Sample records for conditional expression system

  1. Application of the FLP/FRT system for conditional gene deletion in yeast Saccharomyces cerevisiae.

    PubMed

    Park, Yang-Nim; Masison, Daniel; Eisenberg, Evan; Greene, Lois E

    2011-09-01

    The yeast Saccharomyces cerevisiae has proved to be an excellent model organism to study the function of proteins. One of the many advantages of yeast is the many genetic tools available to manipulate gene expression, but there are still limitations. To complement the many methods used to control gene expression in yeast, we have established a conditional gene deletion system by using the FLP/FRT system on yeast vectors to conditionally delete specific yeast genes. Expression of Flp recombinase, which is under the control of the GAL1 promoter, was induced by galactose, which in turn excised FRT sites flanked genes. The efficacy of this system was examined using the FRT site-flanked genes HSP104, URA3 and GFP. The pre-excision frequency of this system, which might be caused by the basal activity of the GAL1 promoter or by spontaneous recombination between FRT sites, was detected ca. 2% under the non-selecting condition. After inducing expression of Flp recombinase, the deletion efficiency achieved ca. 96% of cells in a population within 9 h. After conditional deletion of the specific gene, protein degradation and cell division then diluted out protein that was expressed from this gene prior to its excision. Most importantly, the specific protein to be deleted could be expressed under its own promoter, so that endogenous levels of protein expression were maintained prior to excision by the Flp recombinase. Therefore, this system provides a useful tool for the conditional deletion of genes in yeast. Published in 2011 by John Wiley & Sons, Ltd.

  2. Role of endogenous cortistatin in the regulation of ghrelin system expression at pancreatic level under normal and obese conditions.

    PubMed

    Chanclón, Belén; Luque, Raúl M; Córdoba-Chacón, José; Gahete, Manuel D; Pozo-Salas, Ana I; Castaño, Justo P; Gracia-Navarro, Francisco; Martínez-Fuentes, Antonio J

    2013-01-01

    Ghrelin-system components [native ghrelin, In1-ghrelin, Ghrelin-O-acyltransferase enzyme (GOAT) and receptors (GHS-Rs)] are expressed in a wide variety of tissues, including the pancreas, where they exert different biological actions including regulation of neuroendocrine secretions, food intake and pancreatic function. The expression of ghrelin system is regulated by metabolic conditions (fasting/obesity) and is associated with the progression of obesity and insulin resistance. Cortistatin (CORT), a neuropeptide able to activate GHS-R, has emerged as an additional link in gut-brain interplay. Indeed, we recently reported that male CORT deficient mice (cort-/-) are insulin-resistant and present a clear dysregulation in the stomach ghrelin-system. The present work was focused at analyzing the expression pattern of ghrelin-system components at pancreas level in cort-/- mice and their control littermates (cort +/+) under low- or high-fat diet. Our data reveal that all the ghrelin-system components are expressed at the mouse pancreatic level, where, interestingly, In1-ghrelin was expressed at higher levels than native-ghrelin. Thus, GOAT mRNA levels were significantly lower in cort-/- mice compared with controls while native ghrelin, In1-ghrelin and GHS-R transcript levels remained unaltered under normal metabolic conditions. Moreover, under obese condition, a significant increase in pancreatic expression of native-ghrelin, In1-ghrelin and GHS-R was observed in obese cort+/+ but not in cort-/- mice. Interestingly, insulin expression and release was elevated in obese cort+/+, while these changes were not observed in obese cort-/- mice. Altogether, our results indicate that the ghrelin-system expression is clearly regulated in the pancreas of cort+/+ and cort -/- under normal and/or obesity conditions suggesting that this system may play relevant roles in the endocrine pancreas. Most importantly, our data demonstrate, for the first time, that endogenous CORT is essential for the obesity-induced changes in insulin expression/secretion observed in mice, suggesting that CORT is a key regulatory component of the pancreatic function.

  3. Recombinant expression of extracellular domain of mutant Epidermal Growth Factor Receptor in prokaryotic and baculovirus expression systems.

    PubMed

    Vettath, Sunitha Kodengil; Shivashankar, Gaganashree; Menon, Krishnakumar N; Vijayachandran, Lakshmi S

    2018-04-15

    Epidermal Growth Factor Receptor variant III (EGFRvIII) is a tumor specific antigen detected in various tumors including gliomas, breast cancer, lung cancer, head and neck squamous cell carcinoma (HNSCC). Screening of EGFRvIII targeting drug molecules can be accelerated by developing drug screening platforms using recombinantly expressed protein. Choice of expression system is one of the major factors deciding the success of recombinant expression of a protein. In our study, we have tried to express and purify the extracellular domain (ECD) of this highly unstable protein using bacterial and baculovirus expression systems to select the expression system suited for our purpose. Even though the protein was successfully expressed in prokaryotic system, purification could be done only under denaturing conditions. But in the baculovirus expression system, the protein was expressed in soluble form and could be purified under native conditions, with single step of purification. Based on our results, we conclude that insect cells are better choice over E. coli cells for expressing EGFRvIII ECD in soluble form. This study provides insights for other researchers involved in expression of similar unstable membrane proteins, on selecting the best expression system and challenges involved. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Use of transcriptomic data for extending a model of the AppA/PpsR system in Rhodobacter sphaeroides.

    PubMed

    Pandey, Rakesh; Armitage, Judith P; Wadhams, George H

    2017-12-28

    Photosynthetic (PS) gene expression in Rhodobacter sphaeroides is regulated in response to changes in light and redox conditions mainly by PrrB/A, FnrL and AppA/PpsR systems. The PrrB/A and FnrL systems activate the expression of them under anaerobic conditions while the AppA/PpsR system represses them under aerobic conditions. Recently, two mathematical models have been developed for the AppA/PpsR system and demonstrated how the interaction between AppA and PpsR could lead to a phenotype in which PS genes are repressed under semi-aerobic conditions. These models have also predicted that the transition from aerobic to anaerobic growth mode could occur via a bistable regime. However, they lack experimentally quantifiable inputs and outputs. Here, we extend one of them to include such quantities and combine all relevant micro-array data publically available for a PS gene of this bacterium and use that to parameterise the model. In addition, we hypothesise that the AppA/PpsR system alone might account for the observed trend of PS gene expression under semi-aerobic conditions. Our extended model of the AppA/PpsR system includes the biological input of atmospheric oxygen concentration and an output of photosynthetic gene expression. Following our hypothesis that the AppA/PpsR system alone is sufficient to describe the overall trend of PS gene expression we parameterise the model and suggest that the rate of AppA reduction in vivo should be faster than its oxidation. Also, we show that despite both the reduced and oxidised forms of PpsR binding to the PS gene promoters in vitro, binding of the oxidised form as a repressor alone is sufficient to reproduce the observed PS gene expression pattern. Finally, the combination of model parameters which fit the biological data well are broadly consistent with those which were previously determined to be required for the system to show (i) the repression of PS genes under semi-aerobic conditions, and (ii) bistability. We found that despite at least three pathways being involved in the regulation of photosynthetic genes, the AppA/PpsR system alone is capable of accounting for the observed trends in photosynthetic gene expression seen at different oxygen levels.

  5. General introduction: recombinant protein production and purification of insoluble proteins.

    PubMed

    Ferrer-Miralles, Neus; Saccardo, Paolo; Corchero, José Luis; Xu, Zhikun; García-Fruitós, Elena

    2015-01-01

    Proteins are synthesized in heterologous systems because of the impossibility to obtain satisfactory yields from natural sources. The production of soluble and functional recombinant proteins is among the main goals in the biotechnological field. In this context, it is important to point out that under stress conditions, protein folding machinery is saturated and this promotes protein misfolding and, consequently, protein aggregation. Thus, the selection of the optimal expression organism and the most appropriate growth conditions to minimize the formation of insoluble proteins should be done according to the protein characteristics and downstream requirements. Escherichia coli is the most popular recombinant protein expression system despite the great development achieved so far by eukaryotic expression systems. Besides, other prokaryotic expression systems, such as lactic acid bacteria and psychrophilic bacteria, are gaining interest in this field. However, it is worth mentioning that prokaryotic expression system poses, in many cases, severe restrictions for a successful heterologous protein production. Thus, eukaryotic systems such as mammalian cells, insect cells, yeast, filamentous fungus, and microalgae are an interesting alternative for the production of these difficult-to-express proteins.

  6. Effect of culturing conditions on the expression of key enzymes in the proteolytic system of Lactobacillus bulgaricus *

    PubMed Central

    Hou, Jun-cai; Liu, Fei; Ren, Da-xi; Han, Wei-wei; Du, Yue-ou

    2015-01-01

    The proteolytic system of Lactobacillus bulgaricus breaks down milk proteins into peptides and amino acids, which are essential for the growth of the bacteria. The aim of this study was to determine the expressions of seven key genes in the proteolytic system under different culturing conditions (different phases, initial pH values, temperatures, and nitrogen sources) using real-time polymerase chain reaction (RT-PCR). The transcriptions of the seven genes were reduced by 30-fold on average in the stationary phase compared with the exponential growth phase. The transcriptions of the seven genes were reduced by 62.5-, 15.0-, and 59.0-fold in the strains KLDS 08006, KLDS 08007, and KLDS 08012, respectively, indicating that the expressions of the seven genes were significantly different among strains. In addition, the expressions of the seven genes were repressed in the MRS medium containing casein peptone. The effect of peptone supply on PepX transcription was the weakest compared with the other six genes, and the impact on OppD transcription was the strongest. Moreover, the expressions of the seven genes were significantly different among different strains (P<0.05). All these results indicated that the culturing conditions affected the expression of the proteolytic system genes in Lactobacillus bulgaricus at the transcription level. PMID:25845365

  7. Linear Matrix Inequality Method for a Quadratic Performance Index Minimization Problem with a class of Bilinear Matrix Inequality Conditions

    NASA Astrophysics Data System (ADS)

    Tanemura, M.; Chida, Y.

    2016-09-01

    There are a lot of design problems of control system which are expressed as a performance index minimization under BMI conditions. However, a minimization problem expressed as LMIs can be easily solved because of the convex property of LMIs. Therefore, many researchers have been studying transforming a variety of control design problems into convex minimization problems expressed as LMIs. This paper proposes an LMI method for a quadratic performance index minimization problem with a class of BMI conditions. The minimization problem treated in this paper includes design problems of state-feedback gain for switched system and so on. The effectiveness of the proposed method is verified through a state-feedback gain design for switched systems and a numerical simulation using the designed feedback gains.

  8. The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans

    PubMed Central

    Zhang, Liangyu; Ward, Jordan D.; Cheng, Ze; Dernburg, Abby F.

    2015-01-01

    Experimental manipulation of protein abundance in living cells or organisms is an essential strategy for investigation of biological regulatory mechanisms. Whereas powerful techniques for protein expression have been developed in Caenorhabditis elegans, existing tools for conditional disruption of protein function are far more limited. To address this, we have adapted the auxin-inducible degradation (AID) system discovered in plants to enable conditional protein depletion in C. elegans. We report that expression of a modified Arabidopsis TIR1 F-box protein mediates robust auxin-dependent depletion of degron-tagged targets. We document the effectiveness of this system for depletion of nuclear and cytoplasmic proteins in diverse somatic and germline tissues throughout development. Target proteins were depleted in as little as 20-30 min, and their expression could be re-established upon auxin removal. We have engineered strains expressing TIR1 under the control of various promoter and 3′ UTR sequences to drive tissue-specific or temporally regulated expression. The degron tag can be efficiently introduced by CRISPR/Cas9-based genome editing. We have harnessed this system to explore the roles of dynamically expressed nuclear hormone receptors in molting, and to analyze meiosis-specific roles for proteins required for germ line proliferation. Together, our results demonstrate that the AID system provides a powerful new tool for spatiotemporal regulation and analysis of protein function in a metazoan model organism. PMID:26552885

  9. Identification of Reference Genes in Human Myelomonocytic Cells for Gene Expression Studies in Altered Gravity

    PubMed Central

    Thiel, Cora S.; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E.

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes (“housekeeping genes”) are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity. PMID:25654098

  10. Identification of reference genes in human myelomonocytic cells for gene expression studies in altered gravity.

    PubMed

    Thiel, Cora S; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Unverdorben, Felix; Buttron, Isabell; Lauber, Beatrice; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E; Ullrich, Oliver

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes ("housekeeping genes") are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity.

  11. The Power of an Infant's Smile: Maternal Physiological Responses to Infant Emotional Expressions.

    PubMed

    Mizugaki, Sanae; Maehara, Yukio; Okanoya, Kazuo; Myowa-Yamakoshi, Masako

    2015-01-01

    Infant emotional expressions, such as distress cries, evoke maternal physiological reactions. Most of which involve accelerated sympathetic nervous activity. Comparatively little is known about effects of positive infant expressions, such as happy smiles, on maternal physiological responses. This study investigated how physiological and psychological maternal states change in response to infants' emotional expressions. Thirty first-time mothers viewed films of their own 6- to 7-month-old infants' affective behavior. Each observed a video of a distress cry followed by a video showing one of two expressions (randomly assigned): a happy smiling face (smile condition) or a calm neutral face (neutral condition). Both before and after the session, participants completed a self-report inventory assessing their emotional states. The results of the self-report inventory revealed no effects of exposure to the infant videos. However, the mothers in the smile condition, but not in the neutral condition, showed deceleration of skin conductance. These findings demonstrate that the mothers who observed their infants smiling showed decreased sympathetic activity. We propose that an infant's positive emotional expression may affect the branch of the maternal stress-response system that modulates the homeostatic balance of the sympathetic and parasympathetic nervous systems.

  12. The two-component system GrvRS (EtaRS) regulates ace expression in Enterococcus faecalis OG1RF.

    PubMed

    Roh, Jung Hyeob; Singh, Kavindra V; La Rosa, Sabina Leanti; Cohen, Ana Luisa V; Murray, Barbara E

    2015-01-01

    Expression of ace (adhesin to collagen of Enterococcus faecalis), encoding a virulence factor in endocarditis and urinary tract infection models, has been shown to increase under certain conditions, such as in the presence of serum, bile salts, urine, and collagen and at 46 °C. However, the mechanism of ace/Ace regulation under different conditions is still unknown. In this study, we identified a two-component regulatory system GrvRS as the main regulator of ace expression under these stress conditions. Using Northern hybridization and β-galactosidase assays of an ace promoter-lacZ fusion, we found transcription of ace to be virtually absent in a grvR deletion mutant under the conditions that increase ace expression in wild-type OG1RF and in the complemented strain. Moreover, a grvR mutant revealed decreased collagen binding and biofilm formation as well as attenuation in a murine urinary tract infection model. Here we show that GrvR plays a major role in control of ace expression and E. faecalis virulence. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. CRISPR/Cas9 mediates efficient conditional mutagenesis in Drosophila.

    PubMed

    Xue, Zhaoyu; Wu, Menghua; Wen, Kejia; Ren, Menda; Long, Li; Zhang, Xuedi; Gao, Guanjun

    2014-09-05

    Existing transgenic RNA interference (RNAi) methods greatly facilitate functional genome studies via controlled silencing of targeted mRNA in Drosophila. Although the RNAi approach is extremely powerful, concerns still linger about its low efficiency. Here, we developed a CRISPR/Cas9-mediated conditional mutagenesis system by combining tissue-specific expression of Cas9 driven by the Gal4/upstream activating site system with various ubiquitously expressed guide RNA transgenes to effectively inactivate gene expression in a temporally and spatially controlled manner. Furthermore, by including multiple guide RNAs in a transgenic vector to target a single gene, we achieved a high degree of gene mutagenesis in specific tissues. The CRISPR/Cas9-mediated conditional mutagenesis system provides a simple and effective tool for gene function analysis, and complements the existing RNAi approach. Copyright © 2014 Xue et al.

  14. Development of a silicon limitation inducible expression system for recombinant protein production in the centric diatoms Thalassiosira pseudonana and Cyclotella cryptica

    DOE PAGES

    Shrestha, Roshan P.; Hildebrand, Mark

    2017-08-17

    An inducible promoter for recombinant protein expression provides substantial benefits because under induction conditions cellular energy and metabolic capability can be directed into protein synthesis. The most widely used inducible promoter for diatoms is for nitrate reductase, however, nitrogen metabolism is tied into diverse aspects of cellular function, and the induction response is not necessarily robust. Silicon limitation offers a means to eliminate energy and metabolic flux into cell division processes, with little other detrimental effect on cellular function, and a protein expression system that works under those conditions could be advantageous. In this study, we evaluate a number ofmore » promoters for recombinant protein expression induced by silicon limitation and repressed by the presence of silicon in the diatoms Thalassiosira pseudonana and Cyclotella cryptica. In addition to silicon limitation, we describe additional strategies to elevate recombinant protein expression level, including inclusion of the 5' fragment of the coding region of the native gene and reducing carbon flow into ancillary processes of pigment synthesis and formation of photosynthetic storage products. We achieved yields of eGFP to 1.8% of total soluble protein in C. cryptica, which is about 3.6-fold higher than that obtained with chloroplast expression and ninefold higher than nuclear expression in another well-established algal system. Our studies demonstrate that the combination of inducible promoter and other strategies can result in robust expression of recombinant protein in a nuclear-based expression system in diatoms under silicon limited conditions, separating the protein expression regime from growth processes and improving overall recombinant protein yields.« less

  15. Development of a silicon limitation inducible expression system for recombinant protein production in the centric diatoms Thalassiosira pseudonana and Cyclotella cryptica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, Roshan P.; Hildebrand, Mark

    An inducible promoter for recombinant protein expression provides substantial benefits because under induction conditions cellular energy and metabolic capability can be directed into protein synthesis. The most widely used inducible promoter for diatoms is for nitrate reductase, however, nitrogen metabolism is tied into diverse aspects of cellular function, and the induction response is not necessarily robust. Silicon limitation offers a means to eliminate energy and metabolic flux into cell division processes, with little other detrimental effect on cellular function, and a protein expression system that works under those conditions could be advantageous. In this study, we evaluate a number ofmore » promoters for recombinant protein expression induced by silicon limitation and repressed by the presence of silicon in the diatoms Thalassiosira pseudonana and Cyclotella cryptica. In addition to silicon limitation, we describe additional strategies to elevate recombinant protein expression level, including inclusion of the 5' fragment of the coding region of the native gene and reducing carbon flow into ancillary processes of pigment synthesis and formation of photosynthetic storage products. We achieved yields of eGFP to 1.8% of total soluble protein in C. cryptica, which is about 3.6-fold higher than that obtained with chloroplast expression and ninefold higher than nuclear expression in another well-established algal system. Our studies demonstrate that the combination of inducible promoter and other strategies can result in robust expression of recombinant protein in a nuclear-based expression system in diatoms under silicon limited conditions, separating the protein expression regime from growth processes and improving overall recombinant protein yields.« less

  16. Expression of a Dianthus flavonoid glucosyltransferase in Saccharomyces cerevisiae for whole-cell biocatalysis.

    PubMed

    Werner, Sean R; Morgan, John A

    2009-07-15

    Glycosyltransferases are promising biocatalysts for the synthesis of small molecule glycosides. In this study, Saccharomyces cerevisiae expressing a flavonoid glucosyltransferase (GT) from Dianthus caryophyllus (carnation) was investigated as a whole-cell biocatalyst. Two yeast expression systems were compared using the flavonoid naringenin as a model substrate. Under in vitro conditions, naringenin-7-O-glucoside was formed and a higher specific glucosyl transfer activity was found using a galactose inducible expression system compared to a constitutive expression system. However, S. cerevisiae expressing the GT constitutively was significantly more productive than the galactose inducible system under in vivo conditions. Interestingly, the glycosides were recovered directly from the culture broth and did not accumulate intracellularly. A previously uncharacterized naringenin glycoside formed using the D. caryophyllus GT was identified as naringenin-4'-O-glucoside. It was found that S. cerevisiae cells hydrolyze naringenin-7-O-glucoside during whole-cell biocatalysis, resulting in a low final glycoside titer. When phloretin was added as a substrate to the yeast strain expressing the GT constitutively, the natural product phlorizin was formed. This study demonstrates S. cerevisiae is a promising whole-cell biocatalyst host for the production of valuable glycosides.

  17. Fungal Gene Expression on Demand: an Inducible, Tunable, and Metabolism-Independent Expression System for Aspergillus niger▿†

    PubMed Central

    Meyer, Vera; Wanka, Franziska; van Gent, Janneke; Arentshorst, Mark; van den Hondel, Cees A. M. J. J.; Ram, Arthur F. J.

    2011-01-01

    Filamentous fungi are the cause of serious human and plant diseases but are also exploited in biotechnology as production platforms. Comparative genomics has documented their genetic diversity, and functional genomics and systems biology approaches are under way to understand the functions and interaction of fungal genes and proteins. In these approaches, gene functions are usually inferred from deletion or overexpression mutants. However, studies at these extreme points give only limited information. Moreover, many overexpression studies use metabolism-dependent promoters, often causing pleiotropic effects and thus limitations in their significance. We therefore established and systematically evaluated a tunable expression system for Aspergillus niger that is independent of carbon and nitrogen metabolism and silent under noninduced conditions. The system consists of two expression modules jointly targeted to a defined genomic locus. One module ensures constitutive expression of the tetracycline-dependent transactivator rtTA2S-M2, and one module harbors the rtTA2S-M2-dependent promoter that controls expression of the gene of interest (the Tet-on system). We show here that the system is tight, responds within minutes after inducer addition, and allows fine-tuning based on the inducer concentration or gene copy number up to expression levels higher than the expression levels of the gpdA promoter. We also validate the Tet-on system for the generation of conditional overexpression mutants and demonstrate its power when combined with a gene deletion approach. Finally, we show that the system is especially suitable when the functions of essential genes must be examined. PMID:21378046

  18. Understanding the impact of water distribution system conditions on the biodegradation of haloacetic acids and expression of bacterial dehalogenase genes.

    PubMed

    Behbahani, Mohsen; Lin, Boren; Phares, Tamara L; Seo, Youngwoo

    2018-06-05

    The objective of this study is to evaluate the influence of water distribution system conditions (pH, total organic carbon, residual chlorine, and phosphate) on haloacetic acids (HAAs) biodegradation. A series of batch microcosm tests were conducted to determine biodegradation kinetics and collected biomass was used for real time quantitative reverse transcription polymerase chain reaction analyses to monitor how these drinking water distribution system conditions affect the relative expression of bacterial dehalogenase genes. It was observed that tested water distribution system conditions affected HAA biodegradation with different removal efficiencies (0-100%). HAA biodegradation was improved in tested samples with TOC (3 mg/L) and pH 8.5 compared to those of TOC (0 mg/L) and pH 7, respectively. However, slight improvement was observed with the increased PO 4 concentration (3.5 mg/L), and the presence of residual chlorine even at low concentration prohibited biodegradation of HAAs. The observed trend in the relative expression of dehII genes was compatible with the HAA biodegradation trend. Overall relative expression ratio of dehII genes was lower at pH 7, phosphate (0.5 mg/L), and TOC (0 mg/L) in comparison with pH 8.5, phosphate (3.5 mg/L), and TOC (3 mg/L) in the same experimental conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Multiplex Conditional Mutagenesis Using Transgenic Expression of Cas9 and sgRNAs

    PubMed Central

    Yin, Linlin; Maddison, Lisette A.; Li, Mingyu; Kara, Nergis; LaFave, Matthew C.; Varshney, Gaurav K.; Burgess, Shawn M.; Patton, James G.; Chen, Wenbiao

    2015-01-01

    Determining the mechanism of gene function is greatly enhanced using conditional mutagenesis. However, generating engineered conditional alleles is inefficient and has only been widely used in mice. Importantly, multiplex conditional mutagenesis requires extensive breeding. Here we demonstrate a system for one-generation multiplex conditional mutagenesis in zebrafish (Danio rerio) using transgenic expression of both cas9 and multiple single guide RNAs (sgRNAs). We describe five distinct zebrafish U6 promoters for sgRNA expression and demonstrate efficient multiplex biallelic inactivation of tyrosinase and insulin receptor a and b, resulting in defects in pigmentation and glucose homeostasis. Furthermore, we demonstrate temporal and tissue-specific mutagenesis using transgenic expression of Cas9. Heat-shock-inducible expression of cas9 allows temporal control of tyr mutagenesis. Liver-specific expression of cas9 disrupts insulin receptor a and b, causing fasting hypoglycemia and postprandial hyperglycemia. We also show that delivery of sgRNAs targeting ascl1a into the eye leads to impaired damage-induced photoreceptor regeneration. Our findings suggest that CRISPR/Cas9-based conditional mutagenesis in zebrafish is not only feasible but rapid and straightforward. PMID:25855067

  20. Gene Expression of Type VI Secretion System Associated with Environmental Survival in Acidovorax avenae subsp. avenae by Principle Component Analysis

    PubMed Central

    Cui, Zhouqi; Jin, Guoqiang; Li, Bin; Kakar, Kaleem Ullah; Ojaghian, Mohammad Reza; Wang, Yangli; Xie, Guanlin; Sun, Guochang

    2015-01-01

    Valine glycine repeat G (VgrG) proteins are regarded as one of two effectors of Type VI secretion system (T6SS) which is a complex multi-component secretion system. In this study, potential biological roles of T6SS structural and VgrG genes in a rice bacterial pathogen, Acidovorax avenae subsp. avenae (Aaa) RS-1, were evaluated under seven stress conditions using principle component analysis of gene expression. The results showed that growth of the pathogen was reduced by H2O2 and paraquat-induced oxidative stress, high salt, low temperature, and vgrG mutation, compared to the control. However, pathogen growth was unaffected by co-culture with a rice rhizobacterium Burkholderia seminalis R456. In addition, expression of 14 T6SS structural and eight vgrG genes was significantly changed under seven conditions. Among different stress conditions, high salt, and low temperature showed a higher effect on the expression of T6SS gene compared with host infection and other environmental conditions. As a first report, this study revealed an association of T6SS gene expression of the pathogen with the host infection, gene mutation, and some common environmental stresses. The results of this research can increase understanding of the biological function of T6SS in this economically-important pathogen of rice. PMID:26378528

  1. Expression of cholera toxin under non-AKI conditions in Vibrio cholerae El Tor induced by increasing the exposed surface of cultures.

    PubMed

    Sánchez, Joaquín; Medina, Gerardo; Buhse, Thomas; Holmgren, Jan; Soberón-Chavez, Gloria

    2004-03-01

    The regulatory systems controlling expression of the ctxAB genes encoding cholera toxin (CT) in the classical and El Tor biotypes of pathogenic Vibrio cholerae have been characterized and found to be almost identical. Notwithstanding this, special in vitro conditions, called AKI conditions, are required for El Tor bacteria to produce CT. The AKI conditions involve biphasic cultures. In phase 1 the organism is grown in a still tube for 4 h. In phase 2 the medium is poured into a flask to continue growth with shaking. Virtually no expression of CT occurs if this protocol is not followed. Here we demonstrated that CT expression takes place in single-phase still cultures if the volume-to-surface-area ratio is decreased, both under air and under an inert atmosphere. The expression of key genes involved in the regulation of CT production was analyzed, and we found that the expression pattern closely resembles the in vivo expression pattern.

  2. A bio-inspired structural health monitoring system based on ambient vibration

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Kang; Kiremidjian, Anne; Lei, Chi-Yang

    2010-11-01

    A structural health monitoring (SHM) system based on naïve Bayesian (NB) damage classification and DNA-like expression data was developed in this research. Adapted from the deoxyribonucleic acid (DNA) array concept in molecular biology, the proposed structural health monitoring system is constructed utilizing a double-tier regression process to extract the expression array from the structural time history recorded during external excitations. The extracted array is symbolized as the various genes of the structure from the viewpoint of molecular biology and reflects the possible damage conditions prevalent in the structure. A scaled down, six-story steel building mounted on the shaking table of the National Center for Research on Earthquake Engineering (NCREE) was used as the benchmark. The structural response at different damage levels and locations under ambient vibration was collected to support the database for the proposed SHM system. To improve the precision of detection in practical applications, the system was enhanced by an optimization process using the likelihood selection method. The obtained array representing the DNA array of the health condition of the structure was first evaluated and ranked. A total of 12 groups of expression arrays were regenerated from a combination of four damage conditions. To keep the length of the array unchanged, the best 16 coefficients from every expression array were selected to form the optimized SHM system. Test results from the ambient vibrations showed that the detection accuracy of the structural damage could be greatly enhanced by the optimized expression array, when compared to the original system. Practical verification also demonstrated that a rapid and reliable result could be given by the final system within 1 min. The proposed system implements the idea of transplanting the DNA array concept from molecular biology into the field of SHM.

  3. Computer transformation of partial differential equations into any coordinate system

    NASA Technical Reports Server (NTRS)

    Sullivan, R. D.

    1977-01-01

    The use of tensors to provide a compact way of writing partial differential equations in a form valid in all coordinate systems is discussed. In order to find solutions to the equations with their boundary conditions they must be expressed in terms of the coordinate system under consideration. The process of arriving at these expressions from the tensor formulation was automated by a software system, TENSR. An allied system that analyzes the resulting expressions term by term and drops those that are negligible is also described.

  4. Increased Contextual Fear Conditioning in iNOS Knockout Mice: Additional Evidence for the Involvement of Nitric Oxide in Stress-Related Disorders and Contribution of the Endocannabinoid System

    PubMed Central

    Gomes, Felipe V.; Silva, Andréia L.; Uliana, Daniela L.; Camargo, Laura H. A.; Guimarães, Francisco S.; Cunha, Fernando Q.; Joca, Sâmia R. L.; Resstel, Leonardo B. M.

    2015-01-01

    Background: Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. Methods: We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. Results: Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. Conclusion: These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in situations where nitric oxide signaling is increased. PMID:25618404

  5. Increased Contextual Fear Conditioning in iNOS Knockout Mice: Additional Evidence for the Involvement of Nitric Oxide in Stress-Related Disorders and Contribution of the Endocannabinoid System.

    PubMed

    Lisboa, Sabrina F; Gomes, Felipe V; Silva, Andréia L; Uliana, Daniela L; Camargo, Laura H A; Guimarães, Francisco S; Cunha, Fernando Q; Joca, Sâmia R L; Resstel, Leonardo B M

    2015-01-24

    Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in situations where nitric oxide signaling is increased. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  6. The consistent differential expression of genetic pathways following exposure of an industrial Pseudomonas aeruginosa strain to preservatives and a laundry detergent formulation.

    PubMed

    Green, Angharad E; Amézquita, Alejandro; Le Marc, Yvan; Bull, Matthew J; Connor, Thomas R; Mahenthiralingam, Eshwar

    2018-05-01

    Pseudomonas aeruginosa is a common contaminant associated with product recalls in the home and personal care industry. Preservation systems are used to prevent spoilage and protect consumers, but greater knowledge is needed of preservative resistance mechanisms used by P. aeruginosa contaminants. We aimed to identify genetic pathways associated with preservative exposure by using an industrial P. aeruginosa strain and implementing RNA-Seq to understand gene expression changes in response to industry relevant conditions. The consistent differential expression of five genetic pathways during exposure to multiple industrial growth conditions associated with benzisothiazolone (BIT) and phenoxyethanol (POE) preservatives, and a laundry detergent (LD) formulation, was observed. A MexPQ-OpmE Resistance Nodulation Division efflux pump system was commonly upregulated in response to POE, a combination of BIT and POE, and LD together with BIT. In response to all industry conditions, a putative sialic acid transporter and isoprenoid biosynthesis gnyRDBHAL operon demonstrated consistent upregulation. Two operons phnBA and pqsEDCBA involved in Pseudomonas quinolone signaling production and quorum-sensing were also consistently downregulated during exposure to all the industry conditions. The ability to identify consistently differentially expressed genetic pathways in P. aeruginosa can inform the development of future targeted preservation systems that maintain product safety and minimise resistance development.

  7. Chemical Memory Reactions Induced Bursting Dynamics in Gene Expression

    PubMed Central

    Tian, Tianhai

    2013-01-01

    Memory is a ubiquitous phenomenon in biological systems in which the present system state is not entirely determined by the current conditions but also depends on the time evolutionary path of the system. Specifically, many memorial phenomena are characterized by chemical memory reactions that may fire under particular system conditions. These conditional chemical reactions contradict to the extant stochastic approaches for modeling chemical kinetics and have increasingly posed significant challenges to mathematical modeling and computer simulation. To tackle the challenge, I proposed a novel theory consisting of the memory chemical master equations and memory stochastic simulation algorithm. A stochastic model for single-gene expression was proposed to illustrate the key function of memory reactions in inducing bursting dynamics of gene expression that has been observed in experiments recently. The importance of memory reactions has been further validated by the stochastic model of the p53-MDM2 core module. Simulations showed that memory reactions is a major mechanism for realizing both sustained oscillations of p53 protein numbers in single cells and damped oscillations over a population of cells. These successful applications of the memory modeling framework suggested that this innovative theory is an effective and powerful tool to study memory process and conditional chemical reactions in a wide range of complex biological systems. PMID:23349679

  8. Chemical memory reactions induced bursting dynamics in gene expression.

    PubMed

    Tian, Tianhai

    2013-01-01

    Memory is a ubiquitous phenomenon in biological systems in which the present system state is not entirely determined by the current conditions but also depends on the time evolutionary path of the system. Specifically, many memorial phenomena are characterized by chemical memory reactions that may fire under particular system conditions. These conditional chemical reactions contradict to the extant stochastic approaches for modeling chemical kinetics and have increasingly posed significant challenges to mathematical modeling and computer simulation. To tackle the challenge, I proposed a novel theory consisting of the memory chemical master equations and memory stochastic simulation algorithm. A stochastic model for single-gene expression was proposed to illustrate the key function of memory reactions in inducing bursting dynamics of gene expression that has been observed in experiments recently. The importance of memory reactions has been further validated by the stochastic model of the p53-MDM2 core module. Simulations showed that memory reactions is a major mechanism for realizing both sustained oscillations of p53 protein numbers in single cells and damped oscillations over a population of cells. These successful applications of the memory modeling framework suggested that this innovative theory is an effective and powerful tool to study memory process and conditional chemical reactions in a wide range of complex biological systems.

  9. Conditional transgenic mouse models: from the basics to genome-wide sets of knockouts and current studies of tissue regeneration.

    PubMed

    Bockamp, Ernesto; Sprengel, Rolf; Eshkind, Leonid; Lehmann, Thomas; Braun, Jan M; Emmrich, Frank; Hengstler, Jan G

    2008-03-01

    Many mouse models are currently available, providing avenues to elucidate gene function and to recapitulate specific pathological conditions. To a large extent, successful translation of clinical evidence or analytical data into appropriate mouse models is possible through progress in transgenic or gene-targeting technology. Beginning with a review of standard mouse transgenics and conventional gene targeting, this article will move on to discussing the basics of conditional gene expression: the tetracycline (tet)-off and tet-on systems based on the transactivators tet-controlled transactivator (Tta) and reverse tet-on transactivator (rtTA) that allow downregulation or induction of gene expression; Cre or Flp recombinase-mediated modifications, including excision, inversion, insertion and interchromosomal translocation; combination of the tet and Cre systems, permitting inducible knockout, reporter gene activation or activation of point mutations; the avian retroviral system based on delivery of rtTA specifically into cells expressing the avian retroviral receptor, which enables cell type-specific, inducible gene expression; the tamoxifen system, one of the most frequently applied steroid receptor-based systems, allows rapid activation of a fusion protein between the gene of interest and a mutant domain of the estrogen receptor, whereby activation does not depend on transcription; and techniques for cell type-specific ablation. The diphtheria toxin receptor system offers the advantage that it can be combined with the 'zoo' of Cre recombinase driver mice. Having described the basics we move on to the cutting edge: generation of genome-wide sets of conditional knockout mice. To this end, large ongoing projects apply two strategies: gene trapping based on random integration of trapping vectors into introns leading to truncation of the transcript, and gene targeting, representing the directed approach using homologous recombination. It can be expected that in the near future genome-wide sets of such mice will be available. Finally, the possibilities of conditional expression systems for investigating gene function in tissue regeneration will be illustrated by examples for neurodegenerative disease, liver regeneration and wound healing of the skin.

  10. Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum.

    PubMed

    Heiss, Silvia; Hörmann, Angelika; Tauer, Christopher; Sonnleitner, Margot; Egger, Esther; Grabherr, Reingard; Heinl, Stefan

    2016-03-10

    Engineering lactic acid bacteria (LAB) is of growing importance for food and feed industry as well as for in vivo vaccination or the production of recombinant proteins in food grade organisms. Often, expression of a transgene is only desired at a certain time point or period, e.g. to minimize the metabolic burden for the host cell or to control the expression time span. For this purpose, inducible expression systems are preferred, though cost and availability of the inducing agent must be feasible. We selected the plasmid free strain Lactobacillus plantarum 3NSH for testing and characterization of novel inducible promoters/repressor systems. Their feasibility in recombinant protein production was evaluated. Expression of the reporter protein mCherry was monitored with the BioLector(®) micro-fermentation system. Reporter gene mCherry expression was compared under the control of different promoter/repressor systems: PlacA (an endogenous promoter/repressor system derived from L. plantarum 3NSH), PxylA (a promoter/repressor system derived from Bacillus megaterium DSMZ 319) and PlacSynth (synthetic promoter and codon-optimized repressor gene based on the Escherichia coli lac operon). We observed that PlacA was inducible solely by lactose, but not by non-metabolizable allolactose analoga. PxylA was inducible by xylose, yet showed basal expression under non-induced conditions. Growth on galactose (as compared to exponential growth phase on glucose) reduced basal mCherry expression at non-induced conditions. PlacSynth was inducible with TMG (methyl β-D-thiogalactopyranoside) and IPTG (isopropyl β-D-1-thiogalactopyranoside), but also showed basal expression without inducer. The promoter PlacSynth was used for establishment of a dual plasmid expression system, based on T7 RNA polymerase driven expression in L. plantarum. Comparative Western blot supported BioLector(®) micro-fermentation measurements. Conclusively, overall expression levels were moderate (compared to a constitutive promoter). We evaluated different inducible promoters, as well as an orthologous expression system, for controlled gene expression in L. plantarum. Furthermore, here we provide proof of concept for a T7 RNA polymerase based expression system for L. plantarum. Thereby we expanded the molecular toolbox for an industrial relevant and generally regarded as safe (GRAS) strain.

  11. Hypoxia triggers angiogenesis by increasing expression of LOX genes in 3-D culture of ASCs and ECs.

    PubMed

    Xie, Qiang; Xie, Jiamin; Tian, Taoran; Ma, Quanquan; Zhang, Qi; Zhu, Bofeng; Cai, Xiaoxiao

    2017-03-01

    This study aimed to investigate the expression changes of LOX (lysyl oxidase) family genes, VEGFA, and VEGFB under hypoxic conditions in a co-culture system of ASCs (adipose-derived stromal cells) and ECs (endothelial cells). ASCs and ECs were co-cultured under hypoxic and normal oxygen conditions in a 1:1 ratio, and the formation of vessel-like was detected at 7 days. The transwell co-culture system was used and cell lysates were collected at 7 days after co-culture in hypoxic and normal oxygen condition. Semi-quantitative PCR was performed to quantify the mRNA expression of VEGFA, VEGFB, and the LOX genes (LOX, LOXL-1, LOXL-2, LOXL-3, and LOXL-4). Expression changes were determined by densitomery. Enhanced angiogenesis was detected in the co-culture of ASCs and ECs under hypoxic conditions. Among the genes screened, VEGFA, VEGFB, LOXL-1, and LOXL-3 in ECs, both mono-cultured and co-cultured, were significantly enhanced after culturing under hypoxic conditions. In ASCs, VEGFB, LOXL-1, and LOXL-3 were upregulated. Contact co-culture between ASCs and ECs promotes angiogenesis under hypoxia. LOXL-1 and LOXL-3 expressions were increased in both ASCs and ECs and might play important roles in the enhanced angiogenesis promoted by hypoxia. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Multiplex Conditional Mutagenesis Using Transgenic Expression of Cas9 and sgRNAs.

    PubMed

    Yin, Linlin; Maddison, Lisette A; Li, Mingyu; Kara, Nergis; LaFave, Matthew C; Varshney, Gaurav K; Burgess, Shawn M; Patton, James G; Chen, Wenbiao

    2015-06-01

    Determining the mechanism of gene function is greatly enhanced using conditional mutagenesis. However, generating engineered conditional alleles is inefficient and has only been widely used in mice. Importantly, multiplex conditional mutagenesis requires extensive breeding. Here we demonstrate a system for one-generation multiplex conditional mutagenesis in zebrafish (Danio rerio) using transgenic expression of both cas9 and multiple single guide RNAs (sgRNAs). We describe five distinct zebrafish U6 promoters for sgRNA expression and demonstrate efficient multiplex biallelic inactivation of tyrosinase and insulin receptor a and b, resulting in defects in pigmentation and glucose homeostasis. Furthermore, we demonstrate temporal and tissue-specific mutagenesis using transgenic expression of Cas9. Heat-shock-inducible expression of cas9 allows temporal control of tyr mutagenesis. Liver-specific expression of cas9 disrupts insulin receptor a and b, causing fasting hypoglycemia and postprandial hyperglycemia. We also show that delivery of sgRNAs targeting ascl1a into the eye leads to impaired damage-induced photoreceptor regeneration. Our findings suggest that CRISPR/Cas9-based conditional mutagenesis in zebrafish is not only feasible but rapid and straightforward. Copyright © 2015 by the Genetics Society of America.

  13. Double promoter expression systems for recombinant protein production by industrial microorganisms.

    PubMed

    Öztürk, Sibel; Ergün, Burcu Gündüz; Çalık, Pınar

    2017-10-01

    Using double promoter expression systems is a promising approach to increase heterologous protein production. In this review, current double promoter expression systems for the production of recombinant proteins (r-proteins) by industrially important bacteria, Bacillus subtilis and Escherichia coli; and yeasts, Saccharomyces cerevisiae and Pichia pastoris, are discussed by assessing their potentials and drawbacks. Double promoter expression systems need to be designed to maintain a higher specific product formation rate within the production domain. While bacterial double promoter systems have been constructed as chimeric tandem promoters, yeast dual promoter systems have been developed as separate expression cassettes. To increase production and productivity, the optimal transcriptional activity should be justified either by simultaneously satisfying the requirements of both promoters, or by consecutively stimulating the changeover from one to another in a biphasic process or via successive-iterations. Thus, considering the dynamics of a fermentation process, double promoters can be classified according to their operational mechanisms, as: i) consecutively operating double promoter systems, and ii) simultaneously operating double promoter systems. Among these metabolic design strategies, extending the expression period with two promoters activated under different conditions, or enhancing the transcriptional activity with two promoters activated under similar conditions within the production domain, can be applied independently from the host. Novel studies with new insights, which aim a rational systematic design and construction of dual promoter expression vectors with tailored transcriptional activity, will empower r-protein production with enhanced production and productivity. Finally, the current state-of-the-art review emphasizes the advantages of double promoter systems along with the necessity for discovering new promoters for the development of more effective and adaptive processes to meet the increasing demand of r-protein industry.

  14. Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization. | Office of Cancer Genomics

    Cancer.gov

    The CRISPR/Cas9 system is a powerful tool for studying gene function. Here, we describe a method that allows temporal control of CRISPR/Cas9 activity based on conditional Cas9 destabilization. We demonstrate that fusing an FKBP12-derived destabilizing domain to Cas9 (DD-Cas9) enables conditional Cas9 expression and temporal control of gene editing in the presence of an FKBP12 synthetic ligand. This system can be easily adapted to co-express, from the same promoter, DD-Cas9 with any other gene of interest without co-modulation of the latter.

  15. Effects of sex and seasonality on the song control system and FoxP2 protein expression in black-capped chickadees (Poecile atricapillus).

    PubMed

    Phillmore, Leslie S; MacGillivray, Heather L; Wilson, K Ryan; Martin, Stephanie

    2015-02-01

    Plasticity in behavior is mirrored by corresponding plasticity in the brain in many songbird species. In some species, song system nuclei (Phillmore et al. [2006]: J Neurobiol 66:1002-1010) are larger in birds in breeding condition than birds in nonbreeding condition, possibly due to increased vocal output in spring. FOXP2, a transcription factor associated with language expression and comprehension in humans and song learning in songbirds, also shows plasticity. FoxP2 expression in songbird Area X, a region important for sensorimotor integration, is related to developmental and adult vocal plasticity (Teramitsu et al. [2010]: J Neurosci 24:3152-3163, Chen et al. [2013], J Exp Biol 216:3682-3692). In this study, we examined whether sex and breeding condition affects both song control system volume (HVC, X) and FoxP2 protein expression in black-capped chickadees (Poecile atricapillus). HVC volume was larger in males in breeding condition than males in nonbreeding condition, but there were no sex differences. In contrast, Area X volume was larger in males than females, regardless of breeding condition, likely reflecting that male and female chickadees produce learned chick-a-dee calls year round, but output of the learned song increases in breeding males. FoxP2 protein levels did not differ between sexes or breeding condition when calculated as a ratio of labeled cells in Area X to labeled cells in the surrounding striato-pallium, however, absolute density of FoxP2 in both regions was higher in males than in females. This may indicate that chickadees maintain a level of FoxP2 necessary for plasticity year-round, but males have greater potential for plasticity compared to females. © 2014 Wiley Periodicals, Inc.

  16. HSF-1, HIF-1 and HSP90 expression on recombinant Pichia pastoris under fed-batch fermentation.

    PubMed

    Zepeda, Andrea B; Figueroa, Carolina A; Abdalla, Dulcineia S P; Maranhão, Andrea Q; Ulloa, Patricio H; Pessoa, Adalberto; Farías, Jorge G

    2014-01-01

    Pichia pastoris is a methylotrophic yeast used as an efficient expression system for heterologous protein production as compared to other expression systems. Considering that every cell must respond to environmental changes to survive and differentiate, determination of endogenous protein related to heat stress responses and hypoxia, it would necessary to establish the temperature and methanol concentration conditions for optimal growth. The aim of this study is characterize the culture conditions through the putative biomarkers in different conditions of temperature and methanol concentration. Three yeast cultures were performed: 3X = 3% methanol -10 °C, 4X = 3% methanol -30 °C, and 5X = 1% methanol -10 °C. The expression level of HIF-1α, HSF-1, HSP-70 and HSP-90 biomarkers were measured by Western blot and in situ detection was performed by immunocytochemistry. The western blot results of HIF-1α and HSP-90 did not indicate statistically significant in the culture conditions studied. Respect to biomarkers location, HIF-1α and HSP-90 presented differences between cultures. In conclusion, the results suggest the cultures in a hypoxic condition produce a high density and yeast cells smaller. Beside the high density would not necessary related with a high production of recombinant proteins in modified-genetically P. pastoris.

  17. Development of two bacterial artificial chromosome shuttle vectors for a recombination-based cloning and regulated expression of large genes in mammalian cells.

    PubMed

    Hong, Y K; Kim, D H; Beletskii, A; Lee, C; Memili, E; Strauss, W M

    2001-04-01

    Most conditional expression vectors designed for mammalian cells have been valuable systems for studying genes of interest by regulating their expressions. The available vectors, however, are reliable for the short-length cDNA clones and not optimal for relatively long fragments of genomic DNA or long cDNAs. Here, we report the construction of two bacterial artificial chromosome (BAC) vectors, capable of harboring large inserts and shuttling among Escherichia coli, yeast, and mammalian cells. These two vectors, pEYMT and pEYMI, contain conditional expression systems which are designed to be regulated by tetracycline and mouse interferons, respectively. To test the properties of the vectors, we cloned in both vectors the green fluorescence protein (GFP) through an in vitro ligation reaction and the 17.8-kb-long X-inactive-specific transcript (Xist) cDNA through homologous recombination in yeast. Subsequently, we characterized their regulated expression properties using real-time quantitative RT-PCR (TaqMan) and RNA-fluorescent in situ hybridization (FISH). We demonstrate that these two BAC vectors are good systems for recombination-based cloning and regulated expression of large genes in mammalian cells. Copyright 2001 Academic Press.

  18. The consistent differential expression of genetic pathways following exposure of an industrial Pseudomonas aeruginosa strain to preservatives and a laundry detergent formulation

    PubMed Central

    Amézquita, Alejandro; Le Marc, Yvan; Bull, Matthew J; Connor, Thomas R; Mahenthiralingam, Eshwar

    2018-01-01

    Abstract Pseudomonas aeruginosa is a common contaminant associated with product recalls in the home and personal care industry. Preservation systems are used to prevent spoilage and protect consumers, but greater knowledge is needed of preservative resistance mechanisms used by P. aeruginosa contaminants. We aimed to identify genetic pathways associated with preservative exposure by using an industrial P. aeruginosa strain and implementing RNA-Seq to understand gene expression changes in response to industry relevant conditions. The consistent differential expression of five genetic pathways during exposure to multiple industrial growth conditions associated with benzisothiazolone (BIT) and phenoxyethanol (POE) preservatives, and a laundry detergent (LD) formulation, was observed. A MexPQ-OpmE Resistance Nodulation Division efflux pump system was commonly upregulated in response to POE, a combination of BIT and POE, and LD together with BIT. In response to all industry conditions, a putative sialic acid transporter and isoprenoid biosynthesis gnyRDBHAL operon demonstrated consistent upregulation. Two operons phnBA and pqsEDCBA involved in Pseudomonas quinolone signaling production and quorum-sensing were also consistently downregulated during exposure to all the industry conditions. The ability to identify consistently differentially expressed genetic pathways in P. aeruginosa can inform the development of future targeted preservation systems that maintain product safety and minimise resistance development. PMID:29548026

  19. Multiplex conditional mutagenesis in zebrafish using the CRISPR/Cas system.

    PubMed

    Yin, L; Maddison, L A; Chen, W

    2016-01-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system is a powerful tool for genome editing in numerous organisms. However, the system is typically used for gene editing throughout the entire organism. Tissue and temporal specific mutagenesis is often desirable to determine gene function in a specific stage or tissue and to bypass undesired consequences of global mutations. We have developed the CRISPR/Cas system for conditional mutagenesis in transgenic zebrafish using tissue-specific and/or inducible expression of Cas9 and U6-driven expression of sgRNA. To allow mutagenesis of multiple targets, we have isolated four distinct U6 promoters and designed Golden Gate vectors to easily assemble transgenes with multiple sgRNAs. We provide experimental details on the reagents and applications for multiplex conditional mutagenesis in zebrafish. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. 75 FR 10229 - Application for Presidential Permit; Champlain Hudson Power Express, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    .... electric power supply system under normal and contingency conditions, and any other factors that DOE may... Power Express, Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: Champlain Hudson Power Express, Inc. (CHPEI) has applied for a Presidential...

  1. Limbic system development underlies the emergence of classical fear conditioning during the 3rd and 4th weeks of life in the rat

    PubMed Central

    Deal, Alex L.; Erickson, Kristen J.; Shiers, Stephanie I.; Burman, Michael A.

    2016-01-01

    Classical fear conditioning creates an association between an aversive stimulus and a neutral stimulus. Although the requisite neural circuitry is well understood in mature organisms, the development of these circuits is less well studied. The current experiments examine the ontogeny of fear conditioning and relate it to neuronal activation assessed through immediate early gene (IEG) expression in the amygdala, hippocampus, perirhinal cortex, and hypothalamus of periweanling rats. Rat pups were fear conditioned, or not, during the 3rd or 4th weeks of life. Neuronal activation was assessed by quantifying expression of FBJ osteosarcoma oncogene (FOS) using immunohistochemistry (IHC) in Experiment 1. Fos and early growth response gene-1 (EGR1) expression was assessed using qRT-PCR in Experiment 2. Behavioral data confirm that both auditory and contextual fear continue to emerge between PD 17 and 24. The IEG expression data are highly consistent with these behavioral results. IHC results demonstrate significantly more FOS protein expression in the basal amygdala of fear conditioned PD 23 subjects compared to control subjects, but no significant difference at PD 17. qRT-PCR results suggest specific activation of the amygdala only in older subjects during auditory fear expression. A similar effect of age and conditioning status was also observed in the perirhinal cortex during both contextual and auditory fear expression. Overall, the development of fear conditioning occurring between the 3rd and 4th weeks of life appears to be at least partly attributable to changes in activation of the amygdala and perirhinal cortex during fear conditioning or expression. PMID:26820587

  2. Conditional expression of the type 2 angiotensin II receptor in mesenchymal stem cells inhibits neointimal formation after arterial injury.

    PubMed

    Feng, Jian; Liu, Jian-Ping; Miao, Li; He, Guo-Xiang; Li, De; Wang, Hai-Dong; Jing, Tao

    2014-10-01

    Percutaneous coronary interventions (PCIs) are an effective treatment for obstructive coronary artery diseases. However, the procedure's success is limited by remodeling and formation of neointima. In the present study, we engineered rat mesenchymal stem cells (MSCs) to express type 2 angiotensin II receptor (AT2R) using a tetracycline-regulated system that can strictly regulate AT2R expression. We tested the ability of the modified MSCs to reduce neointima formation following arterial injury. We subjected rats to balloon injury, and reverse transcriptase polymerase chain reaction (RT-PCR) indicated no significant AT2R expression in normal rat arteries. Low expression of AT2R was observed at 28 days after balloon-induced injury. Interestingly, MSCs alone were unable to reduce neointimal hyperplasia after balloon-induced injury; after transplantation of modified MSCs, doxycycline treatment significantly upregulated neointimal AT2R expression and inhibited osteopontin mRNA expression, as well as neointimal formation. Taken together, these results suggest that transplantation of MSCs conditionally expressing AT2R could effectively suppress neointimal hyperplasia following balloon-induced injury. Therefore, MSCs with a doxycycline-controlled gene induction system may be useful for the management of arterial injury after PCI.

  3. Generation of a mouse with conditionally activated signaling through the BMP receptor, ALK2.

    PubMed

    Fukuda, Tomokazu; Scott, Gregory; Komatsu, Yoshihiro; Araya, Runa; Kawano, Masako; Ray, Manas K; Yamada, Masahisa; Mishina, Yuji

    2006-04-01

    BMP signaling plays pleiotropic roles in various tissues. Transgenic mouse lines that overexpress BMP signaling in a tissue-specific manner would be beneficial; however, production of each tissue-specific transgenic mouse line is labor-intensive. Here, using a Cre-loxP system, we generated a conditionally overexpressing mouse line for BMP signaling through the type I receptor ALK2 (alternatively known as AVCRI, ActRI, or ActRIA). By mating this line with Cre-expression mouse lines, Cre-mediated recombination removes an intervening floxed lacZ expression cassette and thereby permits the expression of a constitutively active form of Alk2 (caAlk2) driven by a ubiquitous promoter, CAG. Tissue specificity of Cre recombination was monitored by a bicistronically expressed EGFP following Alk2 cDNA. Increased BMP signaling was confirmed by ectopic phosphorylation of SMAD1/5/8 in the areas where Cre recombination had occurred. The conditional overexpression system described here provides versatility in investigating gene functions in a tissue-specific manner without having to generate independent tissue-specific transgenic lines. Published 2006 Wiley-Liss, Inc.

  4. Resilience of bacterial quorum sensing against fluid flow

    NASA Astrophysics Data System (ADS)

    Emge, Philippe; Moeller, Jens; Jang, Hongchul; Rusconi, Roberto; Yawata, Yutaka; Stocker, Roman; Vogel, Viola

    2016-09-01

    Quorum sensing (QS) is a population-density dependent chemical process that enables bacteria to communicate based on the production, secretion and sensing of small inducer molecules. While recombinant constructs have been widely used to decipher the molecular details of QS, how those findings translate to natural QS systems has remained an open question. Here, we compare the activation of natural and synthetic Pseudomonas aeruginosa LasI/R QS systems in bacteria exposed to quiescent conditions and controlled flows. Quantification of QS-dependent GFP expression in suspended cultures and in surface-attached microcolonies revealed that QS onset in both systems was similar under quiescent conditions but markedly differed under flow. Moderate flow (Pe > 25) was sufficient to suppress LasI/R QS recombinantly expressed in Escherichia coli, whereas only high flow (Pe > 102) suppressed QS in wild-type P. aeruginosa. We suggest that this difference stems from the differential production of extracellular matrix and that the matrix confers resilience against moderate flow to QS in wild-type organisms. These results suggest that the expression of a biofilm matrix extends the environmental conditions under which QS-based cell-cell communication is effective and that findings from synthetic QS circuits cannot be directly translated to natural systems.

  5. Responses of the circadian system of rats to conditioned and unconditioned stimuli.

    PubMed

    de Groot, M H; Rusak, B

    2000-08-01

    The circadian systems of rodents respond to light pulses presented during the subjective night with phase shifts and altered cellular activity in the suprachiasmatic nuclei (SCN), including expression of immediate-early genes (IEGs) such as c-fos. A recent study showed that a nonphotic stimulus (an air disturbance generated by a fan) that does not normally induce the expression of c-fos-like immunoreactivity in the SCN of rats can be made to do so after being paired repeatedly with a light pulse in a Pavlovian conditioning paradigm. Furthermore, after conditioning (but not after noncontingent exposure to these stimuli), the fan also induced phase shifts in activity and body temperature rhythms comparable to those produced by light. The authors performed three experiments designed to replicate and extend these findings in rats. In experiment 1, rats were tested for conditioning effects of repeated pairings of a light pulse with a neutral air disturbance under a full photoperiod. In experiment 2, a modified conditioning paradigm was used in which a skeleton photoperiod served as both the entraining zeitgeber and the unconditioned stimulus. Animals in the paired and unpaired training conditions were exposed to both the light pulse and the air disturbance, but the air disturbance signaled the onset of light in the paired condition only. Phase shifts of wheel-running activity rhythms and gene expression in the SCN, intergeniculate leaflet, and paraventricular nucleus of the thalamus were assessed in animals following either of the training conditions or the control procedures. Experiment 3 assessed whether the air disturbance could entrain the circadian activity rhythms of rats with or without previous pairing with light in a classical conditioning paradigm. No evidence for classical conditioning, nor for unconditioned effects of the air disturbance on the circadian system, was found in these studies.

  6. Versatile control of Plasmodium falciparum gene expression with an inducible protein-RNA interaction

    PubMed Central

    Goldfless, Stephen J.; Wagner, Jeffrey C.; Niles, Jacquin C.

    2014-01-01

    The available tools for conditional gene expression in Plasmodium falciparum are limited. Here, to enable reliable control of target gene expression, we build a system to efficiently modulate translation. We overcame several problems associated with other approaches for regulating gene expression in P. falciparum. Specifically, our system functions predictably across several native and engineered promoter contexts, and affords control over reporter and native parasite proteins irrespective of their subcellular compartmentalization. Induction and repression of gene expression are rapid, homogeneous, and stable over prolonged periods. To demonstrate practical application of our system, we used it to reveal direct links between antimalarial drugs and their native parasite molecular target. This is an important out come given the rapid spread of resistance, and intensified efforts to efficiently discover and optimize new antimalarial drugs. Overall, the studies presented highlight the utility of our system for broadly controlling gene expression and performing functional genetics in P. falciparum. PMID:25370483

  7. Tunable Protein Stabilization In Vivo Mediated by Shield-1 in Transgenic Medaka

    PubMed Central

    Froschauer, Alexander; Kube, Lisa; Kegler, Alexandra; Rieger, Christiane; Gutzeit, Herwig O.

    2015-01-01

    Techniques for conditional gene or protein expression are important tools in developmental biology and in the analysis of physiology and disease. On the protein level, the tunable and reversible expression of proteins can be achieved by the fusion of the protein of interest to a destabilizing domain (DD). In the absence of its specific ligand (Shield-1), the protein is degraded by the proteasome. The DD-Shield system has proven to be an excellent tool to regulate the expression of proteins of interests in mammalian systems but has not been applied in teleosts like the medaka. We present the application of the DD-Shield technique in transgenic medaka and show the ubiquitous conditional expression throughout life. Shield-1 administration to the water leads to concentration-dependent induction of a YFP reporter gene in various organs and in spermatogonia at the cellular level. PMID:26148066

  8. Sensitivity of housekeeping genes in the suprachiasmatic nucleus of the mouse brain to diet and the daily light-dark cycle.

    PubMed

    Cleal, Jane K; Shepherd, James N; Shearer, Jasmine L; Bruce, Kimberley D; Cagampang, Felino R

    2014-08-05

    The endogenous timing system within the suprachiasmatic nuclei (SCN) of the hypothalamus drives the cyclic expression of the clock molecules across the 24h day-night cycle controlling downstream molecular pathways and physiological processes. The developing fetal clock system is sensitive to the environment and physiology of the pregnant mother and as such disruption of this system could lead to altered physiology in the offspring. Characterizing the gene profiles of the endogenous molecular clock system by quantitative reverse transcription polymerase chain reaction is dependent on normalization by appropriate housekeeping genes (HKGs). However, many HKGs commonly used as internal controls, although stably expressed under control conditions, can vary significantly in their expression under certain experimental conditions. Here we analyzed the expression of 10 classic HKG across the 24h light-dark cycle in the SCN of mouse offspring exposed to normal chow or a high fat diet during early development and in postnatal life. We found that the HKGs glyceraldehyde-3-phosphate dehydrogenase, beta actin and adenosine triphosphate synthase subunit to be the most stably expressed genes in the SCN regardless of diet or time within the 24h light-dark cycle, and are therefore suitable to be used as internal controls. However SCN samples collected during the light and dark periods did show differences in expression and as such the timing of collection should be considered when carrying out gene expression studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Ntann12 annexin expression is induced by auxin in tobacco roots

    PubMed Central

    Baucher, Marie; Oukouomi Lowe, Yves; Vandeputte, Olivier M.; Mukoko Bopopi, Johnny; Moussawi, Jihad; Vermeersch, Marjorie; Mol, Adeline; El Jaziri, Mondher; Homblé, Fabrice; Pérez-Morga, David

    2011-01-01

    Ntann12, encoding a polypeptide homologous to annexins, was found previously to be induced upon infection of tobacco with the bacterium Rhodococcus fascians. In this study, Ntann12 is shown to bind negatively charged phospholipids in a Ca2+-dependent manner. In plants growing in light conditions, Ntann12 is principally expressed in roots and the corresponding protein was mainly immunolocalized in the nucleus. Ntann12 expression was inhibited following plant transfer to darkness and in plants lacking the aerial part. However, an auxin (indole-3-acetic acid) treatment restored the expression of Ntann12 in the root system in dark conditions. Conversely, polar auxin transport inhibitors such as 1-naphthylphthalamic acid (NPA) or 2,3,5-triiodobenzoic acid (TIBA) inhibited Ntann12 expression in light condition. These results indicate that the expression of Ntann12 in the root is linked to the perception of a signal in the aerial part of the plant that is transmitted to the root via polar auxin transport. PMID:21543519

  10. HSF-1, HIF-1and HSP90 expression on recombinant Pichia pastoris under fed-batch fermentation

    PubMed Central

    Zepeda, Andrea B.; Figueroa, Carolina A.; Abdalla, Dulcineia S.P.; Maranhão, Andrea Q.; Ulloa, Patricio H.; Pessoa, Adalberto; Farías, Jorge G.

    2014-01-01

    Pichia pastoris is a methylotrophic yeast used as an efficient expression system for heterologous protein production as compared to other expression systems. Considering that every cell must respond to environmental changes to survive and differentiate, determination of endogenous protein related to heat stress responses and hypoxia, it would necessary to establish the temperature and methanol concentration conditions for optimal growth. The aim of this study is characterize the culture conditions through the putative biomarkers in different conditions of temperature and methanol concentration. Three yeast cultures were performed: 3X = 3% methanol −10 °C, 4X = 3% methanol −30 °C, and 5X = 1% methanol −10 °C. The expression level of HIF-1α, HSF-1, HSP-70 and HSP-90 biomarkers were measured by Western blot and in situ detection was performed by immunocytochemistry. The western blot results of HIF-1α and HSP-90 did not indicate statistically significant in the culture conditions studied. Respect to biomarkers location, HIF-1α and HSP-90 presented differences between cultures. In conclusion, the results suggest the cultures in a hypoxic condition produce a high density and yeast cells smaller. Beside the high density would not necessary related with a high production of recombinant proteins in modified-genetically P. pastoris. PMID:25242931

  11. Systemic propranolol acts centrally to reduce conditioned fear in rats without impairing extinction.

    PubMed

    Rodriguez-Romaguera, Jose; Sotres-Bayon, Francisco; Mueller, Devin; Quirk, Gregory J

    2009-05-15

    Previous work has implicated noradrenergic beta-receptors in the consolidation and reconsolidation of conditioned fear. Less is known, however, about their role in fear expression and extinction. The beta-receptor blocker propranolol has been used clinically to reduce anxiety. With an auditory fear conditioning task in rats, we assessed the effects of systemic propranolol on the expression and extinction of two measures of conditioned fear: freezing and suppression of bar-pressing. One day after receiving auditory fear conditioning, rats were injected with saline, propranolol, or peripheral beta-receptor blocker sotalol (both 10 mg/kg, IP). Twenty minutes after injection, rats were given either 6 or 12 extinction trials and were tested for extinction retention the following day. The effect of propranolol on the firing rate of neurons in prelimbic (PL) prefrontal cortex was also assessed. Propranolol reduced freezing by more than 50%, an effect that was evident from the first extinction trial. Suppression was also significantly reduced. Despite this, propranolol had no effect on the acquisition or retention of extinction. Unlike propranolol, sotalol did not affect fear expression, although both drugs significantly reduced heart rate. This suggests that propranolol acts centrally to reduce fear. Consistent with this, propranolol reduced the firing rate of PL neurons. Propranolol reduced the expression of conditioned fear, without interfering with extinction learning. Reduced fear with intact extinction suggests a possible use for propranolol in reducing anxiety during extinction-based exposure therapies, without interfering with long-term clinical response.

  12. Cannabinoid agonists and antagonists modulate lithium-induced conditioned gaping in rats.

    PubMed

    Parker, Linda A; Mechoulam, Raphael

    2003-01-01

    Considerable evidence indicates that conditioned gaping in rats reflects nausea in this species that does not vomit. A series of experiments evaluated the potential of psychoactive cannabinoid agonists, delta-9-THC and HU-210, and non-psychoactive cannabinoids, Cannabidiol (CBD) and its dimethylheptyl homolog (CBD-dmh), to interfere with the establishment and the expression of conditioned gaping in rats. All agents attenuated both the establishment and the expression of conditioned gaping. Furthermore, the CB1 antagonist, SR-141716, reversed the suppressive effect of HU-210 on conditioned gaping. Finally, SR-141716 potentiated lithium-induced conditioned gaping, suggesting that the endogenous cannabinoid system plays a role in the control of nausea.

  13. Dopamine D2-like receptors modulate freezing response, but not the activation of HPA axis, during the expression of conditioned fear.

    PubMed

    de Oliveira, Amanda R; Reimer, Adriano E; Reis, Fernando M C V; Brandão, Marcus L

    2017-02-01

    Considering the complexity of aversive information processing and defensive response expression, a combined action of stress modulators may be required for an optimal performance during threatening situations. Dopamine is now recognized as one of the most active modulators underlying states of fear and anxiety. On the other hand, activation of hypothalamic-pituitary-adrenocortical (HPA) axis, which leads to the release of corticosterone in rodents, has been considered a key part of the stress response. The current study is an extension of prior work investigating modulatory effects of dopamine and corticosterone on conditioned fear expression. We have showed that corticosterone, acting through mineralocorticoid receptors in the ventral tegmental area (VTA), upregulates dopaminergic system in the basolateral amygdala (BLA), enabling the expression of conditioned freezing response. The novel question addressed here is whether VTA-BLA dopaminergic signaling is necessary for increases in corticosterone during conditioned fear expression. Using site-specific treatment with D 2 -like agonist quinpirole (VTA) and D 2 -like antagonist sulpiride (BLA), we evaluated freezing and plasma corticosterone in rats exposed to a light used as aversive conditioned stimulus (CS). Intra-VTA quinpirole and intra-BLA sulpiride significantly decreased freezing expression in the conditioned fear test, but this anxiolytic-like effect of the dopaminergic drugs was not associated with changes in plasma corticosterone concentrations. Altogether, data suggest that interferences with the ability of the CS to activate the dopaminergic VTA-BLA pathway reduce the expression of freezing, but activation of the HPA axis seems to occur upstream of the recruitment of dopaminergic mechanisms in conditioned fear states.

  14. Octopaminergic gene expression and flexible social behaviour in the subsocial burying beetle Nicrophorus vespilloides

    PubMed Central

    Cunningham, C B; Douthit, M K; Moore, A J

    2014-01-01

    Flexible behaviour allows organisms to respond appropriately to changing environmental and social conditions. In the subsocial beetle Nicrophorus vespilloides, females tolerate conspecifics when mating, become aggressive when defending resources, and return to social tolerance when transitioning to parenting. Given the association between octopamine and aggression in insects, we hypothesized that genes in the octopaminergic system would be differentially expressed across different social and reproductive contexts. To test this in N. vespilloides, we first obtained the sequences of orthologues of the synthetic enzymes and receptors of the octopaminergic system. We next compared relative gene expression from virgin females, mated females, mated females alone on a resource required for reproduction and mated females on a resource with a male. Expression varied for five receptor genes. The expression of octopamine β receptor 1 and octopamine β receptor 2 was relatively higher in mated females than in other social conditions. Octopamine β receptor 3 was influenced by the presence or absence of a resource and less by social environment. Octopamine α receptor and octopamine/tyramine receptor 1 gene expression was relatively lower in the mated females with a resource and a male. We suggest that in N. vespilloides the octopaminergic system is associated with the expression of resource defence, alternative mating tactics, social tolerance and indirect parental care. PMID:24646461

  15. Optimization of conditions for transient Agrobacterium-mediated gene expression assays in Arabidopsis.

    PubMed

    Kim, Mi Jung; Baek, Kon; Park, Chung-Mo

    2009-08-01

    Transient genetic transformation of plant organs is an indispensable way of studying gene function in plants. This study was aimed to develop an optimized system for transient Agrobacterium-mediated transformation of the Arabidopsis leaves. The beta-glucuronidase (GUS) reporter gene was employed to evaluate growth and biochemical parameters that influence the levels of transient expression. The effects of plant culture conditions, Agrobacterial genetic backgrounds, densities of Agrobacterial cell suspensions, and of several detergents were analyzed. We found that optimization of plant culture conditions is the most critical factor among the parameters analyzed. Higher levels of transient expression were observed in plants grown under short day conditions (SDs) than in plants grown under long day conditions (LDs). Furthermore, incubation of the plants under SDs at high relative humidity (85-90%) for 24 h after infiltration greatly improved the levels of transient expression. Under the optimized culture conditions, expression of the reporter gene reached the peak 3 days after infiltration and was rapidly decreased after the peak. Among the five Agrobacterial strains examined, LAB4404 produced the highest levels of expression. We also examined the effects of detergents, including Triton X-100, Tween-20, and Silwet L-77. Supplementation of the infiltration media either with 0.01% Triton X-100 or 0.01% Tween-20 improved the levels of expression by approximately 1.6-fold. Our observations indicate that transient transformation of the Arabidopsis leaves in the infiltration media supplemented with 0.01% Triton X-100 and incubation of the infiltrated plants under SDs at high relative humidity are necessary for maximal levels of expression.

  16. Expression of enzymes in yeast for lignocellulose derived oligomer CBP

    DOEpatents

    McBride, John E.; Wiswall, Erin; Shikhare, Indraneel; Xu, Haowen; Thorngren, Naomi; Hau, Heidi H.; Stonehouse, Emily

    2017-08-29

    The present invention provides a multi-component enzyme system that hydrolyzes hemicellulose oligomers from hardwood which can be expressed, for example, in yeast such as Saccharomyces cerevisiae. In some embodiments, this invention provides for the engineering of a series of biocatalysts combining the expression and secretion of components of this enzymatic system with robust, rapid xylose utilization, and ethanol fermentation under industrially relevant process conditions for consolidated bioprocessing. In some embodiments, the invention utilizes co-cultures of strains that can achieve significantly improved performance due to the incorporation of additional enzymes in the fermentation system.

  17. An Independent Construct for Conditional Expression of Atonal Homolog-1

    PubMed Central

    Cheng, Yen-fu; Kinouchi, Hikaru; Bieber, Rebecca; Edge, Albert S.B.

    2014-01-01

    Abstract The mammalian homolog of the basic helix-loop-helix transcription factor atonal-1 (Atoh1 or Math1) is required for development of cochlear hair cells that function as the mechanosensory cells required for audition. Forced expression of Atoh1 in cochlear-supporting cells may provide a way to regenerate hair cells and provide for a therapy for hearing loss. Additionally, Atoh1 is an inhibitor of proliferation and has further clinical applications in anticancer therapies. The goal of these experiments was to improve the method for Atoh1 expression by engineering a genetic construct that may be used in future translational applications. To address the poor control of Atoh1 expression in standard gene expression systems where Atoh1 is expressed constitutively at abnormally elevated levels, our aim was to engineer an inducible system whereby Atoh1 was upregulated by an inducer and downregulated once the inducer was removed. A further aim was to engineer a single genetic construct that allowed for conditional expression of Atoh1 independent of secondary regulatory elements. Here we describe a stand-alone genetic construct that utilizes the tamoxifen sensitivity of a mutated estrogen receptor (ER) ligand-binding domain for the conditional expression of Atoh1. The Atoh1-ER-DsRed construct is translated into an ATOH1-ER-DSRED fusion protein that remains sequestered in the cytoplasm and therefore rendered inactive because it cannot enter the nucleus to activate Atoh1 signaling pathways. However, application of 4-hydroxytamoxifen results in translocation of the fusion protein to the nucleus, where it binds to the Atoh1 enhancer, upregulates transcription and translation of endogenous ATOH1 and activates downstream Atoh1 signaling such as upregulation of the hair cell protein MYOSIN 7A. Removal of tamoxifen reverses the upregulation of endogenous Atoh1 signaling. This construct serves as an independent genetic construct that allows for the conditional upregulation and downregulation of Atoh1, and may prove useful for manipulating Atoh1 expression in vivo. PMID:24066662

  18. Single-cell characterization of metabolic switching in the sugar phosphotransferase system of Escherichia coli.

    PubMed

    Westermayer, Sonja A; Fritz, Georg; Gutiérrez, Joaquín; Megerle, Judith A; Weißl, Mira P S; Schnetz, Karin; Gerland, Ulrich; Rädler, Joachim O

    2016-05-01

    The utilization of several sugars in Escherichia coli is regulated by the Phosphotransferase System (PTS), in which diverse sugar utilization modules compete for phosphoryl flux from the general PTS proteins. Existing theoretical work predicts a winner-take-all outcome when this flux limits carbon uptake. To date, no experimental work has interrogated competing PTS uptake modules with single-cell resolution. Using time-lapse microscopy in perfused microchannels, we analyzed the competition between N-acetyl-glucosamine and sorbitol, as representative PTS sugars, by measuring both the expression of their utilization systems and the concomitant impact of sugar utilization on growth rates. We find two distinct regimes: hierarchical usage of the carbohydrates, and co-expression of the genes for both systems. Simulations of a mathematical model incorporating asymmetric sugar quality reproduce our metabolic phase diagram, indicating that under conditions of nonlimiting phosphate flux, co-expression is due to uncoupling of both sugar utilization systems. Our model reproduces hierarchical winner-take-all behaviour and stochastic co-expression, and predicts the switching between both strategies as a function of available phosphate flux. Hence, experiments and theory both suggest that PTS sugar utilization involves not only switching between the sugars utilized but also switching of utilization strategies to accommodate prevailing environmental conditions. © 2016 John Wiley & Sons Ltd.

  19. Transcriptome Analysis of ABA/JA-Dual Responsive Genes in Rice Shoot and Root.

    PubMed

    Kim, Jin-Ae; Bhatnagar, Nikita; Kwon, Soon Jae; Min, Myung Ki; Moon, Seok-Jun; Yoon, In Sun; Kwon, Taek-Ryoun; Kim, Sun Tae; Kim, Beom-Gi

    2018-01-01

    The phytohormone abscisic acid (ABA) enables plants to adapt to adverse environmental conditions through the modulation of metabolic pathways and of growth and developmental programs. We used comparative microarray analysis to identify genes exhibiting ABA-dependent expression and other hormone-dependent expression among them in Oryza sativa shoot and root. We identified 854 genes as significantly up- or down-regulated in root or shoot under ABA treatment condition. Most of these genes had similar expression profiles in root and shoot under ABA treatment condition, whereas 86 genes displayed opposite expression responses in root and shoot. To examine the crosstalk between ABA and other hormones, we compared the expression profiles of the ABA-dependently regulated genes under several different hormone treatment conditions. Interestingly, around half of the ABA-dependently expressed genes were also regulated by jasmonic acid based on microarray data analysis. We searched the promoter regions of these genes for cis-elements that could be responsible for their responsiveness to both hormones, and found that ABRE and MYC2 elements, among others, were common to the promoters of genes that were regulated by both ABA and JA. These results show that ABA and JA might have common gene expression regulation system and might explain why the JA could function for both abiotic and biotic stress tolerance.

  20. Expression systems for therapeutic glycoprotein production.

    PubMed

    Durocher, Yves; Butler, Michael

    2009-12-01

    There are slightly over 165 recombinant pharmaceuticals currently approved for human use. Another 500 protein candidates are in preclinical and clinical development, about 70% of these being glycosylated proteins. The need for expression systems allowing the efficient manufacturing of high quality glycoproteins is thus becoming imperative. Recent developments with CHO cells, the predominant mammalian expression system, have focused on either increasing cell specific productivity or prolonging the life span of cells in culture that translates to high integrated viable cell densities. These two factors have allowed volumetric productivities in excess of 5 g/L under conditions of controlled nutrient feeding. In addition to glycoengineering strategies, which are offering considerable advantage in producing proteins with enhanced therapeutic properties, several alternative expression systems are being developed for their manufacture, each with their advantages and limitations.

  1. Heterologous expression of a recombinant lactobacillal β-galactosidase in Lactobacillus plantarum: effect of different parameters on the sakacin P-based expression system.

    PubMed

    Nguyen, Tien-Thanh; Nguyen, Hoang-Minh; Geiger, Barbara; Mathiesen, Geir; Eijsink, Vincent G H; Peterbauer, Clemens K; Haltrich, Dietmar; Nguyen, Thu-Ha

    2015-03-07

    Two overlapping genes lacL and lacM (lacLM) encoding for heterodimeric β-galactosidase from Lactobacillus reuteri were previously cloned and over-expressed in the food-grade host strain Lactobacillus plantarum WCFS1, using the inducible lactobacillal pSIP expression system. In this study, we analyzed different factors that affect the production of recombinant L. reuteri β-galactosidase. Various factors related to the cultivation, i.e. culture pH, growth temperature, glucose concentration, as well as the induction conditions, including cell concentration at induction point and inducer concentration, were tested. Under optimal fermentation conditions, the maximum β-galactosidase levels obtained were 130 U/mg protein and 35-40 U/ml of fermentation broth corresponding to the formation of approximately 200 mg of recombinant protein per litre of fermentation medium. As calculated from the specific activity of the purified enzyme (190 U/mg), β-galactosidase yield amounted to roughly 70% of the total soluble intracellular protein of the host organism. It was observed that pH and substrate (glucose) concentration are the most prominent factors affecting the production of recombinant β-galactosidase. The over-expression of recombinant L. reuteri β-galactosidase in a food-grade host strain was optimized, which is of interest for applications of this enzyme in the food industry. The results provide more detailed insight into these lactobacillal expression systems and confirm the potential of the pSIP system for efficient, tightly controlled expression of enzymes and proteins in lactobacilli.

  2. Strand-specific RNA-seq analysis of the Lactobacillus delbrueckii subsp. bulgaricus transcriptome.

    PubMed

    Zheng, Huajun; Liu, Enuo; Shi, Tao; Ye, Luyi; Konno, Tomonobu; Oda, Munehiro; Ji, Zai-Si

    2016-02-01

    Lactobacillus delbrueckii subsp. bulgaricus 2038 (Lb. bulgaricus 2038) is an industrial bacterium that is used as a starter for dairy products. We proposed several hypotheses concerning its industrial features previously. Here, we utilized RNA-seq to explore the transcriptome of Lb. bulgaricus 2038 from four different growth phases under whey conditions. The most abundantly expressed genes in the four stages were mainly involved in translation (for the logarithmic stage), glycolysis (for control/lag stages), lactic acid production (all the four stages), and 10-formyl tetrahydrofolate production (for the stationary stage). The high expression of genes like d-lactate dehydrogenase was thought as a result of energy production, and consistent expression of EPS synthesis genes, the restriction-modification (RM) system and the CRISPR/Cas system were validated for explaining the advantage of this strain in yoghurt production. Several postulations, like NADPH production through GapN bypass, converting aspartate into carbon-skeleton intermediates, and formate production through degrading GTP, were proved not working under these culture conditions. The high expression of helicase genes and co-expressed amino acids/oligopeptides transporting proteins indicated that the helicase might mediate the strain obtaining nitrogen source from the environment. The transport system of Lb. bulgaricus 2038 was found to be regulated by antisense RNA, hinting the potential application of non-coding RNA in regulating lactic acid bacteria (LAB) gene expression. Our study has primarily uncovered Lb. bulgaricus 2038 transcriptome, which could gain a better understanding of the regulation system in Lb. bulgaricus and promote its industrial application.

  3. Efficient conditional and promoter-specific in vivo expression of cDNAs of choice by taking advantage of recombinase-mediated cassette exchange using FlEx gene traps

    PubMed Central

    Schebelle, Laura; Wolf, Claudia; Stribl, Carola; Javaheri, Tahereh; Schnütgen, Frank; Ettinger, Andreas; Ivics, Zoltán; Hansen, Jens; Ruiz, Patricia; von Melchner, Harald; Wurst, Wolfgang; Floss, Thomas

    2010-01-01

    Recombinase-mediated cassette exchange (RMCE) exploits the possibility to unidirectionally exchange any genetic material flanked by heterotypic recombinase recognition sites (RRS) with target sites in the genome. Due to a limited number of available pre-fabricated target sites, RMCE in mouse embryonic stem (ES) cells has not been tapped to its full potential to date. Here, we introduce a universal system, which allows the targeted insertion of any given transcriptional unit into 85 742 previously annotated retroviral conditional gene trap insertions, representing 7013 independent genes in mouse ES cells, by RMCE. This system can be used to express any given cDNA under the control of endogenous trapped promoters in vivo, as well as for the generation of transposon ‘launch pads’ for chromosomal region-specific ‘Sleeping Beauty’ insertional mutagenesis. Moreover, transcription of the gene-of-interest is only activated upon Cre-recombinase activity, a feature that adds conditionality to this expression system, which is demonstrated in vivo. The use of the RMCE system presented in this work requires one single-cloning step followed by one overnight gateway clonase reaction and subsequent cassette exchange in ES cells with efficiencies of 40% in average. PMID:20139417

  4. Microbial expression of alkaloid biosynthetic enzymes for characterization of their properties.

    PubMed

    Minami, Hiromichi; Ikezawa, Nobuhiro; Sato, Fumihiko

    2010-01-01

    A wide variety of secondary metabolites are produced in higher plants. These metabolites are synthesized in specific organs/cells at certain developmental stages and/or under specific environmental conditions. Since these biosynthetic activities are rather restricted and difficult to detect, the biochemical characterization of biosynthetic enzymes involved in secondary metabolism has been limited compared to those involved in primary metabolism. Recently, however, progress in tissue culture and molecular biology has made it easier to study biosynthetic enzymes. Here we describe protocols for expressing some biosynthetic enzymes in Escherichia coli expression systems, since this system is both efficient and cost-effective. First, we describe a standard system for expressing biosynthetic enzymes as a soluble protein under the T7 promoter of the pET expression system in E. coli. In addition, the successful expression of cytochrome P450 in E. coli in an active soluble form with N-terminal modification is discussed, since P450 is the critical enzyme in secondary metabolite biosynthesis.

  5. ATNT: an enhanced system for expression of polycistronic secondary metabolite gene clusters in Aspergillus niger.

    PubMed

    Geib, Elena; Brock, Matthias

    2017-01-01

    Fungi are treasure chests for yet unexplored natural products. However, exploitation of their real potential remains difficult as a significant proportion of biosynthetic gene clusters appears silent under standard laboratory conditions. Therefore, elucidation of novel products requires gene activation or heterologous expression. For heterologous gene expression, we previously developed an expression platform in Aspergillus niger that is based on the transcriptional regulator TerR and its target promoter P terA . In this study, we extended this system by regulating expression of terR  by the doxycycline inducible Tet-on system. Reporter genes cloned under the control of the target promoter P terA remained silent in the absence of doxycycline, but were strongly expressed when doxycycline was added. Reporter quantification revealed that the coupled system results in about five times higher expression rates compared to gene expression under direct control of the Tet-on system. As production of secondary metabolites generally requires the expression of several biosynthetic genes, the suitability of the self-cleaving viral peptide sequence P2A was tested in this optimised expression system. P2A allowed polycistronic expression of genes required for Asp-melanin formation in combination with the gene coding for the red fluorescent protein tdTomato. Gene expression and Asp-melanin formation was prevented in the absence of doxycycline and strongly induced by addition of doxycycline. Fluorescence studies confirmed the correct subcellular localisation of the respective enzymes. This tightly regulated but strongly inducible expression system enables high level production of secondary metabolites most likely even those with toxic potential. Furthermore, this system is compatible with polycistronic gene expression and, thus, suitable for the discovery of novel natural products.

  6. Ultrastructural localisation of protein interactions using conditionally stable nanobodies.

    PubMed

    Ariotti, Nicholas; Rae, James; Giles, Nichole; Martel, Nick; Sierecki, Emma; Gambin, Yann; Hall, Thomas E; Parton, Robert G

    2018-04-01

    We describe the development and application of a suite of modular tools for high-resolution detection of proteins and intracellular protein complexes by electron microscopy (EM). Conditionally stable GFP- and mCherry-binding nanobodies (termed csGBP and csChBP, respectively) are characterized using a cell-free expression and analysis system and subsequently fused to an ascorbate peroxidase (APEX) enzyme. Expression of these cassettes alongside fluorescently labelled proteins results in recruitment and stabilisation of APEX, whereas unbound APEX nanobodies are efficiently degraded by the proteasome. This greatly simplifies correlative analyses, enables detection of less-abundant proteins, and eliminates the need to balance expression levels between fluorescently labelled and APEX nanobody proteins. Furthermore, we demonstrate the application of this system to bimolecular complementation ('EM split-fluorescent protein'), for localisation of protein-protein interactions at the ultrastructural level.

  7. Ultrastructural localisation of protein interactions using conditionally stable nanobodies

    PubMed Central

    Ariotti, Nicholas; Rae, James; Giles, Nichole; Martel, Nick; Sierecki, Emma; Gambin, Yann; Parton, Robert G.

    2018-01-01

    We describe the development and application of a suite of modular tools for high-resolution detection of proteins and intracellular protein complexes by electron microscopy (EM). Conditionally stable GFP- and mCherry-binding nanobodies (termed csGBP and csChBP, respectively) are characterized using a cell-free expression and analysis system and subsequently fused to an ascorbate peroxidase (APEX) enzyme. Expression of these cassettes alongside fluorescently labelled proteins results in recruitment and stabilisation of APEX, whereas unbound APEX nanobodies are efficiently degraded by the proteasome. This greatly simplifies correlative analyses, enables detection of less-abundant proteins, and eliminates the need to balance expression levels between fluorescently labelled and APEX nanobody proteins. Furthermore, we demonstrate the application of this system to bimolecular complementation (‘EM split-fluorescent protein’), for localisation of protein–protein interactions at the ultrastructural level. PMID:29621251

  8. Hypoxia-inducible vascular endothelial growth factor gene therapy using the oxygen-dependent degradation domain in myocardial ischemia.

    PubMed

    Kim, Hyun Ah; Lim, Soyeon; Moon, Hyung-Ho; Kim, Sung Wan; Hwang, Ki-Chul; Lee, Minhyung; Kim, Sun Hwa; Choi, Donghoon

    2010-10-01

    A hypoxia-inducible VEGF expression system with the oxygen-dependent degradation (ODD) domain was constructed and tested to be used in gene therapy for ischemic myocardial disease. Luciferase and VEGF expression vector systems were constructed with or without the ODD domain: pEpo-SV-Luc (or pEpo-SV-VEGF) and pEpo-SV-Luc-ODD (or pEpo-SV-VEGF-ODD). In vitro gene expression efficiency of each vector type was evaluated in HEK 293 cells under both hypoxic and normoxic conditions. The amount of VEGF protein was estimated by ELISA. The VEGF expression vectors with or without the ODD domain were injected into ischemic rat myocardium. Fibrosis, neovascularization, and cardiomyocyte apoptosis were assessed using Masson's trichrome staining, α-smooth muscle actin (α-SMA) immunostaining, and the TUNEL assay, respectively. The plasmid vectors containing ODD significantly improved the expression level of VEGF protein in hypoxic conditions. The enhancement of VEGF protein production was attributed to increased protein stability due to oxygen deficiency. In a rat model of myocardial ischemia, the pEpo-SV-VEGF-ODD group exhibited less myocardial fibrosis, higher microvessel density, and less cardiomyocyte apoptosis compared to the control groups (saline and pEpo-SV-VEGF treatments). An ODD-mediated VEGF expression system that facilitates VEGF-production under hypoxia may be useful in the treatment of ischemic heart disease.

