Face-gender discrimination is possible in the near-absence of attention.
Reddy, Leila; Wilken, Patrick; Koch, Christof
2004-03-02
The attentional cost associated with the visual discrimination of the gender of a face was investigated. Participants performed a face-gender discrimination task either alone (single-task) or concurrently (dual-task) with a known attentional demanding task (5-letter T/L discrimination). Overall performance on face-gender discrimination suffered remarkably little under the dual-task condition compared to the single-task condition. Similar results were obtained in experiments that controlled for potential training effects or the use of low-level cues in this discrimination task. Our results provide further evidence against the notion that only low-level representations can be accessed outside the focus of attention.
Topographic EEG activations during timbre and pitch discrimination tasks using musical sounds.
Auzou, P; Eustache, F; Etevenon, P; Platel, H; Rioux, P; Lambert, J; Lechevalier, B; Zarifian, E; Baron, J C
1995-01-01
Successive auditory stimulation sequences were presented binaurally to 18 young normal volunteers. Five conditions were investigated: two reference tasks, assumed to involve passive listening to couples of musical sounds, and three discrimination tasks, one dealing with pitch, and two with timbre (either with or without the attack). A symmetrical montage of 16 EEG channels was recorded for each subject across the different conditions. Two quantitative parameters of EEG activity were compared among the different sequences within five distinct frequency bands. As compared to a rest (no stimulation) condition, both passive listening conditions led to changes in primary auditory cortex areas. Both discrimination tasks for pitch and timbre led to right hemisphere EEG changes, organized in two poles: an anterior one and a posterior one. After discussing the electrophysiological aspects of this work, these results are interpreted in terms of a network including the right temporal neocortex and the right frontal lobe to maintain the acoustical information in an auditory working memory necessary to carry out the discrimination task.
Brown, Kevin L.; Stanton, Mark E.
2008-01-01
Eyeblink classical conditioning (EBC) was observed across a broad developmental period with tasks utilizing two interstimulus intervals (ISIs). In ISI discrimination, two distinct conditioned stimuli (CSs; light and tone) are reinforced with a periocular shock unconditioned stimulus (US) at two different CS-US intervals. Temporal uncertainty is identical in design with the exception that the same CS is presented at both intervals. Developmental changes in conditioning have been reported in each task beyond ages when single-ISI learning is well developed. The present study sought to replicate and extend these previous findings by testing each task at four separate ages. Consistent with previous findings, younger rats (postnatal day – PD - 23 and 30) trained in ISI discrimination showed evidence of enhanced cross-modal influence of the short CS-US pairing upon long CS conditioning relative to older subjects. ISI discrimination training at PD43-47 yielded outcomes similar to those in adults (PD65-71). Cross-modal transfer effects in this task therefore appear to diminish between PD30 and PD43-47. Comparisons of ISI discrimination with temporal uncertainty indicated that cross-modal transfer in ISI discrimination at the youngest ages did not represent complete generalization across CSs. ISI discrimination undergoes a more protracted developmental emergence than single-cue EBC and may be a more sensitive indicator of developmental disorders involving cerebellar dysfunction. PMID:18726989
An fMRI study of facial emotion processing in patients with schizophrenia.
Gur, Raquel E; McGrath, Claire; Chan, Robin M; Schroeder, Lee; Turner, Travis; Turetsky, Bruce I; Kohler, Christian; Alsop, David; Maldjian, Joseph; Ragland, J Daniel; Gur, Ruben C
2002-12-01
Emotion processing deficits are notable in schizophrenia. The authors evaluated cerebral blood flow response in schizophrenia patients during facial emotion processing to test the hypothesis of diminished limbic activation related to emotional relevance of facial stimuli. Fourteen patients with schizophrenia and 14 matched comparison subjects viewed facial displays of happiness, sadness, anger, fear, and disgust as well as neutral faces. Functional magnetic resonance imaging was used to measure blood-oxygen-level-dependent signal changes as the subjects alternated between tasks of discriminating emotional valence (positive versus negative) and age (over 30 versus under 30) of the faces with an interleaved crosshair reference condition. The groups did not differ in performance on either task. For both tasks, healthy participants showed activation in the fusiform gyrus, occipital lobe, and inferior frontal cortex relative to the resting baseline condition. The increase was greater in the amygdala and hippocampus during the emotional valence discrimination task than during the age discrimination task. In the patients with schizophrenia, minimal focal response was observed for all tasks relative to the resting baseline condition. Contrasting patients and comparison subjects on the emotional valence discrimination task revealed voxels in the left amygdala and bilateral hippocampus in which the comparison subjects had significantly greater activation. Failure to activate limbic regions during emotional valence discrimination may explain emotion processing deficits in patients with schizophrenia. While the lack of limbic recruitment did not significantly impair simple valence discrimination performance in this clinically stable group, it may impact performance of more demanding tasks.
de la Rosa, Stephan; Ekramnia, Mina; Bülthoff, Heinrich H.
2016-01-01
The ability to discriminate between different actions is essential for action recognition and social interactions. Surprisingly previous research has often probed action recognition mechanisms with tasks that did not require participants to discriminate between actions, e.g., left-right direction discrimination tasks. It is not known to what degree visual processes in direction discrimination tasks are also involved in the discrimination of actions, e.g., when telling apart a handshake from a high-five. Here, we examined whether action discrimination is influenced by movement direction and whether direction discrimination depends on the type of action. We used an action adaptation paradigm to target action and direction discrimination specific visual processes. In separate conditions participants visually adapted to forward and backward moving handshake and high-five actions. Participants subsequently categorized either the action or the movement direction of an ambiguous action. The results showed that direction discrimination adaptation effects were modulated by the type of action but action discrimination adaptation effects were unaffected by movement direction. These results suggest that action discrimination and direction categorization rely on partly different visual information. We propose that action discrimination tasks should be considered for the exploration of visual action recognition mechanisms. PMID:26941633
ERIC Educational Resources Information Center
Beauchamp, Chris M.; Stelmack, Robert M.
2006-01-01
The relation between intelligence and speed of auditory discrimination was investigated during an auditory oddball task with backward masking. In target discrimination conditions that varied in the interval between the target and the masking stimuli and in the tonal frequency of the target and masking stimuli, higher ability participants (HA)…
Auditory processing deficits in bipolar disorder with and without a history of psychotic features.
Zenisek, RyAnna; Thaler, Nicholas S; Sutton, Griffin P; Ringdahl, Erik N; Snyder, Joel S; Allen, Daniel N
2015-11-01
Auditory perception deficits have been identified in schizophrenia (SZ) and linked to dysfunction in the auditory cortex. Given that psychotic symptoms, including auditory hallucinations, are also seen in bipolar disorder (BD), it may be that individuals with BD who also exhibit psychotic symptoms demonstrate a similar impairment in auditory perception. Fifty individuals with SZ, 30 individuals with bipolar I disorder with a history of psychosis (BD+), 28 individuals with bipolar I disorder with no history of psychotic features (BD-), and 29 normal controls (NC) were administered a tone discrimination task and an emotion recognition task. Mixed-model analyses of covariance with planned comparisons indicated that individuals with BD+ performed at a level that was intermediate between those with BD- and those with SZ on the more difficult condition of the tone discrimination task and on the auditory condition of the emotion recognition task. There were no differences between the BD+ and BD- groups on the visual or auditory-visual affect recognition conditions. Regression analyses indicated that performance on the tone discrimination task predicted performance on all conditions of the emotion recognition task. Auditory hallucinations in BD+ were not related to performance on either task. Our findings suggested that, although deficits in frequency discrimination and emotion recognition are more severe in SZ, these impairments extend to BD+. Although our results did not support the idea that auditory hallucinations may be related to these deficits, they indicated that basic auditory deficits may be a marker for psychosis, regardless of SZ or BD diagnosis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Conditioning procedure and color discrimination in the honeybee Apis mellifera
NASA Astrophysics Data System (ADS)
Giurfa, Martin
We studied the influence of the conditioning procedure on color discrimination by free-flying honeybees. We asked whether absolute and differential conditioning result in different discrimination capabilities for the same pairs of colored targets. In absolute conditioning, bees were rewarded on a single color; in differential conditioning, bees were rewarded on the same color but an alternative, non-rewarding, similar color was also visible. In both conditioning procedures, bees learned their respective task and could also discriminate the training stimulus from a novel stimulus that was perceptually different from the trained one. Discrimination between perceptually closer stimuli was possible after differential conditioning but not after absolute conditioning. Differences in attention inculcated by these training procedures may underlie the different discrimination performances of the bees.
Ginat-Frolich, Rivkah; Klein, Zohar; Katz, Omer; Shechner, Tomer
2017-06-01
Generalization is an adaptive learning mechanism, but it can be maladaptive when it occurs in excess. A novel perceptual discrimination training task was therefore designed to moderate fear overgeneralization. We hypothesized that improvement in basic perceptual discrimination would translate into lower fear overgeneralization in affective cues. Seventy adults completed a fear-conditioning task prior to being allocated into training or placebo groups. Predesignated geometric shape pairs were constructed for the training task. A target shape from each pair was presented. Thereafter, participants in the training group were shown both shapes and asked to identify the image that differed from the target. Placebo task participants only indicated the location of each shape on the screen. All participants then viewed new geometric pairs and indicated whether they were identical or different. Finally, participants completed a fear generalization test consisting of perceptual morphs ranging from the CS + to the CS-. Fear-conditioning was observed through physiological and behavioural measures. Furthermore, the training group performed better than the placebo group on the assessment task and exhibited decreased fear generalization in response to threat/safety cues. The findings offer evidence for the effectiveness of the novel discrimination training task, setting the stage for future research with clinical populations. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Baeyens, Frank; Vervliet, Bram; Vansteenwegen, Debora; Beckers, Tom; Hermans, Dirk; Eelen, Paul
2004-01-01
Using a conditioned suppression task, we investigated simultaneous (XA-/A+) vs. sequential (X [right arrow] A-/A+) Feature Negative (FN) discrimination learning in humans. We expected the simultaneous discrimination to result in X (or alternatively the XA configuration) becoming an inhibitor acting directly on the US, and the sequential…
The Task-Relevant Attribute Representation Can Mediate the Simon Effect
Chen, Antao
2014-01-01
Researchers have previously suggested a working memory (WM) account of spatial codes, and based on this suggestion, the present study carries out three experiments to investigate how the task-relevant attribute representation (verbal or visual) in the typical Simon task affects the Simon effect. Experiment 1 compared the Simon effect between the between- and within-category color conditions, which required subjects to discriminate between red and blue stimuli (presumed to be represented by verbal WM codes because it was easy and fast to name the colors verbally) and to discriminate between two similar green stimuli (presumed to be represented by visual WM codes because it was hard and time-consuming to name the colors verbally), respectively. The results revealed a reliable Simon effect that only occurs in the between-category condition. Experiment 2 assessed the Simon effect by requiring subjects to discriminate between two different isosceles trapezoids (within-category shapes) and to discriminate isosceles trapezoid from rectangle (between-category shapes), and the results replicated and expanded the findings of Experiment 1. In Experiment 3, subjects were required to perform both tasks from Experiment 1. Wherein, in Experiment 3A, the between-category task preceded the within-category task; in Experiment 3B, the task order was opposite. The results showed the reliable Simon effect when subjects represented the task-relevant stimulus attributes by verbal WM encoding. In addition, the response times (RTs) distribution analysis for both the between- and within-category conditions of Experiments 3A and 3B showed decreased Simon effect with the RTs lengthened. Altogether, although the present results are consistent with the temporal coding account, we put forth that the Simon effect also depends on the verbal WM representation of task-relevant stimulus attribute. PMID:24618692
Fisher, Wayne W; Kodak, Tiffany; Moore, James W
2007-01-01
Least-to-most prompting hierarchies (e.g., progressing from verbal to modeled to physical prompts until the target response occurs) may be ineffective when the prompts do not cue the individual to attend to the relevant stimulus dimensions. In such cases, emission of the target response persistently requires one or more of the higher level prompts, a condition called prompt dependence (Clark & Green, 2004). Reinforcement of differential observing responses (DORs) has sometimes been used to ensure that participants attend to the relevant stimulus dimensions in matching-to-sample (MTS) tasks (e.g., Dube & McIlvane, 1999). For 2 participants with autism, we embedded an identity-matching task within a prompting hierarchy as a DOR to increase the likelihood that the participants attended to and discriminated the relevant features of the comparison stimuli in an MTS task. This procedure was compared with a traditional least-to-most prompting hierarchy and a no-reinforcement control condition in a multielement design. Results for both participants indicated that mastery-level acquisition of spoken-word-to-picture relations occurred only under the identity-matching condition. Findings are discussed relative to the use of DORs to facilitate acquisition of conditional discriminations in persons with autism or other conditions who do not attend to the comparison stimuli. PMID:17970262
Fisher, Wayne W; Kodak, Tiffany; Moore, James W
2007-01-01
Least-to-most prompting hierarchies (e.g., progressing from verbal to modeled to physical prompts until the target response occurs) may be ineffective when the prompts do not cue the individual to attend to the relevant stimulus dimensions. In such cases, emission of the target response persistently requires one or more of the higher level prompts, a condition called prompt dependence (Clark & Green, 2004). Reinforcement of differential observing responses (DORs) has sometimes been used to ensure that participants attend to the relevant stimulus dimensions in matching-to-sample (MTS) tasks (e.g., Dube & McIlvane, 1999). For 2 participants with autism, we embedded an identity-matching task within a prompting hierarchy as a DOR to increase the likelihood that the participants attended to and discriminated the relevant features of the comparison stimuli in an MTS task. This procedure was compared with a traditional least-to-most prompting hierarchy and a no-reinforcement control condition in a multielement design. Results for both participants indicated that mastery-level acquisition of spoken-word-to-picture relations occurred only under the identity-matching condition. Findings are discussed relative to the use of DORs to facilitate acquisition of conditional discriminations in persons with autism or other conditions who do not attend to the comparison stimuli.
Discrimination of face gender and expression under dual-task conditions.
García-Gutiérrez, Ana; Aguado, Luis; Romero-Ferreiro, Verónica; Pérez-Moreno, Elisa
2017-02-01
In order to test whether expression and gender can be attended to simultaneously without a cost in accuracy four experiments were carried out using a dual gender-expression task with male and female faces showing different emotional expressions that were backward masked by emotionally neutral faces. In the dual-facial condition the participants had to report both the gender and the expression of the targets. In two control conditions the participant reported either the gender or the expression of the face and indicated whether a surrounding frame was continuous or discontinuous. In Experiments 1-3, with angry and happy targets, asymmetric interference was observed. Gender discrimination, but no expression discrimination, was impaired in the dual-facial condition compared to the corresponding control. This effect was obtained with a between-subjects design in Experiment 1, with a within-subjects design in Experiment 2, and with androgynous face masks in Experiment 3. In Experiments 4a and 4b different target combinations were tested. No decrement of performance in the dual-facial task was observed for either gender or expression discrimination with fearful-disgusted (Experiment 4a) or fearful-happy faces (Experiment 4b). We conclude that the ability to attend simultaneously to gender and expression cues without a decrement in performance depends on the specific combination of expressions to be differentiated between. Happy and angry expressions are usually directed at the perceiver and command preferential attention. Under conditions of restricted viewing such as those of the present study, discrimination of these expressions is prioritized leading to impaired discrimination of other facial properties such as gender.
Discriminability and Sensitivity to Reinforcer Magnitude in a Detection Task
ERIC Educational Resources Information Center
Alsop, Brent; Porritt, Melissa
2006-01-01
Three pigeons discriminated between two sample stimuli (intensities of red light). The difficulty of the discrimination was varied over four levels. At each level, the relative reinforcer magnitude for the two correct responses was varied across conditions, and the reinforcer rates were equal. Within levels, discriminability between the sample…
Rahman, Md. Ashrafur; Tanaka, Norifumi; Usui, Koji; Kawahara, Shigenori
2016-01-01
We investigated the role of muscarinic acetylcholine receptors (mAChRs) in eyeblink serial feature-positive discrimination learning in mice using the mAChR antagonist. A 2-s light cue was delivered 5 or 6 s before the presentation of a 350-ms tone paired with a 100-ms periorbital electrical shock (cued trial) but not before the tone-alone presentation (non-cued trial). Mice received 30 cued and 30 non-cued trials each day in a random order. We found that saline-injected control mice were successfully discriminating between cued and non-cued trials within a few days of conditioning. The mice responded more frequently to the tone in cued trials than in non-cued trials. Analysis of conditioned response (CR) dynamics revealed that the CR onset latency was shorter in cued trials than in non-cued trials, despite the CR peak amplitude not differing significantly between the two conditions. In contrast, scopolamine-injected mice developed an equal number of CRs with similar temporal patterns irrespective of the presence of the cue during the 7 days of conditioning, indicating in a failure to acquire conditional discrimination. In addition, the scopolamine administration to the control mice after they had successfully acquired discrimination did not impair the conditional discrimination and expression of pre-acquired CR. These results suggest that mAChRs may play a pivotal role in memory formation in the conditional brain state associated with the feature cue; however they are unlikely to be involved in the development of discrimination after conditional memory had formed in the serial feature-positive discrimination task during eyeblink conditioning. PMID:26808980
ERIC Educational Resources Information Center
Penagos-Corzo, Julio C.; Pérez-Acosta, Andrés M.; Hernández, Ingrid
2015-01-01
The experiment reported here uses a conditional self-discrimination task to examine the influence of social interaction on the facilitation of self-discrimination in rats. The study is based on a previous report (Penagos- Corzo et al., 2011) showing positive evidence of such facilitation, but extending the exposition to social interaction…
Vonder Haar, Cole; Maass, William R; Jacobs, Eric A; Hoane, Michael R
2014-10-15
One of the largest challenges in experimental neurotrauma work is the development of models relevant to the human condition. This includes both creating similar pathophysiology as well as the generation of relevant behavioral deficits. Recent studies have shown that there is a large potential for the use of discrimination tasks in rats to detect injury-induced deficits. The literature on discrimination and TBI is still limited, however. The current study investigated motivational and motor factors that could potentially contribute to deficits in discrimination. In addition, the efficacy of a neuroprotective agent, nicotinamide, was assessed. Rats were trained on a discrimination task and motivation task, given a bilateral frontal controlled cortical impact TBI (+3.0 AP, 0.0 ML from bregma), and then reassessed. They were also assessed on motor ability and Morris water maze (MWM) performance. Experiment 1 showed that TBI resulted in large deficits in discrimination and motivation. No deficits were observed on gross motor measures; however, the vehicle group showed impairments in fine motor control. Both injured groups were impaired on the reference memory MWM, but only nicotinamide-treated rats were impaired on the working memory MWM. Nicotinamide administration improved performance on discrimination and motivation measures. Experiment 2 evaluated retraining on the discrimination task and suggested that motivation may be a large factor underlying discrimination deficits. Retrained rats improved considerably on the discrimination task. The tasks evaluated in this study demonstrate robust deficits and may improve the detection of pharmaceutical effects by being very sensitive to pervasive cognitive deficits that occur after frontal TBI.
Jacobs, R; van Steenberghe, D
1991-01-01
To clarify more of the tactile function of oral implants, both an interocclusal thickness detection and discrimination task were carried out in 4 different test conditions on 37 patients: t (tooth)/t, i (implant)/t, i/i and d (denture)/o (overdenture supported by implants). For the interocclusal detection of steel foils, the 50% detection threshold level (RL) in the 4 conditions was 20, 48, 64 and 108 microns, respectively, which indicates significant differences. The ability to discriminate interdental thickness differences was tested with a 0.2 and 1.0 mm standard. It was evaluated as the 75% discrimination level (DL). In the 0.2 mm discrimination task, corresponding DL-values for the t/t, i/t, i/i and d/o condition were 25, 55, 66 and 134 microns, whereas the 1.0 mm standard gave values of 193, 293, 336 and 348 microns, respectively. All results differed significantly from each other (p less than 0.05) except for the i/i-d/o comparison of the 1.0 mm discrimination task where the difference was negligible. The present findings indicate that the tactile sensibility of implants is reduced with regard to natural teeth. Remaining receptors of the peri-implant tissues might play a compensatory role in the decreased exteroceptive function.
Brill, R L; Pawloski, J L; Helweg, D A; Au, W W; Moore, P W
1992-09-01
This study demonstrated the ability of a false killer whale (Pseudorca crassidens) to discriminate between two targets and investigated the parameters of the whale's emitted signals for changes related to test conditions. Target detection performance comparable to the bottlenose dolphin's (Tursiops truncatus) has previously been reported for echolocating false killer whales. No other echolocation capabilities have been reported. A false killer whale, naive to conditioned echolocation tasks, was initially trained to detect a cylinder in a "go/no-go" procedure over ranges of 3 to 8 m. The transition from a detection task to a discrimination task was readily achieved by introducing a spherical comparison target. Finally, the cylinder was successfully compared to spheres of two different sizes and target strengths. Multivariate analyses were used to evaluate the parameters of emitted signals. Duncan's multiple range tests showed significant decreases (df = 185, p less than 0.05) in both source level and bandwidth in the transition from detection to discrimination. Analysis of variance revealed a significant decrease in the number of clicks over test conditions [F(5.26) = 5.23, p less than 0.0001]. These data suggest that the whale relied on cues relevant to target shape as well as target strength, that changes in source level and bandwidth were task-related, that the decrease in clicks was associated with learning experience, and that Pseudorca's ability to discriminate shapes using echolocation may be comparable to that of Tursiops truncatus.
Task relevance regulates the interaction between reward expectation and emotion.
Wei, Ping; Kang, Guanlan
2014-06-01
In the present study, we investigated the impact of reward expectation on the processing of emotional facial expression using a cue-target paradigm. A cue indicating the reward condition of each trial (incentive vs. non-incentive) was followed by the presentation of a picture of an emotional face, the target. Participants were asked to discriminate the emotional expression of the target face in Experiment 1, to discriminate the gender of the target face in Experiment 2, and to judge a number superimposed on the center of the target face as even or odd in Experiment 3, rendering the emotional expression of the target face as task relevant in Experiment 1 but task irrelevant in Experiments 2 and 3. Faster reaction times (RTs) were observed in the monetary incentive condition than in the non-incentive condition, demonstrating the effect of reward on facilitating task concentration. Moreover, the reward effect (i.e., RTs in non-incentive conditions versus incentive conditions) was larger for emotional faces than for neutral faces when emotional expression was task relevant but not when it was task irrelevant. The findings suggest that top-down incentive motivation biased attentional processing toward task-relevant stimuli, and that task relevance played an important role in regulating the influence of reward expectation on the processing of emotional stimuli.
An Experimental Investigation of the Effect of Worry on Responses to a Discrimination Learning Task
ERIC Educational Resources Information Center
Salters-Pedneault, Kristalyn; Suvak, Michael; Roemer, Lizabeth
2008-01-01
The current study examined the impact of both the tendency to worry (trait worry) and the process of worry (state worry) on subsequent behavioral responding in a schedule discrimination learning task. High and low trait worriers were randomly assigned to a state worry or relaxation incubation condition and completed a test of executive functioning…
Zhao, Henan; Bryant, Garnett W.; Griffin, Wesley; Terrill, Judith E.; Chen, Jian
2017-01-01
We designed and evaluated SplitVectors, a new vector field display approach to help scientists perform new discrimination tasks on large-magnitude-range scientific data shown in three-dimensional (3D) visualization environments. SplitVectors uses scientific notation to display vector magnitude, thus improving legibility. We present an empirical study comparing the SplitVectors approach with three other approaches - direct linear representation, logarithmic, and text display commonly used in scientific visualizations. Twenty participants performed three domain analysis tasks: reading numerical values (a discrimination task), finding the ratio between values (a discrimination task), and finding the larger of two vectors (a pattern detection task). Participants used both mono and stereo conditions. Our results suggest the following: (1) SplitVectors improve accuracy by about 10 times compared to linear mapping and by four times to logarithmic in discrimination tasks; (2) SplitVectors have no significant differences from the textual display approach, but reduce cluttering in the scene; (3) SplitVectors and textual display are less sensitive to data scale than linear and logarithmic approaches; (4) using logarithmic can be problematic as participants' confidence was as high as directly reading from the textual display, but their accuracy was poor; and (5) Stereoscopy improved performance, especially in more challenging discrimination tasks. PMID:28113469
Henan Zhao; Bryant, Garnett W; Griffin, Wesley; Terrill, Judith E; Jian Chen
2017-06-01
We designed and evaluated SplitVectors, a new vector field display approach to help scientists perform new discrimination tasks on large-magnitude-range scientific data shown in three-dimensional (3D) visualization environments. SplitVectors uses scientific notation to display vector magnitude, thus improving legibility. We present an empirical study comparing the SplitVectors approach with three other approaches - direct linear representation, logarithmic, and text display commonly used in scientific visualizations. Twenty participants performed three domain analysis tasks: reading numerical values (a discrimination task), finding the ratio between values (a discrimination task), and finding the larger of two vectors (a pattern detection task). Participants used both mono and stereo conditions. Our results suggest the following: (1) SplitVectors improve accuracy by about 10 times compared to linear mapping and by four times to logarithmic in discrimination tasks; (2) SplitVectors have no significant differences from the textual display approach, but reduce cluttering in the scene; (3) SplitVectors and textual display are less sensitive to data scale than linear and logarithmic approaches; (4) using logarithmic can be problematic as participants' confidence was as high as directly reading from the textual display, but their accuracy was poor; and (5) Stereoscopy improved performance, especially in more challenging discrimination tasks.
Rayes, Hanin; Sheft, Stanley; Shafiro, Valeriy
2014-01-01
Past work has shown relationship between the ability to discriminate spectral patterns and measures of speech intelligibility. The purpose of this study was to investigate the ability of both children and young adults to discriminate static and dynamic spectral patterns, comparing performance between the two groups and evaluating within-group results in terms of relationship to speech-in-noise perception. Data were collected from normal-hearing children (age range: 5.4 - 12.8 yrs) and young adults (mean age: 22.8 yrs) on two spectral discrimination tasks and speech-in-noise perception. The first discrimination task, involving static spectral profiles, measured the ability to detect a change in the phase of a low-density sinusoidal spectral ripple of wideband noise. Using dynamic spectral patterns, the second task determined the signal-to-noise ratio needed to discriminate the temporal pattern of frequency fluctuation imposed by stochastic low-rate frequency modulation (FM). Children performed significantly poorer than young adults on both discrimination tasks. For children, a significant correlation between speech-in-noise perception and spectral-pattern discrimination was obtained only with the dynamic patterns of the FM condition, with partial correlation suggesting that factors related to the children's age mediated the relationship.
Wei, Ping; Wang, Di; Ji, Liyan
2016-02-01
We investigated the effect of reward expectation on the processing of emotional words in two experiments using event-related potentials (ERPs). A cue indicating the reward condition of each trial (incentive vs non-incentive) was followed by the presentation of a negative or neutral word, the target. Participants were asked to discriminate the emotional content of the target word in Experiment 1 and to discriminate the color of the target word in Experiment 2, rendering the emotionality of the target word task-relevant in Experiment 1, but task-irrelevant in Experiment 2. The negative bias effect, in terms of the amplitude difference between ERPs for negative and neutral targets, was modulated by the task-set. In Experiment 1, P31 and early posterior negativity revealed a larger negative bias effect in the incentive condition than that in the non-incentive condition. However, in Experiment 2, P31 revealed a diminished negative bias effect in the incentive condition compared with that in the non-incentive condition. These results indicate that reward expectation improves top-down attentional concentration to task-relevant information, with enhanced sensitivity to the emotional content of target words when emotionality is task-relevant, but with reduced differential brain responses to emotional words when their content is task-irrelevant. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Conditional Discriminations by Preverbal Children in an Identity Matching-to-Sample Task
ERIC Educational Resources Information Center
de Alcantara Gil, Maria Stella C.; de Oliveira, Thais Porlan; McIlvane, William J.
2011-01-01
This study sought to develop methodology for assessing whether children ages 16-21 months could learn to match stimuli on the basis of physical identity in conditional discrimination procedures routinely used in stimulus equivalence research with older participants. The study was conducted in a private room at a day-care center for children and…
Discrimination Learning in Children
ERIC Educational Resources Information Center
Ochocki, Thomas E.; And Others
1975-01-01
Examined the learning performance of 192 fourth-, fifth-, and sixth-grade children on either a two or four choice simultaneous color discrimination task. Compared the use of verbal reinforcement and/or punishment, under conditions of either complete or incomplete instructions. (Author/SDH)
Tardif, Eric; Spierer, Lucas; Clarke, Stephanie; Murray, Micah M
2008-03-07
Partially segregated neuronal pathways ("what" and "where" pathways, respectively) are thought to mediate sound recognition and localization. Less studied are interactions between these pathways. In two experiments, we investigated whether near-threshold pitch discrimination sensitivity (d') is altered by supra-threshold task-irrelevant position differences and likewise whether near-threshold position discrimination sensitivity is altered by supra-threshold task-irrelevant pitch differences. Each experiment followed a 2 x 2 within-subjects design regarding changes/no change in the task-relevant and task-irrelevant stimulus dimensions. In Experiment 1, subjects discriminated between 750 Hz and 752 Hz pure tones, and d' for this near-threshold pitch change significantly increased by a factor of 1.09 when accompanied by a task-irrelevant position change of 65 micros interaural time difference (ITD). No response bias was induced by the task-irrelevant position change. In Experiment 2, subjects discriminated between 385 micros and 431 micros ITDs, and d' for this near-threshold position change significantly increased by a factor of 0.73 when accompanied by task-irrelevant pitch changes (6 Hz). In contrast to Experiment 1, task-irrelevant pitch changes induced a response criterion bias toward responding that the two stimuli differed. The collective results are indicative of facilitative interactions between "what" and "where" pathways. By demonstrating how these pathways may cooperate under impoverished listening conditions, our results bear implications for possible neuro-rehabilitation strategies. We discuss our results in terms of the dual-pathway model of auditory processing.
Social enrichment improves social recognition memory in male rats.
Toyoshima, Michimasa; Yamada, Kazuo; Sugita, Manami; Ichitani, Yukio
2018-05-01
The social environment is thought to have a strong impact on cognitive functions. In the present study, we investigated whether social enrichment could affect rats' memory ability using the "Different Objects Task (DOT)," in which the levels of memory load could be modulated by changing the number of objects to be remembered. In addition, we applied the DOT to a social discrimination task using unfamiliar conspecific juveniles instead of objects. Animals were housed in one of the three different housing conditions after weaning [postnatal day (PND) 21]: social-separated (1 per cage), standard (3 per cage), or social-enriched (10 per cage) conditions. The object and social recognition tasks were conducted on PND 60. In the sample phase, the rats were allowed to explore a field in which 3, 4, or 5 different, unfamiliar stimuli (conspecific juveniles through a mesh or objects) were presented. In the test phase conducted after a 5-min delay, social-separated rats were able to discriminate the novel conspecific from the familiar ones only under the condition in which three different conspecifics were presented; social-enriched rats managed to recognize the novel conspecific even under the condition of five different conspecifics. On the other hand, in the object recognition task, both social-separated and social-enriched rats were able to discriminate the novel object from the familiar ones under the condition of five different objects. These results suggest that social enrichment can enhance social, but not object, memory span.
ERIC Educational Resources Information Center
Baeyens, Frank; Vansteenwegen, Debora; Beckers, Tom; Hermans, Dirk; Kerkhof, Ineke; De Ceulaer, Annick
2005-01-01
Using a conditioned suppression task, we investigated extinction and renewal of Pavlovian modulation in human sequential Feature Positive (FP) discrimination learning. In Experiment 1, in context a participants were first trained on two FP discriminations, X[right arrow]A+/A- and Y[right arrow]B+/B-. Extinction treatment was administered in the…
The effect of auditory memory load on intensity resolution in individuals with Parkinson's disease
NASA Astrophysics Data System (ADS)
Richardson, Kelly C.
Purpose: The purpose of the current study was to investigate the effect of auditory memory load on intensity resolution in individuals with Parkinson's disease (PD) as compared to two groups of listeners without PD. Methods: Nineteen individuals with Parkinson's disease, ten healthy age- and hearing-matched adults, and ten healthy young adults were studied. All listeners participated in two intensity discrimination tasks differing in auditory memory load; a lower memory load, 4IAX task and a higher memory load, ABX task. Intensity discrimination performance was assessed using a bias-free measurement of signal detectability known as d' (d-prime). Listeners further participated in a continuous loudness scaling task where they were instructed to rate the loudness level of each signal intensity using a computerized 150mm visual analogue scale. Results: Group discrimination functions indicated significantly lower intensity discrimination sensitivity (d') across tasks for the individuals with PD, as compared to the older and younger controls. No significant effect of aging on intensity discrimination was observed for either task. All three listeners groups demonstrated significantly lower intensity discrimination sensitivity for the higher auditory memory load, ABX task, compared to the lower auditory memory load, 4IAX task. Furthermore, a significant effect of aging was identified for the loudness scaling condition. The younger controls were found to rate most stimuli along the continuum as significantly louder than the older controls and the individuals with PD. Conclusions: The persons with PD showed evidence of impaired auditory perception for intensity information, as compared to the older and younger controls. The significant effect of aging on loudness perception may indicate peripheral and/or central auditory involvement.
Limited transfer of long-term motion perceptual learning with double training.
Liang, Ju; Zhou, Yifeng; Fahle, Manfred; Liu, Zili
2015-01-01
A significant recent development in visual perceptual learning research is the double training technique. With this technique, Xiao, Zhang, Wang, Klein, Levi, and Yu (2008) have found complete transfer in tasks that had previously been shown to be stimulus specific. The significance of this finding is that this technique has since been successful in all tasks tested, including motion direction discrimination. Here, we investigated whether or not this technique could generalize to longer-term learning, using the method of constant stimuli. Our task was learning to discriminate motion directions of random dots. The second leg of training was contrast discrimination along a new average direction of the same moving dots. We found that, although exposure of moving dots along a new direction facilitated motion direction discrimination, this partial transfer was far from complete. We conclude that, although perceptual learning is transferrable under certain conditions, stimulus specificity also remains an inherent characteristic of motion perceptual learning.
Brown, Christia Spears; Bigler, Rebecca S; Chu, Hui
2010-10-01
An experimental methodology was used to test hypotheses concerning the effects of contextual, cognitive-developmental, and individual difference factors on children's views of whether they have been the target of gender discrimination and the possible consequent effect of such views on two forms of state self-esteem: performance and social acceptance. Children (N=108, 5-11 years of age) completed theory of mind and gender attitude measures and a drawing task. Next, children received feedback that was designed to appear either gender biased (discrimination condition) or nonbiased (control condition). Children's attributions for the feedback and state self-esteem were assessed. As expected, children reported having been the target of gender discrimination more often in the discrimination condition than in the control condition. Older and more cognitively advanced children made fewer attributions to discrimination than their peers. Perceptions of discrimination were associated with higher performance state self-esteem and, among egalitarian children, lower social state self-esteem. Copyright 2010 Elsevier Inc. All rights reserved.
Treviño, Mario
2014-01-01
Animal choices depend on direct sensory information, but also on the dynamic changes in the magnitude of reward. In visual discrimination tasks, the emergence of lateral biases in the choice record from animals is often described as a behavioral artifact, because these are highly correlated with error rates affecting psychophysical measurements. Here, we hypothesized that biased choices could constitute a robust behavioral strategy to solve discrimination tasks of graded difficulty. We trained mice to swim in a two-alterative visual discrimination task with escape from water as the reward. Their prevalence of making lateral choices increased with stimulus similarity and was present in conditions of high discriminability. While lateralization occurred at the individual level, it was absent, on average, at the population level. Biased choice sequences obeyed the generalized matching law and increased task efficiency when stimulus similarity was high. A mathematical analysis revealed that strongly-biased mice used information from past rewards but not past choices to make their current choices. We also found that the amount of lateralized choices made during the first day of training predicted individual differences in the average learning behavior. This framework provides useful analysis tools to study individualized visual-learning trajectories in mice. PMID:25524257
Normal peer models and autistic children's learning.
Egel, A L; Richman, G S; Koegel, R L
1981-01-01
Present research and legislation regarding mainstreaming autistic children into normal classrooms have raised the importance of studying whether autistic children can benefit from observing normal peer models. The present investigation systematically assessed whether autistic children's learning of discrimination tasks could be improved if they observed normal children perform the tasks correctly. In the context of a multiple baseline design, four autistic children worked on five discrimination tasks that their teachers reported were posing difficulty. Throughout the baseline condition the children evidenced very low levels of correct responding on all five tasks. In the subsequent treatment condition, when normal peers modeled correct responses, the autistic children's correct responding increased dramatically. In each case, the peer modeling procedure produced rapid achievement of the acquisition which was maintained after the peer models were removed. These results are discussed in relation to issues concerning observational learning and in relation to the implications for mainstreaming autistic children into normal classrooms. PMID:7216930
Simple and conditional visual discrimination with wheel running as reinforcement in rats.
Iversen, I H
1998-09-01
Three experiments explored whether access to wheel running is sufficient as reinforcement to establish and maintain simple and conditional visual discriminations in nondeprived rats. In Experiment 1, 2 rats learned to press a lit key to produce access to running; responding was virtually absent when the key was dark, but latencies to respond were longer than for customary food and water reinforcers. Increases in the intertrial interval did not improve the discrimination performance. In Experiment 2, 3 rats acquired a go-left/go-right discrimination with a trial-initiating response and reached an accuracy that exceeded 80%; when two keys showed a steady light, pressing the left key produced access to running whereas pressing the right key produced access to running when both keys showed blinking light. Latencies to respond to the lights shortened when the trial-initiation response was introduced and became much shorter than in Experiment 1. In Experiment 3, 1 rat acquired a conditional discrimination task (matching to sample) with steady versus blinking lights at an accuracy exceeding 80%. A trial-initiation response allowed self-paced trials as in Experiment 2. When the rat was exposed to the task for 19 successive 24-hr periods with access to food and water, the discrimination performance settled in a typical circadian pattern and peak accuracy exceeded 90%. When the trial-initiation response was under extinction, without access to running, the circadian activity pattern determined the time of spontaneous recovery. The experiments demonstrate that wheel-running reinforcement can be used to establish and maintain simple and conditional visual discriminations in nondeprived rats.
Multiple memory stores and operant conditioning: a rationale for memory's complexity.
Meeter, Martijn; Veldkamp, Rob; Jin, Yaochu
2009-02-01
Why does the brain contain more than one memory system? Genetic algorithms can play a role in elucidating this question. Here, model animals were constructed containing a dorsal striatal layer that controlled actions, and a ventral striatal layer that controlled a dopaminergic learning signal. Both layers could gain access to three modeled memory stores, but such access was penalized as energy expenditure. Model animals were then selected on their fitness in simulated operant conditioning tasks. Results suggest that having access to multiple memory stores and their representations is important in learning to regulate dopamine release, as well as in contextual discrimination. For simple operant conditioning, as well as stimulus discrimination, hippocampal compound representations turned out to suffice, a counterintuitive result given findings that hippocampal lesions tend not to affect performance in such tasks. We argue that there is in fact evidence to support a role for compound representations and the hippocampus in even the simplest conditioning tasks.
ERIC Educational Resources Information Center
Vervliet, Bram; Iberico, Carlos; Vervoort, Ellen; Baeyens, Frank
2011-01-01
Generalization gradients have been investigated widely in animal conditioning experiments, but much less so in human predictive learning tasks. Here, we apply the experimental design of a recent study on conditioned fear generalization in humans (Lissek et al., 2008) to a predictive learning task, and examine the effects of a number of relevant…
Mental workload while driving: effects on visual search, discrimination, and decision making.
Recarte, Miguel A; Nunes, Luis M
2003-06-01
The effects of mental workload on visual search and decision making were studied in real traffic conditions with 12 participants who drove an instrumented car. Mental workload was manipulated by having participants perform several mental tasks while driving. A simultaneous visual-detection and discrimination test was used as performance criteria. Mental tasks produced spatial gaze concentration and visual-detection impairment, although no tunnel vision occurred. According to ocular behavior analysis, this impairment was due to late detection and poor identification more than to response selection. Verbal acquisition tasks were innocuous compared with production tasks, and complex conversations, whether by phone or with a passenger, are dangerous for road safety.
Performance Enhancements Under Dual-task Conditions
NASA Technical Reports Server (NTRS)
Kramer, A. F.; Wickens, C. D.; Donchin, E.
1984-01-01
Research on dual-task performance has been concerned with delineating the antecedent conditions which lead to dual-task decrements. Capacity models of attention, which propose that a hypothetical resource structure underlies performance, have been employed as predictive devices. These models predict that tasks which require different processing resources can be more successfully time shared than tasks which require common resources. The conditions under which such dual-task integrality can be fostered were assessed in a study in which three factors likely to influence the integrality between tasks were manipulated: inter-task redundancy, the physical proximity of tasks and the task relevant objects. Twelve subjects participated in three experimental sessions in which they performed both single and dual-tasks. The primary task was a pursuit step tracking task. The secondary tasks required the discrimination between different intensities or different spatial positions of a stimulus. The results are discussed in terms of a model of dual-task integrality.
Stimulus discriminability may bias value-based probabilistic learning.
Schutte, Iris; Slagter, Heleen A; Collins, Anne G E; Frank, Michael J; Kenemans, J Leon
2017-01-01
Reinforcement learning tasks are often used to assess participants' tendency to learn more from the positive or more from the negative consequences of one's action. However, this assessment often requires comparison in learning performance across different task conditions, which may differ in the relative salience or discriminability of the stimuli associated with more and less rewarding outcomes, respectively. To address this issue, in a first set of studies, participants were subjected to two versions of a common probabilistic learning task. The two versions differed with respect to the stimulus (Hiragana) characters associated with reward probability. The assignment of character to reward probability was fixed within version but reversed between versions. We found that performance was highly influenced by task version, which could be explained by the relative perceptual discriminability of characters assigned to high or low reward probabilities, as assessed by a separate discrimination experiment. Participants were more reliable in selecting rewarding characters that were more discriminable, leading to differences in learning curves and their sensitivity to reward probability. This difference in experienced reinforcement history was accompanied by performance biases in a test phase assessing ability to learn from positive vs. negative outcomes. In a subsequent large-scale web-based experiment, this impact of task version on learning and test measures was replicated and extended. Collectively, these findings imply a key role for perceptual factors in guiding reward learning and underscore the need to control stimulus discriminability when making inferences about individual differences in reinforcement learning.
Explicit attention interferes with selective emotion processing in human extrastriate cortex.
Schupp, Harald T; Stockburger, Jessica; Bublatzky, Florian; Junghöfer, Markus; Weike, Almut I; Hamm, Alfons O
2007-02-22
Brain imaging and event-related potential studies provide strong evidence that emotional stimuli guide selective attention in visual processing. A reflection of the emotional attention capture is the increased Early Posterior Negativity (EPN) for pleasant and unpleasant compared to neutral images (approximately 150-300 ms poststimulus). The present study explored whether this early emotion discrimination reflects an automatic phenomenon or is subject to interference by competing processing demands. Thus, emotional processing was assessed while participants performed a concurrent feature-based attention task varying in processing demands. Participants successfully performed the primary visual attention task as revealed by behavioral performance and selected event-related potential components (Selection Negativity and P3b). Replicating previous results, emotional modulation of the EPN was observed in a task condition with low processing demands. In contrast, pleasant and unpleasant pictures failed to elicit increased EPN amplitudes compared to neutral images in more difficult explicit attention task conditions. Further analyses determined that even the processing of pleasant and unpleasant pictures high in emotional arousal is subject to interference in experimental conditions with high task demand. Taken together, performing demanding feature-based counting tasks interfered with differential emotion processing indexed by the EPN. The present findings demonstrate that taxing processing resources by a competing primary visual attention task markedly attenuated the early discrimination of emotional from neutral picture contents. Thus, these results provide further empirical support for an interference account of the emotion-attention interaction under conditions of competition. Previous studies revealed the interference of selective emotion processing when attentional resources were directed to locations of explicitly task-relevant stimuli. The present data suggest that interference of emotion processing by competing task demands is a more general phenomenon extending to the domain of feature-based attention. Furthermore, the results are inconsistent with the notion of effortlessness, i.e., early emotion discrimination despite concurrent task demands. These findings implicate to assess the presumed automatic nature of emotion processing at the level of specific aspects rather than considering automaticity as an all-or-none phenomenon.
Explicit attention interferes with selective emotion processing in human extrastriate cortex
Schupp, Harald T; Stockburger, Jessica; Bublatzky, Florian; Junghöfer, Markus; Weike, Almut I; Hamm, Alfons O
2007-01-01
Background Brain imaging and event-related potential studies provide strong evidence that emotional stimuli guide selective attention in visual processing. A reflection of the emotional attention capture is the increased Early Posterior Negativity (EPN) for pleasant and unpleasant compared to neutral images (~150–300 ms poststimulus). The present study explored whether this early emotion discrimination reflects an automatic phenomenon or is subject to interference by competing processing demands. Thus, emotional processing was assessed while participants performed a concurrent feature-based attention task varying in processing demands. Results Participants successfully performed the primary visual attention task as revealed by behavioral performance and selected event-related potential components (Selection Negativity and P3b). Replicating previous results, emotional modulation of the EPN was observed in a task condition with low processing demands. In contrast, pleasant and unpleasant pictures failed to elicit increased EPN amplitudes compared to neutral images in more difficult explicit attention task conditions. Further analyses determined that even the processing of pleasant and unpleasant pictures high in emotional arousal is subject to interference in experimental conditions with high task demand. Taken together, performing demanding feature-based counting tasks interfered with differential emotion processing indexed by the EPN. Conclusion The present findings demonstrate that taxing processing resources by a competing primary visual attention task markedly attenuated the early discrimination of emotional from neutral picture contents. Thus, these results provide further empirical support for an interference account of the emotion-attention interaction under conditions of competition. Previous studies revealed the interference of selective emotion processing when attentional resources were directed to locations of explicitly task-relevant stimuli. The present data suggest that interference of emotion processing by competing task demands is a more general phenomenon extending to the domain of feature-based attention. Furthermore, the results are inconsistent with the notion of effortlessness, i.e., early emotion discrimination despite concurrent task demands. These findings implicate to assess the presumed automatic nature of emotion processing at the level of specific aspects rather than considering automaticity as an all-or-none phenomenon. PMID:17316444
Tapper, Anthony; Gonzalez, Dave; Roy, Eric; Niechwiej-Szwedo, Ewa
2017-02-01
The purpose of this study was to examine executive functions in team sport athletes with and without a history of concussion. Executive functions comprise many cognitive processes including, working memory, attention and multi-tasking. Past research has shown that concussions cause difficulties in vestibular-visual and vestibular-auditory dual-tasking, however, visual-auditory tasks have been examined rarely. Twenty-nine intercollegiate varsity ice hockey athletes (age = 19.13, SD = 1.56; 15 females) performed an experimental dual-task paradigm that required simultaneously processing visual and auditory information. A brief interview, event description and self-report questionnaires were used to assign participants to each group (concussion, no-concussion). Eighteen athletes had a history of concussion and 11 had no concussion history. The two tests involved visuospatial working memory (i.e., Corsi block test) and auditory tone discrimination. Participants completed both tasks individually, then simultaneously. Two outcome variables were measured, Corsi block memory span and auditory tone discrimination accuracy. No differences were shown when each task was performed alone; however, athletes with a history of concussion had a significantly worse performance on the tone discrimination task in the dual-task condition. In conclusion, long-term deficits in executive functions were associated with a prior history of concussion when cognitive resources were stressed. Evaluations of executive functions and divided attention appear to be helpful in discriminating participants with and without a history concussion.
Evaluation of a pilot workload metric for simulated VTOL landing tasks
NASA Technical Reports Server (NTRS)
North, R. A.; Graffunder, K.
1979-01-01
A methodological approach to measuring workload was investigated for evaluation of new concepts in VTOL aircraft displays. Multivariate discriminant functions were formed from conventional flight performance and/or visual response variables to maximize detection of experimental differences. The flight performance variable discriminant showed maximum differentiation between crosswind conditions. The visual response measure discriminant maximized differences between fixed vs. motion base conditions and experimental displays. Physiological variables were used to attempt to predict the discriminant function values for each subject/condition/trial. The weights of the physiological variables in these equations showed agreement with previous studies. High muscle tension, light but irregular breathing patterns, and higher heart rate with low amplitude all produced higher scores on this scale and thus, represented higher workload levels.
Sakimoto, Yuya; Sakata, Shogo
2014-01-01
It was showed that solving a simple discrimination task (A+, B−) and a simultaneous feature-negative (FN) task (A+, AB−) used the hippocampal-independent strategy. Recently, we showed that the number of sessions required for a rat to completely learn a task differed between the FN and simple discrimination tasks, and there was a difference in hippocampal theta activity between these tasks. These results suggested that solving the FN task relied on a different strategy than the simple discrimination task. In this study, we provided supportive evidence that solving the FN and simple discrimination tasks involved different strategies by examining changes in performance and hippocampal theta activity in the FN task after transfer from the simple discrimination task (A+, B− → A+, AB−). The results of this study showed that performance on the FN task was impaired and there was a difference in hippocampal theta activity between the simple discrimination task and FN task. Thus, we concluded that solving the FN task uses a different strategy than the simple discrimination task. PMID:24917797
Snapp-Childs, Winona; Wilson, Andrew D; Bingham, Geoffrey P
2015-07-01
Under certain conditions, learning can transfer from a trained task to an untrained version of that same task. However, it is as yet unclear what those certain conditions are or why learning transfers when it does. Coordinated rhythmic movement is a valuable model system for investigating transfer because we have a model of the underlying task dynamic that includes perceptual coupling between the limbs being coordinated. The model predicts that (1) coordinated rhythmic movements, both bimanual and unimanual, are organised with respect to relative motion information for relative phase in the coupling function, (2) unimanual is less stable than bimanual coordination because the coupling is unidirectional rather than bidirectional, and (3) learning a new coordination is primarily about learning to perceive and use the relevant information which, with equal perceptual improvement due to training, yields equal transfer of learning from bimanual to unimanual coordination and vice versa [but, given prediction (2), the resulting performance is also conditioned by the intrinsic stability of each task]. In the present study, two groups were trained to produce 90° either unimanually or bimanually, respectively, and tested in respect to learning (namely improved performance in the trained 90° coordination task and improved visual discrimination of 90°) and transfer of learning (to the other, untrained 90° coordination task). Both groups improved in the task condition in which they were trained and in their ability to visually discriminate 90°, and this learning transferred to the untrained condition. When scaled by the relative intrinsic stability of each task, transfer levels were found to be equal. The results are discussed in the context of the perception-action approach to learning and performance.
Altered orientation of spatial attention in depersonalization disorder.
Adler, Julia; Beutel, Manfred E; Knebel, Achim; Berti, Stefan; Unterrainer, Josef; Michal, Matthias
2014-05-15
Difficulties with concentration are frequent complaints of patients with depersonalization disorder (DPD). Standard neuropsychological tests suggested alterations of the attentional and perceptual systems. To investigate this, the well-validated Spatial Cueing paradigm was used with two different tasks, consisting either in the detection or in the discrimination of visual stimuli. At the start of each trial a cue indicated either the correct (valid) or the incorrect (invalid) position of the upcoming stimulus or was uninformative (neutral). Only under the condition of increased task difficulty (discrimination task) differences between DPD patients and controls were observed. DPD patients showed a smaller total attention directing effect (RT in valid vs. invalid trials) compared to healthy controls only in the discrimination condition. RT costs (i.e., prolonged RT in neutral vs. invalid trials) mainly accounted for this difference. These results indicate that DPD is associated with altered attentional mechanisms, especially with a stronger responsiveness to unexpected events. From an evolutionary perspective this may be advantageous in a dangerous environment, in daily life it may be experienced as high distractibility. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Across-channel interference in intensity discrimination: The role of practice and listening strategy
Buss, Emily
2008-01-01
Pure tone intensity discrimination thresholds can be elevated by the introduction of remote maskers with roved level. This effect is on the order of 10 dB [10log(ΔI/I)] in some conditions and can be demonstrated under conditions of little or no energetic masking. The current study examined the effect of practice and observer strategy on this phenomenon. Experiment 1 included observers who had no formal experience with intensity discrimination and provided training over six hours on a single masked intensity discrimination task to assess learning effects. Thresholds fell with practice for most observers, with significant improvements in 6 out of 8 cases. Despite these improvements significant masking remained in all cases. The second experiment assessed trial-by-trial effects of roved masker level. Conditional probability of a ‘signal-present’ response as a function of the rove value assigned to each of the two masker tones indicates fundamental differences among observers’ processing strategies, even after six hours of practice. The variability in error patterns across practiced listeners suggests that observers approach the task differently, though this variability does not appear to be related to sensitivity. PMID:18177156
The effect of perceptual load on tactile spatial attention: Evidence from event-related potentials.
Gherri, Elena; Berreby, Fiona
2017-10-15
To investigate whether tactile spatial attention is modulated by perceptual load, behavioural and electrophysiological measures were recorded during two spatial cuing tasks in which the difficulty of the target/non-target discrimination was varied (High and Low load tasks). Moreover, to study whether attentional modulations by load are sensitive to the availability of visual information, the High and Low load tasks were carried out under both illuminated and darkness conditions. ERPs to cued and uncued non-targets were compared as a function of task (High vs. Low load) and illumination condition (Light vs. Darkness). Results revealed that the locus of tactile spatial attention was determined by a complex interaction between perceptual load and illumination conditions during sensory-specific stages of processing. In the Darkness, earlier effects of attention were present in the High load than in the Low load task, while no difference between tasks emerged in the Light. By contrast, increased load was associated with stronger attention effects during later post-perceptual processing stages regardless of illumination conditions. These findings demonstrate that ERP correlates of tactile spatial attention are strongly affected by the perceptual load of the target/non-target discrimination. However, differences between illumination conditions show that the impact of load on tactile attention depends on the presence of visual information. Perceptual load is one of the many factors that contribute to determine the effects of spatial selectivity in touch. Copyright © 2017 Elsevier B.V. All rights reserved.
Huynh, Virginia W; Huynh, Que-Lam; Stein, Mary-Patricia
2017-07-01
We examined the effect of indirect ethnic discrimination on physiological reactivity (i.e., cortisol, blood pressure, heart rate) in Latino emerging adults. Participants (N = 32) were randomly assigned to be exposed to indirect ethnic discrimination (experimental condition) or not (control condition) while undergoing a cognitive stress task. Greater total cortisol output was observed in participants in the experimental condition, relative to those in the control condition. No significant differences in heart rate or blood pressure were noted. Results suggest that witnessing ethnic discrimination affects cortisol recovery responses, but not cardiovascular reactivity. Words that are not intentionally hurtful or directed at a specific person may still "hurt"-affecting biological processes associated with hypothalamic-pituitary-adrenocortical (HPA) axis and potentially leading to long-term health consequences. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Honzel, Nikki; Justus, Timothy; Swick, Diane
2015-01-01
Patients with post-traumatic stress disorder (PTSD) can show declines in working memory. A dual-task design was used to determine if these impairments are linked to executive control limitations. Participants performed a Sternberg memory task with either one or four letters. In the dual-task condition, the maintenance period was filled with an arrow flanker task. PTSD patients were less accurate on the working memory task than controls, especially in the dual-task condition. In the single-task condition, both groups showed similar patterns of brain potentials from 300–500 ms when discriminating old and new probes. However, when taxed with an additional task, the event-related potentials (ERPs) of the PTSD group no longer differentiated old and new probes. In contrast, interference resolution processes in both the single- and dual-task conditions of the flanker were intact. The lack of differentiation in the ERPs reflects impaired working memory performance under more difficult dual-task conditions. Exacerbated difficulty in performing a working memory task with concurrent task demands suggests a specific limitation in executive control resources in PTSD. PMID:24165904
Task difficulty modulates brain activation in the emotional oddball task.
Siciliano, Rachel E; Madden, David J; Tallman, Catherine W; Boylan, Maria A; Kirste, Imke; Monge, Zachary A; Packard, Lauren E; Potter, Guy G; Wang, Lihong
2017-06-01
Previous functional magnetic resonance imaging (fMRI) studies have reported that task-irrelevant, emotionally salient events can disrupt target discrimination, particularly when attentional demands are low, while others demonstrate alterations in the distracting effects of emotion in behavior and neural activation in the context of attention-demanding tasks. We used fMRI, in conjunction with an emotional oddball task, at different levels of target discrimination difficulty, to investigate the effects of emotional distractors on the detection of subsequent targets. In addition, we distinguished different behavioral components of target detection representing decisional, nondecisional, and response criterion processes. Results indicated that increasing target discrimination difficulty led to increased time required for both the decisional and nondecisional components of the detection response, as well as to increased target-related neural activation in frontoparietal regions. The emotional distractors were associated with activation in ventral occipital and frontal regions and dorsal frontal regions, but this activation was attenuated with increased difficulty. Emotional distraction did not alter the behavioral measures of target detection, but did lead to increased target-related frontoparietal activation for targets following emotional images as compared to those following neutral images. This latter effect varied with target discrimination difficulty, with an increased influence of the emotional distractors on subsequent target-related frontoparietal activation in the more difficult discrimination condition. This influence of emotional distraction was in addition associated specifically with the decisional component of target detection. These findings indicate that emotion-cognition interactions, in the emotional oddball task, vary depending on the difficulty of the target discrimination and the associated limitations on processing resources. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Merwin, Rhonda M.; Wilson, Kelly G.
2005-01-01
Thirty-two subjects completed 2 stimulus equivalence tasks using a matching-to-sample paradigm. One task involved direct reinforcement of conditional discriminations designed to produce derived relations between self-referring stimuli (e.g., me, myself, I) and positive evaluation words (e.g., whole, desirable, perfect). The other task was designed…
Moehler, Tobias; Fiehler, Katja
2015-11-01
Saccade curvature represents a sensitive measure of oculomotor inhibition with saccades curving away from covertly attended locations. Here we investigated whether and how saccade curvature depends on movement preparation time when a perceptual task is performed during or before saccade preparation. Participants performed a dual-task including a visual discrimination task at a cued location and a saccade task to the same location (congruent) or to a different location (incongruent). Additionally, we varied saccade preparation time (time between saccade cue and Go-signal) and the occurrence of the discrimination task (during saccade preparation=simultaneous vs. before saccade preparation=sequential). We found deteriorated perceptual performance in incongruent trials during simultaneous task performance while perceptual performance was unaffected during sequential task performance. Saccade accuracy and precision were deteriorated in incongruent trials during simultaneous and, to a lesser extent, also during sequential task performance. Saccades consistently curved away from covertly attended non-saccade locations. Saccade curvature was unaffected by movement preparation time during simultaneous task performance but decreased and finally vanished with increasing movement preparation time during sequential task performance. Our results indicate that the competing saccade plan to the covertly attended non-saccade location is maintained during simultaneous task performance until the perceptual task is solved while in the sequential condition, in which the discrimination task is solved prior to the saccade task, oculomotor inhibition decays gradually with movement preparation time. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bourgeon, Stéphanie; Xerri, Christian; Coq, Jacques-Olivier
2004-08-12
In previous studies, we have shown that housing in enriched environment for about 3 months after weaning improved the topographic organization and decreased the size of the receptive fields (RFs) located on the glabrous skin surfaces in the forepaw maps of the primary somatosensory cortex (SI) in rats [Exp. Brain Res. 121 (1998) 191]. In contrast, housing in impoverished environment induced a degradation of the SI forepaw representation, characterized by topographic disruptions, a reduction of the cutaneous forepaw area and an enlargement of the glabrous RFs [Exp. Brain Res. 129 (1999) 518]. Based on these two studies, we postulated that these representational alterations could underlie changes in haptic perception. Therefore, the present study was aimed at determining the influence of housing conditions on the rat's abilities in tactile texture discrimination. After a 2-month exposure to enriched or impoverished environments, rats were trained to perform a discrimination task during locomotion on floorboards of different roughness. At the end of every daily behavioral session, rats were replaced in their respective housing environment. Rats had to discriminate homogeneous (low roughness) from heterogeneous floorboards (combination of two different roughness levels). To determine the maximum performance in texture discrimination, the roughness contrast of the heterogeneous texture was gradually reduced, so that homogeneous and heterogeneous floorboards became harder to differentiate. We found that the enriched rats learned the first steps of the behavioral task faster than the impoverished rats, whereas both groups exhibited similar performances in texture discrimination. An individual "predilection" for either homogeneous or heterogeneous floorboards, presumably reflecting a behavioral strategy, seemed to account for the absence of differences in haptic discrimination between groups. The sensory experience depending on the rewarded texture discrimination task seems to have a greater influence on individual texture discrimination abilities than the sensorimotor experience related to housing conditions.
Atypical Face Perception in Autism: A Point of View?
Morin, Karine; Guy, Jacalyn; Habak, Claudine; Wilson, Hugh R; Pagani, Linda; Mottron, Laurent; Bertone, Armando
2015-10-01
Face perception is the most commonly used visual metric of social perception in autism. However, when found to be atypical, the origin of face perception differences in autism is contentious. One hypothesis proposes that a locally oriented visual analysis, characteristic of individuals with autism, ultimately affects performance on face tasks where a global analysis is optimal. The objective of this study was to evaluate this hypothesis by assessing face identity discrimination with synthetic faces presented with and without changes in viewpoint, with the former condition minimizing access to local face attributes used for identity discrimination. Twenty-eight individuals with autism and 30 neurotypical participants performed a face identity discrimination task. Stimuli were synthetic faces extracted from traditional face photographs in both front and 20° side viewpoints, digitized from 37 points to provide a continuous measure of facial geometry. Face identity discrimination thresholds were obtained using a two-alternative, temporal forced choice match-to-sample paradigm. Analyses revealed an interaction between group and condition, with group differences found only for the viewpoint change condition, where performance in the autism group was decreased compared to that of neurotypical participants. The selective decrease in performance for the viewpoint change condition suggests that face identity discrimination in autism is more difficult when access to local cues is minimized, and/or when dependence on integrative analysis is increased. These results lend support to a perceptual contribution of atypical face perception in autism. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
Is improved contrast sensitivity a natural consequence of visual training?
Levi, Aaron; Shaked, Danielle; Tadin, Duje; Huxlin, Krystel R.
2015-01-01
Many studies have shown that training and testing conditions modulate specificity of visual learning to trained stimuli and tasks. In visually impaired populations, generalizability of visual learning to untrained stimuli/tasks is almost always reported, with contrast sensitivity (CS) featuring prominently among these collaterally-improved functions. To understand factors underlying this difference, we measured CS for direction and orientation discrimination in the visual periphery of three groups of visually-intact subjects. Group 1 trained on an orientation discrimination task with static Gabors whose luminance contrast was decreased as performance improved. Group 2 trained on a global direction discrimination task using high-contrast random dot stimuli previously used to recover motion perception in cortically blind patients. Group 3 underwent no training. Both forms of training improved CS with some degree of specificity for basic attributes of the trained stimulus/task. Group 1's largest enhancement was in CS around the trained spatial/temporal frequencies; similarly, Group 2's largest improvements occurred in CS for discriminating moving and flickering stimuli. Group 3 saw no significant CS changes. These results indicate that CS improvements may be a natural consequence of multiple forms of visual training in visually intact humans, albeit with some specificity to the trained visual domain(s). PMID:26305736
Han, S; Humphreys, G W; Chen, L
1999-10-01
The role of perceptual grouping and the encoding of closure of local elements in the processing of hierarchical patterns was studied. Experiments 1 and 2 showed a global advantage over the local level for 2 tasks involving the discrimination of orientation and closure, but there was a local advantage for the closure discrimination task relative to the orientation discrimination task. Experiment 3 showed a local precedence effect for the closure discrimination task when local element grouping was weakened by embedding the stimuli from Experiment 1 in a background made up of cross patterns. Experiments 4A and 4B found that dissimilarity of closure between the local elements of hierarchical stimuli and the background figures could facilitate the grouping of closed local elements and enhanced the perception of global structure. Experiment 5 showed that the advantage for detecting the closure of local elements in hierarchical analysis also held under divided- and selective-attention conditions. Results are consistent with the idea that grouping between local elements takes place in parallel and competes with the computation of closure of local elements in determining the selection between global and local levels of hierarchical patterns for response.
Sauvage, M; Brabet, P; Holsboer, F; Bockaert, J; Steckler, T
2000-12-08
Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor subtype 1 (PAC1) have been suggested to play a role in the modulation of learning and memory. However, behavioral evidence for altered mnemonic function due to altered PAC1 activity is missing. Therefore, the role of PAC1 in learning and memory was studied in mouse mutants lacking this receptor (PAC1 knock-out mice), tested in water maze two-choice spatial discrimination, one-trial contextual and cued fear conditioning, and multiple-session contextual discrimination. Water maze spatial discrimination was unaffected in PAC1 mutants, while a mild deficit was observed in multiple session contextual discrimination in PAC1 knock-out mice. Furthermore, PAC1 knock-out mice were able to learn the association between context and shock in one-trial contextual conditioning, but showed faster return to baseline than wild-type mice. Thus, the effects of PAC1 knock-out on modulating performance in these tasks were subtle and suggest that PAC1 only plays a limited role in learning and memory.
NASA Technical Reports Server (NTRS)
Kimchi, Ruth; Gopher, Daniel; Rubin, Yifat; Raij, David
1993-01-01
Three experiments investigated subjects' ability to allocate attention and cope with task requirements under dichoptic versus binocular viewing conditions. Experiments 1 and 2 employed a target detection task in compound and noncompound stimuli, and Experiment 3 employed a relative-proximity judgment task. The tasks were performed in a focused attention condition in which subjects had to attend to the stimulus presented to one eye or field (under dichoptic and binocular viewing conditions, respectively) while ignoring the stimulus presented to the other eye or field, and in a divided attention condition in which subjects had to attend to the stimuli presented to both eyes or fields. Subjects' performance was affected by the interaction of attention conditions with task requirements, but it was generally the same under dichoptic and binocular viewing conditions. The more dependent the task was on finer discrimination, the more performance was impaired by divided attention. These results suggest that at least with discrete tasks and relatively short exposure durations, performance when each eye is presented with a separate stimulus is the same as when the entire field of stimulation is viewed by both eyes.
Perception of Self-Motion and Regulation of Walking Speed in Young-Old Adults.
Lalonde-Parsi, Marie-Jasmine; Lamontagne, Anouk
2015-07-01
Whether a reduced perception of self-motion contributes to poor walking speed adaptations in older adults is unknown. In this study, speed discrimination thresholds (perceptual task) and walking speed adaptations (walking task) were compared between young (19-27 years) and young-old individuals (63-74 years), and the relationship between the performance on the two tasks was examined. Participants were evaluated while viewing a virtual corridor in a helmet-mounted display. Speed discrimination thresholds were determined using a staircase procedure. Walking speed modulation was assessed on a self-paced treadmill while exposed to different self-motion speeds ranging from 0.25 to 2 times the participants' comfortable speed. For each speed, participants were instructed to match the self-motion speed described by the moving corridor. On the walking task, participants displayed smaller walking speed errors at comfortable walking speeds compared with slower of faster speeds. The young-old adults presented larger speed discrimination thresholds (perceptual experiment) and larger walking speed errors (walking experiment) compared with young adults. Larger walking speed errors were associated with higher discrimination thresholds. The enhanced performance on the walking task at comfortable speed suggests that intersensory calibration processes are influenced by experience, hence optimized for frequently encountered conditions. The altered performance of the young-old adults on the perceptual and walking tasks, as well as the relationship observed between the two tasks, suggest that a poor perception of visual motion information may contribute to the poor walking speed adaptations that arise with aging.
Summary statistics in the attentional blink.
McNair, Nicolas A; Goodbourn, Patrick T; Shone, Lauren T; Harris, Irina M
2017-01-01
We used the attentional blink (AB) paradigm to investigate the processing stage at which extraction of summary statistics from visual stimuli ("ensemble coding") occurs. Experiment 1 examined whether ensemble coding requires attentional engagement with the items in the ensemble. Participants performed two sequential tasks on each trial: gender discrimination of a single face (T1) and estimating the average emotional expression of an ensemble of four faces (or of a single face, as a control condition) as T2. Ensemble coding was affected by the AB when the tasks were separated by a short temporal lag. In Experiment 2, the order of the tasks was reversed to test whether ensemble coding requires more working-memory resources, and therefore induces a larger AB, than estimating the expression of a single face. Each condition produced a similar magnitude AB in the subsequent gender-discrimination T2 task. Experiment 3 additionally investigated whether the previous results were due to participants adopting a subsampling strategy during the ensemble-coding task. Contrary to this explanation, we found different patterns of performance in the ensemble-coding condition and a condition in which participants were instructed to focus on only a single face within an ensemble. Taken together, these findings suggest that ensemble coding emerges automatically as a result of the deployment of attentional resources across the ensemble of stimuli, prior to information being consolidated in working memory.
Investigation of varying gray scale levels for remote manipulation
NASA Technical Reports Server (NTRS)
Bierschwale, John M.; Stuart, Mark A.; Sampaio, Carlos E.
1991-01-01
A study was conducted to investigate the effects of variant monitor gray scale levels and workplace illumination levels on operators' ability to discriminate between different colors on a monochrome monitor. It was determined that 8-gray scale viewing resulted in significantly worse discrimination performance compared to 16- and 32-gray scale viewing and that there was only a negligible difference found between 16 and 32 shades of gray. Therefore, it is recommended that monitors used while performing remote manipulation tasks have 16 or above shades of gray since this evaluation has found levels lower than this to be unacceptable for color discrimination task. There was no significant performance difference found between a high and a low workplace illumination condition. Further analysis was conducted to determine which specific combinations of colors can be used in conjunction with each other to ensure errorfree color coding/brightness discrimination performance while viewing a monochrome monitor. It was found that 92 three-color combination and 9 four-color combinations could be used with 100 percent accuracy. The results can help to determine which gray scale levels should be provided on monochrome monitors as well as which colors to use to ensure the maximal performance of remotely-viewed color discrimination/coding tasks.
What is a melody? On the relationship between pitch and brightness of timbre.
Cousineau, Marion; Carcagno, Samuele; Demany, Laurent; Pressnitzer, Daniel
2013-01-01
Previous studies showed that the perceptual processing of sound sequences is more efficient when the sounds vary in pitch than when they vary in loudness. We show here that sequences of sounds varying in brightness of timbre are processed with the same efficiency as pitch sequences. The sounds used consisted of two simultaneous pure tones one octave apart, and the listeners' task was to make same/different judgments on pairs of sequences varying in length (one, two, or four sounds). In one condition, brightness of timbre was varied within the sequences by changing the relative level of the two pure tones. In other conditions, pitch was varied by changing fundamental frequency, or loudness was varied by changing the overall level. In all conditions, only two possible sounds could be used in a given sequence, and these two sounds were equally discriminable. When sequence length increased from one to four, discrimination performance decreased substantially for loudness sequences, but to a smaller extent for brightness sequences and pitch sequences. In the latter two conditions, sequence length had a similar effect on performance. These results suggest that the processes dedicated to pitch and brightness analysis, when probed with a sequence-discrimination task, share unexpected similarities.
Truppa, Valentina; Carducci, Paola; Trapanese, Cinzia; Hanus, Daniel
2015-01-01
Most experimental paradigms to study visual cognition in humans and non-human species are based on discrimination tasks involving the choice between two or more visual stimuli. To this end, different types of stimuli and procedures for stimuli presentation are used, which highlights the necessity to compare data obtained with different methods. The present study assessed whether, and to what extent, capuchin monkeys’ ability to solve a size discrimination problem is influenced by the type of procedure used to present the problem. Capuchins’ ability to generalise knowledge across different tasks was also evaluated. We trained eight adult tufted capuchin monkeys to select the larger of two stimuli of the same shape and different sizes by using pairs of food items (Experiment 1), computer images (Experiment 1) and objects (Experiment 2). Our results indicated that monkeys achieved the learning criterion faster with food stimuli compared to both images and objects. They also required consistently fewer trials with objects than with images. Moreover, female capuchins had higher levels of acquisition accuracy with food stimuli than with images. Finally, capuchins did not immediately transfer the solution of the problem acquired in one task condition to the other conditions. Overall, these findings suggest that – even in relatively simple visual discrimination problems where a single perceptual dimension (i.e., size) has to be judged – learning speed strongly depends on the mode of presentation. PMID:25927363
Object versus spatial visual mental imagery in patients with schizophrenia
Aleman, André; de Haan, Edward H.F.; Kahn, René S.
2005-01-01
Objective Recent research has revealed a larger impairment of object perceptual discrimination than of spatial perceptual discrimination in patients with schizophrenia. It has been suggested that mental imagery may share processing systems with perception. We investigated whether patients with schizophrenia would show greater impairment regarding object imagery than spatial imagery. Methods Forty-four patients with schizophrenia and 20 healthy control subjects were tested on a task of object visual mental imagery and on a task of spatial visual mental imagery. Both tasks included a condition in which no imagery was needed for adequate performance, but which was in other respects identical to the imagery condition. This allowed us to adjust for nonspecific differences in individual performance. Results The results revealed a significant difference between patients and controls on the object imagery task (F1,63 = 11.8, p = 0.001) but not on the spatial imagery task (F1,63 = 0.14, p = 0.71). To test for a differential effect, we conducted a 2 (patients v. controls) х 2 (object task v. spatial task) analysis of variance. The interaction term was statistically significant (F1,62 = 5.2, p = 0.026). Conclusions Our findings suggest a differential dysfunction of systems mediating object and spatial visual mental imagery in schizophrenia. PMID:15644999
Modulation of radial blood flow during Braille character discrimination task.
