the hydro-meteorological conditions were monitored at MPN and the OCTANS. Furthermore, interferometric radar data were collected.

  9. Designing hydrologic monitoring networks to maximize predictability of hydrologic conditions in a data assimilation system: a case study from South Florida, U.S.A

    NASA Astrophysics Data System (ADS)

    Flores, A. N.; Pathak, C. S.; Senarath, S. U.; Bras, R. L.

    2009-12-01

    Robust hydrologic monitoring networks represent a critical element of decision support systems for effective water resource planning and management. Moreover, process representation within hydrologic simulation models is steadily improving, while at the same time computational costs are decreasing due to, for instance, readily available high performance computing resources. The ability to leverage these increasingly complex models together with the data from these monitoring networks to provide accurate and timely estimates of relevant hydrologic variables within a multiple-use, managed water resources system would substantially enhance the information available to resource decision makers. Numerical data assimilation techniques provide mathematical frameworks through which uncertain model predictions can be constrained to observational data to compensate for uncertainties in the model forcings and parameters. In ensemble-based data assimilation techniques such as the ensemble Kalman Filter (EnKF), information in observed variables such as canal, marsh and groundwater stages are propagated back to the model states in a manner related to: (1) the degree of certainty in the model state estimates and observations, and (2) the cross-correlation between the model states and the observable outputs of the model. However, the ultimate degree to which hydrologic conditions can be accurately predicted in an area of interest is controlled, in part, by the configuration of the monitoring network itself. In this proof-of-concept study we developed an approach by which the design of an existing hydrologic monitoring network is adapted to iteratively improve the predictions of hydrologic conditions within an area of the South Florida Water Management District (SFWMD). The objective of the network design is to minimize prediction errors of key hydrologic states and fluxes produced by the spatially distributed Regional Simulation Model (RSM), developed specifically to simulate the hydrologic conditions in several intensively managed and hydrologically complex watersheds within the SFWMD system. In a series of synthetic experiments RSM is used to generate the notionally true hydrologic state and the relevant observational data. The EnKF is then used as the mechanism to fuse RSM hydrologic estimates with data from the candidate network. The performance of the candidate network is measured by the prediction errors of the EnKF estimates of hydrologic states, relative to the notionally true scenario. The candidate network is then adapted by relocating existing observational sites to unobserved areas where predictions of local hydrologic conditions are most uncertain and the EnKF procedure repeated. Iteration of the monitoring network continues until further improvements in EnKF-based predictions of hydrologic conditions are negligible.

  10. A Comprehensive Study on Technologies of Tyre Monitoring Systems and Possible Energy Solutions

    PubMed Central

    Kubba, Ali E.; Jiang, Kyle

    2014-01-01

    This article presents an overview on the state of the art of Tyre Pressure Monitoring System related technologies. This includes examining the latest pressure sensing methods and comparing different types of pressure transducers, particularly their power consumption and measuring range. Having the aim of this research to investigate possible means to obtain a tyre condition monitoring system (TCMS) powered by energy harvesting, various approaches of energy harvesting techniques were evaluated to determine which approach is the most applicable for generating energy within the pneumatic tyre domain and under rolling tyre dynamic conditions. This article starts with an historical review of pneumatic tyre development and demonstrates the reasons and explains the need for using a tyre condition monitoring system. Following this, different tyre pressure measurement approaches are compared in order to determine what type of pressure sensor is best to consider in the research proposal plan. Then possible energy harvesting means inside land vehicle pneumatic tyres are reviewed. Following this, state of the art battery-less tyre pressure monitoring systems developed by individual researchers or by world leading tyre manufacturers are presented. Finally conclusions are drawn based on the reviewed documents cited in this article and a research proposal plan is presented. PMID:24922457

  11. Environmental Assessment and Monitoring with ICAMS (Image Characterization and Modeling System) Using Multiscale Remote-Sensing Data

    NASA Technical Reports Server (NTRS)

    Lam, N.; Qiu, H.-I.; Quattrochi, Dale A.; Zhao, Wei

    1997-01-01

    With the rapid increase in spatial data, especially in the NASA-EOS (Earth Observing System) era, it is necessary to develop efficient and innovative tools to handle and analyze these data so that environmental conditions can be assessed and monitored. A main difficulty facing geographers and environmental scientists in environmental assessment and measurement is that spatial analytical tools are not easily accessible. We have recently developed a remote sensing/GIS software module called Image Characterization and Modeling System (ICAMS) to provide specialized spatial analytical tools for the measurement and characterization of satellite and other forms of spatial data. ICAMS runs on both the Intergraph-MGE and Arc/info UNIX and Windows-NT platforms. The main techniques in ICAMS include fractal measurement methods, variogram analysis, spatial autocorrelation statistics, textural measures, aggregation techniques, normalized difference vegetation index (NDVI), and delineation of land/water and vegetated/non-vegetated boundaries. In this paper, we demonstrate the main applications of ICAMS on the Intergraph-MGE platform using Landsat Thematic Mapper images from the city of Lake Charles, Louisiana. While the utilities of ICAMS' spatial measurement methods (e.g., fractal indices) in assessing environmental conditions remain to be researched, making the software available to a wider scientific community can permit the techniques in ICAMS to be evaluated and used for a diversity of applications. The findings from these various studies should lead to improved algorithms and more reliable models for environmental assessment and monitoring.

  12. Short-term techniques for monitoring coral reefs: Review, results, and recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, G.S.; Hunte, W.

    1994-12-31

    The health of coral reefs is in question on a global scale. The degradation of reefs has been attributed to both natural (e.g., el nino, crown-of-thorns, and hurricanes) and anthropogenic (e.g., sedimentation, nutrient overloading, oil spills, and thermal pollution) factors. Demonstrating the deleterious effects of lethal factors has not been difficult. However, it has been more difficult to quantitatively link those factors which do not cause rapid coral mortality to reef degradation. Classic techniques, such as cross-transplantation and x-ray analysis of growth bands, have proven to be successful bioassessments of chronic exposure to stressful conditions. The resolution of these techniquesmore » generally limits their usefulness as only long-term exposure (months to years) can provide quantitative differences between impacted and controlled conditions. Short-term monitoring techniques using corals have received relatively little attention from researchers. Two short-term methods have been successfully used to discriminated polluted from less-polluted sites in Barbados. The first is based on adult growth in several coral species. The second focuses on growth and survival of newly-settled juvenile corals. Both methods allowed discrimination in less than two weeks. These methods and others need to be evaluated and standardized in order to permit better, more efficient monitoring of the worlds reefs. Recommendations will be made on what life-history characteristics should be considered when choosing a coral species for use in bioassessment studies.« less

  13. Study of nuclear medicine practices in Portugal from an internal dosimetry perspective.

    PubMed

    Bento, J; Teles, P; Neves, M; Santos, A I; Cardoso, G; Barreto, A; Alves, F; Guerreiro, C; Rodrigues, A; Santos, J A M; Capelo, C; Parafita, R; Martins, B

    2012-05-01

    Nuclear medicine practices involve the handling of a wide range of pharmaceuticals labelled with different radionuclides, for diagnostic and therapeutic purposes. This work intends to evaluate the potential risks of internal contamination of nuclear medicine staff in several Portuguese nuclear medicine services and to conclude about the requirement of a routine internal monitoring. A methodology proposed by the International Atomic Energy Agency (IAEA), providing a set of criteria to determine the need, or not, for an internal monitoring programme, was applied. The evaluation of the risk of internal contaminations in a given set of working conditions is based on the type and amount of radionuclides being handled, as well as the safety conditions with which they are manipulated. The application of the IAEA criteria showed that 73.1% of all the workers included in this study should be integrated in a routine monitoring programme for internal contaminations; more specifically, 100% of workers performing radioimmunoassay techniques should be monitored. This study suggests that a routine monitoring programme for internal exposures should be implemented in Portugal for most nuclear medicine workers.

  14. Gaussian process regression for tool wear prediction

    NASA Astrophysics Data System (ADS)

    Kong, Dongdong; Chen, Yongjie; Li, Ning

    2018-05-01

    To realize and accelerate the pace of intelligent manufacturing, this paper presents a novel tool wear assessment technique based on the integrated radial basis function based kernel principal component analysis (KPCA_IRBF) and Gaussian process regression (GPR) for real-timely and accurately monitoring the in-process tool wear parameters (flank wear width). The KPCA_IRBF is a kind of new nonlinear dimension-increment technique and firstly proposed for feature fusion. The tool wear predictive value and the corresponding confidence interval are both provided by utilizing the GPR model. Besides, GPR performs better than artificial neural networks (ANN) and support vector machines (SVM) in prediction accuracy since the Gaussian noises can be modeled quantitatively in the GPR model. However, the existence of noises will affect the stability of the confidence interval seriously. In this work, the proposed KPCA_IRBF technique helps to remove the noises and weaken its negative effects so as to make the confidence interval compressed greatly and more smoothed, which is conducive for monitoring the tool wear accurately. Moreover, the selection of kernel parameter in KPCA_IRBF can be easily carried out in a much larger selectable region in comparison with the conventional KPCA_RBF technique, which helps to improve the efficiency of model construction. Ten sets of cutting tests are conducted to validate the effectiveness of the presented tool wear assessment technique. The experimental results show that the in-process flank wear width of tool inserts can be monitored accurately by utilizing the presented tool wear assessment technique which is robust under a variety of cutting conditions. This study lays the foundation for tool wear monitoring in real industrial settings.

  15. ASSESSING WATER QUALITY AND BIOLOGICAL INTEGRITY OF THE GREAT RIVERS OF THE CENTRAL U.S.

    EPA Science Inventory

    The goal of USEPA's Environmental Monitoring and Assessment Program for Great River Ecosystems (EMAP-GRE) is to demonstrate techniques with which to assess environmental conditions in the Upper Mississippi, Missouri, and Ohio Rivers. Previous EMAP efforts have focused on streams,...

  16. Urban land use monitoring from computer-implemented processing of airborne multispectral data

    NASA Technical Reports Server (NTRS)

    Todd, W. J.; Mausel, P. W.; Baumgardner, M. F.

    1976-01-01

    Machine processing techniques were applied to multispectral data obtained from airborne scanners at an elevation of 600 meters over central Indianapolis in August, 1972. Computer analysis of these spectral data indicate that roads (two types), roof tops (three types), dense grass (two types), sparse grass (two types), trees, bare soil, and water (two types) can be accurately identified. Using computers, it is possible to determine land uses from analysis of type, size, shape, and spatial associations of earth surface images identified from multispectral data. Land use data developed through machine processing techniques can be programmed to monitor land use changes, simulate land use conditions, and provide impact statistics that are required to analyze stresses placed on spatial systems.

  17. Hybrid System for Ex Vivo Hemorheological and Hemodynamic Analysis: A Feasibility Study

    PubMed Central

    Yeom, Eunseop; Jun Kang, Yang; Joon Lee, Sang

    2015-01-01

    Precise measurement of biophysical properties is important to understand the relation between these properties and the outbreak of cardiovascular diseases (CVDs). However, a systematic measurement for these biophysical parameters under in vivo conditions is nearly impossible because of complex vessel shape and limited practicality. In vitro measurements can provide more biophysical information, but in vitro exposure changes hemorheological properties. In this study, a hybrid system composed of an ultrasound system and microfluidic device is proposed for monitoring hemorheological and hemodynamic properties under more reasonable experimental conditions. Biophysical properties including RBC aggregation, viscosity, velocity, and pressure of blood flows are simultaneously measured under various conditions to demonstrate the feasibility and performance of this measurement system. The proposed technique is applied to a rat extracorporeal loop which connects the aorta and jugular vein directly. As a result, the proposed system is found to measure biophysical parameters reasonably without blood collection from the rat and provided more detailed information. This hybrid system, combining ultrasound imaging and microfluidic techniques to ex vivo animal models, would be useful for monitoring the variations of biophysical properties induced by chemical agents. It can be used to understand the relation between biophysical parameters and CVDs. PMID:26090816

  18. A new fiber sensor based on graphene coating technique for wearable equipment

    NASA Astrophysics Data System (ADS)

    Wu, Ensen; Zhang, Jinnan; Qiao, Min; Cao, Yanghua; Wang, Qi; Ren, Xiaomin; Zuo, Yong

    2018-02-01

    We propose and implement a graphene-based composite fiber sensor in this paper. The advantages of this composite fiber lie in simple and practicable fabrication, high sensitivity to tensile strain deformation, wide maximal sensing range. The experiment shows that the composite fiber can monitor small signals of the body and massive movements in conventionality condition such as human pulse and the movement of elbow. This suggests that this graphene-based composite fiber has a broad prospect in health monitoring and movement recognition.

  19. Seismic tomography as a tool for measuring stress in mines

    USGS Publications Warehouse

    Scott, Douglas F.; Williams, T.J.; Denton, D.K.; Friedel, M.J.

    1999-01-01

    Spokane Research Center personnel have been investigating the use of seismic tomography to monitor the behavior of a rock mass, detect hazardous ground conditions and assess the mechanical integrity of a rock mass affected by mining. Seismic tomography can be a valuable tool for determining relative stress in deep, >1,220-m (>4,000-ft), underground pillars. If high-stress areas are detected, they can be destressed prior to development or they can be avoided. High-stress areas can be monitored with successive seismic surveys to determine if stress decreases to a level where development can be initiated safely. There are several benefits to using seismic tomography to identify high stress in deep underground pillars. The technique is reliable, cost-effective, efficient and noninvasive. Also, investigators can monitor large rock masses, as well as monitor pillars during the mining cycle. By identifying areas of high stress, engineers will be able to assure that miners are working in a safer environment.Spokane Research Center personnel have been investigating the use of seismic tomography to monitor the behavior of a rock mass, detect hazardous ground conditions and assess the mechanical integrity of a rock mass affected by mining. Seismic tomography can be a valuable tool for determining relative stress in deep, >1,200-m (>4,000-ft), underground pillars. If high-stress areas are detected, they can be destressed prior to development or they can be avoided. High-stress areas can be monitored with successive seismic surveys to determine if stress decreases to a level where development can be initiated safely. There are several benefits to using seismic tomography to identify high stress in deep underground pillars. The technique is reliable, cost-effective, efficient and noninvasive. Also, investigators can monitor large rock masses, as well as monitor pillars during the mining cycle. By identifying areas of high stress. engineers will be able to assure that miners are working in a safer environment.

  20. Non-invasive Monitoring of Intracranial Pressure Using Transcranial Doppler Ultrasonography: Is It Possible?

    PubMed

    Cardim, Danilo; Robba, C; Bohdanowicz, M; Donnelly, J; Cabella, B; Liu, X; Cabeleira, M; Smielewski, P; Schmidt, B; Czosnyka, M

    2016-12-01

    Although intracranial pressure (ICP) is essential to guide management of patients suffering from acute brain diseases, this signal is often neglected outside the neurocritical care environment. This is mainly attributed to the intrinsic risks of the available invasive techniques, which have prevented ICP monitoring in many conditions affecting the intracranial homeostasis, from mild traumatic brain injury to liver encephalopathy. In such scenario, methods for non-invasive monitoring of ICP (nICP) could improve clinical management of these conditions. A review of the literature was performed on PUBMED using the search keywords 'Transcranial Doppler non-invasive intracranial pressure.' Transcranial Doppler (TCD) is a technique primarily aimed at assessing the cerebrovascular dynamics through the cerebral blood flow velocity (FV). Its applicability for nICP assessment emerged from observation that some TCD-derived parameters change during increase of ICP, such as the shape of FV pulse waveform or pulsatility index. Methods were grouped as: based on TCD pulsatility index; aimed at non-invasive estimation of cerebral perfusion pressure and model-based methods. Published studies present with different accuracies, with prediction abilities (AUCs) for detection of ICP ≥20 mmHg ranging from 0.62 to 0.92. This discrepancy could result from inconsistent assessment measures and application in different conditions, from traumatic brain injury to hydrocephalus and stroke. Most of the reports stress a potential advantage of TCD as it provides the possibility to monitor changes of ICP in time. Overall accuracy for TCD-based methods ranges around ±12 mmHg, with a great potential of tracing dynamical changes of ICP in time, particularly those of vasogenic nature.

  1. End-user perspective of low-cost sensors for outdoor air pollution monitoring.

    PubMed

    Rai, Aakash C; Kumar, Prashant; Pilla, Francesco; Skouloudis, Andreas N; Di Sabatino, Silvana; Ratti, Carlo; Yasar, Ansar; Rickerby, David

    2017-12-31

    Low-cost sensor technology can potentially revolutionise the area of air pollution monitoring by providing high-density spatiotemporal pollution data. Such data can be utilised for supplementing traditional pollution monitoring, improving exposure estimates, and raising community awareness about air pollution. However, data quality remains a major concern that hinders the widespread adoption of low-cost sensor technology. Unreliable data may mislead unsuspecting users and potentially lead to alarming consequences such as reporting acceptable air pollutant levels when they are above the limits deemed safe for human health. This article provides scientific guidance to the end-users for effectively deploying low-cost sensors for monitoring air pollution and people's exposure, while ensuring reasonable data quality. We review the performance characteristics of several low-cost particle and gas monitoring sensors and provide recommendations to end-users for making proper sensor selection by summarizing the capabilities and limitations of such sensors. The challenges, best practices, and future outlook for effectively deploying low-cost sensors, and maintaining data quality are also discussed. For data quality assurance, a two-stage sensor calibration process is recommended, which includes laboratory calibration under controlled conditions by the manufacturer supplemented with routine calibration checks performed by the end-user under final deployment conditions. For large sensor networks where routine calibration checks are impractical, statistical techniques for data quality assurance should be utilised. Further advancements and adoption of sophisticated mathematical and statistical techniques for sensor calibration, fault detection, and data quality assurance can indeed help to realise the promised benefits of a low-cost air pollution sensor network. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Influence of atmospheric properties on detection of wood-warbler nocturnal flight calls

    NASA Astrophysics Data System (ADS)

    Horton, Kyle G.; Stepanian, Phillip M.; Wainwright, Charlotte E.; Tegeler, Amy K.

    2015-10-01

    Avian migration monitoring can take on many forms; however, monitoring active nocturnal migration of land birds is limited to a few techniques. Avian nocturnal flight calls are currently the only method for describing migrant composition at the species level. However, as this method develops, more information is needed to understand the sources of variation in call detection. Additionally, few studies examine how detection probabilities differ under varying atmospheric conditions. We use nocturnal flight call recordings from captive individuals to explore the dependence of flight call detection on atmospheric temperature and humidity. Height or distance from origin had the largest influence on call detection, while temperature and humidity also influenced detectability at higher altitudes. Because flight call detection varies with both atmospheric conditions and flight height, improved monitoring across time and space will require correction for these factors to generate standardized metrics of songbird migration.

  3. Atmospheric monitoring and model applications at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Keilhauer, Bianca

    2015-03-01

    The Pierre Auger Observatory detects high-energy cosmic rays with energies above ˜1017 eV. It is built as a multi-hybrid detector measuring extensive air showers with different techniques. For the reconstruction of extensive air showers, the atmospheric conditions at the site of the Observatory have to be known quite well. This is particularly true for reconstructions based on data obtained by the fluorescence technique. For these data, not only the weather conditions near ground are relevant, most important are altitude-dependent atmospheric profiles. The Pierre Auger Observatory has set up a dedicated atmospheric monitoring programme at the site in the Mendoza province, Argentina. Beyond this, exploratory studies were performed in Colorado, USA, for possible installations in the northern hemisphere. In recent years, the atmospheric monitoring programme at the Pierre Auger Observatory was supplemented by applying data from atmospheric models. Both GDAS and HYSPLIT are developments by the US weather department NOAA and the data are freely available. GDAS is a global model of the atmospheric state parameters on a 1 degree geographical grid, based on real-time measurements and numeric weather predictions, providing a full altitude-dependent data set every 3 hours. HYSPLIT is a powerful tool to track the movement of air masses at various heights, and with it the aerosols. Combining local measurements of the atmospheric state variables and aerosol scattering with the given model data, advanced studies about atmospheric conditions can be performed and high precision air shower reconstructions are achieved.

  4. TRANSFERRING TECHNOLOGIES, TOOLS AND TECHNIQUES: THE NATIONAL COASTAL ASSESSMENT

    EPA Science Inventory

    The purpose of the National Coastal Assessment (NCA) is to estimate the status and trends of the condition of the nation's coastal resources on a state, regional and national basis. Based on NCA monitoring from 1999-2001, 100% of the nation's estuarine waters (at over 2500 locati...

  5. AGARD Flight Test Techniques Series. Volume 8. Flight Testing under Extreme Environmental Conditions

    DTIC Science & Technology

    1988-01-01

    gravity control system operation. The overall objective of fuel system tests is to determine whether the system functions properly at all conditions both... gravity . 3.3.4 Hydraulic System The functional adequacy of the hydraulic system should be evaluated by monitoring operating system temperatures and...mechanical or gravity function of the crew ladder should be evaluated. The ladder should be exposed to freasing rain and icing to evaluate the non

  6. Wind Turbine Bearing Diagnostics Based on Vibration Monitoring

    NASA Astrophysics Data System (ADS)

    Kadhim, H. T.; Mahmood, F. H.; Resen, A. K.

    2018-05-01

    Reliability maintenance can be considered as an accurate condition monitoring system which increasing beneficial and decreasing the cost production of wind energy. Supporting low friction of wind turbine rotating shaft is the main task of rolling element bearing and it is the main part that suffers from failure. The rolling failures elements have an economic impact and may lead to malfunctions and catastrophic failures. This paper concentrates on the vibration monitoring as a Non-Destructive Technique for assessing and demonstrates the feasibility of vibration monitoring for small wind turbine bearing defects based on LabVIEW software. Many bearings defects were created, such as inner race defect, outer race defect, and ball spin defect. The spectra data were recorded and compared with the theoretical results. The accelerometer with 4331 NI USB DAQ was utilized to acquiring, analyzed, and recorded. The experimental results were showed the vibration technique is suitable for diagnostic the defects that will be occurred in the small wind turbine bearings and developing a fault in the bearing which leads to increasing the vibration amplitude or peaks in the spectrum.

  7. Field test of an alternative longwall gate road design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, R.M.; Vandergrift, T.L.; McDonnell, J.P.

    1994-01-01

    The US Bureau of Mines (USBM) MULSIM/ML modeling technique has been used to analyze anticipated stress distributions for a proposed alternative longwall gate road design for a western Colorado coal mine. The model analyses indicated that the alternative gate road design would reduce stresses in the headgate entry. To test the validity of the alternative gate road design under actual mining conditions, a test section of the alternative system was incorporated into a subsequent set of gate roads developed at the mine. The alternative gate road test section was instrumented with borehole pressure cells, as part of an ongoing USBMmore » research project to monitor ground pressure changes as longwall mining progressed. During the excavation of the adjacent longwall panels, the behavior of the alternative gate road system was monitored continuously using the USBM computer-assisted Ground Control Management System. During these field tests, the alternative gate road system was first monitored and evaluated as a headgate, and later monitored and evaluated as a tailgate. The results of the field tests confirmed the validity of using the MULSIM/NL modeling technique to evaluate mine designs.« less

  8. Flight demonstration of aircraft fuselage and bulkhead monitoring using optical fiber distributed sensing system

    NASA Astrophysics Data System (ADS)

    Wada, Daichi; Igawa, Hirotaka; Tamayama, Masato; Kasai, Tokio; Arizono, Hitoshi; Murayama, Hideaki; Shiotsubo, Katsuya

    2018-02-01

    We have developed an optical fiber distributed sensing system based on optical frequency domain reflectometry (OFDR) that uses long-length fiber Bragg gratings (FBGs). This technique obtains strain data not as a point data from an FBG but as a distributed profile within the FBG. This system can measure the strain distribution profile with an adjustable high spatial resolution of the mm or sub-mm order in real-time. In this study, we applied this OFDR-FBG technique to a flying test bed that is a mid-sized jet passenger aircraft. We conducted flight tests and monitored the structural responses of a fuselage stringer and the bulkhead of the flying test bed during flights. The strain distribution variations were successfully monitored for various events including taxiing, takeoff, landing and several other maneuvers. The monitoring was effective not only for measuring the strain amplitude applied to the individual structural parts but also for understanding the characteristics of the structural responses in accordance with the flight maneuvers. We studied the correlations between various maneuvers and strains to explore the relationship between the operation and condition of aircraft.

  9. Damage tolerance and structural monitoring for wind turbine blades.

    PubMed

    McGugan, M; Pereira, G; Sørensen, B F; Toftegaard, H; Branner, K

    2015-02-28

    The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  10. Monitoring of cerebral hemodynamics and oxygenation by continuous-wave optical spectroscopy during asphyxia in newborn piglets

    NASA Astrophysics Data System (ADS)

    Stankovic, Miljan R.; Fujii, Alan M.; Kirby, Debra; Boas, David A.; Ntziachristos, Vasilis; Stubblefield, Phillip G.

    1997-12-01

    The present study demonstrated that optical variables HbT and SmcO2 can be used to monitor changes in cerebral hemodynamics and oxygenation during asphyxia. Unfortunately none of the individual optical variables alone could be used to monitor changes in cerebral hemodynamics and oxygenation under a variety of possible clinical circumstances. However, all variables together, forming patterns unique to the commonly occurring physiological conditions, might potentially serve as a `silver standard' to aid interpretations of optical signals in clinical settings where `gold standard' techniques are not available, i.g. in the human fetus and neonate.

  11. Monitoring of cerebral hemodynamics and oxygenation by continuous-wave optical spectroscopy during asphyxia in newborn piglets

    NASA Astrophysics Data System (ADS)

    Stankovic, Miljan R.; Fujii, Alan M.; Kirby, Debra; Boas, David A.; Ntziachristos, Vasilis; Stubblefield, Phillip G.

    1998-01-01

    The present study demonstrated that optical variables HbT and SmcO2 can be used to monitor changes in cerebral hemodynamics and oxygenation during asphyxia. Unfortunately none of the individual optical variables alone could be used to monitor changes in cerebral hemodynamics and oxygenation under a variety of possible clinical circumstances. However, all variables together, forming patterns unique to the commonly occurring physiological conditions, might potentially serve as a `silver standard' to aid interpretations of optical signals in clinical settings where `gold standard' techniques are not available, i.g. in the human fetus and neonate.

  12. Real-time monitoring of acoustic linear and nonlinear behavior of titanium alloys during low-cycle fatigue and high-cycle fatigue

    NASA Astrophysics Data System (ADS)

    Frouin, Jerome; Sathish, Shamachary; Na, Jeong K.

    2000-05-01

    An in-situ technique to measure sound velocity, ultrasonic attenuation and acoustic nonlinear property has been developed for characterization and early detection of fatigue damage in aerospace materials. For this purpose we have developed a computer software and measurement technique including hardware for the automation of the measurement. New transducer holder and special grips are designed. The automation has allowed us to test the long-term stability of the electronics over a period of time and so proof of the linearity of the system. Real-time monitoring of the material nonlinearity has been performed on dog-bone specimens from zero fatigue all the way to the final fracture under low-cycle fatigue test condition (LCF) and high-cycle test condition (HCF). Real-time health monitoring of the material can greatly contribute to the understanding of material behavior under cyclic loading. Interpretation of the results show that correlation exist between the slope of the curve described by the material nonlinearity and the life of the component. This new methodology was developed with an objective to predict the initiation of fatigue microcracks, and to detect, in-situ fatigue crack initiation as well as to quantify early stages of fatigue damage.

  13. CleAir Monitoring System for Particulate Matter: A Case in the Napoleonic Museum in Rome

    PubMed Central

    Bonacquisti, Valerio; Di Michele, Marta; Frasca, Francesca; Chianese, Angelo; Siani, Anna Maria

    2017-01-01

    Monitoring the air particulate concentration both outdoors and indoors is becoming a more relevant issue in the past few decades. An innovative, fully automatic, monitoring system called CleAir is presented. Such a system wants to go beyond the traditional technique (gravimetric analysis), allowing for a double monitoring approach: the traditional gravimetric analysis as well as the optical spectroscopic analysis of the scattering on the same filters in steady-state conditions. The experimental data are interpreted in terms of light percolation through highly scattering matter by means of the stretched exponential evolution. CleAir has been applied to investigate the daily distribution of particulate matter within the Napoleonic Museum in Rome as a test case. PMID:28892016

  14. Improving catchment scale water quality modelling with continuous high resolution monitoring of metals in runoff

    NASA Astrophysics Data System (ADS)

    Saari, Markus; Rossi, Pekka; Blomberg von der Geest, Kalle; Mäkinen, Ari; Postila, Heini; Marttila, Hannu

    2017-04-01

    High metal concentrations in natural waters is one of the key environmental and health problems globally. Continuous in-situ analysis of metals from runoff water is technically challenging but essential for the better understanding of processes which lead to pollutant transport. Currently, typical analytical methods for monitoring elements in liquids are off-line laboratory methods such as ICP-OES (Inductively Coupled Plasma Optical Emission Spectroscopy) and ICP-MS (ICP combined with a mass spectrometer). Disadvantage of the both techniques is time consuming sample collection, preparation, and off-line analysis at laboratory conditions. Thus use of these techniques lack possibility for real-time monitoring of element transport. We combined a novel high resolution on-line metal concentration monitoring with catchment scale physical hydrological modelling in Mustijoki river in Southern Finland in order to study dynamics of processes and form a predictive warning system for leaching of metals. A novel on-line measurement technique based on micro plasma emission spectroscopy (MPES) is tested for on-line detection of selected elements (e.g. Na, Mg, Al, K, Ca, Fe, Ni, Cu, Cd and Pb) in runoff waters. The preliminary results indicate that MPES can sufficiently detect and monitor metal concentrations from river water. Water and Soil Assessment Tool (SWAT) catchment scale model was further calibrated with high resolution metal concentration data. We show that by combining high resolution monitoring and catchment scale physical based modelling, further process studies and creation of early warning systems, for example to optimization of drinking water uptake from rivers, can be achieved.

  15. Monitoring of Building Construction by 4D Change Detection Using Multi-temporal SAR Images

    NASA Astrophysics Data System (ADS)

    Yang, C. H.; Pang, Y.; Soergel, U.

    2017-05-01

    Monitoring urban changes is important for city management, urban planning, updating of cadastral map, etc. In contrast to conventional field surveys, which are usually expensive and slow, remote sensing techniques are fast and cost-effective alternatives. Spaceborne synthetic aperture radar (SAR) sensors provide radar images captured rapidly over vast areas at fine spatiotemporal resolution. In addition, the active microwave sensors are capable of day-and-night vision and independent of weather conditions. These advantages make multi-temporal SAR images suitable for scene monitoring. Persistent scatterer interferometry (PSI) detects and analyses PS points, which are characterized by strong, stable, and coherent radar signals throughout a SAR image sequence and can be regarded as substructures of buildings in built-up cities. Attributes of PS points, for example, deformation velocities, are derived and used for further analysis. Based on PSI, a 4D change detection technique has been developed to detect disappearance and emergence of PS points (3D) at specific times (1D). In this paper, we apply this 4D technique to the centre of Berlin, Germany, to investigate its feasibility and application for construction monitoring. The aims of the three case studies are to monitor construction progress, business districts, and single buildings, respectively. The disappearing and emerging substructures of the buildings are successfully recognized along with their occurrence times. The changed substructures are then clustered into single construction segments based on DBSCAN clustering and α-shape outlining for object-based analysis. Compared with the ground truth, these spatiotemporal results have proven able to provide more detailed information for construction monitoring.

  16. Technologies for Clinical Diagnosis Using Expired Human Breath Analysis

    PubMed Central

    Mathew, Thalakkotur Lazar; Pownraj, Prabhahari; Abdulla, Sukhananazerin; Pullithadathil, Biji

    2015-01-01

    This review elucidates the technologies in the field of exhaled breath analysis. Exhaled breath gas analysis offers an inexpensive, noninvasive and rapid method for detecting a large number of compounds under various conditions for health and disease states. There are various techniques to analyze some exhaled breath gases, including spectrometry, gas chromatography and spectroscopy. This review places emphasis on some of the critical biomarkers present in exhaled human breath, and its related effects. Additionally, various medical monitoring techniques used for breath analysis have been discussed. It also includes the current scenario of breath analysis with nanotechnology-oriented techniques. PMID:26854142

  17. Efforts Toward an Early Warning Crop Monitor for Countries at Risk

    NASA Astrophysics Data System (ADS)

    Budde, M. E.; Verdin, J. P.; Barker, B.; Humber, M. L.; Becker-Reshef, I.; Justice, C. O.; Magadzire, T.; Galu, G.; Rodriguez, M.; Jayanthi, H.

    2015-12-01

    Assessing crop growing conditions is a crucial aspect of monitoring food security in the developing world. One of the core components of the Group on Earth Observations - Global Agricultural Monitoring (GEOGLAM) targets monitoring Countries at Risk (component 3). The Famine Early Warning Systems Network (FEWS NET) has a long history of utilizing remote sensing and crop modeling to address food security threats in the form of drought, floods, pest infestation, and climate change in some of the world's most at risk countries. FEWS NET scientists at the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center and the University of Maryland Department of Geography have undertaken efforts to address component 3, by promoting the development of a collaborative Early Warning Crop Monitor (EWCM) that would specifically address Countries at Risk. A number of organizations utilize combinations of satellite earth observations, field campaigns, network partner inputs, and crop modeling techniques to monitor crop conditions throughout the world. Agencies such as the Food and Agriculture Organization of the United Nations (FAO), United Nations World Food Programme (WFP), and the European Commission's Joint Research Centre (JRC) provide agricultural monitoring information and reporting across a broad number of areas at risk and in many cases, organizations routinely report on the same countries. The latter offers an opportunity for collaboration on crop growing conditions among agencies. The reduction of uncertainty and achievement of consensus will help strengthen confidence in decisions to commit resources for mitigation of acute food insecurity and support for resilience and development programs. In addition, the development of a collaborative global EWCM will provide each of the partner agencies with the ability to quickly gather crop condition information for areas where they may not typically work or have access to local networks. Using a framework developed by GEOGLAM for monitoring crop conditions in support of the Agricultural Market Information System, we developed an EWCM system for countries at risk. We present the current status of that implementation and highlight achievements to date along with future plans to support the needs of the global agricultural monitoring community.

  18. Real-time volcano monitoring using GNSS single-frequency receivers

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Woo; Yun, Sung-Hyo; Kim, Do Hyeong; Lee, Dukkee; Lee, Young J.; Schutz, Bob E.

    2015-12-01

    We present a real-time volcano monitoring strategy that uses the Global Navigation Satellite System (GNSS), and we examine the performance of the strategy by processing simulated and real data and comparing the results with published solutions. The cost of implementing the strategy is reduced greatly by using single-frequency GNSS receivers except for one dual-frequency receiver that serves as a base receiver. Positions of the single-frequency receivers are computed relative to the base receiver on an epoch-by-epoch basis using the high-rate double-difference (DD) GNSS technique, while the position of the base station is fixed to the values obtained with a deferred-time precise point positioning technique and updated on a regular basis. Since the performance of the single-frequency high-rate DD technique depends on the conditions of the ionosphere over the monitoring area, the ionospheric total electron content is monitored using the dual-frequency data from the base receiver. The surface deformation obtained with the high-rate DD technique is eventually processed by a real-time inversion filter based on the Mogi point source model. The performance of the real-time volcano monitoring strategy is assessed through a set of tests and case studies, in which the data recorded during the 2007 eruption of Kilauea and the 2005 eruption of Augustine are processed in a simulated real-time mode. The case studies show that the displacement time series obtained with the strategy seem to agree with those obtained with deferred-time, dual-frequency approaches at the level of 10-15 mm. Differences in the estimated volume change of the Mogi source between the real-time inversion filter and previously reported works were in the range of 11 to 13% of the maximum volume changes of the cases examined.

  19. Assessing the effects of underground mining activities on high-voltage overhead power lines

    NASA Astrophysics Data System (ADS)

    Gusev, Vladimir; Zhuravlyov, Alexei; Maliukhina, Elena

    2017-11-01

    This paper introduces a technique for predictive assessment of changes in the position of power transmission towers and condition of overhead power lines, located in the zone of influence of displacements and deformations of the Earth's surface caused by mining activities. A special approach for monitoring the technical condition of towers and cables is proposed. It is intended to address the issue of controlling the condition of transmission lines that are under the influence of underground mining activities and to checkmate such impact.

  20. Multi-method automated diagnostics of rotating machines

    NASA Astrophysics Data System (ADS)

    Kostyukov, A. V.; Boychenko, S. N.; Shchelkanov, A. V.; Burda, E. A.

    2017-08-01

    The automated machinery diagnostics and monitoring systems utilized within the petrochemical plants are an integral part of the measures taken to ensure safety and, as a consequence, the efficiency of these industrial facilities. Such systems are often limited in their functionality due to the specifics of the diagnostic techniques adopted. As the diagnostic techniques applied in each system are limited, and machinery defects can have different physical nature, it becomes necessary to combine several diagnostics and monitoring systems to control various machinery components. Such an approach is inconvenient, since it requires additional measures to bring the diagnostic results in a single view of the technical condition of production assets. In this case, we mean by a production facility a bonded complex of a process unit, a drive, a power source and lines. A failure of any of these components will cause an outage of the production asset, which is unacceptable. The purpose of the study is to test a combined use of vibration diagnostics and partial discharge techniques within the diagnostic systems of enterprises for automated control of the technical condition of rotating machinery during maintenance and at production facilities. The described solutions allow you to control the condition of mechanical and electrical components of rotating machines. It is shown that the functionality of the diagnostics systems can be expanded with minimal changes in technological chains of repair and operation of rotating machinery. Automation of such systems reduces the influence of the human factor on the quality of repair and diagnostics of the machinery.

  1. 1H MAS NMR (magic-angle spinning nuclear magnetic resonance) techniques for the quantitative determination of hydrogen types in solid catalysts and supports.

    PubMed

    Kennedy, Gordon J; Afeworki, Mobae; Calabro, David C; Chase, Clarence E; Smiley, Randolph J

    2004-06-01

    Distinct hydrogen species are present in important inorganic solids such as zeolites, silicoaluminophosphates (SAPOs), mesoporous materials, amorphous silicas, and aluminas. These H species include hydrogens associated with acidic sites such as Al(OH)Si, non-framework aluminum sites, silanols, and surface functionalities. Direct and quantitative methodology to identify, measure, and monitor these hydrogen species are key to monitoring catalyst activity, optimizing synthesis conditions, tracking post-synthesis structural modifications, and in the preparation of novel catalytic materials. Many workers have developed several techniques to address these issues, including 1H MAS NMR (magic-angle spinning nuclear magnetic resonance). 1H MAS NMR offers many potential advantages over other techniques, but care is needed in recognizing experimental limitations and developing sample handling and NMR methodology to obtain quantitatively reliable data. A simplified approach is described that permits vacuum dehydration of multiple samples simultaneously and directly in the MAS rotor without the need for epoxy, flame sealing, or extensive glovebox use. We have found that careful optimization of important NMR conditions, such as magnetic field homogeneity and magic angle setting are necessary to acquire quantitative, high-resolution spectra that accurately measure the concentrations of the different hydrogen species present. Details of this 1H MAS NMR methodology with representative applications to zeolites, SAPOs, M41S, and silicas as a function of synthesis conditions and post-synthesis treatments (i.e., steaming, thermal dehydroxylation, and functionalization) are presented.

  2. Instrumentation techniques for monitoring shock and detonation waves

    NASA Astrophysics Data System (ADS)

    Dick, R. D.; Parrish, R. L.

    1985-09-01

    CORRTEX (Continuous Reflectometry for Radius Versus Time Experiments), SLIFER (Shorted Location Indication by Frequency of Electrical Resonance), and pin probes were used to monitor several conditions of blasting such as the detonation velocity of the explosive, the functioning of the stemming column confining the explosive, and rock mass motion. CORRTEX is a passive device that employs time-domain reflectometry to interrogate the two-way transit time of a coaxial cable. SLIFER is an active device that monitors the changing frequency resulting from a change in length of a coaxial cable forming an element of an oscillator circuit. Pin probes in this application consist of RG-174 coaxial cables, each with an open circuit, placed at several known locations within the material. Each cable is connected to a pulse-forming network and a voltage source. When the cables are shorted by the advancing wave, time-distance data are produced from which a velocity can be computed. Each technique, installation of the gauge, examples of the signals, and interpretation of the records are described.

  3. The Joint Experiment for Crop Assessment and Monitoring (JECAM) Initiative: Developing methods and best practices for global agricultural monitoring

    NASA Astrophysics Data System (ADS)

    Champagne, C.; Jarvis, I.; Defourny, P.; Davidson, A.

    2014-12-01

    Agricultural systems differ significantly throughout the world, making a 'one size fits all' approach to remote sensing and monitoring of agricultural landscapes problematic. The Joint Experiment for Crop Assessment and Monitoring (JECAM) was established in 2009 to bring together the global scientific community to work towards a set of best practices and recommendations for using earth observation data to map, monitor and report on agricultural productivity globally across an array of diverse agricultural systems. These methods form the research and development component of the Group on Earth Observation Global Agricultural Monitoring (GEOGLAM) initiative to harmonize global monitoring efforts and increase market transparency. The JECAM initiative brings together researchers from a large number of globally distributed, well monitored agricultural test sites that cover a range of crop types, cropping systems and climate regimes. Each test site works independently as well as together across multiple sites to test methods, sensors and field data collection techniques to derive key agricultural parameters, including crop type, crop condition, crop yield and soil moisture. The outcome of this project will be a set of best practices that cover the range of remote sensing monitoring and reporting needs, including satellite data acquisition, pre-processing techniques, information retrieval and ground data validation. These outcomes provide the research and development foundation for GEOGLAM and will help to inform the development of the GEOGLAM "system of systems" for global agricultural monitoring. The outcomes of the 2014 JECAM science meeting will be discussed as well as examples of methods being developed by JECAM scientists.

  4. CONTRIBUTIONS OF QUALITY ASSURANCE/QUALITY CONTROL TO EMERGING TECHNIQUES IN ECOLOGY: NOT JUST FOR CHEMISTS ANYMORE

    EPA Science Inventory

    The structure of biological monitoring designs has become critical as support not only for assessments of condition under Section 305(b) of the Clean Water Act but also as the starting point for site-specific determinations of impairment, diagnosis of causes of impairment, alloca...

  5. 76 FR 52715 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Regulatory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... review Draft Final Regulatory Guide (RG) 1.93, ``Availability of Electric Power Sources,'' Revision 1 and new Draft Final RG 1.218, ``Condition Monitoring Techniques for Electric Cables Used in Nuclear Power... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS...

  6. Validation assessment of shoreline extraction on medium resolution satellite image

    NASA Astrophysics Data System (ADS)

    Manaf, Syaifulnizam Abd; Mustapha, Norwati; Sulaiman, Md Nasir; Husin, Nor Azura; Shafri, Helmi Zulhaidi Mohd

    2017-10-01

    Monitoring coastal zones helps provide information about the conditions of the coastal zones, such as erosion or accretion. Moreover, monitoring the shorelines can help measure the severity of such conditions. Such measurement can be performed accurately by using Earth observation satellite images rather than by using traditional ground survey. To date, shorelines can be extracted from satellite images with a high degree of accuracy by using satellite image classification techniques based on machine learning to identify the land and water classes of the shorelines. In this study, the researchers validated the results of extracted shorelines of 11 classifiers using a reference shoreline provided by the local authority. Specifically, the validation assessment was performed to examine the difference between the extracted shorelines and the reference shorelines. The research findings showed that the SVM Linear was the most effective image classification technique, as evidenced from the lowest mean distance between the extracted shoreline and the reference shoreline. Furthermore, the findings showed that the accuracy of the extracted shoreline was not directly proportional to the accuracy of the image classification.

  7. FRAMEWORK FOR STRUCTURAL ONLINE HEALTH MONITORING OF AGING AND DEGRADATION OF SECONDARY PIPING SYSTEMS DUE TO SOME ASPECTS OF EROSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gribok, Andrei V.; Agarwal, Vivek

    This paper describes the current state of research related to critical aspects of erosion and selected aspects of degradation of secondary components in nuclear power plants (NPPs). The paper also proposes a framework for online health monitoring of aging and degradation of secondary components. The framework consists of an integrated multi-sensor modality system, which can be used to monitor different piping configurations under different degradation conditions. The report analyses the currently known degradation mechanisms and available predictive models. Based on this analysis, the structural health monitoring framework is proposed. The Light Water Reactor Sustainability Program began to evaluate technologies thatmore » could be used to perform online monitoring of piping and other secondary system structural components in commercial NPPs. These online monitoring systems have the potential to identify when a more detailed inspection is needed using real time measurements, rather than at a pre-determined inspection interval. This transition to condition-based, risk-informed automated maintenance will contribute to a significant reduction of operations and maintenance costs that account for the majority of nuclear power generation costs. Furthermore, of the operations and maintenance costs in U.S. plants, approximately 80% are labor costs. To address the issue of rising operating costs and economic viability, in 2017, companies that operate the national nuclear energy fleet started the Delivering the Nuclear Promise Initiative, which is a 3 year program aimed at maintaining operational focus, increasing value, and improving efficiency. There is unanimous agreement between industry experts and academic researchers that identifying and prioritizing inspection locations in secondary piping systems (for example, in raw water piping or diesel piping) would eliminate many excessive in-service inspections. The proposed structural health monitoring framework takes aim at answering this challenge by combining long range guided wave technologies with other monitoring techniques, which can significantly increase the inspection length and pinpoint the locations that degraded the most. More widely, the report suggests research efforts aimed at developing, validating, and deploying online corrosion monitoring techniques for complex geometries, which are pervasive in NPPs.« less

  8. Tapered Roller Bearing Damage Detection Using Decision Fusion Analysis

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Kreider, Gary; Fichter, Thomas

    2006-01-01

    A diagnostic tool was developed for detecting fatigue damage of tapered roller bearings. Tapered roller bearings are used in helicopter transmissions and have potential for use in high bypass advanced gas turbine aircraft engines. A diagnostic tool was developed and evaluated experimentally by collecting oil debris data from failure progression tests conducted using health monitoring hardware. Failure progression tests were performed with tapered roller bearings under simulated engine load conditions. Tests were performed on one healthy bearing and three pre-damaged bearings. During each test, data from an on-line, in-line, inductance type oil debris sensor and three accelerometers were monitored and recorded for the occurrence of bearing failure. The bearing was removed and inspected periodically for damage progression throughout testing. Using data fusion techniques, two different monitoring technologies, oil debris analysis and vibration, were integrated into a health monitoring system for detecting bearing surface fatigue pitting damage. The data fusion diagnostic tool was evaluated during bearing failure progression tests under simulated engine load conditions. This integrated system showed improved detection of fatigue damage and health assessment of the tapered roller bearings as compared to using individual health monitoring technologies.

  9. A Review of Diagnostic Techniques for ISHM Applications

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, Ann; Biswas, Gautam; Aaseng, Gordon; Narasimhan, Sriam; Pattipati, Krishna

    2005-01-01

    System diagnosis is an integral part of any Integrated System Health Management application. Diagnostic applications make use of system information from the design phase, such as safety and mission assurance analysis, failure modes and effects analysis, hazards analysis, functional models, fault propagation models, and testability analysis. In modern process control and equipment monitoring systems, topological and analytic , models of the nominal system, derived from design documents, are also employed for fault isolation and identification. Depending on the complexity of the monitored signals from the physical system, diagnostic applications may involve straightforward trending and feature extraction techniques to retrieve the parameters of importance from the sensor streams. They also may involve very complex analysis routines, such as signal processing, learning or classification methods to derive the parameters of importance to diagnosis. The process that is used to diagnose anomalous conditions from monitored system signals varies widely across the different approaches to system diagnosis. Rule-based expert systems, case-based reasoning systems, model-based reasoning systems, learning systems, and probabilistic reasoning systems are examples of the many diverse approaches ta diagnostic reasoning. Many engineering disciplines have specific approaches to modeling, monitoring and diagnosing anomalous conditions. Therefore, there is no "one-size-fits-all" approach to building diagnostic and health monitoring capabilities for a system. For instance, the conventional approaches to diagnosing failures in rotorcraft applications are very different from those used in communications systems. Further, online and offline automated diagnostic applications are integrated into an operations framework with flight crews, flight controllers and maintenance teams. While the emphasis of this paper is automation of health management functions, striking the correct balance between automated and human-performed tasks is a vital concern.

  10. Proceedings of the Annual Conference of the Prognostics and Health Management Society (PHM 2014) Held in Fort Worth, TX on September 29 - October 2, 2014. Invited Session on Corrosion Monitoring, Sensing, Detection and Prediction

    DTIC Science & Technology

    2014-12-23

    Campbell 225 Using Johnson Distribution for Automatic Threshold Setting in Wind Turbine Condition Monitoring System Kun S. Marhadi and Georgios Alexandros...Victoria M. Catterson, Craig Love, and Andrew Robb 725 Detection of Wind Turbine Power Performance Abnormalities Using Eigenvalue Analysis Georgios...instance, in wind turbine gearbox analysis (Zappalà et al., 2012). Various other techniques for frequency domain analysis have been explored for

  11. Application of Advanced Nondestructive Evaluation Techniques for Cylindrical Composite Test Samples

    NASA Technical Reports Server (NTRS)

    Martin, Richard E.; Roth, Donald J.; Salem, Jonathan A.

    2013-01-01

    Two nondestructive methods were applied to composite cylinder samples pressurized to failure in order to determine manufacturing quality and monitor damage progression under load. A unique computed tomography (CT) image processing methodology developed at NASA Glenn Research was used to assess the condition of the as-received samples while acoustic emission (AE) monitoring was used to identify both the extent and location of damage within the samples up to failure. Results show the effectiveness of both of these methods in identifying potentially critical fabrication issues and their resulting impact on performance.

  12. Clinical application of pulse transit time and correlation with intrapartum fetal heart rate monitoring: a preliminary study of 18 full-term infants.

    PubMed

    Kawagoe, Yasuyuki; Sameshima, Hiroshi; Ikenoue, Tsuyomu

    2008-07-01

    The authors show that pulse transit time and blood pressure are reciprocal in fetal goat models. They applied this technique in clinical settings to correlate changes in pulse transit time with fetal heart rate monitoring patterns and acid-base status. In 18 uncomplicated pregnancies, pulse transit time was obtained from electrocardiograms to pulse oximeter waveform and averaged during each baseline period, defined by the interpretation of fetal heart rate monitoring. According to a > 10% change from the control value, chronological changes were categorized into shortened, unchanged, and prolonged. Pulse transit time was available in 82% +/- 11% of the recordings. In 15 fetuses, 2 (13%) showed prolonged, 7 (47%) showed shortened, and 6 (40%) showed unchanged conditions. Comparisons of the shortened and unchanged categories revealed that severe variable deceleration was significantly increased, and half or more fetuses showed hypoxemia in the shortened category. Shortening of pulse transit time, theoretically indicating a hypertensive condition, was more frequently associated with severe variable decelerations, suggesting that the pulse transit time may supplement the interpretation of fetal heart rate monitoring.

  13. Monitoring of diesel engine combustions based on the acoustic source characterisation of the exhaust system

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Gu, F.; Gennish, R.; Moore, D. J.; Harris, G.; Ball, A. D.

    2008-08-01

    Acoustic methods are among the most useful techniques for monitoring the condition of machines. However, the influence of background noise is a major issue in implementing this method. This paper introduces an effective monitoring approach to diesel engine combustion based on acoustic one-port source theory and exhaust acoustic measurements. It has been found that the strength, in terms of pressure, of the engine acoustic source is able to provide a more accurate representation of the engine combustion because it is obtained by minimising the reflection effects in the exhaust system. A multi-load acoustic method was then developed to determine the pressure signal when a four-cylinder diesel engine was tested with faults in the fuel injector and exhaust valve. From the experimental results, it is shown that a two-load acoustic method is sufficient to permit the detection and diagnosis of abnormalities in the pressure signal, caused by the faults. This then provides a novel and yet reliable method to achieve condition monitoring of diesel engines even if they operate in high noise environments such as standby power stations and vessel chambers.