  9. Role of the Oxytocin Receptor Expressed in the Rostral Medullary Raphe in Thermoregulation During Cold Conditions

    PubMed Central

    Kasahara, Yoshiyuki; Tateishi, Yuko; Hiraoka, Yuichi; Otsuka, Ayano; Mizukami, Hiroaki; Ozawa, Keiya; Sato, Keisuke; Hidema, Shizu; Nishimori, Katsuhiko

    2015-01-01

    Recent papers have reported that oxytocin (Oxt) and the oxytocin receptor (Oxtr) may be involved in the regulation of food intake in mammals. We therefore suspected the Oxt/Oxtr system to be involved in energy homeostasis. In previous studies, we found a tendency toward obesity in Oxtr-deficient (Oxtr−/−) mice, as well as impaired thermoregulation when these mice were exposed to cold conditions. In the present study, we observed the expression of Oxtr in the rostral medullary raphe (RMR), the brain region known to control thermogenesis in brown adipose tissue (BAT). Through immunohistochemistry, we detected neurons expressing Oxtr and c-Fos in the RMR of mice exposed to cold conditions. Up to 40% of Oxtr-positive neurons in RMR were classified as glutamatergic neurons, as shown by immunostaining using anti-VGLUT3 antibody. In addition, mice with exclusive expression of Oxtr in the RMR were generated by injecting an AAV-Oxtr vector into the RMR region of Oxtr−/− mice. We confirmed the recovery of thermoregulatory ability in the manipulated mice during exposure to cold conditions. Moreover, mice with RMR-specific expression of Oxtr lost the typical morphological change in BAT observed in Oxtr−/− mice. Additionally, increased expression of the β3-adrenergic receptor gene, Adrb3, was observed in BAT. These results are the first to show the critical role of RMR Oxtr expression in thermoregulation during cold conditions. PMID:26635729

  10. Altered LARK Expression Perturbs Development and Physiology of the Drosophila PDF Clock Neurons

    PubMed Central

    Huang, Yanmei; Howlett, Eric; Stern, Michael; Jackson, F. Rob

    2009-01-01

    The LARK RNA-binding protein (RBP) has well documented roles in the circadian systems of Drosophila and mammals. Recent studies have demonstrated that the Drosophila LARK RBP is associated with many mRNA targets, in vivo, including those that regulate either neurophysiology or development of the nervous system. In the present study, we have employed conditional expression techniques to distinguish developmental and physiological functions of LARK for a defined class of neurons: the Pigment Dispersing Factor (PDF)-containing LNv clock neurons. We found that increased LARK expression during development dramatically alters the small LNv class of neurons with no obvious effects on the large LNv cells. Conversely, conditional expression of LARK at the adult stage results in altered clock protein rhythms and circadian locomotor activity, even though neural morphology is normal in such animals. Electrophysiological analyses at the larval neuromuscular junction indicate a role for LARK in regulating neuronal excitability. Altogether, our results demonstrate that LARK activity is critical for neuronal development and physiology. PMID:19303442

  11. Use of Brevibacillus choshinensis for the production of biologically active brain-derived neurotrophic factor (BDNF).

    PubMed

    Angart, Phillip A; Carlson, Rebecca J; Thorwall, Sarah; Patrick Walton, S

    2017-07-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family critical for neuronal cell survival and differentiation, with therapeutic potential for the treatment of neurological disorders and spinal cord injuries. The production of recombinant, bioactive BDNF is not practical in most traditional microbial expression systems because of the inability of the host to correctly form the characteristic cystine-knot fold of BDNF. Here, we investigated Brevibacillus choshinensis as a suitable expression host for bioactive BDNF expression, evaluating the effects of medium type (2SY and TM), temperature (25 and 30 °C), and culture time (48-120 h). Maximal BDNF bioactivity (per unit mass) was observed in cultures grown in 2SY medium at extended times (96 h at 30 °C or >72 h at 25 °C), with resulting bioactivity comparable to that of a commercially available BDNF. For cultures grown in 2SY medium at 25 °C for 72 h, the condition that led to the greatest quantity of biologically active protein in the shortest culture time, we recovered 264 μg/L of BDNF. As with other microbial expression systems, BDNF aggregates did form in all culture conditions, indicating that while we were able to recover biologically active BDNF, further optimization of the expression system could yield still greater quantities of bioactive protein. This study provides confirmation that B. choshinensis is capable of producing biologically active BDNF and that further optimization of culture conditions could prove valuable in increasing BDNF yields.

  12. The mazEF toxin-antitoxin system as an attractive target in clinical isolates of Enterococcus faecium and Enterococcus faecalis.

    PubMed

    Soheili, Sara; Ghafourian, Sobhan; Sekawi, Zamberi; Neela, Vasantha Kumari; Sadeghifard, Nourkhoda; Taherikalani, Morovat; Khosravi, Afra; Ramli, Ramliza; Hamat, Rukman Awang

    2015-01-01

    The toxin-antitoxin (TA) system is a regulatory system where two sets of genes encode the toxin and its corresponding antitoxin. In this study, the prevalence of TA systems in independently isolated clinical isolates of Enterococcus faecium and Enterococcus faecalis was determined, the dominant TA system was identified, different virulence genes in E. faecium and E. faecalis were surveyed, the level of expression of the virulence and TA genes in normal and stress conditions was determined, and finally their associations with the TA genes were defined. Remarkably, the analysis demonstrated higBA and mazEF in all clinical isolates, and their locations were on chromosomes and plasmids, respectively. On the other hand, a quantitative analysis of TA and virulence genes revealed that the expression level in both genes is different under normal and stress conditions. The results obtained by anti-mazF peptide nucleic acids demonstrated that the expression level of virulence genes had decreased. These findings demonstrate an association between TA systems and virulence factors. The mazEF on the plasmids and the higBA TA genes on the chromosomes of all E. faecium and E. faecalis strains were dominant. Additionally, there was a decrease in the expression of virulence genes in the presence of anti-mazF peptide nucleic acids. Therefore, it is suggested that mazEF TA systems are potent and sensitive targets in all E. faecium and E. faecalis strains.

  13. The mazEF toxin–antitoxin system as an attractive target in clinical isolates of Enterococcus faecium and Enterococcus faecalis

    PubMed Central

    Soheili, Sara; Ghafourian, Sobhan; Sekawi, Zamberi; Neela, Vasantha Kumari; Sadeghifard, Nourkhoda; Taherikalani, Morovat; Khosravi, Afra; Ramli, Ramliza; Hamat, Rukman Awang

    2015-01-01

    The toxin–antitoxin (TA) system is a regulatory system where two sets of genes encode the toxin and its corresponding antitoxin. In this study, the prevalence of TA systems in independently isolated clinical isolates of Enterococcus faecium and Enterococcus faecalis was determined, the dominant TA system was identified, different virulence genes in E. faecium and E. faecalis were surveyed, the level of expression of the virulence and TA genes in normal and stress conditions was determined, and finally their associations with the TA genes were defined. Remarkably, the analysis demonstrated higBA and mazEF in all clinical isolates, and their locations were on chromosomes and plasmids, respectively. On the other hand, a quantitative analysis of TA and virulence genes revealed that the expression level in both genes is different under normal and stress conditions. The results obtained by anti-mazF peptide nucleic acids demonstrated that the expression level of virulence genes had decreased. These findings demonstrate an association between TA systems and virulence factors. The mazEF on the plasmids and the higBA TA genes on the chromosomes of all E. faecium and E. faecalis strains were dominant. Additionally, there was a decrease in the expression of virulence genes in the presence of anti-mazF peptide nucleic acids. Therefore, it is suggested that mazEF TA systems are potent and sensitive targets in all E. faecium and E. faecalis strains. PMID:26005332

  14. Transcriptional Profiling of Type II Toxin-Antitoxin Genes of Helicobacter pylori under Different Environmental Conditions: Identification of HP0967-HP0968 System.

    PubMed

    Cárdenas-Mondragón, María G; Ares, Miguel A; Panunzi, Leonardo G; Pacheco, Sabino; Camorlinga-Ponce, Margarita; Girón, Jorge A; Torres, Javier; De la Cruz, Miguel A

    2016-01-01

    Helicobacter pylori is a Gram-negative bacterium that colonizes the human gastric mucosa and is responsible for causing peptic ulcers and gastric carcinoma. The expression of virulence factors allows the persistence of H. pylori in the stomach, which results in a chronic, sometimes uncontrolled inflammatory response. Type II toxin-antitoxin (TA) systems have emerged as important virulence factors in many pathogenic bacteria. Three type II TA systems have previously been identified in the genome of H. pylori 26695: HP0315-HP0316, HP0892-HP0893, and HP0894-HP0895. Here we characterized a heretofore undescribed type II TA system in H. pylori , HP0967-HP0968, which is encoded by the bicistronic operon hp0968-hp0967 and belongs to the Vap family. The predicted HP0967 protein is a toxin with ribonuclease activity whereas HP0968 is an antitoxin that binds to its own regulatory region. We found that all type II TA systems were expressed in H. pylori during early stationary growth phase, and differentially expressed in the presence of urea, nickel, and iron, although, the hp0968-hp0967 pair was the most affected under these environmental conditions. Transcription of hp0968-hp0967 was strongly induced in a mature H. pylori biofilm and when the bacteria interacted with AGS epithelial cells. Kanamycin and chloramphenicol considerably boosted transcription levels of all the four type II TA systems. The hp0968-hp0967 TA system was the most frequent among 317 H. pylori strains isolated from all over the world. This study is the first report on the transcription of type II TA genes in H. pylori under different environmental conditions. Our data show that the HP0967 and HP0968 proteins constitute a bona fide type II TA system in H. pylori , whose expression is regulated by environmental cues, which are relevant in the context of infection of the human gastric mucosa.

  15. A RNA-Seq Analysis of the Rat Supraoptic Nucleus Transcriptome: Effects of Salt Loading on Gene Expression

    PubMed Central

    Salinas, Yasmmyn D.; Shi, YiJun; Greenwood, Michael; Hoe, See Ziau; Murphy, David; Gainer, Harold

    2015-01-01

    Magnocellular neurons (MCNs) in the hypothalamo-neurohypophysial system (HNS) are highly specialized to release large amounts of arginine vasopressin (Avp) or oxytocin (Oxt) into the blood stream and play critical roles in the regulation of body fluid homeostasis. The MCNs are osmosensory neurons and are excited by exposure to hypertonic solutions and inhibited by hypotonic solutions. The MCNs respond to systemic hypertonic and hypotonic stimulation with large changes in the expression of their Avp and Oxt genes, and microarray studies have shown that these osmotic perturbations also cause large changes in global gene expression in the HNS. In this paper, we examine gene expression in the rat supraoptic nucleus (SON) under normosmotic and chronic salt-loading SL) conditions by the first time using “new-generation”, RNA sequencing (RNA-Seq) methods. We reliably detect 9,709 genes as present in the SON by RNA-Seq, and 552 of these genes were changed in expression as a result of chronic SL. These genes reflect diverse functions, and 42 of these are involved in either transcriptional or translational processes. In addition, we compare the SON transcriptomes resolved by RNA-Seq methods with the SON transcriptomes determined by Affymetrix microarray methods in rats under the same osmotic conditions, and find that there are 6,466 genes present in the SON that are represented in both data sets, although 1,040 of the expressed genes were found only in the microarray data, and 2,762 of the expressed genes are selectively found in the RNA-Seq data and not the microarray data. These data provide the research community a comprehensive view of the transcriptome in the SON under normosmotic conditions and the changes in specific gene expression evoked by salt loading. PMID:25897513

  16. Multipotent mesenchymal stromal cells decrease transforming growth factor β1 expression in microglia/macrophages and down-regulate plasminogen activator inhibitor 1 expression in astrocytes after stroke.

    PubMed

    Xin, Hongqi; Chopp, Michael; Shen, Li Hong; Zhang, Rui Lan; Zhang, Li; Zhang, Zheng Gang; Li, Yi

    2013-05-10

    Multipotent mesenchymal stromal cells (MSCs) decrease the expression of transforming growth factor β1 (TGFβ1) in astrocytes and subsequently decrease astrocytic plasminogen activator inhibitor 1 (PAI-1) level in an autocrine manner. Since activated microglia/macrophages are also a source of TGFβ1 after stroke, we therefore tested whether MSCs regulate TGFβ1 expression in microglia/macrophages and subsequently alters PAI-1 expression after ischemia. TGFβ1 and its downstream effector phosphorylated SMAD 2/3 (p-SMAD 2/3) were measured in mice subjected to middle cerebral artery occlusion (MCAo). MSC treatment significantly decreased TGFβ1 protein expression in both astrocytes and microglia/macrophages in the ischemic boundary zone (IBZ) at day 14 after stroke. However, the p-SMAD 2/3 was only detected in astrocytes and decreased after MSC treatment. In vitro, RT-PCR results showed that the TGFβ1 mRNA level was increased in both astrocytes and microglia/macrophages in an astrocyte-microglia/macrophage co-culture system after oxygen-glucose deprived (OGD) treatment. MSCs treatment significantly decreased the above TGFβ1 mRNA level under OGD conditions, respectively. OGD increased the PAI-1 mRNA in astrocytes in the astrocyte-microglia/macrophage co-culture system, and MSC administration significantly decreased this level. PAI-1 mRNA was very low in microglia/macrophages compared with that in astrocytes under different conditions. Western blot results also verified that MSC administration significantly decreased p-SMAD 2/3 and PAI-1 level in astrocytes in astrocyte-microglia/macrophage co-culture system under OGD conditions. Our in vivo and in vitro data, in concert, suggest that MSCs decrease TGFβ1 expression in microglia/macrophages in the IBZ which contribute to the down-regulation of PAI-1 level in astrocytes. Published by Elsevier Ireland Ltd.

  17. An Analytical Time–Domain Expression for the Net Ripple Produced by Parallel Interleaved Converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Brian B.; Krein, Philip T.

    We apply modular arithmetic and Fourier series to analyze the superposition of N interleaved triangular waveforms with identical amplitudes and duty-ratios. Here, interleaving refers to the condition when a collection of periodic waveforms with identical periods are each uniformly phase-shifted across one period. The main result is a time-domain expression which provides an exact representation of the summed and interleaved triangular waveforms, where the peak amplitude and parameters of the time-periodic component are all specified in closed-form. Analysis is general and can be used to study various applications in multi-converter systems. This model is unique not only in that itmore » reveals a simple and intuitive expression for the net ripple, but its derivation via modular arithmetic and Fourier series is distinct from prior approaches. The analytical framework is experimentally validated with a system of three parallel converters under time-varying operating conditions.« less

  18. An orthogonal system for heterologous expression of actinobacterial lasso peptides in Streptomyces hosts.

    PubMed

    Mevaere, Jimmy; Goulard, Christophe; Schneider, Olha; Sekurova, Olga N; Ma, Haiyan; Zirah, Séverine; Afonso, Carlos; Rebuffat, Sylvie; Zotchev, Sergey B; Li, Yanyan

    2018-05-29

    Lasso peptides are ribosomally synthesized and post-translationally modified peptides produced by bacteria. They are characterized by an unusual lariat-knot structure. Targeted genome scanning revealed a wide diversity of lasso peptides encoded in actinobacterial genomes, but cloning and heterologous expression of these clusters turned out to be problematic. To circumvent this, we developed an orthogonal expression system for heterologous production of actinobacterial lasso peptides in Streptomyces hosts based on a newly-identified regulatory circuit from Actinoalloteichus fjordicus. Six lasso peptide gene clusters, mainly originating from marine Actinobacteria, were chosen for proof-of-concept studies. By varying the Streptomyces expression hosts and a small set of culture conditions, three new lasso peptides were successfully produced and characterized by tandem MS. The newly developed expression system thus sets the stage to uncover and bioengineer the chemo-diversity of actinobacterial lasso peptides. Moreover, our data provide some considerations for future bioprospecting efforts for such peptides.

  19. Effects of partial slip boundary condition and radiation on the heat and mass transfer of MHD-nanofluid flow

    NASA Astrophysics Data System (ADS)

    Abd Elazem, Nader Y.; Ebaid, Abdelhalim

    2017-12-01

    In this paper, the effect of partial slip boundary condition on the heat and mass transfer of the Cu-water and Ag-water nanofluids over a stretching sheet in the presence of magnetic field and radiation. Such partial slip boundary condition has attracted much attention due to its wide applications in industry and chemical engineering. The flow is basically governing by a system of partial differential equations which are reduced to a system of ordinary differential equations. This system has been exactly solved, where exact analytical expression has been obtained for the fluid velocity in terms of exponential function, while the temperature distribution, and the nanoparticles concentration are expressed in terms of the generalized incomplete gamma function. In addition, explicit formulae are also derived from the rates of heat transfer and mass transfer. The effects of the permanent parameters on the skin friction, heat transfer coefficient, rate of mass transfer, velocity, the temperature profile, and concentration profile have been discussed through tables and graphs.

  20. Closed form expressions for ABER and capacity over EGK fading channel in presence of CCI

    NASA Astrophysics Data System (ADS)

    Singh, S. Pratap; Kumar, Sanjay

    2017-03-01

    Goal of next generation wireless communication system is to achieve very high data rate. Femto-cell is one of the possibilities to achieve the above target. However, co-channel interference (CCI) is the important concern in femto-cell. This paper presents closed form expressions for average bit error rate (ABER) and capacity for different adaptive schemes under extended generalised-K (EGK) fading channel in the presence of CCI. A novel conditional unified expression (CUE) is derived, which results different conditional error probability and normalised average capacity. Using CUE, a generic expression for ABER is obtained. In addition, closed form expressions for ABER for different modulation schemes under EGK fading channel in presence of CCI are also derived. Further, it is shown that generic ABER expression results into ABER of different modulation schemes. Besides, the closed form expressions of capacity for different adaptive schemes under EGK in presence of CCI are derived. Finally, analytical and simulated results are obtained with excellent agreement.

  1. Computational Simulation on Facial Expressions and Experimental Tensile Strength for Silicone Rubber as Artificial Skin

    NASA Astrophysics Data System (ADS)

    Amijoyo Mochtar, Andi

    2018-02-01

    Applications of robotics have become important for human life in recent years. There are many specification of robots that have been improved and encriched with the technology advances. One of them are humanoid robot with facial expression which closer with the human facial expression naturally. The purpose of this research is to make computation on facial expressions and conduct the tensile strength for silicone rubber as artificial skin. Facial expressions were calculated by determining dimension, material properties, number of node elements, boundary condition, force condition, and analysis type. A Facial expression robot is determined by the direction and the magnitude external force on the driven point. The expression face of robot is identical with the human facial expression where the muscle structure in face according to the human face anatomy. For developing facial expression robots, facial action coding system (FACS) in approached due to follow expression human. The tensile strength is conducting due to check the proportional force of artificial skin that can be applied on the future of robot facial expression. Combining of calculated and experimental results can generate reliable and sustainable robot facial expression that using silicone rubber as artificial skin.

  2. Exact combinatorial approach to finite coagulating systems

    NASA Astrophysics Data System (ADS)

    Fronczak, Agata; Chmiel, Anna; Fronczak, Piotr

    2018-02-01

    This paper outlines an exact combinatorial approach to finite coagulating systems. In this approach, cluster sizes and time are discrete and the binary aggregation alone governs the time evolution of the systems. By considering the growth histories of all possible clusters, an exact expression is derived for the probability of a coagulating system with an arbitrary kernel being found in a given cluster configuration when monodisperse initial conditions are applied. Then this probability is used to calculate the time-dependent distribution for the number of clusters of a given size, the average number of such clusters, and that average's standard deviation. The correctness of our general expressions is proved based on the (analytical and numerical) results obtained for systems with the constant kernel. In addition, the results obtained are compared with the results arising from the solutions to the mean-field Smoluchowski coagulation equation, indicating its weak points. The paper closes with a brief discussion on the extensibility to other systems of the approach presented herein, emphasizing the issue of arbitrary initial conditions.

  3. Social instability and immunity in rhesus monkeys: the role of the sympathetic nervous system.

    PubMed

    Capitanio, John P; Cole, Steven W

    2015-05-26

    Social instability can adversely affect endocrine, immune and health outcomes, and recent evidence suggests that the sympathetic nervous system (SNS) might mediate these effects. We conducted two studies with adult male rhesus monkeys (Macaca mulatta) to understand how social conditions affect measures of SNS activity and immune function. In Experiment 1, animals were socialized in stable social conditions, then were switched to unstable (stressful) social conditions, then were returned to stable conditions. Analysis revealed quadratic effects for measures of behaviour, urinary metabolites of epinephrine and norepinephrine, and expression of immune response genes: as expected, social instability adversely impacted most measures, and the effects remediated upon re-imposition of stable conditions. Cortisol levels were unaffected. In Experiment 2, we used the sympathomimetic drug methamphetamine to challenge the SNS; animals also underwent socialization in stable or unstable groups. Surprisingly, while methamphetamine elevated plasma catecholamines, responses in lymph nodes tracked the social, and not the drug, condition: social instability upregulated the density of SNS fibres in lymph nodes and downregulated Type I interferon gene expression. Together, these results indicate that the SNS is extremely sensitive to social conditions; full understanding of the adverse effects of social instability on health should therefore incorporate measures of this health-relevant system. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  4. KNOX1 is expressed and epigenetically regulated during in vitro conditions in Agave spp

    PubMed Central

    2012-01-01

    Background The micropropagation is a powerful tool to scale up plants of economical and agronomical importance, enhancing crop productivity. However, a small but growing body of evidence suggests that epigenetic mechanisms, such as DNA methylation and histone modifications, can be affected under the in vitro conditions characteristic of micropropagation. Here, we tested whether the adaptation to different in vitro systems (Magenta boxes and Bioreactors) modified epigenetically different clones of Agave fourcroydes and A. angustifolia. Furthermore, we assessed whether these epigenetic changes affect the regulatory expression of KNOTTED1-like HOMEOBOX (KNOX) transcription factors. Results To gain a better understanding of epigenetic changes during in vitro and ex vitro conditions in Agave fourcroydes and A. angustifolia, we analyzed global DNA methylation, as well as different histone modification marks, in two different systems: semisolid in Magenta boxes (M) and temporary immersion in modular Bioreactors (B). No significant difference was found in DNA methylation in A. fourcroydes grown in either M or B. However, when A. fourcroydes was compared with A. angustifolia, there was a two-fold difference in DNA methylation between the species, independent of the in vitro system used. Furthermore, we detected an absence or a low amount of the repressive mark H3K9me2 in ex vitro conditions in plants that were cultured earlier either in M or B. Moreover, the expression of AtqKNOX1 and AtqKNOX2, on A. fourcroydes and A. angustifolia clones, is affected during in vitro conditions. Therefore, we used Chromatin ImmunoPrecipitation (ChIP) to know whether these genes were epigenetically regulated. In the case of AtqKNOX1, the H3K4me3 and H3K9me2 were affected during in vitro conditions in comparison with AtqKNOX2. Conclusions Agave clones plants with higher DNA methylation during in vitro conditions were better adapted to ex vitro conditions. In addition, A. fourcroydes and A. angustifolia clones displayed differential expression of the KNOX1 gene during in vitro conditions, which is epigenetically regulated by the H3K4me3 and H3K9me2 marks. The finding of an epigenetic regulation in key developmental genes will make it important in future studies to identify factors that help to find climate-resistant micropropagated plants. PMID:23126409

  5. Lent-On-Plus Lentiviral vectors for conditional expression in human stem cells.

    PubMed

    Benabdellah, Karim; Muñoz, Pilar; Cobo, Marién; Gutierrez-Guerrero, Alejandra; Sánchez-Hernández, Sabina; Garcia-Perez, Angélica; Anderson, Per; Carrillo-Gálvez, Ana Belén; Toscano, Miguel G; Martin, Francisco

    2016-11-17

    Conditional transgene expression in human stem cells has been difficult to achieve due to the low efficiency of existing delivery methods, the strong silencing of the transgenes and the toxicity of the regulators. Most of the existing technologies are based on stem cells clones expressing appropriate levels of tTA or rtTA transactivators (based on the TetR-VP16 chimeras). In the present study, we aim the generation of Tet-On all-in-one lentiviral vectors (LVs) that tightly regulate transgene expression in human stem cells using the original TetR repressor. By using appropriate promoter combinations and shielding the LVs with the Is2 insulator, we have constructed the Lent-On-Plus Tet-On system that achieved efficient transgene regulation in human multipotent and pluripotent stem cells. The generation of inducible stem cell lines with the Lent-ON-Plus LVs did not require selection or cloning, and transgene regulation was maintained after long-term cultured and upon differentiation toward different lineages. To our knowledge, Lent-On-Plus is the first all-in-one vector system that tightly regulates transgene expression in bulk populations of human pluripotent stem cells and its progeny.

  6. Lent-On-Plus Lentiviral vectors for conditional expression in human stem cells

    PubMed Central

    Benabdellah, Karim; Muñoz, Pilar; Cobo, Marién; Gutierrez-Guerrero, Alejandra; Sánchez-Hernández, Sabina; Garcia-Perez, Angélica; Anderson, Per; Carrillo-Gálvez, Ana Belén; Toscano, Miguel G.; Martin, Francisco

    2016-01-01

    Conditional transgene expression in human stem cells has been difficult to achieve due to the low efficiency of existing delivery methods, the strong silencing of the transgenes and the toxicity of the regulators. Most of the existing technologies are based on stem cells clones expressing appropriate levels of tTA or rtTA transactivators (based on the TetR-VP16 chimeras). In the present study, we aim the generation of Tet-On all-in-one lentiviral vectors (LVs) that tightly regulate transgene expression in human stem cells using the original TetR repressor. By using appropriate promoter combinations and shielding the LVs with the Is2 insulator, we have constructed the Lent-On-Plus Tet-On system that achieved efficient transgene regulation in human multipotent and pluripotent stem cells. The generation of inducible stem cell lines with the Lent-ON-Plus LVs did not require selection or cloning, and transgene regulation was maintained after long-term cultured and upon differentiation toward different lineages. To our knowledge, Lent-On-Plus is the first all-in-one vector system that tightly regulates transgene expression in bulk populations of human pluripotent stem cells and its progeny. PMID:27853296

  7. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors.

    PubMed

    Mercer, Andrew C; Gaj, Thomas; Sirk, Shannon J; Lamb, Brian M; Barbas, Carlos F

    2014-10-17

    The construction of increasingly sophisticated synthetic biological circuits is dependent on the development of extensible tools capable of providing specific control of gene expression in eukaryotic cells. Here, we describe a new class of synthetic transcription factors that activate gene expression in response to extracellular chemical stimuli. These inducible activators consist of customizable transcription activator-like effector (TALE) proteins combined with steroid hormone receptor ligand-binding domains. We demonstrate that these ligand-responsive TALE transcription factors allow for tunable and conditional control of gene activation and can be used to regulate the expression of endogenous genes in human cells. Since TALEs can be designed to recognize any contiguous DNA sequence, the conditional gene regulatory system described herein will enable the design of advanced synthetic gene networks.

  8. A novel pair of inducible expression vectors for use in Methylobacterium extorquens.

    PubMed

    Chubiz, Lon M; Purswani, Jessica; Carroll, Sean Michael; Marx, Chistopher J

    2013-05-06

    Due to the ever increasing use of diverse microbial taxa in basic research and industrial settings, there is a growing need for genetic tools to alter the physiology of these organisms. In particular, there is a dearth of inducible expression systems available for bacteria outside commonly used γ-proteobacteria, such as Escherichia coli or Pseudomonas species. To this end, we have sought to develop a pair of inducible expression vectors for use in the α-proteobacterium Methylobacterium extorquens, a model methylotroph. We found that the P(R) promoter from rhizobial phage 16-3 was active in M. extorquens and engineered the promoter to be inducible by either p-isopropyl benzoate (cumate) or anhydrotetracycline. These hybrid promoters, P(R/cmtO) and P(R/tetO), were found to have high levels of expression in M. extorquens with a regulatory range of 10-fold and 30-fold, respectively. Compared to an existing cumate-inducible (10-fold range), high-level expression system for M. extorquens, P(R/cmtO) and P(R/tetO) have 33% of the maximal activity but were able to repress gene expression 3 and 8-fold greater, respectively. Both promoters were observed to exhibit homogeneous, titratable activation dynamics rather than on-off, switch-like behavior. The utility of these promoters was further demonstrated by complementing loss of function of ftfL--essential for growth on methanol--where we show P(R/tetO) is capable of not only fully complementing function but also producing a conditional null phenotype. These promoters have been incorporated into a broad-host-range backbone allowing for potential use in a variety of bacterial hosts. We have developed two novel expression systems for use in M. extorquens. The expression range of these vectors should allow for increased ability to explore cellular physiology in M. extorquens. Further, the P(R/tetO) promoter is capable of producing conditional null phenotypes, previously unattainable in M. extorquens. As both expression systems rely on the use of membrane permeable inducers, we suspect these expression vectors will be useful for ectopic gene expression in numerous proteobacteria.

  9. Transcriptome analysis of Vibrio parahaemolyticus in type III secretion system 1 inducing conditions

    PubMed Central

    Nydam, Seth D.; Shah, Devendra H.; Call, Douglas R.

    2014-01-01

    Vibrio parahaemolyticus is an emerging bacterial pathogen capable of causing inflammatory gastroenteritis, wound infections, and septicemia. As a food-borne illness, infection is most frequently associated with the consumption of raw or undercooked seafood, particularly shellfish. It is the primary cause of Vibrio-associated food-borne illness in the United States and the leading cause of food-borne illness in Japan. The larger of its two chromosomes harbors a set of genes encoding type III section system 1 (T3SS1), a virulence factor present in all V. parahaemolyticus strains that is similar to the Yersinia ysc T3SS. T3SS1 translocates effector proteins into eukaryotic cells where they induce changes to cellular physiology and modulate host-pathogen interactions. T3SS1 is also responsible for cytotoxicity toward several different cultured cell lines as well as mortality in a mouse model. Herein we used RNA-seq to obtain global transcriptome patterns of V. parahaemolyticus under conditions that either induce [growth in Dulbecco's Modified Eagle Medium (DMEM) media, in trans expression of transcriptional regulator exsA] or repress T3SS1 expression (growth in LB-S media, in trans exsD expression) and during infection of HeLa cells over time. Comparative transcriptomic analysis demonstrated notable differences in the expression patterns under inducing conditions and was also used to generate an expression profile of V. parahaemolyticus during infection of HeLa cells. In addition, we identified several new genes that are associated with T3SS1 expression and may warrant further study. PMID:24478989

  10. Limitations in transmitter-receiver distances for terrestrial microwave transmissions

    NASA Astrophysics Data System (ADS)

    Njau, E. C.

    1990-12-01

    Directional microwave repeater systems are still in significant use for radio-telephone communications as well as terrestrial TV transmissions. In these systems, the optimally maximum distance D(sub 0) between one transmitter and the next repeater-receiver partly depends on meteorological conditions since the refractive index n for microwaves is considerably influenced by these conditions. We show that, under dry atmospheric conditions, certain zonally travelling heat/temperature waves which are normally in the weather/climate system significantly vary n and hence inevitably impose specific conditions on the evaluation of D(sub 0). Finally we use some Tanzanian meteorological records to arrive at an expression for D(sub 0) that is suitable for regions whose meteorological conditions are comparable to those in Tanzania.

  11. [Application of dhfr gene negative Chinese hamster ovary cell line to express hepatitis B virus surface antigen].

    PubMed

    Yi, Y; Zhang, M; Liu, C

    2001-06-01

    To set up an efficient expressing system for recombinant hepatitis B virus surface antigen (HBsAg) in dhfr gene negative CHO cell line. HBsAg gene expressing plasmid pCI-dhfr-S was constructed by integrating HBsAg gene into plasmid pCI which carries dhfr gene. The HBsAg expressing cell line was set up by transfection of plasmid pCI-dhfr-S into dhfr gene negative CHO cell line in the way of lipofectin. Under the selective pressure of MTX, 18 of 28 clonized cell lines expressed HBsAg, 4 of them reached a high titer of 1:32 and protein content 1-3 micrograms/ml. In this study, the high level expression of HBsAg demonstrated that the dhfr negative mammalian cell line when recombined with plasmid harboring the corresponding deleted gene can efficiently express the foreign gene. The further steps toward building optimum conditions of the expressing system and the increase of expressed product are under study.

  12. Conditional Lineage Ablation to Model Human Diseases

    NASA Astrophysics Data System (ADS)

    Lee, Paul; Morley, Gregory; Huang, Qian; Fischer, Avi; Seiler, Stephanie; Horner, James W.; Factor, Stephen; Vaidya, Dhananjay; Jalife, Jose; Fishman, Glenn I.

    1998-09-01

    Cell loss contributes to the pathogenesis of many inherited and acquired human diseases. We have developed a system to conditionally ablate cells of any lineage and developmental stage in the mouse by regulated expression of the diphtheria toxin A (DTA) gene by using tetracycline-responsive promoters. As an example of this approach, we targeted expression of DTA to the hearts of adult mice to model structural abnormalities commonly observed in human cardiomyopathies. Induction of DTA expression resulted in cell loss, fibrosis, and chamber dilatation. As in many human cardiomyopathies, transgenic mice developed spontaneous arrhythmias in vivo, and programmed electrical stimulation of isolated-perfused transgenic hearts demonstrated a strikingly high incidence of spontaneous and inducible ventricular tachycardia. Affected mice showed marked perturbations of cardiac gap junction channel expression and localization, including a subset with disorganized epicardial activation patterns as revealed by optical action potential mapping. These studies provide important insights into mechanisms of arrhythmogenesis and suggest that conditional lineage ablation may have wide applicability for studies of disease pathogenesis.

  13. Optimization of culturing conditions of recombined Escherichia coli to produce umami octopeptide-containing protein.

    PubMed

    Zhang, Yin; Wei, Xiong; Lu, Zhou; Pan, Zhongli; Gou, Xinhua; Venkitasamy, Chandrasekar; Guo, Siya; Zhao, Liming

    2017-07-15

    Using synthesized peptides to verify the taste of natural peptides was probably the leading cause for tasting disputes regarding umami peptides. A novel method was developed to prepare the natural peptide which could be used to verify the taste of umami peptide. A controversial octopeptide was selected and gene engineering was used to structure its Escherichia coli. expressing vector. A response surface method was adopted to optimize the expression conditions of the recombinant protein. The results of SDS-PAGE for the recombinant protein indicated that the recombinant expression system was successfully structured. The fitting results of the response surface experiment showed that the OD 600 value was the key factor which influenced the expression of the recombinant protein. The optimal culturing process conditions predicted with the fitting model were an OD 600 value of 0.5, an IPTG concentration of 0.6mM, a culturing temperature of 28.75°C and a culturing time of 5h. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Dynamic NMR under nonstationary conditions: Theoretical model, numerical calculation, and potential of application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babailov, S. P., E-mail: babajlov@niic.nsc.ru; National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050; Purtov, P. A.

    An expression has been derived for the time dependence of the NMR line shape for systems with multi-site chemical exchange in the absence of spin-spin coupling, in a zero saturation limit. The dynamics of variation of the NMR line shape with time is considered in detail for the case of two-site chemical exchange. Mathematical programs have been designed for numerical simulation of the NMR spectra of chemical exchange systems. The analytical expressions obtained are useful for NMR line shape simulations for systems with photoinduced chemical exchange.

  15. Gene expression profile of the plant pathogen Xylella fastidiosa during biofilm formation in vitro.

    PubMed

    de Souza, Alessandra A; Takita, Marco A; Coletta-Filho, Helvécio D; Caldana, Camila; Yanai, Giane M; Muto, Nair H; de Oliveira, Regina C; Nunes, Luiz R; Machado, Marcos A

    2004-08-15

    A biofilm is a community of microorganisms attached to a solid surface. Cells within biofilms differ from planktonic cells, showing higher resistance to biocides, detergent, antibiotic treatments and host defense responses. Even though there are a number of gene expression studies in bacterial biofilm formation, limited information is available concerning plant pathogen. It was previously demonstrated that the plant pathogen Xylella fastidiosa could grow as a biofilm, a possibly important factor for its pathogenicity. In this study we utilized analysis of microarrays to specifically identify genes expressed in X. fastidiosa cells growing in a biofilm, when compared to planktonic cells. About half of the differentially expressed genes encode hypothetical proteins, reflecting the large number of ORFs with unknown functions in bacterial genomes. However, under the biofilm condition we observed an increase in the expression of some housekeeping genes responsible for metabolic functions. We also found a large number of genes from the pXF51 plasmid being differentially expressed. Some of the overexpressed genes in the biofilm condition encode proteins involved in attachment to surfaces. Other genes possibly confer advantages to the bacterium in the environment that it colonizes. This study demonstrates that the gene expression in the biofilm growth condition of the plant pathogen X. fastidiosa is quite similar to other characterized systems.

  16. Expression of the nifBfdxNnifOQ region of Azotobacter vinelandii and its role in nitrogenase activity.

    PubMed Central

    Rodríguez-Quiñones, F; Bosch, R; Imperial, J

    1993-01-01

    The nifBQ transcriptional unit of Azotobacter vinelandii has been previously shown to be required for activity of the three nitrogenase systems, Mo nitrogenase, V nitrogenase, and Fe nitrogenase, present in this organism. We studied regulation of expression and the role of the nifBQ region by means of translational beta-galactosidase fusions to each of the five open reading frames: nifB, orf2 (fdxN), orf3 (nifO), nifQ, and orf5. Expression of the first three open reading frames was observed under all three diazotrophic conditions; expression of orf5 was never observed. Genes nifB and fdxN were expressed at similar levels. With Mo, expression of nifO and nifQ was approximately 20- and approximately 400-fold lower than that of fdxN, respectively. Without Mo, expression of nifB dropped three- to fourfold and that of nifQ dropped to the detection limit. However, expression of nifO increased threefold. The products of nifB, fdxN, nifO, and nifQ have been visualized in A. vinelandii as beta-galactosidase fusion proteins with the expected molecular masses. The NifB- fusion lacked activity for any of the three nitrogenase systems and showed an iron-molybdenum cofactor-deficient phenotype in the presence of Mo. The FdxN- mutation resulted in reduced nitrogenase activities, especially when V was present. Dinitrogenase activity in extracts was similarly affected, suggesting a role of FdxN in iron-molybdenum cofactor synthesis. The NifO(-)-producing mutation did not affect any of the nitrogenases under standard diazotrophic conditions. The NifQ(-)-producing mutation resulted in an increased (approximately 1,000-fold) Mo requirement for Mo nitrogenase activity, a phenotype already observed with Klebsiella pneumoniae. No effect of the NifQ(-)-producing mutation on V or Fe nitrogenase was found; this is consistent with its very low expression under those conditions. Mutations in orf5 had no effect on nitrogenase activity. Images PMID:8491713

  17. Influence of culture medium composition on relative mRNA abundances in domestic cat embryos.

    PubMed

    Hribal, R; Jewgenow, K; Braun, B C; Comizzoli, P

    2013-04-01

    Different culture conditions have been used to produce domestic cat embryos. As part of the in vitro procedures, the medium composition significantly affects the quality of the embryo development also. Quality assessments based on cleavage kinetics and blastomere symmetry are useful, but embryos also can differ in their relative gene expression patterns despite similar morphological characteristics. The aim of this study was to compare cat embryos produced with two different in vitro culture systems routinely used in two different laboratories [Smithsonian Conservation Biology Institute, Washington D.C., USA (SCBI) and Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany (IZW)]. Specifically, relative mRNA expression patterns of critical genes for pre-implantation embryo development were assessed in both conditions. Embryos were produced in parallel in both culture systems by IVF using frozen-thawed ejaculated semen in the United States and fresh epididymal sperm in Germany. Success of embryo development in vitro was recorded as well as relative mRNA abundances [DNA methyltransferases 1 and 3A (DNMT1, DNMT3A), gap junction protein alpha 1 (GJA1), octamer-binding transcription factor 4 [OCT4], insulin-like growth factors 1 and 2 receptors (IGF1R, IGF2R), beta-actin (ACTB)] in pools of days 4-5 morulae by semi-quantitative RT-PCR assay. Percentages of cleaved embryos were similar (p > 0.05) between both culture systems, regardless of the location. OCT4 mRNA abundance was higher (p < 0.05) in embryos derived in the SCBI culture system compared with those from the IZW system when epididymal sperm was used for IVF. No clear correlation between the expression pattern and the culture system could be found for all other genes. It is suggested that OCT4 expression might be affected by the media composition in some conditions and can be the indicator of a better embryo quality. © 2012 Blackwell Verlag GmbH.

  18. Beam Conditioning for FELs: Consequences and Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolski, Andrzej; Penn, Gregory; Sessler, Andrew

    2003-10-09

    The consequences of beam conditioning in four example cases (VISA, a Soft X-Ray FEL, LCLS and a ''Greenfield'' FEL) are examined. It is shown that in emittance limited cases, proper conditioning reduces sensitivity to the transverse emittance, and allows stronger focusing in the undulator. Simulations show higher saturation power, with gain lengths reduced up to a factor of two. The beam dynamics in a general conditioning system are studied, with ''matching conditions'' derived for achieving conditioning without growth in effective emittance. Various conditioners are considered, and expressions derived for the amount of conditioning provided in each case when the matchingmore » conditions are satisfied. We discuss the prospects for conditioners based on laser and plasma systems.« less

  19. Controllability in nonlinear systems

    NASA Technical Reports Server (NTRS)

    Hirschorn, R. M.

    1975-01-01

    An explicit expression for the reachable set is obtained for a class of nonlinear systems. This class is described by a chain condition on the Lie algebra of vector fields associated with each nonlinear system. These ideas are used to obtain a generalization of a controllability result for linear systems in the case where multiplicative controls are present.

  20. Lifelong imbalanced LA/ALA intake impairs emotional and cognitive behavior via changes in brain endocannabinoid system

    PubMed Central

    Zamberletti, Erica; Piscitelli, Fabiana; De Castro, Valentina; Murru, Elisabetta; Gabaglio, Marina; Colucci, Paola; Fanali, Chiara; Prini, Pamela; Bisogno, Tiziana; Maccarrone, Mauro; Campolongo, Patrizia; Banni, Sebastiano; Rubino, Tiziana; Parolaro, Daniela

    2017-01-01

    Imbalanced dietary n-3 and n-6 PUFA content has been associated with a number of neurological conditions. Endocannabinoids are n-6 PUFA derivatives, whose brain concentrations are sensitive to modifications of fatty acid composition of the diet and play a central role in the regulation of mood and cognition. As such, the endocannabinoid system appears to be an ideal candidate for mediating the effects of dietary fatty acids on mood and cognition. Lifelong administration of isocaloric α-linolenic acid (ALA)-deficient and -enriched diets induced short-term memory deficits, whereas only dietary ALA enrichment altered emotional reactivity in adult male rats compared with animals fed a standard diet that was balanced in ALA/linoleic acid (LA) ratio. In the prefrontal cortex, both diets reduced 2-AG levels and increased MAG lipase expression, whereas only the enriched diet reduced AEA levels, simultaneously increasing FAAH expression. In the hippocampus, an ALA-enriched diet decreased AEA content and NAPE-PLD expression, and reduced 2-AG content while increasing MAG lipase expression. These findings highlight the importance of a diet balanced in fatty acid content for normal brain functions and to support a link between dietary ALA, the brain endocannabinoid system, and behavior, which indicates that dietary ALA intake is a sufficient condition for altering the endocannabinoid system in brain regions modulating mood and cognition. PMID:27903595

  1. Influence of the platform jitter on intensity fluctuation for laser launch system

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Qiao, Chunhong; Huang, Tong; Zhang, Jinghui; Fan, Chengyu

    2017-10-01

    The jitter of the transmitting system can cause the light intensity fluctuation at the target position of the laser transmission, which affects the performance of the laser communication, imaging and the adaptive optical system. In this paper, the platform jitter is modeled by Gaussian random fluctuation phase and the analytic expression of the system jitter effect on the fluctuation of light intensity is obtained under the vacuum condition based on extended Huygens-Fresnel principle. The numerical simulation is compared with the theoretical expression and the consistency is obtained. At the same time, the influence of the jitter of the launch system on the intensity fluctuation of the target system under different turbulence conditions is analyzed by numerical simulation. The result show that normalized intensity fluctuation variance induced by platform jitter seems to be unrestricted. The jitter of the transmitting system has a more important influence on the fluctuation of the target position caused by the atmospheric turbulence, as the jitter increase. This result provides a reference for the application of the actual laser transmission system.

  2. An HCG-rich microenvironment contributes to ovarian cancer cell differentiation into endothelioid cells in a three-dimensional culture system.

    PubMed

    Su, Min; Fan, Chao; Gao, Sainan; Shen, Aiguo; Wang, Xiaoying; Zhang, Yuquan

    2015-11-01

    We investigated the expression of human chorionic gonadotropin (HCG) and its effects on vasculogenic mimicry (VM) formation in ovarian cancer cells under normoxic and hypoxic conditions in three-dimensional matrices preconditioned by an endothelial-trophoblast cell co-culture system. The co-culture model was established using human umbilical vein endothelial cells (HUVECs) and HTR-8 trophoblast cells in a three-dimensional culture system. The co-cultured cells were removed with NH4OH, and ovarian cancer cells were implanted into the preconditioned matrix. VM was identified morphologically and by detecting vascular markers expressed by cancer cells. The specificity of the effects of exogenous HCG in the microenvironment was assessed by inhibition with a neutralizing anti-HCG antibody. HCG siRNA was used to knock down endogenous HCG expression in OVCAR-3 ovarian cancer cells. HTR-8 cells 'fingerprinted' HUVECs to form capillary-like tube structures in co-cultures. In the preconditioned HCG-rich microenvironment, the number of vessel-like network structures formed by HCG receptor-positive OVCAR-3 cells and the expression levels of CD31, VEGF and factor VIII were significantly increased. The preconditioned HCG-rich microenvironment significantly increased the expression of hypoxia inducible factor-1α (HIF‑1α) and VM formation in OVCAR-3 cells under hypoxic conditions. Treatment with a neutralizing anti-HCG antibody but not HCG siRNA significantly inhibited the formation of vessel-like network structures. HCG in the microenvironment contributes to OVCAR-3 differentiation into endothelioid cells in three-dimensional matrices preconditioned with an endothelial-trophoblast cell co-culture system. HCG may synergistically enhance hypoxia-induced vascular markers and HIF-1α expression. These findings would provide perspectives on new therapeutic targets for ovarian cancer.

  3. DEEP--a tool for differential expression effector prediction.

    PubMed

    Degenhardt, Jost; Haubrock, Martin; Dönitz, Jürgen; Wingender, Edgar; Crass, Torsten

    2007-07-01

    High-throughput methods for measuring transcript abundance, like SAGE or microarrays, are widely used for determining differences in gene expression between different tissue types, dignities (normal/malignant) or time points. Further analysis of such data frequently aims at the identification of gene interaction networks that form the causal basis for the observed properties of the systems under examination. To this end, it is usually not sufficient to rely on the measured gene expression levels alone; rather, additional biological knowledge has to be taken into account in order to generate useful hypotheses about the molecular mechanism leading to the realization of a certain phenotype. We present a method that combines gene expression data with biological expert knowledge on molecular interaction networks, as described by the TRANSPATH database on signal transduction, to predict additional--and not necessarily differentially expressed--genes or gene products which might participate in processes specific for either of the examined tissues or conditions. In a first step, significance values for over-expression in tissue/condition A or B are assigned to all genes in the expression data set. Genes with a significance value exceeding a certain threshold are used as starting points for the reconstruction of a graph with signaling components as nodes and signaling events as edges. In a subsequent graph traversal process, again starting from the previously identified differentially expressed genes, all encountered nodes 'inherit' all their starting nodes' significance values. In a final step, the graph is visualized, the nodes being colored according to a weighted average of their inherited significance values. Each node's, or sub-network's, predominant color, ranging from green (significant for tissue/condition A) over yellow (not significant for either tissue/condition) to red (significant for tissue/condition B), thus gives an immediate visual clue on which molecules--differentially expressed or not--may play pivotal roles in the tissues or conditions under examination. The described method has been implemented in Java as a client/server application and a web interface called DEEP (Differential Expression Effector Prediction). The client, which features an easy-to-use graphical interface, can freely be downloaded from the following URL: http://deep.bioinf.med.uni-goettingen.de.

  4. The complexity of gene expression dynamics revealed by permutation entropy

    PubMed Central

    2010-01-01

    Background High complexity is considered a hallmark of living systems. Here we investigate the complexity of temporal gene expression patterns using the concept of Permutation Entropy (PE) first introduced in dynamical systems theory. The analysis of gene expression data has so far focused primarily on the identification of differentially expressed genes, or on the elucidation of pathway and regulatory relationships. We aim to study gene expression time series data from the viewpoint of complexity. Results Applying the PE complexity metric to abiotic stress response time series data in Arabidopsis thaliana, genes involved in stress response and signaling were found to be associated with the highest complexity not only under stress, but surprisingly, also under reference, non-stress conditions. Genes with house-keeping functions exhibited lower PE complexity. Compared to reference conditions, the PE of temporal gene expression patterns generally increased upon stress exposure. High-complexity genes were found to have longer upstream intergenic regions and more cis-regulatory motifs in their promoter regions indicative of a more complex regulatory apparatus needed to orchestrate their expression, and to be associated with higher correlation network connectivity degree. Arabidopsis genes also present in other plant species were observed to exhibit decreased PE complexity compared to Arabidopsis specific genes. Conclusions We show that Permutation Entropy is a simple yet robust and powerful approach to identify temporal gene expression profiles of varying complexity that is equally applicable to other types of molecular profile data. PMID:21176199

  5. Mifepristone-inducible transgene expression in neural progenitor cells in vitro and in vivo

    PubMed Central

    Hjelm, BE; Grunseich, C; Gowing, G; Avalos, P; Tian, J; Shelley, BC; Mooney, M; Narwani, K; Shi, Y; Svendsen, CN; Wolfe, JH; Fischbeck, KH; Pierson, TM

    2016-01-01

    Numerous gene and cell therapy strategies are being developed for the treatment of neurodegenerative disorders. Many of these strategies use constitutive expression of therapeutic transgenic proteins, and although functional in animal models of disease, this method is less likely to provide adequate flexibility for delivering therapy to humans. Ligand-inducible gene expression systems may be more appropriate for these conditions, especially within the central nervous system (CNS). Mifepristone’s ability to cross the blood–brain barrier makes it an especially attractive ligand for this purpose. We describe the production of a mifepristone-inducible vector system for regulated expression of transgenes within the CNS. Our inducible system used a lentivirus-based vector platform for the ex vivo production of mifepristone-inducible murine neural progenitor cells that express our transgenes of interest. These cells were processed through a series of selection steps to ensure that the cells exhibited appropriate transgene expression in a dose-dependent and temporally controlled manner with minimal background activity. Inducible cells were then transplanted into the brains of rodents, where they exhibited appropriate mifepristone-inducible expression. These studies detail a strategy for regulated expression in the CNS for use in the development of safe and efficient gene therapy for neurological disorders. PMID:26863047

  6. H∞ robust fault-tolerant controller design for an autonomous underwater vehicle's navigation control system

    NASA Astrophysics Data System (ADS)

    Cheng, Xiang-Qin; Qu, Jing-Yuan; Yan, Zhe-Ping; Bian, Xin-Qian

    2010-03-01

    In order to improve the security and reliability for autonomous underwater vehicle (AUV) navigation, an H∞ robust fault-tolerant controller was designed after analyzing variations in state-feedback gain. Operating conditions and the design method were then analyzed so that the control problem could be expressed as a mathematical optimization problem. This permitted the use of linear matrix inequalities (LMI) to solve for the H∞ controller for the system. When considering different actuator failures, these conditions were then also mathematically expressed, allowing the H∞ robust controller to solve for these events and thus be fault-tolerant. Finally, simulation results showed that the H∞ robust fault-tolerant controller could provide precise AUV navigation control with strong robustness.

  7. Long-range transcriptional interference in E. coli used to construct a dual positive selection system for genetic switches

    PubMed Central

    Hoffmann, Stefan A.; Kruse, Sabrina M.; Arndt, Katja M.

    2016-01-01

    Abstract We have investigated transcriptional interference between convergent genes in E. coli and demonstrate substantial interference for inter-promoter distances of as far as 3 kb. Interference can be elicited by both strong σ70 dependent and T7 promoters. In the presented design, a strong promoter driving gene expression of a ‘forward’ gene interferes with the expression of a ‘reverse’ gene by a weak promoter. This arrangement allows inversely correlated gene expression without requiring further regulatory components. Thus, modulation of the activity of the strong promoter alters expression of both the forward and the reverse gene. We used this design to develop a dual selection system for conditional operator site binding, allowing positive selection both for binding and for non-binding to DNA. This study demonstrates the utility of this novel system using the Lac repressor as a model protein for conditional DNA binding, and spectinomycin and chloramphenicol resistance genes as positive selection markers in liquid culture. Randomized LacI libraries were created and subjected to subsequent dual selection, but mispairing IPTG and selection cues in respect to the wild-type LacI response, allowing the isolation of a LacI variant with a reversed IPTG response within three rounds of library generation and dual selection. PMID:26932362

  8. Identification of Fur, Aconitase, and Other Proteins Expressed by Mycobacterium tuberculosis under Conditions of Low and High Concentrations of Iron by Combined Two-Dimensional Gel Electrophoresis and Mass Spectrometry

    PubMed Central

    Wong, Diane K.; Lee, Bai-Yu; Horwitz, Marcus A.; Gibson, Bradford W.

    1999-01-01

    Iron plays a critical role in the pathophysiology of Mycobacterium tuberculosis. To gain a better understanding of iron regulation by this organism, we have used two-dimensional (2-D) gel electrophoresis, mass spectrometry, and database searching to study protein expression in M. tuberculosis under conditions of high and low iron concentration. Proteins in cellular extracts from M. tuberculosis Erdman strain grown under low-iron (1 μM) and high-iron (70 μM) conditions were separated by 2-D polyacrylamide gel electrophoresis, which allowed high-resolution separation of several hundred proteins, as visualized by Coomassie staining. The expression of at least 15 proteins was induced, and the expression of at least 12 proteins was decreased under low-iron conditions. In-gel trypsin digestion was performed on these differentially expressed proteins, and the digestion mixtures were analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry to determine the molecular masses of the resulting tryptic peptides. Partial sequence data on some of the peptides were obtained by using after source decay and/or collision-induced dissociation. The fragmentation data were used to search computerized peptide mass and protein sequence databases for known proteins. Ten iron-regulated proteins were identified, including Fur and aconitase proteins, both of which are known to be regulated by iron in other bacterial systems. Our study shows that, where large protein sequence databases are available from genomic studies, the combined use of 2-D gel electrophoresis, mass spectrometry, and database searching to analyze proteins expressed under defined environmental conditions is a powerful tool for identifying expressed proteins and their physiologic relevance. PMID:9864233

  9. Knockdown of Nrf2 Inhibits the Angiogenesis of Rat Cardiac Micro-vascular Endothelial Cells under Hypoxic Conditions

    PubMed Central

    Kuang, Lihong; Feng, Jian; He, Guoxiang; Jing, Tao

    2013-01-01

    Angiogenesis plays an important role in myocardial repair after myocardial infarction (MI). Cardiac micro-vascular endothelial cells (CMECs) are important participants in myocardial angiogenesis processes. Recent studies have revealed that Nuclear factor-erythroid 2-related factor 2 (Nrf2), a master transcription factor of endogenous anti-oxidative defense systems, exerts cardio-protection in the cardiovascular system. However, the role of Nrf2 in the process of myocardial angiogenesis and corresponding mechanisms are not fully understood. Thus, the present study investigated the role of Nrf2 in the angiogenesis of rat CMECs to hypoxia. Trans-well assay, three-dimensional Matrigel assay were used to determine cell migration and vascular tube formation. Real-time RT-PCR, ELISA and Western blot were measured mRNA and protein expression. Here, we report that the mRNA and protein expression of Nrf2 and heme oxygenase-1(HO-1) were temporarily upregulated under hypoxic condition. Furthermore, knock down of Nrf2 significantly suppressed the migration and vascular tube formation of rat CMECs to hypoxia, Nrf2 knockdown also significantly decreased HO-1 and vascular endothelial growth factor (VEGF) expression at 48 h after transfection under hypoxic condition. Finally, transfection of CMECs with the Nrf2 over-expressing lentiviral vector upregulated HO-1 expression with a concomitant increase in cell migration and vascular tube formation induced by hypoxia, and this effect was greatly attenuated in the presence of ZnPP (a HO-1 inhibitor). Taken together, these results suggest that Nrf2 may mediate the angiogenesis of CMECs under hypoxic condition, and HO-1 is involved in regulating the angiogenesis of CMECs through Nrf2. Therefore, Nrf2 is a potent regulator of hypoxia-condition mediated angiogenesis in CMECs, which may provide a therapeutic strategy for myocardial repair after MI. PMID:23904790

  10. Comparative transcriptome analysis by RNAseq of necrotic enteritis Clostridium perfringens during in vivo colonization and in vitro conditions.

    PubMed

    Parreira, Valeria R; Russell, Kay; Athanasiadou, Spiridoula; Prescott, John F

    2016-08-12

    Necrotic enteritis (NE) caused by netB-positive type A Clostridium perfringens is an important bacterial disease of poultry. Through its complex regulatory system, C. perfringens orchestrates the expression of a collection of toxins and extracellular enzymes that are crucial for the development of the disease; environmental conditions play an important role in their regulation. In this study, and for the first time, global transcriptomic analysis was performed on ligated intestinal loops in chickens colonized with a netB-positive C. perfringens strain, as well as the same strain propagated in vitro under various nutritional and environmental conditions. Analysis of the respective pathogen transcriptomes revealed up to 673 genes that were significantly expressed in vivo. Gene expression profiles in vivo were most similar to those of C. perfringens grown in nutritionally-deprived conditions. Taken together, our results suggest a bacterial transcriptome responses to the early stages of adaptation, and colonization of, the chicken intestine. Our work also reveals how netB-positive C. perfringens reacts to different environmental conditions including those in the chicken intestine.

  11. Game-theoretic strategies for asymmetric networked systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S.; Ma, Chris Y. T.; Hausken, Kjell

    Abstract—We consider an infrastructure consisting of a network of systems each composed of discrete components that can be reinforced at a certain cost to guard against attacks. The network provides the vital connectivity between systems, and hence plays a critical, asymmetric role in the infrastructure operations. We characterize the system-level correlations using the aggregate failure correlation function that specifies the infrastructure failure probability given the failure of an individual system or network. The survival probabilities of systems and network satisfy first-order differential conditions that capture the component-level correlations. We formulate the problem of ensuring the infrastructure survival as a gamemore » between anattacker and a provider, using the sum-form and product-form utility functions, each composed of a survival probability term and a cost term. We derive Nash Equilibrium conditions which provide expressions for individual system survival probabilities, and also the expected capacity specified by the total number of operational components. These expressions differ only in a single term for the sum-form and product-form utilities, despite their significant differences.We apply these results to simplified models of distributed cloud computing infrastructures.« less

  12. A transcriptomic analysis of Yersinia enterocolitica biovar 1B infecting murine macrophages reveals new mechanisms of intracellular survival

    DOE PAGES

    Bent, Zachary W.; Poorey, Kunal; Brazel, David M.; ...

    2015-04-20

    Yersinia enterocolitica is typically considered an extracellular pathogen; however, during the course of an infection, a significant number of bacteria are stably maintained within host cell vacuoles. Little is known about this population and the role it plays during an infection. To address this question and to elucidate the spatially and temporally dynamic gene expression patterns of Y. enterocoliticabiovar 1B through the course of an in vitro infection, transcriptome sequencing and differential gene expression analysis of bacteria infecting murine macrophage cells were performed under four distinct conditions. Bacteria were first grown in a nutrient-rich medium at 26°C to establish amore » baseline of gene expression that is unrelated to infection. The transcriptomes of these bacteria were then compared to bacteria grown in a conditioned cell culture medium at 37°C to identify genes that were differentially expressed in response to the increased temperature and medium but not in response to host cells. Infections were then performed, and the transcriptomes of bacteria found on the extracellular surface and intracellular compartments were analyzed individually. The upregulated genes revealed potential roles for a variety of systems in promoting intracellular virulence, including the Ysa type III secretion system, the Yts2 type II secretion system, and the Tad pilus. It was further determined that mutants of each of these systems had decreased virulence while infecting macrophages. Overall, these results reveal the complete set of genes expressed by Y. enterocolitica in response to infection and provide the groundwork for future virulence studies.« less

  13. Study of model systems to test the potential function of Artemia group 1 late embryogenesis abundant (LEA) proteins.

    PubMed

    Warner, Alden H; Guo, Zhi-hao; Moshi, Sandra; Hudson, John W; Kozarova, Anna

    2016-01-01

    Embryos of the brine shrimp, Artemia franciscana, are genetically programmed to develop either ovoviparously or oviparously depending on environmental conditions. Shortly upon their release from the female, oviparous embryos enter diapause during which time they undergo major metabolic rate depression while simultaneously synthesize proteins that permit them to tolerate a wide range of stressful environmental events including prolonged periods of desiccation, freezing, and anoxia. Among the known stress-related proteins that accumulate in embryos entering diapause are the late embryogenesis abundant (LEA) proteins. This large group of intrinsically disordered proteins has been proposed to act as molecular shields or chaperones of macromolecules which are otherwise intolerant to harsh conditions associated with diapause. In this research, we used two model systems to study the potential function of the group 1 LEA proteins from Artemia. Expression of the Artemia group 1 gene (AfrLEA-1) in Escherichia coli inhibited growth in proportion to the number of 20-mer amino acid motifs expressed. As well, clones of E. coli, transformed with the AfrLEA-1 gene, expressed multiple bands of LEA proteins, either intrinsically or upon induction with isopropyl-β-thiogalactoside (IPTG), in a vector-specific manner. Expression of AfrLEA-1 in E. coli did not overcome the inhibitory effects of high concentrations of NaCl and KCl but modulated growth inhibition resulting from high concentrations of sorbitol in the growth medium. In contrast, expression of the AfrLEA-1 gene in Saccharomyces cerevisiae did not alter the growth kinetics or permit yeast to tolerate high concentrations of NaCl, KCl, or sorbitol. However, expression of AfrLEA-1 in yeast improved its tolerance to drying (desiccation) and freezing. Under our experimental conditions, both E. coli and S. cerevisiae appear to be potentially suitable hosts to study the function of Artemia group 1 LEA proteins under environmentally stressful conditions.

  14. Analysis of the Salmonella regulatory network suggests involvement of SsrB and H-NS in σ E-regulated SPI-2 gene expression

    DOE PAGES

    Li, Jie; Overall, Christopher C.; Nakayasu, Ernesto S.; ...

    2015-02-10

    The extracytoplasmic functioning sigma factor σ E is known to play an essential role for Salmonella enterica serovar Typhimurium to survive and proliferate in macrophages and mice. However, its regulatory network is not well characterized, especially during infection. Here we used microarray to identify genes regulated by σ E in Salmonella grown in three conditions: a nutrient-rich condition and two others that mimic early and late intracellular infection. We found that in each condition σ E regulated different sets of genes, and notably, several global regulators. When comparing nutrient-rich and infection-like conditions, large changes were observed in the expression ofmore » genes involved in Salmonella pathogenesis island (SPI)-1 type-three secretion system (TTSS), SPI-2 TTSS, protein synthesis, and stress responses. In total, the expression of 58% of Salmonella genes was affected by σ E in at least one of the three conditions. An important finding is that σ E up-regulates SPI-2 genes, which are essential for Salmonella intracellular survival, by up-regulating SPI-2 activator ssrB expression at the early stage of infection and down-regulating SPI-2 repressor hns expression at a later stage. Moreover, σ E is capable of countering the silencing of H-NS, releasing the expression of SPI-2 genes. This connection between σ E and SPI-2 genes, combined with the global regulatory effect of σ E, may account for the lethality of rpoE-deficient Salmonella in murine infection.« less

  15. Analysis of the Salmonella regulatory network suggests involvement of SsrB and H-NS in σ E-regulated SPI-2 gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jie; Overall, Christopher C.; Nakayasu, Ernesto S.

    The extracytoplasmic functioning sigma factor σ E is known to play an essential role for Salmonella enterica serovar Typhimurium to survive and proliferate in macrophages and mice. However, its regulatory network is not well characterized, especially during infection. Here we used microarray to identify genes regulated by σ E in Salmonella grown in three conditions: a nutrient-rich condition and two others that mimic early and late intracellular infection. We found that in each condition σ E regulated different sets of genes, and notably, several global regulators. When comparing nutrient-rich and infection-like conditions, large changes were observed in the expression ofmore » genes involved in Salmonella pathogenesis island (SPI)-1 type-three secretion system (TTSS), SPI-2 TTSS, protein synthesis, and stress responses. In total, the expression of 58% of Salmonella genes was affected by σ E in at least one of the three conditions. An important finding is that σ E up-regulates SPI-2 genes, which are essential for Salmonella intracellular survival, by up-regulating SPI-2 activator ssrB expression at the early stage of infection and down-regulating SPI-2 repressor hns expression at a later stage. Moreover, σ E is capable of countering the silencing of H-NS, releasing the expression of SPI-2 genes. This connection between σ E and SPI-2 genes, combined with the global regulatory effect of σ E, may account for the lethality of rpoE-deficient Salmonella in murine infection.« less

  16. Brain aging and Aβ₁₋₄₂ neurotoxicity converge via deterioration in autophagy-lysosomal system: a conditional Drosophila model linking Alzheimer's neurodegeneration with aging.

    PubMed

    Ling, Daijun; Salvaterra, Paul M

    2011-02-01

    Aging is known to be the most prominent risk factor for Alzheimer's disease (AD); however, the underlying mechanism linking brain aging with AD pathogenesis remains unknown. The expression of human amyloid beta 42 peptide (Aβ₁₋₄₂), but not Aβ₁₋₄₀ in Drosophila brain induces an early onset and progressive autophagy-lysosomal neuropathology. Here we show that the natural process of brain aging also accompanies a chronic and late-onset deterioration of neuronal autophagy-lysosomal system. This process is characterized by accumulation of dysfunctional autophagy-lysosomal vesicles, a compromise of these vesicles leading to damage of intracellular membranes and organelles, necrotic-like intraneuronal destruction and neurodegeneration. In addition, conditional activation of neuronal autophagy in young animals is protective while late activation is deleterious for survival. Intriguingly, conditional Aβ₁₋₄₂ expression limited to young animals exacerbates the aging process to a greater extent than Aβ₁₋₄₂ expression in old animals. These data suggest that the neuronal autophagy-lysosomal system may shift from a functional and protective state to a pathological and deleterious state either during brain aging or via Aβ₁₋₄₂ neurotoxicity. A chronic deterioration of the neuronal autophagy-lysosomal system is likely to be a key event in transitioning from normal brain aging to pathological aging leading to Alzheimer's neurodegeneration.

  17. Melatonin enhances lipid production in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions via a multi-level mechanism.

    PubMed

    Zhao, Yongteng; Li, Dafei; Xu, Jun-Wei; Zhao, Peng; Li, Tao; Ma, Huixian; Yu, Xuya

    2018-07-01

    In this study, melatonin (MT) promoted lipid accumulation in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions. The lipid accumulation increased 1.22- and 1.36-fold compared with a nitrogen-starved medium and a normal BG-11 medium, respectively. The maximum lipid content was 51.38%. The reactive oxygen species (ROS) level in the presence of melatonin was lower than that in the control group, likely because of the high antioxidant activities. The application of melatonin upregulated the gibberellin acid (GA) production and rbcL and accD expression levels but downregulated the abscisic acid (ABA) content and pepc expression levels. These findings demonstrated that exogenous melatonin could further improve the lipid production in Monoraphidium sp. QLY-1 by regulating antioxidant systems, signalling molecules, and lipid biosynthesis-related gene expression under nitrogen deficiency conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Transcriptional Profiling of Type II Toxin–Antitoxin Genes of Helicobacter pylori under Different Environmental Conditions: Identification of HP0967–HP0968 System

    PubMed Central

    Cárdenas-Mondragón, María G.; Ares, Miguel A.; Panunzi, Leonardo G.; Pacheco, Sabino; Camorlinga-Ponce, Margarita; Girón, Jorge A.; Torres, Javier; De la Cruz, Miguel A.

    2016-01-01

    Helicobacter pylori is a Gram-negative bacterium that colonizes the human gastric mucosa and is responsible for causing peptic ulcers and gastric carcinoma. The expression of virulence factors allows the persistence of H. pylori in the stomach, which results in a chronic, sometimes uncontrolled inflammatory response. Type II toxin–antitoxin (TA) systems have emerged as important virulence factors in many pathogenic bacteria. Three type II TA systems have previously been identified in the genome of H. pylori 26695: HP0315–HP0316, HP0892–HP0893, and HP0894–HP0895. Here we characterized a heretofore undescribed type II TA system in H. pylori, HP0967–HP0968, which is encoded by the bicistronic operon hp0968–hp0967 and belongs to the Vap family. The predicted HP0967 protein is a toxin with ribonuclease activity whereas HP0968 is an antitoxin that binds to its own regulatory region. We found that all type II TA systems were expressed in H. pylori during early stationary growth phase, and differentially expressed in the presence of urea, nickel, and iron, although, the hp0968–hp0967 pair was the most affected under these environmental conditions. Transcription of hp0968–hp0967 was strongly induced in a mature H. pylori biofilm and when the bacteria interacted with AGS epithelial cells. Kanamycin and chloramphenicol considerably boosted transcription levels of all the four type II TA systems. The hp0968–hp0967 TA system was the most frequent among 317 H. pylori strains isolated from all over the world. This study is the first report on the transcription of type II TA genes in H. pylori under different environmental conditions. Our data show that the HP0967 and HP0968 proteins constitute a bona fide type II TA system in H. pylori, whose expression is regulated by environmental cues, which are relevant in the context of infection of the human gastric mucosa. PMID:27920769

  19. Inhaled Lavandula angustifolia essential oil inhibits consolidation of contextual- but not tone-fear conditioning in rats.

    PubMed

    Coelho, Laura Segismundo; Correa-Netto, Nelson Francisco; Masukawa, Marcia Yuriko; Lima, Ariadiny Caetano; Maluf, Samia; Linardi, Alessandra; Santos-Junior, Jair Guilherme

    2018-04-06

    Although the current treatment for anxiety is effective, it promotes a number of adverse reactions and medical interactions. Inhaled essential oils have a prominent action on the central nervous system, with minimal systemic effects, primarily because of reduced systemic bioavailability. The effects of drugs on the consolidation of fear conditioning reflects its clinical efficacy in preventing a vicious cycle of anticipatory anxiety leading to fearful cognition and anxiety symptoms. In this study, we investigated the effects of inhaled Lavandula angustifolia essential oil on the consolidation of aversive memories and its influence on c-Fos expression. Adult male Wistar rats were subjected to a fear conditioning protocol. Immediately after the training session, the rats were exposed to vaporized water or essential oil (1%, 2.5% and 5% solutions) for 4h. The next day, the rats underwent contextual- or tone-fear tests and 90min after the test they were euthanized and their brains processed for c-Fos immunohistochemistry. In the contextual-fear test, essential oil at 2.5% and 5% (but not 1%) reduced the freezing response and its respective c-Fos expression in the ventral hippocampus and amygdala. In the tone-fear test, essential oil did not reduce the freezing response during tone presentation. However, rats that inhaled essential oil at 2.5% and 5% (but not 1%) showed decreased freezing in the three minutes after tone presentation, as well as reduced c-Fos expression in the prefrontal cortex and amygdala. These results show that the inhalation of L. angustifolia essential oil inhibited the consolidation of contextual- but not tone-fear conditioning and had an anxiolytic effect in a conditioned animal model of anxiety. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Reduction in ins-7 gene expression in non-neuronal cells of high glucose exposed Caenorhabditis elegans protects from reactive metabolites, preserves neuronal structure and head motility, and prolongs lifespan.

    PubMed

    Mendler, Michael; Riedinger, Christin; Schlotterer, Andrea; Volk, Nadine; Fleming, Thomas; Herzig, Stephan; Nawroth, Peter P; Morcos, Michael

    2017-02-01

    Glucose derived metabolism generates reactive metabolites affecting the neuronal system and lifespan in C. elegans. Here, the role of the insulin homologue ins-7 and its downstream effectors in the generation of high glucose induced neuronal damage and shortening of lifespan was studied. In C. elegans high glucose conditions induced the expression of the insulin homologue ins-7. Abrogating ins-7 under high glucose conditions in non-neuronal cells decreased reactive oxygen species (ROS)-formation and accumulation of methylglyoxal derived advanced glycation endproducts (AGEs), prevented structural neuronal damage and normalised head motility and lifespan. The restoration of lifespan by decreased ins-7 expression was dependent on the concerted action of sod-3 and glod-4 coding for the homologues of iron-manganese superoxide dismutase and glyoxalase 1, respectively. Under high glucose conditions mitochondria-mediated oxidative stress and glycation are downstream targets of ins-7. This impairs the neuronal system and longevity via a non-neuronal/neuronal crosstalk by affecting sod-3 and glod-4, thus giving further insight into the pathophysiology of diabetic complications. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment

    NASA Technical Reports Server (NTRS)

    Chung, H. J.; Ferl, R. J.

    1999-01-01

    It is widely accepted that the Arabidopsis Adh (alcohol dehydrogenase) gene is constitutively expressed at low levels in the roots of young plants grown on agar media, and that the expression level is greatly induced by anoxic or hypoxic stresses. We questioned whether the agar medium itself created an anaerobic environment for the roots upon their growing into the gel. beta-Glucuronidase (GUS) expression driven by the Adh promoter was examined by growing transgenic Arabidopsis plants in different growing systems. Whereas roots grown on horizontal-positioned plates showed high Adh/GUS expression levels, roots from vertical-positioned plates had no Adh/GUS expression. Additional results indicate that growth on vertical plates closely mimics the Adh/GUS expression observed for soil-grown seedlings, and that growth on horizontal plates results in induction of high Adh/GUS expression that is consistent with hypoxic or anoxic conditions within the agar of the root zone. Adh/GUS expression in the shoot apex is also highly induced by root penetration of the agar medium. This induction of Adh/GUS in shoot apex and roots is due, at least in part, to mechanisms involving Ca2+ signal transduction.

  2. Conditions and Linear Stability Analysis at the Transition to Synchronization of Three Coupled Phase Oscillators in a Ring

    NASA Astrophysics Data System (ADS)

    El-Nashar, Hassan F.

    2017-06-01

    We consider a system of three nonidentical coupled phase oscillators in a ring topology. We explore the conditions that must be satisfied in order to obtain the phases at the transition to a synchrony state. These conditions lead to the correct mathematical expressions of phases that aid to find a simple analytic formula for critical coupling when the oscillators transit to a synchronization state having a common frequency value. The finding of a simple expression for the critical coupling allows us to perform a linear stability analysis at the transition to the synchronization stage. The obtained analytic forms of the eigenvalues show that the three coupled phase oscillators with periodic boundary conditions transit to a synchrony state when a saddle-node bifurcation occurs.

  3. On computing stress in polymer systems involving multi-body potentials from molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Fu, Yao; Song, Jeong-Hoon

    2014-08-01

    Hardy stress definition has been restricted to pair potentials and embedded-atom method potentials due to the basic assumptions in the derivation of a symmetric microscopic stress tensor. Force decomposition required in the Hardy stress expression becomes obscure for multi-body potentials. In this work, we demonstrate the invariance of the Hardy stress expression for a polymer system modeled with multi-body interatomic potentials including up to four atoms interaction, by applying central force decomposition of the atomic force. The balance of momentum has been demonstrated to be valid theoretically and tested under various numerical simulation conditions. The validity of momentum conservation justifies the extension of Hardy stress expression to multi-body potential systems. Computed Hardy stress has been observed to converge to the virial stress of the system with increasing spatial averaging volume. This work provides a feasible and reliable linkage between the atomistic and continuum scales for multi-body potential systems.

  4. Cross species analysis of microarray expression data

    PubMed Central

    Lu, Yong; Huggins, Peter; Bar-Joseph, Ziv

    2009-01-01

    Motivation: Many biological systems operate in a similar manner across a large number of species or conditions. Cross-species analysis of sequence and interaction data is often applied to determine the function of new genes. In contrast to these static measurements, microarrays measure the dynamic, condition-specific response of complex biological systems. The recent exponential growth in microarray expression datasets allows researchers to combine expression experiments from multiple species to identify genes that are not only conserved in sequence but also operated in a similar way in the different species studied. Results: In this review we discuss the computational and technical challenges associated with these studies, the approaches that have been developed to address these challenges and the advantages of cross-species analysis of microarray data. We show how successful application of these methods lead to insights that cannot be obtained when analyzing data from a single species. We also highlight current open problems and discuss possible ways to address them. Contact: zivbj@cs.cmu.edu PMID:19357096

  5. Induction of ICAM-1 Expression in Mouse Embryonic Fibroblasts Cultured on Fibroin-Gelatin Scaffolds

    PubMed Central

    Nosenko, M. A.; Maluchenko, N. V.; Drutskaya, M. S.; Arkhipova, A. Y.; Agapov, I. I.; Nedospasov, S. A.; Moisenovich, M. M.

    2017-01-01

    Culturing of allogeneic or autologous cells in three-dimensional bioresorbable scaffolds is an important step in the engineering of constructs for regenerative medicine, as well as for experimental systems to study the mechanisms of cell differentiation and cell-to-cell interaction. Artificial substrates can modulate the phenotype and functional activity of immobilized cells. Investigating these changes is important for understanding the fundamental processes underlying cellular interactions in a 3D microenvironment and for improving tissue-engineered structures. In this study, we investigated the expression of the ICAM-1 adhesion molecule in mouse embryonic fibroblasts (MEF) when cultured on gelatin-fibroin scaffolds. Increased expression of ICAM-1 in MEF was detected only under 3D culture conditions both at the mRNA and protein levels. At the same time, the MEF cultured on various substrates did not oerexpress MAdCAM-1, indicating the selective effect of 3D culture conditions on ICAM-1 expression. One possible mechanism for ICAM-1 induction in MEF is associated with the activation of AP-1, since expression of c-Fos and Junb (but not cJun and Jund) was increased in MEF in 3D. When cultured under 2D conditions, the expression level of AP-1 components did not change. PMID:29104780

  6. Expression of and secretion through the Aeromonas salmonicida type III secretion system.

    PubMed

    Ebanks, Roger O; Knickle, Leah C; Goguen, Michel; Boyd, Jessica M; Pinto, Devanand M; Reith, Michael; Ross, Neil W

    2006-05-01

    Aeromonas salmonicida subsp. salmonicida is the aetiological agent of furunculosis, a disease of farmed and wild salmonids. The type III secretion system (TTSS) is one of the primary virulence factors in A. salmonicida. Using a combination of differential proteomic analysis and reverse transcriptase (RT)-PCR, it is shown that A. salmonicida A449 induces the expression of TTSS proteins at 28 degrees C, but not at its more natural growth temperature of 17 degrees C. More modest increases in expression occur at 24 degrees C. This temperature-induced up-regulation of the TTSS in A. salmonicida A449 occurs within 30 min of a growth temperature increase from 16 to 28 degrees C. Growth conditions such as low-iron, low pH, low calcium, growth within the peritoneal cavity of salmon and growth to high cell densities do not induce the expression of the TTSS in A. salmonicida A449. The only other known growth condition that induces expression of the TTSS is growth of the bacterium at 16 degrees C in salt concentrations ranging from 0.19 to 0.38 M NaCl. It is also shown that growth at 28 degrees C followed by exposure to low calcium results in the secretion of one of the TTSS effector proteins. This study presents a simple in vitro model for the expression of TTSS proteins in A. salmonicida.

  7. Neural circuitry of emotional and cognitive conflict revealed through facial expressions.

    PubMed

    Chiew, Kimberly S; Braver, Todd S

    2011-03-09

    Neural systems underlying conflict processing have been well studied in the cognitive realm, but the extent to which these overlap with those underlying emotional conflict processing remains unclear. A novel adaptation of the AX Continuous Performance Task (AX-CPT), a stimulus-response incompatibility paradigm, was examined that permits close comparison of emotional and cognitive conflict conditions, through the use of affectively-valenced facial expressions as the response modality. Brain activity was monitored with functional magnetic resonance imaging (fMRI) during performance of the emotional AX-CPT. Emotional conflict was manipulated on a trial-by-trial basis, by requiring contextually pre-cued facial expressions to emotional probe stimuli (IAPS images) that were either affectively compatible (low-conflict) or incompatible (high-conflict). The emotion condition was contrasted against a matched cognitive condition that was identical in all respects, except that probe stimuli were emotionally neutral. Components of the brain cognitive control network, including dorsal anterior cingulate cortex (ACC) and lateral prefrontal cortex (PFC), showed conflict-related activation increases in both conditions, but with higher activity during emotion conditions. In contrast, emotion conflict effects were not found in regions associated with affective processing, such as rostral ACC. These activation patterns provide evidence for a domain-general neural system that is active for both emotional and cognitive conflict processing. In line with previous behavioural evidence, greatest activity in these brain regions occurred when both emotional and cognitive influences additively combined to produce increased interference.

  8. Neural Circuitry of Emotional and Cognitive Conflict Revealed through Facial Expressions

    PubMed Central

    Chiew, Kimberly S.; Braver, Todd S.

    2011-01-01

    Background Neural systems underlying conflict processing have been well studied in the cognitive realm, but the extent to which these overlap with those underlying emotional conflict processing remains unclear. A novel adaptation of the AX Continuous Performance Task (AX-CPT), a stimulus-response incompatibility paradigm, was examined that permits close comparison of emotional and cognitive conflict conditions, through the use of affectively-valenced facial expressions as the response modality. Methodology/Principal Findings Brain activity was monitored with functional magnetic resonance imaging (fMRI) during performance of the emotional AX-CPT. Emotional conflict was manipulated on a trial-by-trial basis, by requiring contextually pre-cued facial expressions to emotional probe stimuli (IAPS images) that were either affectively compatible (low-conflict) or incompatible (high-conflict). The emotion condition was contrasted against a matched cognitive condition that was identical in all respects, except that probe stimuli were emotionally neutral. Components of the brain cognitive control network, including dorsal anterior cingulate cortex (ACC) and lateral prefrontal cortex (PFC), showed conflict-related activation increases in both conditions, but with higher activity during emotion conditions. In contrast, emotion conflict effects were not found in regions associated with affective processing, such as rostral ACC. Conclusions/Significance These activation patterns provide evidence for a domain-general neural system that is active for both emotional and cognitive conflict processing. In line with previous behavioural evidence, greatest activity in these brain regions occurred when both emotional and cognitive influences additively combined to produce increased interference. PMID:21408006

  9. Differential Anoxic Expression of Sugar-Regulated Genes Reveals Diverse Interactions between Sugar and Anaerobic Signaling Systems in Rice

    PubMed Central

    Lim, Mi-na; Lee, Sung-eun; Yim, Hui-kyeong; Kim, Jeong Hoe; Yoon, In Sun; Hwang, Yong-sic

    2013-01-01

    The interaction between the dual roles of sugar as a metabolic fuel and a regulatory molecule was unveiled by examining the changes in sugar signaling upon oxygen deprivation, which causes the drastic alteration in the cellular energy status. In our study, the expression of anaerobically induced genes is commonly responsive to sugar, either under the control of hexokinase or non-hexokinase mediated signaling cascades. Only sugar regulation via the hexokinase pathway was susceptible for O2 deficiency or energy deficit conditions evoked by uncoupler. Examination of sugar regulation of those genes under anaerobic conditions revealed the presence of multiple paths underlying anaerobic induction of gene expression in rice, subgrouped into three distinct types. The first of these, which was found in type-1 genes, involved neither sugar regulation nor additional anaerobic induction under anoxia, indicating that anoxic induction is a simple result from the release of sugar repression by O2-deficient conditions. In contrast, type-2 genes also showed no sugar regulation, albeit with enhanced expression under anoxia. Lastly, expression of type-3 genes is highly enhanced with sugar regulation sustained under anoxia. Intriguingly, the inhibition of the mitochondrial ATP synthesis can reproduce expression pattern of a specific set of anaerobically induced genes, implying that rice cells may sense O2 deprivation, partly via perception of the perturbed cellular energy status. Our study of interaction between sugar signaling and anaerobic conditions has revealed that sugar signaling and the cellular energy status are likely to communicate with each other and influence anaerobic induction of gene expression in rice. PMID:23852132

  10. Diurnal lighting patterns and habitat alter opsin expression and colour preferences in a killifish

    PubMed Central

    Johnson, Ashley M.; Stanis, Shannon; Fuller, Rebecca C.

    2013-01-01

    Spatial variation in lighting environments frequently leads to population variation in colour patterns, colour preferences and visual systems. Yet lighting conditions also vary diurnally, and many aspects of visual systems and behaviour vary over this time scale. Here, we use the bluefin killifish (Lucania goodei) to compare how diurnal variation and habitat variation (clear versus tannin-stained water) affect opsin expression and the preference to peck at different-coloured objects. Opsin expression was generally lowest at midnight and dawn, and highest at midday and dusk, and this diurnal variation was many times greater than variation between habitats. Pecking preference was affected by both diurnal and habitat variation but did not correlate with opsin expression. Rather, pecking preference matched lighting conditions, with higher preferences for blue at noon and for red at dawn/dusk, when these wavelengths are comparatively scarce. Similarly, blue pecking preference was higher in tannin-stained water where blue wavelengths are reduced. In conclusion, L. goodei exhibits strong diurnal cycles of opsin expression, but these are not tightly correlated with light intensity or colour. Temporally variable pecking preferences probably result from lighting environment rather than from opsin production. These results may have implications for the colour pattern diversity observed in these fish. PMID:23698009

  11. LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures.

    PubMed

    Duan, Qiaonan; Flynn, Corey; Niepel, Mario; Hafner, Marc; Muhlich, Jeremy L; Fernandez, Nicolas F; Rouillard, Andrew D; Tan, Christopher M; Chen, Edward Y; Golub, Todd R; Sorger, Peter K; Subramanian, Aravind; Ma'ayan, Avi

    2014-07-01

    For the Library of Integrated Network-based Cellular Signatures (LINCS) project many gene expression signatures using the L1000 technology have been produced. The L1000 technology is a cost-effective method to profile gene expression in large scale. LINCS Canvas Browser (LCB) is an interactive HTML5 web-based software application that facilitates querying, browsing and interrogating many of the currently available LINCS L1000 data. LCB implements two compacted layered canvases, one to visualize clustered L1000 expression data, and the other to display enrichment analysis results using 30 different gene set libraries. Clicking on an experimental condition highlights gene-sets enriched for the differentially expressed genes from the selected experiment. A search interface allows users to input gene lists and query them against over 100 000 conditions to find the top matching experiments. The tool integrates many resources for an unprecedented potential for new discoveries in systems biology and systems pharmacology. The LCB application is available at http://www.maayanlab.net/LINCS/LCB. Customized versions will be made part of the http://lincscloud.org and http://lincs.hms.harvard.edu websites. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. A framework for the recognition of 3D faces and expressions

    NASA Astrophysics Data System (ADS)

    Li, Chao; Barreto, Armando

    2006-04-01

    Face recognition technology has been a focus both in academia and industry for the last couple of years because of its wide potential applications and its importance to meet the security needs of today's world. Most of the systems developed are based on 2D face recognition technology, which uses pictures for data processing. With the development of 3D imaging technology, 3D face recognition emerges as an alternative to overcome the difficulties inherent with 2D face recognition, i.e. sensitivity to illumination conditions and orientation positioning of the subject. But 3D face recognition still needs to tackle the problem of deformation of facial geometry that results from the expression changes of a subject. To deal with this issue, a 3D face recognition framework is proposed in this paper. It is composed of three subsystems: an expression recognition system, a system for the identification of faces with expression, and neutral face recognition system. A system for the recognition of faces with one type of expression (happiness) and neutral faces was implemented and tested on a database of 30 subjects. The results proved the feasibility of this framework.

  13. Quantification of three steroid hormone receptors of the leopard gecko (Eublepharis macularius), a lizard with temperature-dependent sex determination: their tissue distributions and the effect of environmental change on their expressions.

