Tsuchiya, Shunsuke; Higashide, Tomomi; Toida, Kazunori; Sugiyama, Kazuhisa
2017-07-01
To investigate whether the elimination of β1- and β2-adrenergic receptors alters the diurnal intraocular pressure (IOP) rhythm in mice. β1-/β2-adrenergic receptor double-knockout and C57BL/6J mice were anesthetized intraperitoneally, with their IOPs measured via microneedle method. After entrainment to a 12-h light-dark (LD) cycle (light phase 6:00-18:00), IOPs were measured every 3 h from 9:00 to 24:00 (group 1, β1-/β2-adrenergic receptor double-knockout mice, n = 11; C57BL/6J, n = 15). The IOP measurements at 15:00 and 24:00 under a 12-h LD cycle and in the constant darkness (1 day and 8 days after exposure to darkness, respectively) were performed in another group of β1-/β2-adrenergic receptor double-knockout mice (group 2, n = 12). IOP variance throughout the day and mean IOP differences among time points were evaluated using a linear mixed model. β1-/β2-adrenergic receptor double-knockout and C57BL/6J mice showed biphasic IOP curves, low during the light phase and high during the dark phase; the fluctuation was significant (P < 0.001). The peak IOP (18.7 ± 1.4 mmHg) occurred at 24:00 and the trough IOP (13.5 ± 1.5 mmHg) occurred at 15:00 in β1-/β2-adrenergic receptor double-knockout mice group. IOP curves of β1-/β2-adrenergic receptor double-knockout and C57BL/6J were nearly parallel, and the IOPs of β1-/β2-adrenergic receptor double-knockout mice were significantly higher than those of C57BL/6J mice (P < 0.001). Under constant dark (DD) conditions, IOP at 24:00 (18.1 ± 1.5 mmHg) was significantly higher than that at 15:00 (13.3 ± 1.2 mmHg) (P < 0.001). The transition from the LD cycle to DD environment produced no significant change in IOP (P = 0.728). Elimination of both β1- and β2-adrenergic receptors did not disturb the biphasic diurnal IOP rhythm in mice.
Soleimani, Manoocher; Barone, Sharon; Xu, Jie; Shull, Gary E; Siddiqui, Faraz; Zahedi, Kamyar; Amlal, Hassane
2012-08-14
The Na-Cl cotransporter (NCC), which is the target of inhibition by thiazides, is located in close proximity to the chloride-absorbing transporter pendrin in the kidney distal nephron. Single deletion of pendrin or NCC does not cause salt wasting or excessive diuresis under basal conditions, raising the possibility that these transporters are predominantly active during salt depletion or in response to excess aldosterone. We hypothesized that pendrin and NCC compensate for loss of function of the other under basal conditions, thereby masking the role that each plays in salt absorption. To test our hypothesis, we generated pendrin/NCC double knockout (KO) mice by crossing pendrin KO mice with NCC KO mice. Pendrin/NCC double KO mice displayed severe salt wasting and sharp increase in urine output under basal conditions. As a result, animals developed profound volume depletion, renal failure, and metabolic alkalosis without hypokalemia, which were all corrected with salt replacement. We propose that the combined inhibition of pendrin and NCC can provide a strong diuretic regimen without causing hypokalemia for patients with fluid overload, including patients with congestive heart failure, nephrotic syndrome, diuretic resistance, or generalized edema.
Soleimani, Manoocher; Barone, Sharon; Xu, Jie; Shull, Gary E.; Siddiqui, Faraz; Zahedi, Kamyar; Amlal, Hassane
2012-01-01
The Na-Cl cotransporter (NCC), which is the target of inhibition by thiazides, is located in close proximity to the chloride-absorbing transporter pendrin in the kidney distal nephron. Single deletion of pendrin or NCC does not cause salt wasting or excessive diuresis under basal conditions, raising the possibility that these transporters are predominantly active during salt depletion or in response to excess aldosterone. We hypothesized that pendrin and NCC compensate for loss of function of the other under basal conditions, thereby masking the role that each plays in salt absorption. To test our hypothesis, we generated pendrin/NCC double knockout (KO) mice by crossing pendrin KO mice with NCC KO mice. Pendrin/NCC double KO mice displayed severe salt wasting and sharp increase in urine output under basal conditions. As a result, animals developed profound volume depletion, renal failure, and metabolic alkalosis without hypokalemia, which were all corrected with salt replacement. We propose that the combined inhibition of pendrin and NCC can provide a strong diuretic regimen without causing hypokalemia for patients with fluid overload, including patients with congestive heart failure, nephrotic syndrome, diuretic resistance, or generalized edema. PMID:22847418
Furnari, Melody A; Jobes, Michelle L; Nekrasova, Tanya; Minden, Audrey; Wagner, George C
2014-04-01
PAK5 and PAK6 are protein kinases highly expressed in the brain. Previously, we observed that Pak6 knockout mice gained significantly more weight during development than Pak5 knockout mice as well as wild-type controls and double-knockout mice lacking both Pak5 and Pak6. In this study, we assessed the effects of exercise on food intake and weight gain of these mice as well as their sensitivity to the stimulant effects of amphetamine. Mice of each genotype were placed in cages with free access to run wheel exercise or in cages without run wheels for a total of 74 days. Food and fluid intake as well as body weight of each mouse were measured on a weekly basis. Finally, mice were given a high dose of amphetamine and activity levels were observed immediately thereafter for 90 minutes. Brains and testes of mice were assayed for protein levels of the estrogen alpha and progesterone receptors. While run wheel mice consumed significantly more food, they weighed less than non-run wheel mice. In addition, although Pak6 knockout mice consumed the same amount of food as wild-type mice, they were significantly heavier regardless of run wheel condition. Pak5 knockout mice were found to be more active than other genotypes after amphetamine treatment. Finally, protein levels of the progesterone and estrogen alpha receptors were altered in brain and testes of the Pak6 knockout mice. Collectively, these data suggest that PAK6 play a role in weight gain unrelated to exercise and caloric intake and that Pak5 knockout mice are more sensitive to the stimulant effects of amphetamine.
Morphological observation of the stria vascularis in midkine and pleiotrophin knockout mice.
Sone, Michihiko; Muramatsu, Hisako; Muramatsu, Takashi; Nakashima, Tsutomu
2011-02-01
Midkine and Pleiotrophin are low molecular weight basic proteins with closely related structures and serve as growth/differentiation factors. They have been reported to be expressed in the cochlea during the embryonic and perinatal periods. In the present study, we focused on the roles of midkine and pleiotrophin in the stria vascularis and investigated morphological changes using mice deficient in these genes. Midkine knockout, pleiotrophin knockout, and double knockout mice were used and compared to wild-type mice. Auditory brain stem responses (ABRs) and cochlear blood flows were measured in each type of mice. Pathological changes in the stria vascularis were examined by light microscopy, including immunohistochemical staining with anti-Kir4.1 antibody, and electron microscopy. Hearing thresholds examined by ABRs were significantly higher in midkine knockout and pleiotrophin knockout mice than in wild-type mice. Double knockout mice showed higher thresholds compared to midkine knockout and pleiotrophin knockout mice. Blood flow in the lateral walls did not significantly differ and light microscopy examination showed an almost normal appearance of the stria vascularis in these knockout mice. However, the expression of Kir4.1 was weak in the knockout mice and severe vacuolar degeneration was observed by electron microscopy in the intermediate cells of the double knockout mice. The present study demonstrates that midkine and pleiotrophin play some roles for the morphological maintenance of intermediate cell in the stria vascularis. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Ohnishi, Mutsuko; Nakatani, Teruyo; Lanske, Beate; Razzaque, M. Shawkat
2011-01-01
Changes in the expression of klotho, a β-glucuronidase, contribute to the development of features that resemble those of premature aging, as well as chronic renal failure. Klotho knockout mice have increased expression of the sodium/phosphate cotransporter (NaPi2a) and 1α-hydroxylase in their kidneys, along with increased serum levels of phosphate and 1,25-dihydroxyvitamin D. These changes are associated with widespread soft-tissue calcifications, generalized tissue atrophy, and a shorter lifespan in the knockout mice. To determine the role of the increased vitamin D activities in klotho knockout animals, we generated klotho and 1α-hydroxylase double-knockout mice. These double mutants regained body weight and developed hypophosphatemia with a complete elimination of the soft-tissue and vascular calcifications that were routinely found in klotho knockout mice. The markedly increased serum fibroblast growth factor 23 and the abnormally low serum parathyroid hormone levels, typical of klotho knockout mice, were significantly reversed in the double-knockout animals. These in vivo studies suggest that vitamin D has a pathologic role in regulating abnormal mineral ion metabolism and soft-tissue anomalies of klotho-deficient mice. PMID:19225558
Connexin-deficiency affects expression levels of glial glutamate transporters within the cerebrum.
Unger, Tina; Bette, Stefanie; Zhang, Jiong; Theis, Martin; Engele, Jürgen
2012-01-06
The glial glutamate transporter subtypes, GLT-1/EAAT-2 and GLAST/EAAT-1 clear the bulk of extracellular glutamate and are severely dysregulated in various acute and chronic brain diseases. Despite the previous identification of several extracellular factors modulating glial glutamate transporter expression, our knowledge of the regulatory network controlling glial glutamate transport in health and disease still remains incomplete. In studies with cultured cortical astrocytes, we previously obtained evidence that glial glutamate transporter expression is also affected by gap junctions/connexins. To assess whether gap junctions would likewise control the in vivo expression of glial glutamate transporters, we have now assessed their expression levels in brains of conditional Cx43 knockout mice, total Cx30 knockouts, as well as Cx43/Cx30 double knockouts. We found that either knocking out Cx30, Cx43, or both increases GLT-1/EAAT-2 protein levels in the cerebral cortex to a similar extent. By contrast, GLAST/EAAT-1 protein levels maximally increased in cerebral cortices of Cx30/Cx43 double knockouts, implying that gap junctions differentially affect the expression of GLT-1/EAAT-2 and GLAST/EAAT-1. Quantitative PCR analysis further revealed that increases in glial glutamate transporter expression are brought about by transcriptional and translational/posttranslational processes. Moreover, GLT-1/EAAT-2- and GLAST/EAAT-1 protein levels remained unchanged in the hippocampi of Cx43/Cx30 double knockouts when compared to Cx43fl/fl controls, indicating brain region-specific effects of gap junctions on glial glutamate transport. Since astrocytic gap junction coupling is affected in various forms of brain injuries, our findings point to gap junctions/connexins as important regulators of glial glutamate turnover in the diseased cerebral cortex. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Embryonic Lethality Due to Arrested Cardiac Development in Psip1/Hdgfrp2 Double-Deficient Mice.
Wang, Hao; Shun, Ming-Chieh; Dickson, Amy K; Engelman, Alan N
2015-01-01
Hepatoma-derived growth factor (HDGF) related protein 2 (HRP2) and lens epithelium-derived growth factor (LEDGF)/p75 are closely related members of the HRP2 protein family. LEDGF/p75 has been implicated in numerous human pathologies including cancer, autoimmunity, and infectious disease. Knockout of the Psip1 gene, which encodes for LEDGF/p75 and the shorter LEDGF/p52 isoform, was previously shown to cause perinatal lethality in mice. The function of HRP2 was by contrast largely unknown. To learn about the role of HRP2 in development, we knocked out the Hdgfrp2 gene, which encodes for HRP2, in both normal and Psip1 knockout mice. Hdgfrp2 knockout mice developed normally and were fertile. By contrast, the double deficient mice died at approximate embryonic day (E) 13.5. Histological examination revealed ventricular septal defect (VSD) associated with E14.5 double knockout embryos. To investigate the underlying molecular mechanism(s), RNA recovered from ventricular tissue was subjected to RNA-sequencing on the Illumina platform. Bioinformatic analysis revealed several genes and biological pathways that were significantly deregulated by the Psip1 knockout and/or Psip1/Hdgfrp2 double knockout. Among the dozen genes known to encode for LEDGF/p75 binding factors, only the expression of Nova1, which encodes an RNA splicing factor, was significantly deregulated by the knockouts. However the expression of other RNA splicing factors, including the LEDGF/p52-interacting protein ASF/SF2, was not significantly altered, indicating that deregulation of global RNA splicing was not a driving factor in the pathology of the VSD. Tumor growth factor (Tgf) β-signaling, which plays a key role in cardiac morphogenesis during development, was the only pathway significantly deregulated by the double knockout as compared to control and Psip1 knockout samples. We accordingly speculate that deregulated Tgf-β signaling was a contributing factor to the VSD and prenatal lethality of Psip1/Hdgfrp2 double-deficient mice.
Wu, Pu; Shen, Qian; Dong, Suzhen; Xu, Zhiliang; Tsien, Joe Z; Hu, Yinghe
2008-10-01
Conditional double knockout of presenilin-1 and presenilin-2 (cDKO) in forebrain of mice led to brain atrophy, tau hyperphosphorylation, synaptic dysfunction and cognitive deficit. These brain changes recapitulated most of the neurodegenerative phenotypes of Alzheimer's disease (AD). In this report, we have investigated the effects of 4-month calorie restriction (CR) regimen on different phenotypes in cDKO mice. We found that CR improved novel object recognition and contextual fear conditioning memory in the cDKO mice. Histological and biochemical analysis showed that CR attenuated ventricle enlargement, caspase-3 activation and astrogliosis. In addition, the induction of tau hyperphosphorylation in the cDKO mice was reduced by CR, possibly through reduction of p25 accumulation and aberrant CDK5 activation. Finally, DNA microarray analysis demonstrated that CR could increase the expression of neurogenesis related genes and decrease the expression of inflammation related genes in the hippocampus of cDKO mice. The possible molecular mechanisms of the CR effects on alleviating AD pathogenesis have been discussed.
Shi, Wei; Vu, Therese; Boucher, Didier; Biernacka, Anna; Nde, Jules; Pandita, Raj K; Straube, Jasmin; Boyle, Glen M; Al-Ejeh, Fares; Nag, Purba; Jeffery, Jessie; Harris, Janelle L; Bain, Amanda L; Grzelak, Marta; Skrzypczak, Magdalena; Mitra, Abhishek; Dojer, Norbert; Crosetto, Nicola; Cloonan, Nicole; Becherel, Olivier J; Finnie, John; Skaar, Jeffrey R; Walkley, Carl R; Pandita, Tej K; Rowicka, Maga; Ginalski, Krzysztof; Lane, Steven W; Khanna, Kum Kum
2017-05-04
Hematopoietic stem and progenitor cells (HSPCs) are vulnerable to endogenous damage and defects in DNA repair can limit their function. The 2 single-stranded DNA (ssDNA) binding proteins SSB1 and SSB2 are crucial regulators of the DNA damage response; however, their overlapping roles during normal physiology are incompletely understood. We generated mice in which both Ssb1 and Ssb2 were constitutively or conditionally deleted. Constitutive Ssb1/Ssb2 double knockout (DKO) caused early embryonic lethality, whereas conditional Ssb1/Ssb2 double knockout (cDKO) in adult mice resulted in acute lethality due to bone marrow failure and intestinal atrophy featuring stem and progenitor cell depletion, a phenotype unexpected from the previously reported single knockout models of Ssb1 or Ssb2 Mechanistically, cDKO HSPCs showed altered replication fork dynamics, massive accumulation of DNA damage, genome-wide double-strand breaks enriched at Ssb-binding regions and CpG islands, together with the accumulation of R -loops and cytosolic ssDNA. Transcriptional profiling of cDKO HSPCs revealed the activation of p53 and interferon (IFN) pathways, which enforced cell cycling in quiescent HSPCs, resulting in their apoptotic death. The rapid cell death phenotype was reproducible in in vitro cultured cDKO-hematopoietic stem cells, which were significantly rescued by nucleotide supplementation or after depletion of p53. Collectively, Ssb1 and Ssb2 control crucial aspects of HSPC function, including proliferation and survival in vivo by resolving replicative stress to maintain genomic stability. © 2017 by The American Society of Hematology.
Vu, Therese; Boucher, Didier; Biernacka, Anna; Nde, Jules; Pandita, Raj K.; Straube, Jasmin; Boyle, Glen M.; Al-Ejeh, Fares; Jeffery, Jessie; Harris, Janelle L.; Bain, Amanda L.; Grzelak, Marta; Skrzypczak, Magdalena; Mitra, Abhishek; Dojer, Norbert; Crosetto, Nicola; Cloonan, Nicole; Becherel, Olivier J.; Finnie, John; Skaar, Jeffrey R.; Walkley, Carl R.; Pandita, Tej K.; Rowicka, Maga; Ginalski, Krzysztof
2017-01-01
Hematopoietic stem and progenitor cells (HSPCs) are vulnerable to endogenous damage and defects in DNA repair can limit their function. The 2 single-stranded DNA (ssDNA) binding proteins SSB1 and SSB2 are crucial regulators of the DNA damage response; however, their overlapping roles during normal physiology are incompletely understood. We generated mice in which both Ssb1 and Ssb2 were constitutively or conditionally deleted. Constitutive Ssb1/Ssb2 double knockout (DKO) caused early embryonic lethality, whereas conditional Ssb1/Ssb2 double knockout (cDKO) in adult mice resulted in acute lethality due to bone marrow failure and intestinal atrophy featuring stem and progenitor cell depletion, a phenotype unexpected from the previously reported single knockout models of Ssb1 or Ssb2. Mechanistically, cDKO HSPCs showed altered replication fork dynamics, massive accumulation of DNA damage, genome-wide double-strand breaks enriched at Ssb-binding regions and CpG islands, together with the accumulation of R-loops and cytosolic ssDNA. Transcriptional profiling of cDKO HSPCs revealed the activation of p53 and interferon (IFN) pathways, which enforced cell cycling in quiescent HSPCs, resulting in their apoptotic death. The rapid cell death phenotype was reproducible in in vitro cultured cDKO-hematopoietic stem cells, which were significantly rescued by nucleotide supplementation or after depletion of p53. Collectively, Ssb1 and Ssb2 control crucial aspects of HSPC function, including proliferation and survival in vivo by resolving replicative stress to maintain genomic stability. PMID:28270450
Trpc2 Depletion Protects RBC from Oxidative Stress-Induced Hemolysis
Hirschler-Laszkiewicz, Iwona; Zhang, Wenyi; Keefer, Kerry; Conrad, Kathleen; Tong, Qin; Chen, Shu-jen; Bronson, Sarah; Cheung, Joseph Y.; Miller, Barbara A.
2011-01-01
Transient receptor potential channels Trpc2 and Trpc3 are expressed on normal murine erythroid precursors, and erythropoietin stimulates an increase in intracellular calcium ([Ca2+]i) through TRPC2 and TRPC3. Because modulation of [Ca2+]i is an important signaling pathway in erythroid proliferation and differentiation, Trpc2, Trpc3, and Trpc2/Trpc3 double knockout mice were utilized to explore the roles of these channels in erythropoiesis. Trpc2, Trpc3, and Trpc2/Trpc3 double knockout mice were not anemic, and had similar red blood cell counts, hemoglobins, and reticulocyte counts as wild type littermate controls. Although the erythropoietin induced increase in [Ca2+]i was reduced, these knockout mice showed no defects in red cell production. The major phenotypic difference at steady state was that the mean corpuscular volume, mean corpuscular hemoglobin, and hematocrit of red cells were significantly greater in Trpc2 and Trpc2/Trpc3 double knockout mice, and mean corpuscular hemoglobin concentration was significantly reduced. All hematological parameters in Trpc3 knockout mice were similar to controls. When exposed to phenyhydrazine, unlike the Trpc3 knockouts, Trpc2 and Trpc2/Trpc3 double knockout mice showed significant resistance to hemolysis. This was associated with significant reduction in hydrogen peroxide-induced calcium influx in erythroblasts. While erythropoietin induced calcium influx through TRPC2 or TRPC3 is not critical for erythroid production, these data demonstrate that TRPC2 plays an important role in oxidative stress-induced hemolysis which may be related to reduced calcium entry in red cells in the presence of Trpc2 depletion. PMID:21924222
Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors.
Miura, Hiromi; Quadros, Rolen M; Gurumurthy, Channabasavaiah B; Ohtsuka, Masato
2018-01-01
CRISPR/Cas9-based genome editing can easily generate knockout mouse models by disrupting the gene sequence, but its efficiency for creating models that require either insertion of exogenous DNA (knock-in) or replacement of genomic segments is very poor. The majority of mouse models used in research involve knock-in (reporters or recombinases) or gene replacement (e.g., conditional knockout alleles containing exons flanked by LoxP sites). A few methods for creating such models have been reported that use double-stranded DNA as donors, but their efficiency is typically 1-10% and therefore not suitable for routine use. We recently demonstrated that long single-stranded DNAs (ssDNAs) serve as very efficient donors, both for insertion and for gene replacement. We call this method efficient additions with ssDNA inserts-CRISPR (Easi-CRISPR) because it is a highly efficient technology (efficiency is typically 30-60% and reaches as high as 100% in some cases). The protocol takes ∼2 months to generate the founder mice.
Contribution of chloride channel permease to fluoride resistance in Streptococcus mutans.
Murata, Takatoshi; Hanada, Nobuhiro
2016-06-01
Genes encoding fluoride transporters have been identified in bacterial and archaeal species. The genome sequence of the cariogenic Streptococcus mutans bacteria suggests the presence of a putative fluoride transporter, which is referred to as a chloride channel permease. Two homologues of this gene (GenBank locus tags SMU_1290c and SMU_1289c) reside in tandem in the genome of S. mutans The aim of this study was to determine whether the chloride channel permeases contribute to fluoride resistance. We constructed SMU_1290c- and SMU_1289c-knockout S. mutans UA159 strains. We also constructed a double-knockout strain lacking both genes. SMU_1290c or SMU_1289c was transformed into a fluoride transporter- disrupted Escherichia coli strain. All bacterial strains were cultured under appropriate conditions with or without sodium fluoride, and fluoride resistance was evaluated. All three gene-knockout S. mutans strains showed lower resistance to sodium fluoride than did the wild-type strain. No significant changes in resistance to other sodium halides were recognized between the wild-type and double-knockout strains. Both SMU_1290c and SMU_1289c transformation rescued fluoride transporter-disrupted E. coli cell from fluoride toxicity. We conclude that the chloride channel permeases contribute to fluoride resistance in S. mutans. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Karuppaiah, Kannan; Yu, Kai; Lim, Joohyun; Chen, Jianquan; Smith, Craig; Long, Fanxin
2016-01-01
ABSTRACT Fibroblast growth factor (FGF) signaling is important for skeletal development; however, cell-specific functions, redundancy and feedback mechanisms regulating bone growth are poorly understood. FGF receptors 1 and 2 (Fgfr1 and Fgfr2) are both expressed in the osteoprogenitor lineage. Double conditional knockout mice, in which both receptors were inactivated using an osteoprogenitor-specific Cre driver, appeared normal at birth; however, these mice showed severe postnatal growth defects that include an ∼50% reduction in body weight and bone mass, and impaired longitudinal bone growth. Histological analysis showed reduced cortical and trabecular bone, suggesting cell-autonomous functions of FGF signaling during postnatal bone formation. Surprisingly, the double conditional knockout mice also showed growth plate defects and an arrest in chondrocyte proliferation. We provide genetic evidence of a non-cell-autonomous feedback pathway regulating Fgf9, Fgf18 and Pthlh expression, which led to increased expression and signaling of Fgfr3 in growth plate chondrocytes and suppression of chondrocyte proliferation. These observations show that FGF signaling in the osteoprogenitor lineage is obligately coupled to chondrocyte proliferation and the regulation of longitudinal bone growth. PMID:27052727
Zhang, Jun; Xiao, Yechen; Guo, Yinshi; Breslin, Peter; Zhang, Shubin; Wei, Wei; Zhang, Zhou; Zhang, Jiwang
2011-01-01
Myeloproliferative disorders (MPDs), lymphoproliferative disorders (LPDs), acute T-lymphocytic or myeloid leukemia and T-lymphocytic lymphoma were developed in inducible Pten-knockout (Pten−/−) mice. The appearance of these multiple diseases in one animal model provides an opportunity to study the pathogenesis of multiple diseases simultaneously. To study whether Myc function is required for the development of these hematopoietic disorders in Pten−/− mice, we generated inducible Pten/Myc double-knockout mice (Pten−/−/Myc−/−). By comparing the hematopoietic phenotypes of these double-knockout mice with those of Pten−/− mice, we found that both sets of animals developed MPDs and LPDs. However, none of the compound-mutant mice developed acute leukemia or lymphoma. Interestingly, in contrast to the MPDs which developed in Pten−/− mice which are dominated by granulocytes, megakaryocytes predominate in the MPDs of Pten−/−/Myc−/− mice. Our study suggests that the deregulation of PI3K/Akt signaling in Pten−/− hematopoietic cells protects these cells from apoptotic cell death, resulting in chronic proliferative disorders. But due to the differential requirement for Myc in granulocyte as compared to megakaryocyte proliferation, Myc deletion converts Pten−/− MPDs from granulocyte-dominated to megakaryocyte-dominated conditions. Myc is absolutely required for the development of acute hematopoietic malignancies. PMID:21926961
Autio, Kaija J; Schmitz, Werner; Nair, Remya R; Selkälä, Eija M; Sormunen, Raija T; Miinalainen, Ilkka J; Crick, Peter J; Wang, Yuqin; Griffiths, William J; Reddy, Janardan K; Baes, Myriam; Hiltunen, J Kalervo
2014-07-01
Cholesterol is catabolized to bile acids by peroxisomal β-oxidation in which the side chain of C27-bile acid intermediates is shortened by three carbon atoms to form mature C24-bile acids. Knockout mouse models deficient in AMACR (α-methylacyl-CoA racemase) or MFE-2 (peroxisomal multifunctional enzyme type 2), in which this β-oxidation pathway is prevented, display a residual C24-bile acid pool which, although greatly reduced, implies the existence of alternative pathways of bile acid synthesis. One alternative pathway could involve Mfe-1 (peroxisomal multifunctional enzyme type 1) either with or without Amacr. To test this hypothesis, we generated a double knockout mouse model lacking both Amacr and Mfe-1 activities and studied the bile acid profiles in wild-type, Mfe-1 and Amacr single knockout mouse line and Mfe-1 and Amacr double knockout mouse lines. The total bile acid pool was decreased in Mfe-1-/- mice compared with wild-type and the levels of mature C24-bile acids were reduced in the double knockout mice when compared with Amacr-deficient mice. These results indicate that Mfe-1 can contribute to the synthesis of mature bile acids in both Amacr-dependent and Amacr-independent pathways.
Awad, Jasmin; Stotz, Henrik U; Fekete, Agnes; Krischke, Markus; Engert, Cornelia; Havaux, Michel; Berger, Susanne; Mueller, Martin J
2015-04-01
Different peroxidases, including 2-cysteine (2-Cys) peroxiredoxins (PRXs) and thylakoid ascorbate peroxidase (tAPX), have been proposed to be involved in the water-water cycle (WWC) and hydrogen peroxide (H2O2)-mediated signaling in plastids. We generated an Arabidopsis (Arabidopsis thaliana) double-mutant line deficient in the two plastid 2-Cys PRXs (2-Cys PRX A and B, 2cpa 2cpb) and a triple mutant deficient in 2-Cys PRXs and tAPX (2cpa 2cpb tapx). In contrast to wild-type and tapx single-knockout plants, 2cpa 2cpb double-knockout plants showed an impairment of photosynthetic efficiency and became photobleached under high light (HL) growth conditions. In addition, double-mutant plants also generated elevated levels of superoxide anion radicals, H2O2, and carbonylated proteins but lacked anthocyanin accumulation under HL stress conditions. Under HL conditions, 2-Cys PRXs seem to be essential in maintaining the WWC, whereas tAPX is dispensable. By comparison, this HL-sensitive phenotype was more severe in 2cpa 2cpb tapx triple-mutant plants, indicating that tAPX partially compensates for the loss of functional 2-Cys PRXs by mutation or inactivation by overoxidation. In response to HL, H2O2- and photooxidative stress-responsive marker genes were found to be dramatically up-regulated in 2cpa 2cpb tapx but not 2cpa 2cpb mutant plants, suggesting that HL-induced plastid to nucleus retrograde photooxidative stress signaling takes place after loss or inactivation of the WWC enzymes 2-Cys PRX A, 2-Cys PRX B, and tAPX. © 2015 American Society of Plant Biologists. All Rights Reserved.
Gao, Hanchao; Zhao, Chengjiang; Xiang, Xi; Li, Yong; Zhao, Yanli; Li, Zesong; Pan, Dengke; Dai, Yifan; Hara, Hidetaka; Cooper, David K C; Cai, Zhiming; Mou, Lisha
2017-02-16
Gene-knockout pigs hold great promise as a solution to the shortage of organs from donor animals for xenotransplantation. Several groups have generated gene-knockout pigs via clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) and somatic cell nuclear transfer (SCNT). Herein, we adopted a simple and micromanipulator-free method, handmade cloning (HMC) instead of SCNT, to generate double gene-knockout pigs. First, we applied the CRISPR/Cas9 system to target α1,3-galactosyltransferase (GGTA1) and cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) genes simultaneously in porcine fetal fibroblast cells (PFFs), which were derived from wild-type Chinese domestic miniature Wuzhishan pigs. Cell colonies were obtained by screening and were identified by Surveyor assay and sequencing. Next, we chose the GGTA1/CMAH double-knockout (DKO) cells for HMC to produce piglets. As a result, we obtained 11 live bi-allelic GGTA1/CMAH DKO piglets with the identical phenotype. Compared to cells from GGTA1-knockout pigs, human antibody binding and antibody-mediated complement-dependent cytotoxicity were significantly reduced in cells from GGTA1/CMAH DKO pigs, which demonstrated that our pigs would exhibit reduced humoral rejection in xenotransplantation. These data suggested that the combination of CRISPR/Cas9 and HMC technology provided an efficient and new strategy for producing pigs with multiple genetic modifications.
Absence of Wip1 partially rescues Atm deficiency phenotypes in mice
Darlington, Yolanda; Nguyen, Thuy-Ai; Moon, Sung-Hwan; Herron, Alan; Rao, Pulivarthi; Zhu, Chengming; Lu, Xiongbin; Donehower, Lawrence A.
2011-01-01
Wildtype p53-Induced Phosphatase 1 (WIP1) is a serine/threonine phosphatase that dephosphorylates proteins in the ataxia telangiectasia mutated (ATM)-initiated DNA damage response pathway. WIP1 may play a homeostatic role in ATM signaling by returning the cell to a normal pre-stress state following completion of DNA repair. To better understand the effects of WIP1 on ATM signaling, we crossed Atm-deficient mice to Wip1-deficient mice and characterized phenotypes of the double knockout progeny. We hypothesized that the absence of Wip1 might rescue Atm deficiency phenotypes. Atm null mice, like ATM-deficient humans with the inherited syndrome ataxia telangiectasia, exhibit radiation sensitivity, fertility defects, and are T-cell lymphoma prone. Most double knockout mice were largely protected from lymphoma development and had a greatly extended lifespan compared to Atm null mice. Double knockout mice had increased p53 and H2AX phosphorylation and p21 expression compared to their Atm null counterparts, indicating enhanced p53 and DNA damage responses. Additionally, double knockout splenocytes displayed reduced chromosomal instability compared to Atm null mice. Finally, doubly null mice were partially rescued from infertility defects observed in Atm null mice. These results indicate that inhibition of WIP1 may represent a useful strategy for cancer treatment in general and A-T patients in particular. PMID:21765465
Sun, Tao; Yi, Haiqing; Yang, Chunyu; Kishnani, Priya S.; Sun, Baodong
2016-01-01
A small portion of cellular glycogen is transported to and degraded in lysosomes by acid α-glucosidase (GAA) in mammals, but it is unclear why and how glycogen is transported to the lysosomes. Stbd1 has recently been proposed to participate in glycogen trafficking to lysosomes. However, our previous study demonstrated that knockdown of Stbd1 in GAA knock-out mice did not alter lysosomal glycogen storage in skeletal muscles. To further determine whether Stbd1 participates in glycogen transport to lysosomes, we generated GAA/Stbd1 double knock-out mice. In fasted double knock-out mice, glycogen accumulation in skeletal and cardiac muscles was not affected, but glycogen content in liver was reduced by nearly 73% at 3 months of age and by 60% at 13 months as compared with GAA knock-out mice, indicating that the transport of glycogen to lysosomes was suppressed in liver by the loss of Stbd1. Exogenous expression of human Stbd1 in double knock-out mice restored the liver lysosomal glycogen content to the level of GAA knock-out mice, as did a mutant lacking the Atg8 family interacting motif (AIM) and another mutant that contains only the N-terminal 24 hydrophobic segment and the C-terminal starch binding domain (CBM20) interlinked by an HA tag. Our results demonstrate that Stbd1 plays a dominant role in glycogen transport to lysosomes in liver and that the N-terminal transmembrane region and the C-terminal CBM20 domain are critical for this function. PMID:27358407
Exacerbated febrile responses to LPS, but not turpentine, in TNF double receptor-knockout mice.
Leon, L R; Kozak, W; Peschon, J; Kluger, M J
1997-02-01
We examined the effects of injections of systemic [lipopolysaccharide (LPS), 2.5 mg/kg or 50 pg/kg ip] or local (turpentine, 100 microl sc) inflammatory stimuli on fever, motor activity, body weight, and food intake in tumor necrosis factor (TNF) double receptor (TNFR)-knockout mice. A high dose of LPS resulted in exacerbated fevers in TNFR-knockout mice compared with wild-type mice for the early phase of fever (3-15 h); the late phase of fever (16-24 h) and fevers to a low dose of LPS were similar in both groups. Motor activity, body weight, and food intake were similarly reduced in both groups of mice after LPS administration. In response to turpentine, TNFR-knockout and wild-type mice developed virtually identical responses to all variables monitored. These results suggest that 1) TNF modulates fevers to LPS dose dependently, 2) TNF does not modulate fevers to a subcutaneous injection of turpentine, and 3) knockout mice may develop cytokine redundancy in the regulation of the acute phase response to intraperitoneally injected LPS or subcutaneously injected turpentine.
Wang, Dong; Yang, Liguo; Su, Jingjing; Niu, Yan; Lei, Xiaoping; Xiong, Juan; Cao, Xiaohua; Hu, Yinghe; Mei, Bing; Hu, Jin-Feng
2011-07-01
The M1/M4-preferring muscarinic agonist xanomeline was found to have some benefit in the treatment of the memory impairment of Alzheimer's disease (AD), but side effects precluded further development. EUK1001, a fluorinated derivative of xanomeline, because of greater affinity for M1 muscarinic receptors, is likely to have a significantly better side effect profile than xanomeline. We have now studied the effects of 3-month chronic administration of EUK1001 and xanomeline (0.5mg/kg/day) in AD-like presenilin 1/presenilin 2 conditional double knockout (PS cDKO) mice. Only EUK1001 was found to significantly ameliorate the deficit in recognition memory. Histological analysis demonstrated partial attenuation of the brain atrophy in EUK1001-treated PS cDKO mice and minimal effect in the xanomeline-treated mice. Both compounds effectively suppressed the elevation of brain tau phosphorylation in the PS cDKO mice, but neither inhibited the increased inflammatory responses. These results indicate that EUK1001 showed superiority to xanomeline with regard to attenuation of several AD-like neurodegenerative phenotypes in PS cDKO mice. These results suggest further investigation of the development of EUK1001 for the treatment of AD is indicated. Copyright © 2011 Elsevier Inc. All rights reserved.
Park, Una; Vastani, Nisha; Guan, Yun; Raja, Srinivasa N.; Koltzenburg, Martin; Caterina, Michael J.
2011-01-01
TRPV2 is a nonselective cation channel expressed prominently in medium- to large-diameter sensory neurons that can be activated by extreme heat (>52°C). These features suggest that TRPV2 might be a transducer of noxious heat in vivo. TRPV2 can also be activated by hypoosmolarity or cell stretch, suggesting potential roles in mechanotransduction. To address the physiological functions of TRPV2 in somatosensation, we generated TRPV2 knockout mice and examined their behavioral and electrophysiological responses to heat and mechanical stimuli. TRPV2 knockout mice showed reduced embryonic weight and perinatal viability. As adults, surviving knockout mice also exhibited a slightly reduced body weight. TRPV2 knockout mice showed normal behavioral responses to noxious heat over a broad range of temperatures and normal responses to punctate mechanical stimuli, both in the basal state and under hyperalgesic conditions such as peripheral inflammation and L5 spinal nerve ligation. Moreover, behavioral assays of TRPV1/TRPV2 double knockout mice or of TRPV2 knockout mice treated with resiniferatoxin to desensitize TRPV1-expressing afferents revealed no thermosensory consequences of TRPV2 absence. In line with behavioral findings, electrophysiological recordings from skin afferents showed that C-fiber responses to heat and C- and Aδ-fiber responses to noxious mechanical stimuli were unimpaired in the absence of TRPV2. The prevalence of thermosensitive Aδ-fibers was too low to permit comparison between genotypes. Thus, TRPV2 is important for perinatal viability but is not essential for heat or mechanical nociception or hypersensitivity in the adult mouse. PMID:21832173
Liu, Xiaoyu; Kwak, Dongmin; Lu, Zhongbing; Xu, Xin; Fassett, John; Wang, Huan; Wei, Yidong; Cavener, Douglas R; Hu, Xinli; Hall, Jennifer; Bache, Robert J; Chen, Yingjie
2014-10-01
Studies have reported that development of congestive heart failure is associated with increased endoplasmic reticulum stress. Double stranded RNA-activated protein kinase R-like endoplasmic reticulum kinase (PERK) is a major transducer of the endoplasmic reticulum stress response and directly phosphorylates eukaryotic initiation factor 2α, resulting in translational attenuation. However, the physiological effect of PERK on congestive heart failure development is unknown. To study the effect of PERK on ventricular structure and function, we generated inducible cardiac-specific PERK knockout mice. Under unstressed conditions, cardiac PERK knockout had no effect on left ventricular mass, or its ratio to body weight, cardiomyocyte size, fibrosis, or left ventricular function. However, in response to chronic transverse aortic constriction, PERK knockout mice exhibited decreased ejection fraction, increased left ventricular fibrosis, enhanced cardiomyocyte apoptosis, and exacerbated lung remodeling in comparison with wild-type mice. PERK knockout also dramatically attenuated cardiac sarcoplasmic reticulum Ca(2+)-ATPase expression in response to aortic constriction. Our findings suggest that PERK is required to protect the heart from pressure overload-induced congestive heart failure. © 2014 American Heart Association, Inc.
Sinning, Anne; Radionov, Nikita; Trepiccione, Francesco; López-Cayuqueo, Karen I; Jayat, Maximilien; Baron, Stéphanie; Cornière, Nicolas; Alexander, R Todd; Hadchouel, Juliette; Eladari, Dominique; Hübner, Christian A; Chambrey, Régine
2017-01-01
We recently described a novel thiazide-sensitive electroneutral NaCl transport mechanism resulting from the parallel operation of the Cl - /HCO 3 - exchanger pendrin and the Na + -driven Cl - /2HCO 3 - exchanger (NDCBE) in β-intercalated cells of the collecting duct. Although a role for pendrin in maintaining Na + balance, intravascular volume, and BP is well supported, there is no in vivo evidence for the role of NDCBE in maintaining Na + balance. Here, we show that deletion of NDCBE in mice caused only subtle perturbations of Na + homeostasis and provide evidence that the Na + /Cl - cotransporter (NCC) compensated for the inactivation of NDCBE. To unmask the role of NDCBE, we generated Ndcbe/Ncc double-knockout (dKO) mice. On a normal salt diet, dKO and single-knockout mice exhibited similar activation of the renin-angiotensin-aldosterone system, whereas only dKO mice displayed a lower blood K + concentration. Furthermore, dKO mice displayed upregulation of the epithelial sodium channel (ENaC) and the Ca 2+ -activated K + channel BKCa. During NaCl depletion, only dKO mice developed marked intravascular volume contraction, despite dramatically increased renin activity. Notably, the increase in aldosterone levels expected on NaCl depletion was attenuated in dKO mice, and single-knockout and dKO mice had similar blood K + concentrations under this condition. In conclusion, NDCBE is necessary for maintaining sodium balance and intravascular volume during salt depletion or NCC inactivation in mice. Furthermore, NDCBE has an important role in the prevention of hypokalemia. Because NCC and NDCBE are both thiazide targets, the combined inhibition of NCC and the NDCBE/pendrin system may explain thiazide-induced hypokalemia in some patients. Copyright © 2016 by the American Society of Nephrology.
Stalk cell differentiation without polyketides in the cellular slime mold.
Sato, Yukie G; Suarez, Teresa; Saito, Tamao
2016-07-01
Polyketides induce prestalk cell differentiation in Dictyostelium. In the double-knockout mutant of the SteelyA and B polyketide synthases, most of the pstA cells-the major part of the prestalk cells-are lost, and we show by whole mount in situ hybridization that expression of prestalk genes is also reduced. Treatment of the double-knockout mutant with the PKS inhibitor cerulenin gave a further reduction, but some pstA cells still remained in the tip region, suggesting the existence of a polyketide-independent subtype of pstA cells. The double-knockout mutant and cerulenin-treated parental Ax2 cells form fruiting bodies with fragile, single-cell layered stalks after cerulenin treatment. Our results indicate that most pstA cells are induced by polyketides, but the pstA cells at the very tip of the slug are induced in some other way. In addition, a fruiting body with a single-cell layered, vacuolated stalk can form without polyketides.
Sun, Tao; Yi, Haiqing; Yang, Chunyu; Kishnani, Priya S; Sun, Baodong
2016-08-05
A small portion of cellular glycogen is transported to and degraded in lysosomes by acid α-glucosidase (GAA) in mammals, but it is unclear why and how glycogen is transported to the lysosomes. Stbd1 has recently been proposed to participate in glycogen trafficking to lysosomes. However, our previous study demonstrated that knockdown of Stbd1 in GAA knock-out mice did not alter lysosomal glycogen storage in skeletal muscles. To further determine whether Stbd1 participates in glycogen transport to lysosomes, we generated GAA/Stbd1 double knock-out mice. In fasted double knock-out mice, glycogen accumulation in skeletal and cardiac muscles was not affected, but glycogen content in liver was reduced by nearly 73% at 3 months of age and by 60% at 13 months as compared with GAA knock-out mice, indicating that the transport of glycogen to lysosomes was suppressed in liver by the loss of Stbd1. Exogenous expression of human Stbd1 in double knock-out mice restored the liver lysosomal glycogen content to the level of GAA knock-out mice, as did a mutant lacking the Atg8 family interacting motif (AIM) and another mutant that contains only the N-terminal 24 hydrophobic segment and the C-terminal starch binding domain (CBM20) interlinked by an HA tag. Our results demonstrate that Stbd1 plays a dominant role in glycogen transport to lysosomes in liver and that the N-terminal transmembrane region and the C-terminal CBM20 domain are critical for this function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Ishikawa, Tokiro; Okada, Tetsuya; Ishikawa-Fujiwara, Tomoko; Todo, Takeshi; Kamei, Yasuhiro; Shigenobu, Shuji; Tanaka, Minoru; Saito, Taro L.; Yoshimura, Jun; Morishita, Shinichi; Toyoda, Atsushi; Sakaki, Yoshiyuki; Taniguchi, Yoshihito; Takeda, Shunichi; Mori, Kazutoshi
2013-01-01
ATF6α and ATF6β are membrane-bound transcription factors activated by regulated intramembrane proteolysis in response to endoplasmic reticulum (ER) stress to induce various ER quality control proteins. ATF6α- and ATF6β single-knockout mice develop normally, but ATF6α/β double knockout causes embryonic lethality, the reason for which is unknown. Here we show in medaka fish that ATF6α is primarily responsible for transcriptional induction of the major ER chaperone BiP and that ATF6α/β double knockout, but not ATF6α- or ATF6β single knockout, causes embryonic lethality, as in mice. Analyses of ER stress reporters reveal that ER stress occurs physiologically during medaka early embryonic development, particularly in the brain, otic vesicle, and notochord, resulting in ATF6α- and ATF6β-mediated induction of BiP, and that knockdown of the α1 chain of type VIII collagen reduces such ER stress. The absence of transcriptional induction of several ER chaperones in ATF6α/β double knockout causes more profound ER stress and impaired notochord development, which is partially rescued by overexpression of BiP. Thus ATF6α/β-mediated adjustment of chaperone levels to increased demands in the ER is essential for development of the notochord, which synthesizes and secretes large amounts of extracellular matrix proteins to serve as the body axis before formation of the vertebra. PMID:23447699
Ishikawa, Tokiro; Okada, Tetsuya; Ishikawa-Fujiwara, Tomoko; Todo, Takeshi; Kamei, Yasuhiro; Shigenobu, Shuji; Tanaka, Minoru; Saito, Taro L; Yoshimura, Jun; Morishita, Shinichi; Toyoda, Atsushi; Sakaki, Yoshiyuki; Taniguchi, Yoshihito; Takeda, Shunichi; Mori, Kazutoshi
2013-05-01
ATF6α and ATF6β are membrane-bound transcription factors activated by regulated intramembrane proteolysis in response to endoplasmic reticulum (ER) stress to induce various ER quality control proteins. ATF6α- and ATF6β single-knockout mice develop normally, but ATF6α/β double knockout causes embryonic lethality, the reason for which is unknown. Here we show in medaka fish that ATF6α is primarily responsible for transcriptional induction of the major ER chaperone BiP and that ATF6α/β double knockout, but not ATF6α- or ATF6β single knockout, causes embryonic lethality, as in mice. Analyses of ER stress reporters reveal that ER stress occurs physiologically during medaka early embryonic development, particularly in the brain, otic vesicle, and notochord, resulting in ATF6α- and ATF6β-mediated induction of BiP, and that knockdown of the α1 chain of type VIII collagen reduces such ER stress. The absence of transcriptional induction of several ER chaperones in ATF6α/β double knockout causes more profound ER stress and impaired notochord development, which is partially rescued by overexpression of BiP. Thus ATF6α/β-mediated adjustment of chaperone levels to increased demands in the ER is essential for development of the notochord, which synthesizes and secretes large amounts of extracellular matrix proteins to serve as the body axis before formation of the vertebra.
Iyer, Archana S.; Morales, J. Luis; Huang, Weishan; Ojo, Folake; Ning, Gang; Wills, Elizabeth; Baines, Joel D.; August, Avery
2011-01-01
Mast cells are critical effector cells in the pathophysiology of allergic asthma and other IgE-mediated diseases. The Tec family of tyrosine kinases Itk and Btk serve as critical signal amplifiers downstream of antigen receptors. Although both kinases are expressed and activated in mast cells following FcϵRI stimulation, their individual contributions are not clear. To determine whether these kinases play unique and/or complementary roles in FcϵRI signaling and mast cell function, we generated Itk and Btk double knock-out mice. Analyses of these mice show decreased mast cell granularity and impaired passive systemic anaphylaxis responses. This impaired response is accompanied by a significant elevation in serum IgE in Itk/Btk double knock-out mice. In vitro analyses of bone marrow-derived mast cells (BMMCs) indicated that Itk/Btk double knock-out BMMCs are defective in degranulation and cytokine secretion responses downstream to FcϵRI activation. These responses were accompanied by a significant reduction in PLCγ2 phosphorylation and severely impaired calcium responses in these cells. This defect also results in altered NFAT1 nuclear localization in double knock-out BMMCs. Network analysis suggests that although they may share substrates, Itk plays both positive and negative roles, while Btk primarily plays a positive role in mast cell FcϵRI-induced cytokine secretion. PMID:21212279
Deletion of Numb/Numblike in glutamatergic neurons leads to anxiety-like behavior in mice.
Qian, Wenyu; Hong, Yang; Zhu, Minyan; Zhou, Liang; Li, Hongchang; Li, Huashun
2017-06-15
Endocytic adaptor protein Numb is the first identified cell fate determinant in Drosophila melanogaster. It has been implicated in Notch signaling pathway and regulation of neural stem cells proliferation in the central nervous system. Numb is also expressed in postmitotic neurons, in vitro studies showed that Numb is involved in neuronal morphologic development, such as neurite growth, axonal growth and spine development. However, in vivo functions of Numb in the postmitotic neurons are largely unknown. Here we show that deletion of Numb/Numblike in glutamatergic neurons causes anxiety-like behavior in mouse. In this study, we conditionally deleted Numb and its homologous gene Numblike in the glutamatergic neurons in dorsal forebrain, and thoroughly characterized the behavioral phenotypes of mutant mice. On a battery of tests for anxiety-like behavior, the conditional double knockout mice showed increased anxiety-like behavior on light/dark exploration and novel open field tests, but not on elevated zero maze tests. The conditional double knockout mice also displayed novelty induced hyperactivity in novel open field test. Control measures of general health, motor functions, startle response, sensorimotor gating, depression-related behaviors did not show differences between genotypes. Our present findings provide new insight into the indispensable functions of Numb/Numblike in the brain and behavior, and suggest that Numb/Numblike may play a role in mediating neuronal functions that underlie behaviors related to anxiety. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Wu, Xue-Ru; Lieske, John C.; Evan, Andrew P.; Sommer, Andre J.; Liaw, Lucy; Mo, Lan
2008-09-01
Urinary protein macromolecules have long been thought to play a role in influencing the various phases of urolithiasis including nucleation, growth, aggregation of mineral crystals and their subsequent adhesion to the renal epithelial cells. However, compelling evidence regarding their precise role was lacking, due partly to the fact that most prior studies were done in vitro and results were highly variable depending on the experimental conditions. The advent of genetic engineering technology has made it possible to study urinary protein macromolecules within an in vivo biological system. Indeed, recent studies have begun to shed light on the net effects of loss of one or more macromolecules on the earliest steps of urolithiasis. This paper focuses on the in vivo consequences of inactivating Tamm-Horsfall protein and/or osteopontin, two major urinary glycoproteins, using the knockout approach. The renal phenotypes of both single and double knockout mice under spontaneous or hyperoxaluric conditions will be described. The functional significance of the urinary macromolecules as critical defense factors against renal calcification will also be discussed.
Genetic deletion of CB1 receptors improves non-associative learning.
Degroot, Aldemar; Salhoff, Craig; Davis, Richard J; Nomikos, George G
2005-07-01
Habituation (a form of non-associative learning) was measured by assessing locomotion in novel activity monitors in CB1 receptor knockout mice and juxtaposed to habituation measured in muscarinic M2, M4, and double M2/M4 receptor knockout mice. M2 and M2/M4, but not M4, receptor knockout mice appeared to have an impaired ability to habituate, whereas CB1 receptor knockout mice showed enhanced habituation compared to wild-type animals. We conclude that CB1 receptor gene invalidation improves habituation tentatively through an increase in cholinergic neurotransmission.
Dong, Z; Yan, L; Huang, G; Zhang, L; Mei, B; Meng, B
2014-06-13
Ibuprofen is a widely used nonsteroidal anti-inflammatory drug that reportedly reduces the risk of Alzheimer's disease (AD) development. The anti-inflammatory effect of ibuprofen occurred via inhibition of cyclooxygenases and anti-amyloidogenesis through modulation of γ-secretase. Presenilin 1 and 2 conditional double-knockout (cDKO) mice exhibited age-dependent memory impairment and forebrain degeneration without elevation of amyloid β deposition. Therefore, cDKO mice can be an ideal animal model on which to independently test the effects of ibuprofen anti-inflammatory properties on the prevention of AD. Three- and six-month-old cDKO mice were fed diet containing 375 ppm ibuprofen for six months. After multiple, well-validated behavioral tests, treatment with ibuprofen improved cognition-related behavioral performance, and drug efficacy was correlated with the timing of administration. Ibuprofen was more effective on six-month-old than on three-month-old cDKO mice. Biochemical analysis demonstrated that the effects of ibuprofen on glial fibrillary acidic protein and CD68 expression levels were uneven in different brain regions of cDKO mice and that age also influenced such effects. Tau hyperphosphorylation and the cleavage of caspase-3 decreased after ibuprofen treatment, and this effect was more significant in the older than the younger group of mice, which was consistent with the results of behavioral tests. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Xie, Yifang; Wang, Daqi; Lan, Feng; Wei, Gang; Ni, Ting; Chai, Renjie; Liu, Dong; Hu, Shijun; Li, Mingqing; Li, Dajin; Wang, Hongyan; Wang, Yongming
2017-05-24
Human pluripotent stem cells (hPSCs) represent a unique opportunity for understanding the molecular mechanisms underlying complex traits and diseases. CRISPR/Cas9 is a powerful tool to introduce genetic mutations into the hPSCs for loss-of-function studies. Here, we developed an episomal vector-based CRISPR/Cas9 system, which we called epiCRISPR, for highly efficient gene knockout in hPSCs. The epiCRISPR system enables generation of up to 100% Insertion/Deletion (indel) rates. In addition, the epiCRISPR system enables efficient double-gene knockout and genomic deletion. To minimize off-target cleavage, we combined the episomal vector technology with double-nicking strategy and recent developed high fidelity Cas9. Thus the epiCRISPR system offers a highly efficient platform for genetic analysis in hPSCs.
Ahn, Jinwoo; Kim, Kwang Hyun; Park, Sanghui; Ahn, Young-Ho; Kim, Ha Young; Yoon, Hana; Lee, Ji Hyun; Bang, Duhee; Lee, Dong Hyeon
2016-09-27
UTX is a histone demethylase gene located on the X chromosome and is a frequently mutated gene in urothelial bladder cancer (UBC). UTY is a paralog of UTX located on the Y chromosome. We performed target capture sequencing on 128 genes in 40 non-metastatic UBC patients. UTX was the most frequently mutated gene (30%, 12/40). Of the genetic alterations identified, 75% were truncating mutations. UTY copy number loss was detected in 8 male patients (22.8%, 8/35). Of the 9 male patients with UTX mutations, 6 also had copy number loss (66.7%). To evaluate the functional roles of UTX and UTY in tumor progression, we designed UTX and UTY single knockout and UTX-UTY double knockout experiments using a CRISPR/Cas9 lentiviral system, and compared the proliferative capacities of two UBC cell lines in vitro. Single UTX or UTY knockout increased cell proliferation as compared to UTX-UTY wild-type cells. UTX-UTY double knockout cells exhibited greater proliferation than single knockout cells. These findings suggest both UTX and UTY function as dose-dependent suppressors of UBC development. While UTX escapes X chromosome inactivation in females, UTY may function as a male homologue of UTX, which could compensate for dosage imbalances.
Marvel, Miranda; Spicer, Olivia Smith; Wong, Ten-Tsao; Zmora, Nilli; Zohar, Yonathan
2018-04-04
Gonadotropin-releasing hormone (GnRH) is known as a pivotal upstream regulator of reproduction in vertebrates. However, reproduction is not compromised in the hypophysiotropic Gnrh3 knockout line in zebrafish (gnrh3-/-). In order to determine if Gnrh2, the only other Gnrh isoform in zebrafish brains, is compensating for the loss of Gnrh3, we generated a double Gnrh knockout zebrafish line. Surprisingly, the loss of both Gnrh isoforms resulted in no major impact on reproduction, indicating that a compensatory response, outside of the Gnrh system, was evoked. A plethora of factors acting along the reproductive hypothalamus-pituitary axis were evaluated as possible compensators based on neuroanatomical and differential gene expression studies. In addition, we also examined the involvement of feeding factors in the brain as potential compensators for Gnrh2, which has known anorexigenic effects. We found that the double knockout fish exhibited upregulation of several genes in the brain, specifically gonadotropin-inhibitory hormone (gnih), secretogranin 2 (scg2), tachykinin 3a (tac3a), and pituitary adenylate cyclase-activating peptide 1 (pacap1), and downregulation of agouti-related peptide 1 (agrp1), indicating the compensation occurs outside of Gnrh cells and therefore is a non-cell autonomous response to the loss of Gnrh. While the differential expression of gnih and agrp1 in the double knockout line was confined to the periventricular nucleus and hypothalamus, respectively, the upregulation of scg2 corresponded with a broader neuronal redistribution in the lateral hypothalamus and hindbrain. In conclusion, our results demonstrate the existence of a redundant reproductive regulatory system that comes into play when Gnrh2 and Gnrh3 are lost.
Zhou, Jibin; Ahmad, Firdos; Parikh, Shan; Hoffman, Nichole E; Rajan, Sudarsan; Verma, Vipin K; Song, Jianliang; Yuan, Ancai; Shanmughapriya, Santhanam; Guo, Yuanjun; Gao, Erhe; Koch, Walter; Woodgett, James R; Madesh, Muniswamy; Kishore, Raj; Lal, Hind; Force, Thomas
2016-04-15
Cardiac myocyte-specific deletion of either glycogen synthase kinase (GSK)-3α and GSK-3β leads to cardiac protection after myocardial infarction, suggesting that deletion of both isoforms may provide synergistic protection. This is an important consideration because of the fact that all GSK-3-targeted drugs, including the drugs already in clinical trial target both isoforms of GSK-3, and none are isoform specific. To identify the consequences of combined deletion of cardiac myocyte GSK-3α and GSK-3β in heart function. We generated tamoxifen-inducible cardiac myocyte-specific mice lacking both GSK-3 isoforms (double knockout). We unexpectedly found that cardiac myocyte GSK-3 is essential for cardiac homeostasis and overall survival. Serial echocardiographic analysis reveals that within 2 weeks of tamoxifen treatment, double-knockout hearts leads to excessive dilatative remodeling and ventricular dysfunction. Further experimentation with isolated adult cardiac myocytes and fibroblasts from double-knockout implicated cardiac myocytes intrinsic factors responsible for observed phenotype. Mechanistically, loss of GSK-3 in adult cardiac myocytes resulted in induction of mitotic catastrophe, a previously unreported event in cardiac myocytes. Double-knockout cardiac myocytes showed cell cycle progression resulting in increased DNA content and multinucleation. However, increased cell cycle activity was rivaled by marked activation of DNA damage, cell cycle checkpoint activation, and mitotic catastrophe-induced apoptotic cell death. Importantly, mitotic catastrophe was also confirmed in isolated adult cardiac myocytes. Together, our findings suggest that cardiac myocyte GSK-3 is required to maintain normal cardiac homeostasis, and its loss is incompatible with life because of cell cycle dysregulation that ultimately results in a severe fatal dilated cardiomyopathy. © 2016 American Heart Association, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baroukh, Nadine N.; Bauge, Eric; Akiyama, Jennifer
2003-08-15
Both the apolipoprotein A5 and C3 genes have repeatedly been shown to play an important role in determining plasma triglyceride concentrations in humans and mice. In mice, transgenic and knockout experiments indicate that plasma triglyceride levels are negatively and positively correlated with APOA5 and APOC3 expression, respectively. In humans, common polymorphisms in both genes have also been associated with plasma triglyceride concentrations. The evolutionary relationship among these two apolipoprotein genes and their close proximity on human chromosome 11q23 have largely precluded the determination of their relative contribution to altered Both the apolipoprotein A5 and C3 genes have repeatedly been shownmore » to play an important role in determining plasma triglyceride concentrations in humans and mice. In mice, transgenic and knockout experiments indicate that plasma triglyceride levels are negatively and positively correlated with APOA5 and APOC3 expression, respectively. In humans, common polymorphisms in both genes have also been associated with plasma triglyceride concentrations. The evolutionary relationship among these two apolipoprotein genes and their close proximity on human chromosome 11q23 have largely precluded the determination of their relative contribution to altered triglycerides. To overcome these confounding factors and address their relationship, we generated independent lines of mice that either over-expressed (''double transgenic'') or completely lacked (''double knockout'') both apolipoprotein genes. We report that both ''double transgenic'' and ''double knockout'' mice display intermedia tetriglyceride concentrations compared to over-expression or deletion of either gene alone. Furthermore, we find that human ApoAV plasma protein levels in the ''double transgenic'' mice are approximately 500-fold lower than human ApoCIII levels, supporting ApoAV is a potent triglyceride modulator despite its low concentration. Together, these data indicate that APOA5 and APOC3 independently influence plasma triglyceride concentrations but in an opposing manner.« less
Vahid-Ansari, Faranak; Daigle, Mireille; Manzini, M. Chiara; Tanaka, Kenji F.; Hen, René; Geddes, Sean D.; Béïque, Jean-Claude; James, Jonathan; Merali, Zul; Albert, Paul R.
2017-01-01
Freud-1/CC2D1A represses the gene transcription of serotonin-1A (5-HT1A) autoreceptors, which negatively regulate 5-HT tone. To test the role of Freud-1 in vivo, we generated mice with adulthood conditional knockout of Freud-1 in 5-HT neurons (cF1ko). In cF1ko mice, 5-HT1A autoreceptor protein, binding and hypothermia response were increased, with reduced 5-HT content and neuronal activity in the dorsal raphe. The cF1ko mice displayed increased anxiety- and depression-like behavior that was resistant to chronic antidepressant (fluoxetine) treatment. Using conditional Freud-1/5-HT1A double knockout (cF1/1A dko) to disrupt both Freud-1 and 5-HT1A genes in 5-HT neurons, no increase in anxiety- or depression-like behaviour was seen upon knockout of Freud-1 on the 5-HT1A autoreceptor-negative background, rather a reduction in depression-like behaviour emerged. These studies implicate transcriptional dys-regulation of 5-HT1A autoreceptors by the repressor Freud-1 in anxiety and depression and provide a clinically relevant genetic model of antidepressant resistance. Targeting specific transcription factors like Freud-1 to restore transcriptional balance may augment response to antidepressant treatment. PMID:29101244
Nakagawa, Yoshiko; Sakuma, Tetsushi; Nishimichi, Norihisa; Yokosaki, Yasuyuki; Yanaka, Noriyuki; Takeo, Toru; Nakagata, Naomi; Yamamoto, Takashi
2016-08-15
Current advances in producing genetically modified mice using genome-editing technologies have indicated the need for improvement of limiting factors including zygote collection for microinjection and their cryopreservation. Recently, we developed a novel superovulation technique using inhibin antiserum and equine chorionic gonadotropin to promote follicle growth. This method enabled the increased production of fertilized oocytes via in vitro fertilization compared with the conventional superovulation method. Here, we verify that the ultra-superovulation technique can be used for the efficient generation of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated knockout mice by microinjection of plasmid vector or ribonucleoprotein into zygotes. We also investigated whether single-amino-acid-substituted mice and conditional knockout mice could be generated. Founder mice bearing base substitutions were generated more efficiently by co-microinjection of Cas9 protein, a guide RNA and single-stranded oligodeoxynucleotide (ssODN) than by plasmid microinjection with ssODN. The conditional allele was successfully introduced by the one-step insertion of an ssODN designed to carry an exon flanked by two loxP sequences and homology arms using a double-cut CRISPR-Cas9 strategy. Our study presents a useful method for the CRISPR-Cas9-based generation of genetically modified mice from the viewpoints of animal welfare and work efficiency. © 2016. Published by The Company of Biologists Ltd.
Goetz, Benjamin; An, Wei; Mohapatra, Bhopal; Zutshi, Neha; Iseka, Fany; Storck, Matthew D.; Meza, Jane; Sheinin, Yuri; Band, Vimla; Band, Hamid
2016-01-01
CBL-family ubiquitin ligases are critical negative regulators of tyrosine kinase signaling, with a clear redundancy between CBL and CBL-B evident in the immune cell and hematopoietic stem cell studies. Since CBL and CBL-B are negative regulators of immune cell activation, elimination of their function to boost immune cell activities could be beneficial in tumor immunotherapy. However, mutations of CBL are associated with human leukemias, pointing to tumor suppressor roles of CBL proteins; hence, it is critical to assess the tumor-intrinsic roles of CBL and CBL-B in cancers. This has not been possible since the only available whole-body CBL-B knockout mice exhibit constitutive tumor rejection. We engineered a new CBL-Bflox/flox mouse, combined this with an existing CBLflox/flox mouse to generate CBLflox/flox; CBL-Bflox/flox mice, and tested the tissue-specific concurrent deletion of CBL and CBL-B using the widely-used CD4-Cre transgenic allele to produce a T-cell-specific double knockout. Altered T-cell development, constitutive peripheral T-cell activation, and a lethal multi-organ immune infiltration phenotype largely resembling the previous Lck-Cre driven floxed-CBL deletion on a CBL-B knockout background establish the usefulness of the new model for tissue-specific CBL/CBL-B deletion. Unexpectedly, CD4-Cre-induced deletion in a small fraction of hematopoietic stem cells led to expansion of certain non-T-cell lineages, suggesting caution in the use of CD4-Cre for T-cell-restricted gene deletion. The establishment of a new model of concurrent tissue-selective CBL/CBL-B deletion should allow a clear assessment of the tumor-intrinsic roles of CBL/CBL-B in non-myeloid malignancies and help test the potential for CBL/CBL-B inactivation in immunotherapy of tumors. PMID:27276677
APLP2 regulates neuronal stem cell differentiation during cortical development.
Shariati, S Ali M; Lau, Pierre; Hassan, Bassem A; Müller, Ulrike; Dotti, Carlos G; De Strooper, Bart; Gärtner, Annette
2013-03-01
Expression of amyloid precursor protein (APP) and its two paralogues, APLP1 and APLP2 during brain development coincides with key cellular events such as neuronal differentiation and migration. However, genetic knockout and shRNA studies have led to contradictory conclusions about their role during embryonic brain development. To address this issue, we analysed in depth the role of APLP2 during neurogenesis by silencing APLP2 in vivo in an APP/APLP1 double knockout mouse background. We find that under these conditions cortical progenitors remain in their undifferentiated state much longer, displaying a higher number of mitotic cells. In addition, we show that neuron-specific APLP2 downregulation does not impact the speed or position of migrating excitatory cortical neurons. In summary, our data reveal that APLP2 is specifically required for proper cell cycle exit of neuronal progenitors, and thus has a distinct role in priming cortical progenitors for neuronal differentiation.
2013-01-01
Background Studies in animals showed that PCSK9 is involved in HDL metabolism. We investigated the molecular mechanism by which PCSK9 regulates HDL cholesterol concentration and also whether Pcsk9 inactivation might affect cholesterol efflux capacity of serum and atherosclerotic fatty streak volume. Methods Mass spectrometry and western blot were used to analyze the level of apolipoprotein E (APOE) and A1 (APOA1). A mouse model overexpressing human LDLR was used to test the effect of high levels of liver LDLR on the concentration of HDL cholesterol and APOE-containing HDL subfractions. Pcsk9 knockout males lacking LDLR and APOE were used to test whether LDLR and APOE are necessary for PCSK9-mediated HDL cholesterol regulation. We also investigated the effects of Pcsk9 inactivation on cholesterol efflux capacity of serum using THP-1 and J774.A1 macrophage foam cells and atherosclerotic fatty streak volume in the aortic sinus of Pcsk9 knockout males fed an atherogenic diet. Results APOE and APOA1 were reduced in the same HDL subfractions of Pcsk9 knockout and human LDLR transgenic male mice. In Pcsk9/Ldlr double-knockout mice, HDL cholesterol concentration was lower than in Ldlr knockout mice and higher than in wild-type controls. In Pcsk9/Apoe double-knockout mice, HDL cholesterol concentration was similar to that of Apoe knockout males. In Pcsk9 knockout males, THP-1 macrophage cholesterol efflux capacity of serum was reduced and the fatty streak lesion volume was similar to wild-type controls. Conclusions In mice, LDLR and APOE are important factors for PCSK9-mediated HDL regulation. Our data suggest that, although LDLR plays a major role in PCSK9-mediated regulation of HDL cholesterol concentration, it is not the only mechanism and that, regardless of mechanism, APOE is essential. Pcsk9 inactivation decreases the HDL cholesterol concentration and cholesterol efflux capacity in serum, but does not increase atherosclerotic fatty streak volume. PMID:23883163
Targeted deletion of miR-132/-212 impairs memory and alters the hippocampal transcriptome.
Hansen, Katelin F; Sakamoto, Kensuke; Aten, Sydney; Snider, Kaitlin H; Loeser, Jacob; Hesse, Andrea M; Page, Chloe E; Pelz, Carl; Arthur, J Simon C; Impey, Soren; Obrietan, Karl
2016-02-01
miR-132 and miR-212 are structurally related microRNAs that have been found to exert powerful modulatory effects within the central nervous system (CNS). Notably, these microRNAs are tandomly processed from the same noncoding transcript, and share a common seed sequence: thus it has been difficult to assess the distinct contribution of each microRNA to gene expression within the CNS. Here, we employed a combination of conditional knockout and transgenic mouse models to examine the contribution of the miR-132/-212 gene locus to learning and memory, and then to assess the distinct effects that each microRNA has on hippocampal gene expression. Using a conditional deletion approach, we show that miR-132/-212 double-knockout mice exhibit significant cognitive deficits in spatial memory, recognition memory, and in tests of novel object recognition. Next, we utilized transgenic miR-132 and miR-212 overexpression mouse lines and the miR-132/-212 double-knockout line to explore the distinct effects of these two miRNAs on the transcriptional profile of the hippocampus. Illumina sequencing revealed that miR-132/-212 deletion increased the expression of 1138 genes; Venn analysis showed that 96 of these genes were also downregulated in mice overexpressing miR-132. Of the 58 genes that were decreased in animals overexpressing miR-212, only four of them were also increased in the knockout line. Functional gene ontology analysis of downregulated genes revealed significant enrichment of genes related to synaptic transmission, neuronal proliferation, and morphogenesis, processes known for their roles in learning, and memory formation. These data, coupled with previous studies, firmly establish a role for the miR-132/-212 gene locus as a key regulator of cognitive capacity. Further, although miR-132 and miR-212 share a seed sequence, these data indicate that these miRNAs do not exhibit strongly overlapping mRNA targeting profiles, thus indicating that these two genes may function in a complex, nonredundant manner to shape the transcriptional profile of the CNS. The dysregulation of miR-132/-212 expression could contribute to signaling mechanisms that are involved in an array of cognitive disorders. © 2016 Hansen et al.; Published by Cold Spring Harbor Laboratory Press.
Targeted deletion of miR-132/-212 impairs memory and alters the hippocampal transcriptome
Hansen, Katelin F.; Sakamoto, Kensuke; Aten, Sydney; Snider, Kaitlin H.; Loeser, Jacob; Hesse, Andrea M.; Page, Chloe E.; Pelz, Carl; Arthur, J. Simon C.; Impey, Soren
2016-01-01
miR-132 and miR-212 are structurally related microRNAs that have been found to exert powerful modulatory effects within the central nervous system (CNS). Notably, these microRNAs are tandomly processed from the same noncoding transcript, and share a common seed sequence: thus it has been difficult to assess the distinct contribution of each microRNA to gene expression within the CNS. Here, we employed a combination of conditional knockout and transgenic mouse models to examine the contribution of the miR-132/-212 gene locus to learning and memory, and then to assess the distinct effects that each microRNA has on hippocampal gene expression. Using a conditional deletion approach, we show that miR-132/-212 double-knockout mice exhibit significant cognitive deficits in spatial memory, recognition memory, and in tests of novel object recognition. Next, we utilized transgenic miR-132 and miR-212 overexpression mouse lines and the miR-132/-212 double-knockout line to explore the distinct effects of these two miRNAs on the transcriptional profile of the hippocampus. Illumina sequencing revealed that miR-132/-212 deletion increased the expression of 1138 genes; Venn analysis showed that 96 of these genes were also downregulated in mice overexpressing miR-132. Of the 58 genes that were decreased in animals overexpressing miR-212, only four of them were also increased in the knockout line. Functional gene ontology analysis of downregulated genes revealed significant enrichment of genes related to synaptic transmission, neuronal proliferation, and morphogenesis, processes known for their roles in learning, and memory formation. These data, coupled with previous studies, firmly establish a role for the miR-132/-212 gene locus as a key regulator of cognitive capacity. Further, although miR-132 and miR-212 share a seed sequence, these data indicate that these miRNAs do not exhibit strongly overlapping mRNA targeting profiles, thus indicating that these two genes may function in a complex, nonredundant manner to shape the transcriptional profile of the CNS. The dysregulation of miR-132/-212 expression could contribute to signaling mechanisms that are involved in an array of cognitive disorders. PMID:26773099
Vandenbeuch, Aurelie; Larson, Eric D; Anderson, Catherine B; Smith, Steven A; Ford, Anthony P; Finger, Thomas E; Kinnamon, Sue C
2015-01-01
Abstract Taste buds release ATP to activate ionotropic purinoceptors composed of P2X2 and P2X3 subunits, present on the taste nerves. Mice with genetic deletion of P2X2 and P2X3 receptors (double knockout mice) lack responses to all taste stimuli presumably due to the absence of ATP-gated receptors on the afferent nerves. Recent experiments on the double knockout mice showed, however, that their taste buds fail to release ATP, suggesting the possibility of pleiotropic deficits in these global knockouts. To test further the role of postsynaptic P2X receptors in afferent signalling, we used AF-353, a selective antagonist of P2X3-containing receptors to inhibit the receptors acutely during taste nerve recording and behaviour. The specificity of AF-353 for P2X3-containing receptors was tested by recording Ca2+ transients to exogenously applied ATP in fura-2 loaded isolated geniculate ganglion neurons from wild-type and P2X3 knockout mice. ATP responses were completely inhibited by 10 μm or 100 μm AF-353, but neither concentration blocked responses in P2X3 single knockout mice wherein the ganglion cells express only P2X2-containing receptors. Furthermore, AF-353 had no effect on taste-evoked ATP release from taste buds. In wild-type mice, i.p. injection of AF-353 or simple application of the drug directly to the tongue, inhibited taste nerve responses to all taste qualities in a dose-dependent fashion. A brief access behavioural assay confirmed the electrophysiological results and showed that preference for a synthetic sweetener, SC-45647, was abolished following i.p. injection of AF-353. These data indicate that activation of P2X3-containing receptors is required for transmission of all taste qualities. Key points Acute inhibition of purinergic receptors with a selective P2X3 antagonist prevents transmission of information from taste buds to sensory nerves. The P2X3 antagonist has no effect on taste-evoked release of ATP, confirming the effect is postsynaptic. The results confirm previous results with P2X2/3 double knockout mice that ATP is required for transmission of all taste qualities, including sour and salty. Previously, ATP was confirmed to be required for bitter, sweet and umami tastes, but was questioned for salty and sour tastes due to pleomorphic deficits in the double knockout mice. The geniculate ganglion in mouse contains two populations of ganglion cells with different subunit composition of P2X2 and P2X3 receptors making them differently susceptible to pharmacological block and, presumably, desensitization. PMID:25524179
Identification of essential genes and synthetic lethal gene combinations in Escherichia coli K-12.
Mori, Hirotada; Baba, Tomoya; Yokoyama, Katsushi; Takeuchi, Rikiya; Nomura, Wataru; Makishi, Kazuichi; Otsuka, Yuta; Dose, Hitomi; Wanner, Barry L
2015-01-01
Here we describe the systematic identification of single genes and gene pairs, whose knockout causes lethality in Escherichia coli K-12. During construction of precise single-gene knockout library of E. coli K-12, we identified 328 essential gene candidates for growth in complex (LB) medium. Upon establishment of the Keio single-gene deletion library, we undertook the development of the ASKA single-gene deletion library carrying a different antibiotic resistance. In addition, we developed tools for identification of synthetic lethal gene combinations by systematic construction of double-gene knockout mutants. We introduce these methods herein.
Fukada, So-ichiro; Yamaguchi, Masahiko; Kokubo, Hiroki; Ogawa, Ryo; Uezumi, Akiyoshi; Yoneda, Tomohiro; Matev, Miroslav M.; Motohashi, Norio; Ito, Takahito; Zolkiewska, Anna; Johnson, Randy L.; Saga, Yumiko; Miyagoe-Suzuki, Yuko; Tsujikawa, Kazutake; Takeda, Shin’ichi; Yamamoto, Hiroshi
2011-01-01
Satellite cells, which are skeletal muscle stem cells, divide to provide new myonuclei to growing muscle fibers during postnatal development, and then are maintained in an undifferentiated quiescent state in adult skeletal muscle. This state is considered to be essential for the maintenance of satellite cells, but their molecular regulation is unknown. We show that Hesr1 (Hey1) and Hesr3 (Heyl) (which are known Notch target genes) are expressed simultaneously in skeletal muscle only in satellite cells. In Hesr1 and Hesr3 single-knockout mice, no obvious abnormalities of satellite cells or muscle regenerative potentials are observed. However, the generation of undifferentiated quiescent satellite cells is impaired during postnatal development in Hesr1/3 double-knockout mice. As a result, myogenic (MyoD and myogenin) and proliferative (Ki67) proteins are expressed in adult satellite cells. Consistent with the in vivo results, Hesr1/3-null myoblasts generate very few Pax7+ MyoD– undifferentiated cells in vitro. Furthermore, the satellite cell number gradually decreases in Hesr1/3 double-knockout mice even after it has stabilized in control mice, and an age-dependent regeneration defect is observed. In vivo results suggest that premature differentiation, but not cell death, is the reason for the reduced number of satellite cells in Hesr1/3 double-knockout mice. These results indicate that Hesr1 and Hesr3 are essential for the generation of adult satellite cells and for the maintenance of skeletal muscle homeostasis. PMID:21989910
Miranda, Carlos J.; Makui, Hortence; Andrews, Nancy C.; Santos, Manuela M.
2010-01-01
Genetic causes of hereditary hemochromatosis (HH) include mutations in the HFE gene, coding for a β2-microglobulin (β2m)–associated major histocompatibility complex class I-like protein. However, iron accumulation in patients with HH can be highly variable. Previously, analysis of β2mRag1−/− double-deficient mice, lacking all β2m-dependent molecules and lymphocytes, demonstrated increased iron accumulation in the pancreas and heart compared with β2m single knock-out mice. To evaluate whether the observed phenotype in β2mRag1−/− mice was due solely to the absence of Hfe or to other β2m-dependent molecules, we generated HfeRag1−/− double-deficient mice. Our studies revealed that introduction of Rag1 deficiency in Hfe knock-out mice leads to heightened iron overload, mainly in the liver, whereas the heart and pancreas are relatively spared compared with β2mRag1−/− mice. These results suggest that other β2m-interacting protein(s) may be involved in iron regulation and that in the absence of functional Hfe molecules lymphocyte numbers may influence iron overload severity. PMID:14656877
A Mutation in the Dmp1 Gene Alters Phosphate Responsiveness in Mice
Gerard-O'Riley, Rita L.; Acton, Dena; McQueen, Amie K.; Strobel, Isabel E.; Witcher, Phillip C.; Feng, Jian Q.; Econs, Michael J.
2017-01-01
Mutations in the dentin matrix protein 1 (DMP1) gene cause autosomal recessive hypophosphatemic rickets (ARHR). Hypophosphatemia in ARHR results from increased circulating levels of the phosphaturic hormone, fibroblast growth factor 23 (FGF23). Similarly, elevated FGF23, caused by mutations in the PHEX gene, is responsible for the hypophosphatemia in X-linked hypophosphatemic rickets (XLH). Previously, we demonstrated that a Phex mutation in mice creates a lower set point for extracellular phosphate, where an increment in phosphorus further stimulates Fgf23 production to maintain low serum phosphorus levels. To test the presence of the similar set point defect in ARHR, we generated 4- and 12-week-old Dmp1/Galnt3 double knockout mice and controls, including Dmp1 knockout mice (a murine model of ARHR), Galnt3 knockout mice (a murine model of familial tumoral calcinosis), and phenotypically normal double heterozygous mice. Galnt3 knockout mice had increased proteolytic cleavage of Fgf23, leading to low circulating intact Fgf23 levels with consequent hyperphosphatemia. In contrast, Dmp1 knockout mice had little Fgf23 cleavage and increased femoral Fgf23 expression, resulting in hypophosphatemia and low femoral bone mineral density (BMD). However, introduction of the Galnt3 null allele to Dmp1 knockout mice resulted in a significant increase in serum phosphorus and normalization of BMD. This increased serum phosphorus was accompanied by markedly elevated Fgf23 expression and circulating Fgf23 levels, an attempt to reduce serum phosphorus in the face of improving phosphorus levels. These data indicate that a Dmp1 mutation creates a lower set point for extracellular phosphate and maintains it through the regulation of Fgf23 cleavage and expression. PMID:28005411
A Mutation in the Dmp1 Gene Alters Phosphate Responsiveness in Mice.
Ichikawa, Shoji; Gerard-O'Riley, Rita L; Acton, Dena; McQueen, Amie K; Strobel, Isabel E; Witcher, Phillip C; Feng, Jian Q; Econs, Michael J
2017-03-01
Mutations in the dentin matrix protein 1 (DMP1) gene cause autosomal recessive hypophosphatemic rickets (ARHR). Hypophosphatemia in ARHR results from increased circulating levels of the phosphaturic hormone, fibroblast growth factor 23 (FGF23). Similarly, elevated FGF23, caused by mutations in the PHEX gene, is responsible for the hypophosphatemia in X-linked hypophosphatemic rickets (XLH). Previously, we demonstrated that a Phex mutation in mice creates a lower set point for extracellular phosphate, where an increment in phosphorus further stimulates Fgf23 production to maintain low serum phosphorus levels. To test the presence of the similar set point defect in ARHR, we generated 4- and 12-week-old Dmp1/Galnt3 double knockout mice and controls, including Dmp1 knockout mice (a murine model of ARHR), Galnt3 knockout mice (a murine model of familial tumoral calcinosis), and phenotypically normal double heterozygous mice. Galnt3 knockout mice had increased proteolytic cleavage of Fgf23, leading to low circulating intact Fgf23 levels with consequent hyperphosphatemia. In contrast, Dmp1 knockout mice had little Fgf23 cleavage and increased femoral Fgf23 expression, resulting in hypophosphatemia and low femoral bone mineral density (BMD). However, introduction of the Galnt3 null allele to Dmp1 knockout mice resulted in a significant increase in serum phosphorus and normalization of BMD. This increased serum phosphorus was accompanied by markedly elevated Fgf23 expression and circulating Fgf23 levels, an attempt to reduce serum phosphorus in the face of improving phosphorus levels. These data indicate that a Dmp1 mutation creates a lower set point for extracellular phosphate and maintains it through the regulation of Fgf23 cleavage and expression. Copyright © 2017 by the Endocrine Society.
Novel In Vivo Model for Combinatorial Fluorescence Labeling in Mouse Prostate
Fang, Xiaolan; Gyabaah, Kenneth; Nickkholgh, Bita; Cline, J. Mark; Balaji, K.C.
2015-01-01
BACKGROUND The epithelial layer of prostate glands contains several types of cells, including luminal and basal cells. Yet there is paucity of animal models to study the cellular origin of normal or neoplastic development in the prostate to facilitate the treatment of heterogenous prostate diseases by targeting individual cell lineages. METHODS We developed a mouse model that expresses different types of fluorescent proteins (XFPs) specifically in prostatic cells. Using an in vivo stochastic fluorescent protein combinatorial strategy, XFP signals were expressed specifically in prostate of Protein Kinase D1 (PKD1) knock-out, K-RasG12D knock-in, and Phosphatase and tensin homolog (PTEN) and PKD1 double knock-out mice under the control of PB-Cre promoter. RESULTS In vivo XFP signals were observed in prostate of PKD1 knock-out, K-RasG12D knock-in, and PTEN PKD1 double knock-out mice, which developed normal, hyperplastic, and neoplastic prostate, respectively. The patchy expression pattern of XFPs in neoplasia tissue indicated the clonal origin of cancer cells in the prostate. CONCLUSIONS The transgenic mouse models demonstrate combinatorial fluorescent protein expression in normal and cancerous prostatic tissues. This novel prostate-specific fluorescent labeled mouse model, which we named Prorainbow, could be useful in studying benign and malignant pathology of prostate. PMID:25753731
Novel In Vivo model for combinatorial fluorescence labeling in mouse prostate.
Fang, Xiaolan; Gyabaah, Kenneth; Nickkholgh, Bita; Cline, J Mark; Balaji, K C
2015-06-15
The epithelial layer of prostate glands contains several types of cells, including luminal and basal cells. Yet there is paucity of animal models to study the cellular origin of normal or neoplastic development in the prostate to facilitate the treatment of heterogenous prostate diseases by targeting individual cell lineages. We developed a mouse model that expresses different types of fluorescent proteins (XFPs) specifically in prostatic cells. Using an in vivo stochastic fluorescent protein combinatorial strategy, XFP signals were expressed specifically in prostate of Protein Kinase D1 (PKD1) knock-out, K-Ras(G) (12) (D) knock-in, and Phosphatase and tensin homolog (PTEN) and PKD1 double knock-out mice under the control of PB-Cre promoter. In vivo XFP signals were observed in prostate of PKD1 knock-out, K-Ras(G) (12) (D) knock-in, and PTEN PKD1 double knock-out mice, which developed normal, hyperplastic, and neoplastic prostate, respectively. The patchy expression pattern of XFPs in neoplasia tissue indicated the clonal origin of cancer cells in the prostate. The transgenic mouse models demonstrate combinatorial fluorescent protein expression in normal and cancerous prostatic tissues. This novel prostate-specific fluorescent labeled mouse model, which we named Prorainbow, could be useful in studying benign and malignant pathology of prostate. © 2015 Wiley Periodicals, Inc.
TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation.
Ji, Rui; Tian, Shifu; Lu, Helen J; Lu, Qingjun; Zheng, Yan; Wang, Xiaomin; Ding, Jixiang; Li, Qiutang; Lu, Qingxian
2013-12-15
TAM tyrosine kinases play multiple functional roles, including regulation of the target genes important in homeostatic regulation of cytokine receptors or TLR-mediated signal transduction pathways. In this study, we show that TAM receptors affect adult hippocampal neurogenesis and loss of TAM receptors impairs hippocampal neurogenesis, largely attributed to exaggerated inflammatory responses by microglia characterized by increased MAPK and NF-κB activation and elevated production of proinflammatory cytokines that are detrimental to neuron stem cell proliferation and neuronal differentiation. Injection of LPS causes even more severe inhibition of BrdU incorporation in the Tyro3(-/-)Axl(-/-)Mertk(-/-) triple-knockout (TKO) brains, consistent with the LPS-elicited enhanced expression of proinflammatory mediators, for example, IL-1β, IL-6, TNF-α, and inducible NO synthase, and this effect is antagonized by coinjection of the anti-inflammatory drug indomethacin in wild-type but not TKO brains. Conditioned medium from TKO microglia cultures inhibits neuron stem cell proliferation and neuronal differentiation. IL-6 knockout in Axl(-/-)Mertk(-/-) double-knockout mice overcomes the inflammatory inhibition of neurogenesis, suggesting that IL-6 is a major downstream neurotoxic mediator under homeostatic regulation by TAM receptors in microglia. Additionally, autonomous trophic function of the TAM receptors on the proliferating neuronal progenitors may also promote progenitor differentiation into immature neurons.
Uterine Dysfunction in Biglycan and Decorin Deficient Mice Leads to Dystocia during Parturition
Wu, Zhiping; Aron, Abraham W.; Macksoud, Elyse E.; Iozzo, Renato V.; Hai, Chi-Ming; Lechner, Beatrice E.
2012-01-01
Cesarean birth rates are rising. Uterine dysfunction, the exact mechanism of which is unknown, is a common indication for Cesarean delivery. Biglycan and decorin are two small leucine-rich proteoglycans expressed in the extracellular matrix of reproductive tissues and muscle. Mice deficient in biglycan display a mild muscular dystrophy, and, along with mice deficient in decorin, are models of Ehlers-Danlos Syndrome, a connective tissue anomaly associated with uterine rupture. As a variant of Ehlers-Danlos Syndrome is caused by a genetic mutation resulting in abnormal biglycan and decorin secretion, we hypothesized that biglycan and decorin play a role in uterine function. Thus, we assessed wild-type, biglycan, decorin and double knockout pregnancies for timing of birth and uterine function. Uteri were harvested at embryonic days 12, 15 and 18. Nonpregnant uterine samples of the same genotypes were assessed for tissue failure rate and spontaneous and oxytocin-induced contractility. We discovered that biglycan/decorin mixed double-knockout dams displayed dystocia, were at increased risk of delayed labor onset, and showed increased tissue failure in a predominantly decorin-dependent manner. In vitro spontaneous uterine contractile amplitude and oxytocin-induced contractile force were decreased in all biglycan and decorin knockout genotypes compared to wild-type. Notably, we found no significant compensation between biglycan and decorin using quantitative real time PCR or immunohistochemistry. We conclude that the biglycan/decorin mixed double knockout mouse is a model of dystocia and delayed labor onset. Moreover, decorin is necessary for uterine function in a dose-dependent manner, while biglycan exhibits partial compensatory mechanisms in vivo. Thus, this model is poised for use as a model for testing novel targets for preventive or therapeutic manipulation of uterine dysfunction. PMID:22253749
Distinct Roles of the DmNav and DSC1 Channels in the Action of DDT and Pyrethroids
Rinkevich, Frank D.; Du, Yuzhe; Tolinski, Josh; Ueda, Atsushi; Wu, Chun-Fang; Zhorov, Boris S.; Dong, Ke
2015-01-01
Voltage-gated sodium channels (Nav channels) are critical for electrical signaling in the nervous system and are the primary targets of the insecticides DDT and pyrethroids. In Drosophila melanogaster, besides the canonical Nav channel, Para (also called DmNav), there is a sodium channel-like cation channel called DSC1 (Drosophila sodium channel 1). Temperature-sensitive paralytic mutations in DmNav (parats) confer resistance to DDT and pyrethroids, whereas DSC1 knockout flies exhibit enhanced sensitivity to pyrethroids. To further define the roles and interaction of DmNav and DSC1 channels in DDT and pyrethroid neurotoxicology, we generated a DmNav/DSC1 double mutant line by introducing a parats1 allele (carrying the I265N mutation) into a DSC1 knockout line. We confirmed that the I265N mutation reduced the sensitivity to two pyrethroids, permethrin and deltamethrin of a DmNav variant expressed in Xenopus oocytes. Computer modeling predicts that the I265N mutation confers pyrethroid resistance by allosterically altering the second pyrethroid receptor site on the DmNav channel. Furthermore, we found that I265N-mediated pyrethroid resistance in parats1 mutant flies was almost completely abolished in parats1;DSC1−/− double mutant flies. Unexpectedly, however, the DSC1 knockout flies were less sensitive to DDT, compared to the control flies (w1118A), and the parats1;DSC1−/− double mutant flies were even more resistant to DDT compared to the DSC1 knockout or parats1 mutant. Our findings revealed distinct roles of the DmNav and DSC1 channels in the neurotoxicology of DDT vs. pyrethroids and implicate the exciting possibility of using DSC1 channel blockers or modifiers in the management of pyrethroid resistance. PMID:25687544
Clemens, Michael J; Elia, Androulla; Morley, Simon J
2013-01-01
The protein kinase mammalian target of rapamycin (mTOR) regulates the phosphorylation and activity of several proteins that have the potential to control translation, including p70S6 kinase and the eIF4E binding proteins 4E-BP1 and 4E-BP2. In spite of this, in exponentially growing cells overall protein synthesis is often resistant to mTOR inhibitors. We report here that sensitivity of wild-type mouse embryonic fibroblasts (MEFs) to mTOR inhibitors can be greatly increased when the cells are subjected to the physiological stress imposed by hypertonic conditions. In contrast, protein synthesis in MEFs with a double knockout of 4E-BP1 and 4E-BP2 remains resistant to mTOR inhibitors under these conditions. Phosphorylation of p70S6 kinase and protein kinase B (Akt) is blocked by the mTOR inhibitor Ku0063794 equally well in both wild-type and 4E-BP knockout cells, under both normal and hypertonic conditions. The response of protein synthesis to hypertonic stress itself does not require the 4E-BPs. These data suggest that under certain stress conditions: (i) translation has a greater requirement for mTOR activity and (ii) there is an absolute requirement for the 4E-BPs for regulation by mTOR. Importantly, dephosphorylation of p70S6 kinase and Akt is not sufficient to affect protein synthesis acutely.
The Role of mDia1 in the Aberrant Innate Immune Signaling in del(5q) Myelodysplastic Syndromes
2016-10-01
Myeloproliferative Neoplasms The goal of this project will be to identify transcriptional pathways that are dysregulated in PMF megakaryocytes and... myeloproliferative phenotype, as previously reported in miR-146 knockout mice. Here we propose that the mDia1/miR-146a double knockout mice phenocopy...ineffective erythropoiesis and represent a model of anemia that is commonly seen MDS. However, the possibility of a myeloproliferative phenotype cannot be
Zhu, Jufen; Yu, Xinxu; Xie, Baogui; Gu, Xiaokui; Zhang, Zhenying; Li, Shaojie
2013-06-01
To gain insight into the regulatory mechanisms of oxidative stress responses in filamentous fungi, the genome-wide transcriptional response of Neurospora crassa to menadione was analysed by digital gene expression (DGE) profiling, which identified 779 upregulated genes and 576 downregulated genes. Knockout mutants affecting 130 highly-upregulated genes were tested for menadione sensitivity, which revealed that loss of the transcription factor siderophore regulation (SRE) (a transcriptional repressor for siderophore biosynthesis), catatase-3, cytochrome c peroxidase or superoxide dismutase 1 copper chaperone causes hypersensitivity to menadione. Deletion of sre dramatically increased transcription of the siderophore biosynthesis gene ono and the siderophore iron transporter gene sit during menadione stress, suggesting that SRE is required for repression of iron uptake under oxidative stress conditions. Contrary to its phenotype, the sre deletion mutant showed higher transcriptional levels of genes encoding reactive oxygen species (ROS) scavengers than wild type during menadione stress, which implies that the mutant suffers a higher level of oxidative stress than wild type. Uncontrolled iron uptake in the sre mutant might exacerbate cellular oxidative stress. This is the first report of a negative regulator of iron assimilation participating in the fungal oxidative stress response. In addition to SRE, eight other transcription factor genes were also menadione-responsive but their single gene knockout mutants showed wild-type menadione sensitivity. Two of them, named as mit-2 (menadione induced transcription factor-2) and mit-4 (menadione induced transcription factor-4), were selected for double mutant analysis. The double mutant was hypersensitive to menadione. Similarly, the double mutation of mit-2 and sre also had additive effects on menadione sensitivity, suggesting multiple transcription factors mediate oxidative stress resistance in an additive manner. Copyright © 2013 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Bock, Sylvia; Ortelt, Jennifer; Link, Gerhard
2014-01-01
Plants contain a nuclear gene family for plastid sigma factors, i.e., proteins that associate with the “bacterial-type” organellar RNA polymerase and confer the ability for correct promoter binding and transcription initiation. Questions that are still unresolved relate to the “division of labor” among members of the sigma family, both in terms of their range of target genes and their temporal and spatial activity during development. Clues to the in vivo role of individual sigma genes have mainly come from studies of sigma knockout lines. Despite its obvious strengths, however, this strategy does not necessarily trace-down causal relationships between mutant phenotype and a single sigma gene, if other family members act in a redundant and/or compensatory manner. We made efforts to reduce the complexity by genetic crosses of Arabidopsis single mutants (with focus on a chlorophyll-deficient sig6 line) to generate double knockout lines. The latter typically had a similar visible phenotype as the parental lines, but tended to be more strongly affected in the transcript patterns of both plastid and sigma genes. Because triple mutants were lethal under our growth conditions, we exploited a strategy of transformation of single and double mutants with RNAi constructs that contained sequences from the unconserved sigma region (UCR). These RNAi/knockout lines phenotypically resembled their parental lines, but were even more strongly affected in their plastid transcript patterns. Expression patterns of sigma genes revealed both similarities and differences compared to the parental lines, with transcripts at reduced or unchanged amounts and others that were found to be present in higher (perhaps compensatory) amounts. Together, our results reveal considerable flexibility of gene activity at the levels of both sigma and plastid gene expression. A (still viable) “basal state” seems to be reached, if 2–3 of the 6 Arabidopsis sigma genes are functionally compromised. PMID:25505479
Rao, Shengbin; Fujimura, Tatsuya; Matsunari, Hitomi; Sakuma, Tetsushi; Nakano, Kazuaki; Watanabe, Masahito; Asano, Yoshinori; Kitagawa, Eri; Yamamoto, Takashi; Nagashima, Hiroshi
2016-01-01
Myostatin (MSTN) is a negative regulator of myogenesis, and disruption of its function causes increased muscle mass in various species. Here, we report the generation of MSTN-knockout (KO) pigs using genome editing technology combined with somatic-cell nuclear transfer (SCNT). Transcription activator-like effector nuclease (TALEN) with non-repeat-variable di-residue variations, called Platinum TALEN, was highly efficient in modifying genes in porcine somatic cells, which were then used for SCNT to create MSTN KO piglets. These piglets exhibited a double-muscled phenotype, possessing a higher body weight and longissimus muscle mass measuring 170% that of wild-type piglets, with double the number of muscle fibers. These results demonstrate that loss of MSTN increases muscle mass in pigs, which may help increase pork production for consumption in the future. © 2015 Wiley Periodicals, Inc.
