Martin, Francois-Pierre J; Wang, Yulan; Sprenger, Norbert; Yap, Ivan K S; Rezzi, Serge; Ramadan, Ziad; Peré-Trepat, Emma; Rochat, Florence; Cherbut, Christine; van Bladeren, Peter; Fay, Laurent B; Kochhar, Sunil; Lindon, John C; Holmes, Elaine; Nicholson, Jeremy K
2008-01-01
Gut microbiome–host metabolic interactions affect human health and can be modified by probiotic and prebiotic supplementation. Here, we have assessed the effects of consumption of a combination of probiotics (Lactobacillus paracasei or L. rhamnosus) and two galactosyl-oligosaccharide prebiotics on the symbiotic microbiome–mammalian supersystem using integrative metabolic profiling and modeling of multiple compartments in germ-free mice inoculated with a model of human baby microbiota. We have shown specific impacts of two prebiotics on the microbial populations of HBM mice when co-administered with two probiotics. We observed an increase in the populations of Bifidobacterium longum and B. breve, and a reduction in Clostridium perfringens, which were more marked when combining prebiotics with L. rhamnosus. In turn, these microbial effects were associated with modulation of a range of host metabolic pathways observed via changes in lipid profiles, gluconeogenesis, and amino-acid and methylamine metabolism associated to fermentation of carbohydrates by different bacterial strains. These results provide evidence for the potential use of prebiotics for beneficially modifying the gut microbial balance as well as host energy and lipid homeostasis. PMID:18628745
Probiotics and prebiotics in dermatology.
Baquerizo Nole, Katherine L; Yim, Elizabeth; Keri, Jonette E
2014-10-01
The rapid increase in the medical use of probiotics and prebiotics in recent years has confirmed their excellent safety profile. As immune modulators, they have been used in inflammatory skin conditions, such as atopic dermatitis. We review the literature regarding the use of probiotics and prebiotics in dermatology. Probiotics and prebiotics appear to be effective in reducing the incidence of atopic dermatitis in infants, but their role in atopic dermatitis treatment is controversial. Their role in acne, wound healing, and photoprotection is promising, but larger trials are needed before a final recommendation can be made. Copyright © 2014 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.
Effect of Probiotics/Prebiotics on Cattle Health and Productivity.
Uyeno, Yutaka; Shigemori, Suguru; Shimosato, Takeshi
2015-01-01
Probiotics/prebiotics have the ability to modulate the balance and activities of the gastrointestinal (GI) microbiota, and are, thus, considered beneficial to the host animal and have been used as functional foods. Numerous factors, such as dietary and management constraints, have been shown to markedly affect the structure and activities of gut microbial communities in livestock animals. Previous studies reported the potential of probiotics and prebiotics in animal nutrition; however, their efficacies often vary and are inconsistent, possibly, in part, because the dynamics of the GI community have not been taken into consideration. Under stressed conditions, direct-fed microbials may be used to reduce the risk or severity of scours caused by disruption of the normal intestinal environment. The observable benefits of prebiotics may also be minimal in generally healthy calves, in which the microbial community is relatively stable. However, probiotic yeast strains have been administered with the aim of improving rumen fermentation efficiency by modulating microbial fermentation pathways. This review mainly focused on the benefits of probiotics/prebiotics on the GI microbial ecosystem in ruminants, which is deeply involved in nutrition and health for the animal.