  14. Evaluation of peak-free electromechanical piezo-impedance and electromagnetic contact sensing using metamaterial surface plasmons for load monitoring

    NASA Astrophysics Data System (ADS)

    Gopal Madhav Annamdas, Venu; Kiong Soh, Chee

    2017-01-01

    Continuous structural health monitoring (SHM) and delayed SHM techniques can be contact/ contactless, surface bonded/embedded, wired/wireless and active/passive actuator-sensor systems which transfer the recorded condition of the structure to the base station almost instantaneously or with time delay respectively. The time between fatal crack initiation and its propagation leading to the collapse of key infrastructures such as aerospace, nuclear facilities, oil and gas is mostly short. Timely discovery of structural problem depends heavily on the scanning period in well-established techniques like piezoelectric (PZT) based electromechanical impedance (EMI) technique. This often takes much scanning time due to the acquisition of resonant structural peaks at all frequencies in the considered bandwidth; thus poses a challenge for its implementation in practice. On the other hand, recently developed strain sensors based on metamaterials and their breeds such as nested split-ring resonators, localized surface plasmons (LSP), etc, employ measurement of reflected or transmitted signal, with super-fast scanning in the order of at most 1/100th of the time taken by the EMI technique. This paper articulates faster measurements by reducing unnecessary resonant structural peaks and focusing on rapid monitoring using PZT and metamaterial plasmons. Our research adopted wired PZT and wireless LSP communications with impedance analyser and vector network analyser respectively. We present integrated and complementary nature of these techniques, which can be processed rapidly for key infrastructures with great effectiveness. This integration can result in both continuous and delayed SHM techniques based on time or frequency or both domains.

  15. An Improved Gaussian Mixture Model for Damage Propagation Monitoring of an Aircraft Wing Spar under Changing Structural Boundary Conditions.

    PubMed

    Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Fang, Fang

    2016-02-26

    Structural Health Monitoring (SHM) technology is considered to be a key technology to reduce the maintenance cost and meanwhile ensure the operational safety of aircraft structures. It has gradually developed from theoretic and fundamental research to real-world engineering applications in recent decades. The problem of reliable damage monitoring under time-varying conditions is a main issue for the aerospace engineering applications of SHM technology. Among the existing SHM methods, Guided Wave (GW) and piezoelectric sensor-based SHM technique is a promising method due to its high damage sensitivity and long monitoring range. Nevertheless the reliability problem should be addressed. Several methods including environmental parameter compensation, baseline signal dependency reduction and data normalization, have been well studied but limitations remain. This paper proposes a damage propagation monitoring method based on an improved Gaussian Mixture Model (GMM). It can be used on-line without any structural mechanical model and a priori knowledge of damage and time-varying conditions. With this method, a baseline GMM is constructed first based on the GW features obtained under time-varying conditions when the structure under monitoring is in the healthy state. When a new GW feature is obtained during the on-line damage monitoring process, the GMM can be updated by an adaptive migration mechanism including dynamic learning and Gaussian components split-merge. The mixture probability distribution structure of the GMM and the number of Gaussian components can be optimized adaptively. Then an on-line GMM can be obtained. Finally, a best match based Kullback-Leibler (KL) divergence is studied to measure the migration degree between the baseline GMM and the on-line GMM to reveal the weak cumulative changes of the damage propagation mixed in the time-varying influence. A wing spar of an aircraft is used to validate the proposed method. The results indicate that the crack propagation under changing structural boundary conditions can be monitored reliably. The method is not limited by the properties of the structure, and thus it is feasible to be applied to composite structure.

  16. A Wearable System for Real-Time Continuous Monitoring of Physical Activity

    PubMed Central

    2018-01-01

    Over the last decades, wearable systems have gained interest for monitoring of physiological variables, promoting health, and improving exercise adherence in different populations ranging from elite athletes to patients. In this paper, we present a wearable system for the continuous real-time monitoring of respiratory frequency (fR), heart rate (HR), and movement cadence during physical activity. The system has been experimentally tested in the laboratory (by simulating the breathing pattern with a mechanical ventilator) and by collecting data from one healthy volunteer. Results show the feasibility of the proposed device for real-time continuous monitoring of fR, HR, and movement cadence both in resting condition and during activity. Finally, different synchronization techniques have been investigated to enable simultaneous data collection from different wearable modules. PMID:29849993

  17. An Update of the Classical and Novel Methods Used for Measuring Fast Neurotransmitters During Normal and Brain Altered Function

    PubMed Central

    Cifuentes Castro, Victor Hugo; López Valenzuela, Carmen Lucía; Salazar Sánchez, Juan Carlos; Peña, Kenia Pardo; López Pérez, Silvia J.; Ibarra, Jorge Ortega; Villagrán, Alberto Morales

    2014-01-01

    To understand better the cerebral functions, several methods have been developed to study the brain activity, they could be related with morphological, electrophysiological, molecular and neurochemical techniques. Monitoring neurotransmitter concentration is a key role to know better how the brain works during normal or pathological conditions, as well as for studying the changes in neurotransmitter concentration with the use of several drugs that could affect or reestablish the normal brain activity. Immediate response of the brain to environmental conditions is related with the release of the fast acting neurotransmission by glutamate (Glu), γ-aminobutyric acid (GABA) and acetylcholine (ACh) through the opening of ligand-operated ion channels. Neurotransmitter release is mainly determined by the classical microdialysis technique, this is generally coupled to high performance liquid chromatography (HPLC). Detection of neurotransmitters can be done by fluorescence, optical density, electrochemistry or other detection systems more sophisticated. Although the microdialysis method is the golden technique to monitor the brain neurotransmitters, it has a poor temporal resolution. Recently, with the use of biosensor the drawback of temporal resolution has been improved considerably, however other inconveniences have merged, such as stability, reproducibility and the lack of reliable biosensors mainly for GABA. The aim of this review is to show the important advances in the different ways to measure neurotransmitter concentrations; both with the use of classic techniques as well as with the novel methods and alternant approaches to improve the temporal resolution. PMID:25977677

  18. Imaging of oxygen and hypoxia in cell and tissue samples.

    PubMed

    Papkovsky, Dmitri B; Dmitriev, Ruslan I

    2018-05-14

    Molecular oxygen (O 2 ) is a key player in cell mitochondrial function, redox balance and oxidative stress, normal tissue function and many common disease states. Various chemical, physical and biological methods have been proposed for measurement, real-time monitoring and imaging of O 2 concentration, state of decreased O 2 (hypoxia) and related parameters in cells and tissue. Here, we review the established and emerging optical microscopy techniques allowing to visualize O 2 levels in cells and tissue samples, mostly under in vitro and ex vivo, but also under in vivo settings. Particular examples include fluorescent hypoxia stains, fluorescent protein reporter systems, phosphorescent probes and nanosensors of different types. These techniques allow high-resolution mapping of O 2 gradients in live or post-mortem tissue, in 2D or 3D, qualitatively or quantitatively. They enable control and monitoring of oxygenation conditions and their correlation with other biomarkers of cell and tissue function. Comparison of these techniques and corresponding imaging setups, their analytical capabilities and typical applications are given.

  19. Ultrasound sonoelastography in the evaluation of thyroiditis and autoimmune thyroid disease.

    PubMed

    Ruchała, Marek; Szmyt, Krzysztof; Sławek, Sylwia; Zybek, Ariadna; Szczepanek-Parulska, Ewelina

    2014-01-01

    Sonoelastography (USE) is a constantly evolving imaging technique used for the noninvasive and objective estimation of tissue stiffness. Several USE methods have been developed, including Quasi-Static or Strain Elastography and Shear Wave Elastography. The utility of USE has been demonstrated in differentiating between malignant and benign thyroid lesions. Recently, USE has been applied in the evaluation of thyroiditis and autoimmune thyroid disease (AITD).Thyroid inflammatory illnesses constitute a diverse group of diseases and may manifest various symptoms. These conditions may share some parallel clinical, biochemical, and ultrasonographic features, which can lead to diagnostic difficulties. USE may be an additional tool, supporting other methods in the diagnosis and treatment monitoring of thyroid diseases, other than thyroid nodular disease.The aim of this article was to analyse and summarise the available literature on the applicability of different elastographic techniques in the diagnosis, differentiation and monitoring of various types of thyroiditis and AITD. Advantages and limitations of this technique are also discussed.

  20. Automatic identification of the number of food items in a meal using clustering techniques based on the monitoring of swallowing and chewing.

    PubMed

    Lopez-Meyer, Paulo; Schuckers, Stephanie; Makeyev, Oleksandr; Fontana, Juan M; Sazonov, Edward

    2012-09-01

    The number of distinct foods consumed in a meal is of significant clinical concern in the study of obesity and other eating disorders. This paper proposes the use of information contained in chewing and swallowing sequences for meal segmentation by food types. Data collected from experiments of 17 volunteers were analyzed using two different clustering techniques. First, an unsupervised clustering technique, Affinity Propagation (AP), was used to automatically identify the number of segments within a meal. Second, performance of the unsupervised AP method was compared to a supervised learning approach based on Agglomerative Hierarchical Clustering (AHC). While the AP method was able to obtain 90% accuracy in predicting the number of food items, the AHC achieved an accuracy >95%. Experimental results suggest that the proposed models of automatic meal segmentation may be utilized as part of an integral application for objective Monitoring of Ingestive Behavior in free living conditions.

  1. Fine PM measurements: personal and indoor air monitoring.

    PubMed

    Jantunen, M; Hänninen, O; Koistinen, K; Hashim, J H

    2002-12-01

    This review compiles personal and indoor microenvironment particulate matter (PM) monitoring needs from recently set research objectives, most importantly the NRC published "Research Priorities for Airborne Particulate Matter (1998)". Techniques and equipment used to monitor PM personal exposures and microenvironment concentrations and the constituents of the sampled PM during the last 20 years are then reviewed. Development objectives are set and discussed for personal and microenvironment PM samplers and monitors, for filter materials, and analytical laboratory techniques for equipment calibration, filter weighing and laboratory climate control. The progress is leading towards smaller sample flows, lighter, silent, independent (battery powered) monitors with data logging capacity to store microenvironment or activity relevant sensor data, advanced flow controls and continuous recording of the concentration. The best filters are non-hygroscopic, chemically pure and inert, and physically robust against mechanical wear. Semiautomatic and primary standard equivalent positive displacement flow meters are replacing the less accurate methods in flow calibration, and also personal sampling flow rates should become mass flow controlled (with or without volumetric compensation for pressure and temperature changes). In the weighing laboratory the alternatives are climatic control (set temperature and relative humidity), and mechanically simpler thermostatic heating, air conditioning and dehumidification systems combined with numerical control of temperature, humidity and pressure effects on flow calibration and filter weighing.

  2. Structural Health Monitoring of Railway Transition Zones Using Satellite Radar Data.

    PubMed

    Wang, Haoyu; Chang, Ling; Markine, Valeri

    2018-01-31

    Transition zones in railway tracks are locations with considerable changes in the rail-supporting structure. Typically, they are located near engineering structures, such as bridges, culverts and tunnels. In such locations, severe differential settlements often occur due to the different material properties and structure behavior. Without timely maintenance, the differential settlement may lead to the damage of track components and loss of passenger's comfort. To ensure the safety of railway operations and reduce the maintenance costs, it is necessary to consecutively monitor the structural health condition of the transition zones in an economical manner and detect the changes at an early stage. However, using the current in situ monitoring of transition zones is hard to achieve this goal, because most in situ techniques (e.g., track-measuring coaches) are labor-consuming and usually not frequently performed (approximately twice a year in the Netherlands). To tackle the limitations of the in situ techniques, a Satellite Synthetic Aperture Radar (InSAR) system is presented in this paper, which provides a potential solution for a consecutive structural health monitoring of transition zones with bi-/tri-weekly data update and mm-level precision. To demonstrate the feasibility of the InSAR system for monitoring transition zones, a transition zone is tested. The results show that the differential settlement in the transition zone and the settlement rate can be observed and detected by the InSAR measurements. Moreover, the InSAR results are cross-validated against measurements obtained using a measuring coach and a Digital Image Correlation (DIC) device. The results of the three measuring techniques show a good correlation, which proves the applicability of InSAR for the structural health monitoring of transition zones in railway track.

  3. On the use of RADARSAT-1 for monitoring malaria risk in Kenya

    NASA Astrophysics Data System (ADS)

    Ross, S. G.; Thomson, M. C.; Pultz, T.; Mbogo, C. M.; Regens, J. L.; Swalm, C.; Githure, J.; Yan, G.; Gu, W.; Beier, J. C.

    2002-01-01

    The incidence and spread of vector-borne infectious diseases are increasing concerns in many parts of the world. Earth obervation techniques provide a recognised means for monitoring and mapping disease risk as well as correlating environmental indicators with various disease vectors. Because the areas most impacted by vector-borne disease are remote and not easily monitored using traditional, labor intensive survey techniques, high spatial and temporal coverage provided by spaceborne sensors allows for the investigation of large areas in a timely manner. However, since the majority of infectious diseases occur in tropical areas, one of the main barriers to earth observation techniques is persistent cloud-cover. Synthetic Aperture Radar (SAR) technology offers a solution to this problem by providing all-weather, day and night imaging capability. Based on SAR's sensitivity to target moisture conditions, sensors such as RADARSAT-1 can be readily used to map wetland and swampy areas that are conducive to functioning as aquatic larval habitats. Irrigation patterns, deforestation practises and the effects of local flooding can be monitored using SAR imagery, and related to potential disease vector abundance and proximity to populated areas. This paper discusses the contribution of C-band radar remote sensing technology to monitoring and mapping malaria. Preliminary results using RADARSAT-1 for identifying areas of high mosquito (Anopheles gambiae s.l.) abundance along the Kenya coast will be discussed. The authors consider the potential of RADARSAT-1 data based on SAR sensor characteristics and the preliminary results obtained. Further potential of spaceborne SAR data for monitoring vector-borne disease is discussed with respect to future advanced SAR sensors such as RADARSAT-2.

  4. Structural Health Monitoring of Railway Transition Zones Using Satellite Radar Data

    PubMed Central

    Chang, Ling; Markine, Valeri

    2018-01-01

    Transition zones in railway tracks are locations with considerable changes in the rail-supporting structure. Typically, they are located near engineering structures, such as bridges, culverts and tunnels. In such locations, severe differential settlements often occur due to the different material properties and structure behavior. Without timely maintenance, the differential settlement may lead to the damage of track components and loss of passenger’s comfort. To ensure the safety of railway operations and reduce the maintenance costs, it is necessary to consecutively monitor the structural health condition of the transition zones in an economical manner and detect the changes at an early stage. However, using the current in situ monitoring of transition zones is hard to achieve this goal, because most in situ techniques (e.g., track-measuring coaches) are labor-consuming and usually not frequently performed (approximately twice a year in the Netherlands). To tackle the limitations of the in situ techniques, a Satellite Synthetic Aperture Radar (InSAR) system is presented in this paper, which provides a potential solution for a consecutive structural health monitoring of transition zones with bi-/tri-weekly data update and mm-level precision. To demonstrate the feasibility of the InSAR system for monitoring transition zones, a transition zone is tested. The results show that the differential settlement in the transition zone and the settlement rate can be observed and detected by the InSAR measurements. Moreover, the InSAR results are cross-validated against measurements obtained using a measuring coach and a Digital Image Correlation (DIC) device. The results of the three measuring techniques show a good correlation, which proves the applicability of InSAR for the structural health monitoring of transition zones in railway track. PMID:29385070

  5. The Joint Experiment for Crop Assessment and Monitoring (JECAM): Synthetic Aperture Radar (SAR) Inter-Comparison Experiment

    NASA Astrophysics Data System (ADS)

    Dingle Robertson, L.; Hosseini, M.; Davidson, A. M.; McNairn, H.

    2017-12-01

    The Joint Experiment for Crop Assessment and Monitoring (JECAM) is the research and development branch of GEOGLAM (Group on Earth Observations Global Agricultural Monitoring), a G20 initiative to improve the global monitoring of agriculture through the use of Earth Observation (EO) data and remote sensing. JECAM partners represent a diverse network of researchers collaborating towards a set of best practices and recommendations for global agricultural analysis using EO data, with well monitored test sites covering a wide range of agriculture types, cropping systems and climate regimes. Synthetic Aperture Radar (SAR) for crop inventory and condition monitoring offers many advantages particularly the ability to collect data under cloudy conditions. The JECAM SAR Inter-Comparison Experiment is a multi-year, multi-partner project that aims to compare global methods for (1) operational SAR & optical; multi-frequency SAR; and compact polarimetry methods for crop monitoring and inventory, and (2) the retrieval of Leaf Area Index (LAI) and biomass estimations using models such as the Water Cloud Model (WCM) employing single frequency SAR; multi-frequency SAR; and compact polarimetry. The results from these activities will be discussed along with an examination of the requirements of a global experiment including best-date determination for SAR data acquisition, pre-processing techniques, in situ data sharing, model development and statistical inter-comparison of the results.

  6. Locomotor behavior of fish hatched from embryos exposed to flight conditions

    NASA Technical Reports Server (NTRS)

    Kleerekoper, H.

    1978-01-01

    Embryos of Fundulus heteroclitus in various stages of development were exposed to space flight conditions aboard Apollo spacecraft and Cosmos satellites. The objective of the study was to ascertain whether fish hatched from these embryos displayed locomotor behavior different from that of control fish of the same age. An electronic monitoring technique was used to record behavior. Results indicate no change in locomotor behavior in fish on Apollo Spacecraft, but inexplicable significant changes were noted in fish aboard Cosmos Satellites.

  7. Functionality of empirical model-based predictive analytics for the early detection of hemodynamic instabilty.

    PubMed

    Summers, Richard L; Pipke, Matt; Wegerich, Stephan; Conkright, Gary; Isom, Kristen C

    2014-01-01

    Background. Monitoring cardiovascular hemodynamics in the modern clinical setting is a major challenge. Increasing amounts of physiologic data must be analyzed and interpreted in the context of the individual patient’s pathology and inherent biologic variability. Certain data-driven analytical methods are currently being explored for smart monitoring of data streams from patients as a first tier automated detection system for clinical deterioration. As a prelude to human clinical trials, an empirical multivariate machine learning method called Similarity-Based Modeling (“SBM”), was tested in an In Silico experiment using data generated with the aid of a detailed computer simulator of human physiology (Quantitative Circulatory Physiology or “QCP”) which contains complex control systems with realistic integrated feedback loops. Methods. SBM is a kernel-based, multivariate machine learning method that that uses monitored clinical information to generate an empirical model of a patient’s physiologic state. This platform allows for the use of predictive analytic techniques to identify early changes in a patient’s condition that are indicative of a state of deterioration or instability. The integrity of the technique was tested through an In Silico experiment using QCP in which the output of computer simulations of a slowly evolving cardiac tamponade resulted in progressive state of cardiovascular decompensation. Simulator outputs for the variables under consideration were generated at a 2-min data rate (0.083Hz) with the tamponade introduced at a point 420 minutes into the simulation sequence. The functionality of the SBM predictive analytics methodology to identify clinical deterioration was compared to the thresholds used by conventional monitoring methods. Results. The SBM modeling method was found to closely track the normal physiologic variation as simulated by QCP. With the slow development of the tamponade, the SBM model are seen to disagree while the simulated biosignals in the early stages of physiologic deterioration and while the variables are still within normal ranges. Thus, the SBM system was found to identify pathophysiologic conditions in a timeframe that would not have been detected in a usual clinical monitoring scenario. Conclusion. In this study the functionality of a multivariate machine learning predictive methodology that that incorporates commonly monitored clinical information was tested using a computer model of human physiology. SBM and predictive analytics were able to differentiate a state of decompensation while the monitored variables were still within normal clinical ranges. This finding suggests that the SBM could provide for early identification of a clinical deterioration using predictive analytic techniques. predictive analytics, hemodynamic, monitoring.

  8. Mode of delivery has an independent impact on neonatal condition at birth.

    PubMed

    Prior, Tomas; Kumar, Sailesh

    2014-10-01

    Current intra-partum monitoring techniques are often criticized for their poor specificity, with their performance frequently evaluated using measures of the neonatal condition at birth as a surrogate marker for intra-partum fetal compromise. However, these measures may potentially be influenced by a multitude of other factors, including the mode of delivery itself. This study aimed to investigate the impact of mode of delivery on neonatal condition at birth. This prospective observational study, undertaken at a tertiary referral maternity unit in London, UK, included 604 'low risk' women recruited prior to delivery. Commonly assessed neonatal outcome variables (Apgar score at 1 and 5min, umbilical artery pH and base excess, neonatal unit admission, and a composite neonatal outcome score) were used to compare the condition at birth between babies born by different modes of delivery, using one-way ANOVA and chi-squared testing. Infants born by instrumental delivery for presumed fetal compromise had the poorest condition at birth (mean composite score=1.20), whereas those born by Cesarean section for presumed fetal compromise had a better condition at birth (mean composite score=0.64) (p=<0.001). No difference in composite neonatal outcome scores was observed between babies born by instrumental delivery for a prolonged second stage (no evidence of compromise), and those born by Cesarean delivery for presumed fetal compromise. Mode of delivery represents a potential confounding factor when using condition at birth as a surrogate marker of intra-partum fetal compromise. When evaluating the efficacy of intra-partum monitoring techniques, the isolated use of Apgar scores, umbilical artery acidosis and neonatal unit admission should be discouraged. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Monitoring gypsy moth defoliation by applying change detection techniques to Landsat imagery

    NASA Technical Reports Server (NTRS)

    Williams, D. L.; Stauffer, M. L.

    1978-01-01

    The overall objective of a research effort at NASA's Goddard Space Flight Center is to develop and evaluate digital image processing techniques that will facilitate the assessment of the intensity and spatial distribution of forest insect damage in Northeastern U.S. forests using remotely sensed data from Landsats 1, 2 and C. Automated change detection techniques are presently being investigated as a method of isolating the areas of change in the forest canopy resulting from pest outbreaks. In order to follow the change detection approach, Landsat scene correction and overlay capabilities are utilized to provide multispectral/multitemporal image files of 'defoliation' and 'nondefoliation' forest stand conditions.

  10. The changes of cerebral hemodynamics during ketamine induced anesthesia in a rat model.

    PubMed

    Bae, Jayyoung; Shin, Teo J; Kim, Seonghyun; Choi, Dong-Hyuk; Cho, Dongrae; Ham, Jinsil; Manca, Marco; Jeong, Seongwook; Lee, Boreom; Kim, Jae G

    2018-05-25

    Current electroencephalogram (EEG) based-consciousness monitoring technique is vulnerable to specific clinical conditions (eg, epilepsy and dementia). However, hemodynamics is the most fundamental and well-preserved parameter to evaluate, even under severe clinical situations. In this study, we applied near-infrared spectroscopy (NIRS) system to monitor hemodynamic change during ketamine-induced anesthesia to find its correlation with the level of consciousness. Oxy-hemoglobin (OHb) and deoxy-hemoglobin concentration levels were continuously acquired throughout the experiment, and the reflectance ratio between 730 and 850 nm was calculated to quantify the hemodynamic changes. The results showed double peaks of OHb concentration change during ketamine anesthesia, which seems to be closely related to the consciousness state of the rat. This finding suggests the possibility of NIRS based-hemodynamic monitoring as a supplementary parameter for consciousness monitoring, compensating drawbacks of EEG signal based monitoring. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Monitoring performance using synthetic data for induced microseismicity by hydrofracking at the Wysin site (Poland)

    NASA Astrophysics Data System (ADS)

    López-Comino, J. A.; Cesca, S.; Kriegerowski, M.; Heimann, S.; Dahm, T.; Mirek, J.; Lasocki, S.

    2017-07-01

    Ideally, the performance of a dedicated seismic monitoring installation should be assessed prior to the observation of target seismicity. This work is focused on a hydrofracking experiment monitored at Wysin, NE Poland. A microseismic synthetic catalogue is generated to assess the monitoring performance during the pre-operational phase, where seismic information only concerns the noise conditions and the potential background seismicity. Full waveform, accounting for the expected spatial, magnitude and focal mechanism distributions and a realistic local crustal model, are combined with real noise recording to produce either event based or continuous synthetic waveforms. The network detection performance is assessed in terms of the magnitude of completeness (Mc) through two different techniques. First, we use an amplitude threshold, taking into the ratio among the maximal amplitude of synthetic waveforms and station-dependent noise levels, for different values of signal-to-noise ratio. The detection probability at each station is estimated for the whole data set and extrapolated to a broader range of magnitude and distances. We estimate an Mc of about 0.55, when considering the distributed network, and can further decrease Mc to 0.45 using arrays techniques. The second approach, taking advantage on an automatic, coherence-based detection algorithm, can lower Mc to ∼ 0.1, at the cost of an increase of false detections. Mc experiences significant changes during day hours, in consequence of strongly varying noise conditions. Moreover, due to the radiation patterns and network geometry, double-couple like sources are better detected than tensile cracks, which may be induced during fracking.

  12. Structural health monitoring ultrasonic thickness measurement accuracy and reliability of various time-of-flight calculation methods

    NASA Astrophysics Data System (ADS)

    Eason, Thomas J.; Bond, Leonard J.; Lozev, Mark G.

    2016-02-01

    The accuracy, precision, and reliability of ultrasonic thickness structural health monitoring systems are discussed in-cluding the influence of systematic and environmental factors. To quantify some of these factors, a compression wave ultrasonic thickness structural health monitoring experiment is conducted on a flat calibration block at ambient temperature with forty four thin-film sol-gel transducers and various time-of-flight thickness calculation methods. As an initial calibration, the voltage response signals from each sensor are used to determine the common material velocity as well as the signal offset unique to each calculation method. Next, the measurement precision of the thickness error of each method is determined with a proposed weighted censored relative maximum likelihood analysis technique incorporating the propagation of asymmetric measurement uncertainty. The results are presented as upper and lower confidence limits analogous to the a90/95 terminology used in industry recognized Probability-of-Detection assessments. Future work is proposed to apply the statistical analysis technique to quantify measurement precision of various thickness calculation methods under different environmental conditions such as high temperature, rough back-wall surface, and system degradation with an intended application to monitor naphthenic acid corrosion in oil refineries.

  13. A new approach for structural health monitoring by applying anomaly detection on strain sensor data

    NASA Astrophysics Data System (ADS)

    Trichias, Konstantinos; Pijpers, Richard; Meeuwissen, Erik

    2014-03-01

    Structural Health Monitoring (SHM) systems help to monitor critical infrastructures (bridges, tunnels, etc.) remotely and provide up-to-date information about their physical condition. In addition, it helps to predict the structure's life and required maintenance in a cost-efficient way. Typically, inspection data gives insight in the structural health. The global structural behavior, and predominantly the structural loading, is generally measured with vibration and strain sensors. Acoustic emission sensors are more and more used for measuring global crack activity near critical locations. In this paper, we present a procedure for local structural health monitoring by applying Anomaly Detection (AD) on strain sensor data for sensors that are applied in expected crack path. Sensor data is analyzed by automatic anomaly detection in order to find crack activity at an early stage. This approach targets the monitoring of critical structural locations, such as welds, near which strain sensors can be applied during construction and/or locations with limited inspection possibilities during structural operation. We investigate several anomaly detection techniques to detect changes in statistical properties, indicating structural degradation. The most effective one is a novel polynomial fitting technique, which tracks slow changes in sensor data. Our approach has been tested on a representative test structure (bridge deck) in a lab environment, under constant and variable amplitude fatigue loading. In both cases, the evolving cracks at the monitored locations were successfully detected, autonomously, by our AD monitoring tool.

  14. Applications of chemiluminescence to bacterial analysis

    NASA Technical Reports Server (NTRS)

    Searle, N. D.

    1975-01-01

    Luminol chemiluminescence method for detecting bacteria was based on microbial activation of the oxidation of the luminol monoanion by hydrogen peroxide. Elimination of the prior lysing step, previously used in the chemiluminescence technique, was shown to improve considerably the reproducibility and accuracy of the method in addition to simplifying it. An inexpensive, portable photomultiplier detector was used to measure the maximum light intensity produced when the sample is added to the reagent. Studies of cooling tower water show that the luminol chemiluminescence technique can be used to monitor changes in viable cell population both under normal conditions and during chlorine treatment. Good correlation between chemiluminescence and plate counts was also obtained in the analysis of process water used in paper mills. This method showed good potential for monitoring the viable bacteria populations in activated sludge used in waste treatment plants to digest organic matter.

  15. Photopyroelectric Monitoring of Olive's Ripening Conditions and Olive Oil Quality Using Pulsed Wideband IR Thermal Source

    NASA Astrophysics Data System (ADS)

    Abu-Taha, M. I.; Sarahneh, Y.; Saleh, A. M.

    The present study is based on band absorption of radiation from pulsed wideband infrared (IR) thermal source (PWBS) in conjunction with polyvinylidene fluoride film (PVDF). It is the first time to be employed to monitor the ripening state of olive fruit. Olive's characteristics vary at different stages of ripening, and hence, cultivation of olives at the right time is important in ensuring the best oil quality and maximizes the harvest yield. The photopyroelectric (PPE) signal resulting from absorption of wideband infrared (IR) radiation by fresh olive juice indicates the ripening stage of olives, i.e., allows an estimate of the suitable harvest time. The technique was found to be very useful in discriminating between olive oil samples according to geographical region, shelf life, some storage conditions, and deliberate adulteration. Our results for monitoring oil accumulation in olives during the ripening season agree well with the complicated analytical studies carried out by other researchers.

  16. Labview Based ECG Patient Monitoring System for Cardiovascular Patient Using SMTP Technology.

    PubMed

    Singh, Om Prakash; Mekonnen, Dawit; Malarvili, M B

    2015-01-01

    This paper leads to developing a Labview based ECG patient monitoring system for cardiovascular patient using Simple Mail Transfer Protocol technology. The designed device has been divided into three parts. First part is ECG amplifier circuit, built using instrumentation amplifier (AD620) followed by signal conditioning circuit with the operation amplifier (lm741). Secondly, the DAQ card is used to convert the analog signal into digital form for the further process. Furthermore, the data has been processed in Labview where the digital filter techniques have been implemented to remove the noise from the acquired signal. After processing, the algorithm was developed to calculate the heart rate and to analyze the arrhythmia condition. Finally, SMTP technology has been added in our work to make device more communicative and much more cost-effective solution in telemedicine technology which has been key-problem to realize the telediagnosis and monitoring of ECG signals. The technology also can be easily implemented over already existing Internet.

  17. Labview Based ECG Patient Monitoring System for Cardiovascular Patient Using SMTP Technology

    PubMed Central

    Singh, Om Prakash; Mekonnen, Dawit; Malarvili, M. B.

    2015-01-01

    This paper leads to developing a Labview based ECG patient monitoring system for cardiovascular patient using Simple Mail Transfer Protocol technology. The designed device has been divided into three parts. First part is ECG amplifier circuit, built using instrumentation amplifier (AD620) followed by signal conditioning circuit with the operation amplifier (lm741). Secondly, the DAQ card is used to convert the analog signal into digital form for the further process. Furthermore, the data has been processed in Labview where the digital filter techniques have been implemented to remove the noise from the acquired signal. After processing, the algorithm was developed to calculate the heart rate and to analyze the arrhythmia condition. Finally, SMTP technology has been added in our work to make device more communicative and much more cost-effective solution in telemedicine technology which has been key-problem to realize the telediagnosis and monitoring of ECG signals. The technology also can be easily implemented over already existing Internet. PMID:27006940

  18. Continuous whole-system monitoring toward rapid understanding of production HPC applications and systems

    DOE PAGES

    Agelastos, Anthony; Allan, Benjamin; Brandt, Jim; ...

    2016-05-18

    A detailed understanding of HPC applications’ resource needs and their complex interactions with each other and HPC platform resources are critical to achieving scalability and performance. Such understanding has been difficult to achieve because typical application profiling tools do not capture the behaviors of codes under the potentially wide spectrum of actual production conditions and because typical monitoring tools do not capture system resource usage information with high enough fidelity to gain sufficient insight into application performance and demands. In this paper we present both system and application profiling results based on data obtained through synchronized system wide monitoring onmore » a production HPC cluster at Sandia National Laboratories (SNL). We demonstrate analytic and visualization techniques that we are using to characterize application and system resource usage under production conditions for better understanding of application resource needs. Furthermore, our goals are to improve application performance (through understanding application-to-resource mapping and system throughput) and to ensure that future system capabilities match their intended workloads.« less

  19. Towards a geophysical decision-support system for monitoring and managing unstable slopes

    NASA Astrophysics Data System (ADS)

    Chambers, J. E.; Meldrum, P.; Wilkinson, P. B.; Uhlemann, S.; Swift, R. T.; Inauen, C.; Gunn, D.; Kuras, O.; Whiteley, J.; Kendall, J. M.

    2017-12-01

    Conventional approaches for condition monitoring, such as walk over surveys, remote sensing or intrusive sampling, are often inadequate for predicting instabilities in natural and engineered slopes. Surface observations cannot detect the subsurface precursors to failure events; instead they can only identify failure once it has begun. On the other hand, intrusive investigations using boreholes only sample a very small volume of ground and hence small scale deterioration process in heterogeneous ground conditions can easily be missed. It is increasingly being recognised that geophysical techniques can complement conventional approaches by providing spatial subsurface information. Here we describe the development and testing of a new geophysical slope monitoring system. It is built around low-cost electrical resistivity tomography instrumentation, combined with integrated geotechnical logging capability, and coupled with data telemetry. An automated data processing and analysis workflow is being developed to streamline information delivery. The development of this approach has provided the basis of a decision-support tool for monitoring and managing unstable slopes. The hardware component of the system has been operational at a number of field sites associated with a range of natural and engineered slopes for up to two years. We report on the monitoring results from these sites, discuss the practicalities of installing and maintaining long-term geophysical monitoring infrastructure, and consider the requirements of a fully automated data processing and analysis workflow. We propose that the result of this development work is a practical decision-support tool that can provide near-real-time information relating to the internal condition of problematic slopes.

  20. Health monitoring of Binzhou Yellow River highway bridge using fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Ou, Jinping; Zhao, Xuefeng; Li, Hui; Zhou, Zhi; Zhang, Zhichun; Wang, Chuan

    2005-05-01

    Binzhou yellow river Highway Bridge with 300 meter span and 768 meter length is located in the Shandong province of China and is the first cable stayed bridge with three towers along the yellow river, one of the biggest rivers in China. In order to monitoring the strain and temperature of the bridge and evaluate the health condition, one fiber Bragg grating sensing network consists of about one hundred and thirty FBG sensors mounted in 31 monitoring sections respectively, had been built during three years time. Signal cables of sensors were led to central control room located near the main tower. One four-channel FBG interrogator was used to read the wavelengths from all the sensors, associated with four computer-controlled optic switches connected to each channel. One program was written to control the interrogator and optic switches simultaneously, and ensure signal input precisely. The progress of the monitoring can be controlled through the internet. The sensors embedded were mainly used to monitor the strain and temperature of the steel cable and reinforced concrete beam. PE jacket opening embedding technique of steel cable had been developed to embed FBG sensors safely, and ensure the reliability of the steel cable opened at the same time. Data obtained during the load test can show the strain and temperature status of elements were in good condition. The data obtained via internet since the bridge's opening to traffic shown the bridge under various load such as traffic load, wind load were in good condition.

  1. Risk Management Technique for design and operation of facilities and equipment

    NASA Technical Reports Server (NTRS)

    Fedor, O. H.; Parsons, W. N.; Coutinho, J. De S.

    1975-01-01

    The Risk Management System collects information from engineering, operating, and management personnel to identify potentially hazardous conditions. This information is used in risk analysis, problem resolution, and contingency planning. The resulting hazard accountability system enables management to monitor all identified hazards. Data from this system are examined in project reviews so that management can decide to eliminate or accept these risks. This technique is particularly effective in improving the management of risks in large, complex, high-energy facilities. These improvements are needed for increased cooperation among industry, regulatory agencies, and the public.

  2. Evaluation of radioisotope tracer and activation analysis techniques for contamination monitoring in space environment simulation chambers

    NASA Technical Reports Server (NTRS)

    Smathers, J. B.; Kuykendall, W. E., Jr.; Wright, R. E., Jr.; Marshall, J. R.

    1973-01-01

    Radioisotope measurement techniques and neutron activation analysis are evaluated for use in identifying and locating contamination sources in space environment simulation chambers. The alpha range method allows the determination of total contaminant concentration in vapor state and condensate state. A Cf-252 neutron activation analysis system for detecting oils and greases tagged with stable elements is described. While neutron activation analysis of tagged contaminants offers specificity, an on-site system is extremely costly to implement and provides only marginal detection sensitivity under even the most favorable conditions.

  3. Three examples of applied remote sensing of vegetation

    NASA Technical Reports Server (NTRS)

    Rouse, J. W., Jr.; Benton, A. R., Jr.; Toler, R. W.; Haas, R. H.

    1975-01-01

    Cause studies in which remote sensing techniques were adapted to assist in the solution of particular problem situations in Texas involving vegetation are described. In each case, the final sensing technique developed for operational use by the concerned organizations employed photographic sensors which were optimized through studies of the spectral reflectance characteristics of the vegetation species and background conditions unique to the problem being considered. The three examples described are: (1) Assisting Aquatic Plant Monitoring and Control; (2) Improving Vegetation Utilization in Urban Planning; and (3) Enforcing the Quarantine of Diseased Crops.

  4. Corrosion protection of reusable surgical instruments.

    PubMed

    Shah, Sadiq; Bernardo, Mildred

    2002-01-01

    To understand the corrosion properties of surgical scissors, 416 stainless steel disks and custom electrodes were used as simulated surfaces under various conditions. These simulated surfaces were exposed to tap water and 400-ppm synthetic hard water as Ca2CO3 under different conditions. The samples were evaluated by various techniques for corrosion potential and the impact of environmental conditions on the integrity of the passive film. The electrodes were used to monitor the corrosion behavior by potentiodynamic polarization technique in water both in the presence and absence of a cleaning product. The surface topography of the 416 stainless steel disks was characterized by visual observations and scanning electron microscopy (SEM), and the surface chemistry of the passive film on the surface of the scissors was characterized by x-ray photoelectron spectroscopy (XPS). The results suggest that surgical instruments made from 416 stainless steel are not susceptible to uniform corrosion; however, they do undergo localized corrosion. The use of suitable cleaning products can offer protection against localized corrosion during the cleaning step. More importantly, the use of potentiodynamic polarization techniques allowed for a quick and convenient approach to evaluate the corrosion properties of surgical instruments under a variety of simulated-use environmental conditions.

  5. Combining novel monitoring tools and precision application technologies for integrated high-tech crop protection in the future (a discussion document).

    PubMed

    Zijlstra, Carolien; Lund, Ivar; Justesen, Annemarie F; Nicolaisen, Mogens; Jensen, Peter Kryger; Bianciotto, Valeria; Posta, Katalin; Balestrini, Raffaella; Przetakiewicz, Anna; Czembor, Elzbieta; van de Zande, Jan

    2011-06-01

    The possibility of combining novel monitoring techniques and precision spraying for crop protection in the future is discussed. A generic model for an innovative crop protection system has been used as a framework. This system will be able to monitor the entire cropping system and identify the presence of relevant pests, diseases and weeds online, and will be location specific. The system will offer prevention, monitoring, interpretation and action which will be performed in a continuous way. The monitoring is divided into several parts. Planting material, seeds and soil should be monitored for prevention purposes before the growing period to avoid, for example, the introduction of disease into the field and to ensure optimal growth conditions. Data from previous growing seasons, such as the location of weeds and previous diseases, should also be included. During the growing season, the crop will be monitored at a macroscale level until a location that needs special attention is identified. If relevant, this area will be monitored more intensively at a microscale level. A decision engine will analyse the data and offer advice on how to control the detected diseases, pests and weeds, using precision spray techniques or alternative measures. The goal is to provide tools that are able to produce high-quality products with the minimal use of conventional plant protection products. This review describes the technologies that can be used or that need further development in order to achieve this goal. Copyright © 2011 Society of Chemical Industry.

  6. IMAGE Project: Results of Laboratory Tests on Tracers for Supercritical Conditions.

    NASA Astrophysics Data System (ADS)

    Brandvoll, Øyvind; Opsahl Viig, Sissel; Nardini, Isabella; Muller, Jiri

    2016-04-01

    The use of tracers is a well-established technique for monitoring dynamic behaviour of water and gas through a reservoir. In geothermal reservoirs special challenges are encountered due to high temperatures and pressures. In this work, tracer candidates for monitoring water at supercritical conditions (temperature > 374°C, pressure ca 218 bar), are tested in laboratory experiments. Testing of tracers at supercritical water conditions requires experimental set-ups which tolerate harsh conditions with respect to high temperature and pressure. In addition stringent HES (health, environment and safety) factors have to be taken into consideration when designing and performing the experiments. The setup constructed in this project consists of a pressure vessel, high pressure pump, instrumentation for pressure and temperature control and instrumentation required for accurate sampling of tracers. In order to achieve accurate results, a special focus has been paid to the development of the tracer sampling technique. Perfluorinated cyclic hydrocarbons (PFCs) have been selected as tracer candidates. This group of compounds is today commonly used as gas tracers in oil reservoirs. According to the literature they are stable at temperatures up to 400°C. To start with, five PFCs have been tested for thermal stability in static experiments at 375°C and 108 bar in the experimental setup described above. The tracer candidates will be further tested for several months at the relevant conditions. Preliminary results indicate that some of the PFC compounds show stability after three months. However, in order to arrive at conclusive results, the experiments have to be repeated over a longer period and paying special attention to more accurate sampling procedures.

  7. Industrial application of ultrasound based in-line rheometry: From stationary to pulsating pipe flow of chocolate suspension in precrystallization process

    NASA Astrophysics Data System (ADS)

    Ouriev, Boris; Windhab, Erich; Braun, Peter; Birkhofer, Beat

    2004-10-01

    In-line visualization and on-line characterization of nontransparent fluids becomes an important subject for process development in food and nonfood industries. In our work, a noninvasive Doppler ultrasound-based technique is introduced. Such a technique is applied for investigation of nonstationary flow in the chocolate precrystallization process. Unstable flow conditions were induced by abrupt flow interruption and were followed up by strong flow pulsations in the piping system. While relying on available process information, such as absolute pressures and temperatures, no analyses of flow conditions or characterization of suspension properties could possibly be done. It is obvious that chocolate flow properties are sensitive to flow boundary conditions. Therefore, it becomes essential to perform reliable structure state monitoring and particularly in application to nonstationary flow processes. Such flow instabilities in chocolate processing can often lead to failed product quality with interruption of the mainstream production. As will be discussed, a combination of flow velocity profiles, on-line fit into flow profiles, and pressure difference measurement are sufficient for reliable analyses of fluid properties and flow boundary conditions as well as monitoring of the flow state. Analyses of the flow state and flow properties of chocolate suspension are based on on-line measurement of one-dimensional velocity profiles across the flow channel and their on-line characterization with the power-law model. Conclusions about flow boundary conditions were drawn from a calculated velocity standard mean deviation, the parameters of power-law fit into velocity profiles, and volumetric flow rate information.

  8. Implementing wireless sensor networks for architectural heritage conservation

    NASA Astrophysics Data System (ADS)

    Martínez-Garrido, M. I.; Aparicio, S.; Fort, R.; Izquierdo, M. A. G.; Anaya, J. J.

    2012-04-01

    Preventive conservation in architectural heritage is one of the most important aims for the development and implementation of new techniques to assess decay, lending to reduce damage before it has occurred and reducing costs in the long term. For that purpose, it is necessary to know all aspects influencing in decay evolution depending on the material under study and its internal and external conditions. Wireless sensor networks are an emerging technology and a minimally invasive technique. The use of these networks facilitates data acquisition and monitoring of a large number of variables that could provoke material damages, such as presence of harmful compounds like salts, dampness, etc. The current project presents different wireless sensors networks (WSN) and sensors used to fulfill the requirements for a complete analysis of main decay agents in a Renaissance church of the 16th century in Madrid (Spain). Current typologies and wireless technologies are studied establishing the most suitable system and the convenience of each one. Firstly, it is very important to consider that microclimate is in close correlation with material deterioration. Therefore a temperature(T) and relative humidity (RH)/moisture network has been developed, using ZigBee wireless communications protocols, and monitoring different points along the church surface. These points are recording RH/T differences depending on the height and the sensor location (inside the material or on the surface). On the other hand, T/RH button sensors have been used, minimizing aesthetical interferences, and concluding which is the most advisable way for monitoring these specific parameters. Due to the fact that microclimate is a complex phenomenon, it is necessary to examine spatial distribution and time evolution at the same time. This work shows both studies since the development expects a long term monitoring. A different wireless network has been deployed to study the effects of pollution caused by other active systems such as a forced-air heating system, the parishioners presence or feasts and other ventilation conditions. Finally weather conditions are registered through a weather station. Outside and inside conditions are compared to incorporate data to the network for a later decay modeling.

  9. The technique of entropy optimization in motor current signature analysis and its application in the fault diagnosis of gear transmission

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoguang; Liang, Lin; Liu, Fei; Xu, Guanghua; Luo, Ailing; Zhang, Sicong

    2012-05-01

    Nowadays, Motor Current Signature Analysis (MCSA) is widely used in the fault diagnosis and condition monitoring of machine tools. However, although the current signal has lower SNR (Signal Noise Ratio), it is difficult to identify the feature frequencies of machine tools from complex current spectrum that the feature frequencies are often dense and overlapping by traditional signal processing method such as FFT transformation. With the study in the Motor Current Signature Analysis (MCSA), it is found that the entropy is of importance for frequency identification, which is associated with the probability distribution of any random variable. Therefore, it plays an important role in the signal processing. In order to solve the problem that the feature frequencies are difficult to be identified, an entropy optimization technique based on motor current signal is presented in this paper for extracting the typical feature frequencies of machine tools which can effectively suppress the disturbances. Some simulated current signals were made by MATLAB, and a current signal was obtained from a complex gearbox of an iron works made in Luxembourg. In diagnosis the MCSA is combined with entropy optimization. Both simulated and experimental results show that this technique is efficient, accurate and reliable enough to extract the feature frequencies of current signal, which provides a new strategy for the fault diagnosis and the condition monitoring of machine tools.

  10. Electrical resistivity tomography to monitor enhanced biodegradation of hydrocarbons with Rhodococcus erythropolis T902.1 at a pilot scale.

    PubMed

    Masy, Thibaut; Caterina, David; Tromme, Olivier; Lavigne, Benoît; Thonart, Philippe; Hiligsmann, Serge; Nguyen, Frédéric

    2016-01-01

    Petroleum hydrocarbons (HC) represent the most widespread contaminants and in-situ bioremediation remains a competitive treatment in terms of cost and environmental concerns. However, the efficiency of such a technique (by biostimulation or bioaugmentation) strongly depends on the environment affected and is still difficult to predict a priori. In order to overcome these uncertainties, Electrical Resistivity Tomography (ERT) appears as a valuable non-invasive tool to detect soil heterogeneities and to monitor biodegradation. The main objective of this study was to isolate an electrical signal linked to an enhanced bacterial activity with ERT, in an aged HC-contaminated clay loam soil. To achieve this, a pilot tank was built to mimic field conditions. Compared to a first insufficient biostimulation phase, bioaugmentation with Rhodococcus erythropolis T902.1 led to a HC depletion of almost 80% (6900 to 1600ppm) in 3months in the center of the contaminated zone, where pollutants were less bioavailable. In the meantime, lithological heterogeneities and microbial activities (growth and biosurfactant production) were successively discriminated by ERT images. In the future, this cost-effective technique should be more and more transferred to the field in order to monitor biodegradation processes and assist in selecting the most appropriate remediation technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Electrical resistivity tomography to monitor enhanced biodegradation of hydrocarbons with Rhodococcus erythropolis T902.1 at a pilot scale

    NASA Astrophysics Data System (ADS)

    Masy, Thibaut; Caterina, David; Tromme, Olivier; Lavigne, Benoît; Thonart, Philippe; Hiligsmann, Serge; Nguyen, Frédéric

    2016-01-01

    Petroleum hydrocarbons (HC) represent the most widespread contaminants and in-situ bioremediation remains a competitive treatment in terms of cost and environmental concerns. However, the efficiency of such a technique (by biostimulation or bioaugmentation) strongly depends on the environment affected and is still difficult to predict a priori. In order to overcome these uncertainties, Electrical Resistivity Tomography (ERT) appears as a valuable non-invasive tool to detect soil heterogeneities and to monitor biodegradation. The main objective of this study was to isolate an electrical signal linked to an enhanced bacterial activity with ERT, in an aged HC-contaminated clay loam soil. To achieve this, a pilot tank was built to mimic field conditions. Compared to a first insufficient biostimulation phase, bioaugmentation with Rhodococcus erythropolis T902.1 led to a HC depletion of almost 80% (6900 to 1600 ppm) in 3 months in the center of the contaminated zone, where pollutants were less bioavailable. In the meantime, lithological heterogeneities and microbial activities (growth and biosurfactant production) were successively discriminated by ERT images. In the future, this cost-effective technique should be more and more transferred to the field in order to monitor biodegradation processes and assist in selecting the most appropriate remediation technique.

  12. Application of Vibration and Oil Analysis for Reliability Information on Helicopter Main Rotor Gearbox

    NASA Astrophysics Data System (ADS)

    Murrad, Muhamad; Leong, M. Salman

    Based on the experiences of the Malaysian Armed Forces (MAF), failure of the main rotor gearbox (MRGB) was one of the major contributing factors to helicopter breakdowns. Even though vibration and oil analysis are the effective techniques for monitoring the health of helicopter components, these two techniques were rarely combined to form an effective assessment tool in MAF. Results of the oil analysis were often used only for oil changing schedule while assessments of MRGB condition were mainly based on overall vibration readings. A study group was formed and given a mandate to improve the maintenance strategy of S61-A4 helicopter fleet in the MAF. The improvement consisted of a structured approach to the reassessment/redefinition suitable maintenance actions that should be taken for the MRGB. Basic and enhanced tools for condition monitoring (CM) are investigated to address the predominant failures of the MRGB. Quantitative accelerated life testing (QALT) was considered in this work with an intent to obtain the required reliability information in a shorter time with tests under normal stress conditions. These tests when performed correctly can provide valuable information about MRGB performance under normal operating conditions which enable maintenance personnel to make decision more quickly, accurately and economically. The time-to-failure and probability of failure information of the MRGB were generated by applying QALT analysis principles. This study is anticipated to make a dramatic change in its approach to CM, bringing significant savings and various benefits to MAF.

  13. A methodology for hard/soft information fusion in the condition monitoring of aircraft

    NASA Astrophysics Data System (ADS)

    Bernardo, Joseph T.

    2013-05-01

    Condition-based maintenance (CBM) refers to the philosophy of performing maintenance when the need arises, based upon indicators of deterioration in the condition of the machinery. Traditionally, CBM involves equipping machinery with electronic sensors that continuously monitor components and collect data for analysis. The addition of the multisensory capability of human cognitive functions (i.e., sensemaking, problem detection, planning, adaptation, coordination, naturalistic decision making) to traditional CBM may create a fuller picture of machinery condition. Cognitive systems engineering techniques provide an opportunity to utilize a dynamic resource—people acting as soft sensors. The literature is extensive on techniques to fuse data from electronic sensors, but little work exists on fusing data from humans with that from electronic sensors (i.e., hard/soft fusion). The purpose of my research is to explore, observe, investigate, analyze, and evaluate the fusion of pilot and maintainer knowledge, experiences, and sensory perceptions with digital maintenance resources. Hard/soft information fusion has the potential to increase problem detection capability, improve flight safety, and increase mission readiness. This proposed project consists the creation of a methodology that is based upon the Living Laboratories framework, a research methodology that is built upon cognitive engineering principles1. This study performs a critical assessment of concept, which will support development of activities to demonstrate hard/soft information fusion in operationally relevant scenarios of aircraft maintenance. It consists of fieldwork, knowledge elicitation to inform a simulation and a prototype.

  14. MARVEL: A knowledge-based productivity enhancement tool for real-time multi-mission and multi-subsystem spacecraft operations

    NASA Astrophysics Data System (ADS)

    Schwuttke, Ursula M.; Veregge, John, R.; Angelino, Robert; Childs, Cynthia L.

    1990-10-01

    The Monitor/Analyzer of Real-time Voyager Engineering Link (MARVEL) is described. It is the first automation tool to be used in an online mode for telemetry monitoring and analysis in mission operations. MARVEL combines standard automation techniques with embedded knowledge base systems to simultaneously provide real time monitoring of data from subsystems, near real time analysis of anomaly conditions, and both real time and non-real time user interface functions. MARVEL is currently capable of monitoring the Computer Command Subsystem (CCS), Flight Data Subsystem (FDS), and Attitude and Articulation Control Subsystem (AACS) for both Voyager spacecraft, simultaneously, on a single workstation. The goal of MARVEL is to provide cost savings and productivity enhancement in mission operations and to reduce the need for constant availability of subsystem expertise.

  15. Dynamic displacement monitoring of long-span bridges with a microwave radar interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Bochen; Ding, Xiaoli; Werner, Charles; Tan, Kai; Zhang, Bin; Jiang, Mi; Zhao, Jingwen; Xu, Youlin

    2018-04-01

    Structural health monitoring of long-span bridges is a critical process in ensuring the operational safety of the structures. In this paper, we present experimental results of monitoring the displacements of two long-span bridges in Hong Kong Ting Kau Bridge (TKB) and Tsing Ma Bridge (TMB) with a terrestrial microwave radar interferometer named the GAMMA Portable Radar Interferometer (GPRI). A technique for fusing the measurements from two receiving antennas of the radar instrument is proposed. In addition, a two-step phase unwrapping approach is also tested. The results reveal the bridge dynamic responses under different loading conditions, including winds, vehicle traffic, and passing trains. The results also show that the terrestrial microwave radar interferometer can be used to monitor the dynamics of long-span bridges with unprecedented spatial and temporal resolutions.