Transcription factor YY1 can control AID-mediated mutagenesis in mice.
Zaprazna, Kristina; Basu, Arindam; Tom, Nikola; Jha, Vibha; Hodawadekar, Suchita; Radova, Lenka; Malcikova, Jitka; Tichy, Boris; Pospisilova, Sarka; Atchison, Michael L
2018-02-01
Activation-induced cytidine deminase (AID) is crucial for controlling the immunoglobulin (Ig) diversification processes of somatic hypermutation (SHM) and class switch recombination (CSR). AID initiates these processes by deamination of cytosine, ultimately resulting in mutations or double strand DNA breaks needed for SHM and CSR. Levels of AID control mutation rates, and off-target non-Ig gene mutations can contribute to lymphomagenesis. Therefore, factors that control AID levels in the nucleus can regulate SHM and CSR, and may contribute to disease. We previously showed that transcription factor YY1 can regulate the level of AID in the nucleus and Ig CSR. Therefore, we hypothesized that conditional knock-out of YY1 would lead to reduction in AID localization at the Ig locus, and reduced AID-mediated mutations. Using mice that overexpress AID (IgκAID yy1 f/f ) or that express normal AID levels (yy1 f/f ), we found that conditional knock-out of YY1 results in reduced AID nuclear levels, reduced localization of AID to the Sμ switch region, and reduced AID-mediated mutations. We find that the mechanism of YY1 control of AID nuclear accumulation is likely due to YY1-AID physical interaction which blocks AID ubiquitination. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Injury risk in professional boxing.
Bledsoe, Gregory H; Li, Guohu; Levy, Fred
2005-10-01
Although a popular endeavor, boxing has fallen under increased scrutiny because of its association with traumatic brain injury. However, few studies have investigated the overall epidemiology of boxing injuries from representative samples, and no study has ever documented the incidence of injuries in female boxers. This study is a review of professional boxing data from the state of Nevada from September 2001 through March 2003. Medical and outcome data for all professional boxing matches occurring in Nevada between September 2001 and March 2003 (n = 524 matches) were analyzed on the basis of a pair-matched, case-control design. Cases were boxers who received an injury during the boxing matches. Boxers who were not injured served as control subjects. Both conditional and unconditional logistic regression models were used to assess risk factors for injury. The overall incidence rate of injury was 17.1 per 100 boxer-matches, or 3.4 per 100 boxer-rounds. Facial laceration accounted for 51% of all injuries, followed by hand injury (17%), eye injury (14%), and nose injury (5%). Male boxers were significantly more likely than female boxers to receive injuries (3.6 versus 1.2 per 100 boxer-rounds, P = 0.01). Male boxing matches also ended in knockouts and technical knockouts more often than did female matches (P < 0.001). The risk of injury for those who lost the matches was nearly twice the risk for the winners. Those who lost by knockout had double the risk of injury compared with those who lost by other means. Neither age nor weight was significantly associated with the risk of injury. The injury rate in professional boxing matches is high, particularly among male boxers. Superficial facial lacerations are the most common injury reported. Male boxers have a higher rate of knockout and technical knockouts than female boxers. Further research is necessary to determine the outcomes of injury, particularly the long-term neurologic outcome differences between sexes.
Development of a Markerless Knockout Method for Actinobacillus succinogenes
Joshi, Rajasi V.; Schindler, Bryan D.; McPherson, Nikolas R.; Tiwari, Kanupriya
2014-01-01
Actinobacillus succinogenes is one of the best natural succinate-producing organisms, but it still needs engineering to further increase succinate yield and productivity. In this study, we developed a markerless knockout method for A. succinogenes using natural transformation or electroporation. The Escherichia coli isocitrate dehydrogenase gene with flanking flippase recognition target sites was used as the positive selection marker, making use of A. succinogenes's auxotrophy for glutamate to select for growth on isocitrate. The Saccharomyces cerevisiae flippase recombinase (Flp) was used to remove the selection marker, allowing its reuse. Finally, the plasmid expressing flp was cured using acridine orange. We demonstrate that at least two consecutive deletions can be introduced into the same strain using this approach, that no more than a total of 1 kb of DNA is needed on each side of the selection cassette to protect from exonuclease activity during transformation, and that no more than 200 bp of homologous DNA is needed on each side for efficient recombination. We also demonstrate that electroporation can be used as an alternative transformation method to obtain knockout mutants and that an enriched defined medium can be used for direct selection of knockout mutants on agar plates with high efficiency. Single-knockout mutants of the fumarate reductase and of the pyruvate formate lyase-encoding genes were obtained using this knockout strategy. Double-knockout mutants were also obtained by deleting the citrate lyase-, β-galactosidase-, and aconitase-encoding genes in the pyruvate formate lyase knockout mutant strain. PMID:24610845
Development of a markerless knockout method for Actinobacillus succinogenes.
Joshi, Rajasi V; Schindler, Bryan D; McPherson, Nikolas R; Tiwari, Kanupriya; Vieille, Claire
2014-05-01
Actinobacillus succinogenes is one of the best natural succinate-producing organisms, but it still needs engineering to further increase succinate yield and productivity. In this study, we developed a markerless knockout method for A. succinogenes using natural transformation or electroporation. The Escherichia coli isocitrate dehydrogenase gene with flanking flippase recognition target sites was used as the positive selection marker, making use of A. succinogenes's auxotrophy for glutamate to select for growth on isocitrate. The Saccharomyces cerevisiae flippase recombinase (Flp) was used to remove the selection marker, allowing its reuse. Finally, the plasmid expressing flp was cured using acridine orange. We demonstrate that at least two consecutive deletions can be introduced into the same strain using this approach, that no more than a total of 1 kb of DNA is needed on each side of the selection cassette to protect from exonuclease activity during transformation, and that no more than 200 bp of homologous DNA is needed on each side for efficient recombination. We also demonstrate that electroporation can be used as an alternative transformation method to obtain knockout mutants and that an enriched defined medium can be used for direct selection of knockout mutants on agar plates with high efficiency. Single-knockout mutants of the fumarate reductase and of the pyruvate formate lyase-encoding genes were obtained using this knockout strategy. Double-knockout mutants were also obtained by deleting the citrate lyase-, β-galactosidase-, and aconitase-encoding genes in the pyruvate formate lyase knockout mutant strain.
WWOX and p53 Dysregulation Synergize to Drive the Development of Osteosarcoma.
Del Mare, Sara; Husanie, Hussam; Iancu, Ortal; Abu-Odeh, Mohammad; Evangelou, Konstantinos; Lovat, Francesca; Volinia, Stefano; Gordon, Jonathan; Amir, Gail; Stein, Janet; Stein, Gary S; Croce, Carlo M; Gorgoulis, Vassilis; Lian, Jane B; Aqeilan, Rami I
2016-10-15
Osteosarcoma is a highly metastatic form of bone cancer in adolescents and young adults that is resistant to existing treatments. Development of an effective therapy has been hindered by very limited understanding of the mechanisms of osteosarcomagenesis. Here, we used genetically engineered mice to investigate the effects of deleting the tumor suppressor Wwox selectively in either osteoblast progenitors or mature osteoblasts. Mice with conditional deletion of Wwox in preosteoblasts (Wwox Δosx1 ) displayed a severe inhibition of osteogenesis accompanied by p53 upregulation, effects that were not observed in mice lacking Wwox in mature osteoblasts. Deletion of p53 in Wwox Δosx1 mice rescued the osteogenic defect. In addition, the Wwox;p53 Δosx1 double knockout mice developed poorly differentiated osteosarcomas that resemble human osteosarcoma in histology, location, metastatic behavior, and gene expression. Strikingly, the development of osteosarcomas in these mice was greatly accelerated compared with mice lacking p53 only. In contrast, combined WWOX and p53 inactivation in mature osteoblasts did not accelerate osteosarcomagenesis compared with p53 inactivation alone. These findings provide evidence that a WWOX-p53 network regulates normal bone formation and that disruption of this network in osteoprogenitors results in accelerated osteosarcoma. The Wwox;p53 Δosx1 double knockout establishes a new osteosarcoma model with significant advancement over existing models. Cancer Res; 76(20); 6107-17. ©2016 AACR. ©2016 American Association for Cancer Research.
Erythropoiesis and Blood Pressure Are Regulated via AT1 Receptor by Distinctive Pathways.
Kato, Hideki; Ishida, Junji; Matsusaka, Taiji; Ishimaru, Tomohiro; Tanimoto, Keiji; Sugiyama, Fumihiro; Yagami, Ken-Ichi; Nangaku, Masaomi; Fukamizu, Akiyoshi
2015-01-01
The renin-angiotensin system (RAS) plays a central role in blood pressure regulation. Although clinical and experimental studies have suggested that inhibition of RAS is associated with progression of anemia, little evidence is available to support this claim. Here we report that knockout mice that lack angiotensin II, including angiotensinogen and renin knockout mice, exhibit anemia. The anemia of angiotensinogen knockout mice was rescued by angiotensin II infusion, and rescue was completely blocked by simultaneous administration of AT1 receptor blocker. To genetically determine the responsible receptor subtype, we examined AT1a, AT1b, and AT2 knockout mice, but did not observe anemia in any of them. To investigate whether pharmacological AT1 receptor inhibition recapitulates the anemic phenotype, we administered AT1 receptor antagonist in hypotensive AT1a receptor knockout mice to inhibit the remaining AT1b receptor. In these animals, hematocrit levels barely decreased, but blood pressure further decreased to the level observed in angiotensinogen knockout mice. We then generated AT1a and AT1b double-knockout mice to completely ablate the AT1 receptors; the mice finally exhibited the anemic phenotype. These results provide clear evidence that although erythropoiesis and blood pressure are negatively controlled through the AT1 receptor inhibition in vivo, the pathways involved are complex and distinct, because erythropoiesis is more resistant to AT1 receptor inhibition than blood pressure control.
Graham, John H; Robb, Daniel T; Poe, Amy R
2012-01-01
Distributed robustness is thought to influence the buffering of random phenotypic variation through the scale-free topology of gene regulatory, metabolic, and protein-protein interaction networks. If this hypothesis is true, then the phenotypic response to the perturbation of particular nodes in such a network should be proportional to the number of links those nodes make with neighboring nodes. This suggests a probability distribution approximating an inverse power-law of random phenotypic variation. Zero phenotypic variation, however, is impossible, because random molecular and cellular processes are essential to normal development. Consequently, a more realistic distribution should have a y-intercept close to zero in the lower tail, a mode greater than zero, and a long (fat) upper tail. The double Pareto-lognormal (DPLN) distribution is an ideal candidate distribution. It consists of a mixture of a lognormal body and upper and lower power-law tails. If our assumptions are true, the DPLN distribution should provide a better fit to random phenotypic variation in a large series of single-gene knockout lines than other skewed or symmetrical distributions. We fit a large published data set of single-gene knockout lines in Saccharomyces cerevisiae to seven different probability distributions: DPLN, right Pareto-lognormal (RPLN), left Pareto-lognormal (LPLN), normal, lognormal, exponential, and Pareto. The best model was judged by the Akaike Information Criterion (AIC). Phenotypic variation among gene knockouts in S. cerevisiae fits a double Pareto-lognormal (DPLN) distribution better than any of the alternative distributions, including the right Pareto-lognormal and lognormal distributions. A DPLN distribution is consistent with the hypothesis that developmental stability is mediated, in part, by distributed robustness, the resilience of gene regulatory, metabolic, and protein-protein interaction networks. Alternatively, multiplicative cell growth, and the mixing of lognormal distributions having different variances, may generate a DPLN distribution.
Distinct roles of the DmNav and DSC1 channels in the action of DDT and pyrethroids.
Rinkevich, Frank D; Du, Yuzhe; Tolinski, Josh; Ueda, Atsushi; Wu, Chun-Fang; Zhorov, Boris S; Dong, Ke
2015-03-01
Voltage-gated sodium channels (Nav channels) are critical for electrical signaling in the nervous system and are the primary targets of the insecticides DDT and pyrethroids. In Drosophila melanogaster, besides the canonical Nav channel, Para (also called DmNav), there is a sodium channel-like cation channel called DSC1 (Drosophila sodium channel 1). Temperature-sensitive paralytic mutations in DmNav (para(ts)) confer resistance to DDT and pyrethroids, whereas DSC1 knockout flies exhibit enhanced sensitivity to pyrethroids. To further define the roles and interaction of DmNav and DSC1 channels in DDT and pyrethroid neurotoxicology, we generated a DmNav/DSC1 double mutant line by introducing a para(ts1) allele (carrying the I265N mutation) into a DSC1 knockout line. We confirmed that the I265N mutation reduced the sensitivity to two pyrethroids, permethrin and deltamethrin of a DmNav variant expressed in Xenopus oocytes. Computer modeling predicts that the I265N mutation confers pyrethroid resistance by allosterically altering the second pyrethroid receptor site on the DmNav channel. Furthermore, we found that I265N-mediated pyrethroid resistance in para(ts1) mutant flies was almost completely abolished in para(ts1);DSC1(-/-) double mutant flies. Unexpectedly, however, the DSC1 knockout flies were less sensitive to DDT, compared to the control flies (w(1118A)), and the para(ts1);DSC1(-/-) double mutant flies were even more resistant to DDT compared to the DSC1 knockout or para(ts1) mutant. Our findings revealed distinct roles of the DmNav and DSC1 channels in the neurotoxicology of DDT vs. pyrethroids and implicate the exciting possibility of using DSC1 channel blockers or modifiers in the management of pyrethroid resistance. Copyright © 2015 Elsevier Inc. All rights reserved.
Ferguson, Carolyn; Hardy, Steven L; Werner, David F; Hileman, Stanley M; DeLorey, Timothy M; Homanics, Gregg E
2007-01-01
Background The β3 subunit of the γ-aminobutyric acid type A receptor (GABAA-R) has been reported to be important for palate formation, anesthetic action, and normal nervous system function. This subunit has also been implicated in the pathogenesis of Angelman syndrome and autism spectrum disorder. To further investigate involvement of this subunit, we previously produced mice with a global knockout of β3. However, developmental abnormalities, compensation, reduced viability, and numerous behavioral abnormalities limited the usefulness of that murine model. To overcome many of these limitations, a mouse line with a conditionally inactivated β3 gene was engineered. Results Gene targeting and embryonic stem cell technologies were used to create mice in which exon 3 of the β3 subunit was flanked by loxP sites (i.e., floxed). Crossing the floxed β3 mice to a cre general deleter mouse line reproduced the phenotype of the previously described global knockout. Pan-neuronal knockout of β3 was achieved by crossing floxed β3 mice to Synapsin I-cre transgenic mice. Palate development was normal in pan-neuronal β3 knockouts but ~61% died as neonates. Survivors were overtly normal, fertile, and were less sensitive to etomidate. Forebrain selective knockout of β3 was achieved using α CamKII-cre transgenic mice. Palate development was normal in forebrain selective β3 knockout mice. These knockouts survived the neonatal period, but ~30% died between 15–25 days of age. Survivors had reduced reproductive fitness, reduced sensitivity to etomidate, were hyperactive, and some became obese. Conclusion Conditional inactivation of the β3 gene revealed novel insight into the function of this GABAA-R subunit. The floxed β3 knockout mice described here will be very useful for conditional knockout studies to further investigate the role of the β3 subunit in development, ethanol and anesthetic action, normal physiology, and pathophysiologic processes. PMID:17927825
Sinning, Anne; Radionov, Nikita; Trepiccione, Francesco; López-Cayuqueo, Karen I.; Jayat, Maximilien; Baron, Stéphanie; Cornière, Nicolas; Alexander, R. Todd; Hadchouel, Juliette; Eladari, Dominique; Hübner, Christian A.
2017-01-01
We recently described a novel thiazide–sensitive electroneutral NaCl transport mechanism resulting from the parallel operation of the Cl−/HCO3− exchanger pendrin and the Na+–driven Cl−/2HCO3− exchanger (NDCBE) in β-intercalated cells of the collecting duct. Although a role for pendrin in maintaining Na+ balance, intravascular volume, and BP is well supported, there is no in vivo evidence for the role of NDCBE in maintaining Na+ balance. Here, we show that deletion of NDCBE in mice caused only subtle perturbations of Na+ homeostasis and provide evidence that the Na+/Cl− cotransporter (NCC) compensated for the inactivation of NDCBE. To unmask the role of NDCBE, we generated Ndcbe/Ncc double–knockout (dKO) mice. On a normal salt diet, dKO and single-knockout mice exhibited similar activation of the renin-angiotensin-aldosterone system, whereas only dKO mice displayed a lower blood K+ concentration. Furthermore, dKO mice displayed upregulation of the epithelial sodium channel (ENaC) and the Ca2+–activated K+ channel BKCa. During NaCl depletion, only dKO mice developed marked intravascular volume contraction, despite dramatically increased renin activity. Notably, the increase in aldosterone levels expected on NaCl depletion was attenuated in dKO mice, and single-knockout and dKO mice had similar blood K+ concentrations under this condition. In conclusion, NDCBE is necessary for maintaining sodium balance and intravascular volume during salt depletion or NCC inactivation in mice. Furthermore, NDCBE has an important role in the prevention of hypokalemia. Because NCC and NDCBE are both thiazide targets, the combined inhibition of NCC and the NDCBE/pendrin system may explain thiazide-induced hypokalemia in some patients. PMID:27151921
Nowrousian, Minou; Cebula, Patricia
2005-11-03
The filamentous fungus Sordaria macrospora forms complex three-dimensional fruiting bodies called perithecia that protect the developing ascospores and ensure their proper discharge. In previous microarray analyses, several genes have been identified that are downregulated in sterile mutants compared to the wild type. Among these genes was tap1 (transcript associated with perithecial development), a gene encoding a putative lectin homolog. Analysis of tap1 transcript levels in the wild type under conditions allowing only vegetative growth compared to conditions that lead to fruiting body development showed that tap1 is not only downregulated in developmental mutants but is also upregulated in the wild type during fruiting body development. We have cloned and sequenced a 3.2 kb fragment of genomic DNA containing the tap1 open reading frame and adjoining sequences. The genomic region comprising tap1 is syntenic to its homologous region in the closely related filamentous fungus Neurospora crassa. To determine whether tap1 is involved in fruiting body development in S. macrospora, a knockout construct was generated in which the tap1 open reading frame was replaced by the hygromycin B resistance gene hph under the control of fungal regulatory regions. Transformation of the S. macrospora wild type with this construct resulted in a tap1 deletion strain where tap1 had been replaced by the hph cassette. The knockout strain displayed no phenotypic differences under conditions of vegetative growth and sexual development when compared to the wild type. Double mutants carrying the Deltatap1 allele in several developmental mutant backgrounds were phenotypically similar to the corresponding developmental mutant strains. The tap1 transcript is strongly upregulated during sexual development in S. macrospora; however, analysis of a tap1 knockout strain shows that tap1 is not essential for fruiting body formation in S. macrospora.
Nowrousian, Minou; Cebula, Patricia
2005-01-01
Background The filamentous fungus Sordaria macrospora forms complex three-dimensional fruiting bodies called perithecia that protect the developing ascospores and ensure their proper discharge. In previous microarray analyses, several genes have been identified that are downregulated in sterile mutants compared to the wild type. Among these genes was tap1 (transcript associated with perithecial development), a gene encoding a putative lectin homolog. Results Analysis of tap1 transcript levels in the wild type under conditions allowing only vegetative growth compared to conditions that lead to fruiting body development showed that tap1 is not only downregulated in developmental mutants but is also upregulated in the wild type during fruiting body development. We have cloned and sequenced a 3.2 kb fragment of genomic DNA containing the tap1 open reading frame and adjoining sequences. The genomic region comprising tap1 is syntenic to its homologous region in the closely related filamentous fungus Neurospora crassa. To determine whether tap1 is involved in fruiting body development in S. macrospora, a knockout construct was generated in which the tap1 open reading frame was replaced by the hygromycin B resistance gene hph under the control of fungal regulatory regions. Transformation of the S. macrospora wild type with this construct resulted in a tap1 deletion strain where tap1 had been replaced by the hph cassette. The knockout strain displayed no phenotypic differences under conditions of vegetative growth and sexual development when compared to the wild type. Double mutants carrying the Δtap1 allele in several developmental mutant backgrounds were phenotypically similar to the corresponding developmental mutant strains. Conclusion The tap1 transcript is strongly upregulated during sexual development in S. macrospora; however, analysis of a tap1 knockout strain shows that tap1 is not essential for fruiting body formation in S. macrospora. PMID:16266439
Watanabe, Takahito; Noji, Sumihare; Mito, Taro
2016-01-01
Hemimetabolous, or incompletely metamorphosing, insects are phylogenetically basal. These insects include many deleterious species. The cricket, Gryllus bimaculatus, is an emerging model for hemimetabolous insects, based on the success of RNA interference (RNAi)-based gene-functional analyses and transgenic technology. Taking advantage of genome-editing technologies in this species would greatly promote functional genomics studies. Genome editing using transcription activator-like effector nucleases (TALENs) has proven to be an effective method for site-specific genome manipulation in various species. TALENs are artificial nucleases that are capable of inducing DNA double-strand breaks into specified target sequences. Here, we describe a protocol for TALEN-based gene knockout in G. bimaculatus, including a mutant selection scheme via mutation detection assays, for generating homozygous knockout organisms.
Generation of knockout rabbits using transcription activator-like effector nucleases.
Wang, Yu; Fan, Nana; Song, Jun; Zhong, Juan; Guo, Xiaogang; Tian, Weihua; Zhang, Quanjun; Cui, Fenggong; Li, Li; Newsome, Philip N; Frampton, Jon; Esteban, Miguel A; Lai, Liangxue
2014-01-01
Zinc-finger nucleases and transcription activator-like effector nucleases are novel gene-editing platforms contributing to redefine the boundaries of modern biological research. They are composed of a non-specific cleavage domain and a tailor made DNA-binding module, which enables a broad range of genetic modifications by inducing efficient DNA double-strand breaks at desired loci. Among other remarkable uses, these nucleases have been employed to produce gene knockouts in mid-size and large animals, such as rabbits and pigs, respectively. This approach is cost effective, relatively quick, and can produce invaluable models for human disease studies, biotechnology or agricultural purposes. Here we describe a protocol for the efficient generation of knockout rabbits using transcription activator-like effector nucleases, and a perspective of the field.
Lei, Tianluo; Zhou, Lei; Layton, Anita T.; Zhou, Hong; Zhao, Xuejian; Bankir, Lise
2011-01-01
Urea transporters UT-A2 and UT-B are expressed in epithelia of thin descending limb of Henle's loop and in descending vasa recta, respectively. To study their role and possible interaction in the context of the urine concentration mechanism, a UT-A2 and UT-B double knockout (UT-A2/B knockout) mouse model was generated by targeted deletion of the UT-A2 promoter in embryonic stem cells with UT-B gene knockout. The UT-A2/B knockout mice lacked detectable UT-A2 and UT-B transcripts and proteins and showed normal survival and growth. Daily urine output was significantly higher in UT-A2/B knockout mice than that in wild-type mice and lower than that in UT-B knockout mice. Urine osmolality in UT-A2/B knockout mice was intermediate between that in UT-B knockout and wild-type mice. The changes in urine osmolality and flow rate, plasma and urine urea concentration, as well as non-urea solute concentration after an acute urea load or chronic changes in protein intake suggested that UT-A2 plays a role in the progressive accumulation of urea in the inner medulla. These results suggest that in wild-type mice UT-A2 facilitates urea absorption by urea efflux from the thin descending limb of short loops of Henle. Moreover, UT-A2 deletion in UT-B knockout mice partially remedies the urine concentrating defect caused by UT-B deletion, by reducing urea loss from the descending limbs to the peripheral circulation; instead, urea is returned to the inner medulla through the loops of Henle and the collecting ducts. PMID:21849488
Lei, Tianluo; Zhou, Lei; Layton, Anita T; Zhou, Hong; Zhao, Xuejian; Bankir, Lise; Yang, Baoxue
2011-12-01
Urea transporters UT-A2 and UT-B are expressed in epithelia of thin descending limb of Henle's loop and in descending vasa recta, respectively. To study their role and possible interaction in the context of the urine concentration mechanism, a UT-A2 and UT-B double knockout (UT-A2/B knockout) mouse model was generated by targeted deletion of the UT-A2 promoter in embryonic stem cells with UT-B gene knockout. The UT-A2/B knockout mice lacked detectable UT-A2 and UT-B transcripts and proteins and showed normal survival and growth. Daily urine output was significantly higher in UT-A2/B knockout mice than that in wild-type mice and lower than that in UT-B knockout mice. Urine osmolality in UT-A2/B knockout mice was intermediate between that in UT-B knockout and wild-type mice. The changes in urine osmolality and flow rate, plasma and urine urea concentration, as well as non-urea solute concentration after an acute urea load or chronic changes in protein intake suggested that UT-A2 plays a role in the progressive accumulation of urea in the inner medulla. These results suggest that in wild-type mice UT-A2 facilitates urea absorption by urea efflux from the thin descending limb of short loops of Henle. Moreover, UT-A2 deletion in UT-B knockout mice partially remedies the urine concentrating defect caused by UT-B deletion, by reducing urea loss from the descending limbs to the peripheral circulation; instead, urea is returned to the inner medulla through the loops of Henle and the collecting ducts.
Braun, Anne; Zhang, Songwen; Miettinen, Helena E.; Ebrahim, Shamsah; Holm, Teresa M.; Vasile, Eliza; Post, Mark J.; Yoerger, Danita M.; Picard, Michael H.; Krieger, Joshua L.; Andrews, Nancy C.; Simons, Michael; Krieger, Monty
2003-01-01
Mice with homozygous null mutations in the high-density lipoprotein receptor SR-BI (scavenger receptor class B, type I) and apolipoprotein E genes fed a low-fat diet exhibit a constellation of pathologies shared with human atherosclerotic coronary heart disease (CHD): hypercholesterolemia, occlusive coronary atherosclerosis, myocardial infarctions, cardiac dysfunction (heart enlargement, reduced systolic function and ejection fraction, and ECG abnormalities), and premature death (mean age 6 weeks). They also exhibit a block in RBC maturation and abnormally high plasma unesterified-to-total cholesterol ratio (0.8) with associated abnormal lipoprotein morphology (lamellar/vesicular and stacked discoidal particles reminiscent of those in lecithin/cholesterol acyltransferase deficiency and cholestasis). Treatment with the lipid-lowering, antiatherosclerosis, and antioxidation drug probucol extended life to as long as 60 weeks (mean 36 weeks), and at 5–6 weeks of age, virtually completely reversed the cardiac and most RBC pathologies and corrected the unesterified to total cholesterol ratio (0.3) and associated distinctive abnormal lipoprotein morphologies. Manipulation of the timing of administration and withdrawal of probucol could control the onset of death and suggested that critical pathological changes usually occurred in untreated double knockout mice between ≈3 (weaning) and 5 weeks of age and that probucol delayed heart failure even after development of substantial CHD. The ability of probucol treatment to modulate pathophysiology in the double knockout mice enhances the potential of this murine system for analysis of the pathophysiology of CHD and preclinical testing of new approaches for the prevention and treatment of cardiovascular disease. PMID:12771386
Kang, Tina Manzhu; Yuan, Jessica; Nguyen, Angelyn; Becket, Elinne; Yang, Hanjing; Miller, Jeffrey H
2012-06-01
The distribution of mutants in the Keio collection of Escherichia coli gene knockout mutants that display increased sensitivity to the aminoglycosides kanamycin and neomycin indicates that damaged bases resulting from antibiotic action can lead to cell death. Strains lacking one of a number of glycosylases (e.g., AlkA, YzaB, Ogt, KsgA) or other specific repair proteins (AlkB, PhrB, SmbC) are more sensitive to these antibiotics. Mutants lacking AlkB display the strongest sensitivity among the glycosylase- or direct lesion removal-deficient strains. This perhaps suggests the involvement of ethenoadenine adducts, resulting from reactive oxygen species and lipid peroxidation, since AlkB removes this lesion. Other sensitivities displayed by mutants lacking UvrA, polymerase V (Pol V), or components of double-strand break repair indicate that kanamycin results in damaged base pairs that need to be removed or replicated past in order to avoid double-strand breaks that saturate the cellular repair capacity. Caffeine enhances the sensitivities of these repair-deficient strains to kanamycin and neomycin. The gene knockout mutants that display increased sensitivity to caffeine (dnaQ, holC, holD, and priA knockout mutants) indicate that caffeine blocks DNA replication, ultimately leading to double-strand breaks that require recombinational repair by functions encoded by recA, recB, and recC, among others. Additionally, caffeine partially protects cells of both Escherichia coli and Bacillus anthracis from killing by the widely used fluoroquinolone antibiotic ciprofloxacin.
Mittag, Jennifer; Šola, Ivana; Rusak, Gordana; Ludwig-Müller, Jutta
2015-07-01
Auxin homeostasis is involved in many different plant developmental and stress responses. The auxin amino acid conjugate synthetases belonging to the GH3 family play major roles in the regulation of free indole-3-acetic acid (IAA) levels and the moss Physcomitrella patens has two GH3 genes in its genome. A role for IAA in several angiosperm--pathogen interactions was reported, however, in a moss--oomycete pathosystem it had not been published so far. Using GH3 double knockout lines we have investigated the role of auxin homeostasis during the infection of P. patens with the two oomycete species, Pythium debaryanum and Pythium irregulare. We show that infection with P. debaryanum caused stronger disease symptoms than with P. irregulare. Also, P. patens lines harboring fusion constructs of an auxin-inducible promoter from soybean (GmGH3) with a reporter (ß-glucuronidase) showed higher promoter induction after P. debaryanum infection than after P. irregulare, indicating a differential induction of the auxin response. Free IAA was induced upon P. debaryanum infection in wild type by 1.6-fold and in two GH3 double knockout (GH3-doKO) mutants by 4- to 5-fold. All GH3-doKO lines showed a reduced disease symptom progression compared to wild type. Since P. debaryanum can be inhibited in growth on medium containing IAA, these data might indicate that endogenous high auxin levels in P. patens GH3-doKO mutants lead to higher resistance against the oomycete. Copyright © 2015 Elsevier GmbH. All rights reserved.
Block, Anna; Fristedt, Rikard; Rogers, Sara; Kumar, Jyothi; Barnes, Brian; Barnes, Joshua; Elowsky, Christian G; Wamboldt, Yashitola; Mackenzie, Sally A; Redding, Kevin; Merchant, Sabeeha S; Basset, Gilles J
2013-09-20
It is a little known fact that plastoquinone-9, a vital redox cofactor of photosynthesis, doubles as a precursor for the biosynthesis of a vitamin E analog called plastochromanol-8, the physiological significance of which has remained elusive. Gene network reconstruction, GFP fusion experiments, and targeted metabolite profiling of insertion mutants indicated that Arabidopsis possesses two paralogous solanesyl-diphosphate synthases, AtSPS1 (At1g78510) and AtSPS2 (At1g17050), that assemble the side chain of plastoquinone-9 in plastids. Similar paralogous pairs were detected throughout terrestrial plant lineages but were not distinguished in the literature and genomic databases from mitochondrial homologs involved in the biosynthesis of ubiquinone. The leaves of the atsps2 knock-out were devoid of plastochromanol-8 and displayed severe losses of both non-photoactive and photoactive plastoquinone-9, resulting in near complete photoinhibition at high light intensity. Such a photoinhibition was paralleled by significant damage to photosystem II but not to photosystem I. In contrast, in the atsps1 knock-out, a small loss of plastoquinone-9, restricted to the non-photoactive pool, was sufficient to eliminate half of the plastochromanol-8 content of the leaves. Taken together, these results demonstrate that plastochromanol-8 originates from a subfraction of the non-photoactive pool of plastoquinone-9. In contrast to other plastochromanol-8 biosynthetic mutants, neither the single atsps knock-outs nor the atsps1 atsps2 double knock-out displayed any defects in tocopherols accumulation or germination.
Block, Anna; Fristedt, Rikard; Rogers, Sara; Kumar, Jyothi; Barnes, Brian; Barnes, Joshua; Elowsky, Christian G.; Wamboldt, Yashitola; Mackenzie, Sally A.; Redding, Kevin; Merchant, Sabeeha S.; Basset, Gilles J.
2013-01-01
It is a little known fact that plastoquinone-9, a vital redox cofactor of photosynthesis, doubles as a precursor for the biosynthesis of a vitamin E analog called plastochromanol-8, the physiological significance of which has remained elusive. Gene network reconstruction, GFP fusion experiments, and targeted metabolite profiling of insertion mutants indicated that Arabidopsis possesses two paralogous solanesyl-diphosphate synthases, AtSPS1 (At1g78510) and AtSPS2 (At1g17050), that assemble the side chain of plastoquinone-9 in plastids. Similar paralogous pairs were detected throughout terrestrial plant lineages but were not distinguished in the literature and genomic databases from mitochondrial homologs involved in the biosynthesis of ubiquinone. The leaves of the atsps2 knock-out were devoid of plastochromanol-8 and displayed severe losses of both non-photoactive and photoactive plastoquinone-9, resulting in near complete photoinhibition at high light intensity. Such a photoinhibition was paralleled by significant damage to photosystem II but not to photosystem I. In contrast, in the atsps1 knock-out, a small loss of plastoquinone-9, restricted to the non-photoactive pool, was sufficient to eliminate half of the plastochromanol-8 content of the leaves. Taken together, these results demonstrate that plastochromanol-8 originates from a subfraction of the non-photoactive pool of plastoquinone-9. In contrast to other plastochromanol-8 biosynthetic mutants, neither the single atsps knock-outs nor the atsps1 atsps2 double knock-out displayed any defects in tocopherols accumulation or germination. PMID:23913686
Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes
Nag, Ambarish; St. John, Peter C.; Crowley, Michael F.
2018-01-01
Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes the biosynthetic pathways for the main components of biomass—namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-α-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production. PMID:29381705
Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes.
Nag, Ambarish; St John, Peter C; Crowley, Michael F; Bomble, Yannick J
2018-01-01
Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes the biosynthetic pathways for the main components of biomass-namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-α-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production.
Mouse model of fragile X syndrome: behavioral and hormonal response to stressors.
Nielsen, Darci M; Evans, Jeffrey J; Derber, William J; Johnston, Kenzie A; Laudenslager, Mark L; Crnic, Linda S; Maclean, Kenneth N
2009-06-01
Fragile X syndrome, a form of mental retardation caused by inadequate levels of fragile X mental retardation protein (FMRP), is characterized by extreme sensitivity to sensory stimuli and increased behavioral and hormonal reactivity to stressors. Fmr1 knockout mice lack FMRP and exhibit abnormal responses to auditory stimuli. This study sought to determine whether Fmr1 knockout mice on an F1 hybrid background are normal in their response to footshock. Knockout mice were also examined for signs of hyperexcitation across an extended trial range, and serum corticosterone levels were evaluated in response to various stressors. The ability to acquire conditioned taste aversion was also assessed. Knockout mice exhibited no impairment in associative aversive learning or memory, since they successfully expressed conditioned taste aversion. Footshock-sensitivity, freezing behavior, and corticosterone response to various stressors did not differ between knockout and wild-type mice. However, knockout mice exhibited significantly increased responses during the extended test. The knockout mice's increased responsiveness to footshock in the extended test may be an indication of increased vulnerability to stress or enhanced emotional reactivity. Copyright (c) 2009 APA, all rights reserved.
Vandenbeuch, Aurelie; Larson, Eric D; Anderson, Catherine B; Smith, Steven A; Ford, Anthony P; Finger, Thomas E; Kinnamon, Sue C
2015-03-01
Taste buds release ATP to activate ionotropic purinoceptors composed of P2X2 and P2X3 subunits, present on the taste nerves. Mice with genetic deletion of P2X2 and P2X3 receptors (double knockout mice) lack responses to all taste stimuli presumably due to the absence of ATP-gated receptors on the afferent nerves. Recent experiments on the double knockout mice showed, however, that their taste buds fail to release ATP, suggesting the possibility of pleiotropic deficits in these global knockouts. To test further the role of postsynaptic P2X receptors in afferent signalling, we used AF-353, a selective antagonist of P2X3-containing receptors to inhibit the receptors acutely during taste nerve recording and behaviour. The specificity of AF-353 for P2X3-containing receptors was tested by recording Ca(2+) transients to exogenously applied ATP in fura-2 loaded isolated geniculate ganglion neurons from wild-type and P2X3 knockout mice. ATP responses were completely inhibited by 10 μm or 100 μm AF-353, but neither concentration blocked responses in P2X3 single knockout mice wherein the ganglion cells express only P2X2-containing receptors. Furthermore, AF-353 had no effect on taste-evoked ATP release from taste buds. In wild-type mice, i.p. injection of AF-353 or simple application of the drug directly to the tongue, inhibited taste nerve responses to all taste qualities in a dose-dependent fashion. A brief access behavioural assay confirmed the electrophysiological results and showed that preference for a synthetic sweetener, SC-45647, was abolished following i.p. injection of AF-353. These data indicate that activation of P2X3-containing receptors is required for transmission of all taste qualities. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Watanabe, Takahito; Noji, Sumihare; Mito, Taro
2014-08-15
Hemimetabolous, or incompletely metamorphosing, insects are phylogenetically basal. These insects include many deleterious species. The cricket, Gryllus bimaculatus, is an emerging model for hemimetabolous insects, based on the success of RNA interference (RNAi)-based gene-functional analyses and transgenic technology. Taking advantage of genome-editing technologies in this species would greatly promote functional genomics studies. Genome editing using transcription activator-like effector nucleases (TALENs) has proven to be an effective method for site-specific genome manipulation in various species. TALENs are artificial nucleases that are capable of inducing DNA double-strand breaks into specified target sequences. Here, we describe a protocol for TALEN-based gene knockout in G. bimaculatus, including a mutant selection scheme via mutation detection assays, for generating homozygous knockout organisms. Copyright © 2014 Elsevier Inc. All rights reserved.
Damrow, Ramon; Maldener, Iris; Zilliges, Yvonne
2016-01-01
Classical microbial carbon polymers such as glycogen and polyhydroxybutyrate (PHB) have a crucial impact as both a sink and a reserve under macronutrient stress conditions. Most microbial species exclusively synthesize and degrade either glycogen or PHB. A few bacteria such as the phototrophic model organism Synechocystis sp. PCC 6803 surprisingly produce both physico-chemically different polymers under conditions of high C to N ratios. For the first time, the function and interrelation of both carbon polymers in non-diazotrophic cyanobacteria are analyzed in a comparative physiological study of single- and double-knockout mutants (ΔglgC; ΔphaC; ΔglgC/ΔphaC), respectively. Most of the observed phenotypes are explicitly related to the knockout of glycogen synthesis, highlighting the metabolic, energetic, and structural impact of this process whenever cells switch from an active, photosynthetic 'protein status' to a dormant 'glycogen status'. The carbon flux regulation into glycogen granules is apparently crucial for both phycobilisome degradation and thylakoid layer disassembly in the presence of light. In contrast, PHB synthesis is definitely not involved in this primary acclimation response. Moreover, the very weak interrelations between the two carbon-polymer syntheses indicate that the regulation and role of PHB synthesis in Synechocystis sp. PCC 6803 is different from glycogen synthesis.
Lu, Huijie; Cui, Yong; Jiang, Liwen; Ge, Wei
2017-07-01
Estrogens signal through both nuclear and membrane receptors with most reported effects being mediated via the nuclear estrogen receptors (nERs). Although much work has been reported on nERs in the zebrafish, there is a lack of direct genetic evidence for their functional roles and importance in reproduction. To address this issue, we undertook this study to disrupt all three nERs in the zebrafish, namely esr1 (ERα), esr2a (ERβII), and esr2b (ERβI), by the genome-editing technology clustered regularly interspaced short palindromic repeats and its associated nuclease (CRISPR/Cas9). Using this loss-of-function genetic approach, we successfully created three mutant zebrafish lines with each nER knocked out. In addition, we also generated all possible double and triple knockouts of the three nERs. The phenotypes of these mutants in reproduction were analyzed in all single, double, and triple nER knockouts in both females and males. Surprisingly, all three single nER mutant fish lines display normal reproductive development and function in both females and males, suggesting functional redundancy among these nERs. Further analysis of double and triple knockouts showed that nERs, especially Esr2a and Esr2b, were essential for female reproduction, and loss of these two nERs led to an arrest of folliculogenesis at previtellogenic stage II followed by sex reversal from female to male. In addition, the current study also revealed a unique role for Esr2a in follicle cell proliferation and transdifferentiation, follicle growth, and chorion formation. Taken together, this study provides the most comprehensive genetic analysis for differential functions of esr1, esr2a, and esr2b in fish reproduction. Copyright © 2017 Endocrine Society.
Chen, Yanyan; Xu, Yuanyuan; Zheng, Hongzhi; Fu, Jingqi; Hou, Yongyong; Wang, Huihui; Zhang, Qiang; Yamamoto, Masayuki; Pi, Jingbo
2016-09-09
Nuclear factor E2-related factor 2 (NRF2) and uncoupling protein 2 (UCP2) are indicated to protect from oxidative stress. They also play roles in the homeostasis of glutathione. However, the detailed mechanisms are not well understood. In the present study, we found Nrf2-knockout (Nrf2-KO) mice exhibited altered glutathione homeostasis and reduced expression of various genes involved in GSH biosynthesis, regeneration, utilization and transport in the liver. Ucp2-knockout (Ucp2-KO) mice exhibited altered glutathione homeostasis in the liver, spleen and blood, as well as increased transcript of cystic fibrosis transmembrane conductance regulator in the liver, a protein capable of mediating glutathione efflux. Nrf2-Ucp2-double knockout (DKO) mice showed characteristics of both Nrf2-KO and Ucp2-KO mice. But no significant difference was observed in DKO mice when compared with Nrf2-KO or Ucp2-KO mice, except in blood glutathione levels. These data suggest that ablation of Nrf2 and Ucp2 leads to disrupted GSH balance, which could result from altered expression of genes involved in GSH metabolism. DKO may not evoke more severe oxidative stress than the single gene knockout. Copyright © 2016 Elsevier Inc. All rights reserved.
Predicting effects of structural stress in a genome-reduced model bacterial metabolism
NASA Astrophysics Data System (ADS)
Güell, Oriol; Sagués, Francesc; Serrano, M. Ángeles
2012-08-01
Mycoplasma pneumoniae is a human pathogen recently proposed as a genome-reduced model for bacterial systems biology. Here, we study the response of its metabolic network to different forms of structural stress, including removal of individual and pairs of reactions and knockout of genes and clusters of co-expressed genes. Our results reveal a network architecture as robust as that of other model bacteria regarding multiple failures, although less robust against individual reaction inactivation. Interestingly, metabolite motifs associated to reactions can predict the propagation of inactivation cascades and damage amplification effects arising in double knockouts. We also detect a significant correlation between gene essentiality and damages produced by single gene knockouts, and find that genes controlling high-damage reactions tend to be expressed independently of each other, a functional switch mechanism that, simultaneously, acts as a genetic firewall to protect metabolism. Prediction of failure propagation is crucial for metabolic engineering or disease treatment.
Gomes, Felipe V.; Silva, Andréia L.; Uliana, Daniela L.; Camargo, Laura H. A.; Guimarães, Francisco S.; Cunha, Fernando Q.; Joca, Sâmia R. L.; Resstel, Leonardo B. M.
2015-01-01
Background: Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. Methods: We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. Results: Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. Conclusion: These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in situations where nitric oxide signaling is increased. PMID:25618404
Lisboa, Sabrina F; Gomes, Felipe V; Silva, Andréia L; Uliana, Daniela L; Camargo, Laura H A; Guimarães, Francisco S; Cunha, Fernando Q; Joca, Sâmia R L; Resstel, Leonardo B M
2015-01-24
Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in situations where nitric oxide signaling is increased. © The Author 2015. Published by Oxford University Press on behalf of CINP.
Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nag, Ambarish; St. John, Peter C.; Crowley, Michael F.
Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes themore » biosynthetic pathways for the main components of biomass - namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-a-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production.« less
Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes
Nag, Ambarish; St. John, Peter C.; Crowley, Michael F.; ...
2018-01-30
Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes themore » biosynthetic pathways for the main components of biomass - namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-a-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production.« less
Phelan, Kevin D.; Mock, Matthew M.; Kretz, Oliver; Shwe, U. Thaung; Kozhemyakin, Maxim; Greenfield, L. John; Dietrich, Alexander; Birnbaumer, Lutz; Freichel, Marc; Flockerzi, Veit
2012-01-01
Canonical transient receptor potential channels (TRPCs) are receptor-operated cation channels that are activated in response to phospholipase C signaling. Although TRPC1 is ubiquitously expressed in the brain, TRPC4 expression is the most restrictive, with the highest expression level limited to the lateral septum. The subunit composition of neuronal TRPC channels remains uncertain because of conflicting data from recombinant expression systems. Here we report that the large depolarizing plateau potential that underlies the epileptiform burst firing induced by metabotropic glutamate receptor agonists in lateral septal neurons was completely abolished in TRPC1/4 double-knockout mice, and was abolished in 74% of lateral septal neurons in TRPC1 knockout mice. Furthermore, neuronal cell death in the lateral septum and the cornu ammonis 1 region of hippocampus after pilocarpine-induced severe seizures was significantly ameliorated in TRPC1/4 double-knockout mice. Our data suggest that both TRPC1 and TRPC4 are essential for an intrinsic membrane conductance mediating the plateau potential in lateral septal neurons, possibly as heteromeric channels. Moreover, excitotoxic neuronal cell death, an underlying process for many neurological diseases, is not mediated merely by ionotropic glutamate receptors but also by heteromeric TRPC channels activated by metabotropic glutamate receptors. TRPC channels could be an unsuspected but critical molecular target for clinical intervention for excitotoxicity. PMID:22144671
Phelan, Kevin D; Mock, Matthew M; Kretz, Oliver; Shwe, U Thaung; Kozhemyakin, Maxim; Greenfield, L John; Dietrich, Alexander; Birnbaumer, Lutz; Freichel, Marc; Flockerzi, Veit; Zheng, Fang
2012-03-01
Canonical transient receptor potential channels (TRPCs) are receptor-operated cation channels that are activated in response to phospholipase C signaling. Although TRPC1 is ubiquitously expressed in the brain, TRPC4 expression is the most restrictive, with the highest expression level limited to the lateral septum. The subunit composition of neuronal TRPC channels remains uncertain because of conflicting data from recombinant expression systems. Here we report that the large depolarizing plateau potential that underlies the epileptiform burst firing induced by metabotropic glutamate receptor agonists in lateral septal neurons was completely abolished in TRPC1/4 double-knockout mice, and was abolished in 74% of lateral septal neurons in TRPC1 knockout mice. Furthermore, neuronal cell death in the lateral septum and the cornu ammonis 1 region of hippocampus after pilocarpine-induced severe seizures was significantly ameliorated in TRPC1/4 double-knockout mice. Our data suggest that both TRPC1 and TRPC4 are essential for an intrinsic membrane conductance mediating the plateau potential in lateral septal neurons, possibly as heteromeric channels. Moreover, excitotoxic neuronal cell death, an underlying process for many neurological diseases, is not mediated merely by ionotropic glutamate receptors but also by heteromeric TRPC channels activated by metabotropic glutamate receptors. TRPC channels could be an unsuspected but critical molecular target for clinical intervention for excitotoxicity.
Begic, Sanela; Worobec, Elizabeth A
2008-02-01
Serratia marcescens is a prominent opportunistic nosocomial pathogen resistant to several classes of antibiotics. The major mechanism for fluoroquinolone resistance in various Gram-negative pathogens is active efflux. Our group previously identified SdeAB, a resistance-nodulation-cell division (RND) efflux pump complex, and a TolC-like outer-membrane protein (HasF), which together mediate energy-dependent fluoroquinolone efflux. In addition, a regulatory protein-encoding gene in the upstream region of sdeAB was identified (sdeR) and found to be 40 % homologous to MarA, an Escherichia coli transcriptional regulator. To provide conclusive evidence as to the role of these components in S. marcescens, sdeB, hasF and sdeR deletion mutants were constructed. Suicide vectors were created and introduced via triparental mating into S. marcescens UOC-67 (wild-type) and, for sdeB and hasF, T-861 (clinical isolate). We have analysed these genetically altered strains using minimal inhibitory concentration (MIC) assays for a wide range of compounds (fluoroquinolones, SDS, novobiocin, ethidium bromide and chloramphenicol). Intracellular accumulation of a variety of fluoroquinolones was measured fluorospectroscopically. The sdeB, hasF and sdeR knockout strains were consistently more susceptible to antibiotics than the parent strains, with the sdeB/hasF double knockout strain showing the highest susceptibility. A marked increase in fluoroquinolone (ciprofloxacin) accumulation was observed for strains deficient in either the sdeB or hasF genes when compared to the parental strains, with the highest ciprofloxacin accumulation observed for the sdeB/hasF double knockout. Antibiotic accumulation assays for the sdeB knockout mutant strains performed in the presence of carbonyl cyanide m-chlorophenylhydrazone (CCCP), a proton-motive-force inhibitor, demonstrated that SdeAB-mediated efflux is proton-motive-force dependent. Due to the comparable susceptibility of the sdeB and the hasF individual knockouts, we conclude that S. marcescens HasF is the sole outer-membrane component of the SdeAB pump. In addition, MIC data for sdeR-deficient and overexpressing strains confirm that SdeR is an activator of sdeAB and acts to enhance the overall multidrug resistance of S. marcescens.
Zhang, Song; Liang, Ruifang; Luo, Wei; Liu, Chang; Wu, Xiaoli; Gao, Yanan; Hao, Jianlei; Cao, Guangchao; Chen, Xi; Wei, Jun; Xia, Siyuan; Li, Zheng; Wen, Ti; Wu, Yunyun; Zhou, Xinglong; Wang, Puyue; Zhao, Liqing; Wu, Zhengzhou; Xiong, Sidong; Gao, Xiaoming; Gao, Xiang; Chen, Yongyan; Ge, Qing; Tian, Zhigang; Yin, Zhinan
2013-04-01
Interleukin (IL)-27, a newly discovered IL-12 family cytokine, is composed of p28 and EBI3. In this study, CD11c-p28(f/f) conditional knockout mice were generated to delete p28 specifically in dendritic cells (DCs). We demonstrated that in the absence of DC-derived p28, these mice were highly susceptible to both low and higher concentrations of concanavalin A (ConA) (5 mg/kg or 10 mg/kg), with extremely early and steady high levels of interferon-γ (IFN-γ) in sera. Neutralizing IFN-γ prevented ConA-induced liver damage in these mice, indicating a critical role of IFN-γ in this pathological process. Interestingly, the main source of the increased IFN-γ in CD11c-p28(f/f) mice was CD4+ T cells, but not natural killer T (NKT) cells. Depletion of CD4+ , but not NK1.1+ , cells completely abolished liver damage, whereas transferring CD4+ T cells from CD11c-p28(f/f) mice, but not from wild-type mice or CD11c-p28(f/f) -IFN-γ(-/-) double knockout mice to CD4(-/-) mice, restored the increased liver damage. Further studies defined higher levels of IFN-γ and T-bet messenger RNA in naïve CD4+ T cells from CD11c-p28(f/f) mice, and these CD4+ T cells were highly responsive to both low and higher concentrations of anti-CD3, indicating a programmed functional alternation of CD4+ T cells. We provide a unique model for studying the pathology of CD4+ T cell-mediated liver injury and reveal a novel function of DC-derived p28 on ConA-induced fulminant hepatitis through regulation of the intrinsic ability for IFN-γ production by CD4+ T cells. Copyright © 2012 American Association for the Study of Liver Diseases.
Ferdaus, Mohammed Z.; Barber, Karl W.; López‐Cayuqueo, Karen I.; Terker, Andrew S.; Argaiz, Eduardo R.; Gassaway, Brandon M.; Chambrey, Régine; Gamba, Gerardo; Rinehart, Jesse
2016-01-01
Key points STE20 (Sterile 20)/SPS‐1 related proline/alanine‐rich kinase (SPAK) and oxidative stress‐response kinase‐1 (OSR1) phosphorylate and activate the renal Na+–K+–2Cl− cotransporter 2 (NKCC2) and Na+Cl− cotransporter (NCC).Mouse models suggest that OSR1 mainly activates NKCC2‐mediated sodium transport along the thick ascending limb, while SPAK mainly activates NCC along the distal convoluted tubule, but the kinases may compensate for each other. We hypothesized that disruption of both kinases would lead to polyuria and severe salt‐wasting, and generated SPAK/OSR1 double knockout mice to test this.Despite a lack of SPAK and OSR1, phosphorylated NKCC2 abundance was still high, suggesting the existence of an alternative activating kinase.Compensatory changes in SPAK/OSR1‐independent phosphorylation sites on both NKCC2 and NCC and changes in sodium transport along the collecting duct were also observed.Potassium restriction revealed that SPAK and OSR1 play essential roles in the emerging model that NCC activation is central to sensing changes in plasma [K+]. Abstract STE20 (Sterile 20)/SPS‐1 related proline/alanine‐rich kinase (SPAK) and oxidative stress‐response kinase‐1 (OSR1) activate the renal cation cotransporters Na+–K+–2Cl− cotransporter (NKCC2) and Na+–Cl− cotransporter (NCC) via phosphorylation. Knockout mouse models suggest that OSR1 mainly activates NKCC2, while SPAK mainly activates NCC, with possible cross‐compensation. We tested the hypothesis that disrupting both kinases causes severe polyuria and salt‐wasting by generating SPAK/OSR1 double knockout (DKO) mice. DKO mice displayed lower systolic blood pressure compared with SPAK knockout (SPAK‐KO) mice, but displayed no severe phenotype even after dietary salt restriction. Phosphorylation of NKCC2 at SPAK/OSR1‐dependent sites was lower than in SPAK‐KO mice, but still significantly greater than in wild type mice. In the renal medulla, there was significant phosphorylation of NKCC2 at SPAK/OSR1‐dependent sites despite a complete absence of SPAK and OSR1, suggesting the existence of an alternative activating kinase. The distal convoluted tubule has been proposed to sense plasma [K+], with NCC activation serving as the primary effector pathway that modulates K+ secretion, by metering sodium delivery to the collecting duct. Abundance of phosphorylated NCC (pNCC) is dramatically lower in SPAK‐KO mice than in wild type mice, and the additional disruption of OSR1 further reduced pNCC. SPAK‐KO and kidney‐specific OSR1 single knockout mice maintained plasma [K+] following dietary potassium restriction, but DKO mice developed severe hypokalaemia. Unlike mice lacking SPAK or OSR1 alone, DKO mice displayed an inability to phosphorylate NCC under these conditions. These data suggest that SPAK and OSR1 are essential components of the effector pathway that maintains plasma [K+]. PMID:27068441
MIYAGAWA, Shuji; MATSUNARI, Hitomi; WATANABE, Masahito; NAKANO, Kazuaki; UMEYAMA, Kazuhiro; SAKAI, Rieko; TAKAYANAGI, Shuko; TAKEISHI, Toki; FUKUDA, Tooru; YASHIMA, Sayaka; MAEDA, Akira; EGUCHI, Hiroshi; OKUYAMA, Hiroomi; NAGAYA, Masaki; NAGASHIMA, Hiroshi
2015-01-01
Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) are new tools for producing gene knockout (KO) animals. The current study reports produced genetically modified pigs, in which two endogenous genes were knocked out. Porcine fibroblast cell lines were derived from homozygous α1,3-galactosyltransferase (GalT) KO pigs. These cells were subjected to an additional KO for the cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) gene. A pair of ZFN-encoding mRNAs targeting exon 8 of the CMAH gene was used to generate the heterozygous CMAH KO cells, from which cloned pigs were produced by somatic cell nuclear transfer (SCNT). One of the cloned pigs obtained was re-cloned after additional KO of the remaining CMAH allele using the same ZFN-encoding mRNAs to generate GalT/CMAH-double homozygous KO pigs. On the other hand, the use of TALEN-encoding mRNAs targeting exon 7 of the CMAH gene resulted in efficient generation of homozygous CMAH KO cells. These cells were used for SCNT to produce cloned pigs homozygous for a double GalT/CMAH KO. These results demonstrate that the combination of TALEN-encoding mRNA, in vitro selection of the nuclear donor cells and SCNT provides a robust method for generating KO pigs. PMID:26227017
Miyagawa, Shuji; Matsunari, Hitomi; Watanabe, Masahito; Nakano, Kazuaki; Umeyama, Kazuhiro; Sakai, Rieko; Takayanagi, Shuko; Takeishi, Toki; Fukuda, Tooru; Yashima, Sayaka; Maeda, Akira; Eguchi, Hiroshi; Okuyama, Hiroomi; Nagaya, Masaki; Nagashima, Hiroshi
2015-01-01
Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) are new tools for producing gene knockout (KO) animals. The current study reports produced genetically modified pigs, in which two endogenous genes were knocked out. Porcine fibroblast cell lines were derived from homozygous α1,3-galactosyltransferase (GalT) KO pigs. These cells were subjected to an additional KO for the cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) gene. A pair of ZFN-encoding mRNAs targeting exon 8 of the CMAH gene was used to generate the heterozygous CMAH KO cells, from which cloned pigs were produced by somatic cell nuclear transfer (SCNT). One of the cloned pigs obtained was re-cloned after additional KO of the remaining CMAH allele using the same ZFN-encoding mRNAs to generate GalT/CMAH-double homozygous KO pigs. On the other hand, the use of TALEN-encoding mRNAs targeting exon 7 of the CMAH gene resulted in efficient generation of homozygous CMAH KO cells. These cells were used for SCNT to produce cloned pigs homozygous for a double GalT/CMAH KO. These results demonstrate that the combination of TALEN-encoding mRNA, in vitro selection of the nuclear donor cells and SCNT provides a robust method for generating KO pigs.
Hypothalamic-pituitary cytokine network.
Kariagina, Anastasia; Romanenko, Dmitry; Ren, Song-Guang; Chesnokova, Vera
2004-01-01
Cytokines expressed in the brain and involved in regulating the hypothalamus-pituitary-adrenal (HPA) axis contribute to the neuroendocrine interface. Leukemia inhibitory factor (LIF) and LIF receptors are expressed in human pituitary cells and murine hypothalamus and pituitary. LIF potently induces pituitary proopiomelanocortin (POMC) gene transcription and ACTH secretion and potentiates CRH induction of POMC. In vivo, LIF, along with CRH, enhances POMC expression and ACTH secretion in response to emotional and inflammatory stress. To further elucidate specific roles for both CRH and LIF in activating the inflammatory HPA response, double-knockout mice (CRH/LIFKO) were generated by breeding the null mutants for each respective single gene. Inflammation produced by ip injection of lipopolysaccharide (1 microg/mouse) to double CRH and LIF-deficient mice elicited pituitary POMC induction similar to wild type and markedly higher than in single null animals (P<0.0.01). Double-knockout mice also demonstrated robust corticosterone response to inflammation. High pituitary POMC mRNA levels may reflect abundant TNFalpha, IL-1beta, and IL-6 activation observed in the hypothalamus and pituitary of these animals. Our results suggest that increased central proinflammatory cytokine expression can compensate for the impaired HPA axis function and activates inflammatory ACTH and corticosterone responses in mice-deficient in both CRH and LIF.
USDA-ARS?s Scientific Manuscript database
We established a mouse model of developmental nonalcoholic steatohepatitis (NASH) by feeding a high polyunsaturated fat liquid diet to female glutathione-S-transferase 4-4 (Gsta4-/-)/peroxisome proliferator activated receptor a (Ppara-/-) double knockout 129/SvJ mice for 12 weeks from weaning. We us...
Jiang, Bei; Xiao, Bo; Liu, Linde; Ge, Yihe; Hu, Xiaomei
2016-01-01
Gene duplication often provides selective advantages for the survival of microorganisms in adapting to varying environmental conditions. P. aeruginosa PAO1 possesses two seven-gene operons [phz1 (phzA1B1C1D1E1F1G1) and phz2 (phzA2B2C2D2E2F2G2)] that are involved in the biosynthesis of phenazine-1-carboxylic acid and its derivatives. Although the two operons are highly homologous and their functions are well known, it is unclear how the two phz operons coordinate their expressions to maintain the phenazine biosynthesis. By constructing single and double deletion mutants of the two phz operons, we found that the phz1-deletion mutant produced the same or less amount of phenazine-1-carboxylic acid and pyocyanin in GA medium than the phz2-knockout mutant while the phz1-phz2 double knockout mutant did not produce any phenazines. By generating phzA1 and phzA2 translational and transcriptional fusions with a truncated lacZ reporter, we found that the expression of the phz1 operon increased significantly at the post-transcriptional level and did not alter at the transcriptional level in the absence of the phz2 operon. Surprisingly, the expression the phz2 operon increased significantly at the post-transcriptional level and only moderately at the transcriptional level in the absence of the phz1 operon. Our findings suggested that a complex cross-regulation existed between the phz1 and phz2 operons. By mediating the upregulation of one phz operon expression while the other was deleted, this crosstalk would maintain the homeostatic balance of phenazine biosynthesis in P. aeruginosa PAO1. PMID:26735915
Biagosch, Caroline; Ediga, Raga Deepthi; Hensler, Svenja-Viola; Faerberboeck, Michael; Kuehn, Ralf; Wurst, Wolfgang; Meitinger, Thomas; Kölker, Stefan; Sauer, Sven; Prokisch, Holger
2017-09-01
Glutaric aciduria type I (GA-I) is a rare organic aciduria caused by the autosomal recessive inherited deficiency of glutaryl-CoA dehydrogenase (GCDH). GCDH deficiency leads to disruption of l-lysine degradation with characteristic accumulation of glutarylcarnitine and neurotoxic glutaric acid (GA), glutaryl-CoA, 3-hydroxyglutaric acid (3-OHGA). DHTKD1 acts upstream of GCDH, and its deficiency leads to none or often mild clinical phenotype in humans, 2-aminoadipic 2-oxoadipic aciduria. We hypothesized that inhibition of DHTKD1 may prevent the accumulation of neurotoxic dicarboxylic metabolites suggesting DHTKD1 inhibition as a possible treatment strategy for GA-I. In order to validate this hypothesis we took advantage of an existing GA-I (Gcdh -/- ) mouse model and established a Dhtkd1 deficient mouse model. Both models reproduced the biochemical and clinical phenotype observed in patients. Under challenging conditions of a high lysine diet, only Gcdh -/- mice but not Dhtkd1 -/- mice developed clinical symptoms such as lethargic behaviour and weight loss. However, the genetic Dhtkd1 inhibition in Dhtkd1 -/- /Gcdh -/- mice could not rescue the GA-I phenotype. Biochemical results confirm this finding with double knockout mice showing similar metabolite accumulations as Gcdh -/- mice with high GA in brain and liver. This suggests that DHTKD1 inhibition alone is not sufficient to treat GA-I, but instead a more complex strategy is needed. Our data highlights the many unresolved questions within the l-lysine degradation pathway and provides evidence for a so far unknown mechanism leading to glutaryl-CoA. Copyright © 2017 Elsevier B.V. All rights reserved.
Jia, Junshuang; Lin, Xiaolin; Lin, Xia; Lin, Taoyan; Chen, Bangzhu; Hao, Weichao; Cheng, Yushuang; Liu, Yu; Dian, Meijuan; Yao, Kaitai; Xiao, Dong; Gu, Weiwang
2016-10-01
The Cre/loxP system has become an important tool for the conditional gene knockout and conditional gene expression in genetically engineered mice. The applications of this system depend on transgenic reporter mouse lines that provide Cre recombinase activity with a defined cell type-, tissue-, or developmental stage-specificity. To develop a sensitive assay for monitoring Cre-mediated DNA excisions in mice, we generated Cre-mediated excision reporter mice, designated R/L mice (R/L: mRFP(monomeric red fluorescent protein)/luciferase), express mRFP throughout embryonic development and adult stages, while Cre-mediated excision deletes a loxP-flanked mRFP reporter gene and STOP sequence, thereby activating the expression of the second reporter gene luciferase, as assayed by in vivo and ex vivo bioluminescence imaging. After germ line deletion of the floxed mRFP and STOP sequence in R/L mice by EIIa-Cre mice, the resulting luciferase transgenic mice in which the loxP-mRFP-STOP-loxP cassette is excised from all cells express luciferase in all tissues and organs examined. The expression of luciferase transgene was activated in liver of RL/Alb-Cre double transgenic mice and in brain of RL/Nestin-Cre double transgenic mice when R/L reporter mice were mated with Alb-Cre mice and Nestin-Cre mice, respectively. Our findings reveal that the double reporter R/L mouse line is able to indicate the occurrence of Cre-mediated excision from early embryonic to adult lineages. Taken together, these findings demonstrate that the R/L mice serve as a sensitive reporter for Cre-mediated DNA excision both in living animals and in organs, tissues, and cells following necropsy.
Mandemakers, W; Abuhatzira, L; Xu, H; Caromile, L A; Hébert, S S; Snellinx, A; Morais, V A; Matta, S; Cai, T; Notkins, A L; De Strooper, B
2013-07-01
We analysed the genomic organisation of miR-153, a microRNA embedded in genes that encode two of the major type 1 diabetes autoantigens, islet-associated protein (IA)-2 and IA-2β. We also identified miR-153 target genes that correlated with IA-2β localisation and function. A bioinformatics approach was used to identify miR-153's genomic organisation. To analyse the co-regulation of miR-153 and IA-2β, quantitative PCR analysis of miR-153 and Ia-2β (also known as Ptprn2) was performed after a glucose stimulation assay in MIN6B cells and isolated murine pancreatic islets, and also in wild-type Ia-2 (also known as Ptprn), Ia-2β single knockout and Ia-2/Ia-2β double knockout mouse brain and pancreatic islets. Bioinformatics identification of miR-153 target genes and validation via luciferase reporter assays, western blotting and quantitative PCR were also carried out. Two copies of miR-153, miR-153-1 and miR-153-2, are localised in intron 19 of Ia-2 and Ia-2β, respectively. In rodents, only miR-153-2 is conserved. We demonstrated that expression of miR-153-2 and Ia-2β in rodents is partially co-regulated as demonstrated by a strong reduction of miR-153 expression levels in Ia-2β knockout and Ia-2/Ia-2β double knockout mice. miR-153 levels were unaffected in Ia-2 knockout mice. In addition, glucose stimulation, which increases Ia-2 and Ia-2β expression, also significantly increased expression of miR-153. Several predicted targets of miR-153 were reduced after glucose stimulation in vitro, correlating with the increase in miR-153 levels. This study suggests the involvement of miR-153, IA-2β and miR-153 target genes in a regulatory network, which is potentially relevant to insulin and neurotransmitter release.
Richter, Susan; Morrison, Shona; Connor, Tim; Su, Jiechuang; Print, Cristin G.; Ronimus, Ron S.; McGee, Sean L.; Wilson, William R.
2013-01-01
Zinc finger nucleases (ZFN) are powerful tools for editing genes in cells. Here we use ZFNs to interrogate the biological function of ADPGK, which encodes an ADP-dependent glucokinase (ADPGK), in human tumour cell lines. The hypothesis we tested is that ADPGK utilises ADP to phosphorylate glucose under conditions where ATP becomes limiting, such as hypoxia. We characterised two ZFN knockout clones in each of two lines (H460 and HCT116). All four clones had frameshift mutations in all alleles at the target site in exon 1 of ADPGK, and were ADPGK-null by immunoblotting. ADPGK knockout had little or no effect on cell proliferation, but compromised the ability of H460 cells to survive siRNA silencing of hexokinase-2 under oxic conditions, with clonogenic survival falling from 21±3% for the parental line to 6.4±0.8% (p = 0.002) and 4.3±0.8% (p = 0.001) for the two knockouts. A similar increased sensitivity to clonogenic cell killing was observed under anoxia. No such changes were found when ADPGK was knocked out in HCT116 cells, for which the parental line was less sensitive than H460 to anoxia and to hexokinase-2 silencing. While knockout of ADPGK in HCT116 cells caused few changes in global gene expression, knockout of ADPGK in H460 cells caused notable up-regulation of mRNAs encoding cell adhesion proteins. Surprisingly, we could discern no consistent effect on glycolysis as measured by glucose consumption or lactate formation under anoxia, or extracellular acidification rate (Seahorse XF analyser) under oxic conditions in a variety of media. However, oxygen consumption rates were generally lower in the ADPGK knockouts, in some cases markedly so. Collectively, the results demonstrate that ADPGK can contribute to tumour cell survival under conditions of high glycolytic dependence, but the phenotype resulting from knockout of ADPGK is cell line dependent and appears to be unrelated to priming of glycolysis in these lines. PMID:23799003
Deletion of Gαq in the telencephalon alters specific neurobehavioral outcomes.
Graham, Devon L; Buendia, Matthew A; Chapman, Michelle A; Durai, Heather H; Stanwood, Gregg D
2015-09-01
G(αq) -coupled receptors are ubiquitously expressed throughout the brain and body, and it has been shown that these receptors and associated signaling cascades are involved in a number of functional outputs, including motor function and learning and memory. Genetic alterations to G(αq) have been implicated in neurodevelopmental disorders such as Sturge-Weber syndrome. Some of these associated disease outcomes have been modeled in laboratory animals, but as G(αq) is expressed in all cell types, it is difficult to differentiate the underlying circuitry or causative neuronal population. To begin to address neuronal cell type diversity in G(αq) function, we utilized a conditional knockout mouse whereby G(αq) was eliminated from telencephalic glutamatergic neurons. Unlike the global G(αq) knockout mouse, we found that these conditional knockout mice were not physically different from control mice, nor did they exhibit any gross motor abnormalities. However, similarly to the constitutive knockout animal, G(αq) conditional knockout mice demonstrated apparent deficits in spatial working memory. Loss of G(αq) from glutamatergic neurons also produced enhanced sensitivity to cocaine-induced locomotion, suggesting that cortical G(αq) signaling may limit behavioral responses to psychostimulants. Screening for a variety of markers of forebrain neuronal architecture revealed no obvious differences in the conditional knockouts, suggesting that the loss of G(αq) in telencephalic excitatory neurons does not result in major alterations in brain structure or neuronal differentiation. Taken together, our results define specific modulation of spatial working memory and psychostimulant responses through disruptions in G(αq) signaling within cerebral cortical glutamatergic neurons. © 2015 Wiley Periodicals, Inc.
Kim, Han-Byul; Kim, Minchul; Park, Young-Soo; Park, Intae; Kim, Tackhoon; Yang, Sung-Yeun; Cho, Charles J; Hwang, DaeHee; Jung, Jin-Hak; Markowitz, Sanford D; Hwang, Sung Wook; Yang, Suk-Kyun; Lim, Dae-Sik; Myung, Seung-Jae
2017-02-01
Prostaglandin E 2 (PGE 2 ) is mediator of inflammation that regulates tissue regeneration, but its continual activation has been associated with carcinogenesis. Little is known about factors in the PGE 2 signaling pathway that contribute to tumor formation. We investigated whether yes-associated protein 1 (YAP1), a transcriptional co-activator in the Hippo signaling pathway, mediates PGE 2 function. DLD-1 and SW480 colon cancer cell lines were transfected with vectors expressing transgenes or small hairpin RNAs and incubated with recombinant PGE 2 , with or without pharmacologic inhibitors of signaling proteins, and analyzed by immunoblot, immunofluorescence, quantitative reverse-transcription polymerase chain reaction, transcriptional reporter, and proliferation assays. Dextran sodium sulfate (DSS) was given to induce colitis in C57/BL6 (control) mice, as well as in mice with disruption of the hydroxyprostaglandin dehydrogenase 15 gene (15-PGDH-knockout mice), Yap1 gene (YAP-knockout mice), and double-knockout mice. Some mice also were given indomethacin to block PGE 2 synthesis. 15-PGDH knockout mice were crossed with mice with intestine-specific disruption of the salvador family WW domain containing 1 gene (Sav1), which encodes an activator of Hippo signaling. We performed immunohistochemical analyses of colon biopsy samples from 26 patients with colitis-associated cancer and 51 age-and sex-matched patients with colorectal cancer (without colitis). Incubation of colon cancer cell lines with PGE 2 led to phosphorylation of cyclic adenosine monophosphate-responsive element binding protein 1 and increased levels of YAP1 messenger RNA, protein, and YAP1 transcriptional activity. This led to increased transcription of the prostaglandin-endoperoxide synthase 2 gene (PTGS2 or cyclooxygenase 2) and prostaglandin E-receptor 4 gene (PTGER4 or EP4). Incubation with PGE 2 promoted proliferation of colon cancer cell lines, but not cells with knockdown of YAP1. Control mice developed colitis after administration of DSS, but injection of PGE 2 led to colon regeneration in these mice. However, YAP-knockout mice did not regenerate colon tissues and died soon after administration of DSS. 15-PGDH-knockout mice regenerated colon tissues more rapidly than control mice after withdrawal of DSS, and had faster recovery of body weight, colon length, and colitis histology scores. These effects were reversed by injection of indomethacin. SAV1-knockout or 15-PGDH-knockout mice did not develop spontaneous tumors after colitis induction, but SAV1/15-PGDH double-knockout mice developed polyps that eventually progressed to carcinoma in situ. Administration of indomethacin to these mice prevented spontaneous tumor formation. Levels of PGE 2 correlated with those of YAP levels in human sporadic colorectal tumors and colitis-associated tumors. PGE 2 signaling increases the expression and transcriptional activities of YAP1, leading to increased expression of cyclooxygenase 2 and EP4 to activate a positive signaling loop. This pathway promotes proliferation of colon cancer cell lines and colon tissue regeneration in mice with colitis. Constitutive activation of this pathway led to formation of polyps and colon tumors in mice. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
Oxidant stress in mitochondrial DNA damage, autophagy and inflammation in atherosclerosis
Ding, Zufeng; Liu, Shijie; Wang, Xianwei; Khaidakov, Magomed; Dai, Yao; Mehta, Jawahar L.
2013-01-01
Our studies in HUVECs show that ox-LDL induced autophagy and damaged mtDNA leading to TLR9 expression. LOX-1 antibody or the ROS inhibitor apocynin attenuated ox-LDL-mediated autophagy, mtDNA damage and TLR9 expression, suggesting that these events are LOX-1 and ROS-dependent phenomena. Experiments using siRNA to DNase II indicated that DNase II digests mtDNA to protect the tissue from inflammation. Next, we studied and found intense autophagy, TLR9 expression and inflammatory signals (CD45 and CD68) in the aortas of LDLR knockout mice fed high cholesterol diet. Deletion of LOX-1 (LDLR/LOX-1 double knockout mice) attenuated autophagy, TLR9 expression as well as CD45 and CD68. Damaged mtDNA signal was also very high in LDLR knockout mice aortas, and this signal was attenuated by LOX-1 deletion. Thus, it appears that oxidative stress-mediated damaged mtDNA that escapes autophagy induces a potent inflammatory response in atherosclerosis. PMID:23326634
An abnormal bone marrow microenvironment contributes to hematopoietic dysfunction in Fanconi anemia.
Zhou, Yuan; He, Yongzheng; Xing, Wen; Zhang, Peng; Shi, Hui; Chen, Shi; Shi, Jun; Bai, Jie; Rhodes, Steven D; Zhang, Fengqui; Yuan, Jin; Yang, Xianlin; Zhu, Xiaofan; Li, Yan; Hanenberg, Helmut; Xu, Mingjiang; Robertson, Kent A; Yuan, Weiping; Nalepa, Grzegorz; Cheng, Tao; Clapp, D Wade; Yang, Feng-Chun
2017-06-01
Fanconi anemia is a complex heterogeneous genetic disorder with a high incidence of bone marrow failure, clonal evolution to acute myeloid leukemia and mesenchymal-derived congenital anomalies. Increasing evidence in Fanconi anemia and other genetic disorders points towards an interdependence of skeletal and hematopoietic development, yet the impact of the marrow microenvironment in the pathogenesis of the bone marrow failure in Fanconi anemia remains unclear. Here we demonstrated that mice with double knockout of both Fancc and Fancg genes had decreased bone formation at least partially due to impaired osteoblast differentiation from mesenchymal stem/progenitor cells. Mesenchymal stem/progenitor cells from the double knockout mice showed impaired hematopoietic supportive activity. Mesenchymal stem/progenitor cells of patients with Fanconi anemia exhibited similar cellular deficits, including increased senescence, reduced proliferation, impaired osteoblast differentiation and defective hematopoietic stem/progenitor cell supportive activity. Collectively, these studies provide unique insights into the physiological significance of mesenchymal stem/progenitor cells in supporting the marrow microenvironment, which is potentially of broad relevance in hematopoietic stem cell transplantation. Copyright© Ferrata Storti Foundation.
An abnormal bone marrow microenvironment contributes to hematopoietic dysfunction in Fanconi anemia
Zhou, Yuan; He, Yongzheng; Xing, Wen; Zhang, Peng; Shi, Hui; Chen, Shi; Shi, Jun; Bai, Jie; Rhodes, Steven D.; Zhang, Fengqui; Yuan, Jin; Yang, Xianlin; Zhu, Xiaofan; Li, Yan; Hanenberg, Helmut; Xu, Mingjiang; Robertson, Kent A.; Yuan, Weiping; Nalepa, Grzegorz; Cheng, Tao; Clapp, D. Wade; Yang, Feng-Chun
2017-01-01
Fanconi anemia is a complex heterogeneous genetic disorder with a high incidence of bone marrow failure, clonal evolution to acute myeloid leukemia and mesenchymal-derived congenital anomalies. Increasing evidence in Fanconi anemia and other genetic disorders points towards an interdependence of skeletal and hematopoietic development, yet the impact of the marrow microenvironment in the pathogenesis of the bone marrow failure in Fanconi anemia remains unclear. Here we demonstrated that mice with double knockout of both Fancc and Fancg genes had decreased bone formation at least partially due to impaired osteoblast differentiation from mesenchymal stem/progenitor cells. Mesenchymal stem/progenitor cells from the double knockout mice showed impaired hematopoietic supportive activity. Mesenchymal stem/progenitor cells of patients with Fanconi anemia exhibited similar cellular deficits, including increased senescence, reduced proliferation, impaired osteoblast differentiation and defective hematopoietic stem/progenitor cell supportive activity. Collectively, these studies provide unique insights into the physiological significance of mesenchymal stem/progenitor cells in supporting the marrow microenvironment, which is potentially of broad relevance in hematopoietic stem cell transplantation. PMID:28341737
WASP family proteins and formins compete in pseudopod- and bleb-based migration
2018-01-01
Actin pseudopods induced by SCAR/WAVE drive normal migration and chemotaxis in eukaryotic cells. Cells can also migrate using blebs, in which the edge is driven forward by hydrostatic pressure instead of actin. In Dictyostelium discoideum, loss of SCAR is compensated by WASP moving to the leading edge to generate morphologically normal pseudopods. Here we use an inducible double knockout to show that cells lacking both SCAR and WASP are unable to grow, make pseudopods or, unexpectedly, migrate using blebs. Remarkably, amounts and dynamics of actin polymerization are normal. Pseudopods are replaced in double SCAR/WASP mutants by aberrant filopods, induced by the formin dDia2. Further disruption of the gene for dDia2 restores cells’ ability to initiate blebs and thus migrate, though pseudopods are still lost. Triple knockout cells still contain near-normal F-actin levels. This work shows that SCAR, WASP, and dDia2 compete for actin. Loss of SCAR and WASP causes excessive dDia2 activity, maintaining F-actin levels but blocking pseudopod and bleb formation and migration. PMID:29191847
Gadd45b knockout mice exhibit selective deficits in hippocampus-dependent long-term memory
Leach, Prescott T.; Poplawski, Shane G.; Kenney, Justin W.; Hoffman, Barbara; Liebermann, Dan A.; Abel, Ted; Gould, Thomas J.
2012-01-01
Growth arrest and DNA damage-inducible β (Gadd45b) has been shown to be involved in DNA demethylation and may be important for cognitive processes. Gadd45b is abnormally expressed in subjects with autism and psychosis, two disorders associated with cognitive deficits. Furthermore, several high-throughput screens have identified Gadd45b as a candidate plasticity-related gene. However, a direct demonstration of a link between Gadd45b and memory has not been established. The current studies first determined whether expression of the Gadd45 family of genes was affected by contextual fear conditioning. Gadd45b, and to a lesser extent Gadd45g, were up-regulated in the hippocampus following contextual fear conditioning, whereas Gadd45a was not. Next, Gadd45b knockout mice were tested for contextual and cued fear conditioning. Gadd45b knockout mice exhibited a significant deficit in long-term contextual fear conditioning; however, they displayed normal levels of short-term contextual fear conditioning. No differences between Gadd45b knockout and wild-type mice were observed in cued fear conditioning. Because cued fear conditioning is hippocampus independent, while contextual fear conditioning is hippocampus dependent, the current studies suggest that Gadd45b may be important for long-term hippocampus-dependent memory storage. Therefore, Gadd45b may be a novel therapeutic target for the cognitive deficits associated with many neurodevelopmental, neurological, and psychiatric disorders. PMID:22802593
Mirantes, Cristina; Eritja, Núria; Dosil, Maria Alba; Santacana, Maria; Pallares, Judit; Gatius, Sónia; Bergadà, Laura; Maiques, Oscar; Matias-Guiu, Xavier; Dolcet, Xavier
2013-05-01
PTEN is one of the most frequently mutated tumor suppressor genes in human cancers. The role of PTEN in carcinogenesis has been validated by knockout mouse models. PTEN heterozygous mice develop neoplasms in multiple organs. Unfortunately, the embryonic lethality of biallelic excision of PTEN has inhibited the study of complete PTEN deletion in the development and progression of cancer. By crossing PTEN conditional knockout mice with transgenic mice expressing a tamoxifen-inducible Cre-ER(T) under the control of a chicken actin promoter, we have generated a tamoxifen-inducible mouse model that allows temporal control of PTEN deletion. Interestingly, administration of a single dose of tamoxifen resulted in PTEN deletion mainly in epithelial cells, but not in stromal, mesenchymal or hematopoietic cells. Using the mT/mG double-fluorescent Cre reporter mice, we demonstrate that epithelial-specific PTEN excision was caused by differential Cre activity among tissues and cells types. Tamoxifen-induced deletion of PTEN resulted in extremely rapid and consistent formation of endometrial in situ adenocarcinoma, prostate intraepithelial neoplasia and thyroid hyperplasia. We also analyzed the role of PTEN ablation in other epithelial cells, such as the tubular cells of the kidney, hepatocytes, colonic epithelial cells or bronchiolar epithelium, but those tissues did not exhibit neoplastic growth. Finally, to validate this model as a tool to assay the efficacy of anti-tumor drugs in PTEN deficiency, we administered the mTOR inhibitor everolimus to mice with induced PTEN deletion. Everolimus dramatically reduced the progression of endometrial proliferations and significantly reduced thyroid hyperplasia. This model could be a valuable tool to study the cell-autonomous mechanisms involved in PTEN-loss-induced carcinogenesis and provides a good platform to study the effect of anti-neoplastic drugs on PTEN-negative tumors.
Mirantes, Cristina; Eritja, Núria; Dosil, Maria Alba; Santacana, Maria; Pallares, Judit; Gatius, Sónia; Bergadà, Laura; Maiques, Oscar; Matias-Guiu, Xavier; Dolcet, Xavier
2013-01-01
SUMMARY PTEN is one of the most frequently mutated tumor suppressor genes in human cancers. The role of PTEN in carcinogenesis has been validated by knockout mouse models. PTEN heterozygous mice develop neoplasms in multiple organs. Unfortunately, the embryonic lethality of biallelic excision of PTEN has inhibited the study of complete PTEN deletion in the development and progression of cancer. By crossing PTEN conditional knockout mice with transgenic mice expressing a tamoxifen-inducible Cre-ERT under the control of a chicken actin promoter, we have generated a tamoxifen-inducible mouse model that allows temporal control of PTEN deletion. Interestingly, administration of a single dose of tamoxifen resulted in PTEN deletion mainly in epithelial cells, but not in stromal, mesenchymal or hematopoietic cells. Using the mT/mG double-fluorescent Cre reporter mice, we demonstrate that epithelial-specific PTEN excision was caused by differential Cre activity among tissues and cells types. Tamoxifen-induced deletion of PTEN resulted in extremely rapid and consistent formation of endometrial in situ adenocarcinoma, prostate intraepithelial neoplasia and thyroid hyperplasia. We also analyzed the role of PTEN ablation in other epithelial cells, such as the tubular cells of the kidney, hepatocytes, colonic epithelial cells or bronchiolar epithelium, but those tissues did not exhibit neoplastic growth. Finally, to validate this model as a tool to assay the efficacy of anti-tumor drugs in PTEN deficiency, we administered the mTOR inhibitor everolimus to mice with induced PTEN deletion. Everolimus dramatically reduced the progression of endometrial proliferations and significantly reduced thyroid hyperplasia. This model could be a valuable tool to study the cell-autonomous mechanisms involved in PTEN-loss-induced carcinogenesis and provides a good platform to study the effect of anti-neoplastic drugs on PTEN-negative tumors. PMID:23471917
Choi, Sunga; Singh, Shivendra V
2005-03-01
Sulforaphane, a constituent of many edible cruciferous vegetables, including broccoli, effectively suppresses proliferation of cancer cells in culture and in vivo by causing apoptosis induction, but the sequence of events leading to cell death is poorly defined. Here, we show that multidomain proapoptotic Bcl-2 family members Bax and Bak play a critical role in apoptosis induction by sulforaphane. This conclusion is based on the following observations: (a) sulforaphane treatment caused a dose- and time-dependent increase in the protein levels of both Bax and Bak and conformational change and mitochondrial translocation of Bax in SV40-transformed mouse embryonic fibroblasts (MEF) derived from wild-type mice to trigger cytosolic release of apoptogenic molecules (cytochrome c and Smac/DIABLO), activation of caspase-9 and caspase-3, and ultimately cell death; (b) MEFs derived from Bax or Bak knockout mice resisted cell death by sulforaphane, and (c) MEFs derived from Bax and Bak double knockout mice exhibited even greater protection against sulforaphane-induced cytochrome c release, caspase activation, and apoptosis compared with wild-type or single knockout cells. Interestingly, sulforaphane treatment also caused a dose- and time-dependent increase in the protein level of Apaf-1 in wild-type, Bax-/-, and Bak-/- MEFs but not in double knockout, suggesting that Bax and Bak might regulate sulforaphane-mediated induction of Apaf-1 protein. A marked decline in the protein level of X-linked inhibitor of apoptosis on treatment with sulforaphane was also observed. Thus, it is reasonable to postulate that sulforaphane-induced apoptosis is amplified by a decrease in X-linked inhibitor of apoptosis level, which functions to block cell death by inhibiting activities of caspases. In conclusion, the results of the present study indicate that Bax and Bak proteins play a critical role in initiation of cell death by sulforaphane.
Generating double knockout mice to model genetic intervention for diabetic cardiomyopathy in humans.
Chavali, Vishalakshi; Nandi, Shyam Sundar; Singh, Shree Ram; Mishra, Paras Kumar
2014-01-01
Diabetes is a rapidly increasing disease that enhances the chances of heart failure twofold to fourfold (as compared to age and sex matched nondiabetics) and becomes a leading cause of morbidity and mortality. There are two broad classifications of diabetes: type1 diabetes (T1D) and type2 diabetes (T2D). Several mice models mimic both T1D and T2D in humans. However, the genetic intervention to ameliorate diabetic cardiomyopathy in these mice often requires creating double knockout (DKO). In order to assess the therapeutic potential of a gene, that specific gene is either overexpressed (transgenic expression) or abrogated (knockout) in the diabetic mice. If the genetic mice model for diabetes is used, it is necessary to create DKO with transgenic/knockout of the target gene to investigate the specific role of that gene in pathological cardiac remodeling in diabetics. One of the important genes involved in extracellular matrix (ECM) remodeling in diabetes is matrix metalloproteinase-9 (Mmp9). Mmp9 is a collagenase that remains latent in healthy hearts but induced in diabetic hearts. Activated Mmp9 degrades extracellular matrix (ECM) and increases matrix turnover causing cardiac fibrosis that leads to heart failure. Insulin2 mutant (Ins2+/-) Akita is a genetic model for T1D that becomes diabetic spontaneously at the age of 3-4 weeks and show robust hyperglycemia at the age of 10-12 weeks. It is a chronic model of T1D. In Ins2+/- Akita, Mmp9 is induced. To investigate the specific role of Mmp9 in diabetic hearts, it is necessary to create diabetic mice where Mmp9 gene is deleted. Here, we describe the method to generate Ins2+/-/Mmp9-/- (DKO) mice to determine whether the abrogation of Mmp9 ameliorates diabetic cardiomyopathy.
Yan, C; Wang, P; DeMayo, J; DeMayo, F J; Elvin, J A; Carino, C; Prasad, S V; Skinner, S S; Dunbar, B S; Dube, J L; Celeste, A J; Matzuk, M M
2001-06-01
Knockout mouse technology has been used over the last decade to define the essential roles of ovarian-expressed genes and uncover genetic interactions. In particular, we have used this technology to study the function of multiple members of the transforming growth factor-beta superfamily including inhibins, activins, and growth differentiation factor 9 (GDF-9 or Gdf9). Knockout mice lacking GDF-9 are infertile due to a block in folliculogenesis at the primary follicle stage. In addition, recombinant GDF-9 regulates multiple cumulus granulosa cell functions in the periovulatory period including hyaluronic acid synthesis and cumulus expansion. We have also cloned an oocyte-specific homolog of GDF-9 from mice and humans, which is termed bone morphogenetic protein 15 (BMP-15 or Bmp15). To define the function of BMP-15 in mice, we generated embryonic stem cells and knockout mice, which have a null mutation in this X-linked gene. Male chimeric and Bmp15 null mice are normal and fertile. In contrast to Bmp15 null males and Gdf9 knockout females, Bmp15 null females (Bmp15(-/-)) are subfertile and usually have minimal ovarian histopathological defects, but demonstrate decreased ovulation and fertilization rates. To further decipher possible direct or indirect genetic interactions between GDF-9 and BMP-15, we have generated double mutant mice lacking one or both alleles of these related homologs. Double homozygote females (Bmp15(-/-)Gdf9(-/-)) display oocyte loss and cysts and resemble Gdf9(-/-) mutants. In contrast, Bmp15(-/-)Gdf9(+/-) female mice have more severe fertility defects than Bmp15(-/-) females, which appear to be due to abnormalities in ovarian folliculogenesis, cumulus cell physiology, and fertilization. Thus, the dosage of intact Bmp15 and Gdf9 alleles directly influences the destiny of the oocyte during folliculogenesis and in the periovulatory period. These studies have important implications for human fertility control and the maintenance of fertility and normal ovarian physiology.
Rendall, Amanda R; Tarkar, Aarti; Contreras-Mora, Hector M; LoTurco, Joseph J; Fitch, R Holly
2017-09-01
Dyslexia is a learning disability characterized by difficulty learning to read and write. The underlying biological and genetic etiology remains poorly understood. One candidate gene, dyslexia susceptibility 1 candidate 1 (DYX1C1), has been shown to be associated with deficits in short-term memory in dyslexic populations. The purpose of the current study was to examine the behavioral phenotype of a mouse model with a homozygous conditional (forebrain) knockout of the rodent homolog Dyx1c1. Twelve Dyx1c1 conditional homozygous knockouts, 7 Dyx1c1 conditional heterozygous knockouts and 6 wild-type controls were behaviorally assessed. Mice with the homozygous Dyx1c1 knockout showed deficits on memory and learning, but not on auditory or motor tasks. These findings affirm existing evidence that DYX1C1 may play an underlying role in the development of neural systems important to learning and memory, and disruption of this function could contribute to the learning deficits seen in individuals with dyslexia. Copyright © 2015 Elsevier Inc. All rights reserved.