    PubMed

    Endo, Daisuke; Park, Min Kyun

    2003-12-01

    Sex steroid hormones play a central role in the reproduction of all vertebrates. These hormones function through their specific receptors, so the expression levels of the receptors may reflect the responsibility of target organs. However, there was no effective method to quantify the expression levels of these receptors in reptilian species. In this study, we established the competitive-PCR assay systems for the quantification of the mRNA expression levels of three sex steroid hormone receptors in the leopard gecko. These assay systems were successfully able to detect the mRNA expression level of each receptor in various organs of male adult leopard geckoes. The expression levels of mRNA of these receptors were highly various depending on the organs assayed. This is the first report regarding the tissue distributions of sex steroid hormone receptor expressions in reptile. The effects of environmental conditions on these hormone receptor expressions were also examined. After the low temperature and short photoperiod treatment for 6 weeks, only the androgen receptor expression was significantly increased in the testes. The competitive-PCR assay systems established in this report should be applicable for various studies of the molecular mechanism underlying the reproductive activity of the leopard gecko.

  14. Lifelong imbalanced LA/ALA intake impairs emotional and cognitive behavior via changes in brain endocannabinoid system.

    PubMed

    Zamberletti, Erica; Piscitelli, Fabiana; De Castro, Valentina; Murru, Elisabetta; Gabaglio, Marina; Colucci, Paola; Fanali, Chiara; Prini, Pamela; Bisogno, Tiziana; Maccarrone, Mauro; Campolongo, Patrizia; Banni, Sebastiano; Rubino, Tiziana; Parolaro, Daniela

    2017-02-01

    Imbalanced dietary n-3 and n-6 PUFA content has been associated with a number of neurological conditions. Endocannabinoids are n-6 PUFA derivatives, whose brain concentrations are sensitive to modifications of fatty acid composition of the diet and play a central role in the regulation of mood and cognition. As such, the endocannabinoid system appears to be an ideal candidate for mediating the effects of dietary fatty acids on mood and cognition. Lifelong administration of isocaloric α-linolenic acid (ALA)-deficient and -enriched diets induced short-term memory deficits, whereas only dietary ALA enrichment altered emotional reactivity in adult male rats compared with animals fed a standard diet that was balanced in ALA/linoleic acid (LA) ratio. In the prefrontal cortex, both diets reduced 2-AG levels and increased MAG lipase expression, whereas only the enriched diet reduced AEA levels, simultaneously increasing FAAH expression. In the hippocampus, an ALA-enriched diet decreased AEA content and NAPE-PLD expression, and reduced 2-AG content while increasing MAG lipase expression. These findings highlight the importance of a diet balanced in fatty acid content for normal brain functions and to support a link between dietary ALA, the brain endocannabinoid system, and behavior, which indicates that dietary ALA intake is a sufficient condition for altering the endocannabinoid system in brain regions modulating mood and cognition. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  15. Gene expression of bovine embryos developing at the air-liquid interface on oviductal epithelial cells (ALI-BOEC).

    PubMed

    van der Weijden, Vera A; Chen, Shuai; Bauersachs, Stefan; Ulbrich, Susanne E; Schoen, Jennifer

    2017-11-25

    We recently developed an air-liquid interface long-term culture of differentiated bovine oviductal epithelial cells (ALI-BOEC). This ex vivo oviduct epithelium is capable of supporting embryo development in co-culture up to the blastocyst stage without addition of embryo culture medium. However, blastocyst rates in co-culture were markedly lower than in conventional in vitro embryo production procedures. In the present study, we assessed target gene expression of ALI-BOEC derived embryos to test their similarity to embryos from conventional in vitro embryo culture. We screened previously published data from developing bovine embryos and selected 41 genes which are either differentially expressed during embryo development, or reflect differences between various in vitro culture conditions or in vitro and in vivo embryos. Target gene expression was measured in 8-cell embryos and blastocysts using a 48.48 Dynamic Array™ on a Biomark HD instrument. For comparison with the ALI-BOEC system, we generated embryos by two different standard IVP protocols. The culture conditions lead to differential gene expression in both 8-cell embryos and blastocysts. Across the expression of all target genes the embryos developing on ALI-BOEC did not depart from conventional IVP embryos. These first results prove that gene expression in ALI-BOEC embryos is not largely aberrant. However, there was no clear indication for a more in vivo-like target gene expression of these embryos. This calls for further optimization of the ALI-BOEC system to increase its efficiency both quantitatively and qualitatively.

  16. Autonomous choices among deterministic evolution-laws as source of uncertainty

    NASA Astrophysics Data System (ADS)

    Trujillo, Leonardo; Meyroneinc, Arnaud; Campos, Kilver; Rendón, Otto; Sigalotti, Leonardo Di G.

    2018-03-01

    We provide evidence of an extreme form of sensitivity to initial conditions in a family of one-dimensional self-ruling dynamical systems. We prove that some hyperchaotic sequences are closed-form expressions of the orbits of these pseudo-random dynamical systems. Each chaotic system in this family exhibits a sensitivity to initial conditions that encompasses the sequence of choices of the evolution rule in some collection of maps. This opens a possibility to extend current theories of complex behaviors on the basis of intrinsic uncertainty in deterministic chaos.

  17. Effect of simulated microgravity on oxidation-sensitive gene expression in PC12 cells

    NASA Astrophysics Data System (ADS)

    Kwon, Ohwon; Sartor, Maureen; Tomlinson, Craig R.; Millard, Ronald W.; Olah, Mark E.; Sankovic, John M.; Banerjee, Rupak K.

    2006-01-01

    Oxygen utilization by and oxygen dependence of cellular processes may be different in biological systems that are exposed to microgravity (micro-g). A baseline in which cellular changes in oxygen sensitive molecular processes occur during micro-g conditions would be important to pursue this question. The objective of this research is to analyze oxidation-sensitive gene expression in a model cell line [rat pheochromocytoma (PC12)] under simulated micro-g conditions. The PC12 cell line is well characterized in its response to oxygen, and is widely recognized as a sensitive model for studying the responses of oxygen-sensitive molecular and cellular processes. This study uses the rotating wall vessel bioreactor (RWV) designed at NASA to simulate micro-g. Gene expression in PC12 cells in response to micro-g was analyzed by DNA microarray technology. The microarray analysis of PC12 cells cultured for 4 days under simulated micro-g under standardized oxygen environment conditions revealed more than 100 genes whose expression levels were changed at least twofold (up-regulation of 65 genes and down-regulation of 39 genes) compared with those from cells in the unit gravity (unit-g) control. This study observed that genes involved in the oxidoreductase activity category were most significantly differentially expressed under micro-g conditions. Also, known oxidation-sensitive transcription factors such as hypoxia-inducible factor-2α, c-myc, and the peroxisome proliferator-activated receptor-γ were changed significantly. Our initial results from the gene expression microarray studies may provide a context in which to evaluate the effect of varying oxygen environments on the background of differential gene regulation of biological processes under variable gravity conditions.

  18. Effect of simulated microgravity on oxidation-sensitive gene expression in PC12 cells

    PubMed Central

    Kwon, Ohwon; Sartor, Maureen; Tomlinson, Craig R.; Millard, Ronald W.; Olah, Mark E.; Sankovic, John M.; Banerjee, Rupak K.

    2008-01-01

    Oxygen utilization by and oxygen dependence of cellular processes may be different in biological systems that are exposed to microgravity (micro-g). A baseline in which cellular changes in oxygen sensitive molecular processes occur during micro-g conditions would be important to pursue this question. The objective of this research is to analyze oxidation-sensitive gene expression in a model cell line [rat pheochromocytoma (PC12)] under simulated micro-g conditions. The PC12 cell line is well characterized in its response to oxygen, and is widely recognized as a sensitive model for studying the responses of oxygen-sensitive molecular and cellular processes. This study uses the rotating wall vessel bioreactor (RWV) designed at NASA to simulate micro-g. Gene expression in PC12 cells in response to micro-g was analyzed by DNA microarray technology. The microarray analysis of PC12 cells cultured for 4 days under simulated micro-g under standardized oxygen environment conditions revealed more than 100 genes whose expression levels were changed at least twofold (up-regulation of 65 genes and down-regulation of 39 genes) compared with those from cells in the unit gravity (unit-g) control. This study observed that genes involved in the oxidoreductase activity category were most significantly differentially expressed under micro-g conditions. Also, known oxidation-sensitive transcription factors such as hypoxia-inducible factor-2α, c-myc, and the peroxisome proliferator-activated receptor-γ were changed significantly. Our initial results from the gene expression microarray studies may provide a context in which to evaluate the effect of varying oxygen environments on the background of differential gene regulation of biological processes under variable gravity conditions. PMID:19081771

  19. Neuroimmune regulation of neurophysiology in the cerebellum.

    PubMed

    Gruol, Donna L

    2013-06-01

    Recent studies have established the existence of an innate immune system in the central nervous system (CNS) and implicated a critical role for this system in both normal and pathological processes. Astrocytes and microglia, normal components of the CNS, are the primary cell types that comprise the innate immune system of the CNS. Basic to their role during normal and adverse conditions is the production of neuroimmune factors such as cytokines and chemokines, which are signaling molecules that initiate or coordinate downstream cellular actions. During adverse conditions, cytokines and chemokines function in defensive and repair. However, if expression of these factors becomes dysregulated, abnormal CNS function can result. Both neurons and glial cells of the CNS express receptors for cytokines and chemokines, but the biological consequence of receptor activation has yet to be fully resolved. Our studies show that neuroadaptive changes are produced in primary cultures of rat cerebellar cells chronically treated with the cytokine interleukin-6 (IL-6) and in the cerebellum of transgenic mice that chronically express elevated levels of IL-6 in the CNS. In the cerebellum in culture and in vivo, the neuroadaptive changes included alterations in the level of expression of proteins involved in gene expression, signal transduction, and synaptic transmission. Associated with these changes were alterations in neuronal function. A comparison of results from the cultured cerebellar cells and cerebellum of the transgenic mice indicated that the effects of IL-6 can vary across neuronal types. However, alterations in mechanisms involved in Ca(2+) homeostasis were observed in all cell types studied. These results indicate that modifications in cerebellar function are likely to occur in disorders associated with elevated levels of IL-6 in the cerebellum.

  20. Promises and pitfalls of a Pannexin1 transgenic mouse line.

    PubMed

    Hanstein, Regina; Negoro, Hiromitsu; Patel, Naman K; Charollais, Anne; Meda, Paolo; Spray, David C; Suadicani, Sylvia O; Scemes, Eliana

    2013-01-01

    Gene targeting strategies have become a powerful technology for elucidating mammalian gene function. The recently generated knockout (KO)-first strategy produces a KO at the RNA processing level and also allows for the generation of conditional KO alleles by combining FLP/FRT and Cre/loxP systems, thereby providing high flexibility in gene manipulation. However, this multipurpose KO-first cassette might produce hypomorphic rather than complete KOs if the RNA processing module is bypassed. Moreover, the generation of a conditional phenotype is also dependent on specific activity of Cre recombinase. Here, we report the use of an efficient molecular biological approach to test pannexin1 (Panx1) mRNA expression in global and conditional Panx1 KO mice derived from the KO-first mouse line, Panx1(tm1a(KOMP)Wtsi). Using qRT-PCR, we demonstrate that tissues from wild-type (WT) mice show a range of Panx1 mRNA expression levels, with highest expression in trigeminal ganglia, bladder and spleen. Unexpectedly, we found that in mice homozygous for the KO-first allele, Panx1 mRNA expression is not abolished but reduced by 70% compared to that of WT tissues. Thus, Panx1 KO-first mice present a hypomorphic phenotype. Crosses of Panx1 KO-first with FLP deleter mice generated Panx1(f/f) mice. Further crosses of the latter mice with mGFAP-Cre or NFH-Cre mice were used to generate astrocyte- and neuron-specific Panx1 deletions, respectively. A high incidence of ectopic Cre expression was found in offspring of both types of conditional Panx1 KO mice. Our study demonstrates that Panx1 expression levels in the global and conditional Panx1 KO mice derived from KO-first mouse lines must be carefully characterized to ensure modulation of Panx1 gene expression. The precise quantitation of Panx1 expression and its relation to function is expected to provide a foundation for future efforts aimed at deciphering the role of Panx1 under physiological and pathological conditions.

  1. Expression of endoglucanases in Pichia pastoris under control of the GAP promoter

    PubMed Central

    2014-01-01

    Background Plant-derived biomass is a potential alternative to fossil feedstocks for a greener economy. Enzymatic saccharification of biomass has been studied extensively and endoglucanases have been found to be a prerequisite for quick initial liquefaction of biomass under industrial conditions. Pichia pastoris, widely used for heterologous protein expression, can be utilized for fungal endoglucanase production. The recently marketed PichiaPink™ expression system allows for rapid clone selection, and employs the methanol inducible AOX1 promoter to ensure high protein expression levels. However, methanol is toxic and poses a fire hazard, issues which become more significant at an industrial scale. It is possible to eliminate these risks and still maintain high productivity by switching to the constitutive GAP promoter. Results In the present study, a plasmid carrying the constitutive GAP promoter was created for PichiaPink™. We then studied expression of two endoglucanases, AfCel12A from Aspergillus fumigatus and TaCel5A from Thermoascus aurantiacus, regulated by either the AOX1 promoter or the GAP promoter. Initial experiments in tubes and small bioreactors showed that the levels of AfCel12A obtained with the constitutive promoter were similar or higher, compared to the AOX1 promoter, whereas the levels of TaCel5A were somewhat lower. After optimization of cultivation conditions using a 15-l bioreactor, the recombinant P. pastoris strains utilizing the GAP promoter produced ca. 3–5 g/l of total secreted protein, with CMCase activity equivalent to 1200 nkat/ml AfCel12A and 170 nkat/ml TaCel5A. Conclusions We present a strategy for constitutive recombinant protein expression in the novel PichiaPink™ system. Both AfCel12A and TaCel5A were successfully expressed constitutively in P. pastoris under the GAP promoter. Reasonable protein levels were reached after optimizing cultivation conditions. PMID:24742273

  2. Expression of endoglucanases in Pichia pastoris under control of the GAP promoter.

    PubMed

    Várnai, Anikó; Tang, Campbell; Bengtsson, Oskar; Atterton, Andrew; Mathiesen, Geir; Eijsink, Vincent G H

    2014-04-18

    Plant-derived biomass is a potential alternative to fossil feedstocks for a greener economy. Enzymatic saccharification of biomass has been studied extensively and endoglucanases have been found to be a prerequisite for quick initial liquefaction of biomass under industrial conditions. Pichia pastoris, widely used for heterologous protein expression, can be utilized for fungal endoglucanase production. The recently marketed PichiaPink™ expression system allows for rapid clone selection, and employs the methanol inducible AOX1 promoter to ensure high protein expression levels. However, methanol is toxic and poses a fire hazard, issues which become more significant at an industrial scale. It is possible to eliminate these risks and still maintain high productivity by switching to the constitutive GAP promoter. In the present study, a plasmid carrying the constitutive GAP promoter was created for PichiaPink™. We then studied expression of two endoglucanases, AfCel12A from Aspergillus fumigatus and TaCel5A from Thermoascus aurantiacus, regulated by either the AOX1 promoter or the GAP promoter. Initial experiments in tubes and small bioreactors showed that the levels of AfCel12A obtained with the constitutive promoter were similar or higher, compared to the AOX1 promoter, whereas the levels of TaCel5A were somewhat lower. After optimization of cultivation conditions using a 15-l bioreactor, the recombinant P. pastoris strains utilizing the GAP promoter produced ca. 3-5 g/l of total secreted protein, with CMCase activity equivalent to 1200 nkat/ml AfCel12A and 170 nkat/ml TaCel5A. We present a strategy for constitutive recombinant protein expression in the novel PichiaPink™ system. Both AfCel12A and TaCel5A were successfully expressed constitutively in P. pastoris under the GAP promoter. Reasonable protein levels were reached after optimizing cultivation conditions.

  3. Evaluation of Reference Genes for RT qPCR Analyses of Structure-Specific and Hormone Regulated Gene Expression in Physcomitrella patens Gametophytes

    PubMed Central

    Le Bail, Aude; Scholz, Sebastian; Kost, Benedikt

    2013-01-01

    The use of the moss Physcomitrella patens as a model system to study plant development and physiology is rapidly expanding. The strategic position of P. patens within the green lineage between algae and vascular plants, the high efficiency with which transgenes are incorporated by homologous recombination, advantages associated with the haploid gametophyte representing the dominant phase of the P. patens life cycle, the simple structure of protonemata, leafy shoots and rhizoids that constitute the haploid gametophyte, as well as a readily accessible high-quality genome sequence make this moss a very attractive experimental system. The investigation of the genetic and hormonal control of P. patens development heavily depends on the analysis of gene expression patterns by real time quantitative PCR (RT qPCR). This technique requires well characterized sets of reference genes, which display minimal expression level variations under all analyzed conditions, for data normalization. Sets of suitable reference genes have been described for most widely used model systems including e.g. Arabidopsis thaliana, but not for P. patens. Here, we present a RT qPCR based comparison of transcript levels of 12 selected candidate reference genes in a range of gametophytic P. patens structures at different developmental stages, and in P. patens protonemata treated with hormones or hormone transport inhibitors. Analysis of these RT qPCR data using GeNorm and NormFinder software resulted in the identification of sets of P. patens reference genes suitable for gene expression analysis under all tested conditions, and suggested that the two best reference genes are sufficient for effective data normalization under each of these conditions. PMID:23951063

  4. Vibrio parahaemolyticus Type VI Secretion System 1 Is Activated in Marine Conditions to Target Bacteria, and Is Differentially Regulated from System 2

    PubMed Central

    Salomon, Dor; Gonzalez, Herman; Updegraff, Barrett L.; Orth, Kim

    2013-01-01

    Vibrio parahaemolyticus is a marine bacterium that thrives in warm climates. It is a leading cause of gastroenteritis resulting from consumption of contaminated uncooked shellfish. This bacterium harbors two putative type VI secretion systems (T6SS). T6SSs are widespread protein secretion systems found in many Gram-negative bacteria, and are often tightly regulated. For many T6SSs studied to date, the conditions and cues, as well as the regulatory mechanisms that control T6SS activity are unknown. In this study, we characterized the environmental conditions and cues that activate both V. parahaemolyticus T6SSs, and identified regulatory mechanisms that control T6SS gene expression and activity. We monitored the expression and secretion of the signature T6SS secreted proteins Hcp1 and Hcp2, and found that both T6SSs are differentially regulated by quorum sensing and surface sensing. We also showed that T6SS1 and T6SS2 require different temperature and salinity conditions to be active. Interestingly, T6SS1, which is found predominantly in clinical isolates, was most active under warm marine-like conditions. Moreover, we found that T6SS1 has anti-bacterial activity under these conditions. In addition, we identified two transcription regulators in the T6SS1 gene cluster that regulate Hcp1 expression, but are not required for immunity against self-intoxication. Further examination of environmental isolates revealed a correlation between the presence of T6SS1 and virulence of V. parahaemolyticus against other bacteria, and we also showed that different V. parahaemolyticus isolates can outcompete each other. We propose that T6SS1 and T6SS2 play different roles in the V. parahaemolyticus lifestyles, and suggest a role for T6SS1 in enhancing environmental fitness of V. parahaemolyticus in marine environments when competing for a niche in the presence of other bacterial populations. PMID:23613791

  5. Stability of the line preserving flows

    NASA Astrophysics Data System (ADS)

    Figura, Przemysław

    2017-11-01

    We examine the equations that are used to describe flows which preserve field lines. We study what happens if we introduce perturbations to the governing equations. The stability of the line preserving flows in the case of the magneto-fluids permeated by magnetic fields is strictly connected to the non-null magnetic reconnection processes. In most of our study we use the Euler potential representation of the external magnetic field. We provide general expressions for the perturbations of the Euler potentials that describe the magnetic field. Similarly, we provide expressions for the case of steady flow as well as we obtain certain conditions required for the stability of the flow. In addition, for steady flows we formulate conditions under which the perturbations of the external field are negligible and the field may be described by its initial unperturbed form. Then we consider the flow equation that transforms quantities from the laboratory coordinate system to the related external field coordinate system. We introduce perturbations to the equation and obtain its simplified versions for the case of a steady flow. For a given system, use of this method allows us to simplify the considerations provided that some part of the system may be described as a perturbation. Next, to study regions favourable for the magnetic reconnection to occur we introduce a deviation vector to the basic line preserving flows condition equation. We provide expressions of the vector for some simplifying cases. This method allows us to examine if given perturbations either stabilise the system or induce magnetic reconnection. To illustrate some of our results we study two examples, namely a simple laboratory plasma flow and a simple planetary magnetosphere model.

  6. Individual differences in the propensity to approach signals vs goals promote different adaptations in the dopamine system of rats.

    PubMed

    Flagel, Shelly B; Watson, Stanley J; Robinson, Terry E; Akil, Huda

    2007-04-01

    The way an individual responds to cues associated with rewards may be a key determinant of vulnerability to compulsive behavioral disorders. We studied individual differences in Pavlovian conditioned approach behavior and examined the expression of neurobiological markers associated with the dopaminergic system, the same neural system implicated in incentive motivational processes. Pavlovian autoshaping procedures consisted of the brief presentation of an illuminated retractable lever (conditioned stimulus) followed by the response-independent delivery of a food pellet (unconditioned stimulus), which lead to a Pavlovian conditioned response. In situ hybridization was performed on brains obtained either following the first or last (fifth) day of training. Two phenotypes emerged. Sign-trackers (ST) exhibited behavior that seemed to be largely controlled by the cue that signaled impending reward delivery; whereas goal-trackers (GT) preferentially approached the location where the reward was delivered. Following a single training session, ST showed greater expression of dopamine D1 receptor mRNA relative to GT. After 5 days of training, GT exhibited greater expression levels of tyrosine hydroxylase, dopamine transporter, and dopamine D2 receptor mRNA relative to ST. These findings suggest that the development of approach behavior towards signals vs goal leads to distinct adaptations in the dopamine system. The sign-tracker vs goal-tracker phenotype may prove to be a valuable animal model to investigate individual differences in the way incentive salience is attributed to environmental stimuli, which may contribute to the development of addiction and other compulsive behavioral disorders.

  7. AGEs-RAGE system down-regulates Sirt1 through the ubiquitin-proteasome pathway to promote FN and TGF-β1 expression in male rat glomerular mesangial cells.

    PubMed

    Huang, Kai-Peng; Chen, Cheng; Hao, Jie; Huang, Jun-Ying; Liu, Pei-Qing; Huang, He-Qing

    2015-01-01

    We previously demonstrated that advanced glycation-end products (AGEs) promote the pathological progression of diabetic nephropathy by decreasing silent information regulator 2-related protein 1 (Sirt1) expression in glomerular mesangial cells (GMCs). Here, we investigated whether AGEs-receptor for AGEs (RAGE) system down-regulated Sirt1 expression through ubiquitin-proteasome pathway and whether Sirt1 ubiquitination affected fibronectin (FN) and TGF-β1, 2 fibrotic indicators in GMCs. Sirt1 was polyubiquitinated and subsequently degraded by proteasome. AGEs increased Sirt1 ubiquitination and proteasome-mediated degradation, shortened Sirt1 half-life, and promoted FN and TGF-β1 expression. Ubiquitin-specific protease 22 (USP22) reduced Sirt1 ubiquitination and degradation and decreased FN and TGF-β1 expression in GMCs under both basal and AGEs-treated conditions. USP22 depletion enhanced Sirt1 degradation and displayed combined effects with AGEs to further promote FN and TGF-β1 expression. RAGE functioned crucial mediating roles in these processes via its C-terminal cytosolic domain. Inhibiting Sirt1 by EX-527 substantially suppressed the down-regulation of FN and TGF-β1 resulting from USP22 overexpression under both normal and AGEs-treated conditions, eventually leading to their up-regulation in GMCs. These results indicated that the AGEs-RAGE system increased the ubiquitination and subsequent proteasome-mediated degradation of Sirt1 by reducing USP22 level, and AGEs-RAGE-USP22-Sirt1 formed a cascade pathway that regulated FN and TGF-β1 level, which participated in the pathological progression of diabetic nephropathy.

  8. The Arabidopsis halophytic relative Thellungiella halophila tolerates nitrogen-limiting conditions by maintaining growth, nitrogen uptake, and assimilation.

    PubMed

    Kant, Surya; Bi, Yong-Mei; Weretilnyk, Elizabeth; Barak, Simon; Rothstein, Steven J

    2008-07-01

    A comprehensive knowledge of mechanisms regulating nitrogen (N) use efficiency is required to reduce excessive input of N fertilizers while maintaining acceptable crop yields under limited N supply. Studying plant species that are naturally adapted to low N conditions could facilitate the identification of novel regulatory genes conferring better N use efficiency. Here, we show that Thellungiella halophila, a halophytic relative of Arabidopsis (Arabidopsis thaliana), grows better than Arabidopsis under moderate (1 mm nitrate) and severe (0.4 mm nitrate) N-limiting conditions. Thellungiella exhibited a lower carbon to N ratio than Arabidopsis under N limitation, which was due to Thellungiella plants possessing higher N content, total amino acids, total soluble protein, and lower starch content compared with Arabidopsis. Furthermore, Thellungiella had higher amounts of several metabolites, such as soluble sugars and organic acids, under N-sufficient conditions (4 mm nitrate). Nitrate reductase activity and NR2 gene expression in Thellungiella displayed less of a reduction in response to N limitation than in Arabidopsis. Thellungiella shoot GS1 expression was more induced by low N than in Arabidopsis, while in roots, Thellungiella GS2 expression was maintained under N limitation but was decreased in Arabidopsis. Up-regulation of NRT2.1 and NRT3.1 expression was higher and repression of NRT1.1 was lower in Thellungiella roots under N-limiting conditions compared with Arabidopsis. Differential transporter gene expression was correlated with higher nitrate influx in Thellungiella at low (15)NO(3)(-) supply. Taken together, our results suggest that Thellungiella is tolerant to N-limited conditions and could act as a model system to unravel the mechanisms for low N tolerance.

  9. The Arabidopsis Halophytic Relative Thellungiella halophila Tolerates Nitrogen-Limiting Conditions by Maintaining Growth, Nitrogen Uptake, and Assimilation1[W][OA

    PubMed Central

    Kant, Surya; Bi, Yong-Mei; Weretilnyk, Elizabeth; Barak, Simon; Rothstein, Steven J.

    2008-01-01

    A comprehensive knowledge of mechanisms regulating nitrogen (N) use efficiency is required to reduce excessive input of N fertilizers while maintaining acceptable crop yields under limited N supply. Studying plant species that are naturally adapted to low N conditions could facilitate the identification of novel regulatory genes conferring better N use efficiency. Here, we show that Thellungiella halophila, a halophytic relative of Arabidopsis (Arabidopsis thaliana), grows better than Arabidopsis under moderate (1 mm nitrate) and severe (0.4 mm nitrate) N-limiting conditions. Thellungiella exhibited a lower carbon to N ratio than Arabidopsis under N limitation, which was due to Thellungiella plants possessing higher N content, total amino acids, total soluble protein, and lower starch content compared with Arabidopsis. Furthermore, Thellungiella had higher amounts of several metabolites, such as soluble sugars and organic acids, under N-sufficient conditions (4 mm nitrate). Nitrate reductase activity and NR2 gene expression in Thellungiella displayed less of a reduction in response to N limitation than in Arabidopsis. Thellungiella shoot GS1 expression was more induced by low N than in Arabidopsis, while in roots, Thellungiella GS2 expression was maintained under N limitation but was decreased in Arabidopsis. Up-regulation of NRT2.1 and NRT3.1 expression was higher and repression of NRT1.1 was lower in Thellungiella roots under N-limiting conditions compared with Arabidopsis. Differential transporter gene expression was correlated with higher nitrate influx in Thellungiella at low 15NO3− supply. Taken together, our results suggest that Thellungiella is tolerant to N-limited conditions and could act as a model system to unravel the mechanisms for low N tolerance. PMID:18467466

  10. Xenobiotic-Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes Modulated by Toxcast Chemicals

    EPA Science Inventory

    Primary human hepatocyte cultures are useful in vitro model systems of human liver because when cultured under appropriate conditions the hepatocytes retain liver-like functionality such as metabolism, transport, and cell signaling. This model system was used to characterize the ...

  11. Altitude acclimatization improves submaximal cognitive performance in mice and involves an imbalance of the cholinergic system.

    PubMed

    Guerra-Narbona, R; Delgado-García, J M; López-Ramos, J C

    2013-06-15

    The aim of this work was to reveal a hypothetical improvement of cognitive abilities in animals acclimatized to altitude and performing under ground level conditions, when looking at submaximal performance, once seen that it was not possible when looking at maximal scores. We modified contrasted cognitive tasks (object recognition, operant conditioning, eight-arm radial maze, and classical conditioning of the eyeblink reflex), increasing their complexity in an attempt to find performance differences in acclimatized animals vs. untrained controls. In addition, we studied, through immunohistochemical quantification, the expression of choline acetyltransferase and acetyl cholinesterase, enzymes involved in the synthesis and degradation of acetylcholine, in the septal area, piriform and visual cortexes, and the hippocampal CA1 area of animals submitted to acute hypobaric hypoxia, or acclimatized to this simulated altitude, to find a relationship between the cholinergic system and a cognitive improvement due to altitude acclimatization. Results showed subtle improvements of the cognitive capabilities of acclimatized animals in all of the tasks when performed under ground-level conditions (although not before 24 h), in the three tasks used to test explicit memory (object recognition, operant conditioning in the Skinner box, and eight-arm radial maze) and (from the first conditioning session) in the classical conditioning task used to evaluate implicit memory. An imbalance of choline acetyltransferase/acetyl cholinesterase expression was found in acclimatized animals, mainly 24 h after the acclimatization period. In conclusion, altitude acclimatization improves cognitive capabilities, in a process parallel to an imbalance of the cholinergic system.

  12. Optimization of multi-epitopic HIV-1 recombinant protein expression in prokaryote system and conjugation to mouse DEC-205 monoclonal antibody: implication for in-vivo targeted delivery of dendritic cells

    PubMed Central

    Rahimi, Roghayeh; Ebtekar, Massoumeh; Moazzeni, Seyed Mohammad; Mostafaie, Ali; Mahdavi, Mehdi

    2015-01-01

    Objective(s): Multi-epitopic protein vaccines and direction of vaccine delivery to dendritic cells (DCs) are promising approaches for enhancing immune responses against mutable pathogens. Escherichia coli is current host for expression of recombinant proteins, and it is important to optimize expression condition. The aim of this study was the optimization of multi-epitopic HIV-1 tat/pol/gag/env recombinant protein (HIVtop4) expression by E. coli and conjugation of purified protein to anti DEC-205 monoclonal antibody as candidate vaccine. Materials and Methods: In this study, expression was induced in BL21 (DE3) E. coli cells by optimization of induction condition, post induction incubation time, temperature and culture medium formula. Some culture mediums were used for cell culture, and isopropyl-beta-D-thiogalactopyranoside was used for induction of expression. Protein was purified by Ni-NTA column chromatography and confirmed against anti-His antibody in western-blotting. To exploit DCs properties for immunization purposes, recombinant protein chemically coupled to αDEC-205 monoclonal antibody and confirmed against anti-His antibody in western-blotting. Results: The optimum condition for expression was 1 mM IPTG during 4 hr cultures in 2XYT medium, and final protein produced in soluble form. Conjugation of purified protein to αDEC-205 antibody resulted in smears of protein: antibodies conjugate in different molecular weights. Conclusion: The best cultivation condition for production of HIVtop4 protein is induction by 1 mM IPTG during 4 hr in 2XYT medium. The final concentration of purified protein was 500 µg/ml. PMID:25810888

  13. Event-Related Potentials of Bottom-Up and Top-Down Processing of Emotional Faces

    PubMed Central

    Moradi, Afsane; Mehrinejad, Seyed Abolghasem; Ghadiri, Mohammad; Rezaei, Farzin

    2017-01-01

    Introduction: Emotional stimulus is processed automatically in a bottom-up way or can be processed voluntarily in a top-down way. Imaging studies have indicated that bottom-up and top-down processing are mediated through different neural systems. However, temporal differentiation of top-down versus bottom-up processing of facial emotional expressions has remained to be clarified. The present study aimed to explore the time course of these processes as indexed by the emotion-specific P100 and late positive potential (LPP) event-related potential (ERP) components in a group of healthy women. Methods: Fourteen female students of Alzahra University, Tehran, Iran aged 18–30 years, voluntarily participated in the study. The subjects completed 2 overt and covert emotional tasks during ERP acquisition. Results: The results indicated that fearful expressions significantly produced greater P100 amplitude compared to other expressions. Moreover, the P100 findings showed an interaction between emotion and processing conditions. Further analysis indicated that within the overt condition, fearful expressions elicited more P100 amplitude compared to other emotional expressions. Also, overt conditions created significantly more LPP latencies and amplitudes compared to covert conditions. Conclusion: Based on the results, early perceptual processing of fearful face expressions is enhanced in top-down way compared to bottom-up way. It also suggests that P100 may reflect an attentional bias toward fearful emotions. However, no such differentiation was observed within later processing stages of face expressions, as indexed by the ERP LPP component, in a top-down versus bottom-up way. Overall, this study provides a basis for further exploring of bottom-up and top-down processes underlying emotion and may be typically helpful for investigating the temporal characteristics associated with impaired emotional processing in psychiatric disorders. PMID:28446947

  14. Transposable elements contribute to activation of maize genes in response to abiotic stress.

    PubMed

    Makarevitch, Irina; Waters, Amanda J; West, Patrick T; Stitzer, Michelle; Hirsch, Candice N; Ross-Ibarra, Jeffrey; Springer, Nathan M

    2015-01-01

    Transposable elements (TEs) account for a large portion of the genome in many eukaryotic species. Despite their reputation as "junk" DNA or genomic parasites deleterious for the host, TEs have complex interactions with host genes and the potential to contribute to regulatory variation in gene expression. It has been hypothesized that TEs and genes they insert near may be transcriptionally activated in response to stress conditions. The maize genome, with many different types of TEs interspersed with genes, provides an ideal system to study the genome-wide influence of TEs on gene regulation. To analyze the magnitude of the TE effect on gene expression response to environmental changes, we profiled gene and TE transcript levels in maize seedlings exposed to a number of abiotic stresses. Many genes exhibit up- or down-regulation in response to these stress conditions. The analysis of TE families inserted within upstream regions of up-regulated genes revealed that between four and nine different TE families are associated with up-regulated gene expression in each of these stress conditions, affecting up to 20% of the genes up-regulated in response to abiotic stress, and as many as 33% of genes that are only expressed in response to stress. Expression of many of these same TE families also responds to the same stress conditions. The analysis of the stress-induced transcripts and proximity of the transposon to the gene suggests that these TEs may provide local enhancer activities that stimulate stress-responsive gene expression. Our data on allelic variation for insertions of several of these TEs show strong correlation between the presence of TE insertions and stress-responsive up-regulation of gene expression. Our findings suggest that TEs provide an important source of allelic regulatory variation in gene response to abiotic stress in maize.

  15. Cytokinin oxidase/dehydrogenase overexpression modifies antioxidant defense against heat, drought and their combination in Nicotiana tabacum plants.

    PubMed

    Lubovská, Zuzana; Dobrá, Jana; Storchová, Helena; Wilhelmová, Naďa; Vanková, Radomíra

    2014-11-01

    Cytokinins (CKs) as well as the antioxidant enzyme system (AES) play important roles in plant stress responses. The expression and activity of antioxidant enzymes (AE) were determined in drought, heat and combination of both stresses, comparing the response of tobacco plants overexpressing the main cytokinin degrading enzyme, cytokinin oxidase/dehydrogenase, under the control of root-specific WRKY6 promoter (W6:CKX1 plants) or constitutive promoter (35S:CKX1 plants) and the corresponding wild-type (WT). Expression levels as well as activities of cytosolic ascorbate peroxidase, catalase 3, and cytosolic superoxide dismutase were low under optimal conditions and increased after heat and combined stress in all genotypes. Unlike catalase 3, two other peroxisomal enzymes, catalase 1 and catalase 2, were transcribed extensively under control conditions. Heat stress, in contrast to drought or combined stress, increased catalase 1 and reduced catalase 2 expression in WT and W6:CKX1 plants. In 35S:CKX1, catalase 1 expression was enhanced by heat or drought, but not under combined stress conditions. Mitochondrial superoxide dismutase expression was generally higher in 35S:CKX1 plants than in WT. Genes encoding for chloroplastic AEs, stromatal ascorbate peroxidase, thylakoidal ascorbate peroxidase and chloroplastic superoxide dismutase, were strongly transcribed under control conditions. All stresses down-regulated their expression in WT and W6:CKX1, whereas more stress-tolerant 35S:CKX1 plants maintained high expression during drought and heat. The achieved data show that the effect of down-regulation of CK levels on AES may be mediated by altered habit, resulting in improved stress tolerance, which is associated with diminished stress impact on photosynthesis, and changes in source/sink relations. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Using Synthetic Biology to Distinguish and Overcome Regulatory and Functional Barriers Related to Nitrogen Fixation

    PubMed Central

    Wang, Xia; Yang, Jian-Guo; Chen, Li; Wang, Ji-Long; Cheng, Qi; Dixon, Ray; Wang, Yi-Ping

    2013-01-01

    Biological nitrogen fixation is a complex process requiring multiple genes working in concert. To date, the Klebsiella pneumoniae nif gene cluster, divided into seven operons, is one of the most studied systems. Its nitrogen fixation capacity is subject to complex cascade regulation and physiological limitations. In this report, the entire K. pneumoniae nif gene cluster was reassembled as operon-based BioBrick parts in Escherichia coli. It provided ∼100% activity of native K. pneumoniae system. Based on the expression levels of these BioBrick parts, a T7 RNA polymerase–LacI expression system was used to replace the σ54-dependent promoters located upstream of nif operons. Expression patterns of nif operons were critical for the maximum activity of the recombinant system. By mimicking these expression levels with variable-strength T7-dependent promoters, ∼42% of the nitrogenase activity of the σ54-dependent nif system was achieved in E. coli. When the newly constructed T7-dependent nif system was challenged with different genetic and physiological conditions, it bypassed the original complex regulatory circuits, with minor physiological limitations. Therefore, we have successfully replaced the nif regulatory elements with a simple expression system that may provide the first step for further research of introducing nif genes into eukaryotic organelles, which has considerable potentials in agro-biotechnology. PMID:23935879

  17. Possible Involvement of Photoperiodic Regulation in Reproductive Endocrine System of Female Olive Flounder Paralichthys olivaceus.

    PubMed

    Kim, Hyun Chul; Lee, Chi Hoon; Hur, Sung Pyu; Kim, Byeong Hoon; Park, Jun Young; Lee, Young Don

    2015-03-01

    This study investigated possible involvement of photoperiodic regulation in reproductive endocrine system of female olive flounder. To investigate the influence on brain-pituitary axis in endocrine system by regulating photoperiod, compared expression level of Kisspeptin and sbGnRH mRNA in brain and FSH-β, LH-β and GH mRNA in pituitary before and after spawning. Photoperiod was treated natural photoperiod and long photoperiod (15L:9D) conditions from Aug. 2013 to Jun. 2014. Continuous long photoperiod treatment from Aug. (post-spawning phase) was inhibited gonadal development of female olive flounder. In natural photoperiod group, the Kiss2 expression level a significant declined in Mar. (spawning period). And also, FSH-β, LH-β and GH mRNA expression levels were increasing at this period. However, in long photoperiod group, hypothalamic Kiss2, FSH-β, LH-β and GH mRNA expression levels did not show any significant fluctuation. These results suggest that expression of hypothalamic Kiss2, GtH and GH in the pituitary would change in response to photoperiod and their possible involvement of photoperiodic regulation in reproductive endocrine system of the BPG axis.

  18. Generalized contexts and consistent histories in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Losada, Marcelo; Laura, Roberto

    2014-05-01

    We analyze a restriction of the theory of consistent histories by imposing that a valid description of a physical system must include quantum histories which satisfy the consistency conditions for all states. We prove that these conditions are equivalent to imposing the compatibility conditions of our formalism of generalized contexts. Moreover, we show that the theory of consistent histories with the consistency conditions for all states and the formalism of generalized context are equally useful representing expressions which involve properties at different times.

  19. Recent advances in the production of recombinant subunit vaccines in Pichia pastoris

    PubMed Central

    Wang, Man; Jiang, Shuai; Wang, Yefu

    2016-01-01

    ABSTRACT Recombinant protein subunit vaccines are formulated using defined protein antigens that can be produced in heterologous expression systems. The methylotrophic yeast Pichia pastoris has become an important host system for the production of recombinant subunit vaccines. Although many basic elements of P. pastoris expression system are now well developed, there is still room for further optimization of protein production. Codon bias, gene dosage, endoplasmic reticulum protein folding and culture condition are important considerations for improved production of recombinant vaccine antigens. Here we comment on current advances in the application of P. pastoris for the synthesis of recombinant subunit vaccines. PMID:27246656

  20. A New Closed Form Approximation for BER for Optical Wireless Systems in Weak Atmospheric Turbulence

    NASA Astrophysics Data System (ADS)

    Kaushik, Rahul; Khandelwal, Vineet; Jain, R. C.

    2018-04-01

    Weak atmospheric turbulence condition in an optical wireless communication (OWC) is captured by log-normal distribution. The analytical evaluation of average bit error rate (BER) of an OWC system under weak turbulence is intractable as it involves the statistical averaging of Gaussian Q-function over log-normal distribution. In this paper, a simple closed form approximation for BER of OWC system under weak turbulence is given. Computation of BER for various modulation schemes is carried out using proposed expression. The results obtained using proposed expression compare favorably with those obtained using Gauss-Hermite quadrature approximation and Monte Carlo Simulations.

  1. A condition-specific codon optimization approach for improved heterologous gene expression in Saccharomyces cerevisiae

    PubMed Central

    2014-01-01

    Background Heterologous gene expression is an important tool for synthetic biology that enables metabolic engineering and the production of non-natural biologics in a variety of host organisms. The translational efficiency of heterologous genes can often be improved by optimizing synonymous codon usage to better match the host organism. However, traditional approaches for optimization neglect to take into account many factors known to influence synonymous codon distributions. Results Here we define an alternative approach for codon optimization that utilizes systems level information and codon context for the condition under which heterologous genes are being expressed. Furthermore, we utilize a probabilistic algorithm to generate multiple variants of a given gene. We demonstrate improved translational efficiency using this condition-specific codon optimization approach with two heterologous genes, the fluorescent protein-encoding eGFP and the catechol 1,2-dioxygenase gene CatA, expressed in S. cerevisiae. For the latter case, optimization for stationary phase production resulted in nearly 2.9-fold improvements over commercial gene optimization algorithms. Conclusions Codon optimization is now often a standard tool for protein expression, and while a variety of tools and approaches have been developed, they do not guarantee improved performance for all hosts of applications. Here, we suggest an alternative method for condition-specific codon optimization and demonstrate its utility in Saccharomyces cerevisiae as a proof of concept. However, this technique should be applicable to any organism for which gene expression data can be generated and is thus of potential interest for a variety of applications in metabolic and cellular engineering. PMID:24636000

  2. Characterization and differential expression of microRNAs elicited by sulfur deprivation in Chlamydomonas reinhardtii

    PubMed Central

    2012-01-01

    Background microRNAs (miRNAs) have been found to play an essential role in the modulation of numerous biological processes in eukaryotes. Chlamydomonas reinhardtii is an ideal model organism for the study of many metabolic processes including responses to sulfur-deprivation. We used a deep sequencing platform to extensively profile and identify changes in the miRNAs expression that occurred under sulfur-replete and sulfur-deprived conditions. The aim of our research was to characterize the differential expression of Chlamydomonas miRNAs under sulfur-deprived conditions, and subsequently, the target genes of miRNA involved in sulfur-deprivation were further predicted and analyzed. Results By using high-throughput sequencing, we characterized the microRNA transcriptomes under sulphur-replete and sulfur-deprived conditions in Chlamydomonas reinhardtii. We predicted a total of 310 miRNAs which included 85 known miRNAs and 225 novel miRNAs. 13 miRNAs were the specific to the sulfur-deprived conditions. 47 miRNAs showed significantly differential expressions responding to sulfur-deprivation, and most were up-regulated in the small RNA libraries with sulfur-deprivation. Using a web-based integrated system (Web MicroRNAs Designer 3) and combing the former information from a transcriptome of Chlamydomonas reinhardtii, 22 miRNAs and their targets involved in metabolism regulation with sulfur-deprivation were verified. Conclusions Our results indicate that sulfur-deprivation may have a significant influence on small RNA expression patterns, and the differential expressions of miRNAs and interactions between miRNA and its targets might further reveal the molecular mechanism responding to sulfur-deprivation in Chlamydomonas reinhardtii. PMID:22439676

  3. Positive Bioluminescence Imaging of MicroRNA Expression in Small Animal Models Using an Engineered Genetic-Switch Expression System, RILES.

    PubMed

    Baril, Patrick; Pichon, Chantal

    2016-01-01

    MicroRNAs (miRNAs) are a class of small, noncoding RNAs which regulate gene expression by directing their target mRNA for degradation or translational repression. Since their discovery in the early 1990s, miRNAs have emerged as key components in the posttranscriptional regulation of gene networks, shaping many biological processes from development, morphogenesis, differentiation, proliferation and apoptosis. Although understanding of the molecular basis of miRNA biology is improving, methods to monitor the dynamic and the spatiotemporal aspects of miRNA expression under physiopathological conditions are required. However, monitoring of miRNAs is difficult due to their small size, low abundance, high degree of sequence similarity, and their dynamic expression pattern which is subjected to tight transcriptional and post-transcriptional controls. Recently, we developed a miRNA monitoring system called RILES, standing for RNAi-inducible expression system, which relies on an engineered regulatable expression system, to switch on the expression of the luciferase gene when the targeted miRNA is expressed in cells. We demonstrated that RILES is a specific, sensitive, and robust method to determine the fine-tuning of miRNA expression during the development of an experimental pathological process in mice. Because RILES offers the possibility for longitudinal studies on individual subjects, sharper insights into miRNA regulation can be generated, with applications in physiology, pathophysiology and development of RNAi-based therapies. This chapter describes methods and protocols to monitor the expression of myomiR-206, -1, and -133 in the tibialis anterior muscle of mice. These protocols can be used and adapted to monitor the expression of other miRNAs in other biological processes.

  4. Endocannabinoids as endometrial inflammatory markers in lactating Holstein cows.

    PubMed

    Bonsale, R; Seyed Sharifi, R; Dirandeh, E; Hedayat, N; Mojtahedin, A; Ghorbanalinia, M; Abolghasemi, A

    2018-06-01

    The objective of this study was to consider endocannabinoid system as inflammatory markers in bovine endometrium to better understand the role of this system in regulating many of the functions that are related to inflammatory condition. At day 26 post-partum, fourteen cows were divided into two groups depending on the inflammatory condition: 1- subclinical endometritis (n = 7, with purulent or mucopurulent uterine discharge detectable in the vagina) and 2- healthy (n = 7, No (muco)) purulent discharge. Blood samples were collected at 26 and 30 days relative to calving to determine plasma tumour necrosis factor (TNF) and lipopolysaccharide-binding protein (LBP) concentrations; moreover, uterine biopsy was carried out on day 26 post-partum to measure mRNA abundance of TNF, interleukin-1B (IL1B), interleukin-6 (IL-6), C-X-C motif chemokine ligand 8 (CXCL8), endocannabinoid receptor (CNR2), N-acyl phosphatidylethanolamine phospholipase D (NAPEPLD), fatty acid amide hydrolase (FAAH), N-acylethanolamine acid amidase (NAAA) and monoglyceride lipase (MGLL) by real-time PCR. Results showed mean plasma concentrations of TNF and LBP were lower in healthy cows compared to subclinical endometritis cows (p < .05). Relative mRNA expression for NAAA and FAAH was decreased (p < .05), and relative mRNA expression for CNR2 and NAPEPLD increased in cows with subclinical endometritis compared to healthy cows. In conclusion, relative mRNA expression of TNF, IL1B and CXCL8 and plasma concentration of LBP increased during inflammatory condition along with decreased endocannabinoids hydrolyzing enzyme (NAAA and FAAH), increased enzymes that synthesize endocannabinoids (NAPEPLD) and relative gene expression of the endocannabinoid receptor; together, these contribute to increased endocannabinoids levels during inflammation. Overall, we provide evidence that endocannabinoid system is altered in endometrium tissue during inflammation through increased mRNA expression of CNR2 and synthesis enzyme and decreased mRNA expression of hydrolyzing enzymes interfere with pro-cytokine production and signalling, which may interfere with the onset and progression of inflammation. © 2018 Blackwell Verlag GmbH.

  5. O2 availability impacts iron homeostasis in Escherichia coli.

    PubMed

    Beauchene, Nicole A; Mettert, Erin L; Moore, Laura J; Keleş, Sündüz; Willey, Emily R; Kiley, Patricia J

    2017-11-14

    The ferric-uptake regulator (Fur) is an Fe 2+ -responsive transcription factor that coordinates iron homeostasis in many bacteria. Recently, we reported that expression of the Escherichia coli Fur regulon is also impacted by O 2 tension. Here, we show that for most of the Fur regulon, Fur binding and transcriptional repression increase under anaerobic conditions, suggesting that Fur is controlled by O 2 availability. We found that the intracellular, labile Fe 2+ pool was higher under anaerobic conditions compared with aerobic conditions, suggesting that higher Fe 2+ availability drove the formation of more Fe 2+ -Fur and, accordingly, more DNA binding. O 2 regulation of Fur activity required the anaerobically induced FeoABC Fe 2+ uptake system, linking increased Fur activity to ferrous import under iron-sufficient conditions. The increased activity of Fur under anaerobic conditions led to a decrease in expression of ferric import systems. However, the combined positive regulation of the feoABC operon by ArcA and FNR partially antagonized Fur-mediated repression of feoABC under anaerobic conditions, allowing ferrous transport to increase even though Fur is more active. This design feature promotes a switch from ferric import to the more physiological relevant ferrous iron under anaerobic conditions. Taken together, we propose that the influence of O 2 availability on the levels of active Fur adds a previously undescribed layer of regulation in maintaining cellular iron homeostasis.

  6. O2 availability impacts iron homeostasis in Escherichia coli

    PubMed Central

    Beauchene, Nicole A.; Mettert, Erin L.; Moore, Laura J.; Keleş, Sündüz; Willey, Emily R.; Kiley, Patricia J.

    2017-01-01

    The ferric-uptake regulator (Fur) is an Fe2+-responsive transcription factor that coordinates iron homeostasis in many bacteria. Recently, we reported that expression of the Escherichia coli Fur regulon is also impacted by O2 tension. Here, we show that for most of the Fur regulon, Fur binding and transcriptional repression increase under anaerobic conditions, suggesting that Fur is controlled by O2 availability. We found that the intracellular, labile Fe2+ pool was higher under anaerobic conditions compared with aerobic conditions, suggesting that higher Fe2+ availability drove the formation of more Fe2+-Fur and, accordingly, more DNA binding. O2 regulation of Fur activity required the anaerobically induced FeoABC Fe2+ uptake system, linking increased Fur activity to ferrous import under iron-sufficient conditions. The increased activity of Fur under anaerobic conditions led to a decrease in expression of ferric import systems. However, the combined positive regulation of the feoABC operon by ArcA and FNR partially antagonized Fur-mediated repression of feoABC under anaerobic conditions, allowing ferrous transport to increase even though Fur is more active. This design feature promotes a switch from ferric import to the more physiological relevant ferrous iron under anaerobic conditions. Taken together, we propose that the influence of O2 availability on the levels of active Fur adds a previously undescribed layer of regulation in maintaining cellular iron homeostasis. PMID:29087312

  7. The CRISPR/Cas Immune System Is an Operon Regulated by LeuO, H-NS, and Leucine-Responsive Regulatory Protein in Salmonella enterica Serovar Typhi ▿ †

    PubMed Central

    Medina-Aparicio, L.; Rebollar-Flores, J. E.; Gallego-Hernández, A. L.; Vázquez, A.; Olvera, L.; Gutiérrez-Ríos, R. M.; Calva, E.; Hernández-Lucas, I.

    2011-01-01

    Prokaryotes have developed multiple strategies to survive phage attack and invasive DNA. Recently, a novel genetic program denominated the CRISPR/Cas system was demonstrated to have a role in these biological processes providing genetic immunity. This defense mechanism is widespread in the Archaea and Bacteria, suggesting an ancient origin. In the last few years, progress has been made regarding the functionality of the CRISPR/Cas system; however, many basic aspects of the system remain unknown. For instance, there are few studies about the conditions and regulators involved in its transcriptional control. In this work, we analyzed the transcriptional organization of the CRISPR/Cas system as well as the positive and negative regulators involved in its genetic expression in Salmonella enterica serovar Typhi. The results obtained show that in S. Typhi the CRISPR/Cas system is a LeuO-dependent operon silenced by the global regulator LRP, in addition to the previously known nucleoid-associated protein H-NS; both LRP and H-NS bind upstream and downstream of the transcriptional start site of casA. In this study, relevant nucleotides of the casA regulatory region that mediate its LeuO transcriptional activation were identified. Interestingly, specific growth conditions (N-minimal medium) were found for the LeuO-independent expression of the CRISPR/Cas system in S. Typhi. Thus, our work provides evidence that there are multiple modulators involved in the genetic expression of this immune system in S. Typhi IMSS-1. PMID:21398529

  8. Computational Systems Biology Approach Predicts Regulators and Targets of microRNAs and Their Genomic Hotspots in Apoptosis Process.

    PubMed

    Alanazi, Ibrahim O; Ebrahimie, Esmaeil

    2016-07-01

    Novel computational systems biology tools such as common targets analysis, common regulators analysis, pathway discovery, and transcriptomic-based hotspot discovery provide new opportunities in understanding of apoptosis molecular mechanisms. In this study, after measuring the global contribution of microRNAs in the course of apoptosis by Affymetrix platform, systems biology tools were utilized to obtain a comprehensive view on the role of microRNAs in apoptosis process. Network analysis and pathway discovery highlighted the crosstalk between transcription factors and microRNAs in apoptosis. Within the transcription factors, PRDM1 showed the highest upregulation during the course of apoptosis, with more than 9-fold expression increase compared to non-apoptotic condition. Within the microRNAs, MIR1208 showed the highest expression in non-apoptotic condition and downregulated by more than 6 fold during apoptosis. Common regulators algorithm showed that TNF receptor is the key upstream regulator with a high number of regulatory interactions with the differentially expressed microRNAs. BCL2 and AKT1 were the key downstream targets of differentially expressed microRNAs. Enrichment analysis of the genomic locations of differentially expressed microRNAs led us to the discovery of chromosome bands which were highly enriched (p < 0.01) with the apoptosis-related microRNAs, such as 13q31.3, 19p13.13, and Xq27.3 This study opens a new avenue in understanding regulatory mechanisms and downstream functions in the course of apoptosis as well as distinguishing genomic-enriched hotspots for apoptosis process.

  9. Helicobacter pylori gene silencing in vivo demonstrates urease is essential for chronic infection

    PubMed Central

    Walton, Senta M.; Liao, Tingting; Stubbs, Keith A.; Marshall, Barry J.; Fulurija, Alma; Benghezal, Mohammed

    2017-01-01

    Helicobacter pylori infection causes chronic active gastritis that after many years of infection can develop into peptic ulceration or gastric adenocarcinoma. The bacterium is highly adapted to surviving in the gastric environment and a key adaptation is the virulence factor urease. Although widely postulated, the requirement of urease expression for persistent infection has not been elucidated experimentally as conventional urease knockout mutants are incapable of colonization. To overcome this constraint, conditional H. pylori urease mutants were constructed by adapting the tetracycline inducible expression system that enabled changing the urease phenotype of the bacteria during established infection. Through tight regulation we demonstrate that urease expression is not only required for establishing initial colonization but also for maintaining chronic infection. Furthermore, successful isolation of tet-escape mutants from a late infection time point revealed the strong selective pressure on this gastric pathogen to continuously express urease in order to maintain chronic infection. In addition to mutations in the conditional gene expression system, escape mutants were found to harbor changes in other genes including the alternative RNA polymerase sigma factor, fliA, highlighting the genetic plasticity of H. pylori to adapt to a changing niche. The tet-system described here opens up opportunities to studying genes involved in the chronic stage of H. pylori infection to gain insight into bacterial mechanisms promoting immune escape and life-long infection. Furthermore, this genetic tool also allows for a new avenue of inquiry into understanding the importance of various virulence determinants in a changing biological environment when the bacterium is put under duress. PMID:28644872

  10. Helicobacter pylori gene silencing in vivo demonstrates urease is essential for chronic infection.

    PubMed

    Debowski, Aleksandra W; Walton, Senta M; Chua, Eng-Guan; Tay, Alfred Chin-Yen; Liao, Tingting; Lamichhane, Binit; Himbeck, Robyn; Stubbs, Keith A; Marshall, Barry J; Fulurija, Alma; Benghezal, Mohammed

    2017-06-01

    Helicobacter pylori infection causes chronic active gastritis that after many years of infection can develop into peptic ulceration or gastric adenocarcinoma. The bacterium is highly adapted to surviving in the gastric environment and a key adaptation is the virulence factor urease. Although widely postulated, the requirement of urease expression for persistent infection has not been elucidated experimentally as conventional urease knockout mutants are incapable of colonization. To overcome this constraint, conditional H. pylori urease mutants were constructed by adapting the tetracycline inducible expression system that enabled changing the urease phenotype of the bacteria during established infection. Through tight regulation we demonstrate that urease expression is not only required for establishing initial colonization but also for maintaining chronic infection. Furthermore, successful isolation of tet-escape mutants from a late infection time point revealed the strong selective pressure on this gastric pathogen to continuously express urease in order to maintain chronic infection. In addition to mutations in the conditional gene expression system, escape mutants were found to harbor changes in other genes including the alternative RNA polymerase sigma factor, fliA, highlighting the genetic plasticity of H. pylori to adapt to a changing niche. The tet-system described here opens up opportunities to studying genes involved in the chronic stage of H. pylori infection to gain insight into bacterial mechanisms promoting immune escape and life-long infection. Furthermore, this genetic tool also allows for a new avenue of inquiry into understanding the importance of various virulence determinants in a changing biological environment when the bacterium is put under duress.

  11. The Center for Optimized Structural Studies (COSS) platform for automation in cloning, expression, and purification of single proteins and protein-protein complexes.

    PubMed

    Mlynek, Georg; Lehner, Anita; Neuhold, Jana; Leeb, Sarah; Kostan, Julius; Charnagalov, Alexej; Stolt-Bergner, Peggy; Djinović-Carugo, Kristina; Pinotsis, Nikos

    2014-06-01

    Expression in Escherichia coli represents the simplest and most cost effective means for the production of recombinant proteins. This is a routine task in structural biology and biochemistry where milligrams of the target protein are required in high purity and monodispersity. To achieve these criteria, the user often needs to screen several constructs in different expression and purification conditions in parallel. We describe a pipeline, implemented in the Center for Optimized Structural Studies, that enables the systematic screening of expression and purification conditions for recombinant proteins and relies on a series of logical decisions. We first use bioinformatics tools to design a series of protein fragments, which we clone in parallel, and subsequently screen in small scale for optimal expression and purification conditions. Based on a scoring system that assesses soluble expression, we then select the top ranking targets for large-scale purification. In the establishment of our pipeline, emphasis was put on streamlining the processes such that it can be easily but not necessarily automatized. In a typical run of about 2 weeks, we are able to prepare and perform small-scale expression screens for 20-100 different constructs followed by large-scale purification of at least 4-6 proteins. The major advantage of our approach is its flexibility, which allows for easy adoption, either partially or entirely, by any average hypothesis driven laboratory in a manual or robot-assisted manner.

  12. Gene expression profile of activated microglia under conditions associated with dopamine neuronal damage.

    PubMed

    Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M

    2006-03-01

    Microglia are the resident antigen-presenting cells within the central nervous system (CNS), and they serve immune-like functions in protecting the brain against injury and invading pathogens. By contrast, activated microglia can secrete numerous reactants that damage neurons. The pathogenesis of various neurodegenerative diseases has been associated with microglial activation, but the signaling pathways that program a neuronally protective or destructive phenotype in microglia are not known. To increase the understanding of microglial activation, microarray analysis was used to profile the transcriptome of BV-2 microglial cells after activation. Microglia were activated by lipopolysaccharide, the HIV neurotoxic protein TAT, and dopamine quinone, each of which has been linked to dopamine neuronal damage. We identified 210 of 9882 genes whose expression was differentially regulated by all activators (116 increased and 94 decreased in expression). Gene ontology analysis assigned up-regulated genes to a number of specific biological processes and molecular functions, including immune response, inflammation, and cytokine/chemokine activity. Genes down-regulated in expression contribute to conditions that are permissive of microglial migration, lowered adhesion to matrix, lessened phagocytosis, and reduction in receptors that oppose chemotaxis and inflammation. These results elaborate a broad profile of microglial genes whose expression is altered by conditions associated with both neurodegenerative diseases and microglial activation.

  13. Exact sum rules for inhomogeneous drums

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amore, Paolo, E-mail: paolo.amore@gmail.com

    2013-09-15

    We derive general expressions for the sum rules of the eigenvalues of drums of arbitrary shape and arbitrary density, obeying different boundary conditions. The formulas that we present are a generalization of the analogous formulas for one dimensional inhomogeneous systems that we have obtained in a previous paper. We also discuss the extension of these formulas to higher dimensions. We show that in the special case of a density depending only on one variable the sum rules of any integer order can be expressed in terms of a single series. As an application of our result we derive exact summore » rules for the homogeneous circular annulus with different boundary conditions, for a homogeneous circular sector and for a radially inhomogeneous circular annulus with Dirichlet boundary conditions. -- Highlights: •We derive an explicit expression for the sum rules of inhomogeneous drums. •We discuss the extension to higher dimensions. •We discuss the special case of an inhomogeneity only along one direction.« less

  14. Rapid Stress System Drives Chemical Transfer of Fear from Sender to Receiver

    PubMed Central

    de Groot, Jasper H. B.; Smeets, Monique A. M.; Semin, Gün R.

    2015-01-01

    Humans can register another person’s fear not only with their eyes and ears, but also with their nose. Previous research has demonstrated that exposure to body odors from fearful individuals elicited implicit fear in others. The odor of fearful individuals appears to have a distinctive signature that can be produced relatively rapidly, driven by a physiological mechanism that has remained unexplored in earlier research. The apocrine sweat glands in the armpit that are responsible for chemosignal production contain receptors for adrenalin. We therefore expected that the release of adrenalin through activation of the rapid stress response system (i.e., the sympathetic-adrenal medullary system) is what drives the release of fear sweat, as opposed to activation of the slower stress response system (i.e., hypothalamus-pituitary-adrenal axis). To test this assumption, sweat was sampled while eight participants prepared for a speech. Participants had higher heart rates and produced more armpit sweat in the fast stress condition, compared to baseline and the slow stress condition. Importantly, exposure to sweat from participants in the fast stress condition induced in receivers (N = 31) a simulacrum of the state of the sender, evidenced by the emergence of a fearful facial expression (facial electromyography) and vigilant behavior (i.e., faster classification of emotional facial expressions). PMID:25723720

  15. Interaction between sympathetic nervous system and renin angiotensin system on MMPs expression in juvenile rat aorta.

    PubMed

    Dab, Houcine; Hachani, Rafik; Hodroj, Wassim; Sakly, Mohsen; Bricca, Giampiero; Kacem, Kamel

    2011-09-01

    The aim of our present study is to investigate the interaction between angiotensin II (ANG II) and sympathetic nervous system (SNS) on matrix metalloproteinase MMP-2 and MMP-9 expression and activity in juvenile rat aorta under normal conditions. Sympathectomy with guanethidine and blockade of the ANG II receptors (AT1R) by losartan were performed alone or in combination on new-born rats. mRNA, protein expression and activity of MMP-2 and MMP-9 were examined by Q-RT-PCR, immunoblotting and zymography, respectively. MMP-2 mRNA and protein amount were decreased after sympathectomy or AT1R blockade and an additive effect was observed after combined treatment. However, MMP-9 expression was reduced to the same level in the three treated groups. There were some detectable gelatinolytic activity of the MMPs in both control and treated rats. We concluded that ANG II stimulates directly and indirectly (via sympathostimulator pathway) the MMP-2 expression but seems unable to affect MMP-9 expression through direct pathway. Combined inhibition of SNS and ANG II were more efficient than a single inhibition in reducing MMP amounts in rat vessels.

  16. Adherent culture conditions enrich the side population obtained from the cochlear modiolus-derived stem/progenitor cells.

    PubMed

    Chao, Ting-Ting; Wang, Chih-Hung; Chen, Hsin-Chien; Shih, Cheng-Ping; Sytwu, Huey-Kang; Huang, Kun-Lun; Chen, Shao-Yuan

    2013-05-01

    Previously, our group reported that sphere-forming cells derived from the organ of Corti represent the stem/progenitor cells (SPCs) of the cochlea due to their properties of self-renewal and multipotency. However, long-term propagation of sphere-forming cells under suspension culture conditions may fail to maintain the characteristic stemness of these cells. Therefore, this study investigated whether an adherent culture system would be beneficial in terms of preserving more stem-like cells for long-term manipulations in vitro. Isolated modiolus-derived SPCs were placed on poly-d-lysine-coated petri dishes to form the so-called "adherent" culture system. Modiolus SPCs cultured under adherent conditions exhibited a significantly increased percentage of cells with the side population (SP) phenotype (18.6%) compared with cells cultured under conventional suspension culture conditions (0.8%). Even after repeated passages, modiolus SPCs cultured under adherent culture conditions preserved more SP phenotype cells. In comparison with the non-SP phenotype cells, the sorted SP cells exhibited more stem-like but less differentiated properties, with an upregulated expression of the ATP-binding cassette subfamily G member 2 (ABCG2), Nestin, Sox2, and Nanog proteins. Furthermore, Retinoic acid (RA) treatment confirmed the expression of the multipotent differentiation markers in the SP cells, including TUJ1, pancytokeratin, glial fibrillary acidic protein (GFAP), and p27(Kip1). Employment of an adherent culture system, instead of a suspension culture system, resulted in the enrichment of the SP cells from SPCs while retaining their stemness and multipotency. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. An adaptive learning control system for aircraft

    NASA Technical Reports Server (NTRS)

    Mekel, R.; Nachmias, S.

    1978-01-01

    A learning control system and its utilization as a flight control system for F-8 Digital Fly-By-Wire (DFBW) research aircraft is studied. The system has the ability to adjust a gain schedule to account for changing plant characteristics and to improve its performance and the plant's performance in the course of its own operation. Three subsystems are detailed: (1) the information acquisition subsystem which identifies the plant's parameters at a given operating condition; (2) the learning algorithm subsystem which relates the identified parameters to predetermined analytical expressions describing the behavior of the parameters over a range of operating conditions; and (3) the memory and control process subsystem which consists of the collection of updated coefficients (memory) and the derived control laws. Simulation experiments indicate that the learning control system is effective in compensating for parameter variations caused by changes in flight conditions.

  18. Adverse early life experience and social stress during adulthood interact to increase serotonin transporter mRNA expression

    PubMed Central

    Gardner, Katherine L.; Hale, Matthew W.; Lightman, Stafford L.; Plotsky, Paul M.; Lowry, Christopher A.

    2009-01-01

    Anxiety disorders, depression and animal models of vulnerability to a depression-like syndrome have been associated with dysregulation of serotonergic systems in the brain. To evaluate the effects of early life experience, adverse experiences during adulthood, and potential interactions between these factors on serotonin transporter (slc6a4) mRNA expression, we investigated in rats the effects of maternal separation (180 min/day from days 2–14 of life; MS180), neonatal handing (15 min/day from days 2–14 of life; MS15), or normal animal facility rearing control conditions (AFR) with or without subsequent exposure to adult social defeat on slc6a4 mRNA expression in the dorsal raphe nucleus (DR) and caudal linear nucleus. At the level of specific subdivisions of the DR, there were no differences in slc6a4 mRNA expression between MS15 and AFR rats. Among rats exposed to a novel cage control condition, increased slc6a4 mRNA expression was observed in the dorsal part of the DR in MS180 rats, relative to AFR control rats. In contrast, MS180 rats exposed to social defeat as adults had increased slc6a4 mRNA expression throughout the DR compared to both MS15 and AFR controls. Social defeat increased slc6a4 mRNA expression, but only in MS180 rats and only in the “lateral wings” of the DR. Overall these data demonstrate that early life experience and stressful experience during adulthood interact to determine slc6a4 mRNA expression. These data support the hypothesis that early life experience and major stressful life events contribute to dysregulation of serotonergic systems in stress-related neuropsychiatric disorders. PMID:19781533

  19. Genome-Wide Tuning of Protein Expression Levels to Rapidly Engineer Microbial Traits.

    PubMed

    Freed, Emily F; Winkler, James D; Weiss, Sophie J; Garst, Andrew D; Mutalik, Vivek K; Arkin, Adam P; Knight, Rob; Gill, Ryan T

    2015-11-20

    The reliable engineering of biological systems requires quantitative mapping of predictable and context-independent expression over a broad range of protein expression levels. However, current techniques for modifying expression levels are cumbersome and are not amenable to high-throughput approaches. Here we present major improvements to current techniques through the design and construction of E. coli genome-wide libraries using synthetic DNA cassettes that can tune expression over a ∼10(4) range. The cassettes also contain molecular barcodes that are optimized for next-generation sequencing, enabling rapid and quantitative tracking of alleles that have the highest fitness advantage. We show these libraries can be used to determine which genes and expression levels confer greater fitness to E. coli under different growth conditions.

  20. High-throughput plasmid construction using homologous recombination in yeast: its mechanisms and application to protein production for X-ray crystallography.

    PubMed

    Mizutani, Kimihiko

    2015-01-01

    Homologous recombination is a system for repairing the broken genomes of living organisms by connecting two DNA strands at their homologous sequences. Today, homologous recombination in yeast is used for plasmid construction as a substitute for traditional methods using restriction enzymes and ligases. This method has various advantages over the traditional method, including flexibility in the position of DNA insertion and ease of manipulation. Recently, the author of this review reported the construction of plasmids by homologous recombination in the methanol-utilizing yeast Pichia pastoris, which is known to be an excellent expression host for secretory proteins and membrane proteins. The method enabled high-throughput construction of expression systems of proteins using P. pastoris; the constructed expression systems were used to investigate the expression conditions of membrane proteins and to perform X-ray crystallography of secretory proteins. This review discusses the mechanisms and applications of homologous recombination, including the production of proteins for X-ray crystallography.

  1. Baculovirus-mediated expression of GPCRs in insect cells.

    PubMed

    Saarenpää, Tuulia; Jaakola, Veli-Pekka; Goldman, Adrian

    2015-01-01

    G-protein-coupled receptors (GPCRs) are a large family of seven transmembrane proteins that influence a considerable number of cellular events. For this reason, they are one of the most studied receptor types for their pharmacological and structural properties. Solving the structure of several GPCR receptor types has been possible using almost all expression systems, including Escherichia coli, yeast, mammalian, and insect cells. So far, however, most of the GPCR structures solved have been done using the baculovirus insect cell expression system. The reason for this is mainly due to cost-effectiveness, posttranslational modification efficiency, and overall effortless maintenance. The system has evolved so much that variables starting from vector type, purification tags, cell line, and growth conditions can be varied and optimized countless ways to suit the needs of new constructs. Here, we present the array of techniques that enable the rapid and efficient optimization of expression steps for maximal protein quality and quantity, including our emendations. © 2015 Elsevier Inc. All rights reserved.

  2. Light-induced vegetative anthocyanin pigmentation in Petunia

    PubMed Central

    Albert, Nick W.; Lewis, David H.; Zhang, Huaibi; Irving, Louis J.; Jameson, Paula E.; Davies, Kevin M.

    2009-01-01

    The Lc petunia system, which displays enhanced, light-induced vegetative pigmentation, was used to investigate how high light affects anthocyanin biosynthesis, and to assess the effects of anthocyanin pigmentation upon photosynthesis. Lc petunia plants displayed intense purple anthocyanin pigmentation throughout the leaves and stems when grown under high-light conditions, yet remain acyanic when grown under shade conditions. The coloured phenotypes matched with an accumulation of anthocyanins and flavonols, as well as the activation of the early and late flavonoid biosynthetic genes required for flavonol and anthocyanin production. Pigmentation in Lc petunia only occurred under conditions which normally induce a modest amount of anthocyanin to accumulate in wild-type Mitchell petunia [Petunia axillaris×(Petunia axillaris×Petunia hybrida cv. ‘Rose of Heaven’)]. Anthocyanin pigmentation in Lc petunia leaves appears to screen underlying photosynthetic tissues, increasing light saturation and light compensation points, without reducing the maximal photosynthetic assimilation rate (Amax). In the Lc petunia system, where the bHLH factor Leaf colour is constitutively expressed, expression of the bHLH (Lc) and WD40 (An11) components of the anthocyanin regulatory system were not limited, suggesting that the high-light-induced anthocyanin pigmentation is regulated by endogenous MYB transcription factors. PMID:19380423

  3. Increased bacterial cell density and recombinant protein yield using a commercial microbial cultivation system.

    PubMed

    Peck, Grantley R; Bowden, Timothy R; Shiell, Brian J; Michalski, Wojtek P

    2014-01-01

    EnBase (BioSilta, Finland) is a microbial cultivation system that replicates fed-batch systems through sustained release of glucose by enzymatic degradation of a polymeric substrate. Achievable bacterial cell densities and recombinant capripoxvirus protein expression levels, solubility, and antigenicity using the EnBase system were assessed. BL21-AI Escherichia coli expressing capripoxvirus proteins achieved up to eightfold higher cell densities when grown in EnBase media compared with standard media. Greater yields of capripoxvirus proteins were attained using EnBase media, either through increases in the amount of expressed protein per cell in conjunction with higher cell density or through the increase in cell density alone. Addition of EnBase booster enhanced protein yield for one of the proteins tested but reduced yield for the other. However, the amount of soluble forms of the capripoxvirus proteins tested was not different from that observed from cultures grown under standard conditions. Purified capripoxvirus proteins expressed using EnBase or standard media were assessed for their performance by enzyme-linked immunosorbent assay (ELISA) and were shown to be equally capable of specifically binding capripoxvirus antibodies.

  4. Expressing the joint moments of drop jumps and sidestep cutting in different reference frames--does it matter?

    PubMed

    Kristianslund, Eirik; Krosshaug, Tron; Mok, Kam-Ming; McLean, Scott; van den Bogert, Antonie J

    2014-01-03

    Joint moments help us understand joint loading and muscle function during movement. However, the interpretation depends on the choice of reference frame, but the different reference frames have not been compared in dynamic, high-impact sporting movements. We have compared the magnitude and the resulting ranking of hip and knee joint moments expressed in the laboratory coordinate system, the local system of the distal segment and projected or decomposed to the Joint Coordinate System (JCS) axes. Hip and knee joint moments of drop jumps and sidestep cutting in 70 elite female handball players were calculated based on recordings from an eight-camera 240 Hz system and two force platforms and expressed with the four methods. The greatest variations in magnitude between conditions were seen for drop jump hip internal rotation (range: 0.31-0.71 Nm/kg) and sidestep cutting knee flexion (2.87-3.39 Nm/kg) and hip internal rotation (0.87-2.36 Nm/kg) and knee internal rotation (0.10-0.40 Nm/kg) moments. The rank correlations were highest between conditions for flexion moments (0.88-1.00) and sidestep cutting abduction moments (0.71-0.98). The rank correlations ranged from 0.64 to 0.73 for drop jump knee abduction moments and between -0.17 and 0.67 for hip and knee internal rotation moments. Expression of joint moments in different reference systems affects the magnitude and ranking of athletes. This lack of consistency may complicate the comparison and combination of results. Projection to the JCS is the only method where joint moments correspond to muscle and ligament loading. More widespread adoption of this convention could facilitate comparison of studies and ease the interpretation of results. © 2013 Elsevier Ltd. All rights reserved.

  5. Functional expression of an ajmaline pathway-specific esterase from Rauvolfia in a novel plant-virus expression system.

    PubMed

    Ruppert, Martin; Woll, Jörn; Giritch, Anatoli; Genady, Ezzat; Ma, Xueyan; Stöckigt, Joachim

    2005-11-01

    Acetylajmalan esterase (AAE) plays an essential role in the late stage of ajmaline biosynthesis. Based on the partial peptide sequences of AAE isolated and purified from Rauvolfia cell suspensions, a full-length AAE cDNA clone was isolated. The amino acid sequence of AAE has the highest level of identity of 40% to putative lipases known from the Arabidopsis thaliana genome project. Based on the primary structure AAE is a new member of the GDSL lipase superfamily. The expression in Escherichia coli failed although a wide range of conditions were tested. With a novel virus-based plant expression system, it was possible to express AAE functionally in leaves of Nicotiana benthamiana Domin. An extraordinarily high enzyme activity was detected in the Nicotiana tissue, which exceeded that in Rauvolfia serpentina (L.) Benth. ex Kurz cell suspension cultures about 20-fold. This expression allowed molecular analysis of AAE for the first time and increased the number of functionally expressed alkaloid genes from Rauvolfia now to eight, and the number of ajmaline pathway-specific cDNAs to a total of six.

  6. On computing stress in polymer systems involving multi-body potentials from molecular dynamics simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Yao, E-mail: fu5@mailbox.sc.edu, E-mail: jhsong@cec.sc.edu; Song, Jeong-Hoon, E-mail: fu5@mailbox.sc.edu, E-mail: jhsong@cec.sc.edu

    2014-08-07

    Hardy stress definition has been restricted to pair potentials and embedded-atom method potentials due to the basic assumptions in the derivation of a symmetric microscopic stress tensor. Force decomposition required in the Hardy stress expression becomes obscure for multi-body potentials. In this work, we demonstrate the invariance of the Hardy stress expression for a polymer system modeled with multi-body interatomic potentials including up to four atoms interaction, by applying central force decomposition of the atomic force. The balance of momentum has been demonstrated to be valid theoretically and tested under various numerical simulation conditions. The validity of momentum conservation justifiesmore » the extension of Hardy stress expression to multi-body potential systems. Computed Hardy stress has been observed to converge to the virial stress of the system with increasing spatial averaging volume. This work provides a feasible and reliable linkage between the atomistic and continuum scales for multi-body potential systems.« less

  7. Stress intensity factors of composite orthotropic plates containing periodic buffer strips

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1978-01-01

    The fracture problem of laminated plates which consist of bonded orthotropic layers is studied. The fields equations for an elastic orthotropic body are transformed to give the displacement and stress expressions for each layer or strip. The unknown functions in these expressions are found by satisfying the remaining boundary and continuity conditions. A system of singular integral equations is obtained from the mixed boundary conditions. The singular behavior around the crack tip and at the bimaterial interface is studied. The stress intensity factors are computed for various material combinations and various crack geometries. The results are discussed and are compared with those for isotropic materials.

  8. Systems Reconsolidation Reveals a Selective Role for the Anterior Cingulate Cortex in Generalized Contextual Fear Memory Expression

    PubMed Central

    Einarsson, Einar Ö; Pors, Jennifer; Nader, Karim

    2015-01-01

    After acquisition, hippocampus-dependent memories undergo a systems consolidation process, during which they become independent of the hippocampus and dependent on the anterior cingulate cortex (ACC) for memory expression. However, consolidated remote memories can become transiently hippocampus-dependent again following memory reactivation. How this systems reconsolidation affects the role of the ACC in remote memory expression is not known. Using contextual fear conditioning, we show that the expression of 30-day-old remote memory can transiently be supported by either the ACC or the dorsal hippocampus following memory reactivation, and that the ACC specifically mediates expression of remote generalized contextual fear memory. We found that suppression of neural activity in the ACC with the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) impaired the expression of remote, but not recent, contextual fear memory. Fear expression was not affected by this treatment if preceded by memory reactivation 6 h earlier, nor was it affected by suppression of neural activity in the dorsal hippocampus with the GABA-receptor agonist muscimol. However, simultaneous targeting of both the ACC and the dorsal hippocampus 6 h after memory reactivation disrupted contextual fear memory expression. Second, we observed that expression of a 30-day-old generalized contextual fear memory in a novel context was not affected by memory reactivation 6 h earlier. However, intra-ACC CNQX infusion before testing impaired contextual fear expression in the novel context, but not the original training context. Together, these data suggest that although the dorsal hippocampus may be recruited during systems reconsolidation, the ACC remains necessary for the expression of generalized contextual fear memory. PMID:25091528

  9. Systems reconsolidation reveals a selective role for the anterior cingulate cortex in generalized contextual fear memory expression.

    PubMed

    Einarsson, Einar Ö; Pors, Jennifer; Nader, Karim

    2015-01-01

    After acquisition, hippocampus-dependent memories undergo a systems consolidation process, during which they become independent of the hippocampus and dependent on the anterior cingulate cortex (ACC) for memory expression. However, consolidated remote memories can become transiently hippocampus-dependent again following memory reactivation. How this systems reconsolidation affects the role of the ACC in remote memory expression is not known. Using contextual fear conditioning, we show that the expression of 30-day-old remote memory can transiently be supported by either the ACC or the dorsal hippocampus following memory reactivation, and that the ACC specifically mediates expression of remote generalized contextual fear memory. We found that suppression of neural activity in the ACC with the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) impaired the expression of remote, but not recent, contextual fear memory. Fear expression was not affected by this treatment if preceded by memory reactivation 6 h earlier, nor was it affected by suppression of neural activity in the dorsal hippocampus with the GABA-receptor agonist muscimol. However, simultaneous targeting of both the ACC and the dorsal hippocampus 6 h after memory reactivation disrupted contextual fear memory expression. Second, we observed that expression of a 30-day-old generalized contextual fear memory in a novel context was not affected by memory reactivation 6 h earlier. However, intra-ACC CNQX infusion before testing impaired contextual fear expression in the novel context, but not the original training context. Together, these data suggest that although the dorsal hippocampus may be recruited during systems reconsolidation, the ACC remains necessary for the expression of generalized contextual fear memory.

  10. tCRISPRi: tunable and reversible, one-step control of gene expression

    NASA Astrophysics Data System (ADS)

    Li, Xin-Tian; Jun, Yonggun; Erickstad, Michael J.; Brown, Steven D.; Parks, Adam; Court, Donald L.; Jun, Suckjoon

    2016-12-01

    The ability to control the level of gene expression is a major quest in biology. A widely used approach employs deletion of a nonessential gene of interest (knockout), or multi-step recombineering to move a gene of interest under a repressible promoter (knockdown). However, these genetic methods are laborious, and limited for quantitative study. Here, we report a tunable CRISPR-cas system, “tCRISPRi”, for precise and continuous titration of gene expression by more than 30-fold. Our tCRISPRi system employs various previous advancements into a single strain: (1) We constructed a new strain containing a tunable arabinose operon promoter PBAD to quantitatively control the expression of CRISPR-(d)Cas protein over two orders of magnitude in a plasmid-free system. (2) tCRISPRi is reversible, and gene expression is repressed under knockdown conditions. (3) tCRISPRi shows significantly less than 10% leaky expression. (4) Most important from a practical perspective, construction of tCRISPRi to target a new gene requires only one-step of oligo recombineering. Our results show that tCRISPRi, in combination with recombineering, provides a simple and easy-to-implement tool for gene expression control, and is ideally suited for construction of both individual strains and high-throughput tunable knockdown libraries.

  11. Generation of recombinant rotaviruses expressing fluorescent proteins using an optimized reverse genetics system.

    PubMed

    Komoto, Satoshi; Fukuda, Saori; Ide, Tomihiko; Ito, Naoto; Sugiyama, Makoto; Yoshikawa, Tetsushi; Murata, Takayuki; Taniguchi, Koki

    2018-04-18

    An entirely plasmid-based reverse genetics system for rotaviruses was established very recently. We improved the reverse genetics system to generate recombinant rotavirus by transfecting only 11 cDNA plasmids for its 11 gene segments under the condition of increasing the ratio of the cDNA plasmids for NSP2 and NSP5 genes. Utilizing this highly efficient system, we then engineered infectious recombinant rotaviruses expressing bioluminescent (NanoLuc luciferase) and fluorescent (EGFP and mCherry) reporters. These recombinant rotaviruses expressing reporters remained genetically stable during serial passages. Our reverse genetics approach and recombinant rotaviruses carrying reporter genes will be great additions to the tool kit for studying the molecular virology of rotavirus, and for developing future next-generation vaccines and expression vectors. IMPORTANCE Rotavirus is one of the most important pathogens causing severe gastroenteritis in young children worldwide. In this paper, we describe a robust and simple reverse genetics system based on only rotavirus cDNAs, and its application for engineering infectious recombinant rotaviruses harboring bioluminescent (NanoLuc) and fluorescent (EGFP and mCherry) protein genes. This highly efficient reverse genetics system and recombinant RVAs expressing reporters could be powerful tools for the study of different aspects of rotavirus replication. Furthermore, they may be useful for next-generation vaccine production for this medically important virus. Copyright © 2018 American Society for Microbiology.

  12. Effects of chronic alcohol consumption, withdrawal and nerve growth factor on neuropeptide Y expression and cholinergic innervation of the rat dentate hilus.

    PubMed

    Pereira, Pedro A; Rocha, João P; Cardoso, Armando; Vilela, Manuel; Sousa, Sérgio; Madeira, M Dulce

    2016-05-01

    Several studies have demonstrated the vulnerability of the hippocampal formation (HF) to chronic alcohol consumption and withdrawal. Among the brain systems that appear to be particularly vulnerable to the effects of these conditions are the neuropeptide Y (NPY)-ergic and the cholinergic systems. Because these two systems seem to closely interact in the HF, we sought to study the effects of chronic alcohol consumption (6months) and subsequent withdrawal (2months) on the expression of NPY and on the cholinergic innervation of the rat dentate hilus. As such, we have estimated the areal density and the somatic volume of NPY-immunoreactive neurons, and the density of the cholinergic varicosities. In addition, because alcohol consumption and withdrawal are associated with impaired nerve growth factor (NGF) trophic support and the administration of exogenous NGF alters the effects of those conditions on various cholinergic markers, we have also estimated the same morphological parameters in withdrawn rats infused intracerebroventricularly with NGF. NPY expression increased after withdrawal and returned to control values after NGF treatment. Conversely, the somatic volume of these neurons did not differ among all groups. On other hand, the expression of vesicular acetylcholine transporter (VAChT) was reduced by 24% in ethanol-treated rats and by 46% in withdrawn rats. The administration of NGF to withdrawn rats increased the VAChT expression to values above control levels. These results show that the effects of prolonged alcohol intake and protracted withdrawal on the hilar NPY expression differ from those induced by shorter exposures to ethanol and by abrupt withdrawal. They also suggest that the normalizing effect of NGF on NPY expression might rely on the NGF-induced improvement of cholinergic neurotransmission in the dentate hilus. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Establishment and culture optimization of a new type of pituitary immortalized cell line.

    PubMed

    Kokubu, Yuko; Asashima, Makoto; Kurisaki, Akira

    2015-08-07

    The pituitary gland is a center of the endocrine system that controls homeostasis in an organism by secreting various hormones. The glandular anterior pituitary consists of five different cell types, each expressing specific hormones. However, their regulation and the appropriate conditions for their in vitro culture are not well defined. Here, we report the immortalization of mouse pituitary cells by introducing TERT, E6, and E7 transgenes. The immortalized cell lines mainly expressed a thyrotroph-specific thyroid stimulating hormone beta (Tshb). After optimization of the culture conditions, these immortalized cells proliferated and maintained morphological characteristics similar to those of primary pituitary cells under sphere culture conditions in DMEM/F12 medium supplemented with N2, B27, basic FGF, and EGF. These cell lines responded to PKA or PKC pathway activators and induced the expression of Tshb mRNA. Moreover, transplantation of the immortalized cell line into subcutaneous regions and kidney capsules of mice further increased Tshb expression. These results suggest that immortalization of pituitary cells with TERT, E6, and E7 transgenes is a useful method for generating proliferating cells for the in vitro analysis of pituitary regulatory mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Assessment of efficiency of functioning the infocommunication systems a special purpose in the conditions of violation quality of relevance information

    NASA Astrophysics Data System (ADS)

    Parinov, A. V.; Korotkikh, L. P.; Desyatov, D. B.; Stepanov, L. V.

    2018-03-01

    The uniqueness of information processing mechanisms in special-purpose infocommunication systems and the increased interest of intruders lead to an increase in the relevance of the problems associated with their protection. The paper considers the issues of building risk-models for the violation of the relevance and value of information in infocommunication systems for special purposes. Also, special attention is paid to the connection between the qualities of relevance and the value of information obtained as a result of the operation of infocommunication systems for special purposes. Analytical expressions for the risk and damage function in the time range in special-purpose infocommunication systems are obtained, which can serve as a mathematical basis for risk assessment. Further, an analytical expression is obtained to assess the chance of obtaining up-to-date information in the operation of infocommunication systems up to the time the information quality is violated. An analytical expression for estimating the chance can be used to calculate the effectiveness of a special-purpose infocommunication system.