  16. On the use of high-frequency SCADA data for improved wind turbine performance monitoring

    NASA Astrophysics Data System (ADS)

    Gonzalez, E.; Stephen, B.; Infield, D.; Melero, J. J.

    2017-11-01

    SCADA-based condition monitoring of wind turbines facilitates the move from costly corrective repairs towards more proactive maintenance strategies. In this work, we advocate the use of high-frequency SCADA data and quantile regression to build a cost effective performance monitoring tool. The benefits of the approach are demonstrated through the comparison between state-of-the-art deterministic power curve modelling techniques and the suggested probabilistic model. Detection capabilities are compared for low and high-frequency SCADA data, providing evidence for monitoring at higher resolutions. Operational data from healthy and faulty turbines are used to provide a practical example of usage with the proposed tool, effectively achieving the detection of an incipient gearbox malfunction at a time horizon of more than one month prior to the actual occurrence of the failure.

  17. Development of a tritium monitor combined with an electrochemical tritium pump using a proton conducting oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, M.; Sugiyama, T.

    2015-03-15

    The detection of low level tritium is one of the key issues for tritium management in tritium handling facilities. Such a detection can be performed by tritium monitors based on proton conducting oxide technique. We tested a tritium monitoring system composed of a commercial proportional counter combined with an electrochemical hydrogen pump equipped with CaZr{sub 0.9}In{sub 0.1}O{sub 3-α} as proton conducting oxide. The hydrogen pump operated at 973 K under electrolysis conditions using tritiated water vapor (HTO). The proton conducting oxide extracts tritium molecules (HT) from HTO and tritium concentration is measured by the proportional counter. The advantage of themore » proposed tritium monitoring system is that it is able to convert HTO into molecular hydrogen.« less

  18. Failure Control Techniques for the SSME

    NASA Technical Reports Server (NTRS)

    Taniguchi, M. H.

    1987-01-01

    Since ground testing of the Space Shuttle Main Engine (SSME) began in 1975, the detection of engine anomalies and the prevention of major damage have been achieved by a multi-faceted detection/shutdown system. The system continues the monitoring task today and consists of the following: sensors, automatic redline and other limit logic, redundant sensors and controller voting logic, conditional decision logic, and human monitoring. Typically, on the order of 300 to 500 measurements are sensed and recorded for each test, while on the order of 100 are used for control and monitoring. Despite extensive monitoring by the current detection system, twenty-seven (27) major incidents have occurred. This number would appear insignificant compared with over 1200 hot-fire tests which have taken place since 1976. However, the number suggests the requirement for and future benefits of a more advanced failure detection system.

  19. Carbon dioxide production during cardiopulmonary bypass: pathophysiology, measure and clinical relevance.

    PubMed

    Ranucci, Marco; Carboni, Giovanni; Cotza, Mauro; de Somer, Filip

    2017-01-01

    Carbon dioxide production during cardiopulmonary bypass derives from both the aerobic metabolism and the buffering of lactic acid produced by tissues under anaerobic conditions. Therefore, carbon dioxide removal monitoring is an important measure of the adequacy of perfusion and oxygen delivery. However, routine monitoring of carbon dioxide removal is not widely applied. The present article reviews the main physiological and pathophysiological sources of carbon dioxide, the available techniques to assess carbon dioxide production and removal and the clinically relevant applications of carbon dioxide-related variables as markers of the adequacy of perfusion during cardiopulmonary bypass.

  20. Artificial Intelligence in Autonomous Telescopes

    NASA Astrophysics Data System (ADS)

    Mahoney, William; Thanjavur, Karun

    2011-03-01

    Artificial Intelligence (AI) is key to the natural evolution of today's automated telescopes to fully autonomous systems. Based on its rapid development over the past five decades, AI offers numerous, well-tested techniques for knowledge based decision making essential for real-time telescope monitoring and control, with minimal - and eventually no - human intervention. We present three applications of AI developed at CFHT for monitoring instantaneous sky conditions, assessing quality of imaging data, and a prototype for scheduling observations in real-time. Closely complementing the current remote operations at CFHT, we foresee further development of these methods and full integration in the near future.

  1. Developing Digital Image Techniques with Low-Cost Unmanned Mobile to Monitor the Safety of Dam and Affiliated Structure

    NASA Astrophysics Data System (ADS)

    Sung, Wen-Pei; Shih, Ming-Hsiang

    2016-04-01

    Global warming phenomena are increasingly serious, the El Niño and La Niña continue to occur repeatedly, causing the irregular drought and flood problem repeatedly. Mountain form of Taiwan is steep and storage ability of rainwater is insufficient to supply the livelihood of people and usage of industry which need to rely on rainwater reservoir. Thus, to ensure the water supply and self-reliance energy supply, one of ways to keep water resource is to build reservoir. Nevertheless, Taiwan is located on Pacific seismic belt; additionally, geological conditions are not fine, over-developed in the hills lead to more natural disasters in the future. Thus, strong shakes and typhoons which caused a degree of severe landslides around dam lead to reduce catchment of dam to result in affecting the safety of dam. Otherwise, the cracks and rusts in dam, induced by the defects of material, bad construction and seismic excitation respectively, thus, the mechanics phenomena of dam and its affiliated structures with crack are probing into the cause of stress concentration, induced high crack increase rate, affect the safety and usage of dam. This research is aimed at the safety evaluation technique of dam and its affiliated structures to develop three dimensional digital image correlation techniques for monitoring the safety of dam and its affiliated structures. Namely, developing the unmanned mobile on two axis of digital image correlation method is to detect the digital images from geometric scanning techniques for dam structure. This developed technique combined with Unmanned Aerial Vehicle (UAV) to develop the near filed scanning and monitoring techniques for local deformation and cracks on dam and its affiliated structures.

  2. Novel techniques of real-time blood flow and functional mapping: technical note.

    PubMed

    Kamada, Kyousuke; Ogawa, Hiroshi; Saito, Masato; Tamura, Yukie; Anei, Ryogo; Kapeller, Christoph; Hayashi, Hideaki; Prueckl, Robert; Guger, Christoph

    2014-01-01

    There are two main approaches to intraoperative monitoring in neurosurgery. One approach is related to fluorescent phenomena and the other is related to oscillatory neuronal activity. We developed novel techniques to visualize blood flow (BF) conditions in real time, based on indocyanine green videography (ICG-VG) and the electrophysiological phenomenon of high gamma activity (HGA). We investigated the use of ICG-VG in four patients with moyamoya disease and two with arteriovenous malformation (AVM), and we investigated the use of real-time HGA mapping in four patients with brain tumors who underwent lesion resection with awake craniotomy. Real-time data processing of ICG-VG was based on perfusion imaging, which generated parameters including arrival time (AT), mean transit time (MTT), and BF of brain surface vessels. During awake craniotomy, we analyzed the frequency components of brain oscillation and performed real-time HGA mapping to identify functional areas. Processed results were projected on a wireless monitor linked to the operating microscope. After revascularization for moyamoya disease, AT and BF were significantly shortened and increased, respectively, suggesting hyperperfusion. Real-time fusion images on the wireless monitor provided anatomical, BF, and functional information simultaneously, and allowed the resection of AVMs under the microscope. Real-time HGA mapping during awake craniotomy rapidly indicated the eloquent areas of motor and language function and significantly shortened the operation time. These novel techniques, which we introduced might improve the reliability of intraoperative monitoring and enable the development of rational and objective surgical strategies.

  3. Novel Techniques of Real-time Blood Flow and Functional Mapping: Technical Note

    PubMed Central

    KAMADA, Kyousuke; OGAWA, Hiroshi; SAITO, Masato; TAMURA, Yukie; ANEI, Ryogo; KAPELLER, Christoph; HAYASHI, Hideaki; PRUECKL, Robert; GUGER, Christoph

    2014-01-01

    There are two main approaches to intraoperative monitoring in neurosurgery. One approach is related to fluorescent phenomena and the other is related to oscillatory neuronal activity. We developed novel techniques to visualize blood flow (BF) conditions in real time, based on indocyanine green videography (ICG-VG) and the electrophysiological phenomenon of high gamma activity (HGA). We investigated the use of ICG-VG in four patients with moyamoya disease and two with arteriovenous malformation (AVM), and we investigated the use of real-time HGA mapping in four patients with brain tumors who underwent lesion resection with awake craniotomy. Real-time data processing of ICG-VG was based on perfusion imaging, which generated parameters including arrival time (AT), mean transit time (MTT), and BF of brain surface vessels. During awake craniotomy, we analyzed the frequency components of brain oscillation and performed real-time HGA mapping to identify functional areas. Processed results were projected on a wireless monitor linked to the operating microscope. After revascularization for moyamoya disease, AT and BF were significantly shortened and increased, respectively, suggesting hyperperfusion. Real-time fusion images on the wireless monitor provided anatomical, BF, and functional information simultaneously, and allowed the resection of AVMs under the microscope. Real-time HGA mapping during awake craniotomy rapidly indicated the eloquent areas of motor and language function and significantly shortened the operation time. These novel techniques, which we introduced might improve the reliability of intraoperative monitoring and enable the development of rational and objective surgical strategies. PMID:25263624

  4. Microbial safety in space

    NASA Astrophysics Data System (ADS)

    Krooneman, Janneke; Harmsen, Hermie; Landini, Paolo; Zinn, Manfred; Munaut, Françoise; van der Meer, Walter; Beimfohr, Claudia; Reichert, Bas; Preuß, Andrea

    2005-10-01

    Microbial hygiene is important in our daily lives; preventing and combating microbial infections is increasingly important in society. In hospitals, strict monitoring and control is exercised for people and infrastructure alike. In modern buildings, air-conditioning system are screened for harmful bacteria such as Legionella. More recently, concerns about SARS (virus) and anthrax (bacteria) have added pressure on the scientific community to come up with adequate monitoring and control techniques to assure microbial hygiene. Additionally, the use of biotechnological recycling and cleaning processes for sustainability brings the need for reliable monitoring tools and preventive or riks-reducing strategies. In the manned space environment, similar problems need to be solved and efforts have already been made to study the behaviour of micro-organisms and microbial hygiene onboard space stations.

  5. Recent Progress in Biosensors for Environmental Monitoring: A Review

    PubMed Central

    2017-01-01

    The environmental monitoring has been one of the priorities at the European and global scale due to the close relationship between the environmental pollution and the human health/socioeconomic development. In this field, the biosensors have been widely employed as cost-effective, fast, in situ, and real-time analytical techniques. The need of portable, rapid, and smart biosensing devices explains the recent development of biosensors with new transduction materials, obtained from nanotechnology, and for multiplexed pollutant detection, involving multidisciplinary experts. This review article provides an update on recent progress in biosensors for the monitoring of air, water, and soil pollutants in real conditions such as pesticides, potentially toxic elements, and small organic molecules including toxins and endocrine disrupting chemicals. PMID:29244756

  6. Recent Progress in Biosensors for Environmental Monitoring: A Review.

    PubMed

    Justino, Celine I L; Duarte, Armando C; Rocha-Santos, Teresa A P

    2017-12-15

    The environmental monitoring has been one of the priorities at the European and global scale due to the close relationship between the environmental pollution and the human health/socioeconomic development. In this field, the biosensors have been widely employed as cost-effective, fast, in situ, and real-time analytical techniques. The need of portable, rapid, and smart biosensing devices explains the recent development of biosensors with new transduction materials, obtained from nanotechnology, and for multiplexed pollutant detection, involving multidisciplinary experts. This review article provides an update on recent progress in biosensors for the monitoring of air, water, and soil pollutants in real conditions such as pesticides, potentially toxic elements, and small organic molecules including toxins and endocrine disrupting chemicals.

  7. Assessing COSMO-SkyMed capability for crops identification and monitoring

    NASA Astrophysics Data System (ADS)

    Guarini, R.; Dini, L.

    2015-12-01

    In the last decade, it has been possible to better understand the impact of agricultural human practices on the global environmental change at different spatial (from local to global) and time (from seasonal to decadal) scales. This has been achieved thanks to: big dataset continuously acquired by Earth Observation (EO) satellites; the improved capabilities of remote sensing techniques in extracting valuable information from the EO datasets; the new EO data policy which allowed unrestricted data usage; the net technologies which allowed to quickly and easily share national, international and market-derived information; an increasingly performing computing technology which allows to massively process large amount of data easier and at decreasing costs. To better understand the environmental impacts of agriculture and to monitor the consequences of human agricultural activities on the biosphere, scientists require to better identify crops and monitor crop conditions over time and space. Traditionally, NDVI time series maps derived from optical sensors have been used to this aim. As well-known this important source of information is conditioned by cloud cover. Unlike passive systems, synthetic aperture radar (SAR) ones are almost insensitive to atmospheric influences; thus, they are especially suitable for crop identification and condition monitoring. Among the other SAR systems currently in orbit, the Italian Space Agency (ASI) COSMO Sky-Med® (CSK®) constellation (X-band, frequency 9.6 GHz, wavelength 3.1 cm), especially for its peculiar high revisit capability (up to four images in 16 days with same acquisition geometry) seems to be particular suitable for providing information in addition and/or in alternative to other optical EO systems. To assess the capability of the CSK® constellation in identifying crops and in monitoring crops condition in 2013 ASI started the "AGRICIDOT" project. Some of the main project achievements will be presented at the congress.

  8. Sensor network architecture for monitoring turtles on seashore

    NASA Astrophysics Data System (ADS)

    Carvajal-Gámez, Blanca E.; Cruz, Victor; Díaz-Casco, Manuel A.; Franco, Andrea; Escobar, Carolina; Colin, Abilene; Carreto-Arellano, Chadwick

    2017-04-01

    In the last decade, advances in information and communication technologies have made it possible to diversify the use of sensor networks in different areas of knowledge (medicine, education, militia, urbanization, protection of the environment, etc.). At present, this type of tools is used to develop applications that allow the identification and monitoring of endangered animals in their natural habitat; however, there are still limitations because some of the devices used alter the behavior of the animals, as in the case of sea turtles. Research and monitoring of sea turtles is of vital importance in identifying possible threats and ensuring their preservation, the behavior of this species (migration, reproduction, and nesting) is highly related to environmental conditions. Because of this, behavioral changes information of this species can be used to monitor global climatic conditions. This work presents the design, development and implementation of an architecture for the monitoring and identification of the sea turtle using sensor networks. This will allow to obtain information for the different investigations with a greater accuracy than the conventional techniques, through non-invasive means for the species and its habitat. The proposed architecture contemplates the use of new technology devices, selfconfigurable, with low energy consumption, interconnection with various communication protocols and sustainable energy supply (solar, wind, etc.).

  9. A laboratory evaluation of four quality control devices for radiographic processing.

    PubMed

    Rushton, V E; Horner, K

    1994-08-01

    Quality assurance programmes for radiographic processing traditionally employ expensive sensitometric and densitometric techniques. However cheap and simple devices for monitoring radiographic processing are available. The aim of this study was to make a comparison of four such devices in terms of their ability to detect variations in radiographic density of clinical significance. Three of the devices are commercially available while the fourth is easily manufactured from waste materials. Ideal bitewing exposure times were selected for four different kilovoltage/film speed combinations. Phantom bitewing radiographs, exposed using these exposure times, were processed using a variety of times and developer temperatures to simulate variations in radiographic quality due to inadequate processing conditions. Test films, produced using the four monitoring devices, were exposed and processed under identical conditions. The phantom bitewings were judged to have 'acceptable' quality when the optical density of that part of the film not showing calcified structures was within +/- 0.5 of that of the film processed under optimal conditions. The efficacy of the monitoring devices in indicating the adequacy of processing was assessed by a comparison of their readings with those made from the phantom bitewings. None of the monitoring devices was ideal for all the kilovoltage/film speed combinations tested, but the homemade device proved to be the most generally effective. We conclude that guidelines to dentists on radiographic quality assurance should include reference to and details of this simple device.

  10. An iterative ensemble quasi-linear data assimilation approach for integrated reservoir monitoring

    NASA Astrophysics Data System (ADS)

    Li, J. Y.; Kitanidis, P. K.

    2013-12-01

    Reservoir forecasting and management are increasingly relying on an integrated reservoir monitoring approach, which involves data assimilation to calibrate the complex process of multi-phase flow and transport in the porous medium. The numbers of unknowns and measurements arising in such joint inversion problems are usually very large. The ensemble Kalman filter and other ensemble-based techniques are popular because they circumvent the computational barriers of computing Jacobian matrices and covariance matrices explicitly and allow nonlinear error propagation. These algorithms are very useful but their performance is not well understood and it is not clear how many realizations are needed for satisfactory results. In this presentation we introduce an iterative ensemble quasi-linear data assimilation approach for integrated reservoir monitoring. It is intended for problems for which the posterior or conditional probability density function is not too different from a Gaussian, despite nonlinearity in the state transition and observation equations. The algorithm generates realizations that have the potential to adequately represent the conditional probability density function (pdf). Theoretical analysis sheds light on the conditions under which this algorithm should work well and explains why some applications require very few realizations while others require many. This algorithm is compared with the classical ensemble Kalman filter (Evensen, 2003) and with Gu and Oliver's (2007) iterative ensemble Kalman filter on a synthetic problem of monitoring a reservoir using wellbore pressure and flux data.

  11. Monitoring of trace elements in breast milk sampling and measurement procedures.

    PubMed

    Spĕvácková, V; Rychlík, S; Cejchanová, M; Spĕvácek, V

    2005-06-01

    The aims of this study were to test analytical procedures for the determination of Cd, Cu, Mn, Pb, Se and Zn in breast milk and to establish optimum sampling conditions for monitoring purposes. Two population groups were analysed: (1) Seven women from Prague whose breast milk was sampled on days 1,2, 3, 4, 10, 20 and 30 after delivery; (2) 200 women from four (two industrial and two rural) regions whose breast milk was sampled at defined intervals. All samples were mineralised in a microwave oven in the mixture of HNO3 + H2O2 and analysed by atomic absorption spectrometry. Conditions for the measurement of the elements under study (i.e. those for the electrothermal atomisation for Cd, Mn and Pb, flame technique for Cu and Zn, and hydride generation technique for Se) were optimized. Using optimized parameters the analysis was performed and the following conclusion has been made: the concentrations of zinc and manganese decreased very sharply over the first days, that of copper slightly increased within the first two days and then slightly decreased, that of selenium did not change significantly. Partial "stabilisation" was achieved after the second decade. No correlation among the elements was found. A significant difference between whole and skim milk was only found for selenium (26% rel. higher in whole milk). The majority concentrations of cadmium and lead were below the detection limit of the method (0.3 microg x l(-1) and 8.2 microg x l(-1), respectively, as calculated for the original sample). To provide biological monitoring, the maintenance of sampling conditions and especially the time of sampling is crucial.

  12. Development and field application of a nonlinear ultrasonic modulation technique for fatigue crack detection without reference data from an intact condition

    NASA Astrophysics Data System (ADS)

    Lim, Hyung Jin; Kim, Yongtak; Koo, Gunhee; Yang, Suyoung; Sohn, Hoon; Bae, In-hwan; Jang, Jeong-Hwan

    2016-09-01

    In this study, a fatigue crack detection technique, which detects a fatigue crack without relying on any reference data obtained from the intact condition of a target structure, is developed using nonlinear ultrasonic modulation and applied to a real bridge structure. Using two wafer-type lead zirconate titanate (PZT) transducers, ultrasonic excitations at two distinctive frequencies are applied to a target inspection spot and the corresponding ultrasonic response is measured by another PZT transducer. Then, the nonlinear modulation components produced by a breathing-crack are extracted from the measured ultrasonic response, and a statistical classifier, which can determine if the nonlinear modulation components are statistically significant in comparison with the background noise level, is proposed. The effectiveness of the proposed fatigue crack detection technique is experimentally validated using the data obtained from aluminum plates and aircraft fitting-lug specimens under varying temperature and loading conditions, and through a field testing of Yeongjong Grand Bridge in South Korea. The uniqueness of this study lies in that (1) detection of a micro fatigue crack with less than 1 μm width and fatigue cracks in the range of 10-20 μm in width using nonlinear ultrasonic modulation, (2) automated detection of fatigue crack formation without using reference data obtained from an intact condition, (3) reliable and robust diagnosis under varying temperature and loading conditions, (4) application of a local fatigue crack detection technique to online monitoring of a real bridge.

  13. Spectroscopic methods of process monitoring for safeguards of used nuclear fuel separations

    NASA Astrophysics Data System (ADS)

    Warburton, Jamie Lee

    To support the demonstration of a more proliferation-resistant nuclear fuel processing plant, techniques and instrumentation to allow the real-time, online determination of special nuclear material concentrations in-process must be developed. An ideal materials accountability technique for proliferation resistance should provide nondestructive, realtime, on-line information of metal and ligand concentrations in separations streams without perturbing the process. UV-Visible spectroscopy can be adapted for this precise purpose in solvent extraction-based separations. The primary goal of this project is to understand fundamental URanium EXtraction (UREX) and Plutonium-URanium EXtraction (PUREX) reprocessing chemistry and corresponding UV-Visible spectroscopy for application in process monitoring for safeguards. By evaluating the impact of process conditions, such as acid concentration, metal concentration and flow rate, on the sensitivity of the UV-Visible detection system, the process-monitoring concept is developed from an advanced application of fundamental spectroscopy. Systematic benchtop-scale studies investigated the system relevant to UREX or PUREX type reprocessing systems, encompassing 0.01-1.26 M U and 0.01-8 M HNO3. A laboratory-scale TRansUranic Extraction (TRUEX) demonstration was performed and used both to analyze for potential online monitoring opportunities in the TRUEX process, and to provide the foundation for building and demonstrating a laboratory-scale UREX demonstration. The secondary goal of the project is to simulate a diversion scenario in UREX and successfully detect changes in metal concentration and solution chemistry in a counter current contactor system with a UV-Visible spectroscopic process monitor. UREX uses the same basic solvent extraction flowsheet as PUREX, but has a lower acid concentration throughout and adds acetohydroxamic acid (AHA) as a complexant/reductant to the feed solution to prevent the extraction of Pu. By examining UV-Visible spectra gathered in real time, the objective is to detect the conversion from the UREX process, which does not separate Pu, to the PUREX process, which yields a purified Pu product. The change in process chemistry can be detected in the feed solution, aqueous product or in the raffinate stream by identifying the acid concentration, metal distribution and the presence or absence of AHA. A fiber optic dip probe for UV-Visible spectroscopy was integrated into a bank of three counter-current centrifugal contactors to demonstrate the online process monitoring concept. Nd, Fe and Zr were added to the uranyl nitrate system to explore spectroscopic interferences and identify additional species as candidates for online monitoring. This milestone is a demonstration of the potential of this technique, which lies in the ability to simultaneously and directly monitor the chemical process conditions in a reprocessing plant, providing inspectors with another tool to detect nuclear material diversion attempts. Lastly, dry processing of used nuclear fuel is often used as a head-end step before solvent extraction-based separations such as UREX or TRUEX. A non-aqueous process, used fuel treatment by dry processing generally includes chopping of used fuel rods followed by repeated oxidation-reduction cycles and physical separation of the used fuel from the cladding. Thus, dry processing techniques are investigated and opportunities for online monitoring are proposed for continuation of this work in future studies.

  14. Condition Monitoring Techniques for Electromechanical Equipment Used in Air Force Ground C3I (Command, Control, Communications and Intelligence) Systems.

    DTIC Science & Technology

    1983-08-01

    Proc. 2nd Congress National de flabilite, Perros -Guirec, Sept. 17-20, 1974, pp. 639-653. Published by CNET, Lannion (France). 53. Love, A. E. H., A...96. C. Rosiaux, Fiabilite des allumeurs determinee a partir des ventes-echanges, Proc. 2nd Congres National de fiabilite, Perros Guirec, Sept. 17-20

  15. Sensing underground coal gasification by ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Kotyrba, Andrzej; Stańczyk, Krzysztof

    2017-12-01

    The paper describes the results of research on the applicability of the ground penetrating radar (GPR) method for remote sensing and monitoring of the underground coal gasification (UCG) processes. The gasification of coal in a bed entails various technological problems and poses risks to the environment. Therefore, in parallel with research on coal gasification technologies, it is necessary to develop techniques for remote sensing of the process environment. One such technique may be the radar method, which allows imaging of regions of mass loss (voids, fissures) in coal during and after carrying out a gasification process in the bed. The paper describes two research experiments. The first one was carried out on a large-scale model constructed on the surface. It simulated a coal seam in natural geological conditions. A second experiment was performed in a shallow coal deposit maintained in a disused mine and kept accessible for research purposes. Tests performed in the laboratory and in situ conditions showed that the method provides valuable data for assessing and monitoring gasification surfaces in the UCG processes. The advantage of the GPR method is its high resolution and the possibility of determining the spatial shape of various zones and forms created in the coal by the gasification process.

  16. Vibration based condition monitoring of a multistage epicyclic gearbox in lifting cranes

    NASA Astrophysics Data System (ADS)

    Assaad, Bassel; Eltabach, Mario; Antoni, Jérôme

    2014-01-01

    This paper proposes a model-based technique for detecting wear in a multistage planetary gearbox used by lifting cranes. The proposed method establishes a vibration signal model which deals with cyclostationary and autoregressive models. First-order cyclostationarity is addressed by the analysis of the time synchronous average (TSA) of the angular resampled vibration signal. Then an autoregressive model (AR) is applied to the TSA part in order to extract a residual signal containing pertinent fault signatures. The paper also explores a number of methods commonly used in vibration monitoring of planetary gearboxes, in order to make comparisons. In the experimental part of this study, these techniques are applied to accelerated lifetime test bench data for the lifting winch. After processing raw signals recorded with an accelerometer mounted on the outside of the gearbox, a number of condition indicators (CIs) are derived from the TSA signal, the residual autoregressive signal and other signals derived using standard signal processing methods. The goal is to check the evolution of the CIs during the accelerated lifetime test (ALT). Clarity and fluctuation level of the historical trends are finally considered as a criteria for comparing between the extracted CIs.

  17. Damage assessment using advanced non-intrusive inspection methods: integration of space, UAV, GPR, and field spectroscopy

    NASA Astrophysics Data System (ADS)

    Themistocleous, Kyriacos; Neocleous, Kyriacos; Pilakoutas, Kypros; Hadjimitsis, Diofantos G.

    2014-08-01

    The predominant approach for conducting road condition surveys and analyses is still largely based on extensive field observations. However, visual assessment alone cannot identify the actual extent and severity of damage. New non-invasive and cost-effective non-destructive (NDT) remote sensing technologies can be used to monitor road pavements across their life cycle, including remotely sensed aerial and satellite visual and thermal image (AI) data, Unmanned Aerial Vehicles (UAVs), Spectroscopy and Ground Penetrating Radar (GRP). These non-contact techniques can be used to obtain surface and sub-surface information about damage in road pavements, including the crack depth, and in-depth structural failure. Thus, a smart and cost-effective methodology is required that integrates several of these non-destructive/ no-contact techniques for the damage assessment and monitoring at different levels. This paper presents an overview of how an integration of the above technologies can be used to conduct detailed road condition surveys. The proposed approach can also be used to predict the future needs for road maintenance; this information is proven to be valuable to a strategic decision making tools that optimizes maintenance based on resources and environmental issues.

  18. On estimating the accuracy of monitoring methods using Bayesian error propagation technique

    NASA Astrophysics Data System (ADS)

    Zonta, Daniele; Bruschetta, Federico; Cappello, Carlo; Zandonini, R.; Pozzi, Matteo; Wang, Ming; Glisic, B.; Inaudi, D.; Posenato, D.; Zhao, Y.

    2014-04-01

    This paper illustrates an application of Bayesian logic to monitoring data analysis and structural condition state inference. The case study is a 260 m long cable-stayed bridge spanning the Adige River 10 km north of the town of Trento, Italy. This is a statically indeterminate structure, having a composite steel-concrete deck, supported by 12 stay cables. Structural redundancy, possible relaxation losses and an as-built condition differing from design, suggest that long-term load redistribution between cables can be expected. To monitor load redistribution, the owner decided to install a monitoring system which combines built-on-site elasto-magnetic and fiber-optic sensors. In this note, we discuss a rational way to improve the accuracy of the load estimate from the EM sensors taking advantage of the FOS information. More specifically, we use a multi-sensor Bayesian data fusion approach which combines the information from the two sensing systems with the prior knowledge, including design information and the outcomes of laboratory calibration. Using the data acquired to date, we demonstrate that combining the two measurements allows a more accurate estimate of the cable load, to better than 50 kN.

  19. Utilising monitoring and modelling of estuarine environments to investigate catchment conditions responsible for stratification events in a typically well-mixed urbanised estuary

    NASA Astrophysics Data System (ADS)

    Lee, Serena B.; Birch, Gavin F.

    2012-10-01

    Estuarine health is affected by contamination from stormwater, particularly in highly-urbanised environments. For systems where catchment monitoring is insufficient, novel techniques must be employed to determine the impact of urban runoff on receiving water bodies. In the present work, estuarine monitoring and modelling were successfully employed to determine stormwater runoff volumes and establish an appropriate rainfall/runoff relationship capable of replicating fresh-water discharge due to the full range of precipitation conditions in the Sydney Estuary, Australia. Using estuary response to determine relationships between catchment rainfall and runoff is a widely applicable method and may be of assistance in the study of waterways where monitoring fluvial discharges is not practical or is beyond the capacity of management authorities. For the Sydney Estuary, the SCS-CN method replicated rainfall/runoff and was applied in numerical modelling experiments investigating the hydrodynamic characteristics affecting stratification and estuary recovery following high precipitation. Numerical modelling showed stratification in the Sydney Estuary was dominated by fresh-water discharge. Spring tides and up-estuary winds contributed to mixing and neap tides and down-estuary winds enhanced stratification.

  20. A Biomimetic Structural Health Monitoring Approach Using Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Yingtao; Rajadas, Abhishek; Chattopadhyay, Aditi

    2012-07-01

    A self-sensing nanocomposite material has been developed to track the presence of damage in complex composite structures. Multiwalled carbon nanotubes are integrated with polymer matrix to develop a novel bonding material with sensing capabilities. The changes of the piezoresistance in the presence of damage are used to monitor the condition of bonded joints, where the usual bonding material is replaced by the self-sensing nanocomposite. The feasibility of this concept is investigated through experiments conducted on single-lap joints subject to monotonic tensile loading conditions. The results show that the self-sensing nanocomposite is sensitive to crack propagation within the matrix material. An acoustic emission-based sensing technique has been used to validate these results and shows good correlation with damage growth. A digital image correlation system is used to measure the shear strain field in the joint area.

  1. Plant Condition Remote Monitoring Technique

    NASA Technical Reports Server (NTRS)

    Fotedar, L. K.; Krishen, K.

    1996-01-01

    This paper summarizes the results of a radiation transfer study conducted on houseplants using controlled environmental conditions. These conditions included: (1) air and soil temperature; (2) incident and reflected radiation; and (3) soil moisture. The reflectance, transmittance, and emittance measurements were conducted in six spectral bands: microwave, red, yellow, green, violet and infrared, over a period of three years. Measurements were taken on both healthy and diseased plants. The data was collected on plants under various conditions which included: variation in plant bio-mass, diurnal variation, changes in plant pathological conditions (including changes in water content), different plant types, various disease types, and incident light wavelength or color. Analysis of this data was performed to yield an algorithm for plant disease from the remotely sensed data.

  2. ITER-relevant calibration technique for soft x-ray spectrometer.

    PubMed

    Rzadkiewicz, J; Książek, I; Zastrow, K-D; Coffey, I H; Jakubowska, K; Lawson, K D

    2010-10-01

    The ITER-oriented JET research program brings new requirements for the low-Z impurity monitoring, in particular for the Be—the future main wall component of JET and ITER. Monitoring based on Bragg spectroscopy requires an absolute sensitivity calibration, which is challenging for large tokamaks. This paper describes both “component-by-component” and “continua” calibration methods used for the Be IV channel (75.9 Å) of the Bragg rotor spectrometer deployed on JET. The calibration techniques presented here rely on multiorder reflectivity calculations and measurements of continuum radiation emitted from helium plasmas. These offer excellent conditions for the absolute photon flux calibration due to their low level of impurities. It was found that the component-by-component method gives results that are four times higher than those obtained by means of the continua method. A better understanding of this discrepancy requires further investigations.

  3. Direct technique for monitoring lipid oxidation in water-in-oil emulsions based on micro-calorimetry.

    PubMed

    Dridi, Wafa; Toutain, Jean; Sommier, Alain; Essafi, Wafa; Leal-Calderon, Fernando; Cansell, Maud

    2017-09-01

    An experimental device based on the measurement of the heat flux dissipated during chemical reactions, previously validated for monitoring lipid oxidation in plant oils, was extended to follow lipid oxidation in water-in-oil emulsions. Firstly, validation of the approach was performed by correlating conjugated diene concentrations measured by spectrophotometry and the heat flux dissipated by oxidation reactions and measured directly in water-in-oil emulsions, in isothermal conditions at 60°C. Secondly, several emulsions based on plant oils differing in their n-3 fatty acid content were compared. The oxidability parameter derived from the enthalpy curves reflected the α-linolenic acid proportion in the oils. On the whole, the micro-calorimetry technique provides a sensitive method to assess lipid oxidation in water-in-oil emulsions without requiring any phase extraction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Cavity-Enhanced Absorption Spectroscopy and Photoacoustic Spectroscopy for Human Breath Analysis

    NASA Astrophysics Data System (ADS)

    Wojtas, J.; Tittel, F. K.; Stacewicz, T.; Bielecki, Z.; Lewicki, R.; Mikolajczyk, J.; Nowakowski, M.; Szabra, D.; Stefanski, P.; Tarka, J.

    2014-12-01

    This paper describes two different optoelectronic detection techniques: cavity-enhanced absorption spectroscopy and photoacoustic spectroscopy. These techniques are designed to perform a sensitive analysis of trace gas species in exhaled human breath for medical applications. With such systems, the detection of pathogenic changes at the molecular level can be achieved. The presence of certain gases (biomarkers), at increased concentration levels, indicates numerous human diseases. Diagnosis of a disease in its early stage would significantly increase chances for effective therapy. Non-invasive, real-time measurements, and high sensitivity and selectivity, capable of minimum discomfort for patients, are the main advantages of human breath analysis. At present, monitoring of volatile biomarkers in breath is commonly useful for diagnostic screening, treatment for specific conditions, therapy monitoring, control of exogenous gases (such as bacterial and poisonous emissions), as well as for analysis of metabolic gases.

  5. Development and Advanced Analysis of Dynamic and Static Casing Strain Monitoring to Characterize the Orientation and Dimensions of Hydraulic Fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruno, Michael; Ramos, Juan; Lao, Kang

    Horizontal wells combined with multi-stage hydraulic fracturing have been applied to significantly increase production from low permeability formations, contributing to expanded total US production of oil and gas. Not all applications are successful, however. Field observations indicate that poorly designed or placed fracture stages in horizontal wells can result in significant well casing deformation and damage. In some instances, early fracture stages have deformed the casing enough so that it is not possible to drill out plugs in order to complete subsequent fracture stages. Improved fracture characterization techniques are required to identify potential problems early in the development of themore » field. Over the past decade, several new technologies have been presented as alternatives to characterize the fracture geometry for unconventional reservoirs. Monitoring dynamic casing strain and deformation during hydraulic fracturing represents one of these new techniques. The objective of this research is to evaluate dynamic and static strains imposed on a well casing by single and multiple stage fractures, and to use that information in combination with numerical inversion techniques to estimate fracture characteristics such as length, orientation and post treatment opening. GeoMechanics Technologies, working in cooperation with the Department of Energy, Small Business Innovation Research through DOE SBIR Grant No: DE-SC-0017746, is conducting a research project to complete an advanced analysis of dynamic and static casing strain monitoring to characterize the orientation and dimensions of hydraulic fractures. This report describes our literature review and technical approach. The following conclusions summarize our review and simulation results to date: A literature review was performed related to the fundamental theoretical and analytical developments of stress and strain imposed by hydraulic fracturing along casing completions and deformation monitoring techniques. Analytical solutions have been developed to understand the mechanisms responsible for casing deformation induced by hydraulic fracturing operations. After reviewing a range of casing deformation techniques, including fiber optic sensors, borehole ultrasonic tools and electromagnetic tools, we can state that challenges in deployment, data acquisition and interpretation must still be overcome to ensure successful application of strain measurement and inversion techniques to characterize hydraulic fractures in the field. Numerical models were developed to analyze induced strain along casing, cement and formation interfaces. The location of the monitoring sensor around the completion, mechanical properties of the cement and its condition in the annular space can impact the strain measurement. Field data from fiber optic sensors were evaluated to compare against numerical models. A reasonable match for the fracture height characterization was obtained. Discrepancies in the strain magnitude between the field data and the numerical model was observed and can be caused by temperature effects, the cement condition in the well and the perturbation at the surface during injection. To avoid damage in the fiber optic cable during the perforation (e.g. when setting up multi stage HF scenarios), oriented perforation technologies are suggested. This issue was evidenced in the analyzed field data, where it was not possible to obtain strain measurement below the top of the perforation. This presented a limitation to characterize the entire fracture geometry. The comparison results from numerical modeling and field data for fracture characterization shows that the proposed methodology should be validated with alternative field demonstration techniques using measurements in an offset observation well to monitor and measure the induced strain. We propose to expand on this research in Phase II with a further study of multi-fracture characterization and field demonstration for horizontal wells.« less

  6. Spatial and Temporal Monitoring Resolutions for CO2 Leakage Detection at Carbon Storage Sites

    NASA Astrophysics Data System (ADS)

    Yang, Y. M.; Dilmore, R. M.; Daley, T. M.; Carroll, S.; Mansoor, K.; Gasperikova, E.; Harbert, W.; Wang, Z.; Bromhal, G. S.; Small, M.

    2016-12-01

    Different leakage monitoring techniques offer different strengths in detection sensitivity, coverage, feedback time, cost, and technology availability, such that they may complement each other when applied together. This research focuses on quantifying the spatial coverage and temporal resolution of detection response for several geophysical remote monitoring and direct groundwater monitoring techniques for an optimal monitoring plan for CO2 leakage detection. Various monitoring techniques with different monitoring depths are selected: 3D time-lapse seismic survey, wellbore pressure, groundwater chemistry and soil gas. The spatial resolution in terms of leakage detectability is quantified through the effective detection distance between two adjacent monitors, given the magnitude of leakage and specified detection probability. The effective detection distances are obtained either from leakage simulations with various monitoring densities or from information garnered from field test data. These spatial leakage detection resolutions are affected by physically feasible monitoring design and detection limits. Similarly, the temporal resolution, in terms of leakage detectability, is quantified through the effective time to positive detection of a given size of leak and a specified detection probability, again obtained either from representative leakage simulations with various monitoring densities or from field test data. The effective time to positive detection is also affected by operational feedback time (associated with sampling, sample analysis and data interpretation), with values obtained mainly through expert interviews and literature review. In additional to the spatial and temporal resolutions of these monitoring techniques, the impact of CO2 plume migration speed and leakage detection sensitivity of each monitoring technique are also discussed with consideration of how much monitoring is necessary for effective leakage detection and how these monitoring techniques can be better combined in a time-space framework. The results of the spatial and temporal leakage detection resolutions for several geophysical monitoring techniques and groundwater monitoring are summarized to inform future monitoring designs at carbon storage sites.

  7. Glucose concentration measured by the hybrid coherent anti-Stokes Raman-scattering technique

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Zhang, Aihua; Zhi, Miaochan; Sokolov, Alexei V.; Welch, George R.

    2010-01-01

    We investigate the possibility of using a hybrid coherent anti-Stokes Raman scattering technique for noninvasive monitoring of blood glucose levels. Our technique combines instantaneous coherent excitation of several characteristic molecular vibrations with subsequent probing of these vibrations by an optimally shaped, time-delayed, narrowband laser pulse. This pulse configuration mitigates the nonresonant four-wave mixing background while maximizing the Raman-resonant signal and allows rapid and highly specific detection even in the presence of multiple scattering. Under certain conditions we find that the measured signal is linearly proportional to the glucose concentration due to optical interference with the residual background light, which allows reliable detection of spectral signatures down to medically relevant glucose levels.

  8. Geophysical monitoring technology for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Ma, Jin-Feng; Li, Lin; Wang, Hao-Fan; Tan, Ming-You; Cui, Shi-Ling; Zhang, Yun-Yin; Qu, Zhi-Peng; Jia, Ling-Yun; Zhang, Shu-Hai

    2016-06-01

    Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniques for CO2 sequestration have grown out of conventional oil and gas geophysical exploration techniques, it takes a long time to conduct geophysical monitoring, and there are many barriers and challenges. In this paper, with the initial objective of performing CO2 sequestration, we studied the geophysical tasks associated with evaluating geological storage sites and monitoring CO2 sequestration. Based on our review of the scope of geophysical monitoring techniques and our experience in domestic and international carbon capture and sequestration projects, we analyzed the inherent difficulties and our experiences in geophysical monitoring techniques, especially, with respect to 4D seismic acquisition, processing, and interpretation.

  9. Monitoring asthma in childhood: management-related issues.

    PubMed

    Rottier, Bart L; Eber, Ernst; Hedlin, Gunilla; Turner, Steve; Wooler, Edwina; Mantzourani, Eva; Kulkarni, Neeta

    2015-06-01

    Management-related issues are an important aspect of monitoring asthma in children in clinical practice. This review summarises the literature on practical aspects of monitoring including adherence to treatment, inhalation technique, ongoing exposure to allergens and irritants, comorbid conditions and side-effects of treatment, as agreed by the European Respiratory Society Task Force on Monitoring Asthma in Childhood. The evidence indicates that it is important to discuss adherence to treatment in a non-confrontational way at every clinic visit, and take into account a patient's illness and medication beliefs. All task force members teach inhalation techniques at least twice when introducing a new inhalation device and then at least annually. Exposure to second-hand tobacco smoke, combustion-derived air pollutants, house dust mites, fungal spores, pollens and pet dander deserve regular attention during follow-up according to most task force members. In addition, allergic rhinitis should be considered as a cause for poor asthma control. Task force members do not screen for gastro-oesophageal reflux and food allergy. Height and weight are generally measured at least annually to identify individuals who are susceptible to adrenal suppression and to calculate body mass index, even though causality between obesity and asthma has not been established. In cases of poor asthma control, before stepping up treatment the above aspects of monitoring deserve closer attention. Copyright ©ERS 2015.

  10. Development and Sensing Properties Study of Underwater Assembled Water Depth-Inclination Sensors for a Multi-Component Mooring System, Using a Self-Contained Technique

    PubMed Central

    Wu, Wenhua; Feng, Jiaguo; Xie, Bin; Tang, Da; Yue, Qianjin; Xie, Ribin

    2016-01-01

    Prototype monitoring techniques play an important role in the safety guarantee of mooring systems in marine engineering. In general, the complexities of harsh ocean environmental conditions bring difficulties to the traditional monitoring methods of application, implementation and maintenance. Large amounts of existing mooring systems still lack valid monitoring strategies. In this paper, an underwater monitoring method which may be used to achieve the mechanical responses of a multi-point catenary mooring system, is present. A novel self-contained assembled water depth-inclination (D-I) sensor is designed and manufactured. Several advanced technologies, such as standalone, low power consumption and synchronism, are considered to satisfy the long-term implementation requirements with low cost during the design process. The design scheme of the water resistance barrel and installation clamp, which satisfies the diver installation, are also provided in the paper. An on-site test has previously been carried out on a production semisubmersible platform in the South China Sea. The prototype data analyses, including the D-I value in the time domain (including the data recorded during the mooring retraction and release process) and spectral characteristics, are presented to reveal the accuracy, feasibility and stability of the sensor in terms of fitting for the prototype monitoring of catenary mooring systems, especially for in-service aging platforms. PMID:27854357

  11. [Retrospective study of the implementation of the qualitative PCR technique in biological samples for monitoring toxoplasmosis in pediatric patients receiving hematopoietic stem cell transplantation].

    PubMed

    Nigro, Mónica G; Figueroa, Carlos; Ledesma, Bibiana A

    2014-01-01

    Toxoplasmosis is an opportunistic infection caused by the parasite Toxoplasma gondii. The infection is severe and difficult to diagnose in patients receiving allogeneic hematopoietic stem cell transplantation (HSCT). Twelve patients receiving HSCT were monitored post-transplant, by qualitative PCR at the Children's Hospital S.A.M.I.C. "Prof. Dr. Juan P. Garrahan". The monitoring of these patients was defined by a history of positive serology for toxoplasmosis in the donor or recipient and because their hematologic condition did not allow the use of trimethoprim-sulfamethoxazole for prophylaxis. During the patients' monitoring, two of them with positive PCR results showed signs of illness by T. gondii and were treated with pyrimethamine-clindamycin. In two other patients, toxoplasmosis was the cause of death and an autopsy finding, showing negative PCR results. Four patients without clinical manifestations received treatment for toxoplasmosis because of positive PCR detection. In four patients there were no signs of toxoplasmosis disease and negative PCR results during follow-up. The qualitative PCR technique proved useful for the detection of toxoplasmosis reactivation in HSCT recipients, but has limitations in monitoring and making clinical decisions due to the persistence of positive PCR over time and manifestations of toxicity caused by the treatment. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España. All rights reserved.

  12. Simultaneous acoustic and dielectric real time curing monitoring of epoxy systems

    NASA Astrophysics Data System (ADS)

    Gkikas, G.; Saganas, Ch.; Grammatikos, S. A.; Aggelis, D. G.; Paipetis, A. S.

    2012-04-01

    The attainment of structural integrity of the reinforcing matrix in composite materials is of primary importance for the final properties of the composite structure. The detailed monitoring of the curing process on the other hand is paramount (i) in defining the optimal conditions for the impregnation of the reinforcement by the matrix (ii) in limiting the effects of the exotherm produced by the polymerization reaction which create unwanted thermal stresses and (iii) in securing optimal behavior in matrix controlled properties, such as off axis or shear properties and in general the durability of the composite. Dielectric curing monitoring is a well known technique for distinguishing between the different stages of the polymerization of a typical epoxy system. The technique successfully predicts the gelation and the vitrification of the epoxy and has been extended for the monitoring of prepregs. Recent work has shown that distinct changes in the properties of the propagated sound in the epoxy which undergoes polymerization is as well directly related to the gelation and vitrification of the resin, as well as to the attainment of the final properties of the resin system. In this work, a typical epoxy is simultaneously monitored using acoustic and dielectric methods. The system is isothermally cured in an oven to avoid effects from the polymerization exotherm. Typical broadband sensors are employed for the acoustic monitoring, while flat interdigital sensors are employed for the dielectric scans. All stages of the polymerization process were successfully monitored and the validity of both methods was cross checked and verified.

  13. Time-lapse 3-D seismic imaging of shallow subsurface contaminant flow.

    PubMed

    McKenna, J; Sherlock, D; Evans, B

    2001-12-01

    This paper presents a physical modelling study outlining a technique whereby buoyant contaminant flow within water-saturated unconsolidated sand was remotely monitored utilizing the time-lapse 3-D (TL3-D) seismic response. The controlled temperature and pressure conditions, along with the high level of acquisition repeatability attainable using sandbox physical models, allow the TL3-D seismic response to pore fluid movement to be distinguished from all other effects. TL3-D seismic techniques are currently being developed to monitor hydrocarbon reserves within producing reservoirs in an endeavour to improve overall recovery. However, in many ways, sandbox models under atmospheric conditions more accurately simulate the shallow subsurface than petroleum reservoirs. For this reason, perhaps the greatest application for analogue sandbox modelling is to improve our understanding of shallow groundwater and environmental flow mechanisms. Two fluid flow simulations were conducted whereby air and kerosene were injected into separate water-saturated unconsolidated sand models. In both experiments, a base 3-D seismic volume was recorded and compared with six later monitor surveys recorded while the injection program was conducted. Normal incidence amplitude and P-wave velocity information were extracted from the TL3-D seismic data to provide visualization of contaminant migration. Reflection amplitudes displayed qualitative areal distribution of fluids when a suitable impedance contrast existed between pore fluids. TL3-D seismic reflection tomography can potentially monitor the change in areal distribution of fluid contaminants over time, indicating flow patterns. However, other research and this current work have not established a quantifiable relationship between either normal reflection amplitudes and attenuation and fluid saturation. Generally, different pore fluids will have unique seismic velocities due to differences in compressibility and density. The predictable relationships that exist between P-wave velocity and fluid saturation can allow a quantitative assessment of contaminant migration.

  14. Comparison of spectroscopy technologies for improved monitoring of cell culture processes in miniature bioreactors

    PubMed Central

    van den Berg, Frans; Racher, Andrew J.; Martin, Elaine B.; Jaques, Colin

    2017-01-01

    Cell culture process development requires the screening of large numbers of cell lines and process conditions. The development of miniature bioreactor systems has increased the throughput of such studies; however, there are limitations with their use. One important constraint is the limited number of offline samples that can be taken compared to those taken for monitoring cultures in large‐scale bioreactors. The small volume of miniature bioreactor cultures (15 mL) is incompatible with the large sample volume (600 µL) required for bioanalysers routinely used. Spectroscopy technologies may be used to resolve this limitation. The purpose of this study was to compare the use of NIR, Raman, and 2D‐fluorescence to measure multiple analytes simultaneously in volumes suitable for daily monitoring of a miniature bioreactor system. A novel design‐of‐experiment approach is described that utilizes previously analyzed cell culture supernatant to assess metabolite concentrations under various conditions while providing optimal coverage of the desired design space. Multivariate data analysis techniques were used to develop predictive models. Model performance was compared to determine which technology is more suitable for this application. 2D‐fluorescence could more accurately measure ammonium concentration (RMSECV 0.031 g L−1) than Raman and NIR. Raman spectroscopy, however, was more robust at measuring lactate and glucose concentrations (RMSECV 1.11 and 0.92 g L−1, respectively) than the other two techniques. The findings suggest that Raman spectroscopy is more suited for this application than NIR and 2D‐fluorescence. The implementation of Raman spectroscopy increases at‐line measuring capabilities, enabling daily monitoring of key cell culture components within miniature bioreactor cultures. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:337–346, 2017 PMID:28271638

  15. Fiber-optic security monitoring sensor

    NASA Astrophysics Data System (ADS)

    Englund, Marja; Ipatti, Ari; Karioja, Pentti

    1997-09-01

    In security monitoring, fiber-optic sensors are advantageous because strong and rugged optical fibers are thin, light, flexible and immune to electromagnetic interference. Optical fibers packaged into cables, such as, building and underground cables, can be used to detect even slightest disturbances, movements, vibrations, pressure changes and impacts along their entire length. When running an optical cable around a structure, and when using speckle pattern recognition technique for alarm monitoring, the distributed monitoring of the structure is possible. The sensing cable can be strung along fences, buried underground, embedded into concrete, mounted on walls, floors and ceilings, or wrapped around the specific components. In this paper, a fiber-optic security monitoring sensor based on speckle pattern monitoring is described. The description of the measuring method and the results of the experimental fiber installations are given. The applicability of embedded and surface mounted fibers to monitor the pressure and impact induced vibrations of fences and concrete structures as well as the loosening of critical parts in a power plant machinery were demonstrated in field and laboratory conditions. The experiences related to the applications and optical cable types are also discussed.

  16. Fiber optic security monitoring sensor

    NASA Astrophysics Data System (ADS)

    Englund, Marja; Ipatti, Ari; Karioja, Pentti

    1997-09-01

    In security monitoring, fiber-optic sensors are advantageous because strong and rugged optical fibers are thin, light, flexible and immune to electromagnetic interference. Optical fibers packaged into cables, such as, building and underground cables, can be used to detect even slightest disturbances, movements, vibrations, pressure changes and impacts along their entire length. When running an optical cable around a structure, and when using speckle pattern recognition technique for alarm monitoring, the distributed monitoring of the structure is possible. The sensing cable can be strung along fences, buried underground, embedded into concrete, mounted on walls, floors and ceilings, or wrapped around the specific components. In this paper, a fiber-optic security monitoring sensor based on speckle pattern monitoring is described. The description of the measuring method and the results of the experimental fiber installations are given. The applicability of embedded and surface mounted fibers to monitor the pressure and impact induced vibrations of fences and concrete structures as well as the loosening of critical parts in a power plant machinery were demonstrated in field and laboratory conditions. The experiences related to the applications and optical cable types are also discussed.