Effect of Probiotics/Prebiotics on Cattle Health and Productivity
Uyeno, Yutaka; Shigemori, Suguru; Shimosato, Takeshi
2015-01-01
Probiotics/prebiotics have the ability to modulate the balance and activities of the gastrointestinal (GI) microbiota, and are, thus, considered beneficial to the host animal and have been used as functional foods. Numerous factors, such as dietary and management constraints, have been shown to markedly affect the structure and activities of gut microbial communities in livestock animals. Previous studies reported the potential of probiotics and prebiotics in animal nutrition; however, their efficacies often vary and are inconsistent, possibly, in part, because the dynamics of the GI community have not been taken into consideration. Under stressed conditions, direct-fed microbials may be used to reduce the risk or severity of scours caused by disruption of the normal intestinal environment. The observable benefits of prebiotics may also be minimal in generally healthy calves, in which the microbial community is relatively stable. However, probiotic yeast strains have been administered with the aim of improving rumen fermentation efficiency by modulating microbial fermentation pathways. This review mainly focused on the benefits of probiotics/prebiotics on the GI microbial ecosystem in ruminants, which is deeply involved in nutrition and health for the animal. PMID:26004794
Scholz-Ahrens, Katharina E; Ade, Peter; Marten, Berit; Weber, Petra; Timm, Wolfram; Açil, Yahya; Glüer, Claus-C; Schrezenmeir, Jürgen
2007-03-01
Several studies in animals and humans have shown positive effects of nondigestible oligosaccharides (NDO) on mineral absorption and metabolism and bone composition and architecture. These include inulin, oligofructose, fructooligosaccharides, galactooligosaccharides, soybean oligosaccharide, and also resistant starches, sugar alcohols, and difructose anhydride. A positive outcome of dietary prebiotics is promoted by a high dietary calcium content up to a threshold level and an optimum amount and composition of supplemented prebiotics. There might be an optimum composition of fructooligosaccharides with different chain lengths (synergy products). The efficacy of dietary prebiotics depends on chronological age, physiological age, menopausal status, and calcium absorption capacity. There is evidence for an independent probiotic effect on facilitating mineral absorption. Synbiotics, i.e., a combination of probiotics and prebiotics, can induce additional effects. Whether a low content of habitual NDO would augment the effect of dietary prebiotics or synbiotics remains to be studied. The underlying mechanisms are manifold: increased solubility of minerals because of increased bacterial production of short-chain fatty acids, which is promoted by the greater supply of substrate; an enlargement of the absorption surface by promoting proliferation of enterocytes mediated by bacterial fermentation products, predominantly lactate and butyrate; increased expression of calcium-binding proteins; improvement of gut health; degradation of mineral complexing phytic acid; release of bone-modulating factors such as phytoestrogens from foods; stabilization of the intestinal flora and ecology, also in the presence of antibiotics; stabilization of the intestinal mucus; and impact of modulating growth factors such as polyamines. In conclusion, prebiotics are the most promising but also best investigated substances with respect to a bone-health-promoting potential, compared with probiotics and synbiotics. The results are more prominent in animal models, where more studies have been performed, than in human studies, where experimental conditions are more difficult to control.
Prebiotic and Probiotic Regulation of Bone Health: Role of the Intestine and its Microbiome
McCabe, Laura; Britton, Robert A.; Parameswaran, Narayanan
2015-01-01
Recent advances in our understanding of how the intestinal microbiome contributes to health and disease have generated great interest in developing strategies for modulating the abundance of microbes and/or their activity to improve overall human health and prevent pathologies such as osteoporosis. Bone is an organ that the gut has long been known to regulate through absorption of calcium, the key bone mineral. However, it is clear that modulation of the gut and its microbiome can affect bone density and strength in a variety of animal models (zebra fish, rodents, chicken) and humans. This is demonstrated in studies ablating the microbiome through antibiotic treatment or using germ-free mouse conditions as well as in studies modulating the microbiome activity and composition through prebiotic and/or probiotic treatment. This review will discuss recent developments in this new and exciting area. PMID:26419466
Prebiotics as a modulator of gut microbiota in paediatric obesity.
Nicolucci, A C; Reimer, R A
2017-08-01
This review highlights our current understanding of the role of gut microbiota in paediatric obesity and the potential role for dietary manipulation of the gut microbiota with prebiotics in managing paediatric obesity. The aetiology of obesity is multifactorial and is now known to include microbial dysbiosis in the gut. Prebiotics are non-digestible carbohydrates which selectively modulate the number and/or composition of gut microbes. The goal of prebiotic consumption is to restore symbiosis and thereby confer health benefits to the host. There is convincing evidence that prebiotics can reduce adiposity and improve metabolic health in preclinical rodent models. Furthermore, there are several clinical trials in adult humans highlighting metabolic and appetite-regulating benefits of prebiotics. In paediatric obesity, however, there are very limited data regarding the potential role of prebiotics as a dietary intervention for obesity management. As the prevalence of paediatric obesity and obesity-associated comorbidities increases globally, interventions that target the progression of obesity from an early age are essential in slowing the obesity epidemic. This review emphasizes the need for further research assessing the role of prebiotics, particularly as an intervention in effectively managing paediatric obesity. © 2016 World Obesity Federation.