  15. Expression of putative pathogenicity-related genes in Xylella fastidiosa grown at low and high cell density conditions in vitro.

    PubMed

    Scarpari, Leandra M; Lambais, Marcio R; Silva, Denise S; Carraro, Dirce M; Carrer, Helaine

    2003-05-16

    Xylella fastidiosa is the causal agent of economically important plant diseases, including citrus variegated chlorosis and Pierce's disease. Hitherto, there has been no information on the molecular mechanisms controlling X. fastidiosa-plant interactions. To determine whether predicted open reading frames (ORFs) encoding putative pathogenicity-related factors were expressed by X. fastidiosa 9a5c cells grown at low (LCD) and high cell density (HCD) conditions in liquid modified PW medium, reverse Northern blot hybridization and reverse transcription-polymerase chain reaction (RT-PCR) experiments were performed. Our results indicated that ORFs XF2344, XF2369, XF1851 and XF0125, encoding putative Fur, GumC, a serine-protease and RsmA, respectively, were significantly suppressed at HCD conditions. In contrast, ORF XF1115, encoding putative RpfF, was significantly induced at HCD conditions. Expressions of ORFs XF2367, XF2362 and XF0290, encoding putative GumD, GumJ and RpfA, respectively, were detected only at HCD conditions, whereas expression of ORF XF0287, encoding putative RpfB was detected only at LCD conditions. Bioassays with an Agrobacterium traG::lacZ reporter system indicated that X. fastidiosa does not synthesize N-acyl-homoserine lactones, whereas bioassays with a diffusible signal factor (DSF)-responsive Xanthomonas campestris pv. campestris mutant indicate that X. fastidiosa synthesizes a molecule similar to DSF in modified PW medium. Our data also suggest that the synthesis of the DSF-like molecule and fastidian gum by X. fastidiosa is affected by cell density in vitro.

  16. The quantitative and condition-dependent Escherichia coli proteome

    PubMed Central

    Schmidt, Alexander; Kochanowski, Karl; Vedelaar, Silke; Ahrné, Erik; Volkmer, Benjamin; Callipo, Luciano; Knoops, Kèvin; Bauer, Manuel; Aebersold, Ruedi; Heinemann, Matthias

    2016-01-01

    Measuring precise concentrations of proteins can provide insights into biological processes. Here, we use efficient protein extraction and sample fractionation and state-of-the-art quantitative mass spectrometry techniques to generate a comprehensive, condition-dependent protein abundance map of Escherichia coli. We measure cellular protein concentrations for 55% of predicted E. coli genes (>2300 proteins) under 22 different experimental conditions and identify methylation and N-terminal protein acetylations previously not known to be prevalent in bacteria. We uncover system-wide proteome allocation, expression regulation, and post-translational adaptations. These data provide a valuable resource for the systems biology and broader E. coli research communities. PMID:26641532

  17. High level expression, purification and characterization of active fusion human C1q and tumor necrosis factor related protein 2 (hCTRP2) in Escherichia coli.

    PubMed

    Li, Hongbo; Gao, Xuefei; Zhou, Yi; Li, Na; Ge, Caozuo; Hui, Xiaoyan; Wang, Yu; Xu, Aimin; Jin, Shouguang; Wu, Donghai

    2011-09-01

    C1q and tumor necrosis factor related proteins (CTRPs) are a family of adiponectin paralogues. Among them, CTRP2 is the only CTRP protein that has been shown to possess similar biological activities as adiponectin. To further explore the physiological roles of human CTRP2 and its mechanisms of action, hCTRP2 gene was expressed in Escherichia coli and Pichia pastoris, respectively. In the P. pastoris expression system, recombinant hCTRP2 could be secreted into the culture medium under induction condition, however, the resultant recombinant protein was highly unstable, resulting two main degradation products with molecular masses of approximately 20 and 26 kDa, respectively. In the E. coli expression system, a large amount of soluble thioredoxin (Trx)-hCTRP2 fusion protein could be produced, which accounts about 42% of the total soluble bacterial proteins. The recombinant Trx-hCTRP2 fusion protein was purified to an approximately 95% purity using Ni-NTA affinity chromatography and Superdex G-75 column with a yield of about 15 mg/l protein from 1l bacterial culture. The purified recombinant Trx-hCTRP2 was shown to be active under in vitro assay conditions. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Differential effects of exposure to low-light or high-light open-field on anxiety-related behaviors; relationship to c-Fos expression in serotonergic and non-serotonergic neurons in the dorsal raphe nucleus

    PubMed Central

    Bouwknecht, J. Adriaan; Spiga, Francesca; Staub, Daniel R.; Hale, Matthew W.; Shekhar, Anantha; Lowry, Christopher A.

    2007-01-01

    Serotonergic systems arising from the mid-rostrocaudal and caudal dorsal raphe nucleus (DR) have been implicated in the facilitation of anxiety-related behavioral responses by anxiogenic drugs or aversive stimuli. In this study we attempted to determine a threshold to engage serotonergic neurons in the DR following exposure to aversive conditions in an anxiety-related behavioral test. We manipulated the intensity of anxiogenic stimuli in studies of male Wistar rats by leaving them undisturbed (CO), briefly handling them (HA), or exposing them to an open-field arena for 15-min under low-light (LL: 8-13 lux) or high-light (HL: 400-500 lux) conditions. Rats exposed to HL conditions responded with reduced locomotor activity, reduced time spent exploring the center of the arena, a lower frequency of rearing and grooming, and an increased frequency of facing the corner of the arena compared to LL rats. Rats exposed to HL conditions had small but significant increases in c-Fos expression within serotonergic neurons in subdivisions of the rostral DR. Exposure to HL conditions did not alter c-Fos responses in serotonergic neurons in any other DR subdivision. In contrast, rats exposed to the open-field arena had increased c-Fos expression in non-serotonergic cells throughout the DR compared to CO rats, and this effect was particularly apparent in the dorsolateral part of the DR. We conclude that exposure to HL conditions, compared to LL conditions, increased anxiety-related behavioral responses in an open-field arena but this stimulus was at or below the threshold required to increase c-Fos expression in serotonergic neurons. PMID:17303505

  19. Characterization of complex systems using the design of experiments approach: transient protein expression in tobacco as a case study.

    PubMed

    Buyel, Johannes Felix; Fischer, Rainer

    2014-01-31

    Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.

  20. Development of a Fluorescent Bodipy Probe for Visualization of the Serotonin 5-HT1A Receptor in Native Cells of the Immune System.

    PubMed

    Hernández-Torres, Gloria; Enríquez-Palacios, Ernesto; Mecha, Miriam; Feliú, Ana; Rueda-Zubiaurre, Ainoa; Angelina, Alba; Martín-Cruz, Leticia; Martín-Fontecha, Mar; Palomares, Oscar; Guaza, Carmen; Peña-Cabrera, Eduardo; López-Rodríguez, María L; Ortega-Gutiérrez, Silvia

    2018-05-14

    Serotonin (5-HT) modulates key aspects of the immune system. However, its precise function and the receptors involved in the observed effects have remained elusive. Among the different serotonin receptors, 5-HT 1A plays an important role in the immune system given its presence in cells involved in both the innate and adaptive immune responses, but its actual levels of expression under different conditions have not been comprehensively studied due to the lack of suitable tools. To further clarify the role of 5-HT 1A receptor in the immune system, we have developed a fluorescent small molecule probe that enables the direct study of the receptor levels in native cells. This probe allows direct profiling of the receptor expression in immune cells using flow cytometry. Our results show that important subsets of immune cells including human monocytes and dendritic cells express functional 5-HT 1A and that its activation is associated with anti-inflammatory signaling. Furthermore, application of the probe to the experimental autoimmune encephalomyelitis model of multiple sclerosis demonstrates its potential to detect the specific overexpression of the 5-HT 1A receptor in CD4+ T cells. Accordingly, the probe reported herein represents a useful tool whose use can be extended to study the levels of 5-HT 1A receptor in ex vivo samples of different immune system conditions.

  1. A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Roy, Raktim; Phani Shilpa, P.; Bagh, Sangram

    2016-09-01

    Bacteria are important organisms for space missions due to their increased pathogenesis in microgravity that poses risks to the health of astronauts and for projected synthetic biology applications at the space station. We understand little about the effect, at the molecular systems level, of microgravity on bacteria, despite their significant incidence. In this study, we proposed a systems biology pipeline and performed an analysis on published gene expression data sets from multiple seminal studies on Pseudomonas aeruginosa and Salmonella enterica serovar Typhimurium under spaceflight and simulated microgravity conditions. By applying gene set enrichment analysis on the global gene expression data, we directly identified a large number of new, statistically significant cellular and metabolic pathways involved in response to microgravity. Alteration of metabolic pathways in microgravity has rarely been reported before, whereas in this analysis metabolic pathways are prevalent. Several of those pathways were found to be common across studies and species, indicating a common cellular response in microgravity. We clustered genes based on their expression patterns using consensus non-negative matrix factorization. The genes from different mathematically stable clusters showed protein-protein association networks with distinct biological functions, suggesting the plausible functional or regulatory network motifs in response to microgravity. The newly identified pathways and networks showed connection with increased survival of pathogens within macrophages, virulence, and antibiotic resistance in microgravity. Our work establishes a systems biology pipeline and provides an integrated insight into the effect of microgravity at the molecular systems level.

  2. Automated Scalable Heat Shock Modification for Standard Aquatic Housing Systems.

    PubMed

    Saera-Vila, Alfonso; Kish, Phillip E; Kahana, Alon

    2015-08-01

    Heat shock is a common technique for inducible gene expression system in a variety of organisms. Heat shock treatment of adult zebrafish is more involved and generally consists of manually transferring fish between housing rack tanks and preheated water tanks or the use of timed heaters in stand-alone aquaria. To avoid excessive fish handling and to take advantage of the continuous flow of a standard housing rack, proposed modifications consisted of installing an aquarium heater inside each tank, manually setting the heater to reach heat shocking temperatures (> 37°C) and, after that, testing that every tank responded equally. To address the limitations in the existing systems, we developed a novel modification of standard zebrafish housing racks to perform heat shock treatment in conditions of continuous water flow. By adding an extra manifold to the housing rack and connecting it to a recirculating bath to create a parallel water flow system, we can increase the temperature from standard conditions (28.5°C) to heat shock conditions with high precision (38.0-38.3°C, mean ± SD = 38.1°C ± 0.14°C) and minimal variation among experimental tanks (coefficient of variation [CV] = 0.04%). This means that there is virtually no need for laborious pretreatment calibrations or continuous adjustments to minimize intertank variation. To test the effectiveness of our design, we utilized this system to induce enhanced green fluorescent protein (EGFP) expression in hsp70-EGFP fish and performed a fin regeneration experiment with hsp70l:dnfgfr1-EGFP fish to confirm that heat-induced gene expression reached physiological levels. In summary, our newly described aquatic heat shock system minimizes effort during heat shock experiments, while ensuring the best water quality and fish welfare and facilitating large heat shock settings or the use of multiple transgenic lines for both research and teaching experiments.

  3. Automated Scalable Heat Shock Modification for Standard Aquatic Housing Systems

    PubMed Central

    Saera-Vila, Alfonso; Kish, Phillip E.

    2015-01-01

    Abstract Heat shock is a common technique for inducible gene expression system in a variety of organisms. Heat shock treatment of adult zebrafish is more involved and generally consists of manually transferring fish between housing rack tanks and preheated water tanks or the use of timed heaters in stand-alone aquaria. To avoid excessive fish handling and to take advantage of the continuous flow of a standard housing rack, proposed modifications consisted of installing an aquarium heater inside each tank, manually setting the heater to reach heat shocking temperatures (>37°C) and, after that, testing that every tank responded equally. To address the limitations in the existing systems, we developed a novel modification of standard zebrafish housing racks to perform heat shock treatment in conditions of continuous water flow. By adding an extra manifold to the housing rack and connecting it to a recirculating bath to create a parallel water flow system, we can increase the temperature from standard conditions (28.5°C) to heat shock conditions with high precision (38.0–38.3°C, mean±SD=38.1°C±0.14°C) and minimal variation among experimental tanks (coefficient of variation [CV]=0.04%). This means that there is virtually no need for laborious pretreatment calibrations or continuous adjustments to minimize intertank variation. To test the effectiveness of our design, we utilized this system to induce enhanced green fluorescent protein (EGFP) expression in hsp70-EGFP fish and performed a fin regeneration experiment with hsp70l:dnfgfr1-EGFP fish to confirm that heat-induced gene expression reached physiological levels. In summary, our newly described aquatic heat shock system minimizes effort during heat shock experiments, while ensuring the best water quality and fish welfare and facilitating large heat shock settings or the use of multiple transgenic lines for both research and teaching experiments. PMID:25942613

  4. Global Deletion of TSPO Does Not Affect the Viability and Gene Expression Profile

    PubMed Central

    Wang, Huaishan; Yang, Jia; Yang, Qi; Fu, Yi; Hu, Yu; Liu, Fang; Wang, Weiqing; Cui, Lianxian; Chen, Hui; Zhang, Jianmin; He, Wei

    2016-01-01

    Translocator Protein (18kDa, TSPO) is a mitochondrial outer membrane transmembrane protein. Its expression is elevated during inflammation and injury. However, the function of TSPO in vivo is still controversial. Here, we constructed a TSPO global knockout (KO) mouse with a Cre-LoxP system that abolished TSPO protein expression in all tissues and showed normal phenotypes in the physiological condition. The birth rates of TSPO heterozygote (Het) x Het or KO x KO breeding were consistent with Mendel’s Law, suggesting a normal viability of TSPO KO mice at birth. RNA-seq analysis showed no significant difference in the gene expression profile of lung tissues from TSPO KO mice compared with wild type mice, including the genes associated with bronchial alveoli immune homeostasis. The alveolar macrophage population was not affected by TSPO deletion in the physiological condition. Our findings contradict the results of Papadopoulos, but confirmed Selvaraj’s findings. This study confirms TSPO deficiency does not affect viability and bronchial alveolar immune homeostasis. PMID:27907096

  5. Inhibition of selectin binding

    DOEpatents

    Nagy, Jon O.; Spevak, Wayne R.; Dasgupta, Falguni; Bertozzi, Carolyn

    1999-10-05

    This invention provides a system for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10.sup.6 fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, this system can be used to palliate certain inflammatory and immunological conditions.

  6. Conditionally immortal ovarian cell lines for investigating the influence of ovarian stroma on the estrogen sensitivity and tumorigenicity of ovarian surface epithelial cells.

    PubMed

    Jiang, Feng; Saunders, Beatriz O; Haller, Edward; Livingston, Sandra; Nicosia, Santo V; Bai, Wenlong

    2003-01-01

    The tendency of the ovarian surface epithelium (OSE) to undergo metaplastic and morphogenetic changes during the life cycle, at variance with the adjacent peritoneal mesothelial cells, suggests that its biology may be regulated by underlying ovarian stromal cues. However, little is known about the role that the ovarian stroma plays in the pathobiology of the OSE, largely because of the lack of a suitable in vitro model. Here, we describe the establishment and characterization of conditionally immortalized ovarian stromal and surface epithelial cell lines from H-2K(b)-tsA58 transgenic mice that carry the thermolabile mutant of SV-40 large T antigen under the control of an interferon-gamma (IFN-gamma)-inducible promoter. These cells express functional T antigens, grow continuously under permissive conditions at 33 degrees C in the presence of IFN-gamma, and stop dividing when the activity and expression of the tumor antigen is suppressed by restrictive conditions without IFN-gamma at 39 degrees C. Morphological, immunohistochemical, and ultrastructural analyses show that conditionally immortal OSE cells form cobblestone-like monolayers, express cytokeratin and vimentin, contain several microvilli, and develop tight junctions, whereas stromal cells are spindle-like, express vimentin but not cytokeratin, and contain rare microvilli, thus exhibiting epithelial and stromal phenotypes, respectively. At variance with the reported behavior of rat epithelial cells, conditionally immortal mouse epithelial cells are not spontaneously transformed after continuous culture in vitro. More importantly, conditioned media from stromal cells cultured under permissive conditions increase the specific activity of the endogenous estrogen receptor in BG-1 human ovarian epithelial cancer cells and promote these cells' anchorage-independent growth, suggesting the paracrine influence of a stromal factor. In addition, stromal cells cultured under restrictive conditions retain this growth-stimulatory activity, which, therefore, appears to be independent of T antigen expression. These established cell lines should provide a useful in vitro model system for studying the role of cellular interactions in OSE cell growth and tumorigenesis.

  7. Differential modulation of changes in hippocampal-septal synaptic excitability by the amygdala as a function of either elemental or contextual fear conditioning in mice.

    PubMed

    Desmedt, A; Garcia, R; Jaffard, R

    1998-01-01

    Recent data obtained using a classic fear conditioning paradigm showed a dissociation between the retention of associations relative to contextual information (dependent on the hippocampal formation) and the retention of elemental associations (dependent on the amygdala). Furthermore, it was reported that conditioned emotional responses (CERs) could be dissociated from the recollection of the learning experience (declarative memory) in humans and from modifications of the hippocampal-septal excitability in animals. Our aim was to determine whether these two systems ("behavioral expression" system and "factual memory" system) interact by examining the consequences of amygdalar lesions (1) on the modifications of hippocampal-septal excitability and (2) on the behavioral expression of fear (freezing) resulting from an aversive conditioning during reexposure to conditional stimuli (CSs). During conditioning, to modulate the predictive nature of the context and of a discrete stimulus (tone) on the unconditional stimulus (US) occurrence, the phasic discrete CS was paired with the US or randomly distributed with regard to the US. After the lesion, the CER was dramatically reduced during reexposure to the CSs, whatever the type of acquisition. However, the changes in hippocampal-septal excitability persisted but were altered. For controls, a decrease in septal excitability was observed during reexposure to the conditioning context only for the "unpaired group" (predictive context case). Conversely, among lesioned subjects this decrease was observed in the "paired group" (predictive discrete CS case), whereas this decrease was significantly reduced in the unpaired group with respect to the matched control group. The amplitude and the direction of these modifications suggest a differential modulation of hippocampal-septal excitability by the amygdala to amplify the contribution of the more predictive association signaling the occurrence of the aversive event.

  8. Adaptive weighted local textural features for illumination, expression, and occlusion invariant face recognition

    NASA Astrophysics Data System (ADS)

    Cui, Chen; Asari, Vijayan K.

    2014-03-01

    Biometric features such as fingerprints, iris patterns, and face features help to identify people and restrict access to secure areas by performing advanced pattern analysis and matching. Face recognition is one of the most promising biometric methodologies for human identification in a non-cooperative security environment. However, the recognition results obtained by face recognition systems are a affected by several variations that may happen to the patterns in an unrestricted environment. As a result, several algorithms have been developed for extracting different facial features for face recognition. Due to the various possible challenges of data captured at different lighting conditions, viewing angles, facial expressions, and partial occlusions in natural environmental conditions, automatic facial recognition still remains as a difficult issue that needs to be resolved. In this paper, we propose a novel approach to tackling some of these issues by analyzing the local textural descriptions for facial feature representation. The textural information is extracted by an enhanced local binary pattern (ELBP) description of all the local regions of the face. The relationship of each pixel with respect to its neighborhood is extracted and employed to calculate the new representation. ELBP reconstructs a much better textural feature extraction vector from an original gray level image in different lighting conditions. The dimensionality of the texture image is reduced by principal component analysis performed on each local face region. Each low dimensional vector representing a local region is now weighted based on the significance of the sub-region. The weight of each sub-region is determined by employing the local variance estimate of the respective region, which represents the significance of the region. The final facial textural feature vector is obtained by concatenating the reduced dimensional weight sets of all the modules (sub-regions) of the face image. Experiments conducted on various popular face databases show promising performance of the proposed algorithm in varying lighting, expression, and partial occlusion conditions. Four databases were used for testing the performance of the proposed system: Yale Face database, Extended Yale Face database B, Japanese Female Facial Expression database, and CMU AMP Facial Expression database. The experimental results in all four databases show the effectiveness of the proposed system. Also, the computation cost is lower because of the simplified calculation steps. Research work is progressing to investigate the effectiveness of the proposed face recognition method on pose-varying conditions as well. It is envisaged that a multilane approach of trained frameworks at different pose bins and an appropriate voting strategy would lead to a good recognition rate in such situation.

  9. A reverse engineering approach to optimize experiments for the construction of biological regulatory networks.

    PubMed

    Zhang, Xiaomeng; Shao, Bin; Wu, Yangle; Qi, Ouyang

    2013-01-01

    One of the major objectives in systems biology is to understand the relation between the topological structures and the dynamics of biological regulatory networks. In this context, various mathematical tools have been developed to deduct structures of regulatory networks from microarray expression data. In general, from a single data set, one cannot deduct the whole network structure; additional expression data are usually needed. Thus how to design a microarray expression experiment in order to get the most information is a practical problem in systems biology. Here we propose three methods, namely, maximum distance method, trajectory entropy method, and sampling method, to derive the optimal initial conditions for experiments. The performance of these methods is tested and evaluated in three well-known regulatory networks (budding yeast cell cycle, fission yeast cell cycle, and E. coli. SOS network). Based on the evaluation, we propose an efficient strategy for the design of microarray expression experiments.

  10. Immunologic applications of conditional gene modification technology in the mouse.

    PubMed

    Sharma, Suveena; Zhu, Jinfang

    2014-04-02

    Since the success of homologous recombination in altering mouse genome and the discovery of Cre-loxP system, the combination of these two breakthroughs has created important applications for studying the immune system in the mouse. Here, we briefly summarize the general principles of this technology and its applications in studying immune cell development and responses; such implications include conditional gene knockout and inducible and/or tissue-specific gene over-expression, as well as lineage fate mapping. We then discuss the pros and cons of a few commonly used Cre-expressing mouse lines for studying lymphocyte development and functions. We also raise several general issues, such as efficiency of gene deletion, leaky activity of Cre, and Cre toxicity, all of which may have profound impacts on data interpretation. Finally, we selectively list some useful links to the Web sites as valuable mouse resources. Copyright © 2014 John Wiley & Sons, Inc.

  11. CD200:CD200R Interactions Regulate Osteoblastogenesis and Osteoclastogenesis in Space

    NASA Astrophysics Data System (ADS)

    Kos, Olha; Lee, Lydia; Gorezynski, Reginald M.

    2008-06-01

    We report data from studies on a recent FOTON mission, using an eOSTEO cell culture system developed by Systems Technologies Canada Inc., showing that in space overexpression of CD200 (using cell cultures derived from transgenic mice expressing CD200 under control of a doxycycline-inducible promoter) is associated with an attenuation in the suppression of mRNA markers of osteoblastogeneis (including BSP, OPG) with concomitant loss of the preferential increased osteoclastogenesis which is otherwise seen in the absence of CD200. In separate cultures we also explored the additional effect of altered inflammatory cytokines on the perturbation of expression of these bone-related genes, using cells from cytokine-receptor knockout mice. Our data suggest that while exogenous inflammatory cytokines (TNFα+IL1β) increased mRNAs typical for osteoclastogenesis under ground conditions, they appeared to produce no further modification of mRNA expression in flight. We suggest that altered mRNA expression in flight is not primarily driven by altered expression of inflammatory cytokines.

  12. Molecular changes associated with heat-shock treatment in avian mononuclear and lymphoid lineage cells.

    PubMed

    Miller, L; Qureshi, M A

    1992-03-01

    The induction of heat-shock protein (HSP) synthesis in avian cells of the mononuclear phagocytic system (MPS) and lymphoid system (LS) lineage was investigated by exposure to in vitro heat-shock conditions. In addition, the kinetics of HSP90 mRNA expression was examined in chicken peritoneal macrophages (PM) as well as heat-shock-induced HSP synthesis in PM from chickens, turkeys, quail, and ducks. Each MPS and LS cell type expressed three major (23, 70, and 90 kDa) HSP following a 1-h heat shock at 45 C. However, a unique heat-induced 32-kDa protein (P32) was expressed only by cells of MPS lineage. The expression of HSP90 mRNA in chicken PM was temperature- and time-dependent. These findings imply that avian PM undergo molecular changes in response to elevated environmental temperatures and that the pattern of HSP expression appears to be distinct for cells of the MPS and LS lineages in chickens.

  13. Development of an imaging system for in vivo real-time monitoring of neuronal activity in deep brain of free-moving rats.

    PubMed

    Iijima, Norio; Miyamoto, Shinji; Matsumoto, Keisuke; Takumi, Ken; Ueta, Yoichi; Ozawa, Hitoshi

    2017-09-01

    We have newly developed a system that allows monitoring of the intensity of fluorescent signals from deep brains of rats transgenically modified to express enhanced green fluorescent protein (eGFP) via an optical fiber. One terminal of the optical fiber was connected to a blue semiconductor laser oscillator/green fluorescence detector. The other terminal was inserted into the vicinity of the eGFP-expressing neurons. Since the optical fiber was vulnerable to twisting stresses caused by animal movement, we also developed a cage in which the floor automatically turns, in response to the turning of the rat's head. This relieved the twisting stress on the optical fiber. The system then enabled real-time monitoring of fluorescence in awake and unrestrained rats over many hours. Using this system, we could continuously monitor eGFP-expression in arginine vasopressin-eGFP transgenic rats. Moreover, we observed an increase of eGFP-expression in the paraventricular nucleus under salt-loading conditions. We then performed in vivo imaging of eGFP-expressing GnRH neurons in the hypothalamus, via a bundle consisting of 3000 thin optical fibers. With the combination of the optical fiber bundle connection to the fluorescence microscope, and the special cage system, we were able to capture and retain images of eGFP-expressing neurons from free-moving rats. We believe that our newly developed method for monitoring and imaging eGFP-expression in deep brain neurons will be useful for analysis of neuronal functions in awake and unrestrained animals for long durations.

  14. On defense strategies for system of systems using aggregated correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S.; Imam, Neena; Ma, Chris Y. T.

    2017-04-01

    We consider a System of Systems (SoS) wherein each system Si, i = 1; 2; ... ;N, is composed of discrete cyber and physical components which can be attacked and reinforced. We characterize the disruptions using aggregate failure correlation functions given by the conditional failure probability of SoS given the failure of an individual system. We formulate the problem of ensuring the survival of SoS as a game between an attacker and a provider, each with a utility function composed of asurvival probability term and a cost term, both expressed in terms of the number of components attacked and reinforced.more » The survival probabilities of systems satisfy simple product-form, first-order differential conditions, which simplify the Nash Equilibrium (NE) conditions. We derive the sensitivity functions that highlight the dependence of SoS survival probability at NE on cost terms, correlation functions, and individual system survival probabilities.We apply these results to a simplified model of distributed cloud computing infrastructure.« less

  15. Molecular Validation of Chondrogenic Differentiation and Hypoxia Responsiveness of Platelet-Lysate Expanded Adipose Tissue-Derived Human Mesenchymal Stromal Cells.

    PubMed

    Galeano-Garces, Catalina; Camilleri, Emily T; Riester, Scott M; Dudakovic, Amel; Larson, Dirk R; Qu, Wenchun; Smith, Jay; Dietz, Allan B; Im, Hee-Jeong; Krych, Aaron J; Larson, A Noelle; Karperien, Marcel; van Wijnen, Andre J

    2017-07-01

    To determine the optimal environmental conditions for chondrogenic differentiation of human adipose tissue-derived mesenchymal stromal/stem cells (AMSCs). In this investigation we specifically investigate the role of oxygen tension and 3-dimensional (3D) culture systems. Both AMSCs and primary human chondrocytes were cultured for 21 days in chondrogenic media under normoxic (21% oxygen) or hypoxic (2% oxygen) conditions using 2 distinct 3D culture methods (high-density pellets and poly-ε-caprolactone [PCL] scaffolds). Histologic analysis of chondro-pellets and the expression of chondrocyte-related genes as measured by reverse transcriptase quantitative polymerase chain reaction were used to evaluate the efficiency of differentiation. AMSCs are capable of expressing established cartilage markers including COL2A1, ACAN, and DCN when grown in chondrogenic differentiation media as determined by gene expression and histologic analysis of cartilage markers. Expression of several cartilage-related genes was enhanced by low oxygen tension, including ACAN and HAPLN1. The pellet culture environment also promoted the expression of hypoxia-inducible cartilage markers compared with cells grown on 3D scaffolds. Cell type-specific effects of low oxygen and 3D environments indicate that mesenchymal cell fate and differentiation potential is remarkably sensitive to oxygen. Genetic programming of AMSCs to a chondrocytic phenotype is effective under hypoxic conditions as evidenced by increased expression of cartilage-related biomarkers and biosynthesis of a glycosaminoglycan-positive matrix. Lower local oxygen levels within cartilage pellets may be a significant driver of chondrogenic differentiation.

  16. Division rate, cell size and proteome allocation: impact on gene expression noise and implications for the dynamics of genetic circuits

    PubMed Central

    2018-01-01

    The cell division rate, size and gene expression programmes change in response to external conditions. These global changes impact on average concentrations of biomolecule and their variability or noise. Gene expression is inherently stochastic, and noise levels of individual proteins depend on synthesis and degradation rates as well as on cell-cycle dynamics. We have modelled stochastic gene expression inside growing and dividing cells to study the effect of division rates on noise in mRNA and protein expression. We use assumptions and parameters relevant to Escherichia coli, for which abundant quantitative data are available. We find that coupling of transcription, but not translation rates to the rate of cell division can result in protein concentration and noise homeostasis across conditions. Interestingly, we find that the increased cell size at fast division rates, observed in E. coli and other unicellular organisms, buffers noise levels even for proteins with decreased expression at faster growth. We then investigate the functional importance of these regulations using gene regulatory networks that exhibit bi-stability and oscillations. We find that network topology affects robustness to changes in division rate in complex and unexpected ways. In particular, a simple model of persistence, based on global physiological feedback, predicts increased proportion of persister cells at slow division rates. Altogether, our study reveals how cell size regulation in response to cell division rate could help controlling gene expression noise. It also highlights that understanding circuits' robustness across growth conditions is key for the effective design of synthetic biological systems. PMID:29657814

  17. Efficacy of a potential trivalent vaccine based on Hc fragments of botulinum toxins A, B, and E produced in a cell-free expression system.

    PubMed

    Zichel, R; Mimran, A; Keren, A; Barnea, A; Steinberger-Levy, I; Marcus, D; Turgeman, A; Reuveny, S

    2010-05-01

    Botulinum toxins produced by the anaerobic bacterium Clostridium botulinum are the most potent biological toxins in nature. Traditionally, people at risk are immunized with a formaldehyde-inactivated toxin complex. Second generation vaccines are based on the recombinant carboxy-terminal heavy-chain (Hc) fragment of the neurotoxin. However, the materialization of this approach is challenging, mainly due to the high AT content of clostridial genes. Herein, we present an alternative strategy in which the native genes encoding Hc proteins of botulinum toxins A, B, and E were used to express the recombinant Hc fragments in a cell-free expression system. We used the unique property of this open system to introduce different combinations of chaperone systems, protein disulfide isomerase (PDI), and reducing/oxidizing environments directly to the expression reaction. Optimized expression conditions led to increased production of soluble Hc protein, which was successfully scaled up using a continuous exchange (CE) cell-free system. Hc proteins were produced at a concentration of more than 1 mg/ml and purified by one-step Ni(+) affinity chromatography. Mice immunized with three injections containing 5 microg of any of the in vitro-expressed, alum-absorbed, Hc vaccines generated a serum enzyme-linked immunosorbent assay (ELISA) titer of 10(5) against the native toxin complex, which enabled protection against a high-dose toxin challenge (10(3) to 10(6) mouse 50% lethal dose [MsLD(50)]). Finally, immunization with a trivalent HcA, HcB, and HcE vaccine protected mice against the corresponding trivalent 10(5) MsLD(50) toxin challenge. Our results together with the latest developments in scalability of the in vitro protein expression systems offer alternative routes for the preparation of botulinum vaccine.

  18. Transcriptome Analysis of the Brucella abortus BvrR/BvrS Two-Component Regulatory System

    PubMed Central

    Viadas, Cristina; Rodríguez, María C.; Sangari, Felix J.; Gorvel, Jean-Pierre; García-Lobo, Juan M.; López-Goñi, Ignacio

    2010-01-01

    Background The two-component BvrR/BvrS system is essential for Brucella abortus virulence. It was shown previously that its dysfunction alters the expression of some major outer membrane proteins and the pattern of lipid A acylation. To determine the genes regulated by BvrR/BvrS, we performed a whole-genome microarray analysis using B. abortus RNA obtained from wild type and bvrR mutant cells grown in the same conditions. Methodology/Principal Findings A total of 127 differentially expressed genes were found: 83 were over expressed and 44 were less expressed in the bvrR mutant. Two operons, the phosphotransferase system and the maltose transport system, were down-regulated. Several genes involved in cell envelope or outer membrane biogenesis were differentially expressed: genes for outer membrane proteins (omp25a, omp25d), lipoproteins, LPS and fatty acid biosynthesis, stress response proteins, chaperones, flagellar genes, and twelve genes encoding ABC transport systems. Ten genes related with carbon metabolism (pckA and fumB among others) were up-regulated in the bvrR mutant, and denitrification genes (nirK, norC and nosZ) were also regulated. Notably, seven transcriptional regulators were affected, including VjbR, ExoR and OmpR that were less expressed in the bvrR mutant. Finally, the expression of eleven genes which have been previously related with Brucella virulence was also altered. Conclusions/Significance All these data corroborate the impact of BvrR/BvrS on cell envelope modulation, confirm that this system controls the carbon and nitrogen metabolism, and suggest a cross-talk among some regulators to adjust the Brucella physiology to the shift expected to occur during the transit from the extracellular to the intracellular niche. PMID:20422049

  19. A stepwise approach for the reproducible optimization of PAMO expression in Escherichia coli for whole-cell biocatalysis

    PubMed Central

    2012-01-01

    Background Baeyer-Villiger monooxygenases (BVMOs) represent a group of enzymes of considerable biotechnological relevance as illustrated by their growing use as biocatalyst in a variety of synthetic applications. However, due to their increased use the reproducible expression of BVMOs and other biotechnologically relevant enzymes has become a pressing matter while knowledge about the factors governing their reproducible expression is scattered. Results Here, we have used phenylacetone monooxygenase (PAMO) from Thermobifida fusca, a prototype Type I BVMO, as a model enzyme to develop a stepwise strategy to optimize the biotransformation performance of recombinant E. coli expressing PAMO in 96-well microtiter plates in a reproducible fashion. Using this system, the best expression conditions of PAMO were investigated first, including different host strains, temperature as well as time and induction period for PAMO expression. This optimized system was used next to improve biotransformation conditions, the PAMO-catalyzed conversion of phenylacetone, by evaluating the best electron donor, substrate concentration, and the temperature and length of biotransformation. Combining all optimized parameters resulted in a more than four-fold enhancement of the biocatalytic performance and, importantly, this was highly reproducible as indicated by the relative standard deviation of 1% for non-washed cells and 3% for washed cells. Furthermore, the optimized procedure was successfully adapted for activity-based mutant screening. Conclusions Our optimized procedure, which provides a comprehensive overview of the key factors influencing the reproducible expression and performance of a biocatalyst, is expected to form a rational basis for the optimization of miniaturized biotransformations and for the design of novel activity-based screening procedures suitable for BVMOs and other NAD(P)H-dependent enzymes as well. PMID:22720747

  20. R/L, a double reporter mouse line that expresses luciferase gene upon Cre-mediated excision, followed by inactivation of mRFP expression.

    PubMed

    Jia, Junshuang; Lin, Xiaolin; Lin, Xia; Lin, Taoyan; Chen, Bangzhu; Hao, Weichao; Cheng, Yushuang; Liu, Yu; Dian, Meijuan; Yao, Kaitai; Xiao, Dong; Gu, Weiwang

    2016-10-01

    The Cre/loxP system has become an important tool for the conditional gene knockout and conditional gene expression in genetically engineered mice. The applications of this system depend on transgenic reporter mouse lines that provide Cre recombinase activity with a defined cell type-, tissue-, or developmental stage-specificity. To develop a sensitive assay for monitoring Cre-mediated DNA excisions in mice, we generated Cre-mediated excision reporter mice, designated R/L mice (R/L: mRFP(monomeric red fluorescent protein)/luciferase), express mRFP throughout embryonic development and adult stages, while Cre-mediated excision deletes a loxP-flanked mRFP reporter gene and STOP sequence, thereby activating the expression of the second reporter gene luciferase, as assayed by in vivo and ex vivo bioluminescence imaging. After germ line deletion of the floxed mRFP and STOP sequence in R/L mice by EIIa-Cre mice, the resulting luciferase transgenic mice in which the loxP-mRFP-STOP-loxP cassette is excised from all cells express luciferase in all tissues and organs examined. The expression of luciferase transgene was activated in liver of RL/Alb-Cre double transgenic mice and in brain of RL/Nestin-Cre double transgenic mice when R/L reporter mice were mated with Alb-Cre mice and Nestin-Cre mice, respectively. Our findings reveal that the double reporter R/L mouse line is able to indicate the occurrence of Cre-mediated excision from early embryonic to adult lineages. Taken together, these findings demonstrate that the R/L mice serve as a sensitive reporter for Cre-mediated DNA excision both in living animals and in organs, tissues, and cells following necropsy.

  1. The acute response of the amygdalar TRH system to psychogenic stressors varies dependent on the paradigm and circadian condition.

    PubMed

    Gutiérrez-Mariscal, Mariana; Sánchez, Edith; Rebolledo-Solleiro, Daniela; García-Vázquez, Arlene Iskra; Cote-Vélez, Antonieta; Acasuso-Rivero, Cristina; Charli, Jean-Louis; Joseph-Bravo, Patricia

    2012-05-03

    Central administration of thyrotropin releasing hormone (TRH) reduces anxiety; amygdalar TRH expression is inversely proportional to the anxious behavior displayed in the elevated plus maze performed during the dark phase (EPM-D). To better understand the role of TRH in amygdala function, we evaluated the expression of TRH and the elements involved in its transmission in various stressful paradigms and how they associated with behavior. Wistar male rats were exposed to restraint (RES), EPM, or the open field test (OFT) and sacrificed 0-60 min afterwards; OFT, RES and EPM were performed during the light (L), and OFT during the dark phase. Restraint increased amygdalar levels of proCRH mRNA, without change in proTRH. All paradigms augmented corticosterone release, highest after OFT-L that also enhanced proCRH mRNA levels and decreased those of proTRH. OFT-D activated the TRH system. Levels of anxiety or locomotion were similar in animals tested in light or dark phases but their association with biochemical parameters differed. ProTRH expression and TRH release correlated positively with decreased anxiety in EPM-L and in OFT-D. No association with anxiety was detected in OFT-L where proCRH and proTRH expression correlated with locomotion supporting their involvement in arousal. The responses of TRH amygdalar systems appeared modulated by the extent of the stress response and by the circadian conditions. Increased proTRH expression of animals exposed to OFT-D was specifically observed in the cortical nucleus of the amygdala, area involved in processing fear stimuli; these TRH neurons may thus be part of a circuit with anxiolytic properties. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Developmental changes and day-night expression of the gonadotropin-inhibitory hormone system in the European sea bass: Effects of rearing temperature.

    PubMed

    Paullada-Salmerón, José A; Loentgen, Guillaume Henri; Cowan, Mairi; Aliaga-Guerrero, María; Rendón-Unceta, María Del Carmen; Muñoz-Cueto, José A

    2017-04-01

    The role of rearing temperature on fish development, sex differentiation and puberty has been largely addressed, but the impact of water temperature on the ontogeny of the main neuroendocrine systems controlling reproduction has received little attention. Gonadotropin-inhibitory hormone (GnIH) has been shown to act on gonadotropin-releasing hormone (GnRH) neurons and on the pituitary to inhibit gonadotropin release and synthesis in vertebrates, including sea bass, Dicentrarchus labrax. In the present study we investigated the effects of rearing temperature during the thermosensitive period (5-60days post-fertilization, dpf) on the expression of the GnIH gene (gnih) and its receptor (gnihr). Animals were maintained under two different conditions, low temperature (LT, 15°C) or high temperature (HT, 21°C), throughout the thermosensitive period and sampled from 5 to 360dpf at mid-light (ML) and mid-dark (MD). Our results showed significant effects of temperature on gnih and gnihr expression during the thermosensitive period, with higher transcript levels under LT condition. Some differences were also evident after the completion of the sex differentiation process. Moreover, we revealed daily variations in the developmental expression of gnih and gnihr, with higher diurnal mRNA levels at early stages (until 25dpf), and a shift to higher nocturnal expression levels at 300-360dpf, which corresponded with the beginning of the winter (reproductive season). To the best of our knowledge, this work represents the first study reporting the effects of rearing temperature on the transcription of gnih system genes, as well as its daily variations during the development of a fish species. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Hyphal formation of Candida albicans is controlled by electron transfer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Toshihiko; Ogasawara, Ayako; Mikami, Takeshi

    2006-09-15

    Most Candida albicans cells cultured in RPMI1640 medium at 37 deg. C grow in hyphal form in aerobic conditions, but they grow in yeast form in anaerobic conditions. The hyphal growth of C. albicans was inhibited in glucose-deficient conditions. Malonic acid, an inhibitor of succinate dehydrogenase, enhanced the yeast proliferation of C. albicans, indicating that the hyphal-formation signal was derived from the glycolysis system and the signal was transmitted to the electron transfer system via the citric acid cycle. Thenoyl trifluoro acetone (TTFA), an inhibitor of the signal transmission between complex II and Co Q, significantly inhibited the hyphal growthmore » of C. albicans. Antimycin, KCN, and oligomycin, inhibitors of complex III, IV, and V, respectively, did not inhibit the hyphal growth of C. albicans. The production of mRNAs for the hyphal formation signal was completely inhibited in anaerobic conditions. These results indicate that the electron transfer system functions upstream of the RAS1 signal pathway and activates the expression of the hyphal formation signal. Since the electron transfer system is inactivated in anaerobic conditions, C. albicans grew in yeast form in this condition.« less

  4. Observability under recurrent loss of data

    NASA Technical Reports Server (NTRS)

    Luck, Rogelio; Ray, Asok; Halevi, Yoram

    1992-01-01

    An account is given of the concept of extended observability in finite-dimensional linear time-invariant systems under recurrent loss of data, where the state vector has to be reconstructed from an ensemble of sensor data at nonconsecutive samples. An at once necessary and sufficient condition for extended observability that can be expressed via a recursive relation is presented, together with such conditions for this as may be related to the characteristic polynomial of the state transition matrix in a discrete-time setting, or of the system matrix in a continuous-time setting.

  5. A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions.

    PubMed

    Roy, Raktim; Shilpa, P Phani; Bagh, Sangram

    2016-09-01

    Bacteria are important organisms for space missions due to their increased pathogenesis in microgravity that poses risks to the health of astronauts and for projected synthetic biology applications at the space station. We understand little about the effect, at the molecular systems level, of microgravity on bacteria, despite their significant incidence. In this study, we proposed a systems biology pipeline and performed an analysis on published gene expression data sets from multiple seminal studies on Pseudomonas aeruginosa and Salmonella enterica serovar Typhimurium under spaceflight and simulated microgravity conditions. By applying gene set enrichment analysis on the global gene expression data, we directly identified a large number of new, statistically significant cellular and metabolic pathways involved in response to microgravity. Alteration of metabolic pathways in microgravity has rarely been reported before, whereas in this analysis metabolic pathways are prevalent. Several of those pathways were found to be common across studies and species, indicating a common cellular response in microgravity. We clustered genes based on their expression patterns using consensus non-negative matrix factorization. The genes from different mathematically stable clusters showed protein-protein association networks with distinct biological functions, suggesting the plausible functional or regulatory network motifs in response to microgravity. The newly identified pathways and networks showed connection with increased survival of pathogens within macrophages, virulence, and antibiotic resistance in microgravity. Our work establishes a systems biology pipeline and provides an integrated insight into the effect of microgravity at the molecular systems level. Systems biology-Microgravity-Pathways and networks-Bacteria. Astrobiology 16, 677-689.

  6. Regulation of ICAM-1 in cells of the monocyte/macrophage system in microgravity.

    PubMed

    Paulsen, Katrin; Tauber, Svantje; Dumrese, Claudia; Bradacs, Gesine; Simmet, Dana M; Gölz, Nadine; Hauschild, Swantje; Raig, Christiane; Engeli, Stephanie; Gutewort, Annett; Hürlimann, Eva; Biskup, Josefine; Unverdorben, Felix; Rieder, Gabriela; Hofmänner, Daniel; Mutschler, Lisa; Krammer, Sonja; Buttron, Isabell; Philpot, Claudia; Huge, Andreas; Lier, Hartwin; Barz, Ines; Engelmann, Frank; Layer, Liliana E; Thiel, Cora S; Ullrich, Oliver

    2015-01-01

    Cells of the immune system are highly sensitive to altered gravity, and the monocyte as well as the macrophage function is proven to be impaired under microgravity conditions. In our study, we investigated the surface expression of ICAM-1 protein and expression of ICAM-1 mRNA in cells of the monocyte/macrophage system in microgravity during clinostat, parabolic flight, sounding rocket, and orbital experiments. In murine BV-2 microglial cells, we detected a downregulation of ICAM-1 expression in clinorotation experiments and a rapid and reversible downregulation in the microgravity phase of parabolic flight experiments. In contrast, ICAM-1 expression increased in macrophage-like differentiated human U937 cells during the microgravity phase of parabolic flights and in long-term microgravity provided by a 2D clinostat or during the orbital SIMBOX/Shenzhou-8 mission. In nondifferentiated U937 cells, no effect of microgravity on ICAM-1 expression could be observed during parabolic flight experiments. We conclude that disturbed immune function in microgravity could be a consequence of ICAM-1 modulation in the monocyte/macrophage system, which in turn could have a strong impact on the interaction with T lymphocytes and cell migration. Thus, ICAM-1 can be considered as a rapid-reacting and sustained gravity-regulated molecule in mammalian cells.

  7. Regulation of ICAM-1 in Cells of the Monocyte/Macrophage System in Microgravity

    PubMed Central

    Paulsen, Katrin; Tauber, Svantje; Dumrese, Claudia; Bradacs, Gesine; Simmet, Dana M.; Gölz, Nadine; Hauschild, Swantje; Raig, Christiane; Engeli, Stephanie; Gutewort, Annett; Hürlimann, Eva; Biskup, Josefine; Rieder, Gabriela; Hofmänner, Daniel; Mutschler, Lisa; Krammer, Sonja; Philpot, Claudia; Huge, Andreas; Lier, Hartwin; Barz, Ines; Engelmann, Frank; Layer, Liliana E.; Thiel, Cora S.

    2015-01-01

    Cells of the immune system are highly sensitive to altered gravity, and the monocyte as well as the macrophage function is proven to be impaired under microgravity conditions. In our study, we investigated the surface expression of ICAM-1 protein and expression of ICAM-1 mRNA in cells of the monocyte/macrophage system in microgravity during clinostat, parabolic flight, sounding rocket, and orbital experiments. In murine BV-2 microglial cells, we detected a downregulation of ICAM-1 expression in clinorotation experiments and a rapid and reversible downregulation in the microgravity phase of parabolic flight experiments. In contrast, ICAM-1 expression increased in macrophage-like differentiated human U937 cells during the microgravity phase of parabolic flights and in long-term microgravity provided by a 2D clinostat or during the orbital SIMBOX/Shenzhou-8 mission. In nondifferentiated U937 cells, no effect of microgravity on ICAM-1 expression could be observed during parabolic flight experiments. We conclude that disturbed immune function in microgravity could be a consequence of ICAM-1 modulation in the monocyte/macrophage system, which in turn could have a strong impact on the interaction with T lymphocytes and cell migration. Thus, ICAM-1 can be considered as a rapid-reacting and sustained gravity-regulated molecule in mammalian cells. PMID:25654110

  8. Recombinant protein production and streptomycetes.

    PubMed

    Anné, Jozef; Maldonado, Bárbara; Van Impe, Jan; Van Mellaert, Lieve; Bernaerts, Kristel

    2012-04-30

    The biopharmaceutical market has come a long way since 1982, when the first biopharmaceutical product, recombinant human insulin, was launched. Just over 200 biopharma products have already gained approval. The global market for biopharmaceuticals which is currently valued at over US$99 billion has been growing at an impressive compound annual growth rate over the previous years. To produce these biopharmaceuticals and other industrially important heterologous proteins, different prokaryotic and eukaryotic expression systems are used. All expression systems have some advantages as well as some disadvantages that should be considered in selecting which one to use. Choosing the best one requires evaluating the options--from yield to glycosylation, to proper folding, to economics of scale-up. No host cell from which all the proteins can be universally expressed in large quantities has been found so far. Therefore, it is important to provide a variety of host-vector expression systems in order to increase the opportunities to screen for the most suitable expression conditions or host cell. In this overview, we focus on Streptomyces lividans, a Gram-positive bacterium with a proven excellence in secretion capacity, as host for heterologous protein production. We will discuss its advantages and disadvantages, and how with systems biology approaches strains can be developed to better producing cell factories. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Neuronal patterning of the tubular collar cord is highly conserved among enteropneusts but dissimilar to the chordate neural tube.

    PubMed

    Kaul-Strehlow, Sabrina; Urata, Makoto; Praher, Daniela; Wanninger, Andreas

    2017-08-01

    A tubular nervous system is present in the deuterostome groups Chordata (cephalochordates, tunicates, vertebrates) and in the non-chordate Enteropneusta. However, the worm-shaped enteropneusts possess a less complex nervous system featuring only a short hollow neural tube, whereby homology to its chordate counterpart remains elusive. Since the majority of data on enteropneusts stem from the harrimaniid Saccoglossus kowalevskii, putative interspecific variations remain undetected resulting in an unreliable ground pattern that impedes homology assessments. In order to complement the missing data from another enteropneust family, we investigated expression of key neuronal patterning genes in the ptychoderid Balanoglossus misakiensis. The collar cord of B. misakiensis shows anterior Six3/6 and posterior Otx + Engrailed expression, in a region corresponding to the chordate brain. Neuronal Nk2.1/Nk2.2 expression is absent. Interestingly, we found median Dlx and lateral Pax6 expression domains, i.e., a condition that is reversed compared to chordates. Comparative analyses reveal that adult nervous system patterning is highly conserved among the enteropneust families Harrimaniidae, Spengelidae and Ptychoderidae. BmiDlx and BmiPax6 have no corresponding expression domains in the chordate brain, which may be indicative of independent acquisition of a tubular nervous system in Enteropneusta and Chordata.

  10. Diversity in Expression of Phosphorus (P) Responsive Genes in Cucumis melo L

    PubMed Central

    Fita, Ana; Bowen, Helen C.; Hayden, Rory M.; Nuez, Fernando; Picó, Belén; Hammond, John P.

    2012-01-01

    Background Phosphorus (P) is a major limiting nutrient for plant growth in many soils. Studies in model species have identified genes involved in plant adaptations to low soil P availability. However, little information is available on the genetic bases of these adaptations in vegetable crops. In this respect, sequence data for melon now makes it possible to identify melon orthologues of candidate P responsive genes, and the expression of these genes can be used to explain the diversity in the root system adaptation to low P availability, recently observed in this species. Methodology and Findings Transcriptional responses to P starvation were studied in nine diverse melon accessions by comparing the expression of eight candidate genes (Cm-PAP10.1, Cm-PAP10.2, Cm-RNS1, Cm-PPCK1, Cm-transferase, Cm-SQD1, Cm-DGD1 and Cm-SPX2) under P replete and P starved conditions. Differences among melon accessions were observed in response to P starvation, including differences in plant morphology, P uptake, P use efficiency (PUE) and gene expression. All studied genes were up regulated under P starvation conditions. Differences in the expression of genes involved in P mobilization and remobilization (Cm-PAP10.1, Cm-PAP10.2 and Cm-RNS1) under P starvation conditions explained part of the differences in P uptake and PUE among melon accessions. The levels of expression of the other studied genes were diverse among melon accessions, but contributed less to the phenotypical response of the accessions. Conclusions This is the first time that these genes have been described in the context of P starvation responses in melon. There exists significant diversity in gene expression levels and P use efficiency among melon accessions as well as significant correlations between gene expression levels and phenotypical measurements. PMID:22536378

  11. Effects of Trace Amine-associated Receptor 1 Agonists on the Expression, Reconsolidation, and Extinction of Cocaine Reward Memory.

    PubMed

    Liu, Jian-Feng; Thorn, David A; Zhang, Yanan; Li, Jun-Xu

    2016-07-01

    As a modulator of dopaminergic system, trace amine-associated receptor 1 has been shown to play a critical role in regulating the rewarding properties of additive drugs. It has been demonstrated that activation of trace amine-associated receptor 1 decreased the abuse-related behaviors of cocaine in rats. However, the role of trace amine-associated receptor 1 in specific stages of cocaine reward memory is still unclear. Here, using a cocaine-induced conditioned place preference model, we tested the effects of a selective trace amine-associated receptor 1 agonist RO5166017 on the expression, reconsolidation, and extinction of cocaine reward memory. We found that RO5166017 inhibited the expression but not retention of cocaine-induced conditioned place preference. RO5166017 had no effect on the reconsolidation of cocaine reward memory. Pretreatment with RO5166017 before extinction hindered the formation of extinction long-term memory. RO5166017 did not affect the movement during the conditioned place preference test, indicating the inhibitory effect of RO5166017 on the expression of cocaine-induced conditioned place preference was not caused by locomotion inhibition. Using a cocaine i.v. self-administration model, we found that the combined trace amine-associated receptor 1 partial agonist RO5263397 with extinction had no effect on the following cue- and drug-induced reinstatement of cocaine-seeking behavior. Repeated administration of the trace amine-associated receptor 1 agonist during extinction showed a continually inhibitory effect on the expression of cocaine reward memory both in cocaine-induced conditioned place preference and cocaine self-administration models. Taken together, these results indicate that activation of trace amine-associated receptor 1 specifically inhibited the expression of cocaine reward memory. The inhibitory effect of trace amine-associated receptor 1 agonists on cocaine reward memory suggests that trace amine-associated receptor 1 agonists could be a promising agent to prevent cocaine relapse. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  12. Proteomic expression profiling of Haemophilus influenzae grown in pooled human sputum from adults with chronic obstructive pulmonary disease reveal antioxidant and stress responses

    PubMed Central

    2010-01-01

    Background Nontypeable Haemophilus influenzae colonizes and infects the airways of adults with chronic obstructive pulmonary disease, the fourth most common cause of death worldwide.Thus, H. influenzae, an exclusively human pathogen, has adapted to survive in the hostile environment of the human airways.To characterize proteins expressed by H. influenzae in the airways, a prototype strain was grown in pooled human sputum to simulate conditions in the human respiratory tract.The proteins from whole bacterial cell lysates were solubilized with a strong buffer and then quantitatively cleaned with an optimized precipitation/on-pellet enzymatic digestion procedure.Proteomic profiling was accomplished by Nano-flow liquid chromatography/mass spectroscopy with low void volume and high separation efficiency with a shallow, long gradient. Results A total of 1402 proteins were identified with high confidence, including 170 proteins that were encoded by genes that are annotated as conserved hypothetical proteins.Thirty-one proteins were present in greater abundance in sputum-grown conditions at a ratio of > 1.5 compared to chemically defined media.These included 8 anti-oxidant and 5 stress-related proteins, suggesting that expression of antioxidant activity and stress responses is important for survival in the airways.Four proteins involved in uptake of divalent anions and 9 proteins that function in uptake of various molecules were present in greater abundance in sputum-grown conditions. Conclusions Proteomic expression profiling of H. influenzae grown in pooled human sputum revealed increased expression of antioxidant, stress-response proteins and cofactor and nutrient uptake systems compared to media grown cells.These observations suggest that H. influenzae adapts to the oxidative and nutritionally limited conditions of the airways in adults with chronic obstructive pulmonary disease by increasing expression of molecules necessary for survival in these conditions. PMID:20515494

  13. Seasonality and the Response of the Thecosome Pteropod Limacina retroversa to CO2 in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Maas, A.; Tarrant, A. M.; Bergan, A. J.; Wang, A. Z.; Lawson, G. L.

    2016-02-01

    Limacina retroversa is a thecosomatous pteropod found year round in the Gulf of Maine. Because carbonate chemistry within this shelf system is spatially variable and exhibits seasonal cycles, pteropods in this region may already be exposed to under-saturated, and hence corrosive, waters during certain seasons. To understand the implications of this variability, we have explored the physiological responses of L. retroversa at four time points over the course of a year to determine whether pteropods vary seasonally in their sensitivity to CO2 exposure on time-scales relevant to acclimation responses. In the laboratory, these animals were exposed to CO2 (ambient, 800, 1200 ppm) for 7-14 days and their response was assessed using an integrated set of metabolic, gene-expression and shell condition metrics. Similar to previous work with this species and others, pronounced changes in shell condition of exposed adults were discernible after less than 3 days of exposure, while changes to respiration rate were not consistently apparent. There were, however, seasonal variations in respiration rate indicative of an acclimation response. Differential expression analyses (RNAseq) revealed pronounced changes in gene expression among seasons, while laboratory CO2 exposure resulted in a lower number of differentially expressed transcripts. These gene expression studies, together with both respiration rate and shell condition metrics provide an integrated picture of the seasonal effect of CO2 on this sentinel species.

  14. Lesion of olfactory epithelium attenuates expression of morphine-induced behavioral sensitization and reinstatement of drug-primed conditioned place preference in mice.

    PubMed

    Niu, Haichen; Zheng, Yingwei; Huma, Tanzeel; Rizak, Joshua D; Li, Ling; Wang, Guimei; Ren, He; Xu, Liqi; Yang, Jianzhen; Ma, Yuanye; Lei, Hao

    2013-01-01

    Previous studies have shown that olfactory impairment by disrupting the olfactory epithelium prior to morphine administration attenuated the development addiction-related behaviors. However, it is unclear whether olfactory impairment will affect the expression of already established addiction-related behaviors. To address this issue, mice were conditioned with morphine to induce behavioral sensitization and condition placed preference (CPP). After an abstinence period, the animals were subjected to either an intranasal ZnSO(4) effusion (ZnE) or sham treatment with saline. Behavioral sensitization and CPP reinstatement were evaluated 24h later, as well as the expression of c-Fos protein, a marker of activated neural sites, in brain regions of interest. It was found that ZnE treatment attenuated morphine-induced behavioral sensitization and reinstatement of CPP. Compared to the saline-treated ones, the ZnE-treated animals showed reduced c-Fos expression in the nucleus accumbens (NAc) associated with behavioral sensitization, and in the NAc, cingulate cortex, dentate gyrus, amygdala, lateral hypothalamus and ventral tegmental area associated with CPP reinstatement. Together, these results demonstrated that acute olfactory impairment could attenuate already established addiction-related behaviors and expression of c-Fos in drug addiction related brain regions, perhaps by affecting the coordination between reward and motivational systems in the brain. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Literature-based condition-specific miRNA-mRNA target prediction.

    PubMed

    Oh, Minsik; Rhee, Sungmin; Moon, Ji Hwan; Chae, Heejoon; Lee, Sunwon; Kang, Jaewoo; Kim, Sun

    2017-01-01

    miRNAs are small non-coding RNAs that regulate gene expression by binding to the 3'-UTR of genes. Many recent studies have reported that miRNAs play important biological roles by regulating specific mRNAs or genes. Many sequence-based target prediction algorithms have been developed to predict miRNA targets. However, these methods are not designed for condition-specific target predictions and produce many false positives; thus, expression-based target prediction algorithms have been developed for condition-specific target predictions. A typical strategy to utilize expression data is to leverage the negative control roles of miRNAs on genes. To control false positives, a stringent cutoff value is typically set, but in this case, these methods tend to reject many true target relationships, i.e., false negatives. To overcome these limitations, additional information should be utilized. The literature is probably the best resource that we can utilize. Recent literature mining systems compile millions of articles with experiments designed for specific biological questions, and the systems provide a function to search for specific information. To utilize the literature information, we used a literature mining system, BEST, that automatically extracts information from the literature in PubMed and that allows the user to perform searches of the literature with any English words. By integrating omics data analysis methods and BEST, we developed Context-MMIA, a miRNA-mRNA target prediction method that combines expression data analysis results and the literature information extracted based on the user-specified context. In the pathway enrichment analysis using genes included in the top 200 miRNA-targets, Context-MMIA outperformed the four existing target prediction methods that we tested. In another test on whether prediction methods can re-produce experimentally validated target relationships, Context-MMIA outperformed the four existing target prediction methods. In summary, Context-MMIA allows the user to specify a context of the experimental data to predict miRNA targets, and we believe that Context-MMIA is very useful for predicting condition-specific miRNA targets.

  16. [Hypoxia responsive element regulated herpes simplex virus-thymidine kinase system enhances killing effect of gancyclovir on Ewing's sarcoma cell line under hypoxic condition].

    PubMed

    Si, Ying-jian; Guang, Li-xia; Yuan, Fa-huan; Zhang, Ke-bin

    2006-08-01

    To find out a possible approach to improve the effectiveness of radiotherapy and chemotherapy for Ewing's sarcoma by constructing a eukaryotic expression vector expressing herpes simplex virus-thymidine kinase (HSV-TK) regulated by hypoxia responsive element (HRE) under hypoxia and to evaluate the effects of this HRE regulated HSV-TK system on killing effect of gancyclovir (GCV) on Ewing's sarcoma cell line SK-ES under hypoxic condition. The HRE was synthesized according to the literature and cloned into the enhancer site of pIRES(2)-EGFP vector to obtain the pHRE recombinant plasmid. The HSV-TK was amplified by PCR and cloned into the multiple clone site of pIRES(2)-EGFP and pHRE to obtain pTK and pHRE-TK recombinant plasmid. The human Ewing's sarcoma cell line SK-ES was transfected by pTK or pHRE-TK recombinant plasmid with liposome and then was exposed to normoxic (21% oxygen) or hypoxic (3% oxygen) condition. The expression of enhanced green fluorescent protein (EGFP) was monitored by fluorescent microscopy. The sensitivity of human Ewing's sarcoma cell line SK-ES transfected with pTK or pHRE-TK recombinant plasmid to the anti-tumour drug GCV was determined with the method of tetrazolium (MTT) after treating with GCV for five days. (1) The result of sequencing showed that the recombinant plasmid pHRE contained HRE, and that the recombinant plasmid pTK and pHRE-TK contained HSV-TK gene in the sense direction. (2) Comparison of fluorescent optical density (FOD) showed that (1) the EGFP FOD value of pHRE and pHRE-TK group cells exposed to hypoxia was significantly higher than those exposed to normoxia (P < 0.01); (2) when the cells were exposed to hypoxia, the EGFP FOD value of pHRE and pHRE-TK group cells was significantly higher than that of pTK and empty vector group (P < 0.01); (3) there was no significant difference among the four groups of cells when they were exposed to normoxia (P > 0.05). (3) Comparison of the sensitivity of four groups of cells to GCV showed that (1) the cells in pHRE-TK and pTK groups were much more sensitive to GCV than the cells in pHRE group under hypoxia condition (P < 0.01), the higher the GCV concentration, the greater the difference; (2) the cells of pHRE-TK group were more sensitive to GCV than those in pTK group under hypoxic condition (P < 0.01), but was almost equally sensitive under normoxic condition (P > 0.05); (3) the pHRE-TK group cells had higher sensitivity to GCV under hypoxia than normoxia (P < 0.01) while the pTK group cells had almost the same sensitivity to GCV under hypoxia and normoxia (P > 0.05). (1) The eukaryotic expression vector expressing herpes simplex virus-thymidine kinase (HSV-TK) regulated by hypoxia responsive element (HRE) under hypoxia was constructed successfully. (2) HRE could up-regulate expression of EGFP by SK-ES cells under hypoxia condition. (3) HRE could enhance the killing effect of HSV-TK/GCV system on human Ewing's sarcoma cell line SK-ES under hypoxic condition.

  17. Recombinant expression, purification, and crystallization of the glutaminyl-tRNA synthetase from Toxoplasma gondii.

    PubMed

    van Rooyen, Jason M; Hakimi, Mohamed-Ali; Belrhali, Hassan

    2015-06-01

    Aminoacyl tRNA synthetases play a critical role in protein synthesis by providing precursor transfer-RNA molecules correctly charged with their cognate amino-acids. The essential nature of these enzymes make them attractive targets for designing new drugs against important pathogenic protozoans like Toxoplasma. Because no structural data currently exists for a protozoan glutaminyl-tRNA synthetase (QRS), an understanding of its potential as a drug target and its function in the assembly of the Toxoplasma multi-aminoacyl tRNA (MARS) complex is therefore lacking. Here we describe the optimization of expression and purification conditions that permitted the recovery and crystallization of both domains of the Toxoplasma QRS enzyme from a heterologous Escherichia coli expression system. Expression of full-length QRS was only achieved after the addition of an N-terminal histidine affinity tag and the isolated protein was active on both cellular and in vitro produced Toxoplasma tRNA. Taking advantage of the proteolytic susceptibility of QRS to cleavage into component domains, N-terminal glutathione S-transferase (GST) motif-containing domain fragments were isolated and crystallization conditions discovered. Isolation of the C-terminal catalytic domain was accomplished after subcloning the domain and optimizing expression conditions. Purified catalytic domain survived cryogenic storage and yielded large diffraction-quality crystals over-night after optimization of screening conditions. This work will form the basis of future structural studies into structural-functional relationships of both domains including potential targeted drug-design studies and investigations into the assembly of the Toxoplasma MARS complex. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Why is bidirectional sex change rare?

    PubMed

    Yamaguchi, Sachi; Iwasa, Yoh

    2018-09-14

    Various species of fish living in coral reef communities show sequential hermaphroditism, or sex change. In a typical case, an individual first matures as a female, and later, when it becomes dominant in the mating group, it becomes a male (i.e., protogynous sex change). Many species show only unidirectional changes but some of coral reef fishes exhibit bidirectional sex changes, in which even a dominant male may revert to female when a socially more dominant competitor arrives. However, bidirectional sex change has rarely been observed in natural conditions, even among those species exhibiting it under experimental conditions. Here we explain the rarity of bidirectional sex change by studying dynamics of hormones controlling sex expression. We consider social status factor, S F , which is elevated when the individual becomes more dominant in the mating group. When the S F level is high, the dynamics would culminate with low estradiol expression and high testosterone expression, suggesting a male phenotype. In contrast, when S F level is low, the system converges to an equilibrium with high estradiol expression and low testosterone expression, suggesting a female phenotype. There is a parameter region in which the dynamics exhibit bistability. The model demonstrates hysteresis: as S F increases smoothly, the system undergoes a sudden transition in the levels of sex hormones. The model can explain why species show unidirectional sex change, in that an individual's switch to a new sex is irreversible, even if the individual's social situation returns to the original subdominant status. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Stability Analysis of Multi-Sensor Kalman Filtering over Lossy Networks

    PubMed Central

    Gao, Shouwan; Chen, Pengpeng; Huang, Dan; Niu, Qiang

    2016-01-01

    This paper studies the remote Kalman filtering problem for a distributed system setting with multiple sensors that are located at different physical locations. Each sensor encapsulates its own measurement data into one single packet and transmits the packet to the remote filter via a lossy distinct channel. For each communication channel, a time-homogeneous Markov chain is used to model the normal operating condition of packet delivery and losses. Based on the Markov model, a necessary and sufficient condition is obtained, which can guarantee the stability of the mean estimation error covariance. Especially, the stability condition is explicitly expressed as a simple inequality whose parameters are the spectral radius of the system state matrix and transition probabilities of the Markov chains. In contrast to the existing related results, our method imposes less restrictive conditions on systems. Finally, the results are illustrated by simulation examples. PMID:27104541

  20. Metatranscriptomic analysis of lignocellulolytic microbial communities involved in high-solids decomposition of rice straw

    DOE PAGES

    Simmons, Christopher W.; Reddy, Amitha P.; D’haeseleer, Patrik; ...

    2014-12-31

    New lignocellulolytic enzymes are needed that maintain optimal activity under the harsh conditions present during industrial enzymatic deconstruction of biomass, including high temperatures, the absence of free water, and the presence of inhibitors from the biomass. Enriching lignocellulolytic microbial communities under these conditions provides a source of microorganisms that may yield robust lignocellulolytic enzymes tolerant to the extreme conditions needed to improve the throughput and efficiency of biomass enzymatic deconstruction. Identification of promising enzymes from these systems is challenging due to complex substrate-enzyme interactions and requirements to assay for activity. In this study, metatranscriptomes from compost-derived microbial communities enriched onmore » rice straw under thermophilic and mesophilic conditions were sequenced and analyzed to identify lignocellulolytic enzymes overexpressed under thermophilic conditions. To determine differential gene expression across mesophilic and thermophilic treatments, a method was developed which pooled gene expression by functional category, as indicated by Pfam annotations, since microbial communities performing similar tasks are likely to have overlapping functions even if they share no specific genes. Differential expression analysis identified enzymes from glycoside hydrolase family 48, carbohydrate binding module family 2, and carbohydrate binding module family 33 domains as significantly overexpressed in the thermophilic community. Overexpression of these protein families in the thermophilic community resulted from expression of a small number of genes not currently represented in any protein database. Genes in overexpressed protein families were predominantly expressed by a single Actinobacteria genus, Micromonospora. In conclusion, coupling measurements of deconstructive activity with comparative analyses to identify overexpressed enzymes in lignocellulolytic communities provides a targeted approach for discovery of candidate enzymes for more efficient biomass deconstruction. Furthermore, glycoside hydrolase family 48 cellulases and carbohydrate binding module family 33 polysaccharide monooxygenases with carbohydrate binding module family 2 domains may improve saccharification of lignocellulosic biomass under high-temperature and low moisture conditions relevant to industrial biofuel production.« less

  1. Metatranscriptomic analysis of lignocellulolytic microbial communities involved in high-solids decomposition of rice straw

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Christopher W.; Reddy, Amitha P.; D’haeseleer, Patrik

    New lignocellulolytic enzymes are needed that maintain optimal activity under the harsh conditions present during industrial enzymatic deconstruction of biomass, including high temperatures, the absence of free water, and the presence of inhibitors from the biomass. Enriching lignocellulolytic microbial communities under these conditions provides a source of microorganisms that may yield robust lignocellulolytic enzymes tolerant to the extreme conditions needed to improve the throughput and efficiency of biomass enzymatic deconstruction. Identification of promising enzymes from these systems is challenging due to complex substrate-enzyme interactions and requirements to assay for activity. In this study, metatranscriptomes from compost-derived microbial communities enriched onmore » rice straw under thermophilic and mesophilic conditions were sequenced and analyzed to identify lignocellulolytic enzymes overexpressed under thermophilic conditions. To determine differential gene expression across mesophilic and thermophilic treatments, a method was developed which pooled gene expression by functional category, as indicated by Pfam annotations, since microbial communities performing similar tasks are likely to have overlapping functions even if they share no specific genes. Differential expression analysis identified enzymes from glycoside hydrolase family 48, carbohydrate binding module family 2, and carbohydrate binding module family 33 domains as significantly overexpressed in the thermophilic community. Overexpression of these protein families in the thermophilic community resulted from expression of a small number of genes not currently represented in any protein database. Genes in overexpressed protein families were predominantly expressed by a single Actinobacteria genus, Micromonospora. In conclusion, coupling measurements of deconstructive activity with comparative analyses to identify overexpressed enzymes in lignocellulolytic communities provides a targeted approach for discovery of candidate enzymes for more efficient biomass deconstruction. Furthermore, glycoside hydrolase family 48 cellulases and carbohydrate binding module family 33 polysaccharide monooxygenases with carbohydrate binding module family 2 domains may improve saccharification of lignocellulosic biomass under high-temperature and low moisture conditions relevant to industrial biofuel production.« less

  2. The prefrontal cortical endocannabinoid system modulates fear-pain interactions in a subregion-specific manner.

    PubMed

    Rea, Kieran; McGowan, Fiona; Corcoran, Louise; Roche, Michelle; Finn, David P

    2018-05-30

    The emotional processing and coordination of top-down responses to noxious and conditioned aversive stimuli involves the medial prefrontal cortex (mPFC). Evidence suggests that subregions of the mPFC, (infralimbic (IL), prelimbic (PrL), anterior cingulate (ACC) cortices), differentially alter the expression of contextually-induced fear and nociceptive behaviour. We investigated the role of the endocannabinoid system in the IL, PrL and ACC in formalin-evoked nociceptive behaviour, fear-conditioned analgesia (FCA) and conditioned fear in the presence of nociceptive tone. FCA was modelled in male Lister-hooded rats by assessing formalin-evoked nociceptive behaviour in an arena previously paired with footshock. The effects of intra-mPFC administration of AM251 (CB 1 receptor antagonist/inverse agonist), URB597 (fatty acid amide hydrolase inhibitor) or URB597 + AM251 on FCA and freezing behaviour were assessed. AM251 attenuated FCA when injected into the IL or PrL and reduced contextually induced freezing behaviour when injected intra-IL, but not intra-PrL or intra-ACC. Intra-ACC administration of AM251 alone or in combination with URB597 had no effect on FCA or freezing. URB597 attenuated FCA and freezing behaviour when injected intra-IL, prolonged the expression of FCA when injected intra-PrL and had no effect on these behaviours when injected intra-ACC. These results suggest important and differential roles for FAAH substrates or CB 1 receptors in the PrL, IL and ACC in the expression of FCA and conditioned fear in the presence of nociceptive tone. This article is protected by copyright. All rights reserved.

  3. Gene expression platform for synthetic biology in the human pathogen Streptococcus pneumoniae.

    PubMed

    Sorg, Robin A; Kuipers, Oscar P; Veening, Jan-Willem

    2015-03-20

    The human pathogen Streptococcus pneumoniae (pneumococcus) is a bacterium that owes its success to complex gene expression regulation patterns on both the cellular and the population level. Expression of virulence factors enables a mostly hazard-free presence of the commensal, in balance with the host and niche competitors. Under specific circumstances, changes in this expression can result in a more aggressive behavior and the reversion to the invasive form as pathogen. These triggering conditions are very difficult to study due to the fact that environmental cues are often unknown or barely possible to simulate outside the host (in vitro). An alternative way of investigating expression patterns is found in synthetic biology approaches of reconstructing regulatory networks that mimic an observed behavior with orthogonal components. Here, we created a genetic platform suitable for synthetic biology approaches in S. pneumoniae and characterized a set of standardized promoters and reporters. We show that our system allows for fast and easy cloning with the BglBrick system and that reliable and robust gene expression after integration into the S. pneumoniae genome is achieved. In addition, the cloning system was extended to allow for direct linker-based assembly of ribosome binding sites, peptide tags, and fusion proteins, and we called this new generally applicable standard "BglFusion". The gene expression platform and the methods described in this study pave the way for employing synthetic biology approaches in S. pneumoniae.

  4. Expression of classical components of the renin-angiotensin system in the human eye.

    PubMed

    White, Andrew J R; Cheruvu, Sarat C; Sarris, Maria; Liyanage, Surabhi S; Lumbers, Eugenie; Chui, Jeanie; Wakefield, Denis; McCluskey, Peter J

    2015-03-01

    The purpose of this study was to determine the relative expression of clinically-relevant components of the renin-angiotensin system (RAS) in the adult human eye. We obtained 14 post-mortem enucleated human eyes from patients whom had no history of inflammatory ocular disease nor pre-mortem ocular infection. We determined the gene expression for prorenin, renin, prorenin receptor, angiotensin-converting enzyme, angiotensinogen and angiotensin II Type 1 receptor, on tissue sections and in cultured human primary retinal pigment epithelial and iris pigment epithelial (RPE/IPE) cell lines, using both qualitative and quantitative reverse transcription polymerase chain reaction (RT-PCR). Protein expression was studied using indirect immunofluorescence (IF). Almost all components of the classical RAS were found at high levels, at both the transcript and protein level, in the eyes' uvea and retina; and at lower levels in the cornea, conjunctiva and sclera. There was a much lower level of expression in the reference cultured RPE/IPE cells lines. This study describes the distribution of RAS in the normal adult human eye and demonstrates the existence of an independent ocular RAS, with uveal and retinal tissues showing the highest expression of RAS components. These preliminary findings provide scope for examination of additional components of this system in the human eye, as well as possible differential expression under pathological conditions. © The Author(s) 2014.

  5. Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice.

    PubMed

    Mikami, Masafumi; Toki, Seiichi; Endo, Masaki

    2015-08-01

    The CRISPR/Cas9 system is an efficient tool used for genome editing in a variety of organisms. Despite several recent reports of successful targeted mutagenesis using the CRISPR/Cas9 system in plants, in each case the target gene of interest, the Cas9 expression system and guide-RNA (gRNA) used, and the tissues used for transformation and subsequent mutagenesis differed, hence the reported frequencies of targeted mutagenesis cannot be compared directly. Here, we evaluated mutation frequency in rice using different Cas9 and/or gRNA expression cassettes under standardized experimental conditions. We introduced Cas9 and gRNA expression cassettes separately or sequentially into rice calli, and assessed the frequency of mutagenesis at the same endogenous targeted sequences. Mutation frequencies differed significantly depending on the Cas9 expression cassette used. In addition, a gRNA driven by the OsU6 promoter was superior to one driven by the OsU3 promoter. Using an all-in-one expression vector harboring the best combined Cas9/gRNA expression cassette resulted in a much improved frequency of targeted mutagenesis in rice calli, and bi-allelic mutant plants were produced in the T0 generation. The approach presented here could be adapted to optimize the construction of Cas9/gRNA cassettes for genome editing in a variety of plants.

  6. Controlled expression of nif and isc iron-sulfur protein maturation components reveals target specificity and limited functional replacement between the two systems.

    PubMed

    Dos Santos, Patricia C; Johnson, Deborah C; Ragle, Brook E; Unciuleac, Mihaela-Carmen; Dean, Dennis R

    2007-04-01

    The nitrogen-fixing organism Azotobacter vinelandii contains at least two systems that catalyze formation of [Fe-S] clusters. One of these systems is encoded by nif genes, whose products supply [Fe-S] clusters required for maturation of nitrogenase. The other system is encoded by isc genes, whose products are required for maturation of [Fe-S] proteins that participate in general metabolic processes. The two systems are similar in that they include an enzyme for the mobilization of sulfur (NifS or IscS) and an assembly scaffold (NifU or IscU) upon which [Fe-S] clusters are formed. Normal cellular levels of the Nif system, which supplies [Fe-S] clusters for the maturation of nitrogenase, cannot also supply [Fe-S] clusters for the maturation of other cellular [Fe-S] proteins. Conversely, when produced at the normal physiological levels, the Isc system cannot supply [Fe-S] clusters for the maturation of nitrogenase. In the present work we found that such target specificity for IscU can be overcome by elevated production of NifU. We also found that NifU, when expressed at normal levels, is able to partially replace the function of IscU if cells are cultured under low-oxygen-availability conditions. In contrast to the situation with IscU, we could not establish conditions in which the function of IscS could be replaced by NifS. We also found that elevated expression of the Isc components, as a result of deletion of the regulatory iscR gene, improved the capacity for nitrogen-fixing growth of strains deficient in either NifU or NifS.

  7. An EXPRESS Rack Overview and Support for Microgravity Research on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Pelfrey, Joseph J.; Jordan, Lee P.

    2008-01-01

    The EXpedite the PRocessing of Experiments to Space Station or EXPRESS Rack System has provided accommodations and facilitated operations for microgravity-based research payloads for over 6 years on the International Space Station (ISS). The EXPRESS Rack accepts Space Shuttle middeck type lockers and International Subrack Interface Standard (ISIS) drawers, providing a modular-type interface on the ISS. The EXPRESS Rack provides 28Vdc power, Ethernet and RS-422 data interfaces, thermal conditioning, vacuum exhaust, and Nitrogen supply for payload use. The EXPRESS Rack system also includes payload checkout capability with a flight rack or flight rack emulator prior to launch, providing a high degree of confidence in successful operations once an-orbit. In addition, EXPRESS trainer racks are provided to support crew training of both rack systems and subrack operations. Standard hardware and software interfaces provided by the EXPRESS Rack simplify the integration processes for ISS payload development. The EXPRESS Rack is designed to accommodate multidiscipline research, allowing for the independent operation of each subrack payload within a single rack. On-orbit operations began for the EXPRESS Rack Project on April 24, 2001, with one rack operating continuously to support high-priority payloads. The other on-orbit EXPRESS Racks operate based on payload need and resource availability. Over 50 multi-discipline payloads have now been supported on-orbit by the EXPRESS Rack Program. Sustaining engineering, logistics, and maintenance functions are in place to maintain hardware, operations and provide software upgrades. Additional EXPRESS Racks are planned for launch prior to ISS completion in support of long-term operations and the planned transition of the U.S. Segment to a National Laboratory.

  8. Identification of iron-regulated genes of Bifidobacterium breve UCC2003 as a basis for controlled gene expression

    PubMed Central

    Cronin, Michelle; Zomer, Aldert; Fitzgerald, Gerald; van Sinderen, Douwe

    2012-01-01

    Iron is an essential growth factor for virtually all organisms. However, iron is not readily available in most environments and microorganisms have evolved specialized mechanisms, such as the use of siderophores and high-affinity transport systems, to acquire iron when confronted with iron-limiting conditions. In general these systems are tightly regulated to prevent iron-induced toxicity and because they are quite costly to the microbe. Because of this tight regulation we chose to explore the response of Bifidobacterium breve UCC2003 to iron limitation. Through microarray and complementation analyses we identified and characterized a presumed ferrous iron uptake system, encoded by bfeUOB, from B. breve UCC2003 and exploited its regulated transcription to develop an inducible expression system for use in bifidobacteria. PMID:22179149

  9. Dopamine Receptors and Neurodegeneration

    PubMed Central

    Rangel-Barajas, Claudia; Coronel, Israel; Florán, Benjamín

    2015-01-01

    Dopamine (DA) is one of the major neurotransmitters and participates in a number of functions such as motor coordination, emotions, memory, reward mechanism, neuroendocrine regulation etc. DA exerts its effects through five DA receptors that are subdivided in 2 families: D1-like DA receptors (D1 and D5) and the D2-like (D2, D3 and D4). All DA receptors are widely expressed in the central nervous system (CNS) and play an important role in not only in physiological conditions but also pathological scenarios. Abnormalities in the DAergic system and its receptors in the basal ganglia structures are the basis Parkinson’s disease (PD), however DA also participates in other neurodegenerative disorders such as Huntington disease (HD) and multiple sclerosis (MS). Under pathological conditions reorganization of DAergic system has been observed and most of the times, those changes occur as a mechanism of compensation, but in some cases contributes to worsening the alterations. Here we review the changes that occur on DA transmission and DA receptors (DARs) at both levels expression and signals transduction pathways as a result of neurotoxicity, inflammation and in neurodegenerative processes. The better understanding of the role of DA receptors in neuropathological conditions is crucial for development of novel therapeutic approaches to treat alterations related to neurodegenerative diseases. PMID:26425390

  10. Solar energy system economic evaluation for Seeco Lincoln, Lincoln, Nebraska

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The economic analysis of the solar energy system that was installed at Lincoln, Nebraska is developed for this and four other sites typical of a wide range of environmental and economic conditions in the continental United States. This analysis is accomplished based on the technical and economic models in the f chart design procedure with inputs based on the characteristics of the installed system and local conditions. The results are expressed in terms of the economic parameters of present worth of system cost over projected twenty year life: life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated.

  11. Role of the Dopaminergic System in the Acquisition, Expression and Reinstatement of MDMA-Induced Conditioned Place Preference in Adolescent Mice

    PubMed Central

    Vidal-Infer, Antonio; Roger-Sánchez, Concepción; Daza-Losada, Manuel; Aguilar, María A.; Miñarro, José; Rodríguez-Arias, Marta

    2012-01-01

    Background The rewarding effects of 3,4-methylenedioxy-metamphetamine (MDMA) have been demonstrated in conditioned place preference (CPP) procedures, but the involvement of the dopaminergic system in MDMA-induced CPP and reinstatement is poorly understood. Methodology/Principal Findings In this study, the effects of the DA D1 antagonist SCH 23390 (0.125 and 0.250 mg/kg), the DA D2 antagonist Haloperidol (0.1 and 0.2 mg/kg), the D2 antagonist Raclopride (0.3 and 0.6 mg/kg) and the dopamine release inhibitor CGS 10746B (3 and 10 mg/kg) on the acquisition, expression and reinstatement of a CPP induced by 10 mg/kg of MDMA were evaluated in adolescent mice. As expected, MDMA significantly increased the time spent in the drug-paired compartment during the post-conditioning (Post-C) test, and a priming dose of 5 mg/kg reinstated the extinguished preference. The higher doses of Haloperidol, Raclopride and CGS 10746B and both doses of SCH 23390 blocked acquisition of the MDMA-induced CPP. However, only Haloperidol blocked expression of the CPP. Reinstatement of the extinguished preference was not affected by any of the drugs studied. Analysis of brain monoamines revealed that the blockade of CPP acquisition was accompanied by an increase in DA concentration in the striatum, with a concomitant decrease in DOPAC and HVA levels. Administration of haloperidol during the Post-C test produced increases in striatal serotonin, DOPAC and HVA concentrations. In mice treated with the higher doses of haloperidol and CGS an increase in SERT concentration in the striatum was detected during acquisition of the CPP, but no changes in DAT were observed. Conclusions/Significance These results demonstrate that, in adolescent mice, the dopaminergic system is involved in the acquisition and expression of MDMA-induced CPP, but not in its reinstatement. PMID:22916213

  12. Axonal outgrowth, neuropeptides expression and receptors tyrosine kinase phosphorylation in 3D organotypic cultures of adult dorsal root ganglia

    PubMed Central

    Alves, Cecília J.; Leitão, Luís; Sousa, Daniela M.; Alencastre, Inês S.; Conceição, Francisco; Lamghari, Meriem

    2017-01-01

    Limited knowledge from mechanistic studies on adult sensory neuronal activity was generated, to some extent, in recapitulated adult in vivo 3D microenvironment. To fill this gap there is a real need to better characterize the adult dorsal root ganglia (aDRG) organotypic cultures to make these in vitro systems exploitable for different approaches, ranging from basic neurobiology to regenerative therapies, to address the sensory nervous system in adult stage. We conducted a direct head-to-head comparison of aDRG and embryonic DRG (eDRG) organotypic culture focusing on axonal growth, neuropeptides expression and receptors tyrosine kinase (RTK) activation associated with neuronal survival, proliferation and differentiation. To identify alterations related to culture conditions, these parameters were also addressed in retrieved aDRG and eDRG and compared with organotypic cultures. Under similar neurotrophic stimulation, aDRG organotypic cultures displayed lower axonal outgrowth rate supported by reduced expression of growth associated protein-43 and high levels of RhoA and glycogen synthase kinase 3 beta mRNA transcripts. In addition, differential alteration in sensory neuropeptides expression, namely calcitonin gene-related peptide and substance P, was detected and was mainly pronounced at gene expression levels. Among 39 different RTK, five receptors from three RTK families were emphasized: tropomyosin receptor kinase A (TrkA), epidermal growth factor receptors (EGFR, ErbB2 and ErbB3) and platelet-derived growth factor receptor (PDGFR). Of note, except for EGFR, the phosphorylation of these receptors was dependent on DRG developmental stage and/or culture condition. In addition, EGFR and PDGFR displayed alterations in their cellular expression pattern in cultured DRG. Overall we provided valuable information particularly important when addressing in vitro the molecular mechanisms associated with development, maturation and regeneration of the sensory nervous system. PMID:28742111

  13. Evaluation of the Pichia pastoris expression system for the production of GPCRs for structural analysis

    PubMed Central

    2011-01-01

    Background Various protein expression systems, such as Escherichia coli (E. coli), Saccharomyces cerevisiae (S. cerevisiae), Pichia pastoris (P. pastoris), insect cells and mammalian cell lines, have been developed for the synthesis of G protein-coupled receptors (GPCRs) for structural studies. Recently, the crystal structures of four recombinant human GPCRs, namely β2 adrenergic receptor, adenosine A2a receptor, CXCR4 and dopamine D3 receptor, were successfully determined using an insect cell expression system. GPCRs expressed in insect cells are believed to undergo mammalian-like posttranscriptional modifications and have similar functional properties than in mammals. Crystal structures of GPCRs have not yet been solved using yeast expression systems. In the present study, P. pastoris and insect cell expression systems for the human muscarinic acetylcholine receptor M2 subtype (CHRM2) were developed and the quantity and quality of CHRM2 synthesized by both expression systems were compared for the application in structural studies. Results The ideal conditions for the expression of CHRM2 in P. pastoris were 60 hr at 20°C in a buffer of pH 7.0. The specific activity of the expressed CHRM2 was 28.9 pmol/mg of membrane protein as determined by binding assays using [3H]-quinuclidinyl benzilate (QNB). Although the specific activity of the protein produced by P. pastoris was lower than that of Sf9 insect cells, CHRM2 yield in P. pastoris was 2-fold higher than in Sf9 insect cells because P. pastoris was cultured at high cell density. The dissociation constant (Kd) for QNB in P. pastoris was 101.14 ± 15.07 pM, which was similar to that in Sf9 insect cells (86.23 ± 8.57 pM). There were no differences in the binding affinity of CHRM2 for QNB between P. pastoris and Sf9 insect cells. Conclusion Compared to insect cells, P. pastoris is easier to handle, can be grown at lower cost, and can be expressed quicker at a large scale. Yeast, P. pastoris, and insect cells are all effective expression systems for GPCRs. The results of the present study strongly suggested that protein expression in P. pastoris can be applied to the structural and biochemical studies of GPCRs. PMID:21513509

  14. Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture.