  17. Guidelines for collecting and maintaining archives for genetic monitoring

    USGS Publications Warehouse

    Jackson, Jennifer A.; Laikre, Linda; Baker, C. Scott; Kendall, Katherine C.; ,

    2012-01-01

    Rapid advances in molecular genetic techniques and the statistical analysis of genetic data have revolutionized the way that populations of animals, plants and microorganisms can be monitored. Genetic monitoring is the practice of using molecular genetic markers to track changes in the abundance, diversity or distribution of populations, species or ecosystems over time, and to follow adaptive and non-adaptive genetic responses to changing external conditions. In recent years, genetic monitoring has become a valuable tool in conservation management of biological diversity and ecological analysis, helping to illuminate and define cryptic and poorly understood species and populations. Many of the detected biodiversity declines, changes in distribution and hybridization events have helped to drive changes in policy and management. Because a time series of samples is necessary to detect trends of change in genetic diversity and species composition, archiving is a critical component of genetic monitoring. Here we discuss the collection, development, maintenance, and use of archives for genetic monitoring. This includes an overview of the genetic markers that facilitate effective monitoring, describes how tissue and DNA can be stored, and provides guidelines for proper practice.

  18. Developing NDE Techniques for Large Cryogenic Tanks - Year 2 Report

    NASA Technical Reports Server (NTRS)

    Arens, Ellen; youngquist, Robert; McFall, Judith; Simmons, Stephen

    2010-01-01

    The Shuttle Program requires very large cryogenic ground storage tanks in which to store liquid oxygen and hydrogen. The existing Launch Complex-39 Pad tanks, which will be passed onto future launch programs, are over 40 years old and have received minimal refurbishment and only external inspections over the years. The majority of the structure is inaccessible without a full system drain of cryogenic liquid and insulation in the annular region. It was previously thought that there was a limit to the number of temperature cycles that the tanks could handle due to possible insulation compaction before undergoing a costly and time consuming complete overhaul; therefore the tanks were not drained and performance issues with these tanks, specifically the Pad B LH2 tank, were accepted. There is a need and an opportunity, as the Shuttle program ends and work to upgrade the launch pad progresses, to develop innovative non-destructive evaluation (NDE) techniques to analyze the current tanks. Techniques are desired that can aid in determining the extent of refurbishment required to keep the tanks in service for another 20+ years. A non-destructive technique would also be a significant aid in acceptance testing of new and refurbished tanks, saving significant time and money, if corrective actions can be taken before cryogen is introduced to the systems. Year one of this project concentrated on analysis of the current tanks located at LC-39 while cryogen was present. Year two of this project concentrated on analysis of detectable thermal variations on the outer surface of the tanks as the cryogen was drained and the inner vessel warmed to ambient conditions. Two techniques have been deployed in the field to monitor the tank. The first consisted of a displacement sensor to monitor for any expansions at the base of the tank during warm-up that could indicate a compaction issue with the insulation. The second technique was continued thermal monitoring of the tank through and after warm up. The indications noted in the thermal images were compared to bore-scope images of the annular region taken once the tank was inert and warmed to ambient conditions. Similar thermal imaging was performed on a smaller tank where an insulation void was induced to compare the effectiveness of thermal imagining on a different tank geometry.

  19. Employing lighting techniques during on-orbit operations

    NASA Technical Reports Server (NTRS)

    Wheelwright, Charles D.; Toole, Jennifer R.

    1991-01-01

    As a result of past space missions and evaluations, many procedures have been established and shown to be prudent applications for use in present and future space environment scenarios. However, recent procedures to employ the use of robotics to assist crewmembers in performing tasks which require viewing remote and obstructed locations have led to a need to pursue alternative methods to assist in these operations. One of those techniques which is under development entails incorporating the use of suitable lighting aids/techniques with a closed circuit television (CCTV) camera/monitor system to supervise the robotics operations. The capability to provide adequate lighting during grappling, deploying, docking and berthing operations under all on-orbit illumination conditions is essential to a successful mission. Using automated devices such as the Remote Manipulator System (RMS) to dock and berth a vehicle during payload retrieval, under nighttime, earthshine, solar, or artificial illumination conditions can become a cumbersome task without first incorporating lighting techniques that provide the proper target illumination, orientation, and alignment cues. Studies indicate that the use of visual aids such as the CCTV with a pretested and properly oriented lighting system can decrease the time necessary to accomplish grappling tasks. Evaluations have been and continue to be performed to assess the various on-orbit conditions in order to predict and determine the appropriate lighting techniques and viewing angles necessary to assist crewmembers in payload operations.

  20. Employing lighting techniques during on-orbit operations

    NASA Astrophysics Data System (ADS)

    Wheelwright, Charles D.; Toole, Jennifer R.

    As a result of past space missions and evaluations, many procedures have been established and shown to be prudent applications for use in present and future space environment scenarios. However, recent procedures to employ the use of robotics to assist crewmembers in performing tasks which require viewing remote and obstructed locations have led to a need to pursue alternative methods to assist in these operations. One of those techniques which is under development entails incorporating the use of suitable lighting aids/techniques with a closed circuit television (CCTV) camera/monitor system to supervise the robotics operations. The capability to provide adequate lighting during grappling, deploying, docking and berthing operations under all on-orbit illumination conditions is essential to a successful mission. Using automated devices such as the Remote Manipulator System (RMS) to dock and berth a vehicle during payload retrieval, under nighttime, earthshine, solar, or artificial illumination conditions can become a cumbersome task without first incorporating lighting techniques that provide the proper target illumination, orientation, and alignment cues. Studies indicate that the use of visual aids such as the CCTV with a pretested and properly oriented lighting system can decrease the time necessary to accomplish grappling tasks. Evaluations have been and continue to be performed to assess the various on-orbit conditions in order to predict and determine the appropriate lighting techniques and viewing angles necessary to assist crewmembers in payload operations.

  1. Composite use of numerical groundwater flow modeling and geoinformatics techniques for monitoring Indus Basin aquifer, Pakistan.

    PubMed

    Ahmad, Zulfiqar; Ashraf, Arshad; Fryar, Alan; Akhter, Gulraiz

    2011-02-01

    The integration of the Geographic Information System (GIS) with groundwater modeling and satellite remote sensing capabilities has provided an efficient way of analyzing and monitoring groundwater behavior and its associated land conditions. A 3-dimensional finite element model (Feflow) has been used for regional groundwater flow modeling of Upper Chaj Doab in Indus Basin, Pakistan. The approach of using GIS techniques that partially fulfill the data requirements and define the parameters of existing hydrologic models was adopted. The numerical groundwater flow model is developed to configure the groundwater equipotential surface, hydraulic head gradient, and estimation of the groundwater budget of the aquifer. GIS is used for spatial database development, integration with a remote sensing, and numerical groundwater flow modeling capabilities. The thematic layers of soils, land use, hydrology, infrastructure, and climate were developed using GIS. The Arcview GIS software is used as additive tool to develop supportive data for numerical groundwater flow modeling and integration and presentation of image processing and modeling results. The groundwater flow model was calibrated to simulate future changes in piezometric heads from the period 2006 to 2020. Different scenarios were developed to study the impact of extreme climatic conditions (drought/flood) and variable groundwater abstraction on the regional groundwater system. The model results indicated a significant response in watertable due to external influential factors. The developed model provides an effective tool for evaluating better management options for monitoring future groundwater development in the study area.

  2. Monitoring in traumatic brain injury.

    PubMed

    Matz, P G; Pitts, L

    1997-01-01

    In the past several years, improvements in technology have advanced the monitoring capabilities for patients with TBI. The primary goal of monitoring the patient with TBI is to prevent secondary insults to the brain, primarily cerebral ischemia. Cerebral ischemia may occur early and without clinical correlation and portends a poor outcome. Measurement of ICP is the cornerstone of monitoring in the patient with TBI. Monitoring of ICP provides a measurement of CPP and a rough estimation of CBF. However, with alterations in pressure autoregulation, measurement of CPP does not always allow for determination of CBF. To circumvent this problem, direct measurements of CBF can be performed using clearance techniques (133Xe, N2O, Xe-CT) or invasive monitoring techniques (LDF, TDF, NIRS). Although direct and quantitative, clearance techniques do not allow for continuous monitoring. Invasive CBF monitoring techniques are new, and artifactual results can be problematic. The techniques of jugular venous saturation monitoring and TCD are well established and are powerful adjuncts to ICP monitoring. They allow the clinician to monitor cerebral oxygen extraction and blood flow velocity, respectively, for any given CPP. Use of TCD may predict posttraumatic vasospasm before clinical sequelae. Jugular venous saturation monitoring may detect clinically occult episodes of cerebral ischemia and increased oxygen extraction. Jugular venous saturation monitoring optimizes the use of hyperventilation in the treatment of intracranial hypertension. Although PET and SPECT scanning allow direct measurement of CMRO2, these techniques have limited application currently. Similarly, microdialysis is in its infancy but has demonstrated great promise for metabolic monitoring. EEG and SEP are excellent adjuncts to the monitoring arsenal and provide immediate information on current brain function. With improvements in electronic telemetry, functional monitoring by EEG or SEP may become an important part of routine monitoring in TBI.

  3. Evaluation of a hygiene monitor for detection of contamination in dental surgeries.

    PubMed

    Douglas, C W; Rothwell, P S

    1991-05-11

    Routines for disinfecting working surfaces in dental surgeries are difficult to monitor without time-consuming and labour-intensive microbiological techniques, yet effective monitoring is a vital part of cross-infection control. Easy to use, on-site methods would be valuable in this context. This study evaluates a portable monitor, the Biotrace Hygiene Monitor, which uses bioluminescence to measure adenosine triphosphate (ATP) on surfaces. Under laboratory conditions, the ability of the monitor to detect whole saliva and Streptococcus sanguis was determined and, in the general practice environment, the level of ATP on surfaces in five dental surgeries was assessed. The minimum amount of saliva detectable was 0.5 microliters and in surgeries, the monitor readily identified numerous surfaces with fairly high levels of ATP. Routine cleaning methods sometimes left ATP on surfaces at levels which represented a cross-infection risk, if it is assumed that the ATP derived from patients' saliva. Modification of cleaning methods resulted in a reduction of ATP levels to within that which could be considered reasonably practicably safe. It is concluded that the Biotrace Hygiene Monitor offers a simple and valuable means of monitoring dental practice cleaning routines.

  4. The capacity of radar, crowdsourced personal weather stations and commercial microwave links to monitor small scale urban rainfall

    NASA Astrophysics Data System (ADS)

    Uijlenhoet, R.; de Vos, L. W.; Leijnse, H.; Overeem, A.; Raupach, T. H.; Berne, A.

    2017-12-01

    For the purpose of urban rainfall monitoring high resolution rainfall measurements are desirable. Typically C-band radar can provide rainfall intensities at km grid cells every 5 minutes. Opportunistic sensing with commercial microwave links yields rainfall intensities over link paths within cities. Additionally, recent developments have made it possible to obtain large amounts of urban in situ measurements from weather amateurs in near real-time. With a known high resolution simulated rainfall event the accuracy of these three techniques is evaluated, taking into account their respective existing layouts and sampling methods. Under ideal measurement conditions, the weather station networks proves to be most promising. For accurate estimation with radar, an appropriate choice for Z-R relationship is vital. Though both the microwave links and the weather station networks are quite dense, both techniques will underestimate rainfall if not at least one link path / station captures the high intensity rainfall peak. The accuracy of each technique improves when considering rainfall at larger scales, especially by increasing time intervals, with the steepest improvements found in microwave links.

  5. Model-based cell number quantification using online single-oxygen sensor data for tissue engineering perfusion bioreactors.

    PubMed

    Lambrechts, T; Papantoniou, I; Sonnaert, M; Schrooten, J; Aerts, J-M

    2014-10-01

    Online and non-invasive quantification of critical tissue engineering (TE) construct quality attributes in TE bioreactors is indispensable for the cost-effective up-scaling and automation of cellular construct manufacturing. However, appropriate monitoring techniques for cellular constructs in bioreactors are still lacking. This study presents a generic and robust approach to determine cell number and metabolic activity of cell-based TE constructs in perfusion bioreactors based on single oxygen sensor data in dynamic perfusion conditions. A data-based mechanistic modeling technique was used that is able to correlate the number of cells within the scaffold (R(2)  = 0.80) and the metabolic activity of the cells (R(2)  = 0.82) to the dynamics of the oxygen response to step changes in the perfusion rate. This generic non-destructive measurement technique is effective for a large range of cells, from as low as 1.0 × 10(5) cells to potentially multiple millions of cells, and can open-up new possibilities for effective bioprocess monitoring. © 2014 Wiley Periodicals, Inc.

  6. Fiber-Optic Surface Temperature Sensor Based on Modal Interference.

    PubMed

    Musin, Frédéric; Mégret, Patrice; Wuilpart, Marc

    2016-07-28

    Spatially-integrated surface temperature sensing is highly useful when it comes to controlling processes, detecting hazardous conditions or monitoring the health and safety of equipment and people. Fiber-optic sensing based on modal interference has shown great sensitivity to temperature variation, by means of cost-effective image-processing of few-mode interference patterns. New developments in the field of sensor configuration, as described in this paper, include an innovative cooling and heating phase discrimination functionality and more precise measurements, based entirely on the image processing of interference patterns. The proposed technique was applied to the measurement of the integrated surface temperature of a hollow cylinder and compared with a conventional measurement system, consisting of an infrared camera and precision temperature probe. As a result, the optical technique is in line with the reference system. Compared with conventional surface temperature probes, the optical technique has the following advantages: low heat capacity temperature measurement errors, easier spatial deployment, and replacement of multiple angle infrared camera shooting and the continuous monitoring of surfaces that are not visually accessible.

  7. Applications of Advanced Nondestructive Measurement Techniques to Address Safety of Flight Issues on NASA Spacecraft

    NASA Technical Reports Server (NTRS)

    Prosser, Bill

    2016-01-01

    Advanced nondestructive measurement techniques are critical for ensuring the reliability and safety of NASA spacecraft. Techniques such as infrared thermography, THz imaging, X-ray computed tomography and backscatter X-ray are used to detect indications of damage in spacecraft components and structures. Additionally, sensor and measurement systems are integrated into spacecraft to provide structural health monitoring to detect damaging events that occur during flight such as debris impacts during launch and assent or from micrometeoroid and orbital debris, or excessive loading due to anomalous flight conditions. A number of examples will be provided of how these nondestructive measurement techniques have been applied to resolve safety critical inspection concerns for the Space Shuttle, International Space Station (ISS), and a variety of launch vehicles and unmanned spacecraft.

  8. Structural Monitoring and Field Test for Kao Ping Hsi Cable-Stayed Bridge in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Chern-Hwa

    2010-05-01

    This work applies system identification techniques to analyze the measured data from structural monitoring system and field test for Kao Ping Hsi cable-stayed bridge in Taiwan. The continuous wavelet transform algorithm can be used to identify the dynamic characteristics of the cable-stayed bridge under environmental vibration. The identified results with traffic flow were compared with those obtained from ambient vibration test. The excellent agreement both the identified results from different traffic conditions indicates that the traffic flow would not significantly change the natural frequencies of the cable-stayed bridge. The modal parameters identified from the field vibration test will be compared with those used in the finite element analysis. The results obtained herein will be used as the damage detection for monitoring the long-term safety of the Kao Ping Hsi cable-stayed bridge by using structural monitoring system.

  9. Development of an integrated sensor module for a non-invasive respiratory monitoring system

    NASA Astrophysics Data System (ADS)

    Kang, Seok-Won; Chang, Keun-Shik

    2013-09-01

    A respiratory monitoring system has been developed for analyzing the carbon dioxide (CO2) and oxygen (O2) concentrations in the expired air using gas sensors. The data can be used to estimate some medical conditions, including diffusion capability of the lung membrane, oxygen uptake, and carbon dioxide output. For this purpose, a 3-way valve derived from a servomotor was developed, which operates synchronously with human respiratory signals. In particular, the breath analysis system includes an integrated sensor module for valve control, data acquisition through the O2 and CO2 sensors, and respiratory rate monitoring, as well as software dedicated to analysis of respiratory gasses. In addition, an approximation technique for experimental data based on Haar-wavelet-based decomposition is explored to remove noise as well as to reduce the file size of data for long-term monitoring.

  10. Flood Detection/Monitoring Using Adjustable Histogram Equalization Technique

    PubMed Central

    Riaz, Muhammad Mohsin; Ghafoor, Abdul

    2014-01-01

    Flood monitoring technique using adjustable histogram equalization is proposed. The technique overcomes the limitations (overenhancement, artifacts, and unnatural look) of existing technique by adjusting the contrast of images. The proposed technique takes pre- and postimages and applies different processing steps for generating flood map without user interaction. The resultant flood maps can be used for flood monitoring and detection. Simulation results show that the proposed technique provides better output quality compared to the state of the art existing technique. PMID:24558332

  11. Real-time Monitoring Of Damage Evolution In Aerospace Materials Using Nonlinear Acoustics

    NASA Astrophysics Data System (ADS)

    Matikas, T. E.; Paipetis, A.; Kostopoulos, V.

    2008-06-01

    This work deals with the development of a novel non-destructive technique based on nonlinear acoustics, enabling real-time monitoring of material degradation in aerospace structures. When a sinusoidal ultrasonic wave of a given frequency and of sufficient amplitude is introduced into a nonlinear or an-harmonic solid, the fundamental wave distorts as it propagates, so that the second and higher harmonics of the fundamental frequency are generated. The measurement of the amplitude of these harmonics provides information on the coefficient of the second and higher order terms of the stress-strain relation for a nonlinear solid. It is demonstrated here that the material bulk nonlinear parameter for titanium alloy samples at different fatigue levels exhibits large changes compared to linear ultrasonic parameters such as velocity and attenuation. However, the use of bulk ultrasonic waves has serious disadvantages for the health monitoring of aerospace structures since it requires the placement of ultrasonic transducers on two, perfectly parallel, opposite sides of the samples. Such a setup is hardly feasible in real field conditions. For this reason, surface acoustic waves (SAW) were used in this study enabling the in-situ characterization of fatigue damage. The experimental setup for measuring the material nonlinear parameter using SAW was realised and the feasibility of the technique for health monitoring of aerospace structures was evaluated.

  12. [The quantitative testing of V617F mutation in gen JAK2 using pyrosequencing technique].

    PubMed

    Dunaeva, E A; Mironov, K O; Dribnokhodova, T E; Subbotina, E E; Bashmakova; Ol'hovskiĭ, I A; Shipulin, G A

    2014-11-01

    The somatic mutation V617F in gen JAK2 is a frequent cause of chronic myeloprolific diseases not conditioned by BCR/ABL mutation. The quantitative testing of relative percentage of mutant allele can be used in establishing severity of disease and its prognosis and in prescription of remedy inhibiting activity of JAK2. To quantitatively test mutation the pyrosequencing technique was applied. The developed technique permits detecting and quantitatively, testing percentage of mutation fraction since 7%. The "gray zone" is presented by samples with percentage of mutant allele from 4% to 7%. The dependence of expected percentage of mutant fraction in analyzed sample from observed value of signal is described by equation of line with regression coefficients y = - 0.97, x = -1.32 and at that measurement uncertainty consists ± 0.7. The developed technique is approved officially on clinical material from 192 patients with main forms of myeloprolific diseases not conditioned by BCR/ABL mutation. It was detected 64 samples with mautant fraction percentage from 13% to 91%. The developed technique permits implementing monitoring of therapy of myeloprolific diseases and facilitates to optimize tactics of treatment.

  13. Innovative monitoring campaign of the environmental conditions of the Stibbert museum in Florence

    NASA Astrophysics Data System (ADS)

    Angelini, E.; Civita, F.; Corbellini, S.; Fulginiti, D.; Giovagnoli, A.; Grassini, S.; Parvis, M.

    2016-02-01

    Conservation of ancient metallic artefact displayed inside museums is a complex problem due to the large number of constraints mainly related to the artefacts fruition by people. The development of a simple procedure for monitoring the artefact conservation state promptly highlighting risky conditions without impacting on the normal museum operations could be of interest in the cultural heritage world. This paper describes the interesting results obtained by using a highly sensitive and innovative methodology for evaluating the safety level of the museum indoor areas, and more specifically of the interior of the showcases, with respect to the metallic artefacts. The methodology is based on the use of an innovative smart sensors network and of copper reference samples. The smart sensors network was employed for the continuous monitoring of temperature and relative humidity close to the artefacts, i.e. inside the display showcases. The reference specimens were Cu coated with a 100 nm Cu nanostructured layer put for 1 year in the exhibition rooms inside and outside the showcases and characterised by means of normal imaging, colorimetric and FESEM techniques at regular intervals. The results of the monitoring activity evidenced the higher reactivity to the environmental aggressivity of the nanocoated copper specimen with respect to bulk artefacts and therefore the possibility to use them as alerts to possible corrosion phenomena that may occur to the real artefacts. A proper temperature and relative humidity monitoring inside the showcases and close to each group of artefacts is a powerful though economic and non-invasive way to highlight most of the possible critical display conditions.

  14. The reflection of evolving bearing faults in the stator current's extended park vector approach for induction machines

    NASA Astrophysics Data System (ADS)

    Corne, Bram; Vervisch, Bram; Derammelaere, Stijn; Knockaert, Jos; Desmet, Jan

    2018-07-01

    Stator current analysis has the potential of becoming the most cost-effective condition monitoring technology regarding electric rotating machinery. Since both electrical and mechanical faults are detected by inexpensive and robust current-sensors, measuring current is advantageous on other techniques such as vibration, acoustic or temperature analysis. However, this technology is struggling to breach into the market of condition monitoring as the electrical interpretation of mechanical machine-problems is highly complicated. Recently, the authors built a test-rig which facilitates the emulation of several representative mechanical faults on an 11 kW induction machine with high accuracy and reproducibility. Operating this test-rig, the stator current of the induction machine under test can be analyzed while mechanical faults are emulated. Furthermore, while emulating, the fault-severity can be manipulated adaptively under controllable environmental conditions. This creates the opportunity of examining the relation between the magnitude of the well-known current fault components and the corresponding fault-severity. This paper presents the emulation of evolving bearing faults and their reflection in the Extended Park Vector Approach for the 11 kW induction machine under test. The results confirm the strong relation between the bearing faults and the stator current fault components in both identification and fault-severity. Conclusively, stator current analysis increases reliability in the application as a complete, robust, on-line condition monitoring technology.

  15. Changes in the isotopic and chemical composition of ground water resulting from a recharge pulse from a sinking stream

    USGS Publications Warehouse

    Katz, B.G.; Catches, J.S.; Bullen, T.D.; Michel, R.L.

    1998-01-01

    The Little River, an ephemeral stream that drains a watershed of approximately 88 km2 in northern Florida, disappears into a series of sinkholes along the Cody Scarp and flows directly into the carbonate Upper Floridan aquifer, the source of water supply in northern Florida. The changes in the geochemistry of ground water caused by a major recharge pulse from the sinking stream were investigated using chemical and isotopic tracers and mass-balance modeling techniques. Nine monitoring wells were installed open to the uppermost part of the aquifer in areas near the sinks where numerous subterranean karst solution features were identified using ground penetrating radar. During high-flow conditions in the Little River, the chemistry of water in some of the monitoring wells changed, reflecting the mixing of river water with ground water. Rapid recharge of river water into some parts of the aquifer during high-flow conditions was indicated by enriched values of delta 18O and delta deuterium (-1.67 to -3.17 per mil and -9.2 to -15.6 per mil, respectively), elevated concentrations of tannic acid, higher (more radiogenic) 87Sr/86Sr ratios, and lower concentrations of 222Rn, silica, and alkalinity compared to low-flow conditions. The proportion of river water that mixed with ground water ranged from 0.10 to 0.67 based on binary mixing models using the tracers 18O, deuterium, tannic acid, silica, 222Rn, and 87Sr/86Sr. On the basis of mass-balance modeling during steady-state flow conditions, the dominant processes controlling carbon cycling in ground water are the dissolution of calcite and dolomite in aquifer material, and aerobic degradation of organic matter.The Little River of northern Florida disappears into a series of sinkholes along the Cody Scarp and flows directly into the carbonate Upper Floridan aquifer. The changes in the geochemistry of ground water caused by a major recharge pulse from the sinking stream were investigated using chemical and isotopic tracers and mass-balance modeling techniques. Nine monitoring wells were installed open to the uppermost part of the aquifer. During high-flow conditions in the Little River, the chemistry of water in some of the monitoring wells changed, reflecting the mixing of river water with ground water. Based on mass-balance modeling during steady-state flow conditions, it was found that the dominant processes controlling carbon cycling in ground water are the dissolution of calcite and dolomite in aquifer material, and aerobic degradation of organic matter.

  16. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Brebrick, R. F.; Burger, A.; Dudley, M.; Ramachandran, N.

    2003-01-01

    The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyance-driven convection and growth interface fluctuations caused by irregular fluid-flows. ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, were grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals were characterized extensively to correlate the grown crystal properties with the growth conditions.

  17. Study to design and develop remote manipulator system

    NASA Technical Reports Server (NTRS)

    Hill, J. W.; Sword, A. J.

    1973-01-01

    Human performance measurement techniques for remote manipulation tasks and remote sensing techniques for manipulators are described for common manipulation tasks, performance is monitored by means of an on-line computer capable of measuring the joint angles of both master and slave arms as a function of time. The computer programs allow measurements of the operator's strategy and physical quantities such as task time and power consumed. The results are printed out after a test run to compare different experimental conditions. For tracking tasks, we describe a method of displaying errors in three dimensions and measuring the end-effector position in three dimensions.

  18. Raman Spectroscopy of Microbial Pigments

    PubMed Central

    Edwards, Howell G. M.; Oren, Aharon

    2014-01-01

    Raman spectroscopy is a rapid nondestructive technique providing spectroscopic and structural information on both organic and inorganic molecular compounds. Extensive applications for the method in the characterization of pigments have been found. Due to the high sensitivity of Raman spectroscopy for the detection of chlorophylls, carotenoids, scytonemin, and a range of other pigments found in the microbial world, it is an excellent technique to monitor the presence of such pigments, both in pure cultures and in environmental samples. Miniaturized portable handheld instruments are available; these instruments can be used to detect pigments in microbiological samples of different types and origins under field conditions. PMID:24682303

  19. The role of magnetic resonance imaging techniques in evaluation and management of the idiopathic inflammatory myopathies.

    PubMed

    Day, Jessica; Patel, Sandy; Limaye, Vidya

    2017-04-01

    Magnetic resonance imaging (MRI) is an important tool in the evaluation of neuromuscular disorders. MRI accurately demonstrates muscle oedema, atrophy, subcutaneous pathology and fatty infiltration and also highlights the distribution of muscle involvement. This review examines the role of MRI in evaluation of the idiopathic inflammatory myopathies (IIMs), a heterogeneous group of autoimmune conditions characterised by muscle inflammation and a variety of extra-muscular manifestations. MRI has a clear role in aiding diagnosis of these conditions, guiding muscle biopsy, differentiating subtypes of IIM using a pattern-based approach, and monitoring disease activity in a longitudinal fashion. Whole body MRI is an emerging technique that offers several advantages over regional MRI, but is not currently widely available. We will also consider newer MRI techniques which provide detailed information regarding the metabolism, function and structure of muscle, although their use is restricted to research purposes at present. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Systems identification and application systems development for monitoring the physiological and health status of crewmen in space

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.; Furukawa, S.; Vannordstrand, P. C.

    1975-01-01

    The use of automated, analytical techniques to aid medical support teams is suggested. Recommendations are presented for characterizing crew health in terms of: (1) wholebody function including physiological, psychological and performance factors; (2) a combination of critical performance indexes which consist of multiple factors of measurable parameters; (3) specific responses to low noise level stress tests; and (4) probabilities of future performance based on present and periodic examination of past performance. A concept is proposed for a computerized real time biomedical monitoring and health care system that would have the capability to integrate monitored data, detect off-nominal conditions based on current knowledge of spaceflight responses, predict future health status, and assist in diagnosis and alternative therapies. Mathematical models could play an important role in this approach, especially when operating in a real time mode. Recommendations are presented to update the present health monitoring systems in terms of recent advances in computer technology and biomedical monitoring systems.

  1. Passive in-home health and wellness monitoring: overview, value and examples.

    PubMed

    Alwan, Majd

    2009-01-01

    Modern sensor and communication technology, coupled with advances in data analysis and artificial intelligence techniques, is causing a paradigm shift in remote management and monitoring of chronic disease. In-home monitoring technology brings the added benefit of measuring individualized health status and reporting it to the care provider and caregivers alike, allowing timely and targeted preventive interventions, even in home and community based settings. This paper presents a paradigm for geriatric care based on monitoring older adults passively in their own living settings through placing sensors in their living environments or the objects they use. Activity and physiological data can be analyzed, archived and mined to detect indicators of early disease onset or changes in health conditions at various levels. Examples of monitoring systems are discussed and results from field evaluation pilot studies are summarized. The approach has shown great promise for a significant value proposition to all the stakeholders involved in caring for older adults. The paradigm would allow care providers to extend their services into the communities they serve.

  2. Heart Rate and Electrocardiography Monitoring in Mice

    PubMed Central

    Ho, David; Zhao, Xin; Gao, Shumin; Hong, Chull; Vatner, Dorothy E.; Vatner, Stephen F.

    2011-01-01

    The majority of current cardiovascular research involves studies in genetically engineered mouse models. The measurement of heart rate is central to understanding cardiovascular control under normal conditions, with altered autonomic tone, superimposed stress or disease states, both in wild type mice as well as those with altered genes. Electrocardiography (ECG) is the “gold standard” using either hard wire or telemetry transmission. In addition, heart rate is measured or monitored from the frequency of the arterial pressure pulse or cardiac contraction, or by pulse oximetry. For each of these techniques, discussions of materials and methods, as well as advantages and limitations are covered. However, only the direct ECG monitoring will determine not only the precise heart rates but also whether the cardiac rhythm is normal or not. PMID:21743842

  3. Method and apparatus for real time weld monitoring

    DOEpatents

    Leong, Keng H.; Hunter, Boyd V.

    1997-01-01

    An improved method and apparatus are provided for real time weld monitoring. An infrared signature emitted by a hot weld surface during welding is detected and this signature is compared with an infrared signature emitted by the weld surface during steady state conditions. The result is correlated with weld penetration. The signal processing is simpler than for either UV or acoustic techniques. Changes in the weld process, such as changes in the transmitted laser beam power, quality or positioning of the laser beam, change the resulting weld surface features and temperature of the weld surface, thereby resulting in a change in the direction and amount of infrared emissions. This change in emissions is monitored by an IR sensitive detecting apparatus that is sensitive to the appropriate wavelength region for the hot weld surface.

  4. A multi-modal approach for activity classification and fall detection

    NASA Astrophysics Data System (ADS)

    Castillo, José Carlos; Carneiro, Davide; Serrano-Cuerda, Juan; Novais, Paulo; Fernández-Caballero, Antonio; Neves, José

    2014-04-01

    The society is changing towards a new paradigm in which an increasing number of old adults live alone. In parallel, the incidence of conditions that affect mobility and independence is also rising as a consequence of a longer life expectancy. In this paper, the specific problem of falls of old adults is addressed by devising a technological solution for monitoring these users. Video cameras, accelerometers and GPS sensors are combined in a multi-modal approach to monitor humans inside and outside the domestic environment. Machine learning techniques are used to detect falls and classify activities from accelerometer data. Video feeds and GPS are used to provide location inside and outside the domestic environment. It results in a monitoring solution that does not imply the confinement of the users to a closed environment.

  5. Human Factors Engineering #3 Crewstation Assessment for the OH-58F Helicopter

    DTIC Science & Technology

    2014-03-01

    Additionally, workload was assessed for level of interoperability 2 (LOI 2) tasks that the aircrew performed with an unmanned aircraft system (UAS...TTP tactics, techniques, and procedures UAS unmanned aircraft system 47 VFR visual flight rules VMC visual meteorological conditions VTR...For example, pilots often perform navigation tasks, communicate via multiple radios, monitor aircraft systems , and assist the pilot on the controls

  6. Monitoring of growth and physiological activities of biofilm during succession on polystyrene from activated sludge under aerobic and anaerobic conditions.

    PubMed

    Naz, Iffat; Batool, Syeda Ain-ul; Ali, Naeem; Khatoon, Nazia; Atiq, Niama; Hameed, Abdul; Ahmed, Safia

    2013-08-01

    The present research work monitored the successive biofilm development and its catabolic role in the degradation of polystyrene (PS). PS material was artificially colonized with biofilm by incubating it with activated sludge under aerobic and anaerobic conditions. Biofilm formation was monitored by gravimetric weight analysis, spectrophotometric absorbance technique, heterotrophic plate count, and scanning electron microscopy under aerobic and anaerobic conditions. The wet weight (1.59 and 1.17 g) and dry weight (0.41 and 0.08 g) of a biofilm showed a significant constant increase under aerobic and anaerobic conditions, respectively, from first till 9 weeks of incubation. Plate count of the selected bacteria (Escherichia coli, Salmonella typhimurium, Shigella dysenteriae, Pseudomonas aeruginosa) considerably declined (90-99 %) in the biofilm after seventh and fifth weeks of incubation under aerobic and anaerobic conditions, respectively, indicating a positive shift from pathogenic to beneficial microbial community. While most probable number index of fecal coliforms and E. coli in the sludge showed more reduction (98 and 99 %) under aerobic as compare to anaerobic conditions (86 and 91 %) after 9 weeks of biofilm formation on PS cubes. Correspondingly, the decreasing levels of chemical oxygen demand and biochemical oxygen demand (up to 73 %) showed signs of sludge digestion. Scanning electron microscope coupled with energy dispersive X-ray spectroscope revealed nature of PS media containing high carbon content. However, biofilm development proved to be involved in the biochemical transformation of the PS medium as indicated by Fourier transform infrared spectroscopy.

  7. Behavior Change Techniques Implemented in Electronic Lifestyle Activity Monitors: A Systematic Content Analysis

    PubMed Central

    Lewis, Zakkoyya H; Mayrsohn, Brian G; Rowland, Jennifer L

    2014-01-01

    Background Electronic activity monitors (such as those manufactured by Fitbit, Jawbone, and Nike) improve on standard pedometers by providing automated feedback and interactive behavior change tools via mobile device or personal computer. These monitors are commercially popular and show promise for use in public health interventions. However, little is known about the content of their feedback applications and how individual monitors may differ from one another. Objective The purpose of this study was to describe the behavior change techniques implemented in commercially available electronic activity monitors. Methods Electronic activity monitors (N=13) were systematically identified and tested by 3 trained coders for at least 1 week each. All monitors measured lifestyle physical activity and provided feedback via an app (computer or mobile). Coding was based on a hierarchical list of 93 behavior change techniques. Further coding of potentially effective techniques and adherence to theory-based recommendations were based on findings from meta-analyses and meta-regressions in the research literature. Results All monitors provided tools for self-monitoring, feedback, and environmental change by definition. The next most prevalent techniques (13 out of 13 monitors) were goal-setting and emphasizing discrepancy between current and goal behavior. Review of behavioral goals, social support, social comparison, prompts/cues, rewards, and a focus on past success were found in more than half of the systems. The monitors included a range of 5-10 of 14 total techniques identified from the research literature as potentially effective. Most of the monitors included goal-setting, self-monitoring, and feedback content that closely matched recommendations from social cognitive theory. Conclusions Electronic activity monitors contain a wide range of behavior change techniques typically used in clinical behavioral interventions. Thus, the monitors may represent a medium by which these interventions could be translated for widespread use. This technology has broad applications for use in clinical, public health, and rehabilitation settings. PMID:25131661

  8. Behavior change techniques implemented in electronic lifestyle activity monitors: a systematic content analysis.

    PubMed

    Lyons, Elizabeth J; Lewis, Zakkoyya H; Mayrsohn, Brian G; Rowland, Jennifer L

    2014-08-15

    Electronic activity monitors (such as those manufactured by Fitbit, Jawbone, and Nike) improve on standard pedometers by providing automated feedback and interactive behavior change tools via mobile device or personal computer. These monitors are commercially popular and show promise for use in public health interventions. However, little is known about the content of their feedback applications and how individual monitors may differ from one another. The purpose of this study was to describe the behavior change techniques implemented in commercially available electronic activity monitors. Electronic activity monitors (N=13) were systematically identified and tested by 3 trained coders for at least 1 week each. All monitors measured lifestyle physical activity and provided feedback via an app (computer or mobile). Coding was based on a hierarchical list of 93 behavior change techniques. Further coding of potentially effective techniques and adherence to theory-based recommendations were based on findings from meta-analyses and meta-regressions in the research literature. All monitors provided tools for self-monitoring, feedback, and environmental change by definition. The next most prevalent techniques (13 out of 13 monitors) were goal-setting and emphasizing discrepancy between current and goal behavior. Review of behavioral goals, social support, social comparison, prompts/cues, rewards, and a focus on past success were found in more than half of the systems. The monitors included a range of 5-10 of 14 total techniques identified from the research literature as potentially effective. Most of the monitors included goal-setting, self-monitoring, and feedback content that closely matched recommendations from social cognitive theory. Electronic activity monitors contain a wide range of behavior change techniques typically used in clinical behavioral interventions. Thus, the monitors may represent a medium by which these interventions could be translated for widespread use. This technology has broad applications for use in clinical, public health, and rehabilitation settings.

  9. Fault detection and diagnosis for gas turbines based on a kernelized information entropy model.

    PubMed

    Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei

    2014-01-01

    Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms.

  10. Correlation of Electrical Resistance to CMC Stress-Strain and Fracture Behavior Under High Heat-Flux Thermal and Stress Gradients

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Morscher, Gregory; Zhu, Dongming

    2015-01-01

    Because SiCSiC ceramic matrix composites (CMCs) are under consideration for use as turbine engine hot-section components in extreme environments, it becomes necessary to investigate their performance and damage morphologies under complex loading and environmental conditions. Monitoring of electrical resistance (ER) has been shown as an effective tool for detecting damage accumulation of woven melt-infiltrated SiCSiC CMCs. However, ER change under complicated thermo-mechanical loading is not well understood. In this study a systematic approach is taken to determine the capabilities of ER as a relevant non-destructive evaluation technique for high heat-flux testing, including thermal gradients and localized stress concentrations. Room temperature and high temperature, laser-based tensile tests were conducted in which stress-dependent damage locations were determined using modal acoustic emission (AE) monitoring and compared to full-field strain mapping using digital image correlation (DIC). This information is then compared with the results of in-situ ER monitoring, post-test ER inspection and fractography in order to correlate ER response to convoluted loading conditions and damage evolution.

  11. Development of a Fault Monitoring Technique for Wind Turbines Using a Hidden Markov Model.

    PubMed

    Shin, Sung-Hwan; Kim, SangRyul; Seo, Yun-Ho

    2018-06-02

    Regular inspection for the maintenance of the wind turbines is difficult because of their remote locations. For this reason, condition monitoring systems (CMSs) are typically installed to monitor their health condition. The purpose of this study is to propose a fault detection algorithm for the mechanical parts of the wind turbine. To this end, long-term vibration data were collected over two years by a CMS installed on a 3 MW wind turbine. The vibration distribution at a specific rotating speed of main shaft is approximated by the Weibull distribution and its cumulative distribution function is utilized for determining the threshold levels that indicate impending failure of mechanical parts. A Hidden Markov model (HMM) is employed to propose the statistical fault detection algorithm in the time domain and the method whereby the input sequence for HMM is extracted is also introduced by considering the threshold levels and the correlation between the signals. Finally, it was demonstrated that the proposed HMM algorithm achieved a greater than 95% detection success rate by using the long-term signals.

  12. Fault Detection and Diagnosis for Gas Turbines Based on a Kernelized Information Entropy Model

    PubMed Central

    Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei

    2014-01-01

    Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms. PMID:25258726

  13. Fractional exhaled nitric oxide-measuring devices: technology update

    PubMed Central

    Maniscalco, Mauro; Vitale, Carolina; Vatrella, Alessandro; Molino, Antonio; Bianco, Andrea; Mazzarella, Gennaro

    2016-01-01

    The measurement of exhaled nitric oxide (NO) has been employed in the diagnosis of specific types of airway inflammation, guiding treatment monitoring by predicting and assessing response to anti-inflammatory therapy and monitoring for compliance and detecting relapse. Various techniques are currently used to analyze exhaled NO concentrations under a range of conditions for both health and disease. These include chemiluminescence and electrochemical sensor devices. The cost effectiveness and ability to achieve adequate flexibility in sensitivity and selectivity of NO measurement for these methods are evaluated alongside the potential for use of laser-based technology. This review explores the technologies involved in the measurement of exhaled NO. PMID:27382340

  14. Investigation of the fluidity of biological fluids with a PDDTBN spin probe

    NASA Astrophysics Data System (ADS)

    Severcan, Feride; Acar, Berrin; Gökalp, Saadet

    1997-06-01

    The aim of this study is to ascertain whether the electron spin resonance technique using perdeutero-di- t-butyl nitroxide (PDDTBN) as a spin probe is able to monitor relative fluidity changes occurring in body fluids, such as blood and parotid saliva, according to different physiological conditions. The present study reveals that the spin probe PDDTBN is able to monitor the fluidity changes in parotid saliva related to habitual smoking, and in whole blood related to the estradiol level. The rotational correlation time of the spin probe and the local viscosity values of the parotid saliva and blood have been reported.

  15. Real-time diagnostics for a reusable rocket engine

    NASA Technical Reports Server (NTRS)

    Guo, T. H.; Merrill, W.; Duyar, A.

    1992-01-01

    A hierarchical, decentralized diagnostic system is proposed for the Real-Time Diagnostic System component of the Intelligent Control System (ICS) for reusable rocket engines. The proposed diagnostic system has three layers of information processing: condition monitoring, fault mode detection, and expert system diagnostics. The condition monitoring layer is the first level of signal processing. Here, important features of the sensor data are extracted. These processed data are then used by the higher level fault mode detection layer to do preliminary diagnosis on potential faults at the component level. Because of the closely coupled nature of the rocket engine propulsion system components, it is expected that a given engine condition may trigger more than one fault mode detector. Expert knowledge is needed to resolve the conflicting reports from the various failure mode detectors. This is the function of the diagnostic expert layer. Here, the heuristic nature of this decision process makes it desirable to use an expert system approach. Implementation of the real-time diagnostic system described above requires a wide spectrum of information processing capability. Generally, in the condition monitoring layer, fast data processing is often needed for feature extraction and signal conditioning. This is usually followed by some detection logic to determine the selected faults on the component level. Three different techniques are used to attack different fault detection problems in the NASA LeRC ICS testbed simulation. The first technique employed is the neural network application for real-time sensor validation which includes failure detection, isolation, and accommodation. The second approach demonstrated is the model-based fault diagnosis system using on-line parameter identification. Besides these model based diagnostic schemes, there are still many failure modes which need to be diagnosed by the heuristic expert knowledge. The heuristic expert knowledge is implemented using a real-time expert system tool called G2 by Gensym Corp. Finally, the distributed diagnostic system requires another level of intelligence to oversee the fault mode reports generated by component fault detectors. The decision making at this level can best be done using a rule-based expert system. This level of expert knowledge is also implemented using G2.

  16. A novel camera localization system for extending three-dimensional digital image correlation

    NASA Astrophysics Data System (ADS)

    Sabato, Alessandro; Reddy, Narasimha; Khan, Sameer; Niezrecki, Christopher

    2018-03-01

    The monitoring of civil, mechanical, and aerospace structures is important especially as these systems approach or surpass their design life. Often, Structural Health Monitoring (SHM) relies on sensing techniques for condition assessment. Advancements achieved in camera technology and optical sensors have made three-dimensional (3D) Digital Image Correlation (DIC) a valid technique for extracting structural deformations and geometry profiles. Prior to making stereophotogrammetry measurements, a calibration has to be performed to obtain the vision systems' extrinsic and intrinsic parameters. It means that the position of the cameras relative to each other (i.e. separation distance, cameras angle, etc.) must be determined. Typically, cameras are placed on a rigid bar to prevent any relative motion between the cameras. This constraint limits the utility of the 3D-DIC technique, especially as it is applied to monitor large-sized structures and from various fields of view. In this preliminary study, the design of a multi-sensor system is proposed to extend 3D-DIC's capability and allow for easier calibration and measurement. The suggested system relies on a MEMS-based Inertial Measurement Unit (IMU) and a 77 GHz radar sensor for measuring the orientation and relative distance of the stereo cameras. The feasibility of the proposed combined IMU-radar system is evaluated through laboratory tests, demonstrating its ability in determining the cameras position in space for performing accurate 3D-DIC calibration and measurements.

  17. Use of PCR-DGGE Based Molecular Methods to Analyse Microbial Community Diversity and Stability during the Thermophilic Stages of an ATAD Wastewater Sludge Treatment Process as an Aid to Performance Monitoring

    PubMed Central

    Piterina, Anna V.; Pembroke, J. Tony

    2013-01-01

    PCR and PCR-DGGE techniques have been evaluated to monitor biodiversity indexes within an ATAD (autothermal thermophilic aerobic digestion) system treating domestic sludge for land spread, by examining microbial dynamics in response to elevated temperatures during treatment. The ATAD process utilises a thermophilic population to generate heat and operates at elevated pH due to degradation of sludge solids, thus allowing pasteurisation and stabilisation of the sludge. Genera-specific PCR revealed that Archaea, Eukarya and Fungi decline when the temperature reaches 59°C, while the bacterial lineage constitutes the dominant group at this stage. The bacterial community at the thermophilic stage, its similarity index to the feed material, and the species richness present were evaluated by PCR-DGGE. Parameters such as choice of molecular target (16S rDNA or rpoB genes), and electrophoresis condition, were optimised to maximise the resolution of the method for ATAD. Dynamic analysis of microbial communities was best observed utilising PCR-DGGE analysis of the V6-V8 region of 16S rDNA, while rpoB gene profiles were less informative. Unique thermophilic communities were shown to quickly adapt to process changes, and shown to be quite stable during the process. Such techniques may be used as a monitoring technique for process health and efficiency. PMID:25937969

  18. Project MEDSAT

    NASA Technical Reports Server (NTRS)

    1991-01-01

    During the winter term of 1991, two design courses at the University of Michigan worked on a joint project, MEDSAT. The two design teams consisted of the Atmospheric, Oceanic, and Spacite System Design and Aerospace Engineering 483 (Aero 483) Aerospace System Design. In collaboration, they worked to produce MEDSAT, a satellite and scientific payload whose purpose was to monitor environmental conditions over Chiapas, Mexico. Information gained from the sensing, combined with regional data, would be used to determine the potential for malaria occurrence in that area. The responsibilities of AOSS 605 consisted of determining the remote sensing techniques, the data processing, and the method to translate the information into a usable output. Aero 483 developed the satellite configuration and the subsystems required for the satellite to accomplish its task. The MEDSAT project is an outgrowth of work already being accomplished by NASA's Biospheric and Disease Monitoring Program and Ames Research Center. NASA's work has been to develop remote sensing techniques to determine the abundance of disease carriers and now this project will place the techniques aboard a satellite. MEDSAT will be unique in its use of both a Synthetic Aperture Radar and visual/IR sensor to obtain comprehensive monitoring of the site. In order to create a highly feasible system, low cost was a high priority. To obtain this goal, a light satellite configuration launched by the Pegasus launch vehicle was used.

  19. Structure evolution of self-catalyzed grown Au, Ag and their alloy nanostructure

    NASA Astrophysics Data System (ADS)

    Zhu, Zhu; Chen, Feng; Xu, Chunxiang; Yang, Guangcan; Zhu, Ye; Luo, Zhaoxu

    2017-12-01

    Monitoring the nucleation and growth of nanomaterials is a key technique for material synthesis design and control. An efficient fabrication method can be realized deeply understanding the growth mechanisms. Here, noble metal nanostructures, gold (Au) nanoparticles, silver nanostructures (Ag nanoparticles/Ag nanowires) and gold-silver alloy nanoparticles were prepared in a facile method at room temperature. The growth processes of the Au nanoparticles, Ag nanowires and Au-Ag alloy nanoparticles can be monitored real-timely through the ultraviolet visible absorption (UV-vis), dynamic light scattering (DLS) and transmission electron microscopy (TEM). It is found that the whole formation involved Digestive ripening and Ostwald ripening cooperative mechanism. Furthermore, the self-assembly growth is noticed in the oriented attachment of precursor Ag monomers into nanowires under the same synthetic conditions without external templates or rigorous conditions. This result can provide a platform to discover the underlying growth mechanism of wet-chemistry methods for metal nanostructure fabrication.

  20. Application of anti-listerial bacteriocins: monitoring enterocin expression by multiplex relative reverse transcription-PCR.

    PubMed

    Williams, D Ross; Chanos, Panagiotis

    2012-12-01

    Listeriosis is a deadly food-borne disease, and its incidence may be limited through the biotechnological exploitation of a number of anti-listerial biocontrol agents. The most widely used of these agents are bacteriocins and the Class II enterocins are characterized by their activity against Listeria. Enterocins are primarily produced by enterococci, particularly Enterococcus faecium and many strains have been described, often encoding multiple bacteriocins. The use of these strains in food will require that they are free of virulence functions and that they exhibit a high level expression of anti-listerial enterocins in fermentation conditions. Multiplex relative RT (reverse transcription)-PCR is a technique that is useful in the discovery of advantageous expression characteristics among enterocin-producing strains. It allows the levels of individual enterocin gene expression to be monitored and determination of how expression is altered under different growth conditions.

  1. Evaluating physical habitat and water chemistry data from statewide stream monitoring programs to establish least-impacted conditions in Washington State

    USGS Publications Warehouse

    Wilmoth, Siri K.; Irvine, Kathryn M.; Larson, Chad

    2015-01-01

    Various GIS-generated land-use predictor variables, physical habitat metrics, and water chemistry variables from 75 reference streams and 351 randomly sampled sites throughout Washington State were evaluated for effectiveness at discriminating reference from random sites within level III ecoregions. A combination of multivariate clustering and ordination techniques were used. We describe average observed conditions for a subset of predictor variables as well as proposing statistical criteria for establishing reference conditions for stream habitat in Washington. Using these criteria, we determined whether any of the random sites met expectations for reference condition and whether any of the established reference sites failed to meet expectations for reference condition. Establishing these criteria will set a benchmark from which future data will be compared.

  2. Forced reeling of Bombyx mori silk: separating behavior and processing conditions.

    PubMed

    Mortimer, Beth; Holland, Chris; Vollrath, Fritz

    2013-10-14

    Controlled reeling is a powerful tool to investigate the details of silk processing. However, consistent forced reeling of silkworms is hindered by the significant degree of behaviorally induced variation caused by the animal. This paper proposes silkworm paralysis as a novel method to control the animal and thus in vivo spinning conditions. Using these methods, we achieve low and consistent reeling forces during the collection of over 500 m of individual silk fiber while monitoring filament variability, morphology, and properties. Novel techniques to measure the irregular silk cross-sectional areas lead to the more accurate calculation of the true engineering values and mechanical property variation of individual silk fibers. Combining controlled reeling and accurate thread measurement techniques allows us to present the relative contributions of processing and behavior in the performance envelope of Bombyx mori silk.

  3. Testing self-regulation interventions to increase walking using factorial randomized N-of-1 trials.

    PubMed

    Sniehotta, Falko F; Presseau, Justin; Hobbs, Nicola; Araújo-Soares, Vera

    2012-11-01

    To investigate the suitability of N-of-1 randomized controlled trials (RCTs) as a means of testing the effectiveness of behavior change techniques based on self-regulation theory (goal setting and self-monitoring) for promoting walking in healthy adult volunteers. A series of N-of-1 RCTs in 10 normal and overweight adults ages 19-67 (M = 36.9 years). We randomly allocated 60 days within each individual to text message-prompted daily goal-setting and/or self-monitoring interventions in accordance with a 2 (step-count goal prompt vs. alternative goal prompt) × 2 (self-monitoring: open vs. blinded Omron-HJ-113-E pedometer) factorial design. Aggregated data were analyzed using random intercept multilevel models. Single cases were analyzed individually. The primary outcome was daily pedometer step counts over 60 days. Single-case analyses showed that 4 participants significantly increased walking: 2 on self-monitoring days and 2 on goal-setting days, compared with control days. Six participants did not benefit from the interventions. In aggregated analyses, mean step counts were higher on goal-setting days (8,499.9 vs. 7,956.3) and on self-monitoring days (8,630.3 vs. 7,825.9). Multilevel analyses showed a significant effect of the self-monitoring condition (p = .01), the goal-setting condition approached significance (p = .08), and there was a small linear increase in walking over time (p = .03). N-of-1 randomized trials are a suitable means to test behavioral interventions in individual participants.