Prebiotics and gut microbiota in chickens.
Pourabedin, Mohsen; Zhao, Xin
2015-08-01
Prebiotics are non-digestible feed ingredients that are metabolized by specific members of intestinal microbiota and provide health benefits for the host. Fermentable oligosaccharides are best known prebiotics that have received increasing attention in poultry production. They act through diverse mechanisms, such as providing nutrients, preventing pathogen adhesion to host cells, interacting with host immune systems and affecting gut morphological structure, all presumably through modulation of intestinal microbiota. Currently, fructooligosaccharides, inulin and mannanoligosaccharides have shown promising results while other prebiotic candidates such as xylooligosaccharides are still at an early development stage. Despite a growing body of evidence reporting health benefits of prebiotics in chickens, very limited studies have been conducted to directly link health improvements to prebiotic-dependent changes in the gut microbiota. This article visits the current knowledge of the chicken gastrointestinal microbiota and reviews most recent publications related to the roles played by prebiotics in modulation of the gut microbiota and immune functions. Progress in this field will help us better understand how the gut microbiota contributes to poultry health and productivity, and support the development of new prebiotic products as an alternative to in-feed antibiotics. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Wu, Richard Y; Määttänen, Pekka; Napper, Scott; Scruten, Erin; Li, Bo; Koike, Yuhki; Johnson-Henry, Kathene C; Pierro, Agostino; Rossi, Laura; Botts, Steven R; Surette, Michael G; Sherman, Philip M
2017-10-10
Prebiotics are non-digestible food ingredients that enhance the growth of certain microbes within the gut microbiota. Prebiotic consumption generates immune-modulatory effects that are traditionally thought to reflect microbial interactions within the gut. However, recent evidence suggests they may also impart direct microbe-independent effects on the host, though the mechanisms of which are currently unclear. Kinome arrays were used to profile the host intestinal signaling responses to prebiotic exposures in the absence of microbes. Identified pathways were functionally validated in Caco-2Bbe1 intestinal cell line and in vivo model of murine endotoxemia. We found that prebiotics directly regulate host mucosal signaling to alter response to bacterial infection. Intestinal epithelial cells (IECs) exposed to prebiotics are hyporesponsive to pathogen-induced mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) activations, and have a kinome profile distinct from non-treated cells pertaining to multiple innate immune signaling pathways. Consistent with this finding, mice orally gavaged with prebiotics showed dampened inflammatory response to lipopolysaccharide (LPS) without alterations in the gut microbiota. These findings provide molecular mechanisms of direct host-prebiotic interactions to support prebiotics as potent modulators of host inflammation.
Whisner, Corrie M; Weaver, Connie M
2017-01-01
Recent advancements in food science have resulted in the extraction and synthesis of novel dietary fibers or prebiotics. Subsequently, great interest has emerged in developing strategies to improve metabolic conditions like osteoporosis by modulating the intestinal microbiome with fiber. Prebiotics have been shown to increase calcium absorption in the lower gut of both animals and humans as well as improve measures of bone mineral density and strength in rodent models. Fewer data are available in humans, but data from growing children and postmenopausal women suggest that prebiotics have both short- and long-term effects that beneficially affect bone turnover and mineral accretion in the skeleton. Currently, the exact mechanism by which these products elicit their effects on bone is poorly understood, but emerging data suggest that the gut microbiota may be involved in one or more direct and indirect pathways. The most well-accepted mechanism is through microbial fermentation of prebiotics which results in the production of short-chain fatty acids and a concomitant decrease in pH which increases the bioavailability of calcium in the colon. While other mechanisms may be eliciting a prebiotic effect on bone, the current data suggest that novel dietary fibers may be an affordable and effective method of maximizing mineral accretion in growing children and preventing bone loss in later years when osteoporosis is a greater risk. This chapter will discuss the dynamic role of prebiotics in bone health by discussing the current state of the art, addressing gaps in knowledge and their role in public health.