Murata, Jun; Matsukawa, K; Komine, H; Tsuchimochi, H
2012-03-01
Human hands are excellent in performing sensory and motor function. We have hypothesized that blood flow of the hand is dynamically regulated by sympathetic outflow during concentrated finger perception. To identify this hypothesis, we measured radial blood flow (RBF), radial vascular conductance (RVC), heart rate (HR), and arterial blood pressure (AP) during Braille reading performed under the blind condition in nine healthy subjects. The subjects were instructed to read a flat plate with raised letters (Braille reading) for 30 s by the forefinger, and to touch a blank plate as control for the Braille discrimination procedure. HR and AP slightly increased during Braille reading but remained unchanged during the touching of the blank plate. RBF and RVC were reduced during the Braille character discrimination task (decreased by -46% and -49%, respectively). Furthermore, the changes in RBF and RVC were much greater during the Braille character discrimination task than during the touching of the blank plate (decreased by -20% and -20%, respectively). These results have suggested that the distribution of blood flow to the hand is modulated via sympathetic nerve activity during concentrated finger perception.
Attention-dependent sound offset-related brain potentials.
Horváth, János
2016-05-01
When performing sensory tasks, knowing the potentially occurring goal-relevant and irrelevant stimulus events allows the establishment of selective attention sets, which result in enhanced sensory processing of goal-relevant events. In the auditory modality, such enhancements are reflected in the increased amplitude of the N1 ERP elicited by the onsets of task-relevant sounds. It has been recently suggested that ERPs to task-relevant sound offsets are similarly enhanced in a tone-focused state in comparison to a distracted one. The goal of the present study was to explore the influence of attention on ERPs elicited by sound offsets. ERPs elicited by tones in a duration-discrimination task were compared to ERPs elicited by the same tones in not-tone-focused attentional setting. Tone offsets elicited a consistent, attention-dependent biphasic (positive-negative--P1-N1) ERP waveform for tone durations ranging from 150 to 450 ms. The evidence, however, did not support the notion that the offset-related ERPs reflected an offset-specific attention set: The offset-related ERPs elicited in a duration-discrimination condition (in which offsets were task relevant) did not significantly differ from those elicited in a pitch-discrimination condition (in which the offsets were task irrelevant). Although an N2 reflecting the processing of offsets in task-related terms contributed to the observed waveform, this contribution was separable from the offset-related P1 and N1. The results demonstrate that when tones are attended, offset-related ERPs may substantially overlap endogenous ERP activity in the postoffset interval irrespective of tone duration, and attention differences may cause ERP differences in such postoffset intervals. © 2016 Society for Psychophysiological Research.
Laska, Matthias; Genzel, Daria; Wieser, Alexandra
2005-02-01
The ability of four squirrel monkeys and three pigtail macaques to distinguish between nine enantiomeric odor pairs sharing an isopropenyl group at the chiral center was investigated in terms of a conditioning paradigm. All animals from both species were able to discriminate between the optical isomers of limonene, carvone, dihydrocarvone, dihydrocarveole and dihydrocarvyl acetate, whereas they failed to distinguish between the (+)- and (-)-forms of perillaaldehyde and limonene oxide. The pigtail macaques, but not the squirrel monkeys, also discriminated between the antipodes of perillaalcohol and isopulegol. A comparison of the across-task patterns of discrimination performance shows a high degree of similarity among the two primate species and also between these nonhuman primates and human subjects tested in an earlier study on the same tasks. These findings suggest that between-species comparisons of the relative size of olfactory brain structures or of the number of functional olfactory receptor genes are poor predictors of olfactory discrimination performance with enantiomers.
Factors affecting sensitivity to frequency change in school-age children and adults.
Buss, Emily; Taylor, Crystal N; Leibold, Lori J
2014-10-01
The factors affecting frequency discrimination in school-age children are poorly understood. The goal of the present study was to evaluate developmental effects related to memory for pitch and the utilization of temporal fine structure. Listeners were 5.1- to 13.6-year-olds and adults, all with normal hearing. A subgroup of children had musical training. The task was a 3-alternative forced choice in which listeners identified the interval with the higher frequency tone or the tone characterized by frequency modulation (FM). The standard was 500 or 5000 Hz, and the FM rate was either 2 or 20 Hz. Thresholds tended to be higher for younger children than for older children and adults for all conditions, although this age effect was smaller for FM detection than for pure-tone frequency discrimination. Neither standard frequency nor modulation rate affected the child/adult difference FM thresholds. Children with musical training performed better than their peers on pure-tone frequency discrimination at 500 Hz. Testing frequency discrimination using a low-rate FM detection task may minimize effects related to cognitive factors like memory for pitch or training effects. Maturation of frequency discrimination does not appear to differ across conditions in which listeners are hypothesized to rely on temporal cues and place cues.
Effects of normal aging on memory for multiple contextual features.
Gagnon, Sylvain; Soulard, Kathleen; Brasgold, Melissa; Kreller, Joshua
2007-08-01
Twenty-four younger (18-35 years) and 24 older adult participants (65 or older) were exposed to three experimental conditions involving the memorization words and their associated contextual features, with contextual feature complexity increasing from Conditions 1 to 3. In Condition 1, words presented varied only on one binary feature (color, size, or character), while in Conditions 2 and 3, words presented varied on two and three binary features, respectively. Each condition was carried out as follows: (1) learning of a word list; (2) encoding of words and their contextual features; (3) delay; and (4) memory for contextual features through a discrimination task. Results indicated that young adults discriminated more features than older adults on all conditions. In both age groups, contextual feature discrimination accuracy decreased as the number of features increased. Moreover, older adults demonstrated near floor performance when tested with two or more binary features. We conclude that increasing context complexity strains attentional resources.
Fujimoto, Shuhei; Kon, Noriko; Otaka, Yohei; Yamaguchi, Tomofumi; Nakayama, Takeo; Kondo, Kunitsugu; Ragert, Patrick; Tanaka, Satoshi
2016-01-01
In healthy subjects, dual hemisphere transcranial direct current stimulation (tDCS) over the primary (S1) and secondary somatosensory cortices (S2) has been found to transiently enhance tactile performance. However, the effect of dual hemisphere tDCS on tactile performance in stroke patients with sensory deficits remains unknown. The purpose of this study was to investigate whether dual hemisphere tDCS over S1 and S2 could enhance tactile discrimination in stroke patients. We employed a double-blind, crossover, sham-controlled experimental design. Eight chronic stroke patients with sensory deficits participated in this study. We used a grating orientation task (GOT) to measure the tactile discriminative threshold of the affected and non-affected index fingers before, during, and 10 min after four tDCS conditions. For both the S1 and S2 conditions, we placed an anodal electrode over the lesioned hemisphere and a cathodal electrode over the opposite hemisphere. We applied tDCS at an intensity of 2 mA for 15 min in both S1 and S2 conditions. We included two sham conditions in which the positions of the electrodes and the current intensity were identical to that in the S1 and S2 conditions except that current was delivered for the initial 15 s only. We found that GOT thresholds for the affected index finger during and 10 min after the S1 and S2 conditions were significantly lower compared with each sham condition. GOT thresholds were not significantly different between the S1 and S2 conditions at any time point. We concluded that dual-hemisphere tDCS over S1 and S2 can transiently enhance tactile discriminative task performance in chronic stroke patients with sensory dysfunction. PMID:27064531
Roijendijk, Linsey; Farquhar, Jason; van Gerven, Marcel; Jensen, Ole; Gielen, Stan
2013-01-01
Objective Covert visual spatial attention is a relatively new task used in brain computer interfaces (BCIs) and little is known about the characteristics which may affect performance in BCI tasks. We investigated whether eccentricity and task difficulty affect alpha lateralization and BCI performance. Approach We conducted a magnetoencephalography study with 14 participants who performed a covert orientation discrimination task at an easy or difficult stimulus contrast at either a near (3.5°) or far (7°) eccentricity. Task difficulty was manipulated block wise and subjects were aware of the difficulty level of each block. Main Results Grand average analyses revealed a significantly larger hemispheric lateralization of posterior alpha power in the difficult condition than in the easy condition, while surprisingly no difference was found for eccentricity. The difference between task difficulty levels was significant in the interval between 1.85 s and 2.25 s after cue onset and originated from a stronger decrease in the contralateral hemisphere. No significant effect of eccentricity was found. Additionally, single-trial classification analysis revealed a higher classification rate in the difficult (65.9%) than in the easy task condition (61.1%). No effect of eccentricity was found in classification rate. Significance Our results indicate that manipulating the difficulty of a task gives rise to variations in alpha lateralization and that using a more difficult task improves covert visual spatial attention BCI performance. The variations in the alpha lateralization could be caused by different factors such as an increased mental effort or a higher visual attentional demand. Further research is necessary to discriminate between them. We did not discover any effect of eccentricity in contrast to results of previous research. PMID:24312477
Roijendijk, Linsey; Farquhar, Jason; van Gerven, Marcel; Jensen, Ole; Gielen, Stan
2013-01-01
Covert visual spatial attention is a relatively new task used in brain computer interfaces (BCIs) and little is known about the characteristics which may affect performance in BCI tasks. We investigated whether eccentricity and task difficulty affect alpha lateralization and BCI performance. We conducted a magnetoencephalography study with 14 participants who performed a covert orientation discrimination task at an easy or difficult stimulus contrast at either a near (3.5°) or far (7°) eccentricity. Task difficulty was manipulated block wise and subjects were aware of the difficulty level of each block. Grand average analyses revealed a significantly larger hemispheric lateralization of posterior alpha power in the difficult condition than in the easy condition, while surprisingly no difference was found for eccentricity. The difference between task difficulty levels was significant in the interval between 1.85 s and 2.25 s after cue onset and originated from a stronger decrease in the contralateral hemisphere. No significant effect of eccentricity was found. Additionally, single-trial classification analysis revealed a higher classification rate in the difficult (65.9%) than in the easy task condition (61.1%). No effect of eccentricity was found in classification rate. Our results indicate that manipulating the difficulty of a task gives rise to variations in alpha lateralization and that using a more difficult task improves covert visual spatial attention BCI performance. The variations in the alpha lateralization could be caused by different factors such as an increased mental effort or a higher visual attentional demand. Further research is necessary to discriminate between them. We did not discover any effect of eccentricity in contrast to results of previous research.
Schupp, Harald T; Stockburger, Jessica; Bublatzky, Florian; Junghöfer, Markus; Weike, Almut I; Hamm, Alfons O
2008-09-16
Event-related potential studies revealed an early posterior negativity (EPN) for emotional compared to neutral pictures. Exploring the emotion-attention relationship, a previous study observed that a primary visual discrimination task interfered with the emotional modulation of the EPN component. To specify the locus of interference, the present study assessed the fate of selective visual emotion processing while attention is directed towards the auditory modality. While simply viewing a rapid and continuous stream of pleasant, neutral, and unpleasant pictures in one experimental condition, processing demands of a concurrent auditory target discrimination task were systematically varied in three further experimental conditions. Participants successfully performed the auditory task as revealed by behavioral performance and selected event-related potential components. Replicating previous results, emotional pictures were associated with a larger posterior negativity compared to neutral pictures. Of main interest, increasing demands of the auditory task did not modulate the selective processing of emotional visual stimuli. With regard to the locus of interference, selective emotion processing as indexed by the EPN does not seem to reflect shared processing resources of visual and auditory modality.
Hay-McCutcheon, Marcia J; Peterson, Nathaniel R; Pisoni, David B; Kirk, Karen Iler; Yang, Xin; Parton, Jason
The purpose of this study was to evaluate performance on two challenging listening tasks, talker and regional accent discrimination, and to assess variables that could have affected the outcomes. A prospective study using 35 adults with one cochlear implant (CI) or a CI and a contralateral hearing aid (bimodal hearing) was conducted. Adults completed talker and regional accent discrimination tasks. Two-alternative forced-choice tasks were used to assess talker and accent discrimination in a group of adults who ranged in age from 30 years old to 81 years old. A large amount of performance variability was observed across listeners for both discrimination tasks. Three listeners successfully discriminated between talkers for both listening tasks, 14 participants successfully completed one discrimination task and 18 participants were not able to discriminate between talkers for either listening task. Some adults who used bimodal hearing benefitted from the addition of acoustic cues provided through a HA but for others the HA did not help with discrimination abilities. Acoustic speech feature analysis of the test signals indicated that both the talker speaking rate and the fundamental frequency (F0) helped with talker discrimination. For accent discrimination, findings suggested that access to more salient spectral cues was important for better discrimination performance. The ability to perform challenging discrimination tasks successfully likely involves a number of complex interactions between auditory and non-auditory pre- and post-implant factors. To understand why some adults with CIs perform similarly to adults with normal hearing and others experience difficulty discriminating between talkers, further research will be required with larger populations of adults who use unilateral CIs, bilateral CIs and bimodal hearing. Copyright © 2018 Elsevier Inc. All rights reserved.
Discrimination of phoneme length differences in word and sentence contexts
NASA Astrophysics Data System (ADS)
Kawai, Norimune; Carrell, Thomas
2005-09-01
The ability of listeners to discriminate phoneme duration differences within word and sentence contexts was measured. This investigation was part of a series of studies examining the audibility and perceptual importance of speech modifications produced by stuttering intervention techniques. Just noticeable differences (jnd's) of phoneme lengths were measured via the parameter estimation by sequential testing (PEST) task, an adaptive tracking procedure. The target phonemes were digitally manipulated to vary from normal (130 m) to prolonged (210 m) duration in 2-m increments. In the first condition the phonemes were embedded in words. In the second condition the phonemes were embedded within words, which were further embedded in sentences. A four-interval forced-choice (4IAX) task was employed on each trial, and the PEST procedure determined the duration at which each listener correctly detected a difference between the normal duration and the test duration 71% of the time. The results revealed that listeners were able to reliably discriminate approximately 15-m differences in word context and 10-m differences in sentence context. An independent t-test showed a difference in discriminability between word and sentence contexts to be significant. These results indicate that duration differences were better perceived within a sentence context.
Pavlovian conditioning enhances resistance to disruption of dogs performing an odor discrimination.
Hall, Nathaniel J; Smith, David W; Wynne, Clive D L
2015-05-01
Domestic dogs are used to aid in the detection of a variety of substances such as narcotics and explosives. Under real-world detection situations there are many variables that may disrupt the dog's performance. Prior research on behavioral momentum theory suggests that higher rates of reinforcement produce greater resistance to disruption, and that this is heavily influenced by the stimulus-reinforcer relationship. The present study tests the Pavlovian interpretation of resistance to change using dogs engaged in an odor discrimination task. Dogs were trained on two odor discriminations that alternated every six trials akin to a multiple schedule in which the reinforcement probability for a correct response was always 1. Dogs then received several sessions of either odor Pavlovian conditioning to the S+ of one odor discrimination (Pavlovian group) or explicitly unpaired exposure to the S+ of one odor discrimination (Unpaired group). The remaining odor discrimination pair for each dog always remained an unexposed control. Resistance to disruption was assessed under presession feeding, a food-odor disruptor condition, and extinction, with baseline sessions intervening between disruption conditions. Equivalent baseline detection rates were observed across experimental groups and odorant pairs. Under disruption conditions, Pavlovian conditioning led to enhanced resistance to disruption of detection performance compared to the unexposed control odor discrimination. Unpaired odor conditioning did not influence resistance to disruption. These results suggest that changes in Pavlovian contingencies are sufficient to influence resistance to change. © Society for the Experimental Analysis of Behavior.
McDonald, Robert J; Balog, R J; Lee, Justin Q; Stuart, Emily E; Carrels, Brianna B; Hong, Nancy S
2018-10-01
The ventral hippocampus (vHPC) has been implicated in learning and memory functions that seem to differ from its dorsal counterpart. The goal of this series of experiments was to provide further insight into the functional contributions of the vHPC. Our previous work implicated the vHPC in spatial learning, inhibitory learning, and fear conditioning to context. However, the specific role of vHPC on these different forms of learning are not clear. Accordingly, we assessed the effects of neurotoxic lesions of the ventral hippocampus on retention of a conditioned inhibitory association, early versus late spatial navigation in the water task, and discriminative fear conditioning to context under high ambiguity conditions. The results showed that the vHPC was necessary for the expression of conditioned inhibition, early spatial learning, and discriminative fear conditioning to context when the paired and unpaired contexts have high cue overlap. We argue that this pattern of effects, combined with previous work, suggests a key role for vHPC in the utilization of broad contextual representations for inhibition and discriminative memory in high ambiguity conditions. Copyright © 2018 Elsevier B.V. All rights reserved.
Can honey bees discriminate between floral-fragrance isomers?
Aguiar, João Marcelo Robazzi Bignelli Valente; Roselino, Ana Carolina; Sazima, Marlies; Giurfa, Martin
2018-05-24
Many flowering plants present variable complex fragrances, which usually include different isomers of the same molecule. As fragrance is an essential cue for flower recognition by pollinators, we ask if honey bees discriminate between floral-fragrance isomers in an appetitive context. We used the olfactory conditioning of the proboscis extension response (PER), which allows training a restrained bee to an odor paired with sucrose solution. Bees were trained under an absolute (a single odorant rewarded) or a differential conditioning regime (a rewarded vs. a non-rewarded odorant) using four different pairs of isomers. One hour after training, discrimination and generalization between pairs of isomers were tested. Bees trained under absolute conditioning exhibited high generalization between isomers and discriminated only one out of four isomer pairs; after differential conditioning, they learned to differentiate between two out of four pairs of isomers but in all cases generalization responses to the non-rewarding isomer remained high. Adding an aversive taste to the non-rewarded isomer facilitated discrimination of isomers that otherwise seemed non-discriminable, but generalization remained high. Although honey bees discriminated isomers under certain conditions, they achieved the task with difficulty and tended to generalize between them, thus showing that these molecules were perceptually similar to them. We conclude that the presence of isomers within floral fragrances might not necessarily contribute to a dramatic extent to floral odor diversity. © 2018. Published by The Company of Biologists Ltd.
Graeber, R C; Schroeder, D M; Jane, J A; Ebbesson, S O
1978-07-15
An instrumental conditioning task was used to examine the role of the nurse shark telencephalon in black-white (BW) and horizontal-vertical stripes (HV) discrimination performance. In the first experiment, subjects initially received either bilateral anterior telencephalic control lesions or bilateral posterior telencephalic lesions aimed at destroying the central telencephalic nuclei (CN), which are known to receive direct input from the thalamic visual area. Postoperatively, the sharks were trained first on BW and then on HV. Those with anterior lesions learned both tasks as rapidly as unoperated subjects. Those with posterior lesions exhibited visual discrimination deficits related to the amount of damage to the CN and its connecting pathways. Severe damage resulted in an inability to learn either task but caused no impairments in motivation or general learning ability. In the second experiment, the sharks were first trained on BW and HV and then operated. Suction ablations were used to remove various portions of the CN. Sharks with 10% or less damage to the CN retained the preoperatively acquired discriminations almost perfectly. Those with 11-50% damage had to be retrained on both tasks. Almost total removal of the CN produced behavioral indications of blindness along with an inability to perform above the chance level on BW despite excellent retention of both discriminations over a 28-day period before surgery. It appears, however, that such sharks can still detect light. These results implicate the central telencephalic nuclei in the control of visually guided behavior in sharks.
Turchi, Janita; Devan, Bryan; Yin, Pingbo; Sigrist, Emmalynn; Mishkin, Mortimer
2010-01-01
The monkey's ability to learn a set of visual discriminations presented concurrently just once a day on successive days (24-hr ITI task) is based on habit formation, which is known to rely on a visuo-striatal circuit and to be independent of visuo-rhinal circuits that support one-trial memory. Consistent with this dissociation, we recently reported that performance on the 24-hr ITI task is impaired by a striatal-function blocking agent, the dopaminergic antagonist haloperidol, and not by a rhinal-function blocking agent, the muscarinic cholinergic antagonist scopolamine. In the present study, monkeys were trained on a short-ITI form of concurrent visual discrimination learning, one in which a set of stimulus pairs is repeated not only across daily sessions but also several times within each session (in this case, at about 4-min ITIs). Asymptotic discrimination learning rates in the non-drug condition were reduced by half, from ~11 trials/pair on the 24-hr ITI task to ~5 trials/pair on the 4-min ITI task, and this faster learning was impaired by systemic injections of either haloperidol or scopolamine. The results suggest that in the version of concurrent discrimination learning used here, the short ITIs within a session recruit both visuo-rhinal and visuo-striatal circuits, and that the final performance level is driven by both cognitive memory and habit formation working in concert. PMID:20144631
Turchi, Janita; Devan, Bryan; Yin, Pingbo; Sigrist, Emmalynn; Mishkin, Mortimer
2010-07-01
The monkey's ability to learn a set of visual discriminations presented concurrently just once a day on successive days (24-h ITI task) is based on habit formation, which is known to rely on a visuo-striatal circuit and to be independent of visuo-rhinal circuits that support one-trial memory. Consistent with this dissociation, we recently reported that performance on the 24-h ITI task is impaired by a striatal-function blocking agent, the dopaminergic antagonist haloperidol, and not by a rhinal-function blocking agent, the muscarinic cholinergic antagonist scopolamine. In the present study, monkeys were trained on a short-ITI form of concurrent visual discrimination learning, one in which a set of stimulus pairs is repeated not only across daily sessions but also several times within each session (in this case, at about 4-min ITIs). Asymptotic discrimination learning rates in the non-drug condition were reduced by half, from approximately 11 trials/pair on the 24-h ITI task to approximately 5 trials/pair on the 4-min ITI task, and this faster learning was impaired by systemic injections of either haloperidol or scopolamine. The results suggest that in the version of concurrent discrimination learning used here, the short ITIs within a session recruit both visuo-rhinal and visuo-striatal circuits, and that the final performance level is driven by both cognitive memory and habit formation working in concert.
What is a melody? On the relationship between pitch and brightness of timbre
Cousineau, Marion; Carcagno, Samuele; Demany, Laurent; Pressnitzer, Daniel
2014-01-01
Previous studies showed that the perceptual processing of sound sequences is more efficient when the sounds vary in pitch than when they vary in loudness. We show here that sequences of sounds varying in brightness of timbre are processed with the same efficiency as pitch sequences. The sounds used consisted of two simultaneous pure tones one octave apart, and the listeners’ task was to make same/different judgments on pairs of sequences varying in length (one, two, or four sounds). In one condition, brightness of timbre was varied within the sequences by changing the relative level of the two pure tones. In other conditions, pitch was varied by changing fundamental frequency, or loudness was varied by changing the overall level. In all conditions, only two possible sounds could be used in a given sequence, and these two sounds were equally discriminable. When sequence length increased from one to four, discrimination performance decreased substantially for loudness sequences, but to a smaller extent for brightness sequences and pitch sequences. In the latter two conditions, sequence length had a similar effect on performance. These results suggest that the processes dedicated to pitch and brightness analysis, when probed with a sequence-discrimination task, share unexpected similarities. PMID:24478638
ERIC Educational Resources Information Center
BERNHEIM, GLORIA D.
THREE- AND 4-YEAR-OLDS WERE GIVEN VERBAL LEARNING PRETRAINING TO DETERMINE ITS EFFECT UPON THE PERFORMANCE OF REVERSAL AND NONREVERSAL SHIFT DISCRIMINATION TASKS. THE EXPERIMENTAL TASK WAS THE CLASSICAL REVERSAL-NONREVERSAL SHIFT PARADIGM. THE 96 PRE-SCHOOLERS, PRIMARILY FROM THE PENNSYLVANIA STATE UNIVERSITY NURSERY SCHOOL, WERE DIVIDED INTO 4…
Induced theta oscillations as biomarkers for alcoholism.
Andrew, Colin; Fein, George
2010-03-01
Studies have suggested that non-phase-locked event-related oscillations (ERO) in target stimulus processing might provide biomarkers of alcoholism. This study investigates the discriminatory power of non-phase-locked oscillations in a group of long-term abstinent alcoholics (LTAAs) and non-alcoholic controls (NACs). EEGs were recorded from 48 LTAAs and 48 age and gender comparable NACs during rest with eyes open (EO) and during the performance of a three-condition visual target detection task. The data were analyzed to extract resting power, ERP amplitude and non-phase-locked ERO power measures. Data were analyzed using MANCOVA to determine the discriminatory power of induced theta ERO vs. resting theta power vs. P300 ERP measures in differentiating the LTAA and NAC groups. Both groups showed significantly more theta power in the pre-stimulus reference period of the task vs. the resting EO condition. The resting theta power did not discriminate the groups, while the LTAAs showed significantly less pre-stimulus theta power vs. the NACs. The LTAAs showed a significantly larger theta event-related synchronization (ERS) to the target stimulus vs. the NACs, even after accounting for pre-stimulus theta power levels. ERS to non-target stimuli showed smaller induced oscillations vs. target stimuli with no group differences. Alcohol use variables, a family history of alcohol problems, and the duration of alcohol abstinence were not associated with any theta power measures. While reference theta power in the task and induced theta oscillations to target stimuli both discriminate LTAAs and NACs, induced theta oscillations better discriminate the groups. Induced theta power measures are also more powerful and independent group discriminators than the P3b amplitude. Induced frontal theta oscillations promise to provide biomarkers of alcoholism that complement the well-established P300 ERP discriminators.
ERIC Educational Resources Information Center
Garcia, Andres; Benjumea, Santiago
2006-01-01
In Experiment 1, 10 pigeons were exposed to a successive symbolic matching-to-sample procedure in which the sample was generated by the pigeons' own behavior. Each trial began with both response keys illuminated white, one being the "correct" key and the other the "incorrect" key. The pigeons had no way of discriminating which key was correct and…
Priming in implicit memory tasks: prior study causes enhanced discriminability, not only bias.
Zeelenberg, René; Wagenmakers, Eric-Jan M; Raaijmakers, Jeroen G W
2002-03-01
R. Ratcliff and G. McKoon (1995, 1996, 1997; R. Ratcliff, D. Allbritton, & G. McKoon, 1997) have argued that repetition priming effects are solely due to bias. They showed that prior study of the target resulted in a benefit in a later implicit memory task. However, prior study of a stimulus similar to the target resulted in a cost. The present study, using a 2-alternative forced-choice procedure, investigated the effect of prior study in an unbiased condition: Both alternatives were studied prior to their presentation in an implicit memory task. Contrary to a pure bias interpretation of priming, consistent evidence was obtained in 3 implicit memory tasks (word fragment completion, auditory word identification, and picture identification) that performance was better when both alternatives were studied than when neither alternative was studied. These results show that prior study results in enhanced discriminability, not only bias.
Heart rate variability and cognitive processing: The autonomic response to task demands.
Luque-Casado, Antonio; Perales, José C; Cárdenas, David; Sanabria, Daniel
2016-01-01
This study investigated variations in heart rate variability (HRV) as a function of cognitive demands. Participants completed an execution condition including the psychomotor vigilance task, a working memory task and a duration discrimination task. The control condition consisted of oddball versions (participants had to detect the rare event) of the tasks from the execution condition, designed to control for the effect of the task parameters (stimulus duration and stimulus rate) on HRV. The NASA-TLX questionnaire was used as a subjective measure of cognitive workload across tasks and conditions. Three major findings emerged from this study. First, HRV varied as a function of task demands (with the lowest values in the working memory task). Second, and crucially, we found similar HRV values when comparing each of the tasks with its oddball control equivalent, and a significant decrement in HRV as a function of time-on-task. Finally, the NASA-TLX results showed larger cognitive workload in the execution condition than in the oddball control condition, and scores variations as a function of task. Taken together, our results suggest that HRV is highly sensitive to overall demands of sustained attention over and above the influence of other cognitive processes suggested by previous literature. In addition, our study highlights a potential dissociation between objective and subjective measures of mental workload, with important implications in applied settings. Copyright © 2015 Elsevier B.V. All rights reserved.
Teaching receptive naming of Chinese characters to children with autism by incorporating echolalia.
Leung, J P; Wu, K I
1997-01-01
The facilitative effect of incorporating echolalia on teaching receptive naming of Chinese characters to children with autism was assessed. In Experiment 1, echoing the requested character name prior to the receptive naming task facilitated matching a character to its name. In addition, task performance was consistently maintained only when echolalia preceded the receptive manual response. Positive results from generalization tests suggested that learned responses occurred across various novel conditions. In Experiment 2, we examined the relation between task difficulty and speed of acquisition. All 3 participants achieved 100% correct responding in training, but learning less discriminable characters took more trials than learning more discriminable characters. These results provide support for incorporating echolalia as an educational tool within language instruction for some children with autism.
Teaching receptive naming of Chinese characters to children with autism by incorporating echolalia.
Leung, J P; Wu, K I
1997-01-01
The facilitative effect of incorporating echolalia on teaching receptive naming of Chinese characters to children with autism was assessed. In Experiment 1, echoing the requested character name prior to the receptive naming task facilitated matching a character to its name. In addition, task performance was consistently maintained only when echolalia preceded the receptive manual response. Positive results from generalization tests suggested that learned responses occurred across various novel conditions. In Experiment 2, we examined the relation between task difficulty and speed of acquisition. All 3 participants achieved 100% correct responding in training, but learning less discriminable characters took more trials than learning more discriminable characters. These results provide support for incorporating echolalia as an educational tool within language instruction for some children with autism. PMID:9157099
Sound frequency affects speech emotion perception: results from congenital amusia
Lolli, Sydney L.; Lewenstein, Ari D.; Basurto, Julian; Winnik, Sean; Loui, Psyche
2015-01-01
Congenital amusics, or “tone-deaf” individuals, show difficulty in perceiving and producing small pitch differences. While amusia has marked effects on music perception, its impact on speech perception is less clear. Here we test the hypothesis that individual differences in pitch perception affect judgment of emotion in speech, by applying low-pass filters to spoken statements of emotional speech. A norming study was first conducted on Mechanical Turk to ensure that the intended emotions from the Macquarie Battery for Evaluation of Prosody were reliably identifiable by US English speakers. The most reliably identified emotional speech samples were used in Experiment 1, in which subjects performed a psychophysical pitch discrimination task, and an emotion identification task under low-pass and unfiltered speech conditions. Results showed a significant correlation between pitch-discrimination threshold and emotion identification accuracy for low-pass filtered speech, with amusics (defined here as those with a pitch discrimination threshold >16 Hz) performing worse than controls. This relationship with pitch discrimination was not seen in unfiltered speech conditions. Given the dissociation between low-pass filtered and unfiltered speech conditions, we inferred that amusics may be compensating for poorer pitch perception by using speech cues that are filtered out in this manipulation. To assess this potential compensation, Experiment 2 was conducted using high-pass filtered speech samples intended to isolate non-pitch cues. No significant correlation was found between pitch discrimination and emotion identification accuracy for high-pass filtered speech. Results from these experiments suggest an influence of low frequency information in identifying emotional content of speech. PMID:26441718
NASA Astrophysics Data System (ADS)
Davis, Carrie; Kewley-Port, Diane; Coughlin, Maureen
2002-05-01
Vowel discrimination was compared between a group of young, well-trained listeners with mild-to-moderate sensorineural hearing impairment (YHI), and a matched group of normal hearing, noise-masked listeners (YNH). Unexpectedly, discrimination of F1 and F2 in the YHI listeners was equal to or better than that observed in YNH listeners in three conditions of similar audibility [Davis et al., J. Acoust. Soc. Am. 109, 2501 (2001)]. However, in the same time interval, the YHI subjects completed an average of 55% more blocks of testing than the YNH group. New analyses were undertaken to examine the time course of learning during the vowel discrimination task, to determine whether performance was affected by number of trials. Learning curves for a set of vowels in the F1 and F2 regions showed no significant differences between the YHI and YNH listeners. Thus while the YHI subjects completed more trials overall, they achieved a level of discrimination similar to that of their normal-hearing peers within the same number of blocks. Implications of discrimination performance in relation to hearing status and listening strategies will be discussed. [Work supported by NIHDCD-02229.
Ranging in Human Sonar: Effects of Additional Early Reflections and Exploratory Head Movements
Wallmeier, Ludwig; Wiegrebe, Lutz
2014-01-01
Many blind people rely on echoes from self-produced sounds to assess their environment. It has been shown that human subjects can use echolocation for directional localization and orientation in a room, but echo-acoustic distance perception - e.g. to determine one's position in a room - has received little scientific attention, and systematic studies on the influence of additional early reflections and exploratory head movements are lacking. This study investigates echo-acoustic distance discrimination in virtual echo-acoustic space, using the impulse responses of a real corridor. Six blindfolded sighted subjects and a blind echolocation expert had to discriminate between two positions in the virtual corridor, which differed by their distance to the front wall, but not to the lateral walls. To solve this task, participants evaluated echoes that were generated in real time from self-produced vocalizations. Across experimental conditions, we systematically varied the restrictions for head rotations, the subjects' orientation in virtual space and the reference position. Three key results were observed. First, all participants successfully solved the task with discrimination thresholds below 1 m for all reference distances (0.75–4 m). Performance was best for the smallest reference distance of 0.75 m, with thresholds around 20 cm. Second, distance discrimination performance was relatively robust against additional early reflections, compared to other echolocation tasks like directional localization. Third, free head rotations during echolocation can improve distance discrimination performance in complex environmental settings. However, head movements do not necessarily provide a benefit over static echolocation from an optimal single orientation. These results show that accurate distance discrimination through echolocation is possible over a wide range of reference distances and environmental conditions. This is an important functional benefit of human echolocation, which may also play a major role in the calibration of auditory space representations. PMID:25551226
Siciliano, Avery M; Kajiura, Stephen M; Long, John H; Porter, Marianne E
2013-10-01
It is well established that elasmobranchs can detect dipole electric fields. However, it is unclear whether they can discriminate between the anode and cathode. To investigate this subject, we employed a behavioral assay to determine the discriminatory ability of the yellow stingray, Urobatis jamaicensis. We conditioned stingrays with food rewards to bite either the anode (n=5) or the cathode (n=6) of a direct-current dipole located on the floor of an experimental tank. All individuals successfully performed the task after 18 to 22 days. Stingrays were then tested in experimental sessions when they were rewarded only after they identified the correct pole. Stingrays successfully discriminated between the poles at a rate greater than chance, ranging among individuals from a mean of 66% to 93% correct. During experimental sessions, stingrays conditioned to distinguish the anode performed similarly to those conditioned to distinguish the cathode. We hypothesize that the ability to discriminate anode from cathode is physiologically encoded, but its utility in providing spatial information under natural conditions remains to be demonstrated. The ability to discriminate polarity may eliminate ambiguity in induction-based magnetoreception and facilitate navigation with respect to the geomagnetic field.
ERIC Educational Resources Information Center
Lee, Inah; Shin, Ji Yun
2012-01-01
The exact roles of the medial prefrontal cortex (mPFC) in conditional choice behavior are unknown and a visual contextual response selection task was used for examining the issue. Inactivation of the mPFC severely disrupted performance in the task. mPFC inactivations, however, did not disrupt the capability of perceptual discrimination for visual…
Sakamoto, Toshiro; Endo, Shogo
2013-01-01
Previous studies have shown that deep cerebellar nuclei (DCN)-lesioned mice develop conditioned responses (CR) on delay eyeblink conditioning when a salient tone conditioned stimulus (CS) is used, which suggests that the cerebellum potentially plays a role in more complicated cognitive functions. In the present study, we examined the role of DCN in tone frequency discrimination in the delay eyeblink-conditioning paradigm. In the first experiment, DCN-lesioned and sham-operated mice were subjected to standard simple eyeblink conditioning under low-frequency tone CS (LCS: 1 kHz, 80 dB) or high-frequency tone CS (HCS: 10 kHz, 70 dB) conditions. DCN-lesioned mice developed CR in both CS conditions as well as sham-operated mice. In the second experiment, DCN-lesioned and sham-operated mice were subjected to two-tone discrimination tasks, with LCS+ (or HCS+) paired with unconditioned stimulus (US), and HCS− (or LCS−) without US. CR% in sham-operated mice increased in LCS+ (or HCS+) trials, regardless of tone frequency of CS, but not in HCS− (or LCS−) trials. The results indicate that sham-operated mice can discriminate between LCS+ and HCS− (or HCS+ and LCS−). In contrast, DCN-lesioned mice showed high CR% in not only LCS+ (or HCS+) trials but also HCS− (or LCS−) trials. The results indicate that DCN lesions impair the discrimination between tone frequency in eyeblink conditioning. Our results suggest that the cerebellum plays a pivotal role in the discrimination of tone frequency. PMID:23555821
ERIC Educational Resources Information Center
Firestone, Philip; Douglas, Virginia I.
1977-01-01
Impulsive and reflective children performed in a discrimination learning task which included four reinforcement conditions: verbal-reward, verbal-punishment, material-reward, and material-punishment. (SB)
“Global” visual training and extent of transfer in amblyopic macaque monkeys
Kiorpes, Lynne; Mangal, Paul
2015-01-01
Perceptual learning is gaining acceptance as a potential treatment for amblyopia in adults and children beyond the critical period. Many perceptual learning paradigms result in very specific improvement that does not generalize beyond the training stimulus, closely related stimuli, or visual field location. To be of use in amblyopia, a less specific effect is needed. To address this problem, we designed a more general training paradigm intended to effect improvement in visual sensitivity across tasks and domains. We used a “global” visual stimulus, random dot motion direction discrimination with 6 training conditions, and tested for posttraining improvement on a motion detection task and 3 spatial domain tasks (contrast sensitivity, Vernier acuity, Glass pattern detection). Four amblyopic macaques practiced the motion discrimination with their amblyopic eye for at least 20,000 trials. All showed improvement, defined as a change of at least a factor of 2, on the trained task. In addition, all animals showed improvements in sensitivity on at least some of the transfer test conditions, mainly the motion detection task; transfer to the spatial domain was inconsistent but best at fine spatial scales. However, the improvement on the transfer tasks was largely not retained at long-term follow-up. Our generalized training approach is promising for amblyopia treatment, but sustaining improved performance may require additional intervention. PMID:26505868
Effect of musical training on static and dynamic measures of spectral-pattern discrimination.
Sheft, Stanley; Smayda, Kirsten; Shafiro, Valeriy; Maddox, W Todd; Chandrasekaran, Bharath
2013-06-01
Both behavioral and physiological studies have demonstrated enhanced processing of speech in challenging listening environments attributable to musical training. The relationship, however, of this benefit to auditory abilities as assessed by psychoacoustic measures remains unclear. Using tasks previously shown to relate to speech-in-noise perception, the present study evaluated discrimination ability for static and dynamic spectral patterns by 49 listeners grouped as either musicians or nonmusicians. The two static conditions measured the ability to detect a change in the phase of a logarithmic sinusoidal spectral ripple of wideband noise with ripple densities of 1.5 and 3.0 cycles per octave chosen to emphasize either timbre or pitch distinctions, respectively. The dynamic conditions assessed temporal-pattern discrimination of 1-kHz pure tones frequency modulated by different lowpass noise samples with thresholds estimated in terms of either stimulus duration or signal-to-noise ratio. Musicians performed significantly better than nonmusicians on all four tasks. Discriminant analysis showed that group membership was correctly predicted for 88% of the listeners with the structure coefficient of each measure greater than 0.51. Results suggest that enhanced processing of static and dynamic spectral patterns defined by low-rate modulation may contribute to the relationship between musical training and speech-in-noise perception. [Supported by NIH.].
Discriminative evaluative conditioning in the long-term after severe accidental injury.
Oe, Misari; Schumacher, Sonja; Schnyder, Ulrich; Mueller-Pfeiffer, Christoph; Wilhelm, Frank H; Kuelen, Eveline; Martin-Soelch, Chantal
2016-06-30
Impairments in classical fear conditioning and deficits in discriminative learning are observed in posttraumatic stress disorder (PTSD). However, it is unknown whether similar impairments can be found with types of discriminative learning other than classical conditioning, such as evaluative conditioning (EC), in which the valence of a stimulus can be transferred to other stimuli. In this study, we investigated whether EC is also influenced by traumatic experiences independently of presence of PTSD. We tested 14 accident survivors with remitted PTSD, 14 survivors without PTSD, and 16 non-trauma controls. We used behavioral measures, psychophysiological indicators, and subjective ratings for tasks. General effects of learning were observed across groups and conditioning/extinction. Trauma controls had slower reaction times (RTs) to the aversive conditioned stimulus compared to appetitive conditioned and neutral stimuli, as well as slower RTs and increased accuracy during conditioning than during extinction. Remitted PTSD participants showed opposite results, demonstrating decreased accuracy and slower RTs during conditioning as compared to during extinction. No discriminative effect was found in the non-trauma controls and the remitted PTSD participants. These results suggest that a traumatic experience influences EC, and that this influence differs between individuals who have and have not developed PTSD after traumatic exposure. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Viewing the workload of vigilance through the lenses of the NASA-TLX and the MRQ.
Finomore, Victor S; Shaw, Tyler H; Warm, Joel S; Matthews, Gerald; Boles, David B
2013-12-01
The aim of this study was to compare the effectiveness of a new index of perceived mental workload, the Multiple Resource Questionnaire (MRQ), with the standard measure of workload used in the study of vigilance, the NASA Task Load Index (NASA-TLX). The NASA-TLX has been used extensively to demonstrate that vigilance tasks impose a high level of workload on observers. However, this instrument does not specify the information-processing resources needed for task performance. The MRQ offers a tool to measure the workload associated with vigilance assignments in which such resources can be identified. Two experiments were performed in which factors known to influence task demand were varied. Included were the detection of stimulus presence or absence, detecting critical signals by means of successive-type (absolute judgment) and simultaneous-type (comparative judgment) discriminations, and operating under multitask vs. single-task conditions. The MRQ paralleled the NASA-TLX in showing that vigilance tasks generally induce high levels of workload and that workload scores are greater in detecting stimulus absence than presence and in making successive as compared to simultaneous-type discriminations. Additionally, the MRQ was more effective than the NASA-TLX in reflecting higher workload in the context of multitask than in single-task conditions. The resource profiles obtained with MRQ fit well with the nature of the vigilance tasks employed, testifying to the scale's content validity. The MRQ may be a meaningful addition to the NASA-TLX for measuring the workload of vigilance assignments. By uncovering knowledge representation associated with different tasks, the MRQ may aid in designing operational vigilance displays.
Daikhin, Luba; Ahissar, Merav
2015-07-01
Introducing simple stimulus regularities facilitates learning of both simple and complex tasks. This facilitation may reflect an implicit change in the strategies used to solve the task when successful predictions regarding incoming stimuli can be formed. We studied the modifications in brain activity associated with fast perceptual learning based on regularity detection. We administered a two-tone frequency discrimination task and measured brain activation (fMRI) under two conditions: with and without a repeated reference tone. Although participants could not explicitly tell the difference between these two conditions, the introduced regularity affected both performance and the pattern of brain activation. The "No-Reference" condition induced a larger activation in frontoparietal areas known to be part of the working memory network. However, only the condition with a reference showed fast learning, which was accompanied by a reduction of activity in two regions: the left intraparietal area, involved in stimulus retention, and the posterior superior-temporal area, involved in representing auditory regularities. We propose that this joint reduction reflects a reduction in the need for online storage of the compared tones. We further suggest that this change reflects an implicit strategic shift "backwards" from reliance mainly on working memory networks in the "No-Reference" condition to increased reliance on detected regularities stored in high-level auditory networks.
Wixted, John T; Mickes, Laura
2018-01-01
Receiver operating characteristic (ROC) analysis was introduced to the field of eyewitness identification 5 years ago. Since that time, it has been both influential and controversial, and the debate has raised an issue about measuring discriminability that is rarely considered. The issue concerns the distinction between empirical discriminability (measured by area under the ROC curve) vs. underlying/theoretical discriminability (measured by d' or variants of it). Under most circumstances, the two measures will agree about a difference between two conditions in terms of discriminability. However, it is possible for them to disagree, and that fact can lead to confusion about which condition actually yields higher discriminability. For example, if the two conditions have implications for real-world practice (e.g., a comparison of competing lineup formats), should a policymaker rely on the area-under-the-curve measure or the theory-based measure? Here, we illustrate the fact that a given empirical ROC yields as many underlying discriminability measures as there are theories that one is willing to take seriously. No matter which theory is correct, for practical purposes, the singular area-under-the-curve measure best identifies the diagnostically superior procedure. For that reason, area under the ROC curve informs policy in a way that underlying theoretical discriminability never can. At the same time, theoretical measures of discriminability are equally important, but for a different reason. Without an adequate theoretical understanding of the relevant task, the field will be in no position to enhance empirical discriminability.
Paintings discrimination by mice: Different strategies for different paintings.
Watanabe, Shigeru
2017-09-01
C57BL/6 mice were trained on simultaneous discrimination of paintings with multiple exemplars, using an operant chamber with a touch screen. The number of exemplars was successively increased up to six. Those mice trained in Kandinsky/Mondrian discrimination showed improved learning and generalization, whereas those trained in Picasso/Renoir discrimination showed no improvements in learning or generalization. These results suggest category-like discrimination in the Kandinsky/Mondrian task, but item-to-item discrimination in the Picasso/Renoir task. Mice maintained their discriminative behavior in a pixelization test with various paintings; however, mice in the Picasso/Renoir task showed poor performance in a test that employed scrambling processing. These results do not indicate that discrimination strategy for any Kandinsky/Mondrian combinations differed from that for any Picasso/Monet combinations but suggest the mice employed different strategies of discrimination tasks depending upon stimuli. Copyright © 2017 Elsevier B.V. All rights reserved.
Ebersbach, Mirjam; Nawroth, Christian
2016-01-01
Tracking objects that are hidden and then moved is a crucial ability related to object permanence, which develops across several stages in early childhood. In spatial rotation tasks, children observe a target object that is hidden in one of two or more containers before the containers are rotated around a fixed axis. Usually, 30-month-olds fail to find the hidden object after it was rotated by 180°. We examined whether visual discriminability of the containers improves 30-month-olds’ success in this task and whether children perform better after 90° than after 180° rotations. Two potential hiding containers with same or different colors were placed on a board that was rotated by 90° or 180° in a within-subjects design. Children (N = 29) performed above chance level in all four conditions. Their overall success in finding the object did not improve by differently colored containers. However, different colors prevented children from showing an inhibition bias in 90° rotations, that is, choosing the empty container more often when it was located close to them than when it was farther away: This bias emerged in the same colors condition but not in the different colors condition. Results are discussed in view of particular challenges that might facilitate or deteriorate spatial rotation tasks for young children. PMID:27812346
Ebersbach, Mirjam; Nawroth, Christian
2016-01-01
Tracking objects that are hidden and then moved is a crucial ability related to object permanence, which develops across several stages in early childhood. In spatial rotation tasks, children observe a target object that is hidden in one of two or more containers before the containers are rotated around a fixed axis. Usually, 30-month-olds fail to find the hidden object after it was rotated by 180°. We examined whether visual discriminability of the containers improves 30-month-olds' success in this task and whether children perform better after 90° than after 180° rotations. Two potential hiding containers with same or different colors were placed on a board that was rotated by 90° or 180° in a within-subjects design. Children ( N = 29) performed above chance level in all four conditions. Their overall success in finding the object did not improve by differently colored containers. However, different colors prevented children from showing an inhibition bias in 90° rotations, that is, choosing the empty container more often when it was located close to them than when it was farther away: This bias emerged in the same colors condition but not in the different colors condition. Results are discussed in view of particular challenges that might facilitate or deteriorate spatial rotation tasks for young children.
Influencing Children's Pregambling Game Playing via Conditional Discrimination Training
ERIC Educational Resources Information Center
Johnson, Taylor E.; Dixon, Mark R.
2009-01-01
Past research has demonstrated a transformation of stimulus functions under similar conditions using gambling tasks and adults (e.g., Zlomke & Dixon, 2006), and the present study attempted to extend this research. Experimenters exposed 7 children (ages 7 to 10 years) to a simulated board game with concurrently available dice differing only by…
Oyama, Fuyuki; Ishibashi, Keita; Iwanaga, Koichi
2017-12-04
Time perception associated with durations from 1 s to several minutes involves activity in the right posterior parietal cortex (rPPC). It is unclear whether altering the activity of the rPPC affects an individual's timing performance. Here, we investigated the human timing performance under the application of transcranial direct-current stimulation (tDCS) that altered the neural activities of the rPPC. We measured the participants' duration-discrimination threshold by administering a behavioral task during the tDCS application. The tDCS conditions consisted of anodal, cathodal, and sham conditions. The electrodes were placed over the P4 position (10-20 system) and on the left supraorbital forehead. On each task trial, the participant observed two visual stimuli and indicated which was longer. The amount of difference between the two stimulus durations was varied repeatedly throughout the trials according to the participant's responses. The correct answer rate of the trials was calculated for each amount of difference, and the minimum amount with the correct answer rate exceeding 75% was selected as the threshold. The data were analyzed by a linear mixed-effects models procedure. Nineteen volunteers participated in the experiment. We excluded three participants from the analysis: two who reported extreme sleepiness while performing the task and one who could recognize the sham condition correctly with confidence. Our analysis of the 16 participants' data showed that the average value of the thresholds observed under the cathodal condition was lower than that of the sham condition. This suggests that inhibition of the rPPC leads to an improvement in temporal discrimination performance, resulting in improved timing performance. In the present study, we found a new effect that cathodal tDCS over the rPPC enhances temporal discrimination performance. In terms of the existence of anodal/cathodal tDCS effects on human timing performance, the results were consistent with a previous study that investigated temporal reproduction performance during tDCS application. However, the results of the current study further indicated that cathodal tDCS over the rPPC increases accuracy of observed time duration rather than inducing an overestimation as a previous study reported.
Strategic retrieval in a reality monitoring task.
Rosburg, Timm; Mecklinger, Axel; Johansson, Mikael
2011-08-01
Strategic recollection refers to control processes that allow the retrieval of information that is relevant for a specific situation. These processes can be studied in memory exclusion tasks, which require the retrieval of particular kinds of episodic information. In the current study, we investigated strategic recollection in reality monitoring by event-related potentials (ERPs). Participants studied object words, followed by a picture of the denoted object (perceive condition) or followed by the instruction to imagine such a picture (imagine condition). At test, subjects had to identify words of one study condition and to reject words of the second study condition together with newly presented items. Data analysis showed that object names were better identified when items of the perceive condition were targeted. In this test condition, a left parietal old/new effect (the ERP correlate of recollection) was observed only in response to targets. In contrast, both targets and nontargets elicited this old/new effect when items of the imagine condition were targeted. The magnitude of the left parietal old/new effect to nontargets in this condition (but no other left parietal old/new effect) correlated positively with the discrimination indices of both test conditions. In addition, ERPs to targets and nontargets differed at right frontal electrode sites at longer latencies (1500-1800 ms), with more positive ERPs for targets. Findings indicate that subjects retrieved nontarget information in the more difficult task condition, while they relied on target information alone in the less difficult task. This kind of strategic retrieval was not mirrored in other old/new effects. The correlation between the left parietal old/new effect for nontargets in the imagined item target condition and the discrimination indices of both conditions may indicate that the ease of nontarget retrieval, rather than the difficulty of target retrieval, increases the likelihood that nontarget information is actually retrieved. Copyright © 2011 Elsevier Ltd. All rights reserved.
Crowding with detection and coarse discrimination of simple visual features.
Põder, Endel
2008-04-24
Some recent studies have suggested that there are actually no crowding effects with detection and coarse discrimination of simple visual features. The present study tests the generality of this idea. A target Gabor patch, surrounded by either 2 or 6 flanker Gabors, was presented briefly at 4 deg eccentricity of the visual field. Each Gabor patch was oriented either vertically or horizontally (selected randomly). Observers' task was either to detect the presence of the target (presented with probability 0.5) or to identify the orientation of the target. The target-flanker distance was varied. Results were similar for the two tasks but different for 2 and 6 flankers. The idea that feature detection and coarse discrimination are immune to crowding may be valid for the two-flanker condition only. With six flankers, a normal crowding effect was observed. It is suggested that the complexity of the full pattern (target plus flankers) could explain the difference.
Janczyk, Markus; Berryhill, Marian E
2014-04-01
The retro-cue effect (RCE) describes superior working memory performance for validly cued stimulus locations long after encoding has ended. Importantly, this happens with delays beyond the range of iconic memory. In general, the RCE is a stable phenomenon that emerges under varied stimulus configurations and timing parameters. We investigated its susceptibility to dual-task interference to determine the attentional requirements at the time point of cue onset and encoding. In Experiment 1, we compared single- with dual-task conditions. In Experiment 2, we borrowed from the psychological refractory period paradigm and compared conditions with high and low (dual-) task overlap. The secondary task was always binary tone discrimination requiring a manual response. Across both experiments, an RCE was found, but it was diminished in magnitude in the critical dual-task conditions. A previous study did not find evidence that sustained attention is required in the interval between cue offset and test. Our results apparently contradict these findings and point to a critical time period around cue onset and briefly thereafter during which attention is required.
Berryhill, Marian E.
2014-01-01
The retro-cue effect (RCE) describes superior working memory performance for validly cued stimulus locations long after encoding has ended. Importantly, this happens with delays beyond the range of iconic memory. In general, the RCE is a stable phenomenon that emerges under varied stimulus configurations and timing parameters. We investigated its susceptibility to dual-task interference to determine the attentional requirements at the time point of cue onset and encoding. In Experiment 1, we compared single- with dual-task conditions. In Experiment 2, we borrowed from the psychological refractory period paradigm and compared conditions with high and low (dual-) task overlap. The secondary task was always binary tone discrimination requiring amanual response. Across both experiments, an RCE was found, but it was diminished in magnitude in the critical dual-task conditions. A previous study did not find evidence that sustained attention is required in the interval between cue offset and test. Our results apparently contradict these findings and point to a critical time period around cue onset and briefly thereafter during which attention is required. PMID:24452383
Kita, T; Nishijo, H; Eifuku, S; Terasawa, K; Ono, T
1995-03-01
To elucidate spatial and cognitive function of the septal nuclei, neural activity was recorded from alert monkeys during performance of a place-dependent go/no-go (PGN) task. Response/reinforcement contingencies of given objects were conditional upon the location of a motorized, movable device (cab) containing a monkey in one of four places. The task was initiated by presentation of the outside view (place phase) followed by presentation of an object (object phase) selected from a total of four. A lever press was reinforced only if the correct object was seen in its corresponding place, and the same object was never reinforced in any of the other three places. Of 430 septal neurons recorded, the responses during the place phase in the four places were significantly different in 58 neurons. Responses of eight of these neurons were also place-differential during the object phase as well as the place phase. Furthermore, when the outside view was not presented before the object phase, differential responses in the object phase disappeared. Responses of 91 neurons in the object phase were differential in terms of go/no-go responses and reward availability. Of these 91 neurons, 72 were further tested on a place-independent asymmetrical go/no-go (AGN) task, which required no conditional discrimination. Forty-three neurons responded differentially only in the PGN task. It is thus concluded that this PGN-specific activity reflected conditional place-object relations. Of the remaining 29 neurons that responded differentially in both tasks, 21 were further tested by a place-independent symmetrical go/no-go task (no-go responses were also rewarded). Responses of 19 of these 21 neurons were related to the reward/nonreward contingency but not to the response contingency. The results suggest that septal nuclei are involved in integrating spatial information, conditional place-object relations, and reward/nonreward contingency.
NASA Technical Reports Server (NTRS)
Hemingway, J. C.
1984-01-01
The objective was to determine whether the Sternberg item-recognition task, employed as a secondary task measure of spare mental capacity for flight handling qualities (FHQ) simulation research, could help to differentiate between different flight-control conditions. FHQ evaluations were conducted on the Vertical Motion Simulator at Ames Research Center to investigate different primary flight-control configurations, and selected stability and control augmentation levels for helicopters engaged in low-level flight regimes. The Sternberg task was superimposed upon the primary flight-control task in a balanced experimental design. The results of parametric statistical analysis of Sternberg secondary task data failed to support the continued use of this task as a measure of pilot workload. In addition to the secondary task, subjects provided Cooper-Harper pilot ratings (CHPR) and responded to workload questionnaire. The CHPR data also failed to provide reliable statistical discrimination between FHQ treatment conditions; some insight into the behavior of the secondary task was gained from the workload questionnaire data.
The Sternberg Task as a Workload Metric in Flight Handling Qualities Research
NASA Technical Reports Server (NTRS)
Hemingway, J. C.
1984-01-01
The objective of this research was to determine whether the Sternberg item-recognition task, employed as a secondary task measure of spare mental capacity for flight handling qualities (FHQ) simulation research, could help to differentiate between different flight-control conditions. FHQ evaluations were conducted on the Vertical Motion Simulator at Ames Research Center to investigate different primary flight-control configurations, and selected stability and control augmentation levels for helicopers engaged in low-level flight regimes. The Sternberg task was superimposed upon the primary flight-control task in a balanced experimental design. The results of parametric statistical analysis of Sternberg secondary task data failed to support the continued use of this task as a measure of pilot workload. In addition to the secondary task, subjects provided Cooper-Harper pilot ratings (CHPR) and responded to a workload questionnaire. The CHPR data also failed to provide reliable statistical discrimination between FHQ treatment conditions; some insight into the behavior of the secondary task was gained from the workload questionnaire data.
Struthers, Amanda M.; Wilkinson, Jamie L.; Dwoskin, Linda P.; Crooks, Peter A.; Bevins, Rick A.
2009-01-01
Current smokers express the desire to quit. However, the majority find it difficult to remain abstinent. As such, research efforts continually seek to develop more effective treatment. One such area of research involves the interoceptive stimulus effects of nicotine as either a discriminative stimulus in an operant drug discrimination task, or more recently as a conditional stimulus (CS) in a discriminated goal-tracking task. The present work investigated the potential role nicotinic acetylcholine receptors in the CS effects of nicotine (0.4 mg/kg) using antagonists with differential selectivity for β2*, α7*, α6β2*, and α3β4* receptors. Methyllycaconitine (MLA) had no effect on nicotine-evoked conditioned responding. Mecamylamine and dihydro-β-erythroidine (DHβE) dose dependently blocked responding evoked by the nicotine CS. In a time-course assessment of mecamylamine and DHβE, each blocked conditioned responding when given 5 min before testing and still blocked conditioned responding when administered 200 min before testing. Two novel bis-picolinium analogs (N, N’-(3, 3′-(dodecan-1,12-diyl)-bis-picolinium dibromide [bPiDDB], and N, N’-(decan-1,10-diyl)-bis-picolinium diiodide [bPiDI]) did not block nicotine-evoked conditioned responding. Finally, pretreatment with low dose combinations of mecamylamine, dextromethorphan, and/or bupropion were used to target α3β4* receptors. No combination blocked conditioned responding evoked by the training dose of nicotine. However, a combination of mecamylamine and dextromethorphan partially blocked nicotine-evoked conditioned responding to a lower dose of nicotine (0.1 mg/kg). These results indicate that β2* and potentially α3β4* nicotinic acetylcholine receptors play a role in the CS effects of nicotine and are potential targets for the development of nicotine cessation aids. PMID:19778551
Lambert, Anthony J; Wootton, Adrienne
2017-08-01
Different patterns of high density EEG activity were elicited by the same peripheral stimuli, in the context of Landmark Cueing and Perceptual Discrimination tasks. The C1 component of the visual event-related potential (ERP) at parietal - occipital electrode sites was larger in the Landmark Cueing task, and source localisation suggested greater activation in the superior parietal lobule (SPL) in this task, compared to the Perceptual Discrimination task, indicating stronger early recruitment of the dorsal visual stream. In the Perceptual Discrimination task, source localisation suggested widespread activation of the inferior temporal gyrus (ITG) and fusiform gyrus (FFG), structures associated with the ventral visual stream, during the early phase of the P1 ERP component. Moreover, during a later epoch (171-270ms after stimulus onset) increased temporal-occipital negativity, and stronger recruitment of ITG and FFG were observed in the Perceptual Discrimination task. These findings illuminate the contrasting functions of the dorsal and ventral visual streams, to support rapid shifts of attention in response to contextual landmarks, and conscious discrimination, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Poor phonemic discrimination does not underlie poor verbal short-term memory in Down syndrome.
Purser, Harry R M; Jarrold, Christopher
2013-05-01
Individuals with Down syndrome tend to have a marked impairment of verbal short-term memory. The chief aim of this study was to investigate whether phonemic discrimination contributes to this deficit. The secondary aim was to investigate whether phonological representations are degraded in verbal short-term memory in people with Down syndrome relative to control participants. To answer these questions, two tasks were used: a discrimination task, in which memory load was as low as possible, and a short-term recognition task that used the same stimulus items. Individuals with Down syndrome were found to perform significantly better than a nonverbal-matched typically developing group on the discrimination task, but they performed significantly more poorly than that group on the recognition task. The Down syndrome group was outperformed by an additional vocabulary-matched control group on the discrimination task but was outperformed to a markedly greater extent on the recognition task. Taken together, the results strongly indicate that phonemic discrimination ability is not central to the verbal short-term memory deficit associated with Down syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.
NMDA receptor antagonist ketamine impairs feature integration in visual perception.
Meuwese, Julia D I; van Loon, Anouk M; Scholte, H Steven; Lirk, Philipp B; Vulink, Nienke C C; Hollmann, Markus W; Lamme, Victor A F
2013-01-01
Recurrent interactions between neurons in the visual cortex are crucial for the integration of image elements into coherent objects, such as in figure-ground segregation of textured images. Blocking N-methyl-D-aspartate (NMDA) receptors in monkeys can abolish neural signals related to figure-ground segregation and feature integration. However, it is unknown whether this also affects perceptual integration itself. Therefore, we tested whether ketamine, a non-competitive NMDA receptor antagonist, reduces feature integration in humans. We administered a subanesthetic dose of ketamine to healthy subjects who performed a texture discrimination task in a placebo-controlled double blind within-subject design. We found that ketamine significantly impaired performance on the texture discrimination task compared to the placebo condition, while performance on a control fixation task was much less impaired. This effect is not merely due to task difficulty or a difference in sedation levels. We are the first to show a behavioral effect on feature integration by manipulating the NMDA receptor in humans.
Garren, Madeleine V; Sexauer, Stephen B; Page, Terry L
2013-01-01
There have been several studies on the role of circadian clocks in the regulation of associative learning and memory processes in both vertebrate and invertebrate species. The results have been quite variable and at present it is unclear to what extent the variability observed reflects species differences or differences in methodology. Previous results have shown that following differential classical conditioning in the cockroach, Rhyparobia maderae, in an olfactory discrimination task, formation of the short-term and long-term memory is under strict circadian control. In contrast, there appeared to be no circadian regulation of the ability to recall established memories. In the present study, we show that following operant conditioning of the same species in a very similar olfactory discrimination task, there is no impact of the circadian system on either short-term or long-term memory formation. On the other hand, ability to recall established memories is strongly tied to the circadian phase of training. On the basis of these data and those previously reported for phylogenetically diverse species, it is suggested that there may be fundamental differences in the way the circadian system regulates learning and memory in classical and operant conditioning.
Garren, Madeleine V.; Sexauer, Stephen B.; Page, Terry L.
2013-01-01
There have been several studies on the role of circadian clocks in the regulation of associative learning and memory processes in both vertebrate and invertebrate species. The results have been quite variable and at present it is unclear to what extent the variability observed reflects species differences or differences in methodology. Previous results have shown that following differential classical conditioning in the cockroach, Rhyparobia maderae, in an olfactory discrimination task, formation of the short-term and long-term memory is under strict circadian control. In contrast, there appeared to be no circadian regulation of the ability to recall established memories. In the present study, we show that following operant conditioning of the same species in a very similar olfactory discrimination task, there is no impact of the circadian system on either short-term or long-term memory formation. On the other hand, ability to recall established memories is strongly tied to the circadian phase of training. On the basis of these data and those previously reported for phylogenetically diverse species, it is suggested that there may be fundamental differences in the way the circadian system regulates learning and memory in classical and operant conditioning. PMID:23533587
Task-irrelevant emotion facilitates face discrimination learning.
Lorenzino, Martina; Caudek, Corrado
2015-03-01
We understand poorly how the ability to discriminate faces from one another is shaped by visual experience. The purpose of the present study is to determine whether face discrimination learning can be facilitated by facial emotions. To answer this question, we used a task-irrelevant perceptual learning paradigm because it closely mimics the learning processes that, in daily life, occur without a conscious intention to learn and without an attentional focus on specific facial features. We measured face discrimination thresholds before and after training. During the training phase (4 days), participants performed a contrast discrimination task on face images. They were not informed that we introduced (task-irrelevant) subtle variations in the face images from trial to trial. For the Identity group, the task-irrelevant features were variations along a morphing continuum of facial identity. For the Emotion group, the task-irrelevant features were variations along an emotional expression morphing continuum. The Control group did not undergo contrast discrimination learning and only performed the pre-training and post-training tests, with the same temporal gap between them as the other two groups. Results indicate that face discrimination improved, but only for the Emotion group. Participants in the Emotion group, moreover, showed face discrimination improvements also for stimulus variations along the facial identity dimension, even if these (task-irrelevant) stimulus features had not been presented during training. The present results highlight the importance of emotions for face discrimination learning. Copyright © 2015 Elsevier Ltd. All rights reserved.
Quantum-state comparison and discrimination
NASA Astrophysics Data System (ADS)
Hayashi, A.; Hashimoto, T.; Horibe, M.
2018-05-01
We investigate the performance of discrimination strategy in the comparison task of known quantum states. In the discrimination strategy, one infers whether or not two quantum systems are in the same state on the basis of the outcomes of separate discrimination measurements on each system. In some cases with more than two possible states, the optimal strategy in minimum-error comparison is that one should infer the two systems are in different states without any measurement, implying that the discrimination strategy performs worse than the trivial "no-measurement" strategy. We present a sufficient condition for this phenomenon to happen. For two pure states with equal prior probabilities, we determine the optimal comparison success probability with an error margin, which interpolates the minimum-error and unambiguous comparison. We find that the discrimination strategy is not optimal except for the minimum-error case.
Optogenetic conditioning of paradigm and pattern discrimination in the rat somatosensory system
Abe, Kenta
2017-01-01
The rodent whisker-barrel cortical system is a model for studying somatosensory discrimination at high spatiotemporal precision. Here, we applied optogenetics to produce somatosensory inputs in the whisker area using one of transgenic rat lines, W-TChR2V4, which expresses channelrhodopsin-2 (ChR2) in the mechanoreceptive nerve endings around whisker follicles. An awake W-TChR2V4 rat was head-fixed and irradiated by blue LED light on the whisker area with a paradigm conditioned with a reward. The Go task was designed so the rat is allowed to receive a reward, when it licked the nozzle within 5 s after photostimulation. The No-go task was designed so as the rat has to withhold licking for at least 5 s to obtain a reward after photostimulation. The Go-task conditioning was established within 1 hr of training with a reduction in the reaction time and increase of the success rate. To investigate the relationship between the spatiotemporal pattern of sensory inputs and the behavioral output, we designed a multi-optical fiber system that irradiates the whisker area at 9 spots in a 3×3 matrix. Although the Go-task conditioning was established using synchronous irradiation of 9 spots, the success rate was decreased with an increase of the reaction time for the asynchronous irradiation. After conditioning to the Go task, the rat responded to the blue LED flash irradiated on the barrel cortex, where many neurons also express ChR2, or photostimulation of the contralateral whisker area with a similar reaction time and success rate. Synchronous activation of the peripheral mechanoreceptive nerves is suggested to drive a neural circuit in the somatosensory cortex that efficiently couples with the decision. Our optogenetic system would enable the precise evaluation of the psychophysical values, such as the reaction time and success rate, to gain some insight into the brain mechanisms underlying conditioned behaviors. PMID:29267341
Detection and rate discrimination of amplitude modulation in electrical hearing.
Chatterjee, Monita; Oberzut, Cherish
2011-09-01
Three experiments were designed to examine temporal envelope processing by cochlear implant (CI) listeners. In experiment 1, the hypothesis that listeners' modulation sensitivity would in part determine their ability to discriminate between temporal modulation rates was examined. Temporal modulation transfer functions (TMTFs) obtained in an amplitude modulation detection (AMD) task were compared to threshold functions obtained in an amplitude modulation rate discrimination (AMRD) task. Statistically significant nonlinear correlations were observed between the two measures. In experiment 2, results of loudness-balancing showed small increases in the loudness of modulated over unmodulated stimuli beyond a modulation depth of 16%. Results of experiment 3 indicated small but statistically significant effects of level-roving on the overall gain of the TMTF, but no impact of level-roving on the average shape of the TMTF across subjects. This suggested that level-roving simply increased the task difficulty for most listeners, but did not indicate increased use of intensity cues under more challenging conditions. Data obtained with one subject, however, suggested that the most sensitive listeners may derive some benefit from intensity cues in these tasks. Overall, results indicated that intensity cues did not play an important role in temporal envelope processing by the average CI listener. © 2011 Acoustical Society of America
Effects of spatial cues on color-change detection in humans
Herman, James P.; Bogadhi, Amarender R.; Krauzlis, Richard J.
2015-01-01
Studies of covert spatial attention have largely used motion, orientation, and contrast stimuli as these features are fundamental components of vision. The feature dimension of color is also fundamental to visual perception, particularly for catarrhine primates, and yet very little is known about the effects of spatial attention on color perception. Here we present results using novel dynamic color stimuli in both discrimination and color-change detection tasks. We find that our stimuli yield comparable discrimination thresholds to those obtained with static stimuli. Further, we find that an informative spatial cue improves performance and speeds response time in a color-change detection task compared with an uncued condition, similar to what has been demonstrated for motion, orientation, and contrast stimuli. Our results demonstrate the use of dynamic color stimuli for an established psychophysical task and show that color stimuli are well suited to the study of spatial attention. PMID:26047359
The Influence of State Anxiety on Fear Discrimination and Extinction in Females
Dibbets, Pauline; Evers, Elisabeth A. T.
2017-01-01
Formal theories have linked pathological anxiety to a failure in fear response inhibition. Previously, we showed that aberrant response inhibition is not restricted to anxiety patients, but can also be observed in anxiety-prone adults. However, less is known about the influence of currently experienced levels of anxiety on inhibitory learning. The topic is highly important as state anxiety has a debilitating effect on cognition, emotion, and physiology and is linked to several anxiety disorders. In the present study, healthy female volunteers performed a fear conditioning task, after being informed that they will have to perform the Trier Social Stress Test task (n = 25; experimental group) or a control task (n = 25; control group) upon completion of the conditioning task. The results showed that higher levels of state anxiety corresponded with a reduced discrimination between a stimulus (CS+) typically followed by an aversive event and a stimulus (CS-) that is never followed by an aversive event both during the acquisition and the extinction phase. No effect of state anxiety on the skin conductance response associated with CS+ and CS- was found. Additionally, higher levels of state anxiety coincided with more negative valence ratings of the CSs. The results suggest that increased stress-induced state anxiety might lead to stimulus generalization during fear acquisition, thereby impairing associative learning. PMID:28360869
Fritz, Jonathan B; Elhilali, Mounya; David, Stephen V; Shamma, Shihab A
2007-07-01
Acoustic filter properties of A1 neurons can dynamically adapt to stimulus statistics, classical conditioning, instrumental learning and the changing auditory attentional focus. We have recently developed an experimental paradigm that allows us to view cortical receptive field plasticity on-line as the animal meets different behavioral challenges by attending to salient acoustic cues and changing its cortical filters to enhance performance. We propose that attention is the key trigger that initiates a cascade of events leading to the dynamic receptive field changes that we observe. In our paradigm, ferrets were initially trained, using conditioned avoidance training techniques, to discriminate between background noise stimuli (temporally orthogonal ripple combinations) and foreground tonal target stimuli. They learned to generalize the task for a wide variety of distinct background and foreground target stimuli. We recorded cortical activity in the awake behaving animal and computed on-line spectrotemporal receptive fields (STRFs) of single neurons in A1. We observed clear, predictable task-related changes in STRF shape while the animal performed spectral tasks (including single tone and multi-tone detection, and two-tone discrimination) with different tonal targets. A different set of task-related changes occurred when the animal performed temporal tasks (including gap detection and click-rate discrimination). Distinctive cortical STRF changes may constitute a "task-specific signature". These spectral and temporal changes in cortical filters occur quite rapidly, within 2min of task onset, and fade just as quickly after task completion, or in some cases, persisted for hours. The same cell could multiplex by differentially changing its receptive field in different task conditions. On-line dynamic task-related changes, as well as persistent plastic changes, were observed at a single-unit, multi-unit and population level. Auditory attention is likely to be pivotal in mediating these task-related changes since the magnitude of STRF changes correlated with behavioral performance on tasks with novel targets. Overall, these results suggest the presence of an attention-triggered plasticity algorithm in A1 that can swiftly change STRF shape by transforming receptive fields to enhance figure/ground separation, by using a contrast matched filter to filter out the background, while simultaneously enhancing the salient acoustic target in the foreground. These results favor the view of a nimble, dynamic, attentive and adaptive brain that can quickly reshape its sensory filter properties and sensori-motor links on a moment-to-moment basis, depending upon the current challenges the animal faces. In this review, we summarize our results in the context of a broader survey of the field of auditory attention, and then consider neuronal networks that could give rise to this phenomenon of attention-driven receptive field plasticity in A1.
Ward, Jessica L.; Buerkle, Nathan P.; Bee, Mark A.