  4. Use of Sentinel-1 SAR data to monitor Mosul dam vulnerability

    NASA Astrophysics Data System (ADS)

    Riccardi, Paolo; Tessari, Giulia; Lecci, Daniele; Floris, Mario; Pasquali, Paolo

    2017-04-01

    The structural monitoring of dams is an important practice to guarantee their safety. Moreover, the water reservoir and the efficient operation and safety of surrounding areas need to be monitored. Considering the importance of large dams as multipurpose infrastructure for flood control, energy production, water supply and irrigation, ensuring their longevity is a key aspect on their management. Therefore, it is of great importance to detect dam deterioration potentially resulting in its shutdown or failure, preventing life and economic losses. Traditional dam monitoring requires the identification of soil movements, tilt, displacements, structural stress and strain behaviour. Since the '90, innovative remote sensing techniques based on satellite Synthetic Aperture Radar (SAR) data were developed to detect and monitor surface displacements. The main advantages of SAR data are the non-invasiveness of their acquisition, the possibility to cover large areas in a short time and the advancement. Moreover, the availability of SAR satellite acquisitions from the 1990s enables to reconstruct the historical evolution of dam behaviour. Furthermore, the use of SAR Interferometry (InSAR) techniques, Differential InSAR (DInSAR) and Advanced stacking techniques (A-DInSAR), produce accurate velocity maps and displacement time-series. The importance of these techniques emerges when environmental or logistic conditions do not allow to monitor dams applying the traditional geodetic techniques. An iconic case demonstrating the relevance of remote sensing observations is the Mosul Dam, the largest Iraqi dam, where monitoring and maintaining are impeded for political controversy, thus the risk for the population is very high. It is considered one of the most dangerous dams in the world because of the erosion of the gypsum rock at the basement and the difficult interventions due to security issues. It consists of 113 m tall and 3.4 km long earth-fill embankment-type, with a clay core. It was completed in 1984 and started generating power on 1986. Since then, frequent consolidation works have been carried out pumping cement mixtures into the soil foundation to keep it stable and prevent it from sinking and then breaking apart. To overcome the impossibility of directly monitoring the structure, analysis of recent deformation affecting the Mosul dam is achieved considering C-band Sentinel-1 SAR data, acquired from the end of 2014 to the present. These 20-m ground resolution data can provide a millimetric precision on displacements. Furthermore, ESA archive available SAR data (ERS and Envisat) are considered to reconstruct the temporal evolution of the deformations. In this work, different stacks of data are processed applying SBAS and PS A-DInSAR techniques; deformation fields obtained from SAR data are evaluated to assess the temporal evolution of the strains affecting the structure. Obtained results represent the preliminary stage of a multidisciplinary project, finalised to assess possible damages affecting a dam through remote sensing and civil engineering surveys.

  5. Research on snow cover monitoring of Northeast China using Fengyun Geostationary Satellite

    NASA Astrophysics Data System (ADS)

    Wu, Tong; Gu, Lingjia; Ren, Ruizhi; Zhou, TIngting

    2017-09-01

    Snow cover information has great significance for monitoring and preventing snowstorms. With the development of satellite technology, geostationary satellites are playing more important roles in snow monitoring. Currently, cloud interference is a serious problem for obtaining accurate snow cover information. Therefore, the cloud pixels located in the MODIS snow products are usually replaced by cloud-free pixels around the day, which ignores snow cover dynamics. FengYun-2(FY-2) is the first generation of geostationary satellite in our country which complements the polar orbit satellite. The snow cover monitoring of Northeast China using FY-2G data in January and February 2016 is introduced in this paper. First of all, geometric and radiometric corrections are carried out for visible and infrared channels. Secondly, snow cover information is extracted according to its characteristics in different channels. Multi-threshold judgment methods for the different land types and similarity separation techniques are combined to discriminate snow and cloud. Furthermore, multi-temporal data is used to eliminate cloud effect. Finally, the experimental results are compared with the MOD10A1 and MYD10A1 (MODIS daily snow cover) product. The MODIS product can provide higher resolution of the snow cover information in cloudless conditions. Multi-temporal FY-2G data can get more accurate snow cover information in cloudy conditions, which is beneficial for monitoring snowstorms and climate changes.

  6. Comparative study of electromechanical impedance and Lamb wave techniques for fatigue crack detection and monitoring in metallic structures

    NASA Astrophysics Data System (ADS)

    Lim, Say Ian; Liu, Yu; Soh, Chee Kiong

    2012-04-01

    Fatigue cracks often initiate at the weld toes of welded steel connections. Usually, these cracks cannot be identified by the naked eyes. Existing identification methods like dye-penetration test and alternating current potential drop (ACPD) may be useful for detecting fatigue cracks at the weld toes. To apply these non-destructive evaluation (NDE) techniques, the potential sites have to be accessible during inspection. Therefore, there is a need to explore other detection and monitoring techniques for fatigue cracks especially when their locations are inaccessible or cost of access is uneconomical. Electro-mechanical Impedance (EMI) and Lamb wave techniques are two fast growing techniques in the Structural Health Monitoring (SHM) community. These techniques use piezoelectric ceramics (PZT) for actuation and sensing. Since the monitoring site is only needed to be accessed once for the instrumentation of the transducers, remote monitoring is made possible. The permanent locations of these transducers also translate to having consistent measurement for monitoring. The main focus of this study is to conduct a comparative investigation on the effectiveness and efficiency of the EMI technique and the Lamb wave technique for successful fatigue crack identification and monitoring of welded steel connections using piezoelectric transducers. A laboratory-sized non-load carrying fillet weld specimen is used in this study. The specimen is subjected to cyclic tensile load and data for both techniques are acquired at stipulated intervals. It can be concluded that the EMI technique is sensitive to the crack initiation phase while the Lamb wave technique correlates well with the crack propagation phase.

  7. Some insights on grassland health assessment based on remote sensing.

    PubMed

    Xu, Dandan; Guo, Xulin

    2015-01-29

    Grassland ecosystem is one of the largest ecosystems, which naturally occurs on all continents excluding Antarctica and provides both ecological and economic functions. The deterioration of natural grassland has been attracting many grassland researchers to monitor the grassland condition and dynamics for decades. Remote sensing techniques, which are advanced in dealing with the scale constraints of ecological research and provide temporal information, become a powerful approach of grassland ecosystem monitoring. So far, grassland health monitoring studies have mostly focused on different areas, for example, productivity evaluation, classification, vegetation dynamics, livestock carrying capacity, grazing intensity, natural disaster detecting, fire, climate change, coverage assessment and soil erosion. However, the grassland ecosystem is a complex system which is formed by soil, vegetation, wildlife and atmosphere. Thus, it is time to consider the grassland ecosystem as an entity synthetically and establish an integrated grassland health monitoring system to combine different aspects of the complex grassland ecosystem. In this review, current grassland health monitoring methods, including rangeland health assessment, ecosystem health assessment and grassland monitoring by remote sensing from different aspects, are discussed along with the future directions of grassland health assessment.

  8. Some Insights on Grassland Health Assessment Based on Remote Sensing

    PubMed Central

    Xu, Dandan; Guo, Xulin

    2015-01-01

    Grassland ecosystem is one of the largest ecosystems, which naturally occurs on all continents excluding Antarctica and provides both ecological and economic functions. The deterioration of natural grassland has been attracting many grassland researchers to monitor the grassland condition and dynamics for decades. Remote sensing techniques, which are advanced in dealing with the scale constraints of ecological research and provide temporal information, become a powerful approach of grassland ecosystem monitoring. So far, grassland health monitoring studies have mostly focused on different areas, for example, productivity evaluation, classification, vegetation dynamics, livestock carrying capacity, grazing intensity, natural disaster detecting, fire, climate change, coverage assessment and soil erosion. However, the grassland ecosystem is a complex system which is formed by soil, vegetation, wildlife and atmosphere. Thus, it is time to consider the grassland ecosystem as an entity synthetically and establish an integrated grassland health monitoring system to combine different aspects of the complex grassland ecosystem. In this review, current grassland health monitoring methods, including rangeland health assessment, ecosystem health assessment and grassland monitoring by remote sensing from different aspects, are discussed along with the future directions of grassland health assessment. PMID:25643060

  9. Progress of a Cross-Correlation Based Optical Strain Measurement Technique for Detecting Radial Growth on a Rotating Disk

    NASA Technical Reports Server (NTRS)

    Clem, Michelle M.; Woike, Mark R.; Abdul-Aziz, Ali

    2014-01-01

    The Aeronautical Sciences Project under NASA's Fundamental Aeronautics Program is interested in the development of novel measurement technologies, such as optical surface measurements for the in situ health monitoring of critical constituents of the internal flow path. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. The present study, aims to further validate and develop an optical strain measurement technique to measure the radial growth and strain field of an already cracked disk, mimicking the geometry of a sub-scale turbine engine disk, under loaded conditions in the NASA Glenn Research Center's High Precision Rotordynamics Laboratory. The technique offers potential fault detection by imaging an applied high-contrast random speckle pattern under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds (loaded conditions) induces an external load, resulting in a radial growth of the disk of approximately 50.0-µm in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will be undistorted; however, during rotation the cracked region will grow radially, thus causing the applied particle pattern to be 'shifted'. The resulting particle displacements between the two images is measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. A random particle distribution is adhered onto the surface of the cracked disk and two bench top experiments are carried out to evaluate the technique's ability to measure the induced particle displacements. The disk is shifted manually using a translation stage equipped with a fine micrometer and a hotplate is used to induce thermal growth of the disk, causing the particles to become shifted. For both experiments, reference and test images are acquired before and after the induced shifts, respectively, and then processed using PIV software. The controlled manual translation of the disk resulted in detection of the particle displacements accurate to 1.75% of full scale and the thermal expansion experiment resulted in successful detection of the disk's thermal growth as compared to the calculated thermal expansion results. After validation of the technique through the induced shift experiments, the technique is implemented in the Rotordynamics Lab for preliminary assessment in a simulated engine environment. The discussion of the findings and plans for future work to improve upon the results are addressed in the paper.

  10. Wear Detection of Drill Bit by Image-based Technique

    NASA Astrophysics Data System (ADS)

    Sukeri, Maziyah; Zulhilmi Paiz Ismadi, Mohd; Rahim Othman, Abdul; Kamaruddin, Shahrul

    2018-03-01

    Image processing for computer vision function plays an essential aspect in the manufacturing industries for the tool condition monitoring. This study proposes a dependable direct measurement method to measure the tool wear using image-based analysis. Segmentation and thresholding technique were used as the means to filter and convert the colour image to binary datasets. Then, the edge detection method was applied to characterize the edge of the drill bit. By using cross-correlation method, the edges of original and worn drill bits were correlated to each other. Cross-correlation graphs were able to detect the difference of the worn edge despite small difference between the graphs. Future development will focus on quantifying the worn profile as well as enhancing the sensitivity of the technique.

  11. Maintaining the Health of Software Monitors

    NASA Technical Reports Server (NTRS)

    Person, Suzette; Rungta, Neha

    2013-01-01

    Software health management (SWHM) techniques complement the rigorous verification and validation processes that are applied to safety-critical systems prior to their deployment. These techniques are used to monitor deployed software in its execution environment, serving as the last line of defense against the effects of a critical fault. SWHM monitors use information from the specification and implementation of the monitored software to detect violations, predict possible failures, and help the system recover from faults. Changes to the monitored software, such as adding new functionality or fixing defects, therefore, have the potential to impact the correctness of both the monitored software and the SWHM monitor. In this work, we describe how the results of a software change impact analysis technique, Directed Incremental Symbolic Execution (DiSE), can be applied to monitored software to identify the potential impact of the changes on the SWHM monitor software. The results of DiSE can then be used by other analysis techniques, e.g., testing, debugging, to help preserve and improve the integrity of the SWHM monitor as the monitored software evolves.

  12. Section summary: Integration of monitoring techniques

    Treesearch

    Yoshiyuki Kiyono; Rick Turner

    2013-01-01

    Techniques for monitoring deforestation and associated changes to forest carbon stocks are widespread and well published. In contrast, techniques for monitoring forest degradation are relatively untested in developing countries despite their inclusion in UNFCCC REDD+ negotiations. In the Mekong countries, forest degradation may contribute a substantial portion of the...

  13. Inverse analysis of aerodynamic loads from strain information using structural models and neural networks

    NASA Astrophysics Data System (ADS)

    Wada, Daichi; Sugimoto, Yohei

    2017-04-01

    Aerodynamic loads on aircraft wings are one of the key parameters to be monitored for reliable and effective aircraft operations and management. Flight data of the aerodynamic loads would be used onboard to control the aircraft and accumulated data would be used for the condition-based maintenance and the feedback for the fatigue and critical load modeling. The effective sensing techniques such as fiber optic distributed sensing have been developed and demonstrated promising capability of monitoring structural responses, i.e., strains on the surface of the aircraft wings. By using the developed techniques, load identification methods for structural health monitoring are expected to be established. The typical inverse analysis for load identification using strains calculates the loads in a discrete form of concentrated forces, however, the distributed form of the loads is essential for the accurate and reliable estimation of the critical stress at structural parts. In this study, we demonstrate an inverse analysis to identify the distributed loads from measured strain information. The introduced inverse analysis technique calculates aerodynamic loads not in a discrete but in a distributed manner based on a finite element model. In order to verify the technique through numerical simulations, we apply static aerodynamic loads on a flat panel model, and conduct the inverse identification of the load distributions. We take two approaches to build the inverse system between loads and strains. The first one uses structural models and the second one uses neural networks. We compare the performance of the two approaches, and discuss the effect of the amount of the strain sensing information.

  14. Cone penetrometer testing and discrete-depth ground water sampling techniques: A cost-effective method of site characterization in a multiple-aquifer setting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemo, D.A.; Pierce, Y.G.; Gallinatti, J.D.

    Cone penetrometer testing (CPT), combined with discrete-depth ground water sampling methods, can significantly reduce the time and expense required to characterize large sites that have multiple aquifers. Results from the screening site characterization can then be used to design and install a cost-effective monitoring well network. At a site in northern California, it was necessary to characterize the stratigraphy and the distribution of volatile organic compounds (VOCs). To expedite characterization, a five-week field screening program was implemented that consisted of a shallow ground water survey, CPT soundings and pore-pressure measurements, and discrete-depth ground water sampling. Based on continuous lithologic informationmore » provided by the CPT soundings, four predominantly coarse-grained, water yielding stratigraphic packages were identified. Seventy-nine discrete-depth ground water samples were collected using either shallow ground water survey techniques, the BAT Enviroprobe, or the QED HydroPunch I, depending on subsurface conditions. Using results from these efforts, a 20-well monitoring network was designed and installed to monitor critical points within each stratigraphic package. Good correlation was found for hydraulic head and chemical results between discrete-depth screening data and monitoring well data. Understanding the vertical VOC distribution and concentrations produced substantial time and cost savings by minimizing the number of permanent monitoring wells and reducing the number of costly conductor casings that had to be installed. Additionally, significant long-term cost savings will result from reduced sampling costs, because fewer wells comprise the monitoring network. The authors estimate these savings to be 50% for site characterization costs, 65% for site characterization time, and 60% for long-term monitoring costs.« less

  15. An autonomous structural health monitoring solution

    NASA Astrophysics Data System (ADS)

    Featherston, Carol A.; Holford, Karen M.; Pullin, Rhys; Lees, Jonathan; Eaton, Mark; Pearson, Matthew

    2013-05-01

    Combining advanced sensor technologies, with optimised data acquisition and diagnostic and prognostic capability, structural health monitoring (SHM) systems provide real-time assessment of the integrity of bridges, buildings, aircraft, wind turbines, oil pipelines and ships, leading to improved safety and reliability and reduced inspection and maintenance costs. The implementation of power harvesting, using energy scavenged from ambient sources such as thermal gradients and sources of vibration in conjunction with wireless transmission enables truly autonomous systems, reducing the need for batteries and associated maintenance in often inaccessible locations, alongside bulky and expensive wiring looms. The design and implementation of such a system however presents numerous challenges. A suitable energy source or multiple sources capable of meeting the power requirements of the system, over the entire monitoring period, in a location close to the sensor must be identified. Efficient power management techniques must be used to condition the power and deliver it, as required, to enable appropriate measurements to be taken. Energy storage may be necessary, to match a continuously changing supply and demand for a range of different monitoring states including sleep, record and transmit. An appropriate monitoring technique, capable of detecting, locating and characterising damage and delivering reliable information, whilst minimising power consumption, must be selected. Finally a wireless protocol capable of transmitting the levels of information generated at the rate needed in the required operating environment must be chosen. This paper considers solutions to some of these challenges, and in particular examines SHM in the context of the aircraft environment.

  16. In situ nonlinear ultrasonic technique for monitoring microcracking in concrete subjected to creep and cyclic loading.

    PubMed

    Kim, Gun; Loreto, Giovanni; Kim, Jin-Yeon; Kurtis, Kimberly E; Wall, James J; Jacobs, Laurence J

    2018-08-01

    This research conducts in situ nonlinear ultrasonic (NLU) measurements for real time monitoring of load-induced damage in concrete. For the in situ measurements on a cylindrical specimen under sustained load, a previously developed second harmonic generation (SHG) technique with non-contact detection is adapted to a cylindrical specimen geometry. This new setup is validated by demonstrating that the measured nonlinear Rayleigh wave signals are equivalent to those in a flat half space, and thus the acoustic nonlinearity parameter, β can be defined and interpreted in the same way. Both the acoustic nonlinearity parameter and strain are measured to quantitatively assess the early-age damage in a set of concrete specimens subjected to either 25 days of creep, or 11 cycles of cyclic loading at room temperature. The experimental results show that the acoustic nonlinearity parameter is sensitive to early-stage microcrack formation under both loading conditions - the measured β can be directly linked to the accumulated microscale damage. This paper demonstrates the potential of NLU for the in situ monitoring of mechanical load-induced microscale damage in concrete components. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. In situ loading of well-dispersed silver nanoparticles on nanocrystalline magnesium oxide for real-time monitoring of catalytic reactions by surface enhanced Raman spectroscopy.

    PubMed

    Zhang, Kaige; Li, Gongke; Hu, Yuling

    2015-10-28

    The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water. Herein, we demonstrate a facile method for in situ synthesis of nanocrystalline magnesium oxide-Ag(0) (nano MgO-Ag(0)) hybrid nanomaterials with dispersed Ag nanoparticles (Ag NPs) on the surface of nanocrystalline magnesium oxide (nano MgO) via Sn(2+) linkage and reduction. As a benefit from the synergy effect of nano MgO and Ag NPs, the nano MgO-Ag(0) exhibited both excellent SERS and catalytic activities for the reduction of 4-nitrothiophenol in the presence of NaBH4. The nano MgO-Ag(0) was used for real-time monitoring of the catalytic reaction process of 4-nitrothiophenol to 4-aminothiophenol in an aqueous medium by observing the SERS signals of the reactant, intermediate and final products. The intrinsic reaction kinetics and reaction mechanism of this reaction were also investigated. This SERS-based synergy technique provides a novel approach for quantitative in situ monitoring of catalytic chemical reaction processes.

  18. Lipase production in solid-state fermentation monitoring biomass growth of aspergillus niger using digital image processing.

    PubMed

    Dutra, Júlio C V; da C Terzi, Selma; Bevilaqua, Juliana Vaz; Damaso, Mônica C T; Couri, Sônia; Langone, Marta A P; Senna, Lilian F

    2008-03-01

    The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction.

  19. Lipase Production in Solid-State Fermentation Monitoring Biomass Growth of Aspergillus niger Using Digital Image Processing

    NASA Astrophysics Data System (ADS)

    Dutra, Julio C. V.; da Terzi, Selma C.; Bevilaqua, Juliana Vaz; Damaso, Mônica C. T.; Couri, Sônia; Langone, Marta A. P.; Senna, Lilian F.

    The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction.

  20. Landsat Thematic Mapper monitoring of turbid inland water quality

    NASA Technical Reports Server (NTRS)

    Lathrop, Richard G., Jr.

    1992-01-01

    This study reports on an investigation of water quality calibration algorithms under turbid inland water conditions using Landsat Thematic Mapper (TM) multispectral digital data. TM data and water quality observations (total suspended solids and Secchi disk depth) were obtained near-simultaneously and related using linear regression techniques. The relationships between reflectance and water quality for Green Bay and Lake Michigan were compared with results for Yellowstone and Jackson Lakes, Wyoming. Results show similarities in the water quality-reflectance relationships, however, the algorithms derived for Green Bay - Lake Michigan cannot be extrapolated to Yellowstone and Jackson Lake conditions.

  1. Polyspectral signal analysis techniques for condition based maintenance of helicopter drive-train system

    NASA Astrophysics Data System (ADS)

    Hassan Mohammed, Mohammed Ahmed

    For an efficient maintenance of a diverse fleet of air- and rotorcraft, effective condition based maintenance (CBM) must be established based on rotating components monitored vibration signals. In this dissertation, we present theory and applications of polyspectral signal processing techniques for condition monitoring of critical components in the AH-64D helicopter tail rotor drive train system. Currently available vibration-monitoring tools are mostly built around auto- and cross-power spectral analysis which have limited performance in detecting frequency correlations higher than second order. Studying higher order correlations and their Fourier transforms, higher order spectra, provides more information about the vibration signals which helps in building more accurate diagnostic models of the mechanical system. Based on higher order spectral analysis, different signal processing techniques are developed to assess health conditions of different critical rotating-components in the AH-64D helicopter drive-train. Based on cross-bispectrum, quadratic nonlinear transfer function is presented to model second order nonlinearity in a drive-shaft running between the two hanger bearings. Then, quadratic-nonlinearity coupling coefficient between frequency harmonics of the rotating shaft is used as condition metric to study different seeded shaft faults compared to baseline case, namely: shaft misalignment, shaft imbalance, and combination of shaft misalignment and imbalance. The proposed quadratic-nonlinearity metric shows better capabilities in distinguishing the four studied shaft settings than the conventional linear coupling based on cross-power spectrum. We also develop a new concept of Quadratic-Nonlinearity Power-Index spectrum, QNLPI(f), that can be used in signal detection and classification, based on bicoherence spectrum. The proposed QNLPI(f) is derived as a projection of the three-dimensional bicoherence spectrum into two-dimensional spectrum that quantitatively describes how much of the mean square power at certain frequency f is generated due to nonlinear quadratic interaction between different frequency components. The proposed index, QNLPI(f), can be used to simplify the study of bispectrum and bicoherence signal spectra. It also inherits useful characteristics from the bicoherence such as high immunity to additive Gaussian noise, high capability of nonlinear-systems identifications, and amplification invariance. The quadratic-nonlinear power spectral density PQNL(f) and percentage of quadratic nonlinear power PQNLP are also introduced based on the QNLPI(f). Concept of the proposed indices and their computational considerations are discussed first using computer generated data, and then applied to real-world vibration data to assess health conditions of different rotating components in the drive train including drive-shaft, gearbox, and hanger bearing faults. The QNLPI(f) spectrum enables us to gain more details about nonlinear harmonic generation patterns that can be used to distinguish between different cases of mechanical faults, which in turn helps to gaining more diagnostic/prognostic capabilities.

  2. Extremely Low Frequency (ELF) Communications System Ecological Monitoring Program: Summary of 1986 Progress.

    DTIC Science & Technology

    1987-12-01

    assessment of data collection techniques *quantification of temporal and spatial patterns of variables *assessment of end point variability...nutrient variables are also being examined as covarlates. Development of a model to test for differences in growth patterns is continuing. At each of...condition. These variables are recorded at the end of each growing season. For evaluation of height growth patterns , a subsample of 100 seedlings per

  3. Volcanic Monitoring Techniques Applied to Controlled Fragmentation Experiments

    NASA Astrophysics Data System (ADS)

    Kueppers, U.; Alatorre-Ibarguengoitia, M. A.; Hort, M. K.; Kremers, S.; Meier, K.; Scharff, L.; Scheu, B.; Taddeucci, J.; Dingwell, D. B.

    2010-12-01

    Volcanic eruptions are an inevitable natural threat. The range of eruptive styles is large and short term fluctuations of explosivity or vent position pose a large risk that is not necessarily confined to the immediate vicinity of a volcano. Explosive eruptions rather may also affect aviation, infrastructure and climate, regionally as well as globally. Multiparameter monitoring networks are deployed on many active volcanoes to record signs of magmatic processes and help elucidate the secrets of volcanic phenomena. However, our mechanistic understanding of many processes hiding in recorded signals is still poor. As a direct consequence, a solid interpretation of the state of a volcano is still a challenge. In an attempt to bridge this gap, we combined volcanic monitoring and experimental volcanology. We performed 15 well-monitored, field-based, experiments and fragmented natural rock samples from Colima volcano (Mexico) by rapid decompression. We used cylindrical samples of 60 mm height and 25 mm and 60 mm diameter, respectively, and 25 and 35 vol.% open porosity. The applied pressure range was from 4 to 18 MPa. Using different experimental set-ups, the pressurised volume above the samples ranged from 60 - 170 cm3. The experiments were performed at ambient conditions and at controlled sample porosity and size, confinement geometry, and applied pressure. The experiments have been thoroughly monitored with 1) Doppler Radar (DR), 2) high-speed and high-definition cameras, 3) acoustic and infrasound sensors, 4) pressure transducers, and 5) electrically conducting wires. Our aim was to check for common results achieved by the different approaches and, if so, calibrate state-of-the-art monitoring tools. We present how the velocity of the ejected pyroclasts was measured by and evaluated for the different approaches and how it was affected by the experimental conditions and sample characteristics. We show that all deployed instruments successfully measured the pyroclast ejection and that the evaluated results were mostly in good agreement. We will discuss the technical difficulties encountered, e.g. the temporal synchronisation of the different techniques. Furthermore, the internal data management of the DR prevents at present a continuous recording and only a limited number of snapshots is stored. Nonetheless, in at least three experiments the onset of particle ejection was measured by all different techniques and gave coherent results of up to 100 m/s. This is a very encouraging result and of paramount importance as it proofs the applicability of these independent methods to volcano monitoring. Each method by itself may enhance our understanding of the pressurisation state of a volcano, an essential factor in ballistic hazard evaluation and eruption energy estimation. Technical adaptations of the DR will overcome the encountered problems and allow a more refined data analysis during the next campaign.

  4. Contact-free monitoring of vessel graft stiffness - proof of concept as a tool for vascular tissue engineering.

    PubMed

    Hoenicka, Markus; Kaspar, Marcel; Schmid, Christof; Liebold, Andreas; Schrammel, Siegfried

    2017-10-01

    Tissue-engineered vessel grafts have to mimic the biomechanical properties of native blood vessels. Manufacturing processes often condition grafts to adapt them to the target flow conditions. Graft stiffness is influenced by material properties and dimensions and determines graft compliance. This proof-of-concept study evaluated a contact-free method to monitor biomechanical properties without compromising sterility. Forced vibration response analysis was performed on human umbilical vein (HUV) segments mounted in a buffer-filled tubing system. A linear motor and a dynamic signal analyser were used to excite the fluid by white noise (0-200 Hz). Vein responses were read out by laser triangulation and analysed by fast Fourier transformation. Modal analysis was performed by monitoring multiple positions of the vessel surface. As an inverse model of graft stiffening during conditioning, HUV were digested proteolytically, and the course of natural frequencies (NFs) was monitored over 120 min. Human umbilical vein showed up to five modes with NFs in the range of 5-100 Hz. The first natural frequencies of HUV did not alter over time while incubated in buffer (p = 0.555), whereas both collagenase (-35%, p = 0.0061) and elastase (-45%, p < 0.001) treatments caused significant decreases of NF within 120 min. Decellularized HUV showed similar results, indicating that changes of the extracellular matrix were responsible for the observed shift in NF. Performing vibration response analysis on vessel grafts is feasible without compromising sterility or integrity of the samples. This technique allows direct measurement of stiffness as an important biomechanical property, obviating the need to monitor surrogate parameters. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Digital High-Current Monitor

    NASA Technical Reports Server (NTRS)

    Cash, B.

    1985-01-01

    Simple technique developed for monitoring direct currents up to several hundred amperes and digitally displaying values directly in current units. Used to monitor current magnitudes beyond range of standard laboratory ammeters, which typically measure 10 to 20 amperes maximum. Technique applicable to any current-monitoring situation.

  6. Novel method for water vapour monitoring using wireless communication networks measurements

    NASA Astrophysics Data System (ADS)

    David, N.; Alpert, P.; Messer, H.

    2010-09-01

    We propose a new technique for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both) may also interfere with the ability to conduct accurate measurements. We present results from real-data measurements taken from microwave links used in a backhaul cellular network that show very good correlation with surface station humidity measurements (comparisons were performed for several links, found at different locations, during different time periods, showing correlations in the range of 0.5-0.9).

  7. Optical detection of blade flutter. [in YF-100 turbofan engine

    NASA Technical Reports Server (NTRS)

    Nieberding, W. C.; Pollack, J. L.

    1977-01-01

    The paper examines the capabilities of photoelectric scanning (PES) and stroboscopic imagery (SI) as optical monitoring tools for detection of the onset of flutter in the fan blades of an aircraft gas turbine engine. Both optical techniques give visual data in real time as well as video-tape records. PES is shown to be an ideal flutter monitor, since a single cathode ray tube displays the behavior of all the blades in a stage simultaneously. Operation of the SI system continuously while searching for a flutter condition imposes severe demands on the flash tube and affects its reliability, thus limiting its use as a flutter monitor. A better method of operation is to search for flutter with the PES and limit the use of SI to those times when the PES indicates interesting blade activity.

  8. First-time demonstration of measuring concrete prestress levels with metal packaged fibre optic sensors

    NASA Astrophysics Data System (ADS)

    Mckeeman, I.; Fusiek, G.; Perry, M.; Johnston, M.; Saafi, M.; Niewczas, P.; Walsh, M.; Khan, S.

    2016-09-01

    In this work we present the first large-scale demonstration of metal packaged fibre Bragg grating sensors developed to monitor prestress levels in prestressed concrete. To validate the technology, strain and temperature sensors were mounted on steel prestressing strands in concrete beams and stressed up to 60% of the ultimate tensile strength of the strand. We discuss the methods and calibration procedures used to fabricate and attach the temperature and strain sensors. The use of induction brazing for packaging the fibre Bragg gratings and welding the sensors to prestressing strands eliminates the use of epoxy, making the technique suitable for high-stress monitoring in an irradiated, harsh industrial environment. Initial results based on the first week of data after stressing the beams show the strain sensors are able to monitor prestress levels in ambient conditions.

  9. Monitoring Of Landslide Hazard In Selected Areas Of Uzbekistan

    NASA Astrophysics Data System (ADS)

    Lazecky, Milan; Balaha, Pavel; Khasankhanova, Gulchekhra; Minchenko, Venscelas

    2013-12-01

    Republic of Uzbekistan is situated in the heart of Central Asia. Dangerous phenomena such as drought, flooding, mud flows, landslides and others, that are becoming frequent in conditions of climate changes, increase instability of an agricultural production, and threaten rural livelihoods. In connection with weather and climate natural disasters, these phenomena become reasons of declining food production, water contamination, and economical damages. Within the Project granted by NATO: Science for Peace and Security programme, modern advanced remote sensing technologies will be applied to perform large scale monitoring of (early) slope deformations, including Satellite SAR Interferometry (InSAR) techniques, Ground Laser Scanning for in-situ refinement of detected movements or Multibeam Echosounding for monitoring slope deformation advancement into water objects. First results involving InSAR processing of selected sites in Uzbekistan are presented within this contribution.

  10. Incorporating Equipment Condition Assessment in Risk Monitors for Advanced Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coble, Jamie B.; Coles, Garill A.; Meyer, Ryan M.

    2013-10-01

    Advanced small modular reactors (aSMRs) can complement the current fleet of large light-water reactors in the USA for baseload and peak demand power production and process heat applications (e.g., water desalination, shale oil extraction, hydrogen production). The day-to-day costs of aSMRs are expected to be dominated by operations and maintenance (O&M); however, the effect of diverse operating missions and unit modularity on O&M is not fully understood. These costs could potentially be reduced by optimized scheduling, with risk-informed scheduling of maintenance, repair, and replacement of equipment. Currently, most nuclear power plants have a “living” probabilistic risk assessment (PRA), which reflectsmore » the as-operated, as-modified plant and combine event probabilities with population-based probability of failure (POF) for key components. “Risk monitors” extend the PRA by incorporating the actual and dynamic plant configuration (equipment availability, operating regime, environmental conditions, etc.) into risk assessment. In fact, PRAs are more integrated into plant management in today’s nuclear power plants than at any other time in the history of nuclear power. However, population-based POF curves are still used to populate fault trees; this approach neglects the time-varying condition of equipment that is relied on during standard and non-standard configurations. Equipment condition monitoring techniques can be used to estimate the component POF. Incorporating this unit-specific estimate of POF in the risk monitor can provide a more accurate estimate of risk in different operating and maintenance configurations. This enhanced risk assessment will be especially important for aSMRs that have advanced component designs, which don’t have an available operating history to draw from, and often use passive design features, which present challenges to PRA. This paper presents the requirements and technical gaps for developing a framework to integrate unit-specific estimates of POF into risk monitors, resulting in enhanced risk monitors that support optimized operation and maintenance of aSMRs.« less

  11. Behavioral determination of stimulus pair discrimination of auditory acoustic and electrical stimuli using a classical conditioning and heart-rate approach.

    PubMed

    Morgan, Simeon J; Paolini, Antonio G

    2012-06-06

    Acute animal preparations have been used in research prospectively investigating electrode designs and stimulation techniques for integration into neural auditory prostheses, such as auditory brainstem implants and auditory midbrain implants. While acute experiments can give initial insight to the effectiveness of the implant, testing the chronically implanted and awake animals provides the advantage of examining the psychophysical properties of the sensations induced using implanted devices. Several techniques such as reward-based operant conditioning, conditioned avoidance, or classical fear conditioning have been used to provide behavioral confirmation of detection of a relevant stimulus attribute. Selection of a technique involves balancing aspects including time efficiency (often poor in reward-based approaches), the ability to test a plurality of stimulus attributes simultaneously (limited in conditioned avoidance), and measure reliability of repeated stimuli (a potential constraint when physiological measures are employed). Here, a classical fear conditioning behavioral method is presented which may be used to simultaneously test both detection of a stimulus, and discrimination between two stimuli. Heart-rate is used as a measure of fear response, which reduces or eliminates the requirement for time-consuming video coding for freeze behaviour or other such measures (although such measures could be included to provide convergent evidence). Animals were conditioned using these techniques in three 2-hour conditioning sessions, each providing 48 stimulus trials. Subsequent 48-trial testing sessions were then used to test for detection of each stimulus in presented pairs, and test discrimination between the member stimuli of each pair. This behavioral method is presented in the context of its utilisation in auditory prosthetic research. The implantation of electrocardiogram telemetry devices is shown. Subsequent implantation of brain electrodes into the Cochlear Nucleus, guided by the monitoring of neural responses to acoustic stimuli, and the fixation of the electrode into place for chronic use is likewise shown.

  12. Progress of research on water vapor lidar

    NASA Technical Reports Server (NTRS)

    Wilkerson, Thomas D.; Singh, U. N.

    1989-01-01

    Research is summarized on applications of stimulated Raman scattering (SRS) of laser light into near infrared wavelengths suitable for atmospheric monitoring. Issues addressed are conversion efficiency, spectral purity, optimization of operating conditions, and amplification techniques. A Raman cell was developed and built for the laboratory program, and is now available to NASA-Langley, either as a design or as a completed cell for laboratory or flight applications. The Raman cell has been approved for flight in NASA's DC-8 aircraft. The self-seeding SRS technique developed here is suggested as an essential improvement for tunable near-IR DIAL applications at wavelengths of order 1 micrometer or greater.

  13. Effects of preprocessing Landsat MSS data on derived features

    NASA Technical Reports Server (NTRS)

    Parris, T. M.; Cicone, R. C.

    1983-01-01

    Important to the use of multitemporal Landsat MSS data for earth resources monitoring, such as agricultural inventories, is the ability to minimize the effects of varying atmospheric and satellite viewing conditions, while extracting physically meaningful features from the data. In general, the approaches to the preprocessing problem have been derived from either physical or statistical models. This paper compares three proposed algorithms; XSTAR haze correction, Color Normalization, and Multiple Acquisition Mean Level Adjustment. These techniques represent physical, statistical, and hybrid physical-statistical models, respectively. The comparisons are made in the context of three feature extraction techniques; the Tasseled Cap, the Cate Color Cube. and Normalized Difference.

  14. Perspective: Chemical reactions in ionic liquids monitored through the gas (vacuum)/liquid interface.

    PubMed

    Maier, F; Niedermaier, I; Steinrück, H-P

    2017-05-07

    This perspective analyzes the potential of X-ray photoelectron spectroscopy under ultrahigh vacuum (UHV) conditions to follow chemical reactions in ionic liquids in situ. Traditionally, only reactions occurring on solid surfaces were investigated by X-ray photoelectron spectroscopy (XPS) in situ. This was due to the high vapor pressures of common liquids or solvents, which are not compatible with the required UHV conditions. It was only recently realized that the situation is very different when studying reactions in Ionic Liquids (ILs), which have an inherently low vapor pressure, and first studies have been performed within the last years. Compared to classical spectroscopy techniques used to monitor chemical reactions, the advantage of XPS is that through the analysis of their core levels all relevant elements can be quantified and their chemical state can be analyzed under well-defined (ultraclean) conditions. In this perspective, we cover six very different reactions which occur in the IL, with the IL, or at an IL/support interface, demonstrating the outstanding potential of in situ XPS to gain insights into liquid phase reactions in the near-surface region.

  15. Operation Reliability Assessment for Cutting Tools by Applying a Proportional Covariate Model to Condition Monitoring Information

    PubMed Central

    Cai, Gaigai; Chen, Xuefeng; Li, Bing; Chen, Baojia; He, Zhengjia

    2012-01-01

    The reliability of cutting tools is critical to machining precision and production efficiency. The conventional statistic-based reliability assessment method aims at providing a general and overall estimation of reliability for a large population of identical units under given and fixed conditions. However, it has limited effectiveness in depicting the operational characteristics of a cutting tool. To overcome this limitation, this paper proposes an approach to assess the operation reliability of cutting tools. A proportional covariate model is introduced to construct the relationship between operation reliability and condition monitoring information. The wavelet packet transform and an improved distance evaluation technique are used to extract sensitive features from vibration signals, and a covariate function is constructed based on the proportional covariate model. Ultimately, the failure rate function of the cutting tool being assessed is calculated using the baseline covariate function obtained from a small sample of historical data. Experimental results and a comparative study show that the proposed method is effective for assessing the operation reliability of cutting tools. PMID:23201980

  16. Automated plasma control with optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Ward, P. P.

    Plasma etching and desmear processes for printed wiring board (PWB) manufacture are difficult to predict and control. Non-uniformity of most plasma processes and sensitivity to environmental changes make it difficult to maintain process stability from day to day. To assure plasma process performance, weight loss coupons or post-plasma destructive testing must be used. These techniques are not real-time methods however, and do not allow for immediate diagnosis and process correction. These tests often require scrapping some fraction of a batch to insure the integrity of the rest. Since these tests verify a successful cycle with post-plasma diagnostics, poor test results often determine that a batch is substandard and the resulting parts unusable. These tests are a costly part of the overall fabrication cost. A more efficient method of testing would allow for constant monitoring of plasma conditions and process control. Process anomalies should be detected and corrected before the parts being treated are damaged. Real time monitoring would allow for instantaneous corrections. Multiple site monitoring would allow for process mapping within one system or simultaneous monitoring of multiple systems. Optical emission spectroscopy conducted external to the plasma apparatus would allow for this sort of multifunctional analysis without perturbing the glow discharge. In this paper, optical emission spectroscopy for non-intrusive, in situ process control will be explored along with applications of this technique to for process control, failure analysis and endpoint determination in PWB manufacture.

  17. Development of a transcutaneous blood-constituent monitoring method using a suction effusion fluid collection technique and an ion-sensitive field-effect transistor glucose sensor.

    PubMed

    Ito, N; Kayashima, S; Kimura, J; Kuriyama, T; Arai, T; Kikuchi, M; Nagata, N

    1994-05-01

    The paper describes a method for the transcutaneous monitoring of blood constituents. It combines the use of a suction effusion fluid (SEF) collecting technique with a silicon on sapphire/ion-sensitive field-effect transistor (SOS/ISFET) biosensor. SEF is directly collected by a weak evacuation through skin from which the stratum corneum has been removed. An SEF collecting cell with a stainless-steel mesh at the bottom is kept in a weak vacuum condition, and SEF is sucked up through the mesh and deposited in a reservoir above. An ISFET glucose sensor is able to detect glucose concentrations in very small SEF samples through the use of two small ISFETs and an immobilised enzyme membrane. The reliability of transcutaneously obtained SEF was first confirmed in an experiment using rabbits. A clinical analyser was used to determine levels of glucose, urea nitrogen and creatinine in SEF obtained transcutaneously; these results are compared with results obtained by the same analyser directly from sera. The ISFET glucose sensor was successfully tested on human subjects for the monitoring of blood glucose levels. During these tests, glucose level changes in the SEF followed actual blood glucose level changes with a slight time delay. Results suggest the feasibility of non-invasive, transcutaneous monitoring of low molecular weight substances in the blood without the use of ordinary blood sampling.

  18. Determining the frequency, depth and velocity of preferential flow by high frequency soil moisture monitoring

    NASA Astrophysics Data System (ADS)

    Hardie, Marcus; Lisson, Shaun; Doyle, Richard; Cotching, William

    2013-01-01

    Preferential flow in agricultural soils has been demonstrated to result in agrochemical mobilisation to shallow ground water. Land managers and environmental regulators need simple cost effective techniques for identifying soil - land use combinations in which preferential flow occurs. Existing techniques for identifying preferential flow have a range of limitations including; often being destructive, non in situ, small sampling volumes, or are subject to artificial boundary conditions. This study demonstrated that high frequency soil moisture monitoring using a multi-sensory capacitance probe mounted within a vertically rammed access tube, was able to determine the occurrence, depth, and wetting front velocity of preferential flow events following rainfall. Occurrence of preferential flow was not related to either rainfall intensity or rainfall amount, rather preferential flow occurred when antecedent soil moisture content was below 226 mm soil moisture storage (0-70 cm). Results indicate that high temporal frequency soil moisture monitoring may be used to identify soil type - land use combinations in which the presence of preferential flow increases the risk of shallow groundwater contamination by rapid transport of agrochemicals through the soil profile. However use of high frequency based soil moisture monitoring to determine agrochemical mobilisation risk may be limited by, inability to determine the volume of preferential flow, difficulty observing macropore flow at high antecedent soil moisture content, and creation of artificial voids during installation of access tubes in stony soils.

  19. Monitoring the ongoing deformation and seasonal behaviour affecting Mosul Dam through space-borne SAR data

    NASA Astrophysics Data System (ADS)

    Tessari, G.; Riccardi, P.; Pasquali, P.

    2017-12-01

    Monitoring of dam structural health is an important practice to control the structure itself and the water reservoir, to guarantee efficient operation and safety of surrounding areas. Ensuring the longevity of the structure requires the timely detection of any behaviour that could deteriorate the dam and potentially result in its shutdown or failure.The detection and monitoring of surface displacements is increasingly performed through the analysis of satellite Synthetic Aperture Radar (SAR) data, thanks to the non-invasiveness of their acquisition, the possibility to cover large areas in a short time and the new space missions equipped with high spatial resolution sensors. The availability of SAR satellite acquisitions from the early 1990s enables to reconstruct the historical evolution of dam behaviour, defining its key parameters, possibly from its construction to the present. Furthermore, the progress on SAR Interferometry (InSAR) techniques through the development of Differential InSAR (DInSAR) and Advanced stacking techniques (A-DInSAR) allows to obtain accurate velocity maps and displacement time-series.The importance of these techniques emerges when environmental or logistic conditions do not allow to monitor dams applying the traditional geodetic techniques. In such cases, A-DInSAR constitutes a reliable diagnostic tool of dam structural health to avoid any extraordinary failure that may lead to loss of lives.In this contest, an emblematic case will be analysed as test case: the Mosul Dam, the largest Iraqi dam, where monitoring and maintaining are impeded for political controversy, causing possible risks for the population security. In fact, it is considered one of the most dangerous dams in the world because of the erosion of the gypsum rock at the basement and the difficult interventions due to security problems. The dam consists of 113 m tall and 3.4 km long earth-fill embankment-type, with a clay core, and it was completed in 1984.The deformation fields obtained from SAR data are evaluated to assess the temporal evolution of the strains affecting the structure. Obtained results represent the preliminary stage of a multidisciplinary project, finalized to assess possible damages affecting a dam through remote sensing and civil engineering surveys.

  20. Deployment of a Smart Structural Health Monitoring System for Long-Span Arch Bridges: A Review and a Case Study

    PubMed Central

    Chen, Zengshun; Zhou, Xiao; Wang, Xu; Dong, Lili; Qian, Yuanhao

    2017-01-01

    Structural health monitoring (SHM) technology for surveillance and evaluation of existing and newly built long-span bridges has been widely developed, and the significance of the technique has been recognized by many administrative authorities. The paper reviews the recent progress of the SHM technology that has been applied to long-span bridges. The deployment of a SHM system is introduced. Subsequently, the data analysis and condition assessment including techniques on modal identification, methods on signal processing, and damage identification were reviewed and summarized. A case study about a SHM system of a long-span arch bridge (the Jiubao bridge in China) was systematically incorporated in each part to advance our understanding of deployment and investigation of a SHM system for long-span arch bridges. The applications of SHM systems of long-span arch bridge were also introduced. From the illustrations, the challenges and future trends for development a SHM system were concluded. PMID:28925943

  1. Oil Spill Disasters Detection and Monitoring by RST Analysis of Optical Satellite Radiances: the Case of Deepwater Horizon Platform in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Pergola, N.; Grimaldi, S. C.; Coviello, I.; Faruolo, M.; Lacava, T.; Tramutoli, V.

    2010-12-01

    Marine oil spill disasters may have devastating effects on the marine and coastal environment. For monitoring and mitigation purposes, timely detection and continuously updated information on polluted areas are required. Satellite remote sensing can give a significant contribution in such a direction. Nowadays, SAR (Synthetic Aperture Radar) technology has been recognized as the most efficient for oil spill detection and mapping, thanks to the high spatial resolution and all-time/all-weather capability of the present operational sensors. Anyway, the present SARs revisiting time does not allow for a rapid detection and a near real-time monitoring of these phenomena at global scale. Passive optical sensors, on board meteorological satellites, thanks to their high temporal resolution (from a few hours to 15 minutes, depending on the characteristics of the platform/sensor), may represent, at this moment, a suitable SAR alternative/complement for oil spill detection and monitoring. Up to now, some techniques, based on optical satellite data, have been proposed for “a posteriori” mapping of already known oil spill discharges. On the other hand, reliable satellite methods for an automatic and timely detection of oil spills, for surveillance and warning purposes, are still currently missing. Recently, an innovative technique for automatic and near real time oil spill detection and monitoring has been proposed. The technique is based on the general RST (Robust Satellite Technique) approach which exploits multi-temporal satellite records in order to obtain a former characterization of the measured signal, in terms of expected value and natural variability, providing a further identification of signal anomalies by an automatic, unsupervised change detection step. Results obtained by using AVHRR (Advanced Very High Resolution Radiometer) Thermal Infrared data, in different geographic areas and observational conditions, demonstrated excellent detection capabilities both in term of sensitivity (to the presence even of thin/old oil films) and reliability (up to zero occurrence of false alarms), mainly due to the RST invariance regardless of local and environmental conditions. Exploiting its complete independence on the specific satellite platform, RST approach has been successfully exported to the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua satellites. In this paper, results obtained applying the proposed methodology to the recent oil spill disaster of Deepwater Horizon Platform in the gulf of Mexico, that discharged over 5 million barrels (550 million litres) in the ocean, will be shown. A dense temporal series of RST-based oil spill maps, obtained by using MODIS TIR records, are commented, emphasizing and discussing main peculiarities and specific characteristics of this event. Preliminary findings, possible residual limits and future perspectives will be also presented and discussed.

  2. Investigation of a Novel NDE Method for Monitoring Thermomechanical Damage and Microstructure Evolution in Ferritic-Martensitic Steels for Generation IV Nuclear Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagy, Peter

    2013-09-30

    The main goal of the proposed project is the development of validated nondestructive evaluation (NDE) techniques for in situ monitoring of ferritic-martensitic steels like Grade 91 9Cr-1Mo, which are candidate materials for Generation IV nuclear energy structural components operating at temperatures up to ~650{degree}C and for steam-generator tubing for sodium-cooled fast reactors. Full assessment of thermomechanical damage requires a clear separation between thermally activated microstructural evolution and creep damage caused by simultaneous mechanical stress. Creep damage can be classified as "negligible" creep without significant plastic strain and "ordinary" creep of the primary, secondary, and tertiary kind that is accompanied bymore » significant plastic deformation and/or cavity nucleation and growth. Under negligible creep conditions of interest in this project, minimal or no plastic strain occurs, and the accumulation of creep damage does not significantly reduce the fatigue life of a structural component so that low-temperature design rules, such as the ASME Section III, Subsection NB, can be applied with confidence. The proposed research project will utilize a multifaceted approach in which the feasibility of electrical conductivity and thermo-electric monitoring methods is researched and coupled with detailed post-thermal/creep exposure characterization of microstructural changes and damage processes using state-of-the-art electron microscopy techniques, with the aim of establishing the most effective nondestructive materials evaluation technique for particular degradation modes in high-temperature alloys that are candidates for use in the Next Generation Nuclear Plant (NGNP) as well as providing the necessary mechanism-based underpinnings for relating the two. Only techniques suitable for practical application in situ will be considered. As the project evolves and results accumulate, we will also study the use of this technique for monitoring other GEN IV materials. Through the results obtained from this integrated materials behavior and NDE study, new insight will be gained into the best nondestructive creep and microstructure monitoring methods for the particular mechanisms identified in these materials. The proposed project includes collaboration with a national laboratory partner and the results will also serve as a foundation to guide the efforts of scientists in the DOE laboratory, university, and industrial communities concerned with the technological challenges of monitoring creep and microstructural evolution in materials planned to be used in Generation IV Nuclear Energy Systems.« less

  3. Ion Monitoring

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2003-11-18

    The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.

  4. Development of a laboratory prototype water quality monitoring system suitable for use in zero gravity

    NASA Technical Reports Server (NTRS)

    Misselhorn, J. E.; Witz, S.; Hartung, W. H.

    1973-01-01

    The development of a laboratory prototype water quality monitoring system for use in the evaluation of candidate water recovery systems and for study of techniques for measuring potability parameters is reported. Sensing techniques for monitoring of the most desirable parameters are reviewed in terms of their sensitivities and complexities, and their recommendations for sensing techniques are presented. Rationale for selection of those parameters to be monitored (pH, specific conductivity, Cr(+6), I2, total carbon, and bacteria) in a next generation water monitor is presented along with an estimate of flight system specifications. A master water monitor development schedule is included.

  5. Kinetic aspects of bone mineral metabolism

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1973-01-01

    Two techniques were studied for measuring changes in bone mass in rats. One technique measures the Ar-37 produced from calcium during neutron irradiation and the other measures the changes in the Na-22 content which has been incorporated within the rat bone. Both methods are performed in VIVO and cause no significant physiological damage. The Ar-37 leaves the body of a rat within an hour after being produced, and it can be quantitatively collected and measured with a precision of - or + 2% on the same rat. With appropriate irradiation conditions it appears that the absolute quantity of calcuim in any rat can be determined within - or + 3% regardless of animal size. The Na-22 when uniformly distributed in bone, can be used to monitor bone mineral turnover and this has been demonstrated in conditions of calcium deficiency during growth and also pregnancy coupled with calcium deficiency.

  6. Ridge Regression Signal Processing

    NASA Technical Reports Server (NTRS)

    Kuhl, Mark R.

    1990-01-01

    The introduction of the Global Positioning System (GPS) into the National Airspace System (NAS) necessitates the development of Receiver Autonomous Integrity Monitoring (RAIM) techniques. In order to guarantee a certain level of integrity, a thorough understanding of modern estimation techniques applied to navigational problems is required. The extended Kalman filter (EKF) is derived and analyzed under poor geometry conditions. It was found that the performance of the EKF is difficult to predict, since the EKF is designed for a Gaussian environment. A novel approach is implemented which incorporates ridge regression to explain the behavior of an EKF in the presence of dynamics under poor geometry conditions. The basic principles of ridge regression theory are presented, followed by the derivation of a linearized recursive ridge estimator. Computer simulations are performed to confirm the underlying theory and to provide a comparative analysis of the EKF and the recursive ridge estimator.

  7. Forward problem studies of electrical resistance tomography system on concrete materials

    NASA Astrophysics Data System (ADS)

    Ang, Vernoon; Rahiman, M. H. F.; Rahim, R. A.; Aw, S. R.; Wahab, Y. A.; Thomas W. K., T.; Siow, L. T.