Stability of prebiotic, laminaran oligosaccharide under food processing conditions
NASA Astrophysics Data System (ADS)
Chamidah, A.
2018-04-01
Prebiotic stability tests on laminaran oligosaccharide under food processing conditions were urgently performed to determine the ability of prebiotics deal with processing. Laminaran, oligosaccharide is produced from enzymatic hydrolysis. To further apply this prebiotic, it is necessary to test its performance on food processing. Single prebiotic or in combination with probiotic can improve human digestive health. The effectiveness evaluation of prebiotic should be taken into account in regards its chemical and functional stabilities. This study aims to investigate the stability of laminaran, oligosaccharide under food processing condition.
Prebiotic Oligosaccharides Potentiate Host Protective Responses against L. Monocytogenes Infection
Chen, Poyin; Huang, Bihua; Kong, Nguyet; Weimer, Bart C.
2017-01-01
Prebiotic oligosaccharides are used to modulate enteric pathogens and reduce pathogen shedding. The interactions with prebiotics that alter Listeria monocytogenes infection are not yet clearly delineated. L. monocytogenes cellular invasion requires a concerted manipulation of host epithelial cell membrane receptors to initiate internalization and infection often via receptor glycosylation. Bacterial interactions with host glycans are intimately involved in modulating cellular responses through signaling cascades at the membrane and in intracellular compartments. Characterizing the mechanisms underpinning these modulations is essential for predictive use of dietary prebiotics to diminish pathogen association. We demonstrated that human milk oligosaccharide (HMO) pretreatment of colonic epithelial cells (Caco-2) led to a 50% decrease in Listeria association, while Biomos pretreatment increased host association by 150%. L. monocytogenes-induced gene expression changes due to oligosaccharide pretreatment revealed global alterations in host signaling pathways that resulted in differential subcellular localization of L. monocytogenes during early infection. Ultimately, HMO pretreatment led to bacterial clearance in Caco-2 cells via induction of the unfolded protein response and eIF2 signaling, while Biomos pretreatment resulted in the induction of host autophagy and L. monocytogenes vacuolar escape earlier in the infection progression. This study demonstrates the capacity of prebiotic oligosaccharides to minimize infection through induction of host-intrinsic protective responses. PMID:29257110
Shukla, Geeta; Bhatia, Ruchika; Sharma, Anuj
2016-11-01
Malnutrition induces a state of growth retardation and immunologic depression, enhancing the host susceptibility to various infections. In the present study, it was observed that prebiotic supplementation either prior or simultaneously with Giardia infection in malnourished mice significantly reduced the severity of giardiasis and increased the body and small intestine mass, along with increased lactobacilli counts in faeces compared with malnourished-Giardia-infected mice. More specifically, prebiotic supplementation significantly increased the levels of anti-giardial IgG and IgA antibodies and anti-inflammatory cytokines IL-6 and IL-10 and reduced the pro-inflammatory cytokine TNF-α, along with increased levels of nitric oxide in both the serum and intestinal fluid of malnourished-prebiotic-Giardia-infected mice compared with malnourished-Giardia-infected mice. Histopathology and scanning electron microscopy of the small intestine also revealed less cellular and mucosal damage in the microvilli of prebiotic-supplemented malnourished-Giardia-infected mice compared with severely damaged mummified and blunted villi of malnourished-Giardia-infected mice. This is the first study to report that prebiotic supplementation modulated the gut morphology and improved the immune status even in malnourished-Giardia-infected mice.
Prebiotic inulin: Useful dietary adjuncts to manipulate the livestock gut microflora
Samanta, A.K.; Jayapal, Natasha; Senani, S.; Kolte, A.P.; Sridhar, Manpal
2013-01-01
In recent years, there has been a growing appreciation on the relevance of gastrointestinal microflora in both ruminants and non-ruminants owing to revelation of their role in several physiological functions including digestion, nutrient utilization, pathogen exclusion, gastrointestinal development, immunity system, gut gene expression and quality of animal products. The ban imposed on the use of antibiotics and hormones in feed has compelled animal researchers in finding an alternative which could overcome the issues of conventional feed additives. Though the concept of prebiotic was evolved keeping in mind the gastrointestinal flora of human beings, presently animal researchers are exploring the efficiency of prebiotic (inulin) for modulating the gut ecosystem of both ruminants and non-ruminants. It was revealed that prebiotic inulin is found to exhibit desirable changes in the gut of non-ruminants like poultry, swine, rabbit etc for augmenting gut health and improvement of product quality. Similarly, in ruminants the prebiotic reduces rumen ammonia nitrogen, methane production, increase microbial protein synthesis and live weight gains in calves. Unlike other feed additives, prebiotic exhibits its effect in multipronged ways for overall increase in the performances of the animals. In coming days, it is expected that prebiotics could be the part of diets in both ruminants and non-ruminants for enabling modulation of gut microflora vis a vis animals productivity in ecological ways. PMID:24159277
Towards a more comprehensive concept for prebiotics.