2013-01-01
Frogs form large choruses during the mating season in which males produce loud advertisement calls to attract females and repel rival males. High background noise levels in these social aggregations can impair vocal perception. In humans, spatial release from masking contributes to our ability to understand speech in noisy social groups. Here, we tested the hypothesis that spatial separation between target signals and ‘chorus-shaped noise’ improves the ability of female gray treefrogs (Hyla chrysoscelis) to perform a behavioral discrimination task based on perceiving differences in the pulsatile structure of advertisement calls. We used two-stimulus choice tests to measure phonotaxis (approach toward sound) in response to calls differing in pulse rate along a biologically relevant continuum between conspecific (50 pulses s−1) and heterospecific (20 pulses s−1) calls. Signals were presented in quiet, in colocated noise, and in spatially separated noise. In quiet conditions, females exhibited robust preferences for calls with relatively faster pulse rates more typical of conspecific calls. Behavioral discrimination between calls differing in pulse rate was impaired in the presence of colocated noise but similar between quiet and spatially separated noise conditions. Our results indicate that spatial release from energetic masking facilitates a biologically important temporal discrimination task in frogs. We discuss these results in light of previous work on spatial release from masking in frogs and other animals. PMID:24055623
Task-related modulation of visual neglect in cancellation tasks
Sarri, Margarita; Greenwood, Richard; Kalra, Lalit; Driver, Jon
2008-01-01
Unilateral neglect involves deficits of spatial exploration and awareness that do not always affect a fixed portion of extrapersonal space, but may vary with current stimulation and possibly with task demands. Here, we assessed any ‘top-down’, task-related influences on visual neglect, with novel experimental variants of the cancellation test. Many different versions of the cancellation test are used clinically, and can differ in the extent of neglect revealed, though the exact factors determining this are not fully understood. Few cancellation studies have isolated the influence of top-down factors, as typically the stimuli are changed also when comparing different tests. Within each of three cancellation studies here, we manipulated task factors, while keeping visual displays identical across conditions to equate purely bottom-up factors. Our results show that top-down task-demands can significantly modulate neglect as revealed by cancellation on the same displays. Varying the target/non-target discrimination required for identical displays has a significant impact. Varying the judgement required can also have an impact on neglect even when all items are targets, so that non-targets no longer need filtering out. Requiring local versus global aspects of shape to be judged for the same displays also has a substantial impact, but the nature of discrimination required by the task still matters even when local/global level is held constant (e.g. for different colour discriminations on the same stimuli). Finally, an exploratory analysis of lesions among our neglect patients suggested that top-down task-related influences on neglect, as revealed by the new cancellation experiments here, might potentially depend on right superior temporal gyrus surviving the lesion. PMID:18790703
Task-related modulation of visual neglect in cancellation tasks.
Sarri, Margarita; Greenwood, Richard; Kalra, Lalit; Driver, Jon
2009-01-01
Unilateral neglect involves deficits of spatial exploration and awareness that do not always affect a fixed portion of extrapersonal space, but may vary with current stimulation and possibly with task demands. Here, we assessed any 'top-down', task-related influences on visual neglect, with novel experimental variants of the cancellation test. Many different versions of the cancellation test are used clinically, and can differ in the extent of neglect revealed, though the exact factors determining this are not fully understood. Few cancellation studies have isolated the influence of top-down factors, as typically the stimuli are changed also when comparing different tests. Within each of three cancellation studies here, we manipulated task factors, while keeping visual displays identical across conditions to equate purely bottom-up factors. Our results show that top-down task demands can significantly modulate neglect as revealed by cancellation on the same displays. Varying the target/non-target discrimination required for identical displays has a significant impact. Varying the judgement required can also have an impact on neglect even when all items are targets, so that non-targets no longer need filtering out. Requiring local versus global aspects of shape to be judged for the same displays also has a substantial impact, but the nature of discrimination required by the task still matters even when local/global level is held constant (e.g. for different colour discriminations on the same stimuli). Finally, an exploratory analysis of lesions among our neglect patients suggested that top-down task-related influences on neglect, as revealed by the new cancellation experiments here, might potentially depend on right superior temporal gyrus surviving the lesion.
Neurophysiological and Behavioral Responses of Mandarin Lexical Tone Processing
Yu, Yan H.; Shafer, Valerie L.; Sussman, Elyse S.
2017-01-01
Language experience enhances discrimination of speech contrasts at a behavioral- perceptual level, as well as at a pre-attentive level, as indexed by event-related potential (ERP) mismatch negativity (MMN) responses. The enhanced sensitivity could be the result of changes in acoustic resolution and/or long-term memory representations of the relevant information in the auditory cortex. To examine these possibilities, we used a short (ca. 600 ms) vs. long (ca. 2,600 ms) interstimulus interval (ISI) in a passive, oddball discrimination task while obtaining ERPs. These ISI differences were used to test whether cross-linguistic differences in processing Mandarin lexical tone are a function of differences in acoustic resolution and/or differences in long-term memory representations. Bisyllabic nonword tokens that differed in lexical tone categories were presented using a passive listening multiple oddball paradigm. Behavioral discrimination and identification data were also collected. The ERP results revealed robust MMNs to both easy and difficult lexical tone differences for both groups at short ISIs. At long ISIs, there was either no change or an enhanced MMN amplitude for the Mandarin group, but reduced MMN amplitude for the English group. In addition, the Mandarin listeners showed a larger late negativity (LN) discriminative response than the English listeners for lexical tone contrasts in the long ISI condition. Mandarin speakers outperformed English speakers in the behavioral tasks, especially under the long ISI conditions with the more similar lexical tone pair. These results suggest that the acoustic correlates of lexical tone are fairly robust and easily discriminated at short ISIs, when the auditory sensory memory trace is strong. At longer ISIs beyond 2.5 s language-specific experience is necessary for robust discrimination. PMID:28321179
Raghavan, Ramanujan T; Joshua, Mati
2017-10-01
We investigated the composition of preparatory activity of frontal eye field (FEF) neurons in monkeys performing a pursuit target selection task. In response to the orthogonal motion of a large and a small reward target, monkeys initiated pursuit biased toward the direction of large reward target motion. FEF neurons exhibited robust preparatory activity preceding movement initiation in this task. Preparatory activity consisted of two components, ramping activity that was constant across target selection conditions, and a flat offset in firing rates that signaled the target selection condition. Ramping activity accounted for 50% of the variance in the preparatory activity and was linked most strongly, on a trial-by-trial basis, to pursuit eye movement latency rather than to its direction or gain. The offset in firing rates that discriminated target selection conditions accounted for 25% of the variance in the preparatory activity and was commensurate with a winner-take-all representation, signaling the direction of large reward target motion rather than a representation that matched the parameters of the upcoming movement. These offer new insights into the role that the frontal eye fields play in target selection and pursuit control. They show that preparatory activity in the FEF signals more strongly when to move rather than where or how to move and suggest that structures outside the FEF augment its contributions to the target selection process. NEW & NOTEWORTHY We used the smooth eye movement pursuit system to link between patterns of preparatory activity in the frontal eye fields and movement during a target selection task. The dominant pattern was a ramping signal that did not discriminate between selection conditions and was linked, on trial-by-trial basis, to movement latency. A weaker pattern was composed of a constant signal that discriminated between selection conditions but was only weakly linked to the movement parameters. Copyright © 2017 the American Physiological Society.
Myer, Catherine E; Bryant, Deborah; DeLuca, John; Gluck, Mark A
2002-01-01
In humans, anterograde amnesia can result from damage to the medial temporal (MT) lobes (including hippocampus), as well as to other brain areas such as basal forebrain. Results from animal classical conditioning studies suggest that there may be qualitative differences in the memory impairment following MT vs. basal forebrain damage. Specifically, delay eyeblink conditioning is spared after MT damage in animals and humans, but impaired in animals with basal forebrain damage. Recently, we have likewise shown delay eyeblink conditioning impairment in humans with amnesia following anterior communicating artery (ACoA) aneurysm rupture, which damages the basal forebrain. Another associative learning task, a computer-based concurrent visual discrimination, also appears to be spared in MT amnesia while ACoA amnesics are slower to learn the discriminations. Conversely, animal and computational models suggest that, even though MT amnesics may learn quickly, they may learn qualitatively differently from controls, and these differences may result in impaired transfer when familiar information is presented in novel combinations. Our initial data suggests such a two-phase learning and transfer task may provide a double dissociation between MT amnesics (spared initial learning but impaired transfer) and ACoA amnesics (slow initial learning but spared transfer). Together, these emerging data suggest that there are subtle but dissociable differences in the amnesic syndrome following damage to the MT lobes vs. basal forebrain, and that these differences may be most visible in non-declarative tasks such as eyeblink classical conditioning and simple associative learning.
The Impact of Perceptual Load on the Non-Conscious Processing of Fearful Faces
Wang, Lili; Feng, Chunliang; Mai, Xiaoqin; Jia, Lina; Zhu, Xiangru; Luo, Wenbo; Luo, Yue-jia
2016-01-01
Emotional stimuli can be processed without consciousness. In the current study, we used event-related potentials (ERPs) to assess whether perceptual load influences non-conscious processing of fearful facial expressions. Perceptual load was manipulated using a letter search task with the target letter presented at the fixation point, while facial expressions were presented peripherally and masked to prevent conscious awareness. The letter string comprised six letters (X or N) that were identical (low load) or different (high load). Participants were instructed to discriminate the letters at fixation or the facial expression (fearful or neutral) in the periphery. Participants were faster and more accurate at detecting letters in the low load condition than in the high load condition. Fearful faces elicited a sustained positivity from 250 ms to 700 ms post-stimulus over fronto-central areas during the face discrimination and low-load letter discrimination conditions, but this effect was completely eliminated during high-load letter discrimination. Our findings imply that non-conscious processing of fearful faces depends on perceptual load, and attentional resources are necessary for non-conscious processing. PMID:27149273
A new semantic vigilance task: vigilance decrement, workload, and sensitivity to dual-task costs.
Epling, Samantha L; Russell, Paul N; Helton, William S
2016-01-01
Cognitive resource theory is a common explanation for both the performance decline in vigilance tasks, known as the vigilance decrement, and the limited ability to perform multiple tasks simultaneously. The limited supply of cognitive resources may be utilized faster than they are replenished resulting in a performance decrement, or may need to be allocated among multiple tasks with some performance cost. Researchers have proposed both domain-specific, for example spatial versus verbal processing resources, and domain general cognitive resources. One challenge in testing the domain specificity of cognitive resources in vigilance is the current lack of difficult semantic vigilance tasks which reliably produce a decrement. In the present research, we investigated whether the vigilance decrement was found in a new abbreviated semantic discrimination vigilance task, and whether there was a performance decrement in said vigilance task when paired with a word recall task, as opposed to performed individually. As hypothesized, a vigilance decrement in the semantic vigilance task was found in both the single-task and dual-task conditions, along with reduced vigilance performance in the dual-task condition and reduced word recall in the dual-task condition. This is consistent with cognitive resource theory. The abbreviated semantic vigilance task will be a useful tool for researchers interested in determining the specificity of cognitive resources utilized in vigilance tasks.
Grandin, Cécile B.; Dricot, Laurence; Plaza, Paula; Lerens, Elodie; Rombaux, Philippe; De Volder, Anne G.
2013-01-01
Using functional magnetic resonance imaging (fMRI) in ten early blind humans, we found robust occipital activation during two odor-processing tasks (discrimination or categorization of fruit and flower odors), as well as during control auditory-verbal conditions (discrimination or categorization of fruit and flower names). We also found evidence for reorganization and specialization of the ventral part of the occipital cortex, with dissociation according to stimulus modality: the right fusiform gyrus was most activated during olfactory conditions while part of the left ventral lateral occipital complex showed a preference for auditory-verbal processing. Only little occipital activation was found in sighted subjects, but the same right-olfactory/left-auditory-verbal hemispheric lateralization was found overall in their brain. This difference between the groups was mirrored by superior performance of the blind in various odor-processing tasks. Moreover, the level of right fusiform gyrus activation during the olfactory conditions was highly correlated with individual scores in a variety of odor recognition tests, indicating that the additional occipital activation may play a functional role in odor processing. PMID:23967263
Detection of visual signals by rats: A computational model
We applied a neural network model of classical conditioning proposed by Schmajuk, Lam, and Gray (1996) to visual signal detection and discrimination tasks designed to assess sustained attention in rats (Bushnell, 1999). The model describes the animals’ expectation of receiving fo...
Visual training improves perceptual grouping based on basic stimulus features.
Kurylo, Daniel D; Waxman, Richard; Kidron, Rachel; Silverstein, Steven M
2017-10-01
Training on visual tasks improves performance on basic and higher order visual capacities. Such improvement has been linked to changes in connectivity among mediating neurons. We investigated whether training effects occur for perceptual grouping. It was hypothesized that repeated engagement of integration mechanisms would enhance grouping processes. Thirty-six participants underwent 15 sessions of training on a visual discrimination task that required perceptual grouping. Participants viewed 20 × 20 arrays of dots or Gabor patches and indicated whether the array appeared grouped as vertical or horizontal lines. Across trials stimuli became progressively disorganized, contingent upon successful discrimination. Four visual dimensions were examined, in which grouping was based on similarity in luminance, color, orientation, and motion. Psychophysical thresholds of grouping were assessed before and after training. Results indicate that performance in all four dimensions improved with training. Training on a control condition, which paralleled the discrimination task but without a grouping component, produced no improvement. In addition, training on only the luminance and orientation dimensions improved performance for those conditions as well as for grouping by color, on which training had not occurred. However, improvement from partial training did not generalize to motion. Results demonstrate that a training protocol emphasizing stimulus integration enhanced perceptual grouping. Results suggest that neural mechanisms mediating grouping by common luminance and/or orientation contribute to those mediating grouping by color but do not share resources for grouping by common motion. Results are consistent with theories of perceptual learning emphasizing plasticity in early visual processing regions.
Sherwin, Jason Samuel; Gaston, Jeremy Rodney
2015-01-01
For a soldier, decisions to use force can happen rapidly and sometimes lead to undesired consequences. In many of these situations, there is a rapid assessment by the shooter that recognizes a threat and responds to it with return fire. But the neural processes underlying these rapid decisions are largely unknown, especially amongst those with extensive weapons experience and expertise. In this paper, we investigate differences in weapons experts and non-experts during an incoming gunfire detection task. Specifically, we analyzed the electroencephalography (EEG) of eleven expert marksmen/soldiers and eleven non-experts while they listened to an audio scene consisting of a sequence of incoming and non-incoming gunfire events. Subjects were tasked with identifying each event as quickly as possible and committing their choice via a motor response. Contrary to our hypothesis, experts did not have significantly better behavioral performance or faster response time than novices. Rather, novices indicated trends of better behavioral performance than experts. These group differences were more dramatic in the EEG correlates of incoming gunfire detection. Using machine learning, we found condition-discriminating EEG activity among novices showing greater magnitude and covering longer periods than those found in experts. We also compared group-level source reconstruction on the maximum discriminating neural correlates and found that each group uses different neural structures to perform the task. From condition-discriminating EEG and source localization, we found that experts perceive more categorical overlap between incoming and non-incoming gunfire. Consequently, the experts did not perform as well behaviorally as the novices. We explain these unexpected group differences as a consequence of experience with gunfire not being equivalent to expertise in recognizing incoming gunfire. PMID:25658335
Disrupted sensory gating in pathological gambling.
Stojanov, Wendy; Karayanidis, Frini; Johnston, Patrick; Bailey, Andrew; Carr, Vaughan; Schall, Ulrich
2003-08-15
Some neurochemical evidence as well as recent studies on molecular genetics suggest that pathologic gambling may be related to dysregulated dopamine neurotransmission. The current study examined sensory (motor) gating in pathologic gamblers as a putative measure of endogenous brain dopamine activity with prepulse inhibition of the acoustic startle eye-blink response and the auditory P300 event-related potential. Seventeen pathologic gamblers and 21 age- and gender-matched healthy control subjects were assessed. Both prepulse inhibition measures were recorded under passive listening and two-tone prepulse discrimination conditions. Compared to the control group, pathologic gamblers exhibited disrupted sensory (motor) gating on all measures of prepulse inhibition. Sensory motor gating deficits of eye-blink responses were most profound at 120-millisecond prepulse lead intervals in the passive listening task and at 240-millisecond prepulse lead intervals in the two-tone prepulse discrimination task. Sensory gating of P300 was also impaired in pathologic gamblers, particularly at 500-millisecond lead intervals, when performing the discrimination task on the prepulse. In the context of preclinical studies on the disruptive effects of dopamine agonists on prepulse inhibition, our findings suggest increased endogenous brain dopamine activity in pathologic gambling in line with previous neurobiological findings.
Activation of Premotor Vocal Areas during Musical Discrimination
ERIC Educational Resources Information Center
Brown, Steven; Martinez, Michael J.
2007-01-01
Two same/different discrimination tasks were performed by amateur-musician subjects in this functional magnetic resonance imaging study: Melody Discrimination and Harmony Discrimination. Both tasks led to activations not only in classic working memory areas--such as the cingulate gyrus and dorsolateral prefrontal cortex--but in a series of…
Yu, Fengqiong; Zhou, Xiaoqing; Qing, Wu; Li, Dan; Li, Jing; Chen, Xingui; Ji, Gongjun; Dong, Yi; Luo, Yuejia; Zhu, Chunyan; Wang, Kai
2017-01-30
The present study aimed to investigate neural substrates of response inhibition to sad faces across explicit and implicit tasks in depressed female patients. Event-related potentials were obtained while participants performed modified explicit and implicit emotional go/no-go tasks. Compared to controls, depressed patients showed decreased discrimination accuracy and amplitudes of original and nogo-go difference waves at the P3 interval in response inhibition to sad faces during explicit and implicit tasks. P3 difference wave were positively correlated with discrimination accuracy and were independent of clinical assessment. The activation of right dorsal prefrontal cortex was larger for the implicit than for the explicit task in sad condition in health controls, but was similar for the two tasks in depressed patients. The present study indicated that selectively impairment in response inhibition to sad faces in depressed female patients occurred at the behavior inhibition stage across implicit and explicit tasks and may be a trait-like marker of depression. Longitudinal studies are required to determine whether decreased response inhibition to sad faces increases the risk for future depressive episodes so that appropriate treatment can be administered to patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Bisen-Hersh, Emily B; Hineline, Philip N; Walker, Ellen A
2013-06-01
Among children diagnosed with acute lymphoblastic leukemia (ALL) and given chemotherapy-only treatment, 40% to 70% of survivors experience neurocognitive impairment. The present study used a preclinical mouse model to investigate the effects of early exposure to common ALL chemotherapeutics methotrexate (MTX) and cytarabine (Ara-C) on learning and memory. Preweanling mouse pups were treated on postnatal day (PND) 14, 15, and 16 with saline, MTX, Ara-C, or a combination of MTX and Ara-C. Nineteen days after treatment (PND 35), behavioral tasks measuring different aspects of learning and memory were administered. Significant impairment in acquisition and retention over both short (1 hour) and long (24 hours) intervals, as measured by autoshaping and novel object recognition tasks, was found following treatment with MTX and Ara-C. Similarly, a novel conditional discrimination task revealed impairment in acquisition for chemotherapy-treated mice. No significant group differences were found following the extensive training component of this task, with impairment following the rapid training component occurring only for the highest MTX and Ara-C combination group. Findings are consistent with those from clinical studies suggesting that childhood cancer survivors are slower at learning new information and primarily exhibit deficits in memory years after successful completion of chemotherapy. The occurrence of mild deficits on a novel conditional discrimination task suggests that chemotherapy-induced cognitive impairment may be ameliorated through extensive training or practice. ©2013 AACR
Bisen-Hersh, Emily B.; Hineline, Philip N.; Walker, Ellen A.
2013-01-01
Purpose Among children diagnosed with acute lymphoblastic leukemia (ALL) and given chemotherapy-only treatment, 40-70% of survivors experience neurocognitive impairment. The present study used a preclinical mouse model to investigate the effects of early exposure to common ALL chemotherapeutics methotrexate (MTX) and cytarabine (Ara-C) on learning and memory. Experimental Design Pre-weanling mouse pups were treated on postnatal day (PND) 14, 15, and 16 with saline, MTX, Ara-C, or a combination of MTX and Ara-C. Nineteen days following treatment (PND 35), behavioral tasks measuring different aspects of learning and memory were administered. Results Significant impairment in acquisition and retention over both short (1h) and long (24h) intervals, as measured by autoshaping and novel object recognition tasks, were found following treatment with MTX and Ara-C. Similarly, a novel conditional discrimination task revealed impairment in acquisition for chemotherapy-treated mice. No significant group differences were found following the extensive training component of this task, with impairment following the rapid training component occurring only for the highest MTX and Ara-C combination group. Conclusions Findings are consistent with clinical studies suggesting that childhood cancer survivors are slower at learning new information and primarily exhibit deficits in memory years after successful completion of chemotherapy treatment. The occurrence of mild deficits on a novel conditional discrimination task suggests that chemotherapy-induced cognitive impairment may be ameliorated through extensive training or practice. PMID:23596103
Genetic pleiotropy explains associations between musical auditory discrimination and intelligence.
Mosing, Miriam A; Pedersen, Nancy L; Madison, Guy; Ullén, Fredrik
2014-01-01
Musical aptitude is commonly measured using tasks that involve discrimination of different types of musical auditory stimuli. Performance on such different discrimination tasks correlates positively with each other and with intelligence. However, no study to date has explored these associations using a genetically informative sample to estimate underlying genetic and environmental influences. In the present study, a large sample of Swedish twins (N = 10,500) was used to investigate the genetic architecture of the associations between intelligence and performance on three musical auditory discrimination tasks (rhythm, melody and pitch). Phenotypic correlations between the tasks ranged between 0.23 and 0.42 (Pearson r values). Genetic modelling showed that the covariation between the variables could be explained by shared genetic influences. Neither shared, nor non-shared environment had a significant effect on the associations. Good fit was obtained with a two-factor model where one underlying shared genetic factor explained all the covariation between the musical discrimination tasks and IQ, and a second genetic factor explained variance exclusively shared among the discrimination tasks. The results suggest that positive correlations among musical aptitudes result from both genes with broad effects on cognition, and genes with potentially more specific influences on auditory functions.
Genetic Pleiotropy Explains Associations between Musical Auditory Discrimination and Intelligence
Mosing, Miriam A.; Pedersen, Nancy L.; Madison, Guy; Ullén, Fredrik
2014-01-01
Musical aptitude is commonly measured using tasks that involve discrimination of different types of musical auditory stimuli. Performance on such different discrimination tasks correlates positively with each other and with intelligence. However, no study to date has explored these associations using a genetically informative sample to estimate underlying genetic and environmental influences. In the present study, a large sample of Swedish twins (N = 10,500) was used to investigate the genetic architecture of the associations between intelligence and performance on three musical auditory discrimination tasks (rhythm, melody and pitch). Phenotypic correlations between the tasks ranged between 0.23 and 0.42 (Pearson r values). Genetic modelling showed that the covariation between the variables could be explained by shared genetic influences. Neither shared, nor non-shared environment had a significant effect on the associations. Good fit was obtained with a two-factor model where one underlying shared genetic factor explained all the covariation between the musical discrimination tasks and IQ, and a second genetic factor explained variance exclusively shared among the discrimination tasks. The results suggest that positive correlations among musical aptitudes result from both genes with broad effects on cognition, and genes with potentially more specific influences on auditory functions. PMID:25419664
Auditory Discrimination Learning: Role of Working Memory.
Zhang, Yu-Xuan; Moore, David R; Guiraud, Jeanne; Molloy, Katharine; Yan, Ting-Ting; Amitay, Sygal
2016-01-01
Perceptual training is generally assumed to improve perception by modifying the encoding or decoding of sensory information. However, this assumption is incompatible with recent demonstrations that transfer of learning can be enhanced by across-trial variation of training stimuli or task. Here we present three lines of evidence from healthy adults in support of the idea that the enhanced transfer of auditory discrimination learning is mediated by working memory (WM). First, the ability to discriminate small differences in tone frequency or duration was correlated with WM measured with a tone n-back task. Second, training frequency discrimination around a variable frequency transferred to and from WM learning, but training around a fixed frequency did not. The transfer of learning in both directions was correlated with a reduction of the influence of stimulus variation in the discrimination task, linking WM and its improvement to across-trial stimulus interaction in auditory discrimination. Third, while WM training transferred broadly to other WM and auditory discrimination tasks, variable-frequency training on duration discrimination did not improve WM, indicating that stimulus variation challenges and trains WM only if the task demands stimulus updating in the varied dimension. The results provide empirical evidence as well as a theoretic framework for interactions between cognitive and sensory plasticity during perceptual experience.
Auditory Discrimination Learning: Role of Working Memory
Zhang, Yu-Xuan; Moore, David R.; Guiraud, Jeanne; Molloy, Katharine; Yan, Ting-Ting; Amitay, Sygal
2016-01-01
Perceptual training is generally assumed to improve perception by modifying the encoding or decoding of sensory information. However, this assumption is incompatible with recent demonstrations that transfer of learning can be enhanced by across-trial variation of training stimuli or task. Here we present three lines of evidence from healthy adults in support of the idea that the enhanced transfer of auditory discrimination learning is mediated by working memory (WM). First, the ability to discriminate small differences in tone frequency or duration was correlated with WM measured with a tone n-back task. Second, training frequency discrimination around a variable frequency transferred to and from WM learning, but training around a fixed frequency did not. The transfer of learning in both directions was correlated with a reduction of the influence of stimulus variation in the discrimination task, linking WM and its improvement to across-trial stimulus interaction in auditory discrimination. Third, while WM training transferred broadly to other WM and auditory discrimination tasks, variable-frequency training on duration discrimination did not improve WM, indicating that stimulus variation challenges and trains WM only if the task demands stimulus updating in the varied dimension. The results provide empirical evidence as well as a theoretic framework for interactions between cognitive and sensory plasticity during perceptual experience. PMID:26799068
Saltuklaroglu, Tim; Harkrider, Ashley W; Thornton, David; Jenson, David; Kittilstved, Tiffani
2017-06-01
Stuttering is linked to sensorimotor deficits related to internal modeling mechanisms. This study compared spectral power and oscillatory activity of EEG mu (μ) rhythms between persons who stutter (PWS) and controls in listening and auditory discrimination tasks. EEG data were analyzed from passive listening in noise and accurate (same/different) discrimination of tones or syllables in quiet and noisy backgrounds. Independent component analysis identified left and/or right μ rhythms with characteristic alpha (α) and beta (β) peaks localized to premotor/motor regions in 23 of 27 people who stutter (PWS) and 24 of 27 controls. PWS produced μ spectra with reduced β amplitudes across conditions, suggesting reduced forward modeling capacity. Group time-frequency differences were associated with noisy conditions only. PWS showed increased μ-β desynchronization when listening to noise and early in discrimination events, suggesting evidence of heightened motor activity that might be related to forward modeling deficits. PWS also showed reduced μ-α synchronization in discrimination conditions, indicating reduced sensory gating. Together these findings indicate spectral and oscillatory analyses of μ rhythms are sensitive to stuttering. More specifically, they can reveal stuttering-related sensorimotor processing differences in listening and auditory discrimination that also may be influenced by basal ganglia deficits. Copyright © 2017 Elsevier Inc. All rights reserved.
Sadato, Norihiro; Okada, Tomohisa; Kubota, Kiyokazu; Yonekura, Yoshiharu
2004-04-08
The occipital cortex of blind subjects is known to be activated during tactile discrimination tasks such as Braille reading. To investigate whether this is due to long-term learning of Braille or to sensory deafferentation, we used fMRI to study tactile discrimination tasks in subjects who had recently lost their sight and never learned Braille. The occipital cortex of the blind subjects without Braille training was activated during the tactile discrimination task, whereas that of control sighted subjects was not. This finding suggests that the activation of the visual cortex of the blind during performance of a tactile discrimination task may be due to sensory deafferentation, wherein a competitive imbalance favors the tactile over the visual modality.
Rammsayer, Thomas; Ulrich, Rolf
2011-05-01
The distinct timing hypothesis suggests a sensory mechanism for processing of durations in the range of milliseconds and a cognitively controlled mechanism for processing of longer durations. To test this hypothesis, we employed a dual-task approach to investigate the effects of maintenance and elaborative rehearsal on temporal processing of brief and long durations. Unlike mere maintenance rehearsal, elaborative rehearsal as a secondary task involved transfer of information from working to long-term memory and elaboration of information to enhance storage in long-term memory. Duration discrimination of brief intervals was not affected by a secondary cognitive task that required either maintenance or elaborative rehearsal. Concurrent elaborative rehearsal, however, impaired discrimination of longer durations as compared to maintenance rehearsal and a control condition with no secondary task. These findings endorse the distinct timing hypothesis and are in line with the notion that executive functions, such as continuous memory updating and active transfer of information into long-term memory interfere with temporal processing of durations in the second, but not in the millisecond range. 2011 Elsevier B.V. All rights reserved.
Evaluating the Precision of Auditory Sensory Memory as an Index of Intrusion in Tinnitus.
Barrett, Doug J K; Pilling, Michael
The purpose of this study was to investigate the potential of measures of auditory short-term memory (ASTM) to provide a clinical measure of intrusion in tinnitus. Response functions for six normal listeners on a delayed pitch discrimination task were contrasted in three conditions designed to manipulate attention in the presence and absence of simulated tinnitus: (1) no-tinnitus, (2) ignore-tinnitus, and (3) attend-tinnitus. Delayed pitch discrimination functions were more variable in the presence of simulated tinnitus when listeners were asked to divide attention between the primary task and the amplitude of the tinnitus tone. Changes in the variability of auditory short-term memory may provide a novel means of quantifying the level of intrusion associated with the tinnitus percept during listening.
Saa, Jaime F Delgado; Çetin, Müjdat
2012-04-01
We consider the problem of classification of imaginary motor tasks from electroencephalography (EEG) data for brain-computer interfaces (BCIs) and propose a new approach based on hidden conditional random fields (HCRFs). HCRFs are discriminative graphical models that are attractive for this problem because they (1) exploit the temporal structure of EEG; (2) include latent variables that can be used to model different brain states in the signal; and (3) involve learned statistical models matched to the classification task, avoiding some of the limitations of generative models. Our approach involves spatial filtering of the EEG signals and estimation of power spectra based on autoregressive modeling of temporal segments of the EEG signals. Given this time-frequency representation, we select certain frequency bands that are known to be associated with execution of motor tasks. These selected features constitute the data that are fed to the HCRF, parameters of which are learned from training data. Inference algorithms on the HCRFs are used for the classification of motor tasks. We experimentally compare this approach to the best performing methods in BCI competition IV as well as a number of more recent methods and observe that our proposed method yields better classification accuracy.
Neural cascade of conflict processing: not just time-on-task
McKay, Cameron C.; van den Berg, Berry; Woldorff, Marty G.
2017-01-01
In visual conflict tasks (e.g., Stroop or flanker), response times (RTs) are generally longer on incongruent trials relative to congruent ones. Two event-related-potential (ERP) components classically associated with the processing of stimulus conflict are the fronto-central, incongruency-related negativity (Ninc) and the posterior late-positive complex (LPC), which are derived from the ERP difference waves for incongruent minus congruent trials. It has been questioned, however, whether these effects, or other neural measures of incongruency (e.g., fMRI responses in the anterior cingulate), reflect true conflict processing, or whether such effects derive mainly from differential time-on-task. To address this question, we leveraged high-temporal-resolution ERP measures of brain activity during two behavioral tasks. The first task, a modified Erikson flanker paradigm (with congruent and incongruent trials), was used to evoke the classic RT and ERP effects associated with conflict. In the second, a non-conflict comparison condition, participants visually discriminated a single stimulus (with easy and hard discrimination conditions). Behaviorally, the parameters were titrated to yield similar RT effects of conflict and difficulty (27 ms). Neurally, both within-task contrasts showed an initial fronto-central negative-polarity wave (N2-latency effect), but they then diverged. In the difficulty difference wave, the initial negativity led directly into the posterior LPC, whereas in the incongruency contrast the initial negativity was followed a by a second fronto-central negative peak (Ninc), which was then followed by a considerably longer-latency LPC. These results provide clear evidence that the longer processing for incongruent stimulus inputs do not just reflect time-on-task or difficulty, but include a true conflict-processing component. PMID:28017818
Food approach conditioning and discrimination learning using sound cues in benthic sharks.
Vila Pouca, Catarina; Brown, Culum
2018-07-01
The marine environment is filled with biotic and abiotic sounds. Some of these sounds predict important events that influence fitness while others are unimportant. Individuals can learn specific sound cues and 'soundscapes' and use them for vital activities such as foraging, predator avoidance, communication and orientation. Most research with sounds in elasmobranchs has focused on hearing thresholds and attractiveness to sound sources, but very little is known about their abilities to learn about sounds, especially in benthic species. Here we investigated if juvenile Port Jackson sharks could learn to associate a musical stimulus with a food reward, discriminate between two distinct musical stimuli, and whether individual personality traits were linked to cognitive performance. Five out of eight sharks were successfully conditioned to associate a jazz song with a food reward delivered in a specific corner of the tank. We observed repeatable individual differences in activity and boldness in all eight sharks, but these personality traits were not linked to the learning performance assays we examined. These sharks were later trained in a discrimination task, where they had to distinguish between the same jazz and a novel classical music song, and swim to opposite corners of the tank according to the stimulus played. The sharks' performance to the jazz stimulus declined to chance levels in the discrimination task. Interestingly, some sharks developed a strong side bias to the right, which in some cases was not the correct side for the jazz stimulus.
Working Memory Load Affects Processing Time in Spoken Word Recognition: Evidence from Eye-Movements
Hadar, Britt; Skrzypek, Joshua E.; Wingfield, Arthur; Ben-David, Boaz M.
2016-01-01
In daily life, speech perception is usually accompanied by other tasks that tap into working memory capacity. However, the role of working memory on speech processing is not clear. The goal of this study was to examine how working memory load affects the timeline for spoken word recognition in ideal listening conditions. We used the “visual world” eye-tracking paradigm. The task consisted of spoken instructions referring to one of four objects depicted on a computer monitor (e.g., “point at the candle”). Half of the trials presented a phonological competitor to the target word that either overlapped in the initial syllable (onset) or at the last syllable (offset). Eye movements captured listeners' ability to differentiate the target noun from its depicted phonological competitor (e.g., candy or sandal). We manipulated working memory load by using a digit pre-load task, where participants had to retain either one (low-load) or four (high-load) spoken digits for the duration of a spoken word recognition trial. The data show that the high-load condition delayed real-time target discrimination. Specifically, a four-digit load was sufficient to delay the point of discrimination between the spoken target word and its phonological competitor. Our results emphasize the important role working memory plays in speech perception, even when performed by young adults in ideal listening conditions. PMID:27242424
Wills, A J; Lea, Stephen E G; Leaver, Lisa A; Osthaus, Britta; Ryan, Catriona M E; Suret, Mark B; Bryant, Catherine M L; Chapman, Sue J A; Millar, Louise
2009-11-01
Pigeons (Columba livia), gray squirrels (Sciurus carolinensis), and undergraduates (Homo sapiens) learned discrimination tasks involving multiple mutually redundant dimensions. First, pigeons and undergraduates learned conditional discriminations between stimuli composed of three spatially separated dimensions, after first learning to discriminate the individual elements of the stimuli. When subsequently tested with stimuli in which one of the dimensions took an anomalous value, the majority of both species categorized test stimuli by their overall similarity to training stimuli. However some individuals of both species categorized them according to a single dimension. In a second set of experiments, squirrels, pigeons, and undergraduates learned go/no-go discriminations using multiple simultaneous presentations of stimuli composed of three spatially integrated, highly salient dimensions. The tendency to categorize test stimuli including anomalous dimension values unidimensionally was higher than in the first set of experiments and did not differ significantly between species. The authors conclude that unidimensional categorization of multidimensional stimuli is not diagnostic for analytic cognitive processing, and that any differences between human's and pigeons' behavior in such tasks are not due to special features of avian visual cognition.
Cong, Lin-Juan; Wang, Ru-Jie; Yu, Cong; Zhang, Jun-Yun
2016-01-01
Visual perceptual learning is known to be specific to the trained retinal location, feature, and task. However, location and feature specificity can be eliminated by double-training or TPE training protocols, in which observers receive additional exposure to the transfer location or feature dimension via an irrelevant task besides the primary learning task Here we tested whether these new training protocols could even make learning transfer across different tasks involving discrimination of basic visual features (e.g., orientation and contrast). Observers practiced a near-threshold orientation (or contrast) discrimination task. Following a TPE training protocol, they also received exposure to the transfer task via performing suprathreshold contrast (or orientation) discrimination in alternating blocks of trials in the same sessions. The results showed no evidence for significant learning transfer to the untrained near-threshold contrast (or orientation) discrimination task after discounting the pretest effects and the suprathreshold practice effects. These results thus do not support a hypothetical task-independent component in perceptual learning of basic visual features. They also set the boundary of the new training protocols in their capability to enable learning transfer.
Brembs, Björn; Hempel de Ibarra, Natalie
2006-01-01
We have used a genetically tractable model system, the fruit fly Drosophila melanogaster to study the interdependence between sensory processing and associative processing on learning performance. We investigated the influence of variations in the physical and predictive properties of color stimuli in several different operant-conditioning procedures on the subsequent learning performance. These procedures included context and stimulus generalization as well as color, compound, and conditional discrimination (colors and patterns). A surprisingly complex dependence of the learning performance on the colors' physical and predictive properties emerged, which was clarified by taking into account the fly-subjective perception of the color stimuli. Based on estimates of the stimuli's color and brightness values, we propose that the different tasks are supported by different parameters of the color stimuli; generalization occurs only if the chromaticity is sufficiently similar, whereas discrimination learning relies on brightness differences.
Centanni, Tracy M.; Chen, Fuyi; Booker, Anne M.; Engineer, Crystal T.; Sloan, Andrew M.; Rennaker, Robert L.; LoTurco, Joseph J.; Kilgard, Michael P.
2014-01-01
In utero RNAi of the dyslexia-associated gene Kiaa0319 in rats (KIA-) degrades cortical responses to speech sounds and increases trial-by-trial variability in onset latency. We tested the hypothesis that KIA- rats would be impaired at speech sound discrimination. KIA- rats needed twice as much training in quiet conditions to perform at control levels and remained impaired at several speech tasks. Focused training using truncated speech sounds was able to normalize speech discrimination in quiet and background noise conditions. Training also normalized trial-by-trial neural variability and temporal phase locking. Cortical activity from speech trained KIA- rats was sufficient to accurately discriminate between similar consonant sounds. These results provide the first direct evidence that assumed reduced expression of the dyslexia-associated gene KIAA0319 can cause phoneme processing impairments similar to those seen in dyslexia and that intensive behavioral therapy can eliminate these impairments. PMID:24871331
Decision Processes in Discrimination: Fundamental Misrepresentations of Signal Detection Theory
NASA Technical Reports Server (NTRS)
Balakrishnan, J. D.
1998-01-01
In the first part of this article, I describe a new approach to studying decision making in discrimination tasks that does not depend on the technical assumptions of signal detection theory (e.g., normality of the encoding distributions). Applying these new distribution-free tests to data from three experiments, I show that base rate and payoff manipulations had substantial effects on the participants' encoding distributions but no effect on their decision rules, which were uniformly unbiased in equal and unequal base rate conditions and in symmetric and asymmetric payoff conditions. In the second part of the article, I show that this seemingly paradoxical result is readily explained by the sequential sampling models of discrimination. I then propose a new, "model-free" test for response bias that seems to more properly identify both the nature and direction of the biases induced by the classical bias manipulations.
Speech training alters tone frequency tuning in rat primary auditory cortex
Engineer, Crystal T.; Perez, Claudia A.; Carraway, Ryan S.; Chang, Kevin Q.; Roland, Jarod L.; Kilgard, Michael P.
2013-01-01
Previous studies in both humans and animals have documented improved performance following discrimination training. This enhanced performance is often associated with cortical response changes. In this study, we tested the hypothesis that long-term speech training on multiple tasks can improve primary auditory cortex (A1) responses compared to rats trained on a single speech discrimination task or experimentally naïve rats. Specifically, we compared the percent of A1 responding to trained sounds, the responses to both trained and untrained sounds, receptive field properties of A1 neurons, and the neural discrimination of pairs of speech sounds in speech trained and naïve rats. Speech training led to accurate discrimination of consonant and vowel sounds, but did not enhance A1 response strength or the neural discrimination of these sounds. Speech training altered tone responses in rats trained on six speech discrimination tasks but not in rats trained on a single speech discrimination task. Extensive speech training resulted in broader frequency tuning, shorter onset latencies, a decreased driven response to tones, and caused a shift in the frequency map to favor tones in the range where speech sounds are the loudest. Both the number of trained tasks and the number of days of training strongly predict the percent of A1 responding to a low frequency tone. Rats trained on a single speech discrimination task performed less accurately than rats trained on multiple tasks and did not exhibit A1 response changes. Our results indicate that extensive speech training can reorganize the A1 frequency map, which may have downstream consequences on speech sound processing. PMID:24344364
Fritz, Jonathan; Elhilali, Mounya; Shamma, Shihab
2005-08-01
Listening is an active process in which attentive focus on salient acoustic features in auditory tasks can influence receptive field properties of cortical neurons. Recent studies showing rapid task-related changes in neuronal spectrotemporal receptive fields (STRFs) in primary auditory cortex of the behaving ferret are reviewed in the context of current research on cortical plasticity. Ferrets were trained on spectral tasks, including tone detection and two-tone discrimination, and on temporal tasks, including gap detection and click-rate discrimination. STRF changes could be measured on-line during task performance and occurred within minutes of task onset. During spectral tasks, there were specific spectral changes (enhanced response to tonal target frequency in tone detection and discrimination, suppressed response to tonal reference frequency in tone discrimination). However, only in the temporal tasks, the STRF was changed along the temporal dimension by sharpening temporal dynamics. In ferrets trained on multiple tasks, distinctive and task-specific STRF changes could be observed in the same cortical neurons in successive behavioral sessions. These results suggest that rapid task-related plasticity is an ongoing process that occurs at a network and single unit level as the animal switches between different tasks and dynamically adapts cortical STRFs in response to changing acoustic demands.
The effect of appropriate and inappropriate stimulus color on odor discrimination.
Stevenson, Richard J; Oaten, Megan
2008-05-01
Color can strongly affect participants' self-report of an odor's qualities. In Experiment 1, we examined whether color influences a more objective measure of odor quality, discrimination. Odor pairs, presented in their appropriate color (e.g., strawberry and cherry in red water), an inappropriate color (e.g., strawberry and cherry in green water), or uncolored water were presented for discrimination. Participants made significantly more errors when odors were discriminated in an inappropriate color. In Experiment 2, the same design was utilized, but with an articulatory suppression task (AST), to examine whether the effect of color was mediated by identification or by a more direct effect on the percept. Here, the AST significantly improved discrimination for the inappropriate color condition, relative to Experiment 1. Although color does affect a more objective measure of odor quality, this is mediated by conceptual, rather than perceptual, means.
Sakurai, Y
2002-01-01
This study reports how hippocampal individual cells and cell assemblies cooperate for neural coding of pitch and temporal information in memory processes for auditory stimuli. Each rat performed two tasks, one requiring discrimination of auditory pitch (high or low) and the other requiring discrimination of their duration (long or short). Some CA1 and CA3 complex-spike neurons showed task-related differential activity between the high and low tones in only the pitch-discrimination task. However, without exception, neurons which showed task-related differential activity between the long and short tones in the duration-discrimination task were always task-related neurons in the pitch-discrimination task. These results suggest that temporal information (long or short), in contrast to pitch information (high or low), cannot be coded independently by specific neurons. The results also indicate that the two different behavioral tasks cannot be fully differentiated by the task-related single neurons alone and suggest a model of cell-assembly coding of the tasks. Cross-correlation analysis among activities of simultaneously recorded multiple neurons supported the suggested cell-assembly model.Considering those results, this study concludes that dual coding by hippocampal single neurons and cell assemblies is working in memory processing of pitch and temporal information of auditory stimuli. The single neurons encode both auditory pitches and their temporal lengths and the cell assemblies encode types of tasks (contexts or situations) in which the pitch and the temporal information are processed.
Chien, Sarina Hui-Lin; Wang, Jing-Fong; Huang, Tsung-Ren
2016-01-01
Previous infant studies on the other-race effect have favored the perceptual narrowing view, or declined sensitivities to rarely exposed other-race faces. Here we wish to provide an alternative possibility, perceptual learning, manifested by improved sensitivity for frequently exposed own-race faces in the first year of life. Using the familiarization/visual-paired comparison paradigm, we presented 4-, 6-, and 9-month-old Taiwanese infants with oval-cropped Taiwanese, Caucasian, Filipino faces, and each with three different manipulations of increasing task difficulty (i.e., change identity, change eyes, and widen eye spacing). An adult experiment was first conducted to verify the task difficulty. Our results showed that, with oval-cropped faces, the 4 month-old infants could only discriminate Taiwanese “change identity” condition and not any others, suggesting an early own-race advantage at 4 months. The 6 month-old infants demonstrated novelty preferences in both Taiwanese and Caucasian “change identity” conditions, and proceeded to the Taiwanese “change eyes” condition. The 9-month-old infants demonstrated novelty preferences in the “change identity” condition of all three ethnic faces. They also passed the Taiwanese “change eyes” condition but could not extend this refined ability of detecting a change in the eyes for the Caucasian or Philippine faces. Taken together, we interpret the pattern of results as evidence supporting perceptual learning during the first year: the ability to discriminate own-race faces emerges at 4 months and continues to refine, while the ability to discriminate other-race faces emerges between 6 and 9 months and retains at 9 months. Additionally, the discrepancies in the face stimuli and methods between studies advocating the narrowing view and those supporting the learning view were discussed. PMID:27807427
Songbirds and humans apply different strategies in a sound sequence discrimination task.
Seki, Yoshimasa; Suzuki, Kenta; Osawa, Ayumi M; Okanoya, Kazuo
2013-01-01
The abilities of animals and humans to extract rules from sound sequences have previously been compared using observation of spontaneous responses and conditioning techniques. However, the results were inconsistently interpreted across studies possibly due to methodological and/or species differences. Therefore, we examined the strategies for discrimination of sound sequences in Bengalese finches and humans using the same protocol. Birds were trained on a GO/NOGO task to discriminate between two categories of sound stimulus generated based on an "AAB" or "ABB" rule. The sound elements used were taken from a variety of male (M) and female (F) calls, such that the sequences could be represented as MMF and MFF. In test sessions, FFM and FMM sequences, which were never presented in the training sessions but conformed to the rule, were presented as probe stimuli. The results suggested two discriminative strategies were being applied: (1) memorizing sound patterns of either GO or NOGO stimuli and generating the appropriate responses for only those sounds; and (2) using the repeated element as a cue. There was no evidence that the birds successfully extracted the abstract rule (i.e., AAB and ABB); MMF-GO subjects did not produce a GO response for FFM and vice versa. Next we examined whether those strategies were also applicable for human participants on the same task. The results and questionnaires revealed that participants extracted the abstract rule, and most of them employed it to discriminate the sequences. This strategy was never observed in bird subjects, although some participants used strategies similar to the birds when responding to the probe stimuli. Our results showed that the human participants applied the abstract rule in the task even without instruction but Bengalese finches did not, thereby reconfirming that humans have to extract abstract rules from sound sequences that is distinct from non-human animals.
Role Played by the Passage of Time in Reversal Learning.
Goarin, Estelle H F; Lingawi, Nura W; Laurent, Vincent
2018-01-01
Reversal learning is thought to involve an extinction-like process that inhibits the expression of the initial learning. However, behavioral evidence for this inhibition remains difficult to interpret as various procedures have been employed to study reversal learning. Here, we used a discrimination task in rats to examine whether the inhibition produced by reversal learning is as sensitive to the passage of time as the inhibition produced by extinction. Experiment 1 showed that when tested immediately after reversal training, rats were able to use the reversed contingencies to solve the discrimination task in an outcome-specific manner. This ability to use outcome-specific information was lost when a delay was inserted between reversal training and test. However, interpretation of these data was made difficult by a potential floor effect. This concern was addressed in Experiment 2 in which it was confirmed that the passage of time impaired the ability of the rats to use the reversed contingencies in an outcome-specific manner to solve the task. Further, it revealed that the delay between initial learning and test was not responsible for this impairment. Additional work demonstrated that solving the discrimination task was unaffected by Pavlovian extinction but that the discriminative stimuli were able to block conditioning to a novel stimulus, suggesting that Pavlovian processes were likely to contribute to solving the discrimination. We therefore concluded that the expression of reversal and extinction learning do share the same sensitivity to the effect of time. However, this sensitivity was most obvious when we assessed outcome-specific information following reversal learning. This suggests that the processes involved in reversal learning are somehow distinct from those underlying extinction learning, as the latter has usually been found to leave outcome-specific information relatively intact. Thus, the present study reveals that a better understanding of the mechanisms supporting reversal training requires assessing the impact that this training exerts on the content of learning rather than performance per se .
Role Played by the Passage of Time in Reversal Learning
Goarin, Estelle H. F.; Lingawi, Nura W.; Laurent, Vincent
2018-01-01
Reversal learning is thought to involve an extinction-like process that inhibits the expression of the initial learning. However, behavioral evidence for this inhibition remains difficult to interpret as various procedures have been employed to study reversal learning. Here, we used a discrimination task in rats to examine whether the inhibition produced by reversal learning is as sensitive to the passage of time as the inhibition produced by extinction. Experiment 1 showed that when tested immediately after reversal training, rats were able to use the reversed contingencies to solve the discrimination task in an outcome-specific manner. This ability to use outcome-specific information was lost when a delay was inserted between reversal training and test. However, interpretation of these data was made difficult by a potential floor effect. This concern was addressed in Experiment 2 in which it was confirmed that the passage of time impaired the ability of the rats to use the reversed contingencies in an outcome-specific manner to solve the task. Further, it revealed that the delay between initial learning and test was not responsible for this impairment. Additional work demonstrated that solving the discrimination task was unaffected by Pavlovian extinction but that the discriminative stimuli were able to block conditioning to a novel stimulus, suggesting that Pavlovian processes were likely to contribute to solving the discrimination. We therefore concluded that the expression of reversal and extinction learning do share the same sensitivity to the effect of time. However, this sensitivity was most obvious when we assessed outcome-specific information following reversal learning. This suggests that the processes involved in reversal learning are somehow distinct from those underlying extinction learning, as the latter has usually been found to leave outcome-specific information relatively intact. Thus, the present study reveals that a better understanding of the mechanisms supporting reversal training requires assessing the impact that this training exerts on the content of learning rather than performance per se. PMID:29740293
Measuring the effect of multiple eye fixations on memory for visual attributes.
Palmer, J; Ames, C T
1992-09-01
Because of limited peripheral vision, many visual tasks depend on multiple eye fixations. Good performance in such tasks demonstrates that some memory must survive from one fixation to the next. One factor that must influence performance is the degree to which multiple eye fixations interfere with the critical memories. In the present study, the amount of interference was measured by comparing visual discriminations based on multiple fixations to visual discriminations based on a single fixation. The procedure resembled partial report, but used a discrimination measure. In the prototype study, two lines were presented, followed by a single line and a cue. The cue pointed toward one of the positions of the first two lines. Observers were required to judge if the single line in the second display was longer or shorter than the cued line of the first display. These judgments were used to estimate a length threshold. The critical manipulation was to instruct observers either to maintain fixation between the lines of the first display or to fixate each line in sequence. The results showed an advantage for multiple fixations despite the intervening eye movements. In fact, thresholds for the multiple-fixation condition were nearly as good as those in a control condition where the lines were foveally viewed without eye movements. Thus, eye movements had little or no interfering effect in this task. Additional studies generalized the procedure and the stimuli. In conclusion, information about a variety of size and shape attributes was remembered with essentially no interference across eye fixations.
Beshel, Jennifer
2010-01-01
We previously showed that in a two-alternative choice (2AC) task, olfactory bulb (OB) gamma oscillations (∼70 Hz in rats) were enhanced during discrimination of structurally similar odorants (fine discrimination) versus discrimination of dissimilar odorants (coarse discrimination). In other studies (mostly employing go/no-go tasks) in multiple labs, beta oscillations (15–35 Hz) dominate the local field potential (LFP) signal in olfactory areas during odor sampling. Here we analyzed the beta frequency band power and pairwise coherence in the 2AC task. We show that in a task dominated by gamma in the OB, beta oscillations are also present in three interconnected olfactory areas (OB and anterior and posterior pyriform cortex). Only the beta band showed consistently elevated coherence during odor sniffing across all odor pairs, classes (alcohols and ketones), and discrimination types (fine and coarse), with stronger effects in first than in final criterion sessions (>70% correct). In the first sessions for fine discrimination odor pairs, beta power for incorrect trials was the same as that for correct trials for the other odor in the pair. This pattern was not repeated in coarse discrimination, in which beta power was elevated for correct relative to incorrect trials. This difference between fine and coarse odor discriminations may relate to different behavioral strategies for learning to differentiate similar versus dissimilar odors. Phase analysis showed that the OB led both pyriform areas in the beta frequency band during odor sniffing. We conclude that the beta band may be the means by which information is transmitted from the OB to higher order areas, even though task specifics modify dominance of one frequency band over another within the OB. PMID:20538778
Transfer of perceptual learning between different visual tasks
McGovern, David P.; Webb, Ben S.; Peirce, Jonathan W.
2012-01-01
Practice in most sensory tasks substantially improves perceptual performance. A hallmark of this ‘perceptual learning' is its specificity for the basic attributes of the trained stimulus and task. Recent studies have challenged the specificity of learned improvements, although transfer between substantially different tasks has yet to be demonstrated. Here, we measure the degree of transfer between three distinct perceptual tasks. Participants trained on an orientation discrimination, a curvature discrimination, or a ‘global form' task, all using stimuli comprised of multiple oriented elements. Before and after training they were tested on all three and a contrast discrimination control task. A clear transfer of learning was observed, in a pattern predicted by the relative complexity of the stimuli in the training and test tasks. Our results suggest that sensory improvements derived from perceptual learning can transfer between very different visual tasks. PMID:23048211
Transfer of perceptual learning between different visual tasks.
McGovern, David P; Webb, Ben S; Peirce, Jonathan W
2012-10-09
Practice in most sensory tasks substantially improves perceptual performance. A hallmark of this 'perceptual learning' is its specificity for the basic attributes of the trained stimulus and task. Recent studies have challenged the specificity of learned improvements, although transfer between substantially different tasks has yet to be demonstrated. Here, we measure the degree of transfer between three distinct perceptual tasks. Participants trained on an orientation discrimination, a curvature discrimination, or a 'global form' task, all using stimuli comprised of multiple oriented elements. Before and after training they were tested on all three and a contrast discrimination control task. A clear transfer of learning was observed, in a pattern predicted by the relative complexity of the stimuli in the training and test tasks. Our results suggest that sensory improvements derived from perceptual learning can transfer between very different visual tasks.
Social anxiety under load: the effects of perceptual load in processing emotional faces.
Soares, Sandra C; Rocha, Marta; Neiva, Tiago; Rodrigues, Paulo; Silva, Carlos F
2015-01-01
Previous studies in the social anxiety arena have shown an impaired attentional control system, similar to that found in trait anxiety. However, the effect of task demands on social anxiety in socially threatening stimuli, such as angry faces, remains unseen. In the present study, 54 university students scoring high and low in the Social Interaction and Performance Anxiety and Avoidance Scale (SIPAAS) questionnaire, participated in a target letter discrimination task while task-irrelevant face stimuli (angry, disgust, happy, and neutral) were simultaneously presented. The results showed that high (compared to low) socially anxious individuals were more prone to distraction by task-irrelevant stimuli, particularly under high perceptual load conditions. More importantly, for such individuals, the accuracy proportions for angry faces significantly differed between the low and high perceptual load conditions, which is discussed in light of current evolutionary models of social anxiety.
Discrimination Report ESTCP Project #MM-0437
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasperikova, Erika
2008-10-01
The FY06 Defense Appropriation contains funding for the 'Development of Advanced, Sophisticated, and Discrimination Technologies for UXO Cleanup' in the Environmental Security Technology Certification Program. In 2003, the Defense Science Board observed: 'The...problem is that instruments that can detect the buried UXOs also detect numerous scrap metal objects and other artifacts, which leads to an enormous amount of expensive digging. Typically 100 holes may be dug before a real UXO is unearthed. The Task Force assessment is that much of this wasteful digging can be eliminated by the use of more advanced technology instruments that exploit modern digital processing andmore » advanced multi-mode sensors to achieve an improved level of discrimination of scrap from UXOs'. Significant progress has been made in discrimination technology. To date, testing of these approaches has been primarily limited to test sites with only limited application at live sites. Acceptance of discrimination technologies requires demonstration of system capabilities at UXO sites under real world conditions. FE Warren Air Force Base (AFB) in Cheyenne, WY is one such site. The demonstration objective was to determine the discrimination capabilities, cost and reliability of the Berkeley UXO Discriminator (BUD) in discrimination of UXO from scrap metal in real life conditions. Lawrence Berkeley National Laboratory performed a detection and discrimination survey of the Priority 1 area ({approx}5 acres) of the FE Warren AFB. The data included a system characterization with the emplaced calibration items and targets in the Geophysical Prove Out (GPO) area.« less
Some factors underlying individual differences in speech recognition on PRESTO: a first report.
Tamati, Terrin N; Gilbert, Jaimie L; Pisoni, David B
2013-01-01
Previous studies investigating speech recognition in adverse listening conditions have found extensive variability among individual listeners. However, little is currently known about the core underlying factors that influence speech recognition abilities. To investigate sensory, perceptual, and neurocognitive differences between good and poor listeners on the Perceptually Robust English Sentence Test Open-set (PRESTO), a new high-variability sentence recognition test under adverse listening conditions. Participants who fell in the upper quartile (HiPRESTO listeners) or lower quartile (LoPRESTO listeners) on key word recognition on sentences from PRESTO in multitalker babble completed a battery of behavioral tasks and self-report questionnaires designed to investigate real-world hearing difficulties, indexical processing skills, and neurocognitive abilities. Young, normal-hearing adults (N = 40) from the Indiana University community participated in the current study. Participants' assessment of their own real-world hearing difficulties was measured with a self-report questionnaire on situational hearing and hearing health history. Indexical processing skills were assessed using a talker discrimination task, a gender discrimination task, and a forced-choice regional dialect categorization task. Neurocognitive abilities were measured with the Auditory Digit Span Forward (verbal short-term memory) and Digit Span Backward (verbal working memory) tests, the Stroop Color and Word Test (attention/inhibition), the WordFam word familiarity test (vocabulary size), the Behavioral Rating Inventory of Executive Function-Adult Version (BRIEF-A) self-report questionnaire on executive function, and two performance subtests of the Wechsler Abbreviated Scale of Intelligence (WASI) Performance Intelligence Quotient (IQ; nonverbal intelligence). Scores on self-report questionnaires and behavioral tasks were tallied and analyzed by listener group (HiPRESTO and LoPRESTO). The extreme groups did not differ overall on self-reported hearing difficulties in real-world listening environments. However, an item-by-item analysis of questions revealed that LoPRESTO listeners reported significantly greater difficulty understanding speakers in a public place. HiPRESTO listeners were significantly more accurate than LoPRESTO listeners at gender discrimination and regional dialect categorization, but they did not differ on talker discrimination accuracy or response time, or gender discrimination response time. HiPRESTO listeners also had longer forward and backward digit spans, higher word familiarity ratings on the WordFam test, and lower (better) scores for three individual items on the BRIEF-A questionnaire related to cognitive load. The two groups did not differ on the Stroop Color and Word Test or either of the WASI performance IQ subtests. HiPRESTO listeners and LoPRESTO listeners differed in indexical processing abilities, short-term and working memory capacity, vocabulary size, and some domains of executive functioning. These findings suggest that individual differences in the ability to encode and maintain highly detailed episodic information in speech may underlie the variability observed in speech recognition performance in adverse listening conditions using high-variability PRESTO sentences in multitalker babble. American Academy of Audiology.
Some Factors Underlying Individual Differences in Speech Recognition on PRESTO: A First Report
Tamati, Terrin N.; Gilbert, Jaimie L.; Pisoni, David B.
2013-01-01
Background Previous studies investigating speech recognition in adverse listening conditions have found extensive variability among individual listeners. However, little is currently known about the core, underlying factors that influence speech recognition abilities. Purpose To investigate sensory, perceptual, and neurocognitive differences between good and poor listeners on PRESTO, a new high-variability sentence recognition test under adverse listening conditions. Research Design Participants who fell in the upper quartile (HiPRESTO listeners) or lower quartile (LoPRESTO listeners) on key word recognition on sentences from PRESTO in multitalker babble completed a battery of behavioral tasks and self-report questionnaires designed to investigate real-world hearing difficulties, indexical processing skills, and neurocognitive abilities. Study Sample Young, normal-hearing adults (N = 40) from the Indiana University community participated in the current study. Data Collection and Analysis Participants’ assessment of their own real-world hearing difficulties was measured with a self-report questionnaire on situational hearing and hearing health history. Indexical processing skills were assessed using a talker discrimination task, a gender discrimination task, and a forced-choice regional dialect categorization task. Neurocognitive abilities were measured with the Auditory Digit Span Forward (verbal short-term memory) and Digit Span Backward (verbal working memory) tests, the Stroop Color and Word Test (attention/inhibition), the WordFam word familiarity test (vocabulary size), the BRIEF-A self-report questionnaire on executive function, and two performance subtests of the WASI Performance IQ (non-verbal intelligence). Scores on self-report questionnaires and behavioral tasks were tallied and analyzed by listener group (HiPRESTO and LoPRESTO). Results The extreme groups did not differ overall on self-reported hearing difficulties in real-world listening environments. However, an item-by-item analysis of questions revealed that LoPRESTO listeners reported significantly greater difficulty understanding speakers in a public place. HiPRESTO listeners were significantly more accurate than LoPRESTO listeners at gender discrimination and regional dialect categorization, but they did not differ on talker discrimination accuracy or response time, or gender discrimination response time. HiPRESTO listeners also had longer forward and backward digit spans, higher word familiarity ratings on the WordFam test, and lower (better) scores for three individual items on the BRIEF-A questionnaire related to cognitive load. The two groups did not differ on the Stroop Color and Word Test or either of the WASI performance IQ subtests. Conclusions HiPRESTO listeners and LoPRESTO listeners differed in indexical processing abilities, short-term and working memory capacity, vocabulary size, and some domains of executive functioning. These findings suggest that individual differences in the ability to encode and maintain highly detailed episodic information in speech may underlie the variability observed in speech recognition performance in adverse listening conditions using high-variability PRESTO sentences in multitalker babble. PMID:24047949
Task-specific image partitioning.
Kim, Sungwoong; Nowozin, Sebastian; Kohli, Pushmeet; Yoo, Chang D
2013-02-01
Image partitioning is an important preprocessing step for many of the state-of-the-art algorithms used for performing high-level computer vision tasks. Typically, partitioning is conducted without regard to the task in hand. We propose a task-specific image partitioning framework to produce a region-based image representation that will lead to a higher task performance than that reached using any task-oblivious partitioning framework and existing supervised partitioning framework, albeit few in number. The proposed method partitions the image by means of correlation clustering, maximizing a linear discriminant function defined over a superpixel graph. The parameters of the discriminant function that define task-specific similarity/dissimilarity among superpixels are estimated based on structured support vector machine (S-SVM) using task-specific training data. The S-SVM learning leads to a better generalization ability while the construction of the superpixel graph used to define the discriminant function allows a rich set of features to be incorporated to improve discriminability and robustness. We evaluate the learned task-aware partitioning algorithms on three benchmark datasets. Results show that task-aware partitioning leads to better labeling performance than the partitioning computed by the state-of-the-art general-purpose and supervised partitioning algorithms. We believe that the task-specific image partitioning paradigm is widely applicable to improving performance in high-level image understanding tasks.
Successful acquisition of an olfactory discrimination test by Asian elephants, Elephas maximus.
Arvidsson, Josefin; Amundin, Mats; Laska, Matthias
2012-02-01
The present study demonstrates that Asian elephants, Elephas maximus, can successfully be trained to cooperate in an olfactory discrimination test based on a food-rewarded two-alternative instrumental conditioning procedure. The animals learned the basic principle of the test within only 60 trials and readily mastered intramodal stimulus transfer tasks. Further, they were capable of distinguishing between structurally related odor stimuli and remembered the reward value of previously learned odor stimuli after 2, 4, 8, and 16 weeks of recess without any signs of forgetting. The precision and consistency of the elephants' performance in tests of odor discrimination ability and long-term odor memory demonstrate the suitability of this method for assessing olfactory function in this proboscid species. An across-species comparison of several measures of olfactory learning capabilities such as speed of initial task acquisition and ability to master intramodal stimulus transfer tasks shows that Asian elephants are at least as good in their performance as mice, rats, and dogs, and clearly superior to nonhuman primates and fur seals. The results support the notion that Asian elephants may use olfactory cues for social communication and food selection and that the sense of smell may play an important role in the control of their behavior. Copyright © 2011 Elsevier Inc. All rights reserved.
The role of timbre in pitch matching abilities and pitch discrimination abilities with complex tones
NASA Astrophysics Data System (ADS)
Moore, Robert E.; Watts, Christopher R.; Zhang, Fawen
2004-05-01
Control of fundamental frequency (F0) is important for singing in-tune and is an important factor related to the perception of a talented singing voice. One purpose of the present study was to investigate the relationship between pitch-matching skills, which is one method of testing F0 control, and pitch discrimination skills. It was observed that there was a relationship between pitch matching abilities and pitch discrimination abilities. Those subjects that were accurate pitch matchers were also accurate pitch discriminators (and vice versa). Further, timbre differences appeared to play a role in pitch discrimination accuracy. A second part of the study investigated the effect of timbre on speech discrimination. To study this, all but the first five harmonics of complex tones with different timbre were removed for the pitch discrimination task, thus making the tones more similar in timbre. Under this condition no difference was found between the pitch discrimination abilities of those who were accurate pitch matchers and those who were inaccurate pitch matchers. The results suggest that accurate F0 control is at least partially dependent on pitch discrimination abilities, and timbre appears to play an important role in differences in pitch discrimination ability.
Treesukosol, Yada; Mathes, Clare M.
2011-01-01
Evidence in the literature shows that in rodents, some taste-responsive neurons respond to both quinine and acid stimuli. Also, under certain circumstances, rodents display some degree of difficulty in discriminating quinine and acid stimuli. Here, C57BL/6J mice were trained and tested in a 2-response operant discrimination task. Mice had severe difficulty discriminating citric acid from quinine and 6-n-propylthiouracil (PROP) with performance slightly, but significantly, above chance. In contrast, mice were able to competently discriminate sucrose from citric acid, NaCl, quinine, and PROP. In another experiment, mice that were conditioned to avoid quinine by pairings with LiCl injections subsequently suppressed licking responses to quinine and citric acid but not to NaCl or sucrose in a brief-access test, relative to NaCl-injected control animals. However, mice that were conditioned to avoid citric acid did not display cross-generalization to quinine. These mice significantly suppressed licking only to citric acid, and to a much lesser extent NaCl, compared with controls. Collectively, the findings from these experiments suggest that in mice, citric acid and quinine share chemosensory features making discrimination difficult but are not perceptually identical. PMID:21421543
Aizenberg, Mark; Mwilambwe-Tshilobo, Laetitia; Briguglio, John J.; Natan, Ryan G.; Geffen, Maria N.
2015-01-01
The ability to discriminate tones of different frequencies is fundamentally important for everyday hearing. While neurons in the primary auditory cortex (AC) respond differentially to tones of different frequencies, whether and how AC regulates auditory behaviors that rely on frequency discrimination remains poorly understood. Here, we find that the level of activity of inhibitory neurons in AC controls frequency specificity in innate and learned auditory behaviors that rely on frequency discrimination. Photoactivation of parvalbumin-positive interneurons (PVs) improved the ability of the mouse to detect a shift in tone frequency, whereas photosuppression of PVs impaired the performance. Furthermore, photosuppression of PVs during discriminative auditory fear conditioning increased generalization of conditioned response across tone frequencies, whereas PV photoactivation preserved normal specificity of learning. The observed changes in behavioral performance were correlated with bidirectional changes in the magnitude of tone-evoked responses, consistent with predictions of a model of a coupled excitatory-inhibitory cortical network. Direct photoactivation of excitatory neurons, which did not change tone-evoked response magnitude, did not affect behavioral performance in either task. Our results identify a new function for inhibition in the auditory cortex, demonstrating that it can improve or impair acuity of innate and learned auditory behaviors that rely on frequency discrimination. PMID:26629746
Task-dependent color discrimination
NASA Technical Reports Server (NTRS)
Poirson, Allen B.; Wandell, Brian A.
1990-01-01
When color video displays are used in time-critical applications (e.g., head-up displays, video control panels), the observer must discriminate among briefly presented targets seen within a complex spatial scene. Color-discrimination threshold are compared by using two tasks. In one task the observer makes color matches between two halves of a continuously displayed bipartite field. In a second task the observer detects a color target in a set of briefly presented objects. The data from both tasks are well summarized by ellipsoidal isosensitivity contours. The fitted ellipsoids differ both in their size, which indicates an absolute sensitivity difference, and orientation, which indicates a relative sensitivity difference.
Vibrotactile Discrimination Training Affects Brain Connectivity in Profoundly Deaf Individuals
González-Garrido, Andrés A.; Ruiz-Stovel, Vanessa D.; Gómez-Velázquez, Fabiola R.; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Salido-Ruiz, Ricardo A.; Espinoza-Valdez, Aurora; Campos, Luis R.
2017-01-01
Early auditory deprivation has serious neurodevelopmental and cognitive repercussions largely derived from impoverished and delayed language acquisition. These conditions may be associated with early changes in brain connectivity. Vibrotactile stimulation is a sensory substitution method that allows perception and discrimination of sound, and even speech. To clarify the efficacy of this approach, a vibrotactile oddball task with 700 and 900 Hz pure-tones as stimuli [counterbalanced as target (T: 20% of the total) and non-target (NT: 80%)] with simultaneous EEG recording was performed by 14 profoundly deaf and 14 normal-hearing (NH) subjects, before and after a short training period (five 1-h sessions; in 2.5–3 weeks). A small device worn on the right index finger delivered sound-wave stimuli. The training included discrimination of pure tone frequency and duration, and more complex natural sounds. A significant P300 amplitude increase and behavioral improvement was observed in both deaf and normal subjects, with no between group differences. However, a P3 with larger scalp distribution over parietal cortical areas and lateralized to the right was observed in the profoundly deaf. A graph theory analysis showed that brief training significantly increased fronto-central brain connectivity in deaf subjects, but not in NH subjects. Together, ERP tools and graph methods depicted the different functional brain dynamic in deaf and NH individuals, underlying the temporary engagement of the cognitive resources demanded by the task. Our findings showed that the index-fingertip somatosensory mechanoreceptors can discriminate sounds. Further studies are necessary to clarify brain connectivity dynamics associated with the performance of vibrotactile language-related discrimination tasks and the effect of lengthier training programs. PMID:28220063
Vibrotactile Discrimination Training Affects Brain Connectivity in Profoundly Deaf Individuals.
González-Garrido, Andrés A; Ruiz-Stovel, Vanessa D; Gómez-Velázquez, Fabiola R; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Salido-Ruiz, Ricardo A; Espinoza-Valdez, Aurora; Campos, Luis R
2017-01-01
Early auditory deprivation has serious neurodevelopmental and cognitive repercussions largely derived from impoverished and delayed language acquisition. These conditions may be associated with early changes in brain connectivity. Vibrotactile stimulation is a sensory substitution method that allows perception and discrimination of sound, and even speech. To clarify the efficacy of this approach, a vibrotactile oddball task with 700 and 900 Hz pure-tones as stimuli [counterbalanced as target (T: 20% of the total) and non-target (NT: 80%)] with simultaneous EEG recording was performed by 14 profoundly deaf and 14 normal-hearing (NH) subjects, before and after a short training period (five 1-h sessions; in 2.5-3 weeks). A small device worn on the right index finger delivered sound-wave stimuli. The training included discrimination of pure tone frequency and duration, and more complex natural sounds. A significant P300 amplitude increase and behavioral improvement was observed in both deaf and normal subjects, with no between group differences. However, a P3 with larger scalp distribution over parietal cortical areas and lateralized to the right was observed in the profoundly deaf. A graph theory analysis showed that brief training significantly increased fronto-central brain connectivity in deaf subjects, but not in NH subjects. Together, ERP tools and graph methods depicted the different functional brain dynamic in deaf and NH individuals, underlying the temporary engagement of the cognitive resources demanded by the task. Our findings showed that the index-fingertip somatosensory mechanoreceptors can discriminate sounds. Further studies are necessary to clarify brain connectivity dynamics associated with the performance of vibrotactile language-related discrimination tasks and the effect of lengthier training programs.
Impact of elicited mood on movement expressivity during a fitness task.
Giraud, Tom; Focone, Florian; Isableu, Brice; Martin, Jean-Claude; Demulier, Virginie
2016-10-01
The purpose of the present study was to evaluate the impact of four mood conditions (control, positive, negative, aroused) on movement expressivity during a fitness task. Motion capture data from twenty individuals were recorded as they performed a predefined motion sequence. Moods were elicited using task-specific scenarii to keep a valid context. Movement qualities inspired by Effort-Shape framework (Laban & Ullmann, 1971) were computed (i.e., Impulsiveness, Energy, Directness, Jerkiness and Expansiveness). A reduced number of computed features from each movement quality was selected via Principal Component Analyses. Analyses of variance and Generalized Linear Mixed Models were used to identify movement characteristics discriminating the four mood conditions. The aroused mood condition was strongly associated with increased mean Energy compared to the three other conditions. The positive and negative mood conditions showed more subtle differences interpreted as a result of their moderate activation level. Positive mood was associated with more impulsive movements and negative mood was associated with more tense movements (i.e., reduced variability and increased Jerkiness). Findings evidence the key role of movement qualities in capturing motion signatures of moods and highlight the importance of task context in their interpretations. Copyright © 2016 Elsevier B.V. All rights reserved.
Borod, J C; Andelman, F; Obler, L K; Tweedy, J R; Welkowitz, J
1992-09-01
This study examines the contribution of the lexical/verbal channel to emotional processing in 16 right brain-damaged (RBD), 16 left brain-damaged (LBD) and 16 normal control (NC) right-handed adults. Emotional lexical perception tasks were developed; analogous nonemotional tasks were created to control for cognitive and linguistic factors. The three subject groups were matched for gender, age and education. The brain-damaged groups were similar with respect to cerebrovascular etiology, months post-onset, sensory-motor status and lesion location. Parallel emotional and nonemotional tasks included word identification, sentence identification and word discrimination. For both word tasks, RBDs were significantly more impaired than LBDs and NCs in the emotional condition. For all three tasks, RBDs showed a significantly greater performance discrepancy between emotional and nonemotional conditions than did LBDs or NCs. Results were not affected by the valence (i.e. positive/negative) of the stimuli. These findings suggest a dominant role for the right hemisphere in the perception of lexically-based emotional stimuli.