Kamerewerd, Jens; Jansson, Malin; Nowrousian, Minou; Pöggeler, Stefanie; Kück, Ulrich
2008-09-01
Sordaria macrospora, a self-fertile filamentous ascomycete, carries genes encoding three different alpha-subunits of heterotrimeric G proteins (gsa, G protein Sordaria alpha subunit). We generated knockout strains for all three gsa genes (Deltagsa1, Deltagsa2, and Deltagsa3) as well as all combinations of double mutants. Phenotypic analysis of single and double mutants showed that the genes for Galpha-subunits have distinct roles in the sexual life cycle. While single mutants show some reduction of fertility, double mutants Deltagsa1Deltagsa2 and Deltagsa1Deltagsa3 are completely sterile. To test whether the pheromone receptors PRE1 and PRE2 mediate signaling via distinct Galpha-subunits, two recently generated Deltapre strains were crossed with all Deltagsa strains. Analyses of the corresponding double mutants revealed that compared to GSA2, GSA1 is a more predominant regulator of a signal transduction cascade downstream of the pheromone receptors and that GSA3 is involved in another signaling pathway that also contributes to fruiting body development and fertility. We further isolated the gene encoding adenylyl cyclase (AC) (sac1) for construction of a knockout strain. Analyses of the three DeltagsaDeltasac1 double mutants and one Deltagsa2Deltagsa3Deltasac1 triple mutant indicate that SAC1 acts downstream of GSA3, parallel to a GSA1-GSA2-mediated signaling pathway. In addition, the function of STE12 and PRO41, two presumptive signaling components, was investigated in diverse double mutants lacking those developmental genes in combination with the gsa genes. This analysis was further completed by expression studies of the ste12 and pro41 transcripts in wild-type and mutant strains. From the sum of all our data, we propose a model for how different Galpha-subunits interact with pheromone receptors, adenylyl cyclase, and STE12 and thus cooperatively regulate sexual development in S. macrospora.
Salabi, Fatemeh; Nazari, Mahmood; Chen, Qing; Nimal, Jonathan; Tong, Jianming; Cao, Wen G
2014-12-20
Myostatin (MSTN) has previously been shown to negatively regulate the proliferation and differentiation of skeletal muscle cells. Satellite cells are quiescent muscle stem cells that promote muscle growth and repair. Because the mechanism of MSTN in the biology of satellite cells is not well understood, this study was conducted to generate MSTN mono-allelic knockout satellite cells using the zinc-finger nuclease mRNA (MSTN-KO ZFN mRNA) and also to investigate the effect of this disruption on the proliferation and differentiation of sheep primary satellite cells (PSCs). Nineteen biallelic and four mono-allelic knockout cell clones were obtained after sequence analysis. The homologous mono-allelic knockout cells with 5-bp deletion were used to further evaluations. The results demonstrated that mono-allelic knockout of MSTN gene leads to translation inhibition. Real-time quantitative PCR results indicated that knockout of MSTN contributed to an increase in CDK2 and follistatin and a decrease in p21 at the transcript level in proliferation conditions. Moreover, MSTN knockout significantly increased the proliferation of mutant clones (P < 0.01). Consistent with the observed increase in CDK2 and decrease in p21 in cells lacking MSTN, cell cycle analysis showed that MSTN negatively regulated the G1 to S progression. In addition, knockout of myostatin resulted in a remarkable increase in MyoD and MyoG expression under differentiating conditions but had no effect on Myf5 expression. These results expanded our understanding of the regulation mechanism of MSTN. Furthermore, the MSTN-KO ZFN mRNA system in PSCs could be used to generate transgenic sheep in the future.
Rohde, Kristian; Bering, Tenna; Furukawa, Takahisa; Rath, Martin Fredensborg
2017-10-01
The retinal and anterior neural fold homeobox gene (Rax) controls development of the eye and the forebrain. Postnatal expression of Rax in the brain is restricted to the pineal gland, a forebrain structure devoted to melatonin synthesis. The role of Rax in pineal function is unknown. In order to investigate the role of Rax in pineal function while circumventing forebrain abnormalities of the global Rax knockout, we generated an eye and pineal-specific Rax conditional knockout mouse. Deletion of Rax in the pineal gland did not affect morphology of the gland, suggesting that Rax is not essential for pineal gland development. In contrast, deletion of Rax in the eye generated an anophthalmic phenotype. In addition to the loss of central visual pathways, the suprachiasmatic nucleus of the hypothalamus housing the circadian clock was absent, indicating that the retinohypothalamic tract is required for the nucleus to develop. Telemetric analyses confirmed the lack of a functional circadian clock. Arylalkylamine N-acetyltransferase (Aanat) transcripts, encoding the melatonin rhythm-generating enzyme, were undetectable in the pineal gland of the Rax conditional knockout under normal conditions, whereas the paired box 6 homeobox gene, known to regulate pineal development, was up-regulated. By injecting isoproterenol, which mimics a nocturnal situation in the pineal gland, we were able to induce pineal expression of Aanat in the Rax conditional knockout mouse, but Aanat transcript levels were significantly lower than those of Rax-proficient mice. Our data suggest that Rax controls pineal gene expression and via Aanat may modulate melatonin synthesis. © 2017 International Society for Neurochemistry.
USDA-ARS?s Scientific Manuscript database
Hepatocellular injury resulting from increased lipid peroxidation products and oxidative stress is considered a potential mechanism driving the progression of nonalcoholic fatty liver disease (NAFLD) to nonalcoholic steatohepatitsis (NASH). To test the significance of lipid peroxidation and protein...
da-Silva, Wagner S.; Ribich, Scott; e Drigo, Rafael Arrojo; Castillo, Melany; Patty, Mary-Elizabeth; Bianco, Antonio C.
2011-01-01
Exposure of cell lines endogenously expressing the thyroid hormone activating enzyme type 2 deiodinase (D2) to the chemical chaperones tauroursodeoxycholic acid (TUDCA) or 4-phenylbutiric acid (4-PBA) increases D2 expression, activity and T3 production. In brown adipocytes, TUDCA or 4-PBA induced T3-dependent genes and oxygen consumption (~2-fold), an effect partially lost in D2 knockout cells. In wild type, but not in D2 knockout mice, administration of TUDCA lowered the respiratory quotient, doubled brown adipose tissue D2 activity and normalized the glucose intolerance associated with high fat feeding. Thus, D2 plays a critical role in the metabolic effects of chemical chaperones. PMID:21237159
Pacey, Laura K K; Doss, Lilian; Cifelli, Carlo; van der Kooy, Derek; Heximer, Scott P; Hampson, David R
2011-03-01
Fragile X syndrome (FXS), the most common cause of inherited mental retardation, is caused by the loss of the mRNA binding protein, FMRP. Persons with FXS also display epileptic seizures, social anxiety, hyperactivity, and autistic behaviors. The metabotropic glutamate receptor theory of FXS postulates that in the absence of FMRP, enhanced signaling though G-protein coupled group I metabotropic glutamate receptors in the brain contributes to many of the abnormalities observed in the disorder. However, recent evidence suggests that alterations in cellular signaling through additional G-protein coupled receptors may also be involved in the pathogenesis of FXS, thus providing impetus for examining downstream molecules. One group of signaling molecules situated downstream of the receptors is the regulator of G-protein signaling (RGS) proteins. Notably, RGS4 is highly expressed in brain and has been shown to negatively regulate signaling through Group I mGluRs and GABA(B) receptors. To examine the potential role for RGS4 in the pathogenesis of FXS, we generated FXS/RGS4 double knockout mice. Characterization of these mice revealed that a subset of FXS related phenotypes, including increased body weight, altered synaptic protein expression, and abnormal social behaviors, were rescued in the double knockout mice. Other phenotypes, such as hyperactivity and macroorchidism, were not affected by the loss of RGS4. These findings suggest that tissue and cell-type specific differences in GPCR signaling and RGS function may contribute to the spectrum of phenotypic differences observed in FXS. Copyright © 2010 Elsevier Inc. All rights reserved.
Genecentric: a package to uncover graph-theoretic structure in high-throughput epistasis data.
Gallant, Andrew; Leiserson, Mark D M; Kachalov, Maxim; Cowen, Lenore J; Hescott, Benjamin J
2013-01-18
New technology has resulted in high-throughput screens for pairwise genetic interactions in yeast and other model organisms. For each pair in a collection of non-essential genes, an epistasis score is obtained, representing how much sicker (or healthier) the double-knockout organism will be compared to what would be expected from the sickness of the component single knockouts. Recent algorithmic work has identified graph-theoretic patterns in this data that can indicate functional modules, and even sets of genes that may occur in compensatory pathways, such as a BPM-type schema first introduced by Kelley and Ideker. However, to date, any algorithms for finding such patterns in the data were implemented internally, with no software being made publically available. Genecentric is a new package that implements a parallelized version of the Leiserson et al. algorithm (J Comput Biol 18:1399-1409, 2011) for generating generalized BPMs from high-throughput genetic interaction data. Given a matrix of weighted epistasis values for a set of double knock-outs, Genecentric returns a list of generalized BPMs that may represent compensatory pathways. Genecentric also has an extension, GenecentricGO, to query FuncAssociate (Bioinformatics 25:3043-3044, 2009) to retrieve GO enrichment statistics on generated BPMs. Python is the only dependency, and our web site provides working examples and documentation. We find that Genecentric can be used to find coherent functional and perhaps compensatory gene sets from high throughput genetic interaction data. Genecentric is made freely available for download under the GPLv2 from http://bcb.cs.tufts.edu/genecentric.
Genecentric: a package to uncover graph-theoretic structure in high-throughput epistasis data
2013-01-01
Background New technology has resulted in high-throughput screens for pairwise genetic interactions in yeast and other model organisms. For each pair in a collection of non-essential genes, an epistasis score is obtained, representing how much sicker (or healthier) the double-knockout organism will be compared to what would be expected from the sickness of the component single knockouts. Recent algorithmic work has identified graph-theoretic patterns in this data that can indicate functional modules, and even sets of genes that may occur in compensatory pathways, such as a BPM-type schema first introduced by Kelley and Ideker. However, to date, any algorithms for finding such patterns in the data were implemented internally, with no software being made publically available. Results Genecentric is a new package that implements a parallelized version of the Leiserson et al. algorithm (J Comput Biol 18:1399-1409, 2011) for generating generalized BPMs from high-throughput genetic interaction data. Given a matrix of weighted epistasis values for a set of double knock-outs, Genecentric returns a list of generalized BPMs that may represent compensatory pathways. Genecentric also has an extension, GenecentricGO, to query FuncAssociate (Bioinformatics 25:3043-3044, 2009) to retrieve GO enrichment statistics on generated BPMs. Python is the only dependency, and our web site provides working examples and documentation. Conclusion We find that Genecentric can be used to find coherent functional and perhaps compensatory gene sets from high throughput genetic interaction data. Genecentric is made freely available for download under the GPLv2 from http://bcb.cs.tufts.edu/genecentric. PMID:23331614
Environment enrichment rescues the neurodegenerative phenotypes in presenilins-deficient mice.
Dong, Suzhen; Li, Chunxia; Wu, Pu; Tsien, Joe Z; Hu, Yinghe
2007-07-01
Presenilin (PS) 1 and 2 conditional double knockout (cDKO) mice show progressive memory dysfunction and forebrain degeneration. Gene expression profiling results revealed a strong activation of immunity and inflammation responses in the brains of 10-month-old cDKO mice. As environmental enrichment (EE) has been shown to be able to improve memory and induce neurogenesis of the brain, we assessed the effects of EE on the memory performance and the neurodegeneration in cDKO mice. We found that EE effectively enhanced memory and partially rescued the forebrain atrophy of the cDKO mice. Our results suggest that immunity and inflammation could play important roles in the neurodegeneration of cDKO mice. Furthermore, the beneficial effects of EE may be associated with the inhibition of the expression of immunity and inflammation-related genes in the brain.
Vahid-Ansari, Faranak; Daigle, Mireille; Manzini, M Chiara; Tanaka, Kenji F; Hen, René; Geddes, Sean D; Béïque, Jean-Claude; James, Jonathan; Merali, Zul; Albert, Paul R
2017-12-06
Freud-1/Cc2d1a represses the gene transcription of serotonin-1A (5-HT1A) autoreceptors, which negatively regulate 5-HT tone. To test the role of Freud-1 in vivo , we generated mice with adulthood conditional knock-out of Freud-1 in 5-HT neurons ( cF1ko ). In cF1ko mice, 5-HT1A autoreceptor protein, binding and hypothermia response were increased, with reduced 5-HT content and neuronal activity in the dorsal raphe. The cF1ko mice displayed increased anxiety- and depression-like behavior that was resistant to chronic antidepressant (fluoxetine) treatment. Using conditional Freud-1/5-HT1A double knock-out ( cF1/1A dko ) to disrupt both Freud-1 and 5-HT1A genes in 5-HT neurons, no increase in anxiety- or depression-like behavior was seen upon knock-out of Freud-1 on the 5-HT1A autoreceptor-negative background; rather, a reduction in depression-like behavior emerged. These studies implicate transcriptional dysregulation of 5-HT1A autoreceptors by the repressor Freud-1 in anxiety and depression and provide a clinically relevant genetic model of antidepressant resistance. Targeting specific transcription factors, such as Freud-1, to restore transcriptional balance may augment response to antidepressant treatment. SIGNIFICANCE STATEMENT Altered regulation of the 5-HT1A autoreceptor has been implicated in human anxiety, major depression, suicide, and resistance to antidepressants. This study uniquely identifies a single transcription factor, Freud-1, as crucial for 5-HT1A autoreceptor expression in vivo Disruption of Freud-1 in serotonin neurons in mice links upregulation of 5-HT1A autoreceptors to anxiety/depression-like behavior and provides a new model of antidepressant resistance. Treatment strategies to reestablish transcriptional regulation of 5-HT1A autoreceptors could provide a more robust and sustained antidepressant response. Copyright © 2017 the authors 0270-6474/17/3711967-12$15.00/0.
ROLE OF ESTROGEN RECEPTOR-α ON FOOD DEMAND ELASTICITY
Minervini, Vanessa; Rowland, Neil E.; Robertson, Kimberly L.; Foster, Thomas C.
2016-01-01
Estrogens have been shown to have an inhibitory effect on food intake under free-feeding conditions, yet the effects of estrogens on food-maintained operant responding have been studied to a much lesser extent and, thus, are not well understood. Therefore, the purpose of the present experiment was to use a behavioral economics paradigm to assess differences in demand elasticity between mice with knockout of the estrogen receptor subtype α, knockout of subtype β, and their wild type controls. The mice responded in a closed economy, and the price of food was increased by increasing the fixed-ratio response requirement every four sessions. Overall, we found that mice with the knockout of receptor subtype α had the most elastic demand functions. Therefore, under these conditions, estrogens increased food seeking via activation of the receptor subtype α. The results were inconsistent with those reported by previous studies that employed free-feeding conditions. PMID:25869426
Impaired eye-blink conditioning in waggler, a mutant mouse with cerebellar BDNF deficiency.
Bao, S; Chen, L; Qiao, X; Knusel, B; Thompson, R F
1998-01-01
In addition to their trophic functions, neurotrophins are also implicated in synaptic modulation and learning and memory. Although gene knockout techniques have been used widely in studying the roles of neurotrophins at molecular and cellular levels, behavioral studies using neurotrophin knockouts are limited by the early-onset lethality and various sensory deficits associated with the gene knockout mice. In the present study, we found that in a spontaneous mutant mouse, waggler, the expression of brain-derived neurotrophic factor (BDNF) was selectively absent in the cerebellar granule cells. The cytoarchitecture of the waggler cerebellum appeared to be normal at the light microscope level. The mutant mice exhibited no sensory deficits to auditory stimuli or heat-induced pain. However, they were massively impaired in classic eye-blink conditioning. These results suggest that BDNF may have a role in normal cerebellar neuronal function, which, in turn, is essential for classic eye-blink conditioning.
The Ovary Is an Alternative Site of Origin for High-Grade Serous Ovarian Cancer in Mice
Coffey, Donna M.; Ma, Lang; Matzuk, Martin M.
2015-01-01
Although named “ovarian cancer,” it has been unclear whether the cancer actually arises from the ovary, especially for high-grade serous carcinoma (HGSC), also known as high-grade serous ovarian cancer, the most common and deadliest ovarian cancer. In addition, the tumor suppressor p53 is the most frequently mutated gene in HGSC. However, whether mutated p53 can cause HGSC remains unknown. In this study, we bred a p53 mutation, p53R172H, into conditional Dicer-Pten double-knockout (DKO) mice, a mouse model duplicating human HGSC, to generate triple-mutant (TKO) mice. Like DKO mice, these TKO mice develop metastatic HGSCs originating from the fallopian tube. Unlike DKO mice, however, even after fallopian tubes are removed in TKO mice, ovaries alone can develop metastatic HGSCs, indicating that a p53 mutation can drive HGSC arising from the ovary. To confirm this, we generated p53R172H-Pten double-mutant mice, one of the genetic control lines for TKO mice. As anticipated, these double-mutant mice also develop metastatic HGSCs from the ovary, verifying the HGSC-forming ability of ovaries with a p53 mutation. Our study therefore shows that ovaries harboring a p53 mutation, as well as fallopian tubes, can be a distinct tissue source of high-grade serous ovarian cancer in mice. PMID:25815421
The ovary is an alternative site of origin for high-grade serous ovarian cancer in mice.
Kim, Jaeyeon; Coffey, Donna M; Ma, Lang; Matzuk, Martin M
2015-06-01
Although named "ovarian cancer," it has been unclear whether the cancer actually arises from the ovary, especially for high-grade serous carcinoma (HGSC), also known as high-grade serous ovarian cancer, the most common and deadliest ovarian cancer. In addition, the tumor suppressor p53 is the most frequently mutated gene in HGSC. However, whether mutated p53 can cause HGSC remains unknown. In this study, we bred a p53 mutation, p53(R172H), into conditional Dicer-Pten double-knockout (DKO) mice, a mouse model duplicating human HGSC, to generate triple-mutant (TKO) mice. Like DKO mice, these TKO mice develop metastatic HGSCs originating from the fallopian tube. Unlike DKO mice, however, even after fallopian tubes are removed in TKO mice, ovaries alone can develop metastatic HGSCs, indicating that a p53 mutation can drive HGSC arising from the ovary. To confirm this, we generated p53(R172H)-Pten double-mutant mice, one of the genetic control lines for TKO mice. As anticipated, these double-mutant mice also develop metastatic HGSCs from the ovary, verifying the HGSC-forming ability of ovaries with a p53 mutation. Our study therefore shows that ovaries harboring a p53 mutation, as well as fallopian tubes, can be a distinct tissue source of high-grade serous ovarian cancer in mice.
Hair-Cell Mechanotransduction Persists in TRP Channel Knockout Mice
Niksch, Paul D.; Webber, Roxanna M.; Garcia-Gonzalez, Miguel; Watnick, Terry; Zhou, Jing; Vollrath, Melissa A.; Corey, David P.
2016-01-01
Members of the TRP superfamily of ion channels mediate mechanosensation in some organisms, and have been suggested as candidates for the mechanotransduction channel in vertebrate hair cells. Some TRP channels can be ruled out based on lack of an inner ear phenotype in knockout animals or pore properties not similar to the hair-cell channel. Such studies have excluded Trpv4, Trpa1, Trpml3, Trpm1, Trpm3, Trpc1, Trpc3, Trpc5, and Trpc6. However, others remain reasonable candidates. We used data from an RNA-seq analysis of gene expression in hair cells as well as data on TRP channel conductance to narrow the candidate group. We then characterized mice lacking functional Trpm2, Pkd2, Pkd2l1, Pkd2l2 and Pkd1l3, using scanning electron microscopy, auditory brainstem response, permeant dye accumulation, and single-cell electrophysiology. In all of these TRP-deficient mice, and in double and triple knockouts, mechanotransduction persisted. Together with published studies, these results argue against the participation of any of the 33 mouse TRP channels in hair cell transduction. PMID:27196058
Heat and chemical toxicants which disrupt spermatogenesis and cause male infertility are thought to induce the expression of Hsp70-1 and 70-3, the major inducible heat shock proteins of the 70kDa family. Previous studies from several laboratories including our own have characteri...
Gene targeting and cloning in pigs using fetal liver derived cells.
Waghmare, Sanjeev K; Estrada, Jose; Reyes, Luz; Li, Ping; Ivary, Bess; Sidner, Richard A; Burlak, Chris; Tector, A Joseph
2011-12-01
Since there are no pig embryonic stem cells, pig genetic engineering is done in fetal fibroblasts that remain totipotent for only 3 to 5 wk. Nuclear donor cells that remain totipotent for longer periods of time would facilitate complicated genetic engineering in pigs. The goal of this study was to test the feasibility of using fetal liver-derived cells (FLDC) to perform gene targeting, and create a genetic knockout pig. FLDC were isolated and processed using a human liver stem cell protocol. Single copy α-1,3-galactosyl transferase knockout (GTKO) FLDCs were created using electroporation and neomycin resistant colonies were screened using PCR. Homozygous GTKO cells were created through loss of heterozygosity mutations in single GTKO FLDCs. Double GTKO FLDCs were used in somatic cell nuclear transfer (SCNT) to create GTKO pigs. FLDCs grew for more than 80 population doublings, maintaining normal karyotype. Gene targeting and loss of heterozygosity mutations produced homozygous GTKO FLDCs. FLDCs used in SCNT gave rise to homozygous GTKO pigs. FDLCs can be used in gene targeting and SCNT to produce genetically modified pigs. The increased life span in culture compared to fetal fibroblasts may facilitate genetic engineering in the pig. Copyright © 2011 Elsevier Inc. All rights reserved.
Zhou, Chong; Kang, Woojin; Baba, Tadashi
2012-01-01
Mammalian fertilization requires sperm to penetrate the cumulus to reach the oocyte. Although sperm hyaluronidase has long been believed to participate in the penetration process, our previous works revealed that neither of two sperm hyaluronidases, SPAM1 and HYAL5, are essential for fertilization. In this study, we have produced double-knockout mice lacking SPAM1 and either one of two sperm serine proteases, ACR and PRSS21, and characterized the mutant sperm. The SPAM1/ACR- and SPAM1/PRSS21-deficient males were fertile, whereas epididymal sperm of the mutant mice exhibited a reduced capacity to fertilize the oocytes in vitro. Despite normal motility, the ability of sperm to traverse the cumulus matrix was more severely impaired by the loss of SPAM1 and ACR or SPAM1 and PRSS21 than by the loss of only SPAM1. Moreover, SPAM1/ACR- and SPAM1/PRSS21-deficient sperm accumulated on the surface (outer edge) of the cumulus more abundantly than SPAM1-deficient sperm. These results suggest that ACR or PRSS21 or both may function cooperatively with SPAM1 in sperm/cumulus penetration.
Sivachenko, Anna; Gordon, Hannah B.; Kimball, Suzanne S.; Gavin, Erin J.; Bonkowsky, Joshua L.; Letsou, Anthea
2016-01-01
ABSTRACT Debilitating neurodegenerative conditions with metabolic origins affect millions of individuals worldwide. Still, for most of these neurometabolic disorders there are neither cures nor disease-modifying therapies, and novel animal models are needed for elucidation of disease pathology and identification of potential therapeutic agents. To date, metabolic neurodegenerative disease has been modeled in animals with only limited success, in part because existing models constitute analyses of single mutants and have thus overlooked potential redundancy within metabolic gene pathways associated with disease. Here, we present the first analysis of a very-long-chain acyl-CoA synthetase (ACS) double mutant. We show that the Drosophila bubblegum (bgm) and double bubble (dbb) genes have overlapping functions, and that the consequences of double knockout of both bubblegum and double bubble in the fly brain are profound, affecting behavior and brain morphology, and providing the best paradigm to date for an animal model of adrenoleukodystrophy (ALD), a fatal childhood neurodegenerative disease associated with the accumulation of very-long-chain fatty acids. Using this more fully penetrant model of disease to interrogate brain morphology at the level of electron microscopy, we show that dysregulation of fatty acid metabolism via disruption of ACS function in vivo is causal of neurodegenerative pathologies that are evident in both neuronal cells and their supporting cell populations, and leads ultimately to lytic cell death in affected areas of the brain. Finally, in an extension of our model system to the study of human disease, we describe our identification of an individual with leukodystrophy who harbors a rare mutation in SLC27a6 (encoding a very-long-chain ACS), a human homolog of bgm and dbb. PMID:26893370
Hypothyroidism Compromises Hypothalamic Leptin Signaling in Mice
Groba, Claudia; Mayerl, Steffen; van Mullem, Alies A.; Visser, Theo J.; Darras, Veerle M.; Habenicht, Andreas J.
2013-01-01
The impact of thyroid hormone (TH) on metabolism and energy expenditure is well established, but the role of TH in regulating nutritional sensing, particularly in the central nervous system, is only poorly defined. Here, we studied the consequences of hypothyroidism on leptin production as well as leptin sensing in congenital hypothyroid TRH receptor 1 knockout (Trhr1 ko) mice and euthyroid control animals. Hypothyroid mice exhibited decreased circulating leptin levels due to a decrease in fat mass and reduced leptin expression in white adipose tissue. In neurons of the hypothalamic arcuate nucleus, hypothyroid mice showed increased leptin receptor Ob-R expression and decreased suppressor of cytokine signaling 3 transcript levels. In order to monitor putative changes in central leptin sensing, we generated hypothyroid and leptin-deficient animals by crossing hypothyroid Trhr1 ko mice with the leptin-deficient ob/ob mice. Hypothyroid Trhr1/ob double knockout mice showed a blunted response to leptin treatment with respect to body weight and food intake and exhibited a decreased activation of phospho-signal transducer and activator of transcription 3 as well as a up-regulation of suppressor of cytokine signaling 3 upon leptin treatment, particularly in the arcuate nucleus. These data indicate alterations in the intracellular processing of the leptin signal under hypothyroid conditions and thereby unravel a novel mode of action by which TH affects energy metabolism. PMID:23518925
Petri Nets with Fuzzy Logic (PNFL): Reverse Engineering and Parametrization
Küffner, Robert; Petri, Tobias; Windhager, Lukas; Zimmer, Ralf
2010-01-01
Background The recent DREAM4 blind assessment provided a particularly realistic and challenging setting for network reverse engineering methods. The in silico part of DREAM4 solicited the inference of cycle-rich gene regulatory networks from heterogeneous, noisy expression data including time courses as well as knockout, knockdown and multifactorial perturbations. Methodology and Principal Findings We inferred and parametrized simulation models based on Petri Nets with Fuzzy Logic (PNFL). This completely automated approach correctly reconstructed networks with cycles as well as oscillating network motifs. PNFL was evaluated as the best performer on DREAM4 in silico networks of size 10 with an area under the precision-recall curve (AUPR) of 81%. Besides topology, we inferred a range of additional mechanistic details with good reliability, e.g. distinguishing activation from inhibition as well as dependent from independent regulation. Our models also performed well on new experimental conditions such as double knockout mutations that were not included in the provided datasets. Conclusions The inference of biological networks substantially benefits from methods that are expressive enough to deal with diverse datasets in a unified way. At the same time, overly complex approaches could generate multiple different models that explain the data equally well. PNFL appears to strike the balance between expressive power and complexity. This also applies to the intuitive representation of PNFL models combining a straightforward graphical notation with colloquial fuzzy parameters. PMID:20862218
Abnormal cerebellar development and Purkinje cell defects in Lgl1-Pax2 conditional knockout mice.
Hou, Congzhe; Ding, Lingcui; Zhang, Jian; Jin, Yecheng; Sun, Chen; Li, Zhenzu; Sun, Xiaoyang; Zhang, Tingting; Zhang, Aizhen; Li, Huashun; Gao, Jiangang
2014-11-01
Lgl1 was initially identified as a tumour suppressor in flies and is characterised as a key regulator of epithelial polarity and asymmetric cell division. A previous study indicated that More-Cre-mediated Lgl1 knockout mice exhibited significant brain dysplasia and died within 24h after birth. To overcome early neonatal lethality, we generated Lgl1 conditional knockout mice mediated by Pax2-Cre, which is expressed in almost all cells in the cerebellum, and we examined the functions of Lgl1 in the cerebellum. Impaired motor coordination was detected in the mutant mice. Consistent with this abnormal behaviour, homozygous mice possessed a smaller cerebellum with fewer lobes, reduced granule precursor cell (GPC) proliferation, decreased Purkinje cell (PC) quantity and dendritic dysplasia. Loss of Lgl1 in the cerebellum led to hyperproliferation and impaired differentiation of neural progenitors in ventricular zone. Based on the TUNEL assay, we observed increased apoptosis in the cerebellum of mutant mice. We proposed that impaired differentiation and increased apoptosis may contribute to decreased PC quantity. To clarify the effect of Lgl1 on cerebellar granule cells, we used Math1-Cre to specifically delete Lgl1 in granule cells. Interestingly, the Lgl1-Math1 conditional knockout mice exhibited normal proliferation of GPCs and cerebellar development. Thus, we speculated that the reduction in the proliferation of GPCs in Lgl1-Pax2 conditional knockout mice may be secondary to the decreased number of PCs, which secrete the mitogenic factor Sonic hedgehog to regulate GPC proliferation. Taken together, these findings suggest that Lgl1 plays a key role in cerebellar development and folia formation by regulating the development of PCs. Copyright © 2014. Published by Elsevier Inc.
Mayrhofer, Severine; Weber, Jan M.; Pöggeler, Stefanie
2006-01-01
The homothallic, filamentous ascomycete Sordaria macrospora is self-fertile and produces sexual fruiting bodies (perithecia) without a mating partner. Even so, S. macrospora transcriptionally expresses two pheromone-precursor genes (ppg1 and ppg2) and two pheromone-receptor genes (pre1 and pre2). The proteins encoded by these genes are similar to α-factor-like and a-factor-like pheromones and to G-protein-coupled pheromone receptors of the yeast Saccharomyces cerevisiae. It has been suggested that in S. macrospora, PPG1/PRE2 and PPG2/PRE1 form two cognate pheromone–receptor pairs. To investigate their function, we deleted (Δ) pheromone-precursor genes (Δppg1, Δppg2) and receptor genes (Δpre1, Δpre2) and generated single- as well as double-knockout strains. No effect on vegetative growth, fruiting-body, and ascospore development was seen in the single pheromone-mutant and receptor-mutant strains, respectively. However, double-knockout strains lacking any compatible pheromone-receptor pair (Δpre2/Δppg2, Δpre1/Δppg1) and the double-pheromone mutant (Δppg1/Δppg2) displayed a drastically reduced number of perithecia and sexual spores, whereas deletion of both receptor genes (Δpre1/Δpre2) completely eliminated fruiting-body and ascospore formation. The results suggest that pheromones and pheromone receptors are required for optimal sexual reproduction of the homothallic S. macrospora. PMID:16387884
Mayrhofer, Severine; Weber, Jan M; Pöggeler, Stefanie
2006-03-01
The homothallic, filamentous ascomycete Sordaria macrospora is self-fertile and produces sexual fruiting bodies (perithecia) without a mating partner. Even so, S. macrospora transcriptionally expresses two pheromone-precursor genes (ppg1 and ppg2) and two pheromone-receptor genes (pre1 and pre2). The proteins encoded by these genes are similar to alpha-factor-like and a-factor-like pheromones and to G-protein-coupled pheromone receptors of the yeast Saccharomyces cerevisiae. It has been suggested that in S. macrospora, PPG1/PRE2 and PPG2/PRE1 form two cognate pheromone-receptor pairs. To investigate their function, we deleted (delta) pheromone-precursor genes (delta ppg1, delta ppg2) and receptor genes (delta pre1, delta pre2) and generated single- as well as double-knockout strains. No effect on vegetative growth, fruiting-body, and ascospore development was seen in the single pheromone-mutant and receptor-mutant strains, respectively. However, double-knockout strains lacking any compatible pheromone-receptor pair (delta pre2/delta ppg2, delta pre1/delta ppg1) and the double-pheromone mutant (delta ppg1/delta ppg2) displayed a drastically reduced number of perithecia and sexual spores, whereas deletion of both receptor genes (delta pre1/delta pre2) completely eliminated fruiting-body and ascospore formation. The results suggest that pheromones and pheromone receptors are required for optimal sexual reproduction of the homothallic S. macrospora.
Yamauchi, Shota; Takeuchi, Kenji; Chihara, Kazuyasu; Honjoh, Chisato; Kato, Yuji; Yoshiki, Hatsumi; Hotta, Hak; Sada, Kiyonao
2016-12-08
Interferon-α (IFN-α) and IFN-λ are structurally distinct cytokines that bind to different receptors, but induce expression of similar sets of genes through Janus kinase (JAK)-signal transducers and activators of transcription (STAT) pathways. The difference between IFN-α and IFN-λ signaling remains poorly understood. Here, using the CRISPR/Cas9 system, we examine the role of STAT1 and STAT2 in the inhibition of hepatitis C virus (HCV) replication by IFN-α and IFN-λ. Treatment with IFN-α increases expression of IFN-stimulated genes (ISGs) such as double-stranded RNA-activated protein kinase (PKR) and decreases viral RNA and protein levels in HCV-infected Huh-7.5 human hepatoma cells. These responses are only partially attenuated by knockout of STAT1 but are abolished by knockout of STAT2. In contrast, the inhibition of HCV replication by IFN-λ is abolished by knockout of STAT1 or STAT2. Microarray analysis reveals that IFN-α but not IFN-λ can induce expression of the majority of ISGs in STAT1 knockout cells. These findings suggest that IFN-α can inhibit HCV replication through a STAT2-dependent but STAT1-independent pathway, whereas IFN-λ induces ISG expression and inhibits HCV replication exclusively through a STAT1- and STAT2-dependent pathway.
Yamauchi, Shota; Takeuchi, Kenji; Chihara, Kazuyasu; Honjoh, Chisato; Kato, Yuji; Yoshiki, Hatsumi; Hotta, Hak; Sada, Kiyonao
2016-01-01
Interferon-α (IFN-α) and IFN-λ are structurally distinct cytokines that bind to different receptors, but induce expression of similar sets of genes through Janus kinase (JAK)-signal transducers and activators of transcription (STAT) pathways. The difference between IFN-α and IFN-λ signaling remains poorly understood. Here, using the CRISPR/Cas9 system, we examine the role of STAT1 and STAT2 in the inhibition of hepatitis C virus (HCV) replication by IFN-α and IFN-λ. Treatment with IFN-α increases expression of IFN-stimulated genes (ISGs) such as double-stranded RNA-activated protein kinase (PKR) and decreases viral RNA and protein levels in HCV-infected Huh-7.5 human hepatoma cells. These responses are only partially attenuated by knockout of STAT1 but are abolished by knockout of STAT2. In contrast, the inhibition of HCV replication by IFN-λ is abolished by knockout of STAT1 or STAT2. Microarray analysis reveals that IFN-α but not IFN-λ can induce expression of the majority of ISGs in STAT1 knockout cells. These findings suggest that IFN-α can inhibit HCV replication through a STAT2-dependent but STAT1-independent pathway, whereas IFN-λ induces ISG expression and inhibits HCV replication exclusively through a STAT1- and STAT2-dependent pathway. PMID:27929099
Proper cytoskeletal architecture beneath the plasma membrane of red blood cells requires Ttll4
Ijaz, Faryal; Hatanaka, Yasue; Hatanaka, Takahiro; Tsutsumi, Koji; Iwaki, Takayuki; Umemura, Kazuo; Ikegami, Koji; Setou, Mitsutoshi
2017-01-01
Mammalian red blood cells (RBCs) circulate through blood vessels, including capillaries, for tens of days under high mechanical stress. RBCs tolerate this mechanical stress while maintaining their shape because of their elastic membrane skeleton. This membrane skeleton consists of spectrin-actin lattices arranged as quasi-hexagonal units beneath the plasma membrane. In this study, we found that the organization of the RBC cytoskeleton requires tubulin tyrosine ligase–like 4 (Ttll4). RBCs from Ttll4-knockout mice showed larger average diameters in smear test. Based on the rate of hemolysis, Ttll4-knockout RBCs showed greater vulnerability to phenylhydrazine-induced oxidative stress than did wild-type RBCs. Ultrastructural analyses revealed the macromolecular aggregation of cytoskeletal components in RBCs of Ttll4-knockout mice. Immunoprecipitation using the anti-glutamylation antibody GT335 revealed nucleosome assembly protein 1 (NAP1) to be the sole target of TTLL4 in the RBCs, and NAP1 glutamylation was completely lost in Ttll4-knockout RBCs. In wild-type RBCs, the amount of glutamylated NAP1 in the membrane was nearly double that in the cytosol. Furthermore, the absence of TTLL4-dependent glutamylation of NAP1 weakened the binding of NAP1 to the RBC membrane. Taken together, these data demonstrate that Ttll4 is required for proper cytoskeletal organization in RBCs. PMID:27974641
Li, Wen-Jing; Xu, Chang; Wang, Kun; Li, Teng-Yan; Wang, Xiao-Nan; Yang, Hui; Xing, Tiaosi; Li, Wen-Xia; Chen, Yan-Hua; Gao, Hong; Ding, Lei
2018-05-01
As a potential tumor suppressor gene, Claudin-7 (Cldn7), which is a component of tight junctions, may play an important role in colorectal cancer occurrence and development. To generate a knockout mouse model of inducible conditional Cldn7 in the intestine and analyze the phenotype of the mice after induction with tamoxifen. We constructed Cldn7-flox transgenic mice and crossed them with Villin-CreERT2 mice. The Cldn7 inducible conditional knockout mice appeared normal and were well developed at birth. We induced Cldn7 gene deletion by injecting different dosages of tamoxifen into the mice and then conducted a further phenotypic analysis. After induction for 5 days in succession at a dose of 200 µl tamoxifen in sunflower oil at 10 mg/ml per mouse every time, the mice appeared dehydrated, had a lower temperature, and displayed inactivity or death. The results of hematoxylin-eosin staining showed that the intestines of the Cldn7 inducible conditional knockout mice had severe intestinal defects that included epithelial cell sloughing, necrosis, inflammation and hyperplasia. Owing to the death of ICKO mice, we adjusted the dose of tamoxifen to a dose of 100 µl in sunflower oil at 10 mg/ml per mouse (aged more than 8 weeks old) every 4 days. And we could induce atypical hyperplasia and adenoma in the intestine. Immunofluorescent staining indicated that the intestinal epithelial structure was destroyed. Electron microscopy experimental analysis indicated that the intercellular gap along the basolateral membrane of Cldn7 inducible conditional knockout mice in the intestine was increased and that contact between the cells and matrix was loosened. We generated a model of intestinal Cldn7 inducible conditional knockout mice. Intestinal Cldn7 deletion induced by tamoxifen initiated inflammation and hyperplasia in mice.
Garcia-Diaz, Beatriz; Garone, Caterina; Barca, Emanuele; Mojahed, Hamed; Gutierrez, Purification; Pizzorno, Giuseppe; Tanji, Kurenai; Arias-Mendoza, Fernando; Quinzii, Caterina M.
2014-01-01
Balanced pools of deoxyribonucleoside triphosphate precursors are required for DNA replication, and alterations of this balance are relevant to human mitochondrial diseases including mitochondrial neurogastrointestinal encephalopathy. In this disease, autosomal recessive TYMP mutations cause severe reductions of thymidine phosphorylase activity; marked elevations of the pyrimidine nucleosides thymidine and deoxyuridine in plasma and tissues, and somatic multiple deletions, depletion and site-specific point mutations of mitochondrial DNA. Thymidine phosphorylase and uridine phosphorylase double knockout mice recapitulated several features of these patients including thymidine phosphorylase activity deficiency, elevated thymidine and deoxyuridine in tissues, mitochondrial DNA depletion, respiratory chain defects and white matter changes. However, in contrast to patients with this disease, mutant mice showed mitochondrial alterations only in the brain. To test the hypothesis that elevated levels of nucleotides cause unbalanced deoxyribonucleoside triphosphate pools and, in turn, pathogenic mitochondrial DNA instability, we have stressed double knockout mice with exogenous thymidine and deoxyuridine, and assessed clinical, neuroradiological, histological, molecular, and biochemical consequences. Mutant mice treated with exogenous thymidine and deoxyuridine showed reduced survival, body weight, and muscle strength, relative to untreated animals. Moreover, in treated mutants, leukoencephalopathy, a hallmark of the disease, was enhanced and the small intestine showed a reduction of smooth muscle cells and increased fibrosis. Levels of mitochondrial DNA were depleted not only in the brain but also in the small intestine, and deoxyribonucleoside triphosphate imbalance was observed in the brain. The relative proportion, rather than the absolute amount of deoxyribonucleoside triphosphate, was critical for mitochondrial DNA maintenance. Thus, our results demonstrate that stress of exogenous pyrimidine nucleosides enhances the mitochondrial phenotype of our knockout mice. Our mouse studies provide insights into the pathogenic role of thymidine and deoxyuridine imbalance in mitochondrial neurogastrointestinal encephalopathy and an excellent model to study new therapeutic approaches. PMID:24727567
Pedraza-Arévalo, S; Córdoba-Chacón, J; Pozo-Salas, A I; L-López, F; de Lecea, L; Gahete, M D; Castaño, J P; Luque, R M
2015-06-01
Somatostatin (SST) and cortistatin (CORT) are two highly related neuropeptides involved in the regulation of various endocrine secretions. In particular, SST and CORT are two primary negative regulators of GH secretion. Consequently, single SST or CORT knockout mice exhibit elevated GH levels; however, this does not lead to increased IGF-1 levels or somatic growth. This apparent lack of correspondence has been suggested to result from compensatory mechanisms between both peptides. To test this hypothesis, in this study we explored, for the first time, the consequences of simultaneously deleting endogenous SST and CORT by generating a double SST/CORT knockout mouse model and exploring its endocrine and metabolic phenotype. Our results demonstrate that simultaneous deletion of SST and CORT induced a drastic elevation of endogenous GH levels, which, surprisingly, did not lead to changes in growth rate or IGF-1 levels, suggesting the existence of additional factors/systems that, in the absence of endogenous SST and CORT, could counteract GH actions. Notably, elevation in circulating GH levels were not accompanied by changes in pituitary GH expression or by alterations in the expression of its main regulators (GHRH and ghrelin) or their receptors (GHRH receptor, GHS receptor, or SST/CORT receptors) at the hypothalamic or pituitary level. However, although double-SST/CORT knockout male mice exhibited normal glucose and insulin levels, they had improved insulin sensitivity compared with the control mice. Therefore, these results suggest the existence of an intricate interplay among the known (SST/CORT), and likely unknown, inhibitory components of the GH/IGF-1 axis to regulate somatic growth and glucose/insulin homeostasis.
Walton, James C.; Selvakumar, Balakrishnan; Weil, Zachary M.; Snyder, Solomon H.; Nelson, Randy J.
2013-01-01
Both nitric oxide (NO) and reactive oxygen species (ROS) generated by nNOS and NADPH oxidase (NOX), respectively, in the brain have been implicated in an array of behaviors ranging from learning and memory to social interactions. Although recent work has elucidated how these separate redox pathways regulate neural function and behavior, the interaction of these two pathways in the regulation of neural function and behavior remains unspecified. Toward this end, the p47phox subunit of NOX, and nNOS were deleted to generate double knockout mice that were used to characterize the behavioral outcomes of concurrent impairment of the NO and ROS pathways in the brain. Mice were tested in a battery of behavioral tasks to evaluate learning and memory, as well as social, affective, and cognitive behaviors. p47phox deletion did not affect depressive-like behavior, whereas nNOS deletion abolished it. Both p47phox and nNOS deletion singly reduced anxiety-like behavior, increased general locomotor activity, impaired spatial learning and memory, and impaired preference for social novelty. Deletion of both genes concurrently had synergistic effects to elevate locomotor activity, impair spatial learning and memory, and disrupt prepulse inhibition of acoustic startle. Although preference for social novelty was impaired in single knockouts, double knockout mice displayed elevated levels of preference for social novelty above that of wild type littermates. These data demonstrate that, depending upon modality, deletion of p47phox and nNOS genes have dissimilar, similar, or additive effects. The current findings provide evidence that the NOX and nNOS redox signaling cascades interact in the brain to affect both cognitive function and social behavior. PMID:23948215
Rodriguez, Amanda; Tripurani, Swamy K.; Burton, Jason C.; Clementi, Caterina; Larina, Irina; Pangas, Stephanie A.
2016-01-01
Pregnancy is a complex physiological process tightly controlled by the interplay among hormones, morphogens, transcription factors, and signaling pathways. Although recent studies using genetically engineered mouse models have revealed that ligands and receptors of transforming growth factor beta (TGFbeta) and bone morphogenetic protein (BMP) signaling pathways are essential for multiple reproductive events during pregnancy, the functional role of SMAD transcription factors, which serve as the canonical signaling platform for the TGFbeta/BMP pathways, in the oviduct and uterus is undefined. Here, we used a mouse model containing triple conditional deletion of the BMP receptor signaling Smads (Smad1 and Smad5) and Smad4, the central mediator of both TGFbeta and BMP signaling, to investigate the role of the SMADs in reproductive tract structure and function in cells from the Amhr2 lineage. Unlike the respective single- or double-knockouts, female Smad1flox/flox Smad5flox/flox Smad4flox/flox Amhr2cre/+conditional knockout (i.e., Smad1/5/4-Amhr2-cre KO) mice are sterile. We discovered that Smad1/5/4-Amhr2-cre KO females have malformed oviducts that subsequently develop oviductal diverticuli. These oviducts showed dysregulation of multiple genes essential for oviduct and smooth muscle development. In addition, uteri from Smad1/5/4-Amhr2-cre KO females exhibit multiple defects in stroma, epithelium, and smooth muscle layers and fail to assemble a closed uterine lumen upon embryo implantation, with defective uterine decidualization that led to pregnancy loss at early to mid-gestation. Taken together, our study uncovers a new role for the SMAD transcription factors in maintaining the structural and functional integrity of oviduct and uterus, required for establishment and maintenance of pregnancy. PMID:27335065
Genetic Interactions Between the Meiosis-Specific Cohesin Components, STAG3, REC8, and RAD21L.
Ward, Ayobami; Hopkins, Jessica; Mckay, Matthew; Murray, Steve; Jordan, Philip W
2016-06-01
Cohesin is an essential structural component of chromosomes that ensures accurate chromosome segregation during mitosis and meiosis. Previous studies have shown that there are cohesin complexes specific to meiosis, required to mediate homologous chromosome pairing, synapsis, recombination, and segregation. Meiosis-specific cohesin complexes consist of two structural maintenance of chromosomes proteins (SMC1α/SMC1β and SMC3), an α-kleisin protein (RAD21, RAD21L, or REC8), and a stromal antigen protein (STAG1, 2, or 3). STAG3 is exclusively expressed during meiosis, and is the predominant STAG protein component of cohesin complexes in primary spermatocytes from mouse, interacting directly with each α-kleisin subunit. REC8 and RAD21L are also meiosis-specific cohesin components. Stag3 mutant spermatocytes arrest in early prophase ("zygotene-like" stage), displaying failed homolog synapsis and persistent DNA damage, as a result of unstable loading of cohesin onto the chromosome axes. Interestingly, Rec8, Rad21L double mutants resulted in an earlier "leptotene-like" arrest, accompanied by complete absence of STAG3 loading. To assess genetic interactions between STAG3 and α-kleisin subunits RAD21L and REC8, our lab generated Stag3, Rad21L, and Stag3, Rec8 double knockout mice, and compared them to the Rec8, Rad21L double mutant. These double mutants are phenotypically distinct from one another, and more severe than each single knockout mutant with regards to chromosome axis formation, cohesin loading, and sister chromatid cohesion. The Stag3, Rad21L, and Stag3, Rec8 double mutants both progress further into prophase I than the Rec8, Rad21L double mutant. Our genetic analysis demonstrates that cohesins containing STAG3 and REC8 are the main complex required for centromeric cohesion, and RAD21L cohesins are required for normal clustering of pericentromeric heterochromatin. Furthermore, the STAG3/REC8 and STAG3/RAD21L cohesins are the primary cohesins required for axis formation. Copyright © 2016 Ward et al.
Kamerewerd, Jens; Jansson, Malin; Nowrousian, Minou; Pöggeler, Stefanie; Kück, Ulrich
2008-01-01
Sordaria macrospora, a self-fertile filamentous ascomycete, carries genes encoding three different α-subunits of heterotrimeric G proteins (gsa, G protein Sordaria alpha subunit). We generated knockout strains for all three gsa genes (Δgsa1, Δgsa2, and Δgsa3) as well as all combinations of double mutants. Phenotypic analysis of single and double mutants showed that the genes for Gα-subunits have distinct roles in the sexual life cycle. While single mutants show some reduction of fertility, double mutants Δgsa1Δgsa2 and Δgsa1Δgsa3 are completely sterile. To test whether the pheromone receptors PRE1 and PRE2 mediate signaling via distinct Gα-subunits, two recently generated Δpre strains were crossed with all Δgsa strains. Analyses of the corresponding double mutants revealed that compared to GSA2, GSA1 is a more predominant regulator of a signal transduction cascade downstream of the pheromone receptors and that GSA3 is involved in another signaling pathway that also contributes to fruiting body development and fertility. We further isolated the gene encoding adenylyl cyclase (AC) (sac1) for construction of a knockout strain. Analyses of the three ΔgsaΔsac1 double mutants and one Δgsa2Δgsa3Δsac1 triple mutant indicate that SAC1 acts downstream of GSA3, parallel to a GSA1–GSA2-mediated signaling pathway. In addition, the function of STE12 and PRO41, two presumptive signaling components, was investigated in diverse double mutants lacking those developmental genes in combination with the gsa genes. This analysis was further completed by expression studies of the ste12 and pro41 transcripts in wild-type and mutant strains. From the sum of all our data, we propose a model for how different Gα-subunits interact with pheromone receptors, adenylyl cyclase, and STE12 and thus cooperatively regulate sexual development in S. macrospora. PMID:18723884
Sauvage, M; Brabet, P; Holsboer, F; Bockaert, J; Steckler, T
2000-12-08
Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor subtype 1 (PAC1) have been suggested to play a role in the modulation of learning and memory. However, behavioral evidence for altered mnemonic function due to altered PAC1 activity is missing. Therefore, the role of PAC1 in learning and memory was studied in mouse mutants lacking this receptor (PAC1 knock-out mice), tested in water maze two-choice spatial discrimination, one-trial contextual and cued fear conditioning, and multiple-session contextual discrimination. Water maze spatial discrimination was unaffected in PAC1 mutants, while a mild deficit was observed in multiple session contextual discrimination in PAC1 knock-out mice. Furthermore, PAC1 knock-out mice were able to learn the association between context and shock in one-trial contextual conditioning, but showed faster return to baseline than wild-type mice. Thus, the effects of PAC1 knock-out on modulating performance in these tasks were subtle and suggest that PAC1 only plays a limited role in learning and memory.
Suppression of Autophagy in Osteocytes Mimics Skeletal Aging*
Onal, Melda; Piemontese, Marilina; Xiong, Jinhu; Wang, Yiying; Han, Li; Ye, Shiqiao; Komatsu, Masaaki; Selig, Martin; Weinstein, Robert S.; Zhao, Haibo; Jilka, Robert L.; Almeida, Maria; Manolagas, Stavros C.; O'Brien, Charles A.
2013-01-01
Bone mass declines with age but the mechanisms responsible remain unclear. Here we demonstrate that deletion of a conditional allele for Atg7, a gene essential for autophagy, from osteocytes caused low bone mass in 6-month-old male and female mice. Cancellous bone volume and cortical thickness were decreased, and cortical porosity increased, in conditional knock-out mice compared with control littermates. These changes were associated with low osteoclast number, osteoblast number, bone formation rate, and wall width in the cancellous bone of conditional knock-out mice. In addition, oxidative stress was higher in the bones of conditional knock-out mice as measured by reactive oxygen species levels in the bone marrow and by p66shc phosphorylation in L6 vertebra. Each of these changes has been previously demonstrated in the bones of old versus young adult mice. Thus, these results demonstrate that suppression of autophagy in osteocytes mimics, in many aspects, the impact of aging on the skeleton and suggest that a decline in autophagy with age may contribute to the low bone mass associated with aging. PMID:23645674
Toll-Like Receptor 3 Is Critical for Coxsackievirus B4-Induced Type 1 Diabetes in Female NOD Mice
Thuma, Jean R.; Courreges, Maria C.; Benencia, Fabian; James, Calvin B.L.; Malgor, Ramiro; Kantake, Noriko; Mudd, William; Denlinger, Nathan; Nolan, Bret; Wen, Li; Schwartz, Frank L.
2015-01-01
Group B coxsackieviruses (CVBs) are involved in triggering some cases of type 1 diabetes mellitus (T1DM). However, the molecular mechanism(s) responsible for this remain elusive. Toll-like receptor 3 (TLR3), a receptor that recognizes viral double-stranded RNA, is hypothesized to play a role in virus-induced T1DM, although this hypothesis is yet to be substantiated. The objective of this study was to directly investigate the role of TLR3 in CVB-triggered T1DM in nonobese diabetic (NOD) mice, a mouse model of human T1DM that is widely used to study both spontaneous autoimmune and viral-induced T1DM. As such, we infected female wild-type (TLR3+/+) and TLR3 knockout (TLR3−/−) NOD mice with CVB4 and compared the incidence of diabetes in CVB4-infected mice with that of uninfected counterparts. We also evaluated the islets of uninfected and CVB4-infected wild-type and TLR3 knockout NOD mice by immunohistochemistry and insulitis scoring. TLR3 knockout mice were markedly protected from CVB4-induced diabetes compared with CVB4-infected wild-type mice. CVB4-induced T-lymphocyte-mediated insulitis was also significantly less severe in TLR3 knockout mice compared with wild-type mice. No differences in insulitis were observed between uninfected animals, either wild-type or TLR3 knockout mice. These data demonstrate for the first time that TLR3 is 1) critical for CVB4-induced T1DM, and 2) modulates CVB4-induced insulitis in genetically prone NOD mice. PMID:25422874
Role of estrogen receptor-α on food demand elasticity.
Minervini, Vanessa; Rowland, Neil E; Robertson, Kimberly L; Foster, Thomas C
2015-05-01
Estrogens have been shown to have an inhibitory effect on food intake under free-feeding conditions, yet the effects of estrogens on food-maintained operant responding have been studied to a much lesser extent and, thus, are not well understood. Therefore, the purpose of the present experiment was to use a behavioral economics paradigm to assess differences in demand elasticity between mice with knockout of the estrogen receptor subtype α, knockout of subtype β, and their wild type controls. The mice responded in a closed economy, and the price of food was increased by increasing the fixed-ratio response requirement every four sessions. Overall, we found that mice with the knockout of receptor subtype α had the most elastic demand functions. Therefore, under these conditions, estrogens increased food seeking via activation of the receptor subtype α. The results were inconsistent with those reported by previous studies that employed free-feeding conditions. © Society for the Experimental Analysis of Behavior.
OutKnocker: a web tool for rapid and simple genotyping of designer nuclease edited cell lines.
Schmid-Burgk, Jonathan L; Schmidt, Tobias; Gaidt, Moritz M; Pelka, Karin; Latz, Eicke; Ebert, Thomas S; Hornung, Veit
2014-10-01
The application of designer nucleases allows the induction of DNA double-strand breaks (DSBs) at user-defined genomic loci. Due to imperfect DNA repair mechanisms, DSBs can lead to alterations in the genomic architecture, such as the disruption of the reading frame of a critical exon. This can be exploited to generate somatic knockout cell lines. While high genome editing activities can be achieved in various cellular systems, obtaining cell clones that contain all-allelic frameshift mutations at the target locus of interest remains a laborious task. To this end, we have developed an easy-to-follow deep sequencing workflow and the evaluation tool OutKnocker (www.OutKnocker.org), which allows convenient, reliable, and cost-effective identification of knockout cell lines. © 2014 Schmid-Burgk et al.; Published by Cold Spring Harbor Laboratory Press.
Patterson, Michael; Seregin, Alexey; Huang, Cheng; Kolokoltsova, Olga; Smith, Jennifer; Miller, Milagros; Smith, Jeanon; Yun, Nadezhda; Poussard, Allison; Grant, Ashley; Tigabu, Bersabeh; Walker, Aida; Paessler, Slobodan
2014-02-01
Machupo virus (MACV) is the etiological agent of Bolivian hemorrhagic fever (BHF), a reemerging and neglected tropical disease associated with high mortality. The prototypical strain of MACV, Carvallo, was isolated from a human patient in 1963, but minimal in vitro and in vivo characterization has been reported. To this end, we utilized reverse genetics to rescue a pathogenic MACV from cloned cDNAs. The recombinant MACV (rMACV) had in vitro growth properties similar to those of the parental MACV. Both viruses caused similar disease development in alpha/beta and gamma interferon receptor knockout mice, including neurological disease development and high mortality. In addition, we have identified a novel murine model with mortality and neurological disease similar to BHF disease reported in humans and nonhuman primates.
Culture Conditions Affect Expression of DUX4 in FSHD Myoblasts.
Pandey, Sachchida Nand; Khawaja, Hunain; Chen, Yi-Wen
2015-05-08
Facioscapulohumeral muscular dystrophy (FSHD) is believed to be caused by aberrant expression of double homeobox 4 (DUX4) due to epigenetic changes of the D4Z4 region at chromosome 4q35. Detecting DUX4 is challenging due to its stochastic expression pattern and low transcription level. In this study, we examined different cDNA synthesis strategies and the sensitivity for DUX4 detection. In addition, we investigated the effects of dexamethasone and knockout serum replacement (KOSR) on DUX4 expression in culture. Our data showed that DUX4 was consistently detected in cDNA samples synthesized using Superscript III. The sensitivity of DUX4 detection was higher in the samples synthesized using oligo(dT) primers compared to random hexamers. Adding dexamethasone to the culture media significantly suppressed DUX4 expression in immortalized (1.3 fold, p < 0.01) and primary (4.7 fold, p < 0.01) FSHD myoblasts, respectively. Culture medium with KOSR increased DUX4 expression and the response is concentration dependent. The findings suggest that detection strategies and culture conditions should be carefully considered when studying DUX4 in cultured cells.
Knock-out of a mitochondrial sirtuin protects neurons from degeneration in Caenorhabditis elegans.
Sangaletti, Rachele; D'Amico, Massimo; Grant, Jeff; Della-Morte, David; Bianchi, Laura
2017-08-01
Sirtuins are NAD⁺-dependent deacetylases, lipoamidases, and ADP-ribosyltransferases that link cellular metabolism to multiple intracellular pathways that influence processes as diverse as cell survival, longevity, and cancer growth. Sirtuins influence the extent of neuronal death in stroke. However, different sirtuins appear to have opposite roles in neuronal protection. In Caenorhabditis elegans, we found that knock-out of mitochondrial sirtuin sir-2.3, homologous to mammalian SIRT4, is protective in both chemical ischemia and hyperactive channel induced necrosis. Furthermore, the protective effect of sir-2.3 knock-out is enhanced by block of glycolysis and eliminated by a null mutation in daf-16/FOXO transcription factor, supporting the involvement of the insulin/IGF pathway. However, data in Caenorhabditis elegans cell culture suggest that the effects of sir-2.3 knock-out act downstream of the DAF-2/IGF-1 receptor. Analysis of ROS in sir-2.3 knock-out reveals that ROS become elevated in this mutant under ischemic conditions in dietary deprivation (DD), but to a lesser extent than in wild type, suggesting more robust activation of a ROS scavenging system in this mutant in the absence of food. This work suggests a deleterious role of SIRT4 during ischemic processes in mammals that must be further investigated and reveals a novel pathway that can be targeted for the design of therapies aimed at protecting neurons from death in ischemic conditions.
Chen, Min; Zheng, Jiashuo; Liu, Guohao; Xu, En; Wang, Junzhuo; Fuqua, Brie K; Vulpe, Chris D; Anderson, Gregory J; Chen, Huijun
2018-05-31
Little is known about the iron efflux from the pancreas, but it is likely that multicopper ferroxidases (MCFs) are involved in this process. We thus used hephaestin (Heph) and ceruloplasmin (Cp) single-knockout mice and Heph/Cp double-knockout mice to investigate the roles of MCFs in pancreatic iron homeostasis. We found that both HEPH and CP were expressed in the mouse pancreas, and that ablation of either MCF had limited effect on the pancreatic iron levels. However, ablation of both MCFs together led to extensive pancreatic iron deposition and severe oxidative damage. Perls' Prussian blue staining revealed that this iron deposition was predominantly in the exocrine pancreas, while the islets were spared. Consistent with these results, plasma lipase and trypsin were elevated in Heph/Cp knockout mice, indicating damage to the exocrine pancreas, while insulin secretion was not affected. These data indicate that HEPH and CP play mutually compensatory roles in facilitating iron efflux from the exocrine pancreas, and show that MCFs are able to protect the pancreas against iron-induced oxidative damage. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
To test the significance of lipid peroxidation in the development of alcoholic liver injury, an ethanol (EtOH) liquid diet was fed to male wild type 129/SvJ mice, and glutathione S-transferase A4-4 null (GSTA4-/-) mice for 40 d. GSTA4-/- mice were also crossed with peroxisome proliferator-activated ...
New Advanced Technologies in Stem Cell Therapy
2014-11-01
6-8 wks old utrophin/dystrophin double knockout (dKO) mice, a severe animal model of DMD, have an excess of ectopic fat , calcium deposits and...tissues in skeletal muscle alter the tissue environment and induce deregulation of muscle homeostasis; however, the cellular origin of muscle fat ...as a major contributor to ectopic fat cell, calcium deposits and fibrotic tissue formation within dystrophic muscle. In the current study, we propose
Shadoo/PrP (Sprn0/0/Prnp0/0) double knockout mice
Daude, Nathalie; Westaway, David
2012-01-01
Shadoo (Sho) is a brain glycoprotein with similarities to the unstructured region of PrPC. Frameshift alleles of the Sho gene, Sprn, are reported in variant Creutzfeldt-Jakob disease (vCJD) patients while Sprn mRNA knockdown in PrP-null (Prnp0/0) embryos produces lethality, advancing Sho as the hypothetical PrP-like “pi” protein. Also, Sho levels are reduced as misfolded PrP accumulates during prion infections. To penetrate these issues we created Sprn null alleles (Daude et al., Proc. Natl. Acad. Sci USA 2012; 109(23): 9035–40). Results from the challenge of Sprn null and TgSprn transgenic mice with rodent-adapted prions coalesce to define downregulation of Sho as a “tracer” for the formation of misfolded PrP. However, classical BSE and rodent-adapted BSE isolates may behave differently, as they do for other facets of the pathogenic process, and this intriguing variation warrants closer scrutiny. With regards to physiological function, double knockout mice (Sprn0/0/Prnp0/0) mice survived to over 600 d of age. This suggests that Sho is not pi, or, given the accumulating data for many activities for PrPC, that the pi hypothesis invoking a discrete signaling pathway to maintain neuronal viability is no longer tenable. PMID:22929230
Abdullah, Nor Linda; Mohd-Zin, Siti W; Ahmad-Annuar, Azlina; Abdul-Aziz, Noraishah M
2017-01-01
Members of the Eph receptor tyrosine kinase have previously been implicated in cranial neural tube development. Failure of neural tube closure leads to the devastating conditions known as anencephaly and spina bifida. EphA2 and EphA4 are expressed at the tips of the closing spinal neural folds prior and during neural tube closure. We investigated the possible role of murine EphA2 and EphA4 during the last step of primary neural tube closure, which is adhesion and fusion. The individual mouse knockouts of EphA2 and EphA4 per se do not exhibit neural tube defects (NTDs). The embryos generated by the crossing of double heterozygotes Epha2 tm1Jrui/+ Epha4 rb-2J/+ displayed NTDs with a wide degree of severity including close exencephaly and close spina bifida (spina bifida occulta). Interestingly, mutants displaying NTDs had skin covering the underlying lesion. The tissue sections revealed the elevated neural folds had not adhered and fused. The phenotypes seen in Epha2 tm1Jrui/+ Epha4 rb-2J/+ double heterozygous embryos suggest both genes play a compensatory role with each other in the adhesion and fusion of the neural tube. In this study, there exists a >50% penetrance of NTDs in the mouse mutants, which genetically have a single allele each of EphA2 and EphA4 absent.
Abdullah, Nor Linda; Mohd-Zin, Siti W.; Ahmad-Annuar, Azlina; Abdul-Aziz, Noraishah M.
2017-01-01
Members of the Eph receptor tyrosine kinase have previously been implicated in cranial neural tube development. Failure of neural tube closure leads to the devastating conditions known as anencephaly and spina bifida. EphA2 and EphA4 are expressed at the tips of the closing spinal neural folds prior and during neural tube closure. We investigated the possible role of murine EphA2 and EphA4 during the last step of primary neural tube closure, which is adhesion and fusion. The individual mouse knockouts of EphA2 and EphA4 per se do not exhibit neural tube defects (NTDs). The embryos generated by the crossing of double heterozygotes Epha2tm1Jrui/+Epha4rb-2J/+ displayed NTDs with a wide degree of severity including close exencephaly and close spina bifida (spina bifida occulta). Interestingly, mutants displaying NTDs had skin covering the underlying lesion. The tissue sections revealed the elevated neural folds had not adhered and fused. The phenotypes seen in Epha2tm1Jrui/+Epha4rb-2J/+ double heterozygous embryos suggest both genes play a compensatory role with each other in the adhesion and fusion of the neural tube. In this study, there exists a >50% penetrance of NTDs in the mouse mutants, which genetically have a single allele each of EphA2 and EphA4 absent. PMID:29312933
Malinova, Irina
2017-01-01
An Arabidopsis double knock-out mutant lacking cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) revealed a dwarf-growth phenotype, reduced starch content, an uneven distribution of starch within the plant rosette, and a reduced number of starch granules per chloroplast under standard growth conditions. In contrast, the wild type contained 5–7 starch granules per chloroplast. Mature and old leaves of the double mutant were essentially starch free and showed plastidial disintegration. Several analyses revealed that the number of starch granules per chloroplast was affected by the dark phase. So far, it was unclear if it was the dark phase per se or starch degradation in the dark that was connected to the observed decrease in the number of starch granules per chloroplast. Therefore, in the background of the double mutant dpe2/phs1, a triple mutant was generated lacking the initial starch degrading enzyme glucan, water dikinase (GWD). The triple mutant showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to wild type. However, starch granule morphology was only slightly affected by the lack of GWD as in the triple mutant and, like in dpe2/phs1, more spherical starch granules were observed. The characterized triple mutant was discussed in the context of the generation of starch granules and the formation of starch granule morphology. PMID:29155859
Malinova, Irina; Fettke, Joerg
2017-01-01
An Arabidopsis double knock-out mutant lacking cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) revealed a dwarf-growth phenotype, reduced starch content, an uneven distribution of starch within the plant rosette, and a reduced number of starch granules per chloroplast under standard growth conditions. In contrast, the wild type contained 5-7 starch granules per chloroplast. Mature and old leaves of the double mutant were essentially starch free and showed plastidial disintegration. Several analyses revealed that the number of starch granules per chloroplast was affected by the dark phase. So far, it was unclear if it was the dark phase per se or starch degradation in the dark that was connected to the observed decrease in the number of starch granules per chloroplast. Therefore, in the background of the double mutant dpe2/phs1, a triple mutant was generated lacking the initial starch degrading enzyme glucan, water dikinase (GWD). The triple mutant showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to wild type. However, starch granule morphology was only slightly affected by the lack of GWD as in the triple mutant and, like in dpe2/phs1, more spherical starch granules were observed. The characterized triple mutant was discussed in the context of the generation of starch granules and the formation of starch granule morphology.
Byon, Chang Hyun; Han, Tieyan; Wu, Judy; Hui, Simon T
2015-08-01
Inflammation of vascular smooth muscle cells (VSMC) is intimately linked to atherosclerosis and other vascular inflammatory disease. Thioredoxin interacting protein (Txnip) is a key regulator of cellular sulfhydryl redox and a mediator of inflammasome activation. The goals of the present study were to examine the impact of Txnip ablation on inflammatory response to oxidative stress in VSMC and to determine the effect of Txnip ablation on atherosclerosis in vivo. Using cultured VSMC, we showed that ablation of Txnip reduced cellular oxidative stress and increased protection from oxidative stress when challenged with oxidized phospholipids and hydrogen peroxide. Correspondingly, expression of inflammatory markers and adhesion molecules were diminished in both VSMC and macrophages from Txnip knockout mice. The blunted inflammatory response was associated with a decrease in NF-ĸB nuclear translocation. Loss of Txnip in VSMC also led to a dramatic reduction in macrophage adhesion to VSMC. In vivo data from Txnip-ApoE double knockout mice showed that Txnip ablation led to 49% reduction in atherosclerotic lesion in the aortic root and 71% reduction in the abdominal aorta, compared to control ApoE knockout mice. Our data show that Txnip plays an important role in oxidative inflammatory response and atherosclerotic lesion development in mice. The atheroprotective effect of Txnip ablation implicates that modulation of Txnip expression may serve as a potential target for intervention of atherosclerosis and inflammatory vascular disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Arabidopsis scaffold protein RACK1A modulates rare sugar D-allose regulated gibberellin signaling.
Fennell, Herman; Olawin, Abdulquadri; Mizanur, Rahman M; Izumori, Ken; Chen, Jin-Gui; Ullah, Hemayet
2012-11-01
As energy sources and structural components, sugars are the central regulators of plant growth and development. In addition to the abundant natural sugars in plants, more than 50 different kinds of rare sugars exist in nature, several of which show distinct roles in plant growth and development. Recently, one of the rare sugars, D-allose, an epimer of D-glucose at C3, is found to suppress plant hormone gibberellin (GA) signaling in rice. Scaffold protein RACK1A in the model plant Arabidopsis is implicated in the GA pathway as rack1a knockout mutants show insensitivity to GA in GA-induced seed germination. Using genetic knockout lines and a reporter gene, the functional role of RACK1A in the D-allose pathway was investigated. It was found that the rack1a knockout seeds showed hypersensitivity to D-allose-induced inhibition of seed germination, implicating a role for RACK1A in the D-allose mediated suppression of seed germination. On the other hand, a functional RACK1A in the background of the double knockout mutations in the other two RACK1 isoforms, rack1b/rack1c, showed significant resistance to the D-allose induced inhibition of seed germination. The collective results implicate the RACK1A in the D-allose mediated seed germination inhibition pathway. Elucidation of the rare sugar signaling mechanism will help to advance understanding of this less studied but important cellular signaling pathway.
Arabidopsis scaffold protein RACK1A modulates rare sugar D-allose regulated gibberellin signaling
Fennell, Herman; Olawin, Abdulquadri; Mizanur, Rahman M.; Izumori, Ken; Chen, Jin-Gui; Ullah, Hemayet
2012-01-01
As energy sources and structural components, sugars are the central regulators of plant growth and development. In addition to the abundant natural sugars in plants, more than 50 different kinds of rare sugars exist in nature, several of which show distinct roles in plant growth and development. Recently, one of the rare sugars, D-allose, an epimer of D-glucose at C3, is found to suppress plant hormone gibberellin (GA) signaling in rice. Scaffold protein RACK1A in the model plant Arabidopsis is implicated in the GA pathway as rack1a knockout mutants show insensitivity to GA in GA-induced seed germination. Using genetic knockout lines and a reporter gene, the functional role of RACK1A in the D-allose pathway was investigated. It was found that the rack1a knockout seeds showed hypersensitivity to D-allose-induced inhibition of seed germination, implicating a role for RACK1A in the D-allose mediated suppression of seed germination. On the other hand, a functional RACK1A in the background of the double knockout mutations in the other two RACK1 isoforms, rack1b/rack1c, showed significant resistance to the D-allose induced inhibition of seed germination. The collective results implicate the RACK1A in the D-allose mediated seed germination inhibition pathway. Elucidation of the rare sugar signaling mechanism will help to advance understanding of this less studied but important cellular signaling pathway. PMID:22951405
Importance of GluA1 Subunit-Containing AMPA Glutamate Receptors for Morphine State-Dependency
Aitta-aho, Teemu; Möykkynen, Tommi P.; Panhelainen, Anne E.; Vekovischeva, Olga Yu.; Bäckström, Pia; Korpi, Esa R.
2012-01-01
In state-dependency, information retrieval is most efficient when the animal is in the same state as it was during the information acquisition. State-dependency has been implicated in a variety of learning and memory processes, but its mechanisms remain to be resolved. Here, mice deficient in AMPA-type glutamate receptor GluA1 subunits were first conditioned to morphine (10 or 20 mg/kg s.c. during eight sessions over four days) using an unbiased procedure, followed by testing for conditioned place preference at morphine states that were the same as or different from the one the mice were conditioned to. In GluA1 wildtype littermate mice the same-state morphine dose produced the greatest expression of place preference, while in the knockout mice no place preference was then detected. Both wildtype and knockout mice expressed moderate morphine-induced place preference when not at the morphine state (saline treatment at the test); in this case, place preference was weaker than that in the same-state test in wildtype mice. No correlation between place preference scores and locomotor activity during testing was found. Additionally, as compared to the controls, the knockout mice showed unchanged sensitization to morphine, morphine drug discrimination and brain regional μ-opioid receptor signal transduction at the G-protein level. However, the knockout mice failed to show increased AMPA/NMDA receptor current ratios in the ventral tegmental area dopamine neurons of midbrain slices after a single injection of morphine (10 mg/kg, s.c., sliced prepared 24 h afterwards), in contrast to the wildtype mice. The results indicate impaired drug-induced state-dependency in GluA1 knockout mice, correlating with impaired opioid-induced glutamate receptor neuroplasticity. PMID:22675452
Fahrenkrug, Jan; Georg, Birgitte; Hannibal, Jens; Jørgensen, Henrik Løvendahl
2018-04-01
The intraocular pressure of mice displays a daily rhythmicity being highest during the dark period. The present study was performed to elucidate the role of the circadian clock and light in the diurnal and the circadian variations in intraocular pressure in mice, by using animals with disrupted clock function (VPAC2 receptor knockout mice) or impaired light information to the clock (PACAP knockout mice). In wildtype mice, intraocular pressure measured under light/dark conditions showed a statistically significant 24 h sinusoidal rhythm with nadir during the light phase and peak during the dark phase. After transfer of the wildtype mice into constant darkness, the intraocular pressure increased, but the rhythmic changes in intraocular pressure continued with a pattern identical to that obtained during the light/dark cycle. The intraocular pressure in VPAC2 receptor deficient mice during light/dark conditions also showed a sinusoidal pattern with significant changes as a function of a 24 h cycle. However, transfer of the VPAC2 receptor knockout mice into constant darkness completely abolished the rhythmic changes in intraocular pressure. The intraocular pressure in PACAP deficient mice oscillated significantly during both 24 h light and darkness and during constant darkness. During LD conditions, the amplitude of PACAP deficient was significantly lower compared to wildtype mice, resulting in higher daytime and lower nighttime values. In conclusion, by studying the VPAC2 receptor knockout mouse which lacks circadian control and the PACAP knockout mouse which displays impaired light signaling, we provided evidence that the daily intraocular pressure rhythms are primarily generated by the circadian master clock and to a lesser extent by environmental light and darkness. Copyright © 2018 Elsevier Ltd. All rights reserved.
A miniature mechanical ventilator for newborn mice.
Kolandaivelu, K; Poon, C S
1998-02-01
Transgenic/knockout mice with pre-defined mutations have become increasingly popular in biomedical research as models of human diseases. In some instances, the resulting mutation may cause cardiorespiratory distress in the neonatal or adult animals and may necessitate resuscitation. Here we describe the design and testing of a miniature and versatile ventilator that can deliver varying ventilatory support modes, including conventional mechanical ventilation and high-frequency ventilation, to animals as small as the newborn mouse. With a double-piston body chamber design, the device circumvents the problem of air leakage and obviates the need for invasive procedures such as endotracheal intubation, which are particularly important in ventilating small animals. Preliminary tests on newborn mice as early as postnatal day O demonstrated satisfactory restoration of pulmonary ventilation and the prevention of respiratory failure in mutant mice that are prone to respiratory depression. This device may prove useful in the postnatal management of transgenic/knockout mice with genetically inflicted respiratory disorders.
Translation of Genotype to Phenotype by a Hierarchy of Cell Subsystems.
Yu, Michael Ku; Kramer, Michael; Dutkowski, Janusz; Srivas, Rohith; Licon, Katherine; Kreisberg, Jason; Ng, Cherie T; Krogan, Nevan; Sharan, Roded; Ideker, Trey
2016-02-24
Accurately translating genotype to phenotype requires accounting for the functional impact of genetic variation at many biological scales. Here we present a strategy for genotype-phenotype reasoning based on existing knowledge of cellular subsystems. These subsystems and their hierarchical organization are defined by the Gene Ontology or a complementary ontology inferred directly from previously published datasets. Guided by the ontology's hierarchical structure, we organize genotype data into an "ontotype," that is, a hierarchy of perturbations representing the effects of genetic variation at multiple cellular scales. The ontotype is then interpreted using logical rules generated by machine learning to predict phenotype. This approach substantially outperforms previous, non-hierarchical methods for translating yeast genotype to cell growth phenotype, and it accurately predicts the growth outcomes of two new screens of 2,503 double gene knockouts impacting DNA repair or nuclear lumen. Ontotypes also generalize to larger knockout combinations, setting the stage for interpreting the complex genetics of disease.
Arabyan, Narine; Huang, Bihua C; Weimer, Bart C
2017-05-18
Amylases catalyze the cleavage of α-d-1,4 and α-d-1,6-glycosidic bonds in starch and related carbohydrates. Amylases are widely distributed in nature and are important in carbohydrate metabolism. This is the release of four single and two double deletions in Salmonella enterica serovar Typhimurium LT2 that are important for glycan degradation during infection. Copyright © 2017 Arabyan et al.
Siuciak, J A; McCarthy, S A; Chapin, D S; Reed, T M; Vorhees, C V; Repaske, D R
2007-07-01
PDE1B is a calcium-dependent cyclic nucleotide phosphodiesterase that is highly expressed in the striatum. In order to investigate the physiological role of PDE1B in the central nervous system, PDE1B knockout mice (C57BL/6N background) were assessed in behavioral tests and their brains were assayed for monoamine content. In a variety of well-characterized behavioral tasks, including the elevated plus maze (anxiety-like behavior), forced swim test (depression-like behavior), hot plate (nociception) and two cognition models (passive avoidance and acquisition of conditioned avoidance responding), PDE1B knockout mice performed similarly to wild-type mice. PDE1B knockout mice showed increased baseline exploratory activity when compared to wild-type mice. When challenged with amphetamine (AMPH) and methamphetamine (METH), male and female PDE1B knockout mice showed an exaggerated locomotor response. Male PDE1B knockout mice also showed increased locomotor responses to higher doses of phencyclidine (PCP) and MK-801; however, this effect was not consistently observed in female knockout mice. In the striatum, increased dopamine turnover (DOPAC/DA and HVA/DA ratios) was found in both male and female PDE1B knockout mice. Striatal serotonin (5-HT) levels were also decreased in PDE1B knockout mice, although levels of the metabolite, 5HIAA, were unchanged. The present studies demonstrate increased striatal dopamine turnover in PDE1B knockout mice associated with increased baseline motor activity and an exaggerated locomotor response to dopaminergic stimulants such as methamphetamine and amphetamine. These data further support a role for PDE1B in striatal function.
Knock-out of a mitochondrial sirtuin protects neurons from degeneration in Caenorhabditis elegans
Sangaletti, Rachele; Grant, Jeff; Della-Morte, David
2017-01-01
Sirtuins are NAD⁺-dependent deacetylases, lipoamidases, and ADP-ribosyltransferases that link cellular metabolism to multiple intracellular pathways that influence processes as diverse as cell survival, longevity, and cancer growth. Sirtuins influence the extent of neuronal death in stroke. However, different sirtuins appear to have opposite roles in neuronal protection. In Caenorhabditis elegans, we found that knock-out of mitochondrial sirtuin sir-2.3, homologous to mammalian SIRT4, is protective in both chemical ischemia and hyperactive channel induced necrosis. Furthermore, the protective effect of sir-2.3 knock-out is enhanced by block of glycolysis and eliminated by a null mutation in daf-16/FOXO transcription factor, supporting the involvement of the insulin/IGF pathway. However, data in Caenorhabditis elegans cell culture suggest that the effects of sir-2.3 knock-out act downstream of the DAF-2/IGF-1 receptor. Analysis of ROS in sir-2.3 knock-out reveals that ROS become elevated in this mutant under ischemic conditions in dietary deprivation (DD), but to a lesser extent than in wild type, suggesting more robust activation of a ROS scavenging system in this mutant in the absence of food. This work suggests a deleterious role of SIRT4 during ischemic processes in mammals that must be further investigated and reveals a novel pathway that can be targeted for the design of therapies aimed at protecting neurons from death in ischemic conditions. PMID:28820880
Chu, H W; Rios, C; Huang, C; Wesolowska-Andersen, A; Burchard, E G; O'Connor, B P; Fingerlin, T E; Nichols, D; Reynolds, S D; Seibold, M A
2015-10-01
Targeted knockout of genes in primary human cells using CRISPR-Cas9-mediated genome-editing represents a powerful approach to study gene function and to discern molecular mechanisms underlying complex human diseases. We used lentiviral delivery of CRISPR-Cas9 machinery and conditional reprogramming culture methods to knockout the MUC18 gene in human primary nasal airway epithelial cells (AECs). Massively parallel sequencing technology was used to confirm that the genome of essentially all cells in the edited AEC populations contained coding region insertions and deletions (indels). Correspondingly, we found mRNA expression of MUC18 was greatly reduced and protein expression was absent. Characterization of MUC18 knockout cell populations stimulated with TLR2, 3 and 4 agonists revealed that IL-8 (a proinflammatory chemokine) responses of AECs were greatly reduced in the absence of functional MUC18 protein. Our results show the feasibility of CRISPR-Cas9-mediated gene knockouts in AEC culture (both submerged and polarized), and suggest a proinflammatory role for MUC18 in airway epithelial response to bacterial and viral stimuli.
Mapping pathological phenotypes in a mouse model of CDKL5 disorder.
Amendola, Elena; Zhan, Yang; Mattucci, Camilla; Castroflorio, Enrico; Calcagno, Eleonora; Fuchs, Claudia; Lonetti, Giuseppina; Silingardi, Davide; Vyssotski, Alexei L; Farley, Dominika; Ciani, Elisabetta; Pizzorusso, Tommaso; Giustetto, Maurizio; Gross, Cornelius T
2014-01-01
Mutations in cyclin-dependent kinase-like 5 (CDKL5) cause early-onset epileptic encephalopathy, a neurodevelopmental disorder with similarities to Rett Syndrome. Here we describe the physiological, molecular, and behavioral phenotyping of a Cdkl5 conditional knockout mouse model of CDKL5 disorder. Behavioral analysis of constitutive Cdkl5 knockout mice revealed key features of the human disorder, including limb clasping, hypoactivity, and abnormal eye tracking. Anatomical, physiological, and molecular analysis of the knockout uncovered potential pathological substrates of the disorder, including reduced dendritic arborization of cortical neurons, abnormal electroencephalograph (EEG) responses to convulsant treatment, decreased visual evoked responses (VEPs), and alterations in the Akt/rpS6 signaling pathway. Selective knockout of Cdkl5 in excitatory and inhibitory forebrain neurons allowed us to map the behavioral features of the disorder to separable cell-types. These findings identify physiological and molecular deficits in specific forebrain neuron populations as possible pathological substrates in CDKL5 disorder.
Saheki, Takeyori; Inoue, Kanako; Ono, Hiromi; Katsura, Natsumi; Yokogawa, Mana; Yoshidumi, Yukari; Furuie, Sumie; Kuroda, Eishi; Ushikai, Miharu; Asakawa, Akihiro; Inui, Akio; Eto, Kazuhiro; Kadowaki, Takashi; Sinasac, David S; Yamamura, Ken-Ichi; Kobayashi, Keiko
2012-11-01
The C57BL/6:Slc23a13(-/-);Gpd2(-/-) double-knockout (a.k.a., citrin/mitochondrial glycerol 3-phosphate dehydrogenase double knockout or Ctrn/mGPD-KO) mouse displays phenotypic attributes of both neonatal intrahepatic cholestasis (NICCD) and adult-onset type II citrullinemia (CTLN2), making it a suitable model of human citrin deficiency. In the present study, we show that when mature Ctrn/mGPD-KO mice are switched from a standard chow diet (CE-2) to a purified maintenance diet (AIN-93M), this resulted in a significant loss of body weight as a result of reduced food intake compared to littermate mGPD-KO mice. However, supplementation of the purified maintenance diet with additional protein (from 14% to 22%; and concomitant reduction or corn starch), or with specific supplementation with alanine, sodium glutamate, sodium pyruvate or medium-chain triglycerides (MCT), led to increased food intake and body weight gain near or back to that on chow diet. No such effect was observed when supplementing the diet with other sources of fat that contain long-chain fatty acids. Furthermore, when these supplements were added to a sucrose solution administered enterally to the mice, which has been shown previously to lead to elevated blood ammonia as well as altered hepatic metabolite levels in Ctrn/mGPP-KO mice, this led to metabolic correction. The elevated hepatic glycerol 3-phosphate and citrulline levels after sucrose administration were suppressed by the administration of sodium pyruvate, alanine, sodium glutamate and MCT, although the effect of MCT was relatively small. Low hepatic citrate and increased lysine levels were only found to be corrected by sodium pyruvate, while alanine and sodium glutamate both corrected hepatic glutamate and aspartate levels. Overall, these results suggest that dietary factors including increased protein content, supplementation of specific amino acids like alanine and sodium glutamate, as well as sodium pyruvate and MCT all show beneficial effects on citrin deficiency by increasing the carbohydrate tolerance of Ctrn/mGPD-KO mice, as observed through increased food intake and maintenance of body weight. Copyright © 2012 Elsevier Inc. All rights reserved.
Evidence for complete epistasis of null mutations in murine Fanconi anemia genes Fanca and Fancg.
van de Vrugt, Henri J; Koomen, Mireille; Bakker, Sietske; Berns, Mariska A D; Cheng, Ngan Ching; van der Valk, Martin A; de Vries, Yne; Rooimans, Martin A; Oostra, Anneke B; Hoatlin, Maureen E; Te Riele, Hein; Joenje, Hans; Arwert, Fré
2011-12-10
Fanconi anemia (FA) is a heritable disease characterized by bone marrow failure, congenital abnormalities, and cancer predisposition. The 15 identified FA genes operate in a molecular pathway to preserve genomic integrity. Within this pathway the FA core complex operates as an ubiquitin ligase that activates the complex of FANCD2 and FANCI to coordinate DNA repair. The FA core complex is formed by at least 12 proteins. However, only the FANCL subunit displays ubiquitin ligase activity. FANCA and FANCG are members of the FA core complex for which no other functions have been described than to participate in protein interactions. In this study we generated mice with combined null alleles for Fanca and Fancg to identify extended functions for these genes by characterizing the double mutant mice and cells. Double mutant a(-/-)/g(-/-) mice were born at near Mendelian frequencies without apparent developmental abnormalities. Histological analysis of a(-/-)/g(-/-) mice revealed a Leydig cell hyperplasia and frequent vacuolization of Sertoli cells in testes, while ovaries were depleted from developing follicles and displayed an interstitial cell hyperplasia. These gonadal aberrations were associated with a compromised fertility of a(-/-)/g(-/-) males and females. During the first year of life a(-/-)/g(-/-) did not develop malignancies or bone marrow failure. At the cellular level a(-/-)/g(-/-), Fanca(-/-), and Fancg(-/-) cells proved equally compromised in DNA crosslink and homology-directed repair. Overall the phenotype of a(-/-)/g(-/-) double knockout mice and cells appeared highly similar to the phenotype of Fanca or Fancg single knockouts. The lack of an augmented phenotype suggest that null mutations in Fanca or Fancg are fully epistatic, making additional important functions outside of the FA core complex highly unlikely. 2011 Elsevier B.V. All rights reserved.
Arabidopsis Fructokinases Are Important for Seed Oil Accumulation and Vascular Development.
Stein, Ofer; Avin-Wittenberg, Tamar; Krahnert, Ina; Zemach, Hanita; Bogol, Vlada; Daron, Oksana; Aloni, Roni; Fernie, Alisdair R; Granot, David
2016-01-01
Sucrose (a disaccharide made of glucose and fructose) is the primary carbon source transported to sink organs in many plants. Since fructose accounts for half of the hexoses used for metabolism in sink tissues, plant fructokinases (FRKs), the main fructose-phosphorylating enzymes, are likely to play a central role in plant development. However, to date, their specific functions have been the subject of only limited study. The Arabidopsis genome contains seven genes encoding six cytosolic FRKs and a single plastidic FRK. T-DNA knockout mutants for five of the seven FRKs were identified and used in this study. Single knockouts of the FRK mutants did not exhibit any unusual phenotype. Double-mutants of AtFRK6 (plastidic) and AtFRK7 showed normal growth in soil, but yielded dark, distorted seeds. The seed distortion could be complemented by expression of the well-characterized tomato SlFRK1 , confirming that a lack of FRK activity was the primary cause of the seed phenotype. Seeds of the double-mutant germinated, but failed to establish on 1/2 MS plates. Seed establishment was made possible by the addition of glucose or sucrose, indicating reduced seed storage reserves. Metabolic profiling of the double-mutant seeds revealed decreased TCA cycle metabolites and reduced fatty acid metabolism. Examination of the mutant embryo cells revealed smaller oil bodies, the primary storage reserve in Arabidopsis seeds. Quadruple and penta FRK mutants showed growth inhibition and leaf wilting. Anatomical analysis revealed smaller trachea elements and smaller xylem area, accompanied by necrosis around the cambium and the phloem. These results demonstrate overlapping and complementary roles of the plastidic AtFRK6 and the cytosolic AtFRK7 in seed storage accumulation, and the importance of AtFRKs for vascular development.
Dykes, Iain M.; Tempest, Lynne; Lee, Su-In; Turner, Eric E.
2011-01-01
The combinatorial expression of transcription factors frequently marks cellular identity in the nervous system, yet how these factors interact to determine specific neuronal phenotypes is not well understood. Sensory neurons of the trigeminal (TG) and dorsal root ganglia (DRG) co-express the homeodomain transcription factors Brn3a and Islet1, and past work has revealed partially overlapping programs of gene expression downstream of these factors. Here we examine sensory development in Brn3a/Islet1 double knockout mice (DKO mice). Sensory neurogenesis and the formation of the TG and DRG occur in DKO embryos, but the DRG are dorsally displaced, and the peripheral projections of the ganglia are markedly disturbed. Sensory neurons in DKO embryos show a profound loss of all early markers of sensory subtypes, including the Ntrk neurotrophin receptors, and the runt-family transcription factors Runx1 and Runx3. Examination of global gene expression in the E12.5 DRG of single and double mutant embryos shows that Brn3a and Islet1 are together required for nearly all aspects of sensory-specific gene expression, including several newly identified sensory markers. On a majority of targets Brn3a and Islet1 exhibit negative epistasis, in which the effects of the individual knockout alleles are less than additive in the DKO. Smaller subsets of targets exhibit positive epistasis, or are regulated exclusively by one factor. Brn3a/Islet1 double mutants also fail to developmentally repress neurogenic bHLH genes, and in vivo chromatin immunoprecipitation shows that Islet1 binds to a known Brn3a -regulated enhancer in the neurod4 gene, suggesting a mechanism of interaction between these genes. PMID:21734270
Comprehensive phenotypic analysis of knockout mice deficient in cyclin G1 and cyclin G2
Ohno, Shouichi; Ikeda, Jun-ichiro; Naito, Yoko; Okuzaki, Daisuke; Sasakura, Towa; Fukushima, Kohshiro; Nishikawa, Yukihiro; Ota, Kaori; Kato, Yorika; Wang, Mian; Torigata, Kosuke; Kasama, Takashi; Uchihashi, Toshihiro; Miura, Daisaku; Yabuta, Norikazu; Morii, Eiichi; Nojima, Hiroshi
2016-01-01
Cyclin G1 (CycG1) and Cyclin G2 (CycG2) play similar roles during the DNA damage response (DDR), but their detailed roles remain elusive. To investigate their distinct roles, we generated knockout mice deficient in CycG1 (G1KO) or CycG2 (G2KO), as well as double knockout mice (DKO) deficient in both proteins. All knockouts developed normally and were fertile. Generation of mouse embryonic fibroblasts (MEFs) from these mice revealed that G2KO MEFs, but not G1KO or DKO MEFs, were resistant to DNA damage insults caused by camptothecin and ionizing radiation (IR) and underwent cell cycle arrest. CycG2, but not CycG1, co-localized with γH2AX foci in the nucleus after γ-IR, and γH2AX-mediated DNA repair and dephosphorylation of CHK2 were delayed in G2KO MEFs. H2AX associated with CycG1, CycG2, and protein phosphatase 2A (PP2A), suggesting that γH2AX affects the function of PP2A via direct interaction with its B’γ subunit. Furthermore, expression of CycG2, but not CycG1, was abnormal in various cancer cell lines. Kaplan–Meier curves based on TCGA data disclosed that head and neck cancer patients with reduced CycG2 expression have poorer clinical prognoses. Taken together, our data suggest that reduced CycG2 expression could be useful as a novel prognostic marker of cancer. PMID:27982046
Epistatic interaction between the lipase-encoding genes Pnpla2 and Lipe causes liposarcoma in mice
Wang, Shu Pei; Yang, Hao; Ji, Bo; Gladdy, Rebecca; Andelfinger, Gregor; Mitchell, Grant A.