Bindels, Laure B; Delzenne, Nathalie M; Cani, Patrice D; Walter, Jens
2015-05-01
The essential role of the gut microbiota for health has generated tremendous interest in modulating its composition and metabolic function. One of these strategies is prebiotics, which typically refer to selectively fermented nondigestible food ingredients or substances that specifically support the growth and/or activity of health-promoting bacteria that colonize the gastrointestinal tract. In this Perspective, we argue that advances in our understanding of diet-microbiome-host interactions challenge important aspects of the current concept of prebiotics, and especially the requirement for effects to be 'selective' or 'specific'. We propose to revise this concept in an effort to shift the focus towards ecological and functional features of the microbiota more likely to be relevant for host physiology. This revision would provide a more rational basis for the identification of prebiotic compounds, and a framework by which the therapeutic potential of modulating the gut microbiota could be more fully materialized.
Grimoud, Julien; Durand, Henri; Courtin, Céline; Monsan, Pierre; Ouarné, Françoise; Theodorou, Vassilia; Roques, Christine
2010-10-01
Probiotics and prebiotics have been demonstrated to positively modulate the intestinal microflora and could promote host health. Although some studies have been performed on combinations of probiotics and prebiotics, constituting synbiotics, results on the synergistic effects tend to be discordant in the published works. The first aim of our study was to screen some lactic acid bacteria on the basis of probiotic characteristics (resistance to intestinal conditions, inhibition of pathogenic strains). Bifidobacterium was the most resistant genus whereas Lactobacillus farciminis was strongly inhibited. The inhibitory effect on pathogen growth was strain dependent but lactobacilli were the most effective, especially L. farciminis. The second aim of the work was to select glucooligosaccharides for their ability to support the growth of the probiotics tested. We demonstrated the selective fermentability of oligodextran and oligoalternan by probiotic bacteria, especially the bifidobacteria, for shorter degrees of polymerisation and absence of metabolism by pathogenic bacteria. Thus, the observed characteristics confer potential prebiotic properties on these glucooligosaccharides, to be further confirmed in vivo, and suggest some possible applications in synbiotic combinations with the selected probiotics. Furthermore, the distinctive patterns of the different genera suggest a combination of lactobacilli and bifidobacteria with complementary probiotic effects in addition to the prebiotic ones. These associations should be further evaluated for their synbiotic effects through in vitro and in vivo models. Copyright © 2010 Elsevier Ltd. All rights reserved.
Recent Development of Prebiotic Research—Statement from an Expert Workshop
La Fata, Giorgio; Rastall, Robert A.; Lacroix, Christophe; Harmsen, Hermie J. M.; Mohajeri, M. Hasan; Weber, Peter
2017-01-01
A dietary prebiotic is defined as ‘a substrate that is selectively utilized by host microorganisms conferring a health benefit’. Although this definition evolved concomitantly with the knowledge and technological developments that accrued in the last twenty years, what qualifies as prebiotic continues to be a matter of debate. In this statement, we report the outcome of a workshop where academic experts working in the field of prebiotic research met with scientists from industry. The workshop covered three main topics: (i) evolution of the prebiotic concept/definition; (ii) the gut modeling in vitro technology PolyFermS to study prebiotic effects; and (iii) the potential novel microbiome-modulating effects associated with vitamins. The future of prebiotic research is very promising. Indeed, the technological developments observed in recent years provide scientists with powerful tools to investigate the complex ecosystem of gut microbiota. Combining multiple in vitro approaches with in vivo studies is key to understanding the mechanisms of action of prebiotics consumption and their potential beneficial effects on the host. PMID:29261110
The Influence of Prebiotics on Neurobiology and Behavior.