Payne, Sophie; Tsakiris, Manos
2017-02-01
Self-other discrimination is a crucial mechanism for social cognition. Neuroimaging and neurostimulation research has pointed to the involvement of the right temporoparietal region in a variety of self-other discrimination tasks. Although repetitive transcranial magnetic stimulation over the right temporoparietal area has been shown to disrupt self-other discrimination in face-recognition tasks, no research has investigated the effect of increasing the cortical excitability in this region on self-other face discrimination. Here we used transcranial direct current stimulation (tDCS) to investigate changes in self-other discrimination with a video-morphing task in which the participant's face morphed into, or out of, a familiar other's face. The task was performed before and after 20 min of tDCS targeting the right temporoparietal area (anodal, cathodal, or sham stimulation). Differences in task performance following stimulation were taken to indicate a change in self-other discrimination. Following anodal stimulation only, we observed a significant increase in the amount of self-face needed to distinguish between self and other. The findings are discussed in relation to the control of self and other representations and to domain-general theories of social cognition.
Sleep restriction and cognitive load affect performance on a simulated marksmanship task.
Smith, Carl D; Cooper, Adam D; Merullo, Donna J; Cohen, Bruce S; Heaton, Kristin J; Claro, Pedro J; Smith, Tracey
2017-11-24
Sleep restriction degrades cognitive and motor performance, which can adversely impact job performance and increase the risk of accidents. Military personnel are prone to operating under sleep restriction, and previous work suggests that military marksmanship may be negatively affected under such conditions. Results of these studies, however, are mixed and have often incorporated additional stressors (e.g. energy restriction) beyond sleep restriction. Moreover, few studies have investigated how the degree of difficulty of a marksmanship task impacts performance following sleep restriction. The purpose of the current experiment was to study the effects of sleep restriction on marksmanship while minimizing the potential influence of other forms of stress. A friend-foe discrimination challenge with greater or lesser degrees of complexity (high versus low load) was used as the primary marksmanship task. Active duty Soldiers were recruited, and allowed 2 h of sleep every 24 h over a 72-h testing period. Marksmanship tasks, cognitive assessment metrics and the NASA-Task Load Index were administered daily. Results indicated that reaction times to shoot foe targets and signal friendly targets slowed over time. In addition, the ability to correctly discriminate between friend and foe targets significantly decreased in the high-cognitive-load condition over time despite shot accuracy remaining stable. The NASA-Task Load Index revealed that, although marksmanship performance degraded, participants believed their performance did not change over time. These results further characterize the consequences of sleep restriction on marksmanship performance and the perception of performance, and reinforce the importance of adequate sleep among service members when feasible. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Gonzalez-Rosa, Javier J; Inuggi, Alberto; Blasi, Valeria; Cursi, Marco; Annovazzi, Pietro; Comi, Giancarlo; Falini, Andrea; Leocani, Letizia
2013-07-01
We investigated the neural correlates underlying response inhibition and conflict detection processes using ERPs and source localization analyses simultaneously acquired during fMRI scanning. ERPs were elicited by a simple reaction time task (SRT), a Go/NoGo task, and a Stroop-like task (CST). The cognitive conflict was thus manipulated in order to probe the degree to which information processing is shared across cognitive systems. We proposed to dissociate inhibition and interference conflict effects on brain activity by using identical Stroop-like congruent/incongruent stimuli in all three task contexts and while varying the response required. NoGo-incongruent trials showed a larger N2 and enhanced activations of rostral anterior cingulate cortex (ACC) and pre-supplementary motor area, whereas Go-congruent trials showed a larger P3 and increased parietal activations. Congruent and incongruent conditions of the CST task also elicited similar N2, P3 and late negativity (LN) ERPs, though CST-incongruent trials revealed a larger LN and enhanced prefrontal and ACC activations. Considering the stimulus probability and experimental manipulation of our study, current findings suggest that NoGo N2 and frontal NoGo P3 appear to be more associated to response inhibition rather than a specific conflict monitoring, whereas occipito-parietal P3 of Go and CST conditions may be more linked to a planned response competition between the prepared and required response. LN, however, appears to be related to higher level conflict monitoring associated with response choice-discrimination but not when the presence of cognitive conflict is associated with response inhibition. Copyright © 2013. Published by Elsevier B.V.
Grabiner, Mark D; Marone, Jane R; Wyatt, Marilynn; Sessoms, Pinata; Kaufman, Kenton R
2018-06-01
The fractal scaling evident in the step-to-step fluctuations of stepping-related time series reflects, to some degree, neuromotor noise. The primary purpose of this study was to determine the extent to which the fractal scaling of step width, step width and step width variability are affected by performance of an attention-demanding task. We hypothesized that the attention-demanding task would shift the structure of the step width time series toward white, uncorrelated noise. Subjects performed two 10-min treadmill walking trials, a control trial of undisturbed walking and a trial during which they performed a mental arithmetic/texting task. Motion capture data was converted to step width time series, the fractal scaling of which were determined from their power spectra. Fractal scaling decreased by 22% during the texting condition (p < 0.001) supporting the hypothesized shift toward white uncorrelated noise. Step width and step width variability increased 19% and five percent, respectively (p < 0.001). However, a stepwise discriminant analysis to which all three variables were input revealed that the control and dual task conditions were discriminated only by step width fractal scaling. The change of the fractal scaling of step width is consistent with increased cognitive demand and suggests a transition in the characteristics of the signal noise. This may reflect an important advance toward the understanding of the manner in which neuromotor noise contributes to some types of falls. However, further investigation of the repeatability of the results, the sensitivity of the results to progressive increases in cognitive load imposed by attention-demanding tasks, and the extent to which the results can be generalized to the gait of older adults seems warranted. Copyright © 2018 Elsevier B.V. All rights reserved.
Feedback Valence Affects Auditory Perceptual Learning Independently of Feedback Probability
Amitay, Sygal; Moore, David R.; Molloy, Katharine; Halliday, Lorna F.
2015-01-01
Previous studies have suggested that negative feedback is more effective in driving learning than positive feedback. We investigated the effect on learning of providing varying amounts of negative and positive feedback while listeners attempted to discriminate between three identical tones; an impossible task that nevertheless produces robust learning. Four feedback conditions were compared during training: 90% positive feedback or 10% negative feedback informed the participants that they were doing equally well, while 10% positive or 90% negative feedback informed them they were doing equally badly. In all conditions the feedback was random in relation to the listeners’ responses (because the task was to discriminate three identical tones), yet both the valence (negative vs. positive) and the probability of feedback (10% vs. 90%) affected learning. Feedback that informed listeners they were doing badly resulted in better post-training performance than feedback that informed them they were doing well, independent of valence. In addition, positive feedback during training resulted in better post-training performance than negative feedback, but only positive feedback indicating listeners were doing badly on the task resulted in learning. As we have previously speculated, feedback that better reflected the difficulty of the task was more effective in driving learning than feedback that suggested performance was better than it should have been given perceived task difficulty. But contrary to expectations, positive feedback was more effective than negative feedback in driving learning. Feedback thus had two separable effects on learning: feedback valence affected motivation on a subjectively difficult task, and learning occurred only when feedback probability reflected the subjective difficulty. To optimize learning, training programs need to take into consideration both feedback valence and probability. PMID:25946173
Cong, Lin-Juan; Wang, Ru-Jie; Yu, Cong; Zhang, Jun-Yun
2016-01-01
Visual perceptual learning is known to be specific to the trained retinal location, feature, and task. However, location and feature specificity can be eliminated by double-training or TPE training protocols, in which observers receive additional exposure to the transfer location or feature dimension via an irrelevant task besides the primary learning task Here we tested whether these new training protocols could even make learning transfer across different tasks involving discrimination of basic visual features (e.g., orientation and contrast). Observers practiced a near-threshold orientation (or contrast) discrimination task. Following a TPE training protocol, they also received exposure to the transfer task via performing suprathreshold contrast (or orientation) discrimination in alternating blocks of trials in the same sessions. The results showed no evidence for significant learning transfer to the untrained near-threshold contrast (or orientation) discrimination task after discounting the pretest effects and the suprathreshold practice effects. These results thus do not support a hypothetical task-independent component in perceptual learning of basic visual features. They also set the boundary of the new training protocols in their capability to enable learning transfer. PMID:26873777
Smell or vision? The use of different sensory modalities in predator discrimination.
Fischer, Stefan; Oberhummer, Evelyne; Cunha-Saraiva, Filipa; Gerber, Nina; Taborsky, Barbara
2017-01-01
Theory predicts that animals should adjust their escape responses to the perceived predation risk. The information animals obtain about potential predation risk may differ qualitatively depending on the sensory modality by which a cue is perceived. For instance, olfactory cues may reveal better information about the presence or absence of threats, whereas visual information can reliably transmit the position and potential attack distance of a predator. While this suggests a differential use of information perceived through the two sensory channels, the relative importance of visual vs. olfactory cues when distinguishing between different predation threats is still poorly understood. Therefore, we exposed individuals of the cooperatively breeding cichlid Neolamprologus pulcher to a standardized threat stimulus combined with either predator or non-predator cues presented either visually or chemically. We predicted that flight responses towards a threat stimulus are more pronounced if cues of dangerous rather than harmless heterospecifics are presented and that N. pulcher , being an aquatic species, relies more on olfaction when discriminating between dangerous and harmless heterospecifics. N. pulcher responded faster to the threat stimulus, reached a refuge faster and entered a refuge more likely when predator cues were perceived. Unexpectedly, the sensory modality used to perceive the cues did not affect the escape response or the duration of the recovery phase. This suggests that N. pulcher are able to discriminate heterospecific cues with similar acuity when using vision or olfaction. We discuss that this ability may be advantageous in aquatic environments where the visibility conditions strongly vary over time. The ability to rapidly discriminate between dangerous predators and harmless heterospecifics is crucial for the survival of prey animals. In seasonally fluctuating environment, sensory conditions may change over the year and may make the use of multiple sensory modalities for heterospecific discrimination highly beneficial. Here we compared the efficacy of visual and olfactory senses in the discrimination ability of the cooperatively breeding cichlid Neolamprologus pulcher . We presented individual fish with visual or olfactory cues of predators or harmless heterospecifics and recorded their flight response. When exposed to predator cues, individuals responded faster, reached a refuge faster and were more likely to enter the refuge. Unexpectedly, the olfactory and visual senses seemed to be equally efficient in this discrimination task, suggesting that seasonal variation of water conditions experienced by N. pulcher may necessitate the use of multiple sensory channels for the same task.
Color Vision and Performance on Color-Coded Cockpit Displays.
Gaska, James P; Wright, Steven T; Winterbottom, Marc D; Hadley, Steven C
Although there are numerous studies that demonstrate that color vision deficient (CVD) individuals perform less well than color vision normal (CVN) individuals in tasks that require discrimination or identification of colored stimuli, there remains a need to quantify the relationship between the type and severity of CVD and performance on operationally relevant tasks. Participants were classified as CVN (N = 45) or CVD (N = 49) using the Rabin cone contrast test, which is the standard color vision screening test used by the United States Air Force. In the color condition, test images that were representative of the size, shape, and color of symbols and lines used on fifth-generation fighter aircraft displays were used to measure operational performance. In the achromatic condition, all symbols and lines had the same chromaticity but differed in luminance. Subjects were asked to locate and discriminate between friend vs. foe symbols (red vs. green, or brighter vs. dimmer) while speed and accuracy were recorded. Increasing color deficiency was associated with decreasing speed and accuracy for the color condition (R 2 > 0.2), but not for the achromatic condition. Mean differences between CVN and CVD individuals showed the same pattern. Although lower CCT scores are clearly associated with lower performance in color related tasks, the magnitude of the performance loss was relatively small and there were multiple examples of high-performing CVD individuals who had higher operational scores than low-performing CVN individuals. Gaska JP, Wright ST, Winterbottom MD, Hadley SC. Color vision and performance on color-coded cockpit displays. Aerosp Med Hum Perform. 2016; 87(11):921-927.
Examining the relationship between skilled music training and attention.
Wang, Xiao; Ossher, Lynn; Reuter-Lorenz, Patricia A
2015-11-01
While many aspects of cognition have been investigated in relation to skilled music training, surprisingly little work has examined the connection between music training and attentional abilities. The present study investigated the performance of skilled musicians on cognitively demanding sustained attention tasks, measuring both temporal and visual discrimination over a prolonged duration. Participants with extensive formal music training were found to have superior performance on a temporal discrimination task, but not a visual discrimination task, compared to participants with no music training. In addition, no differences were found between groups in vigilance decrement in either type of task. Although no differences were evident in vigilance per se, the results indicate that performance in an attention-demanding temporal discrimination task was superior in individuals with extensive music training. We speculate that this basic cognitive ability may contribute to advantages that musicians show in other cognitive measures. Copyright © 2015 Elsevier Inc. All rights reserved.
Change deafness for real spatialized environmental scenes.
Gaston, Jeremy; Dickerson, Kelly; Hipp, Daniel; Gerhardstein, Peter
2017-01-01
The everyday auditory environment is complex and dynamic; often, multiple sounds co-occur and compete for a listener's cognitive resources. 'Change deafness', framed as the auditory analog to the well-documented phenomenon of 'change blindness', describes the finding that changes presented within complex environments are often missed. The present study examines a number of stimulus factors that may influence change deafness under real-world listening conditions. Specifically, an AX (same-different) discrimination task was used to examine the effects of both spatial separation over a loudspeaker array and the type of change (sound source additions and removals) on discrimination of changes embedded in complex backgrounds. Results using signal detection theory and accuracy analyses indicated that, under most conditions, errors were significantly reduced for spatially distributed relative to non-spatial scenes. A second goal of the present study was to evaluate a possible link between memory for scene contents and change discrimination. Memory was evaluated by presenting a cued recall test following each trial of the discrimination task. Results using signal detection theory and accuracy analyses indicated that recall ability was similar in terms of accuracy, but there were reductions in sensitivity compared to previous reports. Finally, the present study used a large and representative sample of outdoor, urban, and environmental sounds, presented in unique combinations of nearly 1000 trials per participant. This enabled the exploration of the relationship between change perception and the perceptual similarity between change targets and background scene sounds. These (post hoc) analyses suggest both a categorical and a stimulus-level relationship between scene similarity and the magnitude of change errors.
Different Neuroplasticity for Task Targets and Distractors
Spingath, Elsie Y.; Kang, Hyun Sug; Plummer, Thane; Blake, David T.
2011-01-01
Adult learning-induced sensory cortex plasticity results in enhanced action potential rates in neurons that have the most relevant information for the task, or those that respond strongly to one sensory stimulus but weakly to its comparison stimulus. Current theories suggest this plasticity is caused when target stimulus evoked activity is enhanced by reward signals from neuromodulatory nuclei. Prior work has found evidence suggestive of nonselective enhancement of neural responses, and suppression of responses to task distractors, but the differences in these effects between detection and discrimination have not been directly tested. Using cortical implants, we defined physiological responses in macaque somatosensory cortex during serial, matched, detection and discrimination tasks. Nonselective increases in neural responsiveness were observed during detection learning. Suppression of responses to task distractors was observed during discrimination learning, and this suppression was specific to cortical locations that sampled responses to the task distractor before learning. Changes in receptive field size were measured as the area of skin that had a significant response to a constant magnitude stimulus, and these areal changes paralleled changes in responsiveness. From before detection learning until after discrimination learning, the enduring changes were selective suppression of cortical locations responsive to task distractors, and nonselective enhancement of responsiveness at cortical locations selective for target and control skin sites. A comparison of observations in prior studies with the observed plasticity effects suggests that the non-selective response enhancement and selective suppression suffice to explain known plasticity phenomena in simple spatial tasks. This work suggests that differential responsiveness to task targets and distractors in primary sensory cortex for a simple spatial detection and discrimination task arise from nonselective increases in response over a broad cortical locus that includes the representation of the task target, and selective suppression of responses to the task distractor within this locus. PMID:21297962
Vonk, Jennifer; Johnson-Ulrich, Zoe
2014-09-01
One captive adult chimpanzee and 3 adult American black bears were presented with a series of natural category discrimination tasks on a touch-screen computer. This is the first explicit comparison of bear and primate abilities using identical tasks, and the first test of a social concept in a carnivore. The discriminations involved a social relationship category (mother/offspring) and a nonsocial category involving food items. The social category discrimination could be made using knowledge of the overarching mother/offspring concept, whereas the nonsocial category discriminations could be made only by using perceptual rules, such as "choose images that show larger and smaller items of the same type." The bears failed to show above-chance transfer on either the social or nonsocial discriminations, indicating that they did not use either the perceptual rule or knowledge of the overarching concept of mother/offspring to guide their choices in these tasks. However, at least 1 bear remembered previously reinforced stimuli when these stimuli were recombined, later. The chimpanzee showed transfer on a control task and did not consistently apply a perceptual rule to solve the nonsocial task, so it is possible that he eventually acquired the social concept. Further comparisons between species on identical tasks assessing social knowledge will help illuminate the selective pressures responsible for a range of social cognitive skills.
Quantifying facial expression recognition across viewing conditions.
Goren, Deborah; Wilson, Hugh R
2006-04-01
Facial expressions are key to social interactions and to assessment of potential danger in various situations. Therefore, our brains must be able to recognize facial expressions when they are transformed in biologically plausible ways. We used synthetic happy, sad, angry and fearful faces to determine the amount of geometric change required to recognize these emotions during brief presentations. Five-alternative forced choice conditions involving central viewing, peripheral viewing and inversion were used to study recognition among the four emotions. Two-alternative forced choice was used to study affect discrimination when spatial frequency information in the stimulus was modified. The results show an emotion and task-dependent pattern of detection. Facial expressions presented with low peak frequencies are much harder to discriminate from neutral than faces defined by either mid or high peak frequencies. Peripheral presentation of faces also makes recognition much more difficult, except for happy faces. Differences between fearful detection and recognition tasks are probably due to common confusions with sadness when recognizing fear from among other emotions. These findings further support the idea that these emotions are processed separately from each other.
Cardinal, Rudolf N; Parkinson, John A; Lachenal, Guillaume; Halkerston, Katherine M; Rudarakanchana, Nung; Hall, Jeremy; Morrison, Caroline H; Howes, Simon R; Robbins, Trevor W; Everitt, Barry J
2002-08-01
The nucleus accumbens core (AcbC), anterior cingulate cortex (ACC), and central nucleus of the amygdala (CeA) are required for normal acquisition of tasks based on stimulus-reward associations. However, it is not known whether they are involved purely in the learning process or are required for behavioral expression of a learned response. Rats were trained preoperatively on a Pavlovian autoshaping task in which pairing a visual conditioned stimulus (CS+) with food causes subjects to approach the CS+ while not approaching an unpaired stimulus (CS-). Subjects then received lesions of the AcbC, ACC, or CeA before being retested. AcbC lesions severely impaired performance; lesioned subjects approached the CS+ significantly less often than controls, failing to discriminate between the CS+ and CS-. ACC lesions also impaired performance but did not abolish discrimination entirely. CeA lesions had no effect on performance. Thus, the CeA is required for learning, but not expression, of a conditioned approach response, implying that it makes a specific contribution to the learning of stimulus-reward associations.
The Categorisation of Non-Categorical Colours: A Novel Paradigm in Colour Perception
Cropper, Simon J.; Kvansakul, Jessica G. S.; Little, Daniel R.
2013-01-01
In this paper, we investigate a new paradigm for studying the development of the colour ‘signal’ by having observers discriminate and categorize the same set of controlled and calibrated cardinal coloured stimuli. Notably, in both tasks, each observer was free to decide whether two pairs of colors were the same or belonged to the same category. The use of the same stimulus set for both tasks provides, we argue, an incremental behavioural measure of colour processing from detection through discrimination to categorisation. The measured data spaces are different for the two tasks, and furthermore the categorisation data is unique to each observer. In addition, we develop a model which assumes that the principal difference between the tasks is the degree of similarity between the stimuli which has different constraints for the categorisation task compared to the discrimination task. This approach not only makes sense of the current (and associated) data but links the processes of discrimination and categorisation in a novel way and, by implication, expands upon the previous research linking categorisation to other tasks not limited to colour perception. PMID:23536899
The categorisation of non-categorical colours: a novel paradigm in colour perception.
Cropper, Simon J; Kvansakul, Jessica G S; Little, Daniel R
2013-01-01
In this paper, we investigate a new paradigm for studying the development of the colour 'signal' by having observers discriminate and categorize the same set of controlled and calibrated cardinal coloured stimuli. Notably, in both tasks, each observer was free to decide whether two pairs of colors were the same or belonged to the same category. The use of the same stimulus set for both tasks provides, we argue, an incremental behavioural measure of colour processing from detection through discrimination to categorisation. The measured data spaces are different for the two tasks, and furthermore the categorisation data is unique to each observer. In addition, we develop a model which assumes that the principal difference between the tasks is the degree of similarity between the stimuli which has different constraints for the categorisation task compared to the discrimination task. This approach not only makes sense of the current (and associated) data but links the processes of discrimination and categorisation in a novel way and, by implication, expands upon the previous research linking categorisation to other tasks not limited to colour perception.
Eye Contact and Fear of Being Laughed at in a Gaze Discrimination Task
Torres-Marín, Jorge; Carretero-Dios, Hugo; Acosta, Alberto; Lupiáñez, Juan
2017-01-01
Current approaches conceptualize gelotophobia as a personality trait characterized by a disproportionate fear of being laughed at by others. Consistently with this perspective, gelotophobes are also described as neurotic and introverted and as having a paranoid tendency to anticipate derision and mockery situations. Although research on gelotophobia has significantly progressed over the past two decades, no evidence exists concerning the potential effects of gelotophobia in reaction to eye contact. Previous research has pointed to difficulties in discriminating gaze direction as the basis of possible misinterpretations of others’ intentions or mental states. The aim of the present research was to examine whether gelotophobia predisposition modulates the effects of eye contact (i.e., gaze discrimination) when processing faces portraying several emotional expressions. In two different experiments, participants performed an experimental gaze discrimination task in which they responded, as quickly and accurately as possible, to the eyes’ directions on faces displaying either a happy, angry, fear, neutral, or sad emotional expression. In particular, we expected trait-gelotophobia to modulate the eye contact effect, showing specific group differences in the happiness condition. The results of Study 1 (N = 40) indicated that gelotophobes made more errors than non-gelotophobes did in the gaze discrimination task. In contrast to our initial hypothesis, the happiness expression did not have any special role in the observed differences between individuals with high vs. low trait-gelotophobia. In Study 2 (N = 40), we replicated the pattern of data concerning gaze discrimination ability, even after controlling for individuals’ scores on social anxiety. Furthermore, in our second experiment, we found that gelotophobes did not exhibit any problem with identifying others’ emotions, or a general incorrect attribution of affective features, such as valence, intensity, or arousal. Therefore, this bias in processing gaze might be related to the global processes of social cognition. Further research is needed to explore how eye contact relates to the fear of being laughed at. PMID:29167652
NASA Astrophysics Data System (ADS)
Dye, Raymond H.; Stellmack, Mark A.; Jurcin, Noah F.
2005-05-01
Two experiments measured listeners' abilities to weight information from different components in a complex of 553, 753, and 953 Hz. The goal was to determine whether or not the ability to adjust perceptual weights generalized across tasks. Weights were measured by binary logistic regression between stimulus values that were sampled from Gaussian distributions and listeners' responses. The first task was interaural time discrimination in which listeners judged the laterality of the target component. The second task was monaural level discrimination in which listeners indicated whether the level of the target component decreased or increased across two intervals. For both experiments, each of the three components served as the target. Ten listeners participated in both experiments. The results showed that those individuals who adjusted perceptual weights in the interaural time experiment could also do so in the monaural level discrimination task. The fact that the same individuals appeared to be analytic in both tasks is an indication that the weights measure the ability to attend to a particular region of the spectrum while ignoring other spectral regions. .
Reduced chromatic discrimination in children with autism spectrum disorders.
Franklin, Anna; Sowden, Paul; Notman, Leslie; Gonzalez-Dixon, Melissa; West, Dorotea; Alexander, Iona; Loveday, Stephen; White, Alex
2010-01-01
Atypical perception in Autism Spectrum Disorders (ASD) is well documented (Dakin & Frith, 2005). However, relatively little is known about colour perception in ASD. Less accurate performance on certain colour tasks has led some to argue that chromatic discrimination is reduced in ASD relative to typical development (Franklin, Sowden, Burley, Notman & Alder, 2008). The current investigation assessed chromatic discrimination in children with high-functioning autism (HFA) and typically developing (TD) children matched on age and non-verbal cognitive ability, using the Farnsworth-Munsell 100 hue test (Experiment 1) and a threshold discrimination task (Experiment 2). In Experiment 1, more errors on the chromatic discrimination task were made by the HFA than the TD group. Comparison with test norms revealed that performance for the HFA group was at a similar level to typically developing children around 3 years younger. In Experiment 2, chromatic thresholds were elevated for the HFA group relative to the TD group. For both experiments, reduced chromatic discrimination in ASD was due to a general reduction in chromatic sensitivity rather than a specific difficulty with either red-green or blue-yellow subsystems of colour vision. The absence of group differences on control tasks ruled out an explanation in terms of general task ability rather than chromatic sensitivity. Theories to account for the reduction in chromatic discrimination in HFA are discussed, and findings are related to cortical models of perceptual processing in ASD.
Final Sampling Bias in Haptic Judgments: How Final Touch Affects Decision-Making.
Mitsuda, Takashi; Yoshioka, Yuichi
2018-01-01
When people make a choice between multiple items, they usually evaluate each item one after the other repeatedly. The effect of the order and number of evaluating items on one's choices is essential to understanding the decision-making process. Previous studies have shown that when people choose a favorable item from two items, they tend to choose the item that they evaluated last. This tendency has been observed regardless of sensory modalities. This study investigated the origin of this bias by using three experiments involving two-alternative forced-choice tasks using handkerchiefs. First, the bias appeared in a smoothness discrimination task, which indicates that the bias was not based on judgments of preference. Second, the handkerchief that was touched more often tended to be chosen more frequently in the preference task, but not in the smoothness discrimination task, indicating that a mere exposure effect enhanced the bias. Third, in the condition where the number of touches did not differ between handkerchiefs, the bias appeared when people touched a handkerchief they wanted to touch last, but not when people touched the handkerchief that was predetermined. This finding suggests a direct coupling between final voluntary touching and judgment.
Spatial Frequency Discrimination: Effects of Age, Reward, and Practice
Peters, Judith Carolien
2017-01-01
Social interaction starts with perception of the world around you. This study investigated two fundamental issues regarding the development of discrimination of higher spatial frequencies, which are important building blocks of perception. Firstly, it mapped the typical developmental trajectory of higher spatial frequency discrimination. Secondly, it developed and validated a novel design that could be applied to improve atypically developed vision. Specifically, this study examined the effect of age and reward on task performance, practice effects, and motivation (i.e., number of trials completed) in a higher spatial frequency (reference frequency: 6 cycles per degree) discrimination task. We measured discrimination thresholds in children aged between 7 to 12 years and adults (N = 135). Reward was manipulated by presenting either positive reinforcement or punishment. Results showed a decrease in discrimination thresholds with age, thus revealing that higher spatial frequency discrimination continues to develop after 12 years of age. This development continues longer than previously shown for discrimination of lower spatial frequencies. Moreover, thresholds decreased during the run, indicating that discrimination abilities improved. Reward did not affect performance or improvement. However, in an additional group of 5–6 year-olds (N = 28) punishments resulted in the completion of fewer trials compared to reinforcements. In both reward conditions children aged 5–6 years completed only a fourth or half of the run (64 to 128 out of 254 trials) and were not motivated to continue. The design thus needs further adaptation before it can be applied to this age group. Children aged 7–12 years and adults completed the run, suggesting that the design is successful and motivating for children aged 7–12 years. This study thus presents developmental differences in higher spatial frequency discrimination thresholds. Furthermore, it presents a design that can be used in future developmental studies that require multiple stimulus presentations such as visual perceptual learning. PMID:28135272
Spatial Frequency Discrimination: Effects of Age, Reward, and Practice.
van den Boomen, Carlijn; Peters, Judith Carolien
2017-01-01
Social interaction starts with perception of the world around you. This study investigated two fundamental issues regarding the development of discrimination of higher spatial frequencies, which are important building blocks of perception. Firstly, it mapped the typical developmental trajectory of higher spatial frequency discrimination. Secondly, it developed and validated a novel design that could be applied to improve atypically developed vision. Specifically, this study examined the effect of age and reward on task performance, practice effects, and motivation (i.e., number of trials completed) in a higher spatial frequency (reference frequency: 6 cycles per degree) discrimination task. We measured discrimination thresholds in children aged between 7 to 12 years and adults (N = 135). Reward was manipulated by presenting either positive reinforcement or punishment. Results showed a decrease in discrimination thresholds with age, thus revealing that higher spatial frequency discrimination continues to develop after 12 years of age. This development continues longer than previously shown for discrimination of lower spatial frequencies. Moreover, thresholds decreased during the run, indicating that discrimination abilities improved. Reward did not affect performance or improvement. However, in an additional group of 5-6 year-olds (N = 28) punishments resulted in the completion of fewer trials compared to reinforcements. In both reward conditions children aged 5-6 years completed only a fourth or half of the run (64 to 128 out of 254 trials) and were not motivated to continue. The design thus needs further adaptation before it can be applied to this age group. Children aged 7-12 years and adults completed the run, suggesting that the design is successful and motivating for children aged 7-12 years. This study thus presents developmental differences in higher spatial frequency discrimination thresholds. Furthermore, it presents a design that can be used in future developmental studies that require multiple stimulus presentations such as visual perceptual learning.
Gor, Kira
2014-01-01
Second language learners perform worse than native speakers under adverse listening conditions, such as speech in noise (SPIN). No data are available on heritage language speakers’ (early naturalistic interrupted learners’) ability to perceive SPIN. The current study fills this gap and investigates the perception of Russian speech in multi-talker babble noise by the matched groups of high- and low-proficiency heritage speakers (HSs) and late second language learners of Russian who were native speakers of English. The study includes a control group of Russian native speakers. It manipulates the noise level (high and low), and context cloze probability (high and low). The results of the SPIN task are compared to the tasks testing the control of phonology, AXB discrimination and picture-word discrimination, and lexical knowledge, a word translation task, in the same participants. The increased phonological sensitivity of HSs interacted with their ability to rely on top–down processing in sentence integration, use contextual cues, and build expectancies in the high-noise/high-context condition in a bootstrapping fashion. HSs outperformed oral proficiency-matched late second language learners on SPIN task and two tests of phonological sensitivity. The outcomes of the SPIN experiment support both the early naturalistic advantage and the role of proficiency in HSs. HSs’ ability to take advantage of the high-predictability context in the high-noise condition was mitigated by their level of proficiency. Only high-proficiency HSs, but not any other non-native group, took advantage of the high-predictability context that became available with better phonological processing skills in high-noise. The study thus confirms high-proficiency (but not low-proficiency) HSs’ nativelike ability to combine bottom–up and top–down cues in processing SPIN. PMID:25566130
Conditional High-Order Boltzmann Machines for Supervised Relation Learning.
Huang, Yan; Wang, Wei; Wang, Liang; Tan, Tieniu
2017-09-01
Relation learning is a fundamental problem in many vision tasks. Recently, high-order Boltzmann machine and its variants have shown their great potentials in learning various types of data relation in a range of tasks. But most of these models are learned in an unsupervised way, i.e., without using relation class labels, which are not very discriminative for some challenging tasks, e.g., face verification. In this paper, with the goal to perform supervised relation learning, we introduce relation class labels into conventional high-order multiplicative interactions with pairwise input samples, and propose a conditional high-order Boltzmann Machine (CHBM), which can learn to classify the data relation in a binary classification way. To be able to deal with more complex data relation, we develop two improved variants of CHBM: 1) latent CHBM, which jointly performs relation feature learning and classification, by using a set of latent variables to block the pathway from pairwise input samples to output relation labels and 2) gated CHBM, which untangles factors of variation in data relation, by exploiting a set of latent variables to multiplicatively gate the classification of CHBM. To reduce the large number of model parameters generated by the multiplicative interactions, we approximately factorize high-order parameter tensors into multiple matrices. Then, we develop efficient supervised learning algorithms, by first pretraining the models using joint likelihood to provide good parameter initialization, and then finetuning them using conditional likelihood to enhance the discriminant ability. We apply the proposed models to a series of tasks including invariant recognition, face verification, and action similarity labeling. Experimental results demonstrate that by exploiting supervised relation labels, our models can greatly improve the performance.
Gor, Kira
2014-01-01
Second language learners perform worse than native speakers under adverse listening conditions, such as speech in noise (SPIN). No data are available on heritage language speakers' (early naturalistic interrupted learners') ability to perceive SPIN. The current study fills this gap and investigates the perception of Russian speech in multi-talker babble noise by the matched groups of high- and low-proficiency heritage speakers (HSs) and late second language learners of Russian who were native speakers of English. The study includes a control group of Russian native speakers. It manipulates the noise level (high and low), and context cloze probability (high and low). The results of the SPIN task are compared to the tasks testing the control of phonology, AXB discrimination and picture-word discrimination, and lexical knowledge, a word translation task, in the same participants. The increased phonological sensitivity of HSs interacted with their ability to rely on top-down processing in sentence integration, use contextual cues, and build expectancies in the high-noise/high-context condition in a bootstrapping fashion. HSs outperformed oral proficiency-matched late second language learners on SPIN task and two tests of phonological sensitivity. The outcomes of the SPIN experiment support both the early naturalistic advantage and the role of proficiency in HSs. HSs' ability to take advantage of the high-predictability context in the high-noise condition was mitigated by their level of proficiency. Only high-proficiency HSs, but not any other non-native group, took advantage of the high-predictability context that became available with better phonological processing skills in high-noise. The study thus confirms high-proficiency (but not low-proficiency) HSs' nativelike ability to combine bottom-up and top-down cues in processing SPIN.
Do Rats Use Shape to Solve "Shape Discriminations"?
ERIC Educational Resources Information Center
Minini, Loredana; Jeffery, Kathryn J.
2006-01-01
Visual discrimination tasks are increasingly used to explore the neurobiology of vision in rodents, but it remains unclear how the animals solve these tasks: Do they process shapes holistically, or by using low-level features such as luminance and angle acuity? In the present study we found that when discriminating triangles from squares, rats did…
Uncapher, Melina R; Rugg, Michael D
2008-02-01
Considerable evidence suggests that attentional resources are necessary for the encoding of episodic memories, but the nature of the relationship between attention and neural correlates of encoding is unclear. Here we address this question using functional magnetic resonance imaging and a divided-attention paradigm in which competition for different types of attentional resources was manipulated. Fifteen volunteers were scanned while making animacy judgments to visually presented words and concurrently performing one of three tasks on auditorily presented words: male/female voice discrimination (control task), 1-back voice comparison (1-back task), or indoor/outdoor judgment (semantic task). The 1-back and semantic tasks were designed to compete for task-generic and task-specific attentional resources, respectively. Using the "remember/know" procedure, memory for the study words was assessed after 15 min. In the control condition, subsequent memory effects associated with later recollection were identified in the left dorsal inferior frontal gyrus and in the left hippocampus. These effects were differentially attenuated in the two more difficult divided-attention conditions. The effects of divided attention seem, therefore, to reflect impairments due to limitations at both task-generic and task-specific levels. Additionally, each of the two more difficult divided-attention conditions was associated with subsequent memory effects in regions distinct from those showing effects in the control condition. These findings suggest the engagement of alternative encoding processes to those engaged in the control task. The overall pattern of findings suggests that divided attention can impact later memory in different ways, and accordingly, that different attentional resources, including task-generic and task-specific resources, make distinct contributions to successful episodic encoding.
Lickliter, Robert; Bahrick, Lorraine E
2013-01-01
Research with human infants as well as non-human animal embryos and infants has consistently demonstrated the benefits of intersensory redundancy for perceptual learning and memory for redundantly specified information during early development. Studies of infant affect discrimination, face discrimination, numerical discrimination, sequence detection, abstract rule learning, and word comprehension and segmentation have all shown that intersensory redundancy promotes earlier detection of these properties when compared to unimodal exposure to the same properties. Here we explore the idea that such intersensory facilitation is evident across the life-span and that this continuity is an example of a developmental behavioral homology. We present evidence that intersensory facilitation is most apparent during early phases of learning for a variety of tasks, regardless of developmental level, including domains that are novel or tasks that require discrimination of fine detail or speeded responses. Under these conditions, infants, children, and adults all show intersensory facilitation, suggesting a developmental homology. We discuss the challenge and propose strategies for establishing appropriate guidelines for identifying developmental behavioral homologies. We conclude that evaluating the extent to which continuities observed across development are homologous can contribute to a better understanding of the processes of development. Copyright © 2012 Wiley Periodicals, Inc.
Trindade, Matheus A; de Toledo, Aline Martins; Cardoso, Jefferson Rosa; Souza, Igor Eduardo; Dos Santos Mendes, Felipe Augusto; Santana, Luisiane A; Carregaro, Rodrigo Luiz
2017-11-01
The Functional Movement Screen™ (FMS™) has been the focus of recent research related to movement profiling and injury prediction. However, there is a paucity of studies examining the associations between physical performance tasks such as balance and the FMS™ screening system. The purpose of this study was to compare measures of static balance in stable and unstable conditions between different groups divided by FMS™ scores. A secondary purpose was to discern if balance indices discriminate the groups divided by FMS™ scores. Cross-sectional study. Fifty-seven physically active subjects (25 men and 32 women; mean age of 22.9 ± 3.1 yrs) participated. The outcome was unilateral stance balance indices, composed by: Anteroposterior Index; Medial-lateral Index, and Overall Balance Index in stable and unstable conditions, as provided by the Biodex balance platform. Subjects were dichotomized into two groups, according to a FMS™ cut-off score of 14: FMS1 (score > 14) and FMS2 (score ≤ 14). The independent Students t-test was used to verify differences in balance indices between FMS1 and FMS2 groups. A discriminant analysis was applied in order to identify which of the balance indices would adequately discriminate the FMS™ groups. Comparisons between FMS1 and FMS2 groups in the stable and unstable conditions demonstrated a higher unstable Anteroposterior index for FMS2 (p=0.017). No significant differences were found for other comparisons (p>0.05). The indices did not discriminate the FMS™ groups ( p > 0.05). The balance indices adopted in this study were not useful as a parameter for identification and discrimination of healthy subjects assessed by the FMS™. 2c.
The effect of encoding conditions on learning in the prototype distortion task.
Lee, Jessica C; Livesey, Evan J
2017-06-01
The prototype distortion task demonstrates that it is possible to learn about a category of physically similar stimuli through mere observation. However, there have been few attempts to test whether different encoding conditions affect learning in this task. This study compared prototypicality gradients produced under incidental learning conditions in which participants performed a visual search task, with those produced under intentional learning conditions in which participants were required to memorize the stimuli. Experiment 1 showed that similar prototypicality gradients could be obtained for category endorsement and familiarity ratings, but also found (weaker) prototypicality gradients in the absence of exposure. In Experiments 2 and 3, memorization was found to strengthen prototypicality gradients in familiarity ratings in comparison to visual search, but there were no group differences in participants' ability to discriminate between novel and presented exemplars. Although the Search groups in Experiments 2 and 3 produced prototypicality gradients, they were no different in magnitude to those produced in the absence of stimulus exposure in Experiment 1, suggesting that incidental learning during visual search was not conducive to producing prototypicality gradients. This study suggests that learning in the prototype distortion task is not implicit in the sense of resulting automatically from exposure, is affected by the nature of encoding, and should be considered in light of potential learning-at-test effects.
Faradji, Farhad; Ward, Rabab K; Birch, Gary E
2009-06-15
The feasibility of having a self-paced brain-computer interface (BCI) based on mental tasks is investigated. The EEG signals of four subjects performing five mental tasks each are used in the design of a 2-state self-paced BCI. The output of the BCI should only be activated when the subject performs a specific mental task and should remain inactive otherwise. For each subject and each task, the feature coefficient and the classifier that yield the best performance are selected, using the autoregressive coefficients as the features. The classifier with a zero false positive rate and the highest true positive rate is selected as the best classifier. The classifiers tested include: linear discriminant analysis, quadratic discriminant analysis, Mahalanobis discriminant analysis, support vector machine, and radial basis function neural network. The results show that: (1) some classifiers obtained the desired zero false positive rate; (2) the linear discriminant analysis classifier does not yield acceptable performance; (3) the quadratic discriminant analysis classifier outperforms the Mahalanobis discriminant analysis classifier and performs almost as well as the radial basis function neural network; and (4) the support vector machine classifier has the highest true positive rates but unfortunately has nonzero false positive rates in most cases.
Coherence between Rat Sensorimotor System and Hippocampus Is Enhanced during Tactile Discrimination
Zuo, Yangfang; Stella, Federico; Diamond, Mathew E.
2016-01-01
Rhythms with time scales of multiple cycles per second permeate the mammalian brain, yet neuroscientists are not certain of their functional roles. One leading idea is that coherent oscillation between two brain regions facilitates the exchange of information between them. In rats, the hippocampus and the vibrissal sensorimotor system both are characterized by rhythmic oscillation in the theta range, 5–12 Hz. Previous work has been divided as to whether the two rhythms are independent or coherent. To resolve this question, we acquired three measures from rats—whisker motion, hippocampal local field potential (LFP), and barrel cortex unit firing—during a whisker-mediated texture discrimination task and during control conditions (not engaged in a whisker-mediated memory task). Compared to control conditions, the theta band of hippocampal LFP showed a marked increase in power as the rats approached and then palpated the texture. Phase synchronization between whisking and hippocampal LFP increased by almost 50% during approach and texture palpation. In addition, a greater proportion of barrel cortex neurons showed firing that was phase-locked to hippocampal theta while rats were engaged in the discrimination task. Consistent with a behavioral consequence of phase synchronization, the rats identified the texture more rapidly and with lower error likelihood on trials in which there was an increase in theta-whisking coherence at the moment of texture palpation. These results suggest that coherence between the whisking rhythm, barrel cortex firing, and hippocampal LFP is augmented selectively during epochs in which the rat collects sensory information and that such coherence enhances the efficiency of integration of stimulus information into memory and decision-making centers. PMID:26890254
Reward Motivation Enhances Task Coding in Frontoparietal Cortex
Etzel, Joset A.; Cole, Michael W.; Zacks, Jeffrey M.; Kay, Kendrick N.; Braver, Todd S.
2016-01-01
Reward motivation often enhances task performance, but the neural mechanisms underlying such cognitive enhancement remain unclear. Here, we used a multivariate pattern analysis (MVPA) approach to test the hypothesis that motivation-related enhancement of cognitive control results from improved encoding and representation of task set information. Participants underwent two fMRI sessions of cued task switching, the first under baseline conditions, and the second with randomly intermixed reward incentive and no-incentive trials. Information about the upcoming task could be successfully decoded from cue-related activation patterns in a set of frontoparietal regions typically associated with task control. More critically, MVPA classifiers trained on the baseline session had significantly higher decoding accuracy on incentive than non-incentive trials, with decoding improvement mediating reward-related enhancement of behavioral performance. These results strongly support the hypothesis that reward motivation enhances cognitive control, by improving the discriminability of task-relevant information coded and maintained in frontoparietal brain regions. PMID:25601237
Harvey, Roxann C; Jordan, Chloe J; Tassin, David H; Moody, Kayla R; Dwoskin, Linda P; Kantak, Kathleen M
2013-01-01
Research examining medication effects on set shifting in teens with attention deficit/hyperactivity disorder (ADHD) is lacking. An animal model of ADHD may be useful for exploring this gap. The Spontaneously Hypertensive Rat (SHR) is a commonly used animal model of ADHD. SHR and two comparator strains, Wistar-Kyoto (WKY) and Wistar (WIS), were evaluated during adolescence in a strategy set shifting task under conditions of a 0-sec or 15-sec delay to reinforcer delivery. The task had three phases: initial discrimination, set shift and reversal learning. Under 0-sec delays, SHR performed as well as or better than WKY and WIS. Treatment with 0.3 mg/kg/day atomoxetine had little effect, other than to modestly increase trials to criterion during set shifting in all strains. Under 15-sec delays, SHR had longer lever press reaction times, longer latencies to criterion and more trial omissions than WKY during set shifting and reversal learning. These deficits were not reduced systematically by 1.5 mg/kg/day methylphenidate or 0.3 mg/kg/day atomoxetine. Regarding learning in SHR, methylphenidate improved initial discrimination, whereas atomoxetine improved set shifting but disrupted initial discrimination. During reversal learning, both drugs were ineffective in SHR, and atomoxetine made reaction time and trial omissions greater in WKY. Overall, WIS performance differed from SHR or WKY, depending on phase. Collectively, a genetic model of ADHD in adolescent rats revealed that neither methylphenidate nor atomoxetine mitigated all deficits in SHR during the set shifting task. Thus, methylphenidate or atomoxetine monotherapy may not mitigate all set shift task-related deficits in teens with ADHD. PMID:23376704
Visu-Petra, George; Varga, Mihai; Miclea, Mircea; Visu-Petra, Laura
2013-01-01
The possibility to enhance the detection efficiency of the Concealed Information Test (CIT) by increasing executive load was investigated, using an interference design. After learning and executing a mock crime scenario, subjects underwent three deception detection tests: an RT-based CIT, an RT-based CIT plus a concurrent memory task (CITMem), and an RT-based CIT plus a concurrent set-shifting task (CITShift). The concealed information effect, consisting in increased RT and lower response accuracy for probe items compared to irrelevant items, was evidenced across all three conditions. The group analyses indicated a larger difference between RTs to probe and irrelevant items in the dual-task conditions, but this difference was not translated in a significantly increased detection efficiency at an individual level. Signal detection parameters based on the comparison with a simulated innocent group showed accurate discrimination for all conditions. Overall response accuracy on the CITMem was highest and the difference between response accuracy to probes and irrelevants was smallest in this condition. Accuracy on the concurrent tasks (Mem and Shift) was high, and responses on these tasks were significantly influenced by CIT stimulus type (probes vs. irrelevants). The findings are interpreted in relation to the cognitive load/dual-task interference literature, generating important insights for research on the involvement of executive functions in deceptive behavior. PMID:23543918
Perini, Francesca; Caramazza, Alfonso; Peelen, Marius V.
2014-01-01
Functional neuroimaging studies have implicated the left lateral occipitotemporal cortex (LOTC) in both tool and hand perception but the functional role of this region is not fully known. Here, by using a task manipulation, we tested whether tool-/hand-selective LOTC contributes to the discrimination of tool-associated hand actions. Participants viewed briefly presented pictures of kitchen and garage tools while they performed one of two tasks: in the action task, they judged whether the tool is associated with a hand rotation action (e.g., screwdriver) or a hand squeeze action (e.g., garlic press), while in the location task they judged whether the tool is typically found in the kitchen (e.g., garlic press) or in the garage (e.g., screwdriver). Both tasks were performed on the same stimulus set and were matched for difficulty. Contrasting fMRI responses between these tasks showed stronger activity during the action task than the location task in both tool- and hand-selective LOTC regions, which closely overlapped. No differences were found in nearby object- and motion-selective control regions. Importantly, these findings were confirmed by a TMS study, which showed that effective TMS over the tool-/hand-selective LOTC region significantly slowed responses for tool action discriminations relative to tool location discriminations, with no such difference during sham TMS. We conclude that left LOTC contributes to the discrimination of tool-associated hand actions. PMID:25140142
Chudasama, Y; Robbins, Trevor W
2003-09-24
To examine possible heterogeneity of function within the ventral regions of the rodent frontal cortex, the present study compared the effects of excitotoxic lesions of the orbitofrontal cortex (OFC) and the infralimbic cortex (ILC) on pavlovian autoshaping and discrimination reversal learning. During the pavlovian autoshaping task, in which rats learn to approach a stimulus predictive of reward [conditional stimulus (CS+)], only the OFC group failed to acquire discriminated approach but was unimpaired when preoperatively trained. In the visual discrimination learning and reversal task, rats were initially required to discriminate a stimulus positively associated with reward. There was no effect of either OFC or ILC lesions on discrimination learning. When the stimulus-reward contingencies were reversed, both groups of animals committed more errors, but only the OFC-lesioned animals were unable to suppress the previously rewarded stimulus-reward association, committing more "stimulus perseverative" errors. In contrast, the ILC group showed a pattern of errors that was more attributable to "learning" than perseveration. These findings suggest two types of dissociation between the effects of OFC and ILC lesions: (1) OFC lesions impaired the learning processes implicated in pavlovian autoshaping but not instrumental simultaneous discrimination learning, whereas ILC lesions were unimpaired at autoshaping and their reversal learning deficit did not reflect perseveration, and (2) OFC lesions induced perseverative responding in reversal learning but did not disinhibit responses to pavlovian CS-. In contrast, the ILC lesion had no effect on response inhibitory control in either of these settings. The findings are discussed in the context of dissociable executive functions in ventral sectors of the rat prefrontal cortex.
Altering sensorimotor feedback disrupts visual discrimination of facial expressions.
Wood, Adrienne; Lupyan, Gary; Sherrin, Steven; Niedenthal, Paula
2016-08-01
Looking at another person's facial expression of emotion can trigger the same neural processes involved in producing the expression, and such responses play a functional role in emotion recognition. Disrupting individuals' facial action, for example, interferes with verbal emotion recognition tasks. We tested the hypothesis that facial responses also play a functional role in the perceptual processing of emotional expressions. We altered the facial action of participants with a gel facemask while they performed a task that involved distinguishing target expressions from highly similar distractors. Relative to control participants, participants in the facemask condition demonstrated inferior perceptual discrimination of facial expressions, but not of nonface stimuli. The findings suggest that somatosensory/motor processes involving the face contribute to the visual perceptual-and not just conceptual-processing of facial expressions. More broadly, our study contributes to growing evidence for the fundamentally interactive nature of the perceptual inputs from different sensory modalities.
Macbeth, Abbe H.; Edds, Jennifer Stepp; Young, W. Scott
2010-01-01
Social recognition (SR) enables rodents to distinguish between familiar and novel conspecifics, largely through individual odor cues. SR tasks utilize the tendency for a male to sniff and interact with a novel individual more than a familiar individual. Many paradigms have been used to study the roles of the neuropeptides oxytocin and vasopressin in SR. However, inconsistencies in results have arisen within similar mouse strains, and across different paradigms and laboratories, making reliable testing of social recognition difficult. The current protocol details a novel approach that is replicable across investigators and in different strains of mice. We created a protocol that utilizes gonadally intact, singly housed females presented within corrals to group-housed males. Housing females singly prior to testing is particularly important for reliable discrimination. This methodology will be useful for studying short-term social memory in rodents, and may also be applicable for longer-term studies. PMID:19816420
Speaker variability augments phonological processing in early word learning
Rost, Gwyneth C.; McMurray, Bob
2010-01-01
Infants in the early stages of word learning have difficulty learning lexical neighbors (i.e., word pairs that differ by a single phoneme), despite the ability to discriminate the same contrast in a purely auditory task. While prior work has focused on top-down explanations for this failure (e.g. task demands, lexical competition), none has examined if bottom-up acoustic-phonetic factors play a role. We hypothesized that lexical neighbor learning could be improved by incorporating greater acoustic variability in the words being learned, as this may buttress still developing phonetic categories, and help infants identify the relevant contrastive dimension. Infants were exposed to pictures accompanied by labels spoken by either a single or multiple speakers. At test, infants in the single-speaker condition failed to recognize the difference between the two words, while infants who heard multiple speakers discriminated between them. PMID:19143806
Thomson, Eric E.; Zea, Ivan; França, Wendy
2017-01-01
Abstract Adult rats equipped with a sensory prosthesis, which transduced infrared (IR) signals into electrical signals delivered to somatosensory cortex (S1), took approximately 4 d to learn a four-choice IR discrimination task. Here, we show that when such IR signals are projected to the primary visual cortex (V1), rats that are pretrained in a visual-discrimination task typically learn the same IR discrimination task on their first day of training. However, without prior training on a visual discrimination task, the learning rates for S1- and V1-implanted animals converged, suggesting there is no intrinsic difference in learning rate between the two areas. We also discovered that animals were able to integrate IR information into the ongoing visual processing stream in V1, performing a visual-IR integration task in which they had to combine IR and visual information. Furthermore, when the IR prosthesis was implanted in S1, rats showed no impairment in their ability to use their whiskers to perform a tactile discrimination task. Instead, in some rats, this ability was actually enhanced. Cumulatively, these findings suggest that cortical sensory neuroprostheses can rapidly augment the representational scope of primary sensory areas, integrating novel sources of information into ongoing processing while incurring minimal loss of native function. PMID:29279860
ERIC Educational Resources Information Center
De Joux, Neil; Russell, Paul N.; Helton, William S.
2013-01-01
Despite a long history of vigilance research, the role of global and local feature discrimination in vigilance tasks has been relatively neglected. In this experiment participants performed a sustained attention task requiring either global or local shape stimuli discrimination. Reaction time to local feature discriminations was characterized by a…
Leão, Anderson H F F; Medeiros, André M; Apolinário, Gênedy K S; Cabral, Alícia; Ribeiro, Alessandra M; Barbosa, Flávio F; Silva, Regina H
2016-05-01
The plus-maze discriminative avoidance task (PMDAT) has been used to investigate interactions between aversive memory and an anxiety-like response in rodents. Suitable performance in this task depends on the activity of the basolateral amygdala, similar to other aversive-based memory tasks. However, the role of spatial cues and hippocampal-dependent learning in the performance of PMDAT remains unknown. Here, we investigated the role of proximal and distal cues in the retrieval of this task. Animals tested under misplaced proximal cues had diminished performance, and animals tested under both misplaced proximal cues and absent distal cues could not discriminate the aversive arm. We also assessed the role of the dorsal hippocampus (CA1) in this aversive memory task. Temporary bilateral inactivation of dorsal CA1 was conducted with muscimol (0.05 μg, 0.1 μg, and 0.2 μg) prior to the training session. While the acquisition of the task was not altered, muscimol impaired the performance in the test session and reduced the anxiety-like response in the training session. We also performed a spreading analysis of a fluorophore-conjugated muscimol to confirm selective inhibition of CA1. In conclusion, both distal and proximal cues are required to retrieve the task, with the latter being more relevant to spatial orientation. Dorsal CA1 activity is also required for aversive memory formation in this task, and interfered with the anxiety-like response as well. Importantly, both effects were detected by different parameters in the same paradigm, endorsing the previous findings of independent assessment of aversive memory and anxiety-like behavior in the PMDAT. Taken together, these findings suggest that the PMDAT probably requires an integration of multiple systems for memory formation, resembling an episodic-like memory rather than a pure conditioning behavior. Furthermore, the concomitant and independent assessment of emotionality and memory in rodents is relevant to elucidate how these memory systems interact during aversive memory formation. Thus, the PMDAT can be useful for studying hippocampal-dependent memory when it involves emotional content. Copyright © 2016 Elsevier B.V. All rights reserved.
Spatial localization deficits and auditory cortical dysfunction in schizophrenia
Perrin, Megan A.; Butler, Pamela D.; DiCostanzo, Joanna; Forchelli, Gina; Silipo, Gail; Javitt, Daniel C.
2014-01-01
Background Schizophrenia is associated with deficits in the ability to discriminate auditory features such as pitch and duration that localize to primary cortical regions. Lesions of primary vs. secondary auditory cortex also produce differentiable effects on ability to localize and discriminate free-field sound, with primary cortical lesions affecting variability as well as accuracy of response. Variability of sound localization has not previously been studied in schizophrenia. Methods The study compared performance between patients with schizophrenia (n=21) and healthy controls (n=20) on sound localization and spatial discrimination tasks using low frequency tones generated from seven speakers concavely arranged with 30 degrees separation. Results For the sound localization task, patients showed reduced accuracy (p=0.004) and greater overall response variability (p=0.032), particularly in the right hemifield. Performance was also impaired on the spatial discrimination task (p=0.018). On both tasks, poorer accuracy in the right hemifield was associated with greater cognitive symptom severity. Better accuracy in the left hemifield was associated with greater hallucination severity on the sound localization task (p=0.026), but no significant association was found for the spatial discrimination task. Conclusion Patients show impairments in both sound localization and spatial discrimination of sounds presented free-field, with a pattern comparable to that of individuals with right superior temporal lobe lesions that include primary auditory cortex (Heschl’s gyrus). Right primary auditory cortex dysfunction may protect against hallucinations by influencing laterality of functioning. PMID:20619608
Olfactory bulb size, odor discrimination and magnetic insensitivity in hummingbirds.
Ioalé, P; Papi, F
1989-05-01
Relative olfactory bulb size with respect to telencephalic hemispheres (olfactory ratio) was measured in five species of hummingbirds. Trochiliformes were found to be next to last among 25 avian orders with respect to olfactory bulb development. One hummingbird species, the White-vented Violetear (Colibri serrirostris), was trained in a successive go/no-go discrimination task, and learned to feed or not to feed from a container dependent on the olfactory stimuli associated with it. Test birds learned to discriminate amyl acetate vs. turpentine essence, jasmine essence vs. lavender essence, eucalyptus essence vs. no odor, beta-ionone vs. no odor, carvone vs. eucalyptol. In contrast, 1-phenylethanol vs. beta-ionone discrimination, two odorants which appear similar to humans, was unsuccessful. Using a similar procedure, attempts were made to condition a White-vented Violetear and a Versicolored Emerald (Amazilia versicolor) to magnetic stimuli. The birds were unable to discriminate between a normal field and an oscillating field (square wave, 1 Hz, amplitude +/- 0.40 G).
The Combined Effect of Cold and Moisture on Manual Performance.
Ray, Matthew; Sanli, Elizabeth; Brown, Robert; Ennis, Kerri Ann; Carnahan, Heather
2018-02-01
Objective The aim of this study was to investigate the combined effect of cold and moisture on manual performance and tactile sensitivity. Background People working in the ocean environment often perform manual work in cold and wet conditions. Although the independent effects of cold and moisture on hand function are known, their combined effect has not been investigated. Method Participants completed sensory (Touch-Test, two-point discrimination) and motor (Purdue Pegboard, Grooved Pegboard, reef knot untying) tests in the following conditions: dry hand, wet hand, cold hand, and cold and wet hand. Results For the Purdue Pegboard and knot untying tasks, the greatest decrement in performance was observed in the cold-and-wet-hand condition, whereas the decrements seen in the cold-hand and wet-hand conditions were similar. In the Grooved Pegboard task, the performance decrements exhibited in the cold-and-wet-hand condition and the cold-hand condition were similar, whereas no decrement was observed in the wet-hand condition. Tactile sensitivity was reduced in the cold conditions for the Touch-Test but not the two-point discrimination test. The combined effect of cold and moisture led to the largest performance decrements except when intrinsic object properties helped with grasp maintenance. The independent effects of cold and moisture on manual performance were comparable. Application Tools and equipment for use in the cold ocean environment should be designed to minimize the effects of cold and moisture on manual performance by including object properties that enhance grasp maintenance and minimize the fine-dexterity requirements.
Plasticity of Fear and Safety Neurons of the Amygdala in Response to Fear Extinction
Sangha, Susan
2015-01-01
Fear inhibition learning induces plasticity and remodeling of circuits within the amygdala. Most studies examine these changes in nondiscriminative fear conditioning paradigms. Using a discriminative fear, safety, and reward conditioning task, Sangha et al. (2013) have previously reported several neural microcircuits within the basal amygdala (BA) which discriminate among these cues, including a subpopulation of neurons responding selectively to a safety cue and not a fear cue. Here, the hypothesis that these “safety” neurons isolated during discriminative conditioning are biased to become fear cue responsive as a result of extinction, when fear behavior diminishes, was tested. Although 41% of “safety” neurons became fear cue responsive as a result of extinction, the data revealed that there was no bias for these neurons to become preferentially responsive during fear extinction compared to the other identified subgroups. In addition to the plasticity seen in the “safety” neurons, 44% of neurons unresponsive to either the fear cue or safety cue during discriminative conditioning became fear cue responsive during extinction. Together these emergent responses to the fear cue as a result of extinction support the hypothesis that new learning underlies extinction. In contrast, 47% of neurons responsive to the fear cue during discriminative conditioning became unresponsive to the fear cue during extinction. These findings are consistent with a suppression of neural responding mediated by inhibitory learning, or, potentially, by direct unlearning. Together, the data support extinction as an active process involving both gains and losses of responses to the fear cue and suggests the final output of the integrated BA circuit in influencing fear behavior is a balance of excitation and inhibition, and perhaps reversal of learning-induced changes. PMID:26733838
Ikeda, Yumiko; Yahata, Noriaki; Takahashi, Hidehiko; Koeda, Michihiko; Asai, Kunihiko; Okubo, Yoshiro; Suzuki, Hidenori
2010-05-01
Comprehending conversation in a crowd requires appropriate orienting and sustainment of auditory attention to and discrimination of the target speaker. While a multitude of cognitive functions such as voice perception and language processing work in concert to subserve this ability, it is still unclear which cognitive components critically determine successful discrimination of speech sounds under constantly changing auditory conditions. To investigate this, we present a functional magnetic resonance imaging (fMRI) study of changes in cerebral activities associated with varying challenge levels of speech discrimination. Subjects participated in a diotic listening paradigm that presented them with two news stories read simultaneously but independently by a target speaker and a distracting speaker of incongruent or congruent sex. We found that the voice of distracter of congruent rather than incongruent sex made the listening more challenging, resulting in enhanced activities mainly in the left temporal and frontal gyri. Further, the activities at the left inferior, left anterior superior and right superior loci in the temporal gyrus were shown to be significantly correlated with accuracy of the discrimination performance. The present results suggest that the subregions of bilateral temporal gyri play a key role in the successful discrimination of speech under constantly changing auditory conditions as encountered in daily life. 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Finke, Mareike; Barceló, Francisco; Garolera, Maite; Cortiñas, Miriam; Garrido, Gemma; Pajares, Marta; Escera, Carles
2011-07-01
An accurate representation of task-set information is needed for successful goal directed behavior. Recent studies point to disturbances in the early processing stages as plausible causes for task-switching deficits in schizophrenia. A task-cueing protocol was administered to a group of schizophrenic patients and compared with a sample of age-matched healthy controls. Patients responded slower and less accurate compared with controls in all conditions. The concurrent recording of event-related brain potentials to contextual cues and target events revealed abnormalities in the early processing of both cue-locked and target-locked N1 potentials. Abnormally enhanced target-locked P2 amplitudes were observed in schizophrenic patients for task-switch trials only, suggesting disrupted stimulus evaluation and memory retrieval processes. The endogenous P3 potentials discriminated between task conditions but without further differences between groups. These results suggest that the observed impairments in task-switching behavior were not specifically related to anticipatory set-shifting, but derived from a deficit in the implementation of task-set representations at target onset in the presence of irrelevant and conflicting information. Copyright © 2011 Elsevier B.V. All rights reserved.
Pointing Gestures as a Cognitive Tool in Young Children: Experimental Evidence
ERIC Educational Resources Information Center
Delgado, Begona; Gomez, Juan Carlos; Sarria, Encarnacion
2011-01-01
This article explores the possible cognitive function associated with pointing gestures from a Vygotskian perspective. In Study 1, 39 children who were 2-4 years of age were observed in a solitary condition while solving a mnemonic task with or without an explicit memory demand. A discriminant analysis showed that children used noncommunicative…
Nazari, Mohammad A; Mirloo, Mohammad M; Rezaei, Mazaher; Soltanlou, Mojtaba
2018-06-01
The aim of this study was to compare the effect of different emotional stimuli (neutral, positive, and negative) on time perception in children with attention-deficit/hyperactivity disorder (ADHD) and normal children in dual-task form. Five hundred and ninety-nine students from primary schools were randomly selected. The Conner's Teacher Rating Scale (CTRS) questionnaire was completed by teachers. A total of 100 children with a score above the cut-off point for the CTRS were further assessed using the Child Symptom Inventory-4 (CSI-4). A total of 34 children with ADHD and 31 controls completed an emotional time discrimination task in two blocks of 1000 and 2000 ms duration. Children were asked to compare three image groups: neutral with neutral, neutral with positive, and neutral with negative images. Children with ADHD had significantly better performance in the emotional time discrimination task across all conditions when compared with controls: On average, discrimination thresholds were approximately 35 ms shorter for the children with ADHD. Our results indicate that children with ADHD have higher sensitivity to time relative to controls in a situation in which they must distribute resources between temporal and emotional processing. On the basis of the interference effect and the working memory capacity hypothesis, this dividing of attention causes a decrease of time accuracy in normal children. © 2016 The British Psychological Society.
Alvarez-Meza, Andres M.; Orozco-Gutierrez, Alvaro; Castellanos-Dominguez, German
2017-01-01
We introduce Enhanced Kernel-based Relevance Analysis (EKRA) that aims to support the automatic identification of brain activity patterns using electroencephalographic recordings. EKRA is a data-driven strategy that incorporates two kernel functions to take advantage of the available joint information, associating neural responses to a given stimulus condition. Regarding this, a Centered Kernel Alignment functional is adjusted to learning the linear projection that best discriminates the input feature set, optimizing the required free parameters automatically. Our approach is carried out in two scenarios: (i) feature selection by computing a relevance vector from extracted neural features to facilitating the physiological interpretation of a given brain activity task, and (ii) enhanced feature selection to perform an additional transformation of relevant features aiming to improve the overall identification accuracy. Accordingly, we provide an alternative feature relevance analysis strategy that allows improving the system performance while favoring the data interpretability. For the validation purpose, EKRA is tested in two well-known tasks of brain activity: motor imagery discrimination and epileptic seizure detection. The obtained results show that the EKRA approach estimates a relevant representation space extracted from the provided supervised information, emphasizing the salient input features. As a result, our proposal outperforms the state-of-the-art methods regarding brain activity discrimination accuracy with the benefit of enhanced physiological interpretation about the task at hand. PMID:29056897
Acquisition of a visual discrimination and reversal learning task by Labrador retrievers.
Lazarowski, Lucia; Foster, Melanie L; Gruen, Margaret E; Sherman, Barbara L; Case, Beth C; Fish, Richard E; Milgram, Norton W; Dorman, David C
2014-05-01
Optimal cognitive ability is likely important for military working dogs (MWD) trained to detect explosives. An assessment of a dog's ability to rapidly learn discriminations might be useful in the MWD selection process. In this study, visual discrimination and reversal tasks were used to assess cognitive performance in Labrador retrievers selected for an explosives detection program using a modified version of the Toronto General Testing Apparatus (TGTA), a system developed for assessing performance in a battery of neuropsychological tests in canines. The results of the current study revealed that, as previously found with beagles tested using the TGTA, Labrador retrievers (N = 16) readily acquired both tasks and learned the discrimination task significantly faster than the reversal task. The present study confirmed that the modified TGTA system is suitable for cognitive evaluations in Labrador retriever MWDs and can be used to further explore effects of sex, phenotype, age, and other factors in relation to canine cognition and learning, and may provide an additional screening tool for MWD selection.
Royal, Isabelle; Vuvan, Dominique T; Zendel, Benjamin Rich; Robitaille, Nicolas; Schönwiesner, Marc; Peretz, Isabelle
2016-01-01
Pitch discrimination tasks typically engage the superior temporal gyrus and the right inferior frontal gyrus. It is currently unclear whether these regions are equally involved in the processing of incongruous notes in melodies, which requires the representation of musical structure (tonality) in addition to pitch discrimination. To this aim, 14 participants completed two tasks while undergoing functional magnetic resonance imaging, one in which they had to identify a pitch change in a series of non-melodic repeating tones and a second in which they had to identify an incongruous note in a tonal melody. In both tasks, the deviants activated the right superior temporal gyrus. A contrast between deviants in the melodic task and deviants in the non-melodic task (melodic > non-melodic) revealed additional activity in the right inferior parietal lobule. Activation in the inferior parietal lobule likely represents processes related to the maintenance of tonal pitch structure in working memory during pitch discrimination.
Royal, Isabelle; Vuvan, Dominique T.; Zendel, Benjamin Rich; Robitaille, Nicolas; Schönwiesner, Marc; Peretz, Isabelle
2016-01-01
Pitch discrimination tasks typically engage the superior temporal gyrus and the right inferior frontal gyrus. It is currently unclear whether these regions are equally involved in the processing of incongruous notes in melodies, which requires the representation of musical structure (tonality) in addition to pitch discrimination. To this aim, 14 participants completed two tasks while undergoing functional magnetic resonance imaging, one in which they had to identify a pitch change in a series of non-melodic repeating tones and a second in which they had to identify an incongruous note in a tonal melody. In both tasks, the deviants activated the right superior temporal gyrus. A contrast between deviants in the melodic task and deviants in the non-melodic task (melodic > non-melodic) revealed additional activity in the right inferior parietal lobule. Activation in the inferior parietal lobule likely represents processes related to the maintenance of tonal pitch structure in working memory during pitch discrimination. PMID:27195523
Hager, Audrey M; Dringenberg, Hans C
2012-12-01
The rat visual system is structured such that the large (>90 %) majority of retinal ganglion axons reach the contralateral lateral geniculate nucleus (LGN) and visual cortex (V1). This anatomical design allows for the relatively selective activation of one cerebral hemisphere under monocular viewing conditions. Here, we describe the design of a harness and face mask allowing simple and noninvasive monocular occlusion in rats. The harness is constructed from synthetic fiber (shoelace-type material) and fits around the girth region and neck, allowing for easy adjustments to fit rats of various weights. The face mask consists of soft rubber material that is attached to the harness by Velcro strips. Eyeholes in the mask can be covered by additional Velcro patches to occlude either one or both eyes. Rats readily adapt to wearing the device, allowing behavioral testing under different types of viewing conditions. We show that rats successfully acquire a water-maze-based visual discrimination task under monocular viewing conditions. Following task acquisition, interocular transfer was assessed. Performance with the previously occluded, "untrained" eye was impaired, suggesting that training effects were partially confined to one cerebral hemisphere. The method described herein provides a simple and noninvasive means to restrict visual input for studies of visual processing and learning in various rodent species.
Feature extraction with deep neural networks by a generalized discriminant analysis.
Stuhlsatz, André; Lippel, Jens; Zielke, Thomas
2012-04-01
We present an approach to feature extraction that is a generalization of the classical linear discriminant analysis (LDA) on the basis of deep neural networks (DNNs). As for LDA, discriminative features generated from independent Gaussian class conditionals are assumed. This modeling has the advantages that the intrinsic dimensionality of the feature space is bounded by the number of classes and that the optimal discriminant function is linear. Unfortunately, linear transformations are insufficient to extract optimal discriminative features from arbitrarily distributed raw measurements. The generalized discriminant analysis (GerDA) proposed in this paper uses nonlinear transformations that are learnt by DNNs in a semisupervised fashion. We show that the feature extraction based on our approach displays excellent performance on real-world recognition and detection tasks, such as handwritten digit recognition and face detection. In a series of experiments, we evaluate GerDA features with respect to dimensionality reduction, visualization, classification, and detection. Moreover, we show that GerDA DNNs can preprocess truly high-dimensional input data to low-dimensional representations that facilitate accurate predictions even if simple linear predictors or measures of similarity are used.
Kikkert, Lisette H J; Vuillerme, Nicolas; van Campen, Jos P; Appels, Bregje A; Hortobágyi, Tibor; Lamoth, Claudine J C
2017-08-15
A detailed gait analysis (e.g., measures related to speed, self-affinity, stability, and variability) can help to unravel the underlying causes of gait dysfunction, and identify cognitive impairment. However, because geriatric patients present with multiple conditions that also affect gait, results from healthy old adults cannot easily be extrapolated to geriatric patients. Hence, we (1) quantified gait outcomes based on dynamical systems theory, and (2) determined their discriminative power in three groups: healthy old adults, geriatric patients with- and geriatric patients without cognitive impairment. For the present cross-sectional study, 25 healthy old adults recruited from community (65 ± 5.5 years), and 70 geriatric patients with (n = 39) and without (n = 31) cognitive impairment from the geriatric dayclinic of the MC Slotervaart hospital in Amsterdam (80 ± 6.6 years) were included. Participants walked for 3 min during single- and dual-tasking at self-selected speed while 3D trunk accelerations were registered with an IPod touch G4. We quantified 23 gait outcomes that reflect multiple gait aspects. A multivariate model was built using Partial Least Square- Discriminant Analysis (PLS-DA) that best modelled participant group from gait outcomes. For single-task walking, the PLS-DA model consisted of 4 Latent Variables that explained 63 and 41% of the variance in gait outcomes and group, respectively. Outcomes related to speed, regularity, predictability, and stability of trunk accelerations revealed with the highest discriminative power (VIP > 1). A high proportion of healthy old adults (96 and 93% for single- and dual-task, respectively) was correctly classified based on the gait outcomes. The discrimination of geriatric patients with and without cognitive impairment was poor, with 57% (single-task) and 64% (dual-task) of the patients misclassified. While geriatric patients vs. healthy old adults walked slower, and less regular, predictable, and stable, we found no differences in gait between geriatric patients with and without cognitive impairment. The effects of multiple comorbidities on geriatric patients' gait possibly causes a 'floor-effect', with no room for further deterioration when patients develop cognitive impairment. An accurate identification of cognitive status thus necessitates a multifactorial approach.