    PubMed

    Jin, Liting; Qu, Ying; Gomez, Liliana J; Chung, Stacey; Han, Bingchen; Gao, Bowen; Yue, Yong; Gong, Yiping; Liu, Xuefeng; Amersi, Farin; Dang, Catherine; Giuliano, Armando E; Cui, Xiaojiang

    2018-02-20

    Conditional reprogramming methods allow for the inexhaustible in vitro proliferation of primary epithelial cells from human tissue specimens. This methodology has the potential to enhance the utility of primary cell culture as a model for mammary gland research. However, few studies have systematically characterized this method in generating in vitro normal human mammary epithelial cell models. We show that cells derived from fresh normal breast tissues can be propagated and exhibit heterogeneous morphologic features. The cultures are composed of CK18, desmoglein 3, and CK19-positive luminal cells and vimentin, p63, and CK14-positive myoepithelial cells, suggesting the maintenance of in vivo heterogeneity. In addition, the cultures contain subpopulations with different CD49f and EpCAM expression profiles. When grown in 3D conditions, cells self-organize into distinct structures that express either luminal or basal cell markers. Among these structures, CK8-positive cells enclosing a lumen are capable of differentiation into milk-producing cells in the presence of lactogenic stimulus. Furthermore, our short-term cultures retain the expression of ERα, as well as its ability to respond to estrogen stimulation. We have investigated conditionally reprogrammed normal epithelial cells in terms of cell type heterogeneity, cellular marker expression, and structural arrangement in two-dimensional (2D) and three-dimensional (3D) systems. The conditional reprogramming methodology allows generation of a heterogeneous culture from normal human mammary tissue in vitro . We believe that this cell culture model will provide a valuable tool to study mammary cell function and malignant transformation.

  15. Microaerophilic conditions permit to mimic in vitro events occurring during in vivo Helicobacter pylori infection and to identify Rho/Ras-associated proteins in cellular signaling.

    PubMed

    Cottet, Sandra; Corthésy-Theulaz, Irène; Spertini, François; Corthésy, Blaise

    2002-09-13

    Molecular dissection of the mechanisms underlying Helicobacter pylori infection suffers from the lack of in vitro systems mimicking in vivo observations. A system was developed whereby human epithelial cells (Caco-2) grown as polarized monolayers and bacteria can communicate with each other under culture conditions optimal for each partner. Caco-2 cells grown on filter supports were inserted in a vertical position into diffusion chambers equilibrated with air and 5% CO(2) at their basolateral surface (aerophilic conditions) and 5% CO(2), 5% O(2), 90% N(2) (microaerophilic conditions) in the apical compartment. Remarkably, the epithelial polarized layer was stable under these asymmetric culture conditions for at least 24 h, and the presence of Caco-2 cells was necessary to maintain H. pylori growth. In contrast to previous studies conducted with non-polarized Caco-2 cells and other cell lines kept under aerophilic conditions, we found H. pylori-dependent stimulation of cytokine secretion (MCP-1 (monocyte chemoattractant protein-1), GRO-alpha (growth-regulated oncogene-alpha), RANTES (regulated on activation normal T cell expressed and secreted)). This correlated with nuclear translocation of NF-kappaB p50 and p65 subunits. Tyrosine phosphorylation of nine cellular proteins was induced or enhanced; we identified p120(RasGAP), p190(RhoGAP), p62dok (downstream of tyrosine kinases), and cortactin as H. pylori-inducible targets. Moreover, reduction of H. pylori urease expression was observed in adherent bacteria as compared with bacteria in suspension. In addition to mimicking several observations seen in the inflamed gastric mucosa, the novel in vitro system was allowed to underscore complex cellular events not seen in classical in vitro analyses of microaerophilic bacteria-epithelial cell cross-talk.

  16. Disarmed complaints: unpacking satisfaction with end-of-life care.

    PubMed

    Sinding, Christina

    2003-10-01

    Difficult health care encounters often do not translate into expressions of dissatisfaction with care. This paper focuses on the 'non-expression' of dissatisfaction with care in the accounts of 12 people in Canada who provided care to a relative or friend who died of breast cancer. The analysis foregrounded in this paper began from the observation that as difficult health care experiences were elaborated, speakers located health professionals' actions in relation to various situational factors, including the fact of a (cancer) death and conditions of constraint in the health system. Set alongside these two realities, expressions of dissatisfaction tended to be disarmed. Results of this study suggest that the cost of articulating dissatisfaction with care is high where the cared-for person has died, and the perceived value of focusing on difficult experiences is low. Further, respondents in this study took the specificity of the situation and the setting into account in formulating beliefs about the care outcomes for which health professionals could be held responsible. When conditions in the health system and the disease process of advanced cancer were positioned in talk as 'ultimate limits' on health professionals' actions, perceived lapses in care were excused.

  17. Urea.

    PubMed

    Wang, Hongkai; Ran, Jianhua; Jiang, Tao

    2014-01-01

    Urea is generated by the urea cycle enzymes, which are mainly in the liver but are also ubiquitously expressed at low levels in other tissues. The metabolic process is altered in several conditions such as by diets, hormones, and diseases. Urea is then eliminated through fluids, especially urine. Blood urea nitrogen (BUN) has been utilized to evaluate renal function for decades. New roles for urea in the urinary system, circulation system, respiratory system, digestive system, nervous system, etc., were reported lately, which suggests clinical significance of urea.

  18. Changes in expression of genes involved in apoptosis in activated human T-cells in response to modeled microgravity

    NASA Astrophysics Data System (ADS)

    Ward, Nancy E.; Pellis, Neal R.; Risin, Diana; Risin, Semyon A.; Liu, Wenbin

    2006-09-01

    Space flights result in remarkable effects on various physiological systems, including a decline in cellular immune functions. Previous studies have shown that exposure to microgravity, both true and modeled, can cause significant changes in numerous lymphocyte functions. The purpose of this study was to search for microgravity-sensitive genes, and specifically for apoptotic genes influenced by the microgravity environment and other genes related to immune response. The experiments were performed on anti-CD3 and IL-2 activated human T cells. To model microgravity conditions we have utilized the NASA rotating wall vessel bioreactor. Control lymphocytes were cultured in static 1g conditions. To assess gene expression we used DNA microarray chip technology. We had shown that multiple genes (approximately 3-8% of tested genes) respond to microgravity conditions by 1.5 and more fold change in expression. There is a significant variability in the response. However, a certain reproducible pattern in gene response could be identified. Among the genes showing reproducible changes in expression in modeled microgravity, several genes involved in apoptosis as well as in immune response were identified. These are IL-7 receptor, Granzyme B, Beta-3-endonexin, Apo2 ligand and STAT1. Possible functional consequences of these changes are discussed.

  19. Transcriptome analysis of Haloquadratum walsbyi: vanity is but the surface.

    PubMed

    Bolhuis, Henk; Martín-Cuadrado, Ana Belén; Rosselli, Riccardo; Pašić, Lejla; Rodriguez-Valera, Francisco

    2017-07-03

    Haloquadratum walsbyi dominates saturated thalassic lakes worldwide where they can constitute up to 80-90% of the total prokaryotic community. Despite the abundance of the enigmatic square-flattened cells, only 7 isolates are currently known with 2 genomes fully sequenced and annotated due to difficulties to grow them under laboratory conditions. We have performed a transcriptomic analysis of one of these isolates, the Spanish strain HBSQ001 in order to investigate gene transcription under light and dark conditions. Despite a potential advantage for light as additional source of energy, no significant differences were found between light and dark expressed genes. Constitutive high gene expression was observed in genes encoding surface glycoproteins, light mediated proton pumping by bacteriorhodopsin, several nutrient uptake systems, buoyancy and storage of excess carbon. Two low expressed regions of the genome were characterized by a lower codon adaptation index, low GC content and high incidence of hypothetical genes. Under the extant cultivation conditions, the square hyperhalophile devoted most of its transcriptome towards processes maintaining cell integrity and exploiting solar energy. Surface glycoproteins are essential for maintaining the large surface to volume ratio that facilitates light and organic nutrient harvesting whereas constitutive expression of bacteriorhodopsin warrants an immediate source of energy when light becomes available.

  20. Tuning Gene Activity by Inducible and Targeted Regulation of Gene Expression in Minimal Bacterial Cells.

    PubMed

    Mariscal, Ana M; Kakizawa, Shigeyuki; Hsu, Jonathan Y; Tanaka, Kazuki; González-González, Luis; Broto, Alicia; Querol, Enrique; Lluch-Senar, Maria; Piñero-Lambea, Carlos; Sun, Lijie; Weyman, Philip D; Wise, Kim S; Merryman, Chuck; Tse, Gavin; Moore, Adam J; Hutchison, Clyde A; Smith, Hamilton O; Tomita, Masaru; Venter, J Craig; Glass, John I; Piñol, Jaume; Suzuki, Yo

    2018-05-22

    Functional genomics studies in minimal mycoplasma cells enable unobstructed access to some of the most fundamental processes in biology. Conventional transposon bombardment and gene knockout approaches often fail to reveal functions of genes that are essential for viability, where lethality precludes phenotypic characterization. Conditional inactivation of genes is effective for characterizing functions central to cell growth and division, but tools are limited for this purpose in mycoplasmas. Here we demonstrate systems for inducible repression of gene expression based on clustered regularly interspaced short palindromic repeats-mediated interference (CRISPRi) in Mycoplasma pneumoniae and synthetic Mycoplasma mycoides, two organisms with reduced genomes actively used in systems biology studies. In the synthetic cell, we also demonstrate inducible gene expression for the first time. Time-course data suggest rapid kinetics and reversible engagement of CRISPRi. Targeting of six selected endogenous genes with this system results in lowered transcript levels or reduced growth rates that agree with lack or shortage of data in previous transposon bombardment studies, and now produces actual cells to analyze. The ksgA gene encodes a methylase that modifies 16S rRNA, rendering it vulnerable to inhibition by the antibiotic kasugamycin. Targeting the ksgA gene with CRISPRi removes the lethal effect of kasugamycin and enables cell growth, thereby establishing specific and effective gene modulation with our system. The facile methods for conditional gene activation and inactivation in mycoplasmas open the door to systematic dissection of genetic programs at the core of cellular life.

  1. [Effect of human oviductal embryotrophic factors on gene expression of mouse preimplantation embryos].

    PubMed

    Yao, Yuan-Qing; Lee, Kai-Fai; Xu, Jia-Seng; Ho, Pak-Chung; Yeung, Shu-Biu

    2007-09-01

    To investigate the effect of embryotrophic factors (ETF) from human oviductal cells on gene expression of mouse early developmental embryos and discuss the role of fallopian tube in early development of embryos. ETF was isolated from conditioned medium of human oviductal cell line by sequential liquid chromatographic systems. Mouse embryos were treated by ETF in vitro. Using differential display RT-PCR, the gene expression of embryos treated by ETF was compared with embryos without ETF treatment. The differentially expressed genes were separated, re-amplified, cloned and sequenced. Gene expression profiles of embryos with ETF treatment was different from embryos without this treatment. Eight differentially expressed genes were cloned and sequenced. These genes functioned in RNA degradation, synthesis, splicing, protein trafficking, cellular differentiation and embryo development. Embryotrophic factors from human oviductal cells affect gene expression of early developmental embryos. The human oviductal cells play wide roles in early developmental stages of embryos.

  2. Bias effects on the electronic spectrum of a molecular bridge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Heidi; Prociuk, Alexander; Dunietz, Barry D

    2011-01-01

    In this paper the effect of bias and geometric symmetry breaking on the electronic spectrum of a model molecular system is studied. Geometric symmetry breaking can either enhance the dissipative effect of the bias, where spectral peaks are disabled, or enable new excitations that are absent under zero bias conditions. The spectralanalysis is performed on a simple model system by solving for the electronic response to an instantaneously impulsive perturbation in the dipole approximation. The dynamical response is extracted from the electronic equations of motion as expressed by the Keldysh formalism. This expression provides for the accurate treatment of themore » electronic structure of a bulk-coupled system at the chosen model Hamiltonian electronic structure level.« less

  3. Autoimmune Channelopathies of the Nervous System

    PubMed Central

    Kleopa, Kleopas A

    2011-01-01

    Ion channels are complex transmembrane proteins that orchestrate the electrical signals necessary for normal function of excitable tissues, including the central nervous system, peripheral nerve, and both skeletal and cardiac muscle. Progress in molecular biology has allowed cloning and expression of genes that encode channel proteins, while comparable advances in biophysics, including patch-clamp electrophysiology and related techniques, have made the functional assessment of expressed proteins at the level of single channel molecules possible. The role of ion channel defects in the pathogenesis of numerous disorders has become increasingly apparent over the last two decades. Neurological channelopathies are frequently genetically determined but may also be acquired through autoimmune mechanisms. All of these autoimmune conditions can arise as paraneoplastic syndromes or independent from malignancies. The pathogenicity of autoantibodies to ion channels has been demonstrated in most of these conditions, and patients may respond well to immunotherapies that reduce the levels of the pathogenic autoantibodies. Autoimmune channelopathies may have a good prognosis, especially if diagnosed and treated early, and if they are non-paraneoplastic. This review focuses on clinical, pathophysiologic and therapeutic aspects of autoimmune ion channel disorders of the nervous system. PMID:22379460

  4. Self-similar solutions to isothermal shock problems

    NASA Astrophysics Data System (ADS)

    Deschner, Stephan C.; Illenseer, Tobias F.; Duschl, Wolfgang J.

    We investigate exact solutions for isothermal shock problems in different one-dimensional geometries. These solutions are given as analytical expressions if possible, or are computed using standard numerical methods for solving ordinary differential equations. We test the numerical solutions against the analytical expressions to verify the correctness of all numerical algorithms. We use similarity methods to derive a system of ordinary differential equations (ODE) yielding exact solutions for power law density distributions as initial conditions. Further, the system of ODEs accounts for implosion problems (IP) as well as explosion problems (EP) by changing the initial or boundary conditions, respectively. Taking genuinely isothermal approximations into account leads to additional insights of EPs in contrast to earlier models. We neglect a constant initial energy contribution but introduce a parameter to adjust the initial mass distribution of the system. Moreover, we show that due to this parameter a constant initial density is not allowed for isothermal EPs. Reasonable restrictions for this parameter are given. Both, the (genuinely) isothermal implosion as well as the explosion problem are solved for the first time.

  5. Assumption or Fact? Line-to-Neutral Voltage Expression in an Unbalanced 3-Phase Circuit during Inverter Switching

    ERIC Educational Resources Information Center

    Masrur, M. A.

    2009-01-01

    This paper discusses the situation in a 3-phase motor or any other 3-phase system operating under unbalanced operating conditions caused by an open fault in an inverter switch. A dc voltage source is assumed as the input to the inverter, and under faulty conditions of the inverter switch, the actual voltage applied between the line to neutral…

  6. Inhibition of heme biosynthesis prevents transcription of iron uptake genes in yeast.

    PubMed

    Crisp, Robert J; Pollington, Annette; Galea, Charles; Jaron, Shulamit; Yamaguchi-Iwai, Yuko; Kaplan, Jerry

    2003-11-14

    Yeast are capable of modifying their metabolism in response to environmental changes. We investigated the activity of the oxygen-dependent high-affinity iron uptake system of Saccharomyces cerevisiae under conditions of heme depletion. We found that the absence of heme, due to a deletion in the gene that encodes delta-aminolevulinic acid synthase (HEM1), resulted in decreased transcription of genes belonging to both the iron and copper regulons, but not the zinc regulon. Decreased transcription of the iron regulon was not due to decreased expression of the iron sensitive transcriptional activator Aft1p. Expression of the constitutively active allele AFT1-1up was unable to induce transcription of the high affinity iron uptake system in heme-depleted cells. We demonstrated that under heme-depleted conditions, Aft1p-GFP was able to cycle normally between the nucleus and cytosol in response to cytosolic iron. Despite the inability to induce transcription under low iron conditions, chromatin immunoprecipitation demonstrated that Aft1p binds to the FET3 promoter in the absence of heme. Finally, we provide evidence that under heme-depleted conditions, yeast are able to regulate mitochondrial iron uptake and do not accumulate pathologic iron concentrations, as is seen when iron-sulfur cluster synthesis is disrupted.

  7. Dissociable Learning Processes Underlie Human Pain Conditioning

    PubMed Central

    Zhang, Suyi; Mano, Hiroaki; Ganesh, Gowrishankar; Robbins, Trevor; Seymour, Ben

    2016-01-01

    Summary Pavlovian conditioning underlies many aspects of pain behavior, including fear and threat detection [1], escape and avoidance learning [2], and endogenous analgesia [3]. Although a central role for the amygdala is well established [4], both human and animal studies implicate other brain regions in learning, notably ventral striatum and cerebellum [5]. It remains unclear whether these regions make different contributions to a single aversive learning process or represent independent learning mechanisms that interact to generate the expression of pain-related behavior. We designed a human parallel aversive conditioning paradigm in which different Pavlovian visual cues probabilistically predicted thermal pain primarily to either the left or right arm and studied the acquisition of conditioned Pavlovian responses using combined physiological recordings and fMRI. Using computational modeling based on reinforcement learning theory, we found that conditioning involves two distinct types of learning process. First, a non-specific “preparatory” system learns aversive facial expressions and autonomic responses such as skin conductance. The associated learning signals—the learned associability and prediction error—were correlated with fMRI brain responses in amygdala-striatal regions, corresponding to the classic aversive (fear) learning circuit. Second, a specific lateralized system learns “consummatory” limb-withdrawal responses, detectable with electromyography of the arm to which pain is predicted. Its related learned associability was correlated with responses in ipsilateral cerebellar cortex, suggesting a novel computational role for the cerebellum in pain. In conclusion, our results show that the overall phenotype of conditioned pain behavior depends on two dissociable reinforcement learning circuits. PMID:26711494

  8. Towards optimization of an organotypic assay system that imitates human hair follicle-like epithelial-mesenchymal interactions.

    PubMed

    Havlickova, B; Bíró, T; Mescalchin, A; Arenberger, P; Paus, R

    2004-10-01

    Human hair growth can currently be studied in vitro by the use of organ-cultured scalp hair follicles (HFs). However, simplified organotypic systems are needed for dissecting the underlying epithelial-mesenchymal interactions and as screening tools for candidate hair growth-modulatory agents. To optimize the design and culture conditions of previously published organotypic systems that imitate epithelial-mesenchymal interactions in the human HF as closely as possible. Continuous submerged organotypic 'sandwich' cultures were established. These consist of a pseudodermis (collagen I mixed with and contracted by human interfollicular dermal fibroblasts) on which one of two upper layers is placed: either a mixture of Matrigel basement membrane matrix (BD Biosciences, Bedford, MA, U.S.A.) and follicular dermal papilla fibroblasts (DPC), with outer root sheath keratinocytes (ORSK) layered on the top ('layered' system), or a mixture of Matrigel, DPC and ORSK ('mixed' system). Morphological and functional characteristics of these 'folliculoid sandwiches' were then assessed by routine histology, histomorphometry and immunohistochemistry. In both 'layered' and 'mixed' systems, the ORSK formed spheroid epithelial cell aggregates, which retained their characteristic keratin expression pattern (i.e. cytokeratin 6). In the 'mixed' sandwich model the size of the epithelial cell aggregates was smaller, but the numbers of ORSK were significantly higher than in the 'layered' model at day 14 in the culture. ORSK proliferated better in the 'mixed' than in the 'layered' sandwich system, regardless of the calcium or serum content of the media, whereas apoptosis of ORSK was lowest in the 'mixed' system in serum-free, low calcium medium. The kinetics of proliferation and apoptosis of DPC, which retained their characteristic expression of versican, were similar in both systems. However, proliferation and apoptosis of DPC were higher in the presence of serum and/or under high calcium conditions. Our results underscore the importance of structural design and medium composition for epithelial-mesenchymal interactions as they occur in the human HF. Specifically, we report a new organotypic submerged 'folliculoid sandwich' system with serum-free, low calcium medium and a mixture of interacting human DPC and ORSK, which offers several advantages over previously available assays. This system allows the standardized assessment of the effects of a test agent on the proliferation, apoptosis and key marker expression of human ORSK and DPC under substantially simplified in vitro conditions which approximate the in vivo situation.

  9. The Transcriptome of the Reference Potato Genome Solanum tuberosum Group Phureja Clone DM1-3 516R44

    PubMed Central

    Massa, Alicia N.; Childs, Kevin L.; Lin, Haining; Bryan, Glenn J.; Giuliano, Giovanni; Buell, C. Robin

    2011-01-01

    Advances in molecular breeding in potato have been limited by its complex biological system, which includes vegetative propagation, autotetraploidy, and extreme heterozygosity. The availability of the potato genome and accompanying gene complement with corresponding gene structure, location, and functional annotation are powerful resources for understanding this complex plant and advancing molecular breeding efforts. Here, we report a reference for the potato transcriptome using 32 tissues and growth conditions from the doubled monoploid Solanum tuberosum Group Phureja clone DM1-3 516R44 for which a genome sequence is available. Analysis of greater than 550 million RNA-Seq reads permitted the detection and quantification of expression levels of over 22,000 genes. Hierarchical clustering and principal component analyses captured the biological variability that accounts for gene expression differences among tissues suggesting tissue-specific gene expression, and genes with tissue or condition restricted expression. Using gene co-expression network analysis, we identified 18 gene modules that represent tissue-specific transcriptional networks of major potato organs and developmental stages. This information provides a powerful resource for potato research as well as studies on other members of the Solanaceae family. PMID:22046362

  10. Backward-stochastic-differential-equation approach to modeling of gene expression

    NASA Astrophysics Data System (ADS)

    Shamarova, Evelina; Chertovskih, Roman; Ramos, Alexandre F.; Aguiar, Paulo

    2017-03-01

    In this article, we introduce a backward method to model stochastic gene expression and protein-level dynamics. The protein amount is regarded as a diffusion process and is described by a backward stochastic differential equation (BSDE). Unlike many other SDE techniques proposed in the literature, the BSDE method is backward in time; that is, instead of initial conditions it requires the specification of end-point ("final") conditions, in addition to the model parametrization. To validate our approach we employ Gillespie's stochastic simulation algorithm (SSA) to generate (forward) benchmark data, according to predefined gene network models. Numerical simulations show that the BSDE method is able to correctly infer the protein-level distributions that preceded a known final condition, obtained originally from the forward SSA. This makes the BSDE method a powerful systems biology tool for time-reversed simulations, allowing, for example, the assessment of the biological conditions (e.g., protein concentrations) that preceded an experimentally measured event of interest (e.g., mitosis, apoptosis, etc.).

  11. Backward-stochastic-differential-equation approach to modeling of gene expression.

    PubMed

    Shamarova, Evelina; Chertovskih, Roman; Ramos, Alexandre F; Aguiar, Paulo

    2017-03-01

    In this article, we introduce a backward method to model stochastic gene expression and protein-level dynamics. The protein amount is regarded as a diffusion process and is described by a backward stochastic differential equation (BSDE). Unlike many other SDE techniques proposed in the literature, the BSDE method is backward in time; that is, instead of initial conditions it requires the specification of end-point ("final") conditions, in addition to the model parametrization. To validate our approach we employ Gillespie's stochastic simulation algorithm (SSA) to generate (forward) benchmark data, according to predefined gene network models. Numerical simulations show that the BSDE method is able to correctly infer the protein-level distributions that preceded a known final condition, obtained originally from the forward SSA. This makes the BSDE method a powerful systems biology tool for time-reversed simulations, allowing, for example, the assessment of the biological conditions (e.g., protein concentrations) that preceded an experimentally measured event of interest (e.g., mitosis, apoptosis, etc.).

  12. Development of transgenic pigeonpea (Cajanus cajan. L Millsp) overexpressing citrate synthase gene for high phosphorus uptake.

    PubMed

    Aftab Hussain, Aftab; Pavithra, I S; Sreevathsa, Rohini; Nataraja, K N; Babu, Naveen

    2016-08-01

    Plants have developed several adaptive strategies to enhance the availability and uptake of phosphorus (P) from the soil under conditions of P deficiency. Exudation of organic acids like citrate is one of the important strategies. In this study, we developed transgenic pigeonpea (Cajanus cajan) over-expressing Dacus carota citrate synthase (DcCs) gene to increase the synthesis and exudation of citrate. Transgenic plants were generated through agro bacterium mediated in-planta transformation technique. Integration and expression of the transgene was confirmed by genomic Southern and RT-PCR analysis. We observed that the transgenic lines had more tissue P and chlorophyll content, and also citrate synthase content higher in the roots. Further, transgenic lines had more vigorous root system both under P sufficient and deficient conditions with more lateral roots and root hairs under P deficient conditions. We conclude that the transgenic pigeonpea plants have the capacity to acquire more P under P deficient conditions.

  13. Induction of Human Blood Group A Antigen Expression on Mouse Cells, Using Lentiviral Gene Transduction

    PubMed Central

    Fan, Xiaohu; Lang, Haili; Zhou, Xianpei; Zhang, Li; Yin, Rong; Maciejko, Jessica; Giannitsos, Vasiliki; Motyka, Bruce; Medin, Jeffrey A.; Platt, Jeffrey L.

    2010-01-01

    Abstract The ABO histo-blood group system is the most important antigen system in transplantation medicine, yet no small animal model of the ABO system exists. To determine the feasibility of developing a murine model, we previously subcloned the human α-1,2-fucosyltransferase (H-transferase, EC 2.4.1.69) cDNA and the human α-1,3-N-acetylgalactosaminyltransferase (A-transferase, EC 2.4.1.40) cDNA into lentiviral vectors to study their ability to induce human histo-blood group A antigen expression on mouse cells. Herein we investigated the optimal conditions for human A and H antigen expression in murine cells. We determined that transduction of a bicistronic lentiviral vector (LvEF1-AH-trs) resulted in the expression of A antigen in a mouse endothelial cell line. We also studied the in vivo utility of this vector to induce human A antigen expression in mouse liver. After intrahepatic injection of LvEF1-AH-trs, A antigen expression was observed on hepatocytes as detected by immunohistochemistry and real-time RT-PCR. In human group A erythrocyte-sensitized mice, A antigen expression in the liver was associated with tissue damage, and deposition of antibody and complement. These results suggest that this gene transfer strategy can be used to simulate the human ABO blood group system in a murine model. This model will facilitate progress in the development of interventions for ABO-incompatible transplantation and transfusion scenarios, which are difficult to develop in clinical or large animal settings. PMID:20163247

  14. Genome-wide analysis of aquaporin gene family and their responses to water-deficit stress conditions in cassava.

    PubMed

    Putpeerawit, Pattaranit; Sojikul, Punchapat; Thitamadee, Siripong; Narangajavana, Jarunya

    2017-12-01

    Cassava (Manihot esculenta Crantz) is an important economic crop in tropical countries. Although cassava is considered a drought-tolerant crop that can grow in arid areas, the impact of drought can significantly reduce the growth and yield of cassava storage roots. The discovery of aquaporin molecules (AQPs) in plants has resulted in a paradigm shift in the understanding of plant-water relationships, whereas the relationship between aquaporin and drought resistance in cassava still remains elusive. To investigate the potential role of aquaporin in cassava under water-deficit conditions, 45 putative MeAQPs were identified in the cassava genome. Six members of MeAQPs, containing high numbers of water stress-responsive motifs in their promoter regions, were selected for a gene expression study. Two cassava cultivars, which showed different degrees of responses to water-deficit stress, were used to test in in vitro and potted plant systems. The differential expression of all candidate MeAQPs were found in only leaves from the potted plant system were consistent with the relative water content and with the stomatal closure profile of the two cultivars. MePIP2-1 and MePIP2-10 were up-regulated and this change in their expression might regulate a special signal for water efflux out of guard cells, thus inducing stomatal closure under water-deficit conditions. In addition, the expression profiles of genes in the ABA-dependent pathway revealed an essential correlation with stomatal closure. The potential functions of MeAQPs and candidate ABA-dependent pathway genes in response to water deficit in the more tolerant cassava cultivar were discussed. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Current-Controlled Electrical Point-Source Stimulation of Embryonic Stem Cells

    PubMed Central

    Chen, Michael Q.; Xie, Xiaoyan; Wilson, Kitchener D.; Sun, Ning; Wu, Joseph C.; Giovangrandi, Laurent; Kovacs, Gregory T. A.

    2010-01-01

    Stem cell therapy is emerging as a promising clinical approach for myocardial repair. However, the interactions between the graft and host, resulting in inconsistent levels of integration, remain largely unknown. In particular, the influence of electrical activity of the surrounding host tissue on graft differentiation and integration is poorly understood. In order to study this influence under controlled conditions, an in vitro system was developed. Electrical pacing of differentiating murine embryonic stem (ES) cells was performed at physiologically relevant levels through direct contact with microelectrodes, simulating the local activation resulting from contact with surrounding electroactive tissue. Cells stimulated with a charged balanced voltage-controlled current source for up to 4 days were analyzed for cardiac and ES cell gene expression using real-time PCR, immunofluorescent imaging, and genome microarray analysis. Results varied between ES cells from three progressive differentiation stages and stimulation amplitudes (nine conditions), indicating a high sensitivity to electrical pacing. Conditions that maximally encouraged cardiomyocyte differentiation were found with Day 7 EBs stimulated at 30 µA. The resulting gene expression included a sixfold increase in troponin-T and a twofold increase in β-MHCwithout increasing ES cell proliferation marker Nanog. Subsequent genome microarray analysis revealed broad transcriptome changes after pacing. Concurrent to upregulation of mature gene programs including cardiovascular, neurological, and musculoskeletal systems is the apparent downregulation of important self-renewal and pluripotency genes. Overall, a robust system capable of long-term stimulation of ES cells is demonstrated, and specific conditions are outlined that most encourage cardiomyocyte differentiation. PMID:20652088

  16. Optogenetic conditioning of paradigm and pattern discrimination in the rat somatosensory system

    PubMed Central

    Abe, Kenta

    2017-01-01

    The rodent whisker-barrel cortical system is a model for studying somatosensory discrimination at high spatiotemporal precision. Here, we applied optogenetics to produce somatosensory inputs in the whisker area using one of transgenic rat lines, W-TChR2V4, which expresses channelrhodopsin-2 (ChR2) in the mechanoreceptive nerve endings around whisker follicles. An awake W-TChR2V4 rat was head-fixed and irradiated by blue LED light on the whisker area with a paradigm conditioned with a reward. The Go task was designed so the rat is allowed to receive a reward, when it licked the nozzle within 5 s after photostimulation. The No-go task was designed so as the rat has to withhold licking for at least 5 s to obtain a reward after photostimulation. The Go-task conditioning was established within 1 hr of training with a reduction in the reaction time and increase of the success rate. To investigate the relationship between the spatiotemporal pattern of sensory inputs and the behavioral output, we designed a multi-optical fiber system that irradiates the whisker area at 9 spots in a 3×3 matrix. Although the Go-task conditioning was established using synchronous irradiation of 9 spots, the success rate was decreased with an increase of the reaction time for the asynchronous irradiation. After conditioning to the Go task, the rat responded to the blue LED flash irradiated on the barrel cortex, where many neurons also express ChR2, or photostimulation of the contralateral whisker area with a similar reaction time and success rate. Synchronous activation of the peripheral mechanoreceptive nerves is suggested to drive a neural circuit in the somatosensory cortex that efficiently couples with the decision. Our optogenetic system would enable the precise evaluation of the psychophysical values, such as the reaction time and success rate, to gain some insight into the brain mechanisms underlying conditioned behaviors. PMID:29267341

  17. High-Yield, Zero-Leakage Expression System with a Translational Switch Using Site-Specific Unnatural Amino Acid Incorporation

    PubMed Central

    Minaba, Masaomi

    2014-01-01

    Synthetic biologists construct complex biological circuits by combinations of various genetic parts. Many genetic parts that are orthogonal to one another and are independent of existing cellular processes would be ideal for use in synthetic biology. However, our toolbox is still limited with respect to the bacterium Escherichia coli, which is important for both research and industrial use. The site-specific incorporation of unnatural amino acids is a technique that incorporates unnatural amino acids into proteins using a modified exogenous aminoacyl-tRNA synthetase/tRNA pair that is orthogonal to any native pairs in a host and is independent from other cellular functions. Focusing on the orthogonality and independency that are suitable for the genetic parts, we designed novel AND gate and translational switches using the unnatural amino acid 3-iodo-l-tyrosine incorporation system in E. coli. A translational switch was turned on after addition of 3-iodo-l-tyrosine in the culture medium within minutes and allowed tuning of switchability and translational efficiency. As an application, we also constructed a gene expression system that produced large amounts of proteins under induction conditions and exhibited zero-leakage expression under repression conditions. Similar translational switches are expected to be applicable also for eukaryotes such as yeasts, nematodes, insects, mammalian cells, and plants. PMID:24375139

  18. Tomato Spotted Wilt Virus NSs Protein Supports Infection and Systemic Movement of a Potyvirus and Is a Symptom Determinant

    PubMed Central

    Gabriel Peralta, Sergio M.; Harte-Maxwell, Patricia A.

    2018-01-01

    Plant viruses are inducers and targets of antiviral RNA silencing. To condition susceptibility, most plant viruses encode silencing suppressor proteins that interfere with antiviral RNA silencing. The NSs protein is an RNA silencing suppressor in orthotospoviruses, such as the tomato spotted wilt virus (TSWV). The mechanism of RNA silencing suppression by NSs and its role in virus infection and movement are poorly understood. Here, we cloned and tagged TSWV NSs and expressed it from a GFP-tagged turnip mosaic virus (TuMV-GFP) carrying either a wild-type or suppressor-deficient (AS9) helper component proteinase (HC-Pro). When expressed in cis, NSs restored pathogenicity and promoted systemic infection of suppressor-deficient TuMV-AS9-GFP in Nicotiana benthamiana and Arabidopsis thaliana. Inactivating mutations were introduced in NSs RNA-binding domain one. A genetic analysis with active and suppressor-deficient NSs, in combination with wild-type and mutant plants lacking essential components of the RNA silencing machinery, showed that the NSs insert is stable when expressed from a potyvirus. NSs can functionally replace potyviral HC-Pro, condition virus susceptibility, and promote systemic infection and symptom development by suppressing antiviral RNA silencing through a mechanism that partially overlaps that of potyviral HC-Pro. The results presented provide new insight into the mechanism of silencing suppression by NSs and its effect on virus infection. PMID:29538326

  19. Tomato Spotted Wilt Virus NSs Protein Supports Infection and Systemic Movement of a Potyvirus and Is a Symptom Determinant.

    PubMed

    Garcia-Ruiz, Hernan; Gabriel Peralta, Sergio M; Harte-Maxwell, Patricia A

    2018-03-14

    Plant viruses are inducers and targets of antiviral RNA silencing. To condition susceptibility, most plant viruses encode silencing suppressor proteins that interfere with antiviral RNA silencing. The NSs protein is an RNA silencing suppressor in orthotospoviruses, such as the tomato spotted wilt virus (TSWV). The mechanism of RNA silencing suppression by NSs and its role in virus infection and movement are poorly understood. Here, we cloned and tagged TSWV NSs and expressed it from a GFP-tagged turnip mosaic virus (TuMV-GFP) carrying either a wild-type or suppressor-deficient (AS9) helper component proteinase (HC-Pro). When expressed in cis, NSs restored pathogenicity and promoted systemic infection of suppressor-deficient TuMV-AS9-GFP in Nicotiana benthamiana and Arabidopsis thaliana . Inactivating mutations were introduced in NSs RNA-binding domain one. A genetic analysis with active and suppressor-deficient NSs, in combination with wild-type and mutant plants lacking essential components of the RNA silencing machinery, showed that the NSs insert is stable when expressed from a potyvirus. NSs can functionally replace potyviral HC-Pro, condition virus susceptibility, and promote systemic infection and symptom development by suppressing antiviral RNA silencing through a mechanism that partially overlaps that of potyviral HC-Pro. The results presented provide new insight into the mechanism of silencing suppression by NSs and its effect on virus infection.

  20. Expression of the human blood coagulation protein factor XIIIa in Saccharomyces cerevisiae: dependence of the expression levels from host-vector systems and medium conditions.

    PubMed

    Bröker, M; Bäuml, O; Göttig, A; Ochs, J; Bodenbenner, M; Amann, E

    1991-03-01

    The human blood coagulation protein Factor XIIIa (FXIIIa) was expressed in Saccharomyces cerevisiae employing Escherichia coli-yeast shuttle vectors based on a 2-mu plasmid. Several factors affecting high production yield of recombinant FXIIIa were analysed. The use of the regulatable GAL-CYC1 hybrid promoter resulted in higher FXIIIa expression when compared with the constitutive ADCI promoter. Screening for suitable yeast strains for expression of FXIIIa under the transcriptional control of the GAL-CYC1 hybrid promoter revealed a broad spectrum of productivity. No obvious correlation between the expression rate and the genetic markers of the strains could be identified. The medium composition markedly influenced the FXIIIa expression rates. The expression of FXIIIa was strictly regulated by the carbon source. Glucose as the only sugar and energy source repressed the synthesis of FXIIIa, whereas addition of galactose induced FXIIIa expression. Special feeding schemes resulted in a productivity of up to 100 mg FXIIIa/l in shake flasks.

  1. Karrikin-KAI2 signalling provides Arabidopsis seeds with tolerance to abiotic stress and inhibits germination under conditions unfavourable to seedling establishment.

    PubMed

    Wang, Lu; Waters, Mark T; Smith, Steven M

    2018-07-01

    The control of seed germination in response to environmental conditions is important for plant success. We investigated the role of the karrikin receptor KARRIKIN INSENSITIVE2 (KAI2) in the response of Arabidopsis seeds to osmotic stress, salinity and high temperature. Germination of the kai2 mutant was examined in response to NaCl, mannitol and elevated temperature. The effect of karrikin on germination of wild-type seeds, hypocotyl elongation and the expression of karrikin-responsive genes was also examined in response to such stresses. The kai2 seeds germinated less readily than wild-type seeds and germination was more sensitive to inhibition by abiotic stress. Karrikin-induced KAI2 signalling stimulated germination of wild-type seeds under favourable conditions, but, surprisingly, inhibited germination in the presence of osmolytes or at elevated temperature. By contrast, GA stimulated germination of wild-type seeds and mutants under all conditions. Karrikin induced expression of DLK2 and KUF1 genes and inhibited hypocotyl elongation independently of osmotic stress. Under mild osmotic stress, karrikin enhanced expression of DREB2A, WRKY33 and ERF5 genes, but not ABA signalling genes. Thus, the karrikin-KAI2 signalling system can protect against abiotic stress, first by providing stress tolerance, and second by inhibiting germination under conditions unfavourable to seedling establishment. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  2. Serotonin 1A receptor (5-HT1A) of the sea lamprey: cDNA cloning and expression in the central nervous system.

    PubMed

    Cornide-Petronio, María Eugenia; Anadón, Ramón; Barreiro-Iglesias, Antón; Rodicio, María Celina

    2013-09-01

    Serotonergic cells are among the earliest neurons to be born in the developing central nervous system and serotonin is known to regulate the development of the nervous system. One of the major targets of the activity of serotonergic cells is the serotonin 1A receptor (5-HT1A), an ancestral archetypical serotonin receptor. In this study, we cloned and characterized the 3D structure of the sea lamprey 5-HT1A, and studied the expression of its transcript in the central nervous system by means of in situ hybridization. In phylogenetic analyses, the sea lamprey 5-HT1A sequence clustered together with 5-HT1A sequences of vertebrates and emerged as an outgroup to all gnathostome sequences. In situ hybridization analysis during prolarval, larval and adult stages showed a widespread expression of the lamprey 5-ht1a transcript. In P1 prolarvae 5-ht1a mRNA expression was observed in diencephalic nuclei, the rhombencephalon and rostral spinal cord. At P2 prolarval stage the 5-ht1a expression extended to other brain areas including telencephalic regions. 5-ht1a expression in larvae was observed throughout almost all the main brain regions with the strongest expression in the olfactory bulbs, lateral pallium, striatum, preoptic region, habenula, prethalamus, thalamus, pretectum, hypothalamus, rhombencephalic reticular area, dorsal column nucleus and rostral spinal cord. In adults, the 5-ht1a transcript was also observed in cells of the subcommissural organ. Comparison of the expression of 5-ht1a between the sea lamprey and other vertebrates reveals a conserved pattern in most of the brain regions, likely reflecting the ancestral vertebrate condition.

  3. The gut in iron homeostasis: role of HIF-2 under normal and pathological conditions

    PubMed Central

    Mastrogiannaki, Maria; Matak, Pavle

    2013-01-01

    Although earlier, seminal studies demonstrated that the gut per se has the intrinsic ability to regulate the rates of iron absorption, the spotlight in the past decade has been placed on the systemic regulation of iron homeostasis by the hepatic hormone hepcidin and the molecular mechanisms that regulate its expression. Recently, however, attention has returned to the gut based on the finding that hypoxia inducible factor-2 (HIF-2α) regulates the expression of key genes that contribute to iron absorption. Here we review the current understanding of the molecular mechanisms that regulate iron homeostasis in the gut by focusing on the role of HIF-2 under physiological steady-state conditions and in the pathogenesis of iron-related diseases. We also discuss implications for adapting HIF-2–based therapeutic strategies in iron-related pathological conditions. PMID:23678007

  4. MicroRNAs regulate the main events in rice drought stress response by manipulating the water supply to shoots.

    PubMed

    Fard, Ehsan Mohseni; Bakhshi, Behnam; Farsi, Mohammad; Kakhki, Amin Mirshamsi; Nikpay, Nava; Ebrahimi, Mohammad Ali; Mardi, Mohsen; Salekdeh, Ghasem Hosseini

    2017-10-24

    MicroRNAs (miRNAs) are small endogenous regulatory RNAs that are involved in a variety of biological processes related to proliferation, development, and response to biotic and abiotic stresses. miRNA profiles of rice (Oryza sativa L. cv. IR64.) leaves in a partial root zone drying (PRD) system were analysed using a high-throughput sequencing approach to identify miRNAs associated with drought signalling. The treatments performed in this study were as follows: well-watered ("wet" roots, WW), wherein both halves of the pot were watered daily; drought ("dry" roots, DD), wherein water was withheld from both halves of the pot; and well-watered/drought ("wet" and "dry" roots, WD), wherein one half of each pot was watered daily, the same as in WW, and water was withheld from the other part, the same as in DD. High-throughput sequencing enabled us to detect novel miRNAs and study the differential expression of known miRNAs. A total of 209 novel miRNAs were detected in this study. Differential miRNA profiling of the DD, WD and WW conditions showed differential expression of 159 miRNAs, among which 83, 44 and 32 miRNAs showed differential expression under both DD and WD conditions. The detection of putative targets of the differentially expressed miRNAs and investigation of their functions showed that most of these genes encode transcription factors involved in growth and development, leaf morphology, regulation of hormonal homeostasis, and stress response. The most important differences between the DD and WD conditions involved regulation of the levels of hormones such as auxin, cytokinin, abscisic acid, and jasmonic acid and also regulation of phosphor homeostasis. Overall, differentially expressed miRNAs under WD conditions were found to differ from those under DD conditions, with such differences playing a role in adaptation and inducing the normal condition. The mechanisms involved in regulating hormonal homeostasis and involved in energy production and consumption were found to be the most important regulatory pathways distinguishing the DD and WD conditions.

  5. Production of membrane proteins without cells or detergents.

    PubMed

    Rajesh, Sundaresan; Knowles, Timothy; Overduin, Michael

    2011-04-30

    The production of membrane proteins in cellular systems is besieged by several problems due to their hydrophobic nature which often causes misfolding, protein aggregation and cytotoxicity, resulting in poor yields of stable proteins. Cell-free expression has emerged as one of the most versatile alternatives for circumventing these obstacles by producing membrane proteins directly into designed hydrophobic environments. Efficient optimisation of expression and solubilisation conditions using a variety of detergents, membrane mimetics and lipids has yielded structurally and functionally intact membrane proteins, with yields several fold above the levels possible from cell-based systems. Here we review recently developed techniques available to produce functional membrane proteins, and discuss amphipols, nanodisc and styrene maleic acid lipid particle (SMALP) technologies that can be exploited alongside cell-free expression of membrane proteins. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Temporal Differences in MicroRNA Expression Patterns in Astrocytes and Neurons after Ischemic Injury

    PubMed Central

    Ziu, Mateo; Fletcher, Lauren; Rana, Shushan; Jimenez, David F.; Digicaylioglu, Murat

    2011-01-01

    MicroRNAs (miRNAs) are small, non-protein-coding RNA molecules that modulate gene translation. Their expression is altered in many central nervous system (CNS) injuries suggesting a role in the cellular response to stress. Current studies in brain tissue have not yet described the cell-specific temporal miRNA expression patterns following ischemic injury. In this study, we analyzed the expression alterations of a set of miRNAs in neurons and astrocytes subjected to 60 minutes of ischemia and collected at different time-points following this injury. To mimic ischemic conditions and reperfusion in vitro, cortical primary neuronal and astrocytic cultures prepared from fetal rats were first placed in oxygen and glucose deprived (OGD) medium for 60 minutes, followed by their transfer into normoxic pre-conditioned medium. Total RNA was extracted at different time-points after the termination of the ischemic insult and the expression levels of miRNAs were measured. In neurons exposed to OGD, expression of miR-29b was upregulated 2-fold within 6 h and up to 4-fold at 24 h post-OGD, whereas induction of miR-21 was upregulated 2-fold after 24 h when compared to expression in neurons under normoxic conditions. In contrast, in astrocytes, miR-29b and miR-21 were upregulated only after 12 h. MiR-30b, 107, and 137 showed expression alteration in astrocytes, but not in neurons. Furthermore, we show that expression of miR-29b was significantly decreased in neurons exposed to Insulin-Like Growth Factor I (IGF-I), a well documented neuroprotectant in ischemic models. Our study indicates that miRNAs expression is altered in neurons and astrocytes after ischemic injury. Furthermore, we found that following OGD, specific miRNAs have unique cell-specific temporal expression patterns in CNS. Therefore the specific role of each miRNA in different intracellular processes in ischemic brain and the relevance of their temporal and spatial expression patterns warrant further investigation that may lead to novel strategies for therapeutic interventions. PMID:21373187

  7. Real-time monitoring of artemin in vivo chaperone activity using luciferase as an intracellular reporter.

    PubMed

    Takalloo, Zeinab; Sajedi, Reza H; Hosseinkhani, Saman; Asghari, S Mohsen

    2016-11-15

    Artemin is an abundant thermostable protein in Artemia encysted embryos and considered as a stress protein, as its highly regulated expression is associated with stress resistance. Artemin cDNA was previously isolated and cloned from Artemia urmiana and artemin was found as an efficient molecular chaperone in vitro. Here, co-transformation of E. coli was performed with two expression vectors containing artemin and firefly luciferase for in vivo studies. The time-course of luciferase inactivation at low and elevated temperatures showed that luciferase was rapidly inactivated in control cells, but it was found that luciferase was protected significantly in artemin expressing cells. More interestingly, luciferase activity was completely regained in heat treated artemin expressing cells at room temperature. In addition, in both stress conditions, similar to residual activity of luciferase, cell viability in induced cultures over-expressing artemin was significantly higher than non-expressed artemin cells. It can be suggested that artemin confers impressive resistance in stressful conditions when introduced into E. coli cells, which is due to that it protects proteins against aggregation. Such luciferase co-expression system can be used as a real-time reporter to investigate the activity of chaperone proteins in vivo and provide a rapid and simple test for molecular chaperones. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Effects of drugs of abuse on the central neuropeptide Y system.

    PubMed

    Gonçalves, Joana; Martins, João; Baptista, Sofia; Ambrósio, António Francisco; Silva, Ana Paula

    2016-07-01

    Neuropeptide Y (NPY), which is widely expressed in the central nervous system is involved in several neuropathologies including addiction. Here we comprehensively and systematically review alterations on the central NPY system induced by several drugs. We report on the effects of psychostimulants [cocaine, amphetamine, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA) and nicotine], ethanol, and opioids on NPY protein levels and expression of different NPY receptors. Overall, expression and function of NPY and its receptors are changed under conditions of drug exposure, thus affecting several physiologic behaviors, such as feeding, stress and anxiety. Drugs of abuse differentially affect the components of the NPY system. For example methamphetamine and nicotine lead to a consistent increase in NPY mRNA and protein levels in different brain sites whereas ethanol and opioids decrease NPY mRNA and protein expression. Drug-induced alterations on the different NPY receptors show more complex regulation pattern. Manipulation of the NPY system can have opposing effects on reinforcing and addictive properties of drugs of abuse. NPY can produce pro-addictive effects (nicotine and heroin), but can also exert inhibitory effects on addictive behavior (AMPH, ethanol). Furthermore, NPY can act as a neuroprotective agent in chronically methamphetamine and MDMA-treated rodents. In conclusion, manipulation of the NPY system seems to be a potential target to counteract neural alterations, addiction-related behaviors and cognitive deficits induced by these drugs. © 2015 Society for the Study of Addiction.

  9. Utilizing high-throughput experimentation to enhance specific productivity of an E.coli T7 expression system by phosphate limitation.

    PubMed

    Huber, Robert; Roth, Simon; Rahmen, Natalie; Büchs, Jochen

    2011-03-17

    The specific productivity of cultivation processes can be optimized, amongst others, by using genetic engineering of strains, choice of suitable host/vector systems or process optimization (e.g. choosing the right induction time). A further possibility is to reduce biomass buildup in favor of an enhanced product formation, e.g. by limiting secondary substrates in the medium, such as phosphate. However, with conventional techniques (e.g. small scale cultivations in shake flasks), it is very tedious to establish optimal conditions for cell growth and protein expression, as the start of protein expression (induction time) and the degree of phosphate limitation have to be determined in numerous concerted, manually conducted experiments. We investigated the effect of different induction times and a concurrent phosphate limitation on the specific productivity of the T7 expression system E.coli BL21(DE3) pRhotHi-2-EcFbFP, which produces the model fluorescence protein EcFbFP upon induction. Therefore, specific online-monitoring tools for small scale cultivations (RAMOS, BioLector) as well as a novel cultivation platform (Robo-Lector) were used for rapid process optimization. The RAMOS system monitored the oxygen transfer rate in shake flasks, whereas the BioLector device allowed to monitor microbial growth and the production of EcFbFP in microtiter plates. The Robo-Lector is a combination of a BioLector and a pipetting robot and can conduct high-throughput experiments fully automated. By using these tools, it was possible to determine the optimal induction time and to increase the specific productivity for EcFbFP from 22% (for unlimited conditions) to 31% of total protein content of the E.coli cells via a phosphate limitation. The results revealed that a phosphate limitation at the right induction time was suitable to redirect the available cellular resources during cultivation to protein expression rather than in biomass production. To our knowledge, such an effect was shown for the first time for an IPTG-inducible expression system. Finally, this finding and the utilization of the introduced high-throughput experimentation approach could help to find new targets to further enhance the production capacity of recombinant E.coli-strains.

  10. Transdifferentiation of mouse adipose-derived stromal cells into acinar cells of the submandibular gland using a co-culture system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jingu; Park, Sangkyu; Roh, Sangho, E-mail: sangho@snu.ac.kr

    A loss of salivary gland function often occurs after radiation therapy in head and neck tumors, though secretion of saliva by the salivary glands is essential for the health and maintenance of the oral environment. Transplantation of salivary acinar cells (ACs), in part, may overcome the side effects of therapy. Here we directly differentiated mouse adipose-derived stromal cells (ADSCs) into ACs using a co-culture system. Multipotent ADSCs can be easily collected from stromal vascular fractions of adipose tissues. The isolated ADSCs showed positive expression of markers such as integrin beta-1 (CD29), cell surface glycoprotein (CD44), endoglin (CD105), and Nanog. Themore » cells were able to differentiate into adipocytes, osteoblasts, and neural-like cells after 14 days in culture. ADSCs at passage 2 were co-cultured with mouse ACs in AC culture medium using the double-chamber (co-culture system) to avoid mixing the cell types. The ADSCs in this co-culture system expressed markers of ACs, such as α-amylases and aquaporin5, in both mRNA and protein. ADSCs cultured in AC-conditioned medium also expressed AC markers. Cellular proliferation and senescence analyses demonstrated that cells in the co-culture group showed lower senescence and a higher proliferation rate than the AC-conditioned medium group at Days 14 and 21. The results above imply direct conversion of ADSCs into ACs under the co-culture system; therefore, ADSCs may be a stem cell source for the therapy for salivary gland damage. - Highlights: • ADSCs could transdifferentiate into acinar cells (ACs) using ACs co-culture (CCA). • Transdifferentiated ADSCs expressed ACs markers such as α-amylase and aquaporin5. • High proliferation and low senescence were presented in CCA at Day 14. • Transdifferentiation of ADSCs into ACs using CCA may be an appropriate method for cell-based therapy.« less

  11. Individual differences in automatic emotion regulation affect the asymmetry of the LPP component.

    PubMed

    Zhang, Jing; Zhou, Renlai

    2014-01-01

    The main goal of this study was to investigate how automatic emotion regulation altered the hemispheric asymmetry of ERPs elicited by emotion processing. We examined the effect of individual differences in automatic emotion regulation on the late positive potential (LPP) when participants were viewing blocks of positive high arousal, positive low arousal, negative high arousal and negative low arousal pictures from International affect picture system (IAPS). Two participant groups were categorized by the Emotion Regulation-Implicit Association Test which has been used in previous research to identify two groups of participants with automatic emotion control and with automatic emotion express. The main finding was that automatic emotion express group showed a right dominance of the LPP component at posterior electrodes, especially in high arousal conditions. But no right dominance of the LPP component was observed for automatic emotion control group. We also found the group with automatic emotion control showed no differences in the right posterior LPP amplitude between high- and low-arousal emotion conditions, while the participants with automatic emotion express showed larger LPP amplitude in the right posterior in high-arousal conditions compared to low-arousal conditions. This result suggested that AER (Automatic emotion regulation) modulated the hemispheric asymmetry of LPP on posterior electrodes and supported the right hemisphere hypothesis.

  12. Optimized paired-sgRNA/Cas9 cloning and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit.

    PubMed

    Wang, Zupeng; Wang, Shuaibin; Li, Dawei; Zhang, Qiong; Li, Li; Zhong, Caihong; Liu, Yifei; Huang, Hongwen

    2018-01-13

    Kiwifruit is an important fruit crop; however, technologies for its functional genomic and molecular improvement are limited. The clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system has been successfully applied to genetic improvement in many crops, but its editing capability is variable depending on the different combinations of the synthetic guide RNA (sgRNA) and Cas9 protein expression devices. Optimizing conditions for its use within a particular species is therefore needed to achieve highly efficient genome editing. In this study, we developed a new cloning strategy for generating paired-sgRNA/Cas9 vectors containing four sgRNAs targeting the kiwifruit phytoene desaturase gene (AcPDS). Comparing to the previous method of paired-sgRNA cloning, our strategy only requires the synthesis of two gRNA-containing primers which largely reduces the cost. We further compared efficiencies of paired-sgRNA/Cas9 vectors containing different sgRNA expression devices, including both the polycistronic tRNA-sgRNA cassette (PTG) and the traditional CRISPR expression cassette. We found the mutagenesis frequency of the PTG/Cas9 system was 10-fold higher than that of the CRISPR/Cas9 system, coinciding with the relative expressions of sgRNAs in two different expression cassettes. In particular, we identified large chromosomal fragment deletions induced by the paired-sgRNAs of the PTG/Cas9 system. Finally, as expected, we found both systems can successfully induce the albino phenotype of kiwifruit plantlets regenerated from the G418-resistance callus lines. We conclude that the PTG/Cas9 system is a more powerful system than the traditional CRISPR/Cas9 system for kiwifruit genome editing, which provides valuable clues for optimizing CRISPR/Cas9 editing system in other plants. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Conditioned associations and economic decision biases.

    PubMed

    Guitart-Masip, Marc; Talmi, Deborah; Dolan, Ray

    2010-10-15

    Humans show substantial deviation from rationality during economic decision making under uncertainty. A computational perspective suggests these deviations arise out of an interaction between distinct valuation systems in the brain. Here, we provide behavioural data showing that the incidental presentation of aversive and appetitive conditioned stimuli can alter subjects' preferences in an economic task, involving a choice between a safe or gamble option. These behavioural effects informed a model-based analysis of a functional magnetic resonance imaging (fMRI) experiment, involving an identical paradigm, where we demonstrate that this conditioned behavioral bias engages the amygdala, a brain structure associated with acquisition and expression of conditioned associations. Our findings suggest that a well known bias in human economic choice can arise from an influence of conditioned associations on goal-directed decision making, consistent with an architecture of choice that invokes distinct decision-making systems. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Involvement of the VDE homing endonuclease and rapamycin in regulation of the Saccharomyces cerevisiae GSH11 gene encoding the high affinity glutathione transporter.

    PubMed

    Miyake, Tsuyoshi; Hiraishi, Hiroyuki; Sammoto, Hiroyuki; Ono, Bun-Ichiro

    2003-10-10

    The Saccharomyces cerevisiae gene HGT1/GSH11 encodes the high affinity glutathione transporter and is repressed by cysteine added to the culture medium. It has been found previously that a 5'-upstream cis-element, CCGCCACAC, is responsible for regulating GSH11 expression and that several proteins bind to this element (Miyake, T., Kanayama, M., Sammoto, H., and Ono, B. (2002) Mol. Genet. Genomics 266, 1004-1011). In this report we present evidence that the most prominent of these proteins is VDE, known previously as the homing endonuclease encoded by VMA1. We show also that GSH11 is not expressed in a VDE-deleted strain and that inability to express the GSH11 of this strain is overcome by introduction of the coding region of VDE or the entire VMA1 gene. It is also found that VDE does not cut DNA in the vicinity of the GSH11 cis-element. Rapamycin, an inhibitor of the target of rapamycin (TOR) signal-transduction system, is found to enhance expression of GSH11 in a VDE-dependent manner under conditions of sulfur starvation. These results indicate that GSH11 is regulated by a system sensitive to sulfur starvation (presumably via cysteine depletion) and a more general system involving the nutritional starvation signal mediated by the TOR system. Both systems need to be operational (inhibition of TOR and sulfur starvation) for full expression of GSH11.

  15. Alpha-7 Nicotinic Receptors in Nervous System Disorders: From Function to Therapeutic Perspectives.

    PubMed

    De Jaco, Antonella; Bernardini, Laura; Rosati, Jessica; Tata, Ada Maria

    2017-01-01

    The α7 nicotinic receptor consists of identical subunits and is one of the most abundant acetylcholine receptors in the mammalian central nervous system. However its expression is also found in the peripheral nervous system as well as in the immune system and various peripheral tissues. Nicotinic Receptors: They are involved in the regulation of several activities ranging from excitatory neurotransmission, the modulation of the release of several neurotransmitters, regulation of neurite outgrowth, and even neuronal survival/death. Its expression is found in brain areas that underlie learning and memory, suggesting their involvement in regulating cognitive functions. The α7-nicotinic receptor has a strategic role during development in regulating molecular pathways activated during neurogenesis. Because of its pleiotropic effects, receptor dysfunction or dysregulated expression is found in pathophysiological conditions of the nervous system including neurodegenerative diseases and neurodevelopmental disorders. Here we review the physiological and pathological roles of alpha-7 nicotinic receptor in different nervous system disorders and the current therapeutic strategies developed to target selectively this receptor for potentiating or reducing its functions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. [Studies on fermentation conditions and purification of mutant human interleukin-2 expressed in Pichia pastoris].

    PubMed

    Liu, Yan; Su, Chang; Hu, Ying-He; Ouyang, Ke-Qing; Cai, Shao-Xi

    2005-05-01

    Interleukin-2 (IL-2) was initially isolated as a T cell growth factor and had been shown to direct the expansion and differentiation of several hematopoietic cell types. Clinical studies using IL-2 in the treatment of AIDS have been encouraging, due to its critical role as a proliferative signal for activated T-lymphocytes. IL-2 has also undergone trials in the treatment of several types of cancer, based on its stimulation of cytotoxic, antitumor cells. Today, human IL-2 is produced completely by genetically engineered method, and it has been proved that genetically engineered recombinant human IL-2 has almost the same function and clinical effect as wild IL-2. In the former study, recombinant human IL-2 usually comes from E. coli, in this paper the mutant IL-2 was successfully expressed and purified in Pichia pastoris for the first time. As a eukaryote, Pichia pastoris has many of the advantages of higher eukaryotic expression systems such as protein processing, protein folding, and posttranslational modification, while being as easy to manipulate as E. coli or Saccharomyces cerevisiae. It is faster, easier, and less expensive to use than other eukaryotic expression systems such as baculovirus or mammalian tissue culture, and generally gives higher expression level. Expression conditions of human mutant interleukin-2(the codon for cysteine-125 of human IL-2 with alanine; the codon for leucine-18 with methionine; the codon for leucine-19 with serine) in the recombinant Pichia pastoris strain were optimized via test of some factors such as the rate of aeration, the inductive duration, the initial pH and the concentration of methanol. The results from tests showed that the most important parameter for efficient expression of interleukin-2 in recombinant Pichia pastoris strain is adequate aeration during methanol induction, and the optimum inductive condition for interleukin-2 expression was: more than 80% aeration, 2 days for induction, the initial pH of 6.0, the final methanol concentration of 1.0%. With this condition, the expressed IL-2 was secreted into fermentation broth and reached a yield of 30%, approximately 200 mg/L. Expressed interleutin-2 (MvIL-2) was isolated and purified by centrifugation, millipore filtration to concentration, Econo-PacS strongly acidic cation exchanger cartridge and molecular sieve chromatography and the yield of MvIL-2 was 27%. MvIL-2 was purified to electrophoretic purity by SDS-PAGE and only one peak being loaded on HPLC. Purified MvIL-2 protein had stimulating activity similar to the wild type of IL-2 as assayed by IL-2-dependent CTLL-2 cells. However, the stability of MvIL-2 was superior than that of IL-2 at different temperatures. The activity of obtained MvIL-2 was 4 - 5 times of the wild type of IL-2, So MvIL-2 had an advantage over wild type of rhIL-2 in storage stability and activity.

  17. Game-Theoretic strategies for systems of components using product-form utilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S; Ma, Cheng-Yu; Hausken, K.

    Many critical infrastructures are composed of multiple systems of components which are correlated so that disruptions to one may propagate to others. We consider such infrastructures with correlations characterized in two ways: (i) an aggregate failure correlation function specifies the conditional failure probability of the infrastructure given the failure of an individual system, and (ii) a pairwise correlation function between two systems specifies the failure probability of one system given the failure of the other. We formulate a game for ensuring the resilience of the infrastructure, wherein the utility functions of the provider and attacker are products of an infrastructuremore » survival probability term and a cost term, both expressed in terms of the numbers of system components attacked and reinforced. The survival probabilities of individual systems satisfy first-order differential conditions that lead to simple Nash Equilibrium conditions. We then derive sensitivity functions that highlight the dependence of infrastructure resilience on the cost terms, correlation functions, and individual system survival probabilities. We apply these results to simplified models of distributed cloud computing and energy grid infrastructures.« less

  18. Establishment and culture optimization of a new type of pituitary immortalized cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokubu, Yuko; Asashima, Makoto; Life Science Center of TARA, The University of Tsukuba, Ibaraki-ken 305-8577

    The pituitary gland is a center of the endocrine system that controls homeostasis in an organism by secreting various hormones. The glandular anterior pituitary consists of five different cell types, each expressing specific hormones. However, their regulation and the appropriate conditions for their in vitro culture are not well defined. Here, we report the immortalization of mouse pituitary cells by introducing TERT, E6, and E7 transgenes. The immortalized cell lines mainly expressed a thyrotroph-specific thyroid stimulating hormone beta (Tshb). After optimization of the culture conditions, these immortalized cells proliferated and maintained morphological characteristics similar to those of primary pituitary cells undermore » sphere culture conditions in DMEM/F12 medium supplemented with N2, B27, basic FGF, and EGF. These cell lines responded to PKA or PKC pathway activators and induced the expression of Tshb mRNA. Moreover, transplantation of the immortalized cell line into subcutaneous regions and kidney capsules of mice further increased Tshb expression. These results suggest that immortalization of pituitary cells with TERT, E6, and E7 transgenes is a useful method for generating proliferating cells for the in vitro analysis of pituitary regulatory mechanisms. - Highlights: • Mouse pituitary cell lines were immortalized by introducing TERT, E6, and E7. • The immortalized cell lines mainly expressed thyroid stimulating hormone beta. • The cell lines responded to PKA or PKC pathway activators, and induced Tshb.« less

  19. High activity and stability of codon-optimized phosphoenolpyruvate carboxylase from Photobacterium profundum SS9 at low temperatures and its application for in vitro production of oxaloacetate.

    PubMed

    Park, Soohyun; Hong, Soohye; Pack, Seung Pil; Lee, Jinwon

    2014-02-01

    Phosphoenolpyruvate carboxylase (PEPC) of Photobacterium profundum SS9 can be expressed and purified using the Escherichia coli expression system. In this study, a codon-optimized PEPC gene (OPPP) was used to increase expression levels. We confirmed OPPP expression and purified it from extracts of recombinant E. coli SGJS117 harboring the OPPP gene. The purified OPPP showed a specific activity value of 80.3 U/mg protein. The OPPP was stable under low temperature (5-30 °C) and weakly basic conditions (pH 8.5-10). The enzymatic ability of OPPP was investigated for in vitro production of oxaloacetate using phosphoenolpyruvate (PEP) and bicarbonate. Only samples containing the OPPP, PEP, and bicarbonate resulted in oxaloacetate production. OPPP production system using E. coli could be a platform technology to produce high yields of heterogeneous gene and provide the PEPC enzyme, which has high enzyme activity.

  20. Chlorella species as hosts for genetic engineering and expression of heterologous proteins: Progress, challenge and perspective.

    PubMed

    Yang, Bo; Liu, Jin; Jiang, Yue; Chen, Feng

    2016-10-01

    The species of Chlorella represent a highly specialized group of green microalgae that can produce high levels of protein. Many Chlorella strains can grow rapidly and achieve high cell density under controlled conditions and are thus considered to be promising protein sources. Many advances in the genetic engineering of Chlorella have occurred in recent years, with significant developments in successful expression of heterologous proteins for various applications. Nevertheless, a lot of obstacles remain to be addressed, and a sophisticated and stable Chlorella expression system has yet to emerge. This review provides a brief summary of current knowledge on Chlorella and an overview of recent progress in the genetic engineering of Chlorella, and highlights the advances in the development of a genetic toolbox of Chlorella for heterologous protein expression. Research directions to further exploit the Chlorella expression system with respect to both challenges and perspectives are also discussed. This paper serves as a comprehensive literature review for the Chlorella community and will provide valuable insights into future exploration of Chlorella as a promising host for heterologous protein expression. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Solar energy system economic evaluation for Seeco Lincoln, Lincoln, Nebraska. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-09-01

    The economic analysis of the solar energy system that was installed at Lincoln, Nebraska is developed for this and four other sites typical of a wide range of environmental and economic conditions in the continental United States. This analysis is accomplished based on the technical and economic models in the f chart design procedure with inputs based on the characteristics of the installed system and local conditions. The results are expressed in terms of the economic parameters of present worth of system cost over projected twenty year life: life cycle savings, year of positive savings and year of payback formore » the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated.« less

  2. Solar energy system economic evaluation: IBM System 2, Togus, Maine

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The economic analysis of the solar energy system, is developed for Torgus and four other sites typical of a wide range of environmental and economic conditions in the continental United States. This analysis is accomplished based on the technical and economic models in the f-chart design procedure with inputs taken on the characteristics of the installed system and local conditions. The results are expressed in terms of the economic parameters of present worth of system cost over a projected twenty year life, life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated. Results demonstrate that the solar energy system is economically viable at all of the five sites for which the analysis was conducted.

  3. Hierarchical Recognition Scheme for Human Facial Expression Recognition Systems

    PubMed Central

    Siddiqi, Muhammad Hameed; Lee, Sungyoung; Lee, Young-Koo; Khan, Adil Mehmood; Truc, Phan Tran Ho

    2013-01-01

    Over the last decade, human facial expressions recognition (FER) has emerged as an important research area. Several factors make FER a challenging research problem. These include varying light conditions in training and test images; need for automatic and accurate face detection before feature extraction; and high similarity among different expressions that makes it difficult to distinguish these expressions with a high accuracy. This work implements a hierarchical linear discriminant analysis-based facial expressions recognition (HL-FER) system to tackle these problems. Unlike the previous systems, the HL-FER uses a pre-processing step to eliminate light effects, incorporates a new automatic face detection scheme, employs methods to extract both global and local features, and utilizes a HL-FER to overcome the problem of high similarity among different expressions. Unlike most of the previous works that were evaluated using a single dataset, the performance of the HL-FER is assessed using three publicly available datasets under three different experimental settings: n-fold cross validation based on subjects for each dataset separately; n-fold cross validation rule based on datasets; and, finally, a last set of experiments to assess the effectiveness of each module of the HL-FER separately. Weighted average recognition accuracy of 98.7% across three different datasets, using three classifiers, indicates the success of employing the HL-FER for human FER. PMID:24316568

  4. RILES, a novel method for temporal analysis of the in vivo regulation of miRNA expression

    PubMed Central

    Ezzine, Safia; Vassaux, Georges; Pitard, Bruno; Barteau, Benoit; Malinge, Jean-Marc; Midoux, Patrick; Pichon, Chantal; Baril, Patrick

    2013-01-01

    Novel methods are required to investigate the complexity of microRNA (miRNA) biology and particularly their dynamic regulation under physiopathological conditions. Herein, a novel plasmid-based RNAi-Inducible Luciferase Expression System (RILES) was engineered to monitor the activity of endogenous RNAi machinery. When RILES is transfected in a target cell, the miRNA of interest suppresses the expression of a transcriptional repressor and consequently switch-ON the expression of the luciferase reporter gene. Hence, miRNA expression in cells is signed by the emission of bioluminescence signals that can be monitored using standard bioluminescence equipment. We validated this approach by monitoring in mice the expression of myomiRs-133, −206 and −1 in skeletal muscles and miRNA-122 in liver. Bioluminescence experiments demonstrated robust qualitative and quantitative data that correlate with the miRNA expression pattern detected by quantitative RT-PCR (qPCR). We further demonstrated that the regulation of miRNA-206 expression during the development of muscular atrophy is individual-dependent, time-regulated and more complex than the information generated by qPCR. As RILES is simple and versatile, we believe that this methodology will contribute to a better understanding of miRNA biology and could serve as a rationale for the development of a novel generation of regulatable gene expression systems with potential therapeutic applications. PMID:24013565

  5. RILES, a novel method for temporal analysis of the in vivo regulation of miRNA expression.

    PubMed

    Ezzine, Safia; Vassaux, Georges; Pitard, Bruno; Barteau, Benoit; Malinge, Jean-Marc; Midoux, Patrick; Pichon, Chantal; Baril, Patrick

    2013-11-01

    Novel methods are required to investigate the complexity of microRNA (miRNA) biology and particularly their dynamic regulation under physiopathological conditions. Herein, a novel plasmid-based RNAi-Inducible Luciferase Expression System (RILES) was engineered to monitor the activity of endogenous RNAi machinery. When RILES is transfected in a target cell, the miRNA of interest suppresses the expression of a transcriptional repressor and consequently switch-ON the expression of the luciferase reporter gene. Hence, miRNA expression in cells is signed by the emission of bioluminescence signals that can be monitored using standard bioluminescence equipment. We validated this approach by monitoring in mice the expression of myomiRs-133, -206 and -1 in skeletal muscles and miRNA-122 in liver. Bioluminescence experiments demonstrated robust qualitative and quantitative data that correlate with the miRNA expression pattern detected by quantitative RT-PCR (qPCR). We further demonstrated that the regulation of miRNA-206 expression during the development of muscular atrophy is individual-dependent, time-regulated and more complex than the information generated by qPCR. As RILES is simple and versatile, we believe that this methodology will contribute to a better understanding of miRNA biology and could serve as a rationale for the development of a novel generation of regulatable gene expression systems with potential therapeutic applications.

  6. Alteration of the RANKL/RANK/OPG System in Periprosthetic Osteolysis with Septic Loosening.

    PubMed

    Wang, Long; Dai, Zixun; Xie, Jie; Liao, Hao; Lv, Cheng; Hu, Yihe

    2016-02-01

    The pathogenesis of periprosthetic osteolysis with septic loosening remains incompletely understood. The purpose of this study was to investigate whether expression of the RANKL/RANK/OPG system is altered in septic interface membranes (SIMs). Seventeen cases with a SIM, 26 cases with an aseptic interface membrane (AIM), and 12 cases with a normal synovium (NS) were assessed. Scanning and transmission electron microscopy (SEM and TEM, respectively) were used to observe the microscopic morphology of three tissue conditions. Differences in RANKL, RANK, and OPG expression at the mRNA level were assessed by real-time quantitative PCR, and differences at the protein level were assessed by immunohistochemical staining and Western blotting. SEM showed wear debris widely distributed on the AIM surface, and TEM showed Bacillus activity in the SIM. RANKL expression and the RANKL/OPG ratio were significantly increased in SIMs. Imbalance in the RANKL/RANK/OPG system is related to periprosthetic osteolysis with septic loosening but is not the only possible pathogenic mechanism.

  7. Overview of the Purification of Recombinant Proteins

    PubMed Central

    Wingfield, Paul T.

    2015-01-01

    When the first version of this unit was written in 1995 protein purification of recombinant proteins was based on a variety of standard chromatographic methods and approaches many of which were described and mentioned in this unit and elsewhere in the book. In the interim there has been a shift towards an almost universal usage of the affinity or fusion tag. This may not be the case for biotechnology manufacture where affinity tags can complicate producing proteins under regulatory conditions. Regardless of the protein expression system, questions are asked as to which and how many affinity tags to use, where to attach them in the protein and whether to engineer a self cleavage system or simply leave them on. We will briefly address some of these issues. Also although this overview focuses on E.coli, protein expression and purification from the other commonly used expression systems are mentioned and apart from cell breakage methods, the protein purification methods and strategies are essentially the same. PMID:25829302

  8. Guidelines for the successful generation of protein–ligand complex crystals

    PubMed Central

    Müller, Ilka

    2017-01-01

    With continuous technical improvements at synchrotron facilities, data-collection rates have increased dramatically. This makes it possible to collect diffraction data for hundreds of protein–ligand complexes within a day, provided that a suitable crystal system is at hand. However, developing a suitable crystal system can prove challenging, exceeding the timescale of data collection by several orders of magnitude. Firstly, a useful crystallization construct of the protein of interest needs to be chosen and its expression and purification optimized, before screening for suitable crystallization and soaking conditions can start. This article reviews recent publications analysing large data sets of crystallization trials, with the aim of identifying factors that do or do not make a good crystallization construct, and gives guidance in the design of an expression construct. It provides an overview of common protein-expression systems, addresses how ligand binding can be both help and hindrance for protein purification, and describes ligand co-crystallization and soaking, with an emphasis on troubleshooting. PMID:28177304

  9. Overview of the purification of recombinant proteins.

    PubMed

    Wingfield, Paul T

    2015-04-01

    When the first version of this unit was written in 1995, protein purification of recombinant proteins was based on a variety of standard chromatographic methods and approaches, many of which were described and mentioned throughout Current Protocols in Protein Science. In the interim, there has been a shift toward an almost universal usage of the affinity or fusion tag. This may not be the case for biotechnology manufacture where affinity tags can complicate producing proteins under regulatory conditions. Regardless of the protein expression system, questions are asked as to which and how many affinity tags to use, where to attach them in the protein, and whether to engineer a self-cleavage system or simply leave them on. We will briefly address some of these issues. Also, although this overview focuses on E.coli, protein expression and purification, other commonly used expression systems are mentioned and, apart from cell-breakage methods, protein purification methods and strategies are essentially the same. Copyright © 2015 John Wiley & Sons, Inc.

  10. A systems approach to model the relationship between aflatoxin gene cluster expression, environmental factors, growth and toxin production by Aspergillus flavus

    PubMed Central

    Abdel-Hadi, Ahmed; Schmidt-Heydt, Markus; Parra, Roberto; Geisen, Rolf; Magan, Naresh

    2012-01-01

    A microarray analysis was used to examine the effect of combinations of water activity (aw, 0.995–0.90) and temperature (20–42°C) on the activation of aflatoxin biosynthetic genes (30 genes) in Aspergillus flavus grown on a conducive YES (20 g yeast extract, 150 g sucrose, 1 g MgSO4·7H2O) medium. The relative expression of 10 key genes (aflF, aflD, aflE, aflM, aflO, aflP, aflQ, aflX, aflR and aflS) in the biosynthetic pathway was examined in relation to different environmental factors and phenotypic aflatoxin B1 (AFB1) production. These data, plus data on relative growth rates and AFB1 production under different aw × temperature conditions were used to develop a mixed-growth-associated product formation model. The gene expression data were normalized and then used as a linear combination of the data for all 10 genes and combined with the physical model. This was used to relate gene expression to aw and temperature conditions to predict AFB1 production. The relationship between the observed AFB1 production provided a good linear regression fit to the predicted production based in the model. The model was then validated by examining datasets outside the model fitting conditions used (37°C, 40°C and different aw levels). The relationship between structural genes (aflD, aflM) in the biosynthetic pathway and the regulatory genes (aflS, aflJ) was examined in relation to aw and temperature by developing ternary diagrams of relative expression. These findings are important in developing a more integrated systems approach by combining gene expression, ecophysiological influences and growth data to predict mycotoxin production. This could help in developing a more targeted approach to develop prevention strategies to control such carcinogenic natural metabolites that are prevalent in many staple food products. The model could also be used to predict the impact of climate change on toxin production. PMID:21880616

  11. Fibroblasts maintained in 3 dimensions show a better differentiation state and higher sensitivity to estrogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montani, Claudia; Steimberg, Nathalie; Boniotti, Jennifer

    2014-11-01

    Cell differentiation and response to hormonal signals were studied in a 3D environment on an in-house generated mouse fibroblast cell line expressing a reporter gene under the control of estrogen responsive sequences (EREs). 3D cell culture conditions were obtained in a Rotary Cell Culture System; (RCCS™), a microgravity based bioreactor that promotes the aggregation of cells into multicellular spheroids (MCS). In this bioreactor the cells maintained a better differentiated phenotype and more closely resembled in vivo tissue. The RCCS™ cultured fibroblasts showed higher expression of genes regulating cell assembly, differentiation and hormonal functions. Microarray analysis showed that genes related tomore » cell cycle, proliferation, cytoskeleton, migration, adhesion and motility were all down-regulated in 3D as compared to 2D conditions, as well as oncogene expression and inflammatory cytokines. Controlled remodeling of ECM, which is an essential aspect of cell organization, homeostasis and tissue was affected by the culture method as assessed by immunolocalization of β-tubulin. Markers of cell organization, homeostasis and tissue repair, metalloproteinase 2 (MMP2) and its physiological inhibitor (TIMP4) changed expression in association with the relative formation of cell aggregates. The fibroblasts cultured in the RCCS™ maintain a better responsiveness to estrogens, measured as expression of ERα and regulation of an ERE-dependent reporter and of the endogenous target genes CBP, Rarb, MMP1 and Dbp. Our data highlight the interest of this 3D culture model for its potential application in the field of cell response to hormonal signals and the pharmaco-toxicological analyses of chemicals and natural molecules endowed of estrogenic potential. - Highlights: • We here characterized the first cell line derived from an estrogen reporter mouse. • In the RCCS cells express an immortalized behavior but not a transformed phenotype. • The RCCS provides a system for maintaining cells in more physiological conditions. • RCCS-cultured fibroblasts showed higher hormonal sensitivity to estradiol. • This bioreactor is a novel 3D model to be applied to pharmacotoxicological studies.« less

  12. Overproduction of alpha chains provides a proton-insensitive component to the bluefish hemoglobin system.

    PubMed

    Bonaventura, Celia; Godette, Gerald; Stevens, Robert; Brenowitz, Michael; Henkens, Robert

    2005-12-09

    Expression of alpha and beta chains and their post-translational assembly into alpha(2)beta(2) tetramers is fundamental to the formation and function of most vertebrate hemoglobins. There is a strong evolutionary bias that favors expression of equal amounts of the two types of chains, because cooperativity, pH sensitivity, and anionic control of function occurs only for the alpha(2)beta(2) tetramers. Remarkably, an over-production of alpha chains, as in the pathological condition known as beta thalassemia in humans, is adaptive rather than pathological in the bluefish hemoglobin system. The thalassemia of the bluefish is a novel means of providing for oxygen uptake and delivery when low pH conditions incapacitate the highly pH-sensitive Root effect hemoglobins of the fish. Although fish often have pH-insensitive along with highly pH-sensitive hemoglobins, having pH-insensitive alpha chain monomers in circulation is an unusual structural variation. The role of bluefish alpha chains in oxygen transport is enabled by their remarkably lower oxygen affinity relative to human alpha chains. This is the first reported case of a thalassemic condition that is maintained in a species as an adaptive advantage.

  13. The generalized pole assignment problem. [dynamic output feedback problems

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1979-01-01

    Two dynamic output feedback problems for a linear, strictly proper system are considered, along with their interrelationships. The problems are formulated in the frequency domain and investigated in terms of linear equations over rings of polynomials. Necessary and sufficient conditions are expressed using genericity.

  14. Pregnancy-Induced Changes in Systemic Gene Expression among Healthy Women and Women with Rheumatoid Arthritis

    PubMed Central

    Mittal, Anuradha; Pachter, Lior; Nelson, J. Lee; Smed, Mette Kiel; Gildengorin, Virginia L.; Zoffmann, Vibeke; Hetland, Merete Lund; Jewell, Nicholas P.; Olsen, Jørn; Jawaheer, Damini

    2015-01-01

    Background Pregnancy induces drastic biological changes systemically, and has a beneficial effect on some autoimmune conditions such as rheumatoid arthritis (RA). However, specific systemic changes that occur as a result of pregnancy have not been thoroughly examined in healthy women or women with RA. The goal of this study was to identify genes with expression patterns associated with pregnancy, compared to pre-pregnancy as baseline and determine whether those associations are modified by presence of RA. Results In our RNA sequencing (RNA-seq) dataset from 5 healthy women and 20 women with RA, normalized expression levels of 4,710 genes were significantly associated with pregnancy status (pre-pregnancy, first, second and third trimesters) over time, irrespective of presence of RA (False Discovery Rate (FDR)-adjusted p value<0.05). These genes were enriched in pathways spanning multiple systems, as would be expected during pregnancy. A subset of these genes (n = 256) showed greater than two-fold change in expression during pregnancy compared to baseline levels, with distinct temporal trends through pregnancy. Another 98 genes involved in various biological processes including immune regulation exhibited expression patterns that were differentially associated with pregnancy in the presence or absence of RA. Conclusions Our findings support the hypothesis that the maternal immune system plays an active role during pregnancy, and also provide insight into other systemic changes that occur in the maternal transcriptome during pregnancy compared to the pre-pregnancy state. Only a small proportion of genes modulated by pregnancy were influenced by presence of RA in our data. PMID:26683605

  15. Pregnancy-Induced Changes in Systemic Gene Expression among Healthy Women and Women with Rheumatoid Arthritis.

    PubMed

    Mittal, Anuradha; Pachter, Lior; Nelson, J Lee; Kjærgaard, Hanne; Smed, Mette Kiel; Gildengorin, Virginia L; Zoffmann, Vibeke; Hetland, Merete Lund; Jewell, Nicholas P; Olsen, Jørn; Jawaheer, Damini

    2015-01-01

    Pregnancy induces drastic biological changes systemically, and has a beneficial effect on some autoimmune conditions such as rheumatoid arthritis (RA). However, specific systemic changes that occur as a result of pregnancy have not been thoroughly examined in healthy women or women with RA. The goal of this study was to identify genes with expression patterns associated with pregnancy, compared to pre-pregnancy as baseline and determine whether those associations are modified by presence of RA. In our RNA sequencing (RNA-seq) dataset from 5 healthy women and 20 women with RA, normalized expression levels of 4,710 genes were significantly associated with pregnancy status (pre-pregnancy, first, second and third trimesters) over time, irrespective of presence of RA (False Discovery Rate (FDR)-adjusted p value<0.05). These genes were enriched in pathways spanning multiple systems, as would be expected during pregnancy. A subset of these genes (n = 256) showed greater than two-fold change in expression during pregnancy compared to baseline levels, with distinct temporal trends through pregnancy. Another 98 genes involved in various biological processes including immune regulation exhibited expression patterns that were differentially associated with pregnancy in the presence or absence of RA. Our findings support the hypothesis that the maternal immune system plays an active role during pregnancy, and also provide insight into other systemic changes that occur in the maternal transcriptome during pregnancy compared to the pre-pregnancy state. Only a small proportion of genes modulated by pregnancy were influenced by presence of RA in our data.

  16. Derivation of Markov processes that violate detailed balance

    NASA Astrophysics Data System (ADS)

    Lee, Julian

    2018-03-01

    Time-reversal symmetry of the microscopic laws dictates that the equilibrium distribution of a stochastic process must obey the condition of detailed balance. However, cyclic Markov processes that do not admit equilibrium distributions with detailed balance are often used to model systems driven out of equilibrium by external agents. I show that for a Markov model without detailed balance, an extended Markov model can be constructed, which explicitly includes the degrees of freedom for the driving agent and satisfies the detailed balance condition. The original cyclic Markov model for the driven system is then recovered as an approximation at early times by summing over the degrees of freedom for the driving agent. I also show that the widely accepted expression for the entropy production in a cyclic Markov model is actually a time derivative of an entropy component in the extended model. Further, I present an analytic expression for the entropy component that is hidden in the cyclic Markov model.

  17. Improving the Safety of T Cell Therapies using an Inducible Caspase-9 Gene

    PubMed Central

    Zhou, Xiaoou; Brenner, Malcolm K.

    2016-01-01

    Adoptive transfer of T cells can be an effective anti-cancer treatment. However, uncontrolled or unpredictable immediate or persistent toxicities are a source of concern. The ability to conditionally eliminate aberrant cells in vivo therefore is becoming a critical step for the successful translation of this approach to the clinic. We review the evolution of safety systems, focusing on a suicide switch that can be expressed stably and efficiently in human T cells without impairing phenotype, function or antigen specificity. This system is based on the fusion of human caspase 9 to a modified human FK-binding protein, allowing conditional dimerization in the presence of an otherwise bioinert small molecule drug. When exposed to the synthetic dimerizing drug, the inducible caspase 9 (iC9) becomes activated and leads to the rapid apoptosis of cells expressing this construct. We have demonstrated the clinical feasibility and efficacy of this approach after haploidentical hematopoietic stem cell transplant (haplo-HSCT). Here we review the benefits and limitations of the approach. PMID:27473568

  18. Network Analysis of Rodent Transcriptomes in Spaceflight

    NASA Technical Reports Server (NTRS)

    Ramachandran, Maya; Fogle, Homer; Costes, Sylvain

    2017-01-01

    Network analysis methods leverage prior knowledge of cellular systems and the statistical and conceptual relationships between analyte measurements to determine gene connectivity. Correlation and conditional metrics are used to infer a network topology and provide a systems-level context for cellular responses. Integration across multiple experimental conditions and omics domains can reveal the regulatory mechanisms that underlie gene expression. GeneLab has assembled rich multi-omic (transcriptomics, proteomics, epigenomics, and epitranscriptomics) datasets for multiple murine tissues from the Rodent Research 1 (RR-1) experiment. RR-1 assesses the impact of 37 days of spaceflight on gene expression across a variety of tissue types, such as adrenal glands, quadriceps, gastrocnemius, tibalius anterior, extensor digitorum longus, soleus, eye, and kidney. Network analysis is particularly useful for RR-1 -omics datasets because it reinforces subtle relationships that may be overlooked in isolated analyses and subdues confounding factors. Our objective is to use network analysis to determine potential target nodes for therapeutic intervention and identify similarities with existing disease models. Multiple network algorithms are used for a higher confidence consensus.