Kao, A C C; Harty, S; Burnet, P W J
2016-01-01
Manipulating the intestinal microbiota for the benefit of the brain is a concept that has become widely acknowledged. Prebiotics are nondigestible nutrients (i.e., fibers, carbohydrates, or various saccharides) that proliferate intrinsic, beneficial gut bacteria, and so provide an alternative strategy for effectively altering the enteric ecosystem, and thence brain function. Rodent studies demonstrating neurobiological changes following prebiotic intake are slowly emerging, and have thus far revealed significant benefits in disease models, including antiinflammatory and neuroprotective actions. There are also compelling data showing the robust and favorable effects of prebiotics on several behavioral paradigms including, anxiety, learning, and memory. At present, studies in humans are limited, though there is strong evidence for prebiotics modulating emotional processes and the neuroendocrine stress response that may underlie the pathophysiology of anxiety. While the mechanistic details linking the enteric microbiota to the central nervous system remain to be elucidated, there are a number of considerations that can guide future studies. These include the modulation of intestinal endocrine systems and inflammatory cascades, as well as direct interaction with the enteric nervous system and gut mucosa. Our knowledge of gut microbiome-brain communication is steadily progressing, and thorough investigations validating the use of prebiotics in the treatment of neuropsychiatric disorders would be highly valued and are encouraged. © 2016 Elsevier Inc. All rights reserved.
Intestinal infections and prebiotics: the roles of oligosaccharides in promoting health
USDA-ARS?s Scientific Manuscript database
Prebiotic oligosaccharides exert activity against pathogens partly by stimulating the growth and/or activity of commensal bacteria that provide health benefits (lower pH, bacteriocin production, immune system modulation, competitive exclusion). This review describes alternative mechanisms of action...
Evaluation of Glyceraldehyde Under Simulated Prebiotic Conditions
NASA Astrophysics Data System (ADS)
Aguilar-Ovando, E.; Buhse, T.; Negrón-Mendoza, A.
2017-07-01
The aim of this work is to compare the behavior under irradiation of solid and aqueous DL-glyceraldehyde simulating prebiotic conditions. The results show the formation of sugar-like products of prebiotic significance as function of irradiation dose.
Steinert, R E; Sadaghian Sadabad, M; Harmsen, H J M; Weber, P
2016-12-01
Emerging evidence suggests that the gut microbiota has a critical role in both the maintenance of human health and the pathogenesis of many diseases. Modifying the colonic microbiota using functional foods has attracted significant research effort and product development. The pioneering concept of prebiotics, as introduced by Gibson and Roberfroid in the 1990s, emphasized the importance of diet in the modulation of the gut microbiota and its relationships to human health. Increasing knowledge of the intestinal microbiota now suggests a more comprehensive definition. This paper briefly reviews the basics of the prebiotic concept with a discussion of recent attempts to refine the concept to open the door for novel prebiotic food ingredients, such as polyphenols, minerals and vitamins.
Influence of functional food components on gut health.
Wan, Murphy L Y; Ling, K H; El-Nezami, Hani; Wang, M F
2018-01-30
Intestinal epithelial cells (IECs) lining the gastrointestinal tract establish a barrier between external environments and the internal milieu. An intact intestinal barrier maintains gut health and overall good health of the body by preventing from tissue injury, pathogen infection and disease development. When the intestinal barrier function is compromised, bacterial translocation can occur. Our gut microbiota also plays a fundamentally important role in health, for example, by maintaining intestinal barrier integrity, metabolism and modulating the immune system, etc. Any disruption of gut microbiota composition (also termed dysbiosis) can lead to various pathological conditions. In short, intestinal barrier and gut microbiota are two crucial factors affecting gut health. The gastrointestinal tract is a complex environment exposed to many dietary components and commensal bacteria. Dietary components are increasingly recognized to play various beneficial roles beyond basic nutrition, resulting in the development of the functional food concepts. Various dietary modifiers, including the consumption of live bacteria (probiotics) and ingestible food constituents such as prebiotics, as well as polyphenols or synbiotics (combinations of probiotics and prebiotics) are the most well characterized dietary bioactive compounds and have been demonstrated to beneficially impact the gut health and the overall well-being of the host. In this review we depict the roles of intestinal epithelium and gut microbiota in mucosal defence responses and the influence of certain functional food components on the modulation of gut health, with a particular focus on probiotics, prebiotics and polyphenols.