Sugden, Nicole A; Marquis, Alexandra R
2017-11-01
Infants show facility for discriminating between individual faces within hours of birth. Over the first year of life, infants' face discrimination shows continued improvement with familiar face types, such as own-race faces, but not with unfamiliar face types, like other-race faces. The goal of this meta-analytic review is to provide an effect size for infants' face discrimination ability overall, with own-race faces, and with other-race faces within the first year of life, how this differs with age, and how it is influenced by task methodology. Inclusion criteria were (a) infant participants aged 0 to 12 months, (b) completing a human own- or other-race face discrimination task, (c) with discrimination being determined by infant looking. Our analysis included 30 works (165 samples, 1,926 participants participated in 2,623 tasks). The effect size for infants' face discrimination was small, 6.53% greater than chance (i.e., equal looking to the novel and familiar). There was a significant difference in discrimination by race, overall (own-race, 8.18%; other-race, 3.18%) and between ages (own-race: 0- to 4.5-month-olds, 7.32%; 5- to 7.5-month-olds, 9.17%; and 8- to 12-month-olds, 7.68%; other-race: 0- to 4.5-month-olds, 6.12%; 5- to 7.5-month-olds, 3.70%; and 8- to 12-month-olds, 2.79%). Multilevel linear (mixed-effects) models were used to predict face discrimination; infants' capacity to discriminate faces is sensitive to face characteristics including race, gender, and emotion as well as the methods used, including task timing, coding method, and visual angle. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
The nootropic properties of ginseng saponin Rb1 are linked to effects on anxiety.
Churchill, James D; Gerson, Jennifer L; Hinton, Kendra A; Mifek, Jennifer L; Walter, Michael J; Winslow, Cynthia L; Deyo, Richard A
2002-01-01
Previous studies have shown that crude ginseng extracts enhance performance on shock-motivated tasks. Whether such performance enhancements are due to memory-enhancing (nootropic) properties of ginseng, or to other non-specific effects such as an influence on anxiety has not been determined. In the present study, we evaluated both the nootropic and anxiolytic effects of the ginseng saponin Rb1. In the first experiment, 80 five-day-old male chicks received intraperitoneal injections of 0, 0.25, 2.5 or 5.0 mg/kg Rb1. Performance on a visual discrimination task was evaluated 15 minutes, 24 and 72 hours later. Acquisition of a visual discrimination task was unaffected by drug treatment, but the number of errors was significantly reduced in the 0.25 mg/kg group during retention trials completed 24 and 72 hours after injection. Animals receiving higher dosages showed trends towards enhancement initially, but demonstrated impaired performance when tested 72 hours later. Rb1 had no effect on response rates or body weight. In the second experiment, 64 five-day-old male chicks received similar injections of Rb1 (0, 0.25, 2.5 or 5.0 mg/kg) and separation distress was evaluated 15 minutes, 24 and 72 hours later. Rb1 produced a change in separation distress that depended on the dose and environmental condition under which distress was recorded. These data suggest that Rb1 can improve memory for a visual discrimination task and that the nootropic effect may be related to changes in anxiety.
ERIC Educational Resources Information Center
Iversen, Iver H.
2008-01-01
An inexpensive and automated method for presentation of olfactory or tactile stimuli in a two-choice task for rats was implemented with the use of a computer-controlled bidirectional motor. The motor rotated a disk that presented two stimuli of different texture for tactile discrimination, or different odor for olfactory discrimination. Because…
Do rats use shape to solve “shape discriminations”?
Minini, Loredana; Jeffery, Kathryn J.
2006-01-01
Visual discrimination tasks are increasingly used to explore the neurobiology of vision in rodents, but it remains unclear how the animals solve these tasks: Do they process shapes holistically, or by using low-level features such as luminance and angle acuity? In the present study we found that when discriminating triangles from squares, rats did not use shape but instead relied on local luminance differences in the lower hemifield. A second experiment prevented this strategy by using stimuli—squares and rectangles—that varied in size and location, and for which the only constant predictor of reward was aspect ratio (ratio of height to width: a simple descriptor of “shape”). Rats eventually learned to use aspect ratio but only when no other discriminand was available, and performance remained very poor even at asymptote. These results suggest that although rats can process both dimensions simultaneously, they do not naturally solve shape discrimination tasks this way. This may reflect either a failure to visually process global shape information or a failure to discover shape as the discriminative stimulus in a simultaneous discrimination. Either way, our results suggest that simultaneous shape discrimination is not a good task for studies of visual perception in rodents. PMID:16705141
Transfer in motion perceptual learning depends on the difficulty of the training task.
Wang, Xiaoxiao; Zhou, Yifeng; Liu, Zili
2013-06-07
One hypothesis in visual perceptual learning is that the amount of transfer depends on the difficulty of the training and transfer tasks (Ahissar & Hochstein, 1997; Liu, 1995, 1999). Jeter, Dosher, Petrov, and Lu (2009), using an orientation discrimination task, challenged this hypothesis by arguing that the amount of transfer depends only on the transfer task but not on the training task. Here we show in a motion direction discrimination task that the amount of transfer indeed depends on the difficulty of the training task. Specifically, participants were first trained with either 4° or 8° direction discrimination along one average direction. Their transfer performance was then tested along an average direction 90° away from the trained direction. A variety of transfer measures consistently demonstrated that transfer performance depended on whether the participants were trained on 4° or 8° directional difference. The results contradicted the prediction that transfer was independent of the training task difficulty.
Tong, Jonathan; Mao, Oliver; Goldreich, Daniel
2013-01-01
Two-point discrimination is widely used to measure tactile spatial acuity. The validity of the two-point threshold as a spatial acuity measure rests on the assumption that two points can be distinguished from one only when the two points are sufficiently separated to evoke spatially distinguishable foci of neural activity. However, some previous research has challenged this view, suggesting instead that two-point task performance benefits from an unintended non-spatial cue, allowing spuriously good performance at small tip separations. We compared the traditional two-point task to an equally convenient alternative task in which participants attempt to discern the orientation (vertical or horizontal) of two points of contact. We used precision digital readout calipers to administer two-interval forced-choice versions of both tasks to 24 neurologically healthy adults, on the fingertip, finger base, palm, and forearm. We used Bayesian adaptive testing to estimate the participants’ psychometric functions on the two tasks. Traditional two-point performance remained significantly above chance levels even at zero point separation. In contrast, two-point orientation discrimination approached chance as point separation approached zero, as expected for a valid measure of tactile spatial acuity. Traditional two-point performance was so inflated at small point separations that 75%-correct thresholds could be determined on all tested sites for fewer than half of participants. The 95%-correct thresholds on the two tasks were similar, and correlated with receptive field spacing. In keeping with previous critiques, we conclude that the traditional two-point task provides an unintended non-spatial cue, resulting in spuriously good performance at small spatial separations. Unlike two-point discrimination, two-point orientation discrimination rigorously measures tactile spatial acuity. We recommend the use of two-point orientation discrimination for neurological assessment. PMID:24062677
Motion direction discrimination training reduces perceived motion repulsion.
Jia, Ke; Li, Sheng
2017-04-01
Participants often exaggerate the perceived angular separation between two simultaneously presented motion stimuli, which is referred to as motion repulsion. The overestimation helps participants differentiate between the two superimposed motion directions, yet it causes the impairment of direction perception. Since direction perception can be refined through perceptual training, we here attempted to investigate whether the training of a direction discrimination task changes the amount of motion repulsion. Our results showed a direction-specific learning effect, which was accompanied by a reduced amount of motion repulsion both for the trained and the untrained directions. The reduction of the motion repulsion disappeared when the participants were trained on a luminance discrimination task (control experiment 1) or a speed discrimination task (control experiment 2), ruling out any possible interpretation in terms of adaptation or training-induced attentional bias. Furthermore, training with a direction discrimination task along a direction 150° away from both directions in the transparent stimulus (control experiment 3) also had little effect on the amount of motion repulsion, ruling out the contribution of task learning. The changed motion repulsion observed in the main experiment was consistent with the prediction of the recurrent model of perceptual learning. Therefore, our findings demonstrate that training in direction discrimination can benefit the precise direction perception of the transparent stimulus and provide new evidence for the recurrent model of perceptual learning.
NASA Technical Reports Server (NTRS)
Kramer, Arthur F.; Sirevaag, Erik J.; Braune, Rolf
1986-01-01
This study explores the relationship between the P300 component of the event-related brain potential (ERP) and the processing demands of a complex real-world task. Seven male volunteers enrolled in an Instrument Flight Rule (IFR) aviation course flew a series of missions in a single engine fixed-based simulator. In dual task conditions subjects were also required to discriminate between two tones differing in frequency. ERPs time-locked to the tones, subjective effort ratings and overt performance measures were collected during two 45 min flights differing in difficulty (manipulated by varying both atmospheric conditions and instrument reliability). The more difficult flight was associated with poorer performance, increased subjective effort ratings, and smaller secondary task P300s. Within each flight, P300 amplitude was negatively correlated with deviations from command headings indicating that P300 amplitude was a sensitive workload metric both between and within the flight missions.
ERIC Educational Resources Information Center
Kemner, Chantal; van Ewijk, Lizet; van Engeland, Herman; Hooge, Ignace
2008-01-01
Subjects with PDD excel on certain visuo-spatial tasks, amongst which visual search tasks, and this has been attributed to enhanced perceptual discrimination. However, an alternative explanation is that subjects with PDD show a different, more effective search strategy. The present study aimed to test both hypotheses, by measuring eye movements…
Response inhibition in pedophilia: an FMRI pilot study.
Habermeyer, Benedikt; Esposito, Fabrizio; Händel, Nadja; Lemoine, Patrick; Kuhl, Hans Christian; Klarhöfer, Markus; Mager, Ralph; Mokros, Andreas; Dittmann, Volker; Seifritz, Erich; Graf, Marc
2013-01-01
The failure to inhibit pleasurable but inappropriate urges is associated with frontal lobe pathology and has been suggested as a possible cause of pedophilic behavior. However, imaging and neuropsychological findings about frontal pathology in pedophilia are heterogeneous. In our study we therefore address inhibition behaviorally and by means of functional imaging, aiming to assess how inhibition in pedophilia is related to a differential recruitment of frontal brain areas. Eleven pedophilic subjects and 7 nonpedophilic controls underwent fMRI while performing a go/no-go task composed of neutral letters. Pedophilic subjects showed a slower reaction time and less accurate visual target discrimination. fMRI voxel-level ANOVA revealed as a main effect of the go/no-go task an activation of prefrontal and parietal brain regions in the no-go condition, while the left anterior cingulate, precuneus and gyrus angularis became more activated in the go condition. In addition, a group × task interaction was found in the left precuneus and gyrus angularis. This interaction was based on an attenuated deactivation of these brain regions in the pedophilic group during performance of the no-go condition. The positive correlation between blood oxygen level-dependent imaging signal and reaction time in these brain areas indicates that attenuated deactivation is related to the behavioral findings. Slower reaction time and less accurate visual target discrimination in pedophilia was accompanied by attenuated deactivation of brain areas belonging to the default mode network. Our findings thus support the notion that behavioral differences might also derive from self-related processes and not necessarily from frontal lobe pathology. © 2013 S. Karger AG, Basel.
Jenson, David; Bowers, Andrew L.; Harkrider, Ashley W.; Thornton, David; Cuellar, Megan; Saltuklaroglu, Tim
2014-01-01
Activity in anterior sensorimotor regions is found in speech production and some perception tasks. Yet, how sensorimotor integration supports these functions is unclear due to a lack of data examining the timing of activity from these regions. Beta (~20 Hz) and alpha (~10 Hz) spectral power within the EEG μ rhythm are considered indices of motor and somatosensory activity, respectively. In the current study, perception conditions required discrimination (same/different) of syllables pairs (/ba/ and /da/) in quiet and noisy conditions. Production conditions required covert and overt syllable productions and overt word production. Independent component analysis was performed on EEG data obtained during these conditions to (1) identify clusters of μ components common to all conditions and (2) examine real-time event-related spectral perturbations (ERSP) within alpha and beta bands. 17 and 15 out of 20 participants produced left and right μ-components, respectively, localized to precentral gyri. Discrimination conditions were characterized by significant (pFDR < 0.05) early alpha event-related synchronization (ERS) prior to and during stimulus presentation and later alpha event-related desynchronization (ERD) following stimulus offset. Beta ERD began early and gained strength across time. Differences were found between quiet and noisy discrimination conditions. Both overt syllable and word productions yielded similar alpha/beta ERD that began prior to production and was strongest during muscle activity. Findings during covert production were weaker than during overt production. One explanation for these findings is that μ-beta ERD indexes early predictive coding (e.g., internal modeling) and/or overt and covert attentional/motor processes. μ-alpha ERS may index inhibitory input to the premotor cortex from sensory regions prior to and during discrimination, while μ-alpha ERD may index sensory feedback during speech rehearsal and production. PMID:25071633
Yamashita, Wakayo; Wang, Gang; Tanaka, Keiji
2010-01-01
One usually fails to recognize an unfamiliar object across changes in viewing angle when it has to be discriminated from similar distractor objects. Previous work has demonstrated that after long-term experience in discriminating among a set of objects seen from the same viewing angle, immediate recognition of the objects across 30-60 degrees changes in viewing angle becomes possible. The capability for view-invariant object recognition should develop during the within-viewing-angle discrimination, which includes two kinds of experience: seeing individual views and discriminating among the objects. The aim of the present study was to determine the relative contribution of each factor to the development of view-invariant object recognition capability. Monkeys were first extensively trained in a task that required view-invariant object recognition (Object task) with several sets of objects. The animals were then exposed to a new set of objects over 26 days in one of two preparatory tasks: one in which each object view was seen individually, and a second that required discrimination among the objects at each of four viewing angles. After the preparatory period, we measured the monkeys' ability to recognize the objects across changes in viewing angle, by introducing the object set to the Object task. Results indicated significant view-invariant recognition after the second but not first preparatory task. These results suggest that discrimination of objects from distractors at each of several viewing angles is required for the development of view-invariant recognition of the objects when the distractors are similar to the objects.
Brain Mechanisms Supporting Discrimination of Sensory Features of Pain: A New Model
Oshiro, Yoshitetsu; Quevedo, Alexandre S.; McHaffie, John G.; Kraft, Robert A.; Coghill, Robert C.
2010-01-01
Pain can be very intense or only mild, and can be well localized or diffuse. To date, little is known as to how such distinct sensory aspects of noxious stimuli are processed by the human brain. Using functional magnetic resonance imaging and a delayed match-to-sample task, we show that discrimination of pain intensity, a non-spatial aspect of pain, activates a ventrally directed pathway extending bilaterally from the insular cortex to the prefrontal cortex. This activation is distinct from the dorsally-directed activation of the posterior parietal cortex and right dorsolateral prefrontal cortex that occurs during spatial discrimination of pain. Both intensity and spatial discrimination tasks activate highly similar aspects of the anterior cingulate cortex, suggesting that this structure contributes to common elements of the discrimination task such as the monitoring of sensory comparisons and response selection. Taken together, these results provide the foundation for a new model of pain in which bidirectional dorsal and ventral streams preferentially amplify and process distinct sensory features of noxious stimuli according to top-down task demands. PMID:19940188
Spatiotemporal differentiation in auditory and motor regions during auditory phoneme discrimination.
Aerts, Annelies; Strobbe, Gregor; van Mierlo, Pieter; Hartsuiker, Robert J; Corthals, Paul; Santens, Patrick; De Letter, Miet
2017-06-01
Auditory phoneme discrimination (APD) is supported by both auditory and motor regions through a sensorimotor interface embedded in a fronto-temporo-parietal cortical network. However, the specific spatiotemporal organization of this network during APD with respect to different types of phonemic contrasts is still unclear. Here, we use source reconstruction, applied to event-related potentials in a group of 47 participants, to uncover a potential spatiotemporal differentiation in these brain regions during a passive and active APD task with respect to place of articulation (PoA), voicing and manner of articulation (MoA). Results demonstrate that in an early stage (50-110 ms), auditory, motor and sensorimotor regions elicit more activation during the passive and active APD task with MoA and active APD task with voicing compared to PoA. In a later stage (130-175 ms), the same auditory and motor regions elicit more activation during the APD task with PoA compared to MoA and voicing, yet only in the active condition, implying important timing differences. Degree of attention influences a frontal network during the APD task with PoA, whereas auditory regions are more affected during the APD task with MoA and voicing. Based on these findings, it can be carefully suggested that APD is supported by the integration of early activation of auditory-acoustic properties in superior temporal regions, more perpetuated for MoA and voicing, and later auditory-to-motor integration in sensorimotor areas, more perpetuated for PoA.
Color-dependent learning in restrained Africanized honey bees.
Jernigan, C M; Roubik, D W; Wcislo, W T; Riveros, A J
2014-02-01
Associative color learning has been demonstrated to be very poor using restrained European honey bees unless the antennae are amputated. Consequently, our understanding of proximate mechanisms in visual information processing is handicapped. Here we test learning performance of Africanized honey bees under restrained conditions with visual and olfactory stimulation using the proboscis extension response (PER) protocol. Restrained individuals were trained to learn an association between a color stimulus and a sugar-water reward. We evaluated performance for 'absolute' learning (learned association between a stimulus and a reward) and 'discriminant' learning (discrimination between two stimuli). Restrained Africanized honey bees (AHBs) readily learned the association of color stimulus for both blue and green LED stimuli in absolute and discriminatory learning tasks within seven presentations, but not with violet as the rewarded color. Additionally, 24-h memory improved considerably during the discrimination task, compared with absolute association (15-55%). We found that antennal amputation was unnecessary and reduced performance in AHBs. Thus color learning can now be studied using the PER protocol with intact AHBs. This finding opens the way towards investigating visual and multimodal learning with application of neural techniques commonly used in restrained honey bees.
Bilevel Model-Based Discriminative Dictionary Learning for Recognition.
Zhou, Pan; Zhang, Chao; Lin, Zhouchen
2017-03-01
Most supervised dictionary learning methods optimize the combinations of reconstruction error, sparsity prior, and discriminative terms. Thus, the learnt dictionaries may not be optimal for recognition tasks. Also, the sparse codes learning models in the training and the testing phases are inconsistent. Besides, without utilizing the intrinsic data structure, many dictionary learning methods only employ the l 0 or l 1 norm to encode each datum independently, limiting the performance of the learnt dictionaries. We present a novel bilevel model-based discriminative dictionary learning method for recognition tasks. The upper level directly minimizes the classification error, while the lower level uses the sparsity term and the Laplacian term to characterize the intrinsic data structure. The lower level is subordinate to the upper level. Therefore, our model achieves an overall optimality for recognition in that the learnt dictionary is directly tailored for recognition. Moreover, the sparse codes learning models in the training and the testing phases can be the same. We further propose a novel method to solve our bilevel optimization problem. It first replaces the lower level with its Karush-Kuhn-Tucker conditions and then applies the alternating direction method of multipliers to solve the equivalent problem. Extensive experiments demonstrate the effectiveness and robustness of our method.
Acquired appetitive responding to intravenous nicotine reflects a Pavlovian conditioned association
Murray, Jennifer E.; Bevins, Rick A.
2008-01-01
Recent research examining Pavlovian appetitive conditioning has extended the associative properties of nicotine from the unconditioned stimulus or reward to include the role of a conditional stimulus (CS), capable of acquiring the ability to evoke a conditioned response. To date, published research has used pre-session extravascular injections to examine nicotine as a contextual CS in that appetitive Pavlovian drug discrimination task. Two studies in the current research examined whether a nicotine CS can function discretely, multiple times within a session using passive intravenous infusions. In Experiment 1, rats readily acquired a discrimination in conditioned responding between nicotine and saline infusions when nicotine was selectively paired with sucrose presentations. In Experiment 2, rats were either trained with nicotine paired with sucrose or explicitly unpaired with sucrose. The results showed that rats trained with explicitly unpaired nicotine and sucrose did not increase dipper entries after the infusions. Nicotine was required to be reliably paired with sucrose for control of conditioned responding to develop. Implications of these findings are discussed in relation to tobacco addiction, learning theory, and pharmacology. PMID:19170434
Buccafusco, Jerry J; Terry, Alvin V; Webster, Scott J; Martin, Daniel; Hohnadel, Elizabeth J; Bouchard, Kristy A; Warner, Samantha E
2008-08-01
The scopolamine-reversal model is enjoying a resurgence of interest in clinical studies as a reversible pharmacological model for Alzheimer's disease (AD). The cognitive impairment associated with scopolamine is similar to that in AD. The scopolamine model is not simply a cholinergic model, as it can be reversed by drugs that are noncholinergic cognition-enhancing agents. The objective of the study was to determine relevance of computer-assisted operant-conditioning tasks in the scopolamine-reversal model in rats and monkeys. Rats were evaluated for their acquisition of a spatial reference memory task in the Morris water maze. A separate cohort was proficient in performance of an automated delayed stimulus discrimination task (DSDT). Rhesus monkeys were proficient in the performance of an automated delayed matching-to-sample task (DMTS). The AD drug donepezil was evaluated for its ability to reverse the decrements in accuracy induced by scopolamine administration in all three tasks. In the DSDT and DMTS tasks, the effects of donepezil were delay (retention interval)-dependent, affecting primarily short delay trials. Donepezil produced significant but partial reversals of the scopolamine-induced impairment in task accuracies after 2 mg/kg in the water maze, after 1 mg/kg in the DSDT, and after 50 microg/kg in the DMTS task. The two operant-conditioning tasks (DSDT and DMTS) provided data most in keeping with those reported in clinical studies with these drugs. The model applied to nonhuman primates provides an excellent transitional model for new cognition-enhancing drugs before clinical trials.
Contextual Control of Fluid Consumption: The Effects of Context Extinction
ERIC Educational Resources Information Center
Murphy, M.; Skinner, D.M.
2005-01-01
Rats were trained on a conditional discrimination task in which saccharin was paired with LiCl in one context but paired with saline in another context. Rats drank less saccharin in the danger context than in the safe context, and consumption in the home cage was intermediate to consumption in the two training contexts. Rats also avoided the…
ERIC Educational Resources Information Center
Benard, Julie; Giurfa, Martin
2004-01-01
We asked whether honeybees, "Apis mellifera," could solve a transitive inference problem. Individual free-flying bees were conditioned with four overlapping premise pairs of five visual patterns in a multiple discrimination task (A+ vs. B-, B+ vs. C-, C+ vs. D-, D+ vs. E-, where + and - indicate sucrose reward or absence of it,…
Emergence of White-Lie Telling in Children between 3 and 7 Years of Age.
ERIC Educational Resources Information Center
Talwar, Victoria; Lee, Kang
2002-01-01
Examined white-lie-telling behavior in 3- to 7-year-olds using task whereby the experimenter asked "Do I look OK for the photo?" with or without a visible mark on his nose. Found that most children in the experimental condition told white lies. Undergraduates viewing children's videotaped responses could not discriminate white-lie…
Auditory Stream Segregation Improves Infants' Selective Attention to Target Tones Amid Distracters
ERIC Educational Resources Information Center
Smith, Nicholas A.; Trainor, Laurel J.
2011-01-01
This study examined the role of auditory stream segregation in the selective attention to target tones in infancy. Using a task adapted from Bregman and Rudnicky's 1975 study and implemented in a conditioned head-turn procedure, infant and adult listeners had to discriminate the temporal order of 2,200 and 2,400 Hz target tones presented alone,…
The brain dynamics of rapid perceptual adaptation to adverse listening conditions.
Erb, Julia; Henry, Molly J; Eisner, Frank; Obleser, Jonas
2013-06-26
Listeners show a remarkable ability to quickly adjust to degraded speech input. Here, we aimed to identify the neural mechanisms of such short-term perceptual adaptation. In a sparse-sampling, cardiac-gated functional magnetic resonance imaging (fMRI) acquisition, human listeners heard and repeated back 4-band-vocoded sentences (in which the temporal envelope of the acoustic signal is preserved, while spectral information is highly degraded). Clear-speech trials were included as baseline. An additional fMRI experiment on amplitude modulation rate discrimination quantified the convergence of neural mechanisms that subserve coping with challenging listening conditions for speech and non-speech. First, the degraded speech task revealed an "executive" network (comprising the anterior insula and anterior cingulate cortex), parts of which were also activated in the non-speech discrimination task. Second, trial-by-trial fluctuations in successful comprehension of degraded speech drove hemodynamic signal change in classic "language" areas (bilateral temporal cortices). Third, as listeners perceptually adapted to degraded speech, downregulation in a cortico-striato-thalamo-cortical circuit was observable. The present data highlight differential upregulation and downregulation in auditory-language and executive networks, respectively, with important subcortical contributions when successfully adapting to a challenging listening situation.
Kanaya, Shoko; Fujisaki, Waka; Nishida, Shin'ya; Furukawa, Shigeto; Yokosawa, Kazuhiko
2015-02-01
Temporal phase discrimination is a useful psychophysical task to evaluate how sensory signals, synchronously detected in parallel, are perceptually bound by human observers. In this task two stimulus sequences synchronously alternate between two states (say, A-B-A-B and X-Y-X-Y) in either of two temporal phases (ie A and B are respectively paired with X and Y, or vice versa). The critical alternation frequency beyond which participants cannot discriminate the temporal phase is measured as an index characterizing the temporal property of the underlying binding process. This task has been used to reveal the mechanisms underlying visual and cross-modal bindings. To directly compare these binding mechanisms with those in another modality, this study used the temporal phase discrimination task to reveal the processes underlying auditory bindings. The two sequences were alternations between two pitches. We manipulated the distance between the two sequences by changing intersequence frequency separation, or presentation ears (diotic vs dichotic). Results showed that the alternation frequency limit ranged from 7 to 30 Hz, becoming higher as the intersequence distance decreased, as is the case with vision. However, unlike vision, auditory phase discrimination limits were higher and more variable across participants. © 2015 SAGE Publications.
Smith, B H; Abramson, C I; Tobin, T R
1991-12-01
Proboscis extension conditioning of honeybee workers was used to test the ability of bees to respond to appetitive and aversive stimuli while restrained in a harness that allows subjects to move their antennae and mouthparts (Kuwabara, 1957; Menzel, Erber, & Masuhr, 1974). Subjects were conditioned to discriminate between two odors, one associated with sucrose feeding and the other associated with a 10 V AC shock if they responded to the sucrose unconditioned stimulus (US) in the context of that odor. Most Ss readily learned to respond to the odor followed by sucrose feeding and not to the odor associated with sucrose stimulation plus shock. Furthermore, in the context of the odor associated with shock, significantly more subjects withheld or delayed proboscis extension on stimulation with the sucrose US than they did in the context of the odor associated with feeding. Thus, restrained honeybees can readily learn to avoid shock according to an odor context by withholding proboscis extension to a normally powerful releaser. Analysis of individual learning curves revealed that subjects differed markedly in performance on this task. Some learn the discrimination quickly, whereas others show different kinds of response patterns.
Estis, Julie M; Dean-Claytor, Ashli; Moore, Robert E; Rowell, Thomas L
2011-03-01
The effects of musical interference and noise on pitch-matching accuracy were examined. Vocal training was explored as a factor influencing pitch-matching accuracy, and the relationship between pitch matching and pitch discrimination was examined. Twenty trained singers (TS) and 20 untrained individuals (UT) vocally matched tones in six conditions (immediate, four types of chords, noise). Fundamental frequencies were calculated, compared with the frequency of the target tone, and converted to semitone difference scores. A pitch discrimination task was also completed. TS showed significantly better pitch matching than UT across all conditions. Individual performances for UT were highly variable. Therefore, untrained participants were divided into two groups: 10 untrained accurate and 10 untrained inaccurate. Comparison of TS with untrained accurate individuals revealed significant differences between groups and across conditions. Compared with immediate vocal matching of target tones, pitch-matching accuracy was significantly reduced, given musical chord and noise interference unless the target tone was presented in the musical chord. A direct relationship between pitch matching and pitch discrimination was revealed. Across pitch-matching conditions, TS were consistently more accurate than UT. Pitch-matching accuracy diminished when auditory interference consisted of chords that did not contain the target tone and noise. Copyright © 2011 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
Gennari, Silvia P; Millman, Rebecca E; Hymers, Mark; Mattys, Sven L
2018-06-12
Perceiving speech while performing another task is a common challenge in everyday life. How the brain controls resource allocation during speech perception remains poorly understood. Using functional magnetic resonance imaging (fMRI), we investigated the effect of cognitive load on speech perception by examining brain responses of participants performing a phoneme discrimination task and a visual working memory task simultaneously. The visual task involved holding either a single meaningless image in working memory (low cognitive load) or four different images (high cognitive load). Performing the speech task under high load, compared to low load, resulted in decreased activity in pSTG/pMTG and increased activity in visual occipital cortex and two regions known to contribute to visual attention regulation-the superior parietal lobule (SPL) and the paracingulate and anterior cingulate gyrus (PaCG, ACG). Critically, activity in PaCG/ACG was correlated with performance in the visual task and with activity in pSTG/pMTG: Increased activity in PaCG/ACG was observed for individuals with poorer visual performance and with decreased activity in pSTG/pMTG. Moreover, activity in a pSTG/pMTG seed region showed psychophysiological interactions with areas of the PaCG/ACG, with stronger interaction in the high-load than the low-load condition. These findings show that the acoustic analysis of speech is affected by the demands of a concurrent visual task and that the PaCG/ACG plays a role in allocating cognitive resources to concurrent auditory and visual information. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Becerra, F E; Fan, J; Migdall, A
2013-01-01
Generalized quantum measurements implemented to allow for measurement outcomes termed inconclusive can perform perfect discrimination of non-orthogonal states, a task which is impossible using only measurements with definitive outcomes. Here we demonstrate such generalized quantum measurements for unambiguous discrimination of four non-orthogonal coherent states and obtain their quantum mechanical description, the positive-operator valued measure. For practical realizations of this positive-operator valued measure, where noise and realistic imperfections prevent perfect unambiguous discrimination, we show that our experimental implementation outperforms any ideal standard-quantum-limited measurement performing the same non-ideal unambiguous state discrimination task for coherent states with low mean photon numbers.
Olfactory discrimination ability of CD-1 mice for a large array of enantiomers.
Laska, M; Shepherd, G M
2007-01-05
With use of a conditioning paradigm, the ability of eight CD-1 mice to distinguish between 15 enantiomeric odor pairs was investigated. The results demonstrate a) that CD-1 mice are capable of discriminating between all odor pairs tested, b) that the enantiomeric odor pairs clearly differed in their degree of discriminability and thus in their perceptual similarity, and c) that pre-training with the rewarded stimuli led to improved initial but not terminal or overall performance. A comparison between the proportion of discriminated enantiomeric odor pairs of the CD-1 mice and those of other species tested in earlier studies on the same discrimination tasks (or on subsets thereof) shows a significant positive correlation between discrimination performance and the number of functional olfactory receptor genes. These findings provide the first evidence of a highly developed ability of CD-1 mice to discriminate between an array of non-pheromonal chiral odorants. Further, they suggest that a species' olfactory discrimination capabilities for these odorants may be correlated with its number of functional olfactory receptor genes. The data presented here may provide useful information for the interpretation of findings from electrophysiological or imaging studies in the mouse and the elucidation of odor structure-activity relationships.
Olfactory discrimination ability of CD-1 mice for a large array of enantiomers
Laska, Matthias; Shepherd, Gordon M.
2006-01-01
With use of a conditioning paradigm, the ability of eight CD-1 mice to distinguish between 15 enantiomeric odor pairs was investigated. The results demonstrate a) that CD-1 mice are capable of discriminating between all odor pairs tested, b) that the enantiomeric odor pairs clearly differed in their degree of discriminability and thus in their perceptual similarity, and c) that pre-training with the rewarded stimuli led to improved initial but not terminal or overall performance. A comparison between the proportion of discriminated enantiomeric odor pairs of the CD-1 mice and those of other species tested in earlier studies on the same discrimination tasks (or on subsets thereof) shows a significant positive correlation between discrimination performance and the number of functional olfactory receptor genes. These findings provide the first evidence of a highly developed ability of CD-1 mice to discriminate between an array of non-pheromonal chiral odorants. Further, they suggest that a species′ olfactory discrimination capabilities for these odorants may be correlated with its number of functional olfactory receptor genes. The data presented here may provide useful information for the interpretation of findings from electrophysiological or imaging studies in the mouse and the elucidation of odor structure-activity relationships. PMID:17045753
Genetics and mathematics: evidence from Prader-Willi syndrome.
Semenza, Carlo; Pignatti, Riccardo; Bertella, Laura; Ceriani, Francesca; Mori, Ileana; Molinari, Enrico; Giardino, Daniela; Malvestiti, Francesca; Grugni, Graziano
2008-01-15
Mathematical abilities were tested in people with Prader-Willi syndrome (PWS), using a series of basic mathematical tasks for which normative data are available. The difference between the deletion and the disomy variants of this condition was explored. While a wide phenotypic variation was found, some basic findings emerge clearly. As expected from previous literature, deletion and disomy participants were found to differ in their degree of impairment, with disomy being overall the most spared condition. However, the tasks selectively spared in the disomy condition are not necessarily the easiest ones and those that discriminate less the PWS group from controls. It rather seems that disomy patients are spared, with respect to deletion, in tasks entailing transcoding and comparison of numbers in the Arabic code. Overall a particular difficulty was detected in reliably performing parity judgments. This task has been shown to be very frequently spared after a brain injury, even in severe aphasic conditions. The most interesting result is the sparing in analog number scale, whereby PWS seem, overall, to outperform controls. This finding may help in understanding previously reported, surprising results about cognitive skills in PWS. Elevated performances in PWS may result from life-long hyper-reliance on one visuo-spatial system in presence of underdevelopment of the other.
Relating age and hearing loss to monaural, bilateral, and binaural temporal sensitivity1
Gallun, Frederick J.; McMillan, Garnett P.; Molis, Michelle R.; Kampel, Sean D.; Dann, Serena M.; Konrad-Martin, Dawn L.
2014-01-01
Older listeners are more likely than younger listeners to have difficulties in making temporal discriminations among auditory stimuli presented to one or both ears. In addition, the performance of older listeners is often observed to be more variable than that of younger listeners. The aim of this work was to relate age and hearing loss to temporal processing ability in a group of younger and older listeners with a range of hearing thresholds. Seventy-eight listeners were tested on a set of three temporal discrimination tasks (monaural gap discrimination, bilateral gap discrimination, and binaural discrimination of interaural differences in time). To examine the role of temporal fine structure in these tasks, four types of brief stimuli were used: tone bursts, broad-frequency chirps with rising or falling frequency contours, and random-phase noise bursts. Between-subject group analyses conducted separately for each task revealed substantial increases in temporal thresholds for the older listeners across all three tasks, regardless of stimulus type, as well as significant correlations among the performance of individual listeners across most combinations of tasks and stimuli. Differences in performance were associated with the stimuli in the monaural and binaural tasks, but not the bilateral task. Temporal fine structure differences among the stimuli had the greatest impact on monaural thresholds. Threshold estimate values across all tasks and stimuli did not show any greater variability for the older listeners as compared to the younger listeners. A linear mixed model applied to the data suggested that age and hearing loss are independent factors responsible for temporal processing ability, thus supporting the increasingly accepted hypothesis that temporal processing can be impaired for older compared to younger listeners with similar hearing and/or amounts of hearing loss. PMID:25009458
Mechanisms of impulsive choice: III. The role of reward processes
Marshall, Andrew T.
2015-01-01
Two experiments examined the relationship between reward processing and impulsive choice. In Experiment 1, rats chose between a smaller-sooner (SS) reward (1 pellet, 10 s) and a larger-later (LL) reward (1, 2, and 4 pellets, 30 s). The rats then experienced concurrent variable-interval 30-s schedules with variations in reward magnitude to evaluate reward magnitude discrimination. LL choice behavior positively correlated with reward magnitude discrimination. In Experiment 2, rats chose between an SS reward (1 pellet, 10 s) and an LL reward (2 and 4 pellets, 30 s). The rats then received either a reward intervention which consisted of concurrent fixed-ratio schedules associated with different magnitudes to improve their reward magnitude discrimination, or a control task. All rats then experienced a post-intervention impulsive choice task followed by a reward magnitude discrimination task to assess intervention efficacy. The rats that received the intervention exhibited increases in post-intervention LL choice behavior, and made more responses for larger-reward magnitudes in the reward magnitude discrimination task, suggesting that the intervention heightened sensitivities to reward magnitude. The results suggest that reward magnitude discrimination plays a key role in individual differences in impulsive choice, and could be a potential target for further intervention developments. PMID:26506254
Effects of task demands on the early neural processing of fearful and happy facial expressions
Itier, Roxane J.; Neath-Tavares, Karly N.
2017-01-01
Task demands shape how we process environmental stimuli but their impact on the early neural processing of facial expressions remains unclear. In a within-subject design, ERPs were recorded to the same fearful, happy and neutral facial expressions presented during a gender discrimination, an explicit emotion discrimination and an oddball detection tasks, the most studied tasks in the field. Using an eye tracker, fixation on the face nose was enforced using a gaze-contingent presentation. Task demands modulated amplitudes from 200–350ms at occipito-temporal sites spanning the EPN component. Amplitudes were more negative for fearful than neutral expressions starting on N170 from 150–350ms, with a temporo-occipital distribution, whereas no clear effect of happy expressions was seen. Task and emotion effects never interacted in any time window or for the ERP components analyzed (P1, N170, EPN). Thus, whether emotion is explicitly discriminated or irrelevant for the task at hand, neural correlates of fearful and happy facial expressions seem immune to these task demands during the first 350ms of visual processing. PMID:28315309
The performance of ravens on simple discrimination tasks: a preliminary study
Range, Friederike; Bugnyar, Thomas; Kotrschal, Kurt
2015-01-01
Recent studies suggest the existence of primate-like cognitive abilities in corvids. Although the learning abilities of corvids in comparison to other species have been investigated before, little is known on how corvids perform on simple discrimination tasks if tested in experimental settings comparable to those that have been used for studying complex cognitive abilities. In this study, we tested a captive group of 12 ravens (Corvus corax) on four discrimination problems and their reversals. In contrast to other studies investigating learning abilities, our ravens were not food deprived and participation in experiments was voluntary. This preliminary study showed that all ravens successfully solved feature and position discriminations and several of the ravens could solve new tasks in a few trials, making very few mistakes. PMID:25948877
Neuroimaging of the joint Simon effect with believed biological and non-biological co-actors
Wen, Tanya; Hsieh, Shulan
2015-01-01
Performing a task alone or together with another agent can produce different outcomes. The current study used event-related functional magnetic resonance imaging (fMRI) to investigate the neural underpinnings when participants performed a Go/Nogo task alone or complementarily with another co-actor (unseen), whom was believed to be another human or a computer. During both complementary tasks, reaction time data suggested that participants integrated the potential action of their co-actor in their own action planning. Compared to the single-actor task, increased parietal and precentral activity during complementary tasks as shown in the fMRI data further suggested representation of the co-actor’s response. The superior frontal gyrus of the medial prefrontal cortex was differentially activated in the human co-actor condition compared to the computer co-actor condition. The medial prefrontal cortex, involved thinking about the beliefs and intentions of other people, possibly reflects a social-cognitive aspect or self-other discrimination during the joint task when believing a biological co-actor is present. Our results suggest that action co-representation can occur even offline with any agent type given a priori information that they are co-acting; however, additional regions are recruited when participants believe they are task-sharing with another human. PMID:26388760
Neuroimaging of the joint Simon effect with believed biological and non-biological co-actors.
Wen, Tanya; Hsieh, Shulan
2015-01-01
Performing a task alone or together with another agent can produce different outcomes. The current study used event-related functional magnetic resonance imaging (fMRI) to investigate the neural underpinnings when participants performed a Go/Nogo task alone or complementarily with another co-actor (unseen), whom was believed to be another human or a computer. During both complementary tasks, reaction time data suggested that participants integrated the potential action of their co-actor in their own action planning. Compared to the single-actor task, increased parietal and precentral activity during complementary tasks as shown in the fMRI data further suggested representation of the co-actor's response. The superior frontal gyrus of the medial prefrontal cortex was differentially activated in the human co-actor condition compared to the computer co-actor condition. The medial prefrontal cortex, involved thinking about the beliefs and intentions of other people, possibly reflects a social-cognitive aspect or self-other discrimination during the joint task when believing a biological co-actor is present. Our results suggest that action co-representation can occur even offline with any agent type given a priori information that they are co-acting; however, additional regions are recruited when participants believe they are task-sharing with another human.
Neural cascade of conflict processing: Not just time-on-task.
McKay, Cameron C; van den Berg, Berry; Woldorff, Marty G
2017-02-01
In visual conflict tasks (e.g., Stroop or flanker), response times (RTs) are generally longer on incongruent trials relative to congruent ones. Two event-related-potential (ERP) components classically associated with the processing of stimulus conflict are the fronto-central, incongruency-related negativity (N inc ) and the posterior late-positive complex (LPC), which are derived from the ERP difference waves for incongruent minus congruent trials. It has been questioned, however, whether these effects, or other neural measures of incongruency (e.g., fMRI responses in the anterior cingulate), reflect true conflict processing, or whether such effects derive mainly from differential time-on-task. To address this question, we leveraged high-temporal-resolution ERP measures of brain activity during two behavioral tasks. The first task, a modified Erikson flanker paradigm (with congruent and incongruent trials), was used to evoke the classic RT and ERP effects associated with conflict. The second was a non-conflict control task in which, participants visually discriminated a single stimulus (with easy and hard discrimination conditions). Behaviorally, the parameters were titrated to yield similar RT effects of conflict and difficulty (27ms). Neurally, both within-task contrasts showed an initial fronto-central negative-polarity wave (N2-latency effect), but they then diverged. In the difficulty difference wave, the initial negativity led directly into the posterior LPC, whereas in the incongruency contrast the initial negativity was followed a by a second fronto-central negative peak (N inc ), which was then followed by a considerably longer-latency LPC. These results provide clear evidence that the longer processing for incongruent stimulus inputs do not just reflect time-on-task or difficulty, but include a true conflict-processing component. Copyright © 2017 Elsevier Ltd. All rights reserved.
Voss, Patrice; Gougoux, Frederic; Zatorre, Robert J; Lassonde, Maryse; Lepore, Franco
2008-04-01
Blind individuals do not necessarily receive more auditory stimulation than sighted individuals. However, to interact effectively with their environment, they have to rely on non-visual cues (in particular auditory) to a greater extent. Often benefiting from cerebral reorganization, they not only learn to rely more on such cues but also may process them better and, as a result, demonstrate exceptional abilities in auditory spatial tasks. Here we examine the effects of blindness on brain activity, using positron emission tomography (PET), during a sound-source discrimination task (SSDT) in both early- and late-onset blind individuals. This should not only provide an answer to the question of whether the blind manifest changes in brain activity but also allow a direct comparison of the two subgroups performing an auditory spatial task. The task was presented under two listening conditions: one binaural and one monaural. The binaural task did not show any significant behavioural differences between groups, but it demonstrated striate and extrastriate activation in the early-blind groups. A subgroup of early-blind individuals, on the other hand, performed significantly better than all the other groups during the monaural task, and these enhanced skills were correlated with elevated activity within the left dorsal extrastriate cortex. Surprisingly, activation of the right ventral visual pathway, which was significantly activated in the late-blind individuals during the monaural task, was negatively correlated with performance. This suggests the possibility that not all cross-modal plasticity is beneficial. Overall, our results not only support previous findings showing that occipital cortex of early-blind individuals is functionally engaged in spatial auditory processing but also shed light on the impact the age of onset of blindness can have on the ensuing cross-modal plasticity.
Howard, Charla L; Wallace, Chris; Abbas, James; Stokic, Dobrivoje S
2017-01-01
We developed and evaluated properties of a new measure of variability in stride length and cadence, termed residual standard deviation (RSD). To calculate RSD, stride length and cadence are regressed against velocity to derive the best fit line from which the variability (SD) of the distance between the actual and predicted data points is calculated. We examined construct, concurrent, and discriminative validity of RSD using dual-task paradigm in 14 below-knee prosthesis users and 13 age- and education-matched controls. Subjects walked first over an electronic walkway while performing separately a serial subtraction and backwards spelling task, and then at self-selected slow, normal, and fast speeds used to derive the best fit line for stride length and cadence against velocity. Construct validity was demonstrated by significantly greater increase in RSD during dual-task gait in prosthesis users than controls (group-by-condition interaction, stride length p=0.0006, cadence p=0.009). Concurrent validity was established against coefficient of variation (CV) by moderate-to-high correlations (r=0.50-0.87) between dual-task cost RSD and dual-task cost CV for both stride length and cadence in prosthesis users and controls. Discriminative validity was documented by the ability of dual-task cost calculated from RSD to effectively differentiate prosthesis users from controls (area under the receiver operating characteristic curve, stride length 0.863, p=0.001, cadence 0.808, p=0.007), which was better than the ability of dual-task cost CV (0.692, 0.648, respectively, not significant). These results validate RSD as a new measure of variability in below-knee prosthesis users. Future studies should include larger cohorts and other populations to ascertain its generalizability. Copyright © 2016 Elsevier B.V. All rights reserved.
Gould, R W; Dencker, D; Grannan, M; Bubser, M; Zhan, X; Wess, J; Xiang, Z; Locuson, C; Lindsley, C W; Conn, P J; Jones, C K
2015-10-21
The M1 muscarinic acetylcholine receptor (mAChR) subtype has been implicated in the underlying mechanisms of learning and memory and represents an important potential pharmacotherapeutic target for the cognitive impairments observed in neuropsychiatric disorders such as schizophrenia. Patients with schizophrenia show impairments in top-down processing involving conflict between sensory-driven and goal-oriented processes that can be modeled in preclinical studies using touchscreen-based cognition tasks. The present studies used a touchscreen visual pairwise discrimination task in which mice discriminated between a less salient and a more salient stimulus to assess the influence of the M1 mAChR on top-down processing. M1 mAChR knockout (M1 KO) mice showed a slower rate of learning, evidenced by slower increases in accuracy over 12 consecutive days, and required more days to acquire (achieve 80% accuracy) this discrimination task compared to wild-type mice. In addition, the M1 positive allosteric modulator BQCA enhanced the rate of learning this discrimination in wild-type, but not in M1 KO, mice when BQCA was administered daily prior to testing over 12 consecutive days. Importantly, in discriminations between stimuli of equal salience, M1 KO mice did not show impaired acquisition and BQCA did not affect the rate of learning or acquisition in wild-type mice. These studies are the first to demonstrate performance deficits in M1 KO mice using touchscreen cognitive assessments and enhanced rate of learning and acquisition in wild-type mice through M1 mAChR potentiation when the touchscreen discrimination task involves top-down processing. Taken together, these findings provide further support for M1 potentiation as a potential treatment for the cognitive symptoms associated with schizophrenia.
Neural Mechanisms Underlying the Cost of Task Switching: An ERP Study
Li, Ling; Wang, Meng; Zhao, Qian-Jing; Fogelson, Noa
2012-01-01
Background When switching from one task to a new one, reaction times are prolonged. This phenomenon is called switch cost (SC). Researchers have recently used several kinds of task-switching paradigms to uncover neural mechanisms underlying the SC. Task-set reconfiguration and passive dissipation of a previously relevant task-set have been reported to contribute to the cost of task switching. Methodology/Principal Findings An unpredictable cued task-switching paradigm was used, during which subjects were instructed to switch between a color and an orientation discrimination task. Electroencephalography (EEG) and behavioral measures were recorded in 14 subjects. Response-stimulus interval (RSI) and cue-stimulus interval (CSI) were manipulated with short and long intervals, respectively. Switch trials delayed reaction times (RTs) and increased error rates compared with repeat trials. The SC of RTs was smaller in the long CSI condition. For cue-locked waveforms, switch trials generated a larger parietal positive event-related potential (ERP), and a larger slow parietal positivity compared with repeat trials in the short and long CSI condition. Neural SC of cue-related ERP positivity was smaller in the long RSI condition. For stimulus-locked waveforms, a larger switch-related central negative ERP component was observed, and the neural SC of the ERP negativity was smaller in the long CSI. Results of standardized low resolution electromagnetic tomography (sLORETA) for both ERP positivity and negativity showed that switch trials evoked larger activation than repeat trials in dorsolateral prefrontal cortex (DLPFC) and posterior parietal cortex (PPC). Conclusions/Significance The results provide evidence that both RSI and CSI modulate the neural activities in the process of task-switching, but that these have a differential role during task-set reconfiguration and passive dissipation of a previously relevant task-set. PMID:22860090
Trzcinski, Natalie K; Gomez-Ramirez, Manuel; Hsiao, Steven S
2016-09-01
Continuous training enhances perceptual discrimination and promotes neural changes in areas encoding the experienced stimuli. This type of experience-dependent plasticity has been demonstrated in several sensory and motor systems. Particularly, non-human primates trained to detect consecutive tactile bar indentations across multiple digits showed expanded excitatory receptive fields (RFs) in somatosensory cortex. However, the perceptual implications of these anatomical changes remain undetermined. Here, we trained human participants for 9 days on a tactile task that promoted expansion of multi-digit RFs. Participants were required to detect consecutive indentations of bar stimuli spanning multiple digits. Throughout the training regime we tracked participants' discrimination thresholds on spatial (grating orientation) and temporal tasks on the trained and untrained hands in separate sessions. We hypothesized that training on the multi-digit task would decrease perceptual thresholds on tasks that require stimulus processing across multiple digits, while also increasing thresholds on tasks requiring discrimination on single digits. We observed an increase in orientation thresholds on a single digit. Importantly, this effect was selective for the stimulus orientation and hand used during multi-digit training. We also found that temporal acuity between digits improved across trained digits, suggesting that discriminating the temporal order of multi-digit stimuli can transfer to temporal discrimination of other tactile stimuli. These results suggest that experience-dependent plasticity following perceptual learning improves and interferes with tactile abilities in manners predictive of the task and stimulus features used during training. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Neural networks for Braille reading by the blind.
Sadato, N; Pascual-Leone, A; Grafman, J; Deiber, M P; Ibañez, V; Hallett, M
1998-07-01
To explore the neural networks used for Braille reading, we measured regional cerebral blood flow with PET during tactile tasks performed both by Braille readers blinded early in life and by sighted subjects. Eight proficient Braille readers were studied during Braille reading with both right and left index fingers. Eight-character, non-contracted Braille-letter strings were used, and subjects were asked to discriminate between words and non-words. To compare the behaviour of the brain of the blind and the sighted directly, non-Braille tactile tasks were performed by six different blind subjects and 10 sighted control subjects using the right index finger. The tasks included a non-discrimination task and three discrimination tasks (angle, width and character). Irrespective of reading finger (right or left), Braille reading by the blind activated the inferior parietal lobule, primary visual cortex, superior occipital gyri, fusiform gyri, ventral premotor area, superior parietal lobule, cerebellum and primary sensorimotor area bilaterally, also the right dorsal premotor cortex, right middle occipital gyrus and right prefrontal area. During non-Braille discrimination tasks, in blind subjects, the ventral occipital regions, including the primary visual cortex and fusiform gyri bilaterally were activated while the secondary somatosensory area was deactivated. The reverse pattern was found in sighted subjects where the secondary somatosensory area was activated while the ventral occipital regions were suppressed. These findings suggest that the tactile processing pathways usually linked in the secondary somatosensory area are rerouted in blind subjects to the ventral occipital cortical regions originally reserved for visual shape discrimination.
Trzcinski, Natalie K; Gomez-Ramirez, Manuel; Hsiao, Steven S.
2016-01-01
Continuous training enhances perceptual discrimination and promotes neural changes in areas encoding the experienced stimuli. This type of experience-dependent plasticity has been demonstrated in several sensory and motor systems. Particularly, non-human primates trained to detect consecutive tactile bar indentations across multiple digits showed expanded excitatory receptive fields (RFs) in somatosensory cortex. However, the perceptual implications of these anatomical changes remain undetermined. Here, we trained human participants for nine days on a tactile task that promoted expansion of multi-digit RFs. Participants were required to detect consecutive indentations of bar stimuli spanning multiple digits. Throughout the training regime we tracked participants’ discrimination thresholds on spatial (grating orientation) and temporal tasks on the trained and untrained hands in separate sessions. We hypothesized that training on the multi-digit task would decrease perceptual thresholds on tasks that require stimulus processing across multiple digits, while also increasing thresholds on tasks requiring discrimination on single digits. We observed an increase in orientation thresholds on a single-digit. Importantly, this effect was selective for the stimulus orientation and hand used during multi-digit training. We also found that temporal acuity between digits improved across trained digits, suggesting that discriminating the temporal order of multi-digit stimuli can transfer to temporal discrimination of other tactile stimuli. These results suggest that experience-dependent plasticity following perceptual learning improves and interferes with tactile abilities in manners predictive of the task and stimulus features used during training. PMID:27422224
Task-discriminative space-by-time factorization of muscle activity
Delis, Ioannis; Panzeri, Stefano; Pozzo, Thierry; Berret, Bastien
2015-01-01
Movement generation has been hypothesized to rely on a modular organization of muscle activity. Crucial to this hypothesis is the ability to perform reliably a variety of motor tasks by recruiting a limited set of modules and combining them in a task-dependent manner. Thus far, existing algorithms that extract putative modules of muscle activations, such as Non-negative Matrix Factorization (NMF), identify modular decompositions that maximize the reconstruction of the recorded EMG data. Typically, the functional role of the decompositions, i.e., task accomplishment, is only assessed a posteriori. However, as motor actions are defined in task space, we suggest that motor modules should be computed in task space too. In this study, we propose a new module extraction algorithm, named DsNM3F, that uses task information during the module identification process. DsNM3F extends our previous space-by-time decomposition method (the so-called sNM3F algorithm, which could assess task performance only after having computed modules) to identify modules gauging between two complementary objectives: reconstruction of the original data and reliable discrimination of the performed tasks. We show that DsNM3F recovers the task dependence of module activations more accurately than sNM3F. We also apply it to electromyographic signals recorded during performance of a variety of arm pointing tasks and identify spatial and temporal modules of muscle activity that are highly consistent with previous studies. DsNM3F achieves perfect task categorization without significant loss in data approximation when task information is available and generalizes as well as sNM3F when applied to new data. These findings suggest that the space-by-time decomposition of muscle activity finds robust task-discriminating modular representations of muscle activity and that the insertion of task discrimination objectives is useful for describing the task modulation of module recruitment. PMID:26217213
Task-discriminative space-by-time factorization of muscle activity.
Delis, Ioannis; Panzeri, Stefano; Pozzo, Thierry; Berret, Bastien
2015-01-01
Movement generation has been hypothesized to rely on a modular organization of muscle activity. Crucial to this hypothesis is the ability to perform reliably a variety of motor tasks by recruiting a limited set of modules and combining them in a task-dependent manner. Thus far, existing algorithms that extract putative modules of muscle activations, such as Non-negative Matrix Factorization (NMF), identify modular decompositions that maximize the reconstruction of the recorded EMG data. Typically, the functional role of the decompositions, i.e., task accomplishment, is only assessed a posteriori. However, as motor actions are defined in task space, we suggest that motor modules should be computed in task space too. In this study, we propose a new module extraction algorithm, named DsNM3F, that uses task information during the module identification process. DsNM3F extends our previous space-by-time decomposition method (the so-called sNM3F algorithm, which could assess task performance only after having computed modules) to identify modules gauging between two complementary objectives: reconstruction of the original data and reliable discrimination of the performed tasks. We show that DsNM3F recovers the task dependence of module activations more accurately than sNM3F. We also apply it to electromyographic signals recorded during performance of a variety of arm pointing tasks and identify spatial and temporal modules of muscle activity that are highly consistent with previous studies. DsNM3F achieves perfect task categorization without significant loss in data approximation when task information is available and generalizes as well as sNM3F when applied to new data. These findings suggest that the space-by-time decomposition of muscle activity finds robust task-discriminating modular representations of muscle activity and that the insertion of task discrimination objectives is useful for describing the task modulation of module recruitment.
Basolateral amygdala lesions abolish mutual reward preferences in rats.
Hernandez-Lallement, Julen; van Wingerden, Marijn; Schäble, Sandra; Kalenscher, Tobias
2016-01-01
In a recent study, we demonstrated that rats prefer mutual rewards in a Prosocial Choice Task. Here, employing the same task, we show that the integrity of basolateral amygdala was necessary for the expression of mutual reward preferences. Actor rats received bilateral excitotoxic (n=12) or sham lesions (n=10) targeting the basolateral amygdala and were subsequently tested in a Prosocial Choice Task where they could decide between rewarding ("Both Reward") or not rewarding a partner rat ("Own Reward"), either choice yielding identical reward to the actors themselves. To manipulate the social context and control for secondary reinforcement sources, actor rats were paired with either a partner rat (partner condition) or with an inanimate rat toy (toy condition). Sham-operated animals revealed a significant preference for the Both-Reward-option in the partner condition, but not in the toy condition. Amygdala-lesioned animals exhibited significantly lower Both-Reward preferences than the sham group in the partner but not in the toy condition, suggesting that basolateral amygdala was required for the expression of mutual reward preferences. Critically, in a reward magnitude discrimination task in the same experimental setup, both sham-operated and amygdala-lesioned animals preferred large over small rewards, suggesting that amygdala lesion effects were restricted to decision making in social contexts, leaving self-oriented behavior unaffected. Copyright © 2015 Elsevier Inc. All rights reserved.
Toward a Model-Based Predictive Controller Design in Brain–Computer Interfaces
Kamrunnahar, M.; Dias, N. S.; Schiff, S. J.
2013-01-01
A first step in designing a robust and optimal model-based predictive controller (MPC) for brain–computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8–23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications. PMID:21267657
Toward a model-based predictive controller design in brain-computer interfaces.
Kamrunnahar, M; Dias, N S; Schiff, S J
2011-05-01
A first step in designing a robust and optimal model-based predictive controller (MPC) for brain-computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8-23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications.
Wang, Yamin; Fu, Xiaolan; Johnston, Robert A.; Yan, Zheng
2013-01-01
Using Garner’s speeded classification task existing studies demonstrated an asymmetric interference in the recognition of facial identity and facial expression. It seems that expression is hard to interfere with identity recognition. However, discriminability of identity and expression, a potential confounding variable, had not been carefully examined in existing studies. In current work, we manipulated discriminability of identity and expression by matching facial shape (long or round) in identity and matching mouth (opened or closed) in facial expression. Garner interference was found either from identity to expression (Experiment 1) or from expression to identity (Experiment 2). Interference was also found in both directions (Experiment 3) or in neither direction (Experiment 4). The results support that Garner interference tends to occur under condition of low discriminability of relevant dimension regardless of facial property. Our findings indicate that Garner interference is not necessarily related to interdependent processing in recognition of facial identity and expression. The findings also suggest that discriminability as a mediating factor should be carefully controlled in future research. PMID:24391609
ERIC Educational Resources Information Center
Takahashi, Makoto; Ushitani, Tomokazu; Fujita, Kazuo
2008-01-01
Six tree shrews and 8 rats were tested for their ability to infer transitively in a spatial discrimination task. The apparatus was a semicircular radial-arm maze with 8 arms labeled A through H. In Experiment 1, the animals were first trained in sequence on 4 discriminations to enter 1 of the paired adjacent arms, AB, BC, CD, and DE, with right…
Eye movement during recall reduces objective memory performance: An extended replication.
Leer, Arne; Engelhard, Iris M; Lenaert, Bert; Struyf, Dieter; Vervliet, Bram; Hermans, Dirk
2017-05-01
Eye Movement Desensitization and Reprocessing (EMDR) therapy for posttraumatic stress disorder involves making eye movements (EMs) during recall of a traumatic image. Experimental studies have shown that the dual task decreases self-reported memory vividness and emotionality. However valuable, these data are prone to demand effects and little can be inferred about the mechanism(s) underlying the observed effects. The current research aimed to fill this lacuna by providing two objective tests of memory performance. Experiment I involved a stimulus discrimination task. Findings were that EM during stimulus recall not only reduces self-reported memory vividness, but also slows down reaction time in a task that requires participants to discriminate the stimulus from perceptually similar stimuli. Experiment II involved a fear conditioning paradigm. It was shown that EM during recall of a threatening stimulus intensifies fearful responding to a perceptually similar yet non-threat-related stimulus, as evidenced by increases in danger expectancies and skin conductance responses. The latter result was not corroborated by startle EMG data. Together, the findings suggest that the EM manipulation renders stimulus attributes less accessible for future recall. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reichel, Carmela M; Wilkinson, Jamie L; Bevins, Rick A
2007-12-01
This research determined the ability of methamphetamine to serve as a positive or negative feature, and assessed the ability of bupropion, cocaine, and naloxone to substitute for the methamphetamine features. Rats received methamphetamine (0.5 mg/kg, intraperitoneally) or saline 15 min before a conditioning session. For the feature positive (FP) group, offset of 15-s cue lights was followed by access to sucrose on methamphetamine sessions; sucrose was withheld during saline sessions. For the feature negative (FN) group, the light offset was followed by sucrose on saline sessions; sucrose was withheld during methamphetamine sessions. During acquisition, the FP group had higher responding on methamphetamine sessions than on saline sessions. For the FN group, responding was higher on saline sessions than on methamphetamine sessions. Conditioned responding was sensitive to methamphetamine dose. For the FP group, bupropion and cocaine fully and partially substituted for methamphetamine, respectively. In contrast, both drugs fully substituted for methamphetamine in the FN group. Naloxone did not substitute in either set of rats. FP-trained rats were more sensitive to the locomotor stimulating effects of the test drugs than FN-trained rats. This research demonstrates that the pharmacological effects of methamphetamine function as a FP or FN in this Pavlovian discrimination task and that training history can affect conditioned responding and locomotor effects evoked by a drug.
Henry, Kenneth S; Amburgey, Kassidy N; Abrams, Kristina S; Idrobo, Fabio; Carney, Laurel H
2017-10-01
Vowels are complex sounds with four to five spectral peaks known as formants. The frequencies of the two lowest formants, F1and F2, are sufficient for vowel discrimination. Behavioral studies show that many birds and mammals can discriminate vowels. However, few studies have quantified thresholds for formant-frequency discrimination. The present study examined formant-frequency discrimination in budgerigars (Melopsittacus undulatus) and humans using stimuli with one or two formants and a constant fundamental frequency of 200 Hz. Stimuli had spectral envelopes similar to natural speech and were presented with random level variation. Thresholds were estimated for frequency discrimination of F1, F2, and simultaneous F1 and F2 changes. The same two-down, one-up tracking procedure and single-interval, two-alternative task were used for both species. Formant-frequency discrimination thresholds were as sensitive in budgerigars as in humans and followed the same patterns across all conditions. Thresholds expressed as percent frequency difference were higher for F1 than for F2, and were unchanged between stimuli with one or two formants. Thresholds for simultaneous F1 and F2 changes indicated that discrimination was based on combined information from both formant regions. Results were consistent with previous human studies and show that budgerigars provide an exceptionally sensitive animal model of vowel feature discrimination.
Humans do not have direct access to retinal flow during walking
Souman, Jan L.; Freeman, Tom C.A.; Eikmeier, Verena; Ernst, Marc O.
2013-01-01
Perceived visual speed has been reported to be reduced during walking. This reduction has been attributed to a partial subtraction of walking speed from visual speed (Durgin & Gigone, 2007; Durgin, Gigone, & Scott, 2005). We tested whether observers still have access to the retinal flow before subtraction takes place. Observers performed a 2IFC visual speed discrimination task while walking on a treadmill. In one condition, walking speed was identical in the two intervals, while in a second condition walking speed differed between intervals. If observers have access to the retinal flow before subtraction, any changes in walking speed across intervals should not affect their ability to discriminate retinal flow speed. Contrary to this “direct-access hypothesis”, we found that observers were worse at discrimination when walking speed differed between intervals. The results therefore suggest that observers do not have access to retinal flow before subtraction. We also found that the amount of subtraction depended on the visual speed presented, suggesting that the interaction between the processing of visual input and of self-motion is more complex than previously proposed. PMID:20884509
ERIC Educational Resources Information Center
Fisher, Wayne W.; Kodak, Tiffany; Moore, James W.
2007-01-01
Least-to-most prompting hierarchies (e.g., progressing from verbal to modeled to physical prompts until the target response occurs) may be ineffective when the prompts do not cue the individual to attend to the relevant stimulus dimensions. In such cases, emission of the target response persistently requires one or more of the higher level…
Empiric determination of corrected visual acuity standards for train crews.
Schwartz, Steven H; Swanson, William H
2005-08-01
Probably the most common visual standard for employment in the transportation industry is best-corrected, high-contrast visual acuity. Because such standards were often established absent empiric linkage to job performance, it is possible that a job applicant or employee who has visual acuity less than the standard may be able to satisfactorily perform the required job activities. For the transportation system that we examined, the train crew is required to inspect visually the length of the train before and during the time it leaves the station. The purpose of the inspection is to determine if an individual is in a hazardous position with respect to the train. In this article, we determine the extent to which high-contrast visual acuity can predict performance on a simulated task. Performance at discriminating hazardous from safe conditions, as depicted in projected photographic slides, was determined as a function of visual acuity. For different levels of visual acuity, which was varied through the use of optical defocus, a subject was required to label scenes as hazardous or safe. Task performance was highly correlated with visual acuity as measured under conditions normally used for vision screenings (high-illumination and high-contrast): as the acuity decreases, performance at discriminating hazardous from safe scenes worsens. This empirically based methodology can be used to establish a corrected high-contrast visual acuity standard for safety-sensitive work in transportation that is linked to the performance of a job-critical task.
[Explicit memory for type font of words in source monitoring and recognition tasks].
Hatanaka, Yoshiko; Fujita, Tetsuya
2004-02-01
We investigated whether people can consciously remember type fonts of words by methods of examining explicit memory; source-monitoring and old/new-recognition. We set matched, non-matched, and non-studied conditions between the study and the test words using two kinds of type fonts; Gothic and MARU. After studying words in one way of encoding, semantic or physical, subjects in a source-monitoring task made a three way discrimination between new words, Gothic words, and MARU words (Exp. 1). Subjects in an old/new-recognition task indicated whether test words were previously presented or not (Exp. 2). We compared the source judgments with old/new recognition data. As a result, these data showed conscious recollection for type font of words on the source monitoring task and dissociation between source monitoring and old/new recognition performance.
56. The Role of Prefrontal Cortex in Self-Referential Memory Retrieval in Schizophrenia
Jimenez, Amy; Lee, Junghee; Wynn, Jonathan K.; Horan, William; Iglesias, Julio; Hoy, Jennifer; Green, Michael F.
2017-01-01
Abstract Background: Enhanced memory for self-oriented information is known as the self-referential memory (SRM) effect. fMRI studies of the SRM effect have largely focused on encoding, revealing selective engagement of medial prefrontal cortex (mPFC) during “self” relative to other semantic processing conditions. Other areas typically activated during self-processing include the ventrolateral prefrontal cortex (vlPFC) and temporo-parietal junction (TPJ). Previous imaging work by our group indicated that patients with schizophrenia activate regions similar to controls during encoding of self-referential information. However, little is known about activation patterns during retrieval, or how activation during encoding relates to retrieval behaviorally. The current study utilized an SRM task to examine: (1) the neural correlates of the retrieval of previously encoded self-oriented information, and (2) the relationship between behavioral data from the retrieval phase and fMRI data at encoding. Methods: 20 clinically stable schizophrenia outpatients and 16 demographically matched healthy controls completed an SRM task modified for event-related fMRI. During the encoding phase, trait adjectives were judged in terms of structural features (“case” condition), social desirability (“other” condition), or as self-referential (“self” condition). Following a 12-minute delay comprised of distractor tasks, memory for trait adjectives was tested during an unexpected yes–no recognition test (retrieval phase). Voxel-wise whole-brain BOLD signal analysis of retrieval phase data was used to examine contrasts of interest with a cluster-threshold of Z = 2.3, P < .05, corrected for multiple comparisons. Results: During retrieval, both groups demonstrated better recognition discriminability (d-prime) for adjectives from the “self” and “other” conditions compared to the “case” condition; d-prime scores were greater for the “self” condition compared to the “other” condition at the trend level. During retrieval, controls showed greater activation than patients in several areas of lateral prefrontal cortex including inferior frontal gyrus (Brodmann Area, BA, 44/45) and middle frontal gyrus (BA 9) for words from the “self” condition. Further, level of activation of mPFC (BA 10) during encoding was positively correlated with d-prime for the “self” condition in controls, but not patients. Conclusion: Although the groups demonstrated comparable behavioral performance during the retrieval phase of an SRM task, regional BOLD activation of prefrontal regions discriminated patients from controls during the retrieval of self-oriented information. The current findings add to a growing body of literature highlighting the critical role of disrupted mPFC activity in self-oriented processing in schizophrenia.
ERIC Educational Resources Information Center
Alary, Flamine; Duquette, Marco; Goldstein, Rachel; Chapman, C. Elaine; Voss, Patrice; La Buissonniere-Ariza, Valerie; Lepore, Franco
2009-01-01
Previous studies have shown that blind subjects may outperform the sighted on certain tactile discrimination tasks. We recently showed that blind subjects outperformed the sighted in a haptic 2D-angle discrimination task. The purpose of this study was to compare the performance of the same blind (n = 16) and sighted (n = 17, G1) subjects in three…
Petruno, Sarah K; Clark, Robert E; Reinagel, Pamela
2013-01-01
The pigmented Long-Evans rat has proven to be an excellent subject for studying visually guided behavior including quantitative visual psychophysics. This observation, together with its experimental accessibility and its close homology to the mouse, has made it an attractive model system in which to dissect the thalamic and cortical circuits underlying visual perception. Given that visually guided behavior in the absence of primary visual cortex has been described in the literature, however, it is an empirical question whether specific visual behaviors will depend on primary visual cortex in the rat. Here we tested the effects of cortical lesions on performance of two-alternative forced-choice visual discriminations by Long-Evans rats. We present data from one highly informative subject that learned several visual tasks and then received a bilateral lesion ablating >90% of primary visual cortex. After the lesion, this subject had a profound and persistent deficit in complex image discrimination, orientation discrimination, and full-field optic flow motion discrimination, compared with both pre-lesion performance and sham-lesion controls. Performance was intact, however, on another visual two-alternative forced-choice task that required approaching a salient visual target. A second highly informative subject learned several visual tasks prior to receiving a lesion ablating >90% of medial extrastriate cortex. This subject showed no impairment on any of the four task categories. Taken together, our data provide evidence that these image, orientation, and motion discrimination tasks require primary visual cortex in the Long-Evans rat, whereas approaching a salient visual target does not.
Bowers, Andrew; Saltuklaroglu, Tim; Harkrider, Ashley; Cuellar, Megan
2013-01-01
Background Constructivist theories propose that articulatory hypotheses about incoming phonetic targets may function to enhance perception by limiting the possibilities for sensory analysis. To provide evidence for this proposal, it is necessary to map ongoing, high-temporal resolution changes in sensorimotor activity (i.e., the sensorimotor μ rhythm) to accurate speech and non-speech discrimination performance (i.e., correct trials.) Methods Sixteen participants (15 female and 1 male) were asked to passively listen to or actively identify speech and tone-sweeps in a two-force choice discrimination task while the electroencephalograph (EEG) was recorded from 32 channels. The stimuli were presented at signal-to-noise ratios (SNRs) in which discrimination accuracy was high (i.e., 80–100%) and low SNRs producing discrimination performance at chance. EEG data were decomposed using independent component analysis and clustered across participants using principle component methods in EEGLAB. Results ICA revealed left and right sensorimotor µ components for 14/16 and 13/16 participants respectively that were identified on the basis of scalp topography, spectral peaks, and localization to the precentral and postcentral gyri. Time-frequency analysis of left and right lateralized µ component clusters revealed significant (pFDR<.05) suppression in the traditional beta frequency range (13–30 Hz) prior to, during, and following syllable discrimination trials. No significant differences from baseline were found for passive tasks. Tone conditions produced right µ beta suppression following stimulus onset only. For the left µ, significant differences in the magnitude of beta suppression were found for correct speech discrimination trials relative to chance trials following stimulus offset. Conclusions Findings are consistent with constructivist, internal model theories proposing that early forward motor models generate predictions about likely phonemic units that are then synthesized with incoming sensory cues during active as opposed to passive processing. Future directions and possible translational value for clinical populations in which sensorimotor integration may play a functional role are discussed. PMID:23991030
Bowers, Andrew; Saltuklaroglu, Tim; Harkrider, Ashley; Cuellar, Megan
2013-01-01
Constructivist theories propose that articulatory hypotheses about incoming phonetic targets may function to enhance perception by limiting the possibilities for sensory analysis. To provide evidence for this proposal, it is necessary to map ongoing, high-temporal resolution changes in sensorimotor activity (i.e., the sensorimotor μ rhythm) to accurate speech and non-speech discrimination performance (i.e., correct trials.). Sixteen participants (15 female and 1 male) were asked to passively listen to or actively identify speech and tone-sweeps in a two-force choice discrimination task while the electroencephalograph (EEG) was recorded from 32 channels. The stimuli were presented at signal-to-noise ratios (SNRs) in which discrimination accuracy was high (i.e., 80-100%) and low SNRs producing discrimination performance at chance. EEG data were decomposed using independent component analysis and clustered across participants using principle component methods in EEGLAB. ICA revealed left and right sensorimotor µ components for 14/16 and 13/16 participants respectively that were identified on the basis of scalp topography, spectral peaks, and localization to the precentral and postcentral gyri. Time-frequency analysis of left and right lateralized µ component clusters revealed significant (pFDR<.05) suppression in the traditional beta frequency range (13-30 Hz) prior to, during, and following syllable discrimination trials. No significant differences from baseline were found for passive tasks. Tone conditions produced right µ beta suppression following stimulus onset only. For the left µ, significant differences in the magnitude of beta suppression were found for correct speech discrimination trials relative to chance trials following stimulus offset. Findings are consistent with constructivist, internal model theories proposing that early forward motor models generate predictions about likely phonemic units that are then synthesized with incoming sensory cues during active as opposed to passive processing. Future directions and possible translational value for clinical populations in which sensorimotor integration may play a functional role are discussed.