  19. Preservation of protein expression systems at elevated temperatures for portable therapeutic production

    PubMed Central

    Bessling, Seneca; Thielen, Peter; Zhang, Sherry; Wolfe, Joshua

    2017-01-01

    Many biotechnology capabilities are limited by stringent storage needs of reagents, largely prohibiting use outside of specialized laboratories. Focusing on a large class of protein-based biotechnology applications, we address this issue by developing a method for preserving cell-free protein expression systems for months above room temperature. Our approach realizes unprecedented long-term stability at elevated temperatures by leveraging the sugar alcohol trehalose, a simple, low-cost, open-air drying step, and strategic separation of reaction components during drying. The resulting preservation capacity enables efficient production of a wide range of on-demand proteins under adverse conditions, for instance during emergency outbreaks or in remote locations. To demonstrate application potential, we use cell-free reagents subjected to months of exposure at 37°C and atmospheric conditions to produce sufficient concentrations of a pyocin protein to kill Pseudomonas aeruginosa, a troublesome pathogen for traumatic and burn wound injuries. Our work makes possible new biotechnology applications that demand ruggedness and scalability. PMID:28446704

  20. Human umbilical cord mesenchymal stromal cells exhibit immature nucleus pulposus cell phenotype in a laminin-rich pseudo-three-dimensional culture system.

    PubMed

    Chon, Brian H; Lee, Esther J; Jing, Liufang; Setton, Lori A; Chen, Jun

    2013-10-02

    Cell supplementation to the herniated or degenerated intervertebral disc (IVD) is a potential strategy to promote tissue regeneration and slow disc pathology. Human umbilical cord mesenchymal stromal cells (HUCMSCs) - originating from the Wharton's jelly - remain an attractive candidate for such endeavors with their ability to differentiate into multiple lineages. Previously, mesenchymal stem cells (MSCs) have been studied as a potential source for disc tissue regeneration. However, no studies have demonstrated that MSCs can regenerate matrix with unique characteristics matching that of immature nucleus pulposus (NP) tissues of the IVD. In our prior work, immature NP cells were found to express specific laminin isoforms and laminin-binding receptors that may serve as phenotypic markers for evaluating MSC differentiation to NP-like cells. The goal of this study is to evaluate these markers and matrix synthesis for HUCMSCs cultured in a laminin-rich pseudo-three-dimensional culture system. HUCMSCs were seeded on top of Transwell inserts pre-coated with Matrigel™, which contained mainly laminin-111. Cells were cultured under hypoxia environment with three differentiation conditions: NP differentiation media (containing 2.5% Matrigel™ solution to provide for a pseudo-three-dimensional laminin culture system) with no serum, or the same media supplemented with either insulin-like growth factor-1 (IGF-1) or transforming growth factor-β1 (TGF-β1). Cell clustering behavior, matrix production and the expression of NP-specific laminin and laminin-receptors were evaluated at days 1, 7, 13 and 21 of culture. Data show that a pseudo-three-dimensional culture condition (laminin-1 rich) promoted HUCMSC differentiation under no serum conditions. Starting at day 1, HUCMSCs demonstrated a cell clustering morphology similar to that of immature NP cells in situ and that observed for primary immature NP cells within the similar laminin-rich culture system (prior study). Differentiated HUCMSCs under all conditions were found to contain glycosaminoglycan, expressed extracellular matrix proteins of collagen II and laminin α5, and laminin receptors (integrin α3 and β4 subunits). However, neither growth factor treatment generated distinct differences in NP-like phenotype for HUCMSC as compared with no-serum conditions. HUCMSCs have the potential to differentiate into cells sharing features with immature NP cells in a laminin-rich culture environment and may be useful for IVD cellular therapy.

  1. Multiple two-component systems modulate alkali generation in Streptococcus gordonii in response to environmental stresses.

    PubMed

    Liu, Yaling; Burne, Robert A

    2009-12-01

    The oral commensal Streptococcus gordonii must adapt to constantly fluctuating and often hostile environmental conditions to persist in the oral cavity. The arginine deiminase system (ADS) of S. gordonii enables cells to produce, ornithine, ammonia, CO(2), and ATP from arginine hydrolysis, augmenting the acid tolerance of the organism. The ADS genes are substrate inducible and sensitive to catabolite repression, mediated through ArcR and CcpA, respectively, but the system also requires low pH and anaerobic conditions for optimal activation. Here, we demonstrate that the CiaRH and ComDE two-component systems (TCS) are required for low-pH-dependent expression of ADS genes in S. gordonii. Further, the VicRK TCS is required for optimal ADS gene expression under anaerobic conditions and enhances the sensitivity of the operon to repression by oxygen. The known anaerobic activator of the ADS, Fnr-like protein (Flp), appeared to act independently of the Vic TCS. Mutants of S. gordonii lacking components of the CiaRH, ComDE, or VicRK grew more slowly in acidified media and were more sensitive to killing at lethal pH values and to agents that induce oxidative stress. This study provides the first evidence that TCS can regulate the ADS of bacteria in response to specific environmental signals and reveals some notable differences in the contribution of CiaRH, ComDE, and VicRK to viability and stress tolerance between the oral commensal S. gordonii and the oral pathogen Streptococcus mutans.

  2. Chilling-Mediated DNA Methylation Changes during Dormancy and Its Release Reveal the Importance of Epigenetic Regulation during Winter Dormancy in Apple (Malus x domestica Borkh.).

    PubMed

    Kumar, Gulshan; Rattan, Usha Kumari; Singh, Anil Kumar

    2016-01-01

    Winter dormancy is a well known mechanism adopted by temperate plants, to mitigate the chilling temperature of winters. However, acquisition of sufficient chilling during winter dormancy ensures the normal phenological traits in subsequent growing period. Thus, low temperature appears to play crucial roles in growth and development of temperate plants. Apple, being an important temperate fruit crop, also requires sufficient chilling to release winter dormancy and normal phenological traits, which are often associated with yield and quality of fruits. DNA cytosine methylation is one of the important epigenetic modifications which remarkably affect the gene expression during various developmental and adaptive processes. In present study, methylation sensitive amplified polymorphism was employed to assess the changes in cytosine methylation during dormancy, active growth and fruit set in apple, under differential chilling conditions. Under high chill conditions, total methylation was decreased from 27.2% in dormant bud to 21.0% in fruit set stage, while no significant reduction was found under low chill conditions. Moreover, the demethylation was found to be decreased, while methylation increased from dormant bud to fruit set stage under low chill as compared to high chill conditions. In addition, RNA-Seq analysis showed high expression of DNA methyltransferases and histone methyltransferases during dormancy and fruit set, and low expression of DNA glcosylases during active growth under low chill conditions, which was in accordance with changes in methylation patterns. The RNA-Seq data of 47 genes associated with MSAP fragments involved in cellular metabolism, stress response, antioxidant system and transcriptional regulation showed correlation between methylation and their expression. Similarly, bisulfite sequencing and qRT-PCR analysis of selected genes also showed correlation between gene body methylation and gene expression. Moreover, significant association between chilling and methylation changes was observed, which suggested that chilling acquisition during dormancy in apple is likely to affect the epigenetic regulation through DNA methylation.

  3. Chilling-Mediated DNA Methylation Changes during Dormancy and Its Release Reveal the Importance of Epigenetic Regulation during Winter Dormancy in Apple (Malus x domestica Borkh.)

    PubMed Central

    Kumar, Gulshan; Rattan, Usha Kumari; Singh, Anil Kumar

    2016-01-01

    Winter dormancy is a well known mechanism adopted by temperate plants, to mitigate the chilling temperature of winters. However, acquisition of sufficient chilling during winter dormancy ensures the normal phenological traits in subsequent growing period. Thus, low temperature appears to play crucial roles in growth and development of temperate plants. Apple, being an important temperate fruit crop, also requires sufficient chilling to release winter dormancy and normal phenological traits, which are often associated with yield and quality of fruits. DNA cytosine methylation is one of the important epigenetic modifications which remarkably affect the gene expression during various developmental and adaptive processes. In present study, methylation sensitive amplified polymorphism was employed to assess the changes in cytosine methylation during dormancy, active growth and fruit set in apple, under differential chilling conditions. Under high chill conditions, total methylation was decreased from 27.2% in dormant bud to 21.0% in fruit set stage, while no significant reduction was found under low chill conditions. Moreover, the demethylation was found to be decreased, while methylation increased from dormant bud to fruit set stage under low chill as compared to high chill conditions. In addition, RNA-Seq analysis showed high expression of DNA methyltransferases and histone methyltransferases during dormancy and fruit set, and low expression of DNA glcosylases during active growth under low chill conditions, which was in accordance with changes in methylation patterns. The RNA-Seq data of 47 genes associated with MSAP fragments involved in cellular metabolism, stress response, antioxidant system and transcriptional regulation showed correlation between methylation and their expression. Similarly, bisulfite sequencing and qRT-PCR analysis of selected genes also showed correlation between gene body methylation and gene expression. Moreover, significant association between chilling and methylation changes was observed, which suggested that chilling acquisition during dormancy in apple is likely to affect the epigenetic regulation through DNA methylation. PMID:26901339

  4. A design for the control of apoptosis in genetically modified Saccharomyces cerevisiae.

    PubMed

    Nishida, Nao; Noguchi, Misa; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2014-01-01

    We have engineered a system that holds potential for use as a safety switch in genetically modified yeasts. Human apoptotic factor BAX (no homolog in yeast), under the control of the FBP1 (gluconeogenesis enzyme) promoter, was conditionally expressed to induce yeast cell apoptosis after glucose depletion. Such systems might prove useful for the safe use of genetically modified organisms.

  5. The role of calsenilin/DREAM/KChIP3 in contextual fear conditioning.

    PubMed

    Alexander, Jon C; McDermott, Carmel M; Tunur, Tumay; Rands, Vicky; Stelly, Claire; Karhson, Debra; Bowlby, Mark R; An, W Frank; Sweatt, J David; Schrader, Laura A

    2009-03-01

    Potassium channel interacting proteins (KChIPs) are members of a family of calcium binding proteins that interact with Kv4 potassium (K(+)) channel primary subunits and also act as transcription factors. The Kv4 subunit is a primary K(+) channel pore-forming subunit, which contributes to the somatic and dendritic A-type currents throughout the nervous system. These A-type currents play a key role in the regulation of neuronal excitability and dendritic processing of incoming synaptic information. KChIP3 is also known as calsenilin and as the transcription factor, downstream regulatory element antagonist modulator (DREAM), which regulates a number of genes including prodynorphin. KChIP3 and Kv4 primary channel subunits are highly expressed in hippocampus, an area of the brain important for learning and memory. Through its various functions, KChIP3 may play a role in the regulation of synaptic plasticity and learning and memory. We evaluated the role of KChIP3 in a hippocampus-dependent memory task, contextual fear conditioning. Male KChIP3 knockout (KO) mice showed significantly enhanced memory 24 hours after training as measured by percent freezing. In addition, we found that membrane association and interaction with Kv4.2 of KChIP3 protein was significantly decreased and nuclear KChIP3 expression was increased six hours after the fear conditioning training paradigm with no significant change in KChIP3 mRNA. In addition, prodynorphin mRNA expression was significantly decreased six hours after fear conditioning training in wild-type (WT) but not in KO animals. These data suggest a role for regulation of gene expression by KChIP3/DREAM/calsenilin in consolidation of contextual fear conditioning memories.

  6. Involving the cerebellum in cocaine-induced memory: pattern of cFos expression in mice trained to acquire conditioned preference for cocaine.

    PubMed

    Carbo-Gas, María; Vazquez-Sanroman, Dolores; Aguirre-Manzo, Luisa; Coria-Avila, Genaro A; Manzo, Jorge; Sanchis-Segura, Carla; Miquel, Marta

    2014-01-01

    Because of its primary role in drug-seeking, consumption and addictive behaviour, there is a growing interest in identifying the neural circuits and molecular mechanisms underlying the formation, maintenance and retrieval of drug-related memories. Human studies, which focused on neuronal systems that store and control drug-conditioned memories, have found cerebellar activations during the retrieval of drug-associated cue memory. However, at the pre-clinical level, almost no attention has been paid to a possible role of the cerebellum in drug-related memories. In the present study, we ought to fill this gap by aiming to investigate the pattern of neuronal activation (as revealed by cFos expression) in different regions of the prefrontal cortex and cerebellum of mice trained to develop conditioned preference for an olfactory stimulus (CS+) paired with cocaine. Our results indicate that CS+ preference was directly associated with cFos expression in cells at the apical region of the granule cell layer of the cerebellar vermis; this relationship being more prominent in some specific lobules. Conversely, cFos+ immunostaining in other cerebellar regions seems to be unrelated to CS+ preference but to other aspects of the conditioning procedure. At the prefrontal cortex, cFos expression seemed to be related to cocaine administration rather than to its ability to establish conditioned preference. The present results suggest that as it has been observed in some clinical studies, the cerebellum might be an important and largely overlooked part of the neural circuits involved in generating, maintaining and/or retrieving drug memories. © 2013 The Authors, Addiction Biology © 2013 Society for the Study of Addiction.

  7. Adolescent social defeat alters N-methyl-D-aspartic acid receptor expression and impairs fear learning in adulthood.

    PubMed

    Novick, Andrew M; Mears, Mackenzie; Forster, Gina L; Lei, Yanlin; Tejani-Butt, Shanaz M; Watt, Michael J

    2016-05-01

    Repeated social defeat of adolescent male rats results in adult mesocortical dopamine hypofunction, impaired working memory, and increased contextual anxiety-like behavior. Given the role of glutamate in dopamine regulation, cognition, and fear and anxiety, we investigated potential changes to N-methyl-D-aspartic acid (NMDA) receptors following adolescent social defeat. As both NMDA receptors and mesocortical dopamine are implicated in the expression and extinction of conditioned fear, a separate cohort of rats was challenged with a classical fear conditioning paradigm to investigate whether fear learning is altered by adolescent defeat. Quantitative autoradiography was used to measure 3H-MK-801 binding to NMDA receptors in regions of the medial prefrontal cortex, caudate putamen, nucleus accumbens, amygdala and hippocampus. Assessment of fear learning was achieved using an auditory fear conditioning paradigm, with freezing toward the auditory tone used as a measure of conditioned fear. Compared to controls, adolescent social defeat decreased adult NMDA receptor expression in the infralimbic region of the prefrontal cortex and central amygdala, while increasing expression in the CA3 region of the hippocampus. Previously defeated rats also displayed decreased conditioned freezing during the recall and first extinction periods, which may be related to the observed decreases and increases in NMDA receptors within the central amygdala and CA3, respectively. The alteration in NMDA receptors seen following adolescent social defeat suggests that dysfunction of glutamatergic systems, combined with mesocortical dopamine deficits, likely plays a role in the some of the long-term behavioral consequences of social stressors in adolescence seen in both preclinical and clinical studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpinets, Tatiana V; Pelletier, Dale A; Pan, Chongle

    Understanding of cellular processes involved in the anaerobic degradation of complex organic compounds by microorganisms is crucial for development of innovative biotechnologies for bioethanol production and for efficient degradation of toxic organic compounds. In natural environment the degradation is usually accomplished by syntrophic consortia comprised of different bacterial species. Here we show that the metabolically versatile phototrophic bacterium Rhodopseudomonas palustris may form its own syntrophic consortia, when it grows anaerobically on p-coumarate or benzoate as a sole carbon source. In the study we reveal the consortia from a comparison of large-scale measurements of mRNA and protein expressions under p-coumarate andmore » benzoate degrading conditions using a novel computational approach referred as phenotype fingerprinting. In this approach marker genes for known R. palustris phenotypes are employed to calculate their expression from the gene and protein expressions in each studied condition. Subpopulations of the consortia are inferred from the expression of phenotypes and known metabolic modes of the R. palustris growth. We find that p-coumarate degrading condition leads to at least three R. palustris subpopulations utilizing p-coumarate, benzoate, and CO2 and H2. Benzoate degrading condition also produces at least three subpopulations utilizing benzoate, CO2 and H2, and N2 and formate. Communication among syntrophs and inter-syntrophic dynamics in each consortium are indicated by up-regulation of transporters and genes involved in the curli formation and chemotaxis. The photoautotrphic subpopulation found in both consortia is characterized by activation of two cbb operons and the uptake hydrogenase system. A specificity of N2-fixing subpopulation in the benzoate degrading consortium is the preferential activation of the vanadium nitrogenase over the molybdenum nitrogenase. The N2-fixing subpopulation in the consortium is confirmed by consumption of dissolved nitrogen gas under the benzoate degrading conditions.« less

  9. Effect of iron deficiency on the expression of insulin-like growth factor-II and its receptor in neuronal and glial cells.

    PubMed

    Morales González, E; Contreras, I; Estrada, J A

    2014-09-01

    Many studies have demonstrated that iron deficiency modifies the normal function of the central nervous system and alters cognitive abilities. When cellular damage occurs in the central nervous system, neuroprotective mechanisms, such as the production of neurotrophic factors, are essential in order for nervous tissue to function correctly. Insulin-like growth factor II (IGF- II) is a neurotrophic factor that was recently shown to be involved in the normal functioning of cognitive processes in animal models. However, the impact of iron deficiency on the expression and function of this molecule has not yet been clarified. Mixed primary cell cultures from the central nervous system were collected to simulate iron deficiency using deferoxamine. The expression of IGF-I, IGF-II, IGF-IR, and IGF-IIR was determined with the western blot test. We observed increased expression of IGF-II, along with a corresponding decrease in the expression of IGF-IIR, in iron-deficient mixed primary cell cultures. We did not observe alterations in the expression of these proteins in isolated microglia or neuronal cultures under the same conditions. We did not detect differences in the expression of IGF-I and IGF-IR in iron-deficient cultures. In vitro iron deficiency increases the expression of IGF-II in mixed glial cell cultures, which may have a beneficial effect on brain tissue homeostasis in a situation in which iron availability is decreased. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  10. Effects of hypoxia and reoxygenation on the expression levels of the urokinase-type plasminogen activator, its inhibitor plasminogen activator inhibitor type-1 and the urokinase-type plasminogen activator receptor in human head and neck tumour cells.

    PubMed

    Sprague, Lisa D; Tomaso, Herbert; Mengele, Karin; Schilling, Daniela; Bayer, Christine; Stadler, Peter; Schmitt, Manfred; Molls, Michael

    2007-05-01

    One aim during oncological radiation therapy is to induce reoxygenation in hypoxic tumours in order to enhance radiosensitivity and ultimately increase cell death. In squamous cell carcinomas of the head and neck (SCCHN), hypoxia is considered a pivotal physiological modulator for malignant progression, whereby the plasminogen activation system is involved in overlapping functions such as the shaping of the extracellular matrix, cell proliferation and signal transduction. Since little is known about reoxygenation and the plasminogen activation system in SCCHN, three human SCCHN cell lines (BHY, FaDu, and CAL27) and a non-transformed control cell line (VH7) were exposed to hypoxic (<0.5% O2) conditions for up to 72 h and subsequently reoxygenated for 24 h at normoxic conditions. The mRNA expression of the urokinase-type plasminogen activator (uPA), the plasminogen activator inhibitor type-1 (PAI-1) and the urokinase-type plasminogen activator receptor (uPAR) was assessed by means of real-time semi-quantitative RT-PCR, and the protein expression was determined by immunoenzymometric quantification (ELISA). Both hypoxia and reoxygenation induced statistically significant changes in uPA, PAI-1 and uPAR mRNA and protein levels in the various cell lines investigated, showing that oxygen tension is a strong modulator of the plasminogen activation system in vitro. However, no uniform correlation pattern was found between the mRNA and protein levels analysed over all three time-points (24, 48, and 72 h) and oxygen treatment variants (N, H, R) nor according to oxygen treatment conditions over all three time-points. Changes in oxygen tension could therefore be modulating the fragile balance between the various components of the plasminogen activation system in SSCHN ultimately leading to an increased tumour matrix disruption, alterations in cell invasiveness, and the dissemination of tumour cells to distant organs.

  11. Solar energy system economic evaluation final report for SEMCO-Loxahatchee, Loxahatchee National Wildlife refuge, Palm Beach County, Florida

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Economic analysis of the solar energy system installed at Loxahatchee, was developed for Loxahatchee and four other sites typical of a wide range of environmental and economic conditions in the continental United States. This analysis was accomplished based on the technical and economic models in the f Chart design procedure with inputs based on the characteristics of the installed system and local conditions. The results are expressed in terms of the economic parameters of present worth of system costs over a projected twenty year life, life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables was also investigated. The results demonstrate that the solar energy system is economically viable at all of the five sites for which the analysis was conducted.

  12. Perspective on the combined use of an independent transgenic sexing and a multifactorial reproductive sterility system to avoid resistance development against transgenic Sterile Insect Technique approaches

    PubMed Central

    2014-01-01

    Background The Sterile Insect Technique (SIT) is an accepted species-specific genetic control approach that acts as an insect birth control measure, which can be improved by biotechnological engineering to facilitate its use and widen its applicability. First transgenic insects carrying a single killing system have already been released in small scale trials. However, to evade resistance development to such transgenic approaches, completely independent ways of transgenic killing should be established and combined. Perspective Most established transgenic sexing and reproductive sterility systems are based on the binary tTA expression system that can be suppressed by adding tetracycline to the food. However, to create 'redundant killing' an additional independent conditional expression system is required. Here we present a perspective on the use of a second food-controllable binary expression system - the inducible Q system - that could be used in combination with site-specific recombinases to generate independent transgenic killing systems. We propose the combination of an already established transgenic embryonic sexing system to meet the SIT requirement of male-only releases based on the repressible tTA system together with a redundant male-specific reproductive sterility system, which is activated by Q-system controlled site-specific recombination and is based on a spermatogenesis-specifically expressed endonuclease acting on several species-specific target sites leading to chromosome shredding. Conclusion A combination of a completely independent transgenic sexing and a redundant reproductive male sterility system, which do not share any active components and mediate the induced lethality by completely independent processes, would meet the 'redundant killing' criteria for suppression of resistance development and could therefore be employed in large scale long-term suppression programs using biotechnologically enhanced SIT. PMID:25471733

  13. Relevance of Light Spectra to Growth of the Rearing Tiger Puffer Takifugu rubripes

    PubMed Central

    Kim, Byeong-Hoon; Hur, Sung-Pyo; Hur, Sang-Woo; Lee, Chi-Hoon; Lee, Young-Don

    2016-01-01

    In fish, light (photoperiod, intensity and spectra) is main regulator in many physiological actions includinggrowth. We investigate the effect of light spectra on the somatic growth and growth-related gene expression in the rearing tiger puffer. Fish was reared under different light spectra (blue, green and red) for 8 weeks. Fish body weight and total length were promoted when reared under green light condition than red light condition. Expression of somatostatins (ss1 and ss2) in brain were showed higher expression under red light condition than green light condition. The ss3 mRNA was observed only higher expression in blue light condition. Expression of growth hormone (gh) in pituitary was detected no different levels between experimental groups. However, the fish of green light condition group was showed more high weight gain and feed efficiency than other light condition groups. Our present results suggest that somatic growth of tiger puffer is induced under green light condition because of inhibiting ss mRNA expression in brain by effect of green wavelength. PMID:27294208

  14. Overproduction of ligninolytic enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elisashvili, Vladimir; Kachlishvili, Eva; Torok, Tamas

    Methods, compositions, and systems for overproducing ligninolytic enzymes from the basidiomycetous fungus are described herein. As described, the method can include incubating a fungal strain of Cerrena unicolor IBB 303 in a fermentation system having growth medium which includes lignocellulosic material and then cultivating the fungal strain in the fermentation system under conditions wherein the fungus expresses the ligninolytic enzymes. In some cases, the lignocellulosic material is mandarin peel, ethanol production residue, walnut pericarp, wheat bran, wheat straw, or banana peel.

  15. The immune-neuro-endocrine interactions.

    PubMed

    Tomaszewska, D; Przekop, F

    1997-06-01

    This article reviews data concerning the interactions between immune, endocrine and neural systems in physiological, pathophysiological and stress conditions in animals and humans. Numerous studies have provided evidence that these systems interact with each other in maintaining homeostasis. This interaction may be classified as follows: immune, endocrine and neural cell products coexist in lymphoid, endocrine and neural tissue. Endocrine and neural mediators modulate immune system activity. Immune, endocrine and neural cells express receptors for cytokines, hormones, neuropeptides and transmitters.

  16. Revisiting the putative role of heme as a trigger of inflammation.

    PubMed

    Vallelian, Florence; Schaer, Christian A; Deuel, Jeremy W; Ingoglia, Giada; Humar, Rok; Buehler, Paul W; Schaer, Dominik J

    2018-04-01

    Activation of the innate immune system by free heme has been proposed as one of the principal consequences of cell-free hemoglobin (Hb) exposure. Nonetheless, in the absence of infection, heme exposures within a hematoma, during hemolysis, or upon systemic administration of Hb (eg, as a Hb-based oxygen carrier) are typically not accompanied by uncontrolled inflammation, challenging the assumption that heme is a major proinflammatory mediator in vivo. Because of its hydrophobic nature, heme liberated from oxidized hemoglobin is rapidly transferred to alternative protein-binding sites (eg, albumin) or to hydrophobic lipid compartments minimizing protein-free heme under in vivo equilibrium conditions. We demonstrate that the capacity of heme to activate human neutrophil granulocytes strictly depends on the availability of non protein-associated heme. In human endothelial cells as well as in mouse macrophage cell cultures and in mouse models of local and systemic heme exposure, protein-associated heme or Hb do not induce inflammatory gene expression over a broad range of exposure conditions. Only experiments in protein-free culture medium demonstrated a weak capacity of heme-solutions to induce toll-like receptor-(TLR4) dependent TNF-alpha expression in macrophages. Our data suggests that the equilibrium-state of free and protein-associated heme critically determines the proinflammatory capacity of the metallo-porphyrin. Based on these data it appears unlikely that inflammation-promoting equilibrium conditions could ever occur in vivo.

  17. Appetitive Motivation and Negative Emotion Reactivity among Remitted Depressed Youth

    PubMed Central

    Hankin, Benjamin L.; Wetter, Emily K.; Flory, Kate

    2012-01-01

    Depression has been characterized as involving altered appetitive motivation and emotional reactivity. Yet no study has examined objective indices of emotional reactivity when the appetitive/approach system is suppressed in response to failure to attain a self-relevant goal and desired reward. Three groups of youth (N = 98, ages 9–15; remitted depressed, n = 34; externalizing disordered without depression, n = 30, and healthy controls, n = 34) participated in a novel reward striving task designed to activate the appetitive/approach motivation system. Objective facial expressions of emotion were videotaped and coded throughout both failure (i.e., nonreward) and control (success and reward) conditions. Observational coding of facial expressions as well as youths’ subjective emotion reports showed that the remitted depressed youth specifically exhibited more negative emotional reactivity to failure in the reward striving task, but not the control condition. Neither externalizing disordered (i.e., ADHD, CD, and/ or ODD) nor control youth displayed greater negative emotional reactivity in either the failure or control condition. Findings suggest that depression among youth is related to dysregulated appetitive motivation and associated negative emotional reactivity after failing to achieve an important, self-relevant goal and not attaining reward. These deficits in reward processing appear to be specific to depression as externalizing disordered youth did not display negative emotional reactivity to failure after their appetitive motivation system was activated. PMID:22901275

  18. Appetitive motivation and negative emotion reactivity among remitted depressed youth.

    PubMed

    Hankin, Benjamin L; Wetter, Emily K; Flory, Kate

    2012-01-01

    Depression has been characterized as involving altered appetitive motivation and emotional reactivity. Yet no study has examined objective indices of emotional reactivity when the appetitive/approach system is suppressed in response to failure to attain a self-relevant goal and desired reward. Three groups of youth (N = 98, ages 9-15; remitted depressed, n = 34; externalizing disordered without depression, n = 30; and healthy controls, n = 34) participated in a novel reward striving task designed to activate the appetitive/approach motivation system. Objective facial expressions of emotion were videotaped and coded throughout both failure (i.e., nonreward) and control (success and reward) conditions. Observational coding of facial expressions as well as youths' subjective emotion reports showed that the remitted depressed youth specifically exhibited more negative emotional reactivity to failure in the reward striving task, but not the control condition. Neither externalizing disordered (i.e., attention deficit hyperactivity disorder, conduct disorder, and/or oppositional defiant disorder) nor control youth displayed greater negative emotional reactivity in either the failure or control condition. Findings suggest that depression among youth is related to dysregulated appetitive motivation and associated negative emotional reactivity after failing to achieve an important, self-relevant goal and not attaining reward. These deficits in reward processing appear to be specific to depression as externalizing disordered youth did not display negative emotional reactivity to failure after their appetitive motivation system was activated.

  19. Modeling of industrial stream and resources of machine-building enterpriser complex of wood preparation

    NASA Astrophysics Data System (ADS)

    Sereda, T. G.; Kostarev, S. N.

    2018-03-01

    Theoretical bases of linkage of material streams of the machine-building enterprise and the automated system of decision-making are developed. The process of machine-building manufacture is submitted by the existential system. The equation of preservation of movement is based on calculation of volume of manufacture. The basis of resource variables includes capacities and operators of the equipment. Indignations such as a defect and failure are investigated in the existential basis. The equation of a stream of details on a manufacturing route is made. The received analytical expression expresses a condition of a stream of movement of details in view of influence of work of the equipment and traumatism of the personnel.

  20. T cells fail to develop in the human skin-cell explants system; an inconvenient truth.

    PubMed

    Meek, Bob; Van Elssen, Catharina H M J; Huijskens, Mirelle J A J; van der Stegen, Sjoukje J C; Tonnaer, Siebe; Lumeij, Stijn B J; Vanderlocht, Joris; Kirkland, Mark A; Hesselink, Reinout; Germeraad, Wilfred T V; Bos, Gerard M J

    2011-02-18

    Haplo-identical hematopoietic stem cell (HSC) transplantation is very successful in eradicating haematological tumours, but the long post-transplant T-lymphopenic phase is responsible for high morbidity and mortality rates. Clark et al. have described a skin-explant system capable of producing host-tolerant donor-HSC derived T-cells. Because this T-cell production platform has the potential to replenish the T-cell levels following transplantation, we set out to validate the skin-explant system. Following the published procedures, while using the same commercial components, it was impossible to reproduce the skin-explant conditions required for HSC differentiation towards mature T-cells. The keratinocyte maturation procedure resulted in fragile cells with minimum expression of delta-like ligand (DLL). In most experiments the generated cells failed to adhere to carriers or were quickly outcompeted by fibroblasts. Consequently it was not possible to reproduce cell-culture conditions required for HSC differentiation into functional T-cells. Using cell-lines over-expressing DLL, we showed that the antibodies used by Clark et al. were unable to detect native DLL, but instead stained 7AAD+ cells. Therefore, it is unlikely that the observed T-lineage commitment from HSC is mediated by DLL expressed on keratinocytes. In addition, we did confirm expression of the Notch-ligand Jagged-1 by keratinocytes. Currently, and unfortunately, it remains difficult to explain the development or growth of T-cells described by Clark et al., but for the fate of patients suffering from lymphopenia it is essential to both reproduce and understand how these co-cultures really "work". Fortunately, alternative procedures to speed-up T-cell reconstitution are being established and validated and may become available for patients in the near future.

  1. Adolescent social defeat increases adult amphetamine conditioned place preference and alters D2 dopamine receptor expression

    PubMed Central

    Burke, Andrew R.; Watt, Michael J.; Forster, Gina L.

    2011-01-01

    Components of the brain’s dopaminergic system, such as dopamine receptors, undergo final maturation in adolescence. Exposure to social stress during human adolescence contributes to substance abuse behaviors. We utilized a rat model of adolescent social stress to investigate the neural mechanisms underlying this correlation. Rats exposed to repeated social defeat in adolescence (P35–P39) exhibited increased conditioned place preference (CPP) for amphetamine (1 mg/kg) in adulthood (P70). In contrast, rats experiencing foot-shock during the same developmental period exhibited amphetamine CPP levels similar to non-stressed controls. Our previous experiments suggested adolescent defeat alters dopamine activity in the mesocorticolimbic system. Furthermore, dopamine receptors have been implicated in the expression of amphetamine CPP. Therefore, we hypothesized that alteration to dopamine receptor expression in the mesocorticolimbic system may be associated with to heightened amphetamine CPP of adult rats exposed to adolescence defeat. We measured D1 and D2 dopamine receptor protein content in the medial prefrontal cortex, nucleus accumbens (NAc) and dorsal striatum following either adolescent social defeat or foot-shock stress and then adult amphetamine CPP. In controls, amphetamine CPP training reduced D2 receptor protein content in the NAc core. However, this down-regulation of NAc core D2 receptors was blocked by exposure to social defeat but not foot-shock stress in adolescence. These results suggest social defeat stress in adolescence alters the manner in which later amphetamine exposure down-regulates D2 receptors. Furthermore, persistent alterations to adult D2 receptor expression and amphetamine responses may depend on the type of stress experienced in adolescence. PMID:21933700

  2. Antimicrobial Peptides and Complement in Neonatal Hypoxia-Ischemia Induced Brain Damage

    PubMed Central

    Rocha-Ferreira, Eridan; Hristova, Mariya

    2015-01-01

    Hypoxic-ischemic encephalopathy (HIE) is a clinical condition in the neonate, resulting from oxygen deprivation around the time of birth. HIE affects 1–5/1000 live births worldwide and is associated with the development of neurological deficits, including cerebral palsy, epilepsy, and cognitive disabilities. Even though the brain is considered as an immune-privileged site, it has innate and adaptive immune response and can produce complement (C) components and antimicrobial peptides (AMPs). Dysregulation of cerebral expression of AMPs and C can exacerbate or ameliorate the inflammatory response within the brain. Brain ischemia triggers a prolonged inflammatory response affecting the progression of injury and secondary energy failure and involves both innate and adaptive immune systems, including immune-competent and non-competent cells. Following injury to the central nervous system (CNS), including neonatal hypoxia-ischemia (HI), resident microglia, and astroglia are the main cells providing immune defense to the brain in a stimulus-dependent manner. They can express and secrete pro-inflammatory cytokines and therefore trigger prolonged inflammation, resulting in neurodegeneration. Microglial cells express and release a wide range of inflammation-associated molecules including several components of the complement system. Complement activation following neonatal HI injury has been reported to contribute to neurodegeneration. Astrocytes can significantly affect the immune response of the CNS under pathological conditions through production and release of pro-inflammatory cytokines and immunomodulatory AMPs. Astrocytes express β-defensins, which can chemoattract and promote maturation of dendritic cells (DC), and can also limit inflammation by controlling the viability of these same DC. This review will focus on the balance of complement components and AMPs within the CNS following neonatal HI injury and the effect of that balance on the subsequent brain damage. PMID:25729383

  3. Fucci2a: a bicistronic cell cycle reporter that allows Cre mediated tissue specific expression in mice.

    PubMed

    Mort, Richard Lester; Ford, Matthew Jonathan; Sakaue-Sawano, Asako; Lindstrom, Nils Olof; Casadio, Angela; Douglas, Adam Thomas; Keighren, Margaret Anne; Hohenstein, Peter; Miyawaki, Atsushi; Jackson, Ian James

    2014-01-01

    Markers of cell cycle stage allow estimation of cell cycle dynamics in cell culture and during embryonic development. The Fucci system incorporates genetically encoded probes that highlight G1 and S/G2/M phases of the cell cycle allowing live imaging. However the available mouse models that incorporate Fucci are beset by problems with transgene inactivation, varying expression level, lack of conditional potential and/or the need to maintain separate transgenes-there is no transgenic mouse model that solves all these problems. To address these shortfalls we re-engineered the Fucci system to create 2 bicistronic Fucci variants incorporating both probes fused using the Thosea asigna virus 2A (T2A) self cleaving peptide. We characterize these variants in stable 3T3 cell lines. One of the variants (termed Fucci2a) faithfully recapitulated the nuclear localization and cell cycle stage specific florescence of the original Fucci system. We go on to develop a conditional mouse allele (R26Fucci2aR) carefully designed for high, inducible, ubiquitous expression allowing investigation of cell cycle status in single cell lineages within the developing embryo. We demonstrate the utility of R26Fucci2aR for live imaging by using high resolution confocal microscopy of ex vivo lung, kidney and neural crest development. Using our 3T3 system we describe and validate a method to estimate cell cycle times from relatively short time-lapse sequences that we then apply to our neural crest data. The Fucci2a system and the R26Fucci2aR mouse model are compelling new tools for the investigation of cell cycle dynamics in cell culture and during mouse embryonic development.

  4. A sigma factor toolbox for orthogonal gene expression in Escherichia coli

    PubMed Central

    Van Brempt, Maarten; Van Nerom, Katleen; Van Hove, Bob; Maertens, Jo; De Mey, Marjan; Charlier, Daniel

    2018-01-01

    Abstract Synthetic genetic sensors and circuits enable programmable control over timing and conditions of gene expression and, as a result, are increasingly incorporated into the control of complex and multi-gene pathways. Size and complexity of genetic circuits are growing, but stay limited by a shortage of regulatory parts that can be used without interference. Therefore, orthogonal expression and regulation systems are needed to minimize undesired crosstalk and allow for dynamic control of separate modules. This work presents a set of orthogonal expression systems for use in Escherichia coli based on heterologous sigma factors from Bacillus subtilis that recognize specific promoter sequences. Up to four of the analyzed sigma factors can be combined to function orthogonally between each other and toward the host. Additionally, the toolbox is expanded by creating promoter libraries for three sigma factors without loss of their orthogonal nature. As this set covers a wide range of transcription initiation frequencies, it enables tuning of multiple outputs of the circuit in response to different sensory signals in an orthogonal manner. This sigma factor toolbox constitutes an interesting expansion of the synthetic biology toolbox and may contribute to the assembly of more complex synthetic genetic systems in the future. PMID:29361130

  5. Effect of microculture on cell metabolism and biochemistry: do cells get stressed in microchannels?

    PubMed

    Su, Xiaojing; Theberge, Ashleigh B; January, Craig T; Beebe, David J

    2013-02-05

    Microfluidics is emerging as a promising platform for cell culture, enabling increased microenvironment control and potential for integrated analysis compared to conventional macroculture systems such as well plates and Petri dishes. To advance the use of microfluidic devices for cell culture, it is necessary to better understand how miniaturization affects cell behavior. In particular, microfluidic devices have significantly higher surface-area-to-volume ratios than conventional platforms, resulting in lower volumes of media per cell, which can lead to cell stress. We investigated cell stress under a variety of culture conditions using three cell lines: parental HEK (human embryonic kidney) cells and transfected HEK cells that stably express wild-type (WT) and mutant (G601S) human ether-a-go-go related gene (hERG) potassium channel protein. These three cell lines provide a unique model system through which to study cell-type-specific responses in microculture because mutant hERG is known to be sensitive to environmental conditions, making its expression a particularly sensitive readout through which to compare macro- and microculture. While expression of WT-hERG was similar in microchannel and well culture, the expression of mutant G601S-hERG was reduced in microchannels. Expression of the endoplasmic reticulum (ER) stress marker immunoglobulin binding protein (BiP) was upregulated in all three cell lines in microculture. Using BiP expression, glucose consumption, and lactate accumulation as readouts we developed methods for reducing ER stress including properly increasing the frequency of media replacement, reducing cell seeding density, and adjusting the serum concentration and buffering capacity of culture medium. Indeed, increasing the buffering capacity of culture medium or frequency of media replacement partially restored the expression of the G601S-hERG in microculture. This work illuminates how biochemical properties of cells differ in macro- and microculture and suggests strategies that can be used to modify cell culture protocols for future studies involving miniaturized culture platforms.

  6. Molecular and phenotypic characterization of transgenic wheat and sorghum events expressing the barley alanine aminotransferase.

    PubMed

    Peña, Pamela A; Quach, Truyen; Sato, Shirley; Ge, Zhengxiang; Nersesian, Natalya; Dweikat, Ismail M; Soundararajan, Madhavan; Clemente, Tom

    2017-12-01

    The expression of a barley alanine aminotransferase gene impacts agronomic outcomes in a C3 crop, wheat. The use of nitrogen-based fertilizers has become one of the major agronomic inputs in crop production systems. Strategies to enhance nitrogen assimilation and flux in planta are being pursued through the introduction of novel genetic alleles. Here an Agrobacterium-mediated approach was employed to introduce the alanine aminotransferase from barley (Hordeum vulgare), HvAlaAT, into wheat (Triticum aestivum) and sorghum (Sorghum bicolor), regulated by either constitutive or root preferred promoter elements. Plants harboring the transgenic HvAlaAT alleles displayed increased alanine aminotransferase (alt) activity. The enhanced alt activity impacted height, tillering and significantly boosted vegetative biomass relative to controls in wheat evaluated under hydroponic conditions, where the phenotypic outcome across these parameters varied relative to time of year study was conducted. Constitutive expression of HvAlaAT translated to elevation in wheat grain yield under field conditions. In sorghum, expression of HvAlaAT enhanced enzymatic activity, but no changes in phenotypic outcomes were observed. Taken together these results suggest that positive agronomic outcomes can be achieved through enhanced alt activity in a C3 crop, wheat. However, the variability observed across experiments under greenhouse conditions implies the phenotypic outcomes imparted by the HvAlaAT allele in wheat may be impacted by environment.

  7. Brain Region–Specific Alterations in the Gene Expression of Cytokines, Immune Cell Markers and Cholinergic System Components during Peripheral Endotoxin–Induced Inflammation

    PubMed Central

    Silverman, Harold A; Dancho, Meghan; Regnier-Golanov, Angelique; Nasim, Mansoor; Ochani, Mahendar; Olofsson, Peder S; Ahmed, Mohamed; Miller, Edmund J; Chavan, Sangeeta S; Golanov, Eugene; Metz, Christine N; Tracey, Kevin J; Pavlov, Valentin A

    2014-01-01

    Inflammatory conditions characterized by excessive peripheral immune responses are associated with diverse alterations in brain function, and brain-derived neural pathways regulate peripheral inflammation. Important aspects of this bidirectional peripheral immune–brain communication, including the impact of peripheral inflammation on brain region–specific cytokine responses, and brain cholinergic signaling (which plays a role in controlling peripheral cytokine levels), remain unclear. To provide insight, we studied gene expression of cytokines, immune cell markers and brain cholinergic system components in the cortex, cerebellum, brainstem, hippocampus, hypothalamus, striatum and thalamus in mice after an intraperitoneal lipopolysaccharide injection. Endotoxemia was accompanied by elevated serum levels of interleukin (IL)-1β, IL-6 and other cytokines and brain region–specific increases in Il1b (the highest increase, relative to basal level, was in cortex; the lowest increase was in cerebellum) and Il6 (highest increase in cerebellum; lowest increase in striatum) mRNA expression. Gene expression of brain Gfap (astrocyte marker) was also differentially increased. However, Iba1 (microglia marker) mRNA expression was decreased in the cortex, hippocampus and other brain regions in parallel with morphological changes, indicating microglia activation. Brain choline acetyltransferase (Chat ) mRNA expression was decreased in the striatum, acetylcholinesterase (Ache) mRNA expression was decreased in the cortex and increased in the hippocampus, and M1 muscarinic acetylcholine receptor (Chrm1) mRNA expression was decreased in the cortex and the brainstem. These results reveal a previously unrecognized regional specificity in brain immunoregulatory and cholinergic system gene expression in the context of peripheral inflammation and are of interest for designing future antiinflammatory approaches. PMID:25299421

  8. Different Expression Levels of Human Mutant Ubiquitin B+1 (UBB+1) Can Modify Chronological Lifespan or Stress Resistance of Saccharomyces cerevisiae

    PubMed Central

    Muñoz-Arellano, Ana Joyce; Chen, Xin; Molt, Andrea; Meza, Eugenio; Petranovic, Dina

    2018-01-01

    The ubiquitin-proteasome system (UPS) is the main pathway responsible for the degradation of misfolded proteins, and its dysregulation has been implicated in several neurodegenerative diseases, including Alzheimer’s disease (AD). UBB+1, a mutant variant of ubiquitin B, was found to accumulate in neurons of AD patients and it has been linked to UPS dysfunction and neuronal death. Using the yeast Saccharomyces cerevisiae as a model system, we constitutively expressed UBB+1 to evaluate its effects on proteasome function and cell death, particularly under conditions of chronological aging. We showed that the expression of UBB+1 caused inhibition of the three proteasomal proteolytic activities (caspase-like (β1), trypsin-like (β2) and chymotrypsin-like (β5) activities) in yeast. Interestingly, this inhibition did not alter cell viability of growing cells. Moreover, we showed that cells expressing UBB+1 at lower level displayed an increased capacity to degrade induced misfolded proteins. When we evaluated cells during chronological aging, UBB+1 expression at lower level, prevented cells to accumulate reactive oxygen species (ROS) and avert apoptosis, dramatically increasing yeast life span. Since proteasome inhibition by UBB+1 has previously been shown to induce chaperone expression and thus protect against stress, we evaluated our UBB+1 model under heat shock and oxidative stress. Higher expression of UBB+1 caused thermotolerance in yeast due to induction of chaperones, which occurred to a lesser extent at lower expression level of UBB+1 (where we observed the phenotype of extended life span). Altering UPS capacity by differential expression of UBB+1 protects cells against several stresses during chronological aging. This system can be valuable to study the effects of UBB+1 on misfolded proteins involved in neurodegeneration and aging.

  9. Dissociable Learning Processes Underlie Human Pain Conditioning.

    PubMed

    Zhang, Suyi; Mano, Hiroaki; Ganesh, Gowrishankar; Robbins, Trevor; Seymour, Ben

    2016-01-11

    Pavlovian conditioning underlies many aspects of pain behavior, including fear and threat detection [1], escape and avoidance learning [2], and endogenous analgesia [3]. Although a central role for the amygdala is well established [4], both human and animal studies implicate other brain regions in learning, notably ventral striatum and cerebellum [5]. It remains unclear whether these regions make different contributions to a single aversive learning process or represent independent learning mechanisms that interact to generate the expression of pain-related behavior. We designed a human parallel aversive conditioning paradigm in which different Pavlovian visual cues probabilistically predicted thermal pain primarily to either the left or right arm and studied the acquisition of conditioned Pavlovian responses using combined physiological recordings and fMRI. Using computational modeling based on reinforcement learning theory, we found that conditioning involves two distinct types of learning process. First, a non-specific "preparatory" system learns aversive facial expressions and autonomic responses such as skin conductance. The associated learning signals-the learned associability and prediction error-were correlated with fMRI brain responses in amygdala-striatal regions, corresponding to the classic aversive (fear) learning circuit. Second, a specific lateralized system learns "consummatory" limb-withdrawal responses, detectable with electromyography of the arm to which pain is predicted. Its related learned associability was correlated with responses in ipsilateral cerebellar cortex, suggesting a novel computational role for the cerebellum in pain. In conclusion, our results show that the overall phenotype of conditioned pain behavior depends on two dissociable reinforcement learning circuits. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Co-expression of human cytochrome P4501A1 (CYP1A1) variants and human NADPH-cytochrome P450 reductase in the baculovirus/insect cell system.

    PubMed

    Schwarz, D; Kisselev, P; Honeck, H; Cascorbi, I; Schunck, W H; Roots, I

    2001-06-01

    1. Three human cytochrome P4501A1 (CYP1A1) variants, wild-type (CYP1A1.1), CYP1A1.2 (1462V) and CYP1A1.4 (T461N), were co-expressed with human NADPH-P450 reductase (OR) in Spodoptera frugiperda (Sf9) insect cells by baculovirus co-infection to elaborate a suitable system for studying the role of CYPA1 polymorphism in the metabolism of exogenous and endogenous substrates. 2. A wide range of conditions was examined to optimize co-expression with regard to such parameters as relative multiplicity of infection (MOI), time of harvest, haem precursor supplementation and post-translational stabilization. tinder optimized conditions, almost identical expression levels and molar OR/CYP1A1 ratios (20:1) were attained for all CYP1A1 variants. 3. Microsomes isolated from co-infected cells demonstrated ethoxyresorufin deethlylase activities (nmol/min(-1) nmol(-1) CYP1A1) of 16.0 (CYP1A1.1), 20.5 (CYP1A1.2) and 22.5 (CYP1A1.4). Pentoxyresorufin was dealkylated approximately 10-20 times slower with all enzyme variants. 4. All three CYP1A1 variants were active in metabolizing the precarcinogen benzo[a]pyrene (B[a]P), with wild-type enzyme showing the highest activity, followed by CYP1A1.4 (60%) and CYP1A1.2 (40%). Each variant produced all major metabolites including B[a]P-7,8-dihydrodiol, the precursor of the ultimate carcinogenic species. 5. These studies demonstrate that the baculovirus-mediated co-expression-by-co-infection approach all CYP1A1 variants yields functionally active enzyme systems with similar molar OR/CYP1A1 ratios, thus providing suitable preconditions to examine the metabolism of and environmental chemicals by the different CY1A1 variants.

  11. Subset of heat-shock transcription factors required for the early response of Arabidopsis to excess light

    PubMed Central

    Jung, Hou-Sung; Crisp, Peter A.; Estavillo, Gonzalo M.; Cole, Benjamin; Hong, Fangxin; Mockler, Todd C.; Pogson, Barry J.; Chory, Joanne

    2013-01-01

    Sunlight provides energy for photosynthesis and is essential for nearly all life on earth. However, too much or too little light or rapidly fluctuating light conditions cause stress to plants. Rapid changes in the amount of light are perceived as a change in the reduced/oxidized (redox) state of photosynthetic electron transport components in chloroplasts. However, how this generates a signal that is relayed to changes in nuclear gene expression is not well understood. We modified redox state in the reference plant, Arabidopsis thaliana, using either excess light or low light plus the herbicide DBMIB (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone), a well-known inhibitor of photosynthetic electron transport. Modification of redox state caused a change in expression of a common set of about 750 genes, many of which are known stress-responsive genes. Among the most highly enriched promoter elements in the induced gene set were heat-shock elements (HSEs), known motifs that change gene expression in response to high temperature in many systems. We show that HSEs from the promoter of the ASCORBATE PEROXIDASE 2 (APX2) gene were necessary and sufficient for APX2 expression in conditions of excess light, or under low light plus the herbicide. We tested APX2 expression phenotypes in overexpression and loss-of-function mutants of 15 Arabidopsis A-type heat-shock transcription factors (HSFs), and identified HSFA1D, HSFA2, and HSFA3 as key factors regulating APX2 expression in diverse stress conditions. Excess light regulates both the subcellular location of HSFA1D and its biochemical properties, making it a key early component of the excess light stress network of plants. PMID:23918368

  12. Analysis of Gene Expression in Escherichia coli in Response to Changes of Growth-Limiting Nutrient in Chemostat Cultures

    PubMed Central

    Hua, Qiang; Yang, Chen; Oshima, Taku; Mori, Hirotada; Shimizu, Kazuyuki

    2004-01-01

    Studies of steady-state metabolic fluxes in Escherichia coli grown in nutrient-limited chemostat cultures suggest remarkable flux alterations in response to changes of growth-limiting nutrient in the medium (Hua et al., J. Bacteriol. 185:7053-7067, 2003). To elucidate the physiological adaptation of cells to the nutrient condition through the flux change and understand the molecular mechanisms underlying the change in the flux, information on gene expression is of great importance. DNA microarray analysis was performed to investigate the global transcriptional responses of steady-state cells grown in chemostat cultures with limited glucose or ammonia while other environmental conditions and the growth rate were kept constant. In slow-growing cells (specific growth rate of 0.10 h−1), 9.8% of a total of 4,071 genes investigated, especially those involved in amino acid metabolism, central carbon and energy metabolism, transport system and cell envelope, were observed to be differentially expressed between the two nutrient-limited cultures. One important characteristic of E. coli grown under nutrient limitation was its capacity to scavenge carbon or nitrogen from the medium through elevating the expression of the corresponding transport and assimilation genes. The number of differentially expressed genes in faster-growing cells (specific growth rate of 0.55 h−1), however, decreased to below half of that in slow-growing cells, which could be explained by diverse transcriptional responses to the growth rate under different nutrient limitations. Independent of the growth rate, 92 genes were identified as being differentially expressed. Genes tightly related to the culture conditions were highlighted, some of which may be used to characterize nutrient-limited growth. PMID:15066832

  13. A differential pattern of gene expression in skeletal muscle of tumor-bearing rats reveals dysregulation of excitation–contraction coupling together with additional muscle alterations.

    PubMed

    Fontes-Oliveira, Cibely Cristine; Busquets, Sílvia; Fuster, Gemma; Ametller, Elisabet; Figueras, Maite; Olivan, Mireia; Toledo, Míriam; López-Soriano, Francisco J; Qu, Xiaoyan; Demuth, Jeffrey; Stevens, Paula; Varbanov, Alex; Wang, Feng; Isfort, Robert J; Argilés, Josep M

    2014-02-01

    Cachexia is a wasting condition that manifests in several types of cancer. The main characteristic of this condition is a profound loss of muscle mass. By using a microarray system, expression of several hundred genes was screened in skeletal muscle of rats bearing a cachexia-inducing tumor, the AH-130 Yoshida ascites hepatoma. This model induced a strong decrease in muscle mass in the tumor-bearing animals, as compared with their healthy counterparts. The results show important differences in gene expression in EDL skeletal muscle between tumor-bearing animals with cachexia and control animals. The differences observed pertain to genes related to intracellular calcium homeostasis and genes involved in the control of mitochondrial oxidative phosphorylation and protein turnover, both at the level of protein synthesis and proteolysis. Assessment of these differences may be a useful tool for the design of novel therapeutic strategies to fight this devastating syndrome.

  14. Generalized bipartite quantum state discrimination problems with sequential measurements

    NASA Astrophysics Data System (ADS)

    Nakahira, Kenji; Kato, Kentaro; Usuda, Tsuyoshi Sasaki

    2018-02-01

    We investigate an optimization problem of finding quantum sequential measurements, which forms a wide class of state discrimination problems with the restriction that only local operations and one-way classical communication are allowed. Sequential measurements from Alice to Bob on a bipartite system are considered. Using the fact that the optimization problem can be formulated as a problem with only Alice's measurement and is convex programming, we derive its dual problem and necessary and sufficient conditions for an optimal solution. Our results are applicable to various practical optimization criteria, including the Bayes criterion, the Neyman-Pearson criterion, and the minimax criterion. In the setting of the problem of finding an optimal global measurement, its dual problem and necessary and sufficient conditions for an optimal solution have been widely used to obtain analytical and numerical expressions for optimal solutions. Similarly, our results are useful to obtain analytical and numerical expressions for optimal sequential measurements. Examples in which our results can be used to obtain an analytical expression for an optimal sequential measurement are provided.

  15. Expression profiles of genes for mitochondrial respiratory energy-dissipating systems and antioxidant enzymes in wheat leaves during de-etiolation.

    PubMed

    Garmash, Elena V; Velegzhaninov, Ilya O; Grabelnych, Olga I; Borovik, Olga A; Silina, Ekaterina V; Voinikov, Victor K; Golovko, Tamara K

    2017-08-01

    Mitochondrial respiratory components participate in the maintenance of chloroplast functional activity. This study investigates the effects 48h de-etiolation of spring wheat seedlings (Triticum aestivum L., var. Irgina) on the expression of genes that encode energy-dissipating respiratory components and antioxidant enzymes under continuous light conditions. The expression of AOX1a following the prolonged darkness exhibited a pattern indicating a prominent dependence on light. The expression of other respiratory genes, including NDA2, NDB2, and UCP1b, increased during de-etiolation and dark-to-light transition; however, changes in the expression of these genes occurred later than those in AOX1a expression. A high expression of NDA1 was detected after 12h of de-etiolation. The suppression of AOX1a, NDA2, NDB2, and UCP1b was observed 24h after de-etiolation when the photosynthetic apparatus and its defence systems against excess light were completely developed. The expression patterns of the respiratory genes and several genes encoding antioxidant enzymes (MnSOD, Cu-ZnSOD, t-APX, GR, and GRX) were quite similar. Our data indicate that the induction of nuclear genes encoding respiratory and antioxidant enzymes allow the plants to control reactive oxygen species (ROS) production and avoid oxidative stress during de-etiolation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Overexpression of Thioredoxin-1 Blocks Morphine-Induced Conditioned Place Preference Through Regulating the Interaction of γ-Aminobutyric Acid and Dopamine Systems.

    PubMed

    Li, Xiang; Huang, Mengbing; Yang, Lihua; Guo, Ningning; Yang, Xiaoyan; Zhang, Zhimin; Bai, Ming; Ge, Lu; Zhou, Xiaoshuang; Li, Ye; Bai, Jie

    2018-01-01

    Morphine is one kind of opioid, which is currently the most effective widely utilized pain relieving pharmaceutical. Long-term administration of morphine leads to dependence and addiction. Thioredoxin-1 (Trx-1) is an important redox regulating protein and works as a neurotrophic cofactor. Our previous study showed that geranylgeranylaceton, an inducer of Trx-1 protected mice from rewarding effects induced by morphine. However, whether overexpression of Trx-1 can block morphine-induced conditioned place preference (CPP) in mice is still unknown. In this study, we first examined whether overexpression of Trx-1 affects the CPP after morphine training and further examined the dopamine (DA) and γ-aminobutyric acid (GABA) systems involved in rewarding effects. Our results showed that morphine-induced CPP was blocked in Trx-1 overexpression transgenic (TG) mice. Trx-1 expression was induced by morphine in the ventral tegmental area (VTA) and nucleus accumbens (NAc) in wild-type (WT) mice, which was not induced in Trx-1 TG mice. The DA level and expressions of tyrosine hydroxylase (TH) and D1 were induced by morphine in WT mice, which were not induced in Trx-1 TG mice. The GABA level and expression of GABA B R were decreased by morphine, which were restored in Trx-1 TG mice. Therefore, Trx-1 may play a role in blocking CPP induced by morphine through regulating the expressions of D1, TH, and GABA B R in the VTA and NAc.

  17. Constitutive expression of a putative high-affinity nitrate transporter in Nicotiana plumbaginifolia: evidence for post-transcriptional regulation by a reduced nitrogen source.

    PubMed

    Fraisier, V; Gojon, A; Tillard, P; Daniel-Vedele, F

    2000-08-01

    The NpNRT2.1 gene encodes a putative inducible component of the high-affinity nitrate (NO3-) uptake system in Nicotiana plumbaginifolia. Here we report functional and physiological analyses of transgenic plants expressing the NpNRT2.1 coding sequence fused to the CaMV 35S or rolD promoters. Irrespective of the level of NO3- supplied, NO3- contents were found to be remarkably similar in wild-type and transgenic plants. Under specific conditions (growth on 10 mM NO3-), the steady-state NpNRT2. 1 mRNA level resulting from the deregulated transgene expression was accompanied by an increase in 15NO3- influx measured in the low concentration range. This demonstrates for the first time that the NRT2.1 sequence codes a limiting element of the inducible high-affinity transport system. Both 15NO3- influx and mRNA levels decreased in the wild type after exposure to ammonium, in agreement with previous results from many species. Surprisingly, however, influx was also markedly decreased in transgenic plants, despite stable levels of transgene expression in independent transformants after ammonium addition. We conclude that the conditions associated with the supply of a reduced nitrogen source such as ammonium, or with the generation of a further downstream metabolite, probably exert a repressive effect on NO3- influx at both transcriptional and post-transcriptional levels.

  18. Efficient biosynthesis of L-phenylglycine by an engineered Escherichia coli with a tunable multi-enzyme-coordinate expression system.

    PubMed

    Liu, Qiaoli; Zhou, Junping; Yang, Taowei; Zhang, Xian; Xu, Meijuan; Rao, Zhiming

    2018-03-01

    Whole-cell catalysis with co-expression of two or more enzymes in a single host as a simple low-cost biosynthesis method has been widely studied and applied but hardly with regulation of multi-enzyme expression. Here we developed an efficient whole-cell catalyst for biosynthesis of L-phenylglycine (L-Phg) from benzoylformic acid through co-expression of leucine dehydrogenase from Bacillus cereus (BcLeuDH) and NAD + -dependent mutant formate dehydrogenase from Candida boidinii (CbFDH A10C ) in Escherichia coli with tunable multi-enzyme-coordinate expression system. By co-expressing one to four copies of CbFDH A10C and optimization of the RBS sequence of BcLeuDH in the expression system, the ratio of BcLeuDH to CbFDH in E. coli BL21/pETDuet-rbs 4 leudh-3fdh A10C was finally regulated to 2:1, which was the optimal one determined by enzyme-catalyzed synthesis. The catalyst activity of E. coli BL21/pETDuet-rbs 4 leudh-3fdh A10C was 28.4 mg L -1  min -1  g -1 dry cell weight for L-Phg production using whole-cell transformation, it's was 3.7 times higher than that of engineered E. coli without enzyme expression regulation. Under optimum conditions (pH 8.0 and 35 °C), 60 g L -1 benzoylformic acid was completely converted to pure chiral L-Phg in 4.5 h with 10 g L -1 dry cells and 50.4 g L -1 ammonium formate, and with enantiomeric excess > 99.9%. This multi-enzyme-coordinate expression system strategy significantly improved L-Phg productivity and demonstrated a novel low-cost method for enantiopure L-Phg production.

  19. Gene Expression Biomarkers Provide Sensitive Indicators of in Planta Nitrogen Status in Maize[W][OA

    PubMed Central

    Yang, Xiaofeng S.; Wu, Jingrui; Ziegler, Todd E.; Yang, Xiao; Zayed, Adel; Rajani, M.S.; Zhou, Dafeng; Basra, Amarjit S.; Schachtman, Daniel P.; Peng, Mingsheng; Armstrong, Charles L.; Caldo, Rico A.; Morrell, James A.; Lacy, Michelle; Staub, Jeffrey M.

    2011-01-01

    Over the last several decades, increased agricultural production has been driven by improved agronomic practices and a dramatic increase in the use of nitrogen-containing fertilizers to maximize the yield potential of crops. To reduce input costs and to minimize the potential environmental impacts of nitrogen fertilizer that has been used to optimize yield, an increased understanding of the molecular responses to nitrogen under field conditions is critical for our ability to further improve agricultural sustainability. Using maize (Zea mays) as a model, we have characterized the transcriptional response of plants grown under limiting and sufficient nitrogen conditions and during the recovery of nitrogen-starved plants. We show that a large percentage (approximately 7%) of the maize transcriptome is nitrogen responsive, similar to previous observations in other plant species. Furthermore, we have used statistical approaches to identify a small set of genes whose expression profiles can quantitatively assess the response of plants to varying nitrogen conditions. Using a composite gene expression scoring system, this single set of biomarker genes can accurately assess nitrogen responses independently of genotype, developmental stage, tissue type, or environment, including in plants grown under controlled environments or in the field. Importantly, the biomarker composite expression response is much more rapid and quantitative than phenotypic observations. Consequently, we have successfully used these biomarkers to monitor nitrogen status in real-time assays of field-grown maize plants under typical production conditions. Our results suggest that biomarkers have the potential to be used as agronomic tools to monitor and optimize nitrogen fertilizer usage to help achieve maximal crop yields. PMID:21980173

  20. Role of the hippocampus and orbitofrontal cortex during the disambiguation of social cues in working memory

    PubMed Central

    Ross, Robert S.; LoPresti, Matthew L.; Schon, Karin; Stern, Chantal E.

    2013-01-01

    Human social interactions are complex behaviors requiring the concerted effort of multiple neural systems to track and monitor the individuals around us. Cognitively, adjusting our behavior based on changing social cues such as facial expressions relies on working memory and the ability to disambiguate, or separate, representations of overlapping stimuli resulting from viewing the same individual with different facial expressions. We conducted an fMRI experiment examining brain regions contributing to the encoding, maintenance and retrieval of overlapping identity information during working memory using a delayed match-to-sample (DMS) task. In the overlapping condition, two faces from the same individual with different facial expressions were presented at sample. In the non-overlapping condition, the two sample faces were from two different individuals with different expressions. fMRI activity was assessed by contrasting the overlapping and non-overlapping condition at sample, delay, and test. The lateral orbitofrontal cortex showed increased fMRI signal in the overlapping condition in all three phases of the DMS task and increased functional connectivity with the hippocampus when encoding overlapping stimuli. The hippocampus showed increased fMRI signal at test. These data suggest lateral orbitofrontal cortex helps encode and maintain representations of overlapping stimuli in working memory while the orbitofrontal cortex and hippocampus contribute to the successful retrieval of overlapping stimuli. We suggest the lateral orbitofrontal cortex and hippocampus play a role in encoding, maintaining, and retrieving social cues, especially when multiple interactions with an individual need to be disambiguated in a rapidly changing social context in order to make appropriate social responses. PMID:23640112

  1. Gene expression biomarkers provide sensitive indicators of in planta nitrogen status in maize.

    PubMed

    Yang, Xiaofeng S; Wu, Jingrui; Ziegler, Todd E; Yang, Xiao; Zayed, Adel; Rajani, M S; Zhou, Dafeng; Basra, Amarjit S; Schachtman, Daniel P; Peng, Mingsheng; Armstrong, Charles L; Caldo, Rico A; Morrell, James A; Lacy, Michelle; Staub, Jeffrey M

    2011-12-01

    Over the last several decades, increased agricultural production has been driven by improved agronomic practices and a dramatic increase in the use of nitrogen-containing fertilizers to maximize the yield potential of crops. To reduce input costs and to minimize the potential environmental impacts of nitrogen fertilizer that has been used to optimize yield, an increased understanding of the molecular responses to nitrogen under field conditions is critical for our ability to further improve agricultural sustainability. Using maize (Zea mays) as a model, we have characterized the transcriptional response of plants grown under limiting and sufficient nitrogen conditions and during the recovery of nitrogen-starved plants. We show that a large percentage (approximately 7%) of the maize transcriptome is nitrogen responsive, similar to previous observations in other plant species. Furthermore, we have used statistical approaches to identify a small set of genes whose expression profiles can quantitatively assess the response of plants to varying nitrogen conditions. Using a composite gene expression scoring system, this single set of biomarker genes can accurately assess nitrogen responses independently of genotype, developmental stage, tissue type, or environment, including in plants grown under controlled environments or in the field. Importantly, the biomarker composite expression response is much more rapid and quantitative than phenotypic observations. Consequently, we have successfully used these biomarkers to monitor nitrogen status in real-time assays of field-grown maize plants under typical production conditions. Our results suggest that biomarkers have the potential to be used as agronomic tools to monitor and optimize nitrogen fertilizer usage to help achieve maximal crop yields.

  2. Rotating wall vessel exposure alters protein secretion and global gene expression in Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Rosado, Helena; O'Neill, Alex J.; Blake, Katy L.; Walther, Meik; Long, Paul F.; Hinds, Jason; Taylor, Peter W.

    2012-04-01

    Staphylococcus aureus is routinely recovered from air and surface samples taken aboard the International Space Station (ISS) and poses a health threat to crew. As bacteria respond to the low shear forces engendered by continuous rotation conditions in a Rotating Wall Vessel (RWV) and the reduced gravitational field of near-Earth flight by altering gene expression, we examined the effect of low-shear RWV growth on protein secretion and gene expression by three S. aureus isolates. When cultured under 1 g, the total amount of protein secreted by these strains varied up to fourfold; under continuous rotation conditions, protein secretion by all three strains was significantly reduced. Concentrations of individual proteins were differentially reduced and no evidence was found for increased lysis. These data suggest that growth under continuous rotation conditions reduces synthesis or secretion of proteins. A limited number of changes in gene expression under continuous rotation conditions were noted: in all isolates vraX, a gene encoding a polypeptide associated with cell wall stress, was down-regulated. A vraX deletion mutant of S. aureus SH1000 was constructed: no differences were found between SH1000 and ΔvraX with respect to colony phenotype, viability, protein export, antibiotic susceptibility, vancomycin kill kinetics, susceptibility to cold or heat and gene modulation. An ab initio protein-ligand docking simulation suggests a major binding site for β-lactam drugs such as imipenem. If such changes to the bacterial phenotype occur during spaceflight, they will compromise the capacity of staphylococci to cause systemic infection and to circumvent antibacterial chemotherapy.

  3. Des Regles et du Jeu. Complementarite des facteurs genetiques et epigenetiques dans le developpement cerebral (Of Rules and of Play. The Complementary Nature of Genetic and Epigenetic Factors in Brain Development).

    ERIC Educational Resources Information Center

    Lambert, Jean-Francois

    1997-01-01

    Discusses the importance of genetic and epigenetic factors in the development of the nervous system and the performances it conditions. From the perspective of rules, play, and relaxation of rules, learning and education are not considered as a kind of conditioning but as providing a content in which the cumulative expression of potential can take…

  4. Comparative Analyses of Cu-Zn Superoxide Dismutase (SOD1) and Thioredoxin Reductase (TrxR) at the mRNA Level between Apis mellifera L. and Apis cerana F. (Hymenoptera: Apidae) Under Stress Conditions.

    PubMed

    Koo, Hyun-Na; Lee, Soon-Gyu; Yun, Seung-Hwan; Kim, Hyun Kyung; Choi, Yong Soo; Kim, Gil-Hah

    2016-01-01

    This study compared stress-induced expression of Cu-Zn superoxide dismutase (SOD1) and thioredoxin reductase (TrxR) genes in the European honeybee Apis mellifera L. and Asian honeybee Apis cerana F. Expression of both SOD1 and TrxR rapidly increased up to 5 h after exposure to cold (4 °C) or heat (37 °C) treatment and then gradually decreased, with a stronger effect induced by cold stress in A. mellifera compared with A. cerana. Injection of stress-inducing substances (methyl viologen, [MV] and H2O2) also increased SOD1 and TrxR expression in both A. mellifera and A. cerana, and this effect was more pronounced with MV than H2O2. Additionally, we heterologously expressed the A. mellifera and A. cerana SOD1 and TrxR proteins in an Escherichia coli expression system, and detection by SDS-PAGE, confirmed by Western blotting using anti-His tag antibodies, revealed bands at 16 and 60 kDa, respectively. Our results show that the expression patterns of SOD1 and TrxR differ between A. mellifera and A. cerana under conditions of low or high temperature as well as oxidative stress. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  5. Optimised 'on demand' protein arraying from DNA by cell free expression with the 'DNA to Protein Array' (DAPA) technology.

    PubMed

    Schmidt, Ronny; Cook, Elizabeth A; Kastelic, Damjana; Taussig, Michael J; Stoevesandt, Oda

    2013-08-02

    We have previously described a protein arraying process based on cell free expression from DNA template arrays (DNA Array to Protein Array, DAPA). Here, we have investigated the influence of different array support coatings (Ni-NTA, Epoxy, 3D-Epoxy and Polyethylene glycol methacrylate (PEGMA)). Their optimal combination yields an increased amount of detected protein and an optimised spot morphology on the resulting protein array compared to the previously published protocol. The specificity of protein capture was improved using a tag-specific capture antibody on a protein repellent surface coating. The conditions for protein expression were optimised to yield the maximum amount of protein or the best detection results using specific monoclonal antibodies or a scaffold binder against the expressed targets. The optimised DAPA system was able to increase by threefold the expression of a representative model protein while conserving recognition by a specific antibody. The amount of expressed protein in DAPA was comparable to those of classically spotted protein arrays. Reaction conditions can be tailored to suit the application of interest. DAPA represents a cost effective, easy and convenient way of producing protein arrays on demand. The reported work is expected to facilitate the application of DAPA for personalized medicine and screening purposes. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Expression and Secretion of Endostar Protein by Escherichia Coli: Optimization of Culture Conditions Using the Response Surface Methodology.

    PubMed

    Mohajeri, Abbas; Abdolalizadeh, Jalal; Pilehvar-Soltanahmadi, Younes; Kiafar, Farhad; Zarghami, Nosratollah

    2016-10-01

    Endostar as a specific drug in treatment of the nonsmall cell lung cancer is produced using Escherichia coli expression system. Plackett-Burman design (PBD) and response surface methodology (RSM) are statistical tools for experimental design and optimization of biotechnological processes. This investigation aimed to predict and develop the optimal culture condition and its components for expression and secretion of endostar into the culture medium of E. coli. The synthetic endostar coding sequence was fused with PhoA signal peptide. The nine factors involved in the production of recombinant protein-postinduction temperature, cell density, rotation speed, postinduction time, concentration of glycerol, IPTG, peptone, glycine, and triton X-100-were evaluated using PBD. Four significant factors were selected based on PBD results for optimizing culture condition using RSM. Endostar was purified using cation exchange chromatography and size exclusion chromatography. The maximum level of endostar was obtained under the following condition: 13.57-h postinduction time, 0.76 % glycine, 0.7 % triton X-100, and 4.87 % glycerol. The predicted levels of endostar was significantly correlated with experimental levels (R 2 = 0.982, P = 0.00). The obtained results indicated that PBD and RSM are effective tools for optimization of culture condition and its components for endostar production in E. coli. The most important factors in the enhancement of the protein production are glycerol, glycine, and postinduction time.

  7. Ablation of TrkB expression in RGS9-2 cells leads to hyperphagic obesity★

    PubMed Central

    Liao, Guey-Ying; Li, Yuqing; Xu, Baoji

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) and its cognate receptor, TrkB (tropomyosin receptor kinase B), are widely expressed in the brain where they regulate a wide variety of biological processes, including energy homeostasis. However, the specific population(s) of TrkB-expressing neurons through which BDNF governs energy homeostasis remain(s) to be determined. Using the Cre-loxP recombination system, we deleted the mouse TrkB gene in RGS9-2-expressing cells. In this mouse mutant, TrkB expression was abolished in several hypothalamic nuclei, including arcuate nucleus, dorsomedial hypothalamus, and lateral hypothalamus. TrkB expression was also abolished in a small number of cells in other brain regions, including the cerebral cortex and striatum. The mutant animals developed hyperphagic obesity with normal energy expenditure. Despite hyperglycemia under fed conditions, these animals exhibited normal fasting blood glucose levels and normal glucose tolerance. These results suggest that BDNF regulates energy homeostasis in part through TrkB-expressing neurons in the hypothalamus. PMID:24327964

  8. Decoherence in yeast cell populations and its implications for genome-wide expression noise.

    PubMed

    Briones, M R S; Bosco, F

    2009-01-20

    Gene expression "noise" is commonly defined as the stochastic variation of gene expression levels in different cells of the same population under identical growth conditions. Here, we tested whether this "noise" is amplified with time, as a consequence of decoherence in global gene expression profiles (genome-wide microarrays) of synchronized cells. The stochastic component of transcription causes fluctuations that tend to be amplified as time progresses, leading to a decay of correlations of expression profiles, in perfect analogy with elementary relaxation processes. Measuring decoherence, defined here as a decay in the auto-correlation function of yeast genome-wide expression profiles, we found a slowdown in the decay of correlations, opposite to what would be expected if, as in mixing systems, correlations decay exponentially as the equilibrium state is reached. Our results indicate that the populational variation in gene expression (noise) is a consequence of temporal decoherence, in which the slow decay of correlations is a signature of strong interdependence of the transcription dynamics of different genes.

  9. The membrane-tethered transcription factor ANAC089 serves as redox-dependent suppressor of stromal ascorbate peroxidase gene expression

    PubMed Central

    Klein, Peter; Seidel, Thorsten; Stöcker, Benedikt; Dietz, Karl-Josef

    2012-01-01

    The stromal ascorbate peroxidase (sAPX) functions as central element of the chloroplast antioxidant defense system. Its expression is under retrograde control of chloroplast signals including redox- and reactive oxygen species-linked cues. The sAPX promoter of Arabidopsis thaliana was dissected in transient reporter assays using mesophyll protoplasts. The study revealed regulatory elements up to –1868 upstream of the start codon. By yeast-one-hybrid screening, the transcription factor ANAC089 was identified to bind to the promoter fragment 2 (–1262 to –1646 bp upstream of translational initiation). Upon mutation of the cis-acting element CACG, binding of ANAC089 was abolished. Expression of a fused fluorescent protein version and comparison with known endomembrane markers localized ANAC089 to the trans-Golgi network and the ER. The transcription factor was released upon treatment with reducing agents and targeted to the nucleus. Transactivation assays using wild type and mutated versions of the promoter showed a partial suppression of reporter expression. The data indicate that ANAC089 functions in a negative retrograde loop, lowering sAPX expression if the cell encounters a highly reducing condition. This conclusion was supported by reciprocal transcript accumulation of ANAC089 and sAPX during acclimation to low, normal, and high light conditions. PMID:23162559

  10. Response of Lactobacillus acidophilus ATCC 4356 to low-shear modeled microgravity

    NASA Astrophysics Data System (ADS)

    Castro-Wallace, Sarah; Stahl, Sarah; Voorhies, Alexander; Lorenzi, Hernan; Douglas, Grace L.

    2017-10-01

    The introduction of probiotic microbes into the spaceflight food system has the potential for use as a safe, non-invasive, daily countermeasure to crew microbiome and immune dysregulation. However, the microgravity effects on the stress tolerances and gene expression of probiotic bacteria must be investigated to confirm that benefits of selected strains will still be conveyed under microgravity conditions. The goal of this study was to evaluate the characteristics of the probiotic bacteria Lactobacillus acidophilus ATCC 4356 in a microgravity analog environment. L. acidophilus was cultured anaerobically under modeled microgravity conditions and assessed for differences in growth, survival through stress challenge, and gene expression compared to control cultures. No significant differences were observed between the modeled microgravity and control grown L. acidophilus, suggesting that this strain will behave similarly in spaceflight.

  11. Conclusiveness of natural languages and recognition of images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojcik, Z.M.

    1983-01-01

    The conclusiveness is investigated using recognition processes and one-one correspondence between expressions of a natural language and graphs representing events. The graphs, as conceived in psycholinguistics, are obtained as a result of perception processes. It is possible to generate and process the graphs automatically, using computers and then to convert the resulting graphs into expressions of a natural language. Correctness and conclusiveness of the graphs and sentences are investigated using the fundamental condition for events representation processes. Some consequences of the conclusiveness are discussed, e.g. undecidability of arithmetic, human brain assymetry, correctness of statistical calculations and operations research. It ismore » suggested that the group theory should be imposed on mathematical models of any real system. Proof of the fundamental condition is also presented. 14 references.« less

  12. [The emotional characteristics of the sounding word].

    PubMed

    Videneeva, N M; Khludova, O O; Vartanov, A V

    2000-01-01

    The four-dimensional spherical emotional space has been obtained by multi-dimensional scaling of subjective differences between the emotional expressions in sound samples (the words "Yes" and "No" pronounced in different emotional conditions). Euclidean space axes are interpreted as the following neural mechanisms. The first two dimensions are related with the estimation of a sign of emotional condition: the dimension 1--pleasant/unpleasant, useful or not, the dimension 2--an extent of information certainty. The third and the fourth axes are associated with the incentive. The dimension 3 encodes active (anger) or passive (fear) defensive reaction, and the dimension 4 corresponds to achievement. Three angles of four-dimensional hypersphere: the one between the axes 1 and 2, the second between the axes 3 and 4, the third between these two planes determine subjectively experienced emotion characteristics such as described by Vundt emotion modality (pleasure-unpleaure), excitation-quietness-suppression, and tension-relaxation, respectively. Thus, the first and the second angles regulate the modality of ten basic emotions: five emotions determined by a situation and five emotions determined by personal activity. In case of another system of angular parameters (three angles between the axes 4 and 1, 3 and 2, and the angle between the respective planes), another system of emotion classification, which is usually described in the studies of facial expressions (Shlosberg's and Izmaĭlov's circular system) and semantics (Osgood) can be realized: emotion modality or sign (regulates 6 basic emotions), emotion activity or brightness (excitation-rest) and emotion saturation (strength of emotion expression).

  13. Biomarkers to evaluate the effects of temperature and methanol on recombinant Pichia pastoris.

    PubMed

    Zepeda, Andrea B; Figueroa, Carolina A; Abdalla, Dulcineia S P; Maranhão, Andrea Q; Ulloa, Patricio H; Pessoa, Adalberto; Farías, Jorge G

    2014-01-01

    Pichia pastoris is methylotrophic yeast used as an efficient expression system for heterologous protein production. In order to evaluate the effects of temperature (10 and 30 °C) and methanol (1 and 3% (v/v)) on genetically-modified Pichia pastoris, different biomarkers were evaluated: Heat stress (HSF-1 and Hsp70), oxidative stress (OGG1 and TBARS) and antioxidant (GLR). Three yeast cultures were performed: 3X = 3% methanol-10 °C, 4X = 3% methanol-30 °C, and 5X = 1% methanol-10°C. The expression level of HIF-1α, HSF-1, HSP-70 and HSP-90 biomarkers were measured by Western blot and in situ detection was performed by immunocytochemistry. Ours results show that at 3% methanol -30 °C there is an increase of mitochondrial OGG1 (mtOGG1), Glutathione Reductase (GLR) and TBARS. In addition, there was a cytosolic expression of HSF-1 and HSP-70, which indicates a deprotection against nucleolar fragmentation (apoptosis). On the other hand, at 3% methanol -10 °C and 1% and at methanol -10 °C conditions there was nuclear expression of OGG1, lower levels of TBARS and lower expression of GLR, cytosolic expression of HSF-1 and nuclear expression HSP-70. In conclusion, our results suggest that 3% methanol-30 °C is a condition that induces a strong oxidative stress and risk factors of apoptosis in modified-genetically P. pastoris.

  14. Biomarkers to evaluate the effects of temperature and methanol on recombinant Pichia pastoris

    PubMed Central

    Zepeda, Andrea B.; Figueroa, Carolina A.; Abdalla, Dulcineia S.P.; Maranhão, Andrea Q.; Ulloa, Patricio H.; Pessoa, Adalberto; Farías, Jorge G.

    2014-01-01

    Pichia pastoris is methylotrophic yeast used as an efficient expression system for heterologous protein production. In order to evaluate the effects of temperature (10 and 30 °C) and methanol (1 and 3% (v/v)) on genetically-modified Pichia pastoris, different biomarkers were evaluated: Heat stress (HSF-1 and Hsp70), oxidative stress (OGG1 and TBARS) and antioxidant (GLR). Three yeast cultures were performed: 3X = 3% methanol-10 °C, 4X = 3% methanol-30 °C, and 5X = 1% methanol-10°C. The expression level of HIF-1α, HSF-1, HSP-70 and HSP-90 biomarkers were measured by Western blot and in situ detection was performed by immunocytochemistry. Ours results show that at 3% methanol −30 °C there is an increase of mitochondrial OGG1 (mtOGG1), Glutathione Reductase (GLR) and TBARS. In addition, there was a cytosolic expression of HSF-1 and HSP-70, which indicates a deprotection against nucleolar fragmentation (apoptosis). On the other hand, at 3% methanol −10 °C and 1% and at methanol −10 °C conditions there was nuclear expression of OGG1, lower levels of TBARS and lower expression of GLR, cytosolic expression of HSF-1 and nuclear expression HSP-70. In conclusion, our results suggest that 3% methanol-30 °C is a condition that induces a strong oxidative stress and risk factors of apoptosis in modified-genetically P. pastoris. PMID:25242930

  15. Safety mechanism assisted by the repressor of tetracycline (SMART) vaccinia virus vectors for vaccines and therapeutics.

    PubMed

    Grigg, Patricia; Titong, Allison; Jones, Leslie A; Yilma, Tilahun D; Verardi, Paulo H

    2013-09-17

    Replication-competent viruses, such as Vaccinia virus (VACV), are powerful tools for the development of oncolytic viral therapies and elicit superior immune responses when used as vaccine and immunotherapeutic vectors. However, severe complications from uncontrolled viral replication can occur, particularly in immunocompromised individuals or in those with other predisposing conditions. VACVs constitutively expressing interferon-γ (IFN-γ) replicate in cell culture indistinguishably from control viruses; however, they replicate in vivo to low or undetectable levels, and are rapidly cleared even in immunodeficient animals. In an effort to develop safe and highly effective replication-competent VACV vectors, we established a system to inducibly express IFN-γ. Our SMART (safety mechanism assisted by the repressor of tetracycline) vectors are designed to express the tetracycline repressor under a constitutive VACV promoter and IFN-γ under engineered tetracycline-inducible promoters. Immunodeficient SCID mice inoculated with VACVs not expressing IFN-γ demonstrated severe weight loss, whereas those given VACVs expressing IFN-γ under constitutive VACV promoters showed no signs of infection. Most importantly, mice inoculated with a VACV expressing the IFN-γ gene under an inducible promoter remained healthy in the presence of doxycycline, but exhibited severe weight loss in the absence of doxycycline. In this study, we developed a safety mechanism for VACV based on the conditional expression of IFN-γ under a tightly controlled tetracycline-inducible VACV promoter for use in vaccines and oncolytic cancer therapies.

  16. Approximate analytical solution to diurnal atmospheric boundary-layer growth under well-watered conditions

    USDA-ARS?s Scientific Manuscript database

    The system of governing equations of a simplified slab model of the uniformly-mixed, purely convective, diurnal atmospheric boundary layer (ABL) is shown to allow immediate solutions for the potential temperature and specific humidity as functions of the ABL height and net radiation when expressed i...

  17. Use of a Simple, Colorimetric Assay to Demonstrate Conditions for Induction of Nitrate Reductase in Plants.

    ERIC Educational Resources Information Center

    Harley, Suzanne M.

    1993-01-01

    Nitrate assimilation by plants provides an excellent system for demonstrating control of gene expression in a eukaryotic organism. Describes an assay method that allows students to complete experiments designed around the measurement of nitrate reductase within a three-hour laboratory experiment. (PR)

  18. Life in the sea of plenty: Seasonal and regional comparison of physiological performance of Euphausia hanseni in the northern Benguela upwelling system

    NASA Astrophysics Data System (ADS)

    Werner, Thorsten; Buchholz, Cornelia; Buchholz, Friedrich

    2015-09-01

    Variability in upwelling events may lead to periods of constrained food availability in the northern Benguela upwelling system (NBUS), thereby affecting the physiological state and metabolic activity of euphausiids. Most attention has so far been paid to seasonal effects but little is known about regional variability. Metabolic activity (expressed by respiration and excretion rates) and physiological state (expressed by reproductive effort and moult activity) in Euphausia hanseni were examined at different stations during austral summer (minimum upwelling) and austral winter (maximum upwelling). Overall, regional differences in physiological state, influencing metabolic activity, were greater than seasonal ones, indicating favourable conditions for growth and reproduction year-round. Higher respiration rates were found for females in more advanced stages of sexual development. Moult stage did not affect oxygen consumption rates, however. The physiological state of E. hanseni at the time of capture may serve as a meaningful indicator of the associated hydrographic conditions in the NBUS, to be further used in eco-system analysis on seasonal or long-term time scales. A latitudinal comparison of species highlights the extraordinary physiological plasticity of euphausiids.

  19. A systems biology model of the regulatory network in Populus leaves reveals interacting regulators and conserved regulation

    PubMed Central

    2011-01-01

    Background Green plant leaves have always fascinated biologists as hosts for photosynthesis and providers of basic energy to many food webs. Today, comprehensive databases of gene expression data enable us to apply increasingly more advanced computational methods for reverse-engineering the regulatory network of leaves, and to begin to understand the gene interactions underlying complex emergent properties related to stress-response and development. These new systems biology methods are now also being applied to organisms such as Populus, a woody perennial tree, in order to understand the specific characteristics of these species. Results We present a systems biology model of the regulatory network of Populus leaves. The network is reverse-engineered from promoter information and expression profiles of leaf-specific genes measured over a large set of conditions related to stress and developmental. The network model incorporates interactions between regulators, such as synergistic and competitive relationships, by evaluating increasingly more complex regulatory mechanisms, and is therefore able to identify new regulators of leaf development not found by traditional genomics methods based on pair-wise expression similarity. The approach is shown to explain available gene function information and to provide robust prediction of expression levels in new data. We also use the predictive capability of the model to identify condition-specific regulation as well as conserved regulation between Populus and Arabidopsis. Conclusions We outline a computationally inferred model of the regulatory network of Populus leaves, and show how treating genes as interacting, rather than individual, entities identifies new regulators compared to traditional genomics analysis. Although systems biology models should be used with care considering the complexity of regulatory programs and the limitations of current genomics data, methods describing interactions can provide hypotheses about the underlying cause of emergent properties and are needed if we are to identify target genes other than those constituting the "low hanging fruit" of genomic analysis. PMID:21232107

  20. Expression of seasonal and ENSO forcing in climatic variability at lower than ENSO frequencies: evidence from Pleistocene marine varves off California

    USGS Publications Warehouse

    Anderson, R.Y.; Linsley, B.K.; Gardner, J.V.