Singh, Sudhir P; Jadaun, Jyoti Singh; Narnoliya, Lokesh K; Pandey, Ashok
2017-10-01
The bacterial groups in the gut ecosystem play key role in the maintenance of host's metabolic and structural functionality. The gut microbiota enhances digestion processing, helps in digestion of complex substances, synthesizes beneficial bioactive compounds, enhances bioavailability of minerals, impedes growth of pathogenic microbes, and prevents various diseases. It is, therefore, desirable to have an adequate intake of prebiotic biomolecules, which promote favorable modulation of intestinal microflora. Prebiotics are non-digestible and chemically stable structures that significantly enhance growth and functionality of gut microflora. The non-digestible carbohydrate, mainly oligosaccharides, covers a major part of total available prebiotics as dietary additives. The review describes the types of prebiotic low molecular weight carbohydrates, i.e., oligosaccharides, their structure, biosynthesis, functionality, and applications, with a special focus given to fructooligosaccharides (FOSs). The review provides an update on enzymes executing hydrolytic and fructosyltransferase activities producing prebiotic FOS biomolecules, and future perspectives.
Effects of Probiotics, Prebiotics, and Synbiotics on Human Health
Markowiak, Paulina; Śliżewska, Katarzyna
2017-01-01
The human gastrointestinal tract is colonised by a complex ecosystem of microorganisms. Intestinal bacteria are not only commensal, but they also undergo a synbiotic co-evolution along with their host. Beneficial intestinal bacteria have numerous and important functions, e.g., they produce various nutrients for their host, prevent infections caused by intestinal pathogens, and modulate a normal immunological response. Therefore, modification of the intestinal microbiota in order to achieve, restore, and maintain favourable balance in the ecosystem, and the activity of microorganisms present in the gastrointestinal tract is necessary for the improved health condition of the host. The introduction of probiotics, prebiotics, or synbiotics into human diet is favourable for the intestinal microbiota. They may be consumed in the form of raw vegetables and fruit, fermented pickles, or dairy products. Another source may be pharmaceutical formulas and functional food. This paper provides a review of available information and summarises the current knowledge on the effects of probiotics, prebiotics, and synbiotics on human health. The mechanism of beneficial action of those substances is discussed, and verified study results proving their efficacy in human nutrition are presented. PMID:28914794
Effects of Probiotics, Prebiotics, and Synbiotics on Human Health.
Markowiak, Paulina; Śliżewska, Katarzyna
2017-09-15
The human gastrointestinal tract is colonised by a complex ecosystem of microorganisms. Intestinal bacteria are not only commensal, but they also undergo a synbiotic co-evolution along with their host. Beneficial intestinal bacteria have numerous and important functions, e.g., they produce various nutrients for their host, prevent infections caused by intestinal pathogens, and modulate a normal immunological response. Therefore, modification of the intestinal microbiota in order to achieve, restore, and maintain favourable balance in the ecosystem, and the activity of microorganisms present in the gastrointestinal tract is necessary for the improved health condition of the host. The introduction of probiotics, prebiotics, or synbiotics into human diet is favourable for the intestinal microbiota. They may be consumed in the form of raw vegetables and fruit, fermented pickles, or dairy products. Another source may be pharmaceutical formulas and functional food. This paper provides a review of available information and summarises the current knowledge on the effects of probiotics, prebiotics, and synbiotics on human health. The mechanism of beneficial action of those substances is discussed, and verified study results proving their efficacy in human nutrition are presented.
USDA-ARS?s Scientific Manuscript database
Prebiotics consisting of resistant starch may alter intestinal ecology, thus modulating inflammation and increasing intestinal health through increased cecal production of short chain fatty acids. Probiotics may directly alter the intestinal microbiome resulting in the same effects. Trials 1, 2, and...
Dietary fiber and prebiotics and the gastrointestinal microbiota
Holscher, Hannah D.