2017-01-01
Liposarcoma is an often fatal cancer of fat cells. Mechanisms of liposarcoma development are incompletely understood. The cleavage of fatty acids from acylglycerols (lipolysis) has been implicated in cancer. We generated mice with adipose tissue deficiency of two major enzymes of lipolysis, adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), encoded respectively by Pnpla2 and Lipe. Adipocytes from double adipose knockout (DAKO) mice, deficient in both ATGL and HSL, showed near-complete deficiency of lipolysis. All DAKO mice developed liposarcoma between 11 and 14 months of age. No tumors occurred in single knockout or control mice. The transcriptome of DAKO adipose tissue showed marked differences from single knockout and normal controls as early as 3 months. Gpnmb and G0s2 were among the most highly dysregulated genes in premalignant and malignant DAKO adipose tissue, suggesting a potential utility as early markers of the disease. Similar changes of GPNMB and G0S2 expression were present in a human liposarcoma database. These results show that a previously-unknown, fully penetrant epistatic interaction between Pnpla2 and Lipe can cause liposarcoma in mice. DAKO mice provide a promising model for studying early premalignant changes that lead to late-onset malignant disease. PMID:28459858
Kapahnke, Marcel; Banning, Antje; Tikkanen, Ritva
2016-12-14
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated sequence 9 (CRISPR/Cas9) system is widely used for genome editing purposes as it facilitates an efficient knockout of a specific gene in, e.g. cultured cells. Targeted double-strand breaks are introduced to the target sequence of the guide RNAs, which activates the cellular DNA repair mechanism for non-homologous-end-joining, resulting in unprecise repair and introduction of small deletions or insertions. Due to this, sequence alterations in the coding region of the target gene frequently cause frame-shift mutations, facilitating degradation of the mRNA. We here show that such CRISPR/Cas9-mediated alterations in the target exon may also result in altered splicing of the respective pre-mRNA, most likely due to mutations of splice-regulatory sequences. Using the human FLOT-1 gene as an example, we demonstrate that such altered splicing products also give rise to aberrant protein products. These may potentially function as dominant-negative proteins and thus interfere with the interpretation of the data generated with these cell lines. Since most researchers only control the consequences of CRISPR knockout at genomic and protein level, our data should encourage to also check the alterations at the mRNA level.
Moon, JoonHo; Lee, Choongil; Kim, Su Jin; Choi, Ji-Yei; Lee, Byeong Chun; Kim, Jin-Soo; Jang, Goo
2014-05-27
Although noncancerous immortalized cell lines have been developed by introducing genes into human and murine somatic cells, such cell lines have not been available in large domesticated animals like pigs. For immortalizing porcine cells, primary porcine fetal fibroblasts were isolated and cultured using the human telomerase reverse transcriptase (hTERT) gene. After selecting cells with neomycin for 2 weeks, outgrowing colonized cells were picked up and subcultured for expansion. Immortalized cells were cultured for more than 9 months without changing their doubling time (~24 hours) or their diameter (< 20 µm) while control cells became replicatively senescent during the same period. Even a single cell expanded to confluence in 100 mm dishes. Furthermore, to knockout the CMAH gene, designed plasmids encoding a transcription activator-like effector nuclease (TALENs) pairs were transfected into the immortalized cells. Each single colony was analyzed by the mutation-sensitive T7 endonuclease I assay, fluorescent PCR, and dideoxy sequencing to obtain three independent clonal populations of cells that contained biallelic modifications. One CMAH knockout clone was chosen and used for somatic cell nuclear transfer. Cloned embryos developed to the blastocyst stage. In conclusion, we demonstrated that immortalized porcine fibroblasts were successfully established using the human hTERT gene, and the TALENs enabled biallelic gene disruptions in these immortalized cells.
Moon, JoonHo; Lee, Choongil; Kim, Su Jin; Choi, Ji-Yei; Lee, Byeong Chun; Kim, Jin-Soo; Jang, Goo
2014-01-01
Although noncancerous immortalized cell lines have been developed by introducing genes into human and murine somatic cells, such cell lines have not been available in large domesticated animals like pigs. For immortalizing porcine cells, primary porcine fetal fibroblasts were isolated and cultured using the human telomerase reverse transcriptase (hTERT) gene. After selecting cells with neomycin for 2 weeks, outgrowing colonized cells were picked up and subcultured for expansion. Immortalized cells were cultured for more than 9 months without changing their doubling time (~24 hours) or their diameter (< 20 µm) while control cells became replicatively senescent during the same period. Even a single cell expanded to confluence in 100 mm dishes. Furthermore, to knockout the CMAH gene, designed plasmids encoding a transcription activator-like effector nuclease (TALENs) pairs were transfected into the immortalized cells. Each single colony was analyzed by the mutation-sensitive T7 endonuclease I assay, fluorescent PCR, and dideoxy sequencing to obtain three independent clonal populations of cells that contained biallelic modifications. One CMAH knockout clone was chosen and used for somatic cell nuclear transfer. Cloned embryos developed to the blastocyst stage. In conclusion, we demonstrated that immortalized porcine fibroblasts were successfully established using the human hTERT gene, and the TALENs enabled biallelic gene disruptions in these immortalized cells. PMID:24866481
Rieg, Timo; Masuda, Takahiro; Gerasimova, Maria; Mayoux, Eric; Platt, Kenneth; Powell, David R.; Thomson, Scott C.; Koepsell, Hermann
2013-01-01
In the kidney, the sodium-glucose cotransporters SGLT2 and SGLT1 are thought to account for >90 and ∼3% of fractional glucose reabsorption (FGR), respectively. However, euglycemic humans treated with an SGLT2 inhibitor maintain an FGR of 40–50%, mimicking values in Sglt2 knockout mice. Here, we show that oral gavage with a selective SGLT2 inhibitor (SGLT2-I) dose dependently increased urinary glucose excretion (UGE) in wild-type (WT) mice. The dose-response curve was shifted leftward and the maximum response doubled in Sglt1 knockout (Sglt1−/−) mice. Treatment in diet with the SGLT2-I for 3 wk maintained 1.5- to 2-fold higher urine glucose/creatinine ratios in Sglt1−/− vs. WT mice, associated with a temporarily greater reduction in blood glucose in Sglt1−/− vs. WT after 24 h (−33 vs. −11%). Subsequent inulin clearance studies under anesthesia revealed free plasma concentrations of the SGLT2-I (corresponding to early proximal concentration) close to the reported IC50 for SGLT2 in mice, which were associated with FGR of 64 ± 2% in WT and 17 ± 2% in Sglt1−/−. Additional intraperitoneal application of the SGLT2-I (maximum effective dose in metabolic cages) increased free plasma concentrations ∼10-fold and reduced FGR to 44 ± 3% in WT and to −1 ± 3% in Sglt1−/−. The absence of renal glucose reabsorption was confirmed in male and female Sglt1/Sglt2 double knockout mice. In conclusion, SGLT2 and SGLT1 account for renal glucose reabsorption in euglycemia, with 97 and 3% being reabsorbed by SGLT2 and SGLT1, respectively. When SGLT2 is fully inhibited by SGLT2-I, the increase in SGLT1-mediated glucose reabsorption explains why only 50–60% of filtered glucose is excreted. PMID:24226519
Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging
Ohnishi, Mutsuko; Razzaque, M. Shawkat
2010-01-01
Identifying factors that accelerate the aging process can provide important therapeutic targets for slowing down this process. Misregulation of phosphate homeostasis has been noted in various skeletal, cardiac, and renal diseases, but the exact role of phosphate toxicity in mammalian aging is not clearly defined. Phosphate is widely distributed in the body and is involved in cell signaling, energy metabolism, nucleic acid synthesis, and the maintenance of acid-base balance by urinary buffering. In this study, we used an in vivo genetic approach to determine the role of phosphate toxicity in mammalian aging. Klotho-knockout mice (klotho−/−) have a short life span and show numerous physical, biochemical, and morphological features consistent with premature aging, including kyphosis, uncoordinated movement, hypogonadism, infertility, severe skeletal muscle wasting, emphysema, and osteopenia, as well as generalized atrophy of the skin, intestine, thymus, and spleen. Molecular and biochemical analyses suggest that increased renal activity of sodium-phosphate cotransporters (NaPi2a) leads to severe hyperphosphatemia in klotho−/− mice. Genetically reducing serum phosphate levels in klotho−/− mice by generating a NaPi2a and klotho double-knockout (NaPi2a−/−/klotho−/−) strain resulted in amelioration of premature aging-like features. The NaPi2a−/−/klotho−/− double-knockout mice regained reproductive ability, recovered their body weight, reduced their organ atrophy, and suppressed ectopic calcifications, with the resulting effect being prolonged survival. More important, when hyperphosphatemia was induced in NaPi2a−/−/klotho−/− mice by feeding with a high-phosphate diet, premature aging-like features reappeared, clearly suggesting that phosphate toxicity is the main cause of premature aging in klotho−/− mice. The results of our dietary and genetic manipulation studies provide in vivo evidence for phosphate toxicity accelerating the aging process and suggest a novel role for phosphate in mammalian aging.—Ohnishi, M., Razzaque, M. S. Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging. PMID:20418498
A Psychophysiologic Study of Weakening Traumatic Combat Memories with Post-Reactivation Propranolol
2011-06-01
administration [5], gene knockout [6], interference by new learning [4;7]; and manipulations of kinase activity [8;9]. The amnesia induced by blocking...reconsolidation can be double- dissociated from extinction [10;11], and it is distinct from extinction in that it can be made to occur even when a... Dissociable stages of human memory consolidation and reconsolidation. Nature 2003 Oct 9;425(6958):616-20. [8] Duvarci S, Nader K, Ledoux JE. Activation of
Robinson, Stephen D.; Frenette, Paul S.; Rayburn, Helen; Cummiskey, Marge; Ullman-Culleré, Mollie; Wagner, Denisa D.; Hynes, Richard O.
1999-01-01
We extend our previous analyses of mice deficient in selectins by describing the generation and comparative phenotype of mice lacking one, two, or three selectins after sequential ablation of the murine genes encoding P-, E-, and L-selectins. All mice deficient in selectins are viable and fertile as homozygotes. However, mice missing both P- and E-selectins (PE−/−), and mice missing all three selectins (ELP−/−) develop mucocutaneous infections that eventually lead to death. Mice deficient in multiple selectins display varying degrees of leukocytosis, resulting in part from alterations in leukocyte rolling and recruitment. PE−/− mice, ELP−/− mice, and mice missing both P- and L-selectins (PL−/−) show drastic reductions in leukocyte rolling and in extravasation of neutrophils in thioglycollate-induced peritonitis. In a separate inflammatory model (ragweed-induced peritoneal eosinophilia), we demonstrate P-selectin to be both necessary and sufficient for the recruitment of eosinophils. The phenotype of mice missing both E- and L-selectins (EL−/−) is less severe than those seen in the other double knockouts. Comparisons among the double knockouts suggest that P-selectin normally cooperates with both E- and L-selectins. Our results indicate a preeminent role for P-selectin in regulating leukocyte behavior in mice. Data from the ELP−/− mice indicate, however, that all three selectins are important to leukocyte homeostasis and efficient neutrophil recruitment. PMID:10500197
Kumar, Mukesh; Busch, Wolfgang; Birke, Hannah; Kemmerling, Birgit; Nürnberger, Thorsten; Schöffl, Friedrich
2009-01-01
In order to assess the functional roles of heat stress-induced class B-heat shock factors in Arabidopsis, we investigated T-DNA knockout mutants of AtHsfB1 and AtHsfB2b. Micorarray analysis of double knockout hsfB1/hsfB2b plants revealed as strong an up-regulation of the basal mRNA-levels of the defensin genes Pdf1.2a/b in mutant plants. The Pdf expression was further enhanced by jasmonic acid treatment or infection with the necrotrophic fungus Alternaria brassicicola. The single mutant hsfB2b and the double mutant hsfB1/B2b were significantly improved in disease resistance after A. brassicicola infection. There was no indication for a direct interaction of Hsf with the promoter of Pdf1.2, which is devoid of perfect HSE consensus Hsf-binding sequences. However, changes in the formation of late HsfA2-dependent HSE binding were detected in hsfB1/B2b plants. This suggests that HsfB1/B2b may interact with class A-Hsf in regulating the shut-off of the heat shock response. The identification of Pdf genes as targets of Hsf-dependent negative regulation is the first evidence for an interconnection of Hsf in the regulation of biotic and abiotic responses.
Roles of HAUSP-mediated p53 regulation in central nervous system development.
Kon, N; Zhong, J; Kobayashi, Y; Li, M; Szabolcs, M; Ludwig, T; Canoll, P D; Gu, W
2011-08-01
The deubiquitinase HAUSP (herpesvirus-associated ubiquitin-specific protease; also called USP7) has a critical role in regulating the p53-Mdm2 (murine double minute 2) pathway. By using the conventional knockout approach, we previously showed that hausp inactivation leads to early embryonic lethality. To fully understand the physiological functions of hausp, we have generated mice lacking hausp specifically in the brain and examined the impacts of this manipulation on brain development. We found that deletion of hausp in neural cells resulted in neonatal lethality. The brains from these mice displayed hypoplasia and deficiencies in development, which were mainly caused by p53-mediated apoptosis. Detailed analysis also showed an increase of both p53 levels and p53-dependent transcriptional activation in hausp knockout brains. Notably, neural cell survival and brain development of hausp-mutant mice can largely be restored in the p53-null background. Nevertheless, in contrast to the case of mdm2- and mdm4 (murine double minute 4)-mutant mice, inactivation of p53 failed to completely rescue the neonatal lethality of these hausp-mutant mice. These results indicate that HAUSP-mediated p53 regulation is crucial for brain development, and also suggest that both the p53-dependent and the p53-independent functions of HAUSP contribute to the neonatal lethality of hausp-mutant mice.
Mishra, Manoj K; Singh, Gaurav; Tiwari, Shalini; Singh, Ruchi; Kumari, Nishi; Misra, Pratibha
2015-01-01
Sterol glycosyltransferases regulate the properties of sterols by catalyzing the transfer of carbohydrate molecules to the sterol moiety for the synthesis of steryl glycosides and acyl steryl glycosides. We have analyzed the functional role of TTG15/UGT80B1 gene of Arabidopsis thaliana in freeze/thaw and heat shock stress using T-DNA insertional sgt knockout mutants. Quantitative study of spatial as well as temporal gene expression showed tissue-specific and dynamic expression patterns throughout the growth stages. Comparative responses of Col-0, TTG15/UGT80B1 knockout mutant and p35S:TTG15/UGT80B1 restored lines were analyzed under heat and freeze stress conditions. Heat tolerance was determined by survival of plants at 42°C for 3 h, MDA analysis and chlorophyll fluorescence image (CFI) analysis. Freezing tolerance was determined by survival of the plants at -1°C temperature in non-acclimatized (NA) and cold acclimatized (CA) conditions and also by CFI analysis, which revealed that, p35S:TTG15/UGT80B1 restored plants were more adapted to freeze stress than TTG15/UGT80B1 knockout mutant under CA condition. HPLC analysis of the plants showed reduced sterol glycoside in mutant seedlings as compared to other genotypes. Following CA condition, both β-sitosterol and sitosterol glycoside quantity was more in Col-0 and p35S:TTG15/UGT80B1 restored lines, whereas it was significantly less in TTG15/UGT80B1 knockout mutants. From these results, it may be concluded that due to low content of free sterols and sterol glycosides, the physiology of mutant plants was more affected during both, the chilling and heat stress. PMID:26382564
Chen, Jiang; Du, Yinan; He, Xueyan; Huang, Xingxu; Shi, Yun S
2017-03-31
The most powerful way to probe protein function is to characterize the consequence of its deletion. Compared to conventional gene knockout (KO), conditional knockout (cKO) provides an advanced gene targeting strategy with which gene deletion can be performed in a spatially and temporally restricted manner. However, for most species that are amphiploid, the widely used Cre-flox conditional KO (cKO) system would need targeting loci in both alleles to be loxP flanked, which in practice, requires time and labor consuming breeding. This is considerably significant when one is dealing with multiple genes. CRISPR/Cas9 genome modulation system is advantaged in its capability in targeting multiple sites simultaneously. Here we propose a strategy that could achieve conditional KO of multiple genes in mouse with Cre recombinase dependent Cas9 expression. By transgenic construction of loxP-stop-loxP (LSL) controlled Cas9 (LSL-Cas9) together with sgRNAs targeting EGFP, we showed that the fluorescence molecule could be eliminated in a Cre-dependent manner. We further verified the efficacy of this novel strategy to target multiple sites by deleting c-Maf and MafB simultaneously in macrophages specifically. Compared to the traditional Cre-flox cKO strategy, this sgRNAs-LSL-Cas9 cKO system is simpler and faster, and would make conditional manipulation of multiple genes feasible.
Spiekerkoetter, U; Tokunaga, C; Wendel, U; Mayatepek, E; Exil, V; Duran, M; Wijburg, F A; Wanders, R J A; Strauss, A W
2004-03-01
In humans with deficiency of the very long-chain acyl-CoA dehydrogenase (VLCAD), C14-C18 acylcarnitines accumulate. In this paper we have used the VLCAD knockout mouse as a model to study changes in blood carnitine and acylcarnitine profiles under stress. VLCAD knockout mice exhibit stress-induced hypoglycaemia and skeletal myopathy; symptoms resembling human VLCADD. To study the extent of biochemical derangement in response to different stressors, we determined blood carnitine and acylcarnitine profiles after exercise on a treadmill, fasting, or exposure to cold. Even in a nonstressed, well-fed state, knockout mice presented twofold higher C14-C18 acylcarnitines and a lower free carnitine of 72% as compared to wild-type littermates. After 1 h of intense exercise, the C14-C18 acylcarnitines in blood significantly increased, but free carnitine remained unchanged. After 8 h of fasting at 4 degrees C, the long-chain acylcarnitines were elevated 5-fold in knockout mice in comparison with concentrations in unstressed wild-type mice (P < 0.05), and four out of 12 knockout mice died. Free carnitine decreased to 44% as compared with unstressed wild-type mice. An increase in C14-C18 acylcarnitines and a decrease of free carnitine were also observed in fasted heterozygous and wild-type mice. Long-chain acylcarnitines in blood increase in knockout mice in response to different stressors and concentrations correlate with the clinical condition. A decrease in blood free carnitine in response to severe stress is observed in knockout mice but also in wild-type littermates. Monitoring blood acylcarnitine profiles in response to different stressors may allow systematic analysis of therapeutic interventions in VLCAD knockout mice.
Distinct Roles of Opioid and Dopamine Systems in Lateral Hypothalamic Intracranial Self-Stimulation.
Ide, Soichiro; Takahashi, Takehiro; Takamatsu, Yukio; Uhl, George R; Niki, Hiroaki; Sora, Ichiro; Ikeda, Kazutaka
2017-05-01
Opioid and dopamine systems play crucial roles in reward. Similarities and differences in the neural mechanisms of reward that are mediated by these 2 systems have remained largely unknown. Thus, in the present study, we investigated the differences in reward function in both µ-opioid receptor knockout mice and dopamine transporter knockout mice, important molecules in the opioid and dopamine systems. Mice were implanted with electrodes into the right lateral hypothalamus (l hour). Mice were then trained to put their muzzle into the hole in the head-dipping chamber for intracranial electrical stimulation, and the influences of gene knockout were assessed. Significant differences are observed between opioid and dopamine systems in reward function. µ-Opioid receptor knockout mice exhibited enhanced intracranial electrical stimulation, which induced dopamine release. They also exhibited greater motility under conditions of "despair" in both the tail suspension test and water wheel test. In contrast, dopamine transporter knockout mice maintained intracranial electrical stimulation responding even when more active efforts were required to obtain the reward. The absence of µ-opioid receptor or dopamine transporter did not lead to the absence of intracranial electrical stimulation responsiveness but rather differentially altered it. The present results in µ-opioid receptor knockout mice are consistent with the suppressive involvement of µ-opioid receptors in both positive incentive motivation associated with intracranial electrical stimulation and negative incentive motivation associated with depressive states. In contrast, the results in dopamine transporter knockout mice are consistent with the involvement of dopamine transporters in positive incentive motivation, especially its persistence. Differences in intracranial electrical stimulation in µ-opioid receptor and dopamine transporter knockout mice underscore the multidimensional nature of reward. © The Author 2016. Published by Oxford University Press on behalf of CINP.
Modulation of anxiety and fear via distinct intrahippocampal circuits.
Engin, Elif; Smith, Kiersten S; Gao, Yudong; Nagy, David; Foster, Rachel A; Tsvetkov, Evgeny; Keist, Ruth; Crestani, Florence; Fritschy, Jean-Marc; Bolshakov, Vadim Y; Hajos, Mihaly; Heldt, Scott A; Rudolph, Uwe
2016-03-14
Recent findings indicate a high level of specialization at the level of microcircuits and cell populations within brain structures with regards to the control of fear and anxiety. The hippocampus, however, has been treated as a unitary structure in anxiety and fear research despite mounting evidence that different hippocampal subregions have specialized roles in other cognitive domains. Using novel cell-type- and region-specific conditional knockouts of the GABAA receptor α2 subunit, we demonstrate that inhibition of the principal neurons of the dentate gyrus or CA3 via α2-containing GABAA receptors (α2GABAARs) is required to suppress anxiety, while the inhibition of CA1 pyramidal neurons is required to suppress fear responses. We further show that the diazepam-modulation of hippocampal theta activity shows certain parallels with our behavioral findings, suggesting a possible mechanism for the observed behavioral effects. Thus, our findings demonstrate a double dissociation in the regulation of anxiety versus fear by hippocampal microcircuitry.
Modulation of anxiety and fear via distinct intrahippocampal circuits
Engin, Elif; Smith, Kiersten S; Gao, Yudong; Nagy, David; Foster, Rachel A; Tsvetkov, Evgeny; Keist, Ruth; Crestani, Florence; Fritschy, Jean-Marc; Bolshakov, Vadim Y; Hajos, Mihaly; Heldt, Scott A; Rudolph, Uwe
2016-01-01
Recent findings indicate a high level of specialization at the level of microcircuits and cell populations within brain structures with regards to the control of fear and anxiety. The hippocampus, however, has been treated as a unitary structure in anxiety and fear research despite mounting evidence that different hippocampal subregions have specialized roles in other cognitive domains. Using novel cell-type- and region-specific conditional knockouts of the GABAA receptor α2 subunit, we demonstrate that inhibition of the principal neurons of the dentate gyrus and CA3 via α2-containing GABAA receptors (α2GABAARs) is required to suppress anxiety, while the inhibition of CA1 pyramidal neurons is required to suppress fear responses. We further show that the diazepam-modulation of hippocampal theta activity shows certain parallels with our behavioral findings, suggesting a possible mechanism for the observed behavioral effects. Thus, our findings demonstrate a double dissociation in the regulation of anxiety versus fear by hippocampal microcircuitry. DOI: http://dx.doi.org/10.7554/eLife.14120.001 PMID:26971710
Feng, Jian; Zhou, Yu; Campbell, Susan L.; Le, Thuc; Li, En; Sweatt, J. David; Silva, Alcino J.; Fan, Guoping
2011-01-01
Dnmt1 and Dnmt3a, two major DNA methyltransferases, are expressed in postmitotic neurons, but their function in the central nervous system (CNS) is unclear. We generated conditional mutant mice that lack either Dnmt1, or Dnmt3a, or both exclusively in forebrain excitatory neurons and found only double knockout (DKO) mice exhibited abnormal hippocampal CA1 long-term plasticity and deficits of learning and memory. While no neuronal loss was found, the size of hippocampal neurons in DKO was smaller; furthermore, DKO neurons showed a deregulation of gene expression including class I MHC and Stat1 that are known to play a role in synaptic plasticity. In addition, we observed a significant decrease in DNA methylation in DKO neurons. We conclude that Dnmt1 and Dnmt3a are required for synaptic plasticity, learning and memory through their overlapping roles in maintaining DNA methylation and modulating neuronal gene expression in adult CNS neurons. PMID:20228804
Active zones of mammalian neuromuscular junctions: formation, density, and aging.
Nishimune, Hiroshi
2012-12-01
Presynaptic active zones are synaptic vesicle release sites that play essential roles in the function and pathology of mammalian neuromuscular junctions (NMJs). The molecular mechanisms of active zone organization use presynaptic voltage-dependent calcium channels (VDCCs) in NMJs as scaffolding proteins. VDCCs interact extracellularly with the muscle-derived synapse organizer, laminin β2 and interact intracellularly with active zone-specific proteins, such as Bassoon, CAST/Erc2/ELKS2alpha, ELKS, Piccolo, and RIMs. These molecular mechanisms are supported by studies in P/Q- and N-type VDCCs double-knockout mice, and they are consistent with the pathological conditions of Lambert-Eaton myasthenic syndrome and Pierson syndrome, which are caused by autoantibodies against VDCCs or by a laminin β2 mutation. During normal postnatal maturation, NMJs maintain the density of active zones, while NMJs triple their size. However, active zones become impaired during aging. Propitiously, muscle exercise ameliorates the active zone impairment in aged NMJs, which suggests the potential for therapeutic strategies. © 2012 New York Academy of Sciences.
Abdulrahman, Nabeel; Jaspard-Vinassa, Beatrice; Fliegel, Larry; Jabeen, Aayesha; Riaz, Sadaf; Gadeau, Alain-Pierre; Mraiche, Fatima
2018-05-01
Cardiovascular diseases are the leading cause of death worldwide. One in three cases of heart failure is due to dilated cardiomyopathy. The Na + /H + exchanger isoform 1 (NHE1), a multifunctional protein and the key pH regulator in the heart, has been demonstrated to be increased in this condition. We have previously demonstrated that elevated NHE1 activity induced cardiac hypertrophy in vivo. Furthermore, the overexpression of active NHE1 elicited modulation of gene expression in cardiomyocytes including an upregulation of myocardial osteopontin (OPN) expression. To determine the role of OPN in inducing NHE1-mediated cardiomyocyte hypertrophy, double transgenic mice expressing active NHE1 and OPN knockout were generated and assessed by echocardiography and the cardiac phenotype. Our studies showed that hearts expressing active NHE1 exhibited cardiac remodeling indicated by increased systolic and diastolic left ventricular internal diameter and increased ventricular volume. Moreover, these hearts demonstrated impaired function with decreased fractional shortening and ejection fraction. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) mRNA was upregulated, and there was an increase in heart cell cross-sectional area confirming the cardiac hypertrophic effect. Moreover, NHE1 transgenic mice also showed increased collagen deposition, upregulation of CD44 and phosphorylation of p90 ribosomal s6 kinase (RSK), effects that were regressed in OPN knockout mice. In conclusion, we developed an interesting comparative model of active NHE1 transgenic mouse lines which express a dilated hypertrophic phenotype expressing CD44 and phosphorylated RSK, effects which were regressed in absence of OPN.
Yokoi, Fumiaki; Dang, Mai Tu; Li, Jianyong; Standaert, David G.; Li, Yuqing
2011-01-01
DYT1 early-onset generalized dystonia is a hyperkinetic movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Recently, significant progress has been made in studying pathophysiology of DYT1 dystonia using targeted mouse models. Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 knock-down (KD) mice exhibit motor deficits and alterations of striatal dopamine metabolisms, while Dyt1 knockout (KO) and Dyt1 ΔGAG homozygous KI mice show abnormal nuclear envelopes and neonatal lethality. However, it has not been clear whether motor deficits and striatal abnormality are caused by Dyt1 mutation in the striatum itself or the end results of abnormal signals from other brain regions. To identify the brain region that contributes to these phenotypes, we made a striatum-specific Dyt1 conditional knockout (Dyt1 sKO) mouse. Dyt1 sKO mice exhibited motor deficits and reduced striatal dopamine receptor 2 (D2R) binding activity, whereas they did not exhibit significant alteration of striatal monoamine contents. Furthermore, we also found normal nuclear envelope structure in striatal medium spiny neurons (MSNs) of an adult Dyt1 sKO mouse and cerebral cortical neurons in cerebral cortex-specific Dyt1 conditional knockout (Dyt1 cKO) mice. The results suggest that the loss of striatal torsinA alone is sufficient to produce motor deficits, and that this effect may be mediated, at least in part, through changes in D2R function in the basal ganglia circuit. PMID:21931745
Genome Editing in Mice Using TALE Nucleases.
Wefers, Benedikt; Brandl, Christina; Ortiz, Oskar; Wurst, Wolfgang; Kühn, Ralf
2016-01-01
Gene engineering for generating targeted mouse mutants is a key technology for biomedical research. Using TALENs as sequence-specific nucleases to induce targeted double-strand breaks, the mouse genome can be directly modified in zygotes in a single step without the need for embryonic stem cells. By embryo microinjection of TALEN mRNAs and targeting vectors, knockout and knock-in alleles can be generated fast and efficiently. In this chapter we provide protocols for the application of TALENs in mouse zygotes.
Horiguchi, Masahito; Todorovic, Vesna; Hadjiolova, Krassimira; Weiskirchen, Ralf; Rifkin, Daniel B
2015-04-01
Latent transforming growth factor-β binding protein-1 (LTBP-1) is an extracellular protein that is structurally similar to fibrillin and has an important role in controlling transforming growth factor-β (TGF-β) signaling by storing the cytokine in the extracellular matrix and by being involved in the conversion of the latent growth factor to its active form. LTBP-1 is found as both short (LTBP-1S) and long (LTBP-1L) forms, which are derived through the use of separate promoters. There is controversy regarding the importance of LTBP-1L, as Ltbp1L knockout mice showed multiple cardiovascular defects but the complete null mice did not. Here, we describe a third line of Ltbp1 knockout mice generated utilizing a conditional knockout strategy that ablated expression of both L and S forms of LTBP-1. These mice show severe developmental cardiovascular abnormalities and die perinatally; thus these animals display a phenotype similar to previously reported Ltbp1L knockout mice. We reinvestigated the other "complete" knockout line and found that these mice express a splice variant of LTBP-1L and, therefore, are not complete Ltbp1 knockouts. Our results clarify the phenotypes of Ltbp1 null mice and re-emphasize the importance of LTBP-1 in vivo. Copyright © 2015. Published by Elsevier B.V.
Sequence determinants of improved CRISPR sgRNA design.
Xu, Han; Xiao, Tengfei; Chen, Chen-Hao; Li, Wei; Meyer, Clifford A; Wu, Qiu; Wu, Di; Cong, Le; Zhang, Feng; Liu, Jun S; Brown, Myles; Liu, X Shirley
2015-08-01
The CRISPR/Cas9 system has revolutionized mammalian somatic cell genetics. Genome-wide functional screens using CRISPR/Cas9-mediated knockout or dCas9 fusion-mediated inhibition/activation (CRISPRi/a) are powerful techniques for discovering phenotype-associated gene function. We systematically assessed the DNA sequence features that contribute to single guide RNA (sgRNA) efficiency in CRISPR-based screens. Leveraging the information from multiple designs, we derived a new sequence model for predicting sgRNA efficiency in CRISPR/Cas9 knockout experiments. Our model confirmed known features and suggested new features including a preference for cytosine at the cleavage site. The model was experimentally validated for sgRNA-mediated mutation rate and protein knockout efficiency. Tested on independent data sets, the model achieved significant results in both positive and negative selection conditions and outperformed existing models. We also found that the sequence preference for CRISPRi/a is substantially different from that for CRISPR/Cas9 knockout and propose a new model for predicting sgRNA efficiency in CRISPRi/a experiments. These results facilitate the genome-wide design of improved sgRNA for both knockout and CRISPRi/a studies. © 2015 Xu et al.; Published by Cold Spring Harbor Laboratory Press.
Naranjo, Belén; Mignée, Clara; Krieger-Liszkay, Anja; Hornero-Méndez, Dámaso; Gallardo-Guerrero, Lourdes; Cejudo, Francisco Javier; Lindahl, Marika
2016-04-01
High irradiances may lead to photooxidative stress in plants, and non-photochemical quenching (NPQ) contributes to protection against excess excitation. One of the NPQ mechanisms, qE, involves thermal dissipation of the light energy captured. Importantly, plants need to tune down qE under light-limiting conditions for efficient utilization of the available quanta. Considering the possible redox control of responses to excess light implying enzymes, such as thioredoxins, we have studied the role of the NADPH thioredoxin reductase C (NTRC). Whereas Arabidopsis thaliana plants lacking NTRC tolerate high light intensities, these plants display drastically elevated qE, have larger trans-thylakoid ΔpH and have 10-fold higher zeaxanthin levels under low and medium light intensities, leading to extremely low linear electron transport rates. To test the impact of the high qE on plant growth, we generated an ntrc-psbs double-knockout mutant, which is devoid of qE. This double mutant grows faster than the ntrc mutant and has a higher chlorophyll content. The photosystem II activity is partially restored in the ntrc-psbs mutant, and linear electron transport rates under low and medium light intensities are twice as high as compared with plants lacking ntrc alone. These data uncover a new role for NTRC in the control of photosynthetic yield. © 2015 John Wiley & Sons Ltd.
A double-strand break can trigger immunoglobulin gene conversion
Bastianello, Giulia; Arakawa, Hiroshi
2017-01-01
All three B cell-specific activities of the immunoglobulin (Ig) gene re-modeling system—gene conversion, somatic hypermutation and class switch recombination—require activation-induced deaminase (AID). AID-induced DNA lesions must be further processed and dissected into different DNA recombination pathways. In order to characterize potential intermediates for Ig gene conversion, we inserted an I-SceI recognition site into the complementarity determining region 1 (CDR1) of the Ig light chain locus of the AID knockout DT40 cell line, and conditionally expressed I-SceI endonuclease. Here, we show that a double-strand break (DSB) in CDR1 is sufficient to trigger Ig gene conversion in the absence of AID. The pattern and pseudogene usage of DSB-induced gene conversion were comparable to those of AID-induced gene conversion; surprisingly, sometimes a single DSB induced multiple gene conversion events. These constitute direct evidence that a DSB in the V region can be an intermediate for gene conversion. The fate of the DNA lesion downstream of a DSB had more flexibility than that of AID, suggesting two alternative models: (i) DSBs during the physiological gene conversion are in the minority compared to single-strand breaks (SSBs), which are frequently generated following DNA deamination, or (ii) the physiological gene conversion is mediated by a tightly regulated DSB that is locally protected from non-homologous end joining (NHEJ) or other non-homologous DNA recombination machineries. PMID:27701075
Mapping Pathological Phenotypes in a Mouse Model of CDKL5 Disorder
Amendola, Elena; Zhan, Yang; Mattucci, Camilla; Castroflorio, Enrico; Calcagno, Eleonora; Fuchs, Claudia; Lonetti, Giuseppina; Silingardi, Davide; Vyssotski, Alexei L.; Farley, Dominika; Ciani, Elisabetta; Pizzorusso, Tommaso; Giustetto, Maurizio; Gross, Cornelius T.
2014-01-01
Mutations in cyclin-dependent kinase-like 5 (CDKL5) cause early-onset epileptic encephalopathy, a neurodevelopmental disorder with similarities to Rett Syndrome. Here we describe the physiological, molecular, and behavioral phenotyping of a Cdkl5 conditional knockout mouse model of CDKL5 disorder. Behavioral analysis of constitutive Cdkl5 knockout mice revealed key features of the human disorder, including limb clasping, hypoactivity, and abnormal eye tracking. Anatomical, physiological, and molecular analysis of the knockout uncovered potential pathological substrates of the disorder, including reduced dendritic arborization of cortical neurons, abnormal electroencephalograph (EEG) responses to convulsant treatment, decreased visual evoked responses (VEPs), and alterations in the Akt/rpS6 signaling pathway. Selective knockout of Cdkl5 in excitatory and inhibitory forebrain neurons allowed us to map the behavioral features of the disorder to separable cell-types. These findings identify physiological and molecular deficits in specific forebrain neuron populations as possible pathological substrates in CDKL5 disorder. PMID:24838000
Liu, Min; Ding, Yamei; Chen, Hailin; Zhao, Zhe; Liu, Huizhou; Xian, Mo; Zhao, Guang
2017-01-07
Acetyl-CoA-derived chemicals are suitable for multiple applications in many industries. The bio-production of these chemicals has become imperative owing to the economic and environmental problems. However, acetate overflow is the major drawback for acetyl-CoA-derived chemicals production. Approaches for overcoming acetate overflow may be beneficial for the production of acetyl-CoA-derived chemicals. In this study, a transcriptional regulator iclR was knocked out in E.coli BL21(DE3) to overcome acetate overflow and improve the chemicals production. Two important acetyl-CoA-derived chemicals, phloroglucinol (PG) and 3-hydroxypropionate (3HP) were used to evaluate it. It is revealed that knockout of iclR significantly increased expressions of aceBAK operon. The cell yields and glucose utilization efficiencies were higher than those of control strains. The acetate concentrations were decreased by more than 50% and the productions of PG and 3HP were increased more than twice in iclR mutants. The effects of iclR knockout on cell physiology, cell metabolism and production of acetyl-CoA-derived chemicals were similar to those of arcA knockout in our previous study. However, the arcA-iclR double mutants couldn't gain higher productions of PG and 3HP. The mechanisms are unclear and needed to be resolved in future. Knockout of iclR significantly increased gene expression of aceBAK operon and concomitantly activated glyoxylate pathway. This genetic modification may be a good way to overcome acetate overflow, and improve the production of a wide range of acetyl-CoA-derived chemicals.
Efficient PRNP deletion in bovine genome using gene-editing technologies in bovine cells
Choi, WooJae; Kim, Eunji; Yum, Soo-Young; Lee, ChoongIl; Lee, JiHyun; Moon, JoonHo; Ramachandra, Sisitha; Malaweera, Buddika Oshadi; Cho, JongKi; Kim, Jin-Soo; Kim, SeokJoong; Jang, Goo
2015-01-01
abstract Even though prion (encoded by the PRNP gene) diseases like bovine spongiform encephalopathy (BSE) are fatal neurodegenerative diseases in cattle, their study via gene deletion has been limited due to the absence of cell lines or mutant models. In this study, we aim to develop an immortalized fibroblast cell line in which genome-engineering technology can be readily applied to create gene-modified clones for studies. To this end, this study is designed to 1) investigate the induction of primary fibroblasts to immortalization by introducing Bmi-1 and hTert genes; 2) investigate the disruption of the PRNP in those cells; and 3) evaluate the gene expression and embryonic development using knockout (KO) cell lines. Primary cells from a male neonate were immortalized with Bmi-1and hTert. Immortalized cells were cultured for more than 180 days without any changes in their doubling time and morphology. Furthermore, to knockout the PRNP gene, plasmids that encode transcription activator-like effector nuclease (TALEN) pairs were transfected into the cells, and transfected single cells were propagated. Mutated clonal cell lines were confirmed by T7 endonuclease I assay and sequencing. Four knockout cell lines were used for somatic cell nuclear transfer (SCNT), and the resulting embryos were developed to the blastocyst stage. The genes (CSNK2A1, FAM64A, MPG and PRND) were affected after PRNP disruption in immortalized cells. In conclusion, we established immortalized cattle fibroblasts using Bmi-1 and hTert genes, and used TALENs to knockout the PRNP gene in these immortalized cells. The efficient PRNP KO is expected to be a useful technology to develop our understanding of in vitro prion protein functions in cattle. PMID:26217959
Iron misregulation and neurodegenerative disease in mouse models that lack iron regulatory proteins
Ghosh, Manik C.; Zhang, De-Liang; Rouault, Tracey A.
2015-01-01
Iron regulatory proteins 1 and 2 (IRP1 and IRP2) are two cytosolic proteins that maintain cellular iron homeostasis by binding to RNA stem loops known as iron responsive elements (IREs) that are found in the untranslated regions of target mRNAs that encode proteins involved in iron metabolism. IRPs modify expression of iron metabolism genes, and global and tissue-specific knockout mice have been made to evaluate the physiological significance of these iron regulatory proteins (Irps). Here, we will discuss the results of the studies that have been performed with mice engineered to lack expression of one or both Irps, and made in different strains using different methodologies. Both Irp1 and Irp2 knockout mice are viable, but the double knockout (Irp1−/−Irp2−/−) mice die before birth, indicating that these Irps play a crucial role in maintaining iron homeostasis. Irp1−/− mice develop polycythemia and pulmonary hypertension, and when these mice are challenged with a low iron diet, they die early of abdominal hemorrhages, suggesting that Irp1 plays an essential role in erythropoiesis and in the pulmonary and cardiovascular systems. Irp2−/− mice develop microcytic anemia, erythropoietic protoporphyria and a progressive neurological disorder, indicating that Irp2 has important functions in the nervous system and erythropoietic homeostasis. Several excellent review articles have recently been published on Irp knockout mice that mainly focus on Irp1−/− mice (referenced in the introduction). In this review, we will briefly describe the phenotypes and physiological implications of Irp1−/− mice, and will discuss the phenotypes observed for Irp2−/− mice in detail with a particular emphasis on the neurological problems of these mice. PMID:25771171
Foley, Jeannine; Burnham, Veronica; Tedoldi, Meghan; Danial, Nika N; Yellen, Gary
2018-01-01
Metabolic alteration, either through the ketogenic diet (KD) or by genetic alteration of the BAD protein, can produce seizure protection in acute chemoconvulsant models of epilepsy. To assess the seizure-protective role of knocking out (KO) the Bad gene in a chronic epilepsy model, we used the Kcna1 -/- model of epilepsy, which displays progressively increased seizure severity and recapitulates the early death seen in sudden unexplained death in epilepsy (SUDEP). Beginning on postnatal day 24 (P24), we continuously video monitored Kcna1 -/- and Kcna1 -/- Bad -/- double knockout mice to assess survival and seizure severity. We found that Kcna1 -/- Bad -/- mice outlived Kcna1 -/- mice by approximately 2 weeks. Kcna1 -/- Bad -/- mice also spent significantly less time in seizure than Kcna1 -/- mice on P24 and the day of death, showing that BadKO provides seizure resistance in a genetic model of chronic epilepsy. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Aizawa, Sayaka; Okamoto, Toru; Sugiyama, Yukari; Kouwaki, Takahisa; Ito, Ayano; Suzuki, Tatsuya; Ono, Chikako; Fukuhara, Takasuke; Yamamoto, Masahiro; Okochi, Masayasu; Hiraga, Nobuhiko; Imamura, Michio; Chayama, Kazuaki; Suzuki, Ryosuke; Shoji, Ikuo; Moriishi, Kohji; Moriya, Kyoji; Koike, Kazuhiko; Matsuura, Yoshiharu
2016-01-01
Signal-peptide peptidase (SPP) is an intramembrane protease that participates in the production of the mature core protein of hepatitis C virus (HCV). Here we show that SPP inhibition reduces the production of infectious HCV particles and pathogenesis. The immature core protein produced in SPP-knockout cells or by treatment with an SPP inhibitor is quickly degraded by the ubiquitin–proteasome pathway. Oral administration of the SPP inhibitor to transgenic mice expressing HCV core protein (CoreTg) reduces the expression of core protein and ameliorates insulin resistance and liver steatosis. Moreover, the haploinsufficiency of SPP in CoreTg has similar effects. TRC8, an E3 ubiquitin ligase, is required for the degradation of the immature core protein. The expression of the HCV core protein alters endoplasmic reticulum (ER) distribution and induces ER stress in SPP/TRC8 double-knockout cells. These data suggest that HCV utilizes SPP cleavage to circumvent the induction of ER stress in host cells. PMID:27142248
Nozaki, Yuichi; Fujita, Koji; Wada, Koichiro; Yoneda, Masato; Kessoku, Takaomi; Shinohara, Yoshiyasu; Imajo, Kento; Ogawa, Yuji; Nakamuta, Makoto; Saito, Satoru; Masaki, Naohiko; Nagashima, Yoji; Terauchi, Yasuo; Nakajima, Atsushi
2015-04-01
Although many of the factors and molecules closely associated with non-alcoholic steatohepatitis (NASH) have been reported, the role of inducible nitric oxide synthase (iNOS)-derived nitric oxide (NO) on the progression of NASH remains unclear. We therefore investigated the role of iNOS-derived NO in NASH pathogenesis with a long-term follow-up study using systemic iNOS-knockout mice under high-fat diet (HFD) conditions. iNOS-knockout and wild-type mice were fed a basal or HFD for 10 or 48 weeks. Lipid accumulation, fibrosis, and inflammation were evaluated, and various factors and molecules closely associated with NASH were analyzed. Marked fibrosis and inflammation (indicators of NASH) were observed in the livers of iNOS-knockout mice compared to wild-type mice after 48 weeks of a HFD; however, lipid accumulation in iNOS-knockout mice livers was less than in the wild-type. Increased expressions of various cytokines that are transcriptionally controlled by NF-kB in iNOS-deficient mice livers were observed during HFD conditions. iNOS-derived NO may play a protective role against the progression to NASH during an HFD by preventing fibrosis and inflammation, which are mediated by NF-kB activation in Kupffer cells. A lack of iNOS-derived NO accelerates progression to NASH without excessive lipid accumulation.
Neutral endopeptidase (EC 3.4.24.11) terminates colitis by degrading substance P.
Sturiale, S; Barbara, G; Qiu, B; Figini, M; Geppetti, P; Gerard, N; Gerard, C; Grady, E F; Bunnett, N W; Collins, S M
1999-09-28
Neurogenic inflammation is regulated by sensory nerves and characterized by extravasation of plasma proteins and infiltration of neutrophils from post-capillary venules and arteriolar vasodilatation. Although it is well established that substance P (SP) interacts with the neurokinin 1 receptor (NK1R) to initiate neurogenic inflammation, the mechanisms that terminate inflammation are unknown. We examined whether neutral endopeptidase (NEP), a cell-surface enzyme that degrades SP in the extracellular fluid, terminates neurogenic inflammation in the colon. In NEP knockout mice, the SP concentration in the colon was approximately 2.5-fold higher than in wild-type mice, suggesting increased bioavailability of SP. The extravasation of Evans blue-labeled plasma proteins in the colon of knockout mice under basal conditions was approximately 4-fold higher than in wild-type mice. This elevated plasma leak was attenuated by recombinant NEP or the NK1R antagonist SR140333, and is thus caused by diminished degradation of SP. To determine whether deletion of NEP predisposes mice to uncontrolled inflammation, we compared dinitrobenzene sulfonic acid-induced colitis in wild-type and knockout mice. The severity of colitis, determined by macroscopic and histologic scoring and by myeloperoxidase activity, was markedly worse in knockout than wild-type mice after 3 and 7 days. The exacerbated inflammation in knockout mice was prevented by recombinant NEP and SR140333. Thus, NEP maintains low levels of SP in the extracellular fluid under basal conditions and terminates its proinflammatory effects. Because we have previously shown that intestinal inflammation results in down-regulation of NEP and diminished degradation of SP, our present results suggest that defects in NEP expression contribute to uncontrolled inflammation.
Neutral endopeptidase (EC 3.4.24.11) terminates colitis by degrading substance P
Sturiale, S.; Barbara, G.; Qiu, B.; Figini, M.; Geppetti, P.; Gerard, N.; Gerard, C.; Grady, E. F.; Bunnett, N. W.; Collins, S. M.
1999-01-01
Neurogenic inflammation is regulated by sensory nerves and characterized by extravasation of plasma proteins and infiltration of neutrophils from post-capillary venules and arteriolar vasodilatation. Although it is well established that substance P (SP) interacts with the neurokinin 1 receptor (NK1R) to initiate neurogenic inflammation, the mechanisms that terminate inflammation are unknown. We examined whether neutral endopeptidase (NEP), a cell-surface enzyme that degrades SP in the extracellular fluid, terminates neurogenic inflammation in the colon. In NEP knockout mice, the SP concentration in the colon was ≈2.5-fold higher than in wild-type mice, suggesting increased bioavailability of SP. The extravasation of Evans blue-labeled plasma proteins in the colon of knockout mice under basal conditions was ≈4-fold higher than in wild-type mice. This elevated plasma leak was attenuated by recombinant NEP or the NK1R antagonist SR140333, and is thus caused by diminished degradation of SP. To determine whether deletion of NEP predisposes mice to uncontrolled inflammation, we compared dinitrobenzene sulfonic acid-induced colitis in wild-type and knockout mice. The severity of colitis, determined by macroscopic and histologic scoring and by myeloperoxidase activity, was markedly worse in knockout than wild-type mice after 3 and 7 days. The exacerbated inflammation in knockout mice was prevented by recombinant NEP and SR140333. Thus, NEP maintains low levels of SP in the extracellular fluid under basal conditions and terminates its proinflammatory effects. Because we have previously shown that intestinal inflammation results in down-regulation of NEP and diminished degradation of SP, our present results suggest that defects in NEP expression contribute to uncontrolled inflammation. PMID:10500232
Gene trap and gene inversion methods for conditional gene inactivation in the mouse
Xin, Hong-Bo; Deng, Ke-Yu; Shui, Bo; Qu, Shimian; Sun, Qi; Lee, Jane; Greene, Kai Su; Wilson, Jason; Yu, Ying; Feldman, Morris; Kotlikoff, Michael I.
2005-01-01
Conditional inactivation of individual genes in mice using site-specific recombinases is an extremely powerful method for determining the complex roles of mammalian genes in developmental and tissue-specific contexts, a major goal of post-genomic research. However, the process of generating mice with recombinase recognition sequences placed at specific locations within a gene, while maintaining a functional allele, is time consuming, expensive and technically challenging. We describe a system that combines gene trap and site-specific DNA inversion to generate mouse embryonic stem (ES) cell clones for the rapid production of conditional knockout mice, and the use of this system in an initial gene trap screen. Gene trapping should allow the selection of thousands of ES cell clones with defined insertions that can be used to generate conditional knockout mice, thereby providing extensive parallelism that eliminates the time-consuming steps of targeting vector construction and homologous recombination for each gene. PMID:15659575
NPY controls fear conditioning and fear extinction by combined action on Y₁ and Y₂ receptors.
Verma, D; Tasan, R O; Herzog, H; Sperk, G
2012-06-01
Neuropeptide Y (NPY) and its receptors have been implicated in the control of emotional-affective processing, but the mechanism is unclear. While it is increasingly evident that stimulation of Y₁ and inhibition of Y₂ receptors produce prominent anxiolytic and antidepressant effects, the contribution of the individual NPY receptor subtypes in the acquisition and extinction of learned fear are unknown. Here we performed Pavlovian fear conditioning and extinction in NPY knockout (KO) and in NPY receptor KO mice. NPY KO mice display a dramatically accelerated acquisition of conditioned fear. Deletion of Y₁ receptors revealed only a moderately accelerated acquisition of conditioned fear, while lack of Y₂ receptors was without any effect on fear learning. However, the strong phenotype seen in NPY KO mice was reproduced in mice lacking both Y₁ and Y₂ receptors. In addition, NPY KO mice showed excessive recall of conditioned fear and impaired fear extinction. This behaviour was replicated only after deletion of both Y₁ and Y₂ receptors. In Y₁ receptor single KO mice, fear extinction was delayed and was unchanged in Y₂ receptor KO mice. Deletion of NPY and particularly Y₂ receptors resulted in a generalization of conditioned fear. Our data demonstrate that NPY delays the acquisition, reduces the expression of conditioned fear while promoting fear extinction. Although these effects appear to be primarily mediated by Y₁ receptors, the pronounced phenotype of Y₁Y₂ receptor double KO mice suggests a synergistic role of Y₂ receptors in fear acquisition and in fear extinction. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.
HJV and HFE Play Distinct Roles in Regulating Hepcidin.
Wu, Qian; Wang, Hao; An, Peng; Tao, Yunlong; Deng, Jiali; Zhang, Zhuzhen; Shen, Yuanyuan; Chen, Caiyong; Min, Junxia; Wang, Fudi
2015-05-20
Hereditary hemochromatosis (HH) is an iron overload disease that is caused by mutations in HFE, HJV, and several other genes. However, whether HFE-HH and HJV-HH share a common pathway via hepcidin regulation is currently unclear. Recently, some HH patients have been reported to carry concurrent mutations in both the HFE and HJV genes. To dissect the roles and molecular mechanisms of HFE and/or HJV in the pathogenesis of HH, we studied Hfe(-/-), Hjv(-/-), and Hfe(-/-)Hjv(-/-) double-knockout mouse models. Hfe(-/-)Hjv(-/-) mice developed iron overload in multiple organs at levels comparable to Hjv(-/-) mice. After an acute delivery of iron, the expression of hepcidin (i.e., Hamp1 mRNA) was increased in the livers of wild-type and Hfe(-/-) mice, but not in either Hjv(-/-) or Hfe(-/-)Hjv(-/-) mice. Furthermore, iron-induced phosphorylation of Smad1/5/8 was not detected in the livers of Hjv(-/-) or Hfe(-/-)Hjv(-/-) mice. We generated and phenotypically characterized Hfe(-/-)Hjv(-/-) double-knockout mice. In addition, because they faithfully phenocopy clinical HH patients, these mouse models are an invaluable tool for mechanistically dissecting how HFE and HJV regulate hepcidin expression. Based on our results, we conclude that HFE may depend on HJV for transferrin-dependent hepcidin regulation. The presence of residual hepcidin in the absence of HFE suggests either the presence of an unknown regulator (e.g., TFR2) that is synergistic with HJV or that HJV is sufficient to maintain basal levels of hepcidin.
Kumar, Mukesh; Busch, Wolfgang; Birke, Hannah; Kemmerling, Birgit; Nürnberger, Thorsten; Schöffl, Friedrich
2009-01-01
In order to assess the functional roles of heat stress-induced class B-heat shock factors in Arabidopsis, we investigated T-DNA knockout mutants of AtHsfB1 and AtHsfB2b. Micorarray analysis of double knockout hsfB1/hsfB2b plants revealed as strong an up-regulation of the basal mRNA-levels of the defensin genes Pdf1.2a/b in mutant plants. The Pdf expression was further enhanced by jasmonic acid treatment or infection with the necrotrophic fungus Alternaria brassicicola. The single mutant hsfB2b and the double mutant hsfB1/B2b were significantly improved in disease resistance after A. brassicicola infection. There was no indication for a direct interaction of Hsf with the promoter of Pdf1.2, which is devoid of perfect HSE consensus Hsf-binding sequences. However, changes in the formation of late HsfA2-dependent HSE binding were detected in hsfB1/B2b plants. This suggests that HsfB1/B2b may interact with class A-Hsf in regulating the shut-off of the heat shock response. The identification of Pdf genes as targets of Hsf-dependent negative regulation is the first evidence for an interconnection of Hsf in the regulation of biotic and abiotic responses. PMID:19529832
Loss of TLR2 Worsens Spontaneous Colitis in MDR1A Deficiency through Commensally Induced Pyroptosis
Ey, Birgit; Eyking, Annette; Klepak, Magdalena; Salzman, Nita H.; Göthert, Joachim R.; Rünzi, Michael; Schmid, Kurt W.; Gerken, Guido; Podolsky, Daniel K.
2013-01-01
Variants of the multidrug resistance gene (MDR1/ABCB1) have been associated with increased susceptibility to severe ulcerative colitis (UC). In this study, we investigated the role of TLR/IL-1R signaling pathways including the common adaptor MyD88 in the pathogenesis of chronic colonic inflammation in MDR1A deficiency. Double- or triple-null mice lacking TLR2, MD-2, MyD88, and MDR1A were generated in the FVB/N background. Deletion of TLR2 in MDR1A deficiency resulted in fulminant pancolitis with early expansion of CD11b+ myeloid cells and rapid shift toward TH1-dominant immune responses in the lamina propria. Colitis exacerbation in TLR2/MDR1A double-knockout mice required the unaltered commensal microbiota and the LPS coreceptor MD-2. Blockade of IL-1β activity by treatment with IL-1R antagonist (IL-1Ra; Anakinra) inhibited colitis acceleration in TLR2/MDR1A double deficiency; intestinal CD11b+Ly6C+-derived IL-1β production and inflammation entirely depended on MyD88. TLR2/MDR1A double-knockout CD11b+ myeloid cells expressed MD-2/TLR4 and hyperresponded to nonpathogenic Escherichia coli or LPS with reactive oxygen species production and caspase-1 activation, leading to excessive cell death and release of proinflammatory IL-1β, consistent with pyroptosis. Inhibition of reactive oxygen species–mediated lysosome degradation suppressed LPS hyperresponsiveness. Finally, active UC in patients carrying the TLR2-R753Q and MDR1-C3435T polymorphisms was associated with increased nuclear expression of caspase-1 protein and cell death in areas of acute inflammation, compared with active UC patients without these variants. In conclusion, we show that the combined defect of two UC susceptibility genes, MDR1A and TLR2, sets the stage for spontaneous and uncontrolled colitis progression through MD-2 and IL-1R signaling via MyD88, and we identify commensally induced pyroptosis as a potential innate immune effector in severe UC pathogenesis. PMID:23636052
Loss of TLR2 worsens spontaneous colitis in MDR1A deficiency through commensally induced pyroptosis.
Ey, Birgit; Eyking, Annette; Klepak, Magdalena; Salzman, Nita H; Göthert, Joachim R; Rünzi, Michael; Schmid, Kurt W; Gerken, Guido; Podolsky, Daniel K; Cario, Elke
2013-06-01
Variants of the multidrug resistance gene (MDR1/ABCB1) have been associated with increased susceptibility to severe ulcerative colitis (UC). In this study, we investigated the role of TLR/IL-1R signaling pathways including the common adaptor MyD88 in the pathogenesis of chronic colonic inflammation in MDR1A deficiency. Double- or triple-null mice lacking TLR2, MD-2, MyD88, and MDR1A were generated in the FVB/N background. Deletion of TLR2 in MDR1A deficiency resulted in fulminant pancolitis with early expansion of CD11b(+) myeloid cells and rapid shift toward TH1-dominant immune responses in the lamina propria. Colitis exacerbation in TLR2/MDR1A double-knockout mice required the unaltered commensal microbiota and the LPS coreceptor MD-2. Blockade of IL-1β activity by treatment with IL-1R antagonist (IL-1Ra; Anakinra) inhibited colitis acceleration in TLR2/MDR1A double deficiency; intestinal CD11b(+)Ly6C(+)-derived IL-1β production and inflammation entirely depended on MyD88. TLR2/MDR1A double-knockout CD11b(+) myeloid cells expressed MD-2/TLR4 and hyperresponded to nonpathogenic Escherichia coli or LPS with reactive oxygen species production and caspase-1 activation, leading to excessive cell death and release of proinflammatory IL-1β, consistent with pyroptosis. Inhibition of reactive oxygen species-mediated lysosome degradation suppressed LPS hyperresponsiveness. Finally, active UC in patients carrying the TLR2-R753Q and MDR1-C3435T polymorphisms was associated with increased nuclear expression of caspase-1 protein and cell death in areas of acute inflammation, compared with active UC patients without these variants. In conclusion, we show that the combined defect of two UC susceptibility genes, MDR1A and TLR2, sets the stage for spontaneous and uncontrolled colitis progression through MD-2 and IL-1R signaling via MyD88, and we identify commensally induced pyroptosis as a potential innate immune effector in severe UC pathogenesis.
Sun, Hongchao; Zhuo, Xunhui; Zhao, Xianfeng; Yang, Yi; Chen, Xueqiu; Yao, Chaoqun; Du, Aifang
2017-01-01
Toxoplasma gondii is an obligate intracellular apicomplexan parasite that infects almost all warm-blooded vertebrates. Heat shock proteins (HSP) regulate key signal transduction events in many organisms, and heat shock protein 90 (Hsp90) plays an important role in growth, development, and virulence in several parasitic protozoa. Here, we discovered increased transcription of the Hsp90 gene under conditions for bradyzoite differentiation, i.e. alkaline and heat shock conditions in vitro, suggesting that Hsp90 may be connected with bradyzoite development in T. gondii. A knockout of the TgHsp90 strain (ΔHsp90) and a complementation strain were constructed. The TgHsp90 knockout cells were found to be defective in host-cell invasion, were not able to proliferate in vitro in Vero cells, and did not show long-time survival in mice in vivo. These inabilities of the knockout parasites were restored upon complementation of TgHsp90. These data unequivocally show that TgHsp90 contributes to bradyzoite development, and to invasion and replication of T. gondii in host cells. PMID:28627357
[Upregulation of P2X3 receptors in dorsal root ganglion of TRPV1 knockout female mice].
Fang, Xiao; Shi, Xiao-Han; Huang, Li-Bin; Rong, Wei-Fang; Ma, Bei
2014-08-25
The study was aimed to investigate the changes in mechanical pain threshold in the condition of chronic inflammatory pain after transient receptor potential vanilloid 1 (TRPV1) gene was knockout. Hind-paw intraplantar injection of complete freund's adjuvant (CFA, 20 μL) produced peripheral inflammation in wild-type and TRPV1 knockout female mice. The mechanical pain thresholds were measured during the 8 days after injection and pre-injection by using Von-Frey hair. Nine days after injection, mice were killed and the differences of expression of c-Fos and P2X3 receptor in the dorsal root ganglia (DRG) and spinal cord dorsal horn were examined by Western blotting between the two groups. Compared with that in wild-type mice, the mechanical pain threshold was increased significantly in TRPV1 knockout mice (P < 0.05); 3 days after CFA injection, the baseline mechanical pain threshold in the TRPV1 knockout mice group was significantly higher than that in the wild-type mice group (P < 0.05); The result of Western blotting showed that the expression of c-Fos protein both in DRG and spinal cord dorsal horn of TRPV1 knockout mice group was decreased significantly compared with that in wild-type mice group (P < 0.01, P < 0.05), while the expression of P2X3 receptor in DRG of TRPV1 knockout mice group was increased significantly compared with that in wild-type mice group (P < 0.05). Our findings indicate that TRPV1 may influence the peripheral mechanical pain threshold by mediating the expression of c-Fos protein both in DRG and spinal cord dorsal horn and changing the expression of P2X3 receptor in DRG.
Siuciak, Judith A; McCarthy, Sheryl A; Chapin, Douglas S; Martin, Ashley N; Harms, John F; Schmidt, Christopher J
2008-02-01
The phenotype of genetically modified animals is strongly influenced by both the genetic background of the animal as well as environmental factors. We have previously reported the behavioral and neurochemical characterization of PDE10A knockout mice maintained on a DBA1LacJ (PDE10A(DBA)) genetic background. The aim of the present studies was to assess the behavioral and neurochemical phenotype of PDE10A knockout mice on an alternative congenic C57BL/6N (PDE10A(C57)) genetic background. Consistent with our previous results, PDE10A(C57) knockout mice showed a decrease in exploratory locomotor activity and a delay in the acquisition of conditioned avoidance responding. Also consistent with previous studies, the elimination of PDE10A did not alter basal levels of striatal cGMP or cAMP or affect behavior in several other well-characterized behavioral assays. PDE10A(C57) knockout mice showed a blunted response to MK-801, although to a lesser degree than previously observed in the PDE10A(DBA) knockout mice, and no differences were observed following a PCP challenge. PDE10A(C57) knockout mice showed a significant change in striatal dopamine turnover, which was accompanied by an enhanced locomotor response to AMPH, These studies demonstrate that while many of the behavioral effects of the PDE10A gene deletion appear to be independent of genetic background, the impact of the deletion on behavior can vary in magnitude. Furthermore, the effects on the dopaminergic system appear to be background-dependent, with significant effects observed only in knockout mice on the C57BL6N genetic background.
Kaniuka, O P; Filiak, Ie Z; Kulachkovs'kyĭ, O R; Osyp, Iu L; Sybirna, N O
2014-01-01
A pttg gene knockout affects the functional state of erythron in mice which could be associated with structural changes in the structure of erythrocyte membranes. The pttg gene knockout causes a significant modification of fatty acids composition of erythrocyte membrane lipids by reducing the content of palmitic acid and increasing of polyunsaturated fatty acids amount by 18%. Analyzing the erythrocyte surface architectonics of mice under pttg gene knockout, it was found that on the background of reduction of the functionally complete biconcave discs population one could observe an increase of the number of transformed cells at different degeneration stages. Researches have shown that in mice with a pttg gene knockout compared with a control group of animals cytoskeletal protein--beta-spectrin was reduced by 17.03%. However, there is a reduction of membrane protein band 3 by 33.04%, simultaneously the content of anion transport protein band 4.5 increases by 35.2% and protein band 4.2 by 32.1%. The lectin blot analysis has helped to reveal changes in the structure of the carbohydrate determinants of erythrocyte membrane glycoproteins under conditions of directed pttg gene inactivation, accompanied by changes in the type of communication, which joins the terminal residue in carbohydrate determinant of glycoproteins. Thus, a significant redistribution of protein and fatty acids contents in erythrocyte membranes that manifested in the increase of the deformed shape of red blood cells is observed underpttg gene knockout.
Cells Lacking β-Actin are Genetically Reprogrammed and Maintain Conditional Migratory Capacity*
Tondeleir, Davina; Lambrechts, Anja; Müller, Matthias; Jonckheere, Veronique; Doll, Thierry; Vandamme, Drieke; Bakkali, Karima; Waterschoot, Davy; Lemaistre, Marianne; Debeir, Olivier; Decaestecker, Christine; Hinz, Boris; Staes, An; Timmerman, Evy; Colaert, Niklaas; Gevaert, Kris; Vandekerckhove, Joël; Ampe, Christophe
2012-01-01
Vertebrate nonmuscle cells express two actin isoforms: cytoplasmic β- and γ-actin. Because of the presence and localized translation of β-actin at the leading edge, this isoform is generally accepted to specifically generate protrusive forces for cell migration. Recent evidence also implicates β-actin in gene regulation. Cell migration without β-actin has remained unstudied until recently and it is unclear whether other actin isoforms can compensate for this cytoplasmic function and/or for its nuclear role. Primary mouse embryonic fibroblasts lacking β-actin display compensatory expression of other actin isoforms. Consistent with this preservation of polymerization capacity, β-actin knockout cells have unchanged lamellipodial protrusion rates despite a severe migration defect. To solve this paradox we applied quantitative proteomics revealing a broad genetic reprogramming of β-actin knockout cells. This also explains why reintroducing β-actin in knockout cells does not restore the affected cell migration. Pathway analysis suggested increased Rho-ROCK signaling, consistent with observed phenotypic changes. We therefore developed and tested a model explaining the phenotypes in β-actin knockout cells based on increased Rho-ROCK signaling and increased TGFβ production resulting in increased adhesion and contractility in the knockout cells. Inhibiting ROCK or myosin restores migration of β-actin knockout cells indicating that other actins compensate for β-actin in this process. Consequently, isoactins act redundantly in providing propulsive forces for cell migration, but β-actin has a unique nuclear function, regulating expression on transcriptional and post-translational levels, thereby preventing myogenic differentiation. PMID:22448045
Xu, Jie; Barone, Sharon; Brooks, Mary-Beth; Soleimani, Manoocher
2013-01-01
The thiazide-sensitive Na(+)-Cl(-) cotransporter NCC and the Cl(-)/HCO3(-)exchanger pendrin are expressed on apical membranes of distal cortical nephron segments and mediate salt absorption, with pendrin working in tandem with the epithelial Na(+) channel (ENaC) and the Na(+)-dependent chloride/bicarbonate exchanger (NDCBE), whereas NCC is working by itself. A recent study showed that NCC and pendrin compensate for loss of each other under basal conditions, therefore masking the role that each plays in salt reabsorption. Carbonic anhydrase II (CAII, CA2 or CAR2) plays an important role in acid-base transport and salt reabsorption in the proximal convoluted tubule and acid-base transport in the collecting duct. Animals with CAII deletion show remodeling of intercalated cells along with the downregulation of pendrin. NCC KO mice on the other hand show significant upregulation of pendrin and ENaC. Neither model shows any significant salt wasting under baseline conditions. We hypothesized that the up-regulation of pendrin is essential for the prevention of salt wasting in NCC KO mice. To test this hypothesis, we generated NCC/CAII double KO (dKO) mice by crossing mice with single deletion of NCC and CAII. The NCC/CAII dKO mice displayed significant downregulation of pendrin, along with polyuria and salt wasting. As a result, the dKO mice developed volume depletion, which was associated with the inability to concentrate urine. We conclude that the upregulation of pendrin is essential for the prevention of salt and water wasting in NCC deficient animals and its downregulation or inactivation will result in salt wasting, impaired water conservation and volume depletion in the setting of NCC inactivation or inhibition. © 2014 S. Karger AG, Basel.
Sahu, Bhubanananda; Sun, Wenyu; Perusek, Lindsay; Parmar, Vipulkumar; Le, Yun-Zheng; Griswold, Michael D.; Palczewski, Krzysztof; Maeda, Akiko
2015-01-01
Regeneration of the visual chromophore, 11-cis-retinal, is a crucial step in the visual cycle required to sustain vision. This cycle consists of sequential biochemical reactions that occur in photoreceptor cells and the retinal pigmented epithelium (RPE). Oxidation of 11-cis-retinol to 11-cis-retinal is accomplished by a family of enzymes termed 11-cis-retinol dehydrogenases, including RDH5 and RDH11. Double deletion of Rdh5 and Rdh11 does not limit the production of 11-cis-retinal in mice. Here we describe a third retinol dehydrogenase in the RPE, RDH10, which can produce 11-cis-retinal. Mice with a conditional knock-out of Rdh10 in RPE cells (Rdh10 cKO) displayed delayed 11-cis-retinal regeneration and dark adaption after bright light illumination. Retinal function measured by electroretinogram after light exposure was also delayed in Rdh10 cKO mice as compared with controls. Double deletion of Rdh5 and Rdh10 (cDKO) in mice caused elevated 11/13-cis-retinyl ester content also seen in Rdh5−/−Rdh11−/− mice as compared with Rdh5−/− mice. Normal retinal morphology was observed in 6-month-old Rdh10 cKO and cDKO mice, suggesting that loss of Rdh10 in the RPE does not negatively affect the health of the retina. Compensatory expression of other retinol dehydrogenases was observed in both Rdh5−/− and Rdh10 cKO mice. These results indicate that RDH10 acts in cooperation with other RDH isoforms to produce the 11-cis-retinal chromophore needed for vision. PMID:26391396
eIF4E/Fmr1 double mutant mice display cognitive impairment in addition to ASD-like behaviors.
Huynh, Thu N; Shah, Manan; Koo, So Yeon; Faraud, Kirsten S; Santini, Emanuela; Klann, Eric
2015-11-01
Autism spectrum disorder (ASD) is a group of heritable disorders with complex and unclear etiology. Classic ASD symptoms include social interaction and communication deficits as well as restricted, repetitive behaviors. In addition, ASD is often comorbid with intellectual disability. Fragile X syndrome (FXS) is the leading genetic cause of ASD, and is the most commonly inherited form of intellectual disability. Several mouse models of ASD and FXS exist, however the intellectual disability observed in ASD patients is not well modeled in mice. Using the Fmr1 knockout mouse and the eIF4E transgenic mouse, two previously characterized mouse models of fragile X syndrome and ASD, respectively, we generated the eIF4E/Fmr1 double mutant mouse. Our study shows that the eIF4E/Fmr1 double mutant mice display classic ASD behaviors, as well as cognitive dysfunction. Importantly, the learning impairments displayed by the double mutant mice spanned multiple cognitive tasks. Moreover, the eIF4E/Fmr1 double mutant mice display increased levels of basal protein synthesis. The results of our study suggest that the eIF4E/Fmr1 double mutant mouse may be a reliable model to study cognitive dysfunction in the context of ASD. Copyright © 2015 Elsevier Inc. All rights reserved.
Hoffert, Jason D; Pisitkun, Trairak; Miller, R Lance
2012-06-01
Transgenic and conditional knockout mouse models play an important role in biomedical research and their use has grown exponentially in the last 5-10 years. Generating conditional knockouts often requires breeding multiple alleles onto the background of a single mouse or group of mice. Breeding these mice depends on parental genotype, litter size, transmission frequency, and the number of breeding rounds. Therefore, a well planned breeding strategy is critical for keeping costs to a minimum. However, designing a viable breeding strategy can be challenging. With so many different variables this would be an ideal task for a computer program. To facilitate this process, we created a Java-based program called Conditional Allele Mouse Planner (CAMP). CAMP is designed to provide an estimate of the number of breeders, amount of time, and costs associated with generating mice of a particular genotype. We provide a description of CAMP, how to use it, and offer it freely as an application.
Kim, Hyung-Wook; Choi, Won-Seok; Sorscher, Noah; Park, Hyung Joon; Tronche, François; Palmiter, Richard D; Xia, Zhengui
2015-09-01
Inhibition of mitochondrial complex I activity is hypothesized to be one of the major mechanisms responsible for dopaminergic neuron death in Parkinson's disease. However, loss of complex I activity by systemic deletion of the Ndufs4 gene, one of the subunits comprising complex I, does not cause dopaminergic neuron death in culture. Here, we generated mice with conditional Ndufs4 knockout in dopaminergic neurons (Ndufs4 conditional knockout mice [cKO]) to examine the effect of complex I inhibition on dopaminergic neuron function and survival during aging and on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment in vivo. Ndufs4 cKO mice did not show enhanced dopaminergic neuron loss in the substantia nigra pars compacta or dopamine-dependent motor deficits over the 24-month life span. These mice were just as susceptible to MPTP as control mice. However, compared with control mice, Ndufs4 cKO mice exhibited an age-dependent reduction of dopamine in the striatum and increased α-synuclein phosphorylation in dopaminergic neurons of the substantia nigra pars compacta. We also used an inducible Ndufs4 knockout mouse strain (Ndufs4 inducible knockout) in which Ndufs4 is conditionally deleted in all cells in adult to examine the effect of adult onset, complex I inhibition on MPTP sensitivity of dopaminergic neurons. The Ndufs4 inducible knockout mice exhibited similar sensitivity to MPTP as control littermates. These data suggest that mitochondrial complex I inhibition in dopaminergic neurons does contribute to dopamine loss and the development of α-synuclein pathology. However, it is not sufficient to cause cell-autonomous dopaminergic neuron death during the normal life span of mice. Furthermore, mitochondrial complex I inhibition does not underlie MPTP toxicity in vivo in either cell autonomous or nonautonomous manner. These results provide strong evidence that inhibition of mitochondrial complex I activity is not sufficient to cause dopaminergic neuron death during aging nor does it contribute to dopamine neuron toxicity in the MPTP model of Parkinson's disease. These findings suggest the existence of alternative mechanisms of dopaminergic neuron death independent of mitochondrial complex I inhibition. Copyright © 2015 Elsevier Inc. All rights reserved.
How do the effects of mutations add up?
NASA Astrophysics Data System (ADS)
Velenich, Andrea; Dai, Mingjie; Gore, Jeff
2011-03-01
Genetic mutations affect the fitness of any organism and provide the variability necessary for natural selection to occur. Given the fitness of a wild type organism and the fitness of mutants A and B which differ from the wild type by a single mutation, predicting the fitness of the double mutant AB is a fundamental problem with broad implications in many fields, from evolutionary theory to medicine. Analysis of millions of double gene knockouts in yeast reveals that, on average, the fitness of AB is the product of the fitness of A and the fitness of B. However, most pairs of mutations deviate from this mean behavior in a way that challenges existing theoretical models. We propose a natural generalization of the geometric Fisher's model which accommodates the experimentally observed features and allows us to characterize the fitness landscape of yeast.
Alcoholic fatty liver is enhanced in CYP2A5 knockout mice: The role of the PPARα-FGF21 axis.
Chen, Xue; Ward, Stephen C; Cederbaum, Arthur I; Xiong, Huabao; Lu, Yongke
2017-03-15
Cytochrome P450 2A5 (CYP2A5) is induced by ethanol, and the ethanol induction of CYP2A5 is regulated by nuclear factor-erythroid 2-related factor 2 (NRF2). Cyp2a5 knockout (Cyp2a5 -/- ) mice develop more severe alcoholic fatty liver than Cyp2a5 +/+ mice. Fibroblast growth factor 21 (FGF21), a PPARα-regulated liver hormone, is involved in hepatic lipid metabolism. Alcoholic and non-alcoholic fatty liver are enhanced in Pparα knockout (Pparα -/- ) mice. This study investigates the relationship between the PPARα-FGF21 axis and the enhanced alcoholic fatty liver in Cyp2a5 -/- mice. Mice were fed the Lieber-Decarli ethanol diet to induce alcoholic fatty liver. More severe alcoholic fatty liver disease was developed in Cyp2a5 -/- mice than in Cyp2a5 +/+ mice. Basal FGF21 levels were higher in Cyp2a5 -/- mice than in Cyp2a5 +/+ mice, but ethanol did not further increase the elevated FGF21 levels in Cyp2a5 -/- mice while FGF21 was induced by ethanol in Cyp2a5 +/+ mice. Basal levels of serum FGF21 were lower in Pparα -/- mice than in Pparα +/+ mice; ethanol induced FGF21 in Pparα +/+ mice but not in Pparα -/- mice, whereas ethanol induced hypertriglyceridemia in Pparα -/- mice but not in Pparα +/+ mice. Administration of recombinant FGF21 normalized serum FGF21 and triglyceride in Pparα -/- mice. Alcoholic fatty liver was enhanced in liver-specific Fgf21 knockout mice. Pparα and Cyp2a5 double knockout (Pparα -/- /Cyp2a5 -/- ) mice developed more severe alcoholic fatty liver than Pparα +/+ /Cyp2a5 -/- mice. These results suggest that CYP2A5 protects against the development of alcoholic fatty liver disease, and the PPARα-FGF21 axis contributes to the protective effects of CYP2A5 on alcoholic fatty liver disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Yokoi, Fumiaki; Dang, Mai Tu; Li, Yuqing
2012-01-01
Early-onset generalized torsion dystonia (dystonia 1) is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most patients have a 3-base pair deletion (ΔGAG) in one allele of DYT1, corresponding to a loss of a glutamic acid residue (ΔE) in the C-terminal region of the protein. Functional alterations in basal ganglia circuits and the cerebellum have been reported in dystonia. Pharmacological manipulations or mutations in genes that result in functional alterations of the cerebellum have been reported to have dystonic symptoms and have been used as phenotypic rodent models. Additionally, structural lesions in the abnormal cerebellar circuits, such as cerebellectomy, have therapeutic effects in these models. A previous study has shown that the Dyt1 ΔGAG heterozygous knock-in (KI) mice exhibit motor deficits in the beam-walking test. Both Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 Purkinje cell-specific knockout (Dyt1 pKO) mice exhibit dendritic alterations of cerebellar Purkinje cells. Here, Dyt1 pKO mice exhibited significantly less slip numbers in the beam-walking test, suggesting better motor performance than control littermates, and normal gait. Furthermore, Dyt1 ΔGAG KI/Dyt1 pKO double mutant mice exhibited significantly lower numbers of slips than Dyt1 ΔGAG heterozygous KI mice, suggesting Purkinje-cell specific knockout of Dyt1 wild-type (WT) allele in Dyt1 ΔGAG heterozygous KI mice rescued the motor deficits. The results suggest that molecular lesions of torsinA in Purkinje cells by gene therapy or intervening in the signaling pathway downstream of the cerebellar Purkinje cells may rescue motor symptoms in dystonia 1. PMID:22391119
A Role for Calmodulin-Stimulated Adenylyl Cyclases in Cocaine Sensitization
DiRocco, Derek P.; Scheiner, Zachary S.; Sindreu, Carlos Balet; Chan, Guy C-K; Storm, Daniel R.
2009-01-01
Cocaine sensitization is produced by repeated exposure to the drug and is thought to reflect neuroadaptations that contribute to addiction. Here, we identify the Ca2+/calmodulin-stimulated adenylyl cyclases, type 1 (AC1) and type 8 (AC8), as novel regulators of this behavioral plasticity. We show that while AC1 and AC8 single knockout mice (AC1−/− and AC8−/−) exhibit Ca2+-stimulated adenylyl cyclase activity in striatal membrane fractions, AC1/8 double-knockout (DKO) mice do not. Furthermore, DKO mice are acutely supersensitive to low doses of cocaine and fail to display locomotor sensitization following chronic cocaine treatment. Because of the known role for the ERK/MAP kinase signaling pathway in cocaine-induced behavioral plasticity and its coupling to calcium-stimulated cAMP signaling in the hippocampus, we measured phosphorylated extracellular signal-regulated kinase (pERK) levels in the striatum. Under basal conditions, pERK is upregulated in choline acetyltransferase positive (ChAT+) interneurons in DKO mice relative to wild-type (WT) controls. Following acute cocaine treatment, pERK signaling is significantly suppressed in medium spiny neurons (MSNs) of DKO mice relative to WT mice. In addition to the lack of striatal ERK activation by acute cocaine, signaling machinery downstream of ERK is uncoupled in DKO mice. We demonstrate that AC1 and AC8 are necessary for the phosphorylation of mitogen and stress-activated kinase-1 (pMSK1) at Ser376 and Thr581, and cAMP response element-binding protein (pCREB) at Ser133 following acute cocaine treatment. Our results demonstrate that the Ca2+-stimulated adenylyl cyclases regulate long-lasting cocaine-induced behavioral plasticity via activation of the ERK/MSK1/CREB signaling pathway in striatonigral MSNs. PMID:19244515
Genome Editing in Human Pluripotent Stem Cells.
Carlson-Stevermer, Jared; Saha, Krishanu
2017-01-01
Genome editing in human pluripotent stem cells (hPSCs) enables the generation of reporter lines and knockout cell lines. Zinc finger nucleases, transcription activator-like effector nucleases (TALENs), and CRISPR/Cas9 technology have recently increased the efficiency of proper gene editing by creating double strand breaks (DSB) at defined sequences in the human genome. These systems typically use plasmids to transiently transcribe nucleases within the cell. Here, we describe the process for preparing hPSCs for transient expression of nucleases via electroporation and subsequent analysis to create genetically modified stem cell lines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yuanfan; Wang, Chenchen; Peking University Stem Cell Research Center, China National Center for International Research, Peking University Health Science Center, Beijing 100191
2015-07-03
The mammalian BTG/Tob family is a group of proteins with anti-proliferative ability, and there are six members including BTG1, BTG2/PC3/Tis21, BTG3/ANA, BTG4/PC3B, Tob1/Tob and Tob2. Among them, Tob subfamily members, specifically Tob1/Tob and Tob2, have the most extensive C-terminal regions. As previously reported, overexpression of BTG/Tob proteins is associated with the inhibition of G1 to S-phase cell cycle progression and decreased cell proliferation in a variety of cell types. Tob subfamily proteins have similar anti-proliferative effects on cell cycle progression in cultured tumor cells. An important unresolved question is whether or not they have function in rapidly proliferating cells, suchmore » as embryonic stem cells (ESCs). Tob1 and Tob2 were expressed ubiquitously in mouse ESCs (mESCs), suggesting a possible role in early embryonic development and mESCs. To address the above question and explore the possible functions of the Tob subfamily in ESCs, we established ESCs from different genotypic knockout inner cell mass (ICM). We found that Tob1{sup −/−}, Tob2{sup −/−}, and Tob1/2 double knockout (DKO, Tob1{sup −/−} & Tob2{sup −/−}) ESCs grew faster than wild type (WT) ESCs without losing pluripotency, and we provide a possible mechanistic explanation for these observations: Tob1 and Tob2 inhibit the cell cycle via degradation of Id3 mRNA, which is a set of directly targeted genes of BMP4 signaling in mESCs that play critical roles in the maintenance of ESC properties. Together, our data suggest that BTG/Tob family protein Tob1 and Tob2 regulation cell proliferation does not compromise the basic properties of mESCs. - Highlights: • We established mouse Tob1/2 double knockout embryonic stem cells. • Tob1 and Tob2 inhibit the proliferation of ESCs without effect on pluripotency. • Tob1 and Tob2 involved in the degradation of Id3 in mESCs.« less
Yamamoto, Keisuke; Hara, Kiyotaka Y; Morita, Toshihiko; Nishimura, Akira; Sasaki, Daisuke; Ishii, Jun; Ogino, Chiaki; Kizaki, Noriyuki; Kondo, Akihiko
2016-09-13
Red yeast, Xanthophyllomyces dendrorhous is the only yeast known to produce astaxanthin, an anti-oxidant isoprenoid (carotenoid) widely used in the aquaculture, food, pharmaceutical and cosmetic industries. The potential of this microorganism as a platform cell factory for isoprenoid production has been recognized because of high flux through its native terpene pathway. Recently, we developed a multiple gene expression system in X. dendrorhous and enhanced the mevalonate synthetic pathway to increase astaxanthin production. In contrast, the mevalonate synthetic pathway is suppressed by ergosterol through feedback inhibition. Therefore, releasing the mevalonate synthetic pathway from this inhibition through the deletion of genes involved in ergosterol synthesis is a promising strategy to improve isoprenoid production. An efficient method for deleting diploid genes in X. dendrorhous, however, has not yet been developed. Xanthophyllomyces dendrorhous was cultivated under gradually increasing concentrations of antibiotics following the introduction of antibiotic resistant genes to be replaced with target genes. Using this method, double CYP61 genes encoding C-22 sterol desaturases relating to ergosterol biosynthesis were deleted sequentially. This double CYP61 deleted strain showed decreased ergosterol biosynthesis compared with the parental strain and single CYP61 disrupted strain. Additionally, this double deletion of CYP61 genes showed increased astaxanthin production compared with the parental strain and the single CYP61 knockout strain. Finally, astaxanthin production was enhanced by 1.4-fold compared with the parental strain, although astaxanthin production was not affected in the single CYP61 knockout strain. In this study, we developed a system to completely delete target diploid genes in X. dendrorhous. Using this method, we deleted diploid CYP61 genes involved in the synthesis of ergosterol that inhibits the pathway for mevalonate, which is a common substrate for isoprenoid biosynthesis. The resulting decrease in ergosterol biosynthesis increased astaxanthin production. The efficient method for deleting diploid genes developed in this study has the potential to improve industrial production of various isoprenoids in X. dendrorhous.
Chen, Shao-Rui; Chen, Hong; Yuan, Wei-Xiu; Wess, Jürgen; Pan, Hui-Lin
2014-05-16
Stimulation of muscarinic acetylcholine receptors (mAChRs) inhibits nociceptive transmission at the spinal level. However, it is unclear how each mAChR subtype regulates excitatory synaptic input from primary afferents. Here we examined excitatory postsynaptic currents (EPSCs) of dorsal horn neurons evoked by dorsal root stimulation in spinal cord slices from wild-type and mAChR subtype knock-out (KO) mice. In wild-type mice, mAChR activation with oxotremorine-M decreased the amplitude of monosynaptic EPSCs in ∼67% of neurons but increased it in ∼10% of neurons. The inhibitory effect of oxotremorine-M was attenuated by the M2/M4 antagonist himbacine in the majority of neurons, and the remaining inhibition was abolished by group II/III metabotropic glutamate receptor (mGluR) antagonists in wild-type mice. In M2/M4 double-KO mice, oxotremorine-M inhibited monosynaptic EPSCs in significantly fewer neurons (∼26%) and increased EPSCs in significantly more neurons (33%) compared with wild-type mice. Blocking group II/III mGluRs eliminated the inhibitory effect of oxotremorine-M in M2/M4 double-KO mice. In M2 single-KO and M4 single-KO mice, himbacine still significantly reduced the inhibitory effect of oxotremorine-M. However, the inhibitory and potentiating effects of oxotremorine-M on EPSCs in M3 single-KO and M1/M3 double-KO mice were similar to those in wild-type mice. In M5 single-KO mice, oxotremorine-M failed to potentiate evoked EPSCs, and its inhibitory effect was abolished by himbacine. These findings indicate that activation of presynaptic M2 and M4 subtypes reduces glutamate release from primary afferents. Activation of the M5 subtype either directly increases primary afferent input or inhibits it through indirectly stimulating group II/III mGluRs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Chen, Shao-Rui; Chen, Hong; Yuan, Wei-Xiu; Wess, Jürgen; Pan, Hui-Lin
2014-01-01
Stimulation of muscarinic acetylcholine receptors (mAChRs) inhibits nociceptive transmission at the spinal level. However, it is unclear how each mAChR subtype regulates excitatory synaptic input from primary afferents. Here we examined excitatory postsynaptic currents (EPSCs) of dorsal horn neurons evoked by dorsal root stimulation in spinal cord slices from wild-type and mAChR subtype knock-out (KO) mice. In wild-type mice, mAChR activation with oxotremorine-M decreased the amplitude of monosynaptic EPSCs in ∼67% of neurons but increased it in ∼10% of neurons. The inhibitory effect of oxotremorine-M was attenuated by the M2/M4 antagonist himbacine in the majority of neurons, and the remaining inhibition was abolished by group II/III metabotropic glutamate receptor (mGluR) antagonists in wild-type mice. In M2/M4 double-KO mice, oxotremorine-M inhibited monosynaptic EPSCs in significantly fewer neurons (∼26%) and increased EPSCs in significantly more neurons (33%) compared with wild-type mice. Blocking group II/III mGluRs eliminated the inhibitory effect of oxotremorine-M in M2/M4 double-KO mice. In M2 single-KO and M4 single-KO mice, himbacine still significantly reduced the inhibitory effect of oxotremorine-M. However, the inhibitory and potentiating effects of oxotremorine-M on EPSCs in M3 single-KO and M1/M3 double-KO mice were similar to those in wild-type mice. In M5 single-KO mice, oxotremorine-M failed to potentiate evoked EPSCs, and its inhibitory effect was abolished by himbacine. These findings indicate that activation of presynaptic M2 and M4 subtypes reduces glutamate release from primary afferents. Activation of the M5 subtype either directly increases primary afferent input or inhibits it through indirectly stimulating group II/III mGluRs. PMID:24695732
Lehneck, Ronny; Elleuche, Skander; Pöggeler, Stefanie
2014-06-01
The rapid interconversion of carbon dioxide and bicarbonate (hydrogen carbonate) is catalysed by metalloenzymes termed carbonic anhydrases (CAs). CAs have been identified in all three domains of life and can be divided into five evolutionarily unrelated classes (α, β, γ, δ and ζ) that do not share significant sequence similarities. The function of the mammalian, prokaryotic and plant α-CAs has been intensively studied but the function of CAs in filamentous ascomycetes is mostly unknown. The filamentous ascomycete Sordaria macrospora codes for four CAs, three of the β-class and one of the α-class. Here, we present a functional analysis of CAS4, the S. macrospora α-class CA. The CAS4 protein was post-translationally glycosylated and secreted. The knockout strain Δcas4 had a significantly reduced rate of ascospore germination. To determine the cas genes required for S. macrospora growth under ambient air conditions, we constructed double and triple mutations of the four cas genes in all possible combinations and a quadruple mutant. Vegetative growth rate of the quadruple mutant lacking all cas genes was drastically reduced compared to the wild type and invaded the agar under normal air conditions. Likewise the fruiting bodies were embedded in the agar and completely devoid of mature ascospores. © 2014 John Wiley & Sons Ltd.
Altered sleep and affect in the neurotensin receptor 1 knockout mouse.
Fitzpatrick, Karrie; Winrow, Christopher J; Gotter, Anthony L; Millstein, Joshua; Arbuzova, Janna; Brunner, Joseph; Kasarskis, Andrew; Vitaterna, Martha H; Renger, John J; Turek, Fred W
2012-07-01
Sleep and mood disorders have long been understood to have strong genetic components, and there is considerable comorbidity of sleep abnormalities and mood disorders, suggesting the involvement of common genetic pathways. Here, we examine a candidate gene implicated in the regulation of both sleep and affective behavior using a knockout mouse model. Previously, we identified a quantitative trait locus (QTL) for REM sleep amount, REM sleep bout number, and wake amount in a genetically segregating population of mice. Here, we show that traits mapping to this QTL correlated with an expression QTL for neurotensin receptor 1 (Ntsr1), a receptor for neurotensin, a ligand known to be involved in several psychiatric disorders. We examined sleep as well as behaviors indicative of anxiety and depression in the NTSR1 knockout mouse. NTSR1 knockouts had a lower percentage of sleep time spent in REM sleep in the dark phase and a larger diurnal variation in REM sleep duration than wild types under baseline conditions. Following sleep deprivation, NTSR1 knockouts exhibited more wake and less NREM rebound sleep. NTSR1 knockouts also showed increased anxious and despair behaviors. Here we illustrate a link between expression of the Ntsr1 gene and sleep traits previously associated with a particular QTL. We also demonstrate a relationship between Ntsr1 and anxiety and despair behaviors. Given the considerable evidence that anxiety and depression are closely linked with abnormalities in sleep, the data presented here provide further evidence that neurotensin and Ntsr1 may be a component of a pathway involved in both sleep and mood disorders.
RIM-BPs Mediate Tight Coupling of Action Potentials to Ca(2+)-Triggered Neurotransmitter Release.
Acuna, Claudio; Liu, Xinran; Gonzalez, Aneysis; Südhof, Thomas C
2015-09-23
Ultrafast neurotransmitter release requires tight colocalization of voltage-gated Ca(2+) channels with primed, release-ready synaptic vesicles at the presynaptic active zone. RIM-binding proteins (RIM-BPs) are multidomain active zone proteins that bind to RIMs and to Ca(2+) channels. In Drosophila, deletion of RIM-BPs dramatically reduces neurotransmitter release, but little is known about RIM-BP function in mammalian synapses. Here, we generated double conditional knockout mice for RIM-BP1 and RIM-BP2, and analyzed RIM-BP-deficient synapses in cultured hippocampal neurons and the calyx of Held. Surprisingly, we find that in murine synapses, RIM-BPs are not essential for neurotransmitter release as such, but are selectively required for high-fidelity coupling of action potential-induced Ca(2+) influx to Ca(2+)-stimulated synaptic vesicle exocytosis. Deletion of RIM-BPs decelerated action-potential-triggered neurotransmitter release and rendered it unreliable, thereby impairing the fidelity of synaptic transmission. Thus, RIM-BPs ensure optimal organization of the machinery for fast release in mammalian synapses without being a central component of the machinery itself. Copyright © 2015 Elsevier Inc. All rights reserved.
Zhang, Lingyun; Ke, Fang; Liu, Zhaoyuan; Bai, Jing; Liu, Jinlin; Yan, Sha; Xu, Zhenyao; Lou, Fangzhou; Wang, Hong; Zhu, Huiyuan; Sun, Yang; Cai, Wei; Gao, Yuanyuan; Li, Qun; Yu, Xue-Zhong; Qian, Youcun; Hua, Zichun; Deng, Jiong; Li, Qi-Jing; Wang, Honglin
2015-01-01
Peripherally derived regulatory T (pTreg) cell generation requires T-cell receptor (TCR) signalling and the cytokines TGF-β1 and IL-2. Here we show that TCR signalling induces the microRNA miR-31, which negatively regulates pTreg-cell generation. miR-31 conditional deletion results in enhanced induction of pTreg cells, and decreased severity of experimental autoimmune encephalomyelitis (EAE). Unexpectedly, we identify Gprc5a as a direct target of miR-31. Gprc5a is known as retinoic acid-inducible protein 3, and its deficiency leads to impaired pTreg-cell induction and increased EAE severity. By generating miR-31 and Gprc5a double knockout mice, we show that miR-31 promotes the development of EAE through inhibiting Gprc5a. Thus, our data identify miR-31 and its target Gprc5a as critical regulators for pTreg-cell generation, suggesting a previously unrecognized epigenetic mechanism for dysfunctional Treg cells in autoimmune diseases. PMID:26165721
Sun, Lifan; Zhang, Caili; Lyu, Pengcheng; Wang, Yanping; Wang, Limin; Yu, Bo
2016-11-25
Thermotolerant Bacillus coagulans is considered to be a more promising producer for bio-chemicals, due to its capacity to withstand harsh conditions. Two L-lactate dehydrogenase (LDH) encoding genes (ldhL1 and ldhL2) and one D-LDH encoding gene (ldhD) were annotated from the B. coagulans DSM1 genome. Transcriptional analysis revealed that the expression of ldhL2 was undetectable while the ldhL1 transcription level was much higher than that of ldhD at all growth phases. Deletion of the ldhL2 gene revealed no difference in fermentation profile compared to the wild-type strain, while ldhL1 single deletion or ldhL1ldhL2 double deletion completely blocked L-lactic acid production. Complementation of ldhL1 in the above knockout strains restored fermentation profiles to those observed in the wild-type strain. This study demonstrates ldhL1 is crucial for L-lactic acid production and NADH balance in B. coagulans DSM1 and lays the fundamental for engineering the thermotolerant B. coagulans strain as a platform chemicals producer.