    1990-01-01

    Upper Pleistocene marine sediments along the upper continental slope off northern and central California contain alternations of varved and bioturbated sediments and associated changes in biota and sediment composition. These alternations can be related to conditions that accompany El Nin??o and anti-El Nin??o (ENSO) circulation. Anti-El Nin??o conditions are characterized by increased upwelling and productivity and by low concentrations of dissolved oxygen in the oxygen minimum zone that resulted in varve preservation. El Nin??o conditions are characterized by little or no upwelling, low productivity, and higher concentrations of dissolved oxygen that resulted in zones of bioturbation. Alternations of varves and zones of bioturbation, that range from decades to millennia, occur through the upper Pleistocene section. The inferred long-term alternations in El Nin??o and anti-El Nin??o conditions appear to be a re-expression of ENSO's primary 3-7 year cycle. Decadal to millennial cycles of productivity associated with El Nin??o and anti-El Nin??o conditions may have served as a "carbon pump" and transferred atmospheric CO2 to the marine reservoir. Changes in sediment composition and organisms associated with El Nin??o or anti-El Nin??o conditions can be related to both seasonal and ENSO phenomena. Expression of these changes at lower-than-ENSO frequencies may be partly explained by adding the effects of seasonal variability to effects produced by a self-oscillating ENSO system. However, deterministic mechanisms, including solar modulation of ENSO, may also contribute to long-term alternations of El Nin??o and anti-El Nin??o conditions. ?? 1990.

  1. Effects of single and combined low frequency electromagnetic fields and simulated microgravity on gene expression of human mesenchymal stem cells during chondrogenesis

    PubMed Central

    Hammerschmid, Florian; Blum, Helmut; Krebs, Stefan; Redeker, Julia I.; Holzapfel, Boris M.; Jansson, Volkmar; Müller, Peter E.

    2016-01-01

    Introduction Low frequency electromagnetic fields (LF-EMF) and simulated microgravity (SMG) have been observed to affect chondrogenesis. A controlled bioreactor system was developed to apply LF-EMF and SMG singly or combined during chondrogenic differentiation of human mesenchymal stem cells (hMSCs) in 3D culture. Material and methods An external motor gear SMG bioreactor was combined with magnetic Helmholtz coils for EMF (5 mT; 15 Hz). Pellets of hMSCs (±TGF-β3) were cultured (P5) under SMG, LF-EMF, LF-EMF/SMG and control (1 g) conditions for 3 weeks. Sections were stained with safranin-O and collagen type II. Gene expression was evaluated by microarray and real-time polymerase chain reaction analysis. Results Simulated microgravity application significantly changed gene expression; specifically, COLXA1 but also COL2A1, which represents the chondrogenic potential, were reduced (p < 0.05). Low frequency electromagnetic fields application showed no gene expression changes on a microarray basis. LF-EMF/SMG application obtained significant different expression values from cultures obtained under SMG conditions with a re-increase of COL2A1, therefore rescuing the chondrogenic potential, which had been lowered by SMG. Conclusions Simulated microgravity lowered hypertrophy but also the chondrogenic potential of hMSCs. Combined LF-EMF/SMG provided a rescue effect of the chondrogenic potential of hMSCs although no LF-EMF effect was observed under optimal conditions. The study provides new insights into how LF-EMF and SMG affect chondrogenesis of hMSCs and how they generate interdependent effects. PMID:29765449

  2. Behavioral conditioning of immunosuppression is possible in humans.

    PubMed

    Goebel, Marion U; Trebst, Almuth E; Steiner, Jan; Xie, Yu F; Exton, Michael S; Frede, Stilla; Canbay, Ali E; Michel, Martin C; Heemann, Uwe; Schedlowski, Manfred

    2002-12-01

    Behavioral conditioned immunosuppression has been described in rodents as the most impressive demonstration of brain-to-immune system interaction. To analyze whether behavioral conditioned immunosuppression is possible in humans, healthy subjects in this double-blind, placebo-controlled study were conditioned in four sessions over 3 consecutive days, receiving the immunosuppressive drug cyclosporin A as an unconditioned stimulus paired with a distinctively flavored drink (conditioned stimulus) each 12 h. In the next week, re-exposure to the conditioned stimulus (drink), but now paired with placebo capsules, induced a suppression of immune functions as analyzed by the IL-2 and IFN-gamma mRNA expression, intracellular production, and in vitro release of IL-2 and IFN-gamma, as well as lymphocyte proliferation. These data demonstrate for the first time that immunosuppression can be behaviorally conditioned in humans.

  3. Brachypodium distachyon as a new model system for understanding iron homeostasis in grasses: phylogenetic and expression analysis of Yellow Stripe-Like (YSL) transporters

    PubMed Central

    Yordem, Burcu K.; Conte, Sarah S.; Ma, Jian Feng; Yokosho, Kengo; Vasques, Kenneth A.; Gopalsamy, Srinivasa N.; Walker, Elsbeth L.

    2011-01-01

    Background and Aims Brachypodium distachyon is a temperate grass with a small stature, rapid life cycle and completely sequenced genome that has great promise as a model system to study grass-specific traits for crop improvement. Under iron (Fe)-deficient conditions, grasses synthesize and secrete Fe(III)-chelating agents called phytosiderophores (PS). In Zea mays, Yellow Stripe1 (ZmYS1) is the transporter responsible for the uptake of Fe(III)–PS complexes from the soil. Some members of the family of related proteins called Yellow Stripe-Like (YSL) have roles in internal Fe translocation of plants, while the function of other members remains uninvestigated. The aim of this study is to establish brachypodium as a model system to study Fe homeostasis in grasses, identify YSL proteins in brachypodium and maize, and analyse their expression profiles in brachypodium in response to Fe deficiency. Methods The YSL family of proteins in brachypodium and maize were identified based on sequence similarity to ZmYS1. Expression patterns of the brachypodium YSL genes (BdYSL genes) were determined by quantitative RT–PCR under Fe-deficient and Fe-sufficient conditions. The types of PS secreted, and secretion pattern of PS in brachypodium were analysed by high-performance liquid chromatography. Key Results Eighteen YSL family members in maize and 19 members in brachypodium were identified. Phylogenetic analysis revealed that some YSLs group into a grass-specific clade. The Fe status of the plant can regulate expression of brachypodium YSL genes in both shoots and roots. 3-Hydroxy-2′-deoxymugineic acid (HDMA) is the dominant type of PS secreted by brachypodium, and its secretion is diurnally regulated. Conclusions PS secretion by brachypodium parallels that of related crop species such as barley and wheat. A single grass species-specific YSL clade is present, and expression of the BdYSL members of this clade could not be detected in shoots or roots, suggesting grass-specific functions in reproductive tissues. Finally, the Fe-responsive expression profiles of several YSLs suggest roles in Fe homeostasis. PMID:21831857

  4. Corticotrophin-releasing hormone and corticosterone impair development of preimplantation embryos by inducing oviductal cell apoptosis via activating the Fas system: an in vitro study.

    PubMed

    Tan, Xiu-Wen; Ji, Chang-Li; Zheng, Liang-Liang; Zhang, Jie; Yuan, Hong-Jie; Gong, Shuai; Zhu, Jiang; Tan, Jing-He

    2017-08-01

    What are the mechanisms by which corticotrophin-releasing hormone (CRH) and corticosterone impair the development of preimplantation embryos in the oviduct. CRH and corticosterone do not affect preimplantation embryos directly, but impair their development indirectly by triggering apoptosis of oviductal epithelial cells (OECs) through activation of the Fas system. Studies report that stress impairs embryo development with facilitated secretion of CRH and glucocorticoids. Although an in vivo study demonstrated that preimplantation stress impaired embryo development in conjunction with oviductal apoptosis and activation of the Fas system, whether CRH or glucocorticoids damage embryos directly or indirectly by way of oviductal cells remains to be clarified. Mice of Kunming strain, the generalized lymphoproliferative disorder (gld) mice with a germline mutation F273L in Fas ligand in a C57BL/6J genomic background and the wild-type C57BL/6J mice were used. Female mice were used 8-10 weeks after birth. While some female mice were killed 48 h after being injected with equine CG to collect oviducts and prepare OECs, others were killed to recover zygotes after mating with males following superovulation with eCG and hCG. The zygotes obtained were cultured with or without CRH or corticosterone (CRH/Cort) either in Chatot-Ziomek-Bavister (CZB) medium with or without OECs or in conditioned medium (CM) conditioned with OECs pretreated or not with CRH/Cort. Preimplantation development, levels of redox potential and apoptosis, and expression of CRH receptor 1 (CRHR1), glucocorticoid receptor (GR), Fas and 11β-hydroxysteroid dehydrogenase (HSD) were observed in embryos recovered at different times of in vitro culture. After culture of OECs with or without CRH/Cort, levels of redox potential and apoptosis, mRNA and protein expression of growth factors, and protein expression of CRHR1, GR and Fas were examined in OECs and the level of FasL was measured in CM. The gld mice were used to confirm a role for the Fas system in triggering apoptosis of embryos and oviducts. This study showed that blastocyst development was unaffected when mouse zygotes were cultured in CZB medium containing various concentrations of CRH/Cort but was impaired when embryos were cultured with CRH/Cort plus OECs or in CM conditioned with OECs pretreated with CRH/Cort (treatment CM). Culture in treatment-CM induced oxidative stress and apoptosis in embryos. Preimplantation embryos expressed GR and Fas at all stages and CRHR1 at the blastocyst stage only. Mouse 4-cell embryos and blastocysts expressed HSD2 but not HSD1. Culture of OECs with CRH/Cort increased their oxidative stress, apoptosis, CRHR1, Fas and FasL while decreasing their GR and growth factors. Blastocyst development in treatment-CM conditioned with OECs from gld mice harboring FasL mutations was superior to treatment-CM conditioned with wild-type mouse OECs. The results suggest that CRH/Cort impairs embryo development indirectly by inducing oviductal apoptosis via activating the Fas system. The insensitivity of preimplantation embryos to CRH and corticosterone is due to, respectively, a lack of CRHR and the exclusive expression of HSD2 that inactivate corticosterone. Not applicable. Although significant, the conclusions were drawn from limited results obtained using mice and thus they need further verification in other species. For example, bovine embryos express both HSD1 and HSD2 at all the preimplantation stages whereas mouse preimplantation embryos express HSD2 exclusively without HSD1. The data are important for our understanding of the mechanisms by which stress affects female reproduction in both human and animals, as early stages of pregnancy are considered more vulnerable to stress than the late stages. This study was supported by grants from the National Basic Research Program of China (Nos. 2014CB138503 and 2012CB944403), the China National Natural Science Foundation (Nos. 31272444 and 30972096) and the Animal breeding improvement program of Shandong Province. All authors declare that their participation in the study did not involve factual or potential conflicts of interests. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  5. Engineering an efficient and tight D-amino acid-inducible gene expression system in Rhodosporidium/Rhodotorula species.

    PubMed

    Liu, Yanbin; Koh, Chong Mei John; Ngoh, Si Te; Ji, Lianghui

    2015-10-26

    Rhodosporidium and Rhodotorula are two genera of oleaginous red yeast with great potential for industrial biotechnology. To date, there is no effective method for inducible expression of proteins and RNAs in these hosts. We have developed a luciferase gene reporter assay based on a new codon-optimized LUC2 reporter gene (RtLUC2), which is flanked with CAR2 homology arms and can be integrated into the CAR2 locus in the nuclear genome at >90 % efficiency. We characterized the upstream DNA sequence of a D-amino acid oxidase gene (DAO1) from R. toruloides ATCC 10657 by nested deletions. By comparing the upstream DNA sequences of several putative DAO1 homologs of Basidiomycetous fungi, we identified a conserved DNA motif with a consensus sequence of AGGXXGXAGX11GAXGAXGG within a 0.2 kb region from the mRNA translation initiation site. Deletion of this motif led to strong mRNA transcription under non-inducing conditions. Interestingly, DAO1 promoter activity was enhanced about fivefold when the 108 bp intron 1 was included in the reporter construct. We identified a conserved CT-rich motif in the intron with a consensus sequence of TYTCCCYCTCCYCCCCACWYCCGA, deletion or point mutations of which drastically reduced promoter strength under both inducing and non-inducing conditions. Additionally, we created a selection marker-free DAO1-null mutant (∆dao1e) which displayed greatly improved inducible gene expression, particularly when both glucose and nitrogen were present in high levels. To avoid adding unwanted peptide to proteins to be expressed, we converted the original translation initiation codon to ATC and re-created a translation initiation codon at the start of exon 2. This promoter, named P DAO1-in1m1 , showed very similar luciferase activity to the wild-type promoter upon induction with D-alanine. The inducible system was tunable by adjusting the levels of inducers, carbon source and nitrogen source. The intron 1-containing DAO1 promoters coupled with a DAO1 null mutant makes an efficient and tight D-amino acid-inducible gene expression system in Rhodosporidium and Rhodotorula genera. The system will be a valuable tool for metabolic engineering and enzyme expression in these yeast hosts.

  6. Adult hippocampus derived soluble factors induce a neuronal-like phenotype in mesenchymal stem cells.

    PubMed

    Rivera, Francisco J; Sierralta, Walter D; Minguell, Jose J; Aigner, Ludwig

    2006-10-02

    Bone marrow-derived mesenchymal stem cells (MSCs) are not restricted in their differentiation fate to cells of the mesenchymal lineage. They acquire a neural phenotype in vitro and in vivo after transplantation in the central nervous system. Here we investigated whether soluble factors derived from different brain regions are sufficient to induce a neuronal phenotype in MSCs. We incubated bone marrow-derived MSCs in conditioned medium (CM) derived from adult hippocampus (HCM), cortex (CoCM) or cerebellum (CeCM) and analyzed the cellular morphology and the expression of neuronal and glial markers. In contrast to muscle derived conditioned medium, which served as control, conditioned medium derived from the different brain regions induced a neuronal morphology and the expression of the neuronal markers GAP-43 and neurofilaments in MSCs. Hippocampus derived conditioned medium had the strongest activity. It was independent of NGF or BDNF; and it was restricted to the neuronal differentiation fate, since no induction of the astroglial marker GFAP was observed. The work indicates that soluble factors present in the brain are sufficient to induce a neuronal phenotype in MSCs.

  7. Salmonella Modulates Metabolism During Growth under Conditions that Induce Expression of Virulence Genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young-Mo; Schmidt, Brian; Kidwai, Afshan S.

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations inmore » S. Typhimurium metabolism during growth under our conditions. Excitingly, we observed possible sequestration of metabolites recently suggested to have immune modulating roles. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Model-guided analysis suggested that alterations in metabolism prioritized other activities necessary for pathogenesis instead, such as lipopolysaccharide biosynthesis.« less

  8. Expression and characterization of constitutive heat shock protein 70.1 (HSPA-1A) gene in in vitro produced and in vivo-derived buffalo (Bubalus bubalis) embryos.

    PubMed

    Sharma, G T; Nath, A; Prasad, S; Singhal, S; Singh, N; Gade, N E; Dubey, P K; Saikumar, G

    2012-12-01

    Cells are blessed with a group of stress protector molecules known as heat shock proteins (HSPs), amongst them HSP70, encoded by HSPA-1A gene, is most abundant and highly conserved protein. Variety of stresses hampers the developmental competence of embryos under in vivo and in vitro conditions. Present work was designed to study the quantitative expression of HSPA-1A mRNA in immature oocytes (IMO), matured oocytes (MO), in vitro produced (IVP) and in vivo-derived (IVD) buffalo embryos to assess the level of stress to which embryos are exposed under in vivo and in vitro culture conditions. Further, HSPA-1A gene sequence was analysed to determine its homology with other mammalian sequences. The mRNA expression analysis was carried out on 72 oocytes (40 IMO; 32 MO), 76 IVP and 55 IVD buffalo embryos. Expression of HSPA-1A was found in oocytes and throughout the developmental stages of embryos examined irrespective of the embryo source; however, higher (p < 0.05) expression was observed in 8-16 cell, morula and blastocyst stages of IVP embryos as compared to IVD embryos. Phylogenetic analysis of bubaline HSPA-1A revealed that it shares 91-98% identity with other mammalian sequences. It can be concluded that higher level of HSPA-1A mRNA in IVP embryos in comparison with in vivo-derived embryos is an indicator of cellular stress in IVP system. This study suggests need for further optimization of in vitro culture system in which HSPA-1A gene could be used as a stress biomarker during pre-implantation development. © 2012 Blackwell Verlag GmbH.

  9. Benefits of expressing gratitude: expressing gratitude to a partner changes one's view of the relationship.

    PubMed

    Lambert, Nathaniel M; Clark, Margaret S; Durtschi, Jared; Fincham, Frank D; Graham, Steven M

    2010-04-01

    This research was conducted to examine the hypothesis that expressing gratitude to a relationship partner enhances one's perception of the relationship's communal strength. In Study 1 (N = 137), a cross-sectional survey, expressing gratitude to a relationship partner was positively associated with the expresser's perception of the communal strength of the relationship. In Study 2 (N = 218), expressing gratitude predicted increases in the expresser's perceptions of the communal strength of the relationship across time. In Study 3 (N = 75), participants were randomly assigned to an experimental condition, in which they expressed gratitude to a friend, or to one of three control conditions, in which they thought grateful thoughts about a friend, thought about daily activities, or had positive interactions with a friend. At the end of the study, perceived communal strength was higher among participants in the expression-of-gratitude condition than among those in all three control conditions. We discuss the theoretical and applied implications of these findings and suggest directions for future research.

  10. Implicit Memory in Monkeys: Development of a Delay Eyeblink Conditioning System with Parallel Electromyographic and High-Speed Video Measurements.

    PubMed

    Kishimoto, Yasushi; Yamamoto, Shigeyuki; Suzuki, Kazutaka; Toyoda, Haruyoshi; Kano, Masanobu; Tsukada, Hideo; Kirino, Yutaka

    2015-01-01

    Delay eyeblink conditioning, a cerebellum-dependent learning paradigm, has been applied to various mammalian species but not yet to monkeys. We therefore developed an accurate measuring system that we believe is the first system suitable for delay eyeblink conditioning in a monkey species (Macaca mulatta). Monkey eyeblinking was simultaneously monitored by orbicularis oculi electromyographic (OO-EMG) measurements and a high-speed camera-based tracking system built around a 1-kHz CMOS image sensor. A 1-kHz tone was the conditioned stimulus (CS), while an air puff (0.02 MPa) was the unconditioned stimulus. EMG analysis showed that the monkeys exhibited a conditioned response (CR) incidence of more than 60% of trials during the 5-day acquisition phase and an extinguished CR during the 2-day extinction phase. The camera system yielded similar results. Hence, we conclude that both methods are effective in evaluating monkey eyeblink conditioning. This system incorporating two different measuring principles enabled us to elucidate the relationship between the actual presence of eyelid closure and OO-EMG activity. An interesting finding permitted by the new system was that the monkeys frequently exhibited obvious CRs even when they produced visible facial signs of drowsiness or microsleep. Indeed, the probability of observing a CR in a given trial was not influenced by whether the monkeys closed their eyelids just before CS onset, suggesting that this memory could be expressed independently of wakefulness. This work presents a novel system for cognitive assessment in monkeys that will be useful for elucidating the neural mechanisms of implicit learning in nonhuman primates.

  11. Time-Dependent Effects of Localized Inflammation on Peripheral Clock Gene Expression in Rats

    PubMed Central

    Westfall, Susan; Aguilar-Valles, Argel; Mongrain, Valérie; Luheshi, Giamal N.; Cermakian, Nicolas

    2013-01-01

    Many aspects of the immune system, including circulating cytokine levels as well as counts and function of various immune cell types, present circadian rhythms. Notably, the mortality rate of animals subjected to high doses of lipopolysaccharide is dependent on the time of treatment. In addition, the severity of symptoms of various inflammatory conditions follows a daily rhythmic pattern. The mechanisms behind the crosstalk between the circadian and immune systems remain elusive. Here we demonstrate that localized inflammation induced by turpentine oil (TURP) causes a time-dependent induction of interleukin (IL)-6 and has time-, gene- and tissue-specific effects on clock gene expression. More precisely, TURP blunts the peak of Per1 and Per2 expression in the liver while in other tissues, the expression nadir is elevated. In contrast, Rev-erbα expression remains relatively unaffected by TURP treatment. Co-treatment with the anti-inflammatory agent IL-1 receptor antagonist (IL-1Ra) did not alter the response of Per2 to TURP treatment in liver, despite the reduced induction of fever and IL-6 serum levels. This indicates that the TURP-mediated changes of Per2 in the liver might be due to factors other than systemic IL-6 and fever. Accordingly, IL-6 treatment had no effect on clock gene expression in HepG2 liver carcinoma cells. Altogether, we show that localized inflammation causes significant time-dependent changes in peripheral circadian clock gene expression, via a mechanism likely involving mediators independent from IL-6 and fever. PMID:23527270

  12. Development of an optimized tetracycline-inducible expression system to increase the accumulation of interleukin-10 in tobacco BY-2 suspension cells.

    PubMed

    Bortesi, Luisa; Rademacher, Thomas; Schiermeyer, Andreas; Schuster, Flora; Pezzotti, Mario; Schillberg, Stefan

    2012-07-11

    Plant cell suspension cultures can be used for the production of valuable pharmaceutical and industrial proteins. When the recombinant protein is secreted into the culture medium, restricting expression to a defined growth phase can improve both the quality and quantity of the recovered product by minimizing proteolytic activity. Temporal restriction is also useful for recombinant proteins whose constitutive expression affects cell growth and viability, such as viral interleukin-10 (vIL-10). We have developed a novel, tetracycline-inducible system suitable for tobacco BY-2 suspension cells which increases the yields of vIL-10. The new system is based on a binary vector that is easier to handle than conventional vectors, contains an enhanced inducible promoter and 5'-UTR to improve yields, and incorporates a constitutively-expressed visible marker gene to allow the rapid and straightforward selection of the most promising transformed clones. Stable transformation of BY-2 cells with this vector, without extensive optimization of the induction conditions, led to a 3.5 fold increase in vIL-10 levels compared to constitutive expression in the same host. We have developed an effective and straightforward molecular farming platform technology that improves both the quality and the quantity of recombinant proteins produced in plant cells, particularly those whose constitutive expression has a negative impact on plant growth and development. Although we tested the platform using vIL-10 produced in BY-2 cells, it can be applied to other host/product combinations and is also useful for basic research requiring strictly controlled transgene expression.

  13. A Heme-responsive Regulator Controls Synthesis of Staphyloferrin B in Staphylococcus aureus*♦

    PubMed Central

    Laakso, Holly A.; Marolda, Cristina L.; Pinter, Tyler B.; Stillman, Martin J.; Heinrichs, David E.

    2016-01-01

    Staphylococcus aureus possesses a multitude of mechanisms by which it can obtain iron during growth under iron starvation conditions. It expresses an effective heme acquisition system (the iron-regulated surface determinant system), it produces two carboxylate-type siderophores staphyloferrin A and staphyloferrin B (SB), and it expresses transporters for many other siderophores that it does not synthesize. The ferric uptake regulator protein regulates expression of genes encoding all of these systems. Mechanisms of fine-tuning expression of iron-regulated genes, beyond simple iron regulation via ferric uptake regulator, have not been uncovered in this organism. Here, we identify the ninth gene of the sbn operon, sbnI, as encoding a ParB/Spo0J-like protein that is required for expression of genes in the sbn operon from sbnD onward. Expression of sbnD–I is drastically decreased in an sbnI mutant, and the mutant does not synthesize detectable SB during early phases of growth. Thus, SB-mediated iron acquisition is impaired in an sbnI mutant strain. We show that the protein forms dimers and tetramers in solution and binds to DNA within the sbnC coding region. Moreover, we show that SbnI binds heme and that heme-bound SbnI does not bind DNA. Finally, we show that providing exogenous heme to S. aureus growing in an iron-free medium results in delayed synthesis of SB. This is the first study in S. aureus that identifies a DNA-binding regulatory protein that senses heme to control gene expression for siderophore synthesis. PMID:26534960

  14. Application of optically-induced-dielectrophoresis in microfluidic system for purification of circulating tumour cells for gene expression analysis- Cancer cell line model

    NASA Astrophysics Data System (ADS)

    Chiu, Tzu-Keng; Chou, Wen-Pin; Huang, Song-Bin; Wang, Hung-Ming; Lin, Yung-Chang; Hsieh, Chia-Hsun; Wu, Min-Hsien

    2016-09-01

    Circulating tumour cells (CTCs) in a blood circulation system are associated with cancer metastasis. The analysis of the drug-resistance gene expression of cancer patients’ CTCs holds promise for selecting a more effective therapeutic regimen for an individual patient. However, the current CTC isolation schemes might not be able to harvest CTCs with sufficiently high purity for such applications. To address this issue, this study proposed to integrate the techniques of optically induced dielectrophoretic (ODEP) force-based cell manipulation and fluorescent microscopic imaging in a microfluidic system to further purify CTCs after the conventional CTC isolation methods. In this study, the microfluidic system was developed, and its optimal operating conditions and performance for CTC isolation were evaluated. The results revealed that the presented system was able to isolate CTCs with cell purity as high as 100%, beyond what is possible using the previously existing techniques. In the analysis of CTC gene expression, therefore, this method could exclude the interference of leukocytes in a cell sample and accordingly contribute to higher analytical sensitivity, as demonstrated in this study. Overall, this study has presented an ODEP-based microfluidic system capable of simply and effectively isolating a specific cell species from a cell mixture.

  15. Application of optically-induced-dielectrophoresis in microfluidic system for purification of circulating tumour cells for gene expression analysis- Cancer cell line model.

    PubMed

    Chiu, Tzu-Keng; Chou, Wen-Pin; Huang, Song-Bin; Wang, Hung-Ming; Lin, Yung-Chang; Hsieh, Chia-Hsun; Wu, Min-Hsien

    2016-09-09

    Circulating tumour cells (CTCs) in a blood circulation system are associated with cancer metastasis. The analysis of the drug-resistance gene expression of cancer patients' CTCs holds promise for selecting a more effective therapeutic regimen for an individual patient. However, the current CTC isolation schemes might not be able to harvest CTCs with sufficiently high purity for such applications. To address this issue, this study proposed to integrate the techniques of optically induced dielectrophoretic (ODEP) force-based cell manipulation and fluorescent microscopic imaging in a microfluidic system to further purify CTCs after the conventional CTC isolation methods. In this study, the microfluidic system was developed, and its optimal operating conditions and performance for CTC isolation were evaluated. The results revealed that the presented system was able to isolate CTCs with cell purity as high as 100%, beyond what is possible using the previously existing techniques. In the analysis of CTC gene expression, therefore, this method could exclude the interference of leukocytes in a cell sample and accordingly contribute to higher analytical sensitivity, as demonstrated in this study. Overall, this study has presented an ODEP-based microfluidic system capable of simply and effectively isolating a specific cell species from a cell mixture.

  16. Application of optically-induced-dielectrophoresis in microfluidic system for purification of circulating tumour cells for gene expression analysis- Cancer cell line model

    PubMed Central

    Chiu, Tzu-Keng; Chou, Wen-Pin; Huang, Song-Bin; Wang, Hung-Ming; Lin, Yung-Chang; Hsieh, Chia-Hsun; Wu, Min-Hsien

    2016-01-01

    Circulating tumour cells (CTCs) in a blood circulation system are associated with cancer metastasis. The analysis of the drug-resistance gene expression of cancer patients’ CTCs holds promise for selecting a more effective therapeutic regimen for an individual patient. However, the current CTC isolation schemes might not be able to harvest CTCs with sufficiently high purity for such applications. To address this issue, this study proposed to integrate the techniques of optically induced dielectrophoretic (ODEP) force-based cell manipulation and fluorescent microscopic imaging in a microfluidic system to further purify CTCs after the conventional CTC isolation methods. In this study, the microfluidic system was developed, and its optimal operating conditions and performance for CTC isolation were evaluated. The results revealed that the presented system was able to isolate CTCs with cell purity as high as 100%, beyond what is possible using the previously existing techniques. In the analysis of CTC gene expression, therefore, this method could exclude the interference of leukocytes in a cell sample and accordingly contribute to higher analytical sensitivity, as demonstrated in this study. Overall, this study has presented an ODEP-based microfluidic system capable of simply and effectively isolating a specific cell species from a cell mixture. PMID:27609546

  17. Ecological and economical efficiency of monitoring systems for oil and gas production on the shelf

    NASA Astrophysics Data System (ADS)

    Kurakin, A. L.; Lobkovsky, L. I.

    2014-02-01

    Requirements for signals' reliability of monitoring systems (with respect to the errors of the 1st and 2nd kinds, i.e., false alarms and skipping of danger) are deduced from the ratio of expenditures of different kinds (of exploitation expenses and losses due to accidents). The expressions obtained in the research may be used for economic foundations (and optimization) of specifications for monitoring systems. In cases when optimal parameters are not available, the sufficient condition of monitoring systems economical efficiency is presented.

  18. Beam conditioning for FELs: Consequences and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolski, A.; Penn, G.; Sessler, A.

    2004-06-29

    The consequences of beam conditioning in four example cases (VISA, a Soft X-Ray FEL, LCLS and a ''Greenfield'' FEL) are examined. It is shown that in emittance limited cases, proper conditioning reduces sensitivity to the transverse emittance and, furthermore, allows for stronger focusing in the undulator. Simulations show higher saturation power, with gain lengths reduced by a factor of two or more. The beam dynamics in a general conditioning system are studied, with ''matching conditions'' derived for achieving conditioning without growth in the effective emittance. Various conditioning lattices are considered, and expressions derived for the amount of conditioning provided inmore » each case when the matching conditions are satisfied. These results show that there is no fundamental obstacle to producing beam conditioning, and that the problem can be reduced to one of proper lattice design. Nevertheless, beam conditioning will not be easy to implement in practice.« less

  19. Characterization of Phenotypic and Transcriptional Differences in Human Pluripotent Stem Cells under 2D and 3D Culture Conditions.

    PubMed

    Kamei, Ken-Ichiro; Koyama, Yoshie; Tokunaga, Yumie; Mashimo, Yasumasa; Yoshioka, Momoko; Fockenberg, Christopher; Mosbergen, Rowland; Korn, Othmar; Wells, Christine; Chen, Yong

    2016-11-01

    Human pluripotent stem cells hold great promise for applications in drug discovery and regenerative medicine. Microfluidic technology is a promising approach for creating artificial microenvironments; however, although a proper 3D microenvironment is required to achieve robust control of cellular phenotypes, most current microfluidic devices provide only 2D cell culture and do not allow tuning of physical and chemical environmental cues simultaneously. Here, the authors report a 3D cellular microenvironment plate (3D-CEP), which consists of a microfluidic device filled with thermoresponsive poly(N-isopropylacrylamide)-β-poly(ethylene glycol) hydrogel (HG), which enables systematic tuning of both chemical and physical environmental cues as well as in situ cell monitoring. The authors show that H9 human embryonic stem cells (hESCs) and 253G1 human induced pluripotent stem cells in the HG/3D-CEP system maintain their pluripotent marker expression under HG/3D-CEP self-renewing conditions. Additionally, global gene expression analyses are used to elucidate small variations among different test environments. Interestingly, the authors find that treatment of H9 hESCs under HG/3D-CEP self-renewing conditions results in initiation of entry into the neural differentiation process by induction of PAX3 and OTX1 expression. The authors believe that this HG/3D-CEP system will serve as a versatile platform for developing targeted functional cell lines and facilitate advances in drug screening and regenerative medicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Application of Probe Electrospray Ionization Mass Spectrometry (PESI-MS) to Clinical Diagnosis: Solvent Effect on Lipid Analysis

    NASA Astrophysics Data System (ADS)

    Mandal, Mridul Kanti; Yoshimura, Kentaro; Chen, Lee Chuin; Yu, Zhan; Nakazawa, Tadao; Katoh, Ryohei; Fujii, Hideki; Takeda, Sen; Nonami, Hiroshi; Hiraoka, Kenzo

    2012-11-01

    We have examined several combinations of solvents with the aim of optimizing the ionization conditions for molecular diagnosis of malignant tumours by PESI-MS. Although the best conditions may depend on the actual species in the sample, the optimal conditions for renal cell carcinoma (RCC) were achieved by using alcohols. PESI-MS successfully delineated the differential expression of phospholipids (PCs) and triacylglycerols (TAGs) in noncancerous and RCC tissues by using these solvent systems. This study paves the way for the application of PESI-MS in medical samples.

  1. Recombinant Domain V of Human Perlecan Is a Bioactive Vascular Proteoglycan.

    PubMed

    Rnjak-Kovacina, Jelena; Tang, Fengying; Lin, Xiaoting; Whitelock, John M; Lord, Megan S

    2017-12-01

    The C-terminal domain V of the extracellular matrix proteoglycan perlecan plays unique and often divergent roles in a number of biological processes, including angiogenesis, vascular cell interactions, wound healing, and autophagy. Recombinant forms of domain V have been proposed as therapeutic agents for the treatment of cancer, stroke, and the development of cardiovascular devices and bioartificial tissues. However, the effect of domain V appears to be related to the differences in domain V structure and function observed in different expression systems and environments and exactly how this occurs is not well understood. In this study, the sequence from amino acid 3626 to 4391 of the perlecan protein core, which includes domain V, is expressed in HEK-293 cells and purified as a secreted product from conditioned media. This recombinant domain V (rDV) is expressed as a proteoglycan decorated with heparan sulfate and chondroitin sulfate chains and supports endothelial cell interactions to the same extent as full-length perlecan. This expression system serves as an important model of recombinant proteoglycan expression, as well as a source of biologically active rDV for therapeutic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The multifaceted RisA regulon of Bordetella pertussis

    PubMed Central

    Coutte, Loïc; Huot, Ludovic; Antoine, Rudy; Slupek, Stephanie; Merkel, Tod J.; Chen, Qing; Stibitz, Scott; Hot, David; Locht, Camille

    2016-01-01

    The whooping cough agent Bordetella pertussis regulates the production of its virulence factors by the BvgA/S system. Phosphorylated BvgA activates the virulence-activated genes (vags) and represses the expression of the virulence-repressed genes (vrgs) via the activation of the bvgR gene. In modulating conditions, with MgSO4, the BvgA/S system is inactive, and the vrgs are expressed. Here, we show that the expression of almost all vrgs depends on RisA, another transcriptional regulator. We also show that some vags are surprisingly no longer modulated by MgSO4 in the risA− background. RisA also regulates the expression of other genes, including chemotaxis and flagellar operons, iron-regulated genes, and genes of unknown function, which may or may not be controlled by BvgA/S. We identified RisK as the likely cognate RisA kinase and found that it is important for expression of most, but not all RisA-regulated genes. This was confirmed using the phosphoablative RisAD60N and the phosphomimetic RisAD60E analogues. Thus the RisA regulon adds a new layer of complexity to B. pertussis virulence gene regulation. PMID:27620673

  3. The multifaceted RisA regulon of Bordetella pertussis.

    PubMed

    Coutte, Loïc; Huot, Ludovic; Antoine, Rudy; Slupek, Stephanie; Merkel, Tod J; Chen, Qing; Stibitz, Scott; Hot, David; Locht, Camille

    2016-09-13

    The whooping cough agent Bordetella pertussis regulates the production of its virulence factors by the BvgA/S system. Phosphorylated BvgA activates the virulence-activated genes (vags) and represses the expression of the virulence-repressed genes (vrgs) via the activation of the bvgR gene. In modulating conditions, with MgSO4, the BvgA/S system is inactive, and the vrgs are expressed. Here, we show that the expression of almost all vrgs depends on RisA, another transcriptional regulator. We also show that some vags are surprisingly no longer modulated by MgSO4 in the risA(-) background. RisA also regulates the expression of other genes, including chemotaxis and flagellar operons, iron-regulated genes, and genes of unknown function, which may or may not be controlled by BvgA/S. We identified RisK as the likely cognate RisA kinase and found that it is important for expression of most, but not all RisA-regulated genes. This was confirmed using the phosphoablative RisAD(60)N and the phosphomimetic RisAD(60)E analogues. Thus the RisA regulon adds a new layer of complexity to B. pertussis virulence gene regulation.

  4. Solar energy system economic evaluation for Elcam-Tempe, Tempe, Arizona and Elcam-San Diego, San Diego, California

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The long term economic performance of the solar energy system at its installation site is analyzed and four additional locations selected to demonstrate the viability of the design over a broad range of environmental and economic conditions. The economic analysis of the solar energy systems that were installed at Tempe, Arizona and San Diego, California, is developed for these and four other sites typical of a wide range of environmental and economic conditions in the continental United States. This analysis is accomplished based on the technical and economic models in the f Chart design procedure with inputs based on the characteristics of the installed system and local conditions. The results are expressed in terms of the economic parameters of present worth of system cost over a projected twenty year life: life cycle savings; year of positive savings; and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainites in constituent system and economic variables is also investigated. The results demonstrate that the solar energy system is economically viable at all of the sites for which the analysis was conducted.

  5. Expression of a soluble truncated Vargula luciferase in Escherichia coli

    PubMed Central

    Hunt, Eric A.; Moutsiopoulou, Angeliki; Broyles, David; Head, Trajen; Dikici, Emre; Daunert, Sylvia; Deo, Sapna K.

    2017-01-01

    Marine luciferases are regularly employed as useful reporter molecules across a range of various applications. However, attempts to transition expression from their native eukaryotic environment into a more economical prokaryotic, i.e. bacterial, expression system often presents several challenges. Specifically, bacterial protein expression inherently lacks chaperone proteins to aid in the folding process, while Escherichia coli presents a reducing cytoplasmic environment in. These conditions contribute to the inhibition of proper folding of cysteine-rich proteins, leading to incorrect tertiary structure and ultimately inactive and potentially insoluble protein. Vargula luciferase (Vluc) is a cysteine-rich marine luciferase that exhibits glow-type bioluminescence through a reaction between its unique native substrate and molecular oxygen. Because most other commonly used bioluminescent proteins exhibit flash-type emission kinetics, this emission characteristic of Vluc is desirable for high-throughput applications where stability of emission is required for the duration of data collection. A truncated form of Vluc that retains considerable bioluminescence activity (55%) compared to the native full-length protein has been reported in the literature. However, expression and purification of this luciferase from bacterial systems has proven difficult. Herein, we demonstrate the expression and purification of a truncated form of Vluc from E. coli. This truncated Vluc (tVluc) was subsequently characterized in terms of both its biophysical and bioluminescence properties. PMID:28108349

  6. Gene-network inference by message passing

    NASA Astrophysics Data System (ADS)

    Braunstein, A.; Pagnani, A.; Weigt, M.; Zecchina, R.

    2008-01-01

    The inference of gene-regulatory processes from gene-expression data belongs to the major challenges of computational systems biology. Here we address the problem from a statistical-physics perspective and develop a message-passing algorithm which is able to infer sparse, directed and combinatorial regulatory mechanisms. Using the replica technique, the algorithmic performance can be characterized analytically for artificially generated data. The algorithm is applied to genome-wide expression data of baker's yeast under various environmental conditions. We find clear cases of combinatorial control, and enrichment in common functional annotations of regulated genes and their regulators.

  7. Development and Optimization of a Fluorescent Differential Display PCR System for Analyzing the Stress Response in Lactobacillus sakei Strains

    PubMed Central

    Bonomo, Maria Grazia; Sico, Maria Anna; Grieco, Simona; Salzano, Giovanni

    2009-01-01

    Lactobacillus sakei is widely used as starter in the production process of Italian fermented sausages and its growth and survival are affected by various factors. We studied the differential expression of genome in response to different stresses by the fluorescent differential display (FDD) technique. This study resulted in the development and optimization of an innovative technique, with a high level of reproducibility and quality, which allows the identification of gene expression changes associated with different microbial behaviours under different growth conditions. PMID:22253979

  8. Cocaine-induced behavioral sensitization decreases the expression of endocannabinoid signaling-related proteins in the mouse hippocampus.

    PubMed

    Blanco, Eduardo; Galeano, Pablo; Palomino, Ana; Pavón, Francisco J; Rivera, Patricia; Serrano, Antonia; Alen, Francisco; Rubio, Leticia; Vargas, Antonio; Castilla-Ortega, Estela; Decara, Juan; Bilbao, Ainhoa; de Fonseca, Fernando Rodríguez; Suárez, Juan

    2016-03-01

    In the reward mesocorticolimbic circuits, the glutamatergic and endocannabinoid systems are implicated in neurobiological mechanisms underlying cocaine addiction. However, the involvement of both systems in the hippocampus, a critical region to process relational information relevant for encoding drug-associated memories, in cocaine-related behaviors remains unknown. In the present work, we studied whether the hippocampal gene/protein expression of relevant glutamate signaling components, including glutamate-synthesizing enzymes and metabotropic and ionotropic receptors, and the hippocampal gene/protein expression of cannabinoid type 1 (CB1) receptor and endocannabinoid metabolic enzymes were altered following acute and/or repeated cocaine administration resulting in conditioned locomotion and locomotor sensitization. Results showed that acute cocaine administration induced an overall down-regulation of glutamate-related gene expression and, specifically, a low phosphorylation level of GluA1. In contrast, locomotor sensitization to cocaine produced an up-regulation of several glutamate receptor-related genes and, specifically, an increased protein expression of the GluN1 receptor subunit. Regarding the endocannabinoid system, acute and repeated cocaine administration were associated with an increased gene/protein expression of CB1 receptors and a decreased gene/protein expression of the endocannabinoid-synthesis enzymes N-acyl phosphatidylethanolamine D (NAPE-PLD) and diacylglycerol lipase alpha (DAGLα). These changes resulted in an overall decrease in endocannabinoid synthesis/degradation ratios, especially NAPE-PLD/fatty acid amide hydrolase and DAGLα/monoacylglycerol lipase, suggesting a reduced endocannabinoid production associated with a compensatory up-regulation of CB1 receptor. Overall, these findings suggest that repeated cocaine administration resulting in locomotor sensitization induces a down-regulation of the endocannabinoid signaling that could contribute to the specifically increased GluN1 expression observed in the hippocampus of cocaine-sensitized mice. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  9. Erwinia amylovora Expresses Fast and Simultaneously hrp/dsp Virulence Genes during Flower Infection on Apple Trees

    PubMed Central

    Pester, Doris; Milčevičová, Renáta; Schaffer, Johann; Wilhelm, Eva; Blümel, Sylvia

    2012-01-01

    Background Pathogen entry through host blossoms is the predominant infection pathway of the Gram-negative bacterium Erwinia amylovora leading to manifestation of the disease fire blight. Like in other economically important plant pathogens, E. amylovora pathogenicity depends on a type III secretion system encoded by hrp genes. However, timing and transcriptional order of hrp gene expression during flower infections are unknown. Methodology/Principal Findings Using quantitative real-time PCR analyses, we addressed the questions of how fast, strong and uniform key hrp virulence genes and the effector dspA/E are expressed when bacteria enter flowers provided with the full defense mechanism of the apple plant. In non-invasive bacterial inoculations of apple flowers still attached to the tree, E. amylovora activated expression of key type III secretion genes in a narrow time window, mounting in a single expression peak of all investigated hrp/dspA/E genes around 24–48 h post inoculation (hpi). This single expression peak coincided with a single depression in the plant PR-1 expression at 24 hpi indicating transient manipulation of the salicylic acid pathway as one target of E. amylovora type III effectors. Expression of hrp/dspA/E genes was highly correlated to expression of the regulator hrpL and relative transcript abundances followed the ratio: hrpA>hrpN>hrpL>dspA/E. Acidic conditions (pH 4) in flower infections led to reduced virulence/effector gene expression without the typical expression peak observed under natural conditions (pH 7). Conclusion/Significance The simultaneous expression of hrpL, hrpA, hrpN, and the effector dspA/E during early floral infection indicates that speed and immediate effector transmission is important for successful plant invasion. When this delicate balance is disturbed, e.g., by acidic pH during infection, virulence gene expression is reduced, thus partly explaining the efficacy of acidification in fire blight control on a molecular level. PMID:22412891

  10. Enhancement of Programmed Death Ligand 2 on Hepatitis C Virus Infected Hepatocytes by Calcineurin Inhibitors

    PubMed Central

    Koike, Kazuko; Takaki, Akinobu; Yagi, Takahito; Iwasaki, Yoshiaki; Yasunaka, Tetsuya; Sadamori, Hiroshi; Shinoura, Susumu; Umeda, Yuzo; Yoshida, Ryuichi; Sato, Daisuke; Nobuoka, Daisuke; Utsumi, Masashi; Miyake, Yasuhiro; Ikeda, Fusao; Shiraha, Hidenori; Fujiwara, Toshiyoshi; Yamamoto, Kazuhide

    2015-01-01

    Background Post orthotopic liver transplantation (OLT) viral hepatitis is an immunological condition where immune cells induce hepatitis during conditions of immune-suppression. The immune-regulatory programmed death-1 (PD-1)/PD-ligand 1 system is acknowledged to play important roles in immune-mediated diseases. However, the PD-1/PD-L2 interaction is not well characterized, with PD-L2 also exhibiting an immunostimulatory function. We hypothesized that this atypical molecule could affect the recurrence of post-OLT hepatitis. To test this hypothesis, we conducted immunohistochemical staining analysis and in vitro analysis of PD-L2. Methods The expression of PD-L2 was evaluated in liver biopsy specimens from patients with chronic hepatitis B (n = 15), post-OLT hepatitis B (n = 8), chronic hepatitis C (n = 48), and post-OLT hepatitis C (CH-C-OLT) (n = 14). The effect of calcineurin inhibitors (CNIs) and hepatitis C virus (HCV) on PD-L2 expression was investigated in hepatoma cell lines. Results The PD-L2 was highly expressed on CH-C-OLT hepatocytes. Treatment of hepatoma cell lines with CNIs resulted in increased PD-L2 expression, especially in combination with HCV core or NS3 protein. Transfection of cell lines with PD-L2 containing plasmid resulted in high intercellular adhesion molecule-1 (ICAM-1) expression, which might enhance hepatitis activity. Conclusions The PD-L2 is highly expressed on CH-C-OLT hepatocytes, whereas HCV proteins, in combination with CNIs, induce high expression of PD-L2 resulting in elevated expression of ICAM-1. These findings demonstrate the effect of CNIs on inducing PD-L2 and subsequent ICAM-1 expression, effects that may produce inflammatory cell infiltration in post-OLT hepatitis C. PMID:25675203

  11. Conditional Expression of Wnt4 during Chondrogenesis Leads to Dwarfism in Mice

    PubMed Central

    Lee, Hu-Hui; Behringer, Richard R.

    2007-01-01

    Wnts are expressed in the forming long bones, suggesting roles in skeletogenesis. To examine the action of Wnts in skeleton formation, we developed a genetic system to conditionally express Wnt4 in chondrogenic tissues of the mouse. A mouse Wnt4 cDNA was introduced into the ubiquitously expressed Rosa26 (R26) locus by gene targeting in embryonic stem (ES) cells. The expression of Wnt4 from the R26 locus was blocked by a neomycin selection cassette flanked by loxP sites (floxneo) that was positioned between the Rosa26 promoter and the Wnt4 cDNA, creating the allele designated R26floxneoWnt4. Wnt4 expression was activated during chondrogenesis using Col2a1-Cre transgenic mice that express Cre recombinase in differentiating chondrocytes. R26floxneoWnt4; Col2a1-Cre double heterozygous mice exhibited a growth deficiency, beginning approximately 7 to 10 days after birth, that resulted in dwarfism. In addition, they also had craniofacial abnormalities, and delayed ossification of the lumbar vertebrae and pelvic bones. Histological analysis revealed a disruption in the organization of the growth plates and a delay in the onset of the primary and secondary ossification centers. Molecular studies showed that Wnt4 overexpression caused decreased proliferation and altered maturation of chondrocytes. In addition, R26floxneoWnt4; Col2a1-Cre mice had decreased expression of vascular endothelial growth factor (VEGF). These studies demonstrate that Wnt4 overexpression leads to dwarfism in mice. The data indicate that Wnt4 levels must be regulated in chondrocytes for normal growth plate development and skeletogenesis. Decreased VEGF expression suggests that defects in vascularization may contribute to the dwarf phenotype. PMID:17505543

  12. Deletion of RhoA in Progesterone Receptor-Expressing Cells Leads to Luteal Insufficiency and Infertility in Female Mice.

    PubMed

    El Zowalaty, Ahmed E; Li, Rong; Zheng, Yi; Lydon, John P; DeMayo, Francesco J; Ye, Xiaoqin

    2017-07-01

    Ras homolog gene family, member A (RhoA) is widely expressed throughout the female reproductive system. To assess its role in progesterone receptor-expressing cells, we generated RhoA conditional knockout mice RhoAd/d (RhoAf/f-Pgr-Cre+/-). RhoAd/d female mice had comparable mating activity, serum luteinizing hormone, prolactin, and estradiol levels and ovulation with control but were infertile with progesterone insufficiency, indicating impaired steroidogenesis in RhoAd/d corpus luteum (CL). RhoA was highly expressed in wild-type luteal cells and conditionally deleted in RhoAd/d CL. Gestation day 3.5 (D3.5) RhoAd/d ovaries had reduced numbers of CL, less defined corpus luteal cord formation, and disorganized CL collagen IV staining. RhoAd/d CL had lipid droplet and free cholesterol accumulation, indicating the availability of cholesterol for steroidogenesis, but disorganized β-actin and vimentin staining, indicating disrupted cytoskeleton integrity. Cytoskeleton is important for cytoplasmic cholesterol movement to mitochondria and for regulating mitochondria. Dramatically reduced expression of mitochondrial markers heat shock protein 60 (HSP60), voltage-dependent anion channel, and StAR was detected in RhoAd/d CL. StAR carries out the rate-limiting step of steroidogenesis. StAR messenger RNA expression was reduced in RU486-treated D3.5 wild-type CL and tended to be induced in progesterone-treated D3.5 RhoAd/d CL, with parallel changes of HSP60 expression. These data demonstrated the in vivo function of RhoA in CL luteal cell cytoskeleton integrity, cholesterol transport, StAR expression, and progesterone synthesis, and a positive feedback on StAR expression in CL by progesterone signaling. These findings provide insights into mechanisms of progesterone insufficiency.

  13. Apelin-APJ system is responsible for stress-induced increase in atrial natriuretic peptide expression in rat heart.

    PubMed

    Izgut-Uysal, Vecihe Nimet; Acar, Nuray; Birsen, Ilknur; Ozcan, Filiz; Ozbey, Ozlem; Soylu, Hakan; Avci, Sema; Tepekoy, Filiz; Akkoyunlu, Gokhan; Yucel, Gultekin; Ustunel, Ismail

    2018-04-01

    The cardiovascular system is a primary target of stress and stress is the most important etiologic factor in cardiovascular diseases. Stressors increase expressions of atrial natriuretic peptide (ANP) and apelin in cardiac tissue. The aim of the present study was to investigate whether stress-induced apelin has an effect on the expression of ANP in the right atrium of rat heart. The rats were divided into the control, stress and F13A+stress groups. In the stress and F13A+stress groups, the rats were subjected to water immersion and restraint stress (WIRS) for 6h. In the F13A+stress group, apelin receptor antagonist F13A, was injected intravenously immediately before application of WIRS. The plasma samples were obtained for the measurement of corticosterone and atrial natriuretic peptide. The atrial samples were used for immunohistochemistry and western blot analysis. F13A administration prevented the rise of plasma corticosterone and ANP levels induced by WIRS. While WIRS application increased the expressions of apelin, HIF-1α and ANP in atrial tissue, while F13A prevented the stress-induced increase in the expression of HIF-1α and ANP. Stress-induced apelin induces ANP expression in atrial tissue and may play a role in cardiovascular homeostasis by increasing ANP expression under WIRS conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Burkholderia mallei and Burkholderia pseudomallei Cluster 1 Type VI Secretion System Gene Expression Is Negatively Regulated by Iron and Zinc

    PubMed Central

    Burtnick, Mary N.; Brett, Paul J.

    2013-01-01

    Burkholderia mallei is a facultative intracellular pathogen that causes glanders in humans and animals. Previous studies have demonstrated that the cluster 1 type VI secretion system (T6SS-1) expressed by this organism is essential for virulence in hamsters and is positively regulated by the VirAG two-component system. Recently, we have shown that T6SS-1 gene expression is up-regulated following internalization of this pathogen into phagocytic cells and that this system promotes multinucleated giant cell formation in infected tissue culture monolayers. In the present study, we further investigated the complex regulation of this important virulence factor. To assess T6SS-1 expression, B. mallei strains were cultured in various media conditions and Hcp1 production was analyzed by Western immunoblotting. Transcript levels of several VirAG-regulated genes (bimA, tssA, hcp1 and tssM) were also determined using quantitative real time PCR. Consistent with previous observations, T6SS-1 was not expressed during growth of B. mallei in rich media. Curiously, growth of the organism in minimal media (M9G) or minimal media plus casamino acids (M9CG) facilitated robust expression of T6SS-1 genes whereas growth in minimal media plus tryptone (M9TG) did not. Investigation of this phenomenon confirmed a regulatory role for VirAG in this process. Additionally, T6SS-1 gene expression was significantly down-regulated by the addition of iron and zinc to M9CG. Other genes under the control of VirAG did not appear to be as tightly regulated by these divalent metals. Similar results were observed for B. pseudomallei, but not for B. thailandensis. Collectively, our findings indicate that in addition to being positively regulated by VirAG, B. mallei and B. pseudomallei T6SS-1 gene expression is negatively regulated by iron and zinc. PMID:24146925

  15. Burkholderia mallei and Burkholderia pseudomallei cluster 1 type VI secretion system gene expression is negatively regulated by iron and zinc.

    PubMed

    Burtnick, Mary N; Brett, Paul J

    2013-01-01

    Burkholderia mallei is a facultative intracellular pathogen that causes glanders in humans and animals. Previous studies have demonstrated that the cluster 1 type VI secretion system (T6SS-1) expressed by this organism is essential for virulence in hamsters and is positively regulated by the VirAG two-component system. Recently, we have shown that T6SS-1 gene expression is up-regulated following internalization of this pathogen into phagocytic cells and that this system promotes multinucleated giant cell formation in infected tissue culture monolayers. In the present study, we further investigated the complex regulation of this important virulence factor. To assess T6SS-1 expression, B. mallei strains were cultured in various media conditions and Hcp1 production was analyzed by Western immunoblotting. Transcript levels of several VirAG-regulated genes (bimA, tssA, hcp1 and tssM) were also determined using quantitative real time PCR. Consistent with previous observations, T6SS-1 was not expressed during growth of B. mallei in rich media. Curiously, growth of the organism in minimal media (M9G) or minimal media plus casamino acids (M9CG) facilitated robust expression of T6SS-1 genes whereas growth in minimal media plus tryptone (M9TG) did not. Investigation of this phenomenon confirmed a regulatory role for VirAG in this process. Additionally, T6SS-1 gene expression was significantly down-regulated by the addition of iron and zinc to M9CG. Other genes under the control of VirAG did not appear to be as tightly regulated by these divalent metals. Similar results were observed for B. pseudomallei, but not for B. thailandensis. Collectively, our findings indicate that in addition to being positively regulated by VirAG, B. mallei and B. pseudomallei T6SS-1 gene expression is negatively regulated by iron and zinc.

  16. Systems biology approach to late-onset Alzheimer's disease genome-wide association study identifies novel candidate genes validated using brain expression data and Caenorhabditis elegans experiments.

    PubMed

    Mukherjee, Shubhabrata; Russell, Joshua C; Carr, Daniel T; Burgess, Jeremy D; Allen, Mariet; Serie, Daniel J; Boehme, Kevin L; Kauwe, John S K; Naj, Adam C; Fardo, David W; Dickson, Dennis W; Montine, Thomas J; Ertekin-Taner, Nilufer; Kaeberlein, Matt R; Crane, Paul K

    2017-10-01

    We sought to determine whether a systems biology approach may identify novel late-onset Alzheimer's disease (LOAD) loci. We performed gene-wide association analyses and integrated results with human protein-protein interaction data using network analyses. We performed functional validation on novel genes using a transgenic Caenorhabditis elegans Aβ proteotoxicity model and evaluated novel genes using brain expression data from people with LOAD and other neurodegenerative conditions. We identified 13 novel candidate LOAD genes outside chromosome 19. Of those, RNA interference knockdowns of the C. elegans orthologs of UBC, NDUFS3, EGR1, and ATP5H were associated with Aβ toxicity, and NDUFS3, SLC25A11, ATP5H, and APP were differentially expressed in the temporal cortex. Network analyses identified novel LOAD candidate genes. We demonstrated a functional role for four of these in a C. elegans model and found enrichment of differentially expressed genes in the temporal cortex. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  17. Extensive circadian and light regulation of the transcriptome in the malaria mosquito Anopheles gambiae

    PubMed Central

    2013-01-01

    Background Mosquitoes exhibit 24 hr rhythms in flight activity, feeding, reproduction and development. To better understand the molecular basis for these rhythms in the nocturnal malaria vector Anopheles gambiae, we have utilized microarray analysis on time-of-day specific collections of mosquitoes over 48 hr to explore the coregulation of gene expression rhythms by the circadian clock and light, and compare these with the 24 hr rhythmic gene expression in the diurnal Aedes aegypti dengue vector mosquito. Results In time courses from An. gambiae head and body collected under light:dark cycle (LD) and constant dark (DD) conditions, we applied three algorithms that detect sinusoidal patterns and an algorithm that detects spikes in expression. This revealed across four experimental conditions 393 probes newly scored as rhythmic. These genes correspond to functions such as metabolic detoxification, immunity and nutrient sensing. This includes glutathione S-transferase GSTE5, whose expression pattern and chromosomal location are shared with other genes, suggesting shared chromosomal regulation; and pulsatile expression of the gene encoding CYP6M2, a cytochrome P450 that metabolizes pyrethroid insecticides. We explored the interaction of light and the circadian clock and highlight the regulation of odorant binding proteins (OBPs), important components of the olfactory system. We reveal that OBPs have unique expression patterns as mosquitoes make the transition from LD to DD conditions. We compared rhythmic expression between An. gambiae and Ae. aegypti heads collected under LD conditions using a single cosine fitting algorithm, and report distinct similarities and differences in the temporal regulation of genes involved in tRNA priming, the vesicular-type ATPase, olfaction and vision between the two species. Conclusions These data build on our previous analyses of time-of-day specific regulation of the An. gambiae transcriptome to reveal additional rhythmic genes, an improved understanding of the co-regulation of rhythms in gene expression by the circadian clock and by light, and an understanding of the time-of-day specific regulation of some of these rhythmic processes in comparison with a different species of mosquito. Improved understanding of biological timing at the molecular level that underlies key physiological aspects of mosquito vectors may prove to be important to successful implementation of established and novel insect control methods. PMID:23552056

  18. Candidate innate immune system gene expression in the ecological model Daphnia

    PubMed Central

    Decaestecker, Ellen; Labbé, Pierrick; Ellegaard, Kirsten; Allen, Judith E.; Little, Tom J.

    2011-01-01

    The last ten years have witnessed increasing interest in host–pathogen interactions involving invertebrate hosts. The invertebrate innate immune system is now relatively well characterised, but in a limited range of genetic model organisms and under a limited number of conditions. Immune systems have been little studied under real-world scenarios of environmental variation and parasitism. Thus, we have investigated expression of candidate innate immune system genes in the water flea Daphnia, a model organism for ecological genetics, and whose capacity for clonal reproduction facilitates an exceptionally rigorous control of exposure dose or the study of responses at many time points. A unique characteristic of the particular Daphnia clones and pathogen strain combinations used presently is that they have been shown to be involved in specific host–pathogen coevolutionary interactions in the wild. We choose five genes, which are strong candidates to be involved in Daphnia–pathogen interactions, given that they have been shown to code for immune effectors in related organisms. Differential expression of these genes was quantified by qRT-PCR following exposure to the bacterial pathogen Pasteuria ramosa. Constitutive expression levels differed between host genotypes, and some genes appeared to show correlated expression. However, none of the genes appeared to show a major modification of expression level in response to Pasteuria exposure. By applying knowledge from related genetic model organisms (e.g. Drosophila) to models for the study of evolutionary ecology and coevolution (i.e. Daphnia), the candidate gene approach is temptingly efficient. However, our results show that detection of only weak patterns is likely if one chooses target genes for study based on previously identified genome sequences by comparison to homologues from other related organisms. Future work on the Daphnia–Pasteuria system will need to balance a candidate gene approach with more comprehensive approaches to de novo identify immune system genes specific to the Daphnia–Pasteuria interaction. PMID:21550363

  19. Candidate innate immune system gene expression in the ecological model Daphnia.

    PubMed

    Decaestecker, Ellen; Labbé, Pierrick; Ellegaard, Kirsten; Allen, Judith E; Little, Tom J

    2011-10-01

    The last ten years have witnessed increasing interest in host-pathogen interactions involving invertebrate hosts. The invertebrate innate immune system is now relatively well characterised, but in a limited range of genetic model organisms and under a limited number of conditions. Immune systems have been little studied under real-world scenarios of environmental variation and parasitism. Thus, we have investigated expression of candidate innate immune system genes in the water flea Daphnia, a model organism for ecological genetics, and whose capacity for clonal reproduction facilitates an exceptionally rigorous control of exposure dose or the study of responses at many time points. A unique characteristic of the particular Daphnia clones and pathogen strain combinations used presently is that they have been shown to be involved in specific host-pathogen coevolutionary interactions in the wild. We choose five genes, which are strong candidates to be involved in Daphnia-pathogen interactions, given that they have been shown to code for immune effectors in related organisms. Differential expression of these genes was quantified by qRT-PCR following exposure to the bacterial pathogen Pasteuria ramosa. Constitutive expression levels differed between host genotypes, and some genes appeared to show correlated expression. However, none of the genes appeared to show a major modification of expression level in response to Pasteuria exposure. By applying knowledge from related genetic model organisms (e.g. Drosophila) to models for the study of evolutionary ecology and coevolution (i.e. Daphnia), the candidate gene approach is temptingly efficient. However, our results show that detection of only weak patterns is likely if one chooses target genes for study based on previously identified genome sequences by comparison to homologues from other related organisms. Future work on the Daphnia-Pasteuria system will need to balance a candidate gene approach with more comprehensive approaches to de novo identify immune system genes specific to the Daphnia-Pasteuria interaction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Two poplar-associated bacterial isolates induce additive favorable responses in a constructed plant-microbiome system

    DOE PAGES

    Jawdy, Sara S.; Gunter, Lee E.; Engle, Nancy L.; ...

    2016-04-26

    Here, the biological function of the plant-microbiome system is the result of contributions from the host plant and microbiome members. In this work we study the function of a simplified community consisting of Pseudomonas and Burkholderia bacterial strains isolated from Populus hosts and inoculated on axenic Populus cutting in controlled laboratory conditions. Inoculation individually with either bacterial isolate increased root growth relative to uninoculated controls. Root area, photosynthetic efficiency, gene expression and metabolite expression data in individual and dual inoculated treatments indicate that the effects of these bacteria are unique and additive, suggesting that the function of a microbiome communitymore » may be predicted from the additive functions of the individual members.« less

  1. TLX-Its Emerging Role for Neurogenesis in Health and Disease.

    PubMed

    Sobhan, Praveen K; Funa, Keiko

    2017-01-01

    The orphan nuclear receptor TLX, also called NR2E1, is a factor important in the regulation of neural stem cell (NSC) self-renewal, neurogenesis, and maintenance. As a transcription factor, TLX is vital for the expression of genes implicated in neurogenesis, such as DNA replication, cell cycle, adhesion and migration. It acts by way of repressing or activating target genes, as well as controlling protein-protein interactions. Growing evidence suggests that dysregulated TLX acts in the initiation and progression of human disorders of the nervous system. This review describes recent knowledge about TLX expression, structure, targets, and biological functions, relevant to maintaining adult neural stem cells related to both neuropsychiatric conditions and certain nervous system tumours.

  2. Expression of Histophilus somni IbpA DR2 protective antigen in the diatom Thalassiosira pseudonana.

    PubMed

    Davis, Aubrey; Crum, Lauren T; Corbeil, Lynette B; Hildebrand, Mark

    2017-07-01

    Increasing demand for the low-cost production of valuable proteins has stimulated development of novel expression systems. Many challenges faced by existing technology may be overcome by using unicellular microalgae as an expression platform due to their ability to be cultivated rapidly, inexpensively, and in large scale. Diatoms are a particularly productive type of unicellular algae showing promise as production organisms. Here, we report the development of an expression system in the diatom Thalassiosira pseudonana by expressing the protective IbpA DR2 antigen from Histophilus somni for the production of a vaccine against bovine respiratory disease. The utilization of diatoms with their typically silicified cell walls permitted development of silicon-responsive transcription elements to induce protein expression. Specifically, we demonstrate that transcription elements from the silicon transporter gene SIT1 are sufficient to drive high levels of IbpA DR2 expression during silicon limitation and growth arrest. These culture conditions eliminate the flux of cellular resources into cell division processes, yet do not limit protein expression. In addition to improving protein expression levels by molecular manipulations, yield was dramatically increased through cultivation enhancement including elevated light and CO 2 supplementation. We substantially increased recombinant protein production over starting levels to 1.2% of the total sodium dodecyl sulfate-extractable protein in T. pseudonana, which was sufficient to conduct preliminary immunization trials in mice. Mice exposed to 5 μg of diatom-expressed DR2 in whole or sonicated cells (without protein purification) exhibited a modest immune response without the addition of adjuvant.

  3. Low Endogenous Fibroblast Growth Factor 2 Levels Are Associated With Heightened Conditioned Fear Expression in Rats and Humans.

    PubMed

    Graham, Bronwyn M; Zagic, Dino; Richardson, Rick

    2017-10-15

    Hippocampal concentrations of the neurotrophic factor fibroblast growth factor 2 (FGF2) are negatively associated with the expression of fear following conditioning in rats. Heightened conditioned fear expression may be a prospective risk factor for the development of human anxiety and trauma disorders. However, the relationship between conditioned fear expression and FGF2 is yet to be established in humans. Using a cross-species approach, we first investigated the relationship between serum concentrations of FGF2 and individual differences in conditioned fear expression in rats (n = 19). We then subjected 88 human participants, who were recruited from university and community advertisements, to a differential fear conditioning procedure and assessed the relationship between salivary concentrations of FGF2 and fear expression to a conditioned stimulus (CS) (a stimulus paired with a shock) and a CS that was never paired with shock. Rats with low serum levels of FGF2 exhibited significantly more freezing than rats with high serum levels of FGF2. Similarly, relative to those with high salivary FGF2, human participants with low salivary FGF2 exhibited significantly heightened skin conductance responses to the CS without shock during fear conditioning and to both the CS with shock and CS without shock during fear recall. These studies establish that peripheral markers of FGF2 concentrations are negatively associated with fear expression in both rats and humans. To the extent that conditioned fear expression predicts anxiety and trauma disorder vulnerability, FGF2 may be a clinically useful biomarker in the prediction and eventual prevention of these disorders. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. HOXA5 plays tissue-specific roles in the developing respiratory system.

    PubMed

    Landry-Truchon, Kim; Houde, Nicolas; Boucherat, Olivier; Joncas, France-Hélène; Dasen, Jeremy S; Philippidou, Polyxeni; Mansfield, Jennifer H; Jeannotte, Lucie

    2017-10-01

    Hoxa5 is essential for development of several organs and tissues. In the respiratory system, loss of Hoxa5 function causes neonatal death due to respiratory distress. Expression of HOXA5 protein in mesenchyme of the respiratory tract and in phrenic motor neurons of the central nervous system led us to address the individual contribution of these Hoxa5 expression domains using a conditional gene targeting approach. Hoxa5 does not play a cell-autonomous role in lung epithelium, consistent with lack of HOXA5 expression in this cell layer. In contrast, ablation of Hoxa5 in mesenchyme perturbed trachea development, lung epithelial cell differentiation and lung growth. Further, deletion of Hoxa5 in motor neurons resulted in abnormal diaphragm innervation and musculature, and lung hypoplasia. It also reproduced the neonatal lethality observed in null mutants, indicating that the defective diaphragm is the main cause of impaired survival at birth. Thus, Hoxa5 possesses tissue-specific functions that differentially contribute to the morphogenesis of the respiratory tract. © 2017. Published by The Company of Biologists Ltd.

  5. A fluorimetric study of the thorium-morin system

    USGS Publications Warehouse

    Milkey, R.G.; Fletcher, M.H.

    1957-01-01

    Thorium reacts with morin to yield a yellow complex that fluoresces when irradiated with ultraviolet light. The effect on the fluorescence of such variables as concentration of acid, alcohol, thorium, morin, and complex; time, temperature and wave length of exciting light are studied to determine experimental conditions yielding maximum fluorescence. The effects of Zr+4, Al+3, Fe+3, Ca+2 and La+3 are discussed. The fundamental relationships between light absorption and fluorescence are expressed in a general equation that applies to a three-component system when the fluorescence is measured in a transmission-type fluorimeter. This general equation is used to obtain an expression for the fluorescence of the thoriummorin system. Equations, derived from experimental data, relate both the fraction of thorium reacted to form complex and the fraction of unquenched fluorescence to the concentration of uncombined morin. These functions, when combined with the general equation, give an expression whichrelates the total net fluorescence to the amount of uncombined morin in the solution. This last equation can be used to determine the one region for the concentration of uncombined morin that gives maximum sensitivity for the system. Calculated standard curves are in good agreement with experimental curves.

  6. A fluorimetric study of the thorium-morin system

    USGS Publications Warehouse

    Milkey, Robert G.; Fletcher, Mary H.

    1956-01-01

    Thorium reacts with morin to yield a yellow complex that fluoresces when irradiated with ultraviolet light. The effect on the fluorescence of such variable as concentration of acid, alcohol, thorium, morin, and complex; time, temperature, and wavelength of exciting light are studied to determine experimental conditions yielding maximum fluorescence. The effects of Zr4+, Al3+, Fe3+, Ca2+, and La3+ are discussed. The fundamental relationships between light absorption and fluorescence are expressed in a general equation which applied to a three-component system when the fluorescence is measured in a transmission-type fluorimeter. This general equation is used to obtain an expression for the fluorescence of the thorium-morin system. Equations, derived from experimental data, related both the fraction of thorium reacted to form complex and the fraction of unquenched fluorescence to the concentration of uncombined morin. These functions, when combined with the general equation, give an expression which relates the total net fluorescence to the amount of uncombined morin in the solution. This last equation can be used to determine the one region for the concentration of uncombined morin that gives maximum sensitivity for the system. Calculated standard curves are in excellent agreement with experimental curves.

  7. Examination of Csr regulatory circuitry using epistasis analysis with RNA-seq (Epi-seq) confirms that CsrD affects gene expression via CsrA, CsrB and CsrC.

    PubMed

    Potts, Anastasia H; Leng, Yuanyuan; Babitzke, Paul; Romeo, Tony

    2018-03-29

    The Csr global regulatory system coordinates gene expression in response to metabolic status. This system utilizes the RNA binding protein CsrA to regulate gene expression by binding to transcripts of structural and regulatory genes, thus affecting their structure, stability, translation, and/or transcription elongation. CsrA activity is controlled by sRNAs, CsrB and CsrC, which sequester CsrA away from other transcripts. CsrB/C levels are partly determined by their rates of turnover, which requires CsrD to render them susceptible to RNase E cleavage. Previous epistasis analysis suggested that CsrD affects gene expression through the other Csr components, CsrB/C and CsrA. However, those conclusions were based on a limited analysis of reporters. Here, we reassessed the global behavior of the Csr circuitry using epistasis analysis with RNA seq (Epi-seq). Because CsrD effects on mRNA levels were entirely lost in the csrA mutant and largely eliminated in a csrB/C mutant under our experimental conditions, while the majority of CsrA effects persisted in the absence of csrD, the original model accounts for the global behavior of the Csr system. Our present results also reflect a more nuanced role of CsrA as terminal regulator of the Csr system than has been recognized.

  8. Analysis of experience-regulated transcriptome and imprintome during critical periods of mouse visual system development reveals spatiotemporal dynamics.

    PubMed

    Hsu, Chi-Lin; Chou, Chih-Hsuan; Huang, Shih-Chuan; Lin, Chia-Yi; Lin, Meng-Ying; Tung, Chun-Che; Lin, Chun-Yen; Lai, Ivan Pochou; Zou, Yan-Fang; Youngson, Neil A; Lin, Shau-Ping; Yang, Chang-Hao; Chen, Shih-Kuo; Gau, Susan Shur-Fen; Huang, Hsien-Sung

    2018-03-15

    Visual system development is light-experience dependent, which strongly implicates epigenetic mechanisms in light-regulated maturation. Among many epigenetic processes, genomic imprinting is an epigenetic mechanism through which monoallelic gene expression occurs in a parent-of-origin-specific manner. It is unknown if genomic imprinting contributes to visual system development. We profiled the transcriptome and imprintome during critical periods of mouse visual system development under normal- and dark-rearing conditions using B6/CAST F1 hybrid mice. We identified experience-regulated, isoform-specific and brain-region-specific imprinted genes. We also found imprinted microRNAs were predominantly clustered into the Dlk1-Dio3 imprinted locus with light experience affecting some imprinted miRNA expression. Our findings provide the first comprehensive analysis of light-experience regulation of the transcriptome and imprintome during critical periods of visual system development. Our results may contribute to therapeutic strategies for visual impairments and circadian rhythm disorders resulting from a dysfunctional imprintome.

  9. Cell-Free Protein Synthesis: Pros and Cons of Prokaryotic and Eukaryotic Systems

    PubMed Central

    Zemella, Anne; Thoring, Lena; Hoffmeister, Christian; Kubick, Stefan

    2015-01-01

    From its start as a small-scale in vitro system to study fundamental translation processes, cell-free protein synthesis quickly rose to become a potent platform for the high-yield production of proteins. In contrast to classical in vivo protein expression, cell-free systems do not need time-consuming cloning steps, and the open nature provides easy manipulation of reaction conditions as well as high-throughput potential. Especially for the synthesis of difficult to express proteins, such as toxic and transmembrane proteins, cell-free systems are of enormous interest. The modification of the genetic code to incorporate non-canonical amino acids into the target protein in particular provides enormous potential in biotechnology and pharmaceutical research and is in the focus of many cell-free projects. Many sophisticated cell-free systems for manifold applications have been established. This review describes the recent advances in cell-free protein synthesis and details the expanding applications in this field. PMID:26478227

  10. Overexpression of Arabidopsis AnnAt8 Alleviates Abiotic Stress in Transgenic Arabidopsis and Tobacco

    PubMed Central

    Yadav, Deepanker; Ahmed, Israr; Shukla, Pawan; Boyidi, Prasanna; Kirti, Pulugurtha Bharadwaja

    2016-01-01

    Abiotic stress results in massive loss of crop productivity throughout the world. Because of our limited knowledge of the plant defense mechanisms, it is very difficult to exploit the plant genetic resources for manipulation of traits that could benefit multiple stress tolerance in plants. To achieve this, we need a deeper understanding of the plant gene regulatory mechanisms involved in stress responses. Understanding the roles of different members of plant gene families involved in different stress responses, would be a step in this direction. Arabidopsis, which served as a model system for the plant research, is also the most suitable system for the functional characterization of plant gene families. Annexin family in Arabidopsis also is one gene family which has not been fully explored. Eight annexin genes have been reported in the genome of Arabidopsis thaliana. Expression studies of different Arabidopsis annexins revealed their differential regulation under various abiotic stress conditions. AnnAt8 (At5g12380), a member of this family has been shown to exhibit ~433 and ~175 fold increase in transcript levels under NaCl and dehydration stress respectively. To characterize Annexin8 (AnnAt8) further, we have generated transgenic Arabidopsis and tobacco plants constitutively expressing AnnAt8, which were evaluated under different abiotic stress conditions. AnnAt8 overexpressing transgenic plants exhibited higher seed germination rates, better plant growth, and higher chlorophyll retention when compared to wild type plants under abiotic stress treatments. Under stress conditions transgenic plants showed comparatively higher levels of proline and lower levels of malondialdehyde compared to the wild-type plants. Real-Time PCR analyses revealed that the expression of several stress-regulated genes was altered in AnnAt8 over-expressing transgenic tobacco plants, and the enhanced tolerance exhibited by the transgenic plants can be correlated with altered expressions of these stress-regulated genes. Our findings suggest a role for AnnAt8 in enhancing abiotic stress tolerance at different stages of plant growth and development. PMID:27135239

  11. Association of large intergenic noncoding RNA expression with disease activity and organ damage in systemic lupus erythematosus.

    PubMed

    Wu, Yanfang; Zhang, Feifei; Ma, Jianyang; Zhang, Xiaoyan; Wu, Lingling; Qu, Bo; Xia, Shiwei; Chen, Shunle; Tang, Yuanjia; Shen, Nan

    2015-05-21

    Despite growing evidence that large intergenic noncoding RNAs (lincRNAs) can regulate gene expression and widely take part in normal physiological and disease conditions, our knowledge of systemic lupus erythematosus (SLE)-related lincRNAs remains limited. The aim of this study was to detect the levels of four lincRNAs (ENST00000500949: linc0949, ENST00000500597: linc0597, ENST00000501992: linc1992, and ENST00000523995: linc3995) involved in innate immunity in the peripheral blood mononuclear cells (PBMCs) of patients with SLE and correlate these lincRNA levels with disease activity, organ damage, clinical features and medical therapies. PBMCs were obtained from 102 patients with SLE, 54 patients with rheumatoid arthritis (RA) and 76 healthy donors. lincRNA expression levels were measured by real-time quantitative polymerase chain reaction. Disease activity was assessed using the Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K) scores, and organ damage was evaluated with the Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index. linc0949 and linc0597 were significantly decreased in patients with SLE compared with patients with RA and healthy control subjects. linc0949 was correlated with SLEDAI-2K score (r = -0.329, P = 0.0007), as well as with complement component C3 level (r = 0.348, P = 0.0003). The level of linc0949 was also reduced in patients with SLE who had the presence of cumulative organ damage. In addition, decreasing expression of linc0949 was associated with lupus nephritis. linc0949 expression significantly increased after treatment, whereas neither disease activity nor organ damage correlated with linc0597 expression. Our results provide novel empirical evidence that linc0949 could be a potential biomarker for diagnosis, disease activity and therapeutic response in SLE.

  12. Does gratitude writing improve the mental health of psychotherapy clients? Evidence from a randomized controlled trial.

    PubMed

    Wong, Y Joel; Owen, Jesse; Gabana, Nicole T; Brown, Joshua W; McInnis, Sydney; Toth, Paul; Gilman, Lynn

    2018-03-01

    Although the past decade has witnessed growing research interest in positive psychological interventions (PPIs), their potential as adjunctive interventions for psychotherapy remains relatively unexplored. Therefore, this article expands the frontiers of PPI research by reporting the first randomized controlled trial to test a gratitude writing adjunctive intervention for psychotherapy clients. Participants were 293 adults seeking university-based psychotherapy services. Participants were randomly assigned to one of three conditions: (a) control (psychotherapy only), (b) a psychotherapy plus expressive writing, and (c) a psychotherapy plus gratitude writing. Participants in the gratitude condition wrote letters expressing gratitude to others, whereas those in the expressive writing condition wrote about their deepest thoughts and feelings about stressful experiences. About 4 weeks as well as 12 weeks after the conclusion of the writing intervention, participants in the gratitude condition reported significantly better mental health than those in the expressive and control conditions, whereas those in the expressive and control conditions did not differ significantly. Moreover, lower proportions of negative emotion words in participants' writing mediated the positive effect of condition (gratitude versus expressive writing) on mental health. These findings are discussed in light of the use of gratitude interventions as adjunctive interventions for psychotherapy clients.

  13. How Are Conditions for Participation Expressed in Education Policy Documents? A Review of Documents in Scotland and Sweden

    ERIC Educational Resources Information Center

    Maxwell, Gregor; Granlund, Mats

    2011-01-01

    This study approaches inclusive schools by looking at how conditions for participation are expressed for pupils with additional support needs in education policy documents in Sweden and Scotland. By using five dimensions of the environment--availability, accessibility, affordability, accommodability and acceptability--expressions of conditions for…

  14. mNotch1 signaling and erythropoietin cooperate in erythroid differentiation of multipotent progenitor cells and upregulate beta-globin.

    PubMed

    Henning, Konstanze; Schroeder, Timm; Schwanbeck, Ralf; Rieber, Nikolaus; Bresnick, Emery H; Just, Ursula

    2007-09-01

    In many developing tissues, signaling mediated by activation of the transmembrane receptor Notch influences cell-fate decisions, differentiation, proliferation, and cell survival. Notch receptors are expressed on hematopoietic cells and cognate ligands on bone marrow stromal cells. Here, we investigate the role of mNotch1 signaling in the control of erythroid differentiation of multipotent progenitor cells. Multipotent FDCP-mix cell lines engineered to permit the conditional induction of the constitutively active intracellular domain of mNotch1 (mN1(IC)) by the 4-hydroxytamoxifen (OHT)-inducible system were used to analyze the effects of activated mNotch1 on erythroid differentiation and on expression of Gata1, Fog1, Eklf, NF-E2, and beta-globin. Expression was analyzed by Northern blotting and real-time polymerase chain reaction. Enhancer activity of reporter constructs was determined with the dual luciferase system in transient transfection assays. Induction of mN1(IC) by OHT resulted in increased and accelerated differentiation of FDCP-mix cells along the erythroid lineage. Erythroid maturation was induced by activated Notch1 also under conditions that normally promote self-renewal, but required the presence of erythropoietin for differentiation to proceed. While induction of Notch signaling rapidly upregulated Hes1 and Hey1 expression, the expression of Gata1, Fog1, Eklf, and NF-E2 remained unchanged. Concomitantly with erythroid differentiation, activated mNotch1 upregulated beta-globin RNA. Notch signaling transactivated a reporter construct harboring a conserved RBP-J (CBF1) binding site in the hypersensitive site 2 (HS2) of human beta-globin. Transactivation by activated Notch was completely abolished when this RBP-J site was mutated to prevent RBP-J binding. Our results show that activation of mNotch1 induces erythroid differentiation in cooperation with erythropoietin and upregulates beta-globin expression.

  15. Cdk5 modulates cocaine reward, motivation, and striatal neuron excitability.

    PubMed

    Benavides, David R; Quinn, Jennifer J; Zhong, Ping; Hawasli, Ammar H; DiLeone, Ralph J; Kansy, Janice W; Olausson, Peter; Yan, Zhen; Taylor, Jane R; Bibb, James A

    2007-11-21

    Cyclin-dependent kinase 5 (Cdk5) regulates dopamine neurotransmission and has been suggested to serve as a homeostatic target of chronic psychostimulant exposure. To study the role of Cdk5 in the modulation of the cellular and behavioral effects of psychoactive drugs of abuse, we developed Cre/loxP conditional knock-out systems that allow temporal and spatial control of Cdk5 expression in the adult brain. Here, we report the generation of Cdk5 conditional knock-out (cKO) mice using the alphaCaMKII promoter-driven Cre transgenic line (CaMKII-Cre). In this model system, loss of Cdk5 in the adult forebrain increased the psychomotor-activating effects of cocaine. Additionally, these CaMKII-Cre Cdk5 cKO mice show enhanced incentive motivation for food as assessed by instrumental responding on a progressive ratio schedule of reinforcement. Behavioral changes were accompanied by increased excitability of medium spiny neurons in the nucleus accumbens (NAc) in Cdk5 cKO mice. To study NAc-specific effects of Cdk5, another model system was used in which recombinant adeno-associated viruses expressing Cre recombinase caused restricted loss of Cdk5 in NAc neurons. Targeted knock-out of Cdk5 in the NAc facilitated cocaine-induced locomotor sensitization and conditioned place preference for cocaine. These results suggest that Cdk5 acts as a negative regulator of neuronal excitability in the NAc and that Cdk5 may govern the behavioral effects of cocaine and motivation for reinforcement.

  16. International Union of Theoretical and Applied Mechanics: Symposium on Creep in Structures (3rd).

    DTIC Science & Technology

    1980-12-15

    Holmes (Fast Reactor Div., Nuclear Power Co., UK). In his talk, he noted that most stresses in nuclear power systems are thermal in nature rather than...initiation and second, crack growth rate expressions for both creep controlled and di- fussion controlled conditions involving C*, the stress

  17. A method for ensemble wildland fire simulation

    Treesearch

    Mark A. Finney; Isaac C. Grenfell; Charles W. McHugh; Robert C. Seli; Diane Trethewey; Richard D. Stratton; Stuart Brittain

    2011-01-01

    An ensemble simulation system that accounts for uncertainty in long-range weather conditions and two-dimensional wildland fire spread is described. Fuel moisture is expressed based on the energy release component, a US fire danger rating index, and its variation throughout the fire season is modeled using time series analysis of historical weather data. This analysis...

  18. 3D spheroid cultures improve the metabolic gene expression profiles of HepaRG cells.

    PubMed

    Takahashi, Yu; Hori, Yuji; Yamamoto, Tomohisa; Urashima, Toshiki; Ohara, Yasunori; Tanaka, Hideo

    2015-05-07

    3D (three-dimensional) cultures are considered to be an effective method for toxicological studies; however, little evidence has been reported whether 3D cultures have an impact on hepatocellular physiology regarding lipid or glucose metabolism. In the present study, we conducted physiological characterization of hepatoma cell lines HepG2 and HepaRG cells cultured in 3D conditions using a hanging drop method to verify the effect of culture environment on cellular responses. Apo (Apolipoprotein)B as well as albumin secretion was augmented by 3D cultures. Expression of genes related to not only drug, but also glucose and lipid metabolism were significantly enhanced in 3D cultured HepaRG spheroids. Furthermore, mRNA levels of CYP (cytochrome P450) enzymes following exposure to corresponding inducers increased under the 3D condition. These data suggest that this simple 3D culture system without any special biomaterials can improve liver-specific characteristics including lipid metabolism. Considering that the system enables high-throughput assay, it may become a powerful tool for compound screening concerning hepatocellular responses in order to identify potential drugs. © 2015 Authors.

  19. Knockdown of hypocretin attenuates extended access of cocaine self-administration in rats.

    PubMed

    Schmeichel, Brooke E; Matzeu, Alessandra; Koebel, Pascale; Vendruscolo, Leandro F; Sidhu, Harpreet; Shahryari, Roxana; Kieffer, Brigitte L; Koob, George F; Martin-Fardon, Rémi; Contet, Candice

    2018-04-06

    The hypocretin/orexin (HCRT) neuropeptide system regulates feeding, arousal state, stress responses, and reward, especially under conditions of enhanced motivational relevance. In particular, HCRT neurotransmission facilitates drug-seeking behavior in circumstances that demand increased effort and/or motivation to take the drug. The present study used a shRNA-encoding adeno-associated viral vector to knockdown Hcrt expression throughout the dorsal hypothalamus in adult rats and determine the role of HCRT in cocaine self-administration. Chronic Hcrt silencing did not impact cocaine self-administration under short-access conditions, but robustly attenuated cocaine intake under extended access conditions, a model that mimics key features of compulsive cocaine taking. In addition, Hcrt silencing decreased motivation for both cocaine and a highly palatable food reward (i.e., sweetened condensed milk; SCM) under a progressive ratio schedule of reinforcement, but did not alter responding for SCM under a fixed ratio schedule. Importantly, Hcrt silencing did not affect food or water consumption, and had no consequence for general measures of arousal and stress reactivity. At the molecular level, chronic Hcrt knockdown reduced the number of neurons expressing dynorphin (DYN), and to a smaller extent melanin-concentrating hormone (MCH), in the dorsal hypothalamus. These original findings support the hypothesis that HCRT neurotransmission promotes operant responding for both drug and non-drug rewards, preferentially under conditions requiring a high degree of motivation. Furthermore, the current study provides compelling evidence for the involvement of the HCRT system in cocaine self-administration also under low-effort conditions in rats allowed extended access, possibly via functional interactions with DYN and MCH signaling.

  20. Tissue specific and abiotic stress regulated transcription of histidine kinases in plants is also influenced by diurnal rhythm

    PubMed Central

    Singh, Anupama; Kushwaha, Hemant R.; Soni, Praveen; Gupta, Himanshu; Singla-Pareek, Sneh L.; Pareek, Ashwani

    2015-01-01

    Two-component system (TCS) is one of the key signal sensing machinery which enables species to sense environmental stimuli. It essentially comprises of three major components, sensory histidine kinase proteins (HKs), histidine phosphotransfer proteins (Hpts), and response regulator proteins (RRs). The members of the TCS family have already been identified in Arabidopsis and rice but the knowledge about their functional indulgence during various abiotic stress conditions remains meager. Current study is an attempt to carry out comprehensive analysis of the expression of TCS members in response to various abiotic stress conditions and in various plant tissues in Arabidopsis and rice using MPSS and publicly available microarray data. The analysis suggests that despite having almost similar number of genes, rice expresses higher number of TCS members during various abiotic stress conditions than Arabidopsis. We found that the TCS machinery is regulated by not only various abiotic stresses, but also by the tissue specificity. Analysis of expression of some representative members of TCS gene family showed their regulation by the diurnal cycle in rice seedlings, thus bringing-in another level of their transcriptional control. Thus, we report a highly complex and tight regulatory network of TCS members, as influenced by the tissue, abiotic stress signal, and diurnal rhythm. The insights on the comparative expression analysis presented in this study may provide crucial leads toward dissection of diverse role(s) of the various TCS family members in Arabidopsis and rice. PMID:26442025

  1. DigOut: viewing differential expression genes as outliers.

    PubMed

    Yu, Hui; Tu, Kang; Xie, Lu; Li, Yuan-Yuan

    2010-12-01

    With regards to well-replicated two-conditional microarray datasets, the selection of differentially expressed (DE) genes is a well-studied computational topic, but for multi-conditional microarray datasets with limited or no replication, the same task is not properly addressed by previous studies. This paper adopts multivariate outlier analysis to analyze replication-lacking multi-conditional microarray datasets, finding that it performs significantly better than the widely used limit fold change (LFC) model in a simulated comparative experiment. Compared with the LFC model, the multivariate outlier analysis also demonstrates improved stability against sample variations in a series of manipulated real expression datasets. The reanalysis of a real non-replicated multi-conditional expression dataset series leads to satisfactory results. In conclusion, a multivariate outlier analysis algorithm, like DigOut, is particularly useful for selecting DE genes from non-replicated multi-conditional gene expression dataset.