Controlling the spotlight of attention: visual span size and flexibility in schizophrenia.
Elahipanah, Ava; Christensen, Bruce K; Reingold, Eyal M
2011-10-01
The current study investigated the size and flexible control of visual span among patients with schizophrenia during visual search performance. Visual span is the region of the visual field from which one extracts information during a single eye fixation, and a larger visual span size is linked to more efficient search performance. Therefore, a reduced visual span may explain patients' impaired performance on search tasks. The gaze-contingent moving window paradigm was used to estimate the visual span size of patients and healthy participants while they performed two different search tasks. In addition, changes in visual span size were measured as a function of two manipulations of task difficulty: target-distractor similarity and stimulus familiarity. Patients with schizophrenia searched more slowly across both tasks and conditions. Patients also demonstrated smaller visual span sizes on the easier search condition in each task. Moreover, healthy controls' visual span size increased as target discriminability or distractor familiarity increased. This modulation of visual span size, however, was reduced or not observed among patients. The implications of the present findings, with regard to previously reported visual search deficits, and other functional and structural abnormalities associated with schizophrenia, are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Discrimination Report: ESTCP UXO Discrimination Study, ESTCPProject #MM-0437
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasperikova, Erika; Smith, J. Torquil; Morrison, H. Frank
2007-12-21
The FY06 Defense Appropriation contains funding for the 'Development of Advanced, Sophisticated, Discrimination Technologies for UXO Cleanup' in the Environmental Security Technology Certification Program. In 2003, the Defense Science Board observed: 'The problem is that instruments that can detect the buried UXOs also detect numerous scrap metal objects and other artifacts, which leads to an enormous amount of expensive digging. Typically 100 holes may be dug before a real UXO is unearthed! The Task Force assessment is that much of this wasteful digging can be eliminated by the use of more advanced technology instruments that exploit modern digital processing andmore » advanced multi-mode sensors to achieve an improved level of discrimination of scrap from UXOs.' Significant progress has been made in discrimination technology. To date, testing of these approaches has been primarily limited to test sites with only limited application at live sites. Acceptance of discrimination technologies requires demonstration of system capabilities at real UXO sites under real world conditions. Any attempt to declare detected anomalies to be harmless and requiring no further investigation require demonstration to regulators of not only individual technologies, but of an entire decision making process. This discrimination study was be the first phase in what is expected to be a continuing effort that will span several years.« less
Color coding of control room displays: the psychocartography of visual layering effects.
Van Laar, Darren; Deshe, Ofer
2007-06-01
To evaluate which of three color coding methods (monochrome, maximally discriminable, and visual layering) used to code four types of control room display format (bars, tables, trend, mimic) was superior in two classes of task (search, compare). It has recently been shown that color coding of visual layers, as used in cartography, may be used to color code any type of information display, but this has yet to be fully evaluated. Twenty-four people took part in a 2 (task) x 3 (coding method) x 4 (format) wholly repeated measures design. The dependent variables assessed were target location reaction time, error rates, workload, and subjective feedback. Overall, the visual layers coding method produced significantly faster reaction times than did the maximally discriminable and the monochrome methods for both the search and compare tasks. No significant difference in errors was observed between conditions for either task type. Significantly less perceived workload was experienced with the visual layers coding method, which was also rated more highly than the other coding methods on a 14-item visual display quality questionnaire. The visual layers coding method is superior to other color coding methods for control room displays when the method supports the user's task. The visual layers color coding method has wide applicability to the design of all complex information displays utilizing color coding, from the most maplike (e.g., air traffic control) to the most abstract (e.g., abstracted ecological display).
Supramodal parametric working memory processing in humans.
Spitzer, Bernhard; Blankenburg, Felix
2012-03-07
Previous studies of delayed-match-to-sample (DMTS) frequency discrimination in animals and humans have succeeded in delineating the neural signature of frequency processing in somatosensory working memory (WM). During retention of vibrotactile frequencies, stimulus-dependent single-cell and population activity in prefrontal cortex was found to reflect the task-relevant memory content, whereas increases in occipital alpha activity signaled the disengagement of areas not relevant for the tactile task. Here, we recorded EEG from human participants to determine the extent to which these mechanisms can be generalized to frequency retention in the visual and auditory domains. Subjects performed analogous variants of a DMTS frequency discrimination task, with the frequency information presented either visually, auditorily, or by vibrotactile stimulation. Examining oscillatory EEG activity during frequency retention, we found characteristic topographical distributions of alpha power over visual, auditory, and somatosensory cortices, indicating systematic patterns of inhibition and engagement of early sensory areas, depending on stimulus modality. The task-relevant frequency information, in contrast, was found to be represented in right prefrontal cortex, independent of presentation mode. In each of the three modality conditions, parametric modulations of prefrontal upper beta activity (20-30 Hz) emerged, in a very similar manner as recently found in vibrotactile tasks. Together, the findings corroborate a view of parametric WM as supramodal internal scaling of abstract quantity information and suggest strong relevance of previous evidence from vibrotactile work for a more general framework of quantity processing in human working memory.
Johnston, Melissa Jane; Clarkson, Andrew N; Gowing, Emma K; Scarf, Damian; Colombo, Mike
2018-06-06
Serial-order behaviour is the ability to complete a sequence of responses in a predetermined order to achieve a reward. In birds, serial-order behaviour is thought to be impaired by damage to the nidopallium caudolaterale (NCL). In the current study, we examined the role of the NCL in serial-order behaviour by training pigeons on a 4-item serial-order task and a go/no-go discrimination task. Following training, pigeons were received infusions of 1μl of either tetrodotoxin (TTX) or saline. Saline infusions had no impact on serial-order behaviour whereas TTX infusions resulted in a significant decrease in performance. The serial-order impairments, however, were not the results of errors of any specific error at any specific list item. With respect to the go/no-go discrimination task, saline infusions also had no impact on performance whereas TTX infusions impaired pigeons' discrimination abilities. Given the impairments on the go/no-go discrimination task, which does not require processing of serial-order information, we tentatively conclude that damage to the NCL does not impair serial-order behaviour per se, but rather results in a more generalised impairment that may impact performance across a range of tasks.
Improved Discrimination of Visual Stimuli Following Repetitive Transcranial Magnetic Stimulation
Waterston, Michael L.; Pack, Christopher C.
2010-01-01
Background Repetitive transcranial magnetic stimulation (rTMS) at certain frequencies increases thresholds for motor-evoked potentials and phosphenes following stimulation of cortex. Consequently rTMS is often assumed to introduce a “virtual lesion” in stimulated brain regions, with correspondingly diminished behavioral performance. Methodology/Principal Findings Here we investigated the effects of rTMS to visual cortex on subjects' ability to perform visual psychophysical tasks. Contrary to expectations of a visual deficit, we find that rTMS often improves the discrimination of visual features. For coarse orientation tasks, discrimination of a static stimulus improved consistently following theta-burst stimulation of the occipital lobe. Using a reaction-time task, we found that these improvements occurred throughout the visual field and lasted beyond one hour post-rTMS. Low-frequency (1 Hz) stimulation yielded similar improvements. In contrast, we did not find consistent effects of rTMS on performance in a fine orientation discrimination task. Conclusions/Significance Overall our results suggest that rTMS generally improves or has no effect on visual acuity, with the nature of the effect depending on the type of stimulation and the task. We interpret our results in the context of an ideal-observer model of visual perception. PMID:20442776
Schumann, Annette; Serman, Maja; Gefeller, Olaf; Hoppe, Ulrich
2015-03-01
Specific computer-based auditory training may be a useful completion in the rehabilitation process for cochlear implant (CI) listeners to achieve sufficient speech intelligibility. This study evaluated the effectiveness of a computerized, phoneme-discrimination training programme. The study employed a pretest-post-test design; participants were randomly assigned to the training or control group. Over a period of three weeks, the training group was instructed to train in phoneme discrimination via computer, twice a week. Sentence recognition in different noise conditions (moderate to difficult) was tested pre- and post-training, and six months after the training was completed. The control group was tested and retested within one month. Twenty-seven adult CI listeners who had been using cochlear implants for more than two years participated in the programme; 15 adults in the training group, 12 adults in the control group. Besides significant improvements for the trained phoneme-identification task, a generalized training effect was noted via significantly improved sentence recognition in moderate noise. No significant changes were noted in the difficult noise conditions. Improved performance was maintained over an extended period. Phoneme-discrimination training improves experienced CI listeners' speech perception in noise. Additional research is needed to optimize auditory training for individual benefit.
Acute effects of caffeine on several operant behaviors in rhesus monkeys.
Buffalo, E A; Gillam, M P; Allen, R R; Paule, M G
1993-11-01
The acute effects of 1,3-trimethylxanthine (caffeine) were assessed using an operant test battery (OTB) of complex food-reinforced tasks that are thought to depend upon relatively specific brain functions, such as motivation to work for food (progressive ratio, PR), learning (incremental repeated acquisition, IRA), color and position discrimination (conditioned position responding, CPR), time estimation (temporal response differentiation, TRD), and short-term memory and attention (delayed matching-to-sample, DMTS). Endpoints included response rates (RR), accuracies (ACC), and percent task completed (PTC). Caffeine sulfate (0.175-20.0 mg/kg, IV), given 15 min pretesting, produced significant dose-dependent decreases in TRD percent task completed and accuracy at doses > or = 5.6 mg/kg. Caffeine produced no systematic effects on either DMTS or PR responding, but low doses tended to enhance performance in both IRA and CPR tasks. Thus, in monkeys, performance of an operant task designed to model time estimation is more sensitive to the disruptive effects of caffeine than is performance of the other tasks in the OTB.
A meta-analysis of inhibitory-control deficits in patients diagnosed with Alzheimer's dementia.
Kaiser, Anna; Kuhlmann, Beatrice G; Bosnjak, Michael
2018-05-10
The authors conducted meta-analyses to determine the magnitude of performance impairments in patients diagnosed with Alzheimer's dementia (AD) compared with healthy aging (HA) controls on eight tasks commonly used to measure inhibitory control. Response time (RT) and error rates from a total of 64 studies were analyzed with random-effects models (overall effects) and mixed-effects models (moderator analyses). Large differences between AD patients and HA controls emerged in the basic inhibition conditions of many of the tasks with AD patients often performing slower, overall d = 1.17, 95% CI [0.88-1.45], and making more errors, d = 0.83 [0.63-1.03]. However, comparably large differences were also present in performance on many of the baseline control-conditions, d = 1.01 [0.83-1.19] for RTs and d = 0.44 [0.19-0.69] for error rates. A standardized derived inhibition score (i.e., control-condition score - inhibition-condition score) suggested no significant mean group difference for RTs, d = -0.07 [-0.22-0.08], and only a small difference for errors, d = 0.24 [-0.12-0.60]. Effects systematically varied across tasks and with AD severity. Although the error rate results suggest a specific deterioration of inhibitory-control abilities in AD, further processes beyond inhibitory control (e.g., a general reduction in processing speed and other, task-specific attentional processes) appear to contribute to AD patients' performance deficits observed on a variety of inhibitory-control tasks. Nonetheless, the inhibition conditions of many of these tasks well discriminate between AD patients and HA controls. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Effects of task demands on the early neural processing of fearful and happy facial expressions.
Itier, Roxane J; Neath-Tavares, Karly N
2017-05-15
Task demands shape how we process environmental stimuli but their impact on the early neural processing of facial expressions remains unclear. In a within-subject design, ERPs were recorded to the same fearful, happy and neutral facial expressions presented during a gender discrimination, an explicit emotion discrimination and an oddball detection tasks, the most studied tasks in the field. Using an eye tracker, fixation on the face nose was enforced using a gaze-contingent presentation. Task demands modulated amplitudes from 200 to 350ms at occipito-temporal sites spanning the EPN component. Amplitudes were more negative for fearful than neutral expressions starting on N170 from 150 to 350ms, with a temporo-occipital distribution, whereas no clear effect of happy expressions was seen. Task and emotion effects never interacted in any time window or for the ERP components analyzed (P1, N170, EPN). Thus, whether emotion is explicitly discriminated or irrelevant for the task at hand, neural correlates of fearful and happy facial expressions seem immune to these task demands during the first 350ms of visual processing. Copyright © 2017 Elsevier B.V. All rights reserved.
Gazes, Regina Paxton; Billas, Alison R; Schmitt, Vanessa
2018-03-01
Quantity discrimination abilities are seen in a diverse range of species with similarities in performance patterns, suggesting common underlying cognitive mechanisms. However, methodological factors that impact performance make it difficult to draw broad phylogenetic comparisons of numerical cognition across studies. For example, some Old World monkeys selected a higher quantity stimulus more frequently when choosing between inedible (pebbles) than edible (food) stimuli. In Experiment 1 we presented brown capuchin (Cebus [Sapajus] paella) and squirrel monkeys (Saimiri sciureus) with the same two-choice quantity discrimination task in three different stimulus conditions: edible, inedible, and edible replaced (in which choice stimuli were food items that stood in for the same quantity of food items that were given as a reward). Unlike Old World monkeys, capuchins selected the higher quantity stimulus more in the edible condition and squirrel monkeys showed generally poor performance across all stimulus types. Performance patterns suggested that differences in subjective reward value might motivate differences in choice behavior between and within species. In Experiment 2 we manipulated the subjective reinforcement value of the reward by varying reward type and delay to reinforcement and found that delay to reinforcement had no impact on choice behavior, while increasing the value of the reward significantly improved performance by both species. The results of this study indicate that species presented with identical tasks may respond differently to methodological factors such as stimulus and reward types, resulting in significant differences in choice behavior that may lead to spurious suggestions of species differences in cognitive abilities.
Arnold, Sarah E J; Chittka, Lars
2012-07-01
Patchy illumination presents foraging animals with a challenge, as the targets being sought may appear to vary in colour depending on the illumination, compromising target identification. We sought to explore how the bumblebee Bombus terrestris copes with tasks involving flower colour discrimination under patchy illumination. Light patches varied between unobscured daylight and leaf-shade, as a bee might encounter in and around woodland. Using a flight arena and coloured filters, as well as one or two different colours of artificial flower, we quantified how bees chose to forage when presented with foraging tasks under patchy illumination. Bees were better at discriminating a pair of similar colours under simulated unobscured daylight illumination than when foraging under leaf-shade illumination. Accordingly, we found that bees with prior experience of simulated daylight but not leaf-shade illumination initially preferred to forage in simulated daylight when all artificial flowers contained rewards as well as when only one colour was rewarding, whereas bees with prior experience of both illuminants did not exhibit this preference. Bees also switched between illuminants less than expected by chance. This means that bees prefer illumination conditions with which they are familiar, and in which rewarding flower colours are easily distinguishable from unrewarding ones. Under patchy illumination, colour discrimination performance was substantially poorer than in homogenous light. The bees' abilities at coping with patchy light may therefore impact on foraging behaviour in the wild, particularly in woodlands, where illumination can change over short spatial scales.
Steege, M W; Wacker, D P; McMahon, C M
1987-01-01
In this study we compared the effectiveness and efficiency of two treatment packages that used stimulus prompt sequences and task analyses for teaching community living skills to severely handicapped students. Four severely and multiply handicapped students were trained to perform four tasks: (a) making toast, (b) making popcorn, (c) operating a clothes dryer, and (d) operating a washing machine. Following baseline, each student was exposed to two types of training procedures, each involving a task analysis of the target behavior. Training Procedure 1 (Traditional) utilized a least-to-most restrictive prompt sequence. Training Procedure 2 (Prescriptive) utilized ongoing behavioral assessment data to identify discriminative stimuli. The assessment data were used to prescribe instructional prompts across successive training trials. Performance on the tasks was evaluated within a combination multiple baseline (across subjects) and probe (across tasks) design. Training conditions were counterbalanced across subjects and tasks. Results indicated that both training procedures were equally effective in increasing independent task acquisition for subjects on all tasks; however, the prescriptive procedure was the more efficient procedure. PMID:3667479
Visual perceptual load induces inattentional deafness.
Macdonald, James S P; Lavie, Nilli
2011-08-01
In this article, we establish a new phenomenon of "inattentional deafness" and highlight the level of load on visual attention as a critical determinant of this phenomenon. In three experiments, we modified an inattentional blindness paradigm to assess inattentional deafness. Participants made either a low- or high-load visual discrimination concerning a cross shape (respectively, a discrimination of line color or of line length with a subtle length difference). A brief pure tone was presented simultaneously with the visual task display on a final trial. Failures to notice the presence of this tone (i.e., inattentional deafness) reached a rate of 79% in the high-visual-load condition, significantly more than in the low-load condition. These findings establish the phenomenon of inattentional deafness under visual load, thereby extending the load theory of attention (e.g., Lavie, Journal of Experimental Psychology. Human Perception and Performance, 25, 596-616, 1995) to address the cross-modal effects of visual perceptual load.
Improving accuracy and power with transfer learning using a meta-analytic database.
Schwartz, Yannick; Varoquaux, Gaël; Pallier, Christophe; Pinel, Philippe; Poline, Jean-Baptiste; Thirion, Bertrand
2012-01-01
Typical cohorts in brain imaging studies are not large enough for systematic testing of all the information contained in the images. To build testable working hypotheses, investigators thus rely on analysis of previous work, sometimes formalized in a so-called meta-analysis. In brain imaging, this approach underlies the specification of regions of interest (ROIs) that are usually selected on the basis of the coordinates of previously detected effects. In this paper, we propose to use a database of images, rather than coordinates, and frame the problem as transfer learning: learning a discriminant model on a reference task to apply it to a different but related new task. To facilitate statistical analysis of small cohorts, we use a sparse discriminant model that selects predictive voxels on the reference task and thus provides a principled procedure to define ROIs. The benefits of our approach are twofold. First it uses the reference database for prediction, i.e., to provide potential biomarkers in a clinical setting. Second it increases statistical power on the new task. We demonstrate on a set of 18 pairs of functional MRI experimental conditions that our approach gives good prediction. In addition, on a specific transfer situation involving different scanners at different locations, we show that voxel selection based on transfer learning leads to higher detection power on small cohorts.
Conditional automaticity in subliminal morphosyntactic priming.
Ansorge, Ulrich; Reynvoet, Bert; Hendler, Jessica; Oettl, Lennart; Evert, Stefan
2013-07-01
We used a gender-classification task to test the principles of subliminal morphosyntactic priming. In Experiment 1, masked, subliminal feminine or masculine articles were used as primes. They preceded a visible target noun. Subliminal articles either had a morphosyntactically congruent or incongruent gender with the targets. In a gender-classification task of the target nouns, subliminal articles primed the responses: responses were faster in congruent than incongruent conditions (Experiment 1). In Experiment 2, we tested whether this congruence effect depended on gender relevance. In line with a relevance-dependence, the congruence effect only occurred in a gender-classification task but was absent in another categorical discrimination of the target nouns (Experiment 2). The congruence effect also depended on correct word order. It was diminished when nouns preceded articles (Experiment 3). Finally, the congruence effect was replicated with a larger set of targets but only for masculine targets (Experiment 4). Results are discussed in light of theories of subliminal priming in general and of subliminal syntactic priming in particular.
Li, Xuan; Allen, Philip A; Lien, Mei-Ching; Yamamoto, Naohide
2017-02-01
Previous studies on perceptual learning, acquiring a new skill through practice, appear to stimulate brain plasticity and enhance performance (Fiorentini & Berardi, 1981). The present study aimed to determine (a) whether perceptual learning can be used to compensate for age-related declines in perceptual abilities, and (b) whether the effect of perceptual learning can be transferred to untrained stimuli and subsequently improve capacity of visual working memory (VWM). We tested both healthy younger and older adults in a 3-day training session using an orientation discrimination task. A matching-to-sample psychophysical method was used to measure improvements in orientation discrimination thresholds and reaction times (RTs). Results showed that both younger and older adults improved discrimination thresholds and RTs with similar learning rates and magnitudes. Furthermore, older adults exhibited a generalization of improvements to 3 untrained orientations that were close to the training orientation and benefited more compared with younger adults from the perceptual learning as they transferred learning effects to the VWM performance. We conclude that through perceptual learning, older adults can partially counteract age-related perceptual declines, generalize the learning effect to other stimulus conditions, and further overcome the limitation of using VWM capacity to perform a perceptual task. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Adaptive adjustment of the generalization-discrimination balance in larval Drosophila.
Mishra, Dushyant; Louis, Matthieu; Gerber, Bertram
2010-09-01
Learnt predictive behavior faces a dilemma: predictive stimuli will never 'replay' exactly as during the learning event, requiring generalization. In turn, minute differences can become meaningful, prompting discrimination. To provide a study case for an adaptive adjustment of this generalization-discrimination balance, the authors ask whether Drosophila melanogaster larvae are able to either generalize or discriminate between two odors (1-octen-3-ol and 3-octanol), depending on the task. The authors find that after discriminatively rewarding one but not the other odor, larvae show conditioned preference for the rewarded odor. On the other hand, no odor specificity is observed after nondiscriminative training, even if the test involves a choice between both odors. Thus, for this odor pair at least, discrimination training is required to confer an odor-specific memory trace. This requires that there is at least some difference in processing between the two odors already at the beginning of the training. Therefore, as a default, there is a small yet salient difference in processing between 1-octen-3-ol and 3-octanol; this difference is ignored after nondiscriminative training (generalization), whereas it is accentuated by odor-specific reinforcement (discrimination). Given that, as the authors show, both faculties are lost in anosmic Or83b(1) mutants, this indicates an adaptive adjustment of the generalization-discrimination balance in larval Drosophila, taking place downstream of Or83b-expressing sensory neurons.
Automation of learning-set testing - The video-task paradigm
NASA Technical Reports Server (NTRS)
Washburn, David A.; Hopkins, William D.; Rumbaugh, Duane M.
1989-01-01
Researchers interested in studying discrimination learning in primates have typically utilized variations in the Wisconsin General Test Apparatus (WGTA). In the present experiment, a new testing apparatus for the study of primate learning is proposed. In the video-task paradigm, rhesus monkeys (Macaca mulatta) respond to computer-generated stimuli by manipulating a joystick. Using this apparatus, discrimination learning-set data for 2 monkeys were obtained. Performance on Trial 2 exceeded 80 percent within 200 discrimination learning problems. These data illustrate the utility of the video-task paradigm in comparative research. Additionally, the efficient learning and rich data that were characteristic of this study suggest several advantages of the present testing paradigm over traditional WGTA testing.
Evaluative conditioning of positive and negative valence affects P1 and N1 in verbal processing.
Kuchinke, Lars; Fritsch, Nathalie; Müller, Christina J
2015-10-22
The present study examined the effect of contextual learning on the neural processing of previously meaningless pseudowords. During an evaluative conditioning session on 5 consecutive days, participants learned to associate 120 pseudowords with either positive, neutral or negative pictures. In a second session, participants were presented all conditioned pseudowords again together with 40 new pseudowords in a recognition memory task while their event-related potentials (ERPs) were recorded. The behavioral data confirm successful learning of pseudoword valence. At the neural level, early modulations of the ERPs are visible at the P1 and the N1 components discriminating between positively and negatively conditioned pseudowords. Differences to new pseudowords were visible at later processing stages as indicated by modulations of the LPC. These results support a contextual learning hypothesis that is able to explain very early emotional ERP modulations in visual word recognition. Source localization indicates a role of medial-frontal brain regions as a likely origin of these early valence discrimination signals which are discussed to promote top-down signals to sensory processing. Copyright © 2015. Published by Elsevier B.V.
Numerosity but not texture-density discrimination correlates with math ability in children.
Anobile, Giovanni; Castaldi, Elisa; Turi, Marco; Tinelli, Francesca; Burr, David C
2016-08-01
Considerable recent work suggests that mathematical abilities in children correlate with the ability to estimate numerosity. Does math correlate only with numerosity estimation, or also with other similar tasks? We measured discrimination thresholds of school-age (6- to 12.5-years-old) children in 3 tasks: numerosity of patterns of relatively sparse, segregatable items (24 dots); numerosity of very dense textured patterns (250 dots); and discrimination of direction of motion. Thresholds in all tasks improved with age, but at different rates, implying the action of different mechanisms: In particular, in young children, thresholds were lower for sparse than textured patterns (the opposite of adults), suggesting earlier maturation of numerosity mechanisms. Importantly, numerosity thresholds for sparse stimuli correlated strongly with math skills, even after controlling for the influence of age, gender and nonverbal IQ. However, neither motion-direction discrimination nor numerosity discrimination of texture patterns showed a significant correlation with math abilities. These results provide further evidence that numerosity and texture-density are perceived by independent neural mechanisms, which develop at different rates; and importantly, only numerosity mechanisms are related to math. As developmental dyscalculia is characterized by a profound deficit in discriminating numerosity, it is fundamental to understand the mechanism behind the discrimination. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Short-term visual deprivation, tactile acuity, and haptic solid shape discrimination.
Crabtree, Charles E; Norman, J Farley
2014-01-01
Previous psychophysical studies have reported conflicting results concerning the effects of short-term visual deprivation upon tactile acuity. Some studies have found that 45 to 90 minutes of total light deprivation produce significant improvements in participants' tactile acuity as measured with a grating orientation discrimination task. In contrast, a single 2011 study found no such improvement while attempting to replicate these earlier findings. A primary goal of the current experiment was to resolve this discrepancy in the literature by evaluating the effects of a 90-minute period of total light deprivation upon tactile grating orientation discrimination. We also evaluated the potential effect of short-term deprivation upon haptic 3-D shape discrimination using a set of naturally-shaped solid objects. According to previous research, short-term deprivation enhances performance in a tactile 2-D shape discrimination task - perhaps a similar improvement also occurs for haptic 3-D shape discrimination. The results of the current investigation demonstrate that not only does short-term visual deprivation not enhance tactile acuity, it additionally has no effect upon haptic 3-D shape discrimination. While visual deprivation had no effect in our study, there was a significant effect of experience and learning for the grating orientation task - the participants' tactile acuity improved over time, independent of whether they had, or had not, experienced visual deprivation.
Hughes, D; Dodge, M A
1997-10-01
Although studies have described work processes among employed African American women, few have examined the influence of these processes on job outcomes. This study examined relationships between African American women's exposure to a range of occupational stressors, including two types of racial bias--institutional discrimination and interpersonal prejudice--and their evaluations of job quality. Findings indicated that institutional discrimination and interpersonal prejudice were more important predictors of job quality among these women than were other occupational stressors such as low task variety and decision authority, heavy workloads, and poor supervision. Racial bias in the workplace was most likely to be reported by workers in predominantly white work settings. In addition, Black women who worked in service, semiskilled, and unskilled occupations reported significantly more institutional discrimination, but not more interpersonal prejudice, than did women in professional, managerial, and technical occupations or those in sales and clerical occupations.
Norman, J Farley; Phillips, Flip; Holmin, Jessica S; Norman, Hideko F; Beers, Amanda M; Boswell, Alexandria M; Cheeseman, Jacob R; Stethen, Angela G; Ronning, Cecilia
2012-10-01
A set of three experiments evaluated 96 participants' ability to visually and haptically discriminate solid object shape. In the past, some researchers have found haptic shape discrimination to be substantially inferior to visual shape discrimination, while other researchers have found haptics and vision to be essentially equivalent. A primary goal of the present study was to understand these discrepant past findings and to determine the true capabilities of the haptic system. All experiments used the same task (same vs. different shape discrimination) and stimulus objects (James Gibson's "feelies" and a set of naturally shaped objects--bell peppers). However, the methodology varied across experiments. Experiment 1 used random 3-dimensional (3-D) orientations of the stimulus objects, and the conditions were full-cue (active manipulation of objects and rotation of the visual objects in depth). Experiment 2 restricted the 3-D orientations of the stimulus objects and limited the haptic and visual information available to the participants. Experiment 3 compared restricted and full-cue conditions using random 3-D orientations. We replicated both previous findings in the current study. When we restricted visual and haptic information (and placed the stimulus objects in the same orientation on every trial), the participants' visual performance was superior to that obtained for haptics (replicating the earlier findings of Davidson et al. in Percept Psychophys 15(3):539-543, 1974). When the circumstances resembled those of ordinary life (e.g., participants able to actively manipulate objects and see them from a variety of perspectives), we found no significant difference between visual and haptic solid shape discrimination.
Araiza, Ashley M; Wellman, Joseph D
2017-07-01
Fear and stigmatization are often used to motivate individuals with higher body weight to engage in healthy behaviors, but these strategies are sometimes counterproductive, leading to undesirable outcomes. In the present study, the impact of weight-based stigma on cognition (i.e., inhibitory control) and food selection (i.e., calories selected) was examined among individuals who consider themselves to be overweight. It was predicted that participants higher in perceived weight stigma would perform more poorly on an inhibitory control task and order more calories on a food selection task when they read about discrimination against individuals with higher weight versus discrimination against an out-group. Participants completed online prescreen measures assessing whether they considered themselves to be overweight and their perceptions of weight stigma. Individuals who considered themselves to be overweight were invited into the laboratory to complete tasks that manipulated weight-based discrimination, then inhibitory control and food selection were measured. The higher participants were in perceived weight stigma, the more poorly they performed on the inhibitory control task and the more calories they ordered when they read about discrimination against individuals with higher body weight. These relationships were not observed when participants read about discrimination against an out-group. The present findings provide evidence that perceptions of weight stigma are critical in understanding the impact of weight-based discrimination. Additionally, these results have theoretical and practical implications for both understanding and addressing the psychological and physical consequences of weight-based stigma. Copyright © 2017 Elsevier Ltd. All rights reserved.
Teodorescu, Kinneret; Bouchigny, Sylvain; Korman, Maria
2013-08-01
In this study, we explored the time course of haptic stiffness discrimination learning and how it was affected by two experimental factors, the addition of visual information and/or knowledge of results (KR) during training. Stiffness perception may integrate both haptic and visual modalities. However, in many tasks, the visual field is typically occluded, forcing stiffness perception to be dependent exclusively on haptic information. No studies to date addressed the time course of haptic stiffness perceptual learning. Using a virtual environment (VE) haptic interface and a two-alternative forced-choice discrimination task, the haptic stiffness discrimination ability of 48 participants was tested across 2 days. Each day included two haptic test blocks separated by a training block Additional visual information and/or KR were manipulated between participants during training blocks. Practice repetitions alone induced significant improvement in haptic stiffness discrimination. Between days, accuracy was slightly improved, but decision time performance was deteriorated. The addition of visual information and/or KR had only temporary effects on decision time, without affecting the time course of haptic discrimination learning. Learning in haptic stiffness discrimination appears to evolve through at least two distinctive phases: A single training session resulted in both immediate and latent learning. This learning was not affected by the training manipulations inspected. Training skills in VE in spaced sessions can be beneficial for tasks in which haptic perception is critical, such as surgery procedures, when the visual field is occluded. However, training protocols for such tasks should account for low impact of multisensory information and KR.
Auditory phase and frequency discrimination: a comparison of nine procedures.
Creelman, C D; Macmillan, N A
1979-02-01
Two auditory discrimination tasks were thoroughly investigated: discrimination of frequency differences from a sinusoidal signal of 200 Hz and discrimination of differences in relative phase of mixed sinusoids of 200 Hz and 400 Hz. For each task psychometric functions were constructed for three observers, using nine different psychophysical measurement procedures. These procedures included yes-no, two-interval forced-choice, and various fixed- and variable-standard designs that investigators have used in recent years. The data showed wide ranges of apparent sensitivity. For frequency discrimination, models derived from signal detection theory for each psychophysical procedure seem to account for the performance differences. For phase discrimination the models do not account for the data. We conclude that for some discriminative continua the assumptions of signal detection theory are appropriate, and underlying sensitivity may be derived from raw data by appropriate transformations. For other continua the models of signal detection theory are probably inappropriate; we speculate that phase might be discriminable only on the basis of comparison or change and suggest some tests of our hypothesis.
Language and Memory Improvements following tDCS of Left Lateral Prefrontal Cortex.
Hussey, Erika K; Ward, Nathan; Christianson, Kiel; Kramer, Arthur F
2015-01-01
Recent research demonstrates that performance on executive-control measures can be enhanced through brain stimulation of lateral prefrontal regions. Separate psycholinguistic work emphasizes the importance of left lateral prefrontal cortex executive-control resources during sentence processing, especially when readers must override early, incorrect interpretations when faced with temporary ambiguity. Using transcranial direct current stimulation, we tested whether stimulation of left lateral prefrontal cortex had discriminate effects on language and memory conditions that rely on executive-control (versus cases with minimal executive-control demands, even in the face of task difficulty). Participants were randomly assigned to receive Anodal, Cathodal, or Sham stimulation of left lateral prefrontal cortex while they (1) processed ambiguous and unambiguous sentences in a word-by-word self-paced reading task and (2) performed an n-back memory task that, on some trials, contained interference lure items reputed to require executive-control. Across both tasks, we parametrically manipulated executive-control demands and task difficulty. Our results revealed that the Anodal group outperformed the remaining groups on (1) the sentence processing conditions requiring executive-control, and (2) only the most complex n-back conditions, regardless of executive-control demands. Together, these findings add to the mounting evidence for the selective causal role of left lateral prefrontal cortex for executive-control tasks in the language domain. Moreover, we provide the first evidence suggesting that brain stimulation is a promising method to mitigate processing demands encountered during online sentence processing.
Language and Memory Improvements following tDCS of Left Lateral Prefrontal Cortex
Hussey, Erika K.; Ward, Nathan; Christianson, Kiel; Kramer, Arthur F.
2015-01-01
Recent research demonstrates that performance on executive-control measures can be enhanced through brain stimulation of lateral prefrontal regions. Separate psycholinguistic work emphasizes the importance of left lateral prefrontal cortex executive-control resources during sentence processing, especially when readers must override early, incorrect interpretations when faced with temporary ambiguity. Using transcranial direct current stimulation, we tested whether stimulation of left lateral prefrontal cortex had discriminate effects on language and memory conditions that rely on executive-control (versus cases with minimal executive-control demands, even in the face of task difficulty). Participants were randomly assigned to receive Anodal, Cathodal, or Sham stimulation of left lateral prefrontal cortex while they (1) processed ambiguous and unambiguous sentences in a word-by-word self-paced reading task and (2) performed an n-back memory task that, on some trials, contained interference lure items reputed to require executive-control. Across both tasks, we parametrically manipulated executive-control demands and task difficulty. Our results revealed that the Anodal group outperformed the remaining groups on (1) the sentence processing conditions requiring executive-control, and (2) only the most complex n-back conditions, regardless of executive-control demands. Together, these findings add to the mounting evidence for the selective causal role of left lateral prefrontal cortex for executive-control tasks in the language domain. Moreover, we provide the first evidence suggesting that brain stimulation is a promising method to mitigate processing demands encountered during online sentence processing. PMID:26528814
Joint Facial Action Unit Detection and Feature Fusion: A Multi-conditional Learning Approach.
Eleftheriadis, Stefanos; Rudovic, Ognjen; Pantic, Maja
2016-10-05
Automated analysis of facial expressions can benefit many domains, from marketing to clinical diagnosis of neurodevelopmental disorders. Facial expressions are typically encoded as a combination of facial muscle activations, i.e., action units. Depending on context, these action units co-occur in specific patterns, and rarely in isolation. Yet, most existing methods for automatic action unit detection fail to exploit dependencies among them, and the corresponding facial features. To address this, we propose a novel multi-conditional latent variable model for simultaneous fusion of facial features and joint action unit detection. Specifically, the proposed model performs feature fusion in a generative fashion via a low-dimensional shared subspace, while simultaneously performing action unit detection using a discriminative classification approach. We show that by combining the merits of both approaches, the proposed methodology outperforms existing purely discriminative/generative methods for the target task. To reduce the number of parameters, and avoid overfitting, a novel Bayesian learning approach based on Monte Carlo sampling is proposed, to integrate out the shared subspace. We validate the proposed method on posed and spontaneous data from three publicly available datasets (CK+, DISFA and Shoulder-pain), and show that both feature fusion and joint learning of action units leads to improved performance compared to the state-of-the-art methods for the task.
Stokes, A F; Banich, M T; Elledge, V C
1991-08-01
The FAA has expressed concern that flight safety could be compromised by undetected cognitive impairment in pilots due to conditions such as substance abuse, mental illness, and neuropsychological problems. Interest has been shown in the possibility of adding a brief "mini-mental exam," or a simple automated test-battery to the standard flight medical to screen for such conditions. The research reported here involved the empirical evaluation of two "mini-mental exams," two paper-and-pencil test batteries, and a prototype version of an automated screening battery. Sensitivity, specificity, and positive predictive value were calculated for each sub-task in a discriminant study of 54 pilots and 62 individuals from a heterogeneous clinical population. Results suggest that the "mini-mental exams" are poor candidates for a screening test. The automated battery showed the best discrimination performance, in part because of the incorporation of dual-task tests of divided attention performance. These tests appear to be particularly sensitive to otherwise difficult-to-detect cognitive impairments of a mild or subtle nature. The use of an automated battery of tests as a screening instrument does appear to be feasible in principle, but the practical success of a screening program is heavily dependent upon the actual prevalence of cognitive impairment in the medical applicant population.
Mair, Robert G; Miller, Rikki L A; Wormwood, Benjamin A; Francoeur, Miranda J; Onos, Kristen D; Gibson, Brett M
2015-07-01
Although medial thalamus is well established as a site of pathology associated with global amnesia, there is uncertainty about which structures are critical and how they affect memory function. Evidence from human and animal research suggests that damage to the mammillothalamic tract and the anterior, mediodorsal (MD), midline (M), and intralaminar (IL) nuclei contribute to different signs of thalamic amnesia. Here we focus on MD and the adjacent M and IL nuclei, structures identified in animal studies as critical nodes in prefrontal cortex (PFC)-related pathways that are necessary for delayed conditional discrimination. Recordings of PFC neurons in rats performing a dynamic delayed non-matching-to position (DNMTP) task revealed discrete populations encoding information related to planning, execution, and outcome of DNMTP-related actions and delay-related activity signaling previous reinforcement. Parallel studies recording the activity of MD and IL neurons and examining the effects of unilateral thalamic inactivation on the responses of PFC neurons demonstrated a close coupling of central thalamic and PFC neurons responding to diverse aspects of DNMTP and provide evidence that thalamus interacts with PFC neurons to give rise to complex goal-directed behavior exemplified by the DNMTP task. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Effect of Task Duration on Event-Based Prospective Memory: A Multinomial Modeling Approach
Zhang, Hongxia; Tang, Weihai; Liu, Xiping
2017-01-01
Remembering to perform an action when a specific event occurs is referred to as Event-Based Prospective Memory (EBPM). This study investigated how EBPM performance is affected by task duration by having university students (n = 223) perform an EBPM task that was embedded within an ongoing computer-based color-matching task. For this experiment, we separated the overall task’s duration into the filler task duration and the ongoing task duration. The filler task duration is the length of time between the intention and the beginning of the ongoing task, and the ongoing task duration is the length of time between the beginning of the ongoing task and the appearance of the first Prospective Memory (PM) cue. The filler task duration and ongoing task duration were further divided into three levels: 3, 6, and 9 min. Two factors were then orthogonally manipulated between-subjects using a multinomial processing tree model to separate the effects of different task durations on the two EBPM components. A mediation model was then created to verify whether task duration influences EBPM via self-reminding or discrimination. The results reveal three points. (1) Lengthening the duration of ongoing tasks had a negative effect on EBPM performance while lengthening the duration of the filler task had no significant effect on it. (2) As the filler task was lengthened, both the prospective and retrospective components show a decreasing and then increasing trend. Also, when the ongoing task duration was lengthened, the prospective component decreased while the retrospective component significantly increased. (3) The mediating effect of discrimination between the task duration and EBPM performance was significant. We concluded that different task durations influence EBPM performance through different components with discrimination being the mediator between task duration and EBPM performance. PMID:29163277
Ueno, Aki; Suzuki, Kaoru
2014-02-01
The present study sought to assess the potential application of avian models with different developmental modes to studies on cognition and neuroscience. Six altricial Bengalese finches (Lonchura striata var. domestica), and eight precocial blue-breasted quails (Coturnix chinensis) were presented with color discrimination tasks to compare their respective faculties for learning and memory retention within the context of the two developmental modes. Tasks consisted of presenting birds with discriminative cues in the form of colored feeder lids, and birds were considered to have learned a task when 80% of their attempts at selecting the correctly colored lid in two consecutive blocks of 10 trials were successful. All of the finches successfully performed the required experimental tasks, whereas only half of the quails were able to execute the same tasks. In the learning test, finches required significantly fewer trials than quails to learn the task (finches: 13.5 ± 9.14 trials, quails: 45.8 ± 4.35 trials, P < 0.05), with finches scoring significantly more correct responses than quails (finches: 98.3 ± 4.08%, quails: 85.0 ± 5.77% at the peak of the learning curve). In the memory retention tests, which were conducted 45 days after the learning test, finches retained the ability to discriminate between colors correctly (95.0 ± 4.47%), whereas quails did not retain any memory of the experimental procedure and so could not be tested. These results suggested that altricial and precocial birds both possess the faculty for learning and retaining discrimination-type tasks, but that altricial birds perform better than precocial birds in both faculties. The present findings imply that developmental mode is an important consideration for assessing the suitability of bird species for particular experiments. © 2013 Japanese Society of Animal Science.
Numerical abilities in fish: A methodological review.
Agrillo, Christian; Miletto Petrazzini, Maria Elena; Bisazza, Angelo
2017-08-01
The ability to utilize numerical information can be adaptive in a number of ecological contexts including foraging, mating, parental care, and anti-predator strategies. Numerical abilities of mammals and birds have been studied both in natural conditions and in controlled laboratory conditions using a variety of approaches. During the last decade this ability was also investigated in some fish species. Here we reviewed the main methods used to study this group, highlighting the strengths and weaknesses of each of the methods used. Fish have only been studied under laboratory conditions and among the methods used with other species, only two have been systematically used in fish-spontaneous choice tests and discrimination learning procedures. In the former case, the choice between two options is observed in a biologically relevant situation and the degree of preference for the larger/smaller group is taken as a measure of the capacity to discriminate the two quantities (e.g., two shoals differing in number). In discrimination learning tasks, fish are trained to select the larger or the smaller of two sets of abstract objects, typically two-dimensional geometric figures, using food or social companions as reward. Beyond methodological differences, what emerges from the literature is a substantial similarity of the numerical abilities of fish with those of other vertebrates studied. Copyright © 2017 Elsevier B.V. All rights reserved.
Rats Depend on Habit Memory for Discrimination Learning and Retention
ERIC Educational Resources Information Center
Broadbent, Nicola J.; Squire, Larry R.; Clark, Robert E.
2007-01-01
We explored the circumstances in which rats engage either declarative memory (and the hippocampus) or habit memory (and the dorsal striatum). Rats with damage to the hippocampus or dorsal striatum were given three different two-choice discrimination tasks (odor, object, and pattern). These tasks differed in the number of trials required for…
ERIC Educational Resources Information Center
Eddy, Meghan C.; Stansfield, Katherine J.; Green, John T.
2014-01-01
We have previously demonstrated that voluntary exercise facilitates discrimination learning in a modified T-maze. There is evidence implicating the dorsolateral striatum (DLS) as the substrate for this task. The present experiments examined whether changes in DLS dopamine receptors might underlie the exercise-associated facilitation. Infusing a…
ERIC Educational Resources Information Center
Helton, William S.; Hayrynen, Lauren; Schaeffer, David
2009-01-01
Vision researchers have investigated the differences between global and local feature perception. No one has, however, examined the role of global and local feature discrimination in sustained attention tasks. In this experiment participants performed a sustained attention task requiring either global or local letter target discriminations or…
Numerosity but Not Texture-Density Discrimination Correlates with Math Ability in Children
ERIC Educational Resources Information Center
Anobile, Giovanni; Castaldi, Elisa; Turi, Marco; Tinelli, Francesca; Burr, David C.
2016-01-01
Considerable recent work suggests that mathematical abilities in children correlate with the ability to estimate numerosity. Does math correlate only with numerosity estimation, or also with other similar tasks? We measured discrimination thresholds of school-age (6- to 12.5-years-old) children in 3 tasks: numerosity of patterns of relatively…
Siwak, Christina T; Tapp, P Dwight; Head, Elizabeth; Zicker, Steven C; Murphey, Heather L; Muggenburg, Bruce A; Ikeda-Douglas, Candace J; Cotman, Carl W; Milgram, Norton W
2005-03-01
The present experiment was part of a 3-year longitudinal study examining the effects of age and antioxidant treatment on cognitive decline in beagles. Two size-concept tasks were administered following pretraining on a series of two-choice (six subtests) and three-choice size discrimination tasks. Thirty-nine young and aged dogs were matched for age and cognitive ability then divided into four treatment groups. A combined antioxidant-mitochondrial cofactor treatment led to significantly improved performance in aged dogs on the first subtest of the two-choice size discrimination series. Treated aged dogs did not significantly differ from the young. Aged dogs on the antioxidant diet continued to perform better than aged controls on the second and third subtests, but these effects did not achieve significance. Young dogs performed significantly better than the aged dogs on the second and third subtests. The remaining two-choice tasks of the discrimination series were comparatively easy, leading to a floor effect. The antioxidant animals performed better on the three-choice size discrimination, but not on the two size-concept tasks. Antioxidants improved the performance of aged dogs on the initial learning tests, suggesting a selective improvement of factors related to the aging process and specific cognitive processes rather than general cognitive enhancement.
Deep neural networks for modeling visual perceptual learning.
Wenliang, Li; Seitz, Aaron R
2018-05-23
Understanding visual perceptual learning (VPL) has become increasingly more challenging as new phenomena are discovered with novel stimuli and training paradigms. While existing models aid our knowledge of critical aspects of VPL, the connections shown by these models between behavioral learning and plasticity across different brain areas are typically superficial. Most models explain VPL as readout from simple perceptual representations to decision areas and are not easily adaptable to explain new findings. Here, we show that a well-known instance of deep neural network (DNN), while not designed specifically for VPL, provides a computational model of VPL with enough complexity to be studied at many levels of analyses. After learning a Gabor orientation discrimination task, the DNN model reproduced key behavioral results, including increasing specificity with higher task precision, and also suggested that learning precise discriminations could asymmetrically transfer to coarse discriminations when the stimulus conditions varied. In line with the behavioral findings, the distribution of plasticity moved towards lower layers when task precision increased, and this distribution was also modulated by tasks with different stimulus types. Furthermore, learning in the network units demonstrated close resemblance to extant electrophysiological recordings in monkey visual areas. Altogether, the DNN fulfilled predictions of existing theories regarding specificity and plasticity, and reproduced findings of tuning changes in neurons of the primate visual areas. Although the comparisons were mostly qualitative, the DNN provides a new method of studying VPL and can serve as a testbed for theories and assist in generating predictions for physiological investigations. SIGNIFICANCE STATEMENT Visual perceptual learning (VPL) has been found to cause changes at multiple stages of the visual hierarchy. We found that training a deep neural network (DNN) on an orientation discrimination task produced similar behavioral and physiological patterns found in human and monkey experiments. Unlike existing VPL models, the DNN was pre-trained on natural images to reach high performance in object recognition but was not designed specifically for VPL, and yet it fulfilled predictions of existing theories regarding specificity and plasticity, and reproduced findings of tuning changes in neurons of the primate visual areas. When used with care, this unbiased and deep-hierarchical model can provide new ways of studying VPL from behavior to physiology. Copyright © 2018 the authors.
Vadhan, Nehal P; Myers, Catherine E; Rubin, Eric; Shohamy, Daphna; Foltin, Richard W; Gluck, Mark A
2008-01-11
The purpose of this study was to examine stimulus-response (S-R) learning in active cocaine users. Twenty-two cocaine-dependent participants (20 males and 2 females) and 21 non-drug using control participants (19 males and 2 females) who were similar in age and education were administered two computerized learning tasks. The Acquired Equivalence task initially requires learning of simple antecedent-consequent discriminations, but later requires generalization of this learning when the stimuli are presented in novel recombinations. The Weather Prediction task requires the prediction of a dichotomous outcome based on different stimuli combinations when the stimuli predict the outcome only probabilistically. On the Acquired Equivalence task, cocaine users made significantly more errors than control participants when required to learn new discriminations while maintaining previously learned discriminations, but performed similarly to controls when required to generalize this learning. No group differences were seen on the Weather Prediction task. Cocaine users' learning of stimulus discriminations under conflicting response demands was impaired, but their ability to generalize this learning once they achieved criterion was intact. This performance pattern is consistent with other laboratory studies of long-term cocaine users that demonstrated that established learning interfered with new learning on incremental learning tasks, relative to healthy controls, and may reflect altered dopamine transmission in the basal ganglia of long-term cocaine users.
Nawroth, Christian; Prentice, Pamela M; McElligott, Alan G
2017-01-01
Variation in common personality traits, such as boldness or exploration, is often associated with risk-reward trade-offs and behavioural flexibility. To date, only a few studies have examined the effects of consistent behavioural traits on both learning and cognition. We investigated whether certain personality traits ('exploration' and 'sociability') of individuals were related to cognitive performance, learning flexibility and learning style in a social ungulate species, the goat (Capra hircus). We also investigated whether a preference for feature cues rather than impaired learning abilities can explain performance variation in a visual discrimination task. We found that personality scores were consistent across time and context. Less explorative goats performed better in a non-associative cognitive task, in which subjects had to follow the trajectory of a hidden object (i.e. testing their ability for object permanence). We also found that less sociable subjects performed better compared to more sociable goats in a visual discrimination task. Good visual learning performance was associated with a preference for feature cues, indicating personality-dependent learning strategies in goats. Our results suggest that personality traits predict the outcome in visual discrimination and non-associative cognitive tasks in goats and that impaired performance in a visual discrimination tasks does not necessarily imply impaired learning capacities, but rather can be explained by a varying preference for feature cues. Copyright © 2016 Elsevier B.V. All rights reserved.
Burnat, K; Zernicki, B
1997-01-01
We used 5 binocularly deprived cats (BD cats), 4 control cats reared also in the laboratory (C cats) and 4 cats reared in a normal environment (N cats). The cats were trained to discriminate an upward or downward-moving light spot versus a stationary spot (detection task) and then an upward versus a downward spot (direction task). The N and C cats learned slowly. The learning was slower than in previously studied discriminations of stationary stimuli. However, all N and C cats mastered the detection task and except one C cat the direction task. In contrast, 4 BD cats failed in the detection task and all in the direction task. This result is consistent with single-cell recording data showing impairment of direction analysis in the visual system in BD cats. After completing the training the upper part of the middle suprasylvian sulcus was removed unilaterally in 7 cats and bilaterally in 6 cats. Surprisingly, the unilateral lesions were more effective: the clear-cut retention deficits were found in 5 cats lesioned unilaterally, whereas only in one cat lesioned bilaterally.
Sofer, Imri; Crouzet, Sébastien M.; Serre, Thomas
2015-01-01
Observers can rapidly perform a variety of visual tasks such as categorizing a scene as open, as outdoor, or as a beach. Although we know that different tasks are typically associated with systematic differences in behavioral responses, to date, little is known about the underlying mechanisms. Here, we implemented a single integrated paradigm that links perceptual processes with categorization processes. Using a large image database of natural scenes, we trained machine-learning classifiers to derive quantitative measures of task-specific perceptual discriminability based on the distance between individual images and different categorization boundaries. We showed that the resulting discriminability measure accurately predicts variations in behavioral responses across categorization tasks and stimulus sets. We further used the model to design an experiment, which challenged previous interpretations of the so-called “superordinate advantage.” Overall, our study suggests that observed differences in behavioral responses across rapid categorization tasks reflect natural variations in perceptual discriminability. PMID:26335683
Lefebvre, Christine; Cousineau, Denis; Larochelle, Serge
2008-11-01
Schneider and Shiffrin (1977) proposed that training under consistent stimulus-response mapping (CM) leads to automatic target detection in search tasks. Other theories, such as Treisman and Gelade's (1980) feature integration theory, consider target-distractor discriminability as the main determinant of search performance. The first two experiments pit these two principles against each other. The results show that CM training is neither necessary nor sufficient to achieve optimal search performance. Two other experiments examine whether CM trained targets, presented as distractors in unattended display locations, attract attention away from current targets. The results are again found to vary with target-distractor similarity. Overall, the present study strongly suggests that CM training does not invariably lead to automatic attention attraction in search tasks.
Rapid natural scene categorization in the near absence of attention
Li, Fei Fei; VanRullen, Rufin; Koch, Christof; Perona, Pietro
2002-01-01
What can we see when we do not pay attention? It is well known that we can be “blind” even to major aspects of natural scenes when we attend elsewhere. The only tasks that do not need attention appear to be carried out in the early stages of the visual system. Contrary to this common belief, we report that subjects can rapidly detect animals or vehicles in briefly presented novel natural scenes while simultaneously performing another attentionally demanding task. By comparison, they are unable to discriminate large T's from L's, or bisected two-color disks from their mirror images under the same conditions. We conclude that some visual tasks associated with “high-level” cortical areas may proceed in the near absence of attention. PMID:12077298
Béracochéa, Daniel; Liscia, Pierrette; Tronche, Christophe; Chauveau, Frédéric; Jouanin, Jean-Claude; Piérard, Christophe
2008-01-01
This study investigated the dose-effect relationship of modafinil administration on contextual memory processes, in parallel with the measurements of plasma corticosterone levels in acutely stressed mice. Memory was first evaluated in normal (nonstressed) mice either in contextual (CSD) or spatial (SSD) tasks. Thus, C57 Bl/6 Jico mice learned two consecutive discriminations (D1 and D2) in a four-hole board. The discriminations occurred on either distinct (CSD) or identical (SSD) floors (internal contextual cues). All mice received a vehicle intraperitoneal injection before learning and were injected 24 h later (20 min before the test session) either with vehicle or modafinil. Results showed that modafinil-treated mice behaved similarly as vehicles in the spatial SSD task, whereas in contrast, memory of the first-learned discrimination (D1) in the CSD task was enhanced by a 32- but not a 16-mg/kg modafinil dose. Hence, we studied the effect of a pretest acute stress (electric footshocks) specifically on D1 performance in modafinil-treated subjects. Immediately after behavioral testing, blood was sampled to measure plasma corticosterone levels. Results showed that: (1) stress significantly improved performance in vehicles, (2) stress decreased the efficiency threshold of modafinil, as performance was enhanced at the low dose (16 mg/kg), whereas this enhancement was obtained for the high dose (32 mg/kg) under nonstress conditions, (3) the performance was impaired at the high (32 mg/kg) dose, and (4) modafinil significantly reduced the magnitude of the stress-induced corticosterone secretion, mainly at the dose of 32 mg/kg.
Sex differences in the subjective effects of oral Δ9-THC in cannabis users.
Fogel, Jessica S; Kelly, Thomas H; Westgate, Philip M; Lile, Joshua A
2017-01-01
Previous studies suggest that there are sex differences in endocannabinoid function and the response to exogenous cannabinoids, though data from clinical studies comparing acute cannabinoid effects in men and women under controlled laboratory conditions are limited. To further explore these potential differences, data from 30 cannabis users (N=18 M, 12 F) who completed previous Δ 9 -tetrahydrocannabinol (Δ 9 -THC) discrimination studies were combined for this retrospective analysis. In each study, subjects learned to discriminate between oral Δ 9 -THC and placebo and then received a range of Δ 9 -THC doses (0, 5, 15 and a "high" dose of either 25 or 30mg). Responses on a drug-discrimination task, subjective effects questionnaire, psychomotor performance tasks, and physiological measures were assessed. Δ 9 -THC dose-dependently increased drug-appropriate responding, ratings on "positive" Visual Analog Scale (VAS) items (e.g., good effects, like drug, take again), and items related to intoxication (e.g., high, stoned). Δ 9 -THC also dose-dependently impaired performance on psychomotor tasks and elevated heart rate. Sex differences on VAS items emerged as a function of dose. Women exhibited significantly greater subjective responses to oral drug administration than men at the 5mg Δ 9 -THC dose, whereas men were more sensitive to the subjective effects of the 15mg dose of Δ 9 -THC than women. These results demonstrate dose-dependent separation in the subjective response to oral Δ 9 -THC administration by sex, which might contribute to the differential development of problematic cannabis use. Copyright © 2015 Elsevier Inc. All rights reserved.
Non-native Listeners’ Recognition of High-Variability Speech Using PRESTO
Tamati, Terrin N.; Pisoni, David B.
2015-01-01
Background Natural variability in speech is a significant challenge to robust successful spoken word recognition. In everyday listening environments, listeners must quickly adapt and adjust to multiple sources of variability in both the signal and listening environments. High-variability speech may be particularly difficult to understand for non-native listeners, who have less experience with the second language (L2) phonological system and less detailed knowledge of sociolinguistic variation of the L2. Purpose The purpose of this study was to investigate the effects of high-variability sentences on non-native speech recognition and to explore the underlying sources of individual differences in speech recognition abilities of non-native listeners. Research Design Participants completed two sentence recognition tasks involving high-variability and low-variability sentences. They also completed a battery of behavioral tasks and self-report questionnaires designed to assess their indexical processing skills, vocabulary knowledge, and several core neurocognitive abilities. Study Sample Native speakers of Mandarin (n = 25) living in the United States recruited from the Indiana University community participated in the current study. A native comparison group consisted of scores obtained from native speakers of English (n = 21) in the Indiana University community taken from an earlier study. Data Collection and Analysis Speech recognition in high-variability listening conditions was assessed with a sentence recognition task using sentences from PRESTO (Perceptually Robust English Sentence Test Open-Set) mixed in 6-talker multitalker babble. Speech recognition in low-variability listening conditions was assessed using sentences from HINT (Hearing In Noise Test) mixed in 6-talker multitalker babble. Indexical processing skills were measured using a talker discrimination task, a gender discrimination task, and a forced-choice regional dialect categorization task. Vocabulary knowledge was assessed with the WordFam word familiarity test, and executive functioning was assessed with the BRIEF-A (Behavioral Rating Inventory of Executive Function – Adult Version) self-report questionnaire. Scores from the non-native listeners on behavioral tasks and self-report questionnaires were compared with scores obtained from native listeners tested in a previous study and were examined for individual differences. Results Non-native keyword recognition scores were significantly lower on PRESTO sentences than on HINT sentences. Non-native listeners’ keyword recognition scores were also lower than native listeners’ scores on both sentence recognition tasks. Differences in performance on the sentence recognition tasks between non-native and native listeners were larger on PRESTO than on HINT, although group differences varied by signal-to-noise ratio. The non-native and native groups also differed in the ability to categorize talkers by region of origin and in vocabulary knowledge. Individual non-native word recognition accuracy on PRESTO sentences in multitalker babble at more favorable signal-to-noise ratios was found to be related to several BRIEF-A subscales and composite scores. However, non-native performance on PRESTO was not related to regional dialect categorization, talker and gender discrimination, or vocabulary knowledge. Conclusions High-variability sentences in multitalker babble were particularly challenging for non-native listeners. Difficulty under high-variability testing conditions was related to lack of experience with the L2, especially L2 sociolinguistic information, compared with native listeners. Individual differences among the non-native listeners were related to weaknesses in core neurocognitive abilities affecting behavioral control in everyday life. PMID:25405842
Visually cued motor synchronization: modulation of fMRI activation patterns by baseline condition.
Cerasa, Antonio; Hagberg, Gisela E; Bianciardi, Marta; Sabatini, Umberto
2005-01-03
A well-known issue in functional neuroimaging studies, regarding motor synchronization, is to design suitable control tasks able to discriminate between the brain structures involved in primary time-keeper functions and those related to other processes such as attentional effort. The aim of this work was to investigate how the predictability of stimulus onsets in the baseline condition modulates the activity in brain structures related to processes involved in time-keeper functions during the performance of a visually cued motor synchronization task (VM). The rational behind this choice derives from the notion that using different stimulus predictability can vary the subject's attention and the consequently neural activity. For this purpose, baseline levels of BOLD activity were obtained from 12 subjects during a conventional-baseline condition: maintained fixation of the visual rhythmic stimuli presented in the VM task, and a random-baseline condition: maintained fixation of visual stimuli occurring randomly. fMRI analysis demonstrated that while brain areas with a documented role in basic time processing are detected independent of the baseline condition (right cerebellum, bilateral putamen, left thalamus, left superior temporal gyrus, left sensorimotor cortex, left dorsal premotor cortex and supplementary motor area), the ventral premotor cortex, caudate nucleus, insula and inferior frontal gyrus exhibited a baseline-dependent activation. We conclude that maintained fixation of unpredictable visual stimuli can be employed in order to reduce or eliminate neural activity related to attentional components present in the synchronization task.
Rodakowski, Juleen; Skidmore, Elizabeth R.; Reynolds, Charles F.; Dew, Mary Amanda; Butters, Meryl A.; Holm, Margo B.; Lopez, Oscar L.; Rogers, Joan C.
2014-01-01
OBJECTIVES Our primary aim was to examine whether preclinical disability in performance of cognitively-focused instrumental activities of daily living (C-IADL) tasks can discriminate between older adults with normal cognitive function and those with Mild Cognitive Impairment (MCI). The secondary purpose was to determine the two tasks with the strongest psychometric properties and assess their discriminative ability. Our goal was to generate diagnosis-relevant information about cognitive changes associated with MCI and DSM-5 Mild Neurocognitive Disorder. DESIGN Secondary analyses of cross-sectional data from a cohort of individuals diagnosed with normal cognitive function or MCI. SETTING Private home locations in Pittsburgh, PA. PARTICIPANTS Older adults with remitted major depression (N=157). MEASUREMENTS Diagnosis of cognitive status was made by the Alzheimer’s Disease Research Center at the University of Pittsburgh. Performance of 8 C-IADL was measured using the criterion-referenced, observation-based Performance Assessment of Self-Care Skills (PASS). RESULTS A total of 96 older adults with normal cognitive function (mean age=72.5, SD=5.9) and 61 older adults with MCI (mean age=75.5, SD=6.3) participated. The 8 C-IADL demonstrated 81% accuracy in discriminating cognitive status (area under curve 0.81, p<0.001). Two tasks (shopping and checkbook balancing) were the most discriminating (area under curve 0.80, p<0.001); they demonstrated similar ability, as the 8 C-IADL, to discriminate cognitive status. Assessing performance on these two C-IADL takes 10–15 minutes. CONCLUSION This is the first demonstration of the discriminative ability of preclinical disability in distinguishing MCI from cognitively normal older adults. These findings highlight potential tasks, when measured with the observation-based PASS, which demonstrate increased effort for individuals with MCI. These tasks may be considered when attempting to diagnose MCI or Mild Neurocognitive Disorder in clinical practice and research. PMID:24890517
Reward Motivation Enhances Task Coding in Frontoparietal Cortex.
Etzel, Joset A; Cole, Michael W; Zacks, Jeffrey M; Kay, Kendrick N; Braver, Todd S
2016-04-01
Reward motivation often enhances task performance, but the neural mechanisms underlying such cognitive enhancement remain unclear. Here, we used a multivariate pattern analysis (MVPA) approach to test the hypothesis that motivation-related enhancement of cognitive control results from improved encoding and representation of task set information. Participants underwent two fMRI sessions of cued task switching, the first under baseline conditions, and the second with randomly intermixed reward incentive and no-incentive trials. Information about the upcoming task could be successfully decoded from cue-related activation patterns in a set of frontoparietal regions typically associated with task control. More critically, MVPA classifiers trained on the baseline session had significantly higher decoding accuracy on incentive than non-incentive trials, with decoding improvement mediating reward-related enhancement of behavioral performance. These results strongly support the hypothesis that reward motivation enhances cognitive control, by improving the discriminability of task-relevant information coded and maintained in frontoparietal brain regions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Dynamic functional brain networks involved in simple visual discrimination learning.
Fidalgo, Camino; Conejo, Nélida María; González-Pardo, Héctor; Arias, Jorge Luis
2014-10-01
Visual discrimination tasks have been widely used to evaluate many types of learning and memory processes. However, little is known about the brain regions involved at different stages of visual discrimination learning. We used cytochrome c oxidase histochemistry to evaluate changes in regional brain oxidative metabolism during visual discrimination learning in a water-T maze at different time points during training. As compared with control groups, the results of the present study reveal the gradual activation of cortical (prefrontal and temporal cortices) and subcortical brain regions (including the striatum and the hippocampus) associated to the mastery of a simple visual discrimination task. On the other hand, the brain regions involved and their functional interactions changed progressively over days of training. Regions associated with novelty, emotion, visuo-spatial orientation and motor aspects of the behavioral task seem to be relevant during the earlier phase of training, whereas a brain network comprising the prefrontal cortex was found along the whole learning process. This study highlights the relevance of functional interactions among brain regions to investigate learning and memory processes. Copyright © 2014 Elsevier Inc. All rights reserved.
Object localization, discrimination, and grasping with the optic nerve visual prosthesis.
Duret, Florence; Brelén, Måten E; Lambert, Valerie; Gérard, Benoît; Delbeke, Jean; Veraart, Claude
2006-01-01
This study involved a volunteer completely blind from retinis pigmentosa who had previously been implanted with an optic nerve visual prosthesis. The aim of this two-year study was to train the volunteer to localize a given object in nine different positions, to discriminate the object within a choice of six, and then to grasp it. In a closed-loop protocol including a head worn video camera, the nerve was stimulated whenever a part of the processed image of the object being scrutinized matched the center of an elicitable phosphene. The accessible visual field included 109 phosphenes in a 14 degrees x 41 degrees area. Results showed that training was required to succeed in the localization and discrimination tasks, but practically no training was required for grasping the object. The volunteer was able to successfully complete all tasks after training. The volunteer systematically performed several left-right and bottom-up scanning movements during the discrimination task. Discrimination strategies included stimulation phases and no-stimulation phases of roughly similar duration. This study provides a step towards the practical use of the optic nerve visual prosthesis in current daily life.
Simultaneous Visual Discrimination in Asian Elephants
ERIC Educational Resources Information Center
Nissani, Moti; Hoefler-Nissani, Donna; Lay, U. Tin; Htun, U. Wan
2005-01-01
Two experiments explored the behavior of 20 Asian elephants ("Elephas aximus") in simultaneous visual discrimination tasks. In Experiment 1, 7 Burmese logging elephants acquired a white+/black- discrimination, reaching criterion in a mean of 2.6 sessions and 117 discrete trials, whereas 4 elephants acquired a black+/white- discrimination in 5.3…
Fengler, Ineke; Nava, Elena; Röder, Brigitte
2015-01-01
Several studies have suggested that neuroplasticity can be triggered by short-term visual deprivation in healthy adults. Specifically, these studies have provided evidence that visual deprivation reversibly affects basic perceptual abilities. The present study investigated the long-lasting effects of short-term visual deprivation on emotion perception. To this aim, we visually deprived a group of young healthy adults, age-matched with a group of non-deprived controls, for 3 h and tested them before and after visual deprivation (i.e., after 8 h on average and at 4 week follow-up) on an audio–visual (i.e., faces and voices) emotion discrimination task. To observe changes at the level of basic perceptual skills, we additionally employed a simple audio–visual (i.e., tone bursts and light flashes) discrimination task and two unimodal (one auditory and one visual) perceptual threshold measures. During the 3 h period, both groups performed a series of auditory tasks. To exclude the possibility that changes in emotion discrimination may emerge as a consequence of the exposure to auditory stimulation during the 3 h stay in the dark, we visually deprived an additional group of age-matched participants who concurrently performed unrelated (i.e., tactile) tasks to the later tested abilities. The two visually deprived groups showed enhanced affective prosodic discrimination abilities in the context of incongruent facial expressions following the period of visual deprivation; this effect was partially maintained until follow-up. By contrast, no changes were observed in affective facial expression discrimination and in the basic perception tasks in any group. These findings suggest that short-term visual deprivation per se triggers a reweighting of visual and auditory emotional cues, which seems to possibly prevail for longer durations. PMID:25954166
Abbey, Craig K.; Zemp, Roger J.; Liu, Jie; Lindfors, Karen K.; Insana, Michael F.
2009-01-01
We investigate and extend the ideal observer methodology developed by Smith and Wagner to detection and discrimination tasks related to breast sonography. We provide a numerical approach for evaluating the ideal observer acting on radio-frequency (RF) frame data, which involves inversion of large nonstationary covariance matrices, and we describe a power-series approach to computing this inverse. Considering a truncated power series suggests that the RF data be Wiener-filtered before forming the final envelope image. We have compared human performance for Wiener-filtered and conventional B-mode envelope images using psychophysical studies for 5 tasks related to breast cancer classification. We find significant improvements in visual detection and discrimination efficiency in four of these five tasks. We also use the Smith-Wagner approach to distinguish between human and processing inefficiencies, and find that generally the principle limitation comes from the information lost in computing the final envelope image. PMID:16468454
Perception of Non-Native Consonant Length Contrast: The Role of Attention in Phonetic Processing
ERIC Educational Resources Information Center
Porretta, Vincent J.; Tucker, Benjamin V.
2015-01-01
The present investigation examines English speakers' ability to identify and discriminate non-native consonant length contrast. Three groups (L1 English No-Instruction, L1 English Instruction, and L1 Finnish control) performed a speeded forced-choice identification task and a speeded AX discrimination task on Finnish non-words (e.g.…
Signal Clarity: An Account of the Variability in Infant Quantity Discrimination Tasks
ERIC Educational Resources Information Center
Cantrell, Lisa; Boyer, Ty W.; Cordes, Sara; Smith, Linda B.
2015-01-01
Infants have shown variable success in quantity comparison tasks, with infants of a given age sometimes successfully discriminating numerical differences at a 2:3 ratio but requiring 1:2 and even 1:4 ratios of change at other times. The current explanations for these variable results include the two-systems proposal--a theoretical framework that…
Wolk, David A.; Gold, Carl A.; Signoff, Eric D.; Budson, Andrew E.
2009-01-01
Prior work suggests that patients with mild Alzheimer’s disease (AD) often base their recognition memory decisions on familiarity. It has been argued that conceptual fluency may play an important role in the feeling of familiarity. In the present study we measured the effect of conceptual fluency manipulations on recognition judgments of patients with mild AD and older adult controls. “Easy” and “hard” test conditions were created by manipulating encoding depth and list length to yield high and low discrimination, respectively. When the two participant groups performed identical procedures, AD patients displayed lower discrimination and greater reliance on fluency cues than controls. However, when the discrimination of older adult controls was decreased to the level of AD patients by use of a shallow encoding task, we found that controls reliance on fluency did not statistically differ from AD patients. Furthermore, we found that increasing discrimination using shorter study lists resulted in AD patients decreasing their reliance on fluency cues to a similar extent as controls. These findings support the notion that patients with AD are able to attribute conceptual fluency to prior experience. In addition these findings suggest that discrimination and reliance on fluency cues may be inversely related in both AD patients and older adult controls. PMID:19428418
Compositional symbol grounding for motor patterns.
Greco, Alberto; Caneva, Claudio
2010-01-01
We developed a new experimental and simulative paradigm to study the establishing of compositional grounded representations for motor patterns. Participants learned to associate non-sense arm motor patterns, performed in three different hand postures, with non-sense words. There were two group conditions: in the first (compositional), each pattern was associated with a two-word (verb-adverb) sentence; in the second (holistic), each same pattern was associated with a unique word. Two experiments were performed. In the first, motor pattern recognition and naming were tested in the two conditions. Results showed that verbal compositionality had no role in recognition and that the main source of confusability in this task came from discriminating hand postures. As the naming task resulted too difficult, some changes in the learning procedure were implemented in the second experiment. In this experiment, the compositional group achieved better results in naming motor patterns especially for patterns where hand postures discrimination was relevant. In order to ascertain the differential effect, upon this result, of memory load and of systematic grounding, neural network simulations were also made. After a basic simulation that worked as a good model of subjects performance, in following simulations the number of stimuli (motor patterns and words) was increased and the systematic association between words and patterns was disrupted, while keeping the same number of words and syntax. Results showed that in both conditions the advantage for the compositional condition significantly increased. These simulations showed that the advantage for this condition may be more related to the systematicity rather than to the mere informational gain. All results are discussed in connection to the possible support of the hypothesis of a compositional motor representation and toward a more precise explanation of the factors that make compositional representations working.
Stimulus function in simultaneous discrimination1
Biederman, Gerald B.
1968-01-01
In discrimination learning, the negativity of the stimulus correlated with nonreinforcement (S−) declines after 100 training trials while the stimulus correlated with reinforcement (S+) is paradoxically more positive with lesser amounts of discrimination training. Training subjects on two simultaneous discrimination tasks revealed a within-subjects overlearning reversal effect, where a more-frequently presented discrimination problem was better learned in reversal than was a discrimination problem presented less frequently during training. PMID:5672254
Effects of attention and laterality on motion and orientation discrimination in deaf signers.
Bosworth, Rain G; Petrich, Jennifer A F; Dobkins, Karen R
2013-06-01
Previous studies have asked whether visual sensitivity and attentional processing in deaf signers are enhanced or altered as a result of their different sensory experiences during development, i.e., auditory deprivation and exposure to a visual language. In particular, deaf and hearing signers have been shown to exhibit a right visual field/left hemisphere advantage for motion processing, while hearing nonsigners do not. To examine whether this finding extends to other aspects of visual processing, we compared deaf signers and hearing nonsigners on motion, form, and brightness discrimination tasks. Secondly, to examine whether hemispheric lateralities are affected by attention, we employed a dual-task paradigm to measure form and motion thresholds under "full" vs. "poor" attention conditions. Deaf signers, but not hearing nonsigners, exhibited a right visual field advantage for motion processing. This effect was also seen for form processing and not for the brightness task. Moreover, no group differences were observed in attentional effects, and the motion and form visual field asymmetries were not modulated by attention, suggesting they occur at early levels of sensory processing. In sum, the results show that processing of motion and form, believed to be mediated by dorsal and ventral visual pathways, respectively, are left-hemisphere dominant in deaf signers. Published by Elsevier Inc.