NEK8 regulates DNA damage-induced RAD51 foci formation and replication fork protection
Abeyta, Antonio; Castella, Maria; Jacquemont, Celine; Taniguchi, Toshiyasu
2017-01-01
ABSTRACT Proteins essential for homologous recombination play a pivotal role in the repair of DNA double strand breaks, DNA inter-strand crosslinks and replication fork stability. Defects in homologous recombination also play a critical role in the development of cancer and the sensitivity of these cancers to chemotherapy. RAD51, an essential factor for homologous recombination and replication fork protection, accumulates and forms immunocytochemically detectable nuclear foci at sites of DNA damage. To identify kinases that may regulate RAD51 localization to sites of DNA damage, we performed a human kinome siRNA library screen, using DNA damage-induced RAD51 foci formation as readout. We found that NEK8, a NIMA family kinase member, is required for efficient DNA damage-induced RAD51 foci formation. Interestingly, knockout of Nek8 in murine embryonic fibroblasts led to cellular sensitivity to the replication inhibitor, hydroxyurea, and inhibition of the ATR kinase. Furthermore, NEK8 was required for proper replication fork protection following replication stall with hydroxyurea. Loading of RAD51 to chromatin was decreased in NEK8-depleted cells and Nek8-knockout cells. Single-molecule DNA fiber analyses revealed that nascent DNA tracts were degraded in the absence of NEK8 following treatment with hydroxyurea. Consistent with this, Nek8-knockout cells showed increased chromosome breaks following treatment with hydroxyurea. Thus, NEK8 plays a critical role in replication fork stability through its regulation of the DNA repair and replication fork protection protein RAD51. PMID:27892797
Austin, Bobbie Ann; Halford, William; Silverman, Robert H.; Williams, Bryan R. G.; Carr, Daniel J. J.
2005-01-01
Three interferon-gamma (IFNG) induced anti-viral pathways have been reported. Involved anti-viral proteins include: Mx, RNaseL/2'-5'-OAS, and PKR. Involvement of OAS and PKR in IFNG-induced anti-HSV-1 pathways has not been previously reported, but IFNG induces OAS and PKR when other viruses invade the nervous system. The aim of the current study was to determine whether the absence of intact OAS and PKR anti-viral pathways affect the anti-viral activity of IFNG during acute HSV-1 infection within trigeminal ganglia (TG). To investigate this, primary TG cultures were established using TGs removed from C57BL/6 (Wt), RNase L knockout, and RNase L/PKR double knockout mice. Each dissociated TG was transduced with an adenoviral vector containing an IFNG transgene or vector alone. Viral titers following HSV-1 infection of primary TG cell cultures were determined. Significant differences in viral titer for Ad:Null versus Ad:IFNG tranduced TGs were found in each genotype. However, the effectiveness of Ad:IFNG was not reduced in the absence of both OAS and PKR pathways or OAS alone. Recombinant IFNG also exhibited anti-HSV-1 activity. The effectiveness of the IFNG transgene was lost in primary TG cells from IFNG receptor knockout mice. The data suggest that novel anti-HSV-1 mechanisms are induced by IFNG. PMID:16704298
Phelan, Kevin D.; Shwe, U Thaung; Abramowitz, Joel; Wu, Hong; Rhee, Sung W.; Howell, Matthew D.; Gottschall, Paul E.; Freichel, Marc; Flockerzi, Veit; Birnbaumer, Lutz
2013-01-01
Seizures are the manifestation of highly synchronized burst firing of a large population of cortical neurons. Epileptiform bursts with an underlying plateau potential in neurons are a cellular correlate of seizures. Emerging evidence suggests that the plateau potential is mediated by neuronal canonical transient receptor potential (TRPC) channels composed of members of the TRPC1/4/5 subgroup. We previously showed that TRPC1/4 double-knockout (DKO) mice lack epileptiform bursting in lateral septal neurons and exhibit reduced seizure-induced neuronal cell death, but surprisingly have unaltered pilocarpine-induced seizures. Here, we report that TRPC5 knockout (KO) mice exhibit both significantly reduced seizures and minimal seizure-induced neuronal cell death in the hippocampus. Interestingly, epileptiform bursting induced by agonists for metabotropic glutamate receptors in the hippocampal CA1 area is unaltered in TRPC5 KO mice, but is abolished in TRPC1 KO and TRPC1/4 DKO mice. In contrast, long-term potentiation is greatly reduced in TRPC5 KO mice, but is normal in TRPC1 KO and TRPC1/4 DKO mice. The distinct changes from these knockouts suggest that TRPC5 and TRPC1/4 contribute to seizure and excitotoxicity by distinct cellular mechanisms. Furthermore, the reduced seizure and excitotoxicity and normal spatial learning exhibited in TRPC5 KO mice suggest that TRPC5 is a promising novel molecular target for new therapy. PMID:23188715
Phelan, Kevin D; Shwe, U Thaung; Abramowitz, Joel; Wu, Hong; Rhee, Sung W; Howell, Matthew D; Gottschall, Paul E; Freichel, Marc; Flockerzi, Veit; Birnbaumer, Lutz; Zheng, Fang
2013-02-01
Seizures are the manifestation of highly synchronized burst firing of a large population of cortical neurons. Epileptiform bursts with an underlying plateau potential in neurons are a cellular correlate of seizures. Emerging evidence suggests that the plateau potential is mediated by neuronal canonical transient receptor potential (TRPC) channels composed of members of the TRPC1/4/5 subgroup. We previously showed that TRPC1/4 double-knockout (DKO) mice lack epileptiform bursting in lateral septal neurons and exhibit reduced seizure-induced neuronal cell death, but surprisingly have unaltered pilocarpine-induced seizures. Here, we report that TRPC5 knockout (KO) mice exhibit both significantly reduced seizures and minimal seizure-induced neuronal cell death in the hippocampus. Interestingly, epileptiform bursting induced by agonists for metabotropic glutamate receptors in the hippocampal CA1 area is unaltered in TRPC5 KO mice, but is abolished in TRPC1 KO and TRPC1/4 DKO mice. In contrast, long-term potentiation is greatly reduced in TRPC5 KO mice, but is normal in TRPC1 KO and TRPC1/4 DKO mice. The distinct changes from these knockouts suggest that TRPC5 and TRPC1/4 contribute to seizure and excitotoxicity by distinct cellular mechanisms. Furthermore, the reduced seizure and excitotoxicity and normal spatial learning exhibited in TRPC5 KO mice suggest that TRPC5 is a promising novel molecular target for new therapy.
NEK8 regulates DNA damage-induced RAD51 foci formation and replication fork protection.
Abeyta, Antonio; Castella, Maria; Jacquemont, Celine; Taniguchi, Toshiyasu
2017-02-16
Proteins essential for homologous recombination play a pivotal role in the repair of DNA double strand breaks, DNA inter-strand crosslinks and replication fork stability. Defects in homologous recombination also play a critical role in the development of cancer and the sensitivity of these cancers to chemotherapy. RAD51, an essential factor for homologous recombination and replication fork protection, accumulates and forms immunocytochemically detectable nuclear foci at sites of DNA damage. To identify kinases that may regulate RAD51 localization to sites of DNA damage, we performed a human kinome siRNA library screen, using DNA damage-induced RAD51 foci formation as readout. We found that NEK8, a NIMA family kinase member, is required for efficient DNA damage-induced RAD51 foci formation. Interestingly, knockout of Nek8 in murine embryonic fibroblasts led to cellular sensitivity to the replication inhibitor, hydroxyurea, and inhibition of the ATR kinase. Furthermore, NEK8 was required for proper replication fork protection following replication stall with hydroxyurea. Loading of RAD51 to chromatin was decreased in NEK8-depleted cells and Nek8-knockout cells. Single-molecule DNA fiber analyses revealed that nascent DNA tracts were degraded in the absence of NEK8 following treatment with hydroxyurea. Consistent with this, Nek8-knockout cells showed increased chromosome breaks following treatment with hydroxyurea. Thus, NEK8 plays a critical role in replication fork stability through its regulation of the DNA repair and replication fork protection protein RAD51.
Continuous intrathecal orexin delivery inhibits cataplexy in a murine model of narcolepsy.
Kaushik, Mahesh K; Aritake, Kosuke; Imanishi, Aya; Kanbayashi, Takashi; Ichikawa, Tadashi; Shimizu, Tetsuo; Urade, Yoshihiro; Yanagisawa, Masashi
2018-06-05
Narcolepsy-cataplexy is a chronic neurological disorder caused by loss of orexin (hypocretin)-producing neurons, associated with excessive daytime sleepiness, sleep attacks, cataplexy, sleep paralysis, hypnagogic hallucinations, and fragmentation of nighttime sleep. Currently, human narcolepsy is treated by providing symptomatic therapies, which can be associated with an array of side effects. Although peripherally administered orexin does not efficiently penetrate the blood-brain barrier, centrally delivered orexin can effectively alleviate narcoleptic symptoms in animal models. Chronic intrathecal drug infusion through an implantable pump is a clinically available strategy to treat a number of neurological diseases. Here we demonstrate that the narcoleptic symptoms of orexin knockout mice can be reversed by lumbar-level intrathecal orexin delivery. Orexin was delivered via a chronically implanted intrathecal catheter at the upper lumbar level. The computed tomographic scan confirmed that intrathecally administered contrast agent rapidly moved from the spinal cord to the brain. Intrathecally delivered orexin was detected in the brain by radioimmunoassay at levels comparable to endogenous orexin levels. Cataplexy and sleep-onset REM sleep were significantly decreased in orexin knockout mice during and long after slow infusion of orexin (1 nmol/1 µL/h). Sleep/wake states remained unchanged both quantitatively as well as qualitatively. Intrathecal orexin failed to induce any changes in double orexin receptor-1 and -2 knockout mice. This study supports the concept of intrathecal orexin delivery as a potential therapy for narcolepsy-cataplexy to improve the well-being of patients.
Conditional knockout of retinal determination genes in differentiating cells in Drosophila.
Jin, Meng; Eblimit, Aiden; Pulikkathara, Merlyn; Corr, Stuart; Chen, Rui; Mardon, Graeme
2016-08-01
Conditional gene knockout in postmitotic cells is a valuable technique which allows the study of gene function with spatiotemporal control. Surprisingly, in contrast to its long-term and extensive use in mouse studies, this technology is lacking in Drosophila. Here, we use a novel method for generating complete loss of eyes absent (eya) or sine oculis (so) function in postmitotic cells posterior to the morphogenetic furrow (MF). Specifically, genomic rescue constructs with flippase recognition target (FRT) sequences flanking essential exons are used to generate conditional null alleles. By removing gene function in differentiating cells, we show that eya and so are dispensable for larval photoreceptor differentiation, but are required for differentiation during pupal development. Both eya and so are necessary for photoreceptor survival and the apoptosis caused by loss of eya or so function is likely a secondary consequence of inappropriate differentiation. We also confirm their requirement for cone cell development and reveal a novel role in interommatidial bristle (IOB) formation. In addition, so is required for normal eye disc morphology. This is the first report of a knockout method to study eya and so function in postmitotic cells. This technology will open the door to a large array of new functional studies in virtually any tissue and at any stage of development or in adults. © 2016 Federation of European Biochemical Societies.
Michalko, Jaroslav; Glanc, Matouš; Perrot-Rechenmann, Catherine; Friml, Jiří
2016-01-01
The Auxin Binding Protein 1 (ABP1) is one of the most studied proteins in plants. Since decades ago, it has been the prime receptor candidate for the plant hormone auxin with a plethora of described functions in auxin signaling and development. The developmental importance of ABP1 has recently been questioned by identification of Arabidopsis thaliana abp1 knock-out alleles that show no obvious phenotypes under normal growth conditions. In this study, we examined the contradiction between the normal growth and development of the abp1 knock-outs and the strong morphological defects observed in three different ethanol-inducible abp1 knock-down mutants ( abp1-AS, SS12K, SS12S). By analyzing segregating populations of abp1 knock-out vs. abp1 knock-down crosses we show that the strong morphological defects that were believed to be the result of conditional down-regulation of ABP1 can be reproduced also in the absence of the functional ABP1 protein. This data suggests that the phenotypes in abp1 knock-down lines are due to the off-target effects and asks for further reflections on the biological function of ABP1 or alternative explanations for the missing phenotypic defects in the abp1 loss-of-function alleles.
Xu, Xihui; Pang, Jiaojiao; Chen, Yuguo; Bucala, Richard; Zhang, Yingmei; Ren, Jun
2016-03-04
Aging leads to unfavorable geometric and functional sequelae in the heart. The proinflammatory cytokine macrophage migration inhibitory factor (MIF) plays a role in the maintenance of cardiac homeostasis under stress conditions although its impact in cardiac aging remains elusive. This study was designed to evaluate the role of MIF in aging-induced cardiac anomalies and the underlying mechanism involved. Cardiac geometry, contractile and intracellular Ca(2+) properties were examined in young (3-4 mo) or old (24 mo) wild type and MIF knockout (MIF(-/-)) mice. Our data revealed that MIF knockout exacerbated aging-induced unfavorable structural and functional changes in the heart. The detrimental effect of MIF knockout was associated with accentuated loss in cardiac autophagy with aging. Aging promoted cardiac inflammation, the effect was attenuated by MIF knockout. Intriguingly, aging-induced unfavorable responses were reversed by treatment with the autophagy inducer rapamycin, with improved myocardial ATP availability in aged WT and MIF(-/-) mice. Using an in vitro model of senescence, MIF knockdown exacerbated doxorubicin-induced premature senescence in H9C2 myoblasts, the effect was ablated by MIF replenishment. Our data indicated that MIF knockout exacerbates aging-induced cardiac remodeling and functional anomalies despite improved inflammation, probably through attenuating loss of autophagy and ATP availability in the heart.
Neuraminidases 3 and 4 regulate neuronal function by catabolizing brain gangliosides.
Pan, Xuefang; De Aragão, Camila De Britto Pará; Velasco-Martin, Juan P; Priestman, David A; Wu, Harry Y; Takahashi, Kohta; Yamaguchi, Kazunori; Sturiale, Luisella; Garozzo, Domenico; Platt, Frances M; Lamarche-Vane, Nathalie; Morales, Carlos R; Miyagi, Taeko; Pshezhetsky, Alexey V
2017-08-01
Gangliosides (sialylated glycolipids) play an essential role in the CNS by regulating recognition and signaling in neurons. Metabolic blocks in processing and catabolism of gangliosides result in the development of severe neurologic disorders, including gangliosidoses manifesting with neurodegeneration and neuroinflammation. We demonstrate that 2 mammalian enzymes, neuraminidases 3 and 4, play important roles in catabolic processing of brain gangliosides by cleaving terminal sialic acid residues in their glycan chains. In neuraminidase 3 and 4 double-knockout mice, G M3 ganglioside is stored in microglia, vascular pericytes, and neurons, causing micro- and astrogliosis, neuroinflammation, accumulation of lipofuscin bodies, and memory loss, whereas their cortical and hippocampal neurons have lower rate of neuritogenesis in vitro Double-knockout mice also have reduced levels of G M1 ganglioside and myelin in neuronal axons. Furthermore, neuraminidase 3 deficiency drastically increased storage of G M2 in the brain tissues of an asymptomatic mouse model of Tay-Sachs disease, a severe human gangliosidosis, indicating that this enzyme is responsible for the metabolic bypass of β-hexosaminidase A deficiency. Together, our results provide the first in vivo evidence that neuraminidases 3 and 4 have important roles in CNS function by catabolizing gangliosides and preventing their storage in lipofuscin bodies.-Pan, X., De Britto Pará De Aragão, C., Velasco-Martin, J. P., Priestman, D. A., Wu, H. Y., Takahashi, K., Yamaguchi, K., Sturiale, L., Garozzo, D., Platt, F. M., Lamarche-Vane, N., Morales, C. R., Miyagi, T., Pshezhetsky, A. V. Neuraminidases 3 and 4 regulate neuronal function by catabolizing brain gangliosides. © FASEB.
Ohnishi, Mutsuko; Kato, Shigeko; Razzaque, M. Shawkat
2013-01-01
Objective The adverse effects of metabolic disorders in obesity have been extensively studied; however, the pathologic effects of hyperphosphatemia or phosphate toxicity in obesity have not been studied in similar depth and detail, chiefly because such an association is thought to be uncommon. Studies have established that the incidence of obesity-associated nephropathy is increasing. Because hyperphosphatemia is a major consequence of renal impairment, this study determines the in vivo effects of hyperphosphatemia in obesity. Methods and results We genetically induced hyperphosphatemia in leptin-deficient obese (ob/ob) mice by generating ob/ob and klotho double knockout [ob/ob-klotho−/−] mice. As a control, we made ob/ob mice with hypophosphatemia by generating ob/ob and 1-alpha hydroxylase double knockout [ob/ob-1α(OH)ase−/−] mice. Compared to the wild-type mice, all three obese background mice, namely ob/ob, ob/ob-klotho−/−, and ob/ob-1α(OH)ase−/− mice developed hypercholesterolemia. In addition, the hyperphosphatemic, ob/ob-klotho−/− genetic background induced generalized tissue atrophy and widespread soft-tissue and vascular calcifications, which led to a shorter lifespan; no such changes were observed in the hypophosphatemic, ob/ob-1α(OH)ase−/− mice. Significantly, in contrast to the reduced survival of the ob/ob-klotho−/− mice, lowering serum phosphate levels in ob/ob-1α(OH)ase−/− mice showed no such compromised survival, despite both mice being hypercholesterolemic. Conclusion These genetic manipulation studies suggest phosphate toxicity is an important risk factor in obesity that can adversely affect survival. PMID:22037453
Ohnishi, Mutsuko; Kato, Shigeko; Razzaque, M Shawkat
2011-11-25
The adverse effects of metabolic disorders in obesity have been extensively studied; however, the pathologic effects of hyperphosphatemia or phosphate toxicity in obesity have not been studied in similar depth and detail, chiefly because such an association is thought to be uncommon. Studies have established that the incidence of obesity-associated nephropathy is increasing. Because hyperphosphatemia is a major consequence of renal impairment, this study determines the in vivo effects of hyperphosphatemia in obesity. We genetically induced hyperphosphatemia in leptin-deficient obese (ob/ob) mice by generating ob/ob and klotho double knockout [ob/ob-klotho(-/-)] mice. As a control, we made ob/ob mice with hypophosphatemia by generating ob/ob and 1-alpha hydroxylase double knockout [ob/ob-1α(OH)ase(-/-)] mice. Compared to the wild-type mice, all three obese background mice, namely ob/ob, ob/ob-klotho(-/-), and ob/ob-1α(OH)ase(-/-) mice developed hypercholesterolemia. In addition, the hyperphosphatemic, ob/ob-klotho(-/-) genetic background induced generalized tissue atrophy and widespread soft-tissue and vascular calcifications, which led to a shorter lifespan; no such changes were observed in the hypophosphatemic, ob/ob-1α(OH)ase(-/-) mice. Significantly, in contrast to the reduced survival of the ob/ob-klotho(-/-) mice, lowering serum phosphate levels in ob/ob-1α(OH)ase(-/-) mice showed no such compromised survival, despite both mice being hypercholesterolemic. These genetic manipulation studies suggest phosphate toxicity is an important risk factor in obesity that can adversely affect survival. Copyright © 2011 Elsevier Inc. All rights reserved.
Thyroid Hormone Transporters MCT8 and OATP1C1 Control Skeletal Muscle Regeneration.
Mayerl, Steffen; Schmidt, Manuel; Doycheva, Denica; Darras, Veerle M; Hüttner, Sören S; Boelen, Anita; Visser, Theo J; Kaether, Christoph; Heuer, Heike; von Maltzahn, Julia
2018-06-05
Thyroid hormone (TH) transporters are required for the transmembrane passage of TH in target cells. In humans, inactivating mutations in the TH transporter MCT8 cause the Allan-Herndon-Dudley syndrome, characterized by severe neuromuscular symptoms and an abnormal TH serum profile, which is fully replicated in Mct8 knockout mice and Mct8/Oatp1c1 double-knockout (M/O DKO) mice. Analysis of tissue TH content and expression of TH-regulated genes indicate a thyrotoxic state in Mct8-deficient skeletal muscles. Both TH transporters are upregulated in activated satellite cells (SCs). In M/O DKO mice, we observed a strongly reduced number of differentiated SCs, suggesting an impaired stem cell function. Moreover, M/O DKO mice and mice lacking both transporters exclusively in SCs showed impaired skeletal muscle regeneration. Our data provide solid evidence for a unique gate-keeper function of MCT8 and OATP1C1 in SC activation, underscoring the importance of a finely tuned TH signaling during myogenesis. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
O-Sullivan, InSug; Zhang, Wenwei; Wasserman, David H.; Liew, Chong Wee; Liu, Jonathan; Paik, Jihye; DePinho, Ronald A.; Stolz, Donna Beer; Kahn, C. Ronald; Schwartz, Michael W.; Unterman, Terry G.
2016-01-01
FoxO proteins are major targets of insulin action. To better define the role of FoxO1 in mediating insulin effects in the liver, we generated liver-specific insulin receptor knockout (LIRKO) and IR/FoxO1 double knockout (LIRFKO) mice. Here we show that LIRKO mice are severely insulin resistant based on glucose, insulin and C-peptide levels, and glucose and insulin tolerance tests, and genetic deletion of hepatic FoxO1 reverses these effects. 13C-glucose and insulin clamp studies indicate that regulation of both hepatic glucose production (HGP) and glucose utilization is impaired in LIRKO mice, and these defects are also restored in LIRFKO mice corresponding to changes in gene expression. We conclude that (1) inhibition of FoxO1 is critical for both direct (hepatic) and indirect effects of insulin on HGP and utilization, and (2) extrahepatic effects of insulin are sufficient to maintain normal whole-body and hepatic glucose metabolism when liver FoxO1 activity is disrupted. PMID:25963540
Fernández-Hernando, Carlos; Yu, Jun; Suárez, Yajaira; Rahner, Christoph; Dávalos, Alberto; Lasunción, Miguel A.; Sessa, William C.
2009-01-01
SUMMARY The accumulation of LDL-derived cholesterol in the artery wall is the initiating event that causes atherosclerosis. However, the mechanisms that lead to the initiation of atherosclerosis are still poorly understood. Here, by using endothelial cell-specific transgenesis of the caveolin-1 (Cav-1) gene in mice, we show the critical role of Cav-1 in promoting atherogenesis. Mice were generated lacking Cav-1 and apoE but expressing endothelial-specific Cav-1 in the double knockout background. Genetic ablation of Cav-1 on an apoE knockout background inhibits the progression of atherosclerosis while re-expression of Cav-1 in the endothelium promotes lesion expansion. Mechanistically, the loss of Cav-1 reduces LDL infiltration into the artery wall, promotes nitric oxide production and reduces the expression of leukocyte adhesion molecules, effects completely reversed in transgenic mice. In summary, this unique model provides physiological evidence supporting the important role of endothelial Cav-1 expression in regulating the entry of LDL into the vessel wall and the initiation of atherosclerosis. PMID:19583953
Fujimura, Tatsuya; Takahagi, Yoichi; Shigehisa, Tamotsu; Nagashima, Hiroshi; Miyagawa, Shuji; Shirakura, Ryota; Murakami, Hiroshi
2008-09-01
The objective of the present study was to isolate alpha 1,3-galactosyltransferase (GalGT)-gene double knockout (DKO) cells using a novel simple method of cell selection method. To obtain GalGT-DKO cells, GalGT-gene single knockout (SKO) fetal fibroblast cells were cultured for three to nine passages and GalGT-null cells were separated using a biotin-labeled IB4 lectin attached to streptavidin-coated magnetic beads. After 15-17 days of additional cultivation, seven GalGT-DKO cell colonies were obtained from a total of 2.5 x 10(7) GalGT-SKO cells. A total of 926 somatic nuclear transferred embryos reconstructed with the DKO cells were transferred into eight recipient pigs, producing four farrowed, three liveborns, and six stillborns. Absence of GalGT gene in the cloned pigs was confirmed by PCR and Southern blotting. Flow cytometric analysis revealed that alphaGal antigens were not present in the cells of the cloned DKO pigs.
Transcription factors WRKY11 and WRKY17 are involved in abiotic stress responses in Arabidopsis.
Ali, Muhammad Amjad; Azeem, Farrukh; Nawaz, Muhammad Amjad; Acet, Tuba; Abbas, Amjad; Imran, Qari Muhammad; Shah, Kausar Hussain; Rehman, Hafiz Mamoon; Chung, Gyuhwa; Yang, Seung Hwan; Bohlmann, Holger
2018-04-17
Plant WRKY transcription factors play a vital role in abiotic stress tolerance and regulation of plant defense responses. This study examined AtWRKY11 and AtWRKY17 expression under ABA, salt, and osmotic stress at different developmental stages in Arabidopsis. We used reverse transcriptase PCR, quantitative real-time PCR, and promoter:GUS lines to analyze expression. Both genes were upregulated in response to abiotic stress. Next, we applied the same stressors to seedlings of T-DNA insertion wrky11 and 17 knock-out mutants (single and double). Under stress, the mutants exhibited slower germination and compromised root growth compared with the wild type. In most cases, double-mutant seedlings were more affected than single mutants. These results suggest that wrky11 and wrky17 are not strictly limited to plant defense responses but are also involved in conferring stress tolerance. Copyright © 2018 Elsevier GmbH. All rights reserved.
GLT-1: The elusive presynaptic glutamate transporter
Rimmele, Theresa S.; Rosenberg, Paul A.
2016-01-01
Historically, glutamate uptake in the CNS was mainly attributed to glial cells for three reasons: 1) none of the glutamate transporters were found to be located in presynaptic terminals of excitatory synapses; 2) the putative glial transporters, GLT-1 and GLAST are expressed at high levels in astrocytes; 3) studies of the constitutive GLT-1 knockout as well as pharmacological studies demonstrated that >90% of glutamate uptake into forebrain synaptosomes is mediated by the operation of GLT-1. Here we summarize the history leading up to the recognition of GLT-1a as a presynaptic glutamate transporter. A major issue now is understanding the physiological and pathophysiologial significance of the expression of GLT-1 in presynaptic terminals. To elucidate the cell-type specific functions of GLT-1, a conditional knockout was generated with which to inactivate the GLT-1 gene in different cell types using Cre/lox technology. Astrocytic knockout led to an 80% reduction of GLT-1 expression, resulting in intractable seizures and early mortality as seen also in the constitutive knockout. Neuronal knockout was associated with no obvious phenotype. Surprisingly, synaptosomal uptake capacity (Vmax) was found to be significantly reduced, by 40%, in the neuronal knockout, indicating that the contribution of neuronal GLT-1 to synaptosomal uptake is disproportionate to its protein expression (5–10%). Conversely, the contribution of astrocytic GLT-1 to synaptosomal uptake was much lower than expected. In contrast, the loss of uptake into liposomes prepared from brain protein from astrocyte and neuronal knockouts was proportionate with the loss of GLT-1 protein, suggesting that a large portion of GLT-1 in astrocytic membranes in synaptosomal preparations is not functional, possibly because of a failure to reseal. These results suggest the need to reinterpret many previous studies using synaptosomal uptake to investigate glutamate transport itself as well as changes in glutamate homeostasis associated with normal functions, neurodegeneration, and response to drugs. PMID:27129805
Altered Sleep and Affect in the Neurotensin Receptor 1 Knockout Mouse
Fitzpatrick, Karrie; Winrow, Christopher J.; Gotter, Anthony L.; Millstein, Joshua; Arbuzova, Janna; Brunner, Joseph; Kasarskis, Andrew; Vitaterna, Martha H.; Renger, John J.; Turek, Fred W.
2012-01-01
Study Objective: Sleep and mood disorders have long been understood to have strong genetic components, and there is considerable comorbidity of sleep abnormalities and mood disorders, suggesting the involvement of common genetic pathways. Here, we examine a candidate gene implicated in the regulation of both sleep and affective behavior using a knockout mouse model. Design: Previously, we identified a quantitative trait locus (QTL) for REM sleep amount, REM sleep bout number, and wake amount in a genetically segregating population of mice. Here, we show that traits mapping to this QTL correlated with an expression QTL for neurotensin receptor 1 (Ntsr1), a receptor for neurotensin, a ligand known to be involved in several psychiatric disorders. We examined sleep as well as behaviors indicative of anxiety and depression in the NTSR1 knockout mouse. Measurements and Results: NTSR1 knockouts had a lower percentage of sleep time spent in REM sleep in the dark phase and a larger diurnal variation in REM sleep duration than wild types under baseline conditions. Following sleep deprivation, NTSR1 knockouts exhibited more wake and less NREM rebound sleep. NTSR1 knockouts also showed increased anxious and despair behaviors. Conclusions: Here we illustrate a link between expression of the Ntsr1 gene and sleep traits previously associated with a particular QTL. We also demonstrate a relationship between Ntsr1 and anxiety and despair behaviors. Given the considerable evidence that anxiety and depression are closely linked with abnormalities in sleep, the data presented here provide further evidence that neurotensin and Ntsr1 may be a component of a pathway involved in both sleep and mood disorders. Citation: Fitzpatrick K; Winrow CJ; Gotter AL; Millstein J; Arbuzova J; Brunner J; Kasarskis A; Vitaterna MH; Renger JJ; Turek FW. Altered sleep and affect in the neurotensin receptor 1 knockout mouse. SLEEP 2012;35(7):949-956. PMID:22754041
Of Men and Mice: Modeling the Fragile X Syndrome
Dahlhaus, Regina
2018-01-01
The Fragile X Syndrome (FXS) is one of the most common forms of inherited intellectual disability in all human societies. Caused by the transcriptional silencing of a single gene, the fragile x mental retardation gene FMR1, FXS is characterized by a variety of symptoms, which range from mental disabilities to autism and epilepsy. More than 20 years ago, a first animal model was described, the Fmr1 knock-out mouse. Several other models have been developed since then, including conditional knock-out mice, knock-out rats, a zebrafish and a drosophila model. Using these model systems, various targets for potential pharmaceutical treatments have been identified and many treatments have been shown to be efficient in preclinical studies. However, all attempts to turn these findings into a therapy for patients have failed thus far. In this review, I will discuss underlying difficulties and address potential alternatives for our future research. PMID:29599705
Mutagenesis and phenotyping resources in zebrafish for studying development and human disease
Varshney, Gaurav Kumar
2014-01-01
The zebrafish (Danio rerio) is an important model organism for studying development and human disease. The zebrafish has an excellent reference genome and the functions of hundreds of genes have been tested using both forward and reverse genetic approaches. Recent years have seen an increasing number of large-scale mutagenesis projects and the number of mutants or gene knockouts in zebrafish has increased rapidly, including for the first time conditional knockout technologies. In addition, targeted mutagenesis techniques such as zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short sequences (CRISPR) or CRISPR-associated (Cas), have all been shown to effectively target zebrafish genes as well as the first reported germline homologous recombination, further expanding the utility and power of zebrafish genetics. Given this explosion of mutagenesis resources, it is now possible to perform systematic, high-throughput phenotype analysis of all zebrafish gene knockouts. PMID:24162064
Hypervitaminosis D mediates compensatory Ca2+ hyperabsorption in TRPV5 knockout mice.
Renkema, Kirsten Y; Nijenhuis, Tom; van der Eerden, Bram C J; van der Kemp, Annemiete W C M; Weinans, Harrie; van Leeuwen, Johannes P T M; Bindels, René J M; Hoenderop, Joost G J
2005-11-01
Vitamin D plays an important role in Ca(2+) homeostasis by controlling Ca(2+) (re)absorption in intestine, kidney, and bone. The epithelial Ca(2+) channel TRPV5 mediates the Ca(2+) entry step in active Ca(2+) reabsorption. TRPV5 knockout (TRPV5(-/-)) mice show impaired Ca(2+) reabsorption, hypercalciuria, hypervitaminosis D, and intestinal hyperabsorption of Ca(2+). Moreover, these mice demonstrate upregulation of intestinal TRPV6 and calbindin-D(9K) expression compared with wild-type mice. For addressing the role of the observed hypervitaminosis D in the maintenance of Ca(2+) homeostasis and the regulation of expression levels of the Ca(2+) transport proteins in kidney and intestine, TRPV5/25-hydroxyvitamin-D(3)-1alpha-hydroxylase double knockout (TRPV5(-/-)/1alpha-OHase(-/-)) mice, which show undetectable serum 1,25(OH)(2)D(3) levels, were generated. TRPV5(-/-)/1alpha-OHase(-/-) mice displayed a significant hypocalcemia compared with wild-type mice (1.10 +/- 0.02 and 2.54 +/- 0.01 mM, respectively; P < 0.05). mRNA levels of renal calbindin-D(28K) (7 +/- 2%), calbindin-D(9K) (32 +/- 4%), Na(+)/Ca(2+) exchanger (12 +/- 2%), and intestinal TRPV6 (40 +/- 8%) and calbindin-D(9K) (26 +/- 4%) expression levels were decreased compared with wild-type mice. Hyperparathyroidism and rickets were present in TRPV5(-/-)/1alpha-OHase(-/-) mice, more pronounced than observed in single TRPV5 or 1alpha-OHase knockout mice. It is interesting that a renal Ca(2+) leak, as demonstrated in TRPV5(-/-) mice, persisted in TRPV5(-/-)/1alpha-OHase(-/-) mice, but a compensatory upregulation of intestinal Ca(2+) transporters was abolished. In conclusion, the elevation of serum 1,25(OH)(2)D(3) levels in TRPV5(-/-) mice is responsible for the upregulation of intestinal Ca(2+) transporters and Ca(2+) hyperabsorption. Hypervitaminosis D, therefore, is of crucial importance to maintain normocalcemia in impaired Ca(2+) reabsorption in TRPV5(-/-) mice.
Song, Yuanlin; Jayaraman, Sujatha; Yang, Baoxue; Matthay, Michael A.; Verkman, A.S.
2001-01-01
Several aquaporin-type water channels are expressed in mammalian airways and lung: AQP1 in microvascular endothelia, AQP3 in upper airway epithelia, AQP4 in upper and lower airway epithelia, and AQP5 in alveolar epithelia. Novel quantitative methods were developed to compare airway fluid transport–related functions in wild-type mice and knockout mice deficient in these aquaporins. Lower airway humidification, measured from the moisture content of expired air during mechanical ventilation with dry air through a tracheotomy, was 54–56% efficient in wild-type mice, and reduced by only 3–4% in AQP1/AQP5 or AQP3/AQP4 double knockout mice. Upper airway humidification, measured from the moisture gained by dry air passed through the upper airways in mice breathing through a tracheotomy, decreased from 91 to 50% with increasing ventilation from 20 to 220 ml/min, and reduced by 3–5% in AQP3/AQP4 knockout mice. The depth and salt concentration of the airway surface liquid in trachea was measured in vivo using fluorescent probes and confocal and ratio imaging microscopy. Airway surface liquid depth was 45 ± 5 μm and [Na+] was 115 ± 4 mM in wild-type mice, and not significantly different in AQP3/AQP4 knockout mice. Osmotic water permeability in upper airways, measured by an in vivo instillation/sample method, was reduced by ∼40% by AQP3/AQP4 deletion. In doing these measurements, we discovered a novel amiloride-sensitive isosmolar fluid absorption process in upper airways (13% in 5 min) that was not affected by aquaporin deletion. These results establish the fluid transporting properties of mouse airways, and indicate that aquaporins play at most a minor role in airway humidification, ASL hydration, and isosmolar fluid absorption. PMID:11382807
Meyer, Neele; Richter, S. Helene; Schreiber, Rebecca S.; Kloke, Vanessa; Kaiser, Sylvia; Lesch, Klaus-Peter; Sachser, Norbert
2016-01-01
Anxiety and aggression are part of the behavioral repertoire of humans and animals. However, in their exaggerated form both can become maladaptive and result in psychiatric disorders. On the one hand, genetic predisposition has been shown to play a crucial modulatory role in anxiety and aggression. On the other hand, social experiences have been implicated in the modulation of these traits. However, so far, mainly experiences in early life phases have been considered crucial for shaping anxiety-like and aggressive behavior, while the phase of adolescence has largely been neglected. Therefore, the aim of the present study was to elucidate how levels of anxiety-like and aggressive behavior are shaped by social experiences during adolescence and serotonin transporter (5-HTT) genotype. For this purpose, male mice of a 5-HTT knockout mouse model including all three genotypes (wildtype, heterozygous and homozygous 5-HTT knockout mice) were either exposed to an adverse social situation or a beneficial social environment during adolescence. This was accomplished in a custom-made cage system where mice experiencing the adverse environment were repeatedly introduced to the territory of a dominant opponent but had the possibility to escape to a refuge cage. Mice encountering beneficial social conditions had free access to a female mating partner. Afterwards, anxiety-like and aggressive behavior was assessed in a battery of tests. Surprisingly, unfavorable conditions during adolescence led to a decrease in anxiety-like behavior and an increase in exploratory locomotion. Additionally, aggressive behavior was augmented in animals that experienced social adversity. Concerning genotype, homozygous 5-HTT knockout mice were more anxious and less aggressive than heterozygous 5-HTT knockout and wildtype mice. In summary, adolescence is clearly an important phase in which anxiety-like and aggressive behavior can be shaped. Furthermore, it seems that having to cope with challenge during adolescence instead of experiencing throughout beneficial social conditions leads to reduced levels of anxiety-like behavior. PMID:27303275
Martínez-Silva, Ana Valeria; Aguirre-Martínez, César; Flores-Tinoco, Carlos E.; Alejandri-Ramírez, Naholi D.; Dinkova, Tzvetanka D.
2012-01-01
One of the most regulated steps of translation initiation is the recruitment of mRNA by the translation machinery. In eukaryotes, this step is mediated by the 5′end cap-binding factor eIF4E bound to the bridge protein eIF4G and forming the eIF4F complex. In plants, different isoforms of eIF4E and eIF4G form the antigenically distinct eIF4F and eIF(iso)4F complexes proposed to mediate selective translation. Using a microarray analysis of polyribosome- and non-polyribosome-purified mRNAs from 15 day-old Arabidopsis thaliana wild type [WT] and eIF(iso)4E knockout mutant [(iso)4E-1] seedlings we found 79 transcripts shifted from polyribosomes toward non-polyribosomes, and 47 mRNAs with the opposite behavior in the knockout mutant. The translationally decreased mRNAs were overrepresented in root-preferentially expressed genes and proteins from the endomembrane system, including several transporters such as the phosphate transporter PHOSPHATE1 (PHO1), Sucrose transporter 3 (SUC3), ABC transporter-like with ATPase activity (MRP11) and five electron transporters, as well as signal transduction-, protein modification- and transcription-related proteins. Under normal growth conditions, eIF(iso)4E expression under the constitutive promoter 35 S enhanced the polyribosomal recruitment of PHO1 supporting its translational preference for eIF(iso)4E. Furthermore, under phosphate deficiency, the PHO1 protein increased in the eIF(iso)4E overexpressing plants and decreased in the knockout mutant as compared to wild type. In addition, the knockout mutant had larger root, whereas the 35 S directed expression of eIF(iso)4E caused shorter root under normal growth conditions, but not under phosphate deficiency. These results indicate that selective translation mediated by eIF(iso)4E is relevant for Arabidopsis root development under normal growth conditions. PMID:22363683
Vranjkovic, Oliver; Hang, Shona; Baker, David A.
2012-01-01
Stress can trigger the relapse of drug use in recovering cocaine addicts and reinstatement in rodent models through mechanisms that may involve norepinephrine release and β-adrenergic receptor activation. The present study examined the role of β-adrenergic receptor subtypes in the stressor-induced reinstatement of extinguished cocaine-induced (15 mg/kg i.p.) conditioned place preference in mice. Forced swim (6 min at 22°C) stress or activation of central noradrenergic neurotransmission by administration of the selective α2 adrenergic receptor antagonist 2-[(4,5-dihydro-1H-imidazol-2-yl)methyl]-2,3-dihydro-1-methyl-1H-isoindole (BRL-44,408) (10 mg/kg i.p.) induced reinstatement in wild-type, but not β- adrenergic receptor-deficient Adrb1/Adrb2 double-knockout, mice. In contrast, cocaine administration (15 mg/kg i.p.) resulted in reinstatement in both wild-type and β-adrenergic receptor knockout mice. Stress-induced reinstatement probably involved β2 adrenergic receptors. The β2 adrenergic receptor antagonist -(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]butan-2-ol (ICI-118,551) (1 or 2 mg/kg i.p.) blocked reinstatement by forced swim or BRL-44,408, whereas administration of the nonselective β-adrenergic receptor agonist isoproterenol (2 or 4 mg/kg i.p.) or the β2 adrenergic receptor-selective agonist clenbuterol (2 or 4 mg/kg i.p.) induced reinstatement. Forced swim-induced, but not BRL-44,408-induced, reinstatement was also blocked by a high (20 mg/kg) but not low (10 mg/kg) dose of the β1 adrenergic receptor antagonist betaxolol, and isoproterenol-induced reinstatement was blocked by pretreatment with either ICI-118,551 or betaxolol, suggesting a potential cooperative role for β1 and β2 adrenergic receptors in stress-induced reinstatement. Overall, these findings suggest that targeting β-adrenergic receptors may represent a promising pharmacotherapeutic strategy for preventing drug relapse, particularly in cocaine addicts whose drug use is stress related. PMID:22593095
Vitushynska, M V; Matiytsiv, N P; Chernyk, Y
2015-01-01
The study has shown that both functional gene knockout Sodl and Sod2 and their overexpression in neurons and glial tissue increase the sensitivity of Drosophila melanogaster to oxidative stress (OS) conditions. The lowest survival rate was only 20.5% in insects with Sod2 knockout in neurons. Comparative analysis of the survival curves showed that adults with altered tissue-specific expression of the studied genes had reduced average and maximum life span. Under OS conditions induced by 5% hydrogen peroxide the life spans of wild type Oregon R and transgenic insects were significantly reduced. Altered Sod gene expression in glial tissue leads to degenerative changes in Drosophila brain at the young age. During the aging of insects and the action of pro-oxidants increasing of neurodegenerative phenotype is observed.
Tolmachova, Tanya; Anders, Ross; Abrink, Magnus; Bugeon, Laurence; Dallman, Margaret J.; Futter, Clare E.; Ramalho, José S.; Tonagel, Felix; Tanimoto, Naoyuki; Seeliger, Mathias W.; Huxley, Clare; Seabra, Miguel C.
2006-01-01
Choroideremia (CHM) is an X-linked degeneration of the retinal pigment epithelium (RPE), photoreceptors, and choroid, caused by loss of function of the CHM/REP1 gene. REP1 is involved in lipid modification (prenylation) of Rab GTPases, key regulators of intracellular vesicular transport and organelle dynamics. To study the pathogenesis of CHM and to develop a model for assessing gene therapy, we have created a conditional mouse knockout of the Chm gene. Heterozygous-null females exhibit characteristic hallmarks of CHM: progressive degeneration of the photoreceptors, patchy depigmentation of the RPE, and Rab prenylation defects. Using tamoxifen-inducible and tissue-specific Cre expression in combination with floxed Chm alleles, we show that CHM pathogenesis involves independently triggered degeneration of photoreceptors and the RPE, associated with different subsets of defective Rabs. PMID:16410831
Takeuchi, Koichi; Gertner, Michael J; Zhou, Jing; Parada, Luis F; Bennett, Michael V L; Zukin, R Suzanne
2013-03-19
The phosphoinositide signaling system is a crucial regulator of neural development, cell survival, and plasticity. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) negatively regulates phosphatidylinositol 3-kinase signaling and downstream targets. Nse-Cre Pten conditional knockout mice, in which Pten is ablated in granule cells of the dentate gyrus and pyramidal neurons of the hippocampal CA3, but not CA1, recapitulate many of the symptoms of humans with inactivating PTEN mutations, including progressive hypertrophy of the dentate gyrus and deficits in hippocampus-based social and cognitive behaviors. However, the impact of Pten loss on activity-dependent synaptic plasticity in this clinically relevant mouse model of Pten inactivation remains unclear. Here, we show that two phosphatidylinositol 3-kinase- and protein synthesis-dependent forms of synaptic plasticity, theta burst-induced long-term potentiation and metabotropic glutamate receptor (mGluR)-dependent long-term depression, are dysregulated at medial perforant path-to-dentate gyrus synapses of young Nse-Cre Pten conditional knockout mice before the onset of visible morphological abnormalities. In contrast, long-term potentiation and mGluR-dependent long-term depression are normal at CA3-CA1 pyramidal cell synapses at this age. Our results reveal that deletion of Pten in dentate granule cells dysregulates synaptic plasticity, a defect that may underlie abnormal social and cognitive behaviors observed in humans with Pten inactivating mutations and potentially other autism spectrum disorders.
Cdk5 modulates cocaine reward, motivation, and striatal neuron excitability.
Benavides, David R; Quinn, Jennifer J; Zhong, Ping; Hawasli, Ammar H; DiLeone, Ralph J; Kansy, Janice W; Olausson, Peter; Yan, Zhen; Taylor, Jane R; Bibb, James A
2007-11-21
Cyclin-dependent kinase 5 (Cdk5) regulates dopamine neurotransmission and has been suggested to serve as a homeostatic target of chronic psychostimulant exposure. To study the role of Cdk5 in the modulation of the cellular and behavioral effects of psychoactive drugs of abuse, we developed Cre/loxP conditional knock-out systems that allow temporal and spatial control of Cdk5 expression in the adult brain. Here, we report the generation of Cdk5 conditional knock-out (cKO) mice using the alphaCaMKII promoter-driven Cre transgenic line (CaMKII-Cre). In this model system, loss of Cdk5 in the adult forebrain increased the psychomotor-activating effects of cocaine. Additionally, these CaMKII-Cre Cdk5 cKO mice show enhanced incentive motivation for food as assessed by instrumental responding on a progressive ratio schedule of reinforcement. Behavioral changes were accompanied by increased excitability of medium spiny neurons in the nucleus accumbens (NAc) in Cdk5 cKO mice. To study NAc-specific effects of Cdk5, another model system was used in which recombinant adeno-associated viruses expressing Cre recombinase caused restricted loss of Cdk5 in NAc neurons. Targeted knock-out of Cdk5 in the NAc facilitated cocaine-induced locomotor sensitization and conditioned place preference for cocaine. These results suggest that Cdk5 acts as a negative regulator of neuronal excitability in the NAc and that Cdk5 may govern the behavioral effects of cocaine and motivation for reinforcement.
Alcoholic fatty liver is enhanced in CYP2A5 knockout mice: the role of the PPARα-FGF21 axis
Chen, Xue; Ward, Stephen C.; Cederbaum, Arthur I.; Xiong, Huabao; Lu, Yongke
2017-01-01
Background & Aims Cytochrome P450 2A5 (CYP2A5) is induced by ethanol, and the ethanol induction of CYP2A5 is regulated by nuclear factor-erythroid 2-related factor 2 (NRF2). Cyp2a5 knockout (Cyp2a5−/−) mice develop more severe alcoholic fatty liver than Cyp2a5+/+ mice. Fibroblast growth factor 21 (FGF21), a PPARα-regulated liver hormone, is involved in hepatic lipid metabolism. Alcoholic and non-alcoholic fatty liver are enhanced in Pparα knockout (Pparα−/−) mice. This study investigates the relationship between the PPARα-FGF21 axis and the enhanced alcoholic fatty liver in Cyp2a5−/− mice. Methods Mice were fed the Lieber-Decarli ethanol diet to induce alcoholic fatty liver. Results More severe alcoholic fatty liver disease was developed in Cyp2a5−/− mice than in Cyp2a5+/+ mice. Basal FGF21 levels were higher in Cyp2a5−/− mice than in Cyp2a5+/+ mice, but ethanol did not further increase the elevated FGF21 levels in Cyp2a5−/− mice while FGF21 was induced by ethanol in Cyp2a5+/+ mice. Basal levels of serum FGF21 were lower in Pparα−/− mice than in Pparα+/+ mice; ethanol induced FGF21 in Pparα+/+ mice but not in Pparα−/− mice, whereas ethanol induced hypertriglyceridemia in Pparα−/− mice but not in Pparα+/+ mice. Administration of recombinant FGF21 normalized serum FGF21 and triglyceride in Pparα−/− mice. Alcoholic fatty liver was enhanced in liver-specific Fgf21 knockout mice. Pparα and Cyp2a5 double knockout (Pparα−/−/Cyp2a5−/−) mice developed more severe alcoholic fatty liver than Pparα+/+/Cyp2a5−/− mice. Conclusions These results suggest that CYP2A5 protects against the development of alcoholic fatty liver disease, and the PPARα-FGF21 axis contributes to the protective effects of CYP2A5 on alcoholic fatty liver disease. PMID:28131861
Cho, Lily Ting-yin; Andrews, Robert; Carroll, Thomas; Iyer, Vivek; Tate, Peri; Rosen, Barry; Stunnenberg, Hendrik G.; Fisher, Amanda G.; Skarnes, William C.
2017-01-01
Abstract Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC ‘knockout-first’ ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the ‘knockout-first’ allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency ‘2i’ media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors. PMID:28981838
Shorter duration of non-rapid eye movement sleep slow waves in EphA4 knockout mice.
Freyburger, Marlène; Poirier, Gaétan; Carrier, Julie; Mongrain, Valérie
2017-10-01
Slow waves occurring during non-rapid eye movement sleep have been associated with neurobehavioural performance and memory. In addition, the duration of previous wakefulness and sleep impacts characteristics of these slow waves. However, molecular mechanisms regulating the dynamics of slow-wave characteristics remain poorly understood. The EphA4 receptor regulates glutamatergic transmission and synaptic plasticity, which have both been linked to sleep slow waves. To investigate if EphA4 regulates slow-wave characteristics during non-rapid eye movement sleep, we compared individual parameters of slow waves between EphA4 knockout mice and wild-type littermates under baseline conditions and after a 6-h sleep deprivation. We observed that, compared with wild-type mice, knockout mice display a shorter duration of positive and negative phases of slow waves under baseline conditions and after sleep deprivation. However, the mutation did not change slow-wave density, amplitude and slope, and did not affect the sleep deprivation-dependent changes in slow-wave characteristics, suggesting that EphA4 is not involved in the response to elevated sleep pressure. Our present findings suggest a role for EphA4 in shaping cortical oscillations during sleep that is independent from sleep need. © 2017 European Sleep Research Society.
Bertocchi, Ilaria; Oberto, Alessandra; Longo, Angela; Mele, Paolo; Sabetta, Marianna; Bartolomucci, Alessandro; Palanza, Paola; Sprengel, Rolf; Eva, Carola
2011-01-01
Neuropeptide Y (NPY) plays an important role in stress, anxiety, obesity, and energy homeostasis via activation of NPY-Y1 receptors (Y1Rs) in the brain. However, global knockout of the Npy1r gene has low or no impact on anxiety and body weight. To uncover the role of limbic Y1Rs, we generated conditional knockout mice in which the inactivation of the Npy1r gene was restricted to excitatory neurons of the forebrain, starting from juvenile stages (Npy1rrfb). Npy1rrfb mice exhibited increased anxiety and reduced body weight, less adipose tissue, and lower serum leptin levels. Npy1rrfb mutants also had a hyperactive hypothalamic–pituitary–adrenocortical axis, as indicated by higher peripheral corticosterone and higher density of NPY immunoreactive fibers and corticotropin releasing hormone immunoreactive cell bodies in the paraventricular hypothalamic nucleus. Importantly, through fostering experiments, we determined that differences in phenotype between Npy1rrfb and Npy1r2lox mice became apparent when both genotypes were raised by FVB/J but not by C57BL/6J dams, suggesting that limbic Y1Rs are key targets of maternal care-induced programming of anxiety and energy homeostasis. PMID:22084082
Preaxial Polydactyly in Sost/Sostdc1 Double Knockouts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, C M; Collette, N M; Loots, G G
2011-07-29
In the United States, {approx}5% are born with congenital birth defects due to abnormal function of cellular processes and interactions. Sclerosteosis, a rare autosomal recessive disease, causes hyperostosis of the axial and appendicular skeleton, and patients present radial deviation, digit syndactyly, nail dysplasia, and overall high bone mineral density. Sclerosteosis is due to a loss of function of sclerostin (Sost). Sost is a Wnt (abbrev.) antagonist; when mutated, nonfunctional Sost results in hyperactive osteoblast activity which leads to abnormal high bone mass. Previous studies have shown that Sost overexpression in transgenic mice causes reduced bone mineral density and a varietymore » of limb phenotypes ranging from lost, fused, and split phalanges. Consistent with clinical manifestations of Sclerosteosis, Sost knockout mice exhibit increased generalized bone mineral density and syndactyly of the digits. Sostdc1 is a paralog of Sost that has also been described as an antagonist of Wnt signaling, in developing tooth buds. Unlike Sost knockouts, Sostdc1 null mice do not display any limb abnormalities. To determine if Sost and Sostdc1 have redundant functions during limb patterning, we examined Sost; Sostdc1 mice determined that they exhibit a novel preaxial polydactyly phenotype with a low penetrance. LacZ staining, skeletal preparations, and in situ hybridization experiments were used to help characterize this novel phenotype and understand how this phenotype develops. We find Sost and Sostdc1 to have complementary expression patterns during limb development, and the loss of their expression alters the transcription of several key limb regulators, such as Fgf8, Shh and Grem.« less
Liu, Chengcheng; Janke, Laura J; Yang, Jun J; Evans, William E; Schuetz, John D; Relling, Mary V
2017-08-01
Mercaptopurine plays a pivotal role in treatment of acute lymphoblastic leukemia (ALL) and autoimmune diseases, and inter-individual variability in mercaptopurine tolerance can influence treatment outcome. Thiopurine methyltransferase (TPMT) and multi-drug resistant Protein 4 (MRP4) have both been associated with mercaptopurine toxicity in clinical studies, but their relative contributions remain unclear. We studied the metabolism of and tolerance to mercaptopurine in murine knockout models of Tpmt, Mrp4, and both genes simultaneously. Upon mercaptopurine treatment, Tpmt -/- Mrp4 -/- mice had the highest concentration of bone marrow thioguanine nucleotides (8.5 pmol/5 × 10 6 cells, P = 7.8 × 10 -4 compared with 2.7 pmol/5 × 10 6 cells in wild-types), followed by those with Mrp4 or Tpmt deficiency alone (6.1 and 4.3 pmol/5 × 10 6 cells, respectively). Mrp4-deficient mice accumulated higher concentrations of methylmercaptopurine metabolites compared with wild-type (76.5 vs. 23.2 pmol/5 × 10 6 cells, P = 0.027). Mice exposed to a clinically relevant mercaptopurine dosing regimen displayed differences in toxicity and survival among the genotypes. The double knock-out of both genes experienced greater toxicity and shorter survival compared to the single knockout of either Tpmt (P = 1.7 × 10 -6 ) or Mrp4 (P = 7.4 × 10 -10 ). We showed that both Tpmt and Mrp4 influence mercaptopurine disposition and toxicity.
McCauley, Laurie K; Tözüm, Tolga F; Rosol, Thomas J
2002-01-01
Estrogens have long been known to be important for skeletal homeostasis, but their precise mechanisms of action in bone are still unclear. Mice with targeted deletions of the estrogen receptors alpha (ERalpha) and beta (ERbeta) have been generated by two research groups and several studies performed characterizing the phenotype of ERalpha knockout (ERKOalpha), ERbeta knockout (ERKObeta), or double deletion of ERalpha and ERbeta (DERKO) mice. Initial studies reported a reduction in bone mineral density in male ERKOalpha mice. More extensive analyses have been puzzling, likely because of compensatory mechanisms in ERKO mice. Furthermore, the existence of a third ER continues to be a potential explanation for some actions of estrogen in bone. Other rodent models, including the testicular feminized mouse and rat, the aromatase knockout mouse, and a rat with a dominant negative ER mutation, have added information regarding estrogen's actions in bone. This review summarizes many reports characterizing available rodent models with genetic alterations relevant to estrogen action. The sum of these reports suggests that the ERbeta is not highly protective in bone because loss of its function results in minimal alterations in the skeleton. Furthermore, loss of both the ERalpha and the ERbeta does not account for loss of estrogen action in bone, because the impact of DERKO is seemingly not as great as the impact of gonadectomy on the skeleton. Finally, through studies of ERKO mice and other rodent models of altered sex steroid action, it appears that estrogen may be more protective in the skeleton than androgens.
Rodrigues-Junior, Valnês S; Pail, Priscilla B; Villela, Anne D; Falcão, Virgínia C A; Dadda, Adílio S; Abbadi, Bruno L; Pesquero, João B; Santos, Diógenes S; Basso, Luiz A; Campos, Maria M
2018-03-01
The role, if any, played by the kinin system in tuberculosis infection models, either in vivo or in vitro, was investigated. The effects of Mycobacterium tuberculosis infection on C57BL/6 wild type, B 1 R-/-, B 2 R-/- and double B 1 R/B 2 R knockout mice were evaluated. Immunohistochemistry analysis was carried out to assess B 1 R and B 2 R expression in spleens and lungs of M. tuberculosis-infected mice. In addition, in vitro experiments with M. tuberculosis-infected macrophages were performed. The in vivo effects of HOE-140 and SSR240612 on the mice model of infection were also evaluated. Infected B 2 R-/- mice exhibited increased splenomegaly, whereas decreased spleen weight in infected double B 1 R/B 2 R knockout mice was observed. The bacterial load, determined as colony-forming units, did not differ in the spleens and lungs of the studied mouse strains. Importantly, immunohistochemical analysis revealed that B 1 R was upregulated in both spleens and lungs of infected mice. M. tuberculosis-infected macrophages incubated with SSR240612, alone or in combination with des-Arg 9 -BK, for four days, displayed a marked inhibitory effect on CFU counts. However, the pre-incubation of the selective B 1 R (des-Arg 9 -BK and SSR240612) and B 2 R (BK and HOE-140) agonists and antagonists, respectively, did not significantly affect the bacterial loads. A statistically significant reduction in the CFU of M. tuberculosis in lungs and spleens of animals treated with SSR240612, but not with HOE-140, was observed. Further efforts should be pursued to clarify whether or not SSR240612 might be considered an option for the treatment of tuberculosis. Copyright © 2018. Published by Elsevier Ltd.
HJV and HFE Play Distinct Roles in Regulating Hepcidin
Wu, Qian; Wang, Hao; An, Peng; Tao, Yunlong; Deng, Jiali; Zhang, Zhuzhen; Shen, Yuanyuan; Chen, Caiyong
2015-01-01
Abstract Aims: Hereditary hemochromatosis (HH) is an iron overload disease that is caused by mutations in HFE, HJV, and several other genes. However, whether HFE-HH and HJV-HH share a common pathway via hepcidin regulation is currently unclear. Recently, some HH patients have been reported to carry concurrent mutations in both the HFE and HJV genes. To dissect the roles and molecular mechanisms of HFE and/or HJV in the pathogenesis of HH, we studied Hfe−/−, Hjv−/−, and Hfe−/−Hjv−/− double-knockout mouse models. Results: Hfe−/−Hjv−/− mice developed iron overload in multiple organs at levels comparable to Hjv−/− mice. After an acute delivery of iron, the expression of hepcidin (i.e., Hamp1 mRNA) was increased in the livers of wild-type and Hfe−/− mice, but not in either Hjv−/− or Hfe−/−Hjv−/− mice. Furthermore, iron-induced phosphorylation of Smad1/5/8 was not detected in the livers of Hjv−/− or Hfe−/−Hjv−/− mice. Innovation: We generated and phenotypically characterized Hfe−/−Hjv−/− double-knockout mice. In addition, because they faithfully phenocopy clinical HH patients, these mouse models are an invaluable tool for mechanistically dissecting how HFE and HJV regulate hepcidin expression. Conclusions: Based on our results, we conclude that HFE may depend on HJV for transferrin-dependent hepcidin regulation. The presence of residual hepcidin in the absence of HFE suggests either the presence of an unknown regulator (e.g., TFR2) that is synergistic with HJV or that HJV is sufficient to maintain basal levels of hepcidin. Antioxid. Redox Signal. 22, 1325–1336. PMID:25608116
Duarte, Tiago L; Caldas, Carolina; Santos, Ana G; Silva-Gomes, Sandro; Santos-Gonçalves, Andreia; Martins, Maria João; Porto, Graça; Lopes, José Manuel
2017-04-01
In hereditary hemochromatosis, iron deposition in the liver parenchyma may lead to fibrosis, cirrhosis and hepatocellular carcinoma. Most cases are ascribed to a common mutation in the HFE gene, but the extent of clinical expression is greatly influenced by the combined action of yet unidentified genetic and/or environmental modifying factors. In mice, transcription factor NRF2 is a critical determinant of hepatocyte viability during exposure to acute dietary iron overload. We evaluated if the genetic disruption of Nrf2 would prompt the development of liver damage in Hfe -/- mice (an established model of human HFE-hemochromatosis). Wild-type, Nrf2 -/- , Hfe -/- and double knockout (Hfe/Nrf2 -/- ) female mice on C57BL/6 genetic background were sacrificed at the age of 6 (young), 12-18 (middle-aged) or 24 months (old) for evaluation of liver pathology. Despite the parenchymal iron accumulation, Hfe -/- mice presented no liver injury. The combination of iron overload (Hfe -/- ) and defective antioxidant defences (Nrf2 -/- ) increased the number of iron-related necroinflammatory lesions (sideronecrosis), possibly due to the accumulation of toxic oxidation products such as 4-hydroxy-2-nonenal-protein adducts. The engulfment of dead hepatocytes led to a gradual accumulation of iron within macrophages, featuring large aggregates. Myofibroblasts recruited towards the injury areas produced substantial amounts of collagen fibers involving the liver parenchyma of double-knockout animals with increased hepatic fibrosis in an age-dependent manner. The genetic disruption of Nrf2 promotes the transition from iron accumulation (siderosis) to liver injury in Hfe -/- mice, representing the first demonstration of spontaneous hepatic fibrosis in the long term in a mouse model of hereditary hemochromatosis displaying mildly elevated liver iron. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Schroeter, Marco R; Humboldt, Tim; Schäfer, Katrin; Konstantinides, Stavros
2009-07-01
Statins enhance incorporation of bone marrow-derived cells into experimental neointimal lesions. However, the contribution of progenitor cells to progression of spontaneous atherosclerotic plaques, and the possible modulatory role of statins in this process, remain poorly understood. We compared the effects of rosuvastatin (1 and 10mg/kg BW) and pravastatin (10mg/kg) on progenitor cell mobilisation, recruitment into atherosclerotic plaques, and lesion growth. Statins were administered over 8 weeks to apolipoprotein E knockout mice on atherogenic diet. In addition, mice were lethally irradiated, followed by transplantation of bone marrow from LacZ transgenic mice. Rosuvastatin reduced lesion area and intima-to-media ratio at the brachiocephalic artery compared to vehicle, while both parameters were not significantly altered by pravastatin. Rosuvastatin also augmented endothelialisation (P<0.05) and reduced the smooth muscle cells (SMC) content (P=0.042) of lesions. Numbers of c-kit, sca-1 and flk-1, sca-1 double-positive progenitor cells were significantly increased in rosuvastatin compared to control-treated mice, both in the bone marrow and the peripheral blood. Similarly, the number of spleen-derived acLDL, lectin double-positive progenitor cells (P=0.001) and colony-forming units (P=0.0104) was significantly increased in mice treated with rosuvastatin compared to vehicle alone. In the bone marrow, increased Akt and p42/44 MAP kinase phosphorylation and upregulated SDF1alpha mRNA expression were observed. Importantly, rosuvastatin treatment also increased the plasma levels of c-kit ligand (P=0.003), and the number of c-kit-positive cells within atherosclerotic lesions (P=0.041). Our findings suggest that rosuvastatin reduces the size of atherosclerotic plaques, and this effect appears to involve progenitor cell mobilisation and recruitment into vascular lesions.
Chew, Phyllis; Yuen, Derek Y C; Stefanovic, Nada; Pete, Josefa; Coughlan, Melinda T; Jandeleit-Dahm, Karin A; Thomas, Merlin C; Rosenfeldt, Franklin; Cooper, Mark E; de Haan, Judy B
2010-12-01
To investigate the effect of the GPx1-mimetic ebselen on diabetes-associated atherosclerosis and renal injury in a model of increased oxidative stress. The study was performed using diabetic apolipoprotein E/GPx1 (ApoE(-/-)GPx1(-/-))-double knockout (dKO) mice, a model combining hyperlipidemia and hyperglycemia with increased oxidative stress. Mice were randomized into two groups, one injected with streptozotocin, the other with vehicle, at 8 weeks of age. Groups were further randomized to receive either ebselen or no treatment for 20 weeks. Ebselen reduced diabetes-associated atherosclerosis in most aortic regions, with the exception of the aortic sinus, and protected dKO mice from renal structural and functional injury. The protective effects of ebselen were associated with a reduction in oxidative stress (hydroperoxides in plasma, 8-isoprostane in urine, nitrotyrosine in the kidney, and 4-hydroxynonenal in the aorta) as well as a reduction in VEGF, CTGF, VCAM-1, MCP-1, and Nox2 after 10 weeks of diabetes in the dKO aorta. Ebselen also significantly reduced the expression of proteins implicated in fibrosis and inflammation in the kidney as well as reducing related key intracellular signaling pathways. Ebselen has an antiatherosclerotic and renoprotective effect in a model of accelerated diabetic complications in the setting of enhanced oxidative stress. Our data suggest that ebselen effectively repletes the lack of GPx1, and indicate that ebselen may be an effective therapeutic for the treatment of diabetes-related atherosclerosis and nephropathy. Furthermore, this study highlights the feasibility of addressing two diabetic complications with one treatment regimen through the unifying approach of targeted antioxidant therapy.
Zhang, Hong-Mei; Zhou, Hong-Yi; Chen, Shao-Rui; Gautam, Dinesh; Wess, Jürgen; Pan, Hui-Lin
2007-12-01
Muscarinic acetylcholine receptors (mAChRs) play an important role in the tonic regulation of nociceptive transmission in the spinal cord. However, how mAChR subtypes contribute to the regulation of synaptic glycine release is unknown. To determine their role, glycinergic spontaneous inhibitory postsynaptic currents (sIPSCs) were recorded in lamina II neurons by using whole-cell recordings in spinal cord slices of wild-type (WT) and mAChR subtype knockout (KO) mice. In WT mice, the mAChR agonist oxotremorine-M dose-dependently decreased the frequency of sIPSCs in most neurons, but it had variable effects in other neurons. In contrast, in M3-KO mice, oxotremorine-M consistently decreased the glycinergic sIPSC frequency in all neurons tested, and in M2/M4 double-KO mice, it always increased the sIPSC frequency. In M2/M4 double-KO mice, the potentiating effect of oxotremorine-M was attenuated by higher concentrations in some neurons through activation of GABA(B) receptors. In pertussis toxin-treated WT mice, oxotremorine-M also consistently increased the sIPSC frequency. In M2-KO and M4-KO mice, the effect of oxotremorine-M on sIPSCs was divergent because of the opposing functions of the M3 subtype and the M2 and M4 subtypes. This study demonstrates that stimulation of the M2 and M4 subtypes inhibits glycinergic inputs to spinal dorsal horn neurons of mice, whereas stimulation of the M3 subtype potentiates synaptic glycine release. Furthermore, GABA(B) receptors are involved in the feedback regulation of glycinergic synaptic transmission in the spinal cord. This study revealed distinct functions of mAChR subtypes in controlling glycinergic input to spinal dorsal horn neurons.
Kondo, Yoshitaka; Masutomi, Hirofumi; Noda, Yoshihiro; Ozawa, Yusuke; Takahashi, Keita; Handa, Setsuko; Maruyama, Naoki; Shimizu, Takahiko; Ishigami, Akihito
2014-01-01
Superoxide dismutase 1 (SOD1) is an antioxidant enzyme that converts superoxide anion radicals into hydrogen peroxide and molecular oxygen. The senescence marker protein-30 (SMP30) is a gluconolactonase that functions as an antioxidant protein in mammals due to its involvement in ascorbic acid (AA) biosynthesis. SMP30 also participates in Ca2+ efflux by activating the calmodulin-dependent Ca2+-pump. To reveal the role of oxidative stress in lipid metabolism defects occurring in non-alcoholic fatty liver disease pathogenesis, we generated SMP30/SOD1-double knockout (SMP30/SOD1-DKO) mice and investigated their survival curves, plasma and hepatic lipid profiles, amounts of hepatic oxidative stress, and hepatic protein levels expressed by genes related to lipid metabolism. While SMP30/SOD1-DKO pups had no growth retardation by 14 days of age, they did have low plasma and hepatic AA levels. Thereafter, 39% and 53% of male and female pups died by 15–24 and 89 days of age, respectively. Compared to wild type, SMP30-KO and SOD1-KO mice, by 14 days SMP30/SOD1-DKO mice exhibited: (1) higher plasma levels of triglyceride and aspartate aminotransferase; (2) severe accumulation of hepatic triglyceride and total cholesterol; (3) higher levels of superoxide anion radicals and thiobarbituric acid reactive substances in livers; and (4) decreased mRNA and protein levels of Apolipoprotein B (ApoB) in livers – ApoB is an essential component of VLDL secretion. These results suggest that high levels of oxidative stress due to concomitant deficiency of SMP30 and/or AA, and SOD1 cause abnormal plasma lipid metabolism, hepatic lipid accumulation and premature death resulting from impaired VLDL secretion. PMID:25003023
Chao, Xiaojuan; Wang, Shaogui; Zhao, Katrina; Li, Yuan; Williams, Jessica A; Li, Tiangang; Chavan, Hemantkumar; Krishnamurthy, Partha; He, Xi C; Li, Linheng; Ballabio, Andrea; Ni, Hong-Min; Ding, Wen-Xing
2018-05-18
Defects in lysosome function and autophagy contribute to pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol consumption affects these processes, evaluating the functions transcription factor EB (TFEB), which regulates lysosomal biogenesis. We performed studies with GFP-LC3 mice, mice with liver-specific deletion of transcription factor EB (TFEB), mice with disruption of the transcription factor E3 gene (TFE3-knockout mice), mice with disruption of the Tefb and Tfe3 genes (TFEB, TFE3 double-knockout mice), and Tfeb flox/flox albumin cre-negative mice (controls). TFEB was overexpressed from adenoviral vectors or knocked down with small interfering RNAs in mouse livers. Mice were placed on diets of chronic ethanol feeding plus an acute binge to induce liver damage (ethanol diet); some mice were also given injections of torin1, an inhibitor of the kinase activity of the mechanistic target of rapamycin (mTOR). Liver tissues were collected and analyzed by immunohistochemistry, immunoblots, and quantitative real-time PCR to monitor lysosome biogenesis. We analyzed levels of TFEB in liver tissues from patients with alcoholic hepatitis and from healthy donors (controls) by immunohistochemistry. Liver tissues from mice on the ethanol diet had lower levels of total and nuclear TFEB, compared with control mice, and hepatocytes had reduced lysosome biogenesis and autophagy. Hepatocytes from mice on the ethanol diet had increased translocation of mTOR into lysosomes, resulting increased mTOR activation. Administration of torin1 increased liver levels of TFEB and reduced steatosis and liver injury induced by ethanol. Mice that overexpressed TFEB in liver developed less-severe ethanol-induced liver injury and had increased lysosomal biogenesis and mitochondrial bioenergetics compared to mice carrying a control vector. Mice with knockdown of TFEB, as well as TFEB, TFE3 double-knockout mice, developed more severe liver injury in response to the ethanol diet than control mice. Liver tissues from patients with alcohol-induced hepatitis had lower nuclear levels of TFEB than control tissues CONCLUSIONS: We found chronic ethanol feeding plus an acute binge to reduce hepatic expression of the transcription factor TFEB, which is required for lysosomal biogenesis and autophagy. Strategies to block mTOR activity or increase levels of TFEB might be developed to protect liver from ethanol-induced damage. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Differential Modulation of Retinal Degeneration by Ccl2 and Cx3cr1 Chemokine Signalling
Luhmann, Ulrich F. O.; Lange, Clemens A.; Robbie, Scott; Munro, Peter M. G.; Cowing, Jill A.; Armer, Hannah E. J.; Luong, Vy; Carvalho, Livia S.; MacLaren, Robert E.; Fitzke, Frederick W.; Bainbridge, James W. B.; Ali, Robin R.
2012-01-01
Microglia and macrophages are recruited to sites of retinal degeneration where local cytokines and chemokines determine protective or neurotoxic microglia responses. Defining the role of Ccl2-Ccr2 and Cx3cl1-Cx3cr1 signalling for retinal pathology is of particular interest because of its potential role in age-related macular degeneration (AMD). Ccl2, Ccr2, and Cx3cr1 signalling defects impair macrophage trafficking, but have, in several conflicting studies, been reported to show different degrees of age-related retinal degeneration. Ccl2/Cx3cr1 double knockout (CCDKO) mice show an early onset retinal degeneration and have been suggested as a model for AMD. In order to understand phenotypic discrepancies in different chemokine knockout lines and to study how defects in Ccl2 and/or Cx3cr1 signalling contribute to the described early onset retinal degeneration, we defined primary and secondary pathological events in CCDKO mice. To control for genetic background variability, we compared the original phenotype with that of single Ccl2, Cx3cr1 and Ccl2/Cx3cr1 double knockout mice obtained from backcrosses of CCDKO with C57Bl/6 mice. We found that the primary pathological event in CCDKO mice develops in the inferior outer nuclear layer independently of light around postnatal day P14. RPE and vascular lesions develop secondarily with increasing penetrance with age and are clinically similar to retinal telangiectasia not to choroidal neovascularisation. Furthermore, we provide evidence that a third autosomal recessive gene causes the degeneration in CCDKO mice and in all affected re-derived lines and subsequently demonstrated co-segregation of the naturally occurring RD8 mutation in the Crb1 gene. By comparing CCDKO mice with re-derived CCl2−/−/Crb1Rd8/RD8, Cx3cr1−/−/Crb1Rd8/RD8 and CCl2−/−/Cx3cr1−/−/Crb1Rd8/RD8 mice, we observed a differential modulation of the retinal phenotype by genetic background and both chemokine signalling pathways. These findings indicate that CCDKO mice are not a model of AMD, but a model for an inherited retinal degeneration that is differentially modulated by Ccl2-Ccr2 and Cx3cl1-Cx3cr1 chemokine signalling. PMID:22545116
Heinrichs, Luisa; Schmitz, Jessica; Flügge, Ulf-Ingo; Häusler, Rainer E.
2012-01-01
An Arabidopsis thaliana double mutant (adg1-1/tpt-2) defective in the day- and night-path of photoassimilate export from the chloroplast due to a knockout in the triose phosphate/phosphate translocator (TPT; tpt-2) and a lack of starch [mutation in ADP glucose pyrophosphorylase (AGPase); adg1-1] exhibits severe growth retardation, a decrease in the photosynthetic capacity, and a high chlorophyll fluorescence (HCF) phenotype under high light conditions. These phenotypes could be rescued when the plants were grown on sucrose (Suc) or glucose (Glc). Here we address the question whether Glc-sensing hexokinase1 (HXK1) defective in the Glc insensitive 2 (gin2-1) mutant is involved in the sugar-dependent rescue of adg1-1/tpt-2. Triple mutants defective in the TPT, AGPase, and HXK1 (adg1-1/tpt-2/gin2-1) were established as homozygous lines and grown together with Col-0 and Landsberg erecta (Ler) wild-type plants, gin2-1, the adg1-1/tpt-2 double mutant, and the adg1-1/tpt-2/gpt2-1 triple mutant [additionally defective in the glucose 6-phosphate/phosphate translocator 2 (GPT2)] on agar in the presence or absence of 50 mM of each Glc, Suc, or fructose (Fru). The growth phenotype of the double mutant and both triple mutants could be rescued to a similar extent only by Glc and Suc, but not by Fru. All three sugars were capable of rescuing the HCF and photosynthesis phenotype, irrespectively of the presence or absence of HXK1. Quantitative RT-PCR analyses of sugar-responsive genes revealed that plastidial HXK (pHXK) was up-regulated in adg1-1/tpt-2 plants grown on sugars, but showed no response in adg1-1/tpt-2/gin2-1. It appears likely that soluble sugars are directly taken up by the chloroplasts and enter further metabolism, which consumes ATP and NADPH from the photosynthetic light reaction and thereby rescues the photosynthesis phenotype of the double mutant. The implication of sugar turnover and probably signaling inside the chloroplasts for the concept of retrograde signaling is discussed. PMID:23233856
Teng, Yan; Sun, An-Na; Pan, Xiao-Chen; Yang, Guan; Yang, Lei-Lei; Wang, Ming-Rong; Yang, Xiao
2006-07-15
The genetic bases underlying esophageal tumorigenesis are poorly understood. Our previous studies have shown that coordinated deletion of the Smad4 and PTEN genes results in accelerated hair loss and skin tumor formation in mice. Herein, we exemplify that the concomitant inactivation of Smad4 and PTEN accelerates spontaneous forestomach carcinogenesis at complete penetrance during the first 2 months of age. All of the forestomach tumors were invasive squamous cell carcinomas (SCCs), which recapitulated the natural history and pathologic features of human esophageal SCCs. A small population of the SCC lesions was accompanied by adenocarcinomas at the adjacent submucosa region in the double mutant mice. The rapid progression of forestomach tumor formation in the Smad4 and PTEN double knockout mice corresponded to a dramatic increase in esophageal and forestomach epithelial proliferation. The decreased expression of p27, p21, and p16 together with the overexpression of cyclin D1 contributed cooperatively to the accelerated forestomach tumorigenesis in the double mutant mice. Our results point strongly to the crucial relevance of synergy between Smad4 and PTEN to suppress forestomach tumorigenesis through the cooperative induction of cell cycle inhibitors.
Windpassinger, Christian; Piard, Juliette; Bonnard, Carine; Alfadhel, Majid; Lim, Shuhui; Bisteau, Xavier; Blouin, Stéphane; Ali, Nur'Ain B; Ng, Alvin Yu Jin; Lu, Hao; Tohari, Sumanty; Talib, S Zakiah A; van Hul, Noémi; Caldez, Matias J; Van Maldergem, Lionel; Yigit, Gökhan; Kayserili, Hülya; Youssef, Sameh A; Coppola, Vincenzo; de Bruin, Alain; Tessarollo, Lino; Choi, Hyungwon; Rupp, Verena; Roetzer, Katharina; Roschger, Paul; Klaushofer, Klaus; Altmüller, Janine; Roy, Sudipto; Venkatesh, Byrappa; Ganger, Rudolf; Grill, Franz; Ben Chehida, Farid; Wollnik, Bernd; Altunoglu, Umut; Al Kaissi, Ali; Reversade, Bruno; Kaldis, Philipp
2017-09-07
In five separate families, we identified nine individuals affected by a previously unidentified syndrome characterized by growth retardation, spine malformation, facial dysmorphisms, and developmental delays. Using homozygosity mapping, array CGH, and exome sequencing, we uncovered bi-allelic loss-of-function CDK10 mutations segregating with this disease. CDK10 is a protein kinase that partners with cyclin M to phosphorylate substrates such as ETS2 and PKN2 in order to modulate cellular growth. To validate and model the pathogenicity of these CDK10 germline mutations, we generated conditional-knockout mice. Homozygous Cdk10-knockout mice died postnatally with severe growth retardation, skeletal defects, and kidney and lung abnormalities, symptoms that partly resemble the disease's effect in humans. Fibroblasts derived from affected individuals and Cdk10-knockout mouse embryonic fibroblasts (MEFs) proliferated normally; however, Cdk10-knockout MEFs developed longer cilia. Comparative transcriptomic analysis of mutant and wild-type mouse organs revealed lipid metabolic changes consistent with growth impairment and altered ciliogenesis in the absence of CDK10. Our results document the CDK10 loss-of-function phenotype and point to a function for CDK10 in transducing signals received at the primary cilia to sustain embryonic and postnatal development. Copyright © 2017 American Society of Human Genetics. All rights reserved.
Wang, Wei; Putra, Adhytia; Schools, Gary P.; Ma, Baofeng; Chen, Haijun; Kaczmarek, Leonard K.; Barhanin, Jacques; Lesage, Florian; Zhou, Min
2013-01-01
TWIK-1 two-pore domain K+ channels are expressed abundantly in astrocytes. In the present study, we examined the extent to which TWIK-1 contributes to the linear current-voltage (I–V) relationship (passive) K+ membrane conductance, a dominant electrophysiological feature of mature hippocampal astrocytes. Astrocytes from TWIK-1 knockout mice have a more negative resting potential than those from wild type animals and a reduction in both inward rectification and Cs+ permeability. Nevertheless, the overall whole-cell passive conductance is not altered significantly in TWIK-1 knockout astrocytes. The expression of Kir4.1 and TREK-1, two other major astrocytic K+ channels, or of other two-pore K+ channels is not altered in TWIK-1 knockout mice, suggesting that the mild effect of TWIK-1 knockout does not result from compensation by these channels. Fractionation experiments showed that TWIK-1 is primarily localized in intracellular cytoplasmic fractions (55%) and mildly hydrophobic internal compartment fractions (41%), with only 5% in fractions containing plasma membranes. Our study revealed that TWIK-1 proteins are mainly located in the intracellular compartments of hippocampal astrocyte under physiological condition, therefore a minimal contribution of TWIK-1 channels to whole-cell currents is likely attributable to a relatively low level presence of channels in the plasma membrane. PMID:24368895
Liljevald, Maria; Rehnberg, Maria; Söderberg, Magnus; Ramnegård, Marie; Börjesson, Jenny; Luciani, Donatella; Krutrök, Nina; Brändén, Lena; Johansson, Camilla; Xu, Xiufeng; Bjursell, Mikael; Sjögren, Anna-Karin; Hornberg, Jorrit; Andersson, Ulf; Keeling, David; Jirholt, Johan
2016-11-01
RORγ is a nuclear hormone receptor which controls polarization of naive CD4 + T-cells into proinflammatory Th17 cells. Pharmacological antagonism of RORγ has therapeutic potential for autoimmune diseases; however, this mechanism may potentially carry target-related safety risks, as mice deficient in Rorc, the gene encoding RORγ, develop T-cell lymphoma with 50% frequency. Due to the requirement of RORγ during development, the Rorc knockout (KO) animals lack secondary lymphoid organs and have a dysregulation in the generation of CD4+ and CD8+ T cells. We wanted to extend the evaluation of RORγ deficiency to address the question whether lymphomas, similar to those observed in the Rorc KO, would develop in an animal with an otherwise intact adult immune system. Accordingly, we designed a conditional RORγ knockout mouse (Rorc CKO) where the Rorc locus could be deleted in adult animals. Based on these studies we can confirm that these animals also develop lymphoma in a similar time frame as embryonic Rorc knockouts. This study also suggests that in animals where the gene deletion is incomplete, the thymus undergoes a rapid selection process replacing Rorc deficient cells with remnant thymocytes carrying a functional Rorc locus and that subsequently, these animals do not develop lymphoblastic lymphoma. Copyright © 2016 Elsevier B.V. All rights reserved.
Yadav, Manisha C.; Bottini, Massimo; Cory, Esther; Bhattacharya, Kunal; Kuss, Pia; Narisawa, Sonoko; Sah, Robert L.; Beck, Laurent; Fadeel, Bengt; Farquharson, Colin; Millán, José Luis
2016-01-01
We have previously shown that ablation of either the Phospho1 or Alpl gene, encoding PHOSPHO1 and tissue-nonspecific alkaline phosphatase (TNAP) respectively, lead to hyperosteoidosis but that their chondrocyte- and osteoblast-derived matrix vesicles (MVs) are able to initiate mineralization. In contrast, the double ablation of Phospho1 and Alpl completely abolish initiation and progression of skeletal mineralization. We argued that MVs initiate mineralization by a dual mechanism: PHOSPHO1-mediated intravesicular generation of Pi and phosphate transporter-mediated influx of Pi. To test this hypothesis, we generated mice with col2a1-driven cre-mediated ablation of Slc20a1, hereafter referred to as Pit1, alone or in combination with a Phospho1 gene deletion. Pit1col2/col2 mice did not show any major phenotypic abnormalities, while severe skeletal deformities were observed in the [Phospho1−/−; Pit1col2/col2] double knockout mice that were more pronounced than those observed in the Phospho1−/− mice. Histological analysis of [Phospho1−/−; Pit1col2/col2] bones showed growth plate abnormalities with a shorter hypertrophic chondrocyte zone and extensive hyperosteoidosis. The [Phospho1−/−; Pit1col2/col2] skeleton displayed significantly decreases in BV/TV%, trabecular number and bone mineral density, as well as decreased stiffness, decreased strength, and increased post-yield deflection compared to Phospho1−/− mice. Using atomic force microscopy we found that ~80% of [Phospho1−/−; Pit1col2/col2] MVs were devoid of mineral in comparison to ~50 % for the Phospho1−/− MVs and ~25% for the WT and Pit1col2/col2 MVs. We also found a significant decrease in the number of MVs produced by both Phospho1−/− and [Phospho1−/−; Pit1col2/col2] chondrocytes. These data support the involvement of PiT-1 in the initiation of skeletal mineralization and provide compelling evidence that PHOSPHO1 function is involved in MV biogenesis. PMID:26773408
Naranjo, Belén; Diaz-Espejo, Antonio; Lindahl, Marika; Cejudo, Francisco Javier
2016-03-01
Redox regulation plays a central role in the adaptation of chloroplast metabolism to light. Extensive biochemical analyses in vitro have identified f-type thioredoxins (Trxs) as the most important catalysts for light-dependent reduction and activation of the enzymes of the Calvin-Benson cycle. However, the precise function of type f Trxs in vivo and their impact on plant growth are still poorly known. To address this issue we have generated an Arabidopsis thaliana double knock-out mutant, termed trxf1f2, devoid of both f1 and f2 Trxs. Despite the essential function previously proposed for f-type Trxs, the visible phenotype of the trxf1f2 double mutant was virtually indistinguishable from the wild type when grown under a long-day photoperiod. However, the Trx f-deficient plants showed growth inhibition under a short-day photoperiod which was not rescued at high light intensity. The absence of f-type Trxs led to significantly lower photosynthetic electron transport rates and higher levels of non-photochemical energy quenching. Notably, the Trx f null mutant suffered from a shortage of photosystem I electron acceptors and delayed activation of carbon dioxide fixation following a dark-light transition. Two redox-regulated Calvin-Benson cycle enzymes, fructose 1,6-bisphosphatase (FBPase) and Rubisco activase, showed retarded and incomplete reduction in the double mutant upon illumination, compared with wild-type plants. These results show that the function of f-type Trxs in the rapid activation of carbon metabolism in response to light is not entirely compensated for by additional plastid redox systems, and suggest that these Trxs have an important role in the light adjustment of photosynthetic metabolism. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Qi, Jingxia; Chi, Yingjin; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang
2014-01-01
Plant stress responses require both protective measures that reduce or restore stress-inflicted damage to cellular structures and mechanisms that efficiently remove damaged and toxic macromolecules, such as misfolded and damaged proteins. We have recently reported that NBR1, the first identified plant autophagy adaptor with a ubiquitin-association domain, plays a critical role in plant stress tolerance by targeting stress-induced, ubiquitinated protein aggregates for degradation by autophagy. Here we report a comprehensive genetic analysis of CHIP, a chaperone-associated E3 ubiquitin ligase from Arabidopsis thaliana implicated in mediating degradation of nonnative proteins by 26S proteasomes. We isolated two chip knockout mutants and discovered that they had the same phenotypes as the nbr1 mutants with compromised tolerance to heat, oxidative and salt stresses and increased accumulation of insoluble proteins under heat stress. To determine their functional interactions, we generated chip nbr1 double mutants and found them to be further compromised in stress tolerance and in clearance of stress-induced protein aggregates, indicating additive roles of CHIP and NBR1. Furthermore, stress-induced protein aggregates were still ubiquitinated in the chip mutants. Through proteomic profiling, we systemically identified heat-induced protein aggregates in the chip and nbr1 single and double mutants. These experiments revealed that highly aggregate-prone proteins such as Rubisco activase and catalases preferentially accumulated in the nbr1 mutant while a number of light-harvesting complex proteins accumulated at high levels in the chip mutant after a relatively short period of heat stress. With extended heat stress, aggregates for a large number of intracellular proteins accumulated in both chip and nbr1 mutants and, to a greater extent, in the chip nbr1 double mutant. Based on these results, we propose that CHIP and NBR1 mediate two distinct but complementary anti-proteotoxic pathways and protein's propensity to aggregate under stress conditions is one of the critical factors for pathway selection of protein degradation. PMID:24497840
HDAC6 regulates thermogenesis of brown adipocytes through activating PKA to induce UCP1 expression.
Jung, Suna; Han, Miae; Korm, Sovannarith; Lee, Se-In; Noh, Solhee; Phorl, Sophors; Naskar, Rema; Lee, Kye-Sung; Kim, Geon-Hee; Choi, Yun-Jaie; Lee, Joo Yong
2018-06-08
Mitochondrial uncoupling protein 1 (UCP1) is responsible for nonshivering thermogenesis in brown adipose tissue (BAT). UCP1 increases the conductance of the inner mitochondrial membrane (IMM) for protons to make BAT mitochondria generate heat rather than ATP. HDAC6 is a cytosolic deacetylase for non-histone substrates to regulate various cellular processes, including mitochondrial quality control and dynamics. Here, we showed that the body temperature of HDAC6 knockout mice is slightly decreased in normal hosing condition. Interestingly, UCP1 was downregulated in BAT of HDAC6 knockout mice, which extensively linked mitochondrial thermogenesis. Mechanistically, we showed that cAMP-PKA signaling plays a key role in HDAC6-dependent UCP1 expression. Notably, the size of brown adipocytes and lipid droplets in HDAC6 knockout BAT is increased. Taken together, our findings suggested that HDAC6 contributes to mitochondrial thermogenesis in BAT by increasing UCP1 expression through cAMP-PKA signaling pathway. Copyright © 2018. Published by Elsevier Inc.
Role of Medial Prefrontal Cortex Narp in the Extinction of Morphine Conditioned Place Preference
ERIC Educational Resources Information Center
Blouin, Ashley M.; Han, Sungho; Pearce, Anne M.; Cheng, KaiLun; Lee, JongAh J.; Johnson, Alexander W.; Wang, Chuansong; During, Matthew J.; Holland, Peter C.; Shaham, Yavin; Baraban, Jay M.; Reti, Irving M.
2013-01-01
Narp knockout (KO) mice demonstrate an impaired extinction of morphine conditioned place preference (CPP). Because the medial prefrontal cortex (mPFC) has been implicated in extinction learning, we tested whether Narp cells in this region play a role in the extinction of morphine CPP. We found that intracranial injections of adenoassociated virus…
An ATF4-ATG5 signaling in hypothalamic POMC neurons regulates obesity.
Xiao, Yuzhong; Deng, Yalan; Yuan, Feixiang; Xia, Tingting; Liu, Hao; Li, Zhigang; Chen, Shanghai; Liu, Zhixue; Ying, Hao; Liu, Yi; Zhai, Qiwei; Guo, Feifan
2017-06-03
ATF4 (activating transcription factor 4) is an important transcription factor that has many biological functions, while its role in hypothalamic POMC (pro-opiomelanocortin-α) neurons in the regulation of energy homeostasis has not been explored. We recently discovered that mice with an Atf4 deletion specific to POMC neurons (PAKO mice) are lean and have higher energy expenditure. Furthermore, these mice are resistant to high-fat diet (HFD)-induced obesity and obesity-related metabolic disorders. Mechanistically, we found the expression of ATG5 (autophagy-related 5) is upregulated in POMC neurons of PAKO mice, and ATF4 regulates ATG5 expression by binding directly to its promoter. Mice with Atf4 and Atg5 double knockout in POMC neurons have reduced energy expenditure and gain more fat mass compared with PAKO mice under a HFD. Finally, the effect of Atf4 knockout in POMC neurons is possibly mediated by enhanced ATG5-dependent macroautophagy/autophagy and α-melanocyte-stimulating hormone (α-MSH) production in the hypothalamus. Together, this work not only identifies a beneficial role for ATF4 in hypothalamic POMC neurons in the regulation of obesity, but also provides a new potential therapeutic target for obesity and obesity-related metabolic diseases.
Vujic, Nemanja; Korbelius, Melanie; Leopold, Christina; Duta-Mare, Madalina; Rainer, Silvia; Schlager, Stefanie; Goeritzer, Madeleine; Kolb, Dagmar; Eichmann, Thomas O.; Diwoky, Clemens; Zimmer, Andreas; Zimmermann, Robert; Lass, Achim; Radovic, Branislav; Kratky, Dagmar
2017-01-01
Monoglyceride lipase (MGL) hydrolyzes monoglycerides (MGs) to glycerol and fatty acids. Among various MG species MGL also degrades 2-arachidonoylglycerol (2-AG), the most abundant endocannabinoid and potent activator of cannabinoid receptors (CBR) 1 and 2. MGL-knockout (−/−) mice exhibit pronounced 2-AG accumulation, but lack central cannabimimetic effects due to CB1R desensitization. We have previously shown that MGL affects plaque stability in apolipoprotein E (ApoE)−/− mice, an established animal model for dyslipidemia and atherosclerosis. In the current study, we investigated functional consequences of MGL deficiency on lipid and energy metabolism in ApoE/MGL double knockout (DKO) mice. MGL deficiency affected hepatic cholesterol metabolism by causing increased cholesterol elimination via the biliary pathway. Moreover, DKO mice exhibit lipid-triggered delay in gastric emptying without major effects on overall triglyceride and cholesterol absorption. The observed phenotype of DKO mice is likely not a consequence of potentiated CB1R signaling but rather dependent on the activation of alternative signaling pathways. We conclude that MGL deficiency causes complex metabolic changes including cholesterol metabolism and regulation of gut transit independent of the endocannabinoid system. PMID:28380440
Next-generation mammalian genetics toward organism-level systems biology.