    2017-03-01

    Electrical resistance tomography (ERT) is well known as non-invasive imaging technique, inexpensive, radiation free, visualization measurements of the multiphase flows and frequently applied in geophysical, medical and Industrial Process Tomography (IPT) applications. Application of ERT in concrete is a new exploration field, which can be used in monitoring and detecting the health and condition of concrete without destroying it. In this paper, ERT model under the condition of concrete is studied in which the sensitivity field model is produced and simulated by using COMSOL software. The affects brought by different current injection values with different concrete conductivity are studied in detail. This study able to provide the important direction for the further study of inverse problem in ERT system. Besides, the results of this technique hopefully can open a new exploration in inspection method of concrete structures in order to maintain the health of the concrete structure for civilian safety.

  8. Research Techniques Made Simple: High-Throughput Sequencing of the T-Cell Receptor.

    PubMed

    Matos, Tiago R; de Rie, Menno A; Teunissen, Marcel B M

    2017-06-01

    High-throughput sequencing (HTS) of the T-cell receptor (TCR) is a rapidly advancing technique that allows sensitive and accurate identification and quantification of every distinct T-cell clone present within any biological sample. The relative frequency of each individual clone within the full T-cell repertoire can also be studied. HTS is essential to expand our knowledge on the diversity of the TCR repertoire in homeostasis or under pathologic conditions, as well as to understand the kinetics of antigen-specific T-cell responses that lead to protective immunity (i.e., vaccination) or immune-related disorders (i.e., autoimmunity and cancer). HTS can be tailored for personalized medicine, having the potential to monitor individual responses to therapeutic interventions and show prognostic and diagnostic biomarkers. In this article, we briefly review the methodology, advances, and limitations of HTS of the TCR and describe emerging applications of this technique in the field of investigative dermatology. We highlight studying the pathogenesis of T cells in allergic dermatitis and the application of HTS of the TCR in diagnosing, detecting recurrence early, and monitoring responses to therapy in cutaneous T-cell lymphoma. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Numerically based design of an orifice plate flowmetering system for human respiratory flow monitoring.

    PubMed

    Fortuna, A O; Gurd, J R

    1999-01-01

    During certain medical procedures, it is important to continuously measure the respiratory flow of a patient, as lack of proper ventilation can cause brain damage and ultimately death. The monitoring of the ventilatory condition of a patient is usually performed with the aid of flowmeters. However, water and other secretions present in the expired air can build up and ultimately block a traditional, restriction-based flowmeter; by using an orifice plate flowmeter, such blockages are minimized. This paper describes the design of an orifice plate flowmetering system including, especially, a description of the numerical and computational techniques adopted in order to simulate human respiratory and sinusoidal air flow across various possible designs for the orifice plate flowmeter device. Parallel computation and multigrid techniques were employed in order to reduce execution time. The simulated orifice plate was later built and tested under unsteady sinusoidal flows. Experimental tests show reasonable agreement with the numerical simulation, thereby reinforcing the general hypothesis that computational exploration of the design space is sufficiently accurate to allow designers of such systems to use this in preference to the more traditional, mechanical prototyping techniques.

  10. Low-Cost Oil Quality Sensor Based on Changes in Complex Permittivity

    PubMed Central

    Pérez, Angel Torres; Hadfield, Mark

    2011-01-01

    Real time oil quality monitoring techniques help to protect important industry assets, minimize downtime and reduce maintenance costs. The measurement of a lubricant’s complex permittivity is an effective indicator of the oil degradation process and it can be useful in condition based maintenance (CBM) to select the most adequate oil replacement maintenance schedules. A discussion of the working principles of an oil quality sensor based on a marginal oscillator to monitor the losses of the dielectric at high frequencies (>1 MHz) is presented. An electronic design procedure is covered which results in a low cost, effective and ruggedized sensor implementation suitable for use in harsh environments. PMID:22346666

  11. New Approach for Environmental Monitoring and Plant Observation Using a Light-Field Camera

    NASA Astrophysics Data System (ADS)

    Schima, Robert; Mollenhauer, Hannes; Grenzdörffer, Görres; Merbach, Ines; Lausch, Angela; Dietrich, Peter; Bumberger, Jan

    2015-04-01

    The aim of gaining a better understanding of ecosystems and the processes in nature accentuates the need for observing exactly these processes with a higher temporal and spatial resolution. In the field of environmental monitoring, an inexpensive and field applicable imaging technique to derive three-dimensional information about plants and vegetation would represent a decisive contribution to the understanding of the interactions and dynamics of ecosystems. This is particularly true for the monitoring of plant growth and the frequently mentioned lack of morphological information about the plants, e.g. plant height, vegetation canopy, leaf position or leaf arrangement. Therefore, an innovative and inexpensive light-field (plenoptic) camera, the Lytro LF, and a stereo vision system, based on two industrial cameras, were tested and evaluated as possible measurement tools for the given monitoring purpose. In this instance, the usage of a light field camera offers the promising opportunity of providing three-dimensional information without any additional requirements during the field measurements based on one single shot, which represents a substantial methodological improvement in the area of environmental research and monitoring. Since the Lytro LF was designed as a daily-life consumer camera, it does not support depth or distance estimation or rather an external triggering by default. Therefore, different technical modifications and a calibration routine had to be figured out during the preliminary study. As a result, the used light-field camera was proven suitable as a depth and distance measurement tool with a measuring range of approximately one meter. Consequently, this confirms the assumption that a light field camera holds the potential of being a promising measurement tool for environmental monitoring purposes, especially with regard to a low methodological effort in field. Within the framework of the Global Change Experimental Facility Project, founded by the Helmholtz Centre for Environmental Research, and its large-scaled field experiments to investigate the influence of the climate change on different forms of land utilization, both techniques were installed and evaluated in a long-term experiment on a pilot-scaled maize field in late 2014. Based on this, it was possible to show the growth of the plants in dependence of time, showing a good accordance to the measurements, which were carried out by hand on a weekly basis. In addition, the experiment has shown that the light-field vision approach is applicable for the monitoring of the crop growth under field conditions, although it is limited to close range applications. Since this work was intended as a proof of concept, further research is recommended, especially with respect to the automation and evaluation of data processing. Altogether, this study is addressed to researchers as an elementary groundwork to improve the usage of the introduced light field imaging technique for the monitoring of plant growth dynamics and the three-dimensional modeling of plants under field conditions.

  12. On structural health monitoring of aircraft adhesively bonded repairs

    NASA Astrophysics Data System (ADS)

    Pavlopoulou, Sofia

    The recent interest in life extension of ageing aircraft and the need to address the repair challenges in the new age composite ones, led to the investigation of new repair methodologies such as adhesively bonded repair patches. The present thesis focuses on structural health monitoring aspects of the repairs, evaluating their performance with guided ultrasonic waves aiming to develop a monitoring strategy which would eliminate unscheduled maintenance and unnecessary inspection costs. To address the complex nature of the wave propagation phenomena, a finite element based model identified the existing challenges by exploring the interaction of the excitation waves with different levels of damage. The damage sensitivity of the first anti-symmetric mode was numerically investigated. An external bonded patch and a scarf repair, were further tested in static and dynamic loadings, and their performance was monitored with Lamb waves, excited by surface-bonded piezoelectric transducers.. The response was processed by means of advanced pattern recognition and data dimension reduction techniques such as novelty detection and principal component analysis. An optimisation of these tools enabled an accurate damage detection under complex conditions. The phenomena of mode isolation and precise arrival time determination under a noisy environment and the problem of inadequate training data were investigated and solved through appropriate transducer arrangements and advanced signal processing respectively. The applicability of the established techniques was demonstrated on an aluminium repaired helicopter tail stabilizer. Each case study utilised alternative non-destructive techniques for validation such as 3D digital image correlation, X-ray radiography and thermography. Finally a feature selection strategy was developed through the analysis of the instantaneous properties of guided waves for damage detection purposes..

  13. The US Navy’s Helicopter Integrated Diagnostics System (HIDS) Program: Power Drive Train Crack Detection Diagnostics and Prognostics Life Usage Monitoring and Damage Tolerance; Techniques, Methodologies, and Experiences

    DTIC Science & Technology

    2000-02-01

    HIDS] Program: Power Drive Train Crack Detection Diagnostics and Prognostics ife Usage Monitoring and Damage Tolerance; Techniques, Methodologies, and...and Prognostics , Life Usage Monitoring , and Damage Tolerance; Techniques, Methodologies, and Experiences Andrew Hess Harrison Chin William Hardman...continuing program and deployed engine monitoring systems in fixed to evaluate helicopter diagnostic, prognostic , and wing aircraft, notably on the A

  14. Observing hydrological processes: recent advancements in surface flow monitoring through image analysis

    NASA Astrophysics Data System (ADS)

    Tauro, Flavia; Grimaldi, Salvatore

    2017-04-01

    Recently, several efforts have been devoted to the design and development of innovative, and often unintended, approaches for the acquisition of hydrological data. Among such pioneering techniques, this presentation reports recent advancements towards the establishment of a novel noninvasive and potentially continuous methodology based on the acquisition and analysis of images for spatially distributed observations of the kinematics of surface waters. The approach aims at enabling rapid, affordable, and accurate surface flow monitoring of natural streams. Flow monitoring is an integral part of hydrological sciences and is essential for disaster risk reduction and the comprehension of natural phenomena. However, water processes are inherently complex to observe: they are characterized by multiscale and highly heterogeneous phenomena which have traditionally demanded sophisticated and costly measurement techniques. Challenges in the implementation of such techniques have also resulted in lack of hydrological data during extreme events, in difficult-to-access environments, and at high temporal resolution. By combining low-cost yet high-resolution images and several velocimetry algorithms, noninvasive flow monitoring has been successfully conducted at highly heterogeneous scales, spanning from rills to highly turbulent streams, and medium-scale rivers, with minimal supervision by external users. Noninvasive image data acquisition has also afforded observations in high flow conditions. Latest novelties towards continuous flow monitoring at the catchment scale have entailed the development of a remote gauge-cam station on the Tiber River and integration of flow monitoring through image analysis with unmanned aerial systems (UASs) technology. The gauge-cam station and the UAS platform both afford noninvasive image acquisition and calibration through an innovative laser-based setup. Compared to traditional point-based instrumentation, images allow for generating surface flow velocity maps which fully describe the kinematics of the velocity field in natural streams. Also, continuous observations provide a close picture of the evolving dynamics of natural water bodies. Despite such promising achievements, dealing with images also involves coping with adverse illumination, massive data handling and storage, and data-intensive computing. Most importantly, establishing a novel observational technique requires estimation of the uncertainty associated to measurements and thorough comparison to existing benchmark approaches. In this presentation, we provide answers to some of these issues and perspectives for future research.

  15. Decoupling pipeline influences in soil resistivity measurements with finite element techniques

    NASA Astrophysics Data System (ADS)

    Deo, R. N.; Azoor, R. M.; Zhang, C.; Kodikara, J. K.

    2018-03-01

    Periodic inspection of pipeline conditions is an important asset management strategy conducted by water and sewer utilities for efficient and economical operations of their assets in field. The Level 1 pipeline condition assessment involving resistivity profiling along the pipeline right-of-way is a common technique for delineating pipe sections that might be installed in highly corrosive soil environment. However, the technique can suffer from significant perturbations arising from the buried pipe itself, resulting in errors in native soil characterisation. To address this problem, a finite element model was developed to investigate the degree to which pipes of different a) diameters, b) burial depths, and c) surface conditions (bare or coated) can influence in-situ soil resistivity measurements using Wenner methods. It was found that the greatest errors can arise when conducting measurements over a bare pipe with the array aligned parallel to the pipe. Depending upon the pipe surface conditions, in-situ resistivity measurements can either be underestimated or overestimated from true soil resistivities. Following results based on simulations and decoupling equations, a guiding framework for removing pipe influences in soil resistivity measurements were developed that can be easily used to perform corrections on measurements. The equations require simple a-prior information on the pipe diameter, burial depth, surface condition, and the array length and orientation used. Findings from this study have immediate application and is envisaged to be useful for critical civil infrastructure monitoring and assessment.

  16. [Demonstrating that monitoring and punishing increase non-cooperative behavior in a social dilemma game].

    PubMed

    Kitakaji, Yoko; Ohnuma, Susumu

    2014-04-01

    This research demonstrated the negative influence of monitoring and punishing during a social dilemma game, taking the illegal dumping of industrial waste as an example. The first study manipulated three conditions: a producing-industries monitoring condition (PIM), an administrative monitoring condition (ADM), and a control condition (no monitoring). The results showed that non-cooperative behavior was more frequent in the PIM condition than in the control condition. The second study had three conditions: a punishing condition (PC), a monitoring condition (MC), and a control condition (no monitoring, no punishing). The results indicated that non-cooperative behavior was observed the most in the PC, and the least in the control condition. Furthermore, information regarding other players' costs and benefits was shared the most in the control conditions in both studies. The results suggest that sanctions prevent people from sharing information, which decreases expectations of mutual cooperation.

  17. Contact thermal shock test of ceramics

    NASA Technical Reports Server (NTRS)

    Rogers, W. P.; Emery, A. F.

    1992-01-01

    A novel quantitative thermal shock test of ceramics is described. The technique employs contact between a metal-cooling rod and hot disk-shaped specimen. In contrast with traditional techniques, the well-defined thermal boundary condition allows for accurate analyses of heat transfer, stress, and fracture. Uniform equibiaxial tensile stresses are induced in the center of the test specimen. Transient specimen temperature and acoustic emission are monitored continuously during the thermal stress cycle. The technique is demonstrated with soda-lime glass specimens. Experimental results are compared with theoretical predictions based on a finite-element method thermal stress analysis combined with a statistical model of fracture. Material strength parameters are determined using concentric ring flexure tests. Good agreement is found between experimental results and theoretical predictions of failure probability as a function of time and initial specimen temperature.

  18. Heat transfer monitoring by means of the hot wire technique and finite element analysis software.

    PubMed

    Hernández Wong, J; Suarez, V; Guarachi, J; Calderón, A; Rojas-Trigos, J B; Juárez, A G; Marín, E

    2014-01-01

    It is reported the study of the radial heat transfer in a homogeneous and isotropic substance with a heat linear source in its axial axis. For this purpose, the hot wire characterization technique has been used, in order to obtain the temperature distribution as a function of radial distance from the axial axis and time exposure. Also, the solution of the transient heat transport equation for this problem was obtained under appropriate boundary conditions, by means of finite element technique. A comparison between experimental, conventional theoretical model and numerical simulated results is done to demonstrate the utility of the finite element analysis simulation methodology in the investigation of the thermal response of substances. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Gain stabilization control system of the upgraded magnetic proton recoil neutron spectrometer at JET.

    PubMed

    Sjöstrand, Henrik; Andersson Sundén, E; Conroy, S; Ericsson, G; Gatu Johnson, M; Giacomelli, L; Gorini, G; Hellesen, C; Hjalmarsson, A; Popovichev, S; Ronchi, E; Tardocchi, M; Weiszflog, M

    2009-06-01

    Burning plasma experiments such as ITER and DEMO require diagnostics capable of withstanding the harsh environment generated by the intense neutron flux and to maintain stable operating conditions for times longer than present day systems. For these reasons, advanced control and monitoring (CM) systems will be necessary for the reliable operation of diagnostics. This paper describes the CM system of the upgraded magnetic proton recoil neutron spectrometer installed at the Joint European Torus focusing in particular on a technique for the stabilization of the gain of the photomultipliers coupled to the neutron detectors. The results presented here show that this technique provides good results over long time scales. The technique is of general interest for all diagnostics that employ scintillators coupled to photomultiplier tubes.

  20. Understanding fetal physiology and second line monitoring during labor.

    PubMed

    Garabedian, C; De Jonckheere, J; Butruille, L; Deruelle, P; Storme, L; Houfflin-Debarge, V

    2017-02-01

    Cardiotocography (CTG) is a technique used to monitor intrapartum fetal condition and is one of the most common obstetric procedures. Second line methods of fetal monitoring have been developed in an attempt to reduce unnecessary interventions due to continuous cardiotocography and to better identify fetuses at risk of intrapartum asphyxia. The acid-base balance of the fetus is evaluated by fetal blood scalp samples, the modification of the myocardial oxygenation by the fetal ECG ST-segment analysis (STAN) and the autonomic nervous system by the power spectral analysis of the fetal heart variability. To correctly interpret the features observed on CTG traces or second line methods, it seems important to understand normal physiology during labor and the compensatory mechanisms of the fetus in case of hypoxemia. Therefore, the aim of this review is first to describe fetal physiology during labor and then to explain the modification of the second line monitoring during labor. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Monitoring the battery status for photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Kim, Myungsoo; Hwang, Euijin

    Photovoltaic power systems in Korea have been installed in remote islands where it is difficult to connect the utilities. Lead/acid batteries are used as an energy storage device for the stand-alone photovoltaic system. Hence, monitoring the battery status of photovoltaic systems is quite important to extend the total system service life. To monitor the state-of-charge of batteries, we adopted a current interrupt technique to measure the internal resistance of the battery. The internal resistance increases at the end of charge/discharge steps and also with cycles. The specific gravity of the electrolyte was measured in relation to the state-of-charge. A home-made optical hydrometer was utilized for automatic monitoring of the specific gravity. It is shown that the specific gravity and stratification increase with cycle number. One of the photovoltaic systems in a remote island, Ho-do, which has 90 kW peak power was checked for actual operational conditions such as solar generation, load, and battery status.

  2. Submerged Medium Voltage Cable Systems at Nuclear Power Plants. A Review of Research Efforts Relevant to Aging Mechanisms and Condition Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Jason; Bernstein, Robert; White, II, Gregory Von

    In a submerged environment, power cables may experience accelerated insulation degradation due to water - related aging mechanisms . Direct contact with water or moisture intrusion in the cable insulation s ystem has been identified in the literature as a significant aging stressor that can affect performance and lifetime of electric cables . Progressive reduction of the dielectric strength is commonly a result of water treeing which involves the development of permanent hydrophilic structures in the insulation coinciding with the absorption of water into the cable . Water treeing is a phenomenon in which dendritic microvoids are formed in electricmore » cable insulation due to electrochemic al reactions , electromechanical forces , and diffusion of contaminants over time . These reactions are caused by the combined effect s of water presence and high electrical stress es in the material . Water tree growth follow s a tree - like branching pattern , i ncreasing in volume and length over time . Although these cables can be "dried out," water tree degradation , specifically the growth of hydrophilic regions, is believed to be permanent and typically worsens over time. Based on established research , water treeing or water induced damage can occur in a variety of electric cables including XLPE, TR - XLPE and other insulating materials, such as EPR and butyl rubber . Once water trees or water induced damage form, the dielectric strength of an insulation materia l will decrease gradually with time as the water trees grow in length, which could eventually result in failure of the insulating material . Under wet conditions or i n submerged environments , several environmental and operational parameters can influence w ater tree initiation and affect water tree growth . These parameters include voltage cycling, field frequency, temperature, ion concentration and chemistry, type of insula tion material , and the characteristics of its defects. In this effort, a review of academic and industrial literature was performed to identify : 1) findings regarding the degradation mechanisms of submerged cabling and 2) condition monitoring methods that may prove useful in predict ing the remaining lifetime of submerged medium voltage p ower cables . The re search was conducted by a multi - disciplinary team , and s ources includ ed official NRC reports, n ational l aboratory reports , IEEE standards, conference and journal proceedings , magazine articles , PhD dissertations , and discussions with experts . The purpose of this work was to establish the current state - of - the - art in material degradation modeling and cable condition monitoring techniques and to identify research gaps . Subsequently, future areas of focus are recommended to address these research gaps and thus strengthen the efficacy of the NRC's developing cable condition monitoring program . Results of this literature review and details of the test ing recommendations are presented in this report . FOREWORD To ensure the safe, re liable, and cost - effective long - term operation of nuclear power plants, many systems, structures, and components must be continuously evaluated. The Nuclear Regulatory Commission (NRC) has identified that cables in submerged environments are of concern, particularly as plants are seeking license renewal. To date, there is a lack of consensus on aging and degradation mechanisms even though the area of submerged cables has been extensively studied. Consequently, the ability to make lifetime predictions for submerged cable does not yet exist. The NRC has engaged Sandia National Laboratories (SNL) to lead a coordinated effort to help elucidate the aging and degradation of cables in submerged environments by collaborating with cable manufacturers, utilities, universities, and other government agencies. A team of SNL experts was assembled from the laboratories including electrical condition monitoring, mat erial science, polymer degradation, plasma physics, nuclear systems, and statistics. An objective of this research program is to perform a l iterature r eview to gather a body of knowledge on prior research projects, technical papers, and literature related to cable degradation in a submerged environment. In addition, the information gathered from the literature review will be employed to gain insights for developing an aging coefficient, and to determine which condition monitoring techniques are capable of tracking cable degradation in a submerged environment. Moreover, the information gathered from the l iterature r eview will also be used to determine which approach or approaches are best suited to develop test methods for accelerated aging and condition m onitoring of medium voltage cables. In summary of this initial effort, s ignificant work has been performed on submerged cable insulation degradation; however, there is a lack of uniform theories and acceptance of chemical and physical pathways. This lack of fundamental understanding is coupled with the inability to make predictive statements about material performance in wet or submerged environments. S elect condition monitoring methods known to the industry are discussed in this report and a dditional co ndition monitoring methods were added in this effort based on recommendations from the Nuclear Energy Standards Coordinating Collaborative and available literature. This NUREG review provides additional clarity on the use of condition monitoring methods t o detect water - related damage to medium voltage cable and new methods and approaches proposed in academia and industry. In order t o ensure continued improvement in the efficacy of a cable condition monitoring program, continued research and development (R&D) efforts are necessary. R&D efforts should complement operations, iteratively improving condition monitoring policies, procedures and outcomes. Ideally, field and laboratory data enable improved understanding of material science which in turn inform s the development of new or improved condition monitoring methods and lifetime models. Finally, these improved methods and models aid in the refinement of condition monitoring policies and procedures.« less

  3. Drought monitoring and assessment: Remote sensing and modeling approaches for the Famine Early Warning Systems Network

    USGS Publications Warehouse

    Senay, Gabriel; Velpuri, Naga Manohar; Bohms, Stefanie; Budde, Michael; Young, Claudia; Rowland, James; Verdin, James

    2015-01-01

    Drought monitoring is an essential component of drought risk management. It is usually carried out using drought indices/indicators that are continuous functions of rainfall and other hydrometeorological variables. This chapter presents a few examples of how remote sensing and hydrologic modeling techniques are being used to generate a suite of drought monitoring indicators at dekadal (10-day), monthly, seasonal, and annual time scales for several selected regions around the world. Satellite-based rainfall estimates are being used to produce drought indicators such as standardized precipitation index, dryness indicators, and start of season analysis. The Normalized Difference Vegetation Index is being used to monitor vegetation condition. Several satellite data products are combined using agrohydrologic models to produce multiple short- and long-term indicators of droughts. All the data sets are being produced and updated in near-real time to provide information about the onset, progression, extent, and intensity of drought conditions. The data and products produced are available for download from the Famine Early Warning Systems Network (FEWS NET) data portal at http://earlywarning.usgs.gov. The availability of timely information and products support the decision-making processes in drought-related hazard assessment, monitoring, and management with the FEWS NET. The drought-hazard monitoring approach perfected by the U.S. Geological Survey for FEWS NET through the integration of satellite data and hydrologic modeling can form the basis for similar decision support systems. Such systems can operationally produce reliable and useful regional information that is relevant for local, district-level decision making.

  4. Non-Invasive Monitoring of Cardiac Output in Critical Care Medicine.

    PubMed

    Nguyen, Lee S; Squara, Pierre

    2017-01-01

    Critically ill patients require close hemodynamic monitoring to titrate treatment on a regular basis. It allows administering fluid with parsimony and adjusting inotropes and vasoactive drugs when necessary. Although invasive monitoring is considered as the reference method, non-invasive monitoring presents the obvious advantage of being associated with fewer complications, at the expanse of accuracy, precision, and step-response change. A great many methods and devices are now used over the world, and this article focuses on several of them, providing with a brief review of related underlying physical principles and validation articles analysis. Reviewed methods include electrical bioimpedance and bioreactance, respiratory-derived cardiac output (CO) monitoring technique, pulse wave transit time, ultrasound CO monitoring, multimodal algorithmic estimation, and inductance thoracocardiography. Quality criteria with which devices were reviewed included: accuracy (closeness of agreement between a measurement value and a true value of the measured), precision (closeness of agreement between replicate measurements on the same or similar objects under specified conditions), and step response change (delay between physiological change and its indication). Our conclusion is that the offer of non-invasive monitoring has improved in the past few years, even though further developments are needed to provide clinicians with sufficiently accurate devices for routine use, as alternative to invasive monitoring devices.

  5. In-situ monitoring of H2O2 degradation by live cells using voltammetric detection in a lab-on-valve system.

    PubMed

    Lähdesmäki, Ilkka; Park, Young K; Carroll, Andrea D; Decuir, Michael; Ruzicka, Jaromir

    2007-08-01

    This paper describes a method for monitoring the degradation of hydrogen peroxide by cells immobilized on a beaded support. The detection is based on the voltammetric reduction of hydrogen peroxide on a mercury film working electrode, whilst combining the concept of sequential injection (SI) with the lab-on-valve (LOV) manifold allows the measurements to be carried out in real time and automatically, in well-defined conditions. The method is shown to be capable of simultaneously monitoring hydrogen peroxide in the 10-1000 microM range and oxygen in the 160-616 microM range. A correction algorithm has been used to ensure reliable H2O2 results in the presence of varying oxygen levels. The method has been successfully applied to monitoring the degradation of H2O2 by wild-type cells and by catalase-overexpressing mouse embryonic fibroblasts. Since the technique allows the monitoring of the initial response rate, it provides data not accessible by current methods that are end-point-based measurements.

  6. Space-Proven Medical Monitor: The Total Patient-Care Package

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The primary objective of the Gemini Program was to develop techniques that would allow for advanced, long-duration space travel, a prerequisite of the ensuing Apollo Program that would put man safely on the Moon before the end of the decade. In order to carry out this objective, NASA worked with a variety of innovative companies to develop propulsion systems, onboard computers, and docking capabilities that were critical to the health of Gemini spacecraft, as well as life-support systems and physiological-monitoring devices that were critical to the health of Gemini astronauts. One of these companies was Spacelabs Medical, Inc., the pioneer of what is commonly known today as medical telemetry. Spacelabs Medical helped NASA better understand man s reaction to space through a series of bioinstrumentation devices that, for the first time ever, were capable of monitoring orbiting astronauts physical conditions in real time, from Earth. The company went on to further expand its knowledge of monitoring and maintaining health in space, and then brought it down to Earth, to dramatically change the course of patient monitoring in the field of health care.

  7. Anomaly Detection Techniques for the Condition Monitoring of Tidal Turbines

    DTIC Science & Technology

    2014-09-29

    particularly beneficial to this industry. This paper explores the use of the CRISP - DM data mining process model for identifying key trends within...within tidal turbines with limited historical data. Using the CRISP - DM data mining methodology (Wirth & Hipp, 2000), key relationships between...indicate a change in the response of the system, indicating the possible onset of a fault. 1.2.1. CRISP - DM The CRISP - DM (Cross-Industry Standard

  8. The application of data mining and cloud computing techniques in data-driven models for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Khazaeli, S.; Ravandi, A. G.; Banerji, S.; Bagchi, A.

    2016-04-01

    Recently, data-driven models for Structural Health Monitoring (SHM) have been of great interest among many researchers. In data-driven models, the sensed data are processed to determine the structural performance and evaluate the damages of an instrumented structure without necessitating the mathematical modeling of the structure. A framework of data-driven models for online assessment of the condition of a structure has been developed here. The developed framework is intended for automated evaluation of the monitoring data and structural performance by the Internet technology and resources. The main challenges in developing such framework include: (a) utilizing the sensor measurements to estimate and localize the induced damage in a structure by means of signal processing and data mining techniques, and (b) optimizing the computing and storage resources with the aid of cloud services. The main focus in this paper is to demonstrate the efficiency of the proposed framework for real-time damage detection of a multi-story shear-building structure in two damage scenarios (change in mass and stiffness) in various locations. Several features are extracted from the sensed data by signal processing techniques and statistical methods. Machine learning algorithms are deployed to select damage-sensitive features as well as classifying the data to trace the anomaly in the response of the structure. Here, the cloud computing resources from Amazon Web Services (AWS) have been used to implement the proposed framework.

  9. Health monitoring of pipeline girth weld using empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Rezaei, Davood; Taheri, Farid

    2010-05-01

    In the present paper the Hilbert-Huang transform (HHT), as a time-series analysis technique, has been combined with a local diagnostic approach in an effort to identify flaws in pipeline girth welds. This method is based on monitoring the free vibration signals of the pipe at its healthy and flawed states, and processing the signals through the HHT and its associated signal decomposition technique, known as empirical mode decomposition (EMD). The EMD method decomposes the vibration signals into a collection of intrinsic mode functions (IMFs). The deviations in structural integrity, measured from a healthy-state baseline, are subsequently evaluated by two damage sensitive parameters. The first is a damage index, referred to as the EM-EDI, which is established based on an energy comparison of the first or second IMF of the vibration signals, before and after occurrence of damage. The second parameter is the evaluation of the lag in instantaneous phase, a quantity derived from the HHT. In the developed methodologies, the pipe's free vibration is monitored by piezoceramic sensors and a laser Doppler vibrometer. The effectiveness of the proposed techniques is demonstrated through a set of numerical and experimental studies on a steel pipe with a mid-span girth weld, for both pressurized and nonpressurized conditions. To simulate a crack, a narrow notch is cut on one side of the girth weld. Several damage scenarios, including notches of different depths and at various locations on the pipe, are investigated. Results from both numerical and experimental studies reveal that in all damage cases the sensor located at the notch vicinity could successfully detect the notch and qualitatively predict its severity. The effect of internal pressure on the damage identification method is also monitored. Overall, the results are encouraging and promise the effectiveness of the proposed approaches as inexpensive systems for structural health monitoring purposes.

  10. Smart acoustic emission system for wireless monitoring of concrete structures

    NASA Astrophysics Data System (ADS)

    Yoon, Dong-Jin; Kim, Young-Gil; Kim, Chi-Yeop; Seo, Dae-Cheol

    2008-03-01

    Acoustic emission (AE) has emerged as a powerful nondestructive tool to detect preexisting defects or to characterize failure mechanisms. Recently, this technique or this kind of principle, that is an in-situ monitoring of inside damages of materials or structures, becomes increasingly popular for monitoring the integrity of large structures. Concrete is one of the most widely used materials for constructing civil structures. In the nondestructive evaluation point of view, a lot of AE signals are generated in concrete structures under loading whether the crack development is active or not. Also, it was required to find a symptom of damage propagation before catastrophic failure through a continuous monitoring. Therefore we have done a practical study in this work to fabricate compact wireless AE sensor and to develop diagnosis system. First, this study aims to identify the differences of AE event patterns caused by both real damage sources and the other normal sources. Secondly, it was focused to develop acoustic emission diagnosis system for assessing the deterioration of concrete structures such as a bridge, dame, building slab, tunnel etc. Thirdly, the wireless acoustic emission system was developed for the application of monitoring concrete structures. From the previous laboratory study such as AE event patterns analysis under various loading conditions, we confirmed that AE analysis provided a promising approach for estimating the condition of damage and distress in concrete structures. In this work, the algorithm for determining the damage status of concrete structures was developed and typical criteria for decision making was also suggested. For the future application of wireless monitoring, a low energy consumable, compact, and robust wireless acoustic emission sensor module was developed and applied to the concrete beam for performance test. Finally, based on the self-developed diagnosis algorithm and compact wireless AE sensor, new AE system for practical AE diagnosis was demonstrated for assessing the conditions of damage and distress in concrete structures.

  11. Monitoring protocols: Options, approaches, implementation, benefits

    USGS Publications Warehouse

    Karl, Jason W.; Herrick, Jeffrey E.; Pyke, David A.

    2017-01-01

    Monitoring and adaptive management are fundamental concepts to rangeland management across land management agencies and embodied as best management practices for private landowners. Historically, rangeland monitoring was limited to determining impacts or maximizing the potential of specific land uses—typically grazing. Over the past several decades, though, the uses of and disturbances to rangelands have increased dramatically against a backdrop of global climate change that adds uncertainty to predictions of future rangeland conditions. Thus, today’s monitoring needs are more complex (or multidimensional) and yet still must be reconciled with the realities of costs to collect requisite data. However, conceptual advances in rangeland ecology and management and changes in natural resource policies and societal values over the past 25 years have facilitated new approaches to monitoring that can support rangeland management’s diverse information needs. Additionally, advances in sensor technologies and remote-sensing techniques have broadened the suite of rangeland attributes that can be monitored and the temporal and spatial scales at which they can be monitored. We review some of the conceptual and technological advancements and provide examples of how they have influenced rangeland monitoring. We then discuss implications of these developments for rangeland management and highlight what we see as challenges and opportunities for implementing effective rangeland monitoring. We conclude with a vision for how monitoring can contribute to rangeland information needs in the future.

  12. Tracking flow of leukocytes in blood for drug analysis

    NASA Astrophysics Data System (ADS)

    Basharat, Arslan; Turner, Wesley; Stephens, Gillian; Badillo, Benjamin; Lumpkin, Rick; Andre, Patrick; Perera, Amitha

    2011-03-01

    Modern microscopy techniques allow imaging of circulating blood components under vascular flow conditions. The resulting video sequences provide unique insights into the behavior of blood cells within the vasculature and can be used as a method to monitor and quantitate the recruitment of inflammatory cells at sites of vascular injury/ inflammation and potentially serve as a pharmacodynamic biomarker, helping screen new therapies and individualize dose and combinations of drugs. However, manual analysis of these video sequences is intractable, requiring hours per 400 second video clip. In this paper, we present an automated technique to analyze the behavior and recruitment of human leukocytes in whole blood under physiological conditions of shear through a simple multi-channel fluorescence microscope in real-time. This technique detects and tracks the recruitment of leukocytes to a bioactive surface coated on a flow chamber. Rolling cells (cells which partially bind to the bioactive matrix) are detected counted, and have their velocity measured and graphed. The challenges here include: high cell density, appearance similarity, and low (1Hz) frame rate. Our approach performs frame differencing based motion segmentation, track initialization and online tracking of individual leukocytes.

  13. Sideband Algorithm for Automatic Wind Turbine Gearbox Fault Detection and Diagnosis: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zappala, D.; Tavner, P.; Crabtree, C.

    2013-01-01

    Improving the availability of wind turbines (WT) is critical to minimize the cost of wind energy, especially for offshore installations. As gearbox downtime has a significant impact on WT availabilities, the development of reliable and cost-effective gearbox condition monitoring systems (CMS) is of great concern to the wind industry. Timely detection and diagnosis of developing gear defects within a gearbox is an essential part of minimizing unplanned downtime of wind turbines. Monitoring signals from WT gearboxes are highly non-stationary as turbine load and speed vary continuously with time. Time-consuming and costly manual handling of large amounts of monitoring data representmore » one of the main limitations of most current CMSs, so automated algorithms are required. This paper presents a fault detection algorithm for incorporation into a commercial CMS for automatic gear fault detection and diagnosis. The algorithm allowed the assessment of gear fault severity by tracking progressive tooth gear damage during variable speed and load operating conditions of the test rig. Results show that the proposed technique proves efficient and reliable for detecting gear damage. Once implemented into WT CMSs, this algorithm can automate data interpretation reducing the quantity of information that WT operators must handle.« less

  14. Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors.

    PubMed

    Rizzolo, S; Périsse, J; Boukenter, A; Ouerdane, Y; Marin, E; Macé, J-R; Cannas, M; Girard, S

    2017-08-18

    We present an innovative architecture of a Rayleigh-based optical fibre sensor for the monitoring of water level and temperature inside storage nuclear fuel pools. This sensor, able to withstand the harsh constraints encountered under accidental conditions such as those pointed-out during the Fukushima-Daiichi event (temperature up to 100 °C and radiation dose level up to ~20 kGy), exploits the Optical Frequency Domain Reflectometry technique to remotely monitor a radiation resistant silica-based optical fibre i.e. its sensing probe. We validate the efficiency and the robustness of water level measurements, which are extrapolated from the temperature profile along the fibre length, in a dedicated test bench allowing the simulation of the environmental operating and accidental conditions. The conceived prototype ensures an easy, practical and no invasive integration into existing nuclear facilities. The obtained results represent a significant breakthrough and comfort the ability of the developed system to overcome both operating and accidental constraints providing the distributed profiles of the water level (0-to-5 m) and temperature (20-to-100 °C) with a resolution that in accidental condition is better than 3 cm and of ~0.5 °C respectively. These new sensors will be able, as safeguards, to contribute and reinforce the safety in existing and future nuclear power plants.

  15. Monitoring and identification of spatiotemporal landscape changes in multiple remote sensing images by using a stratified conditional Latin hypercube sampling approach and geostatistical simulation.

    PubMed

    Lin, Yu-Pin; Chu, Hone-Jay; Huang, Yu-Long; Tang, Chia-Hsi; Rouhani, Shahrokh

    2011-06-01

    This study develops a stratified conditional Latin hypercube sampling (scLHS) approach for multiple, remotely sensed, normalized difference vegetation index (NDVI) images. The objective is to sample, monitor, and delineate spatiotemporal landscape changes, including spatial heterogeneity and variability, in a given area. The scLHS approach, which is based on the variance quadtree technique (VQT) and the conditional Latin hypercube sampling (cLHS) method, selects samples in order to delineate landscape changes from multiple NDVI images. The images are then mapped for calibration and validation by using sequential Gaussian simulation (SGS) with the scLHS selected samples. Spatial statistical results indicate that in terms of their statistical distribution, spatial distribution, and spatial variation, the statistics and variograms of the scLHS samples resemble those of multiple NDVI images more closely than those of cLHS and VQT samples. Moreover, the accuracy of simulated NDVI images based on SGS with scLHS samples is significantly better than that of simulated NDVI images based on SGS with cLHS samples and VQT samples, respectively. However, the proposed approach efficiently monitors the spatial characteristics of landscape changes, including the statistics, spatial variability, and heterogeneity of NDVI images. In addition, SGS with the scLHS samples effectively reproduces spatial patterns and landscape changes in multiple NDVI images.

  16. Off-line and real-time monitoring of acetaminophen photodegradation by an electrochemical sensor.

    PubMed

    Berto, Silvia; Carena, Luca; Chiavazza, Enrico; Marletti, Matteo; Fin, Andrea; Giacomino, Agnese; Malandrino, Mery; Barolo, Claudia; Prenesti, Enrico; Vione, Davide

    2018-08-01

    The photochemistry of N-acetyl-para-aminophenol (acetaminophen, APAP) is here investigated by using differential pulse voltammetry (DPV) analysis to monitor APAP photodegradation upon steady-state irradiation. The purpose of this work is to assess the applicability of DPV to monitor the photochemical behaviour of xenobiotics, along with the development of an electrochemical set-up for the real-time monitoring of APAP photodegradation. We here investigated the APAP photoreactivity towards the main photogenerated reactive transients species occurring in sunlit surface waters (hydroxyl radical HO, carbonate radical CO 3 - , excited triplet state of anthraquinone-2-sulfonate used as proxy of the chromophoric DOM, and singlet oxygen 1 O 2 ), and determined relevant kinetic parameters. A standard procedure based on UV detection coupled with liquid chromatography (HPLC-UV) was used under identical experimental conditions to compare and verify the DPV-based results. The latter were in agreement with HPLC data, with the exception of the triplet-sensitized processes. In the other cases, DPV could be used as an alternative to the well-tested but more costly and time-consuming HPLC-UV technique. We have also assessed the reaction rate constant between APAP and HO by real-time DPV, which allowed for the monitoring of APAP photodegradation inside the irradiation chamber. Unfortunately, real-time DPV measurements are likely to be affected by temperature variations of the irradiated samples. Overall, DPV appeared as a fast, cheap and reasonably reliable technique when used for the off-line monitoring of APAP photodegradation. When a suitable real-time procedure is developed, it could become a very straightforward method to study the photochemical behaviour of electroactive xenobiotics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Online monitoring of dissolved oxygen tension in microtiter plates based on infrared fluorescent oxygen-sensitive nanoparticles.

    PubMed

    Ladner, Tobias; Flitsch, David; Schlepütz, Tino; Büchs, Jochen

    2015-10-09

    During the past years, new high-throughput screening systems with capabilities of online monitoring turned out to be powerful tools for the characterization of microbial cell cultures. These systems are often easy to use, offer economic advantages compared to larger systems and allow to determine many important process parameters within short time. Fluorescent protein tags tremendously simplified the tracking and observation of cellular activity in vivo. Unfortunately, interferences between established fluorescence based dissolved oxygen tension (DOT) measurement techniques and fluorescence-based protein tags appeared. Therefore, the applicability of new oxygen-sensitive nanoparticles operated within the more suitable infrared wavelength region are introduced and validated for DOT measurement. The biocompatibility of the used dispersed oxygen-sensitive nanoparticles was proven via RAMOS cultivations for Hansenula polymorpha, Gluconobacter oxydans, and Escherichia coli. The applicability of the introduced DOT measurement technique for online monitoring of cultivations was demonstrated and successfully validated. The nanoparticles showed no disturbing effect on the online measurement of the fluorescence intensities of the proteins GFP, mCherry and YFP measured by a BioLector prototype. Additionally, the DOT measurement was not influenced by changing concentrations of these proteins. The kLa values for the applied cultivation conditions were successfully determined based on the measured DOT. The introduced technique appeared to be practically as well as economically advantageous for DOT online measuring in microtiter plates. The disadvantage of limited availability of microtiter plates with immobilized sensor spots (optodes) does not apply for this introduced technique. Due to the infrared wavelength range, used for the DOT measurement, no interferences with biogenic fluorescence or with expressed fluorescent proteins (e.g. YFP, GFP or mCherry) occur.

  18. Value centric approaches to the design, operations and maintenance of wind turbines

    NASA Astrophysics Data System (ADS)

    Khadabadi, Madhur Aravind

    Wind turbine maintenance is emerging as an unexpectedly high component of turbine operating cost, and there is an increasing interest in managing this cost. This thesis presents an alternative view of maintenance as a value-driver, and develops an optimization algorithm to evaluate the value delivered by different maintenance techniques. I view maintenance as an operation that moves the turbine to an improved state in which it can generate more power and, thus, earn more revenue. To implement this approach, I model the stochastic deterioration of the turbine in two dimensions: the deterioration rate, and the extent of deterioration, and then use maintenance to improve the state of the turbine. The value of the turbine is the difference between the revenue from to the power generation and the costs incurred in operation and maintenance. With a focus on blade deterioration, I evaluate the value delivered by implementing two different maintenance schemes, predictive maintenance and scheduled maintenance. An example of predictive maintenance technique is the use of Condition Monitoring Systems to precisely detect deterioration. I model Condition Monitoring System (CMS) of different degrees of fidelity, where a higher fidelity CMS would allow the blade state to be determined with a higher precision. The same model is then applied for the scheduled maintenance technique. The improved state information obtained from these techniques is then used to derive an optimal maintenance strategy. The difference between the value of the turbine with and without the inspection type can be interpreted as the value of the inspection. The results indicate that a higher fidelity (and more expensive) inspection method does not necessarily yield the highest value, and, that there is an optimal level of fidelity that results in maximum value. The results also aim to inform the operator of the impact of regional parameters such as wind speed, variance and maintenance costs to the optimal maintenance strategy. The contributions of this work are twofold. First, I present a practical approach to wind turbine valuation that takes operating and market conditions into account. This work should therefore be useful to wind farm operators, investors and decision makers. Second, I show how the value of a maintenance scheme can be explicitly assessed for different conditions.

  19. Remote and terrestrial ground monitoring techniques integration for hazard assessment in mountain areas

    NASA Astrophysics Data System (ADS)

    Chinellato, Giulia; Kenner, Robert; Iasio, Christian; Mair, Volkmar; Mosna, David; Mulas, Marco; Phillips, Marcia; Strada, Claudia; Zischg, Andreas

    2014-05-01

    In high mountain regions the choice of appropriate sites for infrastructure such as roads, railways, cable cars or hydropower dams is often very limited. In parallel, the increasing demand for supply infrastructure in the Alps induces a continuous transformation of the territory. The new role played by the precautionary monitoring in the risk governance becomes fundamental and may overcome the modeling of future events, which represented so far the predominant approach to these sort of issues. Furthermore the consequence of considering methodologies alternative to those more exclusive allow to reduce costs and increasing the frequency of measurements, updating continuously the cognitive framework of existing hazard condition in most susceptible territories. The scale factor of the observed area and the multiple purpose of such regional ordinary surveys make it convenient to adopt Radar Satellite-based systems, but they need to be integrated with terrestrial systems for validation and eventual early warning purposes. Significant progress over the past decade in Remote Sensing (RS), Proximal Sensing and integration-based sensor networks systems now provide technologies, that allow to implement monitoring systems for ordinary surveys of extensive areas or regions, which are affected by active natural processes and slope instability. The Interreg project SloMove aims to provide solutions for such challenges and focuses on using remote sensing monitoring techniques for the monitoring of mass movements in two test sites, in South Tyrol (Italy) and in Grisons Canton (Switzerland). The topics faced in this project concern mass movements and slope deformation monitoring techniques, focusing mainly on the integration of multi-temporal interferometry, new generation of terrestrial technologies for differential digital terrain model elaboration provided by laser scanner (TLS), and GNSS-based topographic surveys, which are used not only for validation purpose, but also for adding value and information to the whole monitoring survey. The test sites are currently observed by an original integrated methodology specifically developed within the aim of the project. The integrated monitoring design includes reference targets for the different monitoring systems placed together on the same point or rigid foundation, to facilitate the comparison of the data and, in the operational use, to be able to switch consistently from one to the other system. The principal goal of the project is to define a shared procedure to select scalable technologies, best practices and institutional action plans more adequate to deal with different sort of hazard related to ground displacement, in densely populated mountain areas containing recreational and critical infrastructures. Keywords: integrated monitoring, multi-temporal interferometry, artificial reflectors; mass movement, SloMove.eu

  20. An overview: modern techniques for railway vehicle on-board health monitoring systems

    NASA Astrophysics Data System (ADS)

    Li, Chunsheng; Luo, Shihui; Cole, Colin; Spiryagin, Maksym

    2017-07-01

    Health monitoring systems with low-cost sensor networks and smart algorithms are always needed in both passenger trains and heavy haul trains due to the increasing need for reliability and safety in the railway industry. This paper focuses on an overview of existing approaches applied for railway vehicle on-board health monitoring systems. The approaches applied in the data measurement systems and the data analysis systems in railway on-board health monitoring systems are presented in this paper, including methodologies, theories and applications. The pros and cons of the various approaches are analysed to determine appropriate benchmarks for an effective and efficient railway vehicle on-board health monitoring system. According to this review, inertial sensors are the most popular due to their advantages of low cost, robustness and low power consumption. Linearisation methods are required for the model-based methods which would inevitably introduce error to the estimation results, and it is time-consuming to include all possible conditions in the pre-built database required for signal-based methods. Based on this review, future development trends in the design of new low-cost health monitoring systems for railway vehicles are discussed.

  1. Robust satellite techniques for oil spill detection and monitoring

    NASA Astrophysics Data System (ADS)

    Casciello, D.; Pergola, N.; Tramutoli, V.

    Discharge of oil into the sea is one of the most dangerous, among technological hazards, for the maritime environment. In the last years maritime transport and exploitation of marine resources continued to increase; as a result, tanker accidents are nowadays increasingly frequent, continuously menacing the maritime security and safety. Satellite remote sensing could contribute in multiple ways, in particular for what concerns early warning and real-time (or near real-time) monitoring. Several satellite techniques exist, mainly based on the use of SAR (Synthetic Aperture Radar) technology, which are able to recognise, with sufficient accuracy, oil spills discharged into the sea. Unfortunately, such methods cannot be profitably used for real-time detection, because of the low observational frequency assured by present satellite platforms carrying SAR sensors (the mean repetition rate is something like 30 days). On the other hand, potential of optical sensors aboard meteorological satellites, was not yet fully exploited and no reliable techniques have been developed until now for this purpose. Main limit of proposed techniques can be found in the ``fixed threshold'' approach which makes such techniques difficult to implement without operator supervision and, generally, without an independent information on the oil spill presence that could drive the choice of the best threshold. A different methodological approach (RAT, Robust AVHRR Techniques) proposed by Tramutoli (1998) and already successfully applied to several natural and environmental emergencies related to volcanic eruptions, forest fires and seismic activity. In this paper its extension to near real-time detection and monitoring of oil spills by means of NOAA-AVHRR (Advanced Very High Resolution Radiometer) records will be described. Briefly, RAT approach is an automatic change-detection scheme that considers a satellite image as a space-time process, described at each place (x,y) and time t, by the value of the satellite derived measurements V(x,y,t). Generally speaking an Absolute Local Index of Change of the Environment (ALICE) is computed and this index permits to identify signal anomalies, in the space-time domain, as deviations from a normal state preliminarily defined, for each image pixel, (e.g. in terms of time average and standard deviation) on the base only of satellite observations collected during several year in the past, in similar observational conditions (same time of the day, same month of the year). By this way local (i.e. specific for the place and the time of observation) instead than fixed thresholds are automatically set by RAT which permit to discriminate signal anomalies from those variations due to natural or observational condition variability. Using AVHRR observations in the Thermal (TIR) and Middle (MIR) Infrared region, such an approach has been applied to the extended oil spill event, occurred at the end of January 1991 in the Persian Gulf. Preliminary results will be analysed that confirm as the suggested technique is able to detect and monitoring oil spills also in the most difficult observational conditions. Automatic implementation, intrinsic exportability on whatever geographic zone and/or satellite package, high sensitivity also to low intensity signals (i.e. small or thin spills), no need for ancillary information (different form satellite data at hand), seem the most promising merits of the proposed technique. Although these results should be confirmed by further analyses on different events and extended also to other AVHRR spectral bands (VIS, NIR), this work surely encourages to continue the research in this field. Moreover, the complete independence of the RAT approach on the specific sensor and/or satellite system, will ensure its full exportability on the new generation of Earth observation satellite sensors (e.g. SEVIRI-Spinning Enhanced Visible and Infrared Imager onboard Meteosat Second generation satellite, with a repetition rate of 15 minutes and 12 spectral bands) which, thanks to their improved capabilities, could actually guarantee timely, reliable and accurate information.

  2. Time-lapse 3D electrical resistivity tomography to monitor soil-plant interactions

    NASA Astrophysics Data System (ADS)

    Boaga, Jacopo; Rossi, Matteo; Cassiani, Giorgio; Putti, Mario

    2013-04-01

    In this work we present the application of time-lapse non-invasive 3D micro- electrical tomography (ERT) to monitor soil-plant interactions in the root zone in the framework of the FP7 Project CLIMB (Climate Induced Changes on the Hydrology of Mediterranean Basins). The goal of the study is to gain a better understanding of the soil-vegetation interactions by the use of non-invasive techniques. We designed, built and installed a 3D electrical tomography apparatus for the monitoring of the root zone of a single apple tree in an orchard located in the Trentino region, Northern Italy. The micro-ERT apparatus consists of 48 buried electrodes on 4 instrumented micro boreholes plus 24 mini-electrodes on the surface spaced 0.1 m on a square grid. We collected repeated ERT and TDR soil moisture measurements for one year and performed two different controlled irrigation tests: one during a very dry Summer and one during a very wet and highly dynamic plant growing Spring period. We also ran laboratory analyses on soil specimens, in order to evaluate the electrical response at different saturation steps. The results demonstrate that 3D micro-ERT is capable of characterizing subsoil conditions and monitoring root zone activities, especially in terms of root zone suction regions. In particular, we note that in very dry conditions, 3D micro ERT can image water plumes in the shallow subsoil produced by a drip irrigation system. In the very dynamic growing season, under abundant irrigation, micro 3D ERT can detect the main suction zones caused by the tree root activity. Even though the quantitative use of this technique for moisture content balance suffers from well-known inversion difficulties, even the pure imaging of the active root zone is a valuable contribution. However the integration of the measurements in a fully coupled hydrogeophysical inversion is the way forward for a better understanding of subsoil interactions between biomass, hydrosphere and atmosphere.