Basirat, Anahita
2017-01-01
Cochlear implant (CI) users frequently achieve good speech understanding based on phoneme and word recognition. However, there is a significant variability between CI users in processing prosody. The aim of this study was to examine the abilities of an excellent CI user to segment continuous speech using intonational cues. A post-lingually deafened adult CI user and 22 normal hearing (NH) subjects segmented phonemically identical and prosodically different sequences in French such as 'l'affiche' (the poster) versus 'la fiche' (the sheet), both [lafiʃ]. All participants also completed a minimal pair discrimination task. Stimuli were presented in auditory-only and audiovisual presentation modalities. The performance of the CI user in the minimal pair discrimination task was 97% in the auditory-only and 100% in the audiovisual condition. In the segmentation task, contrary to the NH participants, the performance of the CI user did not differ from the chance level. Visual speech did not improve word segmentation. This result suggests that word segmentation based on intonational cues is challenging when using CIs even when phoneme/word recognition is very well rehabilitated. This finding points to the importance of the assessment of CI users' skills in prosody processing and the need for specific interventions focusing on this aspect of speech communication.
Oosthuizen, Maria Kathleen; Scheibler, Anne-Gita; Bennett, Nigel Charles; Amrein, Irmgard
2013-01-01
A large number of laboratory and field based studies are being carried out on mole-rats, both in our research group and others. Several studies have highlighted the development of adverse behaviours in laboratory animals and have emphasised the importance of enrichment for captive animals. Hence we were interested in evaluating how laboratory housing would affect behavioural performance in mole-rats. We investigated exploratory behaviour, the ability to discriminate between novel and familiar environments and reference memory in the solitary Cape mole-rat (Georychus capensis). Our data showed that both wild and captive animals readily explore open spaces and tunnels. Wild animals were however more active than their captive counterparts. In the Y maze two trial discrimination task, wild animals failed to discriminate between novel and familiar environments, while laboratory housed mole-rats showed preferential spatial discrimination in terms of the length of time spent in the novel arm. The performance of the laboratory and wild animals were similar when tested for reference memory in the Y maze, both groups showed a significant improvement compared to the first day, from the 3rd day onwards. Wild animals made more mistakes whereas laboratory animals were slower in completing the task. The difference in performance between wild and laboratory animals in the Y-maze may be as a result of the lower activity of the laboratory animals. Laboratory maintained Cape mole-rats show classic behaviours resulting from a lack of stimulation such as reduced activity and increased aggression. However, they do display an improved novelty discrimination compared to the wild animals. Slower locomotion rate of the laboratory animals may increase the integration time of stimuli, hence result in a more thorough inspection of the surroundings. Unlike the captive animals, wild animals show flexibility in their responses to unpredictable events, which is an important requirement under natural living conditions.
Oosthuizen, Maria Kathleen; Scheibler, Anne-Gita; Charles Bennett, Nigel; Amrein, Irmgard
2013-01-01
A large number of laboratory and field based studies are being carried out on mole-rats, both in our research group and others. Several studies have highlighted the development of adverse behaviours in laboratory animals and have emphasised the importance of enrichment for captive animals. Hence we were interested in evaluating how laboratory housing would affect behavioural performance in mole-rats. We investigated exploratory behaviour, the ability to discriminate between novel and familiar environments and reference memory in the solitary Cape mole-rat ( Georychus capensis ). Our data showed that both wild and captive animals readily explore open spaces and tunnels. Wild animals were however more active than their captive counterparts. In the Y maze two trial discrimination task, wild animals failed to discriminate between novel and familiar environments, while laboratory housed mole-rats showed preferential spatial discrimination in terms of the length of time spent in the novel arm. The performance of the laboratory and wild animals were similar when tested for reference memory in the Y maze, both groups showed a significant improvement compared to the first day, from the 3rd day onwards. Wild animals made more mistakes whereas laboratory animals were slower in completing the task. The difference in performance between wild and laboratory animals in the Y-maze may be as a result of the lower activity of the laboratory animals. Laboratory maintained Cape mole-rats show classic behaviours resulting from a lack of stimulation such as reduced activity and increased aggression. However, they do display an improved novelty discrimination compared to the wild animals. Slower locomotion rate of the laboratory animals may increase the integration time of stimuli, hence result in a more thorough inspection of the surroundings. Unlike the captive animals, wild animals show flexibility in their responses to unpredictable events, which is an important requirement under natural living conditions. PMID:24040422
Pantazatos, Spiro P; Talati, Ardesheer; Schneier, Franklin R; Hirsch, Joy
2014-01-01
Group functional magnetic resonance imaging (fMRI) studies suggest that anxiety disorders are associated with anomalous brain activation and functional connectivity (FC). However, brain-based features sensitive enough to discriminate individual subjects with a specific anxiety disorder and that track symptom severity longitudinally, desirable qualities for putative disorder-specific biomarkers, remain to be identified. Blood oxygen level-dependent (BOLD) fMRI during emotional face perceptual tasks and a new, large-scale and condition-dependent FC and machine learning approach were used to identify features (pair-wise correlations) that discriminated patients with social anxiety disorder (SAD, N=16) from controls (N=19). We assessed whether these features discriminated SAD from panic disorder (PD, N=16), and SAD from controls in an independent replication sample that performed a similar task at baseline (N: SAD=15, controls=17) and following 8-weeks paroxetine treatment (N: SAD=12, untreated controls=7). High SAD vs HCs discrimination (area under the ROC curve, AUC, arithmetic mean of sensitivity and specificity) was achieved with two FC features during unattended neutral face perception (AUC=0.88, P<0.05 corrected). These features also discriminated SAD vs PD (AUC=0.82, P=0.0001) and SAD vs HCs in the independent replication sample (FC during unattended angry face perception, AUC=0.71, P=0.01). The most informative FC was left hippocampus-left temporal pole, which was reduced in both SAD samples (replication sample P=0.027), and this FC increased following the treatment (post>pre, t(11)=2.9, P=0.007). In conclusion, SAD is associated with reduced FC between left temporal pole and left hippocampus during face perception, and results suggest promise for emerging FC-based biomarkers for SAD diagnosis and treatment effects.
Keane, Brian P.; Lu, Hongjing; Papathomas, Thomas V.; Silverstein, Steven M.; Kellman, Philip J.
2012-01-01
Contour interpolation is a perceptual process that fills-in missing edges on the basis of how surrounding edges (inducers) are spatiotemporally related. Cognitive encapsulation refers to the degree to which perceptual mechanisms act in isolation from beliefs, expectations, and utilities (Pylyshyn, 1999). Is interpolation encapsulated from belief? We addressed this question by having subjects discriminate briefly-presented, partially-visible fat and thin shapes, the edges of which either induced or did not induce illusory contours (relatable and non-relatable conditions, respectively). Half the trials in each condition incorporated task-irrelevant distractor lines, known to disrupt the filling-in of contours. Half of the observers were told that the visible parts of the shape belonged to a single thing (group strategy); the other half were told that the visible parts were disconnected (ungroup strategy). It was found that distractor lines strongly impaired performance in the relatable condition, but minimally in the non-relatable condition; that strategy did not alter the effects of the distractor lines for either the relatable or non-relatable stimuli; and that cognitively grouping relatable fragments improved performance whereas cognitively grouping non-relatable fragments did not. These results suggest that 1) filling-in effects during illusory contour formation cannot be easily removed via strategy; 2) filling-in effects cannot be easily manufactured from stimuli that fail to elicit interpolation; and 3) actively grouping fragments can readily improve discrimination performance, but only when those fragments form interpolated contours. Taken together, these findings indicate that discriminating filled-in shapes depends on strategy but filling-in itself may be encapsulated from belief. PMID:22440789
Short-Term Visual Deprivation, Tactile Acuity, and Haptic Solid Shape Discrimination
Crabtree, Charles E.; Norman, J. Farley
2014-01-01
Previous psychophysical studies have reported conflicting results concerning the effects of short-term visual deprivation upon tactile acuity. Some studies have found that 45 to 90 minutes of total light deprivation produce significant improvements in participants' tactile acuity as measured with a grating orientation discrimination task. In contrast, a single 2011 study found no such improvement while attempting to replicate these earlier findings. A primary goal of the current experiment was to resolve this discrepancy in the literature by evaluating the effects of a 90-minute period of total light deprivation upon tactile grating orientation discrimination. We also evaluated the potential effect of short-term deprivation upon haptic 3-D shape discrimination using a set of naturally-shaped solid objects. According to previous research, short-term deprivation enhances performance in a tactile 2-D shape discrimination task – perhaps a similar improvement also occurs for haptic 3-D shape discrimination. The results of the current investigation demonstrate that not only does short-term visual deprivation not enhance tactile acuity, it additionally has no effect upon haptic 3-D shape discrimination. While visual deprivation had no effect in our study, there was a significant effect of experience and learning for the grating orientation task – the participants' tactile acuity improved over time, independent of whether they had, or had not, experienced visual deprivation. PMID:25397327
Impairing the useful field of view in natural scenes: Tunnel vision versus general interference.
Ringer, Ryan V; Throneburg, Zachary; Johnson, Aaron P; Kramer, Arthur F; Loschky, Lester C
2016-01-01
A fundamental issue in visual attention is the relationship between the useful field of view (UFOV), the region of visual space where information is encoded within a single fixation, and eccentricity. A common assumption is that impairing attentional resources reduces the size of the UFOV (i.e., tunnel vision). However, most research has not accounted for eccentricity-dependent changes in spatial resolution, potentially conflating fixed visual properties with flexible changes in visual attention. Williams (1988, 1989) argued that foveal loads are necessary to reduce the size of the UFOV, producing tunnel vision. Without a foveal load, it is argued that the attentional decrement is constant across the visual field (i.e., general interference). However, other research asserts that auditory working memory (WM) loads produce tunnel vision. To date, foveal versus auditory WM loads have not been compared to determine if they differentially change the size of the UFOV. In two experiments, we tested the effects of a foveal (rotated L vs. T discrimination) task and an auditory WM (N-back) task on an extrafoveal (Gabor) discrimination task. Gabor patches were scaled for size and processing time to produce equal performance across the visual field under single-task conditions, thus removing the confound of eccentricity-dependent differences in visual sensitivity. The results showed that although both foveal and auditory loads reduced Gabor orientation sensitivity, only the foveal load interacted with retinal eccentricity to produce tunnel vision, clearly demonstrating task-specific changes to the form of the UFOV. This has theoretical implications for understanding the UFOV.
HD-MTL: Hierarchical Deep Multi-Task Learning for Large-Scale Visual Recognition.
Fan, Jianping; Zhao, Tianyi; Kuang, Zhenzhong; Zheng, Yu; Zhang, Ji; Yu, Jun; Peng, Jinye
2017-02-09
In this paper, a hierarchical deep multi-task learning (HD-MTL) algorithm is developed to support large-scale visual recognition (e.g., recognizing thousands or even tens of thousands of atomic object classes automatically). First, multiple sets of multi-level deep features are extracted from different layers of deep convolutional neural networks (deep CNNs), and they are used to achieve more effective accomplishment of the coarseto- fine tasks for hierarchical visual recognition. A visual tree is then learned by assigning the visually-similar atomic object classes with similar learning complexities into the same group, which can provide a good environment for determining the interrelated learning tasks automatically. By leveraging the inter-task relatedness (inter-class similarities) to learn more discriminative group-specific deep representations, our deep multi-task learning algorithm can train more discriminative node classifiers for distinguishing the visually-similar atomic object classes effectively. Our hierarchical deep multi-task learning (HD-MTL) algorithm can integrate two discriminative regularization terms to control the inter-level error propagation effectively, and it can provide an end-to-end approach for jointly learning more representative deep CNNs (for image representation) and more discriminative tree classifier (for large-scale visual recognition) and updating them simultaneously. Our incremental deep learning algorithms can effectively adapt both the deep CNNs and the tree classifier to the new training images and the new object classes. Our experimental results have demonstrated that our HD-MTL algorithm can achieve very competitive results on improving the accuracy rates for large-scale visual recognition.
Testing domain general learning in an Australian lizard.
Qi, Yin; Noble, Daniel W A; Fu, Jinzhong; Whiting, Martin J
2018-06-02
A key question in cognition is whether animals that are proficient in a specific cognitive domain (domain specific hypothesis), such as spatial learning, are also proficient in other domains (domain general hypothesis) or whether there is a trade-off. Studies testing among these hypotheses are biased towards mammals and birds. To understand constraints on the evolution of cognition more generally, we need broader taxonomic and phylogenetic coverage. We used Australian eastern water skinks (Eulamprus quoyii) with known spatial learning ability in three additional tasks: an instrumental and two discrimination tasks. Under domain specific learning we predicted that lizards that were good at spatial learning would perform less well in the discrimination tasks. Conversely, we predicted that lizards that did not meet our criterion for spatial learning would likewise perform better in discrimination tasks. Lizards with domain general learning should perform approximately equally well (or poorly) in these tasks. Lizards classified as spatial learners performed no differently to non-spatial learners in both the instrumental and discrimination learning tasks. Nevertheless, lizards were proficient in all tasks. Our results reveal two patterns: domain general learning in spatial learners and domain specific learning in non-spatial learners. We suggest that delineating learning into domain general and domain specific may be overly simplistic and we need to instead focus on individual variation in learning ability, which ultimately, is likely to play a key role in fitness. These results, in combination with previously published work on this species, suggests that this species has behavioral flexibility because they are competent across multiple cognitive domains and are capable of reversal learning.
Cross-modal cueing effects of visuospatial attention on conscious somatosensory perception.
Doruk, Deniz; Chanes, Lorena; Malavera, Alejandra; Merabet, Lotfi B; Valero-Cabré, Antoni; Fregni, Felipe
2018-04-01
The impact of visuospatial attention on perception with supraliminal stimuli and stimuli at the threshold of conscious perception has been previously investigated. In this study, we assess the cross-modal effects of visuospatial attention on conscious perception for near-threshold somatosensory stimuli applied to the face. Fifteen healthy participants completed two sessions of a near-threshold cross-modality cue-target discrimination/conscious detection paradigm. Each trial began with an endogenous visuospatial cue that predicted the location of a weak near-threshold electrical pulse delivered to the right or left cheek with high probability (∼75%). Participants then completed two tasks: first, a forced-choice somatosensory discrimination task (felt once or twice?) and then, a somatosensory conscious detection task (did you feel the stimulus and, if yes, where (left/right)?). Somatosensory discrimination was evaluated with the response reaction times of correctly detected targets, whereas the somatosensory conscious detection was quantified using perceptual sensitivity (d') and response bias (beta). A 2 × 2 repeated measures ANOVA was used for statistical analysis. In the somatosensory discrimination task (1 st task), participants were significantly faster in responding to correctly detected targets (p < 0.001). In the somatosensory conscious detection task (2 nd task), a significant effect of visuospatial attention on response bias (p = 0.008) was observed, suggesting that participants had a less strict criterion for stimuli preceded by spatially valid than invalid visuospatial cues. We showed that spatial attention has the potential to modulate the discrimination and the conscious detection of near-threshold somatosensory stimuli as measured, respectively, by a reduction of reaction times and a shift in response bias toward less conservative responses when the cue predicted stimulus location. A shift in response bias indicates possible effects of spatial attention on internal decision processes. The lack of significant results in perceptual sensitivity (d') could be due to weaker effects of endogenous attention on perception.
Wolf, Christian; Schütz, Alexander C
2017-06-01
Saccades bring objects of interest onto the fovea for high-acuity processing. Saccades to rewarded targets show shorter latencies that correlate negatively with expected motivational value. Shorter latencies are also observed when the saccade target is relevant for a perceptual discrimination task. Here we tested whether saccade preparation is equally influenced by informational value as it is by motivational value. We defined informational value as the probability that information is task-relevant times the ratio between postsaccadic foveal and presaccadic peripheral discriminability. Using a gaze-contingent display, we independently manipulated peripheral and foveal discriminability of the saccade target. Latencies of saccades with perceptual task were reduced by 36 ms in general, but they were not modulated by the information saccades provide (Experiments 1 and 2). However, latencies showed a clear negative linear correlation with the probability that the target is task-relevant (Experiment 3). We replicated that the facilitation by a perceptual task is spatially specific and not due to generally heightened arousal (Experiment 4). Finally, the facilitation only emerged when the perceptual task is in the visual but not in the auditory modality (Experiment 5). Taken together, these results suggest that saccade latencies are not equally modulated by informational value as by motivational value. The facilitation by a perceptual task only arises when task-relevant visual information is foveated, irrespective of whether the foveation is useful or not.
The effects of cognitive loading on balance control in patients with multiple sclerosis.
Negahban, Hossein; Mofateh, Razieh; Arastoo, Ali Asghar; Mazaheri, Masood; Yazdi, Mohammad Jafar Shaterzadeh; Salavati, Mahyar; Majdinasab, Nastaran
2011-10-01
The aim of this study was to compare the effects of concurrent cognitive task (silent backward counting) on balance performance between two groups of multiple sclerosis (MS) (n=23) and healthy (n=23) participates. Three levels of postural difficulty were studied on a force platform, i.e. rigid surface with eyes open, rigid surface with eyes closed, and foam surface with eyes closed. A mixed model analysis of variance showed that under difficult sensory condition of foam surface with eyes closed, execution of concurrent cognitive task caused a significant decrement in variability of sway velocity in anteroposterior direction for the patient group (P<0.01) while this was not the case for healthy participants (P=0.22). Also, the variability of sway velocity in mediolateral direction was significantly decreased during concurrent execution of cognitive task in patient group (P<0.01) and not in healthy participants (P=0.39). Furthermore, in contrast to single tasking, dual tasking had the ability to discriminate between the 2 groups in all conditions of postural difficulty. In conclusion, findings of variability in sway velocity seem to confirm the different response to cognitive loading between two groups of MS and healthy participants. Copyright © 2011 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Reitz, Anne K.; Asendorpf, Jens B.; Motti-Stefanidi, Frosso
2015-01-01
Despite research showing that immigrant adolescents differ in the degree to which they feel personally discriminated against, little is known about individual predictors of their perceived personal discrimination. We studied the role of a major developmental task in adolescence that is highly relevant for discrimination experiences: being liked by…
An investigation of time-sharing ability as a factor in complex performance.
DOT National Transportation Integrated Search
1976-05-01
Thirty-nine men were tested on a total of six tasks; performance was measured on each task presented individually and on two complex tasks made up of three-task subsets. The tasks measured monitoring, arithmetic, pattern-discrimination, tracking, and...
Yamada, Minoru; Aoyama, Tomoki; Nakamura, Masatoshi; Tanaka, Buichi; Nagai, Koutatsu; Tatematsu, Noriatsu; Uemura, Kazuki; Nakamura, Takashi; Tsuboyama, Tadao; Ichihashi, Noriaki
2011-01-01
The purpose of this study was to examine whether the Nintendo Wii Fit program could be used for fall risk assessment in healthy, community-dwelling older adults. Forty-five community-dwelling older women participated in this study. The "Basic Step" and "Ski Slalom" modules were selected from the Wii Fit game program. The following 5 physical performance tests were performed: the 10-m walk test under single- and dual-task conditions, the Timed Up and Go test under single- and dual-task conditions, and the Functional Reach test. Compared with the faller group, the nonfaller group showed a significant difference in the Basic Step (P < .001) and a nonsignificant difference in the Ski Slalom (P = .453). The discriminating criterion between the 2 groups was a score of 111 points on the Basic Step (P < .001). The Basic Step showed statistically significant, moderate correlations between the dual-task lag of walking (r = -.547) and the dual-task lag of the Timed Up and Go test (r = -.688). These results suggest that game-based fall risk assessment using the Basic Step has a high generality and is useful in community-dwelling older adults. Copyright © 2011 Mosby, Inc. All rights reserved.
Mind the gap: temporal discrimination and dystonia.
Sadnicka, A; Daum, C; Cordivari, C; Bhatia, K P; Rothwell, J C; Manohar, S; Edwards, M J
2017-06-01
One of the most widely studied perceptual measures of sensory dysfunction in dystonia is the temporal discrimination threshold (TDT) (the shortest interval at which subjects can perceive that there are two stimuli rather than one). However the elevated thresholds described may be due to a number of potential mechanisms as current paradigms test not only temporal discrimination but also extraneous sensory and decision-making parameters. In this study two paradigms designed to better quantify temporal processing are presented and a decision-making model is used to assess the influence of decision strategy. 22 patients with cervical dystonia and 22 age-matched controls completed two tasks (i) temporal resolution (a randomized, automated version of existing TDT paradigms) and (ii) interval discrimination (rating the length of two consecutive intervals). In the temporal resolution task patients had delayed (P = 0.021) and more variable (P = 0.013) response times but equivalent discrimination thresholds. Modelling these effects suggested this was due to an increased perceptual decision boundary in dystonia with patients requiring greater evidence before committing to decisions (P = 0.020). Patient performance on the interval discrimination task was normal. Our work suggests that previously observed abnormalities in TDT may not be due to a selective sensory deficit of temporal processing as decision-making itself is abnormal in cervical dystonia. © 2017 EAN.
Ma, Ning; Yu, Angela J
2016-01-01
Inhibitory control, the ability to stop or modify preplanned actions under changing task conditions, is an important component of cognitive functions. Two lines of models of inhibitory control have previously been proposed for human response in the classical stop-signal task, in which subjects must inhibit a default go response upon presentation of an infrequent stop signal: (1) the race model, which posits two independent go and stop processes that race to determine the behavioral outcome, go or stop; and (2) an optimal decision-making model, which posits that observers decides whether and when to go based on continually (Bayesian) updated information about both the go and stop stimuli. In this work, we probe the relationship between go and stop processing by explicitly manipulating the discrimination difficulty of the go stimulus. While the race model assumes the go and stop processes are independent, and therefore go stimulus discriminability should not affect the stop stimulus processing, we simulate the optimal model to show that it predicts harder go discrimination should result in longer go reaction time (RT), lower stop error rate, as well as faster stop-signal RT. We then present novel behavioral data that validate these model predictions. The results thus favor a fundamentally inseparable account of go and stop processing, in a manner consistent with the optimal model, and contradicting the independence assumption of the race model. More broadly, our findings contribute to the growing evidence that the computations underlying inhibitory control are systematically modulated by cognitive influences in a Bayes-optimal manner, thus opening new avenues for interpreting neural responses underlying inhibitory control.
Wildgruber, D; Hertrich, I; Riecker, A; Erb, M; Anders, S; Grodd, W; Ackermann, H
2004-12-01
In addition to the propositional content of verbal utterances, significant linguistic and emotional information is conveyed by the tone of speech. To differentiate brain regions subserving processing of linguistic and affective aspects of intonation, discrimination of sentences differing in linguistic accentuation and emotional expressiveness was evaluated by functional magnetic resonance imaging. Both tasks yielded rightward lateralization of hemodynamic responses at the level of the dorsolateral frontal cortex as well as bilateral thalamic and temporal activation. Processing of linguistic and affective intonation, thus, seems to be supported by overlapping neural networks comprising partially right-sided brain regions. Comparison of hemodynamic activation during the two different tasks, however, revealed bilateral orbito-frontal responses restricted to the affective condition as opposed to activation of the left lateral inferior frontal gyrus confined to evaluation of linguistic intonation. These findings indicate that distinct frontal regions contribute to higher level processing of intonational information depending on its communicational function. In line with other components of language processing, discrimination of linguistic accentuation seems to be lateralized to the left inferior-lateral frontal region whereas bilateral orbito-frontal areas subserve evaluation of emotional expressiveness.
Brébion, Gildas; David, Anthony S; Pilowsky, Lyn S; Jones, Hugh
2004-11-01
Verbal and visual recognition tasks were administered to 40 patients with schizophrenia and 40 healthy comparison subjects. The verbal recognition task consisted of discriminating between 16 target words and 16 new words. The visual recognition task consisted of discriminating between 16 target pictures (8 black-and-white and 8 color) and 16 new pictures (8 black-and-white and 8 color). Visual recognition was followed by a spatial context discrimination task in which subjects were required to remember the spatial location of the target pictures at encoding. Results showed that recognition deficit in patients was similar for verbal and visual material. In both schizophrenic and healthy groups, men, but not women, obtained better recognition scores for the colored than for the black-and-white pictures. However, men and women similarly benefited from color to reduce spatial context discrimination errors. Patients showed a significant deficit in remembering the spatial location of the pictures, independently of accuracy in remembering the pictures themselves. These data suggest that patients are impaired in the amount of visual information that they can encode. With regards to the perceptual attributes of the stimuli, memory for spatial information appears to be affected, but not processing of color information.
The Mechanism of Speech Processing in Congenital Amusia: Evidence from Mandarin Speakers
Liu, Fang; Jiang, Cunmei; Thompson, William Forde; Xu, Yi; Yang, Yufang; Stewart, Lauren
2012-01-01
Congenital amusia is a neuro-developmental disorder of pitch perception that causes severe problems with music processing but only subtle difficulties in speech processing. This study investigated speech processing in a group of Mandarin speakers with congenital amusia. Thirteen Mandarin amusics and thirteen matched controls participated in a set of tone and intonation perception tasks and two pitch threshold tasks. Compared with controls, amusics showed impaired performance on word discrimination in natural speech and their gliding tone analogs. They also performed worse than controls on discriminating gliding tone sequences derived from statements and questions, and showed elevated thresholds for pitch change detection and pitch direction discrimination. However, they performed as well as controls on word identification, and on statement-question identification and discrimination in natural speech. Overall, tasks that involved multiple acoustic cues to communicative meaning were not impacted by amusia. Only when the tasks relied mainly on pitch sensitivity did amusics show impaired performance compared to controls. These findings help explain why amusia only affects speech processing in subtle ways. Further studies on a larger sample of Mandarin amusics and on amusics of other language backgrounds are needed to consolidate these results. PMID:22347374
The mechanism of speech processing in congenital amusia: evidence from Mandarin speakers.
Liu, Fang; Jiang, Cunmei; Thompson, William Forde; Xu, Yi; Yang, Yufang; Stewart, Lauren
2012-01-01
Congenital amusia is a neuro-developmental disorder of pitch perception that causes severe problems with music processing but only subtle difficulties in speech processing. This study investigated speech processing in a group of Mandarin speakers with congenital amusia. Thirteen Mandarin amusics and thirteen matched controls participated in a set of tone and intonation perception tasks and two pitch threshold tasks. Compared with controls, amusics showed impaired performance on word discrimination in natural speech and their gliding tone analogs. They also performed worse than controls on discriminating gliding tone sequences derived from statements and questions, and showed elevated thresholds for pitch change detection and pitch direction discrimination. However, they performed as well as controls on word identification, and on statement-question identification and discrimination in natural speech. Overall, tasks that involved multiple acoustic cues to communicative meaning were not impacted by amusia. Only when the tasks relied mainly on pitch sensitivity did amusics show impaired performance compared to controls. These findings help explain why amusia only affects speech processing in subtle ways. Further studies on a larger sample of Mandarin amusics and on amusics of other language backgrounds are needed to consolidate these results.
Context-Dependent Duration Signals in the Primate Prefrontal Cortex
Genovesio, Aldo; Seitz, Lucia K.; Tsujimoto, Satoshi; Wise, Steven P.
2016-01-01
The activity of some prefrontal (PF) cortex neurons distinguishes short from long time intervals. Here, we examined whether this property reflected a general timing mechanism or one dependent on behavioral context. In one task, monkeys discriminated the relative duration of 2 stimuli; in the other, they discriminated the relative distance of 2 stimuli from a fixed reference point. Both tasks had a pre-cue period (interval 1) and a delay period (interval 2) with no discriminant stimulus. Interval 1 elapsed before the presentation of the first discriminant stimulus, and interval 2 began after that stimulus. Both intervals had durations of either 400 or 800 ms. Most PF neurons distinguished short from long durations in one task or interval, but not in the others. When neurons did signal something about duration for both intervals, they did so in an uncorrelated or weakly correlated manner. These results demonstrate a high degree of context dependency in PF time processing. The PF, therefore, does not appear to signal durations abstractedly, as would be expected of a general temporal encoder, but instead does so in a highly context-dependent manner, both within and between tasks. PMID:26209845
Alais, David; Cass, John
2010-06-23
An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question. Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ). Groups were pre-tested on a range TOJ tasks within and between their group modality prior to learning so that transfer of any learning from the trained task could be measured by post-testing other tasks. Robust TOJ learning (reduced temporal order discrimination thresholds) occurred for all groups, although auditory learning (dichotic 500/2000 Hz tones) was slightly weaker than visual learning (lateralised grating patches). Crossmodal TOJs also displayed robust learning. Post-testing revealed that improvements in temporal resolution acquired during visual learning transferred within modality to other retinotopic locations and orientations, but not to auditory or crossmodal tasks. Auditory learning did not transfer to visual or crossmodal tasks, and neither did it transfer within audition to another frequency pair. In an interesting asymmetry, crossmodal learning transferred to all visual tasks but not to auditory tasks. Finally, in all conditions, learning to make TOJs for stimulus onsets did not transfer at all to discriminating temporal offsets. These data present a complex picture of timing processes. The lack of transfer between unimodal groups indicates no central supramodal timing process for this task; however, the audiovisual-to-visual transfer cannot be explained without some form of sensory interaction. We propose that auditory learning occurred in frequency-tuned processes in the periphery, precluding interactions with more central visual and audiovisual timing processes. Functionally the patterns of featural transfer suggest that perceptual learning of temporal order may be optimised to object-centered rather than viewer-centered constraints.
Naimark, Ari; Barkai, Edi; Matar, Michael A.; Kaplan, Zeev; Kozlovsky, Nitzan; Cohen, Hagit
2007-01-01
We have previously shown that olfactory discrimination learning is accompanied by several forms of long-term enhancement in synaptic connections between layer II pyramidal neurons selectively in the piriform cortex. This study sought to examine whether the previously demonstrated olfactory-learning-task-induced modifications are preceded by suitable changes in the expression of mRNA for neurotrophic factors and in which brain areas this occurs. Rats were trained to discriminate positive cues in pair of odors for a water reward. The relationship between the learning task and local levels of mRNA for brain-derived neurotrophic factor, tyrosine kinase B, nerve growth factor, and neurotrophin-3 in the frontal cortex, hippocampal subregions, and other regions were assessed 24 hours post olfactory learning. The olfactory discrimination learning activated production of endogenous neurotrophic factors and induced their signal transduction in the frontal cortex, but not in other brain areas. These findings suggest that different brain areas may be preferentially involved in different learning/memory tasks. PMID:17710248
Fournier, Lisa R; Herbert, Rhonda J; Farris, Carrie
2004-10-01
This study examined how response mapping of features within single- and multiple-feature targets affects decision-based processing and attentional capacity demands. Observers judged the presence or absence of 1 or 2 target features within an object either presented alone or with distractors. Judging the presence of 2 features relative to the less discriminable of these features alone was faster (conjunction benefits) when the task-relevant features differed in discriminability and were consistently mapped to responses. Conjunction benefits were attributed to asynchronous decision priming across attended, task-relevant dimensions. A failure to find conjunction benefits for disjunctive conjunctions was attributed to increased memory demands and variable feature-response mapping for 2- versus single-feature targets. Further, attentional demands were similar between single- and 2-feature targets when response mapping, memory demands, and discriminability of the task-relevant features were equated between targets. Implications of the findings for recent attention models are discussed. (c) 2004 APA, all rights reserved
Toward a hybrid brain-computer interface based on imagined movement and visual attention
NASA Astrophysics Data System (ADS)
Allison, B. Z.; Brunner, C.; Kaiser, V.; Müller-Putz, G. R.; Neuper, C.; Pfurtscheller, G.
2010-04-01
Brain-computer interface (BCI) systems do not work for all users. This article introduces a novel combination of tasks that could inspire BCI systems that are more accurate than conventional BCIs, especially for users who cannot attain accuracy adequate for effective communication. Subjects performed tasks typically used in two BCI approaches, namely event-related desynchronization (ERD) and steady state visual evoked potential (SSVEP), both individually and in a 'hybrid' condition that combines both tasks. Electroencephalographic (EEG) data were recorded across three conditions. Subjects imagined moving the left or right hand (ERD), focused on one of the two oscillating visual stimuli (SSVEP), and then simultaneously performed both tasks. Accuracy and subjective measures were assessed. Offline analyses suggested that half of the subjects did not produce brain patterns that could be accurately discriminated in response to at least one of the two tasks. If these subjects produced comparable EEG patterns when trying to use a BCI, these subjects would not be able to communicate effectively because the BCI would make too many errors. Results also showed that switching to a different task used in BCIs could improve accuracy in some of these users. Switching to a hybrid approach eliminated this problem completely, and subjects generally did not consider the hybrid condition more difficult. Results validate this hybrid approach and suggest that subjects who cannot use a BCI should consider switching to a different BCI approach, especially a hybrid BCI. Subjects proficient with both approaches might combine them to increase information throughput by improving accuracy, reducing selection time, and/or increasing the number of possible commands.
Cognitive Load in Voice Therapy Carry-Over Exercises.
Iwarsson, Jenny; Morris, David Jackson; Balling, Laura Winther
2017-01-01
The cognitive load generated by online speech production may vary with the nature of the speech task. This article examines 3 speech tasks used in voice therapy carry-over exercises, in which a patient is required to adopt and automatize new voice behaviors, ultimately in daily spontaneous communication. Twelve subjects produced speech in 3 conditions: rote speech (weekdays), sentences in a set form, and semispontaneous speech. Subjects simultaneously performed a secondary visual discrimination task for which response times were measured. On completion of each speech task, subjects rated their experience on a questionnaire. Response times from the secondary, visual task were found to be shortest for the rote speech, longer for the semispontaneous speech, and longest for the sentences within the set framework. Principal components derived from the subjective ratings were found to be linked to response times on the secondary visual task. Acoustic measures reflecting fundamental frequency distribution and vocal fold compression varied across the speech tasks. The results indicate that consideration should be given to the selection of speech tasks during the process leading to automation of revised speech behavior and that self-reports may be a reliable index of cognitive load.
The influence of linguistic experience on pitch perception in speech and nonspeech sounds
NASA Astrophysics Data System (ADS)
Bent, Tessa; Bradlow, Ann R.; Wright, Beverly A.
2003-04-01
How does native language experience with a tone or nontone language influence pitch perception? To address this question 12 English and 13 Mandarin listeners participated in an experiment involving three tasks: (1) Mandarin tone identification-a clearly linguistic task where a strong effect of language background was expected, (2) pure-tone and pulse-train frequency discrimination-a clearly nonlinguistic auditory discrimination task where no effect of language background was expected, and (3) pitch glide identification-a nonlinguistic auditory categorization task where some effect of language background was expected. As anticipated, Mandarin listeners identified Mandarin tones significantly more accurately than English listeners (Task 1) and the two groups' pure-tone and pulse-train frequency discrimination thresholds did not differ (Task 2). For pitch glide identification (Task 3), Mandarin listeners made more identification errors: in comparison with English listeners, Mandarin listeners more frequently misidentified falling pitch glides as level, and more often misidentified level pitch ``glides'' with relatively high frequencies as rising and those with relatively low frequencies as falling. Thus, it appears that the effect of long-term linguistic experience can extend beyond lexical tone category identification in syllables to pitch class identification in certain nonspeech sounds. [Work supported by Sigma Xi and NIH.
Johnson, Sarah A.; Sacks, Patricia K.; Turner, Sean M.; Gaynor, Leslie S.; Ormerod, Brandi K.; Maurer, Andrew P.; Bizon, Jennifer L.
2016-01-01
Hippocampal-dependent episodic memory and stimulus discrimination abilities are both compromised in the elderly. The reduced capacity to discriminate between similar stimuli likely contributes to multiple aspects of age-related cognitive impairment; however, the association of these behaviors within individuals has never been examined in an animal model. In the present study, young and aged F344×BN F1 hybrid rats were cross-characterized on the Morris water maze test of spatial memory and a dentate gyrus-dependent match-to-position test of spatial discrimination ability. Aged rats showed overall impairments relative to young in spatial learning and memory on the water maze task. Although young and aged learned to apply a match-to-position response strategy in performing easy spatial discriminations within a similar number of trials, a majority of aged rats were impaired relative to young in performing difficult spatial discriminations on subsequent tests. Moreover, all aged rats were susceptible to cumulative interference during spatial discrimination tests, such that error rate increased on later trials of test sessions. These data suggest that when faced with difficult discriminations, the aged rats were less able to distinguish current goal locations from those of previous trials. Increasing acetylcholine levels with donepezil did not improve aged rats’ abilities to accurately perform difficult spatial discriminations or reduce their susceptibility to interference. Interestingly, better spatial memory abilities were not significantly associated with higher performance on difficult spatial discriminations. This observation, along with the finding that aged rats made more errors under conditions in which interference was high, suggests that match-to-position spatial discrimination performance may rely on extra-hippocampal structures such as the prefrontal cortex, in addition to the dentate gyrus. PMID:27317194
Audio-visual temporal perception in children with restored hearing.
Gori, Monica; Chilosi, Anna; Forli, Francesca; Burr, David
2017-05-01
It is not clear how audio-visual temporal perception develops in children with restored hearing. In this study we measured temporal discrimination thresholds with an audio-visual temporal bisection task in 9 deaf children with restored audition, and 22 typically hearing children. In typically hearing children, audition was more precise than vision, with no gain in multisensory conditions (as previously reported in Gori et al. (2012b)). However, deaf children with restored audition showed similar thresholds for audio and visual thresholds and some evidence of gain in audio-visual temporal multisensory conditions. Interestingly, we found a strong correlation between auditory weighting of multisensory signals and quality of language: patients who gave more weight to audition had better language skills. Similarly, auditory thresholds for the temporal bisection task were also a good predictor of language skills. This result supports the idea that the temporal auditory processing is associated with language development. Copyright © 2017. Published by Elsevier Ltd.
A facilitative effect of negative affective valence on working memory.
Gotoh, Fumiko; Kikuchi, Tadashi; Olofsson, Ulrich
2010-06-01
Previous studies have shown that negatively valenced information impaired working memory performance due to an attention-capturing effect. The present study examined whether negative valence could also facilitate working memory. Affective words (negative, neutral, positive) were used as retro-cues in a working memory task that required participants to remember colors at different spatial locations on a computer screen. Following the cue, a target detection task was used to either shift attention to a different location or keep attention at the same location as the retro-cue. Finally, participants were required to discriminate the cued color from a set of distractors. It was found that negative cues yielded shorter response times (RTs) in the attention-shift condition and longer RTs in the attention-stay condition, compared with neutral and positive cues. The results suggest that negative affective valence may enhance working memory performance (RTs), provided that attention can be disengaged.
Comparative evaluation of workload estimation techniques in piloting tasks
NASA Technical Reports Server (NTRS)
Wierwille, W. W.
1983-01-01
Techniques to measure operator workload in a wide range of situations and tasks were examined. The sensitivity and intrusion of a wide variety of workload assessment techniques in simulated piloting tasks were investigated. Four different piloting tasks, psychomotor, perceptual, mediational, and communication aspects of piloting behavior were selected. Techniques to determine relative sensitivity and intrusion were applied. Sensitivity is the relative ability of a workload estimation technique to discriminate statistically significant differences in operator loading. High sensitivity requires discriminable changes in score means as a function of load level and low variation of the scores about the means. Intrusion is an undesirable change in the task for which workload is measured, resulting from the introduction of the workload estimation technique or apparatus.
Cost-Aware Design of a Discrimination Strategy for Unexploded Ordnance Cleanup
2011-02-25
Acronyms ANN: Artificial Neural Network AUC: Area Under the Curve BRAC: Base Realignment And Closure DLRT: Distance Likelihood Ratio Test EER...Discriminative Aggregate Nonparametric [25] Artificial Neural Network ANN Discriminative Aggregate Parametric [33] 11 Results and Discussion Task #1
Møller, Cecilie; Højlund, Andreas; Bærentsen, Klaus B; Hansen, Niels Chr; Skewes, Joshua C; Vuust, Peter
2018-05-01
Perception is fundamentally a multisensory experience. The principle of inverse effectiveness (PoIE) states how the multisensory gain is maximal when responses to the unisensory constituents of the stimuli are weak. It is one of the basic principles underlying multisensory processing of spatiotemporally corresponding crossmodal stimuli that are well established at behavioral as well as neural levels. It is not yet clear, however, how modality-specific stimulus features influence discrimination of subtle changes in a crossmodally corresponding feature belonging to another modality. Here, we tested the hypothesis that reliance on visual cues to pitch discrimination follow the PoIE at the interindividual level (i.e., varies with varying levels of auditory-only pitch discrimination abilities). Using an oddball pitch discrimination task, we measured the effect of varying visually perceived vertical position in participants exhibiting a wide range of pitch discrimination abilities (i.e., musicians and nonmusicians). Visual cues significantly enhanced pitch discrimination as measured by the sensitivity index d', and more so in the crossmodally congruent than incongruent condition. The magnitude of gain caused by compatible visual cues was associated with individual pitch discrimination thresholds, as predicted by the PoIE. This was not the case for the magnitude of the congruence effect, which was unrelated to individual pitch discrimination thresholds, indicating that the pitch-height association is robust to variations in auditory skills. Our findings shed light on individual differences in multisensory processing by suggesting that relevant multisensory information that crucially aids some perceivers' performance may be of less importance to others, depending on their unisensory abilities.
Vowel perception by noise masked normal-hearing young adults
NASA Astrophysics Data System (ADS)
Richie, Carolyn; Kewley-Port, Diane; Coughlin, Maureen
2005-08-01
This study examined vowel perception by young normal-hearing (YNH) adults, in various listening conditions designed to simulate mild-to-moderate sloping sensorineural hearing loss. YNH listeners were individually age- and gender-matched to young hearing-impaired (YHI) listeners tested in a previous study [Richie et al., J. Acoust. Soc. Am. 114, 2923-2933 (2003)]. YNH listeners were tested in three conditions designed to create equal audibility with the YHI listeners; a low signal level with and without a simulated hearing loss, and a high signal level with a simulated hearing loss. Listeners discriminated changes in synthetic vowel tokens /smcapi e ɛ invv æ/ when F1 or F2 varied in frequency. Comparison of YNH with YHI results failed to reveal significant differences between groups in terms of performance on vowel discrimination, in conditions of similar audibility by using both noise masking to elevate the hearing thresholds of the YNH and applying frequency-specific gain to the YHI listeners. Further, analysis of learning curves suggests that while the YHI listeners completed an average of 46% more test blocks than YNH listeners, the YHI achieved a level of discrimination similar to that of the YNH within the same number of blocks. Apparently, when age and gender are closely matched between young hearing-impaired and normal-hearing adults, performance on vowel tasks may be explained by audibility alone.
Sijbrandij, Marit; Engelhard, Iris M; Lommen, Miriam J J; Leer, Arne; Baas, Johanna M P
2013-12-01
Recent cross-sectional studies have shown that the inability to suppress fear under safe conditions is a key problem in people with posttraumatic stress disorder (PTSD). The current longitudinal study examined whether individual differences in fear inhibition predict the persistence of PTSD symptoms. Approximately 2 months after deployment to Afghanistan, 144 trauma-exposed Dutch soldiers were administered a conditional discrimination task (AX+/BX-). In this paradigm, A, B, and X are neutral stimuli. X combined with A is paired with a shock (AX+ trials); X combined with B is not (BX- trials). Fear inhibition was measured (AB trials). Startle electromyogram responses and shock expectancy ratings were recorded. PTSD symptoms were measured at 2 months and at 9 months after deployment. Results showed that greater startle responses during AB trials in individuals who discriminated between danger (AX+) and safety (BX-) during conditioning, predicted higher PTSD symptoms at 2 months and 9 months post-deployment. The predictive effect at 9 months remained significant after controlling for critical incidents during previous deployments and PTSD symptoms at 2 months. Responses to AX+ or BX- trials, or discrimination learning (AX+ minus BX-) did not predict PTSD symptoms. It is concluded that impaired fear inhibition learning seems to be involved in the persistence of PTSD symptoms. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sample, Camille H.; Martin, Ashley A.; Jones, Sabrina; Hargrave, Sara L.; Davidson, Terry L.
2015-01-01
In western and westernized societies, large portions of the population live in what are considered to be “obesogenic” environments. Among other things, obesogenic environments are characterized by a high prevalence of external cues that are associated with highly palatable, energy-dense foods. One prominent hypothesis suggests that these external cues become such powerful conditioned elicitors of appetitive and eating behavior that they overwhelm the internal, physiological mechanisms that serve to maintain energy balance. The present research investigated a learning mechanism that may underlie this loss of internal relative to external control. In Experiment 1, rats were provided with both auditory cues (external stimuli) and varying levels of food deprivation (internal stimuli) that they could use to solve a simple discrimination task. Despite having access to clearly discriminable external cues, we found that the deprivation cues gained substantial discriminative control over conditioned responding. Experiment 2 found that, compared to standard chow, maintenance on a “western-style” diet high in saturated fat and sugar weakened discriminative control by food deprivation cues, but did not impair learning when external cues were also trained as relevant discriminative signals for sucrose. Thus, eating a western-style diet contributed to a loss of internal control over appetitive behavior relative to external cues. We discuss how this relative loss of control by food deprivation signals may result from interference with hippocampal-dependent learning and memory processes, forming the basis of a vicious-cycle of excessive intake, body weight gain, and progressive cognitive decline that may begin very early in life. PMID:26002280
Color Vision in Color Display Night Vision Goggles.
Liggins, Eric P; Serle, William P
2017-05-01
Aircrew viewing eyepiece-injected symbology on color display night vision goggles (CDNVGs) are performing a visual task involving color under highly unnatural viewing conditions. Their performance in discriminating different colors and responding to color cues is unknown. Experimental laboratory measurements of 1) color discrimination and 2) visual search performance are reported under adaptation conditions representative of a CDNVG. Color discrimination was measured using a two-alternative forced choice (2AFC) paradigm that probes color space uniformly around a white point. Search times in the presence of different degrees of clutter (distractors in the scene) are measured for different potential symbology colors. The discrimination data support previous data suggesting that discrimination is best for colors close to the adapting point in color space (P43 phosphor in this case). There were highly significant effects of background adaptation (white or green) and test color. The search time data show that saturated colors with the greatest chromatic contrast with respect to the background lead to the shortest search times, associated with the greatest saliency. Search times for the green background were around 150 ms longer than for the white. Desaturated colors, along with those close to a typical CDNVG display phosphor in color space, should be avoided by CDNVG designers if the greatest conspicuity of symbology is desired. The results can be used by CDNVG symbology designers to optimize aircrew performance subject to wider constraints arising from the way color is used in the existing conventional cockpit instruments and displays.Liggins EP, Serle WP. Color vision in color display night vision goggles. Aerosp Med Hum Perform. 2017; 88(5):448-456.
Johnson, Jeffrey S; Spencer, John P
2016-05-01
Studies examining the relationship between spatial attention and spatial working memory (SWM) have shown that discrimination responses are faster for targets appearing at locations that are being maintained in SWM, and that location memory is impaired when attention is withdrawn during the delay. These observations support the proposal that sustained attention is required for successful retention in SWM: If attention is withdrawn, memory representations are likely to fail, increasing errors. In the present study, this proposal was reexamined in light of a neural-process model of SWM. On the basis of the model's functioning, we propose an alternative explanation for the observed decline in SWM performance when a secondary task is performed during retention: SWM representations drift systematically toward the location of targets appearing during the delay. To test this explanation, participants completed a color discrimination task during the delay interval of a spatial-recall task. In the critical shifting-attention condition, the color stimulus could appear either toward or away from the midline reference axis, relative to the memorized location. We hypothesized that if shifting attention during the delay leads to the failure of SWM representations, there should be an increase in the variance of recall errors, but no change in directional errors, regardless of the direction of the shift. Conversely, if shifting attention induces drift of SWM representations-as predicted by the model-systematic changes in the patterns of spatial-recall errors should occur that would depend on the direction of the shift. The results were consistent with the latter possibility-recall errors were biased toward the locations of discrimination targets appearing during the delay.
Testing a Dynamic Field Account of Interactions between Spatial Attention and Spatial Working Memory
Johnson, Jeffrey S.; Spencer, John P.
2016-01-01
Studies examining the relationship between spatial attention and spatial working memory (SWM) have shown that discrimination responses are faster for targets appearing at locations that are being maintained in SWM, and that location memory is impaired when attention is withdrawn during the delay. These observations support the proposal that sustained attention is required for successful retention in SWM: if attention is withdrawn, memory representations are likely to fail, increasing errors. In the present study, this proposal is reexamined in light of a neural process model of SWM. On the basis of the model's functioning, we propose an alternative explanation for the observed decline in SWM performance when a secondary task is performed during retention: SWM representations drift systematically toward the location of targets appearing during the delay. To test this explanation, participants completed a color-discrimination task during the delay interval of a spatial recall task. In the critical shifting attention condition, the color stimulus could appear either toward or away from the memorized location relative to a midline reference axis. We hypothesized that if shifting attention during the delay leads to the failure of SWM representations, there should be an increase in the variance of recall errors but no change in directional error, regardless of the direction of the shift. Conversely, if shifting attention induces drift of SWM representations—as predicted by the model—there should be systematic changes in the pattern of spatial recall errors depending on the direction of the shift. Results were consistent with the latter possibility—recall errors were biased toward the location of discrimination targets appearing during the delay. PMID:26810574
Development of Gender Discrimination: Effect of Sex-Typical and Sex-Atypical Toys.
ERIC Educational Resources Information Center
Etaugh, Claire; Duits, Terri L.
Toddlers (41 girls and 35 boys) between 18 and 37 months of age were given four gender discrimination tasks each consisting of 6 pairs of color drawings. Three of the tasks employed color drawings of preschool girls and boys holding either a sex-typical toy, a sex-atypical toy, or no toy. The fourth employed pictures of sex-typical masculine and…
ERIC Educational Resources Information Center
Piedrafita, Blanca; Cauli, Omar; Montoliu, Carmina; Felipo, Vicente
2007-01-01
Aging is associated with cognitive impairment, but the underlying mechanisms remain unclear. We have recently reported that the ability of rats to learn a Y-maze conditional discrimination task depends on the function of the glutamate-nitric oxide-cGMP pathway in brain. The aims of the present work were to assess whether the ability of rats to…
Scully, Erin N; Acerbo, Martin J; Lazareva, Olga F
2014-01-01
Earlier, we reported that nucleus rotundus (Rt) together with its inhibitory complex, nucleus subpretectalis/interstitio-pretecto-subpretectalis (SP/IPS), had significantly higher activity in pigeons performing figure-ground discrimination than in the control group that did not perform any visual discriminations. In contrast, color discrimination produced significantly higher activity than control in the Rt but not in the SP/IPS. Finally, shape discrimination produced significantly lower activity than control in both the Rt and the SP/IPS. In this study, we trained pigeons to simultaneously perform three visual discriminations (figure-ground, color, and shape) using the same stimulus displays. When birds learned to perform all three tasks concurrently at high levels of accuracy, we conducted bilateral chemical lesions of the SP/IPS. After a period of recovery, the birds were retrained on the same tasks to evaluate the effect of lesions on maintenance of these discriminations. We found that the lesions of the SP/IPS had no effect on color or shape discrimination and that they significantly impaired figure-ground discrimination. Together with our earlier data, these results suggest that the nucleus Rt and the SP/IPS are the key structures involved in figure-ground discrimination. These results also imply that thalamic processing is critical for figure-ground segregation in avian brain.
Souza, Rimenez R; França, Sanmara L; Bessa, Marília M; Takahashi, Reinaldo N
2013-11-01
Due to the ability for depleting neuronal storages of monoamines, the reserpine model is a suitable approach for the investigation of the neurobiology of neurodegenerative diseases. However, the behavioral effects of low doses of reserpine are not always detected by classic animal tests of cognition, emotion, and sensory ability. In this study, the effects of reserpine (0.5-1.0mg/kg) were evaluated in olfactory fear conditioning, inhibitory avoidance, open-field, elevated plus-maze, and olfactory discrimination. Possible protective effects were also investigated. We found that single administration of reserpine impaired the acquisition of olfactory fear conditioning (in both doses) as well as olfactory discrimination (in the higher dose), while no effects were seen in all other tests. Additionally, we demonstrated that prior exposure to environmental enrichment prevented effects of reserpine in animals tested in olfactory fear conditioning. Altogether, these findings suggest that a combined cognitive, emotional and sensory-dependent task would be more sensitive to the effects of the reserpine model. In addition, the present data support the environmental enrichment as an useful approach for the study of resilience mechanisms in neurodegenerative processes. Copyright © 2013 Elsevier B.V. All rights reserved.
Auditory Perceptual Abilities Are Associated with Specific Auditory Experience
Zaltz, Yael; Globerson, Eitan; Amir, Noam
2017-01-01
The extent to which auditory experience can shape general auditory perceptual abilities is still under constant debate. Some studies show that specific auditory expertise may have a general effect on auditory perceptual abilities, while others show a more limited influence, exhibited only in a relatively narrow range associated with the area of expertise. The current study addresses this issue by examining experience-dependent enhancement in perceptual abilities in the auditory domain. Three experiments were performed. In the first experiment, 12 pop and rock musicians and 15 non-musicians were tested in frequency discrimination (DLF), intensity discrimination, spectrum discrimination (DLS), and time discrimination (DLT). Results showed significant superiority of the musician group only for the DLF and DLT tasks, illuminating enhanced perceptual skills in the key features of pop music, in which miniscule changes in amplitude and spectrum are not critical to performance. The next two experiments attempted to differentiate between generalization and specificity in the influence of auditory experience, by comparing subgroups of specialists. First, seven guitar players and eight percussionists were tested in the DLF and DLT tasks that were found superior for musicians. Results showed superior abilities on the DLF task for guitar players, though no difference between the groups in DLT, demonstrating some dependency of auditory learning on the specific area of expertise. Subsequently, a third experiment was conducted, testing a possible influence of vowel density in native language on auditory perceptual abilities. Ten native speakers of German (a language characterized by a dense vowel system of 14 vowels), and 10 native speakers of Hebrew (characterized by a sparse vowel system of five vowels), were tested in a formant discrimination task. This is the linguistic equivalent of a DLS task. Results showed that German speakers had superior formant discrimination, demonstrating highly specific effects for auditory linguistic experience as well. Overall, results suggest that auditory superiority is associated with the specific auditory exposure. PMID:29238318
Sung, Kyongje
2008-12-01
Participants searched a visual display for a target among distractors. Each of 3 experiments tested a condition proposed to require attention and for which certain models propose a serial search. Serial versus parallel processing was tested by examining effects on response time means and cumulative distribution functions. In 2 conditions, the results suggested parallel rather than serial processing, even though the tasks produced significant set-size effects. Serial processing was produced only in a condition with a difficult discrimination and a very large set-size effect. The results support C. Bundesen's (1990) claim that an extreme set-size effect leads to serial processing. Implications for parallel models of visual selection are discussed.
Gilaie-Dotan, Sharon; Ashkenazi, Hamutal; Dar, Reuven
2016-01-01
One of the main characteristics of obsessive-compulsive disorder (OCD) is the persistent feeling of uncertainty, affecting many domains of actions and feelings. It was recently hypothesized that OCD uncertainty is related to attenuated access to internal states. As supra-second timing is associated with bodily and interoceptive awareness, we examined whether supra-second timing would be associated with OC tendencies. We measured supra-second (~9 s) and sub-second (~450 ms) timing along with control non-temporal perceptual tasks in a group of 60 university students. Supra-second timing was measured either with fixed criterion tasks requiring to temporally discriminate between two predefined fixed interval durations (9 vs. 9.9 s), or with an open-ended task requiring to discriminate between 9 s and longer intervals which were of varying durations that were not a priori known to the participants. The open-ended task employed an adaptive Bayesian procedure that efficiently estimated the duration difference required to discriminate 9 s from longer intervals. We also assessed symptoms of OCD, depression, and anxiety. Open-ended supra-second temporal sensitivity was correlated with OC tendencies, as predicted (even after controlling for depression and anxiety), whereas the other tasks were not. Higher OC tendencies were associated with lower timing sensitivity to 9 s intervals such that participants with higher OC tendency scores required longer interval differences to discriminate 9 s from longer intervals. While these results need to be substantiated in future research, they suggest that open-ended timing tasks, as those encountered in real-life (e.g., estimating how long it would take to complete a task), might be adversely affected in OCD. PMID:27445725
Hippocampus, perirhinal cortex, and complex visual discriminations in rats and humans
Hales, Jena B.; Broadbent, Nicola J.; Velu, Priya D.
2015-01-01
Structures in the medial temporal lobe, including the hippocampus and perirhinal cortex, are known to be essential for the formation of long-term memory. Recent animal and human studies have investigated whether perirhinal cortex might also be important for visual perception. In our study, using a simultaneous oddity discrimination task, rats with perirhinal lesions were impaired and did not exhibit the normal preference for exploring the odd object. Notably, rats with hippocampal lesions exhibited the same impairment. Thus, the deficit is unlikely to illuminate functions attributed specifically to perirhinal cortex. Both lesion groups were able to acquire visual discriminations involving the same objects used in the oddity task. Patients with hippocampal damage or larger medial temporal lobe lesions were intact in a similar oddity task that allowed participants to explore objects quickly using eye movements. We suggest that humans were able to rely on an intact working memory capacity to perform this task, whereas rats (who moved slowly among the objects) needed to rely on long-term memory. PMID:25593294
Different Timescales for the Neural Coding of Consonant and Vowel Sounds
Perez, Claudia A.; Engineer, Crystal T.; Jakkamsetti, Vikram; Carraway, Ryan S.; Perry, Matthew S.
2013-01-01
Psychophysical, clinical, and imaging evidence suggests that consonant and vowel sounds have distinct neural representations. This study tests the hypothesis that consonant and vowel sounds are represented on different timescales within the same population of neurons by comparing behavioral discrimination with neural discrimination based on activity recorded in rat inferior colliculus and primary auditory cortex. Performance on 9 vowel discrimination tasks was highly correlated with neural discrimination based on spike count and was not correlated when spike timing was preserved. In contrast, performance on 11 consonant discrimination tasks was highly correlated with neural discrimination when spike timing was preserved and not when spike timing was eliminated. These results suggest that in the early stages of auditory processing, spike count encodes vowel sounds and spike timing encodes consonant sounds. These distinct coding strategies likely contribute to the robust nature of speech sound representations and may help explain some aspects of developmental and acquired speech processing disorders. PMID:22426334
A dual-task investigation of automaticity in visual word processing
NASA Technical Reports Server (NTRS)
McCann, R. S.; Remington, R. W.; Van Selst, M.
2000-01-01
An analysis of activation models of visual word processing suggests that frequency-sensitive forms of lexical processing should proceed normally while unattended. This hypothesis was tested by having participants perform a speeded pitch discrimination task followed by lexical decisions or word naming. As the stimulus onset asynchrony between the tasks was reduced, lexical-decision and naming latencies increased dramatically. Word-frequency effects were additive with the increase, indicating that frequency-sensitive processing was subject to postponement while attention was devoted to the other task. Either (a) the same neural hardware shares responsibility for lexical processing and central stages of choice reaction time task processing and cannot perform both computations simultaneously, or (b) lexical processing is blocked in order to optimize performance on the pitch discrimination task. Either way, word processing is not as automatic as activation models suggest.
Intrinsic, stimulus-driven and task-dependent connectivity in human auditory cortex.
Häkkinen, Suvi; Rinne, Teemu
2018-06-01
A hierarchical and modular organization is a central hypothesis in the current primate model of auditory cortex (AC) but lacks validation in humans. Here we investigated whether fMRI connectivity at rest and during active tasks is informative of the functional organization of human AC. Identical pitch-varying sounds were presented during a visual discrimination (i.e. no directed auditory attention), pitch discrimination, and two versions of pitch n-back memory tasks. Analysis based on fMRI connectivity at rest revealed a network structure consisting of six modules in supratemporal plane (STP), temporal lobe, and inferior parietal lobule (IPL) in both hemispheres. In line with the primate model, in which higher-order regions have more longer-range connections than primary regions, areas encircling the STP module showed the highest inter-modular connectivity. Multivariate pattern analysis indicated significant connectivity differences between the visual task and rest (driven by the presentation of sounds during the visual task), between auditory and visual tasks, and between pitch discrimination and pitch n-back tasks. Further analyses showed that these differences were particularly due to connectivity modulations between the STP and IPL modules. While the results are generally in line with the primate model, they highlight the important role of human IPL during the processing of both task-irrelevant and task-relevant auditory information. Importantly, the present study shows that fMRI connectivity at rest, during presentation of sounds, and during active listening provides novel information about the functional organization of human AC.
THE ROLE OF THE HIPPOCAMPUS IN OBJECT DISCRIMINATION BASED ON VISUAL FEATURES.
Levcik, David; Nekovarova, Tereza; Antosova, Eliska; Stuchlik, Ales; Klement, Daniel
2018-06-07
The role of rodent hippocampus has been intensively studied in different cognitive tasks. However, its role in discrimination of objects remains controversial due to conflicting findings. We tested whether the number and type of features available for the identification of objects might affect the strategy (hippocampal-independent vs. hippocampal-dependent) that rats adopt to solve object discrimination tasks. We trained rats to discriminate 2D visual objects presented on a computer screen. The objects were defined either by their shape only or by multiple-features (a combination of filling pattern and brightness in addition to the shape). Our data showed that objects displayed as simple geometric shapes are not discriminated by trained rats after their hippocampi had been bilaterally inactivated by the GABA A -agonist muscimol. On the other hand, objects containing a specific combination of non-geometric features in addition to the shape are discriminated even without the hippocampus. Our results suggest that the involvement of the hippocampus in visual object discrimination depends on the abundance of object's features. Copyright © 2018. Published by Elsevier Inc.
The visual discrimination of negative facial expressions by younger and older adults.
Mienaltowski, Andrew; Johnson, Ellen R; Wittman, Rebecca; Wilson, Anne-Taylor; Sturycz, Cassandra; Norman, J Farley
2013-04-05
Previous research has demonstrated that older adults are not as accurate as younger adults at perceiving negative emotions in facial expressions. These studies rely on emotion recognition tasks that involve choosing between many alternatives, creating the possibility that age differences emerge for cognitive rather than perceptual reasons. In the present study, an emotion discrimination task was used to investigate younger and older adults' ability to visually discriminate between negative emotional facial expressions (anger, sadness, fear, and disgust) at low (40%) and high (80%) expressive intensity. Participants completed trials blocked by pairs of emotions. Discrimination ability was quantified from the participants' responses using signal detection measures. In general, the results indicated that older adults had more difficulty discriminating between low intensity expressions of negative emotions than did younger adults. However, younger and older adults did not differ when discriminating between anger and sadness. These findings demonstrate that age differences in visual emotion discrimination emerge when signal detection measures are used but that these differences are not uniform and occur only in specific contexts.
Blindness enhances tactile acuity and haptic 3-D shape discrimination.
Norman, J Farley; Bartholomew, Ashley N
2011-10-01
This study compared the sensory and perceptual abilities of the blind and sighted. The 32 participants were required to perform two tasks: tactile grating orientation discrimination (to determine tactile acuity) and haptic three-dimensional (3-D) shape discrimination. The results indicated that the blind outperformed their sighted counterparts (individually matched for both age and sex) on both tactile tasks. The improvements in tactile acuity that accompanied blindness occurred for all blind groups (congenital, early, and late). However, the improvements in haptic 3-D shape discrimination only occurred for the early-onset and late-onset blindness groups; the performance of the congenitally blind was no better than that of the sighted controls. The results of the present study demonstrate that blindness does lead to an enhancement of tactile abilities, but they also suggest that early visual experience may play a role in facilitating haptic 3-D shape discrimination.
Moehler, Tobias; Fiehler, Katja
2014-12-01
The present study investigated the coupling of selection-for-perception and selection-for-action during saccadic eye movement planning in three dual-task experiments. We focused on the effects of spatial congruency of saccade target (ST) location and discrimination target (DT) location and the time between ST-cue and Go-signal (SOA) on saccadic eye movement performance. In two experiments, participants performed a visual discrimination task at a cued location while programming a saccadic eye movement to a cued location. In the third experiment, the discrimination task was not cued and appeared at a random location. Spatial congruency of ST-location and DT-location resulted in enhanced perceptual performance irrespective of SOA. Perceptual performance in spatially incongruent trials was above chance, but only when the DT-location was cued. Saccade accuracy and precision were also affected by spatial congruency showing superior performance when the ST- and DT-location coincided. Saccade latency was only affected by spatial congruency when the DT-cue was predictive of the ST-location. Moreover, saccades consistently curved away from the incongruent DT-locations. Importantly, the effects of spatial congruency on saccade parameters only occurred when the DT-location was cued; therefore, results from experiments 1 and 2 are due to the endogenous allocation of attention to the DT-location and not caused by the salience of the probe. The SOA affected saccade latency showing decreasing latencies with increasing SOA. In conclusion, our results demonstrate that visuospatial attention can be voluntarily distributed upon spatially distinct perceptual and motor goals in dual-task situations, resulting in a decline of visual discrimination and saccade performance.
The development of the own-race advantage in school-age children: A morphing face paradigm
Tai, Chu-Lik; Yang, Shu-Fei
2018-01-01
Previous studies examining the other-race effect in school-age children mostly focused on recognition memory performance. Here we investigated perceptual discriminability for Asian-like versus Caucasian-like morph faces in school-age Taiwanese children and adults. One-hundred-and-two 5- to 12-year-old children and twenty-three adults performed a sequential same/different face matching task, where they viewed an Asian- or a Caucasian-parent face followed by either the same parent face or a different morphed face (containing 15%, 30%, 45%, or 60% contribution from the other parent face) and judged if the two faces looked the same. We computed the d’ as the sensitivity index for each age groups. We also analyzed the group mean rejection rates as a function of the morph level and fitted with a cumulative normal distribution function. Results showed that the adults and the oldest 11-12-year-old children exhibited a greater sensitivity (d’) and a smaller discrimination threshold (μ) in the Asian-parent condition than those in the Caucasian-parent condition, indicating the presence of an own-race advantage. On the contrary, 5- to 10-year-old children showed an equal sensitivity and similar discrimination thresholds for both conditions, indicating an absence of the own-race advantage. Moreover, a gradual development in enhancing the discriminability for the Asian-parent condition was observed from age 5 to 12; however, the progression in the Caucasian-parent condition was less apparent. In sum, our findings suggest that expertise in face processing may take the entire childhood to develop, and supports the perceptual learning view of the other-race effect—the own-race advantage seen in adulthood likely reflects a result of prolonged learning specific to faces most commonly seen in one’s visual environment such as own-race faces. PMID:29634731
Reddy, Lena Felice; Waltz, James A; Green, Michael F; Wynn, Jonathan K; Horan, William P
2016-07-01
Although individuals with schizophrenia show impaired feedback-driven learning on probabilistic reversal learning (PRL) tasks, the specific factors that contribute to these deficits remain unknown. Recent work has suggested several potential causes including neurocognitive impairments, clinical symptoms, and specific types of feedback-related errors. To examine this issue, we administered a PRL task to 126 stable schizophrenia outpatients and 72 matched controls, and patients were retested 4 weeks later. The task involved an initial probabilistic discrimination learning phase and subsequent reversal phases in which subjects had to adjust their responses to sudden shifts in the reinforcement contingencies. Patients showed poorer performance than controls for both the initial discrimination and reversal learning phases of the task, and performance overall showed good test-retest reliability among patients. A subgroup analysis of patients (n = 64) and controls (n = 49) with good initial discrimination learning revealed no between-group differences in reversal learning, indicating that the patients who were able to achieve all of the initial probabilistic discriminations were not impaired in reversal learning. Regarding potential contributors to impaired discrimination learning, several factors were associated with poor PRL, including higher levels of neurocognitive impairment, poor learning from both positive and negative feedback, and higher levels of indiscriminate response shifting. The results suggest that poor PRL performance in schizophrenia can be the product of multiple mechanisms. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Taylor, Morag E; Delbaere, Kim; Mikolaizak, A Stefanie; Lord, Stephen R; Close, Jacqueline C T
2013-01-01
Impaired gait may contribute to the increased rate of falls in cognitively impaired older people. We investigated whether gait under simple and dual task conditions could predict falls in this group. The study sample consisted of 64 community dwelling older people with mild to moderate cognitive impairment. Participants walked at their preferred speed under three conditions: (a) simple walking, (b) walking while carrying a glass of water and (c) walking while counting backwards from 30. Spatiotemporal gait parameters were measured using the GAITRite(®) mat. Falls were recorded prospectively for 12months with the assistance of carers. Twenty-two (35%) people fell two or more times in the 12month follow-up period. There was a significant main effect of gait condition and a significant main effect of faller status for mean value measures (velocity, stride length, double support time and stride width) and for variability measures (swing time variability and stride length variability). Examination of individual gait parameters indicated that the multiple fallers walked more slowly, had shorter stride length, spent longer time in double support, had a wider support width and showed more variability in stride length and swing time (p<0.05). There was no significant interaction between gait condition and faller status for any of the gait variables. In conclusion, dual task activities adversely affect gait in cognitively impaired older people. Multiple fallers performed worse in each gait condition but the addition of a functional or cognitive secondary task provided no added benefit in discriminating fallers from non-fallers with cognitive impairment. Copyright © 2012 Elsevier B.V. All rights reserved.
Grant, A C; Thiagarajah, M C; Sathian, K
2000-02-01
It is not clear whether the blind are generally superior to the sighted on measures of tactile sensitivity or whether they excel only on certain tests owing to the specifics of their tactile experience. We compared the discrimination performance of blind Braille readers and age-matched sighted subjects on three tactile tasks using precisely specified stimuli. Initially, the blind significantly outperformed the sighted at a hyperacuity task using Braille-like dot patterns, although, with practice, both groups performed equally well. On two other tasks, hyperacute discrimination of gratings that differed in ridge width and spatial-acuity-dependent discrimination of grating orientation, the performance of the blind did not differ significantly from that of sighted subjects. These results probably reflect the specificity of perceptual learning due to Braille-reading experience.
Aging and the visual, haptic, and cross-modal perception of natural object shape.
Norman, J Farley; Crabtree, Charles E; Norman, Hideko F; Moncrief, Brandon K; Herrmann, Molly; Kapley, Noah
2006-01-01
One hundred observers participated in two experiments designed to investigate aging and the perception of natural object shape. In the experiments, younger and older observers performed either a same/different shape discrimination task (experiment 1) or a cross-modal matching task (experiment 2). Quantitative effects of age were found in both experiments. The effect of age in experiment 1 was limited to cross-modal shape discrimination: there was no effect of age upon unimodal (ie within a single perceptual modality) shape discrimination. The effect of age in experiment 2 was eliminated when the older observers were either given an unlimited amount of time to perform the task or when the number of response alternatives was decreased. Overall, the results of the experiments reveal that older observers can effectively perceive 3-D shape from both vision and haptics.
Mayr, Susanne; Köpper, Maja; Buchner, Axel
2013-01-01
Legislation in many countries has banned inefficient household lighting. Consequently, classic incandescent lamps have to be replaced by more efficient alternatives such as halogen and compact fluorescent lamps (CFL). Alternatives differ in their spectral power distributions, implying colour-rendering differences. Participants performed a colour discrimination task - the Farnsworth-Munsell 100 Hue Test--and a proofreading task under CFL or halogen lighting of comparable correlated colour temperatures at low (70 lx) or high (800 lx) illuminance. Illuminance positively affected colour discrimination and proofreading performance, whereas the light source was only relevant for colour discrimination. Discrimination was impaired with CFL lighting. There were no differences between light sources in terms of self-reported physical discomfort and mood state, but the majority of the participants correctly judged halogen lighting to be more appropriate for discriminating colours. The findings hint at the colour-rendering deficiencies associated with energy-efficient CFLs. In order to compare performance under energy-efficient alternatives of classic incandescent lighting, colour discrimination and proofreading performance was compared under CFL and halogen lighting. Colour discrimination was impaired under CFLs, which hints at the practical drawbacks associated with the reduced colour-rendering properties of energy-efficient CFLs.
Same-Different Categorization in Rats
ERIC Educational Resources Information Center
Wasserman, Edward A.; Castro, Leyre; Freeman, John H.
2012-01-01
Same-different categorization is a fundamental feat of human cognition. Although birds and nonhuman primates readily learn same-different discriminations and successfully transfer them to novel stimuli, no such demonstration exists for rats. Using a spatial discrimination learning task, we show that rats can both learn to discriminate arrays of…
Shimansky, Y; Saling, M; Wunderlich, D A; Bracha, V; Stelmach, G E; Bloedel, J R
1997-01-01
This study addresses the issue of the role of the cerebellum in the processing of sensory information by determining the capability of cerebellar patients to acquire and use kinesthetic cues received via the active or passive tracing of an irregular shape while blindfolded. Patients with cerebellar lesions and age-matched healthy controls were tested on four tasks: (1) learning to discriminate a reference shape from three others through the repeated tracing of the reference template; (2) reproducing the reference shape from memory by drawing blindfolded; (3) performing the same task with vision; and (4) visually recognizing the reference shape. The cues used to acquire and then to recognize the reference shape were generated under four conditions: (1) "active kinesthesia," in which cues were acquired by the blindfolded subject while actively tracing a reference template; (2) "passive kinesthesia," in which the tracing was performed while the hand was guided passively through the template; (3) "sequential vision," in which the shape was visualized by the serial exposure of small segments of its outline; and (4) "full vision," in which the entire shape was visualized. The sequential vision condition was employed to emulate the sequential way in which kinesthetic information is acquired while tracing the reference shape. The results demonstrate a substantial impairment of cerebellar patients in their capability to perceive two-dimensional irregular shapes based only on kinesthetic cues. There also is evidence that this deficit in part relates to a reduced capacity to integrate temporal sequences of sensory cues into a complete image useful for shape discrimination tasks or for reproducing the shape through drawing. Consequently, the cerebellum has an important role in this type of sensory information processing even when it is not directly associated with the execution of movements.