Susaki, Etsuo A; Ukai, Hideki; Ueda, Hiroki R
2017-01-01
Organism-level systems biology in mammals aims to identify, analyze, control, and design molecular and cellular networks executing various biological functions in mammals. In particular, system-level identification and analysis of molecular and cellular networks can be accelerated by next-generation mammalian genetics. Mammalian genetics without crossing, where all production and phenotyping studies of genome-edited animals are completed within a single generation drastically reduce the time, space, and effort of conducting the systems research. Next-generation mammalian genetics is based on recent technological advancements in genome editing and developmental engineering. The process begins with introduction of double-strand breaks into genomic DNA by using site-specific endonucleases, which results in highly efficient genome editing in mammalian zygotes or embryonic stem cells. By using nuclease-mediated genome editing in zygotes, or ~100% embryonic stem cell-derived mouse technology, whole-body knock-out and knock-in mice can be produced within a single generation. These emerging technologies allow us to produce multiple knock-out or knock-in strains in high-throughput manner. In this review, we discuss the basic concepts and related technologies as well as current challenges and future opportunities for next-generation mammalian genetics in organism-level systems biology.
Vujic, Nemanja; Korbelius, Melanie; Leopold, Christina; Duta-Mare, Madalina; Rainer, Silvia; Schlager, Stefanie; Goeritzer, Madeleine; Kolb, Dagmar; Eichmann, Thomas O; Diwoky, Clemens; Zimmer, Andreas; Zimmermann, Robert; Lass, Achim; Radovic, Branislav; Kratky, Dagmar
2017-05-16
Monoglyceride lipase (MGL) hydrolyzes monoglycerides (MGs) to glycerol and fatty acids. Among various MG species MGL also degrades 2-arachidonoylglycerol (2-AG), the most abundant endocannabinoid and potent activator of cannabinoid receptors (CBR) 1 and 2. MGL-knockout (-/-) mice exhibit pronounced 2-AG accumulation, but lack central cannabimimetic effects due to CB1R desensitization. We have previously shown that MGL affects plaque stability in apolipoprotein E (ApoE)-/- mice, an established animal model for dyslipidemia and atherosclerosis. In the current study, we investigated functional consequences of MGL deficiency on lipid and energy metabolism in ApoE/MGL double knockout (DKO) mice. MGL deficiency affected hepatic cholesterol metabolism by causing increased cholesterol elimination via the biliary pathway. Moreover, DKO mice exhibit lipid-triggered delay in gastric emptying without major effects on overall triglyceride and cholesterol absorption. The observed phenotype of DKO mice is likely not a consequence of potentiated CB1R signaling but rather dependent on the activation of alternative signaling pathways. We conclude that MGL deficiency causes complex metabolic changes including cholesterol metabolism and regulation of gut transit independent of the endocannabinoid system.
Ichibangase, Tomoko; Sugawara, Yasuhiro; Yamabe, Akio; Koshiyama, Akiyo; Yoshimura, Akari; Enomoto, Takemi; Imai, Kazuhiro
2012-01-01
Systems biology aims to understand biological phenomena in terms of complex biological and molecular interactions, and thus proteomics plays an important role in elucidating protein networks. However, many proteomic methods have suffered from their high variability, resulting in only showing altered protein names. Here, we propose a strategy for elucidating cellular protein networks based on an FD-LC-MS/MS proteomic method. The strategy permits reproducible relative quantitation of differences in protein levels between different cell populations and allows for integration of the data with those obtained through other methods. We demonstrate the validity of the approach through a comparison of differential protein expression in normal and conditional superoxide dismutase 1 gene knockout cells and believe that beginning with an FD-LC-MS/MS proteomic approach will enable researchers to elucidate protein networks more easily and comprehensively. PMID:23029042
Netrin-G1 regulates fear-like and anxiety-like behaviors in dissociable neural circuits.
Zhang, Qi; Sano, Chie; Masuda, Akira; Ando, Reiko; Tanaka, Mika; Itohara, Shigeyoshi
2016-06-27
In vertebrate mammals, distributed neural circuits in the brain are involved in emotion-related behavior. Netrin-G1 is a glycosyl-phosphatidylinositol-anchored synaptic adhesion molecule whose deficiency results in impaired fear-like and anxiety-like behaviors under specific circumstances. To understand the cell type and circuit specificity of these responses, we generated netrin-G1 conditional knockout mice with loss of expression in cortical excitatory neurons, inhibitory neurons, or thalamic neurons. Genetic deletion of netrin-G1 in cortical excitatory neurons resulted in altered anxiety-like behavior, but intact fear-like behavior, whereas loss of netrin-G1 in inhibitory neurons resulted in attenuated fear-like behavior, but intact anxiety-like behavior. These data indicate a remarkable double dissociation of fear-like and anxiety-like behaviors involving netrin-G1 in excitatory and inhibitory neurons, respectively. Our findings support a crucial role for netrin-G1 in dissociable neural circuits for the modulation of emotion-related behaviors, and provide genetic models for investigating the mechanisms underlying the dissociation. The results also suggest the involvement of glycosyl-phosphatidylinositol-anchored synaptic adhesion molecules in the development and pathogenesis of emotion-related behavior.
Artico, Marco; Riganò, Rachele; Buttari, Brigitta; Profumo, Elisabetta; Ionta, Brunella; Bosco, Sandro; Rasile, Manuela; Bianchi, Enrica; Bruno, Moira; Fumagalli, Lorenzo
2011-04-01
Atherosclerosis is a degenerative disease whose role in the onset and development of cardiovascular pathologies and complications is of importance. Due to its silent but progressive development, and considering the endothelial, immunological and inflammatory processes that are involved in its clinical course, this still relatively unknown pathological condition has been and continues to be a matter of investigation worldwide. Our experience with previous studies on atherosclerosis led us to investigate the possible influence of a low molecular weight heparin (LMWH) - Parnaparin® on the development and clinical course of atherosclerosis in double knock-out laboratory animals (ApoE-/- mice). Our experiments demonstrated a possible role of Parnaparin (PNP) in the control of atherogenic disease. In fact, in treated mice vs. untreated ones, PNP reduced the number and the size of atherosclerotic lesions in the aortic wall, as well as the development of liver steatosis, which was massive in untreated animals and moderate in treated ones. These preliminary observations require further clinical studies, but demonstrate a possible role of Parnaparin in the control of the development and clinical evolution of atherosclerosis and liver steatosis in laboratory animals.
Peterson, Lisa K; Shaw, Laura A; Joetham, Anthony; Sakaguchi, Shimon; Gelfand, Erwin W; Dragone, Leonard L
2011-02-15
To test if manipulating TCR complex-mediated signaling (TCR signaling) could treat autoimmune disease, we generated the double SKG Src-like adapter protein (SLAP) knockout (DSSKO) mouse model. The SKG mutation in ZAP70 and SLAP have opposing functions on the regulation of TCR signaling. The combination of these two mutations alters TCR signaling in the context of a defined genetic background, uniform environmental conditions, and a well-characterized signaling disruption. In contrast to SKG mice, DSSKO mice do not develop zymosan-induced chronic autoimmune arthritis. This arthritis prevention is not due to significant alterations in thymocyte development or repertoire selection but instead enhanced numbers of regulatory T cells (Tregs) and decreased numbers of Th17 cells skewing the ratio of Tregs to autoreactive effector T cells. Treg depletion and/or functional blockade led to the development of arthritis in DSSKO mice. In vitro suppression of effector T cell proliferation was also enhanced, demonstrating that DSSKO mice have increased numbers of Tregs with increased function. Understanding how TCR signals influence development, expansion, and function of Tregs in DSSKO mice could advance our ability to manipulate Treg biology to treat ultimately autoimmune disease.
Peterson, Lisa K.; Shaw, Laura A.; Joetham, Anthony; Sakaguchi, Shimon; Gelfand, Erwin W.; Dragone, Leonard L.
2011-01-01
To test if manipulating TCR complex-mediated signaling (TCR signaling) could treat autoimmune disease, we generated the double SKG Src-like adapter protein (SLAP) knockout (DSSKO) mouse model. The SKG mutation in ZAP70 and SLAP have opposing functions on the regulation of TCR signaling. The combination of these two mutations alters TCR signaling in the context of a defined genetic background, uniform environmental conditions, and a well-characterized signaling disruption. In contrast to SKG mice, DSSKO mice do not develop zymosan-induced chronic autoimmune arthritis. This arthritis prevention is not due to significant alterations in thymocyte development or repertoire selection but instead enhanced numbers of regulatory T cells (Tregs) and decreased numbers of Th17 cells skewing the ratio of Tregs to autoreactive effector T cells. Treg depletion and/or functional blockade led to the development of arthritis in DSSKO mice. In vitro suppression of effector T cell proliferation was also enhanced, demonstrating that DSSKO mice have increased numbers of Tregs with increased function. Understanding how TCR signals influence development, expansion, and function of Tregs in DSSKO mice could advance our ability to manipulate Treg biology to treat ultimately autoimmune disease. PMID:21248251
Sun, Lifan; Zhang, Caili; Lyu, Pengcheng; Wang, Yanping; Wang, Limin; Yu, Bo
2016-01-01
Thermotolerant Bacillus coagulans is considered to be a more promising producer for bio-chemicals, due to its capacity to withstand harsh conditions. Two L-lactate dehydrogenase (LDH) encoding genes (ldhL1 and ldhL2) and one D-LDH encoding gene (ldhD) were annotated from the B. coagulans DSM1 genome. Transcriptional analysis revealed that the expression of ldhL2 was undetectable while the ldhL1 transcription level was much higher than that of ldhD at all growth phases. Deletion of the ldhL2 gene revealed no difference in fermentation profile compared to the wild-type strain, while ldhL1 single deletion or ldhL1ldhL2 double deletion completely blocked L-lactic acid production. Complementation of ldhL1 in the above knockout strains restored fermentation profiles to those observed in the wild-type strain. This study demonstrates ldhL1 is crucial for L-lactic acid production and NADH balance in B. coagulans DSM1 and lays the fundamental for engineering the thermotolerant B. coagulans strain as a platform chemicals producer. PMID:27885267
Dysfunction of intraflagellar transport-A causes hyperphagia-induced obesity and metabolic syndrome
Jacobs, Damon T.; Silva, Luciane M.; Allard, Bailey A.; Schonfeld, Michael P.; Chatterjee, Anindita; Talbott, George C.
2016-01-01
ABSTRACT Primary cilia extend from the plasma membrane of most vertebrate cells and mediate signaling pathways. Ciliary dysfunction underlies ciliopathies, which are genetic syndromes that manifest multiple clinical features, including renal cystic disease and obesity. THM1 (also termed TTC21B or IFT139) encodes a component of the intraflagellar transport-A complex and mutations in THM1 have been identified in 5% of individuals with ciliopathies. Consistent with this, deletion of murine Thm1 during late embryonic development results in cystic kidney disease. Here, we report that deletion of murine Thm1 during adulthood results in obesity, diabetes, hypertension and fatty liver disease, with gender differences in susceptibility to weight gain and metabolic dysfunction. Pair-feeding of Thm1 conditional knock-out mice relative to control littermates prevented the obesity and related disorders, indicating that hyperphagia caused the obese phenotype. Thm1 ablation resulted in increased localization of adenylyl cyclase III in primary cilia that were shortened, with bulbous distal tips on neurons of the hypothalamic arcuate nucleus, an integrative center for signals that regulate feeding and activity. In pre-obese Thm1 conditional knock-out mice, expression of anorexogenic pro-opiomelanocortin (Pomc) was decreased by 50% in the arcuate nucleus, which likely caused the hyperphagia. Fasting of Thm1 conditional knock-out mice did not alter Pomc nor orexogenic agouti-related neuropeptide (Agrp) expression, suggesting impaired sensing of changes in peripheral signals. Together, these data indicate that the Thm1-mutant ciliary defect diminishes sensitivity to feeding signals, which alters appetite regulation and leads to hyperphagia, obesity and metabolic disease. PMID:27482817
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takemura, Takayo; Yoshida, Yuichi; Kiso, Shinichi, E-mail: kiso@gh.med.osaka-u.ac.jp
Highlights: •HB-EGF expression was increased during the development of liver fibrosis. •Conditional HB-EGF knockout mouse showed enhanced experimental liver fibrosis. •HB-EGF antagonized TGF-β-induced activation of hepatic stellate cells. •We report a possible protective role of HB-EGF in cholestatic liver fibrosis. -- Abstract: Our aims were to evaluate the involvement of heparin-binding EGF-like growth factor (HB-EGF) in liver fibrogenesis of humans and mice and to elucidate the effect of HB-EGF deficiency on cholestatic liver fibrosis using conditional HB-EGF knockout (KO) mice. We first demonstrated that gene expression of HB-EGF had a positive significant correlation with that of collagen in human fibroticmore » livers, and was increased in bile duct ligation (BDL)-induced fibrotic livers in mouse. We then generated conditional HB-EGF knockout (KO) mice using the interferon inducible Mx-1 promoter driven Cre recombinase transgene and wild type (WT) and KO mice were subjected to BDL. After BDL, KO mice exhibited enhanced liver fibrosis with increased expression of collagen, compared with WT mice. Finally, we used mouse hepatic stellate cells (HSCs) to examine the role of HB-EGF in the activation of these cells and showed that HB-EGF antagonized TGF-β-induced gene expression of collagen in mouse primary HSCs. Interestingly, HB-EGF did not prevent the TGF-β-induced nuclear accumulation of Smad3, but did lead to stabilization of the Smad transcriptional co-repressor TG-interacting factor. In conclusion, our data suggest a possible protective role of HB-EGF in cholestatic liver fibrosis.« less
Młyniec, Katarzyna; Budziszewska, Bogusława; Holst, Birgitte; Ostachowicz, Beata; Nowak, Gabriel
2014-10-31
Zinc may act as a neurotransmitter in the central nervous system by activation of the GPR39 metabotropic receptors. In the present study, we investigated whether GPR39 knockout would cause depressive-like and/or anxiety-like behavior, as measured by the forced swim test, tail suspension test, and light/dark test. We also investigated whether lack of GPR39 would change levels of cAMP response element-binding protein (CREB),brain-derived neurotrophic factor (BDNF) and tropomyosin related kinase B (TrkB) protein in the hippocampus and frontal cortex of GPR39 knockout mice subjected to the forced swim test, as measured by Western-blot analysis. In this study, GPR39 knockout mice showed an increased immobility time in both the forced swim test and tail suspension test, indicating depressive-like behavior and displayed anxiety-like phenotype. GPR39 knockout mice had lower CREB and BDNF levels in the hippocampus, but not in the frontal cortex, which indicates region specificity for the impaired CREB/BDNF pathway (which is important in antidepressant response) in the absence of GPR39. There were no changes in TrkB protein in either structure. In the present study, we also investigated activity in the hypothalamus-pituitary-adrenal axis under both zinc- and GPR39-deficient conditions. Zinc-deficient mice had higher serum corticosterone levels and lower glucocorticoid receptor levels in the hippocampus and frontal cortex. There were no changes in the GPR39 knockout mice in comparison with the wild-type control mice, which does not support a role of GPR39 in hypothalamus-pituitary-adrenal axis regulation. The results of this study indicate the involvement of the GPR39 Zn(2+)-sensing receptor in the pathophysiology of depression with component of anxiety. © The Author 2015. Published by Oxford University Press on behalf of CINP.
TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells.
Tsagaratou, Ageliki; González-Avalos, Edahí; Rautio, Sini; Scott-Browne, James P; Togher, Susan; Pastor, William A; Rothenberg, Ellen V; Chavez, Lukas; Lähdesmäki, Harri; Rao, Anjana
2017-01-01
TET proteins oxidize 5-methylcytosine in DNA to 5-hydroxymethylcytosine and other oxidation products. We found that simultaneous deletion of Tet2 and Tet3 in mouse CD4 + CD8 + double-positive thymocytes resulted in dysregulated development and proliferation of invariant natural killer T cells (iNKT cells). Tet2-Tet3 double-knockout (DKO) iNKT cells displayed pronounced skewing toward the NKT17 lineage, with increased DNA methylation and impaired expression of genes encoding the key lineage-specifying factors T-bet and ThPOK. Transfer of purified Tet2-Tet3 DKO iNKT cells into immunocompetent recipient mice resulted in an uncontrolled expansion that was dependent on the nonclassical major histocompatibility complex (MHC) protein CD1d, which presents lipid antigens to iNKT cells. Our data indicate that TET proteins regulate iNKT cell fate by ensuring their proper development and maturation and by suppressing aberrant proliferation mediated by the T cell antigen receptor (TCR).
Yokoi, Fumiaki; Dang, Mai Tu; Li, Yuqing
2012-05-01
Early-onset generalized torsion dystonia (dystonia 1) is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most patients have a 3-base pair deletion (ΔGAG) in one allele of DYT1, corresponding to a loss of a glutamic acid residue (ΔE) in the C-terminal region of the protein. Functional alterations in basal ganglia circuits and the cerebellum have been reported in dystonia. Pharmacological manipulations or mutations in genes that result in functional alterations of the cerebellum have been reported to have dystonic symptoms and have been used as phenotypic rodent models. Additionally, structural lesions in the abnormal cerebellar circuits, such as cerebellectomy, have therapeutic effects in these models. A previous study has shown that the Dyt1 ΔGAG heterozygous knock-in (KI) mice exhibit motor deficits in the beam-walking test. Both Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 Purkinje cell-specific knockout (Dyt1 pKO) mice exhibit dendritic alterations of cerebellar Purkinje cells. Here, Dyt1 pKO mice exhibited significantly less slip numbers in the beam-walking test, suggesting better motor performance than control littermates, and normal gait. Furthermore, Dyt1 ΔGAG KI/Dyt1 pKO double mutant mice exhibited significantly lower numbers of slips than Dyt1 ΔGAG heterozygous KI mice, suggesting Purkinje-cell specific knockout of Dyt1 wild-type (WT) allele in Dyt1 ΔGAG heterozygous KI mice rescued the motor deficits. The results suggest that molecular lesions of torsinA in Purkinje cells by gene therapy or intervening in the signaling pathway downstream of the cerebellar Purkinje cells may rescue motor symptoms in dystonia 1. Copyright © 2012 Elsevier B.V. All rights reserved.
Schneider, Patrick; Petzold, Sandra; Sommer, Angela; Nitsch, Robert; Schwegler, Herbert; Vogt, Johannes; Roskoden, Thomas
2018-01-15
Plasticity related gene 1 (PRG-1) is a neuron specific membrane protein located at the postsynaptic density of glutamatergic synapses. PRG-1 modulates signaling pathways of phosphorylated lipid substrates such as lysophosphatidic acid (LPA). Deletion of PRG-1 increases presynaptic glutamate release probability leading to neuronal over-excitation. However, due to its cortical expression, PRG-1 deficiency leading to increased glutamatergic transmission is supposed to also affect motor pathways. We therefore analyzed the effects of PRG-1 function on exploratory and motor behavior using homozygous PRG-1 knockout (PRG-1 -/- ) mice and PRG-1/LPA 2 -receptor double knockout (PRG-1 -/- /LPA 2 -/- ) mice in two open field settings of different size and assessing motor behavior in the Rota Rod test. PRG-1 -/- mice displayed significantly longer path lengths and higher running speed in both open field conditions. In addition, PRG-1 -/- mice spent significantly longer time in the larger open field and displayed rearing and self-grooming behavior. Furthermore PRG-1 -/- mice displayed stereotypical behavior resembling phenotypes of psychiatric disorders in the smaller sized open field arena. Altogether, this behavior is similar to the stereotypical behavior observed in animal models for psychiatric disease of autistic spectrum disorders which reflects a disrupted balance between glutamatergic and GABAergic synapses. These differences indicate an altered excitation/inhibition balance in neuronal circuits in PRG-1 -/- mice as recently shown in the somatosensory cortex [38]. In contrast, PRG-1 -/- /LPA 2 -/- did not show significant changes in behavior in the open field suggesting that these specific alterations were abolished when the LPA 2 -receptor was lacking. Our findings indicate that PRG-1 deficiency led to over-excitability caused by an altered LPA/LPA 2 -R signaling inducing a behavioral phenotype typically observed in animal models for psychiatric disorders. Copyright © 2017 Elsevier B.V. All rights reserved.
Yan, Lulu; Lee, Sangmi; Lazzaro, Douglas R; Aranda, Jacob; Grant, Maria B; Chaqour, Brahim
2015-09-18
The response of the retina to ischemic insult typically leads to aberrant retinal neovascularization, a major cause of blindness. The epigenetic regulation of angiogenic gene expression by miRNAs provides new prospects for their therapeutic utility in retinal neovascularization. Here, we focus on miR-155, a microRNA functionally important in inflammation, which is of paramount importance in the pathogenesis of retinal neovascularization. Whereas constitutive miR-155-deficiency in mice results in mild vascular defects, forced expression of miR-155 causes endothelial hyperplasia and increases microglia count and activation. The mouse model of oxygen-induced retinopathy, which recapitulates ischemia-induced aberrant neovessel growth, is characterized by increased expression of miR-155 and localized areas of microglia activation. Interestingly, miR-155 deficiency in mice reduces microglial activation, curtails abnormal vessel growth, and allows for rapid normalization of the retinal vasculature following ischemic insult. miR-155 binds to the 3'-UTR and represses the expression of the CCN1 gene, which encodes an extracellular matrix-associated integrin-binding protein that both promotes physiological angiogenesis and harnesses growth factor-induced abnormal angiogenic responses. Single CCN1 deficiency or double CCN1 and miR-155 knock-out in mice causes retinal vascular malformations typical of faulty maturation, mimicking the vascular alterations of miR-155 gain of function. During development, the miR-155/CCN1 regulatory axis balances the proangiogenic and proinflammatory activities of microglia to allow for their function as guideposts for sprout fusion and anastomosis. Under ischemic conditions, dysregulated miR-155 and CCN1 expression increases the inflammatory load and microglial activation, prompting aberrant angiogenic responses. Thus, miR-155 functions in tandem with CCN1 to modulate inflammation-induced vascular homeostasis and repair. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Yan, Lulu; Lee, Sangmi; Lazzaro, Douglas R.; Aranda, Jacob; Grant, Maria B.; Chaqour, Brahim
2015-01-01
The response of the retina to ischemic insult typically leads to aberrant retinal neovascularization, a major cause of blindness. The epigenetic regulation of angiogenic gene expression by miRNAs provides new prospects for their therapeutic utility in retinal neovascularization. Here, we focus on miR-155, a microRNA functionally important in inflammation, which is of paramount importance in the pathogenesis of retinal neovascularization. Whereas constitutive miR-155-deficiency in mice results in mild vascular defects, forced expression of miR-155 causes endothelial hyperplasia and increases microglia count and activation. The mouse model of oxygen-induced retinopathy, which recapitulates ischemia-induced aberrant neovessel growth, is characterized by increased expression of miR-155 and localized areas of microglia activation. Interestingly, miR-155 deficiency in mice reduces microglial activation, curtails abnormal vessel growth, and allows for rapid normalization of the retinal vasculature following ischemic insult. miR-155 binds to the 3′-UTR and represses the expression of the CCN1 gene, which encodes an extracellular matrix-associated integrin-binding protein that both promotes physiological angiogenesis and harnesses growth factor-induced abnormal angiogenic responses. Single CCN1 deficiency or double CCN1 and miR-155 knock-out in mice causes retinal vascular malformations typical of faulty maturation, mimicking the vascular alterations of miR-155 gain of function. During development, the miR-155/CCN1 regulatory axis balances the proangiogenic and proinflammatory activities of microglia to allow for their function as guideposts for sprout fusion and anastomosis. Under ischemic conditions, dysregulated miR-155 and CCN1 expression increases the inflammatory load and microglial activation, prompting aberrant angiogenic responses. Thus, miR-155 functions in tandem with CCN1 to modulate inflammation-induced vascular homeostasis and repair. PMID:26242736
Genome editing with CompoZr custom zinc finger nucleases (ZFNs).
Hansen, Keith; Coussens, Matthew J; Sago, Jack; Subramanian, Shilpi; Gjoka, Monika; Briner, Dave
2012-06-14
Genome editing is a powerful technique that can be used to elucidate gene function and the genetic basis of disease. Traditional gene editing methods such as chemical-based mutagenesis or random integration of DNA sequences confer indiscriminate genetic changes in an overall inefficient manner and require incorporation of undesirable synthetic sequences or use of aberrant culture conditions, potentially confusing biological study. By contrast, transient ZFN expression in a cell can facilitate precise, heritable gene editing in a highly efficient manner without the need for administration of chemicals or integration of synthetic transgenes. Zinc finger nucleases (ZFNs) are enzymes which bind and cut distinct sequences of double-stranded DNA (dsDNA). A functional CompoZr ZFN unit consists of two individual monomeric proteins that bind a DNA "half-site" of approximately 15-18 nucleotides (see Figure 1). When two ZFN monomers "home" to their adjacent target sites the DNA-cleavage domains dimerize and create a double-strand break (DSB) in the DNA. Introduction of ZFN-mediated DSBs in the genome lays a foundation for highly efficient genome editing. Imperfect repair of DSBs in a cell via the non-homologous end-joining (NHEJ) DNA repair pathway can result in small insertions and deletions (indels). Creation of indels within the gene coding sequence of a cell can result in frameshift and subsequent functional knockout of a gene locus at high efficiency. While this protocol describes the use of ZFNs to create a gene knockout, integration of transgenes may also be conducted via homology-directed repair at the ZFN cut site. The CompoZr Custom ZFN Service represents a systematic, comprehensive, and well-characterized approach to targeted gene editing for the scientific community with ZFN technology. Sigma scientists work closely with investigators to 1) perform due diligence analysis including analysis of relevant gene structure, biology, and model system pursuant to the project goals, 2) apply this knowledge to develop a sound targeting strategy, 3) then design, build, and functionally validate ZFNs for activity in a relevant cell line. The investigator receives positive control genomic DNA and primers, and ready-to-use ZFN reagents supplied in both plasmid DNA and in-vitro transcribed mRNA format. These reagents may then be delivered for transient expression in the investigator's cell line or cell type of choice. Samples are then tested for gene editing at the locus of interest by standard molecular biology techniques including PCR amplification, enzymatic digest, and electrophoresis. After positive signal for gene editing is detected in the initial population, cells are single-cell cloned and genotyped for identification of mutant clones/alleles.
Fisher, Cynthia L; Marks, Hendrik; Cho, Lily Ting-Yin; Andrews, Robert; Wormald, Sam; Carroll, Thomas; Iyer, Vivek; Tate, Peri; Rosen, Barry; Stunnenberg, Hendrik G; Fisher, Amanda G; Skarnes, William C
2017-12-01
Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC 'knockout-first' ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the 'knockout-first' allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency '2i' media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
RNA-seq reveals transcriptome changes in goats following myostatin gene knockout
Cai, Bei; Zhou, Shiwei; Zhu, Haijing; Qu, Lei; Wang, Xiaolong
2017-01-01
Myostatin (MSTN) is a powerful negative regulator of skeletal muscle mass in mammalian species that is primarily expressed in skeletal muscles, and mutations of its encoding gene can result in the double-muscling trait. In this study, the CRISPR/Cas9 technique was used to edit MSTN in Shaanbei Cashmere goats and generate knockout animals. RNA sequencing was used to determine and compare the transcriptome profiles of the muscles from three wild-type (WT) goats, three fibroblast growth factor 5 (FGF5) knockout goats (FGF5+/- group) and three goats with disrupted expression of both the FGF5 and MSTN genes (FM+/- group). The sequence reads were obtained using the Illumina HiSeq 2000 system and mapped to the Capra hircus reference genome using TopHat (v2.0.9). In total, 68.93, 62.04 and 66.26 million clean sequencing reads were obtained from the WT, FM+/- and FGF5+/- groups, respectively. There were 201 differentially expressed genes (DEGs) between the WT and FGF5+/- groups, with 86 down- and 115 up-regulated genes in the FGF5+/- group. Between the WT and FM+/- groups, 121 DEGs were identified, including 81 down- and 40 up-regulated genes in the FM+/- group. A total of 198 DEGs were detected between the FGF5+/- group and FM+/- group, with 128 down- and 70 up-regulated genes in the FM+/- group. At the transcriptome level, we found substantial changes in genes involved in fatty acid metabolism and the biosynthesis of unsaturated fatty acids, such as stearoyl-CoA dehydrogenase, 3-hydroxyacyl-CoA dehydratase 2, ELOVL fatty acid elongase 6 and fatty acid synthase, suggesting that the expression levels of these genes may be directly regulated by MSTN and that these genes are likely downstream targets of MSTN with potential roles in lipid metabolism in goats. Moreover, five randomly selected DEGs were further validated with qRT-PCR, and the results were consistent with the transcriptome analysis. The present study provides insight into the unique transcriptome profile of the MSTN knockout goat, which is a valuable resource for studying goat genomics. PMID:29228005
Zhang, Dong-Xiu; Spiering, Martin J; Nuss, Donald L
2014-01-01
An inducible RNA-silencing pathway, involving a single Dicer protein, DCL2, and a single Argonaute protein, AGL2, was recently shown to serve as an effective antiviral defense response in the chestnut blight fungus Cryphonectria parasitica. Eukaryotic RNA-dependent RNA polymerases (RdRPs) are frequently involved in transcriptional and posttranscriptional gene silencing and antiviral defense. We report here the identification and characterization of four RdRP genes (rdr1-4) in the C. parasitica genome. Sequence relationships with other eukaryotic RdRPs indicated that RDR1 and RDR2 were closely related to QDE-1, an RdRP involved in RNA silencing ("quelling") in Neurospora crassa, whereas RDR3 was more closely related to the meiotic silencing gene SAD-1 in N. crassa. The RdRP domain of RDR4, related to N. crassa RRP-3 of unknown function, was truncated and showed evidence of alternative splicing. Similar to reports for dcl2 and agl2, the expression levels for rdr3 and rdr4 increased after hypovirus CHV-1/EP713 infection, while expression levels of rdr1 and rdr2 were unchanged. The virus-responsive induction patterns for rdr3 and rdr4 were altered in the Δdcl2 and Δagl2 strains, suggesting some level of interaction between rdr3 and rdr4 and the dcl2/agl2 silencing pathway. Single rdr gene knockouts Δrdr1-4, double knockouts Δrdr1/2, Δrdr2/3, Δrdr1/3, and a triple knockout, Δrdr1/2/3, were generated and evaluated for effects on fungal phenotype, the antiviral defense response, viral RNA recombination activity and transposon expression. None of the single or multiple rdr knockout strains displayed any phenotypic differences from the parental strains with or without viral infection or any significant changes in viral RNA accumulation or recombination activity or transposon RNA accumulation, indicating no detectable contribution by the C. parasitica rdr genes to these processes.
Wang, Ying; D'Urso, Giulia
2012-01-01
Degenerin/epithelial Na+ channels (DEG/ENaCs) are voltage-independent Na+ or Na+/Ca2+ channels expressed in many tissues and are needed for a wide range of physiological functions, including sensory perception and transepithelial Na+ transport. In the nervous system, DEG/ENaCs are expressed in both neurons and glia. However, the role of glial vs. neuronal DEG/ENaCs remains unclear. We recently reported the characterization of a novel DEG/ENaC in Caenorhabditis elegans that we named ACD-1. ACD-1 is expressed in glial amphid sheath cells. The glial ACD-1, together with the neuronal DEG/ENaC DEG-1, is necessary for acid avoidance and attraction to lysine. We report presently that knockout of acd-1 in glia exacerbates sensory deficits caused by another mutant: the hypomorphic allele of the cGMP-gated channel subunit tax-2. Furthermore, sensory deficits caused by mutations in Gi protein odr-3 and guanylate cyclase daf-11, which regulate the activity of TAX-2/TAX-4 channels, are worsened by knockout of acd-1. We also show that sensory neurons of acd-1 tax-2(p694) double mutants fail to undergo changes in intracellular Ca2+ when animals are exposed to low concentrations of attractant. Finally, we show that exogenous expression of TRPV1 in sensory neurons and exposure to capsaicin rescue sensory deficits of acd-1 tax-2(p694) mutants, suggesting that sensory deficits of these mutants are bypassed by increasing neuronal excitability. Our data suggest a role of glial DEG/ENaC channel ACD-1 in supporting neuronal activity. PMID:21994266
Kusunoki, Yasuo; Matsui, Isao; Hamano, Takayuki; Shimomura, Akihiro; Mori, Daisuke; Yonemoto, Sayoko; Takabatake, Yoshitsugu; Tsubakihara, Yoshiharu; St-Arnaud, René; Isaka, Yoshitaka; Rakugi, Hiromi
2015-11-01
Vitamin D hydroxylated at carbon 25 (25(OH)D) is generally recognized as a precursor of active vitamin D. Despite its low affinity for the vitamin D receptor (VDR), both deficient and excessive 25(OH)D levels are associated with poor clinical outcomes. Here we studied direct effects of 25(OH)D3 on the kidney using 25(OH)D-1α-hydroxylase (CYP27B1) knockout mice. The effects of 25(OH)D3 on unilateral ureteral obstruction were analyzed as proximal tubular cells and macrophages are two major cell types that take up 25(OH)D and contribute to the pathogenesis of kidney injury. Excess 25(OH)D3 in obstructed mice worsened oxidative stress and tubulointerstitial fibrosis, whereas moderate levels of 25(OH)D3 had no effects. The exacerbating effects of excess 25(OH)D3 were abolished in CYP27B1/VDR double-knockout mice and in macrophage-depleted CYP27B1 knockout mice. Excess 25(OH)D3 upregulated both M1 marker (TNF-α) and M2 marker (TGF-β1) levels of kidney-infiltrating macrophages. In vitro analyses verified that excess 25(OH)D3 directly upregulated TNF-α and TGF-β1 in cultured macrophages but not in tubular cells. TNF-α and 25(OH)D3 cooperatively induced oxidative stress by upregulating iNOS in tubular cells. Aggravated tubulointerstitial fibrosis in mice with excess 25(OH)D3 indicated that macrophage-derived TGF-β1 also had a key role in the pathogenesis of surplus 25(OH)D3. Thus, excess 25(OH)D3 worsens tubulointerstitial injury by modulating macrophage phenotype.
Krishnamurthy, Karthikeyan; Glaser, Shannon; Alpini, Gianfranco D.; Cardounel, Arturo J.; Liu, Zhenguo; Ilangovan, Govindasamy
2016-01-01
Aims Stress response, in terms of activation of stress factors, is known to cause obesity and coronary heart disease such as atherosclerosis in human. However, the underlying mechanism(s) of these pathways are not known. Here, we investigated the effect of heat shock factor-1 (HSF-1) on atherosclerosis. Methods and results HSF-1 and low-density lipoprotein receptor (LDLr) double knockout (HSF-1−/−/LDLr−/−) and LDLr knockout (LDLr−/−) mice were fed with atherogenic western diet (WD) for 12 weeks. WD-induced weight gain and atherosclerotic lesion in aortic arch and carotid regions were reduced in HSF-1−/−/LDLr−/− mice, compared with LDLr−/− mice. Also, repression of PPAR-γ2 and AMPKα expression in adipose tissue, low hepatic steatosis, and lessened plasma adiponectins and lipoproteins were observed. In HSF-1−/−/LDLr−/− liver, higher cholesterol 7α-hydroxylase (CYP7A1) and multidrug transporter [MDR1/P-glycoprotein (P-gp)] gene expressions were observed, consistent with higher bile acid transport and larger hepatic bile ducts. Luciferase reporter gene assays with wild-type CYP7A1 and MDR1 promoters showed lesser luminescence than with mutant promoters (HSF-1 binding site deleted), indicating that HSF-1 binding is repressive of CYP7A1 and MDR1 gene expressions. Conclusion HSF-1 ablation not only eliminates heat shock response, but it also transcriptionally up-regulates CYP7A1 and MDR1/P-gp axis in WD-diet fed HSF-1−/−/LDLr−/− mice to reduce atherosclerosis. PMID:27131506
Running Promotes Wakefulness and Increases Cataplexy in Orexin Knockout Mice
España, Rodrigo A.; McCormack, Sarah L.; Mochizuki, Takatoshi; Scammell, Thomas E.
2007-01-01
Study Objective: People with narcolepsy and mice lacking orexin/hypocretin have disrupted sleep/wake behavior and reduced physical activity. Our objective was to identify physiologic mechanisms through which orexin deficiency reduces locomotor activity. Design: We examined spontaneous wheel running activity and its relationship to sleep/wake behavior in wild type (WT) and orexin knockout (KO) mice. Additionally, given that physical activity promotes alertness, we also studied whether orexin deficiency reduces the wake-promoting effects of exercise. Measurements and Results: Orexin KO mice ran 42% less than WT mice. Their ability to run appeared normal as they initiated running as often as WT mice and ran at normal speeds. However, their running bouts were considerably shorter, and they often had cataplexy or quick transitions into sleep after running. Wheel running increased the total amount of wakefulness in WT and orexin KO mice similarly, however, KO mice continued to have moderately fragmented sleep/wake behavior. Wheel running also doubled the amount of cataplexy by increasing the probability of transitioning into cataplexy. Conclusions: Orexin KO mice run significantly less than normal, likely due to sleepiness, imminent cataplexy, or a reduced motivation to run. Orexin is not required for the wake-promoting effects of wheel running given that both WT and KO mice had similar increases in wakefulness with running wheels. In addition, the clear increase in cataplexy with wheel running suggests the possibility that positive emotions or reward can trigger murine cataplexy, similar to that seen in people and dogs with narcolepsy. Citation: España RA; McCormack SL; Mochizuki T; Scammell TE. Running promotes wakefulness and increases cataplexy in orexin knockout mice. SLEEP 2007;30(11):1417-1425. PMID:18041476
Wang, Ying; D'Urso, Giulia; Bianchi, Laura
2012-01-01
Degenerin/epithelial Na(+) channels (DEG/ENaCs) are voltage-independent Na(+) or Na(+)/Ca(2+) channels expressed in many tissues and are needed for a wide range of physiological functions, including sensory perception and transepithelial Na(+) transport. In the nervous system, DEG/ENaCs are expressed in both neurons and glia. However, the role of glial vs. neuronal DEG/ENaCs remains unclear. We recently reported the characterization of a novel DEG/ENaC in Caenorhabditis elegans that we named ACD-1. ACD-1 is expressed in glial amphid sheath cells. The glial ACD-1, together with the neuronal DEG/ENaC DEG-1, is necessary for acid avoidance and attraction to lysine. We report presently that knockout of acd-1 in glia exacerbates sensory deficits caused by another mutant: the hypomorphic allele of the cGMP-gated channel subunit tax-2. Furthermore, sensory deficits caused by mutations in G(i) protein odr-3 and guanylate cyclase daf-11, which regulate the activity of TAX-2/TAX-4 channels, are worsened by knockout of acd-1. We also show that sensory neurons of acd-1 tax-2(p694) double mutants fail to undergo changes in intracellular Ca(2+) when animals are exposed to low concentrations of attractant. Finally, we show that exogenous expression of TRPV1 in sensory neurons and exposure to capsaicin rescue sensory deficits of acd-1 tax-2(p694) mutants, suggesting that sensory deficits of these mutants are bypassed by increasing neuronal excitability. Our data suggest a role of glial DEG/ENaC channel ACD-1 in supporting neuronal activity.
Atochina-Vasserman, Elena N.; Massa, Christopher B.; Birkelbach, Bastian; Guo, Chang-Jiang; Scott, Pamela; Haenni, Beat; Beers, Michael F.; Ochs, Matthias; Gow, Andrew J.
2015-01-01
Surfactant protein D (SP-D) modulates the lung's immune system. Its absence leads to NOS2-independent alveolar lipoproteinosis and NOS2-dependent chronic inflammation, which is critical for early emphysematous remodeling. With aging, SP-D knockout mice develop an additional interstitial fibrotic component. We hypothesize that this age-related interstitial septal wall remodeling is mediated by NOS2. Using invasive pulmonary function testing such as the forced oscillation technique and quasistatic pressure-volume perturbation and design-based stereology, we compared 29-wk-old SP-D knockout (Sftpd−/−) mice, SP-D/NOS2 double-knockout (DiNOS) mice, and wild-type mice (WT). Structural changes, including alveolar epithelial surface area, distribution of septal wall thickness, and volumes of septal wall components (alveolar epithelium, interstitial tissue, and endothelium) were quantified. Twenty-nine-week-old Sftpd−/− mice had preserved lung mechanics at the organ level, whereas elastance was increased in DiNOS. Airspace enlargement and loss of surface area of alveolar epithelium coexist with increased septal wall thickness in Sftpd−/− mice. These changes were reduced in DiNOS, and compared with Sftpd−/− mice a decrease in volumes of interstitial tissue and alveolar epithelium was found. To understand the effects of lung pathology on measured lung mechanics, structural data were used to inform a computational model, simulating lung mechanics as a function of airspace derecruitment, septal wall destruction (loss of surface area), and septal wall thickening. In conclusion, NOS2 mediates remodeling of septal walls, resulting in deposition of interstitial tissue in Sftpd−/−. Forward modeling linking structure and lung mechanics describes the complex mechanical properties by parenchymatous destruction (emphysema), interstitial remodeling (septal wall thickening), and altered recruitability of acinar airspaces. PMID:26320150
High affinity kainate receptor subunits are necessary for ionotropic but not metabotropic signaling
Fernandes, Herman B.; Catches, Justin S.; Petralia, Ronald S.; Copits, Bryan A.; Xu, Jian; Russell, Theron A.; Swanson, Geoffrey T.; Contractor, Anis
2009-01-01
Summary Kainate receptors are atypical members of the glutamate receptor family which are able to signal through both ionotropic and metabotropic pathways. Of the five individual kainate receptor subunits the high-affinity subunits, GluK4 (KA1) and GluK5 (KA2), are unique in that they do not form functional homomeric receptors in recombinant expression systems, but combine with the primary subunits GluK1-3 (GluR5-7) to form heteromeric assemblies. Here we generated a GluK4 mutant mouse by disrupting the Grik4 gene locus. We found that loss of the GluK4 subunit leads to a significant reduction in synaptic kainate receptor currents. Moreover, ablation of both high-affinity subunits in GluK4/GluK5 double knockout mice leads to a complete loss of pre- and postsynaptic ionotropic function of synaptic kainate receptors. The principal subunits remain at the synaptic plasma membrane, but are distributed away from postsynaptic densities and presynaptic active zones. There is also an alteration in the properties of the remaining kainate receptors, as kainic acid application fails to elicit responses in GluK4/GluK5 knockout neurons. Despite the lack of detectable ionotropic synaptic receptors, the kainate receptor-mediated inhibition of the slow afterhyperpolarization current (IsAHP), which is dependent on metabotropic pathways, was intact in GluK4/GluK5 knockout mice. These results uncover a previously unknown critical role for the high-affinity kainate receptor subunits as obligatory components of ionotropic kainate receptor function, and further, demonstrate that kainate receptor participation in metabotropic signaling pathways does not require their classic role as ion channels. PMID:19778510
Le Merrer, Julie; Plaza-Zabala, Ainhoa; Del Boca, Carolina; Matifas, Audrey; Maldonado, Rafael; Kieffer, Brigitte L
2011-04-01
Converging experimental data indicate that δ opioid receptors contribute to mediate drug reinforcement processes. Whether their contribution reflects a role in the modulation of drug reward or an implication in conditioned learning, however, has not been explored. In the present study, we investigated the impact of δ receptor gene knockout on reinforced conditioned learning under several experimental paradigms. We assessed the ability of δ receptor knockout mice to form drug-context associations with either morphine (appetitive)- or lithium (aversive)-induced Pavlovian place conditioning. We also examined the efficiency of morphine to serve as a positive reinforcer in these mice and their motivation to gain drug injections, with operant intravenous self-administration under fixed and progressive ratio schedules and at two different doses. Mutant mice showed impaired place conditioning in both appetitive and aversive conditions, indicating disrupted context-drug association. In contrast, mutant animals displayed intact acquisition of morphine self-administration and reached breaking-points comparable to control subjects. Thus, reinforcing effects of morphine and motivation to obtain the drug were maintained. Collectively, the data suggest that δ receptor activity is not involved in morphine reinforcement but facilitates place conditioning. This study reveals a novel aspect of δ opioid receptor function in addiction-related behaviors. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Liu, Yuqiang; Chen, Cui; Liu, Yunlong; Li, Wei; Wang, Zhihong; Sun, Qifeng; Zhou, Hang; Chen, Xiangjun; Yu, Yongchun; Wang, Yun; Abumaria, Nashat
2018-06-19
The TRPM7 chanzyme contributes to several biological and pathological processes in different tissues. However, its role in the CNS under physiological conditions remains unclear. Here, we show that TRPM7 knockdown in hippocampal neurons reduces structural synapse density. The synapse density is rescued by the α-kinase domain in the C terminus but not by the ion channel region of TRPM7 or by increasing extracellular concentrations of Mg 2+ or Zn 2+ . Early postnatal conditional knockout of TRPM7 in mice impairs learning and memory and reduces synapse density and plasticity. TRPM7 knockdown in the hippocampus of adult rats also impairs learning and memory and reduces synapse density and synaptic plasticity. In knockout mice, restoring expression of the α-kinase domain in the brain rescues synapse density/plasticity and memory, probably by interacting with and phosphorylating cofilin. These results suggest that brain TRPM7 is important for having normal synaptic and cognitive functions under physiological, non-pathological conditions. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Polycystin-1 Is a Cardiomyocyte Mechanosensor That Governs L-Type Ca2+ Channel Protein Stability.
Pedrozo, Zully; Criollo, Alfredo; Battiprolu, Pavan K; Morales, Cyndi R; Contreras-Ferrat, Ariel; Fernández, Carolina; Jiang, Nan; Luo, Xiang; Caplan, Michael J; Somlo, Stefan; Rothermel, Beverly A; Gillette, Thomas G; Lavandero, Sergio; Hill, Joseph A
2015-06-16
L-type calcium channel activity is critical to afterload-induced hypertrophic growth of the heart. However, the mechanisms governing mechanical stress-induced activation of L-type calcium channel activity are obscure. Polycystin-1 (PC-1) is a G protein-coupled receptor-like protein that functions as a mechanosensor in a variety of cell types and is present in cardiomyocytes. We subjected neonatal rat ventricular myocytes to mechanical stretch by exposing them to hypo-osmotic medium or cyclic mechanical stretch, triggering cell growth in a manner dependent on L-type calcium channel activity. RNAi-dependent knockdown of PC-1 blocked this hypertrophy. Overexpression of a C-terminal fragment of PC-1 was sufficient to trigger neonatal rat ventricular myocyte hypertrophy. Exposing neonatal rat ventricular myocytes to hypo-osmotic medium resulted in an increase in α1C protein levels, a response that was prevented by PC-1 knockdown. MG132, a proteasomal inhibitor, rescued PC-1 knockdown-dependent declines in α1C protein. To test this in vivo, we engineered mice harboring conditional silencing of PC-1 selectively in cardiomyocytes (PC-1 knockout) and subjected them to mechanical stress in vivo (transverse aortic constriction). At baseline, PC-1 knockout mice manifested decreased cardiac function relative to littermate controls, and α1C L-type calcium channel protein levels were significantly lower in PC-1 knockout hearts. Whereas control mice manifested robust transverse aortic constriction-induced increases in cardiac mass, PC-1 knockout mice showed no significant growth. Likewise, transverse aortic constriction-elicited increases in hypertrophic markers and interstitial fibrosis were blunted in the knockout animals PC-1 is a cardiomyocyte mechanosensor that is required for cardiac hypertrophy through a mechanism that involves stabilization of α1C protein. © 2015 American Heart Association, Inc.
Gene targeting in embryonic stem cells, II: conditional technologies
USDA-ARS?s Scientific Manuscript database
Genome modification via transgenesis has allowed researchers to link genotype and phenotype as an alternative approach to the characterization of random mutations through evolution. The synergy of technologies from the fields of embryonic stem (ES) cells, gene knockouts, and protein-mediated recombi...
Lee, Chai-Jin; Kang, Dongwon; Lee, Sangseon; Lee, Sunwon; Kang, Jaewoo; Kim, Sun
2018-05-25
Determining functions of a gene requires time consuming, expensive biological experiments. Scientists can speed up this experimental process if the literature information and biological networks can be adequately provided. In this paper, we present a web-based information system that can perform in silico experiments of computationally testing hypothesis on the function of a gene. A hypothesis that is specified in English by the user is converted to genes using a literature and knowledge mining system called BEST. Condition-specific TF, miRNA and PPI (protein-protein interaction) networks are automatically generated by projecting gene and miRNA expression data to template networks. Then, an in silico experiment is to test how well the target genes are connected from the knockout gene through the condition-specific networks. The test result visualizes path from the knockout gene to the target genes in the three networks. Statistical and information-theoretic scores are provided on the resulting web page to help scientists either accept or reject the hypothesis being tested. Our web-based system was extensively tested using three data sets, such as E2f1, Lrrk2, and Dicer1 knockout data sets. We were able to re-produce gene functions reported in the original research papers. In addition, we comprehensively tested with all disease names in MalaCards as hypothesis to show the effectiveness of our system. Our in silico experiment system can be very useful in suggesting biological mechanisms which can be further tested in vivo or in vitro. http://biohealth.snu.ac.kr/software/insilico/. Copyright © 2018 Elsevier Inc. All rights reserved.
Embryonic ablation of neuronal VGF increases energy expenditure and reduces body weight
Jiang, Cheng; Lin, Wei-Jye; Sadahiro, Masato; Shin, Andrew C.; Buettner, Christoph; Salton, Stephen R.
2016-01-01
Germline ablation of VGF, a secreted neuronal, neuroendocrine, and endocrine peptide precursor, results in lean, hypermetabolic, and infertile adult mice that are resistant to diet-, lesion-, and genetically-induced obesity and diabetes (Hahm et al., 1999, 2002). To assess whether this phenotype is predominantly driven by reduced VGF expression in developing and/or adult neurons, or in peripheral endocrine and neuroendocrine tissues, we generated and analyzed conditional VGF knockout mice, obtained by mating loxP-flanked (floxed) Vgf mice with either pan-neuronal Synapsin-Cre- or forebrain alpha-CaMKII-Cre-recombinase-expressing transgenic mice. Adult male and female mice, with conditional ablation of the Vgf gene in embryonic neurons had significantly reduced body weight, increased energy expenditure, and were resistant to diet-induced obesity. Conditional forebrain postnatal ablation of VGF in male mice, primarily in adult excitatory neurons, had no measurable effect on body weight nor on energy expenditure, but led to a modest increase in adiposity, partially overlapping the effect of AAV-Cre-mediated targeted ablation of VGF in the adult ventromedial hypothalamus and arcuate nucleus of floxed Vgf mice (Foglesong et al., 2016), and also consistent with results of icv delivery of the VGF-derived peptide TLQP-21 to adult mice, which resulted in increased energy expenditure and reduced adiposity (Bartolomucci et al., 2006). Because the lean, hypermetabolic phenotype of germline VGF knockout mice is to a great extent recapitulated in Syn-Cre+/−,Vgfflpflox/flpflox mice, we conclude that the metabolic profile of germline VGF knockout mice is largely the result of VGF ablation in embryonic CNS neurons, rather than peripheral endocrine and/or neuroendocrine cells, and that in forebrain structures such as hypothalamus, VGF and/or VGF-derived peptides play uniquely different roles in the developing and adult nervous system. PMID:28024880
Dysfunction of intraflagellar transport-A causes hyperphagia-induced obesity and metabolic syndrome.
Jacobs, Damon T; Silva, Luciane M; Allard, Bailey A; Schonfeld, Michael P; Chatterjee, Anindita; Talbott, George C; Beier, David R; Tran, Pamela V
2016-07-01
Primary cilia extend from the plasma membrane of most vertebrate cells and mediate signaling pathways. Ciliary dysfunction underlies ciliopathies, which are genetic syndromes that manifest multiple clinical features, including renal cystic disease and obesity. THM1 (also termed TTC21B or IFT139) encodes a component of the intraflagellar transport-A complex and mutations in THM1 have been identified in 5% of individuals with ciliopathies. Consistent with this, deletion of murine Thm1 during late embryonic development results in cystic kidney disease. Here, we report that deletion of murine Thm1 during adulthood results in obesity, diabetes, hypertension and fatty liver disease, with gender differences in susceptibility to weight gain and metabolic dysfunction. Pair-feeding of Thm1 conditional knock-out mice relative to control littermates prevented the obesity and related disorders, indicating that hyperphagia caused the obese phenotype. Thm1 ablation resulted in increased localization of adenylyl cyclase III in primary cilia that were shortened, with bulbous distal tips on neurons of the hypothalamic arcuate nucleus, an integrative center for signals that regulate feeding and activity. In pre-obese Thm1 conditional knock-out mice, expression of anorexogenic pro-opiomelanocortin (Pomc) was decreased by 50% in the arcuate nucleus, which likely caused the hyperphagia. Fasting of Thm1 conditional knock-out mice did not alter Pomc nor orexogenic agouti-related neuropeptide (Agrp) expression, suggesting impaired sensing of changes in peripheral signals. Together, these data indicate that the Thm1-mutant ciliary defect diminishes sensitivity to feeding signals, which alters appetite regulation and leads to hyperphagia, obesity and metabolic disease. © 2016. Published by The Company of Biologists Ltd.
Tennant, Gail M; Wadsworth, Roger M; Kennedy, Simon
2008-05-01
Activation of PAR-2 in the vasculature affects vascular tone and adhesion of leukocytes to the endothelium. Since adhesion of leukocytes is increased following vascular injury and is important in determining the extent of neointima formation, we hypothesised that mice lacking PAR-2 may have reduced neointima formation following vascular injury. PAR-2 activating peptides and trypsin induced endothelium-dependent relaxation of mouse carotid artery which was absent in the knockout mouse. Lack of a PAR-2 receptor did not affect lymphocyte adhesion under basal conditions, but reduced the contractile response produced by lymphocytes. Twenty-eight days after denuding injury, vessel contraction to lymphocytes was reduced in both strains while lymphocyte adhesion was significantly greater in PAR-2(+/+) mice compared to the PAR-2 knockout mice. Neointimal area was markedly reduced in the PAR-2 knockout mouse. Our data show that PAR-2 modulates inflammatory cell adhesion when stimulated and in mice lacking the PAR-2 receptor, adhesion to injured vessels is reduced with a consequent reduction in neointima formation.
Requirement of Smad4 from Ocular Surface Ectoderm for Retinal Development.
Li, Jing; Wang, Shusheng; Anderson, Chastain; Zhao, Fangkun; Qin, Yu; Wu, Di; Wu, Xinwei; Liu, Jia; He, Xuefei; Zhao, Jiangyue; Zhang, Jinsong
2016-01-01
Microphthalmia is characterized by abnormally small eyes and usually retinal dysplasia, accounting for up to 11% of the blindness in children. Right now there is no effective treatment for the disease, and the underlying mechanisms, especially how retinal dysplasia develops from microphthalmia and whether it depends on the signals from lens ectoderm are still unclear. Mutations in genes of the TGF-β superfamily have been noted in patients with microphthalmia. Using conditional knockout mice, here we address the question that whether ocular surface ectoderm-derived Smad4 modulates retinal development. We found that loss of Smad4 specifically on surface lens ectoderm leads to microphthalmia and dysplasia of retina. Retinal dysplasia in the knockout mice is caused by the delayed or failed differentiation and apoptosis of retinal cells. Microarray analyses revealed that members of Hedgehog and Wnt signaling pathways are affected in the knockout retinas, suggesting that ocular surface ectoderm-derived Smad4 can regulate Hedgehog and Wnt signaling in the retina. Our studies suggest that defective of ocular surface ectoderm may affect retinal development.
Requirement of Smad4 from Ocular Surface Ectoderm for Retinal Development
Li, Jing; Wang, Shusheng; Anderson, Chastain; Zhao, Fangkun; Qin, Yu; Wu, Di; Wu, Xinwei; Liu, Jia; He, Xuefei; Zhao, Jiangyue; Zhang, Jinsong
2016-01-01
Microphthalmia is characterized by abnormally small eyes and usually retinal dysplasia, accounting for up to 11% of the blindness in children. Right now there is no effective treatment for the disease, and the underlying mechanisms, especially how retinal dysplasia develops from microphthalmia and whether it depends on the signals from lens ectoderm are still unclear. Mutations in genes of the TGF-β superfamily have been noted in patients with microphthalmia. Using conditional knockout mice, here we address the question that whether ocular surface ectoderm-derived Smad4 modulates retinal development. We found that loss of Smad4 specifically on surface lens ectoderm leads to microphthalmia and dysplasia of retina. Retinal dysplasia in the knockout mice is caused by the delayed or failed differentiation and apoptosis of retinal cells. Microarray analyses revealed that members of Hedgehog and Wnt signaling pathways are affected in the knockout retinas, suggesting that ocular surface ectoderm-derived Smad4 can regulate Hedgehog and Wnt signaling in the retina. Our studies suggest that defective of ocular surface ectoderm may affect retinal development. PMID:27494603
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertuchi, Fernanda R.; Bourgeon, Dominique M.G.; Landemberger, Michele C.
2012-02-03
Highlights: Black-Right-Pointing-Pointer PrP{sup C} in solution acts as a radical scavenger. Black-Right-Pointing-Pointer PrP{sup C} reduces hydrogen peroxide toxicity in astrocytes. Black-Right-Pointing-Pointer Increase in ROS disrupted the cell cycle in the PrP{sup C}-knockout astrocytes. Black-Right-Pointing-Pointer PrP{sup C} prevents the cell death independently of an SOD-like activity. -- Abstract: The PrP{sup C} protein, which is especially present in the cellular membrane of nervous system cells, has been extensively studied for its controversial antioxidant activity. In this study, we elucidated the free radical scavenger activity of purified murine PrP{sup C} in solution and its participation as a cell protector in astrocytes that weremore » subjected to treatment with an oxidant. In vitro and using an EPR spin-trapping technique, we observed that PrP{sup C} decreased the oxidation of the DMPO trap in a Fenton reaction system (Cu{sup 2+}/ascorbate/H{sub 2}O{sub 2}), which was demonstrated by approximately 70% less DMPO/OH{sup {center_dot}}. In cultured PrP{sup C}-knockout astrocytes from mice, the absence of PrP{sup C} caused an increase in intracellular ROS (reactive oxygen species) generation during the first 3 h of H{sub 2}O{sub 2} treatment. This rapid increase in ROS disrupted the cell cycle in the PrP{sup C}-knockout astrocytes, which increased the population of cells in the sub-G1 phase when compared with cultured wild-type astrocytes. We conclude that PrP{sup C} in solution acts as a radical scavenger, and in astrocytes, it is essential for protection from oxidative stress caused by an external chemical agent, which is a likely condition in human neurodegenerative CNS disorders and pathological conditions such as ischemia.« less
Earlier onset of motor deficits in mice with double mutations in Dyt1 and Sgce.
Yokoi, Fumiaki; Yang, Guang; Li, Jindong; DeAndrade, Mark P; Zhou, Tong; Li, Yuqing
2010-10-01
DYT1 early-onset generalized torsion dystonia is an inherited movement disorder caused by mutations in DYT1 coding for torsinA with ∼30% penetrance. Most of the DYT1 dystonia patients exhibit symptoms during childhood and adolescence. On the other hand, DYT1 mutation carriers without symptoms during these periods mostly do not exhibit symptoms later in their life. Little is known about what controls the timing of the onset, a critical issue for DYT1 mutation carriers. DYT11 myoclonus-dystonia is caused by mutations in SGCE coding for ε-sarcoglycan. Two dystonia patients from a single family with double mutations in DYT1 and SGCE exhibited more severe symptoms. A recent study suggested that torsinA contributes to the quality control of ε-sarcoglycan. Here, we derived mice carrying mutations in both Dyt1 and Sgce and found that these double mutant mice showed earlier onset of motor deficits in beam-walking test. A novel monoclonal antibody against mouse ε-sarcoglycan was developed by using Sgce knock-out mice to avoid the immune tolerance. Western blot analysis suggested that functional deficits of torsinA and ε-sarcoglycan may independently cause motor deficits. Examining additional mutations in other dystonia genes may be beneficial to predict the onset in DYT1 mutation carriers.
Too, Lay Khoon; McGregor, Iain S; Baxter, Alan G; Hunt, Nicholas H
2016-04-15
Activation of the immune system due to infection or aging is increasingly linked to impaired neuropsychological function. Toll-like receptors 2 and 4 (TLR2, TLR4) are well-characterised for their role in inflammatory events, and their combined activation has been implicated in neurological diseases. We therefore determined whether TLR2 and TLR4 double gene knockout (GKO) mice showed modified behaviour and cognitive function during a 16-day test sequence that employed the automated IntelliCage test system. The IntelliCage features a home cage environment in which groups of mice live and where water reward is gained through performing various tasks centred on drinking stations in each corner of the apparatus. All mice were tested twice, one month apart (the first sequence termed "R1"and the second "R2"). There were fewer corner visits and nosepokes in TLR2/4 GKO compared to wild-type mice during early exploration in R1, suggesting elevated neophobia in GKO mice. Reduced exploration persisted over subsequent test modules during the dark phase. TLR2/4 GKO mice also displayed increased corner visits during drinking sessions compared to non-drinking sessions, but this was not associated with increased drinking. In subsequent, more complex test modules, TLR2/4 GKO mice had unimpaired spatial learning, but showed markedly poorer performance in a visual discrimination reversal task compared to wild-type mice. These results indicated subtle impairments in behaviour and cognitive functions due to double deficiency in TLR2 and TLR4. These finding are highly relevant to understanding the combined actions of TLR2 and TLR4 on neurological status in a range of different disease conditions. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
An, Wei; Mohapatra, Bhopal C.; Zutshi, Neha; Bielecki, Timothy A.; Goez, Benjamin T.; Luan, Haitao; Iseka, Fany; Mushtaq, Insha; Storck, Matthew D.; Band, Vimla; Band, Hamid
2016-01-01
CBL and CBL-B ubiquitin ligases play key roles in hematopoietic stem cell homeostasis and their aberrations are linked to leukemogenesis. Mutations of CBL, often genetically-inherited, are particularly common in Juvenile Myelomonocytic Leukemia (JMML), a disease that manifests early in children. JMML is fatal unless corrected by bone marrow transplant, which is effective in only half of the recipients, stressing the need for animal models that recapitulate the key clinical features of this disease. However, mouse models established so far only develop hematological malignancy in adult animals. Here, using VAV1-Cre-induced conditional CBL/CBL-B double knockout (DKO) in mice, we established an animal model that exhibits a neonatal myeloproliferative disease (MPD). VAV1-Cre induced DKO mice developed a strong hematological phenotype at postnatal day 10, including severe leukocytosis and hepatomegaly, bone marrow cell hypersensitivity to cytokines including GM-CSF, and rapidly-progressive disease and invariable lethality. Interestingly, leukemic stem cells were most highly enriched in neonatal liver rather than bone marrow, which, along with the spleen and thymus, were hypo-cellular. Nonetheless, transplantation assays showed that both DKO bone marrow and liver cells can initiate leukemic disease in the recipient mice with seeding of both spleen and bone marrow. Together, our results support the usefulness of the new hematopoietic-specific CBL/CBL-B double KO animal model to study JMML-related pathogenesis and to further understand the function of CBL family proteins in regulating fetal and neonatal hematopoiesis. To our knowledge, this is the first mouse model that exhibits neonatal MPD in infancy, by day 10 of postnatal life. PMID:27449297
Schön, Christian; Asteriti, Sabrina; Koch, Susanne; Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Tanimoto, Naoyuki; Herms, Jochen; Seeliger, Mathias W; Cangiano, Lorenzo; Biel, Martin; Michalakis, Stylianos
2016-03-15
Most inherited blinding diseases are characterized by compromised retinal function and progressive degeneration of photoreceptors. However, the factors that affect the life span of photoreceptors in such degenerative retinal diseases are rather poorly understood. Here, we explore the role of hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) in this context. HCN1 is known to adjust retinal function under mesopic conditions, and although it is expressed at high levels in rod and cone photoreceptor inner segments, no association with any retinal disorder has yet been found. We investigated the effects of an additional genetic deletion of HCN1 on the function and survival of photoreceptors in a mouse model of CNGB1-linked retinitis pigmentosa (RP). We found that the absence of HCN1 in Cngb1 knockout (KO) mice exacerbated photoreceptor degeneration. The deleterious effect was reduced by expression of HCN1 using a viral vector. Moreover, pharmacological inhibition of HCN1 also enhanced rod degeneration in Cngb1 KO mice. Patch-clamp recordings revealed that the membrane potentials of Cngb1 KO and Cngb1/Hcn1 double-KO rods were both significantly depolarized. We also found evidence for altered calcium homeostasis and increased activation of the protease calpain in Cngb1/Hcn1 double-KO mice. Finally, the deletion of HCN1 also exacerbated degeneration of cone photoreceptors in a mouse model of CNGA3-linked achromatopsia. Our results identify HCN1 as a major modifier of photoreceptor degeneration and suggest that pharmacological inhibition of HCN channels may enhance disease progression in RP and achromatopsia patients. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Pedersen, Carsten
2016-01-01
Cytosolic GS1 (Gln synthetase) is central for ammonium assimilation in plants. High ammonium treatment enhanced the expression of the GS1 isogene Gln-1;2 encoding a low-affinity high-capacity GS1 protein in Arabidopsis (Arabidopsis thaliana) shoots. Under the same conditions, the expression of the high-affinity low-capacity isoform Gln-1;1 was reduced. The expression of Gln-1;3 did not respond to ammonium treatment while Gln-1;4 and Gln-1;5 isogenes in all cases were expressed at a very low level. Gln-2 was highly expressed in shoots but only at a very low level in roots. To investigate the specific functions of the two isogenes Gln-1;1 and Gln-1;2 in shoots for ammonium detoxification, single and double knock-out mutants were grown under standard N supply or with high ammonium provision. Phenotypes of the single mutant gln1;1 were similar to the wild type, while growth of the gln1;2 single mutant and the gln1;1:gln1;2 double mutant was significantly impaired irrespective of N regime. GS1 activity was significantly reduced in both gln1;2 and gln1;1:gln1;2. Along with this, the ammonium content increased while that of Gln decreased, showing that Gln-1;2 was essential for ammonium assimilation and amino acid synthesis. We conclude that Gln-1;2 is the main isozyme contributing to shoot GS1 activity in vegetative growth stages and can be up-regulated to relieve ammonium toxicity. This reveals, to our knowledge, a novel shoot function of Gln-1;2 in Arabidopsis shoots. PMID:27231101
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Salgado, Carlos; Fuentes-Calvo, Isabel; Instituto 'Reina Sofia' de Investigacion Nefrologica, Universidad de Salamanca, 37007 Salamanca
2006-07-01
Transforming growth factor {beta}1 (TGF-{beta}1) has a relevant role in the origin and maintenance of glomerulosclerosis and tubule-interstitial fibrosis. TGF-{beta} and Ras signaling pathways are closely related: TGF-{beta}1 overcomes Ras mitogenic effects and Ras counteracts TGF-{beta} signaling. Tubule-interstitial fibrosis is associated to increases in Ras, Erk, and Akt activation in a renal fibrosis model. We study the role of N- and H-Ras isoforms, and the involvement of the Ras effectors Erk and Akt, in TGF-{beta}1-mediated extracellular matrix (ECM) synthesis and proliferation, using embrionary fibroblasts from double knockout (KO) mice for H- and N-Ras (H-ras {sup -/-}/N-ras {sup -/-}) isoforms andmore » from heterozygote mice (H-ras {sup +/-}/N-ras {sup +/-}). ECM synthesis is increased in basal conditions in H-ras {sup -/-}/N-ras {sup -/-} fibroblasts, this increase being higher after stimulation with TGF-{beta}1. TGF-{beta}1-induced fibroblast proliferation is smaller in H-ras {sup -/-}/N-ras {sup -/-} than in H-ras {sup +/-}/N-ras {sup +/-} fibroblasts. Erk activation is decreased in H-ras {sup -/-}/N-ras {sup -/-} fibroblasts; inhibition of Erk activation reduces fibroblast proliferation. Akt activation is higher in double KO fibroblasts than in heterozygotes; inhibition of Akt activation also inhibits ECM synthesis. We suggest that H- and N-Ras isoforms downregulate ECM synthesis, and mediate proliferation, in part through MEK/Erk activation. PI3K-Akt pathway activation may be involved in the increase in ECM synthesis observed in the absence of H- and N-Ras.« less
Harren, Karin
2013-01-01
In the filamentous phytopathogen Botrytis cinerea, the Ca2+/calcineurin signaling cascade has been shown to play an important role in fungal growth, differentiation, and virulence. This study deals with the functional characterization of two components of this pathway, the putative calcium channel proteins Cch1 and Mid1. The cch1 and mid1 genes were deleted, and single and double knockout mutants were analyzed during different stages of the fungal life cycle. Our data indicate that Cch1 and Mid1 are functionally required for vegetative growth under conditions of low extracellular calcium, since the growth of both deletion mutants is strongly impaired when they are exposed to the Ca2+-chelating agents EGTA and 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA). The impact of external Ca2+ was investigated by supplementing with CaCl2 and the ionophore A23187, both of which resulted in elevated growth for all mutants. However, deletion of either gene had no impact on germination, sporulation, hyphal morphology, or virulence. By use of the aequorin reporter system to measure intracellular calcium levels, no differences between the mutant strains and the wild type were obtained. Localization studies revealed a subcellular distribution of the Mid1–green fluorescent protein (GFP) fusion protein in network-like filaments, probably the endoplasmic reticulum (ER) membranes, indicating that Mid1 is not a plasma membrane-located calcium channel in B. cinerea. PMID:23475703
von der Thüsen, Jan H.; Borensztajn, Keren S.; Moimas, Silvia; van Heiningen, Sandra; Teeling, Peter; van Berkel, Theo J.C.; Biessen, Erik A.L.
2011-01-01
Insulin-like growth factor-1 (IGF-1) signaling is important for the maintenance of plaque stability in atherosclerosis due to its effects on vascular smooth muscle cell (vSMC) phenotype. To investigate this hypothesis, we studied the effects of the highly inflammatory milieu of the atherosclerotic plaque on IGF-1 signaling and stability-related phenotypic parameters of murine vSMCs in vitro, and the effects of IGF-1 supplementation on plaque phenotype in an atherosclerotic mouse model. M1-polarized, macrophage-conditioned medium inhibited IGF-1 signaling by ablating IGF-1 and increasing IGF-binding protein 3, increased vSMC apoptosis, and decreased proliferation. Expression of α-actin and col3a1 genes was strongly attenuated by macrophage-conditioned medium, whereas expression of matrix-degrading enzymes was increased. Importantly, all of these effects could be corrected by supplementation with IGF-1. In vivo, treatment with the stable IGF-1 analog Long R3 IGF-1 in apolipoprotein E knockout mice reduced stenosis and core size, and doubled cap/core ratio in early atherosclerosis. In advanced plaques, Long R3 IGF-1 increased the vSMC content of the plaque by more than twofold and significantly reduced the rate of intraplaque hemorrhage. We believe that IGF-1 in atherosclerotic plaques may have a role in preventing plaque instability, not only by modulating smooth muscle cell turnover, but also by altering smooth muscle cell phenotype. PMID:21281823
Werner, Antonia; Herzog, Britta; Frey, Stefan; Pöggeler, Stefanie
2016-01-01
In filamentous fungi, autophagy functions as a catabolic mechanism to overcome starvation and to control diverse developmental processes under normal nutritional conditions. Autophagy involves the formation of double-membrane vesicles, termed autophagosomes that engulf cellular components and bring about their degradation via fusion with vacuoles. Two ubiquitin-like (UBL) conjugation systems are essential for the expansion of the autophagosomal membrane: the UBL protein ATG8 is conjugated to the lipid phosphatidylethanolamine and the UBL protein ATG12 is coupled to ATG5. We recently showed that in the homothallic ascomycete Sordaria macrospora autophagy-related genes encoding components of the conjugation systems are required for fruiting-body development and/or are essential for viability. In the present work, we cloned and characterized the S. macrospora (Sm)atg12 gene. Two-hybrid analysis revealed that SmATG12 can interact with SmATG7 and SmATG3. To examine its role in S. macrospora, we replaced the open reading frame of Smatg12 with a hygromycin resistance cassette and generated a homokaryotic ΔSmatg12 knockout strain, which displayed slower vegetative growth under nutrient starvation conditions and was unable to form fruiting bodies. In the hyphae of S. macrospora EGFP-labeled SmATG12 was detected in the cytoplasm and as punctate structures presumed to be phagophores or phagophore assembly sites. Delivery of EGFP-labelled SmATG8 to the vacuole was entirely dependent on SmATG12. PMID:27309377
Werner, Antonia; Herzog, Britta; Frey, Stefan; Pöggeler, Stefanie
2016-01-01
In filamentous fungi, autophagy functions as a catabolic mechanism to overcome starvation and to control diverse developmental processes under normal nutritional conditions. Autophagy involves the formation of double-membrane vesicles, termed autophagosomes that engulf cellular components and bring about their degradation via fusion with vacuoles. Two ubiquitin-like (UBL) conjugation systems are essential for the expansion of the autophagosomal membrane: the UBL protein ATG8 is conjugated to the lipid phosphatidylethanolamine and the UBL protein ATG12 is coupled to ATG5. We recently showed that in the homothallic ascomycete Sordaria macrospora autophagy-related genes encoding components of the conjugation systems are required for fruiting-body development and/or are essential for viability. In the present work, we cloned and characterized the S. macrospora (Sm)atg12 gene. Two-hybrid analysis revealed that SmATG12 can interact with SmATG7 and SmATG3. To examine its role in S. macrospora, we replaced the open reading frame of Smatg12 with a hygromycin resistance cassette and generated a homokaryotic ΔSmatg12 knockout strain, which displayed slower vegetative growth under nutrient starvation conditions and was unable to form fruiting bodies. In the hyphae of S. macrospora EGFP-labeled SmATG12 was detected in the cytoplasm and as punctate structures presumed to be phagophores or phagophore assembly sites. Delivery of EGFP-labelled SmATG8 to the vacuole was entirely dependent on SmATG12.
Endolysosomal two‐pore channels regulate autophagy in cardiomyocytes
García‐Rúa, Vanessa; Feijóo‐Bandín, Sandra; Rodríguez‐Penas, Diego; Mosquera‐Leal, Ana; Abu‐Assi, Emad; Beiras, Andrés; María Seoane, Luisa; Lear, Pamela; Parrington, John; Portolés, Manuel; Roselló‐Lletí, Esther; Rivera, Miguel; Gualillo, Oreste; Parra, Valentina; Hill, Joseph A.; Rothermel, Beverly; González‐Juanatey, José Ramón
2016-01-01
Key points Two‐pore channels (TPCs) were identified as a novel family of endolysosome‐targeted calcium release channels gated by nicotinic acid adenine dinucleotide phosphate, as also as intracellular Na+ channels able to control endolysosomal fusion, a key process in autophagic flux.Autophagy, an evolutionarily ancient response to cellular stress, has been implicated in the pathogenesis of a wide range of cardiovascular pathologies, including heart failure.We report direct evidence indicating that TPCs are involved in regulating autophagy in cardiomyocytes, and that TPC knockout mice show alterations in the cardiac lysosomal system. TPC downregulation implies a decrease in the viability of cardiomyocytes under starvation conditions. In cardiac tissues from both humans and rats, TPC transcripts and protein levels were higher in females than in males, and correlated negatively with markers of autophagy.We conclude that the endolysosomal channels TPC1 and TPC2 are essential for appropriate basal and induced autophagic flux in cardiomyocytes, and also that they are differentially expressed in male and female hearts. Abstract Autophagy participates in physiological and pathological remodelling of the heart. The endolysosomal two‐pore channels (TPCs), TPC1 and TPC2, have been implicated in the regulation of autophagy. The present study aimed to investigate the role of TPC1 and TPC2 in basal and induced cardiac autophagic activity. In cultured cardiomyocytes, starvation induced a significant increase in TPC1 and TPC2 transcripts and protein levels that paralleled the increase in autophagy identified by increased LC3‐II and decreased p62 levels. Small interfering RNA depletion of TPC2 alone or together with TPC1 increased both LC3II and p62 levels under basal conditions and in response to serum starvation, suggesting that, under conditions of severe energy depletion (serum plus glucose starvation), changes in the autophagic flux (as assessed by use of bafilomycin A1) occurred either when TPC1 or TPC2 were downregulated. The knockdown of TPCs diminished cardiomyocyte viability under starvation and simulated ischaemia. Electron micrographs of hearts from TPC1/2 double knockout mice showed that cardiomyocytes contained large numbers of immature lysosomes with diameters significantly smaller than those of wild‐type mice. In cardiac tissues from humans and rats, TPC1 and TPC2 transcripts and protein levels were higher in females than in males. Furthermore, transcript levels of TPCs correlated negatively with p62 levels in heart tissues. TPC1 and TPC2 are essential for appropriate basal and induced autophagic flux in cardiomyocytes (i.e. there is a negative effect on cell viability under stress conditions in their absence) and they are differentially expressed in male and female human and murine hearts, where they correlate with markers of autophagy. PMID:26757341
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rastad, Jessica L.
2016-12-15
Monocytic myeloid-derived suppressor cells (M-MDSCs) were increased during LP-BM5 retroviral infection, and were capable of suppressing not only T-cell, but also B-cell responses. In addition to previously demonstrating iNOS- and VISTA-dependent M-MDSC mechanisms, in this paper, we detail how M-MDSCs utilized soluble mediators, including the reactive oxygen and nitrogen species superoxide, peroxynitrite, and nitric oxide, and TGF-β, to suppress B cells in a predominantly contact-independent manner. Suppression was independent of cysteine-depletion and hydrogen peroxide production. When two major mechanisms of suppression (iNOS and VISTA) were eliminated in double knockout mice, M-MDSCs from LP-BM5-infected mice were able to compensate using other,more » soluble mechanisms in order to maintain suppression of B cells. The IL-10 producing regulatory B-cell compartment was among the targets of M-MDSC-mediated suppression. -- Highlights: •LP-BM5-expanded M-MDSCs utilized soluble mediators nitric oxide, superoxide, peroxynitrite, and TGF-β to suppress B cells. •When two major mechanisms of suppression were eliminated through knockouts, M-MDSCs maintained suppression. •M-MDSCs from LP-BM5-infected mice decreased proliferation of IL-10 producing regulatory B cells.« less
Figaro, Sabine; Durand, Sylvain; Gilet, Laetitia; Cayet, Nadège; Sachse, Martin
2013-01-01
The genes encoding the ribonucleases RNase J1 and RNase Y have long been considered essential for Bacillus subtilis cell viability, even before there was concrete knowledge of their function as two of the most important enzymes for RNA turnover in this organism. Here we show that this characterization is incorrect and that ΔrnjA and Δrny mutants are both viable. As expected, both strains grow relatively slowly, with doubling times in the hour range in rich medium. Knockout mutants have major defects in their sporulation and competence development programs. Both mutants are hypersensitive to a wide range of antibiotics and have dramatic alterations to their cell morphologies, suggestive of cell envelope defects. Indeed, RNase Y mutants are significantly smaller in diameter than wild-type strains and have a very disordered peptidoglycan layer. Strains lacking RNase J1 form long filaments in tight spirals, reminiscent of mutants of the actin-like proteins (Mre) involved in cell shape determination. Finally, we combined the rnjA and rny mutations with mutations in other components of the degradation machinery and show that many of these strains are also viable. The implications for the two known RNA degradation pathways of B. subtilis are discussed. PMID:23504012
Dysregulation of Uterine Signaling Pathways in Progesterone Receptor-Cre Knockout of Dicer
Andreu-Vieyra, Claudia V.; Kim, Tae Hoon; Jeong, Jae-Wook; Hodgson, Myles C.; Chen, Ruihong; Creighton, Chad J.; Lydon, John P.; Gunaratne, Preethi H.; DeMayo, Francesco J.; Matzuk, Martin M.
2012-01-01
Epithelial-stromal interactions in the uterus are required for normal uterine functions such as pregnancy, and multiple signaling pathways are essential for this process. Although Dicer and microRNA (miRNA) have been implicated in several reproductive processes, the specific roles of Dicer and miRNA in uterine development are not known. To address the roles of miRNA in the regulation of key uterine pathways, we generated a conditional knockout of Dicer in the postnatal uterine epithelium and stroma using progesterone receptor-Cre. These Dicer conditional knockout females are sterile with small uteri, which demonstrate significant defects, including absence of glandular epithelium and enhanced stromal apoptosis, beginning at approximately postnatal d 15, with coincident expression of Cre and deletion of Dicer. Specific miRNA (miR-181c, −200b, −101, let-7d) were down-regulated and corresponding predicted proapoptotic target genes (Bcl2l11, Aldh1a3) were up-regulated, reflecting the apoptotic phenomenon. Although these mice had normal serum hormone levels, critical uterine signaling pathways, including progesterone-responsive genes, Indian hedgehog signaling, and the Wnt/β-catenin canonical pathway, were dysregulated at the mRNA level. Importantly, uterine stromal cell proliferation in response to progesterone was absent, whereas uterine epithelial cell proliferation in response to estradiol was maintained in adult uteri. These data implicate Dicer and appropriate miRNA expression as essential players in the regulation of multiple uterine signaling pathways required for uterine development and appropriate function. PMID:22798293
Primary Coenzyme Q Deficiency in Pdss2 Mutant Mice Causes Isolated Renal Disease
Haase, Volker H.; King, Rhonda; Polyak, Erzsebet; Selak, Mary; Yudkoff, Marc; Hancock, Wayne W.; Meade, Ray; Saiki, Ryoichi; Lunceford, Adam L.; Clarke, Catherine F.; Gasser, David L.
2008-01-01
Coenzyme Q (CoQ) is an essential electron carrier in the respiratory chain whose deficiency has been implicated in a wide variety of human mitochondrial disease manifestations. Its multi-step biosynthesis involves production of polyisoprenoid diphosphate in a reaction that requires the enzymes be encoded by PDSS1 and PDSS2. Homozygous mutations in either of these genes, in humans, lead to severe neuromuscular disease, with nephrotic syndrome seen in PDSS2 deficiency. We now show that a presumed autoimmune kidney disease in mice with the missense Pdss2kd/kd genotype can be attributed to a mitochondrial CoQ biosynthetic defect. Levels of CoQ9 and CoQ10 in kidney homogenates from B6.Pdss2kd/kd mutants were significantly lower than those in B6 control mice. Disease manifestations originate specifically in glomerular podocytes, as renal disease is seen in Podocin/cre,Pdss2loxP/loxP knockout mice but not in conditional knockouts targeted to renal tubular epithelium, monocytes, or hepatocytes. Liver-conditional B6.Alb/cre,Pdss2loxP/loxP knockout mice have no overt disease despite demonstration that their livers have undetectable CoQ9 levels, impaired respiratory capacity, and significantly altered intermediary metabolism as evidenced by transcriptional profiling and amino acid quantitation. These data suggest that disease manifestations of CoQ deficiency relate to tissue-specific respiratory capacity thresholds, with glomerular podocytes displaying the greatest sensitivity to Pdss2 impairment. PMID:18437205
Problem-Solving Test: Conditional Gene Targeting Using the Cre/loxP Recombination System
ERIC Educational Resources Information Center
Szeberényi, József
2013-01-01
Terms to be familiar with before you start to solve the test: gene targeting, knock-out mutation, bacteriophage, complementary base-pairing, homologous recombination, deletion, transgenic organisms, promoter, polyadenylation element, transgene, DNA replication, RNA polymerase, Shine-Dalgarno sequence, restriction endonuclease, polymerase chain…
Steidl, Stephan; Lee, Esther; Wasserman, David; Yeomans, John S
2013-09-01
Lesions of the pedunculopontine tegmental nucleus (PPT), one of two sources of cholinergic input to the ventral tegmental area (VTA), block conditioned place preference (CPP) for morphine in drug-naïve rats. M5 muscarinic cholinergic receptors, expressed by midbrain dopamine neurons, are critical for the ability of morphine to increase nucleus accumbens dopamine levels and locomotion, and for morphine CPP. This suggests that M5-mediated PPT cholinergic inputs to VTA dopamine neurons critically contribute to morphine-induced dopamine activation, reward and locomotion. In the current study we tested whether food deprivation, which reduces PPT contribution to morphine CPP in rats, could also reduce M5 contributions to morphine-induced locomotion in mice. Acute 18-h food deprivation reversed the phenotypic differences usually seen between non-deprived wild-type and M5 knockout mice. That is, food deprivation increased morphine-induced locomotion in M5 knockout mice but reduced morphine-induced locomotion in wild-type mice. Food deprivation increased saline-induced locomotion equally in wild-type and M5 knockout mice. Based on these findings, we suggest that food deprivation reduces the contribution of M5-mediated PPT cholinergic inputs to the VTA in morphine-induced locomotion and increases the contribution of a PPT-independent pathway. The contributions of cholinergic, dopaminergic and GABAergic neurons to the effects of acute food deprivation are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Lyon, Louisa; Burnet, Philip WJ; Kew, James NC; Corti, Corrado; Rawlins, J Nicholas P; Lane, Tracy; De Filippis, Bianca; Harrison, Paul J; Bannerman, David M
2011-01-01
Group II metabotropic glutamate receptors (mGluR2 and mGluR3, encoded by GRM2 and GRM3) are implicated in hippocampal function and cognition, and in the pathophysiology and treatment of schizophrenia and other psychiatric disorders. However, pharmacological and behavioral studies with group II mGluR agonists and antagonists have produced complex results. Here, we studied hippocampus-dependent memory in GRM2/3 double knockout (GRM2/3−/−) mice in an iterative sequence of experiments. We found that they were impaired on appetitively motivated spatial reference and working memory tasks, and on a spatial novelty preference task that relies on animals' exploratory drive, but were unimpaired on aversively motivated spatial memory paradigms. GRM2/3−/− mice also performed normally on an appetitively motivated, non-spatial, visual discrimination task. These results likely reflect an interaction between GRM2/3 genotype and the arousal-inducing properties of the experimental paradigm. The deficit seen on appetitive and exploratory spatial memory tasks may be absent in aversive tasks because the latter induce higher levels of arousal, which rescue spatial learning. Consistent with an altered arousal–cognition relationship in GRM2/3−/− mice, injection stress worsened appetitively motivated, spatial working memory in wild-types, but enhanced performance in GRM2/3−/− mice. GRM2/3−/− mice were also hypoactive in response to amphetamine. This fractionation of hippocampus-dependent memory depending on the appetitive-aversive context is to our knowledge unique, and suggests a role for group II mGluRs at the interface of arousal and cognition. These arousal-dependent effects may explain apparently conflicting data from previous studies, and have translational relevance for the involvement of these receptors in schizophrenia and other disorders. PMID:21832989
High Levels of S100A8/A9 Proteins Aggravate Ventilator-Induced Lung Injury via TLR4 Signaling
Aslami, Hamid; Jongsma, Geartsje; van den Berg, Elske; Vlaar, Alexander P. J.; Roelofs, Joris J. T. H.; Juffermans, Nicole P.; Schultz, Marcus J.; van der Poll, Tom; Roth, Johannes; Wieland, Catharina W.
2013-01-01
Background Bacterial products add to mechanical ventilation in enhancing lung injury. The role of endogenous triggers of innate immunity herein is less well understood. S100A8/A9 proteins are released by phagocytes during inflammation. The present study investigates the role of S100A8/A9 proteins in ventilator-induced lung injury. Methods Pulmonary S100A8/A9 levels were measured in samples obtained from patients with and without lung injury. Furthermore, wild-type and S100A9 knock-out mice, naive and with lipopolysaccharide-induced injured lungs, were randomized to 5 hours of spontaneously breathing or mechanical ventilation with low or high tidal volume (VT). In addition, healthy spontaneously breathing and high VT ventilated mice received S100A8/A9, S100A8 or vehicle intratracheal. Furthermore, the role of Toll-like receptor 4 herein was investigated. Results S100A8/A9 protein levels were elevated in patients and mice with lung injury. S100A8/A9 levels synergistically increased upon the lipopolysaccharide/high VT MV double hit. Markers of alveolar barrier dysfunction, cytokine and chemokine levels, and histology scores were attenuated in S100A9 knockout mice undergoing the double-hit. Exogenous S100A8/A9 and S100A8 induced neutrophil influx in spontaneously breathing mice. In ventilated mice, these proteins clearly amplified inflammation: neutrophil influx, cytokine, and chemokine levels were increased compared to ventilated vehicle-treated mice. In contrast, administration of S100A8/A9 to ventilated Toll-like receptor 4 mutant mice did not augment inflammation. Conclusion S100A8/A9 proteins increase during lung injury and contribute to inflammation induced by HVT MV combined with lipopolysaccharide. In the absence of lipopolysaccharide, high levels of extracellular S100A8/A9 still amplify ventilator-induced lung injury via Toll-like receptor 4. PMID:23874727
Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism
Pan, Youdong; Tian, Tian; Park, Chang Ook; Lofftus, Serena Y.; Mei, Shenglin; Liu, Xing; Luo, Chi; O’Malley, John T.; Gehad, Ahmed; Teague, Jessica E.; Divito, Sherrie J.; Fuhlbrigge, Robert; Puigserver, Pere; Krueger, James G.; Hotamisligil, Gökhan S.; Clark, Rachael A.; Kupper, Thomas S.
2017-01-01
Tissue-resident memory T (TRM) cells persist indefinitely in epithelial barrier tissues and protect the host against pathogens1–4. However, the biological pathways that enable the long-term survival of TRM cells are obscure4,5. Here we show that mouse CD8+ TRM cells generated by viral infection of the skin differentially express high levels of several molecules that mediate lipid uptake and intracellular transport, including fatty-acid-binding proteins 4 and 5 (FABP4 and FABP5). We further show that T-cell-specific deficiency of Fabp4 and Fabp5 (Fabp4/Fabp5) impairs exogenous free fatty acid (FFA) uptake by CD8+ TRM cells and greatly reduces their long-term survival in vivo, while having no effect on the survival of central memory T (TCM) cells in lymph nodes. In vitro, CD8+ TRM cells, but not CD8+ TCM, demonstrated increased mitochondrial oxidative metabolism in the presence of exogenous FFAs; this increase was not seen in Fabp4/Fabp5 double-knockout CD8+ TRM cells. The persistence of CD8+ TRM cells in the skin was strongly diminished by inhibition of mitochondrial FFA β-oxidation in vivo. Moreover, skin CD8+ TRM cells that lacked Fabp4/Fabp5 were less effective at protecting mice from cutaneous viral infection, and lung Fabp4/Fabp5 double-knockout CD8+ TRM cells generated by skin vaccinia virus (VACV) infection were less effective at protecting mice from a lethal pulmonary challenge with VACV. Consistent with the mouse data, increased FABP4 and FABP5 expression and enhanced extracellular FFA uptake were also demonstrated in human CD8+ TRM cells in normal and psoriatic skin. These results suggest that FABP4 and FABP5 have a critical role in the maintenance, longevity and function of CD8+ TRM cells, and suggest that CD8+ TRM cells use exogenous FFAs and their oxidative metabolism to persist in tissue and to mediate protective immunity. PMID:28219080
Yajima, Toshitaka; Murofushi, Yoshiteru; Zhou, Hanbing; Park, Stanley; Housman, Jonathan; Zhong, Zhao-Hua; Nakamura, Michinari; Machida, Mitsuyo; Hwang, Kyung-Kuk; Gu, Yusu; Dalton, Nancy D.; Yajima, Tomoko; Yasukawa, Hideo; Peterson, Kirk L; Knowlton, Kirk U.