  2. Two Ways to Facial Expression Recognition? Motor and Visual Information Have Different Effects on Facial Expression Recognition.

    PubMed

    de la Rosa, Stephan; Fademrecht, Laura; Bülthoff, Heinrich H; Giese, Martin A; Curio, Cristóbal

    2018-06-01

    Motor-based theories of facial expression recognition propose that the visual perception of facial expression is aided by sensorimotor processes that are also used for the production of the same expression. Accordingly, sensorimotor and visual processes should provide congruent emotional information about a facial expression. Here, we report evidence that challenges this view. Specifically, the repeated execution of facial expressions has the opposite effect on the recognition of a subsequent facial expression than the repeated viewing of facial expressions. Moreover, the findings of the motor condition, but not of the visual condition, were correlated with a nonsensory condition in which participants imagined an emotional situation. These results can be well accounted for by the idea that facial expression recognition is not always mediated by motor processes but can also be recognized on visual information alone.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolski, A.; Penn, G.; Sessler, A.

    The consequences of beam conditioning in four example cases [VISA, a soft x-ray free-electron laser (FEL), LCLS, and a 'Greenfield' FEL] are examined. It is shown that in emittance limited cases, proper conditioning reduces sensitivity to the transverse emittance and, furthermore, allows for stronger focusing in the undulator. Simulations show higher saturation power, with gain lengths reduced by a factor of 2 or more. The beam dynamics in a general conditioning system are studied, with 'matching conditions' derived for achieving conditioning without growth in the effective emittance. Various conditioning lattices are considered, and expressions derived for the amount of conditioningmore » provided in each case when the matching conditions are satisfied. These results show that there is no fundamental obstacle to producing beam conditioning, and that the problem can be reduced to one of proper lattice design. Nevertheless, beam conditioning will not be easy to implement in practice.« less

  4. Orexin receptor-1 in the locus coeruleus plays an important role in cue-dependent fear memory consolidation.

    PubMed

    Soya, Shingo; Shoji, Hirotaka; Hasegawa, Emi; Hondo, Mari; Miyakawa, Tsuyoshi; Yanagisawa, Masashi; Mieda, Michihiro; Sakurai, Takeshi

    2013-09-04

    The noradrenergic (NA) projections arising from the locus ceruleus (LC) to the amygdala and bed nucleus of the stria terminalis have been implicated in the formation of emotional memory. Since NA neurons in the LC (LC-NA neurons) abundantly express orexin receptor-1 (OX1R) and receive prominent innervation by orexin-producing neurons, we hypothesized that an OX1R-mediated pathway is involved in the physiological fear learning process via regulation of LC-NA neurons. To evaluate this hypothesis, we examined the phenotype of Ox1r(-/-) mice in the classic cued and contextual fear-conditioning test. We found that Ox1r(-/-) mice showed impaired freezing responses in both cued and contextual fear-conditioning paradigms. In contrast, Ox2r(-/-) mice showed normal freezing behavior in the cued fear-conditioning test, while they exhibited shorter freezing time in the contextual fear-conditioning test. Double immunolabeling of Fos and tyrosine hydroxylase showed that double-positive LC-NA neurons after test sessions of both cued and contextual stimuli were significantly fewer in Ox1r(-/-) mice. AAV-mediated expression of OX1R in LC-NA neurons in Ox1r(-/-) mice restored the freezing behavior to the auditory cue to a comparable level to that in wild-type mice in the test session. Decreased freezing time during the contextual fear test was not affected by restoring OX1R expression in LC-NA neurons. These observations support the hypothesis that the orexin system modulates the formation and expression of fear memory via OX1R in multiple pathways. Especially, OX1R in LC-NA neurons plays an important role in cue-dependent fear memory formation and/or retrieval.

  5. Do cultural conditions induce differential protein expression: Profiling of extracellular proteome of Aspergillus terreus CM20.

    PubMed

    M, Saritha; Singh, Surender; Tiwari, Rameshwar; Goel, Renu; Nain, Lata

    2016-11-01

    The present study reports the diversity in extracellular proteins expressed by the filamentous fungus, Aspergillus terreus CM20 with respect to differential hydrolytic enzyme production profiles in submerged fermentation (SmF) and solid-state fermentation (SSF) conditions, and analysis of the extracellular proteome. The SSF method was superior in terms of increase in enzyme activities resulting in 1.5-3 fold enhancement as compared to SmF, which was explained by the difference in growth pattern of the fungus under the two culture conditions. As revealed by zymography, multiple isoforms of endo-β-glucanase, β-glucosidase and xylanase were expressed in SSF, but not in SmF. Extracellular proteome profiling of A. terreus CM20 under SSF condition using liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) identified 63 proteins. Functional classification revealed the hydrolytic system to be composed of glycoside hydrolases (56%), proteases (16%), oxidases and dehydrogenases (6%), decarboxylases (3%), esterases (3%) and other proteins (16%). Twenty families of glycoside hydrolases (GH) (1, 3, 5, 7, 10, 11, 12, 15, 16, 28, 30, 32, 35, 43, 54, 62, 67, 72, 74 and 125), and one family each of auxiliary activities (AA7) and carbohydrate esterase (CE1) were detected, unveiling the vast diversity of synergistically acting biomass-cleaving enzymes expressed by the fungus. Saccharification of alkali-pretreated paddy straw with A. terreus CM20 proteins released high amounts of glucose (439.63±1.50mg/gds), xylose (121.04±1.25mg/gds) and arabinose (56.13±0.56mg/gds), thereby confirming the potential of the enzyme cocktail in bringing about considerable conversion of lignocellulosic polysaccharides to sugar monomers. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Object-location training elicits an overlapping but temporally distinct transcriptional profile from contextual fear conditioning.

    PubMed

    Poplawski, Shane G; Schoch, Hannah; Wimmer, Mathieu; Hawk, Joshua D; Walsh, Jennifer L; Giese, Karl P; Abel, Ted

    2014-12-01

    Hippocampus-dependent learning is known to induce changes in gene expression, but information on gene expression differences between different learning paradigms that require the hippocampus is limited. The bulk of studies investigating RNA expression after learning use the contextual fear conditioning task, which couples a novel environment with a footshock. Although contextual fear conditioning has been useful in discovering gene targets, gene expression after spatial memory tasks has received less attention. In this study, we used the object-location memory task and studied gene expression at two time points after learning in a high-throughput manner using a microfluidic qPCR approach. We found that expression of the classic immediate-early genes changes after object-location training in a fashion similar to that observed after contextual fear conditioning. However, the temporal dynamics of gene expression are different between the two tasks, with object-location memory producing gene expression changes that last at least 2 hours. Our findings indicate that different training paradigms may give rise to distinct temporal dynamics of gene expression after learning. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Object-Location Training Elicits an Overlapping but Temporally Distinct Transcriptional Profile from Contextual Fear Conditioning

    PubMed Central

    Wimmer, Mathieu; Hawk, Joshua D.; Walsh, Jennifer L.; Giese, Karl P.; Abel, Ted

    2014-01-01

    Hippocampus-dependent learning is known to induce changes in gene expression, but information on gene expression differences between different learning paradigms that require the hippocampus is limited. The bulk of studies investigating RNA expression after learning use the contextual fear conditioning task, which couples a novel environment with a footshock. Although contextual fear conditioning has been useful in discovering gene targets, gene expression after spatial memory tasks has received less attention. In this study, we used the object-location memory task and studied gene expression at two time points after learning in a high-throughput manner using a microfluidic qPCR approach. We found that expression of the classic immediate-early genes changes after object-location training in a fashion similar to that observed after contextual fear conditioning. However, the temporal dynamics of gene expression are different between the two tasks, with object-location memory producing gene expression changes that last at least 2 hours. Our findings indicate that different training paradigms may give rise to distinct temporal dynamics of gene expression after learning. PMID:25242102

  8. [Role of cyclic adenosine monophosphate(cAMP) in the regulation of intestinal epithelial barrier function under hypoxia].

    PubMed

    Yang, Yang; Wang, Wen-Sheng; Qiu, Yuan; Sun, Li-Hua; Yang, Hua

    2013-05-01

    To investigate the role of cyclic adenosine monophosphate(cAMP) in the regulation of intestinal epithelial barrier function under hypoxia. Intestinal epithelial barrier was established by Caco-2 monolayers. Cells were divided into four groups: normoxia (Nx), normoxia plus Forskolin(Nx+FSK), hypoxia(Hx), hypoxia plus SQ22536(Hx+SQ22536). cAMP concentrations of different groups were assessed by cAMP enzyme immunoassay kit. RT-PCR and Western blotting were used to detect the mRNA and protein expressions of claudin-1 and occludin under normoxic and hypoxic condition. Caco-2 monolayers were grown on Millicell filters, and transepithelial electrical resistance(TER) was measured using a Millipore electric resistance system. The concentration of cAMP under hypoxic conditions(Hx group) was higher compared with Nx group [(6.30±0.50) pmol/L vs. (2.38±0.18) pmol/L, P<0.01]. At the same time, both mRNA and protein expressions of claudin-1 and occluding were lower in Hx group than those in Nx group(all P<0.05). TER decreased by 76.30±0.64(P<0.01). When the monolayers were exposed to hypoxia plus SQ22536 (Hx+SQ22536 group), the concentration of cAMP was(2.12±0.23) pmol/L, which was lower than that under hypoxic conditions(Hx group, P<0.01). Both mRNA and protein expressions of claudin-1 and occludin were higher compared to Hx group (all P<0.01). TER increased by 32.96±2.16 (P<0.05). When Caco-2 cells are exposed to hypoxia, barrier function, claudin-1 and occludin expression are diminished in parallel with a high level of intracellular cAMP compared with the normoxic condition. Inhibition of the intracellular cAMP level under hypoxia can maintain the intestinal epithelial function through regulating the claudin-1 and occludin expression and attenuate the permeability of intestinal mucosa.

  9. Glycation inhibitors extend yeast chronological lifespan by reducing advanced glycation end products and by back regulation of proteins involved in mitochondrial respiration.

    PubMed

    Kazi, Rubina S; Banarjee, Reema M; Deshmukh, Arati B; Patil, Gouri V; Jagadeeshaprasad, Mashanipalya G; Kulkarni, Mahesh J

    2017-03-06

    Advanced Glycation End products (AGEs) are implicated in aging process. Thus, reducing AGEs by using glycation inhibitors may help in attenuating the aging process. In this study using Saccharomyces cerevisiae yeast system, we show that Aminoguanidine (AMG), a well-known glycation inhibitor, decreases the AGE modification of proteins in non-calorie restriction (NR) (2% glucose) and extends chronological lifespan (CLS) similar to that of calorie restriction (CR) condition (0.5% glucose). Proteomic analysis revealed that AMG back regulates the expression of differentially expressed proteins especially those involved in mitochondrial respiration in NR condition, suggesting that it switches metabolism from fermentation to respiration, mimicking CR. AMG induced back regulation of differentially expressed proteins could be possibly due to its chemical effect or indirectly by glycation inhibition. To delineate this, Metformin (MET), a structural analog of AMG and a mild glycation inhibitor and Hydralazine (HYD), another potent glycation inhibitor but not structural analog of AMG were used. HYD was more effective than MET in mimicking AMG suggesting that glycation inhibition was responsible for restoration of differentially expressed proteins. Thus glycation inhibitors particularly AMG, HYD and MET extend yeast CLS by reducing AGEs, modulating the expression of proteins involved in mitochondrial respiration and possibly by scavenging glucose. This study reports the role of glycation in aging process. In the non-caloric restriction condition, carbohydrates such as glucose promote protein glycation and reduce CLS. While, the inhibitors of glycation such as AMG, HYD, MET mimic the caloric restriction condition by back regulating deregulated proteins involved in mitochondrial respiration which could facilitate shift of metabolism from fermentation to respiration and extend yeast CLS. These findings suggest that glycation inhibitors can be potential molecules that can be used in management of aging. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Changes in Gene Expression in the Hippocampus Following Exposure to 56Fe Particles and Protection by Berry Diets

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, Barbara; Lau, Francis; Carey, Amanda; Carrihill-Knoll, Kirsty; Rabin, Bernard; Joseph, James

    Exposing young rats to particles of high energy and charge (HZE particles), such as 56 Fe, enhances indices of oxidative stress and inflammation and disrupts the functioning of the dopaminergic system and behaviors mediated by this system in a manner similar to that seen in aged animals. Behaviors affected by radiation include deficits in motor performance, spatial learning and memory behavior, amphetamine-induced conditioned taste aversion learning, conditioned place preference, and operant conditioning. Berry fruit diets are high in antioxidant and antiinflammatory activity, and prevent the occurrence of the neurochemical and behavioral changes that occur in aging and by exposure to 56 Fe particles. In the present study, we examined whether gene expression in the hippocampus, an area of the brain important in memory, is affected by exposure to 56 Fe particles 36 hours post-irradiation. We also evaluated whether the blueberry (BB) and strawberry (SB) diets could ameliorate irradiation-induced deficits in gene expression by maintaining rats on these diets or a control diet for 8 weeks prior to being exposed to radiation. Therefore, to measure gene expression, 4 rats/group were euthanized 36 hours post whole-body irradiation with 1.5 Gy or 2.5 Gy of 1 GeV/n high-energy 56 Fe particles. Alterations in gene expression profile induced by radiation were analyzed by pathway-focused microarrays on the inflammatory cytokines and genes involved in NF-κB signal transduction pathways. For the diet studies, 3 rats/group were irradiated with 2.5 Gy of 56 Fe following 8 weeks supplementation with either the 2% BB or the 2% SB diet. We found that genes that directly or indirectly interact in the regulation of growth and differentiation of neurons were changed following irradiation. Genes that regulate apoptosis were up-regulated whereas genes that modulate cellular proliferation were down-regulated, possibly to eliminate damaged cells and to stop cell proliferation to prevent DNA damage caused by radiation to new cells. Supplementation with the berry diets enhanced neuronal communication and cell signaling by altering gene regulation of some of the protective stress signals. Therefore, these data suggest that 56 Fe particle irradiation causes deficits in gene expression in rats which are ameliorated by berry fruit diets.

  11. Genome-wide transcriptome analysis of soybean primary root under varying water-deficit conditions.

    PubMed

    Song, Li; Prince, Silvas; Valliyodan, Babu; Joshi, Trupti; Maldonado dos Santos, Joao V; Wang, Jiaojiao; Lin, Li; Wan, Jinrong; Wang, Yongqin; Xu, Dong; Nguyen, Henry T

    2016-01-15

    Soybean is a major crop that provides an important source of protein and oil to humans and animals, but its production can be dramatically decreased by the occurrence of drought stress. Soybeans can survive drought stress if there is a robust and deep root system at the early vegetative growth stage. However, little is known about the genome-wide molecular mechanisms contributing to soybean root system architecture. This study was performed to gain knowledge on transcriptome changes and related molecular mechanisms contributing to soybean root development under water limited conditions. The soybean Williams 82 genotype was subjected to very mild stress (VMS), mild stress (MS) and severe stress (SS) conditions, as well as recovery from the severe stress after re-watering (SR). In total, 6,609 genes in the roots showed differential expression patterns in response to different water-deficit stress levels. Genes involved in hormone (Auxin/Ethylene), carbohydrate, and cell wall-related metabolism (XTH/lipid/flavonoids/lignin) pathways were differentially regulated in the soybean root system. Several transcription factors (TFs) regulating root growth and responses under varying water-deficit conditions were identified and the expression patterns of six TFs were found to be common across the stress levels. Further analysis on the whole plant level led to the finding of tissue-specific or water-deficit levels specific regulation of transcription factors. Analysis of the over-represented motif of different gene groups revealed several new cis-elements associated with different levels of water deficit. The expression patterns of 18 genes were confirmed byquantitative reverse transcription polymerase chain reaction method and demonstrated the accuracy and effectiveness of RNA-Seq. The primary root specific transcriptome in soybean can enable a better understanding of the root response to water deficit conditions. The genes detected in root tissues that were associated with key hormones, carbohydrates, and cell wall-related metabolism could play a vital role in achieving drought tolerance and could be promising candidates for future functional characterization. TFs involved in the soybean root and at the whole plant level could be used for future network analysis between TFs and cis-elements. All of these findings will be helpful in elucidating the molecular mechanisms associated with water stress responses in soybean roots.

  12. Tissue- and cell-specific expression of mouse xanthine oxidoreductase gene in vivo: regulation by bacterial lipopolysaccharide.

    PubMed Central

    Kurosaki, M; Li Calzi, M; Scanziani, E; Garattini, E; Terao, M

    1995-01-01

    The expression of the xanthine oxidoreductase gene was studied in various mouse organs and tissues, under basal conditions and on treatment with bacterial lipopolysaccharide. Levels of xanthine oxidoreductase protein and mRNA were compared in order to understand the molecular mechanisms regulating the expression of this enzyme system. The highest amounts of xanthine oxidoreductase and the respective mRNA are observed in the duodenum and jejunum, where the protein is present in an unusual form because of a specific proteolytic cleavage of the primary translation product present in all locations. Under basal conditions, multiple tissue-specific mechanisms of xanthine oxidoreductase regulation are evident. Lipopolysaccharide increases enzyme activity in some, but not all tissues, mainly via modulation of the respective transcript, although translational and post-translational mechanisms are also active. In situ hybridization studies on tissue sections obtained from mice under control conditions or with lipopolysaccharide treatment demonstrate that xanthine oxidoreductase is present in hepatocytes, predominantly in the proximal tubules of the kidney, epithelial layer of the gastrointestinal mucosa, the alveolar compartment of the lung, the pulpar region of the spleen and the vascular component of the heart. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 PMID:7864814

  13. Plants, plant pathogens, and microgravity--a deadly trio.

    PubMed

    Leach, J E; Ryba-White, M; Sun, Q; Wu, C J; Hilaire, E; Gartner, C; Nedukha, O; Kordyum, E; Keck, M; Leung, H; Guikema, J A

    2001-06-01

    Plants grown in spaceflight conditions are more susceptible to colonization by plant pathogens. The underlying causes for this enhanced susceptibility are not known. Possibly the formation of structural barriers and the activation of plant defense response components are impaired in spaceflight conditions. Either condition would result from altered gene expression of the plant. Because of the tools available, past studies focused on a few physiological responses or biochemical pathways. With recent advances in genomics research, new tools, including microarray technologies, are available to examine the global impact of growth in the spacecraft on the plant's gene expression profile. In ground-based studies, we have developed cDNA subtraction libraries of rice that are enriched for genes induced during pathogen infection and the defense response. Arrays of these genes are being used to dissect plant defense response pathways in a model system involving wild-type rice plants and lesion mimic mutants. The lesion mimic mutants are ideal experimental tools because they erratically develop defense response-like lesions in the absence of pathogens. The gene expression profiles from these ground-based studies will provide the molecular basis for understanding the biochemical and physiological impacts of spaceflight on plant growth, development and disease defense responses. This, in turn, will allow the development of strategies to manage plant disease for life in the space environment.

  14. Plants, plant pathogens, and microgravity--a deadly trio

    NASA Technical Reports Server (NTRS)

    Leach, J. E.; Ryba-White, M.; Sun, Q.; Wu, C. J.; Hilaire, E.; Gartner, C.; Nedukha, O.; Kordyum, E.; Keck, M.; Leung, H.; hide

    2001-01-01

    Plants grown in spaceflight conditions are more susceptible to colonization by plant pathogens. The underlying causes for this enhanced susceptibility are not known. Possibly the formation of structural barriers and the activation of plant defense response components are impaired in spaceflight conditions. Either condition would result from altered gene expression of the plant. Because of the tools available, past studies focused on a few physiological responses or biochemical pathways. With recent advances in genomics research, new tools, including microarray technologies, are available to examine the global impact of growth in the spacecraft on the plant's gene expression profile. In ground-based studies, we have developed cDNA subtraction libraries of rice that are enriched for genes induced during pathogen infection and the defense response. Arrays of these genes are being used to dissect plant defense response pathways in a model system involving wild-type rice plants and lesion mimic mutants. The lesion mimic mutants are ideal experimental tools because they erratically develop defense response-like lesions in the absence of pathogens. The gene expression profiles from these ground-based studies will provide the molecular basis for understanding the biochemical and physiological impacts of spaceflight on plant growth, development and disease defense responses. This, in turn, will allow the development of strategies to manage plant disease for life in the space environment.

  15. Increased dopamine DRD4 receptor mRNA expression in lymphocytes of musicians and autistic individuals: bridging the music-autism connection.

    PubMed

    Emanuele, Enzo; Boso, Marianna; Cassola, Francesco; Broglia, Davide; Bonoldi, Ilaria; Mancini, Lara; Marini, Mara; Politi, Pierluigi

    2010-01-01

    People with autistic spectrum disorder (ASD) are affected by a long-life disabling condition, characterized by communication deficits, severe impairments in social functioning, and stereotyped behaviors. Although ASD individuals display several problems in interactions, it has been reported that they may show a peculiar interest in music. Previous studies have suggested a pivotal role for the dopaminergic system in the psychobiology of reward, including the pleasure of music. In the present study, we sought to investigate dopamine DRD3 and DRD4 receptor expression in peripheral blood lymphocytes of adult healthy musicians and age- and gender-matched patients with ASD against the background hypothesis that the dopaminergic system may contribute a biological cause to the reward dimensions of the musical experience in both healthy and autistic individuals. ANOVA showed significant differences in DRD4 mRNA expression between the groups (P = 0.008). Post-hoc analysis showed significant differences between the control group and both musicians (P < 0.05) and ASD individuals (P < 0.05). No differences were found for DRD3 mRNA expression between the groups. Our current results provide intriguing preliminary evidence for a possible molecular link between dopamine DRD4 receptor, music and autism, possibly via mechanisms involving the reward system and the appraisal of emotions.

  16. Gene Expression of Lytic Endopeptidases AlpA and AlpB from Lysobacter sp. XL1 in Pseudomonads.

    PubMed

    Tsfasman, Irina M; Lapteva, Yulia S; Krasovskaya, Ludmila A; Kudryakova, Irina V; Vasilyeva, Natalia V; Granovsky, Igor E; Stepnaya, Olga A

    2015-01-01

    Development of an efficient expression system for (especially secreted) bacterial lytic enzymes is a complicated task due to the specificity of their action. The substrate for such enzymes is peptidoglycan, the main structural component of bacterial cell walls. For this reason, expression of recombinant lytic proteins is often accompanied with lysis of the producing bacterium. This paper presents data on the construction of an inducible system for expression of the lytic peptidases AlpA and AlpB from Lysobacter sp. XL1 in Pseudomonas fluorescens Q2-87, which provides for the successful secretion of these proteins into the culture liquid. In this system, the endopeptidase gene under control of the T7lac promoter was integrated into the bacterial chromosome, as well as the Escherichia coli lactose operon repressor protein gene. The T7 pol gene under lac promoter control, which encodes the phage T7 RNA polymerase, is maintained in Pseudomonas cells on the plasmids. Media and cultivation conditions for the recombinant strains were selected to enable the production of AlpA and AlpB by a simple purification protocol. Production of recombinant lytic enzymes should contribute to the development of new-generation antimicrobial drugs whose application will not be accompanied by selection of resistant microorganisms. © 2015 S. Karger AG, Basel.

  17. SpeCond: a method to detect condition-specific gene expression

    PubMed Central

    2011-01-01

    Transcriptomic studies routinely measure expression levels across numerous conditions. These datasets allow identification of genes that are specifically expressed in a small number of conditions. However, there are currently no statistically robust methods for identifying such genes. Here we present SpeCond, a method to detect condition-specific genes that outperforms alternative approaches. We apply the method to a dataset of 32 human tissues to determine 2,673 specifically expressed genes. An implementation of SpeCond is freely available as a Bioconductor package at http://www.bioconductor.org/packages/release/bioc/html/SpeCond.html. PMID:22008066

  18. Emotion-independent face recognition

    NASA Astrophysics Data System (ADS)

    De Silva, Liyanage C.; Esther, Kho G. P.

    2000-12-01

    Current face recognition techniques tend to work well when recognizing faces under small variations in lighting, facial expression and pose, but deteriorate under more extreme conditions. In this paper, a face recognition system to recognize faces of known individuals, despite variations in facial expression due to different emotions, is developed. The eigenface approach is used for feature extraction. Classification methods include Euclidean distance, back propagation neural network and generalized regression neural network. These methods yield 100% recognition accuracy when the training database is representative, containing one image representing the peak expression for each emotion of each person apart from the neutral expression. The feature vectors used for comparison in the Euclidean distance method and for training the neural network must be all the feature vectors of the training set. These results are obtained for a face database consisting of only four persons.

  19. The Role of Gap Junction Channels During Physiologic and Pathologic Conditions of the Human Central Nervous System

    PubMed Central

    Basilio, Daniel; Sáez, Juan C.; Orellana, Juan A.; Raine, Cedric S.; Bukauskas, Feliksas; Bennett, Michael V. L.; Berman, Joan W.

    2013-01-01

    Gap junctions (GJs) are expressed in most cell types of the nervous system, including neuronal stem cells, neurons, astrocytes, oligodendrocytes, cells of the blood brain barrier (endothelial cells and astrocytes) and under inflammatory conditions in microglia/macrophages. GJs connect cells by the docking of two hemichannels, one from each cell with each hemichannel being formed by 6 proteins named connexins (Cx). Unapposed hemichannels (uHC) also can be open on the surface of the cells allowing the release of different intracellular factors to the extracellular space. GJs provide a mechanism of cell-to-cell communication between adjacent cells that enables the direct exchange of intracellular messengers, such as calcium, nucleotides, IP3, and diverse metabolites, as well as electrical signals that ultimately coordinate tissue homeostasis, proliferation, differentiation, metabolism, cell survival and death. Despite their essential functions in physiological conditions, relatively little is known about the role of GJs and uHC in human diseases, especially within the nervous system. The focus of this review is to summarize recent findings related to the role of GJs and uHC in physiologic and pathologic conditions of the central nervous system. PMID:22438035

  20. Regulation of transepithelial ion transport in the rat late distal colon by the sympathetic nervous system.

    PubMed

    Zhang, X; Li, Y; Zhang, X; Duan, Z; Zhu, J

    2015-01-01

    The colorectum (late distal colon) is innervated by the sympathetic nervous system, and many colorectal diseases are related to disorders of the sympathetic nervous system. The sympathetic regulation of colorectal ion transport is rarely reported. The present study aims to investigate the effect of norepinephrine (NE) in the normal and catecholamine-depleted condition to clarify the regulation of the sympathetic adrenergic system in ion transport in the rat colorectum. NE-induced ion transport in the rats colorectum was measured by short-circuit current (I(sc)) recording; the expression of beta-adrenoceptors and NE transporter (NET) were quantified by real-time PCR, and western blotting. When the endogenous catecholamine was depleted by reserpine, the baseline I(sc) in the colorectum was increased significantly comparing to controls. NE evoked downward deltaI(sc) in colorectum of treated rats was 1.8-fold of controls. The expression of beta(2)-adrenoceptor protein in the colorectal mucosa was greater than the control, though the mRNA level was reduced. However, NET expression was significantly lower in catecholamine-depleted rats compared to the controls. In conclusion, the sympathetic nervous system plays an important role in regulating basal ion transport in the colorectum. Disorders of sympathetic neurotransmitters result in abnormal ion transport, beta-adrenoceptor and NET are involved in the process.

  1. Resistance to pentamidine is mediated by AdeAB, regulated by AdeRS, and influenced by growth conditions in Acinetobacter baumannii ATCC 17978.

    PubMed

    Adams, Felise G; Stroeher, Uwe H; Hassan, Karl A; Marri, Shashikanth; Brown, Melissa H

    2018-01-01

    In recent years, effective treatment of infections caused by Acinetobacter baumannii has become challenging due to the ability of the bacterium to acquire or up-regulate antimicrobial resistance determinants. Two component signal transduction systems are known to regulate expression of virulence factors including multidrug efflux pumps. Here, we investigated the role of the AdeRS two component signal transduction system in regulating the AdeAB efflux system, determined whether AdeA and/or AdeB can individually confer antimicrobial resistance, and explored the interplay between pentamidine resistance and growth conditions in A. baumannii ATCC 17978. Results identified that deletion of adeRS affected resistance towards chlorhexidine and 4',6-diamidino-2-phenylindole dihydrochloride, two previously defined AdeABC substrates, and also identified an 8-fold decrease in resistance to pentamidine. Examination of ΔadeA, ΔadeB and ΔadeAB cells augmented results seen for ΔadeRS and identified a set of dicationic AdeAB substrates. RNA-sequencing of ΔadeRS revealed transcription of 290 genes were ≥2-fold altered compared to the wildtype. Pentamidine shock significantly increased adeA expression in the wildtype, but decreased it in ΔadeRS, implying that AdeRS activates adeAB transcription in ATCC 17978. Investigation under multiple growth conditions, including the use of Biolog phenotypic microarrays, revealed resistance to pentamidine in ATCC 17978 and mutants could be altered by bioavailability of iron or utilization of different carbon sources. In conclusion, the results of this study provide evidence that AdeAB in ATCC 17978 can confer intrinsic resistance to a subset of dicationic compounds and in particular, resistance to pentamidine can be significantly altered depending on the growth conditions.

  2. Molecular Regulation of Alternative Polyadenylation (APA) within the Drosophila Nervous System.

    PubMed

    Vallejos Baier, Raul; Picao-Osorio, Joao; Alonso, Claudio R

    2017-10-27

    Alternative polyadenylation (APA) is a widespread gene regulatory mechanism that generates mRNAs with different 3'-ends, allowing them to interact with different sets of RNA regulators such as microRNAs and RNA-binding proteins. Recent studies have shown that during development, neural tissues produce mRNAs with particularly long 3'UTRs, suggesting that such extensions might be important for neural development and function. Despite this, the mechanisms underlying neural APA are not well understood. Here, we investigate this problem within the Drosophila nervous system, focusing on the roles played by general cleavage and polyadenylation factors (CPA factors). In particular, we examine the model that modulations in CPA factor concentration may affect APA during development. For this, we first analyse the expression of the Drosophila orthologues of all mammalian CPA factors and note that their expression decreases during embryogenesis. In contrast to this global developmental decrease in CPA factor expression, we see that cleavage factor I (CFI) expression is actually elevated in the late embryonic central nervous system, suggesting that CFI might play a special role in neural tissues. To test this, we use the UAS/Gal4 system to deplete CFI proteins from neural tissue and observe that in this condition, multiple genes switch their APA patterns, demonstrating a role of CFI in APA control during Drosophila neural development. Furthermore, analysis of genes with 3'UTR extensions of different length leads us to suggest a novel relation between 3'UTR length and sensitivity to CPA factor expression. Our work thus contributes to the understanding of the mechanisms of APA control within the developing central nervous system. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Involvement of the TAGE-RAGE system in non-alcoholic steatohepatitis: Novel treatment strategies

    PubMed Central

    Takeuchi, Masayoshi; Takino, Jun-ichi; Sakasai-Sakai, Akiko; Takata, Takanobu; Ueda, Tadashi; Tsutsumi, Mikihiro; Hyogo, Hideyuki; Yamagishi, Sho-ichi

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a major cause of liver disease around the world. It includes a spectrum of conditions from simple steatosis to non-alcoholic steatohepatitis (NASH) and can lead to fibrosis, cirrhosis, liver failure, and/or hepatocellular carcinoma. NAFLD is also associated with other medical conditions such as obesity, diabetes mellitus (DM), metabolic syndrome, hypertension, insulin resistance, hyperlipidemia, and cardiovascular disease (CVD). In diabetes, chronic hyperglycemia contributes to the development of both macro- and microvascular conditions through a variety of metabolic pathways. Thus, it can cause a variety of metabolic and hemodynamic conditions, including upregulated advanced glycation end-products (AGEs) synthesis. In our previous study, the most abundant type of toxic AGEs (TAGE); i.e., glyceraldehyde-derived AGEs, were found to make a significant contribution to the pathogenesis of DM-induced angiopathy. Furthermore, accumulating evidence suggests that the binding of TAGE with their receptor (RAGE) induces oxidative damage, promotes inflammation, and causes changes in intracellular signaling and the expression levels of certain genes in various cell populations including hepatocytes and hepatic stellate cells. All of these effects could facilitate the pathogenesis of hypertension, cancer, diabetic vascular complications, CVD, dementia, and NASH. Thus, inhibiting TAGE synthesis, preventing TAGE from binding to RAGE, and downregulating RAGE expression and/or the expression of associated effector molecules all have potential as therapeutic strategies against NASH. Here, we examine the contributions of RAGE and TAGE to various conditions and novel treatments that target them in order to prevent the development and/or progression of NASH. PMID:25544875

  4. Presenilins in the heart: presenilin-2 expression is increased by low glucose and by hypoxia in cardiac cells.

    PubMed

    Mohuczy, Dagmara; Qian, Keping; Phillips, M Ian

    2002-12-31

    Cardiac cells are subjected to hypoxia in many cardiovascular diseases. We studied a broad spectrum of genes using a macroarrays-based method to analyze RNA of rat cardiac fetal cell line H9c2 after 4 h of hypoxic conditions in the incubator-1% oxygen concentration, as compared to normoxic conditions (21% oxygen). The cDNAs were prepared from total RNAs using Atlas Rat 1.2 Array (Clontech Laboratories) and hybridized to the membrane containing 1176 rat cDNAs and 9 housekeeping control cDNAs. Genes expression was analyzed using AtlasImage 1.01 software. We found over 45 genes up-regulated in a range of 1.5-2.9 times and 9 genes down-regulated to a range of 0.4-0.7 times, under hypoxia versus normoxia. Presenilin-2 (PS2) was detected in the cultured heart cells. RT-PCR confirmed the presence of PS2 in the heart of adult rats. Using quantitative real-time RT-PCR, we further studied the expression of presenilin-2 mRNA under conditions of low oxygen supply and glucose starvation. Glucose deprivation itself caused significant up-regulation of the presenilin-2 (to 160%) and with low oxygen increased presenilin-2 level to over 200% of the control. Presenilin-2 has previously been associated with intercellular signaling in the central nervous system, in Alzheimer's disease. The finding of presenilin-2 in the heart and the responsiveness to low glucose and hypoxia suggests that PS2 may be regulated by conditions of ischemia, a condition which both the heart and brain may experience.

  5. Expression of APG-2 protein, a member of the heat shock protein 110 family, in developing rat brain.

    PubMed

    Okui, M; Ito, F; Ogita, K; Kuramoto, N; Kudoh, J; Shimizu, N; Ide, T

    2000-01-01

    APG-2 protein is a member of the heat shock protein 110 family, and it is thought to play an important role in the maintenance of neuronal functions under physiological and stress conditions. However, neither the tissue-distribution of APG-2 protein nor developmental change of its expression has been studied at the protein level. Therefore, we generated an antiserum against APG-2 protein and studied expression of this protein in rat brain and other tissues by use of the Western blot method. The results showed a high expression of APG-2 protein in various regions of the central nervous system (cerebral cortex, hippocampus, striatum, midbrain, hypothalamus, cerebellum, medulla pons, and spinal cord) throughout the entire postnatal stage. Similarly, a high level of APG-2 protein was detected in the whole brain of rat embryos and in adult rat tissues such as liver, lung, spleen, and kidney. In contrast, its expression in heart was high at postnatal days 1 and 3, but thereafter drastically decreased to a low level. Furthermore, APG-2 protein was detected in neuronal primary cultures prepared from rat cerebral cortex, and its level did not change notably during neuronal differentiation. These results show that APG-2 protein is constitutively expressed in various tissues and also in neuronal cells throughout the entire embryonic and postnatal period. suggesting that it might play an important role in these tissues under non-stress conditions.

  6. Directed Shotgun Proteomics Guided by Saturated RNA-seq Identifies a Complete Expressed Prokaryotic Proteome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omasits, U.; Quebatte, Maxime; Stekhoven, Daniel J.

    2013-11-01

    Prokaryotes, due to their moderate complexity, are particularly amenable to the comprehensive identification of the protein repertoire expressed under different conditions. We applied a generic strategy to identify a complete expressed prokaryotic proteome, which is based on the analysis of RNA and proteins extracted from matched samples. Saturated transcriptome profiling by RNA-seq provided an endpoint estimate of the protein-coding genes expressed under two conditions which mimic the interaction of Bartonella henselae with its mammalian host. Directed shotgun proteomics experiments were carried out on four subcellular fractions. By specifically targeting proteins which are short, basic, low abundant, and membrane localized, wemore » could eliminate their initial underrepresentation compared to the estimated endpoint. A total of 1250 proteins were identified with an estimated false discovery rate below 1%. This represents 85% of all distinct annotated proteins and ~90% of the expressed protein-coding genes. Genes that were detected at the transcript but not protein level, were found to be highly enriched in several genomic islands. Furthermore, genes that lacked an ortholog and a functional annotation were not detected at the protein level; these may represent examples of overprediction in genome annotations. A dramatic membrane proteome reorganization was observed, including differential regulation of autotransporters, adhesins, and hemin binding proteins. Particularly noteworthy was the complete membrane proteome coverage, which included expression of all members of the VirB/D4 type IV secretion system, a key virulence factor.« less

  7. Plasticity of the Chemoreceptor Repertoire in Drosophila melanogaster

    PubMed Central

    Zhou, Shanshan; Stone, Eric A.; Mackay, Trudy F. C.; Anholt, Robert R. H.

    2009-01-01

    For most organisms, chemosensation is critical for survival and is mediated by large families of chemoreceptor proteins, whose expression must be tuned appropriately to changes in the chemical environment. We asked whether expression of chemoreceptor genes that are clustered in the genome would be regulated independently; whether expression of certain chemoreceptor genes would be especially sensitive to environmental changes; whether groups of chemoreceptor genes undergo coordinated rexpression; and how plastic the expression of chemoreceptor genes is with regard to sex, development, reproductive state, and social context. To answer these questions we used Drosophila melanogaster, because its chemosensory systems are well characterized and both the genotype and environment can be controlled precisely. Using customized cDNA microarrays, we showed that chemoreceptor genes that are clustered in the genome undergo independent transcriptional regulation at different developmental stages and between sexes. Expression of distinct subgroups of chemoreceptor genes is sensitive to reproductive state and social interactions. Furthermore, exposure of flies only to odor of the opposite sex results in altered transcript abundance of chemoreceptor genes. These genes are distinct from those that show transcriptional plasticity when flies are allowed physical contact with same or opposite sex members. We analyzed covariance in transcript abundance of chemosensory genes across all environmental conditions and found that they segregated into 20 relatively small, biologically relevant modules of highly correlated transcripts. This finely pixilated modular organization of the chemosensory subgenome enables fine tuning of the expression of the chemoreceptor repertoire in response to ecologically relevant environmental and physiological conditions. PMID:19816562

  8. Directed shotgun proteomics guided by saturated RNA-seq identifies a complete expressed prokaryotic proteome

    PubMed Central

    Omasits, Ulrich; Quebatte, Maxime; Stekhoven, Daniel J.; Fortes, Claudia; Roschitzki, Bernd; Robinson, Mark D.; Dehio, Christoph; Ahrens, Christian H.

    2013-01-01

    Prokaryotes, due to their moderate complexity, are particularly amenable to the comprehensive identification of the protein repertoire expressed under different conditions. We applied a generic strategy to identify a complete expressed prokaryotic proteome, which is based on the analysis of RNA and proteins extracted from matched samples. Saturated transcriptome profiling by RNA-seq provided an endpoint estimate of the protein-coding genes expressed under two conditions which mimic the interaction of Bartonella henselae with its mammalian host. Directed shotgun proteomics experiments were carried out on four subcellular fractions. By specifically targeting proteins which are short, basic, low abundant, and membrane localized, we could eliminate their initial underrepresentation compared to the estimated endpoint. A total of 1250 proteins were identified with an estimated false discovery rate below 1%. This represents 85% of all distinct annotated proteins and ∼90% of the expressed protein-coding genes. Genes that were detected at the transcript but not protein level, were found to be highly enriched in several genomic islands. Furthermore, genes that lacked an ortholog and a functional annotation were not detected at the protein level; these may represent examples of overprediction in genome annotations. A dramatic membrane proteome reorganization was observed, including differential regulation of autotransporters, adhesins, and hemin binding proteins. Particularly noteworthy was the complete membrane proteome coverage, which included expression of all members of the VirB/D4 type IV secretion system, a key virulence factor. PMID:23878158

  9. Dynamic expression of FKBP5 in the medial prefrontal cortex regulates resiliency to conditioned fear

    PubMed Central

    Criado-Marrero, Marangelie; Morales Silva, Roberto J.; Velazquez, Bethzaly; Hernández, Anixa; Colon, María; Cruz, Emmanuel; Soler-Cedeño, Omar; Porter, James T.

    2017-01-01

    The factors influencing resiliency to the development of post-traumatic stress disorder (PTSD) remain to be elucidated. Clinical studies associate PTSD with polymorphisms of the FK506 binding protein 5 (FKBP5). However, it is unclear whether changes in FKBP5 expression alone could produce resiliency or susceptibility to PTSD-like symptoms. In this study, we used rats as an animal model to examine whether FKBP5 in the infralimbic (IL) or prelimbic (PL) medial prefrontal cortex regulates fear conditioning or extinction. First, we examined FKBP5 expression in IL and PL during fear conditioning or extinction. In contrast to the stable expression of FKBP5 seen in PL, FKBP5 expression in IL increased after fear conditioning and remained elevated even after extinction suggesting that IL FKBP5 levels may modulate fear conditioning or extinction. Consistent with this possibility, reducing basal FKBP5 expression via local infusion of FKBP5–shRNA into IL reduced fear conditioning. Furthermore, reducing IL FKBP5, after consolidation of the fear memory, enhanced extinction memory indicating that IL FKBP5 opposed formation of the extinction memory. Our findings demonstrate that lowering FKBP5 expression in IL is sufficient to both reduce fear acquisition and enhance extinction, and suggest that lower expression of FKBP5 in the ventral medial prefrontal cortex could contribute to resiliency to PTSD. PMID:28298552

  10. Comparative c-type cytochrome expression analysis in Shewanella oneidensis strain MR-1 and Anaeromyxobacter dehalogenans strain 2CP-C grown with soluble and insoluble oxidised metal electron acceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nissen, Silke; Liu, Xiaoxin; Chourey, Karuna

    2012-01-01

    The genomes of Shewanella oneidensis strain MR-1 and Anaeromyxobacter dehalogenans strain 2CP-C encode 40 and 69 putative c-type cytochrome genes, respectively. Deletion mutant and biochemical studies have assigned specific functions to a few c-type cytochromes involved in electron transfer to oxidised metals in Shewanella oneidensis strain MR-1. Although promising, the genetic approach is limited to gene deletions that produce a distinct phenotype, and organism for which a genetic system is available. To more comprehensively investigate and compare c-type cytochrome expression in Shewanella oneidensis strain MR-1 and Anaeromyxobacter dehalogenans strain 2CP-C, proteomic measurements were used to characterise lysates of cells grownmore » with soluble Fe(III) (as ferric citrate) and insoluble Mn(IV) (as MnO2) as electron acceptors. Strain MR-1 expressed 19 and 20, and strain 2CP-C expressed 27 and 25 c-type cytochromes when grown with Fe(III) and Mn(IV), respectively. The majority of c-type cytochromes (77% for strain MR-1 and 63% for strain 2CP-C) were expressed under both growth conditions; however, the analysis also revealed unique c-type cytochromes that were specifically expressed in cells grown with soluble Fe(III) or insoluble Mn(IV). Proteomic characterisation proved to be a promising approach for determining the c-type cytochrome complement expressed under different growth conditions, and will help elucidating the specific functions of more c-type cytochromes that are the basis for Shewanella and Anaeromyxobacter respiratory versatility.« less

  11. Transcriptional profiling of the early stages of germination in Candida albicans by real-time RT-PCR.

    PubMed

    Toyoda, Mika; Cho, Tamaki; Kaminishi, Hidenori; Sudoh, Masayuki; Chibana, Hiroji

    2004-12-01

    By using real-time RT-PCR, we profiled the expression of CGR1, CaMSI3, EFG1, NRG1, and TUP1 in Candida albicans strains JCM9061 and CAI4 under several conditions, including induction of morphological transition, heat shock, and treatment with calcium inhibitors. Expression of CaMSI3 changed under these growth conditions except during heat shock. CGR1 expression increased during the early stages of hyphal growth in JCM9061, while expression was strain-dependent during heat shock. Both EFG1 and NRG1 were similarly expressed under hypha-inducing conditions and heat shock. Expression of TUP1 was slightly different from the expression of EFG1 or NRG1.

  12. Optimized transitory ectopic expression of promastigote surface antigen protein in Nicotiana benthamiana, a potential anti-leishmaniasis vaccine candidate.

    PubMed

    Lacombe, Séverine; Bangratz, Martine; Brizard, Jean-Paul; Petitdidier, Elodie; Pagniez, Julie; Sérémé, Drissa; Lemesre, Jean-Loup; Brugidou, Christophe

    2018-01-01

    In recent years, plants have been shown to be an efficient alternative expression system for high-value pharmaceuticals such as vaccines. However, constitutive expression of recombinant protein remains uncertain on their level of production and biological activity. To overcome these problems, transitory expression systems have been developed. Here, a series of experiments were performed to determine the most effective conditions to enhance vaccine antigen transient accumulation in Nicotiana benthamiana leaves using the promastigote surface antigen (PSA) from the parasitic protozoan Leishmania infantum. This protein has been previously identified as the major antigen of a licensed canine anti-leishmaniasis vaccine. The classical prokaryote Escherichia coli biosystem failed in accumulating PSA. Consequently, the standard plant system based on N. benthamiana has been optimized for the production of putatively active PSA. First, the RNA silencing defense mechanism set up by the plant against PSA ectopic expression was abolished by using three viral suppressors acting at different steps of the RNA silencing pathway. Then, we demonstrated that the signal peptide at the N-terminal side of the PSA is required for its accumulation. The PSA ER signaling and retention with the PSA signal peptide and the KDEL motif, respectively were optimized to significantly increase its accumulation. Finally, we demonstrate that the production of recombinant PSA in N. benthamiana leaves allows the conservation of its immunogenic property. These approaches demonstrate that based on these optimizations, plant based systems can be used to effectively produce the biological active PSA protein. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Gene expression of a two-component regulatory system associated with sunscreen biosynthesis in the cyanobacterium Nostoc punctiforme ATCC 29133.

    PubMed

    Janssen, Jacob; Soule, Tanya

    2016-01-01

    Long-wavelength ultraviolet radiation (UVA) can damage cells through photooxidative stress, leading to harmful photosensitized proteins and pigments in cyanobacteria. To mitigate damage, some cyanobacteria secrete the UVA-absorbing pigment scytonemin into their extracellular sheath. Comparative genomic analyses suggest that scytonemin biosynthesis is regulated by the two-component regulatory system (TCRS) proteins encoded by Npun_F1277 and Npun_F1278 in the cyanobacterium Nostoc punctiforme ATCC 29133. To understand the dynamics of these genes, their expression was measured following exposure to UVA, UVB, high visible (VIS) irradiance and oxidative stress for 20, 40 and 60 min. Overall, both genes had statistically similar patterns of expression for all four conditions and were generally upregulated, except for those exposed to UVB by 60 min and for the cells under oxidative stress. The greatest UVA response was an upregulation by 20 min, while the response to UVB was the most dramatic and persisted through 40 min. High VIS irradiance resulted in a modest upregulation, while oxidative stress caused a slight downregulation. Both genes were also found to occur on the same transcript. These results demonstrate that these genes are positively responding to several light-associated conditions, which suggests that this TCRS may regulate more than just scytonemin biosynthesis under UVA stress. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Predicting gene regulatory networks of soybean nodulation from RNA-Seq transcriptome data.

    PubMed

    Zhu, Mingzhu; Dahmen, Jeremy L; Stacey, Gary; Cheng, Jianlin

    2013-09-22

    High-throughput RNA sequencing (RNA-Seq) is a revolutionary technique to study the transcriptome of a cell under various conditions at a systems level. Despite the wide application of RNA-Seq techniques to generate experimental data in the last few years, few computational methods are available to analyze this huge amount of transcription data. The computational methods for constructing gene regulatory networks from RNA-Seq expression data of hundreds or even thousands of genes are particularly lacking and urgently needed. We developed an automated bioinformatics method to predict gene regulatory networks from the quantitative expression values of differentially expressed genes based on RNA-Seq transcriptome data of a cell in different stages and conditions, integrating transcriptional, genomic and gene function data. We applied the method to the RNA-Seq transcriptome data generated for soybean root hair cells in three different development stages of nodulation after rhizobium infection. The method predicted a soybean nodulation-related gene regulatory network consisting of 10 regulatory modules common for all three stages, and 24, 49 and 70 modules separately for the first, second and third stage, each containing both a group of co-expressed genes and several transcription factors collaboratively controlling their expression under different conditions. 8 of 10 common regulatory modules were validated by at least two kinds of validations, such as independent DNA binding motif analysis, gene function enrichment test, and previous experimental data in the literature. We developed a computational method to reliably reconstruct gene regulatory networks from RNA-Seq transcriptome data. The method can generate valuable hypotheses for interpreting biological data and designing biological experiments such as ChIP-Seq, RNA interference, and yeast two hybrid experiments.

  15. Hypoxia preconditioning increases survival and decreases expression of Toll-like receptor 4 in pulmonary artery endothelial cells exposed to lipopolysaccharide.

    PubMed

    Ali, Irshad; Nanchal, Rahul; Husnain, Fouad; Audi, Said; Konduri, G Ganesh; Densmore, John C; Medhora, Meetha; Jacobs, Elizabeth R

    2013-09-01

    Abstract Pulmonary or systemic infections and hypoxemic respiratory failure are among the leading causes of admission to intensive care units, and these conditions frequently exist in sequence or in tandem. Inflammatory responses to infections are reproduced by lipopolysaccharide (LPS) engaging Toll-like receptor 4 (TLR4). Apoptosis is a hallmark of lung injury in sepsis. This study was conducted to determine whether preexposure to LPS or hypoxia modulated the survival of pulmonary artery endothelial cells (PAECs). We also investigated the role TLR4 receptor expression plays in apoptosis due to these conditions. Bovine PAECs were cultured in hypoxic or normoxic environments and treated with LPS. TLR4 antagonist TAK-242 was used to probe the role played by TLR4 receptors in cell survival. Cell apoptosis and survival were measured by caspase 3 activity and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) incorporation. TLR4 expression and tumor necrosis factor α (TNF-α) production were also determined. LPS increased caspase 3 activity in a TAK-242-sensitive manner and decreased MTT incorporation. Apoptosis was decreased in PAECs preconditioned with hypoxia prior to LPS exposure. LPS increased TNF-α production, and hypoxic preconditioning blunted it. Hypoxic preconditioning reduced LPS-induced TLR4 messenger RNA and TLR4 protein. TAK-242 decreased to baseline the LPS-stimulated expression of TLR4 messenger RNA regardless of environmental conditions. In contrast, LPS followed by hypoxia substantially increased apoptosis and cell death. In conclusion, protection from LPS-stimulated PAEC apoptosis by hypoxic preconditioning is attributable in part to reduction in TLR4 expression. If these signaling pathways apply to septic patients, they may account for differing sensitivities of individuals to acute lung injury depending on oxygen tensions in PAECs in vivo.

  16. Conditional and constitutive expression of a Tbx1-GFP fusion protein in mice

    PubMed Central

    2013-01-01

    Background Velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS) is caused by a 1.5-3 Mb microdeletion of chromosome 22q11.2, frequently referred to as 22q11.2 deletion syndrome (22q11DS). This region includes TBX1, a T-box transcription factor gene that contributes to the etiology of 22q11DS. The requirement for TBX1 in mammalian development is dosage-sensitive, such that loss-of-function (LOF) and gain-of-function (GOF) of TBX1 in both mice and humans results in disease relevant congenital malformations. Results To further gain insight into the role of Tbx1 in development, we have targeted the Rosa26 locus to generate a new GOF mouse model in which a Tbx1-GFP fusion protein is expressed conditionally using the Cre/LoxP system. Tbx1-GFP expression is driven by the endogenous Rosa26 promoter resulting in ectopic and persistent expression. Tbx1 is pivotal for proper ear and heart development; ectopic activation of Tbx1-GFP in the otic vesicle by Pax2-Cre and Foxg1-Cre represses neurogenesis and produces morphological defects of the inner ear. Overexpression of a single copy of Tbx1-GFP using Tbx1Cre/+ was viable, while overexpression of both copies resulted in neonatal lethality with cardiac outflow tract defects. We have partially rescued inner ear and heart anomalies in Tbx1Cre/- null embryos by expression of Tbx1-GFP. Conclusions We have generated a new mouse model to conditionally overexpress a GFP-tagged Tbx1 protein in vivo. This provides a useful tool to investigate in vivo direct downstream targets and protein binding partners of Tbx1. PMID:23971992

  17. Effects of temperature on gene expression patterns in Leptospira interrogans serovar Lai as assessed by whole-genome microarrays.

    PubMed

    Lo, Miranda; Bulach, Dieter M; Powell, David R; Haake, David A; Matsunaga, James; Paustian, Michael L; Zuerner, Richard L; Adler, Ben

    2006-10-01

    Leptospirosis is an important zoonosis of worldwide distribution. Humans become infected via exposure to pathogenic Leptospira spp. from infected animals or contaminated water or soil. The availability of genome sequences for Leptospira interrogans, serovars Lai and Copenhageni, has opened up opportunities to examine global transcription profiles using microarray technology. Temperature is a key environmental factor known to affect leptospiral protein expression. Leptospira spp. can grow in artificial media at a range of temperatures reflecting conditions found in the environment and the mammalian host. Therefore, transcriptional changes were compared between cultures grown at 20 degrees C, 30 degrees C, 37 degrees C, and 39 degrees C to represent ambient temperatures in the environment, growth under laboratory conditions, and temperatures in healthy and febrile hosts. Data from direct pairwise comparisons of the four temperatures were consolidated to examine transcriptional changes at two generalized biological conditions representing mammalian physiological temperatures (37 degrees C and 39 degrees C) versus environmental temperatures (20 degrees C and 30 degrees C). Additionally, cultures grown at 30 degrees C then shifted overnight to 37 degrees C were compared with those grown long-term at 30 degrees C and 37 degrees C to identify genes potentially expressed in the early stages of infection. Comparison of data sets from physiological versus environmental experiments with upshift experiments provided novel insights into possible transcriptional changes at different stages of infection. Changes included differential expression of chemotaxis and motility genes, signal transduction systems, and genes encoding proteins involved in alteration of the outer membrane. These findings indicate that temperature is an important factor regulating expression of proteins that facilitate invasion and establishment of disease.

  18. Effects of dorsal hippocampal orexin-2 receptor antagonism on the acquisition, expression, and extinction of morphine-induced place preference in rats.

    PubMed

    Sadeghi, Bahman; Ezzatpanah, Somayeh; Haghparast, Abbas

    2016-06-01

    Orexinergic system is involved in reward processing and drug addiction. Here, we investigated the effect of intrahippocampal CA1 administration of orexin-2 receptor (OX2r) antagonist on the acquisition, expression, and extinction of morphine-induced place preference in rats. Conditioned place preference (CPP) was induced by subcutaneous injection of morphine (5 mg/kg) during a 3-day conditioning phase. Three experimental plots were designed; TCS OX2 29 as a selective antagonist of orexin-2 receptors (OX2rs) was dissolved in DMSO, prepared in solutions with different concentrations (1, 3, 10, and 30 nM), and was bilaterally microinjected into the CA1 and some neighboring regions (0.5 μl/side). Conditioning scores and locomotor activities were recorded during the test. Results demonstrate that intra-CA1 administration of the OX2r antagonist attenuates the induction of morphine CPP during the acquisition and expression phases. Effect of TCS OX2 29 on reduction of morphine CPP was dose-dependent and was more pronounced during the acquisition than the expression. Furthermore, higher concentrations of TCS OX2 29 facilitated the extinction of morphine-induced CPP and reduced extinction latency period. Nevertheless, administration of TCS OX2 29 solutions did not have any influence on locomotor activity of all phases. Our findings suggest that OX2rs in the CA1 region of hippocampus are involved in the development of the acquisition and expression of morphine CPP. Moreover, blockade of OX2rs could facilitate extinction and may abrogate or extinguish the ability of drug-related cues, implying that the antagonist might be considered as a propitious therapeutic agent in suppressing drug-seeking behavior.

  19. Effects of biomaterial-derived fibroblast conditioned medium on the α-amylase expression of parotid gland acinar cells.

    PubMed

    Chou, Ya-Shuan; Young, Tai-Horng; Lou, Pei-Jen

    2015-11-01

    Salivary gland cells are surrounded by a complex stromal environment, in which fibroblasts are the main cells in proximity to the gland cells. In this study, the interaction between parotid gland acinar cells (PGACs), fibroblasts, and biomaterials was investigated. We prepared different biomaterials, including chitosan, polyvinyl alcohol (PVA), poly (ethylene-co-vinyl alcohol) (EVAL), polyvinylidene fluoride (PVDF), and tissue culture polystyrene (TCPS) to culture fibroblasts and then collect their conditioned media to culture PGACs. We observed no difference in AQP3, AQP5, and E-cadherin expression among different fibroblast conditioned medium treatments. Interestingly, α-amylase expression was obviously enhanced in PGACs cultured in the presence of conditioned medium from fibroblasts cultured on PVDF. Higher neurotrophin-4 (NT-4) expression was observed in PVDF-derived fibroblast conditioned medium using a growth factor protein array assay. In addition, directly adding NT-4 into the culture medium significantly promoted α-amylase expression by PGACs. Finally, nestin and βIII-tubulin expression by fibroblasts cultured on PVDF was also enhanced. Together, these results suggest that PVDF could promote α-amylase expression by PGACs via the NT-4 produced by fibroblasts. To date, there is no effective therapy for patients with dry mouth with persistent salivary hypofunction. The study made use of different biomaterials to culture fibroblasts and then collect their conditioned media to culture PGACs. It was found that the effect of fibroblast conditioned medium from PVDF on the α-amylase expression of PGACs was obviously enhanced and higher neurotrophin-4 (NT-4) expression was found in PVDF-derived fibroblast conditioned medium. In addition, directly adding NT-4 into the culture medium significantly promoted the expression of α-amylase by PGACs and the expression of nestin and βIII-tubulin of fibroblasts after being cultured on PVDF was enhanced. Therefore, the present study represents the first description of the role of NT-4 in the expression of α-amylase of PGACs and the role of PVDF in the reprogramming fibroblasts into neural progenitor-like cells, indicating that PVDF could promote the expression of α-amylase by PGACs via the NT-4 produced by fibroblasts. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Ferulic Acid, But Not All Hydroxycinnamic Acids, Is a Novel T3SS Inducer of Ralstonia solanacearum and Promotes Its Infection Process in Host Plants under Hydroponic Condition.

    PubMed

    Zhang, Yong; Li, Jing; Zhang, Weiqi; Wang, Rongsheng; Qiu, Qiaoqing; Luo, Feng; Hikichi, Yasufumi; Ohnishi, Kouhei; Ding, Wei

    2017-01-01

    Hydroxycinnamic acids (HCAs) are typical monocyclic phenylpropanoids, including cinnamic acid (Cin), coumaric acid (Cou), caffeic acid (Caf), ferulic acid (FA) and their isomers, and involved in the interactions between pathogens and host plants. Here, we focused on the impact of HCAs on expression of type III secretion system (T3SS) in Ralstonia solanacearum . FA significantly induced the expression of the T3SS and some type III effectors (T3Es) genes in hrp -inducing medium, while did not the other HCAs. However, exogenously supplemented FA did not affect the T3SS expression in planta and the elicitation of the hypersensitive response (HR) in tobacco leaves. Consistent with its central roles in pathogenicity, the FA-induced expression of the T3SS led to significant promotion on infection process of R. solanacearum in tomato plants under hydroponics cultivation. Moreover, the FA-induced expression of the T3SS was specifically mediated by the well-characterized signaling cascade PrhA-prhI/R-PrhJ-HrpG-HrpB, independent of the other known regulatory pathways. In summary, our results demonstrated that FA, a novel inducer of the T3SS in R. solanacearum , was able to promote its infection process in host plants under hydroponics condition.

  1. Expression analysis in response to drought stress in soybean: Shedding light on the regulation of metabolic pathway genes.

    PubMed

    Guimarães-Dias, Fábia; Neves-Borges, Anna Cristina; Viana, Antonio Americo Barbosa; Mesquita, Rosilene Oliveira; Romano, Eduardo; de Fátima Grossi-de-Sá, Maria; Nepomuceno, Alexandre Lima; Loureiro, Marcelo Ehlers; Alves-Ferreira, Márcio

    2012-06-01

    Metabolomics analysis of wild type Arabidopsis thaliana plants, under control and drought stress conditions revealed several metabolic pathways that are induced under water deficit. The metabolic response to drought stress is also associated with ABA dependent and independent pathways, allowing a better understanding of the molecular mechanisms in this model plant. Through combining an in silico approach and gene expression analysis by quantitative real-time PCR, the present work aims at identifying genes of soybean metabolic pathways potentially associated with water deficit. Digital expression patterns of Arabidopsis genes, which were selected based on the basis of literature reports, were evaluated under drought stress condition by Genevestigator. Genes that showed strong induction under drought stress were selected and used as bait to identify orthologs in the soybean genome. This allowed us to select 354 genes of putative soybean orthologs of 79 Arabidopsis genes belonging to 38 distinct metabolic pathways. The expression pattern of the selected genes was verified in the subtractive libraries available in the GENOSOJA project. Subsequently, 13 genes from different metabolic pathways were selected for validation by qPCR experiments. The expression of six genes was validated in plants undergoing drought stress in both pot-based and hydroponic cultivation systems. The results suggest that the metabolic response to drought stress is conserved in Arabidopsis and soybean plants.

  2. No boundaries: genomes, organisms, and ecological interactions responsible for divergence and reproductive isolation.

    PubMed

    Etges, William J

    2014-01-01

    Revealing the genetic basis of traits that cause reproductive isolation, particularly premating or sexual isolation, usually involves the same challenges as most attempts at genotype-phenotype mapping and so requires knowledge of how these traits are expressed in different individuals, populations, and environments, particularly under natural conditions. Genetic dissection of speciation phenotypes thus requires understanding of the internal and external contexts in which underlying genetic elements are expressed. Gene expression is a product of complex interacting factors internal and external to the organism including developmental programs, the genetic background including nuclear-cytotype interactions, epistatic relationships, interactions among individuals or social effects, stochasticity, and prevailing variation in ecological conditions. Understanding of genomic divergence associated with reproductive isolation will be facilitated by functional expression analysis of annotated genomes in organisms with well-studied evolutionary histories, phylogenetic affinities, and known patterns of ecological variation throughout their life cycles. I review progress and prospects for understanding the pervasive role of host plant use on genetic and phenotypic expression of reproductive isolating mechanisms in cactophilic Drosophila mojavensis and suggest how this system can be used as a model for revealing the genetic basis for species formation in organisms where speciation phenotypes are under the joint influences of genetic and environmental factors. © The American Genetic Association. 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Chlorotoxin-mediated disinhibition of noradrenergic locus coeruleus neurons using a conditional transgenic approach.

    PubMed

    Salbaum, J Michael; Cirelli, Chiara; Walcott, Elisabeth; Krushel, Les A; Edelman, Gerald M; Tononi, Giulio

    2004-07-30

    The noradrenergic locus coeruleus (LC) has been implicated in the promotion of arousal, in focused attention and learning, and in the regulation of the sleep/waking cycle. The complex biological functions of the central noradrenergic system have been investigated largely through electrophysiological recordings and neurotoxic lesions of LC neurons. Activation of LC neurons through electrical or chemical stimulation has also led to important insights, although these techniques have limited cellular specificity and short-term effects. Here, we describe a novel method aimed at stimulating the central noradrenergic system in a highly selective manner for prolonged periods of time. This was achieved through the conditional expression of a transgene for chlorotoxin (Cltx) in the LC of adult mice. Chlorotoxin is a component of scorpion venom that partially blocks small conductance chloride channels. In this manner, the influence of GABAergic and glycinergic inhibitory inputs on LC cells is greatly reduced, while their ability to respond to excitatory inputs is unaffected. We demonstrate that the unilateral induction of Cltx expression in the LC is associated with a concomitant ipsilateral increase in the expression of markers of noradrenergic activity in LC neurons. Moreover, LC disinhibition is associated with the ipsilateral induction of the immediate early gene NGFI-A in cortical and subcortical target areas. Unlike previous gain of function approaches, transgenic disinhibition of LC cells is highly selective and persists for at least several weeks. This method represents a powerful new tool to assess the long-term effects of LC activation and is potentially applicable to other neuronal systems.

  4. Discrimination of face gender and expression under dual-task conditions.

    PubMed

    García-Gutiérrez, Ana; Aguado, Luis; Romero-Ferreiro, Verónica; Pérez-Moreno, Elisa

    2017-02-01

    In order to test whether expression and gender can be attended to simultaneously without a cost in accuracy four experiments were carried out using a dual gender-expression task with male and female faces showing different emotional expressions that were backward masked by emotionally neutral faces. In the dual-facial condition the participants had to report both the gender and the expression of the targets. In two control conditions the participant reported either the gender or the expression of the face and indicated whether a surrounding frame was continuous or discontinuous. In Experiments 1-3, with angry and happy targets, asymmetric interference was observed. Gender discrimination, but no expression discrimination, was impaired in the dual-facial condition compared to the corresponding control. This effect was obtained with a between-subjects design in Experiment 1, with a within-subjects design in Experiment 2, and with androgynous face masks in Experiment 3. In Experiments 4a and 4b different target combinations were tested. No decrement of performance in the dual-facial task was observed for either gender or expression discrimination with fearful-disgusted (Experiment 4a) or fearful-happy faces (Experiment 4b). We conclude that the ability to attend simultaneously to gender and expression cues without a decrement in performance depends on the specific combination of expressions to be differentiated between. Happy and angry expressions are usually directed at the perceiver and command preferential attention. Under conditions of restricted viewing such as those of the present study, discrimination of these expressions is prioritized leading to impaired discrimination of other facial properties such as gender.

  5. Noise in gene expression is coupled to growth rate.

    PubMed

    Keren, Leeat; van Dijk, David; Weingarten-Gabbay, Shira; Davidi, Dan; Jona, Ghil; Weinberger, Adina; Milo, Ron; Segal, Eran

    2015-12-01

    Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known. Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four environmental conditions using flow cytometry, and find that gene expression noise is tightly coupled to the environment and is generally higher at lower growth rates. Nutrient-poor conditions, which support lower growth rates, display elevated levels of noise for most promoters, regardless of their specific expression values. We present a simple model of noise in expression that results from having an asynchronous population, with cells at different cell-cycle stages, and with different partitioning of the cells between the stages at different growth rates. This model predicts non-monotonic global changes in noise at different growth rates as well as overall higher variability in expression for cell-cycle-regulated genes in all conditions. The consistency between this model and our data, as well as with noise measurements of cells growing in a chemostat at well-defined growth rates, suggests that cell-cycle heterogeneity is a major contributor to gene expression noise. Finally, we identify gene and promoter features that play a role in gene expression noise across conditions. Our results show the existence of growth-related global changes in gene expression noise and suggest their potential phenotypic implications. © 2015 Keren et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Noise in gene expression is coupled to growth rate

    PubMed Central

    Keren, Leeat; van Dijk, David; Weingarten-Gabbay, Shira; Davidi, Dan; Jona, Ghil; Weinberger, Adina; Milo, Ron; Segal, Eran

    2015-01-01

    Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known. Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four environmental conditions using flow cytometry, and find that gene expression noise is tightly coupled to the environment and is generally higher at lower growth rates. Nutrient-poor conditions, which support lower growth rates, display elevated levels of noise for most promoters, regardless of their specific expression values. We present a simple model of noise in expression that results from having an asynchronous population, with cells at different cell-cycle stages, and with different partitioning of the cells between the stages at different growth rates. This model predicts non-monotonic global changes in noise at different growth rates as well as overall higher variability in expression for cell-cycle–regulated genes in all conditions. The consistency between this model and our data, as well as with noise measurements of cells growing in a chemostat at well-defined growth rates, suggests that cell-cycle heterogeneity is a major contributor to gene expression noise. Finally, we identify gene and promoter features that play a role in gene expression noise across conditions. Our results show the existence of growth-related global changes in gene expression noise and suggest their potential phenotypic implications. PMID:26355006

  7. Reference genes for gene expression studies in wheat flag leaves grown under different farming conditions

    PubMed Central

    2011-01-01

    Background Internal control genes with highly uniform expression throughout the experimental conditions are required for accurate gene expression analysis as no universal reference genes exists. In this study, the expression stability of 24 candidate genes from Triticum aestivum cv. Cubus flag leaves grown under organic and conventional farming systems was evaluated in two locations in order to select suitable genes that can be used for normalization of real-time quantitative reverse-transcription PCR (RT-qPCR) reactions. The genes were selected among the most common used reference genes as well as genes encoding proteins involved in several metabolic pathways. Findings Individual genes displayed different expression rates across all samples assayed. Applying geNorm, a set of three potential reference genes were suitable for normalization of RT-qPCR reactions in winter wheat flag leaves cv. Cubus: TaFNRII (ferredoxin-NADP(H) oxidoreductase; AJ457980.1), ACT2 (actin 2; TC234027), and rrn26 (a putative homologue to RNA 26S gene; AL827977.1). In addition of these three genes that were also top-ranked by NormFinder, two extra genes: CYP18-2 (Cyclophilin A, AY456122.1) and TaWIN1 (14-3-3 like protein, AB042193) were most consistently stably expressed. Furthermore, we showed that TaFNRII, ACT2, and CYP18-2 are suitable for gene expression normalization in other two winter wheat varieties (Tommi and Centenaire) grown under three treatments (organic, conventional and no nitrogen) and a different environment than the one tested with cv. Cubus. Conclusions This study provides a new set of reference genes which should improve the accuracy of gene expression analyses when using wheat flag leaves as those related to the improvement of nitrogen use efficiency for cereal production. PMID:21951810

  8. Combining Shapley value and statistics to the analysis of gene expression data in children exposed to air pollution

    PubMed Central

    Moretti, Stefano; van Leeuwen, Danitsja; Gmuender, Hans; Bonassi, Stefano; van Delft, Joost; Kleinjans, Jos; Patrone, Fioravante; Merlo, Domenico Franco

    2008-01-01

    Background In gene expression analysis, statistical tests for differential gene expression provide lists of candidate genes having, individually, a sufficiently low p-value. However, the interpretation of each single p-value within complex systems involving several interacting genes is problematic. In parallel, in the last sixty years, game theory has been applied to political and social problems to assess the power of interacting agents in forcing a decision and, more recently, to represent the relevance of genes in response to certain conditions. Results In this paper we introduce a Bootstrap procedure to test the null hypothesis that each gene has the same relevance between two conditions, where the relevance is represented by the Shapley value of a particular coalitional game defined on a microarray data-set. This method, which is called Comparative Analysis of Shapley value (shortly, CASh), is applied to data concerning the gene expression in children differentially exposed to air pollution. The results provided by CASh are compared with the results from a parametric statistical test for testing differential gene expression. Both lists of genes provided by CASh and t-test are informative enough to discriminate exposed subjects on the basis of their gene expression profiles. While many genes are selected in common by CASh and the parametric test, it turns out that the biological interpretation of the differences between these two selections is more interesting, suggesting a different interpretation of the main biological pathways in gene expression regulation for exposed individuals. A simulation study suggests that CASh offers more power than t-test for the detection of differential gene expression variability. Conclusion CASh is successfully applied to gene expression analysis of a data-set where the joint expression behavior of genes may be critical to characterize the expression response to air pollution. We demonstrate a synergistic effect between coalitional games and statistics that resulted in a selection of genes with a potential impact in the regulation of complex pathways. PMID:18764936

  9. Development of an optimized tetracycline-inducible expression system to increase the accumulation of interleukin-10 in tobacco BY-2 suspension cells

    PubMed Central

    2012-01-01

    Background Plant cell suspension cultures can be used for the production of valuable pharmaceutical and industrial proteins. When the recombinant protein is secreted into the culture medium, restricting expression to a defined growth phase can improve both the quality and quantity of the recovered product by minimizing proteolytic activity. Temporal restriction is also useful for recombinant proteins whose constitutive expression affects cell growth and viability, such as viral interleukin-10 (vIL-10). Results We have developed a novel, tetracycline-inducible system suitable for tobacco BY-2 suspension cells which increases the yields of vIL-10. The new system is based on a binary vector that is easier to handle than conventional vectors, contains an enhanced inducible promoter and 5′-UTR to improve yields, and incorporates a constitutively-expressed visible marker gene to allow the rapid and straightforward selection of the most promising transformed clones. Stable transformation of BY-2 cells with this vector, without extensive optimization of the induction conditions, led to a 3.5 fold increase in vIL-10 levels compared to constitutive expression in the same host. Conclusions We have developed an effective and straightforward molecular farming platform technology that improves both the quality and the quantity of recombinant proteins produced in plant cells, particularly those whose constitutive expression has a negative impact on plant growth and development. Although we tested the platform using vIL-10 produced in BY-2 cells, it can be applied to other host/product combinations and is also useful for basic research requiring strictly controlled transgene expression. PMID:22784336

  10. A technique for computation of noise temperature due to a beam waveguide shroud

    NASA Technical Reports Server (NTRS)

    Veruttipong, W.; Franco, M. M.

    1993-01-01

    Direct analytical computation of the noise temperature of real beam waveguide (BWG) systems, including all mirrors and the surrounding shroud, is an extremely complex problem and virtually impossible to achieve. Yet the DSN antennas are required to be ultra low-noise in order to be effective, and a reasonably accurate prediction is essential. This article presents a relatively simple technique to compute a real BWG system noise temperature by combining analytical techniques with data from experimental tests. Specific expressions and parameters for X-band (8.45-GHz) BWG noise computation are obtained for DSS 13 and DSS 24, now under construction. These expressions are also valid for various conditions of the BWG feed systems, including horn sizes and positions, and mirror sizes, curvatures, and positions. Parameters for S- and Ka-bands (2.3 and 32.0 GHz) have not been determined; however, those can be obtained following the same procedure as for X-band.

  11. Optimization of industrial microorganisms: recent advances in synthetic dynamic regulators.

    PubMed

    Min, Byung Eun; Hwang, Hyun Gyu; Lim, Hyun Gyu; Jung, Gyoo Yeol

    2017-01-01

    Production of biochemicals by industrial fermentation using microorganisms requires maintaining cellular production capacity, because maximal productivity is economically important. High-productivity microbial strains can be developed using static engineering, but these may not maintain maximal productivity throughout the culture period as culture conditions and cell states change dynamically. Additionally, economic reasons limit heterologous protein expression using inducible promoters to prevent metabolic burden for commodity chemical and biofuel production. Recently, synthetic and systems biology has been used to design genetic circuits, precisely controlling gene expression or influencing genetic behavior toward a desired phenotype. Development of dynamic regulators can maintain cellular phenotype in a maximum production state in response to factors including cell concentration, oxygen, temperature, pH, and metabolites. Herein, we introduce dynamic regulators of industrial microorganism optimization and discuss metabolic flux fine control by dynamic regulators in response to metabolites or extracellular stimuli, robust production systems, and auto-induction systems using quorum sensing.

  12. The therapeutic potential of renin angiotensin aldosterone system (RAAS) in chronic pain: from preclinical studies to clinical trials.

    PubMed

    Bessaguet, Flavien; Magy, Laurent; Desmoulière, Alexis; Demiot, Claire

    2016-01-01

    The prevalence rate of chronic pain is 15% to 25% in adults while the therapeutic arsenal is still insufficient, especially in relieving neuropathic pain. Peripheral pain transmission is conducted by the small Aδ and C sensory nerve fibres. They express elements from the renin-angiotensin-aldosterone system (RAAS), a well-known blood pressure regulator. Recently, studies have demonstrated the role of angiotensin II, its derivatives and aldosterone in the modulation of pain perception, by interacting with receptors expressed by sensory nerve fibres or through the central nervous system. Here, we assess the effects of RAAS modulators in the conduction of pain with molecular, preclinical and clinical approaches, in normal or pathological conditions. Currently, some clinical studies have been carried out on the pain-relieving effect of RAAS modulators and suggest their potential in the management of chronic, inflammatory or neuropathic pain.

  13. Construction of armored RNA containing long-size chimeric RNA by increasing the number and affinity of the pac site in exogenous rna and sequence coding coat protein of the MS2 bacteriophage.

    PubMed

    Wei, Baojun; Wei, Yuxiang; Zhang, Kuo; Yang, Changmei; Wang, Jing; Xu, Ruihuan; Zhan, Sien; Lin, Guigao; Wang, Wei; Liu, Min; Wang, Lunan; Zhang, Rui; Li, Jinming

    2008-01-01

    To construct a one-plasmid expression system of the armored RNA containing long chimeric RNA by increasing the number and affinity of the pac site. The plasmid pET-MS2-pac was constructed with one C-variant pac site, and then the plasmid pM-CR-2C containing 1,891-bp chimeric sequences and two C-variant pac sites was produced. Meanwhile, three plasmids (pM-CR-C, pM-CR-2W and pM-CR-W) were obtained as parallel controls with a different number and affinity of the pac site. Finally, the armored RNA was expressed and purified. The armored RNA with 1,891 bases target RNA was expressed successfully by the one-plasmid expression system with two C-variant pac sites, while for one pac site, no matter whether the affinity was changed or not, only the 1,200 bases target RNA was packaged. It was also found that the C-variant pac site could increase the expression efficiency of the armored RNA. The armored RNA with 1,891-bp exogenous RNA in our study showed the characterization of ribonuclease resistance and stability at different time points and temperature conditions. The armored RNA with 1,891 bases exogenous RNA was constructed and the expression system can be used as a platform for preparation of the armored RNA containing long RNA sequences. Copyright 2008 S. Karger AG, Basel.

  14. The plant energy-dissipating mitochondrial systems: depicting the genomic structure and the expression profiles of the gene families of uncoupling protein and alternative oxidase in monocots and dicots.

    PubMed

    Borecky, Jirí; Nogueira, Fábio T S; de Oliveira, Kívia A P; Maia, Ivan G; Vercesi, Aníbal E; Arruda, Paulo

    2006-01-01

    The simultaneous existence of alternative oxidases and uncoupling proteins in plants has raised the question as to why plants need two energy-dissipating systems with apparently similar physiological functions. A probably complete plant uncoupling protein gene family is described and the expression profiles of this family compared with the multigene family of alternative oxidases in Arabidopsis thaliana and sugarcane (Saccharum sp.) employed as dicot and monocot models, respectively. In total, six uncoupling protein genes, AtPUMP1-6, were recognized within the Arabidopsis genome and five (SsPUMP1-5) in a sugarcane EST database. The recombinant AtPUMP5 protein displayed similar biochemical properties as AtPUMP1. Sugarcane possessed four Arabidopsis AOx1-type orthologues (SsAOx1a-1d); no sugarcane orthologue corresponding to Arabidopsis AOx2-type genes was identified. Phylogenetic and expression analyses suggested that AtAOx1d does not belong to the AOx1-type family but forms a new (AOx3-type) family. Tissue-enriched expression profiling revealed that uncoupling protein genes were expressed more ubiquitously than the alternative oxidase genes. Distinct expression patterns among gene family members were observed between monocots and dicots and during chilling stress. These findings suggest that the members of each energy-dissipating system are subject to different cell or tissue/organ transcriptional regulation. As a result, plants may respond more flexibly to adverse biotic and abiotic conditions, in which oxidative stress is involved.

  15. Aging and a long-term diabetes mellitus increase expression of 1 α-hydroxylase and vitamin D receptors in the rat liver.

    PubMed

    Vuica, Ana; Ferhatović Hamzić, Lejla; Vukojević, Katarina; Jerić, Milka; Puljak, Livia; Grković, Ivica; Filipović, Natalija

    2015-12-01

    Diabetes mellitus (DM) is a metabolic disorder associated with serious liver complications. As a metabolic chronic disease, DM is very common in the elderly. Recent studies suggest ameliorating effects of vitamin D on metabolic and oxidative stress in the liver tissue in an experimental model of DM. The aim of this study was to investigate the expression of vitamin D receptors (VDRs) and 1α-hydroxylase, the key enzyme for the production of active vitamin D form (calcitriol) in the liver during long-term diabetes mellitus type 1 (DM1) in aging rats. We performed immunohistochemical analysis of liver expression of 1α-hydroxylase and VDRs during aging in long-term streptozotocin-induced DM1. 1α-Hydroxylase was identified in the monocyte/macrophage system of the liver. In addition to the nuclear expression, we also observed the expression of VDR in membranes of lipid droplets within hepatocytes. Aging and long-term DM1 resulted in significant increases in the number of 1α-hydroxylase immunoreactive cells, as well as the percentage of strongly positive VDR hepatocytes. In conclusion, the liver has the capacity for active vitamin D synthesis in its monocyte/macrophage system that is substantially increased in aging and long-term diabetes mellitus. These conditions are also characterized by significant increases in vitamin D receptor expression in hepatocytes. The present study suggests that VDR signaling system could be a potential target in prevention of liver complications caused by diabetes and aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. More Pronounced Deficits in Facial Emotion Recognition for Schizophrenia than Bipolar Disorder

    PubMed Central

    Goghari, Vina M; Sponheim, Scott R

    2012-01-01

    Schizophrenia and bipolar disorder are typically separated in diagnostic systems. Behavioural, cognitive, and brain abnormalities associated with each disorder nonetheless overlap. We evaluated the diagnostic specificity of facial emotion recognition deficits in schizophrenia and bipolar disorder to determine whether select aspects of emotion recognition differed for the two disorders. The investigation used an experimental task that included the same facial images in an emotion recognition condition and an age recognition condition (to control for processes associated with general face recognition) in 27 schizophrenia patients, 16 bipolar I patients, and 30 controls. Schizophrenia and bipolar patients exhibited both shared and distinct aspects of facial emotion recognition deficits. Schizophrenia patients had deficits in recognizing angry facial expressions compared to healthy controls and bipolar patients. Compared to control participants, both schizophrenia and bipolar patients were more likely to mislabel facial expressions of anger as fear. Given that schizophrenia patients exhibited a deficit in emotion recognition for angry faces, which did not appear due to generalized perceptual and cognitive dysfunction, improving recognition of threat-related expression may be an important intervention target to improve social functioning in schizophrenia. PMID:23218816

  17. [Nitric oxide pathway and female lower urinary tract. Physiological and pathophysiological role].

    PubMed

    Gamé, X; Rischmann, P; Arnal, J-F; Malavaud, B

    2013-09-01

    The aim was to review the literature on nitric oxide and female lower urinary tract. A literature review through the PubMed library until December, 31 2012 was carried out using the following keywords: lower urinary tract, bladder, urethra, nervous central system, innervation, female, women, nitric oxide, phosphodiesterase, bladder outlet obstruction, urinary incontinence, overactive bladder, urinary tract infection. Two nitric oxide synthase isoforms, the neuronal (nNOS) and the endothelial (eNOS), are constitutively expressed in the lower urinary tract. Nevertheless, nNOS is mainly expressed in the bladder neck and the urethra. In the bladder, NO modulates the afferent neurons activity. In pathological condition, inducible NOS expression induces an increase in detrusor contractility and bladder wall thickness and eNOS facilitates Escherichia coli bladder wall invasion inducing recurrent urinary tract infections. In the urethra, NO play a major role in smooth muscle cells relaxation. The NO pathway plays a major role in the female lower urinary tract physiology and physiopathology. While it acts mainly on bladder outlet, in pathological condition, it is involved in bladder dysfunction occurrence. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. The DinJ/RelE Toxin-Antitoxin System Suppresses Bacterial Proliferation and Virulence of Xylella fastidiosa in Grapevine.

    PubMed

    Burbank, Lindsey P; Stenger, Drake C

    2017-04-01

    Xylella fastidiosa, the causal agent of Pierce's disease of grapes, is a slow-growing, xylem-limited, bacterial pathogen. Disease progression is characterized by systemic spread of the bacterium through xylem vessel networks, causing leaf-scorching symptoms, senescence, and vine decline. It appears to be advantageous to this pathogen to avoid excessive blockage of xylem vessels, because living bacterial cells are generally found in plant tissue with low bacterial cell density and minimal scorching symptoms. The DinJ/RelE toxin-antitoxin system is characterized here for a role in controlling bacterial proliferation and population size during plant colonization. The DinJ/RelE locus is transcribed from two separate promoters, allowing for coexpression of antitoxin DinJ with endoribonuclease toxin RelE, in addition to independent expression of RelE. The ratio of antitoxin/toxin expressed is dependent on bacterial growth conditions, with lower amounts of antitoxin present under conditions designed to mimic grapevine xylem sap. A knockout mutant of DinJ/RelE exhibits a hypervirulent phenotype, with higher bacterial populations and increased symptom development and plant decline. It is likely that DinJ/RelE acts to prevent excessive population growth, contributing to the ability of the pathogen to spread systemically without completely blocking the xylem vessels and increasing probability of acquisition by the insect vector.

  19. Performance Analysis of Iterative Channel Estimation and Multiuser Detection in Multipath DS-CDMA Channels

    NASA Astrophysics Data System (ADS)

    Li, Husheng; Betz, Sharon M.; Poor, H. Vincent

    2007-05-01

    This paper examines the performance of decision feedback based iterative channel estimation and multiuser detection in channel coded aperiodic DS-CDMA systems operating over multipath fading channels. First, explicit expressions describing the performance of channel estimation and parallel interference cancellation based multiuser detection are developed. These results are then combined to characterize the evolution of the performance of a system that iterates among channel estimation, multiuser detection and channel decoding. Sufficient conditions for convergence of this system to a unique fixed point are developed.

  20. Metagenomic and Metatranscriptomic Analyses Reveal the Structure and Dynamics of a Dechlorinating Community Containing Dehalococcoides mccartyi and Corrinoid-Providing Microorganisms under Cobalamin-Limited Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Men, Yujie; Yu, Ke; Bælum, Jacob

    ABSTRACT The aim of this study is to obtain a systems-level understanding of the interactions betweenDehalococcoidesand corrinoid-supplying microorganisms by analyzing community structures and functional compositions, activities, and dynamics in trichloroethene (TCE)-dechlorinating enrichments. Metagenomes and metatranscriptomes of the dechlorinating enrichments with and without exogenous cobalamin were compared. Seven putative draft genomes were binned from the metagenomes. At an early stage (2 days), more transcripts of genes in theVeillonellaceaebin-genome were detected in the metatranscriptome of the enrichment without exogenous cobalamin than in the one with the addition of cobalamin. Among these genes, sporulation-related genes exhibited the highest differential expression when cobalamin wasmore » not added, suggesting a possible release route of corrinoids from corrinoid producers. Other differentially expressed genes include those involved in energy conservation and nutrient transport (including cobalt transport). The most highly expressed corrinoidde novobiosynthesis pathway was also assigned to theVeillonellaceaebin-genome. Targeted quantitative PCR (qPCR) analyses confirmed higher transcript abundances of those corrinoid biosynthesis genes in the enrichment without exogenous cobalamin than in the enrichment with cobalamin. Furthermore, the corrinoid salvaging and modification pathway ofDehalococcoideswas upregulated in response to the cobalamin stress. This study provides important insights into the microbial interactions and roles played by members of dechlorinating communities under cobalamin-limited conditions. IMPORTANCEThe key chloroethene-dechlorinating bacteriumDehalococcoides mccartyiis a cobalamin auxotroph, thus acquiring corrinoids from other community members. Therefore, it is important to investigate the microbe-microbe interactions betweenDehalococcoidesand the corrinoid-providing microorganisms in a community. This study provides systems-level information, i.e., taxonomic and functional compositions and dynamics of the supportive microorganisms in dechlorinating communities under different cobalamin conditions. The findings shed light on the important roles ofVeillonellaceaespecies in the communities compared to other coexisting community members in producing and providing corrinoids forDehalococcoidesspecies under cobalamin-limited conditions.« less

Top