  3. Comparison of spectroscopy technologies for improved monitoring of cell culture processes in miniature bioreactors.

    PubMed

    Rowland-Jones, Ruth C; van den Berg, Frans; Racher, Andrew J; Martin, Elaine B; Jaques, Colin

    2017-03-01

    Cell culture process development requires the screening of large numbers of cell lines and process conditions. The development of miniature bioreactor systems has increased the throughput of such studies; however, there are limitations with their use. One important constraint is the limited number of offline samples that can be taken compared to those taken for monitoring cultures in large-scale bioreactors. The small volume of miniature bioreactor cultures (15 mL) is incompatible with the large sample volume (600 µL) required for bioanalysers routinely used. Spectroscopy technologies may be used to resolve this limitation. The purpose of this study was to compare the use of NIR, Raman, and 2D-fluorescence to measure multiple analytes simultaneously in volumes suitable for daily monitoring of a miniature bioreactor system. A novel design-of-experiment approach is described that utilizes previously analyzed cell culture supernatant to assess metabolite concentrations under various conditions while providing optimal coverage of the desired design space. Multivariate data analysis techniques were used to develop predictive models. Model performance was compared to determine which technology is more suitable for this application. 2D-fluorescence could more accurately measure ammonium concentration (RMSE CV 0.031 g L -1 ) than Raman and NIR. Raman spectroscopy, however, was more robust at measuring lactate and glucose concentrations (RMSE CV 1.11 and 0.92 g L -1 , respectively) than the other two techniques. The findings suggest that Raman spectroscopy is more suited for this application than NIR and 2D-fluorescence. The implementation of Raman spectroscopy increases at-line measuring capabilities, enabling daily monitoring of key cell culture components within miniature bioreactor cultures. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:337-346, 2017. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  4. High-Throughput Identification of Loss-of-Function Mutations for Anti-Interferon Activity in the Influenza A Virus NS Segment

    PubMed Central

    Wu, Nicholas C.; Young, Arthur P.; Al-Mawsawi, Laith Q.; Olson, C. Anders; Feng, Jun; Qi, Hangfei; Luan, Harding H.; Li, Xinmin; Wu, Ting-Ting

    2014-01-01

    ABSTRACT Viral proteins often display several functions which require multiple assays to dissect their genetic basis. Here, we describe a systematic approach to screen for loss-of-function mutations that confer a fitness disadvantage under a specified growth condition. Our methodology was achieved by genetically monitoring a mutant library under two growth conditions, with and without interferon, by deep sequencing. We employed a molecular tagging technique to distinguish true mutations from sequencing error. This approach enabled us to identify mutations that were negatively selected against, in addition to those that were positively selected for. Using this technique, we identified loss-of-function mutations in the influenza A virus NS segment that were sensitive to type I interferon in a high-throughput fashion. Mechanistic characterization further showed that a single substitution, D92Y, resulted in the inability of NS to inhibit RIG-I ubiquitination. The approach described in this study can be applied under any specified condition for any virus that can be genetically manipulated. IMPORTANCE Traditional genetics focuses on a single genotype-phenotype relationship, whereas high-throughput genetics permits phenotypic characterization of numerous mutants in parallel. High-throughput genetics often involves monitoring of a mutant library with deep sequencing. However, deep sequencing suffers from a high error rate (∼0.1 to 1%), which is usually higher than the occurrence frequency for individual point mutations within a mutant library. Therefore, only mutations that confer a fitness advantage can be identified with confidence due to an enrichment in the occurrence frequency. In contrast, it is impossible to identify deleterious mutations using most next-generation sequencing techniques. In this study, we have applied a molecular tagging technique to distinguish true mutations from sequencing errors. It enabled us to identify mutations that underwent negative selection, in addition to mutations that experienced positive selection. This study provides a proof of concept by screening for loss-of-function mutations on the influenza A virus NS segment that are involved in its anti-interferon activity. PMID:24965464

  5. A combination of a SEM technique and X-ray microanalysis for studying the spore germination process of Clostridium tyrobutyricum.

    PubMed

    Bassi, Daniela; Cappa, Fabrizio; Cocconcelli, Pier Sandro

    2009-06-01

    Clostridium tyrobutyricum is an anaerobic bacterium responsible for late blowing defects during cheese ripening and it is of scientific interest for biological hydrogen production. A scanning electron microscopy (SEM) coating technique and X-ray microanalysis were developed to analyze the architecture and chemical composition of spores upon germination in response to environmental changes. In addition, we investigated the effects of different compounds on this process. Agents and environmental conditions inducing germination were characterized monitoring changes in optical density (OD). Among all tested conditions, the greatest drop in OD(625) (57.4%) was obtained when spores were incubated in l-alanine/l-lactate buffer, pH 4.6. In addition, a carbon-coating SEM technique and X-ray microanalysis were used to observe the architecture of spores and to examine calcium dipicolinate release. Conditions inducing C. tyrobutyricum spore germination were identified and SEM X-ray microanalysis clearly distinguished germinating from dormant spores. We confirmed that calcium dipicolinate release is one of the first events occurring. These microscopy methods could be considered sensitive tools for evaluating morphological and chemical changes in spores of C. tyrobutyricum during the initial phase of germination. Information gathered from this work may provide new data for further research on germination.

  6. Children's views on microneedle use as an alternative to blood sampling for patient monitoring.

    PubMed

    Mooney, Karen; McElnay, James C; Donnelly, Ryan F

    2014-10-01

    To explore children's views on microneedle use for this population, particularly as an alternative approach to blood sampling, in monitoring applications, and so, examine the acceptability of this approach to children. Focus groups were conducted with children (aged 10-14 years) in a range of schools across Northern Ireland. Convenience sampling was employed, i.e. children involved in a university-directed community-outreach project (Pharmacists in Schools) were recruited. A total of 86 children participated in 13 focus groups across seven schools in Northern Ireland. A widespread disapproval for blood sampling was evident, with pain, blood and traditional needle visualisation particularly unpopular aspects. In general, microneedles had greater visual acceptability and caused less fear. A patch-based design enabled minimal patient awareness of the monitoring procedure, with personalised designs, e.g. cartoon themes, favoured. Children's concerns included possible allergy and potential inaccuracies with this novel approach; however, many had confidence in the judgement of healthcare professionals if deeming this technique appropriate. They considered paediatric patient education critical for acceptance of this new approach and called for an alternative name, without any reference to 'needles'. The findings presented here support the development of blood-free, minimally invasive techniques and provide an initial indication of microneedle acceptability in children, particularly for monitoring purposes. A proactive response to these unique insights should enable microneedle array design to better meet the needs of this end-user group. Further work in this area is recommended to ascertain the perspectives of a purposive sample of children with chronic conditions who require regular monitoring. © 2013 Royal Pharmaceutical Society.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Mark J; Efroymson, Rebecca Ann; Adams, Marshall

    The long-term ecological recovery of an impaired stream in response to an industrial facility's pollution abatement actions and the implications of the biological monitoring effort to environmental management is the subject of this special issue of Environmental Management. This final article focuses on the synthesis of the biological monitoring program's components and methods, the efficacy of various biological monitoring techniques to environmental management, and the lessons learned from the program that might be applicable to the design and application of other programs. The focus of the 25-year program has been on East Fork Poplar Creek, an ecologically impaired stream inmore » Oak Ridge, Tennessee with varied and complex stressors from a Department of Energy facility in its headwaters. Major components of the long-term program included testing and monitoring of invertebrate and fish toxicity, bioindicators of fish health, fish contaminant accumulation, and instream communities (including periphyton, benthic macroinvertebrate, and fish). Key parallel components of the program include water chemistry sampling and data management. Multiple lines of evidence suggested positive ecological responses during three major pollution abatement periods. Based on this case study and the related literature, effective environmental management of impaired streams starts with program design that is consistent across space and time, but also adaptable to changing conditions. The biological monitoring approaches used for the program provided a strong basis for assessments of recovery from remedial actions, and the likely causes of impairment. This case study provides a unique application of multidisciplinary and quantitative techniques to address multiple and complex regulatory and programmatic goals, environmental stressors, and remedial actions.« less

  8. Amplified OTDR systems for multipoint corrosion monitoring.

    PubMed

    Nascimento, Jehan F; Silva, Marcionilo J; Coêlho, Isnaldo J S; Cipriano, Eliel; Martins-Filho, Joaquim F

    2012-01-01

    We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations.

  9. Amplified OTDR Systems for Multipoint Corrosion Monitoring

    PubMed Central

    Nascimento, Jehan F.; Silva, Marcionilo J.; Coêlho, Isnaldo J. S.; Cipriano, Eliel; Martins-Filho, Joaquim F.

    2012-01-01

    We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations. PMID:22737017

  10. Computer modeling and design of diagnostic workstations and radiology reading rooms

    NASA Astrophysics Data System (ADS)

    Ratib, Osman M.; Amato, Carlos L.; Balbona, Joseph A.; Boots, Kevin; Valentino, Daniel J.

    2000-05-01

    We used 3D modeling techniques to design and evaluate the ergonomics of diagnostic workstation and radiology reading room in the planning phase of building a new hospital at UCLA. Given serious space limitations, the challenge was to provide more optimal working environment for radiologists in a crowded and busy environment. A particular attention was given to flexibility, lighting condition and noise reduction in rooms shared by multiple users performing diagnostic tasks as well as regular clinical conferences. Re-engineering workspace ergonomics rely on the integration of new technologies, custom designed cabinets, indirect lighting, sound-absorbent partitioning and geometric arrangement of workstations to allow better privacy while optimizing space occupation. Innovations included adjustable flat monitors, integration of videoconferencing and voice recognition, control monitor and retractable keyboard for optimal space utilization. An overhead compartment protecting the monitors from ambient light is also used as accessory lightbox and rear-view projection screen for conferences.

  11. Proposal of Screening Method of Sleep Disordered Breathing Using Fiber Grating Vision Sensor

    NASA Astrophysics Data System (ADS)

    Aoki, Hirooki; Nakamura, Hidetoshi; Nakajima, Masato

    Every conventional respiration monitoring technique requires at least one sensor to be attached to the body of the subject during measurement, thereby imposing a sense of restraint that results in aversion against measurements that would last over consecutive days. To solve this problem, we developed a respiration monitoring system for sleepers, and it uses a fiber-grating vision sensor, which is a type of active image sensor to achieve non-contact respiration monitoring. In this paper, we verified the effectiveness of the system, and proposed screening method of the sleep disordered breathing. It was shown that our system could equivalently measure the respiration with thermistor and accelerograph. And, the respiratory condition of sleepers can be grasped by our screening method in one look, and it seems to be useful for the support of the screening of sleep disordered breathing.

  12. SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT

    PubMed Central

    Halliburton, Sandra S.; Abbara, Suhny; Chen, Marcus Y.; Gentry, Ralph; Mahesh, Mahadevappa; Raff, Gilbert L.; Shaw, Leslee J.; Hausleiter, Jörg

    2012-01-01

    Over the last few years, computed tomography (CT) has developed into a standard clinical test for a variety of cardiovascular conditions. The emergence of cardiovascular CT during a period of dramatic increase in radiation exposure to the population from medical procedures and heightened concern about the subsequent potential cancer risk has led to intense scrutiny of the radiation burden of this new technique. This has hastened the development and implementation of dose reduction tools and prompted closer monitoring of patient dose. In an effort to aid the cardiovascular CT community in incorporating patient-centered radiation dose optimization and monitoring strategies into standard practice, the Society of Cardiovascular Computed Tomography has produced a guideline document to review available data and provide recommendations regarding interpretation of radiation dose indices and predictors of risk, appropriate use of scanner acquisition modes and settings, development of algorithms for dose optimization, and establishment of procedures for dose monitoring. PMID:21723512

  13. Sensor-Only System Identification for Structural Health Monitoring of Advanced Aircraft

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.; Bernstein, Dennis S.

    2012-01-01

    Environmental conditions, cyclic loading, and aging contribute to structural wear and degradation, and thus potentially catastrophic events. The challenge of health monitoring technology is to determine incipient changes accurately and efficiently. This project addresses this challenge by developing health monitoring techniques that depend only on sensor measurements. Since actively controlled excitation is not needed, sensor-to-sensor identification (S2SID) provides an in-flight diagnostic tool that exploits ambient excitation to provide advance warning of significant changes. S2SID can subsequently be followed up by ground testing to localize and quantify structural changes. The conceptual foundation of S2SID is the notion of a pseudo-transfer function, where one sensor is viewed as the pseudo-input and another is viewed as the pseudo-output, is approach is less restrictive than transmissibility identification and operational modal analysis since no assumption is made about the locations of the sensors relative to the excitation.

  14. Simultaneous monitoring technique for ASE and MPI noises in distributed Raman Amplified Systems.

    PubMed

    Choi, H Y; Jun, S B; Shin, S K; Chung, Y C

    2007-07-09

    We develop a new technique for simultaneously monitoring the amplified spontaneous emission (ASE) and multi-path interference (MPI) noises in distributed Raman amplified (DRA) systems. This technique utilizes the facts that the degree-of polarization (DOP) of the MPI noise is 1/9, while the ASE noise is unpolarized. The results show that the proposed technique can accurately monitor both of these noises regardless of the bit rates, modulation formats, and optical signal-to-noise ratio (OSNR) levels of the signals.

  15. Application of light and ultrasound for medical diagnostics and treatment

    NASA Astrophysics Data System (ADS)

    Esenaliev, Rinat O.

    2002-07-01

    We develop novel optical and ultrasound techniques for medical noninvasive diagnostics and treatment. In this review, we present our results on the development of: (1) optoacoustic technique for detection of small tumors; (2) optoacoustic monitoring of blood oxygenation; (3) optoacoustic monitoring during thermotherapy; (4) optical coherence tomography for monitoring of blood glucose concentration; and (5) laser- and ultrasound-based anti- cancer drug delivery technique. Motivation, experimental methods, results obtained in vitro and in vivo with the use of these techniques are presented.

  16. Inflight and Preflight Detection of Pitot Tube Anomalies

    NASA Technical Reports Server (NTRS)

    Mitchell, Darrell W.

    2014-01-01

    The health and integrity of aircraft sensors play a critical role in aviation safety. Inaccurate or false readings from these sensors can lead to improper decision making, resulting in serious and sometimes fatal consequences. This project demonstrated the feasibility of using advanced data analysis techniques to identify anomalies in Pitot tubes resulting from blockage such as icing, moisture, or foreign objects. The core technology used in this project is referred to as noise analysis because it relates sensors' response time to the dynamic component (noise) found in the signal of these same sensors. This analysis technique has used existing electrical signals of Pitot tube sensors that result from measured processes during inflight conditions and/or induced signals in preflight conditions to detect anomalies in the sensor readings. Analysis and Measurement Services Corporation (AMS Corp.) has routinely used this technology to determine the health of pressure transmitters in nuclear power plants. The application of this technology for the detection of aircraft anomalies is innovative. Instead of determining the health of process monitoring at a steady-state condition, this technology will be used to quickly inform the pilot when an air-speed indication becomes faulty under any flight condition as well as during preflight preparation.

  17. Improved agriculture and forest management in Africa through the AGRICAB project

    NASA Astrophysics Data System (ADS)

    Bydekerke, L.; Tote, C.; Jacobs, T.; Gilliams, S.

    2012-04-01

    Agriculture and forestry are key economic sectors in many African countries. A sound management of these resources, in order to ensure stable food supply, is key for development. In many countries in Africa both forest and agricultural resources are under stress due to, among others, a growing population, land reforms, climate variability and change. Sound information is required to efficiently manage these resources. Remote sensing contributes significantly to these information needs and for this reason more and more institutes and agencies integrate this technology into their daily work. In this context, there is a growing need for enhancing remote sensing capacity in Africa and for this reason the European Commission launched the AGRICAB Project, funded by the FP7 Programme. The main focus of AGRICAB 'A Framework for enhancing earth observation capacity for agriculture and forest management in Africa as a contribution to GEOSS', is to link European and African research capacity in the use of earth observation technology for agriculture and forestry. The project consortium consists of 17 partners located in 12 different countries (5 in Europe, 10 in Africa and 1 in South America) and has three main components. Firstly, AGRICAB aims to ensure satellite data access, partly through GEONETCast. Secondly, AGRICAB will enhance research capacity through partnerships between African and European institutes in the following thematic areas (a) yield forecasting, (b) early warning and agricultural mapping of food crops, (c) agricultural statistics, (d) livestock and rangeland monitoring, and (e) forest and forest fire monitoring. Thirdly, a significant part is dedicated to training and building awareness concerning the advantage and benefits of the use of remote sensing in forest and agricultural management. AGRICAB intends to allow African partners: (i) to get exposed to state-of-the art techniques and models for agricultural and forest monitoring, (ii) to discover these techniques and models through workshops and dedicated training, (iii) to gain experience in the application of these techniques and models on the local conditions in various use cases, and finally, (iv) to adapt appropriate models for integration in the local operational workflows. Through use cases, located in Northern Africa, Senegal, Kenya, Mozambique and South-Africa, methodologies will be adapted to local conditions and demonstrated in different agro-meteorological conditions.

  18. Monitoring Damage Accumulation in Ceramic Matrix Composites Using Electrical Resistivity

    NASA Technical Reports Server (NTRS)

    Smith, Craig E.; Morscher, Gregory N.; Xia, Zhenhai H.

    2008-01-01

    The electric resistance of woven SiC fiber reinforced SiC matrix composites were measured under tensile loading conditions. The results show that the electrical resistance is closely related to damage and that real-time information about the damage state can be obtained through monitoring of the resistance. Such self-sensing capability provides the possibility of on-board/in-situ damage detection and accurate life prediction for high-temperature ceramic matrix composites. Woven silicon carbide fiber-reinforced silicon carbide (SiC/SiC) ceramic matrix composites (CMC) possess unique properties such as high thermal conductivity, excellent creep resistance, improved toughness, and good environmental stability (oxidation resistance), making them particularly suitable for hot structure applications. In specific, CMCs could be applied to hot section components of gas turbines [1], aerojet engines [2], thermal protection systems [3], and hot control surfaces [4]. The benefits of implementing these materials include reduced cooling air requirements, lower weight, simpler component design, longer service life, and higher thrust [5]. It has been identified in NASA High Speed Research (HSR) program that the SiC/SiC CMC has the most promise for high temperature, high oxidation applications [6]. One of the critical issues in the successful application of CMCs is on-board or insitu assessment of the damage state and an accurate prediction of the remaining service life of a particular component. This is of great concern, since most CMC components envisioned for aerospace applications will be exposed to harsh environments and play a key role in the vehicle s safety. On-line health monitoring can enable prediction of remaining life; thus resulting in improved safety and reliability of structural components. Monitoring can also allow for appropriate corrections to be made in real time, therefore leading to the prevention of catastrophic failures. Most conventional nondestructive evaluation (NDE) techniques such as ultrasonic C-scan, x-ray, thermography, and eddy current are limited since they require structural components of complex geometry to be taken out of service for a substantial length of time for post-damage inspection and assessment. Furthermore, the typical NDE techniques are useful for identifying large interlaminar flaws, but insensitive to CMC materials flaws developed perpendicular to the surface under tensile creep conditions. There are techniques such as piezoelectric sensor [7,8], and optical fiber [9,10] that could be used for on-line health monitoring of CMC structures. However, these systems involve attaching an external sensor or putting special fibers in CMC composites, which would be problematic at high temperature applications.

  19. Identification of modal strains using sub-microstrain FBG data and a novel wavelength-shift detection algorithm

    NASA Astrophysics Data System (ADS)

    Anastasopoulos, Dimitrios; Moretti, Patrizia; Geernaert, Thomas; De Pauw, Ben; Nawrot, Urszula; De Roeck, Guido; Berghmans, Francis; Reynders, Edwin

    2017-03-01

    The presence of damage in a civil structure alters its stiffness and consequently its modal characteristics. The identification of these changes can provide engineers with useful information about the condition of a structure and constitutes the basic principle of the vibration-based structural health monitoring. While eigenfrequencies and mode shapes are the most commonly monitored modal characteristics, their sensitivity to structural damage may be low relative to their sensitivity to environmental influences. Modal strains or curvatures could offer an attractive alternative but current measurement techniques encounter difficulties in capturing the very small strain (sub-microstrain) levels occurring during ambient, or operational excitation, with sufficient accuracy. This paper investigates the ability to obtain sub-microstrain accuracy with standard fiber-optic Bragg gratings using a novel optical signal processing algorithm that identifies the wavelength shift with high accuracy and precision. The novel technique is validated in an extensive experimental modal analysis test on a steel I-beam which is instrumented with FBG sensors at its top and bottom flange. The raw wavelength FBG data are processed into strain values using both a novel correlation-based processing technique and a conventional peak tracking technique. Subsequently, the strain time series are used for identifying the beam's modal characteristics. Finally, the accuracy of both algorithms in identification of modal characteristics is extensively investigated.

  20. Characteristics of Four Plant Species Used for Soil Bioengineering Techniques in River Bank Stabilization

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Gao, J. R.; Lou, H. P.; Zhang, J. R.; Rauch, H. P.

    2010-05-01

    Use the potential values of soil bioengineering techniques are important for the wide attention river ecological restoration works in Beijing. At first, demand for basic knowledge of the technical and biological properties of plants is essential for development of such techniques. Species for each chosen plant material type should be selected with an emphasis on the following: suitability for anticipated environment conditions, reasonable availability in desired quantity and probability of successful establishment. Account on these criteria, four species which used as live staking and rooted cutting techniques were selected, namely, Salix X aureo-pendula, Salix cheilophila, Vitex negundo var. heterophylla and Amorpha fruticosa L.. And monitoring work was performed on three construction sites of Beijing. Various survival rates and morphological parameters data were collected. Concerning plants hydraulic and hydrological behavior, bending tests were used to analysis the flexibility of each plant species. The results from rate and morphological parameters monitoring show that: Salix cheilophila performed the best. Other three plants behaved satisfactorily in shoots or roots development respectively. In the bending test mornitoring, Salix cheilophila branch had the least broken number. Then were Salix X aureo-pendula and Amorpha fruticosa L.. Vitex negundo var. branch had the highest broken number, but it tolerated the highest amount of stress. All plant species should be considered in the future scientific research and construction works in Beijing. Keywords: River bank stabilization, live staking, rooted cutting

  1. Targeting the kinesin Eg5 to monitor siRNA transfection in mammalian cells.

    PubMed

    Weil, D; Garçon, L; Harper, M; Duménil, D; Dautry, F; Kress, M

    2002-12-01

    RNA interference, the inhibition of gene expression by double-stranded RNA, provides a powerful tool for functional studies once the sequence of a gene is known. In most mammalian cells, only short molecules can be used because long ones induce the interferon pathway. With the identification of a proper target sequence, the penetration of the oligonucleotides constitutes the most serious limitation in the application of this technique. Here we show that a small interfering RNA (siRNA) targeting the mRNA of the kinesin Eg5 induces a rapid mitotic arrest and provides a convenient assay for the optimization of siRNA transfection. Thus, dose responses can be established for different transfection techniques, highlighting the great differences in response to transfection techniques of various cell types. We report that the calcium phosphate precipitation technique can be an efficient and cost-effective alternative to Oligofectamine in some adherent cells, while electroporation can be efficient for some cells growing in suspension such as hematopoietic cells and some adherent cells. Significantly, the optimal parameters for the electroporation of siRNA differ from those for plasmids, allowing the use of milder conditions that induce less cell toxicity. In summary, a single siRNA leading to an easily assayed phenotype can be used to monitor the transfection of siRNA into any type of proliferating cells of both human and murine origin.

  2. Monitoring Streambed Scour/Deposition Under Nonideal Temperature Signal and Flood Conditions

    NASA Astrophysics Data System (ADS)

    DeWeese, Timothy; Tonina, Daniele; Luce, Charles

    2017-12-01

    Streambed erosion and deposition are fundamental geomorphic processes in riverbeds, and monitoring their evolution is important for ecological system management and in-stream infrastructure stability. Previous research showed proof of concept that analysis of paired temperature signals of stream and pore waters can simultaneously provide monitoring scour and deposition, stream sediment thermal regime, and seepage velocity information. However, it did not address challenges often associated with natural systems, including nonideal temperature variations (low-amplitude, nonsinusoidal signal, and vertical thermal gradients) and natural flooding conditions on monitoring scour and deposition processes over time. Here we addressed this knowledge gap by testing the proposed thermal scour-deposition chain (TSDC) methodology, with laboratory experiments to test the impact of nonideal temperature signals under a range of seepage velocities and with a field application during a pulse flood. Both analyses showed excellent match between surveyed and temperature-derived bed elevation changes even under very low temperature signal amplitudes (less than 1°C), nonideal signal shape (sawtooth shape), and strong and changing vertical thermal gradients (4°C/m). Root-mean-square errors on predicting the change in streambed elevations were comparable with the median grain size of the streambed sediment. Future research should focus on improved techniques for temperature signal phase and amplitude extractions, as well as TSDC applications over long periods spanning entire hydrographs.

  3. Crack identification for rigid pavements using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Bahaddin Ersoz, Ahmet; Pekcan, Onur; Teke, Turker

    2017-09-01

    Pavement condition assessment is an essential piece of modern pavement management systems as rehabilitation strategies are planned based upon its outcomes. For proper evaluation of existing pavements, they must be continuously and effectively monitored using practical means. Conventionally, truck-based pavement monitoring systems have been in-use in assessing the remaining life of in-service pavements. Although such systems produce accurate results, their use can be expensive and data processing can be time consuming, which make them infeasible considering the demand for quick pavement evaluation. To overcome such problems, Unmanned Aerial Vehicles (UAVs) can be used as an alternative as they are relatively cheaper and easier-to-use. In this study, we propose a UAV based pavement crack identification system for monitoring rigid pavements’ existing conditions. The system consists of recently introduced image processing algorithms used together with conventional machine learning techniques, both of which are used to perform detection of cracks on rigid pavements’ surface and their classification. Through image processing, the distinct features of labelled crack bodies are first obtained from the UAV based images and then used for training of a Support Vector Machine (SVM) model. The performance of the developed SVM model was assessed with a field study performed along a rigid pavement exposed to low traffic and serious temperature changes. Available cracks were classified using the UAV based system and obtained results indicate it ensures a good alternative solution for pavement monitoring applications.

  4. Condition monitoring of a wind turbine doubly-fed induction generator through current signature analysis

    NASA Astrophysics Data System (ADS)

    Artigao, Estefania; Honrubia-Escribano, Andres; Gomez-Lazaro, Emilio

    2017-11-01

    Operation and maintenance (O&M) of wind turbines is recently becoming the spotlight in the wind energy sector. While wind turbine power capacities continue to increase and new offshore developments are being installed, O&M costs keep raising. With the objective of reducing such costs, the new trends are moving from corrective and preventive maintenance toward predictive actions. In this scenario, condition monitoring (CM) has been identified as the key to achieve this goal. The induction generator of a wind turbine is a major contributor to failure rates and downtime where doubly-fed induction generators (DFIG) are the dominant technology employed in variable speed wind turbines. The current work presents the analysis of an in-service DFIG. A one-year measurement campaign has been used to perform the study. Several signal processing techniques have been applied and the optimal method for CM has been identified. A diagnosis has been reached, the DFIG under study shows potential gearbox damage.

  5. Endogenous CO monitoring in exhalation with tunable diode lasers: applications to clinical and biomedical diagnostics

    NASA Astrophysics Data System (ADS)

    Stepanov, Eugene V.; Zyrianov, Pavel V.; Miliaev, Valerii A.; Shulagin, Yurii A.; D'yachenko, Alexander I.

    1999-07-01

    Middle IR tunable diode lasers were applied to studies of pulmonary excretion of endogenous carbon monoxide (CO). Variations of the CO content level in exhaled air of healthy nonsmokers were investigated for different environmental conditions with the applied laser technique. Correlation of the obtained data with atmospheric CO contamination and elevated oxygen content were studied as well as diurnal variations of the endogenous CO in exhalation was observed. Criteria for correct conditions of the endogenous CO detection in breath could be derive don this basis. Developed laser approach and methods were applied for the analysis of the excreted CO level in different diseases like bronchial asthma, cystic fibrosis, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, anemia and hepatitis. Laser based close-to-real-time monitoring of the endogenous CO elimination with breath in the course of different dynamic tests was demonstrated to be informative in studies of blood oxygen transport and pH variations in tissues for different challenges tests in human physiology.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agelastos, Anthony; Allan, Benjamin; Brandt, Jim

    A detailed understanding of HPC applications’ resource needs and their complex interactions with each other and HPC platform resources are critical to achieving scalability and performance. Such understanding has been difficult to achieve because typical application profiling tools do not capture the behaviors of codes under the potentially wide spectrum of actual production conditions and because typical monitoring tools do not capture system resource usage information with high enough fidelity to gain sufficient insight into application performance and demands. In this paper we present both system and application profiling results based on data obtained through synchronized system wide monitoring onmore » a production HPC cluster at Sandia National Laboratories (SNL). We demonstrate analytic and visualization techniques that we are using to characterize application and system resource usage under production conditions for better understanding of application resource needs. Furthermore, our goals are to improve application performance (through understanding application-to-resource mapping and system throughput) and to ensure that future system capabilities match their intended workloads.« less

  7. Monitoring technique for multiple power splitter-passive optical networks using a tunable OTDR and FBGs

    NASA Astrophysics Data System (ADS)

    Hann, Swook; Kim, Dong-Hwan; Park, Chang-Soo

    2006-04-01

    A monitoring technique for multiple power splitter-passive optical networks (PS-PON) is presented. The technique is based on the remote sensing of fiber Bragg grating (FBG) using a tunable OTDR. To monitor the multiple PS-PON, the FBG can be used for a wavelength dependent reflective reference on each branch end of the PS. The FBG helps discern an individual event of the multiple PS-PON for the monitoring in collaborate with information of Rayleigh backscattered power. The multiple PS-PON can be analyzed by the monitoring method at the central office under 10-Gbit/s in-service.

  8. Definition of a near real time microbiological monitor for space vehicles

    NASA Technical Reports Server (NTRS)

    Kilgore, Melvin V., Jr.; Zahorchak, Robert J.; Arendale, William F.

    1989-01-01

    Efforts to identify the ideal candidate to serve as the biological monitor on the space station Freedom are discussed. The literature review, the evaluation scheme, descriptions of candidate monitors, experimental studies, test beds, and culture techniques are discussed. Particular attention is given to descriptions of five candidate monitors or monitoring techniques: laser light scattering, primary fluorescence, secondary fluorescence, the volatile product detector, and the surface acoustic wave detector.

  9. Professionals' views of fetal-monitoring support the development of devices to provide objective longer-term assessment of fetal wellbeing.

    PubMed

    Brown, Rebecca; Johnstone, Edward D; Heazell, Alexander E P

    2016-01-01

    Continuous longer-term fetal monitoring has been proposed to address limitations of current technologies in the detection of fetal compromise. We aimed to assess professionals' views regarding current fetal-monitoring techniques and proposed longer-term continuous fetal monitoring. A questionnaire was designed and validated to assess obstetricians' and midwives' use of current fetal-monitoring techniques and their views towards continuous monitoring. 125 of 173 received responses (72% obstetricians, 28% midwives) were analysed. Professionals had the strongest views about supporting evidence for the most commonly employed fetal-monitoring techniques (maternal awareness of fetal movements, ultrasound assessment of fetal growth and umbilical artery Doppler). 45.1% of professionals agreed that a continuous monitoring device would be beneficial (versus 28.7% who disagreed); this perceived benefit was not influenced by professionals' views regarding current techniques or professional background. Professionals have limited experience of continuous fetal monitoring, but most respondents believed that it would increase maternal anxiety (64.3%) and would have concerns with its use in clinical practice (81.7%). Continuous fetal monitoring would be acceptable to the majority of professionals. However, development of these technologies must be accompanied by extended examination of professionals' and women's views to determine barriers to its introduction.

  10. Rotorcraft Diagnostics

    NASA Technical Reports Server (NTRS)

    Haste, Deepak; Azam, Mohammad; Ghoshal, Sudipto; Monte, James

    2012-01-01

    Health management (HM) in any engineering systems requires adequate understanding about the system s functioning; a sufficient amount of monitored data; the capability to extract, analyze, and collate information; and the capability to combine understanding and information for HM-related estimation and decision-making. Rotorcraft systems are, in general, highly complex. Obtaining adequate understanding about functioning of such systems is quite difficult, because of the proprietary (restricted access) nature of their designs and dynamic models. Development of an EIM (exact inverse map) solution for rotorcraft requires a process that can overcome the abovementioned difficulties and maximally utilize monitored information for HM facilitation via employing advanced analytic techniques. The goal was to develop a versatile HM solution for rotorcraft for facilitation of the Condition Based Maintenance Plus (CBM+) capabilities. The effort was geared towards developing analytic and reasoning techniques, and proving the ability to embed the required capabilities on a rotorcraft platform, paving the way for implementing the solution on an aircraft-level system for consolidation and reporting. The solution for rotorcraft can he used offboard or embedded directly onto a rotorcraft system. The envisioned solution utilizes available monitored and archived data for real-time fault detection and identification, failure precursor identification, and offline fault detection and diagnostics, health condition forecasting, optimal guided troubleshooting, and maintenance decision support. A variant of the onboard version is a self-contained hardware and software (HW+SW) package that can be embedded on rotorcraft systems. The HM solution comprises components that gather/ingest data and information, perform information/feature extraction, analyze information in conjunction with the dependency/diagnostic model of the target system, facilitate optimal guided troubleshooting, and offer decision support for optimal maintenance.

  11. Image processing for identification and quantification of filamentous bacteria in in situ acquired images.

    PubMed

    Dias, Philipe A; Dunkel, Thiemo; Fajado, Diego A S; Gallegos, Erika de León; Denecke, Martin; Wiedemann, Philipp; Schneider, Fabio K; Suhr, Hajo

    2016-06-11

    In the activated sludge process, problems of filamentous bulking and foaming can occur due to overgrowth of certain filamentous bacteria. Nowadays, these microorganisms are typically monitored by means of light microscopy, commonly combined with staining techniques. As drawbacks, these methods are susceptible to human errors, subjectivity and limited by the use of discontinuous microscopy. The in situ microscope appears as a suitable tool for continuous monitoring of filamentous bacteria, providing real-time examination, automated analysis and eliminating sampling, preparation and transport of samples. In this context, a proper image processing algorithm is proposed for automated recognition and measurement of filamentous objects. This work introduces a method for real-time evaluation of images without any staining, phase-contrast or dilution techniques, differently from studies present in the literature. Moreover, we introduce an algorithm which estimates the total extended filament length based on geodesic distance calculation. For a period of twelve months, samples from an industrial activated sludge plant were weekly collected and imaged without any prior conditioning, replicating real environment conditions. Trends of filament growth rate-the most important parameter for decision making-are correctly identified. For reference images whose filaments were marked by specialists, the algorithm correctly recognized 72 % of the filaments pixels, with a false positive rate of at most 14 %. An average execution time of 0.7 s per image was achieved. Experiments have shown that the designed algorithm provided a suitable quantification of filaments when compared with human perception and standard methods. The algorithm's average execution time proved its suitability for being optimally mapped into a computational architecture to provide real-time monitoring.

  12. Natural Remediation at Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, C. M.; Van Pelt, R.

    2002-02-25

    Natural remediation is a general term that includes any technology or strategy that takes advantage of natural processes to remediate a contaminated media to a condition that is protective of human health and the environment. Natural remediation techniques are often passive and minimally disruptive to the environment. They are generally implemented in conjunction with traditional remedial solutions for source control (i.e., capping, stabilization, removal, soil vapor extraction, etc.). Natural remediation techniques being employed at Savannah River Site (SRS) include enhanced bio-remediation, monitored natural attenuation, and phytoremediation. Enhanced bio-remediation involves making nutrients available and conditions favorable for microbial growth. With propermore » precautions and feeding, the naturally existing microbes flourish and consume the contaminants. Case studies of enhanced bio-remediation include surface soils contaminated with PCBs and pesticides, and Volatile Organic Compound (VOC) contamination in both the vadose zone and groundwater. Monitored natural attenuation (MNA) has been selected as the preferred alternative for groundwater clean up at several SRS waste units. Successful implementation of MNA has been based on demonstration that sources have been controlled, groundwater modeling that indicates that plumes will not expand or reach surface water discharge points at levels that exceed regulatory limits, and continued monitoring. Phytoremediation is being successfully utilized at several SRS waste units. Phytoremediation involves using plants and vegetation to uptake, break down, or manage contaminants in groundwater or soils. Case studies at SRS include managing groundwater plumes of tritium and VOCs with pine trees that are native to the area. Significant decreases in tritium discharge to a site stream have been realized in one phytoremediation project. Studies of other vegetation types, methods of application, and other target contaminants are underway.« less

  13. Models of Fate and Transport of Pollutants in Surface Waters

    NASA Astrophysics Data System (ADS)

    Okome, Gloria Eloho

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states. These measurements are used with the known scientific principles to identify processes and to estimate the future environmental conditions. Conceptual and computational models are needed to analyze environmental processes by applying the knowledge gained from experimentation and theory. Usually, a computational framework includes the mathematics and the physics of the phenomenon, and the measured characteristics to model pollutants interactions and transport in surface water. However, under certain conditions, the complexity of the situation in the actual environment precludes the utilization of these techniques. Pollutants in several forms: Nitrogen (Nitrate, Nitrite, Kjeldhal Nitrogen and Ammonia), Phosphorus (orthophosphate and total phosphorus), bacteria (E-coli and Fecal coliform), Salts (Chloride and Sulfate) are chosen to follow for this research. The objective of this research is to model the fate and transport of these pollutants in non-ideal conditions of surface water measurements and to develop computational methods to forecast their fate and transport. In an environment of extreme drought such as in the Brazos River basin, where small streams flow intermittently, there is added complexity due to the absence of regularly sampled data. The usual modeling techniques are no longer applicable because of sparse measurements in space and time. Still, there is a need to estimate the conditions of the environment from the information that is present. Alternative methods for this estimation must be devised and applied to this situation, which is the task of this dissertation. This research devices a forecasting technique that is based upon sparse data. The method uses the equations of functions that fit the time series data for pollutants at each water quality monitoring stations to interpolate and extrapolate the data and to make estimates of present and future pollution levels. This method was applied to data obtained from the Leon River watershed (Indian creek) and Navasota River.

  14. Absolute electrical impedance tomography (aEIT) guided ventilation therapy in critical care patients: simulations and future trends.

    PubMed

    Denaï, Mouloud A; Mahfouf, Mahdi; Mohamad-Samuri, Suzani; Panoutsos, George; Brown, Brian H; Mills, Gary H

    2010-05-01

    Thoracic electrical impedance tomography (EIT) is a noninvasive, radiation-free monitoring technique whose aim is to reconstruct a cross-sectional image of the internal spatial distribution of conductivity from electrical measurements made by injecting small alternating currents via an electrode array placed on the surface of the thorax. The purpose of this paper is to discuss the fundamentals of EIT and demonstrate the principles of mechanical ventilation, lung recruitment, and EIT imaging on a comprehensive physiological model, which combines a model of respiratory mechanics, a model of the human lung absolute resistivity as a function of air content, and a 2-D finite-element mesh of the thorax to simulate EIT image reconstruction during mechanical ventilation. The overall model gives a good understanding of respiratory physiology and EIT monitoring techniques in mechanically ventilated patients. The model proposed here was able to reproduce consistent images of ventilation distribution in simulated acutely injured and collapsed lung conditions. A new advisory system architecture integrating a previously developed data-driven physiological model for continuous and noninvasive predictions of blood gas parameters with the regional lung function data/information generated from absolute EIT (aEIT) is proposed for monitoring and ventilator therapy management of critical care patients.

  15. Health management and pattern analysis of daily living activities of people with dementia using in-home sensors and machine learning techniques

    PubMed Central

    Markides, Andreas; Skillman, Severin; Acton, Sahr Thomas; Elsaleh, Tarek; Hassanpour, Masoud; Ahrabian, Alireza; Kenny, Mark; Klein, Stuart; Rostill, Helen; Nilforooshan, Ramin; Barnaghi, Payam

    2018-01-01

    The number of people diagnosed with dementia is expected to rise in the coming years. Given that there is currently no definite cure for dementia and the cost of care for this condition soars dramatically, slowing the decline and maintaining independent living are important goals for supporting people with dementia. This paper discusses a study that is called Technology Integrated Health Management (TIHM). TIHM is a technology assisted monitoring system that uses Internet of Things (IoT) enabled solutions for continuous monitoring of people with dementia in their own homes. We have developed machine learning algorithms to analyse the correlation between environmental data collected by IoT technologies in TIHM in order to monitor and facilitate the physical well-being of people with dementia. The algorithms are developed with different temporal granularity to process the data for long-term and short-term analysis. We extract higher-level activity patterns which are then used to detect any change in patients’ routines. We have also developed a hierarchical information fusion approach for detecting agitation, irritability and aggression. We have conducted evaluations using sensory data collected from homes of people with dementia. The proposed techniques are able to recognise agitation and unusual patterns with an accuracy of up to 80%. PMID:29723236

  16. Continuous acoustic emission monitoring of reinforced concrete under accelerated corrosion

    NASA Astrophysics Data System (ADS)

    Di Benedetti, M.; Loreto, G.; Nanni, A.; Matta, F.; Gonzalez-Nunez, M. A.

    2011-04-01

    The development of techniques capable of evaluating deterioration of reinforced concrete (RC) structures is instrumental to the advancement of techniques for the structural health monitoring (SHM) and service life estimate for constructed facilities. One of the main causes leading to degradation of RC is the corrosion of the steel reinforcement. This process can be modeled phenomenologically, while laboratory tests aimed at studying durability responses are typically accelerated in order to provide useful results within a realistic period of time. To assess the condition of damage in RC, a number of nondestructive methods have been recently studied. Acoustic emission (AE) is emerging as a nondestructive tool to detect the onset and progression of deterioration mechanisms. In this paper, the development of accelerated corrosion and continuous AE monitoring test set-up for RC specimens are presented. Relevant information are provided with regard to the characteristics of the corrosion circuit, continuous measurement and acquisition of corrosion potential, selection of AE sensors and AE parameter setting. The effectiveness of the setup in detecting and characterizing the initiation and progression of the corrosion phenomenon is discussed on the basis of preliminary results from small-scale, pre-cracked RC specimens, which are representative of areas near the clear cover in typical RC bridge members.

  17. Health management and pattern analysis of daily living activities of people with dementia using in-home sensors and machine learning techniques.

    PubMed

    Enshaeifar, Shirin; Zoha, Ahmed; Markides, Andreas; Skillman, Severin; Acton, Sahr Thomas; Elsaleh, Tarek; Hassanpour, Masoud; Ahrabian, Alireza; Kenny, Mark; Klein, Stuart; Rostill, Helen; Nilforooshan, Ramin; Barnaghi, Payam

    2018-01-01

    The number of people diagnosed with dementia is expected to rise in the coming years. Given that there is currently no definite cure for dementia and the cost of care for this condition soars dramatically, slowing the decline and maintaining independent living are important goals for supporting people with dementia. This paper discusses a study that is called Technology Integrated Health Management (TIHM). TIHM is a technology assisted monitoring system that uses Internet of Things (IoT) enabled solutions for continuous monitoring of people with dementia in their own homes. We have developed machine learning algorithms to analyse the correlation between environmental data collected by IoT technologies in TIHM in order to monitor and facilitate the physical well-being of people with dementia. The algorithms are developed with different temporal granularity to process the data for long-term and short-term analysis. We extract higher-level activity patterns which are then used to detect any change in patients' routines. We have also developed a hierarchical information fusion approach for detecting agitation, irritability and aggression. We have conducted evaluations using sensory data collected from homes of people with dementia. The proposed techniques are able to recognise agitation and unusual patterns with an accuracy of up to 80%.

  18. Hemodynamic monitoring in the critically ill.

    PubMed

    Voga, G

    1995-06-01

    Monitoring of vital functions is one of the most important and essential tools in the management of critically ill patients in the ICU. Today it is possible to detect and analyze a great variety of physiological signals by various noninvasive and invasive techniques. An intensivist should be able to select and perform the most appropriate monitoring method for the individual patient considering risk-benefit ratio of the particular monitoring technique and the need for immediate therapy, specific diagnosis, continuous monitoring and evaluation of morphology should be included. Despite rapid development of noninvasive monitoring techniques, invasive hemodynamic monitoring in still one of the most basic ICU procedures. It enables monitoring of pressures, flow and saturation, pressures in the systemic and pulmonary circulation, estimation of cardiac performance and judgment of the adequacy of the cardiocirculatory system. Carefully and correctly obtained information are basis for proper hemodynamic assessment which usually effects the therapeutic decisions.

  19. Technological advances in perioperative monitoring: Current concepts and clinical perspectives

    PubMed Central

    Chilkoti, Geetanjali; Wadhwa, Rachna; Saxena, Ashok Kumar

    2015-01-01

    Minimal mandatory monitoring in the perioperative period recommended by Association of Anesthetists of Great Britain and Ireland and American Society of Anesthesiologists are universally acknowledged and has become an integral part of the anesthesia practice. The technologies in perioperative monitoring have advanced, and the availability and clinical applications have multiplied exponentially. Newer monitoring techniques include depth of anesthesia monitoring, goal-directed fluid therapy, transesophageal echocardiography, advanced neurological monitoring, improved alarm system and technological advancement in objective pain assessment. Various factors that need to be considered with the use of improved monitoring techniques are their validation data, patient outcome, safety profile, cost-effectiveness, awareness of the possible adverse events, knowledge of technical principle and ability of the convenient routine handling. In this review, we will discuss the new monitoring techniques in anesthesia, their advantages, deficiencies, limitations, their comparison to the conventional methods and their effect on patient outcome, if any. PMID:25788767

  20. Technological advances in perioperative monitoring: Current concepts and clinical perspectives.

    PubMed

    Chilkoti, Geetanjali; Wadhwa, Rachna; Saxena, Ashok Kumar

    2015-01-01

    Minimal mandatory monitoring in the perioperative period recommended by Association of Anesthetists of Great Britain and Ireland and American Society of Anesthesiologists are universally acknowledged and has become an integral part of the anesthesia practice. The technologies in perioperative monitoring have advanced, and the availability and clinical applications have multiplied exponentially. Newer monitoring techniques include depth of anesthesia monitoring, goal-directed fluid therapy, transesophageal echocardiography, advanced neurological monitoring, improved alarm system and technological advancement in objective pain assessment. Various factors that need to be considered with the use of improved monitoring techniques are their validation data, patient outcome, safety profile, cost-effectiveness, awareness of the possible adverse events, knowledge of technical principle and ability of the convenient routine handling. In this review, we will discuss the new monitoring techniques in anesthesia, their advantages, deficiencies, limitations, their comparison to the conventional methods and their effect on patient outcome, if any.

  1. Monitoring estuarine circulation and ocean waste dispersion using an integrated satellite-aircraft-drogue approach. [Delaware coast and Delaware Bay

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Davis, G.; Wang, H.

    1975-01-01

    The author has identified the following significant results. An inexpensive, integrated drogue-aircraft-satellite approach was developed which is based on the Lagrangian technique and employs remotely tracked drogues and dyes together with satellite observation of natural tracers, such as suspended sediment. Results include current circulation studies in Delaware Bay in support of an oil slick movement model; investigations of the dispersion and movement of acid wastes dumped 40 miles off the Delaware coast; and coastal current circulation. In each case, the integrated drogue-aircraft-satellite approach compares favorably with other techniques on the basis of accuracy, cost effectiveness, and performance under severe weather conditions.

  2. Orbit dynamics and geographical coverage capabilities of satellite-based solar occultation experiments for global monitoring of stratospheric constituents

    NASA Technical Reports Server (NTRS)

    Brooks, D. R.

    1980-01-01

    Orbit dynamics of the solar occultation technique for satellite measurements of the Earth's atmosphere are described. A one-year mission is simulated and the orbit and mission design implications are discussed in detail. Geographical coverage capabilities are examined parametrically for a range of orbit conditions. The hypothetical mission is used to produce a simulated one-year data base of solar occultation measurements; each occultation event is assumed to produce a single number, or 'measurement' and some statistical properties of the data set are examined. A simple model is fitted to the data to demonstrate a procedure for examining global distributions of atmospheric constitutents with the solar occultation technique.

  3. Using Landsat digital data to detect moisture stress in corn-soybean growing regions

    NASA Technical Reports Server (NTRS)

    Thompson, D. R.; Wehmanen, O. A.

    1980-01-01

    As a part of a follow-on study to the moisture stress detection effort conducted in the Large Area Crop Inventory Experiment (LACIE), a technique utilizing transformed Landsat digital data was evaluated for detecting moisture stress in humid growing regions using sample segments from Iowa, Illinois, and Indiana. At known growth stages of corn and soybeans, segments were classified as undergoing moisture stress or not undergoing stress. The remote-sensing-based information was compared to a weekly ground-based index (Crop Moisture Index). This comparison demonstrated that the remote sensing technique could be used to monitor the growing conditions within a region where corn and soybeans are the major crop.

  4. Near-Infrared Monitoring of Model Chronic Compartment Syndrome In Exercising Skeletal Muscle

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Breit, G. A.; Gross, J. H.; Watenpaugh, D. E.; Chance, B.

    1995-01-01

    Chronic compartment syndrome (CCS) is characterized by muscle ischemia, usually in the anterior oompartment of the leg, caused by high intramuscular pressure during exercise. Dual-wave near-infrared (NIR) spectroscopy is an optical technique that allows noninvasive tracking of variations in muscle tissue oxygenation (Chance et al., 1988). We hypothesized that with a model CCS, muscle tissue oxygenation will show a greater decline during exercise and a slower recovery post-exercise than under normal conditions.

  5. Preliminary analysis of an extensive one year survey of trace elements and compounds in the suspended particulate matter in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    King, R. B.; Fordyce, J. S.; Antoine, A. C.; Leibecki, H. F.; Neustadter, H. E.; Sidik, S. M.; Burr, J. C.; Craig, G. T.; Cornett, C. L.

    1974-01-01

    Preliminary review of a study of trace elements and compound concentrations in the ambient suspended particulate matter in Cleveland, Ohio, measured from August 1971 through June 1973, as a function of source, monitoring location, and meteorological conditions. The study is aimed at the development of techniques for identifying specific pollution sources which could be integrated into a practical system readily usable by an enforcement agency.

  6. Electrostatic monitoring

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2001-01-01

    The apparatus and method provide a technique for more simply measuring alpha and/or beta emissions arising from items or locations. The technique uses indirect monitoring of the emissions by detecting ions generated by the emissions, the ions being attracted electrostatically to electrodes for discharge of collection. The apparatus and method employ a chamber which is sealed around the item or location during monitoring with no air being drawn into or expelled from the chamber during the monitoring process. A simplified structure and operations arises as a result, but without impairing the efficiency and accuracy of the detection technique.

  7. Study for online range monitoring with the interaction vertex imaging method.

    PubMed

    Finck, Ch; Karakaya, Y; Reithinger, V; Rescigno, R; Baudot, J; Constanzo, J; Juliani, D; Krimmer, J; Rinaldi, I; Rousseau, M; Testa, E; Vanstalle, M; Ray, C

    2017-11-21

    Ion beam therapy enables a highly accurate dose conformation delivery to the tumor due to the finite range of charged ions in matter (i.e. Bragg peak (BP)). Consequently, the dose profile is very sensitive to patients anatomical changes as well as minor mispositioning, and so it requires improved dose control techniques. Proton interaction vertex imaging (IVI) could offer an online range control in carbon ion therapy. In this paper, a statistical method was used to study the sensitivity of the IVI technique on experimental data obtained from the Heidelberg Ion-Beam Therapy Center. The vertices of secondary protons were reconstructed with pixelized silicon detectors. The statistical study used the [Formula: see text] test of the reconstructed vertex distributions for a given displacement of the BP position as a function of the impinging carbon ions. Different phantom configurations were used with or without bone equivalent tissue and air inserts. The inflection points in the fall-off region of the longitudinal vertex distribution were computed using different methods, while the relation with the BP position was established. In the present setup, the resolution of the BP position was about 4-5 mm in the homogeneous phantom under clinical conditions (10 6 incident carbon ions). Our results show that the IVI method could therefore monitor the BP position with a promising resolution in clinical conditions.

  8. A formula for evaluating colour differences for thread sewn into fabric samples

    NASA Astrophysics Data System (ADS)

    Steder, Thorsten

    In-service rails can develop several types of structural defects due to fatigue and wear caused by rolling stock passing over them. Most rail defects will develop gradually over time thus permitting inspection engineers to detect them in time before final failure occurs. In the UK, certain types of severe rail defects such as tache ovales, require the fitting of emergency clamps and the imposing of an Emergency Speed Restriction (ESR) until the defects are removed. Acoustic emission (AE) techniques can be applied for the detection and continuous monitoring of defect growth therefore removing the need of imposing strict ESRs. The work reported herewith aims to develop a sound methodology for the application of AE in order to detect and subsequently monitor damage evolution in rails. To validate the potential of the AE technique, tests have been carried out under laboratory conditions on three and four-point bending samples manufactured from 260 grade rail steel. Further tests, simulating the background noise conditions caused by passing rolling stock have been carried out using special experimental setups. The crack growth events have been simulated using a pencil tip break..