2011-01-01
Background Suppressor of cytokine signaling-3 (SOCS3) is a key negative-feedback regulator of gp130 receptor that provides crucial signaling for cardiac hypertrophy and survival; however, an in vivo role of SOCS3 regulation on cardiac gp130 signaling remains obscure. Methods and Results We generated cardiac-specific SOCS3 knockout (SOCS3 cKO) mice. These mice showed increased activation of gp130 downstream signaling targets (STAT3, ERK1/2, AKT and p38) from 15 weeks of age and developed cardiac dysfunction from around 25 weeks of age with signs of heart failure. Surprisingly, SOCS3 cKO failing hearts had minimal histological abnormalities with intact myofibril ultrastructure. In addition, Ca2+ transients were significantly increased in SOCS3 cKO failing hearts compared to wild-type (WT) hearts. We also found that Ser23/24 residues of troponin I were hypophosphorylated in SOCS3 cKO hearts before the manifestation of cardiac dysfunction. These data suggested the presence of abnormalities in myofilament Ca2+ sensitivity in SOCS3 cKO mice. In addition to the contractile dysfunction, we found various ventricular arrhythmias in SOCS3 cKO non-failing hearts accompanied by a sarcoplasmic reticulum Ca2+ overload. To determine the contribution of gp130 signaling to the cardiac phenotype that occurs with SOCS3 deficiency, we generated cardiac-specific gp130 and SOCS3 double knockout mice. Double KO mice lived significantly longer and had different histological abnormalities when compared to SOCS3 cKO mice; thus, demonstrating the importance of gp130 signaling in the SOCS3 cKO cardiac phenotype. Conclusions Our results demonstrate an important role of SOCS3 regulation on cardiac gp130 signaling in the pathogenesis of contractile dysfunction and ventricular arrhythmias. PMID:22082679
Groen, Annemiek; Romero, Marta Rodriguez; Kunne, Cindy; Hoosdally, Sarah J; Dixon, Peter H; Wooding, Carol; Williamson, Catherine; Seppen, Jurgen; Van den Oever, Karin; Mok, Kam S; Paulusma, Coen C; Linton, Kenneth J; Oude Elferink, Ronald P J
2011-11-01
Progressive familial intrahepatic cholestasis can be caused by mutations in ABCB4 or ATP8B1; each encodes a protein that translocates phospholipids, but in opposite directions. ABCB4 flops phosphatidylcholine from the inner to the outer leaflet, where it is extracted by bile salts. ATP8B1, in complex with the accessory protein CDC50A, flips phosphatidylserine in the reverse direction. Abcb4(-/-) mice lack biliary secretion of phosphatidylcholine, whereas Atp8b1-deficient mice have increased excretion of phosphatidylserine into bile. Each system is thought to have a role protecting the canalicular membrane from bile salts. To investigate the relationship between the mechanisms of ABCB4 and ATP8B1, we expressed the transporters separately and together in cultured cells and studied viability and phospholipid transport. We also created mice with disruptions in ABCB4 and ATP8B1 (double knockouts) and studied bile formation and hepatic damage in mice fed bile salts. Overexpression of ABCB4 was toxic to HEK293T cells; the toxicity was counteracted by coexpression of the ATP8B1-CDC50A complex. In Atp8b1-deficient mice, bile salts induced extraction of phosphatidylserine and ectoenzymes from the canalicular membrane; this process was not observed in the double-knockout mice. ATP8B1 is required for hepatocyte function, particularly in the presence of ABCB4. This is most likely because the phosphatidylserine flippase complex of ATP8B1-CDC50A counteracts the destabilization of the membrane that occurs when ABCB4 flops phosphatidylcholine. Lipid asymmetry is therefore important for the integrity of the canalicular membrane; ABCB4 and ATP8B1 cooperate to protect hepatocytes from bile salts. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
Zhang, Hong-Mei; Chen, Shao-Rui; Matsui, Minoru; Gautam, Dinesh; Wess, Jürgen; Pan, Hui-Lin
2006-03-01
Spinal muscarinic acetylcholine receptors (mAChRs) play an important role in the regulation of nociception. To determine the role of individual mAChR subtypes in control of synaptic GABA release, spontaneous inhibitory postsynaptic currents (sIPSCs) and miniature IPSCs (mIPSCs) were recorded in lamina II neurons using whole-cell recordings in spinal cord slices of wild-type and mAChR subtype knockout (KO) mice. The mAChR agonist oxotremorine-M (3-10 microM) dose-dependently decreased the frequency of GABAergic sIPSCs and mIPSCs in wild-type mice. However, in the presence of the M2 and M4 subtype-preferring antagonist himbacine, oxotremorine-M caused a large increase in the sIPSC frequency. In M3 KO and M1/M3 double-KO mice, oxotremorine-M produced a consistent decrease in the frequency of sIPSCs, and this effect was abolished by himbacine. We were surprised to find that in M2/M4 double-KO mice, oxotremorine-M consistently increased the frequency of sIPSCs and mIPSCs in all neurons tested, and this effect was completely abolished by 4-diphenylacetoxy-N-methylpiperidine methiodide, an M3 subtype-preferring antagonist. In M2 or M4 single-KO mice, oxotremorine-M produced a variable effect on sIPSCs; it increased the frequency of sIPSCs in some cells but decreased the sIPSC frequency in other neurons. Taken together, these data strongly suggest that activation of the M3 subtype increases synaptic GABA release in the spinal dorsal horn of mice. In contrast, stimulation of presynaptic M2 and M4 subtypes predominantly attenuates GABAergic inputs to dorsal horn neurons in mice, an action that is opposite to the role of M2 and M4 subtypes in the spinal cord of rats.
Chen, Shao-Rui; Chen, Hong; Yuan, Wei-Xiu; Wess, Jürgen; Pan, Hui-Lin
2010-12-24
Activation of muscarinic acetylcholine receptors (mAChRs) in the spinal cord inhibits pain transmission. At least three mAChR subtypes (M(2), M(3), and M(4)) are present in the spinal dorsal horn. However, it is not clear how each mAChR subtype contributes to the regulation of glutamatergic input to dorsal horn neurons. We recorded spontaneous excitatory postsynaptic currents (sEPSCs) from lamina II neurons in spinal cord slices from wild-type (WT) and mAChR subtype knock-out (KO) mice. The mAChR agonist oxotremorine-M increased the frequency of glutamatergic sEPSCs in 68.2% neurons from WT mice and decreased the sEPSC frequency in 21.2% neurons. Oxotremorine-M also increased the sEPSC frequency in ∼50% neurons from M(3)-single KO and M(1)/M(3) double-KO mice. In addition, the M(3) antagonist J104129 did not block the stimulatory effect of oxotremorine-M in the majority of neurons from WT mice. Strikingly, in M(5)-single KO mice, oxotremorine-M increased sEPSCs in only 26.3% neurons, and J104129 abolished this effect. In M(2)/M(4) double-KO mice, but not M(2)- or M(4)-single KO mice, oxotremorine-M inhibited sEPSCs in significantly fewer neurons compared with WT mice, and blocking group II/III metabotropic glutamate receptors abolished this effect. The M(2)/M(4) antagonist himbacine either attenuated the inhibitory effect of oxotremorine-M or potentiated the stimulatory effect of oxotremorine-M in WT mice. Our study demonstrates that activation of the M(2) and M(4) receptor subtypes inhibits synaptic glutamate release to dorsal horn neurons. M(5) is the predominant receptor subtype that potentiates glutamatergic synaptic transmission in the spinal cord.
Chen, Shao-Rui; Chen, Hong; Yuan, Wei-Xiu; Wess, Jürgen; Pan, Hui-Lin
2010-01-01
Activation of muscarinic acetylcholine receptors (mAChRs) in the spinal cord inhibits pain transmission. At least three mAChR subtypes (M2, M3, and M4) are present in the spinal dorsal horn. However, it is not clear how each mAChR subtype contributes to the regulation of glutamatergic input to dorsal horn neurons. We recorded spontaneous excitatory postsynaptic currents (sEPSCs) from lamina II neurons in spinal cord slices from wild-type (WT) and mAChR subtype knock-out (KO) mice. The mAChR agonist oxotremorine-M increased the frequency of glutamatergic sEPSCs in 68.2% neurons from WT mice and decreased the sEPSC frequency in 21.2% neurons. Oxotremorine-M also increased the sEPSC frequency in ∼50% neurons from M3-single KO and M1/M3 double-KO mice. In addition, the M3 antagonist J104129 did not block the stimulatory effect of oxotremorine-M in the majority of neurons from WT mice. Strikingly, in M5-single KO mice, oxotremorine-M increased sEPSCs in only 26.3% neurons, and J104129 abolished this effect. In M2/M4 double-KO mice, but not M2- or M4-single KO mice, oxotremorine-M inhibited sEPSCs in significantly fewer neurons compared with WT mice, and blocking group II/III metabotropic glutamate receptors abolished this effect. The M2/M4 antagonist himbacine either attenuated the inhibitory effect of oxotremorine-M or potentiated the stimulatory effect of oxotremorine-M in WT mice. Our study demonstrates that activation of the M2 and M4 receptor subtypes inhibits synaptic glutamate release to dorsal horn neurons. M5 is the predominant receptor subtype that potentiates glutamatergic synaptic transmission in the spinal cord. PMID:20940295
Bockamp, Ernesto; Sprengel, Rolf; Eshkind, Leonid; Lehmann, Thomas; Braun, Jan M; Emmrich, Frank; Hengstler, Jan G
2008-03-01
Many mouse models are currently available, providing avenues to elucidate gene function and to recapitulate specific pathological conditions. To a large extent, successful translation of clinical evidence or analytical data into appropriate mouse models is possible through progress in transgenic or gene-targeting technology. Beginning with a review of standard mouse transgenics and conventional gene targeting, this article will move on to discussing the basics of conditional gene expression: the tetracycline (tet)-off and tet-on systems based on the transactivators tet-controlled transactivator (Tta) and reverse tet-on transactivator (rtTA) that allow downregulation or induction of gene expression; Cre or Flp recombinase-mediated modifications, including excision, inversion, insertion and interchromosomal translocation; combination of the tet and Cre systems, permitting inducible knockout, reporter gene activation or activation of point mutations; the avian retroviral system based on delivery of rtTA specifically into cells expressing the avian retroviral receptor, which enables cell type-specific, inducible gene expression; the tamoxifen system, one of the most frequently applied steroid receptor-based systems, allows rapid activation of a fusion protein between the gene of interest and a mutant domain of the estrogen receptor, whereby activation does not depend on transcription; and techniques for cell type-specific ablation. The diphtheria toxin receptor system offers the advantage that it can be combined with the 'zoo' of Cre recombinase driver mice. Having described the basics we move on to the cutting edge: generation of genome-wide sets of conditional knockout mice. To this end, large ongoing projects apply two strategies: gene trapping based on random integration of trapping vectors into introns leading to truncation of the transcript, and gene targeting, representing the directed approach using homologous recombination. It can be expected that in the near future genome-wide sets of such mice will be available. Finally, the possibilities of conditional expression systems for investigating gene function in tissue regeneration will be illustrated by examples for neurodegenerative disease, liver regeneration and wound healing of the skin.
Activating Akt1 mutations alter DNA double strand break repair and radiosensitivity
Oeck, S.; Al-Refae, K.; Riffkin, H.; Wiel, G.; Handrick, R.; Klein, D.; Iliakis, G.; Jendrossek, V.
2017-01-01
The survival kinase Akt has clinical relevance to radioresistance. However, its contributions to the DNA damage response, DNA double strand break (DSB) repair and apoptosis remain poorly defined and often contradictory. We used a genetic approach to explore the consequences of genetic alterations of Akt1 for the cellular radiation response. While two activation-associated mutants with prominent nuclear access, the phospho-mimicking Akt1-TDSD and the clinically relevant PH-domain mutation Akt1-E17K, accelerated DSB repair and improved survival of irradiated Tramp-C1 murine prostate cancer cells and Akt1-knockout murine embryonic fibroblasts in vitro, the classical constitutively active membrane-targeted myrAkt1 mutant had the opposite effects. Interestingly, DNA-PKcs directly phosphorylated Akt1 at S473 in an in vitro kinase assay but not vice-versa. Pharmacological inhibition of DNA-PKcs or Akt restored radiosensitivity in tumour cells expressing Akt1-E17K or Akt1-TDSD. In conclusion, Akt1-mediated radioresistance depends on its activation state and nuclear localization and is accessible to pharmacologic inhibition. PMID:28209968
Metabolic engineering of Clostridium autoethanogenum for selective alcohol production.
Liew, Fungmin; Henstra, Anne M; Kӧpke, Michael; Winzer, Klaus; Simpson, Sean D; Minton, Nigel P
2017-03-01
Gas fermentation using acetogenic bacteria such as Clostridium autoethanogenum offers an attractive route for production of fuel ethanol from industrial waste gases. Acetate reduction to acetaldehyde and further to ethanol via an aldehyde: ferredoxin oxidoreductase (AOR) and alcohol dehydrogenase has been postulated alongside the classic pathway of ethanol formation via a bi-functional aldehyde/alcohol dehydrogenase (AdhE). Here we demonstrate that AOR is critical to ethanol formation in acetogens and inactivation of AdhE led to consistently enhanced autotrophic ethanol production (up to 180%). Using ClosTron and allelic exchange mutagenesis, which was demonstrated for the first time in an acetogen, we generated single mutants as well as double mutants for both aor and adhE isoforms to confirm the role of each gene. The aor1+2 double knockout strain lost the ability to convert exogenous acetate, propionate and butyrate into the corresponding alcohols, further highlighting the role of these enzymes in catalyzing the thermodynamically unfavourable reduction of carboxylic acids into alcohols. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Rodrigues, Américo; Adamo, Mattia; Crozet, Pierre; Margalha, Leonor; Confraria, Ana; Martinho, Cláudia; Elias, Alexandre; Rabissi, Agnese; Lumbreras, Victoria; González-Guzmán, Miguel; Antoni, Regina; Rodriguez, Pedro L.; Baena-González, Elena
2013-01-01
Plant survival under environmental stress requires the integration of multiple signaling pathways into a coordinated response, but the molecular mechanisms underlying this integration are poorly understood. Stress-derived energy deprivation activates the Snf1-related protein kinases1 (SnRK1s), triggering a vast transcriptional and metabolic reprogramming that restores homeostasis and promotes tolerance to adverse conditions. Here, we show that two clade A type 2C protein phosphatases (PP2Cs), established repressors of the abscisic acid (ABA) hormonal pathway, interact with the SnRK1 catalytic subunit causing its dephosphorylation and inactivation. Accordingly, SnRK1 repression is abrogated in double and quadruple pp2c knockout mutants, provoking, similarly to SnRK1 overexpression, sugar hypersensitivity during early seedling development. Reporter gene assays and SnRK1 target gene expression analyses further demonstrate that PP2C inhibition by ABA results in SnRK1 activation, promoting SnRK1 signaling during stress and once the energy deficit subsides. Consistent with this, SnRK1 and ABA induce largely overlapping transcriptional responses. Hence, the PP2C hub allows the coordinated activation of ABA and energy signaling, strengthening the stress response through the cooperation of two key and complementary pathways. PMID:24179127
Lai, Kuo-Pao; Yamashita, Shinichi; Vitkus, Spencer; Shyr, Chih-Rong; Yeh, Shuyuan; Chang, Chawnshang
2012-01-01
Using the cre-loxP system, we generated a new mouse model [double stromal androgen receptor knockout (dARKO)] with selectively deleted androgen receptor (AR) in both stromal fibroblasts and smooth muscle cells, and found the size of the anterior prostate (AP) lobes was significantly reduced as compared with those from wild-type littermate controls. The reduction in prostate size of the dARKO mouse was accompanied by impaired branching morphogenesis and partial loss of the infolding glandular structure. Further dissection found decreased proliferation and increased apoptosis of the prostate epithelium in the dARKO mouse AP. These phenotype changes were further confirmed with newly established immortalized prostate stromal cells (PrSC) from wild-type and dARKO mice. Mechanistically, IGF-1, placental growth factor, and secreted phosphoprotein-1 controlled by stromal AR were differentially expressed in PrSC-wt and PrSC-ARKO. Moreover, the conditioned media (CM) from PrSC-wt promoted prostate epithelium growth significantly as compared with CM from PrSC-dARKO. Finally, adding IGF-1/placental growth factor recombinant proteins into PrSC-dARKO CM was able to partially rescue epithelium growth. Together, our data concluded that stromal fibromuscular AR could modulate epithelium growth and maintain cellular homeostasis through identified growth factors.
40 CFR 60.5430 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... control vessels, bottoms receivers or knockout vessels. (3) Pressure vessels designed to operate in excess... supply natural gas to the process control device (e.g., level control, temperature control, pressure control) where the supply gas pressure is modulated by the process condition, and then flows to the valve...
Rasheed, Adil; Tsai, Ricky; Cummins, Carolyn L
2018-05-08
The liver X receptors (LXRs; α/β) are nuclear receptors known to regulate cholesterol homeostasis and the production of select hematopoietic populations. The objective of this study was to determine the importance of LXRs and a high-fat high-cholesterol diet on global hematopoiesis, with special emphasis on endothelial progenitor cells (EPCs), a vasoreparative cell type that is derived from bone marrow hematopoietic stem cells. Wild-type and LXR double-knockout ( Lxr αβ -/- ) mice were fed a Western diet (WD) to increase plasma cholesterol levels. In WD-fed Lxr αβ -/- mice, flow cytometry and complete blood cell counts revealed that hematopoietic stem cells, a myeloid progenitor, and mature circulating myeloid cells were increased; EPC numbers were significantly decreased. Hematopoietic stem cells from WD-fed Lxr αβ -/- mice showed increased cholesterol content, along with increased myeloid colony formation compared with chow-fed mice. In contrast, EPCs from WD-fed Lxr αβ -/- mice also demonstrated increased cellular cholesterol content that was associated with greater expression of the endothelial lineage markers Cd144 and Vegfr2 , suggesting accelerated differentiation of the EPCs. Treatment of human umbilical vein endothelial cells with conditioned medium collected from these EPCs increased THP-1 monocyte adhesion. Increased monocyte adhesion to conditioned medium-treated endothelial cells was recapitulated with conditioned medium from Lxr αβ -/- EPCs treated with cholesterol ex vivo, suggesting cholesterol is the main component of the WD inducing EPC dysfunction. LXRs are crucial for maintaining the balance of hematopoietic cells in a hypercholesterolemic environment and for mitigating the negative effects of cholesterol on EPC differentiation/secretome changes that promote monocyte-endothelial adhesion. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
CRTC1 Function During Memory Encoding Is Disrupted in Neurodegeneration.
Parra-Damas, Arnaldo; Chen, Meng; Enriquez-Barreto, Lilian; Ortega, Laura; Acosta, Sara; Perna, Judith Camats; Fullana, M Neus; Aguilera, José; Rodríguez-Alvarez, José; Saura, Carlos A
2017-01-15
Associative memory impairment is an early clinical feature of dementia patients, but the molecular and cellular mechanisms underlying these deficits are largely unknown. In this study, we investigated the functional regulation of the cyclic adenosine monophosphate response element binding protein (CREB)-regulated transcription coactivator 1 (CRTC1) by associative learning in physiological and neurodegenerative conditions. We evaluated the activation of CRTC1 in the hippocampus of control mice and mice lacking the Alzheimer's disease-linked presenilin genes (presenilin conditional double knockout [PS cDKO]) after one-trial contextual fear conditioning by using biochemical, immunohistochemical, and gene expression analyses. PS cDKO mice display classical features of neurodegeneration occurring in Alzheimer's disease including age-dependent cortical atrophy, neuron loss, dendritic degeneration, and memory deficits. Context-associative learning, but not single context or unconditioned stimuli, induces rapid dephosphorylation (Ser151) and translocation of CRTC1 from the cytosol/dendrites to the nucleus of hippocampal neurons in the mouse brain. Accordingly, context-associative learning induces differential CRTC1-dependent transcription of c-fos and the nuclear receptor subfamily 4 (Nr4a) genes Nr4a1-3 in the hippocampus through a mechanism that involves CRTC1 recruitment to CRE promoters. Deregulation of CRTC1 dephosphorylation, nuclear translocation, and transcriptional function are associated with long-term contextual memory deficits in PS cDKO mice. Importantly, CRTC1 gene therapy in the hippocampus ameliorates context memory and transcriptional deficits and dendritic degeneration despite ongoing cortical degeneration in this neurodegeneration mouse model. These findings reveal a critical role of CRTC1 in the hippocampus during associative memory, and provide evidence that CRTC1 deregulation underlies memory deficits during neurodegeneration. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Rhodes, M E; Rubin, R T; McKlveen, J M; Karwoski, T E; Fulton, B A; Czambel, R K
2008-05-01
Both within the brain and in the periphery, M(1) muscarinic receptors function primarily as postsynaptic receptors and M(2) muscarinic receptors function primarily as presynaptic autoreceptors. In addition to classical parasympathetic effectors, cholinergic stimulation of central muscarinic receptors influences the release of adrenocorticotrophic hormone (ACTH) and corticosterone. We previously reported that oxotremorine administration to male and female M(2) receptor knockout and wild-type mice increased ACTH to a significantly greater degree in knockout males compared to all other groups, and that M(2) knockout mice of both sexes were significantly more responsive to the mild stress of saline injection than were wild-type mice. These results accord with the primary function of M(2) receptors as presynaptic autoreceptors. In the present study, we explored the role of the M(1) receptor in pituitary-adrenal responses to oxotremorine and saline in male and female M(1) knockout and wild-type mice. Because these mice responded differently to the mild stress of saline injection than did the M(2) knockout and wild-type mice, we also determined hormone responses to restraint stress in both M(1) and M(2) knockout and wild-type mice. Male and female M(1) knockout and wild-type mice were equally unresponsive to the stress of saline injection. Oxotremorine increased both ACTH and corticosterone in M(1) wild-type mice to a significantly greater degree than in knockout mice. In both M(1) knockout and wild-type animals, ACTH responses were greater in males compared to females, and corticosterone responses were greater in females compared to males. Hormone responses to restraint stress were increased in M(2) knockout mice and decreased in M(1) knockout mice compared to their wild-type counterparts. These findings suggest that M(1) and M(2) muscarinic receptor subtypes differentially influence male and female pituitary-adrenal responses to cholinergic stimulation and stress. The decreased pituitary-adrenal sensitivity to oxotremorine and restraint stress noted in M(1) knockout mice is consistent with M(1) being primarily a postsynaptic receptor. Conversely, the increased pituitary-adrenal sensitivity to these challenges noted in M(2) knockout mice is consistent with M(2) being primarily a presynaptic autoreceptor.
NASA Astrophysics Data System (ADS)
Liu, Pengfei; Zeng, Jiaolong; Yuan, Jianmin
2018-04-01
Multiple electron processes occur widely in atoms, molecules, clusters, and condensed matters when they are interacting with energetic particles or intense laser fields. Direct multielectron processes (DMEP) are the most complicated among the general multiple electron processes and are the most difficult to describe theoretically. In this work, a unified and accurate theoretical formalism is proposed on the DMEP of atoms including the multiple auger decay and multiple ionization by an impact of a single electron or a single photon based on the atomic collision theory described by a correlated many-body Green's function. Such a practical treatment is made possible by taking consideration of the different coherence features of the atoms (matter waves) in the initial and final states. We first explain how the coherence characteristics of the ejected continuum electrons is largely destructed, by taking the electron impact direct double ionization process as an example. The direct double ionization process is completely different from the single ionization where the complete interference can be maintained. The detailed expressions are obtained for the energy correlations among the continuum electrons and energy resolved differential and integral cross sections according to the separation of knock-out (KO) and shake-off (SO) mechanisms for the electron impact direct double ionization, direct double and triple auger decay, and double and triple photoionization (TPI) processes. Extension to higher order DMEP than triple ionization is straight forward by adding contributions of the following KO and SO processes. The approach is applied to investigate the electron impact double ionization processes of C+, N+, and O+, the direct double and triple auger decay of the K-shell excited states of C+ 1s2{s}22{p}2{}2D and {}2P, and the double and TPI of lithium. Comparisons with the experimental and other theoretical investigations wherever available in the literature show that our theoretical formalism is accurate and effective in treating the atomic multielectron processes.
2000-01-01
various organs and to sites of inflammation. They may have additional functions. For example analysis of CXCR4 knockout mice show that CXCR4, which...SDF-1 knockout mice had similar phenotypes (195). Homozygous knockout of CXCR4 or SDF-1 results in embyonic lethality. Though CCR5 appears to be...dispensable, other chemokine receptors have vital functions. CXCR5 knockout mice have B-cell homing defects (118), and CXCR2 knockout mice
Krakowiak, Joey; Liu, Caiyue; Papudesu, Chandana; Ward, P. Jillian; Wilhelm, Jennifer C.; English, Arthur W.
2015-01-01
The withdrawal of synaptic inputs from the somata and proximal dendrites of spinal motoneurons following peripheral nerve injury could contribute to poor functional recovery. Decreased availability of neurotrophins to afferent terminals on axotomized motoneurons has been implicated as one cause of the withdrawal. No reduction in contacts made by synaptic inputs immunoreactive to the vesicular glutamate transporter 1 and glutamic acid decarboxylase 67 is noted on axotomized motoneurons if modest treadmill exercise, which stimulates the production of neurotrophins by spinal motoneurons, is applied after nerve injury. In conditional, neuron-specific brain-derived neurotrophic factor (BDNF) knockout mice, a reduction in synaptic contacts onto motoneurons was noted in intact animals which was similar in magnitude to that observed after nerve transection in wild-type controls. No further reduction in coverage was found if nerves were cut in knockout mice. Two weeks of moderate daily treadmill exercise following nerve injury in these BDNF knockout mice did not affect synaptic inputs onto motoneurons. Treadmill exercise has a profound effect on synaptic inputs to motoneurons after peripheral nerve injury which requires BDNF production by those postsynaptic cells. PMID:25918648
Rines E3 ubiquitin ligase regulates MAO-A levels and emotional responses.
Kabayama, Miyuki; Sakoori, Kazuto; Yamada, Kazuyuki; Ornthanalai, Veravej G; Ota, Maya; Morimura, Naoko; Katayama, Kei-ichi; Murphy, Niall P; Aruga, Jun
2013-08-07
Monoamine oxidase A (MAO-A), the catabolic enzyme of norepinephrine and serotonin, plays a critical role in emotional and social behavior. However, the control and impact of endogenous MAO-A levels in the brain remains unknown. Here we show that the RING finger-type E3 ubiquitin ligase Rines/RNF180 regulates brain MAO-A subset, monoamine levels, and emotional behavior. Rines interacted with MAO-A and promoted its ubiquitination and degradation. Rines knock-out mice displayed impaired stress responses, enhanced anxiety, and affiliative behavior. Norepinephrine and serotonin levels were altered in the locus ceruleus, prefrontal cortex, and amygdala in either stressed or resting conditions, and MAO-A enzymatic activity was enhanced in the locus ceruleus in Rines knock-out mice. Treatment of Rines knock-out mice with MAO inhibitors showed genotype-specific effects on some of the abnormal affective behaviors. These results indicated that the control of emotional behavior by Rines is partly due to the regulation of MAO-A levels. These findings verify that Rines is a critical regulator of the monoaminergic system and emotional behavior and identify a promising candidate drug target for treating diseases associated with emotion.
Impairments in the Initiation of Maternal Behavior in Oxytocin Receptor Knockout Mice
Rich, Megan E.; deCárdenas, Emily J.; Lee, Heon-Jin; Caldwell, Heather K.
2014-01-01
Oxytocin (Oxt) acting through its single receptor subtype, the Oxtr, is important for the coordination of physiology and behavior associated with parturition and maternal care. Knockout mouse models have been helpful in exploring the contributions of Oxt to maternal behavior, including total body Oxt knockout (Oxt −/−) mice, forebrain conditional Oxtr knockout (Oxtr FB/FB) mice, and total body Oxtr knockout (Oxtr −/−) mice. Since Oxtr −/− mice are unable to lactate, maternal behavior has only been examined in virgin females, or in dams within a few hours of parturition, and there have been no studies that have examined their anxiety-like and depression-like behavior following parturition. To improve our understanding of how the absence of Oxt signaling affects maternal behavior, mood and anxiety, we designed a study using Oxtr −/− mice that separated nursing behavior from other aspects of maternal care, such as licking and grooming by thelectomizing (i.e. removing the nipples) of Oxtr +/+ mice and sham-thelectomizing Oxtr −/− mice, and pairing both genotypes with a wet nurse. We then measured pup abandonment, maternal behavior, and postpartum anxiety-like and depression-like behaviors. We hypothesized that genetic disruption of the Oxtr would impact maternal care, mood and anxiety. Specifically, we predicted that Oxtr −/− dams would have impaired maternal care and increased anxiety-like and depression-like behaviors in the postpartum period. We found that Oxtr −/− dams had significantly higher levels of pup abandonment compared to controls, which is consistent with previous work in Oxtr FB/FB mice. Interestingly, Oxtr −/− dams that initiated maternal care did not differ from wildtype controls in measures of maternal behavior. We also did not find any evidence of altered anxiety-like or depressive-like behavior in the postpartum period of Oxtr −/− dams. Thus, our data suggest that Oxt lowers the threshold for the initiation of maternal behavior. PMID:24892749
Recombineering: A Homologous Recombination-Based Method of Genetic Engineering
Sharan, Shyam K.; Thomason, Lynn C.; Kuznetsov, Sergey G.; Court, Donald L.
2009-01-01
Recombineering is an efficient method of in vivo genetic engineering applicable to chromosomal as well as episomal replicons in E. coli. This method circumvents the need for most standard in vitro cloning techniques. Recombineering allows construction of DNA molecules with precise junctions without constraints being imposed by restriction enzyme site location. Bacteriophage homologous recombination proteins catalyze these recombineering reactions using double- and single-strand linear DNA substrates, so-called targeting constructs, introduced by electroporation. Gene knockouts, deletions and point mutations are readily made, gene tags can be inserted, and regions of bacterial artificial chromosomes (BACs) or the E. coli genome can be subcloned by gene retrieval using recombineering. Most of these constructs can be made within about a week's time. PMID:19180090
Antineutrino Charged-Current Reactions on Hydrocarbon with Low Momentum Transfer
NASA Astrophysics Data System (ADS)
Gran, R.; Betancourt, M.; Elkins, M.; Rodrigues, P. A.; Akbar, F.; Aliaga, L.; Andrade, D. A.; Bashyal, A.; Bellantoni, L.; Bercellie, A.; Bodek, A.; Bravar, A.; Budd, H.; Vera, G. F. R. Caceres; Cai, T.; Carneiro, M. F.; Coplowe, D.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Felix, J.; Fields, L.; Fine, R.; Gallagher, H.; Ghosh, A.; Haider, H.; Han, J. Y.; Harris, D. A.; Henry, S.; Jena, D.; Kleykamp, J.; Kordosky, M.; Le, T.; Leistico, J. R.; Lovlein, A.; Lu, X.-G.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; McFarland, K. S.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Nguyen, C.; Norrick, A.; Nuruzzaman, Olivier, A.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Ramírez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Ruterbories, D.; Schellman, H.; Salinas, C. J. Solano; Su, H.; Sultana, M.; Falero, S. Sánchez; Valencia, E.; Wolcott, J.; Wospakrik, M.; Yaeggy, B.; Minerva Collaboration
2018-06-01
We report on multinucleon effects in low momentum transfer (<0.8 GeV /c ) antineutrino interactions on plastic (CH) scintillator. These data are from the 2010-2011 antineutrino phase of the MINERvA experiment at Fermilab. The hadronic energy spectrum of this inclusive sample is well described when a screening effect at a low energy transfer and a two-nucleon knockout process are added to a relativistic Fermi gas model of quasielastic, Δ resonance, and higher resonance processes. In this analysis, model elements introduced to describe previously published neutrino results have quantitatively similar benefits for this antineutrino sample. We present the results as a double-differential cross section to accelerate the investigation of alternate models for antineutrino scattering off nuclei.
Antineutrino Charged-Current Reactions on Hydrocarbon with Low Momentum Transfer.
Gran, R; Betancourt, M; Elkins, M; Rodrigues, P A; Akbar, F; Aliaga, L; Andrade, D A; Bashyal, A; Bellantoni, L; Bercellie, A; Bodek, A; Bravar, A; Budd, H; Vera, G F R Caceres; Cai, T; Carneiro, M F; Coplowe, D; da Motta, H; Dytman, S A; Díaz, G A; Felix, J; Fields, L; Fine, R; Gallagher, H; Ghosh, A; Haider, H; Han, J Y; Harris, D A; Henry, S; Jena, D; Kleykamp, J; Kordosky, M; Le, T; Leistico, J R; Lovlein, A; Lu, X-G; Maher, E; Manly, S; Mann, W A; Marshall, C M; McFarland, K S; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfín, J G; Mousseau, J; Naples, D; Nelson, J K; Nguyen, C; Norrick, A; Nuruzzaman; Olivier, A; Paolone, V; Patrick, C E; Perdue, G N; Ramírez, M A; Ransome, R D; Ray, H; Ren, L; Rimal, D; Ruterbories, D; Schellman, H; Salinas, C J Solano; Su, H; Sultana, M; Falero, S Sánchez; Valencia, E; Wolcott, J; Wospakrik, M; Yaeggy, B
2018-06-01
We report on multinucleon effects in low momentum transfer (<0.8 GeV/c) antineutrino interactions on plastic (CH) scintillator. These data are from the 2010-2011 antineutrino phase of the MINERvA experiment at Fermilab. The hadronic energy spectrum of this inclusive sample is well described when a screening effect at a low energy transfer and a two-nucleon knockout process are added to a relativistic Fermi gas model of quasielastic, Δ resonance, and higher resonance processes. In this analysis, model elements introduced to describe previously published neutrino results have quantitatively similar benefits for this antineutrino sample. We present the results as a double-differential cross section to accelerate the investigation of alternate models for antineutrino scattering off nuclei.
Chan, Zhulong
2013-01-01
Arginine is an important medium for the transport and storage of nitrogen, and arginase (also known as arginine amidohydrolase, ARGAH) is responsible for catalyse of arginine into ornithine and urea in plants. In this study, the impact of AtARGAHs on abiotic stress response was investigated by manipulating AtARGAHs expression. In the knockout mutants of AtARGAHs, enhanced tolerances were observed to multiple abiotic stresses including water deficit, salt, and freezing stresses, while AtARGAH1- and AtARGAH2-overexpressing lines exhibited reduced abiotic stress tolerances compared to the wild type. Consistently, the enhanced tolerances were confirmed by the changes of physiological parameters including electrolyte leakage, water loss rate, stomatal aperture, and survival rate. Interestingly, the direct downstream products of arginine catabolism including polyamines and nitric oxide (NO) concentrations significantly increased in the AtARGAHs-knockout lines, but decreased in overexpressing lines under control conditions. Additionally, the AtARGAHs-overexpressing and -knockout lines displayed significantly reduced relative arginine (% of total free amino acids) relative to the wild type. Similarly, reactive oxygen species accumulation was remarkably regulated by AtARGAHs under abiotic stress conditions, as shown from hydrogen peroxide (H2O2), superoxide radical () concentrations, and antioxidant enzyme activities. Taken together, this is the first report, as far as is known, to provide evidence that AtARGAHs negatively regulate many abiotic stress tolerances, at least partially, attribute to their roles in modulating arginine metabolism and reactive oxygen species accumulation. Biotechnological strategy based on manipulation of AtARGAHs expression will be valuable for future crop breeding. PMID:23378380
Effect of IAA on in vitro growth and colonization of Nostoc in plant roots
Hussain, Anwar; Shah, Syed T.; Rahman, Hazir; Irshad, Muhammad; Iqbal, Amjad
2015-01-01
Nostoc is widely known for its ability to fix atmospheric nitrogen and the establishment of symbiotic relationship with a wide range of plants from various taxonomic groups. Several strains of Nostoc produce phytohormones that promote growth of its plant partners. Nostoc OS-1 was therefore selected for study because of the presence of putative ipdC gene that encodes a key enzyme to produce Indole-3-acetic acid (IAA). The results indicated that both cellular and released IAA was found high with increasing incubation time and reached to a peak value (i.e., 21 pmol mg-1ch-a) on the third week as determined by UPLC-ESI-MS/MS. Also the Nostoc OS-1 strain efficiently colonized the roots and promoted the growth of rice as well as wheat under axenic conditions and induced ipdC gene that suggested the possible involvement of IAA in these phenotypes. To confirm the impact of IAA on root colonization efficiency and plant promoting phenotypes of Nostoc OS-1, an ipdC knockout mutant was generated by homologous recombinant method. The amount of releasing IAA, in vitro growth, root colonization, and plant promoting efficiency of the ipdC knockout mutant was observed significantly lower than wild type strain under axenic conditions. Importantly, these phenotypes were restored to wild-type levels when the ipdC knockout mutant was complemented with wild type ipdC gene. These results together suggested that ipdC and/or synthesized IAA of Nostoc OS-1 is required for its efficient root colonization and plant promoting activity. PMID:25699072
Petkau, Terri L; Blanco, Jake; Leavitt, Blair R
2017-10-01
Progranulin deficiency due to heterozygous null mutations in the GRN gene is a common cause of familial frontotemporal lobar degeneration (FTLD), while homozygous loss-of-function GRN mutations cause neuronal ceroid lipofuscinosis (NCL). Aged progranulin-knockout mice display highly exaggerated lipofuscinosis, microgliosis, and astrogliosis, as well as mild cell loss in specific brain regions. Progranulin is a secreted glycoprotein expressed in both neurons and microglia, but not astrocytes, in the brain. We generated conditional progranulin-knockout mice that lack progranulin in nestin-expressing cells (Nes-cKO mice), which include most neurons as well as astrocytes. We confirmed near complete knockout of progranulin in neurons in Nes-cKO mice, while microglial progranulin levels remained similar to that of wild-type animals. Overall brain progranulin levels were reduced by about 50% in Nes-cKO, and no Grn was detected in primary Nes-cKO neurons. Nes-cKO mice aged to 12months did not display any increase in lipofuscin deposition, microgliosis, or astrogliosis in the four brain regions examined, though increases were observed for most of these measures in Grn-null animals. We conclude that neuron-specific loss of progranulin is not sufficient to cause similar neuropathological changes to those seen in constitutive Grn-null animals. Our results suggest that increased lipofuscinosis and gliosis in Grn-null animals are not caused by intrinsic progranulin deficiency in neurons, and that microglia-derived progranulin may be sufficient to maintain neuronal health and homeostasis in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.
A conditioned aversion study of sucrose and SC45647 taste in TRPM5 knockout mice.
Eddy, Meghan C; Eschle, Benjamin K; Peterson, Darlene; Lauras, Nathan; Margolskee, Robert F; Delay, Eugene R
2012-06-01
Previously, published studies have reported mixed results regarding the role of the TRPM5 cation channel in signaling sweet taste by taste sensory cells. Some studies have reported a complete loss of sweet taste preference in TRPM5 knockout (KO) mice, whereas others have reported only a partial loss of sweet taste preference. This study reports the results of conditioned aversion studies designed to motivate wild-type (WT) and KO mice to respond to sweet substances. In conditioned taste aversion experiments, WT mice showed nearly complete LiCl-induced response suppression to sucrose and SC45647. In contrast, TRPM5 KO mice showed a much smaller conditioned aversion to either sweet substance, suggesting a compromised, but not absent, ability to detect sweet taste. A subsequent conditioned flavor aversion experiment was conducted to determine if TRPM5 KO mice were impaired in their ability to learn a conditioned aversion. In this experiment, KO and WT mice were conditioned to a mixture of SC45647 and amyl acetate (an odor cue). Although WT mice avoided both components of the stimulus mixture, they avoided SC45647 more than the odor cue. The KO mice also avoided both stimuli, but they avoided the odor component more than SC45647, suggesting that while the KO mice are capable of learning an aversion, to them the odor cue was more salient than the taste cue. Collectively, these findings suggest the TRPM5 KO mice have some residual ability to detect SC45647 and sucrose, and, like bitter, there may be a TRPM5-independent transduction pathway for detecting these substances.
Monitoring of Double Stud Wall Moisture Conditions in the Northeast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, K.
2015-03-01
Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double stud walls have a higher risk of interior-sourced condensation moisture damage, when compared with high-R approaches using exterior insulating sheathing.; Moisture conditions in double stud walls were monitored in Zone 5A (Massachusetts); three double stud assemblies were compared.
Monitoring of Double-Stud Wall Moisture Conditions in the Northeast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, K.
2015-03-01
Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double-stud walls have a higher risk of interior-sourced condensation moisture damage when compared with high-R approaches using exterior insulating sheathing. Moisture conditions in double-stud walls were monitored in Zone 5A (Massachusetts); three double-stud assemblies were compared.
Najdekrova, Lucie; Siroky, Jiri
2012-09-17
Telomeres, as elaborate nucleo-protein complexes, ensure chromosomal stability. When impaired, the ends of linear chromosomes can be recognised by cellular repair mechanisms as double-strand DNA breaks and can be healed by non-homologous-end-joining activities to produce dicentric chromosomes. During cell divisions, particularly during anaphase, dicentrics can break, thus producing naked chromosome tips susceptible to additional unwanted chromosome fusion. Many telomere-building protein complexes are associated with telomeres to ensure their proper capping function. It has been found however, that a number of repair complexes also contribute to telomere stability. We used Arabidopsis thaliana to study the possible functions of the DNA repair subunit, NBS1, in telomere homeostasis using knockout nbs1 mutants. The results showed that although NBS1-deficient plants were viable, lacked any sign of developmental aberration and produced fertile seeds through many generations upon self-fertilisation, plants also missing the functional telomerase (double mutants), rapidly, within three generations, displayed severe developmental defects. Cytogenetic inspection of cycling somatic cells revealed a very early onset of massive genome instability. Molecular methods used for examining the length of telomeres in double homozygous mutants detected much faster telomere shortening than in plants deficient in telomerase gene alone. Our findings suggest that NBS1 acts in concert with telomerase and plays a profound role in plant telomere renewal.
USDA-ARS?s Scientific Manuscript database
Ghrelin and the ghrelin receptor (GH secretagogue receptor, GHS-R) are believed to have important roles in energy homeostasis. We describe results from the first studies to be conducted in congenic (N10) adult ghrelin(-/-) and Ghsr(-/-) mice under conditions of both positive (high-fat diet) and nega...
Marics, Irène; Malapert, Pascale; Reynders, Ana; Gaillard, Stéphane; Moqrich, Aziz
2014-01-01
The discovery of heat-sensitive Transient Receptor Potential Vanilloid ion channels (ThermoTRPVs) greatly advanced our molecular understanding of acute and injury-evoked heat temperature sensation. ThermoTRPV channels are activated by partially overlapping temperatures ranging from warm to supra-threshold noxious heat. TRPV1 is activated by noxious heat temperature whereas TRPV3 can be activated by warm as well as noxious heat temperatures. Loss-of-function studies in single TRPV1 and TRPV3 knock-out mice have shown that heat temperature sensation is not completely abolished suggesting functional redundancies among these two channels and highlighting the need of a detailed analysis of TRPV1::TRPV3 double knock-out mice (V1V3dKO) which is hampered by the close proximity of the loci expressing the two channels. Here we describe the generation of a novel mouse model in which trpv1 and trpv3 genes have been inactivated using bacterial artificial chromosome (BAC)-based homologous recombination in embryonic stem cells. In these mice, using classical thermosensory tests such hot plate, tail flick and the thermotaxis gradient paradigms, we confirm that TRPV1 is the master channel for sensing noxious heat temperatures and identify a cooperative role of TRPV1 and TRPV3 for sensing a well-defined window of acute moderate heat temperature. Using the dynamic hot plate assay, we unravel an intriguing and unexpected pronounced escape behavior in TRPV1 knock-out mice that was attenuated in the V1V3dKO. Together, and in agreement with the temperature activation overlap between TRPV1 and TRPV3 channels, our data provide in vivo evidence of a cooperative role between skin-derived TRPV3 and primary sensory neurons-enriched TRPV1 in modulation of moderate and noxious heat temperature sensation and suggest that other mechanisms are required for heat temperature sensation.
Matsushita, Hiroaki; Sano, Akiko; Wu, Hua; Jiao, Jin-an; Kasinathan, Poothappillai; Sullivan, Eddie J.; Wang, Zhongde; Kuroiwa, Yoshimi
2014-01-01
Towards the goal of producing fully human polyclonal antibodies (hpAbs or hIgGs) in transchromosomic (Tc) cattle, we previously reported that Tc cattle carrying a human artificial chromosome (HAC) comprising the entire unrearranged human immunoglobulin (Ig) heavy-chain (hIGH), kappa-chain (hIGK), and lambda-chain (hIGL) germline loci produced physiological levels of hIgGs when both of the bovine immunoglobulin mu heavy-chains, bIGHM and bIGHML1, were homozygously inactivated (bIGHM−/−, bIGHML1−/−; double knockouts or DKO). However, because endogenous bovine immunoglobulin light chain loci are still intact, the light chains are produced both from the hIGK and hIGL genomic loci on the HAC and from the endogenous bovine kappa-chain (bIGK) and lambda-chain (bIGL) genomic loci, resulting in the production of fully hIgGs (both Ig heavy-chains and light-chains are of human origin: hIgG/hIgκ or hIgG/hIgλ) and chimeric hIgGs (Ig heavy-chains are of human origin while the Ig light-chains are of bovine origin: hIgG/bIgκ or hIgG/bIgλ). To improve fully hIgG production in Tc cattle, we here report the deletion of the entire bIGL joining (J) and constant (C) gene cluster (bIGLJ1-IGLC1 to bIGLJ5-IGLC5) by employing Cre/loxP mediated site-specific chromosome recombination and the production of triple knockout (bIGHM−/−, bIGHML1−/− and bIGL−/−; TKO) Tc cattle. We further demonstrate that bIGL cluster deletion greatly improves fully hIgGs production in the sera of TKO Tc cattle, with 51.3% fully hIgGs (hIgG/hIgκ plus hIgG/hIgλ). PMID:24603704
Li, Binxing; Vachali, Preejith P; Shen, Zhengqing; Gorusupudi, Aruna; Nelson, Kelly; Besch, Brian M; Bartschi, Alexis; Longo, Simone; Mattinson, Ty; Shihab, Saeed; Polyakov, Nikolay E; Suntsova, Lyubov P; Dushkin, Alexander V; Bernstein, Paul S
2017-06-01
Carotenoid supplementation can prevent and reduce the risk of age-related macular degeneration (AMD) and other ocular disease, but until now, there has been no validated and well-characterized mouse model which can be employed to investigate the protective mechanism and relevant metabolism of retinal carotenoids. β-Carotene oxygenases 1 and 2 (BCO1 and BCO2) are the only two carotenoid cleavage enzymes found in animals. Mutations of the bco2 gene may cause accumulation of xanthophyll carotenoids in animal tissues, and BCO1 is involved in regulation of the intestinal absorption of carotenoids. To determine whether or not mice deficient in BCO1 and/or BCO2 can serve as a macular pigment mouse model, we investigated the retinal accumulation of carotenoids in these mice when fed with zeaxanthin, lutein, or β-carotene using an optimized carotenoid feeding method. HPLC analysis revealed that all three carotenoids were detected in sera, livers, retinal pigment epithelium (RPE)/choroids, and retinas of all of the mice, except that no carotenoid was detectable in the retinas of wild type (WT) mice. Significantly higher amounts of zeaxanthin and lutein accumulated in the retinas of BCO2 knockout (bco2 -/- ) mice and BCO1/BCO2 double knockout (bco1 -/- /bco2 -/- ) mice relative to BCO1 knockout (bco1 -/- ) mice, while bco1 -/- mice preferred to take up β-carotene. The levels of zeaxanthin and lutein were higher than β-carotene levels in the bco1 -/- /bco2 -/- retina, consistent with preferential uptake of xanthophyll carotenoids by retina. Oxidative metabolites were detected in mice fed with lutein or zeaxanthin but not in mice fed with β-carotene. These results indicate that bco2 -/- and bco1 -/- /bco2 -/- mice could serve as reasonable non-primate models for macular pigment function in the vertebrate eye, while bco1 -/- mice may be more useful for studies related to β-carotene. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reynders, Ana; Gaillard, Stéphane; Moqrich, Aziz
2014-01-01
The discovery of heat-sensitive Transient Receptor Potential Vanilloid ion channels (ThermoTRPVs) greatly advanced our molecular understanding of acute and injury-evoked heat temperature sensation. ThermoTRPV channels are activated by partially overlapping temperatures ranging from warm to supra-threshold noxious heat. TRPV1 is activated by noxious heat temperature whereas TRPV3 can be activated by warm as well as noxious heat temperatures. Loss-of-function studies in single TRPV1 and TRPV3 knock-out mice have shown that heat temperature sensation is not completely abolished suggesting functional redundancies among these two channels and highlighting the need of a detailed analysis of TRPV1::TRPV3 double knock-out mice (V1V3dKO) which is hampered by the close proximity of the loci expressing the two channels. Here we describe the generation of a novel mouse model in which trpv1 and trpv3 genes have been inactivated using bacterial artificial chromosome (BAC)-based homologous recombination in embryonic stem cells. In these mice, using classical thermosensory tests such hot plate, tail flick and the thermotaxis gradient paradigms, we confirm that TRPV1 is the master channel for sensing noxious heat temperatures and identify a cooperative role of TRPV1 and TRPV3 for sensing a well-defined window of acute moderate heat temperature. Using the dynamic hot plate assay, we unravel an intriguing and unexpected pronounced escape behavior in TRPV1 knock-out mice that was attenuated in the V1V3dKO. Together, and in agreement with the temperature activation overlap between TRPV1 and TRPV3 channels, our data provide in vivo evidence of a cooperative role between skin-derived TRPV3 and primary sensory neurons-enriched TRPV1 in modulation of moderate and noxious heat temperature sensation and suggest that other mechanisms are required for heat temperature sensation. PMID:24925072
New animal models of cystic fibrosis: what are they teaching us?
Keiser, Nicholas W.; Engelhardt, John F.
2013-01-01
Purpose of review Cystic fibrosis is the first human genetic disease to benefit from the directed engineering of three different species of animal models (mice, pigs, and ferrets). Recent studies on the cystic fibrosis pig and ferret models are providing new information about the pathophysiology of cystic fibrosis in various organ systems. Additionally, new conditional cystic fibrosis transmembrane conductance regulator (CFTR) knockout mice are teaching unexpected lessons about CFTR function in surprising cellular locations. Comparisons between these animal models and the human condition are key to dissecting the complexities of disease pathophysiology in cystic fibrosis. Recent findings Cystic fibrosis pigs and ferrets have provided new models to study the spontaneous development of disease in the lung and pancreas, two organs that are largely spared overt spontaneous disease in cystic fibrosis mice. New cystic fibrosis mouse models are now interrogating CFTR functions involved in growth and inflammation at an organ-based level using conditional knockout technology. Together, these models are providing new insights on the human condition. Summary Basic and clinical cystic fibrosis research will benefit greatly from the comparative pathophysiology of cystic fibrosis mice, pigs, and ferrets. Both similarities and differences between these three cystic fibrosis models will inform pathophysiologically important mechanisms of CFTR function in humans and aid in the development of both organ-specific and general therapies for cystic fibrosis. PMID:21857224
Harada, Ken; Akashi, Tetsuya; Niitsu, Kodai; Shimada, Keiko; Ono, Yoshimasa A; Shindo, Daisuke; Shinada, Hiroyuki; Mori, Shigeo
2018-01-17
Advanced electron microscopy technologies have made it possible to perform precise double-slit interference experiments. We used a 1.2-MV field emission electron microscope providing coherent electron waves and a direct detection camera system enabling single-electron detections at a sub-second exposure time. We developed a method to perform the interference experiment by using an asymmetric double-slit fabricated by a focused ion beam instrument and by operating the microscope under a "pre-Fraunhofer" condition, different from the Fraunhofer condition of conventional double-slit experiments. Here, pre-Fraunhofer condition means that each single-slit observation was performed under the Fraunhofer condition, while the double-slit observations were performed under the Fresnel condition. The interference experiments with each single slit and with the asymmetric double slit were carried out under two different electron dose conditions: high-dose for calculation of electron probability distribution and low-dose for each single electron distribution. Finally, we exemplified the distribution of single electrons by color-coding according to the above three types of experiments as a composite image.
FUS/TLS acts as an aggregation-dependent modifier of polyglutamine disease model mice.
Kino, Yoshihiro; Washizu, Chika; Kurosawa, Masaru; Yamada, Mizuki; Doi, Hiroshi; Takumi, Toru; Adachi, Hiroaki; Katsuno, Masahisa; Sobue, Gen; Hicks, Geoffrey G; Hattori, Nobutaka; Shimogori, Tomomi; Nukina, Nobuyuki
2016-10-14
FUS/TLS is an RNA/DNA-binding protein associated with neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Previously, we found that a prion-like domain in the N-terminus of FUS/TLS mediates co-aggregation between FUS/TLS and mutant huntingtin, the gene product of Huntington's disease (HD). Here, we show that heterozygous knockout of FUS/TLS worsened the phenotypes of model mice of (HD, but not spinal and bulbar muscular atrophy (SBMA). This difference was correlated with the degree of pathological association between disease proteins and FUS/TLS. Co-aggregation between FUS/TLS and mutant huntingtin resulted in the depletion of free FUS/TLS protein in HD mice that was detected as a monomer in SDS-PAGE analysis. Recently, we found that FUS/TLS paralogs, TAF15 and EWS, were up-regulated in homozygous FUS/TLS knockout mice. These two proteins were up-regulated in both HD and FUS/TLS heterozygote mice, and were further elevated in HD-TLS +/- double mutant mice, consistent with the functional impairment of FUS/TLS. These results suggest that FUS/TLS sequestration by co-aggregation is a rate-limiting factor of disease phenotypes of HD and that inclusions may have an adverse aspect, rather than being simply benign or protective. In addition, our results highlight inclusions as repositories of potential modifiers of neurodegeneration.
COL4A6 is dispensable for autosomal recessive Alport syndrome.
Murata, Tomohiro; Katayama, Kan; Oohashi, Toshitaka; Jahnukainen, Timo; Yonezawa, Tomoko; Sado, Yoshikazu; Ishikawa, Eiji; Nomura, Shinsuke; Tryggvason, Karl; Ito, Masaaki
2016-07-05
Alport syndrome is caused by mutations in the genes encoding α3, α4, or α5 (IV) chains. Unlike X-linked Alport mice, α5 and α6 (IV) chains are detected in the glomerular basement membrane of autosomal recessive Alport mice, however, the significance of this finding remains to be investigated. We therefore generated mice lacking both α3 and α6 (IV) chains and compared their renal function and survival with Col4a3 knockout mice of 129 × 1/Sv background. No significant difference was observed in the renal function or survival of the two groups, or when the mice were backcrossed once to C57BL/6 background. However, the survival of backcrossed double knockout mice was significantly longer than that of the mice of 129 × 1/Sv background, which suggests that other modifier genes were involved in this phenomenon. In further studies we identified two Alport patients who had a homozygous mutation in intron 46 of COL4A4. The α5 and α6 (IV) chains were focally detected in the glomerular basement membrane of these patients. These findings indicate that although α5 and α6 (IV) chains are induced in the glomerular basement membrane in autosomal recessive Alport syndrome, their induction does not seem to play a major compensatory role.
COL4A6 is dispensable for autosomal recessive Alport syndrome
Murata, Tomohiro; Katayama, Kan; Oohashi, Toshitaka; Jahnukainen, Timo; Yonezawa, Tomoko; Sado, Yoshikazu; Ishikawa, Eiji; Nomura, Shinsuke; Tryggvason, Karl; Ito, Masaaki
2016-01-01
Alport syndrome is caused by mutations in the genes encoding α3, α4, or α5 (IV) chains. Unlike X-linked Alport mice, α5 and α6 (IV) chains are detected in the glomerular basement membrane of autosomal recessive Alport mice, however, the significance of this finding remains to be investigated. We therefore generated mice lacking both α3 and α6 (IV) chains and compared their renal function and survival with Col4a3 knockout mice of 129 × 1/Sv background. No significant difference was observed in the renal function or survival of the two groups, or when the mice were backcrossed once to C57BL/6 background. However, the survival of backcrossed double knockout mice was significantly longer than that of the mice of 129 × 1/Sv background, which suggests that other modifier genes were involved in this phenomenon. In further studies we identified two Alport patients who had a homozygous mutation in intron 46 of COL4A4. The α5 and α6 (IV) chains were focally detected in the glomerular basement membrane of these patients. These findings indicate that although α5 and α6 (IV) chains are induced in the glomerular basement membrane in autosomal recessive Alport syndrome, their induction does not seem to play a major compensatory role. PMID:27377778
Mitochondrial transcription: Lessons from mouse models
Peralta, Susana; Wang, Xiao; Moraes, Carlos T.
2012-01-01
Mammalian mitochondrial DNA (mtDNA) is a circular double-stranded DNA genome of ∼ 16.5 kilobase pairs (kb) that encodes 13 catalytic proteins of the ATP-producing oxidative phosphorylation system (OXPHOS), and the rRNAs and tRNAs required for the translation of the mtDNA transcripts. All the components needed for transcription and replication of the mtDNA are, therefore, encoded in the nuclear genome, as are the remaining components of the OXPHOS system and the mitochondrial translation machinery. Regulation of mtDNA gene expression is very important for modulating the OXPHOS capacity in response to metabolic requirements and in pathological processes. The combination of in vitro and in vivo studies has allowed the identification of the core machinery required for basal mtDNA transcription in mammals and a few proteins that regulate mtDNA transcription. Specifically, the generation of knockout mouse strains in the last several years, has been key to understanding the basis of mtDNA transcription in vivo. However, it is well accepted that many components of the transcription machinery are still unknown and little is known about mtDNA gene expression regulation under different metabolic requirements or disease processes. In this review we will focus on how the creation of knockout mouse models and the study of their phenotypes have contributed to the understanding of mitochondrial transcription in mammals. PMID:22120174
Guidi, Luiz G; Mattley, Jane; Martinez-Garay, Isabel; Monaco, Anthony P; Linden, Jennifer F; Velayos-Baeza, Antonio
2017-01-01
Abstract Developmental dyslexia is a neurodevelopmental disorder that affects reading ability caused by genetic and non-genetic factors. Amongst the susceptibility genes identified to date, KIAA0319 is a prime candidate. RNA-interference experiments in rats suggested its involvement in cortical migration but we could not confirm these findings in Kiaa0319-mutant mice. Given its homologous gene Kiaa0319L (AU040320) has also been proposed to play a role in neuronal migration, we interrogated whether absence of AU040320 alone or together with KIAA0319 affects migration in the developing brain. Analyses of AU040320 and double Kiaa0319;AU040320 knockouts (dKO) revealed no evidence for impaired cortical lamination, neuronal migration, neurogenesis or other anatomical abnormalities. However, dKO mice displayed an auditory deficit in a behavioral gap-in-noise detection task. In addition, recordings of click-evoked auditory brainstem responses revealed suprathreshold deficits in wave III amplitude in AU040320-KO mice, and more general deficits in dKOs. These findings suggest that absence of AU040320 disrupts firing and/or synchrony of activity in the auditory brainstem, while loss of both proteins might affect both peripheral and central auditory function. Overall, these results stand against the proposed role of KIAA0319 and AU040320 in neuronal migration and outline their relationship with deficits in the auditory system. PMID:29045729
Tamura, Kentaro; Fukao, Yoichiro; Hatsugai, Noriyuki; Katagiri, Fumiaki; Hara-Nishimura, Ikuko
2017-05-04
The nuclear pore complex (NPC) comprises more than 30 nucleoporins (Nups). NPC mediates macromolecular trafficking between the nucleoplasm and the cytoplasm, but specific roles of individual Nups are poorly understood in higher plants. Here, we show that the novel nucleoporin unique to angiosperm plants (designated as Nup82) functions in a salicylic acid-dependent defense in a redundant manner with Nup136, which is a component of the nuclear basket in the NPC. Arabidopsis thaliana Nup82 had a similar amino acid sequence to the N-terminal half of Nup136 and a Nup82-GFP fusion was localized on the nuclear envelope. Immunoprecipitation and bimolecular fluorescence complementation analyses revealed that Nup82 interacts with the NPC components Nup136 and RAE1. The double knockout mutant nup82 nup136 showed severe growth defects, while the single knockout mutant nup82 did not, suggesting that Nup82 functions redundantly with Nup136. nup82 nup136 impaired benzothiadiazole (an analog of salicylic acid)-induced resistance to the virulent bacteria Pseudomonas syringae pv. tomato DC3000. Furthermore, transcriptome analysis of nup82 nup136 indicates that deficiency of Nup82 and Nup136 causes noticeable downregulation of immune-related genes. These results suggest that Nup82 and Nup136 are redundantly involved in transcriptional regulation of salicylic acid-responsive genes through nuclear transport of signaling molecules.
Wu, Li-An; Wang, Feng; Donly, Kevin J; Baker, Andrew; Wan, Chunyan; Luo, Daoshu; MacDougall, Mary; Chen, Shuo
2016-06-01
Bone morphogenetic proteins 2 and 4 (BMP2/4) are essential for osteoblast differentiation and osteogenesis. Generation of a BMP2/4 dual knock-out ((ko/ko)) osteoblastic cell line is a valuable asset for studying effects of BMP2/4 on skeletal development. In this study, our goal was to create immortalized mouse deleted BMP2/4 osteoblasts by infecting adenoviruses with Cre recombinase and green fluorescent protein genes into immortalized murine floxed BMP2/4 osteoblasts. Transduced BMP2/4(ko/ko) cells were verified by green immunofluorescence and PCR. BMP2/4(ko/ko) osteoblasts exhibited small size, slow cell proliferation rate and cell growth was arrested in G1 and G2 phases. Expression of bone-relate genes was reduced in the BMP2/4(ko/ko) cells, resulting in delay of cell differentiation and mineralization. Importantly, extracellular matrix remodeling was impaired in the BMP2/4(ko/ko) osteoblasts as reflected by decreased Mmp-2 and Mmp-9 expressions. Cell differentiation and mineralization were rescued by exogenous BMP2 and/or BMP4. Therefore, we for the first time described establishment of an immortalized deleted BMP2/4 osteoblast line useful for study of mechanisms in regulating osteoblast lineages. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Kast, Brigitte; Schori, Christian; Grimm, Christian
2016-05-01
Hypoxic preconditioning protects photoreceptors against light-induced degeneration preserving retinal morphology and function. Although hypoxia inducible transcription factors 1 and 2 (HIF1, HIF2) are the main regulators of the hypoxic response, photoreceptor protection does not depend on HIF1 in rods. Here we used rod-specific Hif2a single and Hif1a;Hif2a double knockout mice to investigate the potential involvement of HIF2 in rods for protection after hypoxic preconditioning. To identify potential HIF2 target genes in rods we determined the retinal transcriptome of hypoxic control and rod-specific Hif2a knockouts by RNA sequencing. We show that rods do not need HIF2 for hypoxia-induced increased survival after light exposure. The transcriptomic analysis revealed a number of genes that are potentially regulated by HIF2 in rods; among those were Htra1, Timp3 and Hmox1, candidates that are interesting due to their connection to human degenerative diseases of the retina. We conclude that neither HIF1 nor HIF2 are required in photoreceptors for protection by hypoxic preconditioning. We hypothesize that HIF transcription factors may be needed in other cells to produce protective factors acting in a paracrine fashion on photoreceptor cells. Alternatively, hypoxic preconditioning induces a rod-intrinsic response that is independent of HIF transcription factors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chen, Ting; Chen, Chang; Zhang, Zongze; Zou, Yufeng; Peng, Mian; Wang, Yanlin
2016-08-01
Toll-like receptor 4 (TLR4) is a crucial receptor in the innate immune system, and increasing evidence supports its role in inflammation, stress, and tissue injury, including injury to the lung and brain. We aimed to investigate the effects of TLR4 on neuroinflammation due to the lung-brain interaction in mechanically ventilated mice. Male wild-type (WT) C57BL/6 and TLR4 knockout (TLR4 KO) mice were divided into three groups: (1) control group (C): spontaneous breathing; (2) anesthesia group (A): spontaneous breathing under anesthesia; and (3) mechanical ventilation group (MV): 6h of MV under anesthesia. The behavioral responses of mice were tested with fear conditioning tests. The histological changes in the lung and brain were assessed using hematoxylin-eosin (HE) staining. The level of TLR4 mRNA in tissue was measured using reverse transcription-polymerase chain reaction (RT-PCR). The levels of inflammatory cytokines were measured with an enzyme-linked immunosorbent assay (ELISA). Microgliosis, astrocytosis, and the TLR4 immunoreactivity in the hippocampus were measured by double immunofluorescence. MV mice exhibited impaired cognition, and this impairment was less severe in TLR4 KO mice than in WT mice. In WT mice, MV increased TLR4 mRNA expression in the lung and brain. MV induced mild lung injury, which was prevented in TLR4 KO mice. MV mice exhibited increased levels of inflammatory cytokines, increased microglia and astrocyte activation. Microgliosis was alleviated in TLR4 KO mice. MV mice exhibited increased TLR4 immunoreactivity, which was expressed in microglia and astrocytes. These results demonstrate that TLR4 is involved in neuroinflammation due to the lung-brain interaction and that TLR4 KO ameliorates neuroinflammation due to lung-brain interaction after prolonged MV. In addition, Administration of a TLR4 antagonist (100μg/mice) to WT mice also significantly attenuated neuroinflammation of lung-brain interaction due to prolonged MV. TLR4 antagonism may be a new and novel approach for the treatment and management of neuroinflammation in long-term mechanically ventilated patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Dezfulian, Mohammad H; Foreman, Curtis; Jalili, Espanta; Pal, Mrinal; Dhaliwal, Rajdeep K; Roberto, Don Karl A; Imre, Kathleen M; Kohalmi, Susanne E; Crosby, William L
2017-04-07
Branched-chain amino acids (BCAAs) are synthesized by plants, fungi, bacteria, and archaea with plants being the major source of these amino acids in animal diets. Acetolactate synthase (ALS) is the first enzyme in the BCAA synthesis pathway. Although the functional contribution of ALS to BCAA biosynthesis has been extensively characterized, a comprehensive understanding of the regulation of this pathway at the molecular level is still lacking. To characterize the regulatory processes governing ALS activity we utilized several complementary approaches. Using the ALS catalytic protein subunit as bait we performed a yeast two-hybrid (Y2H) screen which resulted in the identification of a set of interacting proteins, two of which (denoted as ALS-INTERACTING PROTEIN1 and 3 [AIP1 and AIP3, respectively]) were found to be evolutionarily conserved orthologues of bacterial feedback-regulatory proteins and therefore implicated in the regulation of ALS activity. To investigate the molecular role AIPs might play in BCAA synthesis in Arabidopsis thaliana, we examined the functional contribution of aip1 and aip3 knockout alleles to plant patterning and development and BCAA synthesis under various growth conditions. Loss-of-function genetic backgrounds involving these two genes exhibited differential aberrant growth responses in valine-, isoleucine-, and sodium chloride-supplemented media. While BCAA synthesis is believed to be localized to the chloroplast, both AIP1 and AIP3 were found to localize to the peroxisome in addition to the chloroplast. Analysis of free amino acid pools in the mutant backgrounds revealed that they differ in the absolute amount of individual BCAAs accumulated and exhibit elevated levels of BCAAs in leaf tissues. Despite the phenotypic differences observed in aip1 and aip3 backgrounds, functional redundancy between these loci was suggested by the finding that aip1/aip3 double knockout mutants are severely developmentally compromised. Taken together the data suggests that the two regulatory proteins, in conjunction with ALS, have overlapping but distinct functions in BCAA synthesis, and also play a role in pathways unrelated to BCAA synthesis such as sodium-ion homeostasis, extending to broader aspects of patterning and development.
Boursiac, Yann; Lee, Sang Min; Romanowsky, Shawn; Blank, Robert; Sladek, Chris; Chung, Woo Sik; Harper, Jeffrey F
2010-11-01
Calcium (Ca(2+)) signals regulate many aspects of plant development, including a programmed cell death pathway that protects plants from pathogens (hypersensitive response). Cytosolic Ca(2+) signals result from a combined action of Ca(2+) influx through channels and Ca(2+) efflux through pumps and cotransporters. Plants utilize calmodulin-activated Ca(2+) pumps (autoinhibited Ca(2+)-ATPase [ACA]) at the plasma membrane, endoplasmic reticulum, and vacuole. Here, we show that a double knockout mutation of the vacuolar Ca(2+) pumps ACA4 and ACA11 in Arabidopsis (Arabidopsis thaliana) results in a high frequency of hypersensitive response-like lesions. The appearance of macrolesions could be suppressed by growing plants with increased levels (greater than 15 mm) of various anions, providing a method for conditional suppression. By removing plants from a conditional suppression, lesion initials were found to originate primarily in leaf mesophyll cells, as detected by aniline blue staining. Initiation and spread of lesions could also be suppressed by disrupting the production or accumulation of salicylic acid (SA), as shown by combining aca4/11 mutations with a sid 2 (for salicylic acid induction-deficient2) mutation or expression of the SA degradation enzyme NahG. This indicates that the loss of the vacuolar Ca(2+) pumps by itself does not cause a catastrophic defect in ion homeostasis but rather potentiates the activation of a SA-dependent programmed cell death pathway. Together, these results provide evidence linking the activity of the vacuolar Ca(2+) pumps to the control of a SA-dependent programmed cell death pathway in plants.
Embryonic ablation of neuronal VGF increases energy expenditure and reduces body weight.
Jiang, Cheng; Lin, Wei-Jye; Sadahiro, Masato; Shin, Andrew C; Buettner, Christoph; Salton, Stephen R
2017-08-01
Germline ablation of VGF, a secreted neuronal, neuroendocrine, and endocrine peptide precursor, results in lean, hypermetabolic, and infertile adult mice that are resistant to diet-, lesion-, and genetically-induced obesity and diabetes (Hahm et al., 1999, 2002). To assess whether this phenotype is predominantly driven by reduced VGF expression in developing and/or adult neurons, or in peripheral endocrine and neuroendocrine tissues, we generated and analyzed conditional VGF knockout mice, obtained by mating loxP-flanked (floxed) Vgf mice with either pan-neuronal Synapsin-Cre- or forebrain alpha-CaMKII-Cre-recombinase-expressing transgenic mice. Adult male and female mice, with conditional ablation of the Vgf gene in embryonic neurons had significantly reduced body weight, increased energy expenditure, and were resistant to diet-induced obesity. Conditional forebrain postnatal ablation of VGF in male mice, primarily in adult excitatory neurons, had no measurable effect on body weight nor on energy expenditure, but led to a modest increase in adiposity, partially overlapping the effect of AAV-Cre-mediated targeted ablation of VGF in the adult ventromedial hypothalamus and arcuate nucleus of floxed Vgf mice (Foglesong et al., 2016), and also consistent with results of icv delivery of the VGF-derived peptide TLQP-21 to adult mice, which resulted in increased energy expenditure and reduced adiposity (Bartolomucci et al., 2006). Because the lean, hypermetabolic phenotype of germline VGF knockout mice is to a great extent recapitulated in Syn-Cre +/- ,Vgf flpflox/flpflox mice, we conclude that the metabolic profile of germline VGF knockout mice is largely the result of VGF ablation in embryonic CNS neurons, rather than peripheral endocrine and/or neuroendocrine cells, and that in forebrain structures such as hypothalamus, VGF and/or VGF-derived peptides play uniquely different roles in the developing and adult nervous system. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pfeiffer, A. W.; Minor, R. L.; Heard, M. M.; Barron-Gafford, G.
2014-12-01
The southwestern United States is expected to become warmer and drier under future climate projections. The way in which plant and ecosystems respond to these changes is valuable for predicting carbon and water cycling, ecosystem resilience, phenology, and future agriculture, including biofuel production. We examined the interacting effects of dominant climate stressors--vapor pressure deficit (VPD) and temperature--on photosynthesis. Specifically, we tested whether or not plant production of the terpene isoprene imparts heat and water-stress tolerance. Within an experimental common garden of poplars (Populus) at University of Arizona's Biosphere 2 we measured four separate genetic lines - two that retained isoprene production capacity and two that had this gene "knocked out". VPD was altered at temperatures of 30, 35, and 40C to present both heat and aridity stresses. Maximum photosynthetic capacity (Amax), the VPD at which Amax occurred (VPDopt), and the VPD range between Amax and ninety percent of Amax (Ω90) were calculated to quantify how VPD differentially affected the lines. Amax was significantly lower in knockout lines than in control lines. Moreover, the difference in Amax between lines increased from 19.3% at 30C to 28.4% at 35C to 39.0% at 40C, indicating that trees without isoprene production are less equipped to handle hot and dry conditions. Ω90 and VPDopt response were not the same, though. Isoprene knockouts had significantly higher VPD optimums (1.9749 kPA vs. 1.6451 kPa) compared to isoprene-producing lines. Although maximum photosynthesis is diminished without isoprene production under water and heat stress, isoprene knockout lines were still fairly active at a high VPD and under a wide range of VPD conditions. Beyond advancing our basic understanding of plant ecophysiology, these results will inform the potential use of poplars as a source of biofuel production across a range of current and projected climate conditions.
Study of the role of anaerobic metabolism in succinate production by Enterobacter aerogenes.
Tajima, Yoshinori; Kaida, Kenichi; Hayakawa, Atsushi; Fukui, Keita; Nishio, Yousuke; Hashiguchi, Kenichi; Fudou, Ryosuke; Matsui, Kazuhiko; Usuda, Yoshihiro; Sode, Koji
2014-09-01
Succinate is a core biochemical building block; optimizing succinate production from biomass by microbial fermentation is a focus of basic and applied biotechnology research. Lowering pH in anaerobic succinate fermentation culture is a cost-effective and environmentally friendly approach to reducing the use of sub-raw materials such as alkali, which are needed for neutralization. To evaluate the potential of bacteria-based succinate fermentation under weak acidic (pH <6.2) and anaerobic conditions, we characterized the anaerobic metabolism of Enterobacter aerogenes AJ110637, which rapidly assimilates glucose at pH 5.0. Based on the profile of anaerobic products, we constructed single-gene knockout mutants to eliminate the main anaerobic metabolic pathways involved in NADH re-oxidation. These single-gene knockout studies showed that the ethanol synthesis pathway serves as the dominant NADH re-oxidation pathway in this organism. To generate a metabolically engineered strain for succinate production, we eliminated ethanol formation and introduced a heterogeneous carboxylation enzyme, yielding E. aerogenes strain ΔadhE/PCK. The strain produced succinate from glucose with a 60.5% yield (grams of succinate produced per gram of glucose consumed) at pH <6.2 and anaerobic conditions. Thus, we showed the potential of bacteria-based succinate fermentation under weak acidic conditions.
Zhang, Rui; Cao, Peijuan; Yang, Zhongzhou; Wang, Zhenzhen; Wu, Jiu-Lin; Chen, Yan; Pan, Yi
2015-01-01
Glycosaminoglycans are important regulators of multiple signaling pathways. As a major constituent of the heart extracellular matrix, glycosaminoglycans are implicated in cardiac morphogenesis through interactions with different signaling morphogens. Ext1 is a glycosyltransferase responsible for heparan sulfate synthesis. Here, we evaluate the function of Ext1 in heart development by analyzing Ext1 hypomorphic mutant and conditional knockout mice. Outflow tract alignment is sensitive to the dosage of Ext1. Deletion of Ext1 in the mesoderm induces a cardiac phenotype similar to that of a mutant with conditional deletion of UDP-glucose dehydrogenase, a key enzyme responsible for synthesis of all glycosaminoglycans. The outflow tract defect in conditional Ext1 knockout(Ext1f/f:Mesp1Cre) mice is attributable to the reduced contribution of second heart field and neural crest cells. Ext1 deletion leads to downregulation of FGF signaling in the pharyngeal mesoderm. Exogenous FGF8 ameliorates the defects in the outflow tract and pharyngeal explants. In addition, Ext1 expression in second heart field and neural crest cells is required for outflow tract remodeling. Our results collectively indicate that Ext1 is crucial for outflow tract formation in distinct progenitor cells, and heparan sulfate modulates FGF signaling during early heart development.
Histone Deacetylase 3 Is Necessary for Proper Brain Development*
Norwood, Jordan; Franklin, Jade M.; Sharma, Dharmendra; D'Mello, Santosh R.
2014-01-01
The functional role of histone deacetylase 3 (HDAC3) in the developing brain has yet to be elucidated. We show that mice lacking HDAC3 in neurons and glia of the central nervous system, Nes-Cre/HDAC3 conditional KO mice, show major abnormalities in the cytoarchitecture of the neocortex and cerebellum and die within 24 h of birth. Later-born neurons do not localize properly in the cortex. A similar mislocalization is observed with cerebellar Purkinje neurons. Although the proportion of astrocytes is higher than normal, the numbers of oligodendrocytes are reduced. In contrast, conditional knockout of HDAC3 in neurons of the forebrain and certain other brain regions, using Thy1-Cre and calcium/calmodulin dependent protein kinase II α-Cre for ablation, produces no overt abnormalities in the organization of cells within the cortex or of cerebellar Purkinje neurons at birth. However, both lines of conditional knockout mice suffer from progressive hind limb paralysis and ataxia and die around 6 weeks after birth. The mice display an increase in overall numbers of cells, higher numbers of astrocytes, and Purkinje neuron degeneration. Taken together, our results demonstrate that HDAC3 plays an essential role in regulating brain development, with effects on both neurons and glia in different brain regions. PMID:25339172
Remote Memory and Cortical Synaptic Plasticity Require Neuronal CCCTC-Binding Factor (CTCF).
Kim, Somi; Yu, Nam-Kyung; Shim, Kyu-Won; Kim, Ji-Il; Kim, Hyopil; Han, Dae Hee; Choi, Ja Eun; Lee, Seung-Woo; Choi, Dong Il; Kim, Myung Won; Lee, Dong-Sung; Lee, Kyungmin; Galjart, Niels; Lee, Yong-Seok; Lee, Jae-Hyung; Kaang, Bong-Kiun
2018-05-30
The molecular mechanism of long-term memory has been extensively studied in the context of the hippocampus-dependent recent memory examined within several days. However, months-old remote memory maintained in the cortex for long-term has not been investigated much at the molecular level yet. Various epigenetic mechanisms are known to be important for long-term memory, but how the 3D chromatin architecture and its regulator molecules contribute to neuronal plasticity and systems consolidation is still largely unknown. CCCTC-binding factor (CTCF) is an 11-zinc finger protein well known for its role as a genome architecture molecule. Male conditional knock-out mice in which CTCF is lost in excitatory neurons during adulthood showed normal recent memory in the contextual fear conditioning and spatial water maze tasks. However, they showed remarkable impairments in remote memory in both tasks. Underlying the remote memory-specific phenotypes, we observed that female CTCF conditional knock-out mice exhibit disrupted cortical LTP, but not hippocampal LTP. Similarly, we observed that CTCF deletion in inhibitory neurons caused partial impairment of remote memory. Through RNA sequencing, we observed that CTCF knockdown in cortical neuron culture caused altered expression of genes that are highly involved in cell adhesion, synaptic plasticity, and memory. These results suggest that remote memory storage in the cortex requires CTCF-mediated gene regulation in neurons, whereas recent memory formation in the hippocampus does not. SIGNIFICANCE STATEMENT CCCTC-binding factor (CTCF) is a well-known 3D genome architectural protein that regulates gene expression. Here, we use two different CTCF conditional knock-out mouse lines and reveal, for the first time, that CTCF is critically involved in the regulation of remote memory. We also show that CTCF is necessary for appropriate expression of genes, many of which we found to be involved in the learning- and memory-related processes. Our study provides behavioral and physiological evidence for the involvement of CTCF-mediated gene regulation in the remote long-term memory and elucidates our understanding of systems consolidation mechanisms. Copyright © 2018 the authors 0270-6474/18/385042-11$15.00/0.
Ge, Shujun; Murugesan, Nivetha; Pachter, Joel S
2009-09-01
While the expression of the C-C chemokine ligand 2 (CCL2) in the central nervous system (CNS) is associated with numerous neuroinflammatory conditions, the critical cellular sources of this chemokine, which is responsible for disease processes-as well as associated pathogenic mechanisms, remain unresolved. As the potential for anti-CCL2 therapeutics in treating neuroinflammatory disease is likely to be contingent upon effective drug delivery to the source(s) and/or target(s) of CCL2 action in the CNS, tools to highlight the course of CCL2 action during neuroinflammation are imperative. In response to this need, we used the Cre/loxP and FLP-FRT recombination system to develop the first two, cell-conditional CCL2 knockout mice-separately targeting CCL2 gene elimination to astrocytes and endothelial cells, both of which have been considered to play crucial though undefined roles in neuroinflammatory disease. Specifically, mice containing a floxed CCL2 allele were intercrossed with GFAP-Cre or Tie2-Cre transgenic mice to generate mice with CCL2-deficient astrocytes (astrocyte KO) or endothelial cells (endothelial KO), respectively. Polymerase chain reaction, reverse transcription polymerase chain reaction/quantitative reverse transcriptase polymerase chain reaction, and enzyme-linked immunosorbent assay of CCL2 gene, RNA, and protein, respectively, from cultured astrocytes and brain microvascular endothelial cells (BMEC) established the efficiency and specificity of the CCL2 gene deletions and a CCL2 null phenotype in these CNS cells. Effective cell-conditional knockout of CCL2 was also confirmed in an in vivo setting, wherein astrocytes and BMEC were retrieved by immune-guided laser capture microdissection from their in situ positions in the brains of mice experiencing acute, lipopolysaccharide-mediated endotoxemia to induce CCL2 gene expression. In vivo analysis further revealed apparent cross-talk between BMEC and astrocytes regarding the regulation of astrocyte CCL2 expression. Use of astrocyte KO and endothelial KO mice should prove critical in elaborating the pathogenic mechanisms of and optimizing the treatments for neuroinflammatory disease.
Quadros, Rolen M; Miura, Hiromi; Harms, Donald W; Akatsuka, Hisako; Sato, Takehito; Aida, Tomomi; Redder, Ronald; Richardson, Guy P; Inagaki, Yutaka; Sakai, Daisuke; Buckley, Shannon M; Seshacharyulu, Parthasarathy; Batra, Surinder K; Behlke, Mark A; Zeiner, Sarah A; Jacobi, Ashley M; Izu, Yayoi; Thoreson, Wallace B; Urness, Lisa D; Mansour, Suzanne L; Ohtsuka, Masato; Gurumurthy, Channabasavaiah B
2017-05-17
Conditional knockout mice and transgenic mice expressing recombinases, reporters, and inducible transcriptional activators are key for many genetic studies and comprise over 90% of mouse models created. Conditional knockout mice are generated using labor-intensive methods of homologous recombination in embryonic stem cells and are available for only ~25% of all mouse genes. Transgenic mice generated by random genomic insertion approaches pose problems of unreliable expression, and thus there is a need for targeted-insertion models. Although CRISPR-based strategies were reported to create conditional and targeted-insertion alleles via one-step delivery of targeting components directly to zygotes, these strategies are quite inefficient. Here we describe Easi-CRISPR (Efficient additions with ssDNA inserts-CRISPR), a targeting strategy in which long single-stranded DNA donors are injected with pre-assembled crRNA + tracrRNA + Cas9 ribonucleoprotein (ctRNP) complexes into mouse zygotes. We show for over a dozen loci that Easi-CRISPR generates correctly targeted conditional and insertion alleles in 8.5-100% of the resulting live offspring. Easi-CRISPR solves the major problem of animal genome engineering, namely the inefficiency of targeted DNA cassette insertion. The approach is robust, succeeding for all tested loci. It is versatile, generating both conditional and targeted insertion alleles. Finally, it is highly efficient, as treating an average of only 50 zygotes is sufficient to produce a correctly targeted allele in up to 100% of live offspring. Thus, Easi-CRISPR offers a comprehensive means of building large-scale Cre-LoxP animal resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2015-03-01
Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double stud walls have a higher risk of interior-sourced condensation moisture damage, when compared with high-R approaches using exterior insulating sheathing. Moisture conditions in double stud walls were monitored in Zone 5A (Massachusetts); three double stud assemblies were compared.
Mandela, Prashant; Yan, Yan; LaRese, Taylor; Eipper, Betty A.; Mains, Richard E.
2014-01-01
Kalirin, a Rho GDP/GTP exchange factor for Rac1 and RhoG, is known to play an essential role in the formation and maintenance of excitatory synapses and in the secretion of neuropeptides. Mice unable to express any of the isoforms of Kalrn in cells that produce POMC at any time during development (POMC cells) exhibited reduced anxiety-like behavior and reduced acquisition of passive avoidance behavior, along with sex-specific alteration in the corticosterone response to restraint stress. Strikingly, lack of Kalrn expression in POMC cells closely mimicked the effects of global Kalrn knockout on anxiety-like behavior and passive avoidance conditioning without causing the other deficits noted in Kalrn knockout mice. Our data suggest that deficits in excitatory inputs onto POMC neurons are responsible for the behavioral phenotypes observed. PMID:25014196
Elongation factor P is dispensable in Escherichia coli and Pseudomonas aeruginosa.
Balibar, Carl J; Iwanowicz, Dorothy; Dean, Charles R
2013-09-01
Elongation factor P (EF-P) is a highly conserved ribosomal initiation factor responsible for stimulating formation of the first peptide bond. Its essentiality has been debated and may differ depending on the organism. Here, we demonstrate that EF-P is dispensable in Escherichia coli and Pseudomonas aeruginosa under laboratory growth conditions. Although knockouts are viable, growth rates are diminished compared with wild-type strains. Despite this cost in fitness, these mutants are not more susceptible to a wide range of antibiotics; including ribosome targeting antibiotics, such as lincomycin, chloramphenicol, and streptomycin, which have been shown previously to disrupt EF-P function in vitro. In Pseudomonas, knockout of efp leads to an upregulation of mexX, a phenotype previously observed with other genetic lesions affecting ribosome function and that can be induced by the treatment with antibiotics affecting protein synthesis.
Yuskaitis, Christopher J.; Beurel, Eleonore; Jope, Richard S.
2010-01-01
Fragile X syndrome (FXS) is the most common form of inherited mental retardation and is one of the few known genetic causes of autism. FXS results from the loss of Fmr1 gene function, thus Fmr1 knockout mice provide a model to study impairments associated with FXS and autism and to test potential therapeutic interventions. The inhibitory serine-phosphorylation of glycogen synthase kinase-3 (GSK3) is lower in brain regions of Fmr1 knockout mice than wild-type mice and the GSK3 inhibitor lithium rescues several behavioral impairments in Fmr1 knockout mice. Therefore, we examined if the serine-phosphorylation of GSK3 in Fmr1 knockout mice also was altered outside the brain and if administration of lithium ameliorated the macroorchidism phenotype. Additionally, since GSK3 regulates numerous functions of the immune system and immune alterations have been associated with autism, we tested if immune function is altered in Fmr1 knockout mice. The inhibitory serine-phosphorylation of GSK3 was significantly lower in the testis and liver of Fmr1 knockout mice than wild-type mice, and chronic lithium treatment reduced macroorchidism in Fmr1 knockout mice. No alterations in peripheral immune function were identified in Fmr1 knockout mice. However, examination of glia, the immune cells of the brain, revealed reactive astrocytes in several brain regions of Fmr1 knockout mice and treatment with lithium reduced this in the striatum and cerebellum. These results provide further evidence of the involvement of dysregulated GSK3 in FXS, and demonstrate that lithium administration reduces macroorchidism and reactive astrocytes in Fmr1 knockout mice. PMID:20600866
Subregion-Specific p300 Conditional Knock-Out Mice Exhibit Long-Term Memory Impairments
ERIC Educational Resources Information Center
Oliveira, Ana M. M.; Estevez, Marcel A.; Hawk, Joshua D.; Grimes, Shannon; Brindle, Paul K.; Abel, Ted
2011-01-01
Histone acetylation plays a critical role during long-term memory formation. Several studies have demonstrated that the histone acetyltransferase (HAT) CBP is required during long-term memory formation, but the involvement of other HAT proteins has not been extensively investigated. The HATs CBP and p300 have at least 400 described interacting…
Notch Signaling Regulates Ovarian Follicle Formation and Coordinates Follicular Growth
Vanorny, Dallas A.; Prasasya, Rexxi D.; Chalpe, Abha J.; Kilen, Signe M.
2014-01-01
Ovarian follicles form through a process in which somatic pregranulosa cells encapsulate individual germ cells from germ cell syncytia. Complementary expression of the Notch ligand, Jagged1, in germ cells and the Notch receptor, Notch2, in pregranulosa cells suggests a role for Notch signaling in mediating cellular interactions during follicle assembly. Using a Notch reporter mouse, we demonstrate that Notch signaling is active within somatic cells of the embryonic ovary, and these cells undergo dramatic reorganization during follicle histogenesis. This coincides with a significant increase in the expression of the ligands, Jagged1 and Jagged2; the receptor, Notch2; and the target genes, Hes1 and Hey2. Histological examination of ovaries from mice with conditional deletion of Jagged1 within germ cells (J1 knockout [J1KO]) or Notch2 within granulosa cells (N2 knockout [N2KO]) reveals changes in follicle dynamics, including perturbations in the primordial follicle pool and antral follicle development. J1KO and N2KO ovaries also contain multi-oocytic follicles, which represent a failure to resolve germ cell syncytia, and follicles with enlarged oocytes but lacking somatic cell growth, signifying a potential role of Notch signaling in follicle activation and the coordination of follicle development. We also observed decreased cell proliferation and increased apoptosis in the somatic cells of both conditional knockout lines. As a consequence of these defects, J1KO female mice are subfertile; however, N2KO female mice remain fertile. This study demonstrates important functions for Jagged1 and Notch2 in the resolution of germ cell syncytia and the coordination of somatic and germ cell growth within follicles of the mouse ovary. PMID:24552588
Koronowski, Kevin B; Khoury, Nathalie; Saul, Isabel; Loris, Zachary B; Cohan, Charles H; Stradecki-Cohan, Holly M; Dave, Kunjan R; Young, Juan I; Perez-Pinzon, Miguel A
2017-11-01
Resveratrol, at least in part via SIRT1 (silent information regulator 2 homologue 1) activation, protects against cerebral ischemia when administered 2 days before injury. However, it remains unclear if SIRT1 activation must occur, and in which brain cell types, for the induction of neuroprotection. We hypothesized that neuronal SIRT1 is essential for resveratrol-induced ischemic tolerance and sought to characterize the metabolic pathways regulated by neuronal Sirt1 at the cellular level in the brain. We assessed infarct size and functional outcome after transient 60 minute middle cerebral artery occlusion in control and inducible, neuronal-specific SIRT1 knockout mice. Nontargeted primary metabolomics analysis identified putative SIRT1-regulated pathways in brain. Glycolytic function was evaluated in acute brain slices from adult mice and primary neuronal-enriched cultures under ischemic penumbra-like conditions. Resveratrol-induced neuroprotection from stroke was lost in neuronal Sirt1 knockout mice. Metabolomics analysis revealed alterations in glucose metabolism on deletion of neuronal Sirt1 , accompanied by transcriptional changes in glucose metabolism machinery. Furthermore, glycolytic ATP production was impaired in acute brain slices from neuronal Sirt1 knockout mice. Conversely, resveratrol increased glycolytic rate in a SIRT1-dependent manner and under ischemic penumbra-like conditions in vitro. Our data demonstrate that resveratrol requires neuronal SIRT1 to elicit ischemic tolerance and identify a novel role for SIRT1 in the regulation of glycolytic function in brain. Identification of robust neuroprotective mechanisms that underlie ischemia tolerance and the metabolic adaptations mediated by SIRT1 in brain are crucial for the translation of therapies in cerebral ischemia and other neurological disorders. © 2017 American Heart Association, Inc.
Quarterman, Josh; Kim, Soo Rin; Kim, Pan-Jun; Jin, Yong-Su
2015-01-20
In order to determine beneficial gene deletions for ethanol production by the yeast Saccharomyces cerevisiae, we performed an in silico gene deletion experiment based on a genome-scale metabolic model. Genes coding for two oxidative phosphorylation reactions (cytochrome c oxidase and ubiquinol cytochrome c reductase) were identified by the model-based simulation as potential deletion targets for enhancing ethanol production and maintaining acceptable overall growth rate in oxygen-limited conditions. Since the two target enzymes are composed of multiple subunits, we conducted a genetic screening study to evaluate the in silico results and compare the effect of deleting various portions of the respiratory enzyme complexes. Over two-thirds of the knockout mutants identified by the in silico study did exhibit experimental behavior in qualitative agreement with model predictions, but the exceptions illustrate the limitation of using a purely stoichiometric model-based approach. Furthermore, there was a substantial quantitative variation in phenotype among the various respiration-deficient mutants that were screened in this study, and three genes encoding respiratory enzyme subunits were identified as the best knockout targets for improving hexose fermentation in microaerobic conditions. Specifically, deletion of either COX9 or QCR9 resulted in higher ethanol production rates than the parental strain by 37% and 27%, respectively, with slight growth disadvantages. Also, deletion of QCR6 led to improved ethanol production rate by 24% with no growth disadvantage. The beneficial effects of these gene deletions were consistently demonstrated in different strain backgrounds and with four common hexoses. The combination of stoichiometric modeling and genetic screening using a systematic knockout collection was useful for narrowing a large set of gene targets and identifying targets of interest. Copyright © 2014 Elsevier B.V. All rights reserved.
Jain, Neeraj; Lim, Lee Wei; Tan, Wei Ting; George, Bhawana; Makeyev, Eugene; Thanabalu, Thirumaran
2014-04-01
Cerebrospinal fluid (CSF) is produced by the choroid plexus and moved by multi-ciliated ependymal cells through the ventricular system of the vertebrate brain. Defects in the ependymal layer functionality are a common cause of hydrocephalus. N-WASP (Neural-Wiskott Aldrich Syndrome Protein) is a brain-enriched regulator of actin cytoskeleton and N-WASP knockout caused embryonic lethality in mice with neural tube and cardiac abnormalities. To shed light on the role of N-WASP in mouse brain development, we generated N-WASP conditional knockout mouse model N-WASP(fl/fl); Nestin-Cre (NKO-Nes). NKO-Nes mice were born with Mendelian ratios but exhibited reduced growth characteristics compared to their littermates containing functional N-WASP alleles. Importantly, all NKO-Nes mice developed cranial deformities due to excessive CSF accumulation and did not survive past weaning. Coronal brain sections of these animals revealed dilated lateral ventricles, defects in ciliogenesis, loss of ependymal layer integrity, reduced thickness of cerebral cortex and aqueductal stenosis. Immunostaining for N-cadherin suggests that ependymal integrity in NKO-Nes mice is lost as compared to normal morphology in the wild-type controls. Moreover, scanning electron microscopy and immunofluorescence analyses of coronal brain sections with anti-acetylated tubulin antibodies revealed the absence of cilia in ventricular walls of NKO-Nes mice indicative of ciliogenesis defects. N-WASP deficiency does not lead to altered expression of N-WASP regulatory proteins, Fyn and Cdc42, which have been previously implicated in hydrocephalus pathology. Taken together, our results suggest that N-WASP plays a critical role in normal brain development and implicate actin cytoskeleton regulation as a vulnerable axis frequently deregulated in hydrocephalus. Copyright © 2014 Elsevier Inc. All rights reserved.
Role of Galectin-3 in Obesity and Impaired Glucose Homeostasis
Menini, Stefano; Iacobini, Carla; Blasetti Fantauzzi, Claudia; Pesce, Carlo M.; Pugliese, Giuseppe
2016-01-01
Galectin-3 is an important modulator of several biological functions. It has been implicated in numerous disease conditions, particularly in the long-term complications of diabetes because of its ability to bind the advanced glycation/lipoxidation end products that accumulate in target organs and exert their toxic effects by triggering proinflammatory and prooxidant pathways. Recent evidence suggests that galectin-3 may also participate in the development of obesity and type 2 diabetes. It has been shown that galectin-3 levels are higher in obese and diabetic individuals and parallel deterioration of glucose homeostasis. Two studies in galectin-3 knockout mice fed a high-fat diet (HFD) have shown increased adiposity and adipose tissue and systemic inflammation associated with altered glucose homeostasis, suggesting that galectin-3 negatively modulates the responsiveness of innate and adaptive immunity to overnutrition. However, these studies have also shown that impaired glucose homeostasis occurs in galectin-3 knockout animals independently of obesity. Moreover, another study reported decreased weight and fat mass in HFD-fed galectin-3 knockout mice. In vitro, galectin-3 was found to stimulate differentiation of preadipocytes into mature adipocytes. Altogether, these data indicate that galectin-3 deserves further attention in order to clarify its role as a potential player and therapeutic target in obesity and type 2 diabetes. PMID:26770660
β2-Adrenergic Receptor Knockout Mice Exhibit A Diabetic Retinopathy Phenotype
Jiang, Youde; Zhang, Qiuhua; Liu, Li; Tang, Jie; Kern, Timothy S.; Steinle, Jena J.