Segev, Amir; Akirav, Irit
2011-04-01
We examined whether the cannabinoid receptor agonist WIN55,212-2 (WIN; 5 µg/side) microinjected into the hippocampus or the amygdala would differentially affect memory processes in a neutral vs. an aversive task. In the aversive contextual fear task, WIN into the basolateral amygdala impaired fear acquisition/consolidation, but not retrieval. In the ventral subiculum (vSub), WIN impaired fear retrieval. In the neutral social discrimination task, WIN into the vSub impaired both acquisition/consolidation and retrieval, whereas in the medial amygdala WIN impaired acquisition. The results suggest that cannabinoid signaling differentially affects memory in a task-, region-, and memory stage-dependent manner.
Developmental trends in the facilitation of multisensory objects with distractors
Downing, Harriet C.; Barutchu, Ayla; Crewther, Sheila G.
2015-01-01
Sensory integration and the ability to discriminate target objects from distractors are critical to survival, yet the developmental trajectories of these abilities are unknown. This study investigated developmental changes in 9- (n = 18) and 11-year-old (n = 20) children, adolescents (n = 19) and adults (n = 22) using an audiovisual object discrimination task with uni- and multisensory distractors. Reaction times (RTs) were slower with visual/audiovisual distractors, and although all groups demonstrated facilitation of multisensory RTs in these conditions, children's and adolescents' responses corresponded to fewer race model violations than adults', suggesting protracted maturation of multisensory processes. Multisensory facilitation could not be explained by changes in RT variability, suggesting that tests of race model violations may still have theoretical value at least for familiar multisensory stimuli. PMID:25653630
Viola, Vanda; Tosoni, Annalisa; Brizi, Ambra; Salvato, Ilaria; Kruglanski, Arie W; Galati, Gaspare; Mannetti, Lucia
2015-01-01
The aim of this study was to assess the extent to which Need for Cognitive Closure (NCC), an individual-level epistemic motivation, can explain inter-individual variability in the cognitive effort invested on a perceptual decision making task (the random motion task). High levels of NCC are manifested in a preference for clarity, order and structure and a desire for firm and stable knowledge. The study evaluated how NCC moderates the impact of two variables known to increase the amount of cognitive effort invested on a task, namely task ambiguity (i.e., the difficulty of the perceptual discrimination) and outcome relevance (i.e., the monetary gain associated with a correct discrimination). Based on previous work and current design, we assumed that reaction times (RTs) on our motion discrimination task represent a valid index of effort investment. Task ambiguity was associated with increased cognitive effort in participants with low or medium NCC but, interestingly, it did not affect the RTs of participants with high NCC. A different pattern of association was observed for outcome relevance; high outcome relevance increased cognitive effort in participants with moderate or high NCC, but did not affect the performance of low NCC participants. In summary, the performance of individuals with low NCC was affected by task difficulty but not by outcome relevance, whereas individuals with high NCC were influenced by outcome relevance but not by task difficulty; only participants with medium NCC were affected by both task difficulty and outcome relevance. These results suggest that perceptual decision making is influenced by the interaction between context and NCC.
van Diest, Mike; Stegenga, Jan; Wörtche, Heinrich J.; Roerdink, Jos B. T. M; Verkerke, Gijsbertus J.; Lamoth, Claudine J. C.
2015-01-01
Background Exergames are becoming an increasingly popular tool for training balance ability, thereby preventing falls in older adults. Automatic, real time, assessment of the user’s balance control offers opportunities in terms of providing targeted feedback and dynamically adjusting the gameplay to the individual user, yet algorithms for quantification of balance control remain to be developed. The aim of the present study was to identify movement patterns, and variability therein, of young and older adults playing a custom-made weight-shifting (ice-skating) exergame. Methods Twenty older adults and twenty young adults played a weight-shifting exergame under five conditions of varying complexity, while multi-segmental whole-body movement data were captured using Kinect. Movement coordination patterns expressed during gameplay were identified using Self Organizing Maps (SOM), an artificial neural network, and variability in these patterns was quantified by computing Total Trajectory Variability (TTvar). Additionally a k Nearest Neighbor (kNN) classifier was trained to discriminate between young and older adults based on the SOM features. Results Results showed that TTvar was significantly higher in older adults than in young adults, when playing the exergame under complex task conditions. The kNN classifier showed a classification accuracy of 65.8%. Conclusions Older adults display more variable sway behavior than young adults, when playing the exergame under complex task conditions. The SOM features characterizing movement patterns expressed during exergaming allow for discriminating between young and older adults with limited accuracy. Our findings contribute to the development of algorithms for quantification of balance ability during home-based exergaming for balance training. PMID:26230655
Rats that sign-track are resistant to Pavlovian but not instrumental extinction
Ahrens, Allison M.; Singer, Bryan F.; Fitzpatrick, Christopher J.; Morrow, Jonathan D.; Robinson, Terry E.
2015-01-01
Individuals vary in the extent to which they attribute incentive salience to a discrete cue (conditioned stimulus; CS) that predicts reward delivery (unconditioned stimulus; US), which results in some individuals approaching and interacting with the CS (sign-trackers; STs) more than others (goal-trackers; GTs). Here we asked how periods of non-reinforcement influence conditioned responding in STs vs. GTs, in both Pavlovian and instrumental tasks. After classifying rats as STs or GTs by pairing a retractable lever (the CS) with the delivery of a food pellet (US), we introduced periods of non-reinforcement, first by simply withholding the US (i.e., extinction training; experiment 1), then by signaling alternating periods of reward (R) and non-reward (NR) within the same session (experiments 2 and 3). We also examined how alternating R and NR periods influenced instrumental responding for food (experiment 4). STs and GTs did not differ in their ability to discriminate between R and NR periods in the instrumental task. However, in Pavlovian settings STs and GTs responded to periods of non-reward very differently. Relative to STs, GTs very rapidly modified their behavior in response to periods of non-reward, showing much faster extinction and better and faster discrimination between R and NR conditions. These results highlight differences between Pavlovian and instrumental extinction learning, and suggest that if a Pavlovian CS is strongly attributed with incentive salience, as in STs, it may continue to bias attention toward it, and to facilitate persistent and relatively inflexible responding, even when it is no longer followed by reward. PMID:26235331
van Diest, Mike; Stegenga, Jan; Wörtche, Heinrich J; Roerdink, Jos B T M; Verkerke, Gijsbertus J; Lamoth, Claudine J C
2015-01-01
Exergames are becoming an increasingly popular tool for training balance ability, thereby preventing falls in older adults. Automatic, real time, assessment of the user's balance control offers opportunities in terms of providing targeted feedback and dynamically adjusting the gameplay to the individual user, yet algorithms for quantification of balance control remain to be developed. The aim of the present study was to identify movement patterns, and variability therein, of young and older adults playing a custom-made weight-shifting (ice-skating) exergame. Twenty older adults and twenty young adults played a weight-shifting exergame under five conditions of varying complexity, while multi-segmental whole-body movement data were captured using Kinect. Movement coordination patterns expressed during gameplay were identified using Self Organizing Maps (SOM), an artificial neural network, and variability in these patterns was quantified by computing Total Trajectory Variability (TTvar). Additionally a k Nearest Neighbor (kNN) classifier was trained to discriminate between young and older adults based on the SOM features. Results showed that TTvar was significantly higher in older adults than in young adults, when playing the exergame under complex task conditions. The kNN classifier showed a classification accuracy of 65.8%. Older adults display more variable sway behavior than young adults, when playing the exergame under complex task conditions. The SOM features characterizing movement patterns expressed during exergaming allow for discriminating between young and older adults with limited accuracy. Our findings contribute to the development of algorithms for quantification of balance ability during home-based exergaming for balance training.
Validation of a Behavioral Approach for Measuring Saccades in Parkinson's Disease.
Turner, Travis H; Renfroe, Jenna B; Duppstadt-Delambo, Amy; Hinson, Vanessa K
2017-01-01
Speed and control of saccades are related to disease progression and cognitive functioning in Parkinson's disease (PD). Traditional eye-tracking complexities encumber application for individual evaluations and clinical trials. The authors examined psychometric properties of standalone tasks for reflexive prosaccade latency, volitional saccade initiation, and saccade inhibition (antisaccade) in a heterogeneous sample of 65 PD patients. Demographics had minimal impact on task performance. Thirty-day test-retest reliability estimates for behavioral tasks were acceptable and similar to traditional eye tracking. Behavioral tasks demonstrated concurrent validity with traditional eye-tracking measures; discriminant validity was less clear. Saccade initiation and inhibition discriminated PD patients with cognitive impairment. The present findings support further development and use of the behavioral tasks for assessing latency and control of saccades in PD.
Global form and motion processing in healthy ageing.
Agnew, Hannah C; Phillips, Louise H; Pilz, Karin S
2016-05-01
The ability to perceive biological motion has been shown to deteriorate with age, and it is assumed that older adults rely more on the global form than local motion information when processing point-light walkers. Further, it has been suggested that biological motion processing in ageing is related to a form-based global processing bias. Here, we investigated the relationship between older adults' preference for form information when processing point-light actions and an age-related form-based global processing bias. In a first task, we asked older (>60years) and younger adults (19-23years) to sequentially match three different point-light actions; normal actions that contained local motion and global form information, scrambled actions that contained primarily local motion information, and random-position actions that contained primarily global form information. Both age groups overall performed above chance in all three conditions, and were more accurate for actions that contained global form information. For random-position actions, older adults were less accurate than younger adults but there was no age-difference for normal or scrambled actions. These results indicate that both age groups rely more on global form than local motion to match point-light actions, but can use local motion on its own to match point-light actions. In a second task, we investigated form-based global processing biases using the Navon task. In general, participants were better at discriminating the local letters but faster at discriminating global letters. Correlations showed that there was no significant linear relationship between performance in the Navon task and biological motion processing, which suggests that processing biases in form- and motion-based tasks are unrelated. Copyright © 2016. Published by Elsevier B.V.
Demonstration Report: ESTCP UXO Discrimination Study ESTCP PROJECT # MM-0838
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasperikova, Erika
2010-02-15
In 2003, the Defense Science Board observed: 'The problem is that instruments that can detect the buried UXOs also detect numerous scrap metal objects and other artifacts, which leads to an enormous amount of expensive digging. Typically 100 holes may be dug before a real UXO is unearthed! The Task Force assessment is that much of this wasteful digging can be eliminated by the use of more advanced technology instruments that exploit modern digital processing and advanced multi-mode sensors to achieve an improved level of discrimination of scrap from UXOs.' Significant progress has been made in discrimination technology. To date,more » testing of these approaches has been primarily limited to test sites with only limited application at live sites. Acceptance of discrimination technologies requires demonstration of system capabilities at real UXO sites under real world conditions. Any attempt to declare detected anomalies to be harmless and requiring no further investigation will require demonstration to regulators of not only individual technologies, but of an entire decision making process. This characterization study was be the second phase in what is expected to be a continuing effort that will span several years. The FY06 Defense Appropriation contained funding for the 'Development of Advanced, Sophisticated, Discrimination Technologies for UXO Cleanup' in the Environmental Security Technology Certification Program (ESTCP). ESTCP responded by conducting a UXO Discrimination Study at the former Camp Sibert, AL. The results of this first demonstration were very encouraging. Although conditions were favorable at this site, a single target of interest (4.2-in mortar) and benign topography and geology, all of the classification approaches demonstrated were able to correctly identify a sizable fraction of the anomalies as arising from non-hazardous items that could be safely left in the ground. To build upon the success of the first phase of this study, ESTCP sponsored a second study in 2009 at the former Camp San Luis Obispo, CA, a site with more challenging topography and a wider mix of targets-of-interest (TOI). There were two primary objectives of this study: (1) Test and validate detection and discrimination capabilities of currently available and emerging technologies on real sites under operational conditions; and (2) Investigate in cooperation with regulators and program managers how discrimination technologies can be implemented in cleanup operations.« less
Thinking about thinking: Neural mechanisms and effects on memory.
Bonhage, Corinna; Weber, Friederike; Exner, Cornelia; Kanske, Philipp
2016-02-15
It is a well-established finding that memory encoding is impaired if an external secondary task (e.g. tone discrimination) is performed simultaneously. Yet, while studying we are also often engaged in internal secondary tasks such as planning, ruminating, or daydreaming. It remains unclear whether such a secondary internal task has similar effects on memory and what the neural mechanisms underlying such an influence are. We therefore measured participants' blood oxygenation level dependent responses while they learned word-pairs and simultaneously performed different types of secondary tasks (i.e., internal, external, and control). Memory performance decreased in both internal and external secondary tasks compared to the easy control condition. However, while the external task reduced activity in memory-encoding related regions (hippocampus), the internal task increased neural activity in brain regions associated with self-reflection (anterior medial prefrontal cortex), as well as in regions associated with performance monitoring and the perception of salience (anterior insula, dorsal anterior cingulate cortex). Resting-state functional connectivity analyses confirmed that anterior medial prefrontal cortex and anterior insula/dorsal anterior cingulate cortex are part of the default mode network and salience network, respectively. In sum, a secondary internal task impairs memory performance just as a secondary external task, but operates through different neural mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.
Superordinate Level Processing Has Priority Over Basic-Level Processing in Scene Gist Recognition
Sun, Qi; Zheng, Yang; Sun, Mingxia; Zheng, Yuanjie
2016-01-01
By combining a perceptual discrimination task and a visuospatial working memory task, the present study examined the effects of visuospatial working memory load on the hierarchical processing of scene gist. In the perceptual discrimination task, two scene images from the same (manmade–manmade pairing or natural–natural pairing) or different superordinate level categories (manmade–natural pairing) were presented simultaneously, and participants were asked to judge whether these two images belonged to the same basic-level category (e.g., street–street pairing) or not (e.g., street–highway pairing). In the concurrent working memory task, spatial load (position-based load in Experiment 1) and object load (figure-based load in Experiment 2) were manipulated. The results were as follows: (a) spatial load and object load have stronger effects on discrimination of same basic-level scene pairing than same superordinate level scene pairing; (b) spatial load has a larger impact on the discrimination of scene pairings at early stages than at later stages; on the contrary, object information has a larger influence on at later stages than at early stages. It followed that superordinate level processing has priority over basic-level processing in scene gist recognition and spatial information contributes to the earlier and object information to the later stages in scene gist recognition. PMID:28382195
Nozza, R J
1987-06-01
Performance of infants in a speech-sound discrimination task (/ba/ vs /da/) was measured at three stimulus intensity levels (50, 60, and 70 dB SPL) using the operant head-turn procedure. The procedure was modified so that data could be treated as though from a single-interval (yes-no) procedure, as is commonly done, as well as if from a sustained attention (vigilance) task. Discrimination performance changed significantly with increase in intensity, suggesting caution in the interpretation of results from infant discrimination studies in which only single stimulus intensity levels within this range are used. The assumptions made about the underlying methodological model did not change the performance-intensity relationships. However, infants demonstrated response decrement, typical of vigilance tasks, which supports the notion that the head-turn procedure is represented best by the vigilance model. Analysis then was done according to a method designed for tasks with undefined observation intervals [C. S. Watson and T. L. Nichols, J. Acoust. Soc. Am. 59, 655-668 (1976)]. Results reveal that, while group data are reasonably well represented across levels of difficulty by the fixed-interval model, there is a variation in performance as a function of time following trial onset that could lead to underestimation of performance in some cases.
Correlated neuronal discharges that increase coding efficiency during perceptual discrimination.
Romo, Ranulfo; Hernández, Adrián; Zainos, Antonio; Salinas, Emilio
2003-05-22
During a sensory discrimination task, the responses of multiple sensory neurons must be combined to generate a choice. The optimal combination of responses is determined both by their dependence on the sensory stimulus and by their cofluctuations across trials-that is, the noise correlations. Positively correlated noise is considered deleterious, because it limits the coding accuracy of populations of similarly tuned neurons. However, positively correlated fluctuations between differently tuned neurons actually increase coding accuracy, because they allow the common noise to be subtracted without signal loss. This is demonstrated with data recorded from the secondary somatosensory cortex of monkeys performing a vibrotactile discrimination task. The results indicate that positive correlations are not always harmful and may be exploited by cortical networks to enhance the neural representation of features to be discriminated.
Hazan, Valerie; Messaoud-Galusi, Souhila; Rosen, Stuart
2013-01-01
Purpose To determine whether children with dyslexia (DYS) are more affected than age-matched average readers (AR) by talker and intonation variability when perceiving speech in noise. Method Thirty-four DYS and 25 AR children were tested on their perception of consonants in naturally-produced consonant-vowel (CV) tokens in multi-talker babble. Twelve CVs were presented for identification in four conditions varying in the degree of talker and intonation variability. Consonant place (/bi/-/di/) and voicing (/bi/-/pi/) discrimination was investigated with the same conditions. Results DYS children made slightly more identification errors than AR children but only for conditions with variable intonation. Errors were more frequent for a subset of consonants, generally weakly-encoded for AR children, for tokens with intonation patterns (steady and rise-fall) that occur infrequently in connected discourse. In discrimination tasks, which have a greater memory and cognitive load, DYS children scored lower than AR children across all conditions. Conclusions Unusual intonation patterns had a disproportionate (but small) effect on consonant intelligibility in noise for DYS children but adding talker variability did not. DYS children do not appear to have a general problem in perceiving speech in degraded conditions, which makes it unlikely that they lack robust phonological representations. PMID:22761322
Hazan, Valerie; Messaoud-Galusi, Souhila; Rosen, Stuart
2013-02-01
In this study, the authors aimed to determine whether children with dyslexia (hereafter referred to as "DYS children") are more affected than children with average reading ability (hereafter referred to as "AR children") by talker and intonation variability when perceiving speech in noise. Thirty-four DYS and 25 AR children were tested on their perception of consonants in naturally produced CV tokens in multitalker babble. Twelve CVs were presented for identification in four conditions varying in the degree of talker and intonation variability. Consonant place (/bi/-/di/) and voicing (/bi/-/pi/) discrimination were investigated with the same conditions. DYS children made slightly more identification errors than AR children but only for conditions with variable intonation. Errors were more frequent for a subset of consonants, generally weakly encoded for AR children, for tokens with intonation patterns (steady and rise-fall) that occur infrequently in connected discourse. In discrimination tasks, which have a greater memory and cognitive load, DYS children scored lower than AR children across all conditions. Unusual intonation patterns had a disproportionate (but small) effect on consonant intelligibility in noise for DYS children, but adding talker variability did not. DYS children do not appear to have a general problem in perceiving speech in degraded conditions, which makes it unlikely that they lack robust phonological representations.
The effects of real and illusory glides on pure-tone frequency discrimination.
Lyzenga, J; Carlyon, R P; Moore, B C J
2004-07-01
Experiment 1 measured pure-tone frequency difference limens (DLs) at 1 and 4 kHz. The stimuli had two steady-state portions, which differed in frequency for the target. These portions were separated by a middle section of varying length, which consisted of a silent gap, a frequency glide, or a noise burst (conditions: gap, glide, and noise, respectively). The noise burst created an illusion of the tone continuing through the gap. In the first condition, the stimuli had an overall duration of 500 ms. In the second condition, stimuli had a fixed 50-ms middle section, and the overall duration was varied. DLs were lower for the glide than for the gap condition, consistent with the idea that the auditory system contains a mechanism specific for the detection of dynamic changes. DLs were generally lower for the noise than for the gap condition, suggesting that this mechanism extracts information from an illusory glide. In a second experiment, pure-tone frequency direction-discrimination thresholds were measured using similar stimuli as for the first experiment. For this task, the type of the middle section hardly affected the thresholds, suggesting that the frequency-change detection mechanism does not facilitate the identification of the direction of frequency changes.
Developmental hearing loss impedes auditory task learning and performance in gerbils
von Trapp, Gardiner; Aloni, Ishita; Young, Stephen; Semple, Malcolm N.; Sanes, Dan H.
2016-01-01
The consequences of developmental hearing loss have been reported to include both sensory and cognitive deficits. To investigate these issues in a non-human model, auditory learning and asymptotic psychometric performance were compared between normal hearing (NH) adult gerbils and those reared with conductive hearing loss (CHL). At postnatal day 10, before ear canal opening, gerbil pups underwent bilateral malleus removal to induce a permanent CHL. Both CHL and control animals were trained to approach a water spout upon presentation of a target (Go stimuli), and withhold for foils (Nogo stimuli). To assess the rate of task acquisition and asymptotic performance, animals were tested on an amplitude modulation (AM) rate discrimination task. Behavioral performance was calculated using a signal detection theory framework. Animals reared with developmental CHL displayed a slower rate of task acquisition for AM discrimination task. Slower acquisition was explained by an impaired ability to generalize to newly introduced stimuli, as compared to controls. Measurement of discrimination thresholds across consecutive testing blocks revealed that CHL animals required a greater number of testing sessions to reach asymptotic threshold values, as compared to controls. However, with sufficient training, CHL animals approached control performance. These results indicate that a sensory impediment can delay auditory learning, and increase the risk of poor performance on a temporal task. PMID:27746215
Retention interval affects visual short-term memory encoding.
Bankó, Eva M; Vidnyánszky, Zoltán
2010-03-01
Humans can efficiently store fine-detailed facial emotional information in visual short-term memory for several seconds. However, an unresolved question is whether the same neural mechanisms underlie high-fidelity short-term memory for emotional expressions at different retention intervals. Here we show that retention interval affects the neural processes of short-term memory encoding using a delayed facial emotion discrimination task. The early sensory P100 component of the event-related potentials (ERP) was larger in the 1-s interstimulus interval (ISI) condition than in the 6-s ISI condition, whereas the face-specific N170 component was larger in the longer ISI condition. Furthermore, the memory-related late P3b component of the ERP responses was also modulated by retention interval: it was reduced in the 1-s ISI as compared with the 6-s condition. The present findings cannot be explained based on differences in sensory processing demands or overall task difficulty because there was no difference in the stimulus information and subjects' performance between the two different ISI conditions. These results reveal that encoding processes underlying high-precision short-term memory for facial emotional expressions are modulated depending on whether information has to be stored for one or for several seconds.
Spatial frequency discrimination learning in normal and developmentally impaired human vision
Astle, Andrew T.; Webb, Ben S.; McGraw, Paul V.
2010-01-01
Perceptual learning effects demonstrate that the adult visual system retains neural plasticity. If perceptual learning holds any value as a treatment tool for amblyopia, trained improvements in performance must generalise. Here we investigate whether spatial frequency discrimination learning generalises within task to other spatial frequencies, and across task to contrast sensitivity. Before and after training, we measured contrast sensitivity and spatial frequency discrimination (at a range of reference frequencies 1, 2, 4, 8, 16 c/deg). During training, normal and amblyopic observers were divided into three groups. Each group trained on a spatial frequency discrimination task at one reference frequency (2, 4, or 8 c/deg). Normal and amblyopic observers who trained at lower frequencies showed a greater rate of within task learning (at their reference frequency) compared to those trained at higher frequencies. Compared to normals, amblyopic observers showed greater within task learning, at the trained reference frequency. Normal and amblyopic observers showed asymmetrical transfer of learning from high to low spatial frequencies. Both normal and amblyopic subjects showed transfer to contrast sensitivity. The direction of transfer for contrast sensitivity measurements was from the trained spatial frequency to higher frequencies, with the bandwidth and magnitude of transfer greater in the amblyopic observers compared to normals. The findings provide further support for the therapeutic efficacy of this approach and establish general principles that may help develop more effective protocols for the treatment of developmental visual deficits. PMID:20832416
Woods, Carl T; Raynor, Annette J; Bruce, Lyndell; McDonald, Zane
2016-01-01
This study examined if a video decision-making task could discriminate talent-identified junior Australian football players from their non-talent-identified counterparts. Participants were recruited from the 2013 under 18 (U18) West Australian Football League competition and classified into two groups: talent-identified (State U18 Academy representatives; n = 25; 17.8 ± 0.5 years) and non-talent-identified (non-State U18 Academy selection; n = 25; 17.3 ± 0.6 years). Participants completed a video decision-making task consisting of 26 clips sourced from the Australian Football League game-day footage, recording responses on a sheet provided. A score of "1" was given for correct and "0" for incorrect responses, with the participants total score used as the criterion value. One-way analysis of variance tested the main effect of "status" on the task criterion, whilst a bootstrapped receiver operating characteristic (ROC) curve assessed the discriminant ability of the task. An area under the curve (AUC) of 1 (100%) represented perfect discrimination. Between-group differences were evident (P < 0.05) and the ROC curve was maximised with a score of 15.5/26 (60%) (AUC = 89.0%), correctly classifying 92% and 76% of the talent-identified and non-talent-identified participants, respectively. Future research should investigate the mechanisms leading to the superior decision-making observed in the talent-identified group.
Ma, Qingguo; Hu, Linfeng; Li, Jiaojie; Hu, Yue; Xia, Ling; Chen, Xiaojian; Hu, Wendong
2016-01-01
The present study explored the neural mechanism underlying the effect of moderate and transient hypoxic exposure on mental rotation of two-dimensional letters in both normal and mirror versions. Event-related potential data and behavioral data were acquired in the task of discrimination between normal and mirrored versions separately in conditions of normoxia (simulated sea level) and hypoxia conditions (simulated 5000 meter altitude). The behavioral results revealed no significant difference between the normoxia and hypoxia conditions both in response time and error rate. However, obvious differences between these two conditions in ERP were found. First, enlarged P300 and Rotation-related Negativity (RRN) were observed in the hypoxia condition compared to the normoxia condition only with normal letters. Second, the angle effect on the amplitude of RRN was more evident with normal letters in the hypoxia condition than that in the normoxia condition. However, this angle effect nearly disappeared with the mirrored letters in the hypoxia condition. Third, more bilateral parietal activation was observed in the hypoxia condition than the normoxia condition. These results suggested that the compensation mechanism existed in the hypoxia condition and was effective with normal letters but had little effect on the mirrored letters. This study extends the research about the hypoxic effect on spatial ability of humans by employing a mental rotation task and further provides neural evidence for this effect.
Ma, Qingguo; Hu, Linfeng; Li, Jiaojie; Hu, Yue; Xia, Ling; Chen, Xiaojian; Hu, Wendong
2016-01-01
The present study explored the neural mechanism underlying the effect of moderate and transient hypoxic exposure on mental rotation of two-dimensional letters in both normal and mirror versions. Event-related potential data and behavioral data were acquired in the task of discrimination between normal and mirrored versions separately in conditions of normoxia (simulated sea level) and hypoxia conditions (simulated 5000 meter altitude). The behavioral results revealed no significant difference between the normoxia and hypoxia conditions both in response time and error rate. However, obvious differences between these two conditions in ERP were found. First, enlarged P300 and Rotation-related Negativity (RRN) were observed in the hypoxia condition compared to the normoxia condition only with normal letters. Second, the angle effect on the amplitude of RRN was more evident with normal letters in the hypoxia condition than that in the normoxia condition. However, this angle effect nearly disappeared with the mirrored letters in the hypoxia condition. Third, more bilateral parietal activation was observed in the hypoxia condition than the normoxia condition. These results suggested that the compensation mechanism existed in the hypoxia condition and was effective with normal letters but had little effect on the mirrored letters. This study extends the research about the hypoxic effect on spatial ability of humans by employing a mental rotation task and further provides neural evidence for this effect. PMID:27144444
Carcagno, Samuele; Plack, Christopher J
2011-08-01
Multiple-hour training on a pitch discrimination task dramatically decreases the threshold for detecting a pitch difference between two harmonic complexes. Here, we investigated the specificity of this perceptual learning with respect to the pitch and the resolvability of the trained harmonic complex, as well as its cortical electrophysiological correlates. We trained 24 participants for 12 h on a pitch discrimination task using one of four different harmonic complexes. The complexes differed in pitch and/or spectral resolvability of their components by the cochlea, but were filtered into the same spectral region. Cortical-evoked potentials and a behavioral measure of pitch discrimination were assessed before and after training for all the four complexes. The change in these measures was compared to that of two control groups: one trained on a level discrimination task and one without any training. The behavioral results showed that learning was partly specific to both pitch and resolvability. Training with a resolved-harmonic complex improved pitch discrimination for resolved complexes more than training with an unresolved complex. However, we did not find evidence that training with an unresolved complex leads to specific learning for unresolved complexes. Training affected the P2 component of the cortical-evoked potentials, as well as a later component (250-400 ms). No significant changes were found on the mismatch negativity (MMN) component, although a separate experiment showed that this measure was sensitive to pitch changes equivalent to the pitch discriminability changes induced by training. This result suggests that pitch discrimination training affects processes not measured by the MMN, for example, processes higher in level or parallel to those involved in MMN generation.
Long-term memory of color stimuli in the jungle crow (Corvus macrorhynchos).
Bogale, Bezawork Afework; Sugawara, Satoshi; Sakano, Katsuhisa; Tsuda, Sonoko; Sugita, Shoei
2012-03-01
Wild-caught jungle crows (n = 20) were trained to discriminate between color stimuli in a two-alternative discrimination task. Next, crows were tested for long-term memory after 1-, 2-, 3-, 6-, and 10-month retention intervals. This preliminary study showed that jungle crows learn the task and reach a discrimination criterion (80% or more correct choices in two consecutive sessions of ten trials) in a few trials, and some even in a single session. Most, if not all, crows successfully remembered the constantly reinforced visual stimulus during training after all retention intervals. These results suggest that jungle crows have a high retention capacity for learned information, at least after a 10-month retention interval and make no or very few errors. This study is the first to show long-term memory capacity of color stimuli in corvids following a brief training that memory rather than rehearsal was apparent. Memory of visual color information is vital for exploitation of biological resources in crows. We suspect that jungle crows could remember the learned color discrimination task even after a much longer retention interval.
Intonation processing in congenital amusia: discrimination, identification and imitation.
Liu, Fang; Patel, Aniruddh D; Fourcin, Adrian; Stewart, Lauren
2010-06-01
This study investigated whether congenital amusia, a neuro-developmental disorder of musical perception, also has implications for speech intonation processing. In total, 16 British amusics and 16 matched controls completed five intonation perception tasks and two pitch threshold tasks. Compared with controls, amusics showed impaired performance on discrimination, identification and imitation of statements and questions that were characterized primarily by pitch direction differences in the final word. This intonation-processing deficit in amusia was largely associated with a psychophysical pitch direction discrimination deficit. These findings suggest that amusia impacts upon one's language abilities in subtle ways, and support previous evidence that pitch processing in language and music involves shared mechanisms.
Pitch discrimination by ferrets for simple and complex sounds.
Walker, Kerry M M; Schnupp, Jan W H; Hart-Schnupp, Sheelah M B; King, Andrew J; Bizley, Jennifer K
2009-09-01
Although many studies have examined the performance of animals in detecting a frequency change in a sequence of tones, few have measured animals' discrimination of the fundamental frequency (F0) of complex, naturalistic stimuli. Additionally, it is not yet clear if animals perceive the pitch of complex sounds along a continuous, low-to-high scale. Here, four ferrets (Mustela putorius) were trained on a two-alternative forced choice task to discriminate sounds that were higher or lower in F0 than a reference sound using pure tones and artificial vowels as stimuli. Average Weber fractions for ferrets on this task varied from approximately 20% to 80% across references (200-1200 Hz), and these fractions were similar for pure tones and vowels. These thresholds are approximately ten times higher than those typically reported for other mammals on frequency change detection tasks that use go/no-go designs. Naive human listeners outperformed ferrets on the present task, but they showed similar effects of stimulus type and reference F0. These results suggest that while non-human animals can be trained to label complex sounds as high or low in pitch, this task may be much more difficult for animals than simply detecting a frequency change.
Impaired spatial processing in a mouse model of fragile X syndrome.
Ghilan, Mohamed; Bettio, Luis E B; Noonan, Athena; Brocardo, Patricia S; Gil-Mohapel, Joana; Christie, Brian R
2018-05-17
Fragile X syndrome (FXS) is the most common form of inherited intellectual impairment. The Fmr1 -/y mouse model has been previously shown to have deficits in context discrimination tasks but not in the elevated plus-maze. To further characterize this FXS mouse model and determine whether hippocampal-mediated behaviours are affected in these mice, dentate gyrus (DG)-dependent spatial processing and Cornu ammonis 1 (CA1)-dependent temporal order discrimination tasks were evaluated. In agreement with previous findings of long-term potentiation deficits in the DG of this transgenic model of FXS, the results reported here demonstrate that Fmr1 -/y mice perform poorly in the DG-dependent metric change spatial processing task. However, Fmr1 -/y mice did not present deficits in the CA1-dependent temporal order discrimination task, and were able to remember the order in which objects were presented to them to the same extent as their wild-type littermate controls. These data suggest that the previously reported subregional-specific differences in hippocampal synaptic plasticity observed in the Fmr1 -/y mouse model may manifest as selective behavioural deficits in hippocampal-dependent tasks. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
Goehring, Jenny L.; Neff, Donna L.; Baudhuin, Jacquelyn L.; Hughes, Michelle L.
2014-01-01
The first objective of this study was to determine whether adaptive pitch-ranking and electrode-discrimination tasks with cochlear-implant (CI) recipients produce similar results for perceiving intermediate “virtual-channel” pitch percepts using current steering. Previous studies have not examined both behavioral tasks in the same subjects with current steering. A second objective was to determine whether a physiological metric of spatial separation using the electrically evoked compound action potential spread-of-excitation (ECAP SOE) function could predict performance in the behavioral tasks. The metric was the separation index (Σ), defined as the difference in normalized amplitudes between two adjacent ECAP SOE functions, summed across all masker electrodes. Eleven CII or 90 K Advanced Bionics (Valencia, CA) recipients were tested using pairs of electrodes from the basal, middle, and apical portions of the electrode array. The behavioral results, expressed as d′, showed no significant differences across tasks. There was also no significant effect of electrode region for either task. ECAP Σ was not significantly correlated with pitch ranking or electrode discrimination for any of the electrode regions. Therefore, the ECAP separation index is not sensitive enough to predict perceptual resolution of virtual channels. PMID:25480063
Quantitative evaluation of muscle synergy models: a single-trial task decoding approach
Delis, Ioannis; Berret, Bastien; Pozzo, Thierry; Panzeri, Stefano
2013-01-01
Muscle synergies, i.e., invariant coordinated activations of groups of muscles, have been proposed as building blocks that the central nervous system (CNS) uses to construct the patterns of muscle activity utilized for executing movements. Several efficient dimensionality reduction algorithms that extract putative synergies from electromyographic (EMG) signals have been developed. Typically, the quality of synergy decompositions is assessed by computing the Variance Accounted For (VAF). Yet, little is known about the extent to which the combination of those synergies encodes task-discriminating variations of muscle activity in individual trials. To address this question, here we conceive and develop a novel computational framework to evaluate muscle synergy decompositions in task space. Unlike previous methods considering the total variance of muscle patterns (VAF based metrics), our approach focuses on variance discriminating execution of different tasks. The procedure is based on single-trial task decoding from muscle synergy activation features. The task decoding based metric evaluates quantitatively the mapping between synergy recruitment and task identification and automatically determines the minimal number of synergies that captures all the task-discriminating variability in the synergy activations. In this paper, we first validate the method on plausibly simulated EMG datasets. We then show that it can be applied to different types of muscle synergy decomposition and illustrate its applicability to real data by using it for the analysis of EMG recordings during an arm pointing task. We find that time-varying and synchronous synergies with similar number of parameters are equally efficient in task decoding, suggesting that in this experimental paradigm they are equally valid representations of muscle synergies. Overall, these findings stress the effectiveness of the decoding metric in systematically assessing muscle synergy decompositions in task space. PMID:23471195
Delis, Ioannis; Berret, Bastien; Pozzo, Thierry; Panzeri, Stefano
2013-01-01
Muscle synergies have been hypothesized to be the building blocks used by the central nervous system to generate movement. According to this hypothesis, the accomplishment of various motor tasks relies on the ability of the motor system to recruit a small set of synergies on a single-trial basis and combine them in a task-dependent manner. It is conceivable that this requires a fine tuning of the trial-to-trial relationships between the synergy activations. Here we develop an analytical methodology to address the nature and functional role of trial-to-trial correlations between synergy activations, which is designed to help to better understand how these correlations may contribute to generating appropriate motor behavior. The algorithm we propose first divides correlations between muscle synergies into types (noise correlations, quantifying the trial-to-trial covariations of synergy activations at fixed task, and signal correlations, quantifying the similarity of task tuning of the trial-averaged activation coefficients of different synergies), and then uses single-trial methods (task-decoding and information theory) to quantify their overall effect on the task-discriminating information carried by muscle synergy activations. We apply the method to both synchronous and time-varying synergies and exemplify it on electromyographic data recorded during performance of reaching movements in different directions. Our method reveals the robust presence of information-enhancing patterns of signal and noise correlations among pairs of synchronous synergies, and shows that they enhance by 9-15% (depending on the set of tasks) the task-discriminating information provided by the synergy decompositions. We suggest that the proposed methodology could be useful for assessing whether single-trial activations of one synergy depend on activations of other synergies and quantifying the effect of such dependences on the task-to-task differences in muscle activation patterns.
Fear conditioning and extinction in anxiety- and depression-prone persons.
Dibbets, Pauline; van den Broek, Anne; Evers, Elisabeth A T
2015-01-01
Anxiety and depression frequently co-occur and may share similar deficits in the processing of emotional stimuli. High anxiety is associated with a failure in the acquisition and extinction of fear conditioning. Despite the supposed common deficits, no research has been conducted on fear acquisition and extinction in depression. The main aim of the present study was to investigate and compare fear acquisition and extinction in anxiety- and depression-prone participants. Non-clinical anxious, depressive, anxious-depressive and control participants performed a fear discrimination task. During acquisition, the CS+ predicted an aversive event (unconditioned stimulus, US) and the CS- safety (no US). During extinction, the CS+ was no longer followed by the US, rendering it (temporarily) into a safety signal. On each CS participants rated their US expectancy; skin conductance responses (SCRs) were measured throughout. The expectancy scores indicated that high anxiety resulted in less safety learning during acquisition and extinction; no effect of depression was observed. SCRs showed that high-anxiety persons displayed less discrimination learning (CS+ minus CS-) during acquisition than low-anxiety persons. During extinction, high-depression persons demonstrated more discriminative SCR than low-depression persons. The observed discrepancies in response patterns of high-anxiety and -depression persons seem to indicate distinctive information processing of emotional stimuli.
Event-related potential correlates of mindfulness meditation competence
Atchley, Rachel; Klee, Dan; Memmott, Tabatha; Goodrich, Elena; Wahbeh, Helané; Oken, Barry
2016-01-01
Objective This cross-sectional study evaluated event-related potentials (ERPs) across three groups: naïve, novice, and experienced meditators as potential physiological markers of mindfulness meditation competence. Methods Electroencephalographic (EEG) data was collected during a target tone detection task and a Breath Counting task. The Breath Counting task served as the mindfulness meditation condition for the novice and experienced meditator groups. Participants were instructed to respond to target tones with a button press in the first task (Tones), and then ignore the primed tones while breath counting. The primary outcomes were ERP responses to target tones, namely the N2 and P3, as markers of stimulus discrimination and attention, respectively. Results As expected, P3 amplitudes elicited by target tones were attenuated within groups during the Breath Counting task in comparison to the Tones task (p < .001). There was a task by group interaction for P3 (p = .039). Both meditator groups displayed greater change in peak-to-trough P3 amplitudes, with higher amplitudes during the Tones condition and more pronounced reductions in P3 amplitudes during the Breath Counting meditation task in comparison to the naïve group. Conclusions Meditators had stronger P3 amplitude responses to target tones when instructed to attend to the tones, and a greater attenuation of P3 amplitudes when instructed to ignore the same tones during the Breath Counting task. This study introduces the idea of identifying ERP markers as a means of measuring mindfulness meditation competence, and results suggest this may be a valid approach. This information has the potential to improve mindfulness meditation interventions by allowing objective assessment of mindfulness meditation quality. PMID:26850995
Event-related potential correlates of mindfulness meditation competence.
Atchley, R; Klee, D; Memmott, T; Goodrich, E; Wahbeh, H; Oken, B
2016-04-21
This cross-sectional study evaluated event-related potentials (ERPs) across three groups: naïve, novice, and experienced meditators as potential physiological markers of mindfulness meditation competence. Electroencephalographic (EEG) data were collected during a target tone detection task and a Breath Counting task. The Breath Counting task served as the mindfulness meditation condition for the novice and experienced meditator groups. Participants were instructed to respond to target tones with a button press in the first task (Tones), and then ignore the primed tones while Breath Counting. The primary outcomes were ERP responses to target tones, namely the N2 and P3, as markers of stimulus discrimination and attention, respectively. As expected, P3 amplitudes elicited by target tones were attenuated within groups during the Breath Counting task in comparison to the Tones task (p<.001). There was a task by group interaction for P3 (p=.039). Both meditator groups displayed greater change in peak-to-trough P3 amplitudes, with higher amplitudes during the Tones condition and more pronounced reductions in P3 amplitudes during the Breath Counting meditation task in comparison to the naïve group. Meditators had stronger P3 amplitude responses to target tones when instructed to attend to the tones, and a greater attenuation of P3 amplitudes when instructed to ignore the same tones during the Breath Counting task. This study introduces the idea of identifying ERP markers as a means of measuring mindfulness meditation competence, and results suggest this may be a valid approach. This information has the potential to improve mindfulness meditation interventions by allowing objective assessment of mindfulness meditation quality. Published by Elsevier Ltd.
Melcher, Tobias; Gruber, Oliver
2006-11-22
The aim of this fMRI study was to investigate and compare the neural mechanisms of selective attention during two different operationalizations of competition between task-relevant and task-irrelevant information: Stroop-incongruity and oddballs. For this purpose, we employed a Stroop-like oddball task in which subjects responded to the font size of presented word stimuli. Stroop-incongruity was created by (response-)incongruent word information while oddballs comprised low-frequency events in a task-irrelevant, unattended dimension. Thereby, in order to elucidate the influence of processing domain from which competition emanates, oddball conditions were created in two different attribute dimensions, color and word meaning. Either oddball condition was expected to evoke an orienting response, which participants would have to override in order to maintain adequate performance. Incongruent Stroop trials were expected to produce Stroop-interference so that subjects would have to override the predominant tendency to read and respond to word meaning. All competition conditions exhibited significantly prolonged reaction times compared to control trials, demonstrating that our experimental manipulation was indeed effective. fMRI data analyses delineated two discriminative components of competition: one component mainly related to motor preparation and another, primarily attentional component. Regarding the first, Stroop-interference increased activation mainly in regions implicated in motor control or response preparation. Regarding the second, Word-oddballs increased activation in a frontoparietal "attention network". Furthermore, Word-oddballs and Color-oddballs exhibited striking activation overlap mainly in prefrontal regions but also in posterior processing areas. Here, the data emphasized a prominent role of posterior lateral PFC in implementing top-down attentional control.
Czerniawski, Jennifer; Guzowski, John F
2014-09-10
Although it is known that immune system activation can impair cognition, no study to date has linked cognitive deficits during acute neuroinflammation to dysregulation of task-relevant neuronal ensemble activity. Here, we assessed both neural circuit activity and context discrimination memory retrieval, in a within-subjects design, of male rats given systemic administration of saline or lipopolysaccharide (LPS). Rats were exposed over several days to two similar contexts: one of which was paired with weak foot shock and the other was not. After reaching criteria for discriminative freezing, rats were given systemic LPS or saline injection and tested for retrieval of context discrimination 6 h later. Importantly, LPS administration produced an acute neuroinflammatory response in dorsal hippocampus at this time (as assessed by elevation of proinflammatory cytokine mRNA levels) and abolished retrieval of the previously acquired discrimination. The impact of neuroinflammation on hippocampal CA3 and CA1 neural circuit activity was assessed using the Arc/Homer1a cellular analysis of temporal activity by fluorescence in situ hybridization imaging method. Whereas the saline-treated subjects discriminated and had low overlap of hippocampal ensembles activated in the two contexts, LPS-treated subjects did not discriminate and had greater ensemble overlap (i.e., reduced orthogonalization). Additionally, retrieval of standard contextual fear conditioning, which does not require context discrimination, was not affected by pretesting LPS administration. Together, the behavioral and circuit analyses data provide compelling evidence that LPS administration impairs context discrimination memory by disrupting cellular pattern separation processes within the hippocampus, thus linking acute neuroinflammation to disruption of specific neural circuit functions and cognitive impairment. Copyright © 2014 the authors 0270-6474/14/3412470-11$15.00/0.
Czerniawski, Jennifer
2014-01-01
Although it is known that immune system activation can impair cognition, no study to date has linked cognitive deficits during acute neuroinflammation to dysregulation of task-relevant neuronal ensemble activity. Here, we assessed both neural circuit activity and context discrimination memory retrieval, in a within-subjects design, of male rats given systemic administration of saline or lipopolysaccharide (LPS). Rats were exposed over several days to two similar contexts: one of which was paired with weak foot shock and the other was not. After reaching criteria for discriminative freezing, rats were given systemic LPS or saline injection and tested for retrieval of context discrimination 6 h later. Importantly, LPS administration produced an acute neuroinflammatory response in dorsal hippocampus at this time (as assessed by elevation of proinflammatory cytokine mRNA levels) and abolished retrieval of the previously acquired discrimination. The impact of neuroinflammation on hippocampal CA3 and CA1 neural circuit activity was assessed using the Arc/Homer1a cellular analysis of temporal activity by fluorescence in situ hybridization imaging method. Whereas the saline-treated subjects discriminated and had low overlap of hippocampal ensembles activated in the two contexts, LPS-treated subjects did not discriminate and had greater ensemble overlap (i.e., reduced orthogonalization). Additionally, retrieval of standard contextual fear conditioning, which does not require context discrimination, was not affected by pretesting LPS administration. Together, the behavioral and circuit analyses data provide compelling evidence that LPS administration impairs context discrimination memory by disrupting cellular pattern separation processes within the hippocampus, thus linking acute neuroinflammation to disruption of specific neural circuit functions and cognitive impairment. PMID:25209285
Menezes, Carolina Baptista; Buratto, Luciano G.; Erthal, Fátima; Pereira, Mirtes G.; Bizarro, Lisiane
2013-01-01
Self-regulatory trainings can be an effective complementary treatment for mental health disorders. We investigated the effects of a six-week-focused meditation training on emotion and attention regulation in undergraduates randomly allocated to a meditation, a relaxation, or a wait-list control group. Assessment comprised a discrimination task that investigates the relationship between attentional load and emotional processing and self-report measures. For emotion regulation, results showed greater reduction in emotional interference in the low attentional load condition in meditators, particularly compared to relaxation. Only meditators presented a significant association between amount of weekly practice and the reduction in emotion interference in the task and significantly reduced image ratings of negative valence and arousal, perceived anxiety and difficulty during the task, and state and trait-anxiety. For attention regulation, response bias during the task was analyzed through signal detection theory. After training, meditation and relaxation significantly reduced bias in the high attentional load condition. Importantly, there was a dose-response effect on general bias: the lowest in meditation, increasing linearly across relaxation and wait-list. Only meditators reduced omissions in a concentrated attention test. Focused meditation seems to be an effective training for emotion and attention regulation and an alternative for treatments in the mental health context. PMID:23935694
Concurrent development of facial identity and expression discrimination.
Dalrymple, Kirsten A; Visconti di Oleggio Castello, Matteo; Elison, Jed T; Gobbini, M Ida
2017-01-01
Facial identity and facial expression processing both appear to follow a protracted developmental trajectory, yet these trajectories have been studied independently and have not been directly compared. Here we investigated whether these processes develop at the same or different rates using matched identity and expression discrimination tasks. The Identity task begins with a target face that is a morph between two identities (Identity A/Identity B). After a brief delay, the target face is replaced by two choice faces: 100% Identity A and 100% Identity B. Children 5-12-years-old were asked to pick the choice face that is most similar to the target identity. The Expression task is matched in format and difficulty to the Identity task, except the targets are morphs between two expressions (Angry/Happy, or Disgust/Surprise). The same children were asked to pick the choice face with the expression that is most similar to the target expression. There were significant effects of age, with performance improving (becoming more accurate and faster) on both tasks with increasing age. Accuracy and reaction times were not significantly different across tasks and there was no significant Age x Task interaction. Thus, facial identity and facial expression discrimination appear to develop at a similar rate, with comparable improvement on both tasks from age five to twelve. Because our tasks are so closely matched in format and difficulty, they may prove useful for testing face identity and face expression processing in special populations, such as autism or prosopagnosia, where one of these abilities might be impaired.
Estimating endogenous changes in task performance from EEG
Touryan, Jon; Apker, Gregory; Lance, Brent J.; Kerick, Scott E.; Ries, Anthony J.; McDowell, Kaleb
2014-01-01
Brain wave activity is known to correlate with decrements in behavioral performance as individuals enter states of fatigue, boredom, or low alertness.Many BCI technologies are adversely affected by these changes in user state, limiting their application and constraining their use to relatively short temporal epochs where behavioral performance is likely to be stable. Incorporating a passive BCI that detects when the user is performing poorly at a primary task, and adapts accordingly may prove to increase overall user performance. Here, we explore the potential for extending an established method to generate continuous estimates of behavioral performance from ongoing neural activity; evaluating the extended method by applying it to the original task domain, simulated driving; and generalizing the method by applying it to a BCI-relevant perceptual discrimination task. Specifically, we used EEG log power spectra and sequential forward floating selection (SFFS) to estimate endogenous changes in behavior in both a simulated driving task and a perceptual discrimination task. For the driving task the average correlation coefficient between the actual and estimated lane deviation was 0.37 ± 0.22 (μ ± σ). For the perceptual discrimination task we generated estimates of accuracy, reaction time, and button press duration for each participant. The correlation coefficients between the actual and estimated behavior were similar for these three metrics (accuracy = 0.25 ± 0.37, reaction time = 0.33 ± 0.23, button press duration = 0.36 ± 0.30). These findings illustrate the potential for modeling time-on-task decrements in performance from concurrent measures of neural activity. PMID:24994968
Demonstration of Einstein-Podolsky-Rosen steering with enhanced subchannel discrimination
NASA Astrophysics Data System (ADS)
Sun, Kai; Ye, Xiang-Jun; Xiao, Ya; Xu, Xiao-Ye; Wu, Yu-Chun; Xu, Jin-Shi; Chen, Jing-Ling; Li, Chuan-Feng; Guo, Guang-Can
2018-03-01
Einstein-Podolsky-Rosen (EPR) steering describes a quantum nonlocal phenomenon in which one party can nonlocally affect the other's state through local measurements. It reveals an additional concept of quantum non-locality, which stands between quantum entanglement and Bell nonlocality. Recently, a quantum information task named as subchannel discrimination (SD) provides a necessary and sufficient characterization of EPR steering. The success probability of SD using steerable states is higher than using any unsteerable states, even when they are entangled. However, the detailed construction of such subchannels and the experimental realization of the corresponding task are still technologically challenging. In this work, we designed a feasible collection of subchannels for a quantum channel and experimentally demonstrated the corresponding SD task where the probabilities of correct discrimination are clearly enhanced by exploiting steerable states. Our results provide a concrete example to operationally demonstrate EPR steering and shine a new light on the potential application of EPR steering.
Nimodipine alters acquisition of a visual discrimination task in chicks.
Deyo, R; Panksepp, J; Conner, R L
1990-03-01
Chicks 5 days old received intraperitoneal injections of nimodipine 30 min before training on either a visual discrimination task (0, 0.5, 1.0, or 5.0 mg/kg) or a test of separation-induced distress vocalizations (0, 0.5, or 2.5 mg/kg). Chicks receiving 1.0 mg/kg nimodipine made significantly fewer visual discrimination errors than vehicle controls by trials 41-60, but did not differ from controls 24 h later. Chicks in the 5 mg/kg group made significantly more errors when compared to controls both during acquisition of the task and during retention. Nimodipine did not alter separation-induced distress vocalizations at any of the doses tested, suggesting that nimodipine's effects on learning cannot be attributed to a reduction in separation distress. These data indicate that nimodipine's facilitation of learning in young subjects is dose dependent, but nimodipine failed to enhance retention.
Kamitani, Toshiaki; Kuroiwa, Yoshiyuki
2009-01-01
Recent studies demonstrated an altered P3 component and prolonged reaction time during the visual discrimination tasks in multiple system atrophy (MSA). In MSA, however, little is known about the N2 component which is known to be closely related to the visual discrimination process. We therefore compared the N2 component as well as the N1 and P3 components in 17 MSA patients with these components in 10 normal controls, by using a visual selective attention task to color or to shape. While the P3 in MSA was significantly delayed in selective attention to shape, the N2 in MSA was significantly delayed in selective attention to color. N1 was normally preserved both in attention to color and in attention to shape. Our electrophysiological results indicate that the color discrimination process during selective attention is impaired in MSA.
Tat, Michelle J; Soonsawat, Anothai; Nagle, Corinne B; Deason, Rebecca G; O'Connor, Maureen K; Budson, Andrew E
2016-11-01
Patients with Alzheimer's disease (AD) dementia exhibit high rates of memory distortions in addition to their impairments in episodic memory. Several investigations have demonstrated that when healthy individuals (young and old) engaged in an encoding strategy that emphasized the uniqueness of study items (an item-specific encoding strategy), they were able to improve their discrimination between old items and unstudied critical lure items in a false memory task. In the present study we examined if patients with AD could also improve their memory discrimination when engaging in an item-specific encoding strategy. Healthy older adult controls, patients with mild cognitive impairment (MCI) due to AD, and patients with mild AD dementia were asked to study lists of categorized words. In the Item-Specific condition, participants were asked to provide a unique detail or personal experience with each study item. In the Relational condition, they were asked to determine how each item in the list was related to the others. To assess the influence of both strategies, recall and recognition memory tests were administered. Overall, both patient groups exhibited poorer memory in both recall and recognition tests compared to controls. In terms of recognition, healthy older controls and patients with MCI due to AD exhibited improved memory discrimination in the Item-Specific condition compared to the Relational condition, whereas patients with AD dementia did not. We speculate that patients with MCI due to AD use intact frontal networks to effectively engage in this strategy. Published by Elsevier Inc.
Tat, Michelle J.; Soonsawat, Anothai; Nagle, Corinne B.; Deason, Rebecca G.; O’Connor, Maureen K.; Budson, Andrew E.
2018-01-01
Patients with Alzheimer’s disease (AD) dementia exhibit high rates of memory distortions in addition to their impairments in episodic memory. Several investigations have demonstrated that when healthy individuals (young and old) engaged in an encoding strategy that emphasized the uniqueness of study items (an item-specific encoding strategy), they were able to improve their discrimination between old items and unstudied critical lure items in a false memory task. In the present study we examined if patients with AD could also improve their memory discrimination when engaging in an item-specific encoding strategy. Healthy older adult controls, patients with mild cognitive impairment (MCI) due to AD, and patients with mild AD dementia were asked to study lists of categorized words. In the Item-Specific condition, participants were asked to provide a unique detail or personal experience with each study item. In the Relational condition, they were asked to determine how each item in the list was related to the others. To assess the influence of both strategies, recall and recognition memory tests were administered. Overall, both patient groups exhibited poorer memory in both recall and recognition tests compared to controls. In terms of recognition, healthy older controls and patients with MCI due to AD exhibited improved memory discrimination in the Item-Specific condition compared to the Relational condition, whereas patients with AD dementia did not. We speculate that patients with MCI due to AD use intact frontal networks to effectively engage in this strategy. PMID:27643951
Lu, Shuang; Wayland, Ratree; Kaan, Edith
2015-10-22
The present study recorded both behavioral data and event-related brain potentials to examine the effectiveness of a perception-only training and a perception-plus-production training procedure on the intentional and unintentional perception of lexical tone by native English listeners. In the behavioral task, both the perception-only and the perception-plus-production groups improved on the tone discrimination abilities after the training session. Moreover, the participants in both groups generalized the improvements gained through the trained stimuli to the untrained stimuli. In the ERP task, the Mismatch Negativity was smaller in the post-training task than in the pre-training task. However, the two training groups did not differ in tone processing at the intentional or unintentional level after training. These results suggest that the employment of the motor system does not specifically benefit the tone perceptual skills. Furthermore, the present study investigated whether some tone pairs are more easily confused than others by native English listeners, and whether the order of tone presentation influences non-native tone discrimination. In the behavioral task, Tone2-Tone1 (rising-level) and Tone2-Tone4 (rising-falling) were the most difficult tone pairs, while Tone1-Tone2 and Tone4-Tone2 were the easiest tone pairs, even though they involved the same tone contrasts respectively. In the ERP task, the native English listeners had good discrimination when Tone2 and Tone4 were embedded in strings of Tone1, while poor discrimination when Tone1 was inserted in the context of Tone2 or Tone4. These asymmetries in tone perception might be attributed to the interference of native intonation system and can be altered by training. Copyright © 2015 Elsevier B.V. All rights reserved.
The role of Broca's area in speech perception: evidence from aphasia revisited.
Hickok, Gregory; Costanzo, Maddalena; Capasso, Rita; Miceli, Gabriele
2011-12-01
Motor theories of speech perception have been re-vitalized as a consequence of the discovery of mirror neurons. Some authors have even promoted a strong version of the motor theory, arguing that the motor speech system is critical for perception. Part of the evidence that is cited in favor of this claim is the observation from the early 1980s that individuals with Broca's aphasia, and therefore inferred damage to Broca's area, can have deficits in speech sound discrimination. Here we re-examine this issue in 24 patients with radiologically confirmed lesions to Broca's area and various degrees of associated non-fluent speech production. Patients performed two same-different discrimination tasks involving pairs of CV syllables, one in which both CVs were presented auditorily, and the other in which one syllable was auditorily presented and the other visually presented as an orthographic form; word comprehension was also assessed using word-to-picture matching tasks in both auditory and visual forms. Discrimination performance on the all-auditory task was four standard deviations above chance, as measured using d', and was unrelated to the degree of non-fluency in the patients' speech production. Performance on the auditory-visual task, however, was worse than, and not correlated with, the all-auditory task. The auditory-visual task was related to the degree of speech non-fluency. Word comprehension was at ceiling for the auditory version (97% accuracy) and near ceiling for the orthographic version (90% accuracy). We conclude that the motor speech system is not necessary for speech perception as measured both by discrimination and comprehension paradigms, but may play a role in orthographic decoding or in auditory-visual matching of phonological forms. 2011 Elsevier Inc. All rights reserved.
LaRoche, Ronee B; Morgan, Russell E
2007-01-01
Over the past two decades the use of selective serotonin reuptake inhibitors (SSRIs) to treat behavioral disorders in children has grown rapidly, despite little evidence regarding the safety and efficacy of these drugs for use in children. Utilizing a rat model, this study investigated whether post-weaning exposure to a prototype SSRI, fluoxetine (FLX), influenced performance on visual tasks designed to measure discrimination learning, sustained attention, inhibitory control, and reaction time. Additionally, sex differences in response to varying doses of fluoxetine were examined. In Experiment 1, female rats were administered (P.O.) fluoxetine (10 mg/kg ) or vehicle (apple juice) from PND 25 thru PND 49. After a 14 day washout period, subjects were trained to perform a simultaneous visual discrimination task. Subjects were then tested for 20 sessions on a visual attention task that consisted of varied stimulus delays (0, 3, 6, or 9 s) and cue durations (200, 400, or 700 ms). In Experiment 2, both male and female Long-Evans rats (24 F, 24 M) were administered fluoxetine (0, 5, 10, or 15 mg/kg) then tested in the same visual tasks used in Experiment 1, with the addition of open-field and elevated plus-maze testing. Few FLX-related differences were seen in the visual discrimination, open field, or plus-maze tasks. However, results from the visual attention task indicated a dose-dependent reduction in the performance of fluoxetine-treated males, whereas fluoxetine-treated females tended to improve over baseline. These findings indicate that enduring, behaviorally-relevant alterations of the CNS can occur following pharmacological manipulation of the serotonin system during postnatal development.
Age-related emotional bias in processing two emotionally valenced tasks.
Allen, Philip A; Lien, Mei-Ching; Jardin, Elliott
2017-01-01
Previous studies suggest that older adults process positive emotions more efficiently than negative emotions, whereas younger adults show the reverse effect. We examined whether this age-related difference in emotional bias still occurs when attention is engaged in two emotional tasks. We used a psychological refractory period paradigm and varied the emotional valence of Task 1 and Task 2. In both experiments, Task 1 was emotional face discrimination (happy vs. angry faces) and Task 2 was sound discrimination (laugh, punch, vs. cork pop in Experiment 1 and laugh vs. scream in Experiment 2). The backward emotional correspondence effect for positively and negatively valenced Task 2 on Task 1 was measured. In both experiments, younger adults showed a backward correspondence effect from a negatively valenced Task 2, suggesting parallel processing of negatively valenced stimuli. Older adults showed similar negativity bias in Experiment 2 with a more salient negative sound ("scream" relative to "punch"). These results are consistent with an arousal-bias competition model [Mather and Sutherland (Perspectives in Psychological Sciences 6:114-133, 2011)], suggesting that emotional arousal modulates top-down attentional control settings (emotional regulation) with age.
Dunlop, William A.; Enticott, Peter G.; Rajan, Ramesh
2016-01-01
Autism Spectrum Disorder (ASD), characterized by impaired communication skills and repetitive behaviors, can also result in differences in sensory perception. Individuals with ASD often perform normally in simple auditory tasks but poorly compared to typically developed (TD) individuals on complex auditory tasks like discriminating speech from complex background noise. A common trait of individuals with ASD is hypersensitivity to auditory stimulation. No studies to our knowledge consider whether hypersensitivity to sounds is related to differences in speech-in-noise discrimination. We provide novel evidence that individuals with high-functioning ASD show poor performance compared to TD individuals in a speech-in-noise discrimination task with an attentionally demanding background noise, but not in a purely energetic noise. Further, we demonstrate in our small sample that speech-hypersensitivity does not appear to predict performance in the speech-in-noise task. The findings support the argument that an attentional deficit, rather than a perceptual deficit, affects the ability of individuals with ASD to discriminate speech from background noise. Finally, we piloted a novel questionnaire that measures difficulty hearing in noisy environments, and sensitivity to non-verbal and verbal sounds. Psychometric analysis using 128 TD participants provided novel evidence for a difference in sensitivity to non-verbal and verbal sounds, and these findings were reinforced by participants with ASD who also completed the questionnaire. The study was limited by a small and high-functioning sample of participants with ASD. Future work could test larger sample sizes and include lower-functioning ASD participants. PMID:27555814
When Less Is More: Poor Discrimination but Good Colour Memory in Autism
ERIC Educational Resources Information Center
Heaton, Pamela; Ludlow, Amanda; Roberson, Debi
2008-01-01
In two experiments children with autism and two groups of controls matched for either chronological or non-verbal mental age were tested on tasks of colour discrimination and memory. The results from experiment 1 showed significantly poorer colour discrimination in children with autism in comparison to typically developing chronological age…
Speech Discrimination in Preschool Children: A Comparison of Two Tasks.
ERIC Educational Resources Information Center
Menary, Susan; And Others
1982-01-01
Eleven four-year-old children were tested for discrimination of the following word pairs: rope/robe, seat/seed, pick/pig, ice/eyes, and mouse/mouth. All word pairs were found to be discriminable, but performance on seat/seed and mouse/mouth was inferior to that of the other word pairs. (Author)
A multiple maximum scatter difference discriminant criterion for facial feature extraction.
Song, Fengxi; Zhang, David; Mei, Dayong; Guo, Zhongwei
2007-12-01
Maximum scatter difference (MSD) discriminant criterion was a recently presented binary discriminant criterion for pattern classification that utilizes the generalized scatter difference rather than the generalized Rayleigh quotient as a class separability measure, thereby avoiding the singularity problem when addressing small-sample-size problems. MSD classifiers based on this criterion have been quite effective on face-recognition tasks, but as they are binary classifiers, they are not as efficient on large-scale classification tasks. To address the problem, this paper generalizes the classification-oriented binary criterion to its multiple counterpart--multiple MSD (MMSD) discriminant criterion for facial feature extraction. The MMSD feature-extraction method, which is based on this novel discriminant criterion, is a new subspace-based feature-extraction method. Unlike most other subspace-based feature-extraction methods, the MMSD computes its discriminant vectors from both the range of the between-class scatter matrix and the null space of the within-class scatter matrix. The MMSD is theoretically elegant and easy to calculate. Extensive experimental studies conducted on the benchmark database, FERET, show that the MMSD out-performs state-of-the-art facial feature-extraction methods such as null space method, direct linear discriminant analysis (LDA), eigenface, Fisherface, and complete LDA.
The impact of negative affect on reality discrimination.
Smailes, David; Meins, Elizabeth; Fernyhough, Charles
2014-09-01
People who experience auditory hallucinations tend to show weak reality discrimination skills, so that they misattribute internal, self-generated events to an external, non-self source. We examined whether inducing negative affect in healthy young adults would increase their tendency to make external misattributions on a reality discrimination task. Participants (N = 54) received one of three mood inductions (one positive, two negative) and then performed an auditory signal detection task to assess reality discrimination. Participants who received either of the two negative inductions made more false alarms, but not more hits, than participants who received the neutral induction, indicating that negative affect makes participants more likely to misattribute internal, self-generated events to an external, non-self source. These findings are drawn from an analogue sample, and research that examines whether negative affect also impairs reality discrimination in patients who experience auditory hallucinations is required. These findings show that negative affect disrupts reality discrimination and suggest one way in which negative affect may lead to hallucinatory experiences. Copyright © 2014 Elsevier Ltd. All rights reserved.
Inverted-U Function Relating Cortical Plasticity and Task Difficulty
Engineer, Navzer D.; Engineer, Crystal T.; Reed, Amanda C.; Pandya, Pritesh K.; Jakkamsetti, Vikram; Moucha, Raluca; Kilgard, Michael P.
2012-01-01
Many psychological and physiological studies with simple stimuli have suggested that perceptual learning specifically enhances the response of primary sensory cortex to task-relevant stimuli. The aim of this study was to determine whether auditory discrimination training on complex tasks enhances primary auditory cortex responses to a target sequence relative to non-target and novel sequences. We collected responses from more than 2,000 sites in 31 rats trained on one of six discrimination tasks that differed primarily in the similarity of the target and distractor sequences. Unlike training with simple stimuli, long-term training with complex stimuli did not generate target specific enhancement in any of the groups. Instead, cortical receptive field size decreased, latency decreased, and paired pulse depression decreased in rats trained on the tasks of intermediate difficulty while tasks that were too easy or too difficult either did not alter or degraded cortical responses. These results suggest an inverted-U function relating neural plasticity and task difficulty. PMID:22249158
NASA Technical Reports Server (NTRS)
Carrasco, M.; Penpeci-Talgar, C.; Eckstein, M.
2000-01-01
This study is the first to report the benefits of spatial covert attention on contrast sensitivity in a wide range of spatial frequencies when a target alone was presented in the absence of a local post-mask. We used a peripheral precue (a small circle indicating the target location) to explore the effects of covert spatial attention on contrast sensitivity as assessed by orientation discrimination (Experiments 1-4), detection (Experiments 2 and 3) and localization (Experiment 3) tasks. In all four experiments the target (a Gabor patch ranging in spatial frequency from 0.5 to 10 cpd) was presented alone in one of eight possible locations equidistant from fixation. Contrast sensitivity was consistently higher for peripherally- than for neutrally-cued trials, even though we eliminated variables (distracters, global masks, local masks, and location uncertainty) that are known to contribute to an external noise reduction explanation of attention. When observers were presented with vertical and horizontal Gabor patches an external noise reduction signal detection model accounted for the cueing benefit in a discrimination task (Experiment 1). However, such a model could not account for this benefit when location uncertainty was reduced, either by: (a) Increasing overall performance level (Experiment 2); (b) increasing stimulus contrast to enable fine discriminations of slightly tilted suprathreshold stimuli (Experiment 3); and (c) presenting a local post-mask (Experiment 4). Given that attentional benefits occurred under conditions that exclude all variables predicted by the external noise reduction model, these results support the signal enhancement model of attention.
Sad and happy emotion discrimination in music by children with cochlear implants.
Hopyan, Talar; Manno, Francis A M; Papsin, Blake C; Gordon, Karen A
2016-01-01
Children using cochlear implants (CIs) develop speech perception but have difficulty perceiving complex acoustic signals. Mode and tempo are the two components used to recognize emotion in music. Based on CI limitations, we hypothesized children using CIs would have impaired perception of mode cues relative to their normal hearing peers and would rely more heavily on tempo cues to distinguish happy from sad music. Study participants were children with 13 right CIs and 3 left CIs (M = 12.7, SD = 2.6 years) and 16 normal hearing peers. Participants judged 96 brief piano excerpts from the classical genre as happy or sad in a forced-choice task. Music was randomly presented with alterations of transposed mode, tempo, or both. When music was presented in original form, children using CIs discriminated between happy and sad music with accuracy well above chance levels (87.5%) but significantly below those with normal hearing (98%). The CI group primarily used tempo cues, whereas normal hearing children relied more on mode cues. Transposing both mode and tempo cues in the same musical excerpt obliterated cues to emotion for both groups. Children using CIs showed significantly slower response times across all conditions. Children using CIs use tempo cues to discriminate happy versus sad music reflecting a very different hearing strategy than their normal hearing peers. Slower reaction times by children using CIs indicate that they found the task more difficult and support the possibility that they require different strategies to process emotion in music than normal.
Hierarchical Learning of Tree Classifiers for Large-Scale Plant Species Identification.
Fan, Jianping; Zhou, Ning; Peng, Jinye; Gao, Ling
2015-11-01
In this paper, a hierarchical multi-task structural learning algorithm is developed to support large-scale plant species identification, where a visual tree is constructed for organizing large numbers of plant species in a coarse-to-fine fashion and determining the inter-related learning tasks automatically. For a given parent node on the visual tree, it contains a set of sibling coarse-grained categories of plant species or sibling fine-grained plant species, and a multi-task structural learning algorithm is developed to train their inter-related classifiers jointly for enhancing their discrimination power. The inter-level relationship constraint, e.g., a plant image must first be assigned to a parent node (high-level non-leaf node) correctly if it can further be assigned to the most relevant child node (low-level non-leaf node or leaf node) on the visual tree, is formally defined and leveraged to learn more discriminative tree classifiers over the visual tree. Our experimental results have demonstrated the effectiveness of our hierarchical multi-task structural learning algorithm on training more discriminative tree classifiers for large-scale plant species identification.
Age- and sex-related disturbance in a battery of sensorimotor and cognitive tasks in Kunming mice.
Chen, Gui-Hai; Wang, Yue-Ju; Zhang, Li-Qun; Zhou, Jiang-Ning
2004-12-15
A battery of tasks, i.e. beam walking, open field, tightrope, radial six-arm water maze (RAWM), novel-object recognition and olfactory discrimination, was used to determine whether there was age- and sex-related memory deterioration in Kunming (KM) mice, and whether these tasks are independent or correlated with each other. Two age groups of KM mice were used: a younger group (7-8 months old, 12 males and 11 females) and an older group (17-18 months old, 12 males and 12 females). The results showed that the spatial learning ability and memory in the RAWM were lower in older female KM mice relative to younger female mice and older male mice. Consistent with this, in the novel-object recognition task, a non-spatial cognitive task, older female mice but not older male mice had impairment of short-term memory. In olfactory discrimination, another non-spatial task, the older mice retained this ability. Interestingly, female mice performed better than males, especially in the younger group. The older females exhibited sensorimotor impairment in the tightrope task and low locomotor activity in the open-field task. Moreover, older mice spent a longer time in the peripheral squares of the open-field than younger ones. The non-spatial cognitive performance in the novel-object recognition and olfactory discrimination tasks was related to performance in the open-field, whereas the spatial cognitive performance in the RAWM was not related to performance in any of the three sensorimotor tasks. These results suggest that disturbance of spatial learning and memory, as well as selective impairment of non-spatial learning and memory, existed in older female KM mice.
Kelly, Debbie M; Cook, Robert G
2003-06-01
Three experiment examined the role of contextual information during line orientation and line position discriminations by pigeons (Columba livia) and humans (Homo sapiens). Experiment 1 tested pigeons' performance with these stimuli in a target localization task using texture displays. Experiments 2 and 3 tested pigeons and humans, respectively, with small and large variations of these stimuli in a same-different task. Humans showed a configural superiority effect when tested with displays constructed from large elements but not when tested with the smaller, more densely packed texture displays. The pigeons, in contrast, exhibited a configural inferiority effect when required to discriminate line orientation, regardless of stimulus size. These contrasting results suggest a species difference in the perceptionand use of features and contextual information in the discrimination of line information.
Neural activity in cortical area V4 underlies fine disparity discrimination.
Shiozaki, Hiroshi M; Tanabe, Seiji; Doi, Takahiro; Fujita, Ichiro
2012-03-14
Primates are capable of discriminating depth with remarkable precision using binocular disparity. Neurons in area V4 are selective for relative disparity, which is the crucial visual cue for discrimination of fine disparity. Here, we investigated the contribution of V4 neurons to fine disparity discrimination. Monkeys discriminated whether the center disk of a dynamic random-dot stereogram was in front of or behind its surrounding annulus. We first behaviorally tested the reference frame of the disparity representation used for performing this task. After learning the task with a set of surround disparities, the monkey generalized its responses to untrained surround disparities, indicating that the perceptual decisions were generated from a disparity representation in a relative frame of reference. We then recorded single-unit responses from V4 while the monkeys performed the task. On average, neuronal thresholds were higher than the behavioral thresholds. The most sensitive neurons reached thresholds as low as the psychophysical thresholds. For subthreshold disparities, the monkeys made frequent errors. The variable decisions were predictable from the fluctuation in the neuronal responses. The predictions were based on a decision model in which each V4 neuron transmits the evidence for the disparity it prefers. We finally altered the disparity representation artificially by means of microstimulation to V4. The decisions were systematically biased when microstimulation boosted the V4 responses. The bias was toward the direction predicted from the decision model. We suggest that disparity signals carried by V4 neurons underlie precise discrimination of fine stereoscopic depth.