  9. Study for online range monitoring with the interaction vertex imaging method

    NASA Astrophysics Data System (ADS)

    Finck, Ch; Karakaya, Y.; Reithinger, V.; Rescigno, R.; Baudot, J.; Constanzo, J.; Juliani, D.; Krimmer, J.; Rinaldi, I.; Rousseau, M.; Testa, E.; Vanstalle, M.; Ray, C.

    2017-12-01

    Ion beam therapy enables a highly accurate dose conformation delivery to the tumor due to the finite range of charged ions in matter (i.e. Bragg peak (BP)). Consequently, the dose profile is very sensitive to patients anatomical changes as well as minor mispositioning, and so it requires improved dose control techniques. Proton interaction vertex imaging (IVI) could offer an online range control in carbon ion therapy. In this paper, a statistical method was used to study the sensitivity of the IVI technique on experimental data obtained from the Heidelberg Ion-Beam Therapy Center. The vertices of secondary protons were reconstructed with pixelized silicon detectors. The statistical study used the χ2 test of the reconstructed vertex distributions for a given displacement of the BP position as a function of the impinging carbon ions. Different phantom configurations were used with or without bone equivalent tissue and air inserts. The inflection points in the fall-off region of the longitudinal vertex distribution were computed using different methods, while the relation with the BP position was established. In the present setup, the resolution of the BP position was about 4-5 mm in the homogeneous phantom under clinical conditions (106 incident carbon ions). Our results show that the IVI method could therefore monitor the BP position with a promising resolution in clinical conditions.

  10. A max-to-min technique for making projections of NDVI change in semi-arid Africa for food security early warning

    NASA Astrophysics Data System (ADS)

    Brown, M. E.; Funk, C. C.

    2005-12-01

    Climatic hazards such as droughts and floods often result in a decline in food production in economically vulnerable pre-industrial economies such as those in Africa. Early warning systems (EWS) have been developed to identify slow onset disasters such famine and epidemic disease that may result from hazardous environmental conditions. These conditions often precede food crises by many months, thus effective monitoring via satellite and in situ observations can allow for successful mitigation activities. Accurate forecasts of NDVI could increase monitoring lead times and allow for effective institutional planning of intervention, making early warning earlier. This paper presents a simple empirical max-to-min model for making 1 to 4 month NDVI projections. These statistical projections are based on parameterized satellite rainfall estimates (RFE) and relative humidity demand (RHD). A heuristic example in central Zimbabwe introduces the RFE growth and RHD loss terms. A quasi-global, one month ahead, 1 degree study then demonstrates reasonable accuracies in many semi-arid regions. In Africa, a 0.1 degree cross-validated skill assessment quantifies the technique's applicability at 1 to 4 month forecast intervals. These results suggest that useful projections can be made over many semi-arid, food insecure regions of Africa, with plausible extensions to drought prone areas of Asia, Australia and South America.

  11. Distributed acoustic sensing technique and its field trial in SAGD well

    NASA Astrophysics Data System (ADS)

    Han, Li; He, Xiangge; Pan, Yong; Liu, Fei; Yi, Duo; Hu, Chengjun; Zhang, Min; Gu, Lijuan

    2017-10-01

    Steam assisted gravity drainage (SAGD) is a very promising way for the development of heavy oil, extra heavy oil and tight oil reservoirs. Proper monitoring of the SAGD operations is essential to avoid operational issues and improve efficiency. Among all the monitoring techniques, micro-seismic monitoring and related interpretation method can give useful information about the steam chamber development and has been extensively studied. Distributed acoustic sensor (DAS) based on Rayleigh backscattering is a newly developed technique that can measure acoustic signal at all points along the sensing fiber. In this paper, we demonstrate a DAS system based on dual-pulse heterodyne demodulation technique and did field trial in SAGD well located in Xinjiang Oilfield, China. The field trail results validated the performance of the DAS system and indicated its applicability in steam-chamber monitoring and hydraulic monitoring.

  12. Research on corrosion detection for steel reinforced concrete structures using the fiber optical white light interferometer sensing technique

    NASA Astrophysics Data System (ADS)

    Zhao, Xuefeng; Cui, Yanjun; Wei, Heming; Kong, Xianglong; Zhang, Pinglei; Sun, Changsen

    2013-06-01

    In this paper, a novel kind of steel rebar corrosion monitoring technique for steel reinforced concrete structures is proposed, designed, and tested. The technique is based on the fiber optical white light interferometer (WLI) sensing technique. Firstly, a feasibility test was carried out using an equal-strength beam for comparison of strain sensing ability between the WLI and a fiber Bragg grating (FBG). The comparison results showed that the sensitivity of the WLI is sufficient for corrosion expansion strain monitoring. Then, two WLI corrosion sensors (WLI-CSs) were designed, fabricated, and embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion. Their performance was studied in an accelerated electrochemical corrosion test. Experimental results show that expansion strain along the fiber optical coil winding area can be detected and measured accurately by the proposed sensor. The advantages of the proposed monitoring technique allow for quantitative corrosion expansion monitoring to be executed in real time for reinforced concrete structures and with low cost.

  13. Introduction (PSW-GTR-246)

    Treesearch

    James Halperin; David Ganz

    2013-01-01

    Globally, approximately two-thirds of the world's forests are considered degraded, but practical, cost-effective tools for monitoring forest quality remain elusive. Techniques for monitoring deforestation and changes to forest carbon stocks are widespread and well published. However, techniques for monitoring forest degradation are relatively untested in...

  14. Data Acquisition and Environmental Monitoring of the MAJORANA DEMONSTRATOR

    NASA Astrophysics Data System (ADS)

    Meijer, Samuel; Majorana Collaboration

    2015-04-01

    Low-background non-accelerator experiments have unique requirements for their data acquisition and environmental monitoring. Background signals can easily overwhelm the signals of interest, so events which could contribute to the background must be identified. There is a need to correlate events between detectors and environmental conditions, and data integrity must be maintained. Here, we describe several of the software and hardware techniques achieved by the MAJORANA Collaboration for the MAJORANA DEMONSTRATOR, such as using the Object-oriented Realtime Control and Acquisition (ORCA) software package. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility.

  15. Assessment of the capability of remote sensing and GIS techniques for monitoring reclamation success in coal mine degraded lands.

    PubMed

    Karan, Shivesh Kishore; Samadder, Sukha Ranjan; Maiti, Subodh Kumar

    2016-11-01

    The objective of the present study is to monitor reclamation activity in mining areas. Monitoring of these reclaimed sites in the vicinity of mining areas and on closed Over Burden (OB) dumps is critical for improving the overall environmental condition, especially in developing countries where area around the mines are densely populated. The present study evaluated the reclamation success in the Block II area of Jharia coal field, India, using Landsat satellite images for the years 2000 and 2015. Four image processing methods (support vector machine, ratio vegetation index, enhanced vegetation index, and normalized difference vegetation index) were used to quantify the change in vegetation cover between the years 2000 and 2015. The study also evaluated the relationship between vegetation health and moisture content of the study area using remote sensing techniques. Statistical linear regression analysis revealed that Normalized Difference Vegetation Index (NDVI) coupled with Normalized Difference Moisture Index (NDMI) is the best method for vegetation monitoring in the study area when compared to other indices. A strong linear relationship (r(2) > 0.86) was found between NDVI and NDMI. An increase of 21% from 213.88 ha in 2000 to 258.9 ha in 2015 was observed in the vegetation cover of the reclaimed sites for an open cast mine, indicating satisfactory reclamation activity. NDVI results indicated that vegetation health also improved over the years. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Instantaneous angular speed monitoring of gearboxes under non-cyclic stationary load conditions

    NASA Astrophysics Data System (ADS)

    Stander, C. J.; Heyns, P. S.

    2005-07-01

    Recent developments in the condition monitoring and asset management market have led to the commercialisation of online vibration-monitoring systems. These systems are primarily utilised to monitor large mineral mining equipment such as draglines, continuous miners and hydraulic shovels. Online monitoring systems make diagnostic information continuously available for asset management, production outsourcing and maintenance alliances with equipment manufacturers. However, most online vibration-monitoring systems are based on conventional vibration-monitoring technologies, which are prone to giving false equipment deterioration warnings on gears that operate under fluctuating load conditions. A simplified mathematical model of a gear system was developed to illustrate the feasibility of monitoring the instantaneous angular speed (IAS) as a means of monitoring the condition of gears that are subjected to fluctuating load conditions. A distinction is made between cyclic stationary load modulation and non-cyclic stationary load modulation. It is shown that rotation domain averaging will suppress the modulation caused by non-cyclic stationary load conditions but will not suppress the modulation caused by cyclic stationary load conditions. An experimental investigation on a test rig indicated that the IAS of a gear shaft could be monitored with a conventional shaft encoder to indicate a deteriorating gear fault condition.

  17. Progress of a Cross-correlation Based Optical Strain Measurement Technique for Detecting Radial Growth on a Rotating Disk

    NASA Technical Reports Server (NTRS)

    Clem, Michelle M.; Woike, Mark; Abdul-Aziz, Ali

    2013-01-01

    The Aeronautical Sciences Project under NASAs Fundamental Aeronautics Program is extremely interested in the development of fault detection technologies, such as optical surface measurements in the internal parts of a flow path, for in situ health monitoring of gas turbine engines. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. In the present study, a cross-correlation imaging technique is investigated in a proof-of-concept study as a possible optical technique to measure the radial growth and strain field on an already cracked sub-scale turbine engine disk under loaded conditions in the NASA Glenn Research Centers High Precision Rotordynamics Laboratory. The optical strain measurement technique under investigation offers potential fault detection using an applied background consisting of a high-contrast random speckle pattern and imaging the background under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds induces an external load, resulting in a radial growth of the disk of approximately 50.8-m in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will appear shifted. The resulting background displacements between the two images will then be measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. In order to develop and validate this optical strain measurement technique an initial proof-of-concept experiment is carried out in a controlled environment. Using PIV optimization principles and guidelines, three potential backgrounds, for future use on the rotating disk, are developed and investigated in the controlled experiment. A range of known shifts are induced on the backgrounds; reference and data images are acquired before and after the induced shift, respectively, and the images are processed using the cross- correlation algorithms in order to determine the background displacements. The effectiveness of each background at resolving the known shift is evaluated and discussed in order to choose to the most suitable background to be implemented onto a rotating disk in the Rotordynamics Lab. Although testing on the rotating disk has not yet been performed, the driving principles behind the development of the present optical technique are based upon critical aspects of the future experiment, such as the amount of expected radial growth, disk analysis, and experimental design and are therefore addressed in the paper.

  18. Less or more hemodynamic monitoring in critically ill patients.

    PubMed

    Jozwiak, Mathieu; Monnet, Xavier; Teboul, Jean-Louis

    2018-06-07

    Hemodynamic investigations are required in patients with shock to identify the type of shock, to select the most appropriate treatments and to assess the patient's response to the selected therapy. We discuss how to select the most appropriate hemodynamic monitoring techniques in patients with shock as well as the future of hemodynamic monitoring. Over the last decades, the hemodynamic monitoring techniques have evolved from intermittent toward continuous and real-time measurements and from invasive toward less-invasive approaches. In patients with shock, current guidelines recommend the echocardiography as the preferred modality for the initial hemodynamic evaluation. In patients with shock nonresponsive to initial therapy and/or in the most complex patients, it is recommended to monitor the cardiac output and to use advanced hemodynamic monitoring techniques. They also provide other useful variables that are useful for managing the most complex cases. Uncalibrated and noninvasive cardiac output monitors are not reliable enough in the intensive care setting. The use of echocardiography should be initially encouraged in patients with shock to identify the type of shock and to select the most appropriate therapy. The use of more invasive hemodynamic monitoring techniques should be discussed on an individualized basis.

  19. Support vector machine in machine condition monitoring and fault diagnosis

    NASA Astrophysics Data System (ADS)

    Widodo, Achmad; Yang, Bo-Suk

    2007-08-01

    Recently, the issue of machine condition monitoring and fault diagnosis as a part of maintenance system became global due to the potential advantages to be gained from reduced maintenance costs, improved productivity and increased machine availability. This paper presents a survey of machine condition monitoring and fault diagnosis using support vector machine (SVM). It attempts to summarize and review the recent research and developments of SVM in machine condition monitoring and diagnosis. Numerous methods have been developed based on intelligent systems such as artificial neural network, fuzzy expert system, condition-based reasoning, random forest, etc. However, the use of SVM for machine condition monitoring and fault diagnosis is still rare. SVM has excellent performance in generalization so it can produce high accuracy in classification for machine condition monitoring and diagnosis. Until 2006, the use of SVM in machine condition monitoring and fault diagnosis is tending to develop towards expertise orientation and problem-oriented domain. Finally, the ability to continually change and obtain a novel idea for machine condition monitoring and fault diagnosis using SVM will be future works.

  20. Cerebral blood flow and autoregulation: current measurement techniques and prospects for noninvasive optical methods

    PubMed Central

    Fantini, Sergio; Sassaroli, Angelo; Tgavalekos, Kristen T.; Kornbluth, Joshua

    2016-01-01

    Abstract. Cerebral blood flow (CBF) and cerebral autoregulation (CA) are critically important to maintain proper brain perfusion and supply the brain with the necessary oxygen and energy substrates. Adequate brain perfusion is required to support normal brain function, to achieve successful aging, and to navigate acute and chronic medical conditions. We review the general principles of CBF measurements and the current techniques to measure CBF based on direct intravascular measurements, nuclear medicine, X-ray imaging, magnetic resonance imaging, ultrasound techniques, thermal diffusion, and optical methods. We also review techniques for arterial blood pressure measurements as well as theoretical and experimental methods for the assessment of CA, including recent approaches based on optical techniques. The assessment of cerebral perfusion in the clinical practice is also presented. The comprehensive description of principles, methods, and clinical requirements of CBF and CA measurements highlights the potentially important role that noninvasive optical methods can play in the assessment of neurovascular health. In fact, optical techniques have the ability to provide a noninvasive, quantitative, and continuous monitor of CBF and autoregulation. PMID:27403447

  1. Third-Order Spectral Techniques for the Diagnosis of Motor Bearing Condition Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Yang, D.-M.; Stronach, A. F.; MacConnell, P.; Penman, J.

    2002-03-01

    This paper addresses the development of a novel condition monitoring procedure for rolling element bearings which involves a combination of signal processing, signal analysis and artificial intelligence methods. Seven approaches based on power spectrum, bispectral and bicoherence vibration analyses are investigated as signal pre-processing techniques for application in the diagnosis of a number of induction motor rolling element bearing conditions. The bearing conditions considered are a normal bearing and bearings with cage and inner and outer race faults. The vibration analysis methods investigated are based on the power spectrum, the bispectrum, the bicoherence, the bispectrum diagonal slice, the bicoherence diagonal slice, the summed bispectrum and the summed bicoherence. Selected features are extracted from the vibration signatures so obtained and these are used as inputs to an artificial neural network trained to identify the bearing conditions. Quadratic phase coupling (QPC), examined using the magnitude of bispectrum and bicoherence and biphase, is shown to be absent from the bearing system and it is therefore concluded that the structure of the bearing vibration signatures results from inter-modulation effects. In order to test the proposed procedure, experimental data from a bearing test rig are used to develop an example diagnostic system. Results show that the bearing conditions examined can be diagnosed with a high success rate, particularly when using the summed bispectrum signatures.

  2. Comparison of point intercept and image analysis for monitoring rangeland transects

    USDA-ARS?s Scientific Manuscript database

    Amidst increasing workloads and static or declining budgets, both public and private land management agencies face the need to adapt resource-monitoring techniques or risk falling behind on resource monitoring volume and quality with old techniques. Image analysis of nadir plot images, acquired with...

  3. Real-time QCM-D monitoring of cancer cell death early events in a dynamic context.

    PubMed

    Nowacki, Laetitia; Follet, Julie; Vayssade, Muriel; Vigneron, Pascale; Rotellini, Laura; Cambay, Florian; Egles, Christophe; Rossi, Claire

    2015-02-15

    Since a few years, the acoustic sensing of whole cell is the focus of increasing interest for monitoring the cytoskeletal cellular response to morphological modulators. We aimed at illustrating the potentialities of the quartz crystal microbalance with dissipation (QCM-D) technique for the real-time detection of the earliest morphological changes that occur at the cell-substrate interface during programmed cell death. Human breast cancer cells (MCF-7) grown on serum protein-coated gold sensors were placed in dynamic conditions under a continuous medium flow. The mass and viscoelasticity changes of the cells were tracked by monitoring the frequency and dissipation shifts during the first 4h of cell exposure to staurosporine, a well-known apoptosis inducer. We have identified a QCM-D signature characteristic of morphological modifications and cell detachment from the sensing surface that are related to the pro-apoptotic treatment. In particular, for low staurosporine doses below 1 µM, we showed that recording the dissipation shift allows to detect an early cell response which is undetectable after the same duration by the classical analytical techniques in cell biology. Furthermore, this sensing method allows quantifying the efficiency of the drug effect in less than 4h without requiring labeling and without interfering in the system, thus preventing any loss of information. In the actual context of targeted cancer therapy development, we believe that these results bring new insights in favor of the use of the non invasive QCM-D technique for quickly probing the cancer cell sensitivity to death inducer drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Flow cytometry and real-time quantitative PCR as tools for assessing plasmid persistence.

    PubMed

    Loftie-Eaton, Wesley; Tucker, Allison; Norton, Ann; Top, Eva M

    2014-09-01

    The maintenance of a plasmid in the absence of selection for plasmid-borne genes is not guaranteed. However, plasmid persistence can evolve under selective conditions. Studying the molecular mechanisms behind the evolution of plasmid persistence is key to understanding how plasmids are maintained under nonselective conditions. Given the current crisis of rapid antibiotic resistance spread by multidrug resistance plasmids, this insight is of high medical relevance. The conventional method for monitoring plasmid persistence (i.e., the fraction of plasmid-containing cells in a population over time) is based on cultivation and involves differentiating colonies of plasmid-containing and plasmid-free cells on agar plates. However, this technique is time-consuming and does not easily lend itself to high-throughput applications. Here, we present flow cytometry (FCM) and real-time quantitative PCR (qPCR) as alternative tools for monitoring plasmid persistence. For this, we measured the persistence of a model plasmid, pB10::gfp, in three Pseudomonas hosts and in known mixtures of plasmid-containing and -free cells. We also compared three performance criteria: dynamic range, resolution, and variance. Although not without exceptions, both techniques generated estimates of overall plasmid loss rates that were rather similar to those generated by the conventional plate count (PC) method. They also were able to resolve differences in loss rates between artificial plasmid persistence assays. Finally, we briefly discuss the advantages and disadvantages for each technique and conclude that, overall, both FCM and real-time qPCR are suitable alternatives to cultivation-based methods for routine measurement of plasmid persistence, thereby opening avenues for high-throughput analyses. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Creep and Environmental Durability of EBC/CMCs Under Imposed Thermal Gradient Conditions

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming

    2013-01-01

    Interest in SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems for use in high temperature structural applications has prompted the need for characterization of material strength and creep performance under complex aerospace turbine engine environments. Stress-rupture tests have been performed on SiC/SiC composites systems, with varying fiber types and coating schemes to demonstrate material behavior under isothermal conditions. Further testing was conducted under exposure to thermal stress gradients to determine the effect on creep resistance and material durability. In order to understand the associated damage mechanisms, emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation; including electrical resistivity monitoring. The influence of environmental and loading conditions on life-limiting material properties is shown.

  6. The influence of surface waves on water circulation in a mid-Atlantic continental shelf region

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Talay, T. A.

    1974-01-01

    The importance of wave-induced currents in different weather conditions and water depths (18.3 m and 36.6 m) is assessed in a mid-Atlantic continental-shelf region. A review of general circulation conditions is conducted. Factors which perturb the general circulation are examined using analytic techniques and limited experimental data. Actual wind and wave statistics for the region are examined. Relative magnitudes of the various currents are compared on a frequency of annual occurrence basis. Results indicated that wave-induced currents are often the same order of magnitude as other currents in the region and become more important at higher wind and wave conditions. Wind-wave and ocean-swell characteristics are among those parameters which must be monitored for the analytical computation of continental-shelf circulation.

  7. Monitoring technique for a hybrid PS/WDM-PON by using a tunable OTDR and FBGs

    NASA Astrophysics Data System (ADS)

    Hann, Swook; Yoo, Jun-sang; Park, Chang-Soo

    2006-05-01

    A monitoring technique for hybrid passive optical networks (PON) is presented. The technique is based on the remote sensing of fibre Bragg gratings (FBGs) using a tunable optical time domain reflectometer (OTDR). The FBG would help discern an individual event during the monitoring of the hybrid PON in collaboration with the information provided by the Rayleigh backscattered power. The hybrid architecture of passive splitter-PON and WDM-PON can be analysed by the monitoring method by using the tunable OTDR and FBGs at the central office under the in-service state of PON.

  8. Use of Satellite Remote Sensing of Cloud and Rainfall for Selected Operational Applications in the Fields of Applied Hydrology and Food Production.

    NASA Astrophysics Data System (ADS)

    Power, Clare

    Available from UMI in association with The British Library. The material presented in this thesis takes the form of a series of discrete, but inter-related projects on subjects related to the use of satellite remote sensing techniques for selected applications in the fields of cloud, rainfall, vegetation and food production monitoring and assessment. Detailed literature reviews have been carried out on remote sensing techniques in these fields, in particular, for rainfall monitoring and the development of systems for food crop prediction from various rainfall, vegetation and crop monitoring algorithms. The second part of the thesis is devoted to a series of practical projects using five different and contrasting satellite rainfall monitoring techniques using visible and/or infrared imagery, three applied over the Sultanate of Oman and two over West Africa. The case studies applied over the Sultanate of Oman show a range of techniques from manual nephanalyses of Potential Rain Clouds and the derivation of a 20 year record of Tropical Cyclone tracks over the Arabian Sea, to the manual Bristol rainfall monitoring technique and its human-machine interactive successor BIAS, which are applicable to the analysis of short term extreme rainfall events. The remaining two techniques were developed simultaneously over West Africa. The first, namely, PERMIT (the Polar-orbiter Effective Rainfall Monitoring Technique), was developed by the Author, and the second, ADMIT (Agricultural Drought Monitoring Integrated Technique), by a colleague, Giles D'Souza. The development, testing on data from July and August 1985 and July 1986, and subsequent modification of the PERMIT technique is described. The 1986 Case Study results have been compared with the ADMIT results from the same data set, as part of a project funded by FAO to compare the performance of four Meteosat rainfall monitoring techniques (Snijders 1988). PERMIT was designed to be an economic, (in terms of satellite data and computer processing needs), automatic rainfall estimation technique suitable for use in environments where computer facilities are limited. Finally the PERMIT rainfall products have been compared with contemporaneous NOAA AVHRR Normalised Vegetation Index monthly composites. The relationships observed between these two satellite-derived products may contribute to the future development of a simple, low cost crop prediction scheme for developing countries. The main conclusion drawn from this research is that there is an urgent need for simple but effective rainfall and vegetation monitoring systems such as PERMIT, to be implemented operationally on low cost portable microcomputer systems which are readily installed in Developing Countries, where effective monitoring of such environmental elements can provide early warnings and reduce the impacts of drought inflicted famine disasters.

  9. Automated Monitoring with a BSP Fault-Detection Test

    NASA Technical Reports Server (NTRS)

    Bickford, Randall L.; Herzog, James P.

    2003-01-01

    The figure schematically illustrates a method and procedure for automated monitoring of an asset, as well as a hardware- and-software system that implements the method and procedure. As used here, asset could signify an industrial process, power plant, medical instrument, aircraft, or any of a variety of other systems that generate electronic signals (e.g., sensor outputs). In automated monitoring, the signals are digitized and then processed in order to detect faults and otherwise monitor operational status and integrity of the monitored asset. The major distinguishing feature of the present method is that the fault-detection function is implemented by use of a Bayesian sequential probability (BSP) technique. This technique is superior to other techniques for automated monitoring because it affords sensitivity, not only to disturbances in the mean values, but also to very subtle changes in the statistical characteristics (variance, skewness, and bias) of the monitored signals.

  10. In situ control of industrial processes using laser light scattering and optical rotation

    NASA Astrophysics Data System (ADS)

    Mendoza Sanchez, Patricia Judith; López Echevarria, Daniel; Huerta Ruelas, Jorge Adalberto

    2006-02-01

    We present results of optical measurements in products or processes usually found in industrial processes, which can be used to control them. Laser light scattering was employed during semiconductor epitaxial growth by molecular beam epitaxy. With this technique, it was possible to determine growth rate, roughness and critical temperatures related to substrate degradation. With the same scattering technique, oil degradation as function of temperature was monitored for different automotive lubricants. Clear differences can be studied between monograde and multigrade oils. Optical rotation measurements as function of temperature were performed in apple juice in a pasteurization process like. Average variations related to optical rotation dependence of sugars were measured and monitored during heating and cooling process, finding a reversible behavior. As opposite behavior, sugar-protein solution was measured in a similar heating and cooling process. Final result showed a non-reversible behavior related to protein denaturation. Potential applications are discussed for metal-mechanic, electronic, food, and pharmaceutical industry. Future improvements in optical systems to make them more portable and easily implemented under typical industry conditions are mentioned.

  11. Multi-perspective analysis and spatiotemporal mapping of air pollution monitoring data.

    PubMed

    Kolovos, Alexander; Skupin, André; Jerrett, Michael; Christakos, George

    2010-09-01

    Space-time data analysis and assimilation techniques in atmospheric sciences typically consider input from monitoring measurements. The input is often processed in a manner that acknowledges characteristics of the measurements (e.g., underlying patterns, fluctuation features) under conditions of uncertainty; it also leads to the derivation of secondary information that serves study-oriented goals, and provides input to space-time prediction techniques. We present a novel approach that blends a rigorous space-time prediction model (Bayesian maximum entropy, BME) with a cognitively informed visualization of high-dimensional data (spatialization). The combined BME and spatialization approach (BME-S) is used to study monthly averaged NO2 and mean annual SO4 measurements in California over the 15-year period 1988-2002. Using the original scattered measurements of these two pollutants BME generates spatiotemporal predictions on a regular grid across the state. Subsequently, the prediction network undergoes the spatialization transformation into a lower-dimensional geometric representation, aimed at revealing patterns and relationships that exist within the input data. The proposed BME-S provides a powerful spatiotemporal framework to study a variety of air pollution data sources.

  12. Evaluate ERTS imagery for mapping and detection of changes of snowcover on land and on glaciers

    NASA Technical Reports Server (NTRS)

    Meier, M. F. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Preliminary results on the feasibility of mapping snow cover extent have been obtained from a limited number of ERTS-1 images of mountains in Alaska, British Columbia, and Washington. The snowline on land can be readily distinguished, except in heavy forest where such distinction appears to be virtually impossible. The snowline on very large glaciers can also be distinguished remarkably easily, leading to a convenient way to measure glacier accumulation area ratios or equilibrium line altitude. Monitoring of large surging glaciers appears to be possible, but only through observation of a change in area and/or medial moraine extent. Under certain conditions, ERTS-1 imagery appears to have high potential for mapping snow cover in mountainous areas. Distinction between snow and clouds appears to require use of the human eye, but in a cloud-free scene the snow cover is sufficiently distinct to allow use of automated techniques. This technique may prove very useful as an aid in the monitoring of the snowpack water resource and the prediction of summer snowmelt runoff volume.

  13. Information integration and diagnosis analysis of equipment status and production quality for machining process

    NASA Astrophysics Data System (ADS)

    Zan, Tao; Wang, Min; Hu, Jianzhong

    2010-12-01

    Machining status monitoring technique by multi-sensors can acquire and analyze the machining process information to implement abnormity diagnosis and fault warning. Statistical quality control technique is normally used to distinguish abnormal fluctuations from normal fluctuations through statistical method. In this paper by comparing the advantages and disadvantages of the two methods, the necessity and feasibility of integration and fusion is introduced. Then an approach that integrates multi-sensors status monitoring and statistical process control based on artificial intelligent technique, internet technique and database technique is brought forward. Based on virtual instrument technique the author developed the machining quality assurance system - MoniSysOnline, which has been used to monitoring the grinding machining process. By analyzing the quality data and AE signal information of wheel dressing process the reason of machining quality fluctuation has been obtained. The experiment result indicates that the approach is suitable for the status monitoring and analyzing of machining process.

  14. Use of High Resolution Mobile Monitoring Techniques to Assess Near Road Air Quality Variability

    EPA Science Inventory

    This presentation provides a description of the techniques used to develop and conduct effective mobile monitoring studies. It also provides a summary of mobile monitoring assessment studies that have been used to assess near-road concentrations and the variability of pollutant l...

  15. Use of High Resolution Mobile Monitoring Techniques to Assess Near-Road Air Quality Variability

    EPA Science Inventory

    This presentation provides a description of the techniques used to develop and conduct effective mobile monitoring studies. It also provides a summary of mobile monitoring assessment studies that have been used to assess near-road concentrations and the variability of pollutant l...

  16. Color reproduction system based on color appearance model and gamut mapping

    NASA Astrophysics Data System (ADS)

    Cheng, Fang-Hsuan; Yang, Chih-Yuan

    2000-06-01

    By the progress of computer, computer peripherals such as color monitor and printer are often used to generate color image. However, cross media color reproduction by human perception is usually different. Basically, the influence factors are device calibration and characterization, viewing condition, device gamut and human psychology. In this thesis, a color reproduction system based on color appearance model and gamut mapping is proposed. It consists of four parts; device characterization, color management technique, color appearance model and gamut mapping.

  17. A depolarization and attenuation experiment using the CTS satellite. Volume 1: Experiment description

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Holt, S. B., Jr.; Kauffman, S. R.; Manus, E. A.; Marshall, R. E.; Stutzman, W. L.; Wiley, P. H.

    1976-01-01

    An experiment for measuring precipitation attenuation and depolarization on the Communications Technology Satellite (CTS) 11.7 GHz downlink is described. Attenuation and depolarization of the signal received from the spacecraft is monitored on a 24 hour basis. Data is correlated with ground weather conditions. Theoretical models for millimeter wave propagation through rain are refined for maximum agreement with observed data. Techniques are developed for predicting and mimimizing the effects of rain scatter and depolarization on future satellite communication systems.

  18. Environmental Assessment And Finding of No Significant Impact for the Low Impact Development Retrofit At Pillar Point Air Force Station, California

    DTIC Science & Technology

    2012-01-09

    utilize LID techniques to enable greater on-site infiltration of storm water to improve storm water quality and restore natural water quality conditions...systems and conveyed through above- and below-ground piping to concrete roadside ditches. Stonn Water Quality Storm water quality monitoring has been...process of being awarded and implemented. The results of all referenced storm water quality and septic inspection reports is available upon request to

  19. Nanoliter hemolymph sampling and analysis of individual adult Drosophila melanogaster.

    PubMed

    Piyankarage, Sujeewa C; Featherstone, David E; Shippy, Scott A

    2012-05-15

    The fruit fly (Drosophila melanogaster) is an extensively used and powerful, genetic model organism. However, chemical studies using individual flies have been limited by the animal's small size. Introduced here is a method to sample nanoliter hemolymph volumes from individual adult fruit-flies for chemical analysis. The technique results in an ability to distinguish hemolymph chemical variations with developmental stage, fly sex, and sampling conditions. Also presented is the means for two-point monitoring of hemolymph composition for individual flies.

  20. Laser Physics and Laser Techniques

    DTIC Science & Technology

    1989-06-01

    modulated surface, taking full account of the po- pIe growth on different surfaces. Mechanisms to be con - larization properties of the incident wave and...grazing- occurring for grating periods close to the Rayleigh con - angle condition for both linear and stimulated Wood’s ditions A = X/01 ± sin 0...implement 3 I since one can then monitor the ripple intensity versus 400 S00 00 S00 number of repeated shots at low repetition rate and con - A*tAtG

  1. Simultaneous measurements of bulk moduli and particle dynamics in a sheared colloidal glass

    NASA Astrophysics Data System (ADS)

    Massa, Michael V.; Eisenmann, Christoph; Kim, Chanjoong; Weitz, David A.

    2007-03-01

    We present a novel study of glassy colloidal systems, using a stress-controlled rheometer in conjunction with a confocal microscope. This experimental setup combines the measurement of bulk moduli, using conventional rheology, with the ability to track the motion of individual particles, through confocal microscopy techniques. We explore the response of the system to applied shear, by simultaneously monitoring the macroscopic relaxation and microscopic particle dynamics, under conditions from the quiescent glass to a shear-melted liquid.

  2. Best Practices for Evaluating the Capability of Nondestructive Evaluation (NDE) and Structural Health Monitoring (SHM) Techniques for Damage Characterization (Post-Print)

    DTIC Science & Technology

    2016-02-10

    a wide range of part, environmental and damage conditions. Best practices of using models are presented for both an eddy current NDE sizing and...to assess the reliability of NDE and SHM characterization capability. Best practices of using models are presented for both an eddy current NDE... EDDY CURRENT NDE CASE STUDY An eddy current crack sizing case study is presented to highlight examples of some of these complex characteristics of

  3. Combining non-invasive techniques for delimitation and monitoring of chlorinated solvents in groundwater

    NASA Astrophysics Data System (ADS)

    Sparrenbom, Charlotte; Åkesson, Sofia; Hagerberg, David; Dahlin, Torleif; Holmstrand, Henry; Johansson, Sara

    2016-04-01

    Large numbers of polluted areas cause leakage of hazardous pollutants into our groundwater. Remediated actions are needed in a vast number of areas to prevent degradation of the quality of our water resources. As excavation of polluted masses is problematic as it often moves the pollutants from one site to another (in best case off site treatment is carried out), in-situ remediation and monitoring thereof needs further development. In general, we need to further develop and improve how we retrieve information on the status of the underground system. This is needed to avoid costly and hazardous shipments associated with excavations and to avoid unnecessary exposure when handling polluted masses. Easier, cheaper, more comprehensive and nondestructive monitoring techniques are needed for evaluation of remediation degree, degradation status of the contaminants and the remaining groundwater contaminant plume. We investigate the possibility to combine two investigation techniques, which are invasive to a very low degree and can give a very good visualization and evaluation of pollutant status underground and changes therein in time. The two methods we have combined are Direct Current resistivity and time-domain Induced Polarization tomography (DCIP) and Compound Specific Isotope Analysis (CSIA) and their use within the context of DNAPL contaminated sites. DCIP is a non-invasive and non-destructive geoelectrical measurement method with emerging new techniques for 4D mapping for promising visualization of underground hydrogeochemical structures and spatial distribution of contaminants. The strength of CSIA is that inherent degradation-relatable isotopic information of contaminant molecules remains unaffected as opposed to the commonly used concentration-based studies. Our aim is to evaluate the possibilities of gas sampling on the ground surface for this technique to become non-invasive and usable without interfering ground conditions.Drillings together with soil and groundwater sampling provide reference data within the project and for calibrating interpretations. In our studies, we show the results from DCIP measurements from two different areasin sothern Sweden with chlorinated solvent contamination. From one of the areas, a pilot test on stimulation reductive dechlorination has been carried out and the treated area reveals sharp anomalies in the DCIP response. Time lapse measurements show changes within the stimulated area and this could be used to follow remediation changes and i.e. groundwater quality changes. Tests with DCIP time lapse are also carried out in the second area together with multiple CSIA analyses of groundwater samples and ongoing is the planning for the gas samples. Evaluation of the possible uses, benefits and limitations of the technique for monitoring changes and delimit polluted areas to be able to monitor and follow groundwater quality changes is ongoing.

  4. Limits, complementarity and improvement of Advanced SAR Interferometry monitoring of anthropogenic subsidence/uplift due to long term CO2 storage

    NASA Astrophysics Data System (ADS)

    de Michele, M.; Raucoules, D.; Rohmer, J.; Loschetter, A.; Raffard, D.; Le Gallo, Y.

    2013-12-01

    A prerequisite to the large scale industrial development of CO2 Capture and geological Storage is the demonstration that the storage is both efficient and safe. In this context, precise uplift/subsidence monitoring techniques constitute a key component of any CO2 storage risk management. Space-borne Differential SAR (Synthetic Aperture Radar) interferometry is a promising monitoring technique. It can provide valuable information on vertical positions of a set of scatterer undergoing surface deformation induced by volumetric changes through time and space caused by CO2 injection in deep aquifers. To what extent ? To date, InSAR techniques have been successfully used in a variety of case-studies involving the measure of surface deformation caused by subsurface fluid withdrawal / injection. For instance, groundwater flow characterization in complex aquifers systems, oil / gas field characterization, verification of enhanced oil recovery efficiency, monitoring of seasonal gas storage. The successful use of InSAR is strictly related to the favourable scattering conditions in terms of spatial distribution of targets and their temporal stability. In arid regions, natural radar scatterers density can be very high, exceeding 1,000 per square km. But future onshore industrial-scale CO2 storage sites are planned in more complex land-covers such as agricultural or vegetated terrains. Those terrains are characterized by poor to moderate radar scatterers density, which decrease the detection limits of the space-borne interferometric technique. The present study discusses the limits and constraints of advanced InSAR techniques applied to deformation measurements associated with CO2 injection/storage into deep aquifers in the presence of agricultural and vegetated land-covers. We explore different options to enhance the measurement performances of InSAR techniques. As a first option, we propose to optimize the deployment of a network of 'artificial' scatterers, i.e. corner reflectors (artificial devices installed on ground to provide high backscatter to the radar signal) to complement the existing 'natural' network. The methodology is iterative and adaptive to the spatial and temporal extent of the detectable deforming region. We take into account the need of a change in sensors characteristics (for a very long term monitoring 10-50 years) that could result in a need of re-organisation of the network. Our discussion is supported by the estimates of the expected spatio-temporal evolution of surface vertical displacements caused by CO2 injection at depth by combining the approximate analytical solutions for pressure build-up during CO2 injection in deep aquifers and the poro-elastic behaviour of the reservoir under injection. As second option, we then review different advanced InSAR algorithms that could improve the displacement measurements using natural scatterers over vegetated areas.

  5. Fundamental and assessment of concrete structure monitoring by using acoustic emission technique testing: A review

    NASA Astrophysics Data System (ADS)

    Desa, M. S. M.; Ibrahim, M. H. W.; Shahidan, S.; Ghadzali, N. S.; Misri, Z.

    2018-04-01

    Acoustic emission (AE) technique is one of the non-destructive (NDT) testing, where it can be used to determine the damage of concrete structures such as crack, corrosion, stability, sensitivity, as structure monitoring and energy formed within cracking opening growth in the concrete structure. This article gives a comprehensive review of the acoustic emission (AE) technique testing due to its application in concrete structure for structural health monitoring (SHM). Assessment of AE technique used for structural are reviewed to give the perception of its structural engineering such as dam, bridge and building, where the previous research has been reviewed based on AE application. The assessment of AE technique focusing on basic fundamental of parametric and signal waveform analysis during analysis process and its capability in structural monitoring. Moreover, the assessment and application of AE due to its function have been summarized and highlighted for future references

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    VANNONI, MICHAEL G.; BIRINGER, KENT L.; TROST, LAWRENCE C.

    Missiles are attractive weapon systems because of their flexibility, survivability, and relatively low cost. Consequently, many nations are seeking to build missile forces resulting in regional arms races. Missile forces can be both stabilizing (e.g., providing a survivable force for deterrence) and destabilizing (e.g., creating strategic asymmetries). Efforts to control missile proliferation must account for these effects. A number of strategies to control the destabilizing effects of missiles were developed during the Cold War. Some of these strategies are applicable to regional missile control but new approaches, tailored to regional geographic and security conditions, are needed. Regional missile nonproliferation canmore » be pursued in a variety of ways: Reducing the demand for missiles by decreasing the perception of national threats; Restricting the export of missiles and associated equipment by supplier countries; Restricting information describing missile technology; Limiting missile development activities such as flight or engine tests; Restricting the operational deployment of existing missile forces; and Reducing existing missile forces by number and/or type. Even when development is complete, limits on deployment within range of potential targets or limits on operational readiness can help stabilize potential missile confrontations. Implementing these strategies often involves the collection and exchange of information about activities related to missile development or deployment. Monitoring is the process of collecting information used to for subsequent verification of commitments. A systematic approach to implementing verification is presented that identifies areas where monitoring could support missile nonproliferation agreements. The paper presents both non-technical and technical techniques for monitoring. Examples of non-technical techniques are declarations about planned test launches or on-site inspections. Examples of technical monitoring include remote monitoring (i.e., a sensor that is physically present at a facility) and remote sensing (i.e., a sensor that records activity without being physically present at a facility).« less

  7. Application of smart optical fiber sensors for structural load monitoring

    NASA Astrophysics Data System (ADS)

    Davies, Heddwyn; Everall, Lorna A.; Gallon, Andrew M.

    2001-06-01

    This paper describes a smart monitoring system, incorporating optical fiber sensing techniques, capable of providing important structural information to designers and users alike. This technology has wide industrial and commercial application in areas including aerospace, civil, maritime and automotive engineering. In order to demonstrate the capability of the sensing system it has been installed in a 35m free-standing carbon fiber yacht mast, where a complete optical network of strain and temperature sensors were embedded into a composite mast and boom during lay-up. The system was able to monitor the behavior of the composite rig through a range of handling conditions. The resulting strain information can be used by engineers to improve the structural design process. Embedded fiber optic sensors have wide ranging application for structural load monitoring. Due to their small size, optical fiber sensors can be readily embedded into composite materials. Other advantages include their immediate multiplexing capability and immunity to electro-magnetic interference. The capability of this system has been demonstrated within the maritime and industrial environment, but can be adapted for any application.

  8. Numerical modeling of time-lapse monitoring of CO2 sequestration in a layered basalt reservoir

    USGS Publications Warehouse

    Khatiwada, M.; Van Wijk, K.; Clement, W.P.; Haney, M.

    2008-01-01

    As part of preparations in plans by The Big Sky Carbon Sequestration Partnership (BSCSP) to inject CO2 in layered basalt, we numerically investigate seismic methods as a noninvasive monitoring technique. Basalt seems to have geochemical advantages as a reservoir for CO2 storage (CO2 mineralizes quite rapidly while exposed to basalt), but poses a considerable challenge in term of seismic monitoring: strong scattering from the layering of the basalt complicates surface seismic imaging. We perform numerical tests using the Spectral Element Method (SEM) to identify possibilities and limitations of seismic monitoring of CO2 sequestration in a basalt reservoir. While surface seismic is unlikely to detect small physical changes in the reservoir due to the injection of CO2, the results from Vertical Seismic Profiling (VSP) simulations are encouraging. As a perturbation, we make a 5%; change in wave velocity, which produces significant changes in VSP images of pre-injection and post-injection conditions. Finally, we perform an analysis using Coda Wave Interferometry (CWI), to quantify these changes in the reservoir properties due to CO2 injection.

  9. Central localization of plasticity involved in appetitive conditioning in Lymnaea

    PubMed Central

    Straub, Volko A.; Styles, Benjamin J.; Ireland, Julie S.; O'Shea, Michael; Benjamin, Paul R.

    2004-01-01

    Learning to associate a conditioned (CS) and unconditioned stimulus (US) results in changes in the processing of CS information. Here, we address directly the question whether chemical appetitive conditioning of Lymnaea feeding behavior involves changes in the peripheral and/or central processing of the CS by using extracellular recording techniques to monitor neuronal activity at two stages of the sensory processing pathway. Our data show that appetitive conditioning does not affect significantly the overall CS response of afferent nerves connecting chemosensory structures in the lips and tentacles to the central nervous system (CNS). In contrast, neuronal output from the cerebral ganglia, which represent the first central processing stage for chemosensory information, is enhanced significantly in response to the CS after appetitive conditioning. This demonstrates that chemical appetitive conditioning in Lymnaea affects the central, but not the peripheral processing of chemosensory information. It also identifies the cerebral ganglia of Lymnaea as an important site for neuronal plasticity and forms the basis for detailed cellular studies of neuronal plasticity. PMID:15537733

  10. The Effects of Continuous Vs. Intermittent Self-Monitoring on the Duration and Magnitude of Behavior Change.

    ERIC Educational Resources Information Center

    Schayer, Laurel L.; Schroeder, Harold E.

    Continuous self-monitoring (CSM) was compared with a demand characteristics control condition (non self-monitoring), with intermittent self-monitoring (ISM) and with another control condition. It was predicted that both self-monitoring conditions would produce effects over and above the demand characteristics inherent in the self-monitoring…

  11. Aliasing Signal Separation of Superimposed Abrasive Debris Based on Degenerate Unmixing Estimation Technique.

    PubMed

    Li, Tongyang; Wang, Shaoping; Zio, Enrico; Shi, Jian; Hong, Wei

    2018-03-15

    Leakage is the most important failure mode in aircraft hydraulic systems caused by wear and tear between friction pairs of components. The accurate detection of abrasive debris can reveal the wear condition and predict a system's lifespan. The radial magnetic field (RMF)-based debris detection method provides an online solution for monitoring the wear condition intuitively, which potentially enables a more accurate diagnosis and prognosis on the aviation hydraulic system's ongoing failures. To address the serious mixing of pipe abrasive debris, this paper focuses on the superimposed abrasive debris separation of an RMF abrasive sensor based on the degenerate unmixing estimation technique. Through accurately separating and calculating the morphology and amount of the abrasive debris, the RMF-based abrasive sensor can provide the system with wear trend and sizes estimation of the wear particles. A well-designed experiment was conducted and the result shows that the proposed method can effectively separate the mixed debris and give an accurate count of the debris based on RMF abrasive sensor detection.

  12. Preliminary analysis of an extensive one year survey of trace elements and compounds in the suspended particulate matter in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    King, R. B.; Fordyce, J. S.; Antoine, A. C.; Leibecki, H. F.; Neustadter, H. E.; Sidik, S. M.; Burr, J. C.; Craig, G. T.; Cornett, C. L.

    1974-01-01

    Beginning in 1971 a cooperative program has been carried on by the City of Cleveland Division of Air Pollution Control and NASA Lewis Research Center to study the trace element and compound concentrations in the ambient suspended particulate matter in Cleveland Ohio as a function of source, monitoring location and meteorological conditions. The major objectives were to determine the ambient concentration levels at representative urban sites and to develop a technique using trace element and compound data in conjunction with meteorological conditions to identify specific pollution sources which could be developed into a practical system that could be readily utilized by an enforcement agency.

  13. Reconstruction of thin fluorophore-filled capillaries in thick scattering medium using fluorescence diffuse optical tomography within the diffusion approximation

    NASA Astrophysics Data System (ADS)

    Desrochers, Johanne; Vermette, Patrick; Fontaine, Réjean; Bérubé-Lauzière, Yves

    2009-02-01

    Current efforts in tissue engineering target the growth of 3D volumes of tissue cultures in bioreactor conditions. Fluorescence optical tomography has the potential to monitor cells viability and tissue growth non-destructively directly within the bioreactor via bio-molecular fluorescent labelling strategies. We currently work on developing the imaging instrumentation for tissue cultures in bioreactor conditions. Previously, we localized in 3D thin fluorescent-labelled capillaries in a cylindrically shaped bioreactor phantom containing a diffusive medium with our time-of-flight localization technique. Here, we present our first reconstruction results of the spatial distribution of fluorophore concentrations for labelled capillaries embedded in a bioreactor phantom.

  14. The MIST /MIUS Integration and Subsystems Test/ laboratory - A testbed for the MIUS /Modular Integrated Utility System/ program

    NASA Technical Reports Server (NTRS)

    Beckham, W. S., Jr.; Keune, F. A.

    1974-01-01

    The MIUS (Modular Integrated Utility System) concept is to be an energy-conserving, economically feasible, integrated community utility system to provide five necessary services: electricity generation, space heating and air conditioning, solid waste processing, liquid waste processing, and residential water purification. The MIST (MIUS Integration and Subsystem Test) integrated system testbed constructed at the Johnson Space Center in Houston includes subsystems for power generation, heating, ventilation, and air conditioning (HVAC), wastewater management, solid waste management, and control and monitoring. The key design issues under study include thermal integration and distribution techniques, thermal storage, integration of subsystems controls and displays, incinerator performance, effluent characteristics, and odor control.

  15. Absorption and backscatter of internal conversion electrons in the measurements of surface contamination of ¹³⁷Cs.

    PubMed

    Yunoki, A; Kawada, Y; Yamada, T; Unno, Y; Sato, Y; Hino, Y

    2013-11-01

    We measured 4π and 2π counting efficiencies for internal conversion electrons (ICEs), gross β-particles and also β-rays alone with various source conditions regarding absorber and backing foil thickness using e-X coincidence technique. Dominant differences regarding the penetration, attenuation and backscattering properties among ICEs and β-rays were revealed. Although the abundance of internal conversion electrons of (137)Cs-(137)Ba is only 9.35%, 60% of gross counts may be attributed to ICEs in worse source conditions. This information will be useful for radionuclide metrology and for surface contamination monitoring. © 2013 Elsevier Ltd. All rights reserved.

  16. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure.

    PubMed

    Ding, You-Liang; Wang, Gao-Xin; Sun, Peng; Wu, Lai-Yi; Yue, Qing

    2015-01-01

    Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM) system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge's abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature.

  17. Original Experimental Approach for Assessing Transport Fuel Stability.

    PubMed

    Bacha, Kenza; Ben Amara, Arij; Alves Fortunato, Maira; Wund, Perrine; Veyrat, Benjamin; Hayrault, Pascal; Vannier, Axel; Nardin, Michel; Starck, Laurie

    2016-10-21

    The study of fuel oxidation stability is an important issue for the development of future fuels. Diesel and kerosene fuel systems have undergone several technological changes to fulfill environmental and economic requirements. These developments have resulted in increasingly severe operating conditions whose suitability for conventional and alternative fuels needs to be addressed. For example, fatty acid methyl esters (FAMEs) introduced as biodiesel are more prone to oxidation and may lead to deposit formation. Although several methods exist to evaluate fuel stability (induction period, peroxides, acids, and insolubles), no technique allows one to monitor the real-time oxidation mechanism and to measure the formation of oxidation intermediates that may lead to deposit formation. In this article, we developed an advanced oxidation procedure (AOP) based on two existing reactors. This procedure allows the simulation of different oxidation conditions and the monitoring of the oxidation progress by the means of macroscopic parameters, such as total acid number (TAN) and advanced analytical methods like gas chromatography coupled to mass spectrometry (GC-MS) and Fourier Transform Infrared - Attenuated Total Reflection (FTIR-ATR). We successfully applied AOP to gain an in-depth understanding of the oxidation kinetics of a model molecule (methyl oleate) and commercial diesel and biodiesel fuels. These developments represent a key strategy for fuel quality monitoring during logistics and on-board utilization.

  18. In vivo native fluorescence spectroscopy and nicotinamide adinine dinucleotide/flavin adenine dinucleotide reduction and oxidation states of oral submucous fibrosis for chemopreventive drug monitoring

    NASA Astrophysics Data System (ADS)

    Sivabalan, Shanmugam; Vedeswari, C. Ponranjini; Jayachandran, Sadaksharam; Koteeswaran, Dornadula; Pravda, Chidambaranathan; Aruna, Prakasa Rao; Ganesan, Singaravelu

    2010-01-01

    Native fluorescence spectroscopy has shown potential to characterize and diagnose oral malignancy. We aim at extending the native fluorescence spectroscopy technique to characterize normal and oral submucous fibrosis (OSF) patients under pre- and post-treated conditions, and verify whether this method could also be considered in the monitoring of therapeutic prognosis noninvasively. In this study, 28 normal subjects and 28 clinically proven cases of OSF in the age group of 20 to 40 years are diagnosed using native fluorescence spectroscopy. The OSF patients are given dexamethasone sodium phosphate and hyaluronidase twice a week for 6 weeks, and the therapeutic response is monitored using fluorescence spectroscopy. The fluorescence emission spectra of normal and OSF cases of both pre- and post-treated conditions are recorded in the wavelength region of 350 to 600 nm at an excitation wavelength of 330 nm. The statistical significance is verified using discriminant analysis. The oxidation-reduction ratio of the tissue is also calculated using the fluorescence emission intensities of flavin adenine dinucleotide and nicotinamide adinine dinucleotide at 530 and 440 nm, respectively, and they are compared with conventional physical clinical examinations. This study suggests that native fluorescence spectroscopy could also be extended to OSF diagnosis and therapeutic prognosis.

  19. Cell Microenvironment Engineering and Monitoring for Tissue Engineering and Regenerative Medicine: The Recent Advances

    PubMed Central

    Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul

    2014-01-01

    In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future. PMID:25143954

  20. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances.

    PubMed

    Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul; Vrana, Nihal Engin

    2014-01-01

    In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.

Top