2013-01-01
There is considerable evidence from our lab and others for a functional link between β-adrenergic receptor and insulin receptor signaling pathways in retina. Furthermore, we hypothesize that this link may contribute to lesions similar to diabetic retinopathy in that the loss of adrenergic input observed in diabetic retinopathy may disrupt normal anti-apoptotic insulin signaling, leading to retinal cell death. Our studies included assessment of neural retina function (ERG), vascular degeneration, and Müller glial cells (which express only β1 and β2-adrenergic receptor subtypes). In the current study, we produced β2-adrenergic receptor knockout mice to examine this deletion on retinal neurons and vasculature, and to identify specific pathways through which β2-adrenergic receptor modulates insulin signaling. As predicted from our hypothesis, β2-adrenergic receptor knockout mice display certain features similar to diabetic retinopathy. In addition, loss of β2-adrenergic input resulted in an increase in TNFα, a key inhibitor of insulin receptor signaling. Increased TNFα may be associated with insulin-dependent production of the anti-apoptotic factor, Akt. Since the effects occurred in vivo under normal glucose conditions, we postulate that aspects of the diabetic retinopathy phenotype might be triggered by loss of β2-adrenergic receptor signaling. PMID:23894672
Featherstone, R.; Naschek, M.; Nam, J.; Du, A.; Wright, S.; Weger, R.; Akuzawa, S.
2017-01-01
Abstract Fragile X syndrome is a genetic condition resulting from FMR1 gene mutation that leads to intellectual disability, autism-like symptoms, and sensory hypersensitivity. Arbaclofen, a GABA-B agonist, has shown efficacy in some individuals with FXS but has become unavailable after unsuccessful clinical trials, prompting interest in publicly available, racemic baclofen. The present study investigated whether racemic baclofen can remediate abnormalities of neural circuit function, sensory processing, and behavior in Fmr1 knockout mice, a rodent model of fragile X syndrome. Fmr1 knockout mice showed increased baseline and auditory-evoked high-frequency gamma (30–80 Hz) power relative to C57BL/6 controls, as measured by electroencephalography. These deficits were accompanied by decreased T maze spontaneous alternation, decreased social interactions, and increased open field center time, suggestive of diminished working memory, sociability, and anxiety-like behavior, respectively. Abnormal auditory-evoked gamma oscillations, working memory, and anxiety-related behavior were normalized by treatment with baclofen, but impaired sociability was not. Improvements in working memory were evident predominantly in mice whose auditory-evoked gamma oscillations were dampened by baclofen. These findings suggest that racemic baclofen may be useful for targeting sensory and cognitive disturbances in fragile X syndrome. PMID:28451631
Selective role for DNMT3a in learning and memory.
Morris, Michael J; Adachi, Megumi; Na, Elisa S; Monteggia, Lisa M
2014-11-01
Methylation of cytosine nucleotides is governed by DNA methyltransferases (DNMTs) that establish de novo DNA methylation patterns in early embryonic development (e.g., DNMT3a and DNMT3b) or maintain those patterns on hemimethylated DNA in dividing cells (e.g., DNMT1). DNMTs continue to be expressed at high levels in mature neurons, however their impact on neuronal function and behavior are unclear. To address this issue we examined DNMT1 and DNMT3a expression following associative learning. We also generated forebrain specific conditional Dnmt1 or Dnmt3a knockout mice and characterized them in learning and memory paradigms as well as for alterations in long-term potentiation (LTP) and synaptic plasticity. Here, we report that experience in an associative learning task impacts expression of Dnmt3a, but not Dnmt1, in brain areas that mediate learning of this task. We also found that Dnmt3a knockout mice, and not Dnmt1 knockouts have synaptic alterations as well as learning deficits on several associative and episodic memory tasks. These findings indicate that the de novo DNA methylating enzyme DNMT3a in postmitotic neurons is necessary for normal memory formation and its function cannot be substituted by the maintenance DNA methylating enzyme DNMT1. Copyright © 2014 Elsevier Inc. All rights reserved.
TPC Proteins Are Phosphoinositide-activated Sodium-selective Ion Channels in Endosomes and Lysosomes
Wang, Xiang; Zhang, Xiaoli; Dong, Xian-ping; Samie, Mohammad; Li, Xinran; Cheng, Xiping; Goschka, Andrew; Shen, Dongbiao; Zhou, Yandong; Harlow, Janice; Zhu, Michael X.; Clapham, David E.; Ren, Dejian; Xu, Haoxing
2012-01-01
Summary Mammalian Two-Pore Channels (TPC1, 2; TPCN1, TPCN2) encode ion channels in intracellular endosomes and lysosomes and were proposed to mediate endolysosomal calcium release triggered by the second messenger, nicotinic acid adenine dinucleotide phosphate (NAADP). By directly recording TPCs in endolysosomes from wild-type and TPC double knockout mice, here we show that, in contrast to previous conclusions, TPCs are in fact sodium-selective channels activated by PI(3,5)P2, and are not activated by NAADP. Moreover, the primary endolysosomal ion is Na+, not K+, as had been previously assumed. These findings suggest that the organellar membrane potential may undergo large regulatory changes, and may explain the specificity of PI(3,5)P2 in regulating the fusogenic potential of intracellular organelles. PMID:23063126
Antineutrino Charged-Current Reactions on Hydrocarbon with Low Momentum Transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gran, R.; Betancourt, M.; Elkins, M.
We report on multi-nucleon effects in low momentum transfer (more » $< 0.8$ GeV/c) anti-neutrino interactions on scintillator. These data are from the 2010-11 anti-neutrino phase of the MINERvA experiment at Fermilab. The hadronic energy spectrum of this inclusive sample is well-described when a screening effect at low energy transfer and a two-nucleon knockout process are added to a relativistic Fermi gas model of quasi-elastic, $$\\Delta$$ resonance, and higher resonance processes. In this analysis, model elements introduced to describe previously published neutrino results have quantitatively similar benefits for this anti-neutrino sample. We present the results as a double-differential cross section to accelerate investigation of alternate models for anti-neutrino scattering off nuclei.« less
Anti-Neutrino Charged-Current Reactions on Scintillator with Low Momentum Transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gran, R.; et al.
2018-03-25
We report on multi-nucleon effects in low momentum transfer (more » $< 0.8$ GeV/c) anti-neutrino interactions on scintillator. These data are from the 2010-11 anti-neutrino phase of the MINERvA experiment at Fermilab. The hadronic energy spectrum of this inclusive sample is well-described when a screening effect at low energy transfer and a two-nucleon knockout process are added to a relativistic Fermi gas model of quasi-elastic, $$\\Delta$$ resonance, and higher resonance processes. In this analysis, model elements introduced to describe previously published neutrino results have quantitatively similar benefits for this anti-neutrino sample. We present the results as a double-differential cross section to accelerate investigation of alternate models for anti-neutrino scattering off nuclei.« less
Anti-Neutrino Charged-Current Reactions on Scintillator with Low Momentum Transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gran, R.; et al.
2018-06-01
We report on multi-nucleon effects in low momentum transfer (more » $< 0.8$ GeV/c) anti-neutrino interactions on scintillator. These data are from the 2010-11 anti-neutrino phase of the MINERvA experiment at Fermilab. The hadronic energy spectrum of this inclusive sample is well-described when a screening effect at low energy transfer and a two-nucleon knockout process are added to a relativistic Fermi gas model of quasi-elastic, $$\\Delta$$ resonance, and higher resonance processes. In this analysis, model elements introduced to describe previously published neutrino results have quantitatively similar benefits for this anti-neutrino sample. We present the results as a double-differential cross section to accelerate investigation of alternate models for anti-neutrino scattering off nuclei.« less
Cao, Hong; Saraf, Amit; Zweifel, Larry S.
2015-01-01
The type 1 adenylyl cyclase (AC1) is an activity-dependent, calcium-stimulated adenylyl cyclase expressed in the nervous system that is implicated in memory formation. We examined the locomotor activity, and impulsive and social behaviors of AC1+ mice, a transgenic mouse strain overexpressing AC1 in the forebrain. Here we report that AC1+ mice exhibit hyperactive behaviors and demonstrate increased impulsivity and reduced sociability. In contrast, AC1 and AC8 double knock-out mice are hypoactive, and exhibit increased sociability and reduced impulsivity. Interestingly, the hyperactivity of AC1+ mice can be corrected by valproate, a mood-stabilizing drug. These data indicate that increased expression of AC1 in the forebrain leads to deficits in behavioral inhibition. PMID:25568126
Antineutrino Charged-Current Reactions on Hydrocarbon with Low Momentum Transfer
Gran, R.; Betancourt, M.; Elkins, M.; ...
2018-06-01
We report on multi-nucleon effects in low momentum transfer (more » $< 0.8$ GeV/c) anti-neutrino interactions on scintillator. These data are from the 2010-11 anti-neutrino phase of the MINERvA experiment at Fermilab. The hadronic energy spectrum of this inclusive sample is well-described when a screening effect at low energy transfer and a two-nucleon knockout process are added to a relativistic Fermi gas model of quasi-elastic, $$\\Delta$$ resonance, and higher resonance processes. In this analysis, model elements introduced to describe previously published neutrino results have quantitatively similar benefits for this anti-neutrino sample. We present the results as a double-differential cross section to accelerate investigation of alternate models for anti-neutrino scattering off nuclei.« less
Dong, Yuanlin; Xu, Zhipeng; Huang, Lining; Zhang, Yiying; Xie, Zhongcong
2016-01-01
Post-operative cognitive dysfunction (POCD) is associated with morbidity, mortality and increased cost of medical care. However, the neuropathogenesis and targeted interventions of POCD remain largely to be determined. We have found that the peripheral surgical wounding induces an age-dependent Aβ accumulation, neuroinflammation and cognitive impairment in aged mice. Pro-inflammatory cytokine interlukin-6 (IL-6) has been reported to be associated with cognitive impairment in rodents and humans. However, the role of IL-6 in the neuropathogenesis of POCD is unknown. We therefore employed pharmacological (IL-6 antibody) and genetic (knockout of IL-6) approach to investigate whether IL-6 contributed to the peripheral surgical wounding-induced cognitive impairment in aged mice. Abdominal surgery under local anesthesia (peripheral surgical wounding) was established in 18-month-old wild-type and IL-6 knockout mice ( n = 6 to 10 in each group). Brain level of IL-6 and cognitive function in the mice were determined by western blot, ELISA at the end of procedure, and Fear Conditioning System at 7 days after the procedure. The peripheral surgical wounding increased the level of IL-6 in the hippocampus of aged wild-type, but not IL-6 knockout mice. IL-6 antibody ameliorated the peripheral surgical wounding-induced cognitive impairment in the aged wild-type mice. Finally, the peripheral surgical wounding did not induce cognitive impairment in the aged IL-6 knockout mice. These data suggested that IL-6 would be a required pro-inflammatory cytokine for the peripheral surgical wounding-induced cognitive impairment. Given this, further studies are warranted to investigate the role of IL-6 in the neuropathogenesis and targeted interventions of POCD.
Martinez-Garay, Isabel; Guidi, Luiz G; Holloway, Zoe G; Bailey, Melissa A G; Lyngholm, Daniel; Schneider, Tomasz; Donnison, Timothy; Butt, Simon J B; Monaco, Anthony P; Molnár, Zoltán; Velayos-Baeza, Antonio
2017-04-01
Developmental dyslexia is a common disorder with a strong genetic component, but the underlying molecular mechanisms are still unknown. Several candidate dyslexia-susceptibility genes, including KIAA0319, DYX1C1, and DCDC2, have been identified in humans. RNA interference experiments targeting these genes in rat embryos have shown impairments in neuronal migration, suggesting that defects in radial cortical migration could be involved in the disease mechanism of dyslexia. Here we present the first characterisation of a Kiaa0319 knockout mouse line. Animals lacking KIAA0319 protein do not show anatomical abnormalities in any of the layered structures of the brain. Neurogenesis and radial migration of cortical projection neurons are not altered, and the intrinsic electrophysiological properties of Kiaa0319-deficient neurons do not differ from those of wild-type neurons. Kiaa0319 overexpression in cortex delays radial migration, but does not affect final neuronal position. However, knockout animals show subtle differences suggesting possible alterations in anxiety-related behaviour and in sensorimotor gating. Our results do not reveal a migration disorder in the mouse model, adding to the body of evidence available for Dcdc2 and Dyx1c1 that, unlike in the rat in utero knockdown models, the dyslexia-susceptibility candidate mouse homolog genes do not play an evident role in neuronal migration. However, KIAA0319 protein expression seems to be restricted to the brain, not only in early developmental stages but also in adult mice, indicative of a role of this protein in brain function. The constitutive and conditional knockout lines reported here will be useful tools for further functional analyses of Kiaa0319.
Castro-Caldas, Margarida; Carvalho, Andreia Neves; Rodrigues, Elsa; Henderson, Colin; Wolf, C Roland; Gama, Maria João
2012-06-01
Parkinson's disease (PD) is a progressive movement disorder resulting from the death of dopaminergic neurons in the substantia nigra. Neurotoxin-based models of PD using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) recapitulate the neurological features of the disease, triggering a cascade of deleterious events through the activation of the c-Jun N-terminal kinase (JNK). The molecular mechanisms underlying the regulation of JNK activity under cellular stress conditions involve the activation of several upstream kinases along with the fine-tuning of different endogenous JNK repressors. Glutathione S-transferase pi (GSTP), a phase II detoxifying enzyme, has been shown to inhibit JNK-activated signaling by protein-protein interactions, preventing c-Jun phosphorylation and the subsequent trigger of the cell death cascade. Here, we use C57BL/6 wild-type and GSTP knockout mice treated with MPTP to evaluate the regulation of JNK signaling by GSTP in both the substantia nigra and the striatum. The results presented herein show that GSTP knockout mice are more susceptible to the neurotoxic effects of MPTP than their wild-type counterparts. Indeed, the administration of MPTP induces a progressive demise of nigral dopaminergic neurons together with the degeneration of striatal fibers at an earlier time-point in the GSTP knockout mice when compared to the wild-type mice. Also, MPTP treatment leads to increased p-JNK levels and JNK catalytic activity in both wild-type and GSTP knockout mice midbrain and striatum. Moreover, our results demonstrate that in vivo GSTP acts as an endogenous regulator of the MPTP-induced cellular stress response by controlling JNK activity through protein-protein interactions.
Dong, Yuanlin; Xu, Zhipeng; Huang, Lining; Zhang, Yiying; Xie, Zhongcong
2016-01-01
Post-operative cognitive dysfunction (POCD) is associated with morbidity, mortality and increased cost of medical care. However, the neuropathogenesis and targeted interventions of POCD remain largely to be determined. We have found that the peripheral surgical wounding induces an age-dependent Aβ accumulation, neuroinflammation and cognitive impairment in aged mice. Pro-inflammatory cytokine interlukin-6 (IL-6) has been reported to be associated with cognitive impairment in rodents and humans. However, the role of IL-6 in the neuropathogenesis of POCD is unknown. We therefore employed pharmacological (IL-6 antibody) and genetic (knockout of IL-6) approach to investigate whether IL-6 contributed to the peripheral surgical wounding-induced cognitive impairment in aged mice. Abdominal surgery under local anesthesia (peripheral surgical wounding) was established in 18-month-old wild-type and IL-6 knockout mice (n = 6 to 10 in each group). Brain level of IL-6 and cognitive function in the mice were determined by western blot, ELISA at the end of procedure, and Fear Conditioning System at 7 days after the procedure. The peripheral surgical wounding increased the level of IL-6 in the hippocampus of aged wild-type, but not IL-6 knockout mice. IL-6 antibody ameliorated the peripheral surgical wounding-induced cognitive impairment in the aged wild-type mice. Finally, the peripheral surgical wounding did not induce cognitive impairment in the aged IL-6 knockout mice. These data suggested that IL-6 would be a required pro-inflammatory cytokine for the peripheral surgical wounding-induced cognitive impairment. Given this, further studies are warranted to investigate the role of IL-6 in the neuropathogenesis and targeted interventions of POCD. PMID:28217289
Glutathione peroxidase mimic ebselen improves glucose-stimulated insulin secretion in murine islets.
Wang, Xinhui; Yun, Jun-Won; Lei, Xin Gen
2014-01-10
Glutathione peroxidase (GPX) mimic ebselen and superoxide dismutase (SOD) mimic copper diisopropylsalicylate (CuDIPs) were used to rescue impaired glucose-stimulated insulin secretion (GSIS) in islets of GPX1 and(or) SOD1-knockout mice. Ebselen improved GSIS in islets of all four tested genotypes. The rescue in the GPX1 knockout resulted from a coordinated transcriptional regulation of four key GSIS regulators and was mediated by the peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α)-mediated signaling pathways. In contrast, CuDIPs improved GSIS only in the SOD1 knockout and suppressed gene expression of the PGC-1α pathway. Islets from the GPX1 and(or) SOD1 knockout mice provided metabolically controlled intracellular hydrogen peroxide (H2O2) and superoxide conditions for the present study to avoid confounding effects. Bioinformatics analyses of gene promoters and expression profiles guided the search for upstream signaling pathways to link the ebselen-initiated H2O2 scavenging to downstream key events of GSIS. The RNA interference was applied to prove PGC-1α as the main mediator for that link. Our study revealed a novel metabolic use and clinical potential of ebselen in rescuing GSIS in the GPX1-deficient islets and mice, along with distinct differences between the GPX and SOD mimics in this regard. These findings highlight the necessities and opportunities of discretional applications of various antioxidant enzyme mimics in treating insulin secretion disorders. REBOUND TRACK: This work was rejected during standard peer review and rescued by Rebound Peer Review (Antioxid Redox Signal 16: 293-296, 2012) with the following serving as open reviewers: Regina Brigelius-Flohe, Vadim Gladyshev, Dexing Hou, and Holger Steinbrenner.
Effects of sex and COMT genotype on environmentally modulated cognitive control in mice
Papaleo, Francesco; Erickson, Lucy; Liu, Guangping; Chen, Jingshan; Weinberger, Daniel R.
2012-01-01
Cognitive functioning differs between males and females, likely in part related to genetic dimorphisms. An example of a common genetic variation reported to have sexually dimorphic effects on cognition and temperament in humans is the Val/Met polymorphism in catechol-O-methyltransferase (COMT). We tested male and female wild-type mice (+/+) and their COMT knockout littermates (+/− and −/−) in the five-choice serial reaction time task (5CSRTT) to investigate the effects of sex, COMT genotype, and their interactions with environmental manipulations of cognitive functions such as attention, impulsivity, compulsivity, motivation, and rule-reversal learning. No sex- or COMT-dependent differences were present in the basic acquisition of the five-choice serial reaction time task. In contrast, specific environmental manipulations revealed a variety of sex- and COMT-dependent effects. Following an experimental change to trigger impulsive responding, the sexes showed similar increases in impulsiveness, but males eventually habituated whereas females did not. Moreover, COMT knockout mice were more impulsive compared with wild-type littermates. Manipulations involving mild stress adversely affected cognitive performance in males, and particularly COMT knockout males, but not in females. In contrast, following amphetamine treatment, subtle sex by genotype and sex by treatment interactions emerged primarily limited to compulsive behavior. After repeated testing, female mice showed improved performance, working harder and eventually outperforming males. Finally, removing the food-restriction condition enhanced sex and COMT differences, revealing that overall, females outperform males and COMT knockout males outperform their wild-type littermates. These findings illuminate complex sex- and COMT-related effects and their interactions with environmental factors to influence specific executive cognitive domains. PMID:23169629
ANTXR2 Knock-Out Does Not Result in the Development of Hypertension in Rats.
Liu, Xiaoyan; Yuan, Wen; Li, Jing; Yang, Lei; Cai, Jun
2017-02-01
Our recent genetic study as well as robust evidences reported by previous genome-wide association studies (GWASs) have indicated that the single nucleotide polymorphism rs16998073, located near gene anthrax toxin receptor 2 (ANTXR2), was significantly associated with hypertension in Asians and Europeans. The aim of the present study was to determine whether ANTXR2 is the causal gene of hypertension at the 4q21 locus using an ANTXR2 knock-out model. Relative expression of ANTXR2 in Wistar-Kyoto rats (WKYs) and spontaneously hypertensive rats (SHRs) were determined by real-time quantitative polymerase chain reaction and western blot analysis. ANTXR2 knock-out rats were created using CRISPR/Cas9-mediated genome editing and blood pressure values were measured in ANTXR2 -/- and wild type (WT) rats by tail-cuff method and carotid arterial catheterization method. Neither the mRNA nor protein levels of ANTXR2 were significantly different between tissues from SHRs and WKYs. To create ANTXR2 -/- rats, 67 base pairs were deleted in exon 1 of ANTXR2 using CRISPR/Cas9-mediated genome editing. ANTXR2 protein decreased significantly in aortas of ANTXR2 -/- rats, suggesting sufficient efficiency of ANTXR2 knock-out in this model. However, ANTXR2 -/- rats exhibited nearly the same blood pressure as WT rats at baseline conditions as well as during Angiotensin II (400ng/kg/min) infusion or high-salt diet treatment. These findings suggest that ANTXR2 might not be associated with hypertension and thus further functional analysis is warranted to identify the causal gene at this locus. © American Journal of Hypertension, Ltd 2016. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wallén-Mackenzie, Asa; Wootz, Hanna; Englund, Hillevi
2010-02-01
During the past decade, three proteins that possess the capability of packaging glutamate into presynaptic vesicles have been identified and characterized. These three vesicular glutamate transporters, VGLUT1-3, are encoded by solute carrier genes Slc17a6-8. VGLUT1 (Slc17a7) and VGLUT2 (Slc17a6) are expressed in glutamatergic neurons, while VGLUT3 (Slc17a8) is expressed in neurons classically defined by their use of another transmitter, such as acetylcholine and serotonin. As glutamate is both a ubiquitous amino acid and the most abundant neurotransmitter in the adult central nervous system, the discovery of the VGLUTs made it possible for the first time to identify and specifically target glutamatergic neurons. By molecular cloning techniques, different VGLUT isoforms have been genetically targeted in mice, creating models with alterations in their glutamatergic signalling. Glutamate signalling is essential for life, and its excitatory function is involved in almost every neuronal circuit. The importance of glutamatergic signalling was very obvious when studying full knockout models of both VGLUT1 and VGLUT2, none of which were compatible with normal life. While VGLUT1 full knockout mice die after weaning, VGLUT2 full knockout mice die immediately after birth. Many neurological diseases have been associated with altered glutamatergic signalling in different brain regions, which is why conditional knockout mice with abolished VGLUT-mediated signalling only in specific circuits may prove helpful in understanding molecular mechanisms behind such pathologies. We review the recent studies in which mouse genetics have been used to characterize the functional role of VGLUT2 in the central nervous system.
Schalk, Oliver; Josefsson, Ida; Geng, Ting; Richter, Robert; Sa'adeh, Hanan; Thomas, Richard D; Mucke, Melanie
2018-02-28
In this article, we study the photoinduced dissociation pathways of a metallocarbonyl, Os 3 (CO) 12 , in particular the consecutive loss of CO groups. To do so, we performed photoelectron-photoion coincidence (PEPICO) measurements in the single ionization binding energy region from 7 to 35 eV using 45-eV photons. Zero-energy ion appearance energies for the dissociation steps were extracted by modeling the PEPICO data using the statistical adiabatic channel model. Upon ionization to the excited ionic states above 13 eV binding energy, non-statistical behavior was observed and assigned to prompt CO loss. Double ionization was found to be dominated by the knockout process with an onset of 20.9 ± 0.4 eV. The oscillator strength is significantly larger for energies above 26.6 ± 0.4 eV, corresponding to one electron being ejected from the Os 3 center and one from the CO ligands. The cross section for double ionization was found to increase linearly up to 35 eV ionization energy, at which 40% of the generated ions are doubly charged.
Rubio, Francisco; Alemán, Fernando; Nieves-Cordones, Manuel; Martínez, Vicente
2010-06-01
The high-affinity K(+) transporter AtHAK5 and the inward-rectifier K(+) channel AtAKT1 have been described to contribute to K(+) uptake in Arabidopsis thaliana. Studies with T-DNA insertion lines showed that both systems participate in the high-affinity range of concentrations and only AtAKT1 in the low-affinity range. However the contribution of other systems could not be excluded with the information and plant material available. The results presented here with a double knock-out athak5, atakt1 mutant show that AtHAK5 is the only system mediating K(+) uptake at concentrations below 0.01 mM. In the range between 0.01 and 0.05 mM K(+) AtHAK5 and AtAKT1 are the only contributors to K(+) acquisition. At higher K(+) concentrations, unknown systems come into operation and participate together with AtAKT1 in low-affinity K(+) uptake. These systems can supply sufficient K(+) to promote plant growth even in the absence of AtAKT1 or in the presence of 10 mM K(+) where AtAKT1 is not essential.
Fuchino, Kouki; Mitsuoka, Yasunori; Masui, Moriyasu; Kurose, Noriyuki; Yoshida, Shuhei; Komano, Kazuo; Yamamoto, Takahiko; Ogawa, Masayoshi; Unemura, Chie; Hosono, Motoko; Ito, Hisanori; Sakaguchi, Gaku; Ando, Shigeru; Ohnishi, Shuichi; Kido, Yasuto; Fukushima, Tamio; Miyajima, Hirofumi; Hiroyama, Shuichi; Koyabu, Kiyotaka; Dhuyvetter, Deborah; Borghys, Herman; Gijsen, Harrie J M; Yamano, Yoshinori; Iso, Yasuyoshi; Kusakabe, Ken-Ichi
2018-05-23
Accumulation of Aβ peptides is a hallmark of Alzheimer's disease (AD) and is considered a causal factor in the pathogenesis of AD. β-Secretase (BACE1) is a key enzyme responsible for producing Aβ peptides, and thus agents that inhibit BACE1 should be beneficial for disease-modifying treatment of AD. Here we describe the discovery and optimization of novel oxazine-based BACE1 inhibitors by lowering amidine basicity with the incorporation of a double bond to improve brain penetration. Starting from a 1,3-dihydrooxazine lead 6 identified by a hit-to-lead SAR following HTS, we adopted a p K a lowering strategy to reduce the P-gp efflux and the high hERG potential leading to the discovery of 15 that produced significant Aβ reduction with long duration in pharmacodynamic models and exhibited wide safety margins in cardiovascular safety models. This compound improved the brain-to-plasma ratio relative to 6 by reducing P-gp recognition, which was demonstrated by a P-gp knockout mouse model.
Homology-dependent repair is involved in 45S rDNA loss in plant CAF-1 mutants
Muchová, Veronika; Amiard, Simon; Mozgová, Iva; Dvořáčková, Martina; Gallego, Maria E; White, Charles; Fajkus, Jiří
2015-01-01
Arabidopsis thaliana mutants in FAS1 and FAS2 subunits of chromatin assembly factor 1 (CAF1) show progressive loss of 45S rDNA copies and telomeres. We hypothesized that homology-dependent DNA damage repair (HDR) may contribute to the loss of these repeats in fas mutants. To test this, we generated double mutants by crossing fas mutants with knock-out mutants in RAD51B, one of the Rad51 paralogs of A. thaliana. Our results show that the absence of RAD51B decreases the rate of rDNA loss, confirming the implication of RAD51B-dependent recombination in rDNA loss in the CAF1 mutants. Interestingly, this effect is not observed for telomeric repeat loss, which thus differs from that acting in rDNA loss. Involvement of DNA damage repair in rDNA dynamics in fas mutants is further supported by accumulation of double-stranded breaks (measured as γ-H2AX foci) in 45S rDNA. Occurrence of the foci is not specific for S-phase, and is ATM-independent. While the foci in fas mutants occur both in the transcribed (intranucleolar) and non-transcribed (nucleoplasmic) fraction of rDNA, double fas rad51b mutants show a specific increase in the number of the intranucleolar foci. These results suggest that the repair of double-stranded breaks present in the transcribed rDNA region is RAD51B dependent and that this contributes to rDNA repeat loss in fas mutants, presumably via the single-stranded annealing recombination pathway. Our results also highlight the importance of proper chromatin assembly in the maintenance of genome stability. PMID:25359579
Saheki, Takeyori; Inoue, Kanako; Ono, Hiromi; Fujimoto, Yuki; Furuie, Sumie; Yamamura, Ken-Ichi; Kuroda, Eishi; Ushikai, Miharu; Asakawa, Akihiro; Inui, Akio; Eto, Kazuhiro; Kadowaki, Takashi; Moriyama, Mitsuaki; Sinasac, David S; Yamamoto, Takashi; Furukawa, Tatsuhiko; Kobayashi, Keiko
2017-04-01
Mice carrying simultaneous homozygous mutations in the genes encoding citrin, the mitochondrial aspartate-glutamate carrier 2 (AGC2) protein, and mitochondrial glycerol-3-phosphate dehydrogenase (mGPD), are a phenotypically representative model of human citrin (a.k.a., AGC2) deficiency. In this study, we investigated the voluntary oral intake and preference for sucrose, glycerol or ethanol solutions by wild-type, citrin (Ctrn)-knockout (KO), mGPD-KO, and Ctrn/mGPD double-KO mice; all substances that are known or suspected precipitating factors in the pathogenesis of human citrin deficiency. The double-KO mice showed clear suppressed intake of sucrose, consuming less with progressively higher concentrations compared to the other mice. Similar observations were made when glycerol or ethanol were given. The preference of Ctrn-KO and mGPD-KO mice varied with the different treatments; essentially no differences were observed for sucrose, while an intermediate intake or similar to that of the double-KO mice was observed for glycerol and ethanol. We next examined the hepatic glycerol 3-phosphate, citrate, citrulline, lysine, glutamate and adenine nucleotide levels following forced enteral administration of these solutions. A strong correlation between the simultaneous increased hepatic glycerol 3-phosphate and decreased ATP or total adenine nucleotide content and observed aversion of the mice during evaluation of their voluntary preferences was found. Overall, our results suggest that the aversion observed in the double-KO mice to these solutions is initiated and/or mediated by hepatic metabolic perturbations, resulting in a behavioral response to increased hepatic cytosolic NADH and a decreased cellular adenine nucleotide pool. These findings may underlie the dietary predilections observed in human citrin deficient patients. Copyright © 2017 Elsevier Inc. All rights reserved.
d’Anglemont de Tassigny, Xavier; Pascual, Alberto; López-Barneo, José
2015-01-01
The glial cell line-derived neurotrophic factor (GDNF) is a well-established trophic agent for dopaminergic (DA) neurons in vitro and in vivo. GDNF is necessary for maintenance of neuronal morphological and neurochemical phenotype and protects DA neurons from toxic damage. Numerous studies on animal models of Parkinson’s disease (PD) have reported beneficial effects of GDNF on nigrostriatal DA neuron survival. However, translation of these observations to the clinical setting has been hampered so far by side effects associated with the chronic continuous intra-striatal infusion of recombinant GDNF. In addition, double blind and placebo-controlled clinical trials have not reported any clinically relevant effect of GDNF on PD patients. In the past few years, experiments with conditional Gdnf knockout mice have suggested that GDNF is necessary for maintenance of DA neurons in adulthood. In parallel, new methodologies for exogenous GDNF delivery have been developed. Recently, it has been shown that a small population of scattered, electrically interconnected, parvalbumin positive (PV+) GABAergic interneurons is responsible for most of the GDNF produced in the rodent striatum. In addition, cholinergic striatal interneurons appear to be also involved in the modulation of striatal GDNF. In this review, we summarize current knowledge on brain GDNF delivery, homeostasis, and its effects on nigrostriatal DA neurons. Special attention is paid to the therapeutic potential of endogenous GDNF stimulation in PD. PMID:25762899
Evidence that tRNA modifying enzymes are important in vivo targets for 5-fluorouracil in yeast
Gustavsson, Marie; Ronne, Hans
2008-01-01
We have screened a collection of haploid yeast knockout strains for increased sensitivity to 5-fluorouracil (5-FU). A total of 138 5-FU sensitive strains were found. Mutants affecting rRNA and tRNA maturation were particularly sensitive to 5-FU, with the tRNA methylation mutant trm10 being the most sensitive mutant. This is intriguing since trm10, like many other tRNA modification mutants, lacks a phenotype under normal conditions. However, double mutants for nonessential tRNA modification enzymes are frequently temperature sensitive, due to destabilization of hypomodified tRNAs. We therefore tested if the sensitivity of our mutants to 5-FU is affected by the temperature. We found that the cytotoxic effect of 5-FU is strongly enhanced at 38°C for tRNA modification mutants. Furthermore, tRNA modification mutants show similar synthetic interactions for temperature sensitivity and sensitivity to 5-FU. A model is proposed for how 5-FU kills these mutants by reducing the number of tRNA modifications, thus destabilizing tRNA. Finally, we found that also wild-type cells are temperature sensitive at higher concentrations of 5-FU. This suggests that tRNA destabilization contributes to 5-FU cytotoxicity in wild-type cells and provides a possible explanation why hyperthermia can enhance the effect of 5-FU in cancer therapy. PMID:18314501
Mansouri-Attia, Nadéra; James, Rebecca; Ligon, Alysse; Li, Xiaohui; Pangas, Stephanie A.
2014-01-01
ABSTRACT Soy attracts attention for its health benefits, such as lowering cholesterol or preventing breast and colon cancer. Soybeans contain isoflavones, which act as phytoestrogens. Even though isoflavones have beneficial health effects, a role for isoflavones in the initiation and progression of diseases including cancer is becoming increasingly recognized. While data from rodent studies suggest that neonatal exposure to genistein (the predominant isoflavone in soy) disrupts normal reproductive function, its role in ovarian cancers, particularly granulosa cell tumors (GCT), is largely unknown. Our study aimed to define the contribution of a soy diet in GCT development using a genetically modified mouse model for juvenile GCTs (JGCT; Smad1 Smad5 conditional double knockout mice) as well as a human JGCT cell line (COV434). While dietary soy cannot initiate JGCT development in mice, we show that it has dramatic effects on GCT growth and tumor progression compared to a soy-free diet. Loss of Smad1 and Smad5 alters estrogen receptor alpha (Esr1) expression in granulosa cells, perhaps sensitizing the cells to the effects of genistein. In addition, we found that genistein modulates estrogen receptor expression in the human JGCT cell line and positively promotes cell growth in part by suppressing caspase-dependent apoptosis. Combined, our work suggests that dietary soy consumption has deleterious effects on GCT development. PMID:25165122
Feng, Pu; Zhao, Hang; Chai, Jinghua; Huang, Liquan; Wang, Hong
2012-01-01
Taste buds are chemosensory structures widely distributed on the surface of the oral cavity and larynx. Taste cells, exposed to the oral environment, face great challenges in defense against potential pathogens. While immune cells, such as T-cells and macrophages, are rarely found in taste buds, high levels of expression of some immune-response-associated molecules are observed in taste buds. Yet, the cellular origins of these immune molecules such as cytokines in taste buds remain to be determined. Here, we show that a specific subset of taste cells selectively expresses high levels of the inflammatory cytokine tumor necrosis factor-α (TNF-α). Based on immuno-colocalization experiments using taste-cell-type markers, the TNF-α-producing cells are predominantly type II taste cells expressing the taste receptor T1R3. These cells can rapidly increase TNF-α production and secretion upon inflammatory challenges, both in vivo and in vitro. The lipopolysaccharide (LPS)-induced TNF-α expression in taste cells was completely eliminated in TLR2−/−/TLR4−/− double-gene-knockout mice, which confirms that the induction of TNF-α in taste buds by LPS is mediated through TLR signaling pathways. The taste-cell-produced TNF-α may contribute to local immune surveillance, as well as regulate taste sensation under normal and pathological conditions. PMID:22905218
Feng, Pu; Zhao, Hang; Chai, Jinghua; Huang, Liquan; Wang, Hong
2012-01-01
Taste buds are chemosensory structures widely distributed on the surface of the oral cavity and larynx. Taste cells, exposed to the oral environment, face great challenges in defense against potential pathogens. While immune cells, such as T-cells and macrophages, are rarely found in taste buds, high levels of expression of some immune-response-associated molecules are observed in taste buds. Yet, the cellular origins of these immune molecules such as cytokines in taste buds remain to be determined. Here, we show that a specific subset of taste cells selectively expresses high levels of the inflammatory cytokine tumor necrosis factor-α (TNF-α). Based on immuno-colocalization experiments using taste-cell-type markers, the TNF-α-producing cells are predominantly type II taste cells expressing the taste receptor T1R3. These cells can rapidly increase TNF-α production and secretion upon inflammatory challenges, both in vivo and in vitro. The lipopolysaccharide (LPS)-induced TNF-α expression in taste cells was completely eliminated in TLR2(-/-)/TLR4(-/-) double-gene-knockout mice, which confirms that the induction of TNF-α in taste buds by LPS is mediated through TLR signaling pathways. The taste-cell-produced TNF-α may contribute to local immune surveillance, as well as regulate taste sensation under normal and pathological conditions.
Kim, Na-Yeon; Han, Byeal-I; Lee, Michael
2016-01-01
Previously, we demonstrated the association between autophagy and gossypol-induced growth inhibition of mutant BRAF melanoma cells. Here, we investigate the role of autophagy in ATG5 knockout cell lines generated by the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas-mediated genome editing. The MTT assay revealed that the inhibitory effect of gossypol was weaker on ATG5 knockout cells than that on the wild type (WT) cells. The conversion of non-autophagic LC3-I to autophagic LC3-II and RT-PCR confirmed the functional gene knockout. However, Cyto-ID autophagy assay revealed that gossypol induced ATG5- and LC3-independent autophagy in ATG5 knockout cells. Moreover, gossypol acts as an autophagy inducer in ATG5 knockout cells while blocking the later stages of the autophagy process in WT cells, which was determined by measuring autophagic flux after co-treatment of gossypol with chloroquine (late-stage autophagy inhibitor). On the other hand, inhibition of autophagy with 3-MA or Beclin-1 siRNA caused a partial increase in the sensitivity to gossypol in ATG5 knockout cells, but not in the WT cells. Together, our findings suggest that the resistance to gossypol in ATG5 knockout cells is associated with increased cytoprotective autophagy, independent of ATG5. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Roncal-Jimenez, Carlos A.; Lanaspa-Garcia, Miguel A.; Oppelt, Sarah A.; Kuwabara, Masanari; Jensen, Thomas; Milagres, Tamara; Andres-Hernando, Ana; Ishimoto, Takuji; Garcia, Gabriela E.; Johnson, Ginger; MacLean, Paul S.; Sanchez-Lozada, Laura-Gabriela; Tolan, Dean R.; Johnson, Richard J.
2016-01-01
Fructose stimulates vasopressin in humans and can be generated endogenously by activation of the polyol pathway with hyperosmolarity. We hypothesized that fructose metabolism in the hypothalamus might partly control vasopressin responses after acute dehydration. Wild-type and fructokinase-knockout mice were deprived of water for 24 h. The supraoptic nucleus was evaluated for vasopressin and markers of the aldose reductase-fructokinase pathway. The posterior pituitary vasopressin and serum copeptin levels were examined. Hypothalamic explants were evaluated for vasopressin secretion in response to exogenous fructose. Water restriction increased serum and urine osmolality and serum copeptin in both groups of mice, although the increase in copeptin in wild-type mice was larger than that in fructokinase-knockout mice. Water-restricted, wild-type mice showed an increase in vasopressin and aldose reductase mRNA, sorbitol, fructose and uric acid in the supraoptic nucleus. In contrast, fructokinase-knockout mice showed no change in vasopressin or aldose reductase mRNA, and no changes in sorbitol or uric acid, although fructose levels increased. With water restriction, vasopressin in the pituitary of wild-type mice was significantly less than that of fructokinase-knockout mice, indicating that fructokinase-driven vasopressin secretion overrode synthesis. Fructose increased vasopressin release in hypothalamic explants that was not observed in fructokinase-knockout mice. In situ hybridization documented fructokinase mRNA in the supraoptic nucleus, paraventricular nucleus and suprachiasmatic nucleus. Acute dehydration activates the aldose reductase-fructokinase pathway in the hypothalamus and partly drives the vasopressin response. Exogenous fructose increases vasopressin release in hypothalamic explants dependent on fructokinase. Nevertheless, circulating vasopressin is maintained and urinary concentrating is not impaired. NEW & NOTEWORTHY This study increases our understanding of the mechanisms leading to vasopressin release under conditions of water restriction (acute dehydration). Specifically, these studies suggest that the aldose reductase-fructokinase pathways may be involved in vasopressin synthesis in the hypothalamus and secretion by the pituitary in response to acute dehydration. Nevertheless, mice undergoing water restriction remain capable of maintaining sufficient vasopressin (copeptin) levels to allow normal urinary concentration. Further studies of the aldose reductase-fructokinase system in vasopressin regulation appear indicated. PMID:27852737
Song 宋志林, Zhilin; Roncal-Jimenez, Carlos A; Lanaspa-Garcia, Miguel A; Oppelt, Sarah A; Kuwabara, Masanari; Jensen, Thomas; Milagres, Tamara; Andres-Hernando, Ana; Ishimoto, Takuji; Garcia, Gabriela E; Johnson, Ginger; MacLean, Paul S; Sanchez-Lozada, Laura-Gabriela; Tolan, Dean R; Johnson, Richard J
2017-02-01
Fructose stimulates vasopressin in humans and can be generated endogenously by activation of the polyol pathway with hyperosmolarity. We hypothesized that fructose metabolism in the hypothalamus might partly control vasopressin responses after acute dehydration. Wild-type and fructokinase-knockout mice were deprived of water for 24 h. The supraoptic nucleus was evaluated for vasopressin and markers of the aldose reductase-fructokinase pathway. The posterior pituitary vasopressin and serum copeptin levels were examined. Hypothalamic explants were evaluated for vasopressin secretion in response to exogenous fructose. Water restriction increased serum and urine osmolality and serum copeptin in both groups of mice, although the increase in copeptin in wild-type mice was larger than that in fructokinase-knockout mice. Water-restricted, wild-type mice showed an increase in vasopressin and aldose reductase mRNA, sorbitol, fructose and uric acid in the supraoptic nucleus. In contrast, fructokinase-knockout mice showed no change in vasopressin or aldose reductase mRNA, and no changes in sorbitol or uric acid, although fructose levels increased. With water restriction, vasopressin in the pituitary of wild-type mice was significantly less than that of fructokinase-knockout mice, indicating that fructokinase-driven vasopressin secretion overrode synthesis. Fructose increased vasopressin release in hypothalamic explants that was not observed in fructokinase-knockout mice. In situ hybridization documented fructokinase mRNA in the supraoptic nucleus, paraventricular nucleus and suprachiasmatic nucleus. Acute dehydration activates the aldose reductase-fructokinase pathway in the hypothalamus and partly drives the vasopressin response. Exogenous fructose increases vasopressin release in hypothalamic explants dependent on fructokinase. Nevertheless, circulating vasopressin is maintained and urinary concentrating is not impaired. This study increases our understanding of the mechanisms leading to vasopressin release under conditions of water restriction (acute dehydration). Specifically, these studies suggest that the aldose reductase-fructokinase pathways may be involved in vasopressin synthesis in the hypothalamus and secretion by the pituitary in response to acute dehydration. Nevertheless, mice undergoing water restriction remain capable of maintaining sufficient vasopressin (copeptin) levels to allow normal urinary concentration. Further studies of the aldose reductase-fructokinase system in vasopressin regulation appear indicated. Copyright © 2017 the American Physiological Society.
Glutamate Delta-1 Receptor Regulates Metabotropic Glutamate Receptor 5 Signaling in the Hippocampus.
Suryavanshi, Pratyush S; Gupta, Subhash C; Yadav, Roopali; Kesherwani, Varun; Liu, Jinxu; Dravid, Shashank M
2016-08-01
The delta family of ionotropic glutamate receptors consists of glutamate delta-1 (GluD1) and glutamate delta-2 receptors. We have previously shown that GluD1 knockout mice exhibit features of developmental delay, including impaired spine pruning and switch in the N-methyl-D-aspartate receptor subunit, which are relevant to autism and other neurodevelopmental disorders. Here, we identified a novel role of GluD1 in regulating metabotropic glutamate receptor 5 (mGlu5) signaling in the hippocampus. Immunohistochemical analysis demonstrated colocalization of mGlu5 with GluD1 punctas in the hippocampus. Additionally, GluD1 protein coimmunoprecipitated with mGlu5 in the hippocampal membrane fraction, as well as when overexpressed in human embryonic kidney 293 cells, demonstrating that GluD1 and mGlu5 may cooperate in a signaling complex. The interaction of mGlu5 with scaffold protein effector Homer, which regulates mechanistic target of rapamycin (mTOR) signaling, was abnormal both under basal conditions and in response to mGlu1/5 agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) in GluD1 knockout mice. The basal levels of phosphorylated mTOR and protein kinase B, the signaling proteins downstream of mGlu5 activation, were higher in GluD1 knockout mice, and no further increase was induced by DHPG. We also observed higher basal protein translation and an absence of DHPG-induced increase in GluD1 knockout mice. In accordance with a role of mGlu5-mediated mTOR signaling in synaptic plasticity, DHPG-induced internalization of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunits was impaired in the GluD1 knockout mice. These results demonstrate that GluD1 interacts with mGlu5, and loss of GluD1 impairs normal mGlu5 signaling potentially by dysregulating coupling to its effector. These studies identify a novel role of the enigmatic GluD1 subunit in hippocampal function. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Murthy, Vaibhav; Dacus, Dalton; Gamez, Monica; Hu, Changkun; Wendel, Sebastian O; Snow, Jazmine; Kahn, Andrew; Walterhouse, Stephen H; Wallace, Nicholas A
2018-06-08
The repair of double-stranded breaks (DSBs) in DNA is a highly coordinated process, necessitating the formation and resolution of multi-protein repair complexes. This process is regulated by a myriad of proteins that promote the association and disassociation of proteins to these lesions. Thanks in large part to the ability to perform functional screens of a vast library of proteins, there is a greater appreciation of the genes necessary for the double-strand DNA break repair. Often knockout or chemical inhibitor screens identify proteins involved in repair processes by using increased toxicity as a marker for a protein that is required for DSB repair. Although useful for identifying novel cellular proteins involved in maintaining genome fidelity, functional analysis requires the determination of whether the protein of interest promotes localization, formation, or resolution of repair complexes. The accumulation of repair proteins can be readily detected as distinct nuclear foci by immunofluorescence microscopy. Thus, association and disassociation of these proteins at sites of DNA damage can be accessed by observing these nuclear foci at representative intervals after the induction of double-strand DNA breaks. This approach can also identify mis-localized repair factor proteins, if repair defects do not simultaneously occur with incomplete delays in repair. In this scenario, long-lasting double-strand DNA breaks can be engineered by expressing a rare cutting endonuclease (e.g., I-SceI) in cells where the recognition site for the said enzyme has been integrated into the cellular genome. The resulting lesion is particularly hard to resolve as faithful repair will reintroduce the enzyme's recognition site, prompting another round of cleavage. As a result, differences in the kinetics of repair are eliminated. If repair complexes are not formed, localization has been impeded. This protocol describes the methodology necessary to identify changes in repair kinetics as well as repair protein localization.
Mandela, Prashant; Yan, Yan; LaRese, Taylor; Eipper, Betty A; Mains, Richard E
2014-07-01
Kalirin, a Rho GDP/GTP exchange factor for Rac1 and RhoG, is known to play an essential role in the formation and maintenance of excitatory synapses and in the secretion of neuropeptides. Mice unable to express any of the isoforms of Kalrn in cells that produce POMC at any time during development (POMC cells) exhibited reduced anxiety-like behavior and reduced acquisition of passive avoidance behavior, along with sex-specific alteration in the corticosterone response to restraint stress. Strikingly, lack of Kalrn expression in POMC cells closely mimicked the effects of global Kalrn knockout on anxiety-like behavior and passive avoidance conditioning without causing the other deficits noted in Kalrn knockout mice. Our data suggest that deficits in excitatory inputs onto POMC neurons are responsible for the behavioral phenotypes observed. Copyright © 2014 Elsevier Inc. All rights reserved.
The microRNA-processing enzyme Dicer is essential for thyroid function.
Frezzetti, Daniela; Reale, Carla; Calì, Gaetano; Nitsch, Lucio; Fagman, Henrik; Nilsson, Ola; Scarfò, Marzia; De Vita, Gabriella; Di Lauro, Roberto
2011-01-01
Dicer is a type III ribonuclease required for the biogenesis of microRNAs (miRNAs), a class of small non-coding RNAs regulating gene expression at the post-transcriptional level. To explore the functional role of miRNAs in thyroid gland function, we generated a thyrocyte-specific Dicer conditional knockout mouse. Here we show that development and early differentiation of the thyroid gland are not affected by the absence of Dicer, while severe hypothyroidism gradually develops after birth, leading to reduced body weight and shortened life span. Histological and molecular characterization of knockout mice reveals a dramatic loss of the thyroid gland follicular architecture associated with functional aberrations and down-regulation of several differentiation markers. The data presented in this study show for the first time that an intact miRNAs processing machinery is essential for thyroid physiology, suggesting that deregulation of specific miRNAs could be also involved in human thyroid dysfunctions.
Upton, Dana C; Unniraman, Shyam
2011-11-01
B cells start their life with low affinity antibodies generated by V(D)J recombination. However, upon detecting a pathogen, the variable (V) region of an immunoglobulin (Ig) gene is mutated approximately 100,000-fold more than the rest of the genome through somatic hypermutation (SHM), resulting in high affinity antibodies. In addition, class switch recombination (CSR) produces antibodies with different effector functions depending on the kind of immune response that is needed for a particular pathogen. Both CSR and SHM are initiated by activation-induced cytidine deaminase (AID), which deaminates cytosine residues in DNA to produce uracils. These uracils are processed by error-prone forms of repair pathways, eventually leading to mutations and recombination. Our current understanding of the molecular details of SHM and CSR come from a combination of studies in mice, primary cells, cell lines, and cell-free experiments. Mouse models remain the gold standard with genetic knockouts showing critical roles for many repair factors (e.g. Ung, Msh2, Msh6, Exo1, and polymerase η). However, not all genes are amenable for knockout studies. For example, knockouts of several double-strand break repair proteins are embryonically lethal or impair B-cell development. Moreover, sometimes the specific function of a protein in SHM or CSR may be masked by more global defects caused by the knockout. In addition, since experiments in mice can be lengthy, altering expression of individual genes in cell lines has become an increasingly popular first step to identifying and characterizing candidate genes. Ramos - a Burkitt lymphoma cell line that constitutively undergoes SHM - has been a popular cell-line model to study SHM. One advantage of Ramos cells is that they have a built-in convenient semi-quantitative measure of SHM. Wild type cells express IgM and, as they pick up mutations, some of the mutations knock out IgM expression. Therefore, assaying IgM loss by fluorescence-activated cell scanning (FACS) provides a quick read-out for the level of SHM. A more quantitative measurement of SHM can be obtained by directly sequencing the antibody genes. Since Ramos cells are difficult to transfect, we produce stable derivatives that have increased or lowered expression of an individual gene by infecting cells with retroviral or lentiviral constructs that contain either an overexpression cassette or a short hairpin RNA (shRNA), respectively. Here, we describe how we infect Ramos cells and then use these cells to investigate the role of specific genes on SHM (Figure 1).
RSK2 Signaling in Brain Habenula Contributes to Place Aversion Learning
ERIC Educational Resources Information Center
Darcq, Emmanuel; Koebel, Pascale; Del Boca, Carolina; Pannetier, Solange; Kirstetter, Anne-Sophie; Garnier, Jean-Marie; Hanauer, Andre; Befort, Katia; Kieffer, Brigitte L.
2011-01-01
RSK2 is a Ser/Thr kinase acting in the Ras/MAPK pathway. "Rsk2" gene deficiency leads to the Coffin-Lowry Syndrome, notably characterized by cognitive deficits. We found that "mrsk2" knockout mice are unable to associate an aversive stimulus with context in a lithium-induced conditioned place aversion task requiring both high-order cognition and…
Rubio-Fernández, Marcos; Uribe, Mary Luz; Vicente-Tejedor, Javier; Germain, Francisco; Susín-Lara, Cristina; Quereda, Cristina; Montoliu, Lluis; de la Villa, Pedro; Martín-Nieto, José; Cruces, Jesús
2018-06-04
Hypoglycosylation of α-dystroglycan (α-DG) resulting from deficiency of protein O-mannosyltransferase 1 (POMT1) may cause severe neuromuscular dystrophies with brain and eye anomalies, named dystroglycanopathies. The retinal involvement of these disorders motivated us to generate a conditional knockout (cKO) mouse experiencing a Pomt1 intragenic deletion (exons 3-4) during the development of photoreceptors, mediated by the Cre recombinase expressed from the cone-rod homeobox (Crx) gene promoter. In this mouse, retinal α-DG was unglycosylated and incapable of binding laminin. Retinal POMT1 deficiency caused significant impairments in both electroretinographic recordings and optokinetic reflex in Pomt1 cKO mice, and immunohistochemical analyses revealed the absence of β-DG and of the α-DG-interacting protein, pikachurin, in the outer plexiform layer (OPL). At the ultrastructural level, noticeable alterations were observed in the ribbon synapses established between photoreceptors and bipolar cells. Therefore, O-mannosylation of α-DG in the retina carried out by POMT1 is crucial for the establishment of proper synapses at the OPL and transmission of visual information from cones and rods to their postsynaptic neurons.
Zhao, Xiaofeng; Peng, Xu; Sun, Shaogang; Park, Ann Y J; Guan, Jun-Lin
2010-06-14
Focal adhesion kinase (FAK) is essential for vascular development as endothelial cell (EC)-specific knockout of FAK (conditional FAK knockout [CFKO] mice) leads to embryonic lethality. In this study, we report the differential kinase-independent and -dependent functions of FAK in vascular development by creating and analyzing an EC-specific FAK kinase-defective (KD) mutant knockin (conditional FAK knockin [CFKI]) mouse model. CFKI embryos showed apparently normal development through embryonic day (E) 13.5, whereas the majority of CFKO embryos died at the same stage. Expression of KD FAK reversed increased EC apoptosis observed with FAK deletion in embryos and in vitro through suppression of up-regulated p21. However, vessel dilation and defective angiogenesis of CFKO embryos were not rescued in CFKI embryos. ECs without FAK or expressing KD FAK showed increased permeability, abnormal distribution of vascular endothelial cadherin (VE-cadherin), and reduced VE-cadherin Y658 phosphorylation. Together, our data suggest that kinase-independent functions of FAK can support EC survival in vascular development through E13.5 but are insufficient for maintaining EC function to allow for completion of embryogenesis.
2000-01-01
to sites of inflammation. They may have additional functions. For example analysis of CXCR4 knockout mice show that CXCR4, which is chemotactic for... mice had similar phenotypes (195). Homozygous knockout of CXCR4 or SDF-1 results in embyonic lethality. Though CCR5 appears to be dispensable, other...chemokine receptors have vital functions. CXCR5 knockout mice have B-cell homing defects (118), and CXCR2 knockout mice overproduce B-cells and
[Preliminary exploration on knockout drops (Meng Han Agents)].
Zhang, Z
1996-05-01
This author points out, based on relevant materials, that knockout drops were vertigo powder. Due to homophonic reasons in Chinese language, the term "mingxuan" was transliterated into the former Chinese term (menghan). Knockout drops for medicinal use were merely made up of compound recipes containing stramonium flowers. The knockout drops in old fictions and opera books were powder of stramonium flower. The ingredients and application of such recipes are discussed here, the anti-remedies for such recipes are also mentioned.
Tan, Sih Min; Sharma, Arpeeta; Yuen, Derek Y. C.; Stefanovic, Nada; Krippner, Guy; Mugesh, Govindasamy; Chai, Zhonglin; de Haan, Judy B.
2013-01-01
Seleno-organic glutathione peroxidase (GPx) mimetics, including ebselen (Eb), have been tested in in vitro studies for their ability to scavenge reactive oxygen and nitrogen species, including hydrogen peroxide and peroxynitrite. In this study, we investigated the efficacies of two Eb analogues, m-hydroxy ebselen (ME) and ethanol-ebselen (EtE) and compared these with Eb in cell based assays. We found that ME is superior in attenuating the activation of hydrogen peroxide-induced pro-inflammatory mediators, ERK and P38 in human aortic endothelial cells. Consequently, we investigated the effects of ME in an in vivo model of diabetes, the ApoE/GPx1 double knockout (dKO) mouse. We found that ME attenuates plaque formation in the aorta and lesion deposition within the aortic sinus of diabetic dKO mice. Oxidative stress as assessed by 8-OHdG in urine and nitrotyrosine immunostaining in the aortic sinus and kidney tubules, was reduced by ME in diabetic dKO mice. ME also attenuated diabetes-associated renal injury which included tubulointerstitial fibrosis and glomerulosclerosis. Furthermore, the bioactivity of the pro-fibrotic cytokine transforming growth factor-β (TGF-β) as assessed by phospho-Smad2/3 immunostaining was attenuated after treatment with ME. TGF-β-stimulated increases in collagen I and IV gene expression and protein levels were attenuated by ME in rat kidney tubular cells. However, in contrast to the superior activity of ME in in vitro and cell based assays, ME did not further augment the attenuation of diabetes-associated atherosclerosis and renal injury in our in vivo model when compared with Eb. In conclusion, this study strengthens the notion that bolstering GPx-like activity using synthetic mimetics may be a useful therapeutic strategy in lessening the burden of diabetic complications. However, these studies highlight the importance of in vivo analyses to test the efficacies of novel Eb analogues, as in vitro and cell based assays are only partly predictive of the in vivo situation. PMID:23874911
Edvardsen, Rolf B; Leininger, Sven; Kleppe, Lene; Skaftnesmo, Kai Ove; Wargelius, Anna
2014-01-01
Understanding the biological function behind key proteins is of great concern in Atlantic salmon, both due to a high commercial importance and an interesting life history. Until recently, functional studies in salmonids appeared to be difficult. However, the recent discovery of targeted mutagenesis using the CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated) system enables performing functional studies in Atlantic salmon to a great extent. We used the CRISPR/Cas9 system to target two genes involved in pigmentation, tyrosinase (tyr) and solute carrier family 45, member 2 (slc45a2). Embryos were assayed for mutation rates at the 17 somite stage, where 40 and 22% of all injected embryos showed a high degree of mutation induction for slc45a2 and tyr, respectively. At hatching this mutation frequency was also visible for both targeted genes, displaying a graded phenotype ranging from complete lack of pigmentation to partial loss and normal pigmentation. CRISPRslc45a2/Cas9 injected embryos showing a complete lack of pigmentation or just a few spots of pigments also lacked wild type sequences when assaying more than 80 (slc45a2) sequence clones from whole embryos. This indicates that CRISPR/Cas9 can induce double-allelic knockout in the F0 generation. However, types and frequency of indels might affect the phenotype. Therefore, the variation of indels was assayed in the graded pigmentation phenotypes produced by CRISPR/Cas9-slc45a2. The results show a tendency for fewer types of indels formed in juveniles completely lacking pigmentation compared to juveniles displaying partial pigmentation. Another interesting observation was a high degree of the same indel type in different juveniles. This study shows for the first time successful use of the CRISPR/Cas9 technology in a marine cold water species. Targeted double-allelic mutations were obtained and, though the level of mosaicism has to be considered, we demonstrate that F0 fish can be used for functional studies in Atlantic salmon.
An optimal serum-free defined condition for in vitro culture of kidney organoids.
Nishikawa, Masaki; Kimura, Hiroshi; Yanagawa, Naomi; Hamon, Morgan; Hauser, Peter; Zhao, Lifu; Jo, Oak D; Yanagawa, Norimoto
2018-07-02
Kidney organoid is an emerging topic of importance for research in kidney development and regeneration. Conventional culture systems for kidney organoids reported thus far use culture media containing serum, which may compromise our understanding and the potential clinical applicability of the organoid system. In our present study, we tested two serum-free culture conditions and compared their suitability for the maintenance and growth of kidney organoids in culture. One of the serum-free culture conditions was the combination of keratinocytes serum free medium (KSFM) with knockout serum replacement (KSR) (KSFM + KSR), and the other was the combination of knockout DMEM/F12 (KD/F12) and KSR (KD/F12 + KSR). With cell aggregates derived from E12.5 mouse embryonic kidneys, we found that KD/F12 + KSR was superior to KSFM + KSR in promoting the growth of the aggregate with expansion of Six2 + nephron progenitor cells (NPC) and elaborated ureteric branching morphogenesis. With KD/F12 + KSR, we found that lower concentrations of KSR at 5-10% were superior to a higher concentration (20%) in promoting the growth of aggregates without affecting the expression levels of NPC marker genes. We also found that NPC in aggregates retained their differentiation potential to develop nephron tubules through mesenchyme-to-epithelial transition (MET), after being maintained in culture under these conditions for up to 7 days. In conclusion, we have identified a defined serum-free culture condition suitable for the maintenance and growth of kidney organoids that retain the differentiation potential to develop nephron structures. This defined serum-free culture condition may serve as a useful platform for further investigation of kidney organoids in vitro. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Ni; DeLorenzo, Drew M.; He, Lian
Synechocystis sp. strain PCC 6803 has been widely used as a photo-biorefinery chassis. Based on its genome annotation, this species contains a complete TCA cycle, an Embden-Meyerhof-Parnas pathway (EMPP), an oxidative pentose phosphate pathway (OPPP), and an Entner–Doudoroff pathway (EDP). To evaluate how Synechocystis 6803 catabolizes glucose under heterotrophic conditions, we performed 13C metabolic flux analysis, metabolite pool size analysis, gene knockouts, and heterologous expressions. The results revealed a cyclic mode of flux through the OPPP. Small, but non-zero, fluxes were observed through the TCA cycle and the malic shunt. Independent knockouts of 6-phosphogluconate dehydrogenase (gnd) and malic enzyme (me)more » corroborated these results, as neither mutant could grow under dark heterotrophic conditions. Our data also indicate that Synechocystis 6803 metabolism relies upon oxidative phosphorylation to generate ATP from NADPH under dark or insufficient light conditions. The pool sizes of intermediates in the TCA cycle, particularly acetyl-CoA, were found to be several fold lower in Synechocystis 6803 (compared to E. coli metabolite pool sizes), while its sugar phosphate intermediates were several-fold higher. Moreover, negligible flux was detected through the native, or heterologous, EDP in the wild type or Δgnd strains under heterotrophic conditions. Comparing photoautotrophic, photomixotrophic, and heterotrophic conditions, the Calvin cycle, OPPP, and EMPP in Synechocystis 6803 possess the ability to regulate their fluxes under various growth conditions (plastic), whereas its TCA cycle always maintains at low levels (rigid). This work also demonstrates how genetic profiles do not always reflect actual metabolic flux through native or heterologous pathways. Biotechnol. Bioeng. 2017;114: 1593–1602. © 2017 Wiley Periodicals, Inc.« less
Ghysels, Bart; Ochsner, Urs; Möllman, Ute; Heinisch, Lothar; Vasil, Michael; Cornelis, Pierre; Matthijs, Sandra
2005-05-15
Actively secreted iron chelating agents termed siderophores play an important role in the virulence and rhizosphere competence of fluorescent pseudomonads, including Pseudomonas aeruginosa which secretes a high affinity siderophore, pyoverdine, and the low affinity siderophore, pyochelin. Uptake of the iron-siderophore complexes is an active process that requires specific outer membrane located receptors, which are dependent of the inner membrane-associated protein TonB and two other inner membrane proteins, ExbB and ExbC. P. aeruginosa is also capable of using a remarkable variety of heterologous siderophores as sources of iron, apparently by expressing their cognate receptors. Illustrative of this feature are the 32 (of which 28 putative) siderophore receptor genes observed in the P. aeruginosa PAO1 genome. However, except for a few (pyoverdine, pyochelin, enterobactin), the vast majority of P. aeruginosa siderophore receptor genes still remain to be characterized. Ten synthetic iron chelators of catecholate type stimulated growth of a pyoverdine/pyochelin deficient P. aeruginosa PAO1 mutant under condition of severe iron limitation. Null mutants of the 32 putative TonB-dependent siderophore receptor encoding genes engineered in the same genetic background were screened for obvious deficiencies in uptake of the synthetic siderophores, but none showed decreased growth stimulation in the presence of the different siderophores. However, a double knock-out mutant of ferrienterobactin receptor encoding gene pfeA (PA 2688) and pirA (PA0931) failed to be stimulated by 4 of the tested synthetic catecholate siderophores whose chemical structures resemble enterobactin. Ferric-enterobactin also failed to stimulate growth of the double pfeA-pirA mutant although, like its synthetic analogues, it stimulated growth of the corresponding single mutants. Hence, we confirmed that pirA represents a second P. aeruginosa ferric-enterobactin receptor. The example of these two enterobactin receptors probably illustrates a more general phenomenon of siderophore receptor redundancy in P. aeruginosa.
RNaseT2 knockout rats exhibit hippocampal neuropathology and deficits in memory.
Sinkevicius, Kerstin W; Morrison, Thomas R; Kulkarni, Praveen; Caffrey Cagliostro, Martha K; Iriah, Sade; Malmberg, Samantha; Sabrick, Julia; Honeycutt, Jennifer A; Askew, Kim L; Trivedi, Malav; Ferris, Craig F
2018-06-27
RNASET2 deficiency in humans is associated with infant cystic leukoencephalopathy, which causes psychomotor impairment, spasticity and epilepsy. A zebrafish mutant model suggests that loss of RNASET2 function leads to neurodegeneration due to the accumulation of non-degraded RNA in the lysosomes. The goal of this study was to characterize the first rodent model of RNASET2 deficiency. The brains of 3- and 12-month-old RNaseT2 knockout rats were studied using multiple magnetic resonance imaging modalities and behavioral tests. While T1- and T2-weighted images of RNaseT2 knockout rats exhibited no evidence of cystic lesions, the prefrontal cortex and hippocampal complex were enlarged in knockout animals. Diffusion-weighted imaging showed altered anisotropy and putative gray matter changes in the hippocampal complex of the RNaseT2 knockout rats. Immunohistochemistry for glial fibrillary acidic protein (GFAP) showed the presence of hippocampal neuroinflammation. Decreased levels of lysosome-associated membrane protein 2 (LAMP2) and elevated acid phosphatase and β-N-acetylglucosaminidase (NAG) activities indicated that the RNASET2 knockout rats likely had altered lysosomal function and potential defects in autophagy. Object recognition tests confirmed that RNaseT2 knockout rats exhibited memory deficits. However, the Barnes maze, and balance beam and rotarod tests indicated there were no differences in spatial memory or motor impairments, respectively. Overall, patients with RNASET2 deficiency exhibited a more severe neurodegeneration phenotype than was observed in the RNaseT2 knockout rats. However, the vulnerability of the knockout rat hippocampus as evidenced by neuroinflammation, altered lysosomal function and cognitive defects indicates that this is still a useful in vivo model to study RNASET2 function. © 2018. Published by The Company of Biologists Ltd.
Deficiency in the manganese efflux transporter SLC30A10 induces severe hypothyroidism in mice.
Hutchens, Steven; Liu, Chunyi; Jursa, Thomas; Shawlot, William; Chaffee, Beth K; Yin, Weiling; Gore, Andrea C; Aschner, Michael; Smith, Donald R; Mukhopadhyay, Somshuvra
2017-06-09
Manganese is an essential metal that becomes toxic at elevated levels. Loss-of-function mutations in SLC30A10, a cell-surface-localized manganese efflux transporter, cause a heritable manganese metabolism disorder resulting in elevated manganese levels and parkinsonian-like movement deficits. The underlying disease mechanisms are unclear; therefore, treatment is challenging. To understand the consequences of loss of SLC30A10 function at the organism level, we generated Slc30a10 knock-out mice. During early development, knock-outs were indistinguishable from controls. Surprisingly, however, after weaning and compared with controls, knock-out mice failed to gain weight, were smaller, and died prematurely (by ∼6-8 weeks of age). At 6 weeks, manganese levels in the brain, blood, and liver of the knock-outs were ∼20-60-fold higher than controls. Unexpectedly, histological analyses revealed that the brain and liver of the knock-outs were largely unaffected, but their thyroid exhibited extensive alterations. Because hypothyroidism leads to growth defects and premature death in mice, we assayed for changes in thyroid and pituitary hormones. At 6 weeks and compared with controls, the knock-outs had markedly reduced thyroxine levels (∼50-80%) and profoundly increased thyroid-stimulating hormone levels (∼800-1000-fold), indicating that Slc30a10 knock-out mice develop hypothyroidism. Importantly, a low-manganese diet produced lower tissue manganese levels in the knock-outs and rescued the phenotype, suggesting that manganese toxicity was the underlying cause. Our unanticipated discovery highlights the importance of determining the role of thyroid dysfunction in the onset and progression of manganese-induced disease and identifies Slc30a10 knock-out mice as a new model for studying thyroid biology. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Ueda, Kohei; Nishimoto, Mitsuhiro; Hirohama, Daigoro; Ayuzawa, Nobuhiro; Kawarazaki, Wakako; Watanabe, Atsushi; Shimosawa, Tatsuo; Loffing, Johannes; Zhang, Ming-Zhi; Marumo, Takeshi; Fujita, Toshiro
2017-07-01
Genome-wide analysis of renal sodium-transporting system has identified specific variations of Mendelian hypertensive disorders, including HSD11B2 gene variants in apparent mineralocorticoid excess. However, these genetic variations in extrarenal tissue can be involved in developing hypertension, as demonstrated in former studies using global and brain-specific Hsd11b2 knockout rodents. To re-examine the importance of renal dysfunction on developing hypertension, we generated kidney-specific Hsd11b2 knockout mice. The knockout mice exhibited systemic hypertension, which was abolished by reducing salt intake, suggesting its salt-dependency. In addition, we detected an increase in renal membrane expressions of cleaved epithelial sodium channel-α and T53-phosphorylated Na + -Cl - cotransporter in the knockout mice. Acute intraperitoneal administration of amiloride-induced natriuresis and increased urinary sodium/potassium ratio more in the knockout mice compared with those in the wild-type control mice. Chronic administration of amiloride and high-KCl diet significantly decreased mean blood pressure in the knockout mice, which was accompanied with the correction of hypokalemia and the resultant decrease in Na + -Cl - cotransporter phosphorylation. Accordingly, a Na + -Cl - cotransporter blocker hydrochlorothiazide significantly decreased mean blood pressure in the knockout mice. Chronic administration of mineralocorticoid receptor antagonist spironolactone significantly decreased mean blood pressure of the knockout mice along with downregulation of cleaved epithelial sodium channel-α and phosphorylated Na + -Cl - cotransporter expression in the knockout kidney. Our data suggest that kidney-specific deficiency of 11β-HSD2 leads to salt-dependent hypertension, which is attributed to mineralocorticoid receptor-epithelial sodium channel-Na + -Cl - cotransporter activation in the kidney, and provides evidence that renal dysfunction is essential for developing the phenotype of apparent mineralocorticoid excess. © 2017 American Heart Association, Inc.
Loziuk, Philip; Meier, Florian; Johnson, Caroline
2016-01-01
Quantitative methods for detection of biological molecules are needed more than ever before in the emerging age of “omics” and “big data.” Here, we provide an integrated approach for systematic analysis of the “lipidome” in tissue. To test our approach in a biological context, we utilized brain tissue selectively deficient for the transcription factor Specificity Protein 2 (Sp2). Conditional deletion of Sp2 in the mouse cerebral cortex results in developmental deficiencies including disruption of lipid metabolism. Silver (Ag) cationization was implemented for infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) to enhance the ion abundances for olefinic lipids, as these have been linked to regulation by Sp2. Combining Ag-doped and conventional IR-MALDESI imaging, this approach was extended to IR-MALDESI imaging of embryonic mouse brains. Further, our imaging technique was combined with bottom-up shotgun proteomic LC-MS/MS analysis and western blot for comparing Sp2 conditional knockout (Sp2-cKO) and wild-type (WT) cortices of tissue sections. This provided an integrated omics dataset which revealed many specific changes to fundamental cellular processes and biosynthetic pathways. In particular, step-specific altered abundances of nucleotides, lipids, and associated proteins were observed in the cerebral cortices of Sp2-cKO embryos. PMID:26942738
Jain, Neeraj; Kalailingam, Pazhanichamy; Tan, Kai Wei; Tan, Hui Bing; Sng, Ming Keat; Chan, Jeremy Soon Kiat; Tan, Nguan Soon; Thanabalu, Thirumaran
2016-01-01
Neural-Wiskott Aldrich Syndrome Protein (N-WASP) is expressed ubiquitously, regulates actin polymerization and is essential during mouse development. We have previously shown that N-WASP is critical for cell-ECM adhesion in fibroblasts. To characterize the role of N-WASP in fibroblast for skin development, we generated a conditional knockout mouse model in which fibroblast N-WASP was ablated using the Cre recombinase driven by Fibroblast Specific Protein promoter (Fsp-Cre). N-WASPFKO (N-WASPfl/fl; Fsp-cre) were born following Mendelian genetics, survived without any visible abnormalities for more than 1 year and were sexually reproductive, suggesting that expression of N-WASP in fibroblast is not critical for survival under laboratory conditions. Histological sections of N-WASPFKO mice skin (13 weeks old) showed thicker epidermis with higher percentage of cells staining for proliferation marker (PCNA), suggesting that N-WASP deficient fibroblasts promote keratinocyte proliferation. N-WASPFKO mice skin had elevated collagen content, elevated expression of FGF7 (keratinocyte growth factor) and TGFβ signaling proteins. Wound healing was faster in N-WASPFKO mice compared to control mice and N-WASP deficient fibroblasts were found to have enhanced collagen gel contraction properties. These results suggest that N-WASP deficiency in fibroblasts improves wound healing by growth factor-mediated enhancement of keratinocyte proliferation and increased wound contraction in mice. PMID:27909303
Genetic characterization of p27(kip1) and stathmin in controlling cell proliferation in vivo.
Berton, Stefania; Pellizzari, Ilenia; Fabris, Linda; D'Andrea, Sara; Segatto, Ilenia; Canzonieri, Vincenzo; Marconi, Daniela; Schiappacassi, Monica; Benevol, Sara; Gattei, Valter; Colombatti, Alfonso; Belletti, Barbara; Baldassarre, Gustavo
2014-01-01
The CDK inhibitor p27(kip1) is a critical regulator of cell cycle progression, but the mechanisms by which p27(kip1) controls cell proliferation in vivo are still not fully elucidated. We recently demonstrated that the microtubule destabilizing protein stathmin is a relevant p27(kip1) binding partner. To get more insights into the in vivo significance of this interaction, we generated p27(kip1) and stathmin double knock-out (DKO) mice. Interestingly, thorough characterization of DKO mice demonstrated that most of the phenotypes of p27(kip1) null mice linked to the hyper-proliferative behavior, such as the increased body and organ weight, the outgrowth of the retina basal layer and the development of pituitary adenomas, were reverted by co-ablation of stathmin. In vivo analyses showed a reduced proliferation rate in DKO compared to p27(kip1) null mice, linked, at molecular level, to decreased kinase activity of CDK4/6, rather than of CDK1 and CDK2. Gene expression profiling of mouse thymuses confirmed the phenotypes observed in vivo, showing that DKO clustered with WT more than with p27 knock-out tissue. Taken together, our results demonstrate that stathmin cooperates with p27(kip1) to control the early phase of G1 to S phase transition and that this function may be of particular relevance in the context of tumor progression.
Running promotes wakefulness and increases cataplexy in orexin knockout mice.
España, Rodrigo A; McCormack, Sarah L; Mochizuki, Takatoshi; Scammell, Thomas E
2007-11-01
People with narcolepsy and mice lacking orexin/hypocretin have disrupted sleep/wake behavior and reduced physical activity. Our objective was to identify physiologic mechanisms through which orexin deficiency reduces locomotor activity. We examined spontaneous wheel running activity and its relationship to sleep/wake behavior in wild type (WT) and orexin knockout (KO) mice. Additionally, given that physical activity promotes alertness, we also studied whether orexin deficiency reduces the wake-promoting effects of exercise. Orexin KO mice ran 42% less than WT mice. Their ability to run appeared normal as they initiated running as often as WT mice and ran at normal speeds. However, their running bouts were considerably shorter, and they often had cataplexy or quick transitions into sleep after running. Wheel running increased the total amount of wakefulness in WT and orexin KO mice similarly, however, KO mice continued to have moderately fragmented sleep/wake behavior. Wheel running also doubled the amount of cataplexy by increasing the probability of transitioning into cataplexy. Orexin KO mice run significantly less than normal, likely due to sleepiness, imminent cataplexy, or a reduced motivation to run. Orexin is not required for the wake-promoting effects of wheel running given that both WT and KO mice had similar increases in wakefulness with running wheels. In addition, the clear increase in cataplexy with wheel running suggests the possibility that positive emotions or reward can trigger murine cataplexy, similar to that seen in people and dogs with narcolepsy.
Lagor, William R; Fields, David W; Bauer, Robert C; Crawford, Alison; Abt, Michael C; Artis, David; Wherry, E John; Rader, Daniel J
2014-03-01
Apolipoprotein F (ApoF) is a sialoglycoprotein that is a component of the HDL and LDL fractions of human serum. We sought to test the hypothesis that ApoF plays an important role in atherosclerosis in mice by modulating lipoprotein function. Atherosclerosis was assessed in male low density lipoprotein receptor knockout (Ldlr KO) and ApoF/Ldlr double knockout (DKO) mice fed a Western diet for 16 weeks. ApoF/Ldlr DKO mice showed a 39% reduction in lesional area by en face analysis of aortas (p < 0.05), despite no significant differences in plasma lipid parameters. ApoF KO mice had reduced expression of Interferon alpha (IFNα) responsive genes in liver and spleen, as well as impaired macrophage activation. Interferon alpha induced gene 27 like 2a (Ifi27l2a), Oligoadenylate synthetases 2 and 3 (Oas2 and Oas3) were significantly reduced in the ApoF KO mice relative to wild type controls. These effects were attributable to hypomorphic expression of Stat2 in the ApoF KO mice, a critical gene in the Type I IFN pathway that is situated just 425 base pairs downstream of ApoF. These studies implicate STAT2 as a potentially important player in atherosclerosis, and support the growing evidence that the Type I IFN pathway may contribute to this complex disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Miyamoto, Satoshi; Shikata, Kenichi; Miyasaka, Kyoko; Okada, Shinichi; Sasaki, Motofumi; Kodera, Ryo; Hirota, Daisho; Kajitani, Nobuo; Takatsuka, Tetsuharu; Kataoka, Hitomi Usui; Nishishita, Shingo; Sato, Chikage; Funakoshi, Akihiro; Nishimori, Hisakazu; Uchida, Haruhito Adam; Ogawa, Daisuke; Makino, Hirofumi
2012-01-01
Inflammatory process is involved in the pathogenesis of diabetic nephropathy. In this article, we show that cholecystokinin (CCK) is expressed in the kidney and exerts renoprotective effects through its anti-inflammatory actions. DNA microarray showed that CCK was upregulated in the kidney of diabetic wild-type (WT) mice but not in diabetic intracellular adhesion molecule-1 knockout mice. We induced diabetes in CCK-1 receptor (CCK-1R) and CCK-2R double-knockout (CCK-1R−/−,-2R−/−) mice, and furthermore, we performed a bone marrow transplantation study using CCK-1R−/− mice to determine the role of CCK-1R on macrophages in the diabetic kidney. Diabetic CCK-1R−/−,-2R−/− mice revealed enhanced albuminuria and inflammation in the kidney compared with diabetic WT mice. In addition, diabetic WT mice with CCK-1R−/− bone marrow–derived cells developed more albuminuria than diabetic CCK-1R−/− mice with WT bone marrow–derived cells. Administration of sulfated cholecystokinin octapeptide (CCK-8S) ameliorated albuminuria, podocyte loss, expression of proinflammatory genes, and infiltration of macrophages in the kidneys of diabetic rats. Furthermore, CCK-8S inhibited both expression of tumor necrosis factor-α and chemotaxis in cultured THP-1 cells. These results suggest that CCK suppresses the activation of macrophage and expression of proinflammatory genes in diabetic kidney. Our findings may provide a novel strategy of therapy for the early stage of diabetic nephropathy. PMID:22357963
pKAMA-ITACHI Vectors for Highly Efficient CRISPR/Cas9-Mediated Gene Knockout in Arabidopsis thaliana
2017-01-01
The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated 9) system is widely used as a tool for genome engineering in various organisms. A complex consisting of Cas9 and single guide RNA (sgRNA) induces a DNA double-strand break in a sequence-specific manner, resulting in knockout. Some binary vectors for CRISPR/Cas9 in plants have been reported, but there is a problem with low efficiency. Here, we present a newly developed, highly efficient CRISPR/Cas9 vector for Arabidopsis thaliana, pKAMA-ITACHI Red (pKIR), harboring the RIBOSOMAL PROTEIN S5 A (RPS5A) promoter to drive Cas9. The RPS5A promoter maintains high constitutive expression at all developmental stages starting from the egg cell and including meristematic cells. Even in the T1 generation, pKIR induced null phenotypes in some genes: PHYTOENE DESATURASE 3 (PDS3), AGAMOUS (AG) and DUO POLLEN 1 (DUO1). Mutations induced by pKIR were carried in the germ cell line of the T1 generation. Surprisingly, in some lines, 100% of the T2 plants had the adh1 (ALCOHOL DEHYDROGENASE 1) null phenotype, indicating that pKIR strongly induced heritable mutations. Cas9-free T2 mutant plants were obtained by removing T2 seeds expressing a fluorescent marker in pKIR. Our results suggest that the pKIR system is a powerful molecular tool for genome engineering in Arabidopsis. PMID:27856772
Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice.
Endo, Masaki; Mikami, Masafumi; Toki, Seiichi
2015-01-01
The clustered regularly interspaced short palindromic repeat (CRISPR)-associated endonuclease 9 (CRISPR/Cas9) system has been demonstrated to be a robust genome engineering tool in a variety of organisms including plants. However, it has been shown that the CRISPR/Cas9 system cleaves genomic DNA sequences containing mismatches to the guide RNA strand. We expected that this low specificity could be exploited to induce multihomeologous and multiparalogous gene knockouts. In the case of polyploid plants, simultaneous modification of multiple homeologous genes, i.e. genes with similar but not identical DNA sequences, is often needed to obtain a desired phenotype. Even in diploid plants, disruption of multiparalogous genes, which have functional redundancy, is often needed. To validate the applicability of the CRISPR/Cas9 system to target mutagenesis of paralogous genes in rice, we designed a single-guide RNA (sgRNA) that recognized 20 bp sequences of cyclin-dependent kinase B2 (CDKB2) as an on-target locus. These 20 bp possess similarity to other rice CDK genes (CDKA1, CDKA2 and CDKB1) with different numbers of mismatches. We analyzed mutations in these four CDK genes in plants regenerated from Cas9/sgRNA-transformed calli and revealed that single, double and triple mutants of CDKA2, CDKB1 and CDKB2 can be created by a single sgRNA. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
Elleuche, Skander; Bernhards, Yasmine; Schäfers, Christian; Varghese, Jans Manjali; Nolting, Nicole; Pöggeler, Stefanie
2010-12-01
In fungi, the homoeodomain protein STE12 controls diverse developmental processes, and derives its regulatory specificity from different protein interactions. We recently showed that in the homothallic ascomycete Sordaria macrospora, STE12 is essential for ascospore development, and is able to interact with the alpha-domain mating-type protein SMTA-1 and the MADS box protein MCM1. To further evaluate the functional roles of STE12, we used the yeast two-hybrid approach to identify new STE12-interacting partners. Using STE12 as bait, a small, serine-threonine-rich protein (designated STE12-interacting protein 2, SIP2) was identified. SIP2 is conserved among members of the fungal class Sordariomycetes. In vivo localization studies revealed that SIP2 was targeted to the nucleus and cytoplasm. The STE12/SIP2 interaction was further confirmed in vivo by bimolecular fluorescence complementation. Nuclear localization of SIP2 was apparently mediated by STE12. Unlike deletion of ste12, deletion of sip2 in S. macrospora led to only a slight decrease in ascospore germination, and no other obvious morphological phenotype. In comparison to the Δste12 single knockout strain, ascospore germination was significantly increased in a Δsip2/ste12 double knockout strain. Our data provide evidence for a regulatory role of the novel fungal protein SIP2 in ascospore germination. Copyright © 2010 Elsevier GmbH. All rights reserved.
Bond, Andrew R.; Ni, Chih-Wen; Jo, Hanjoong
2010-01-01
Spatial variation in hemodynamic stresses acting on the arterial wall may explain the nonuniform distribution of atherosclerosis. In thoracic aortas of LDL receptor/apolipoprotein E double knockout mice, lesions develop preferentially around the entire circumference of intercostal branch ostia, regardless of age, with the highest prevalence occurring upstream. Additional chevron-shaped lesions occur further upstream of the ostia. This pattern differs from the age-related ones occurring in people and rabbits. In the present study, patterns of near-wall blood flow around intercostal ostia in wild-type mice were estimated from the morphology of endothelial nuclei, which were shown in vitro to elongate in response to elevated shear stress and to align with the flow, and wall structure was assessed from confocal and scanning electron microscopy. A triangular intimal cushion surrounded the upstream part of most ostia. Nuclear length-to-width ratios were lowest over this cushion and highest at the sides of branches, regardless of age. Nuclear orientations were consistent with flow diverging around the branch. The pattern of nuclear morphology differed from the age-related ones observed in rabbits. The intimal cushion and the distribution of shear stress inferred from these observations can partly account for the pattern of lesions observed in knockout mice. Nuclear elongation in nonbranch regions was approximately constant across animals of different size, demonstrating the existence of a mechanism by which endothelial cells compensate for the dependence of mean aortic wall shear stress on body mass. PMID:19933414
Gartzke, Dominik; Delzer, Jürgen; Laplanche, Loic; Uchida, Yasuo; Hoshi, Yutaro; Tachikawa, Masanori; Terasaki, Tetsuya; Sydor, Jens; Fricker, Gert
2015-06-01
To investigate whether it is possible to specifically suppress the expression and function of endogenous canine P-glycoprotein (cPgp) in Madin-Darby canine kidney type II cells (MDCKII) transfected with hPGP and breast cancer resistance protein (hBCRP) by zinc finger nuclease (ZFN) producing sequence specific DNA double strand breaks. Wild-type, hPGP-transfected, and hBCRP-transfected MDCKII cells were transfected with ZFN targeting for cPgp. Net efflux ratios (NER) of Pgp and Bcrp substrates were determined by dividing efflux ratios (basal-to-apical / apical-to-basal) in over-expressing cell monolayers by those in wild-type ones. From ZFN-transfected cells, cell populations (ko-cells) showing knockout of cPgp were selected based on genotyping by PCR. qRT-PCR analysis showed the significant knock-downs of cPgp and interestingly also cMrp2 expressions. Specific knock-downs of protein expression for cPgp were shown by western blotting and quantitative targeted absolute proteomics. Endogenous canine Bcrp proteins were not detected. For PGP-transfected cells, NERs of 5 Pgp substrates in ko-cells were significantly greater than those in parental cells not transfected with ZFN. Similar result was obtained for BCRP-transfected cells with a dual Pgp and Bcrp substrate. Specific efflux mediated by hPGP or hBCRP can be determined with MDCKII cells where cPgp has been knocked out by ZFN.
Zhao, Kun; Erb, Ulrike; Hackert, Thilo; Zöller, Margot; Yue, Shijing
2018-02-01
The tetraspanin Tspan8 supports via associated integrins and proteases tumor progression and angiogenesis. To shed light on its activities in non-transformed cells, we generated a Tspan8 knockout (ko) mouse, comparing leukocyte migration, angiogenesis, wound healing and tumor growth with wild type, CD151ko and Tspan8/CD151ko (dbko) mice. CD151ko mice were included as CD151 activities resemble that of Tspan8, and dbko mice to exclude mutual substitution. Tspan8ko and dbko mice show no pathological phenotype. However, delayed type hypersensitivity reactions are mitigated in Tspan8ko mice, angiogenesis is severely impaired in Tspan8ko, CD151ko and dbko mice, with Tspan8 mostly affecting lymphangiogenesis. Distinct contributions of CD151 and Tspan8 to skin wound healing rely on preferentially CD151 anchoring basal keratinocytes and Tspan8 promoting motility. Proliferation of wounded skin keratinocytes is not affected. Metastasis formation of a melanoma and a Tspan8-expressing pancreatic cancer line was impaired in Tspan8ko and dbko mice, pointing towards a contribution of host Tspan8 to tumor progression. In line with the importance of tetraspanins in exosome-mediated intercellular communication, defects became mitigated by Tspan8/CD151-competent serum exosomes, which offers a most promising therapeutic option for chronic wounds and arteriosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Genetic characterization of p27kip1 and stathmin in controlling cell proliferation in vivo
Berton, Stefania; Pellizzari, Ilenia; Fabris, Linda; D'Andrea, Sara; Segatto, Ilenia; Canzonieri, Vincenzo; Marconi, Daniela; Schiappacassi, Monica; Benevol, Sara; Gattei, Valter; Colombatti, Alfonso; Belletti, Barbara; Baldassarre, Gustavo
2014-01-01
The CDK inhibitor p27kip1 is a critical regulator of cell cycle progression, but the mechanisms by which p27kip1 controls cell proliferation in vivo are still not fully elucidated. We recently demonstrated that the microtubule destabilizing protein stathmin is a relevant p27kip1 binding partner. To get more insights into the in vivo significance of this interaction, we generated p27kip1 and stathmin double knock-out (DKO) mice. Interestingly, thorough characterization of DKO mice demonstrated that most of the phenotypes of p27kip1 null mice linked to the hyper-proliferative behavior, such as the increased body and organ weight, the outgrowth of the retina basal layer and the development of pituitary adenomas, were reverted by co-ablation of stathmin. In vivo analyses showed a reduced proliferation rate in DKO compared to p27kip1 null mice, linked, at molecular level, to decreased kinase activity of CDK4/6, rather than of CDK1 and CDK2. Gene expression profiling of mouse thymuses confirmed the phenotypes observed in vivo, showing that DKO clustered with WT more than with p27 knock-out tissue. Taken together, our results demonstrate that stathmin cooperates with p27kip1 to control the early phase of G1 to S phase transition and that this function may be of particular relevance in the context of tumor progression. PMID:25486569
Hyun, Teresa S.; Li, Lina; Oravecz-Wilson, Katherine I.; Bradley, Sarah V.; Provot, Melissa M.; Munaco, Anthony J.; Mizukami, Ikuko F.; Sun, Hanshi; Ross, Theodora S.
2004-01-01
In mice and humans, there are two known members of the Huntingtin interacting protein 1 (HIP1) family, HIP1 and HIP1-related (HIP1r). Based on structural and functional data, these proteins participate in the clathrin trafficking network. The inactivation of Hip1 in mice leads to spinal, hematopoietic, and testicular defects. To investigate the biological function of HIP1r, we generated a Hip1r mutant allele in mice. Hip1r homozygous mutant mice are viable and fertile without obvious morphological abnormalities. In addition, embryonic fibroblasts derived from these mice do not have gross abnormalities in survival, proliferation, or clathrin trafficking pathways. Altogether, this demonstrates that HIP1r is not necessary for normal development of the embryo or for normal adulthood and suggests that HIP1 or other functionally related members of the clathrin trafficking network can compensate for HIP1r absence. To test the latter, we generated mice deficient in both HIP1 and HIP1r. These mice have accelerated development of abnormalities seen in Hip1 -deficient mice, including kypholordosis and growth defects. The severity of the Hip1r/Hip1 double-knockout phenotype compared to the Hip1 knockout indicates that HIP1r partially compensates for HIP1 function in the absence of HIP1 expression, providing strong evidence that HIP1 and HIP1r have overlapping roles in vivo. PMID:15121852
Hyun, Teresa S; Li, Lina; Oravecz-Wilson, Katherine I; Bradley, Sarah V; Provot, Melissa M; Munaco, Anthony J; Mizukami, Ikuko F; Sun, Hanshi; Ross, Theodora S
2004-05-01
In mice and humans, there are two known members of the Huntingtin interacting protein 1 (HIP1) family, HIP1 and HIP1-related (HIP1r). Based on structural and functional data, these proteins participate in the clathrin trafficking network. The inactivation of Hip1 in mice leads to spinal, hematopoietic, and testicular defects. To investigate the biological function of HIP1r, we generated a Hip1r mutant allele in mice. Hip1r homozygous mutant mice are viable and fertile without obvious morphological abnormalities. In addition, embryonic fibroblasts derived from these mice do not have gross abnormalities in survival, proliferation, or clathrin trafficking pathways. Altogether, this demonstrates that HIP1r is not necessary for normal development of the embryo or for normal adulthood and suggests that HIP1 or other functionally related members of the clathrin trafficking network can compensate for HIP1r absence. To test the latter, we generated mice deficient in both HIP1 and HIP1r. These mice have accelerated development of abnormalities seen in Hip1 -deficient mice, including kypholordosis and growth defects. The severity of the Hip1r/Hip1 double-knockout phenotype compared to the Hip1 knockout indicates that HIP1r partially compensates for HIP1 function in the absence of HIP1 expression, providing strong evidence that HIP1 and HIP1r have overlapping roles in vivo.
Hepatic changes in metabolic gene expression in old ghrelin and ghrelin receptor knockout mice
USDA-ARS?s Scientific Manuscript database
Ghrelin knockout (GKO) and ghrelin receptor (growth hormone secretagogue receptor) knockout (GHSRKO) mice exhibit enhanced insulin sensitivity, but the mechanism is unclear. Insulin sensitivity declines with age and is inversely associated with accumulation of lipid in liver, a key glucoregulatory ...