2017-01-01
ABSTRACT The gastrointestinal microbiota has an important role in human health, and there is increasing interest in utilizing dietary approaches to modulate the composition and metabolic function of the microbial communities that colonize the gastrointestinal tract to improve health, and prevent or treat disease. One dietary strategy for modulating the microbiota is consumption of dietary fiber and prebiotics that can be metabolized by microbes in the gastrointestinal tract. Human alimentary enzymes are not able to digest most complex carbohydrates and plant polysaccharides. Instead, these polysaccharides are metabolized by microbes which generate short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate. This article reviews the current knowledge of the impact of fiber and prebiotic consumption on the composition and metabolic function of the human gastrointestinal microbiota, including the effects of physiochemical properties of complex carbohydrates, adequate intake and treatment dosages, and the phenotypic responses related to the composition of the human microbiota. PMID:28165863
Probiotics and prebiotics associated with aquaculture: A review.
Akhter, Najeeb; Wu, Bin; Memon, Aamir Mahmood; Mohsin, Muhammad
2015-08-01
There is a rapidly growing literature, indicating success of probiotics and prebiotics in immunomodulation, namely the stimulation of innate, cellular and humoral immune response. Probiotics are considered to be living microorganisms administered orally and lead to health benefits. These Probiotics are microorganisms in sufficient amount to alter the microflora (by implantation or colonization) in specific host's compartment exerting beneficial health effects at this host. Nevertheless, Prebiotics are indigestible fiber which enhances beneficial commensally gut bacteria resulting in improved health of the host. The beneficial effects of prebiotics are due to by-products derived from the fermentation of intestinal commensal bacteria. Among the many health benefits attributed to probiotics and prebiotics, the modulation of the immune system is one of the most anticipated benefits and their ability to stimulate systemic and local immunity, deserves attention. They directly enhance the innate immune response, including the activation of phagocytosis, activation of neutrophils, activation of the alternative complement system, an increase in lysozyme activity, and so on. Prebiotics acting as immunosaccharides directly impact on the innate immune system of fish and shellfish. Therefore, both probiotics and prebiotics influence the immunomodulatory activity boosting up the health benefits in aquatic animals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions
NASA Astrophysics Data System (ADS)
Gibard, Clémentine; Bhowmik, Subhendu; Karki, Megha; Kim, Eun-Kyong; Krishnamurthy, Ramanarayanan
2018-02-01
Prebiotic phosphorylation of (pre)biological substrates under aqueous conditions is a critical step in the origins of life. Previous investigations have had limited success and/or require unique environments that are incompatible with subsequent generation of the corresponding oligomers or higher-order structures. Here, we demonstrate that diamidophosphate (DAP)—a plausible prebiotic agent produced from trimetaphosphate—efficiently (amido)phosphorylates a wide variety of (pre)biological building blocks (nucleosides/tides, amino acids and lipid precursors) under aqueous (solution/paste) conditions, without the need for a condensing agent. Significantly, higher-order structures (oligonucleotides, peptides and liposomes) are formed under the same phosphorylation reaction conditions. This plausible prebiotic phosphorylation process under similar reaction conditions could enable the systems chemistry of the three classes of (pre)biologically relevant molecules and their oligomers, in a single-pot aqueous environment.
Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions
NASA Astrophysics Data System (ADS)
Gibard, Clémentine; Bhowmik, Subhendu; Karki, Megha; Kim, Eun-Kyong; Krishnamurthy, Ramanarayanan
2017-11-01
Prebiotic phosphorylation of (pre)biological substrates under aqueous conditions is a critical step in the origins of life. Previous investigations have had limited success and/or require unique environments that are incompatible with subsequent generation of the corresponding oligomers or higher-order structures. Here, we demonstrate that diamidophosphate (DAP)-a plausible prebiotic agent produced from trimetaphosphate - efficiently (amido)phosphorylates a wide variety of (pre)biological building blocks (nucleosides/tides, amino acids and lipid precursors) under aqueous (solution/paste) conditions, without the need for a condensing agent. Significantly, higher-order structures (oligonucleotides, peptides and liposomes) are formed under the same phosphorylation reaction conditions. This plausible prebiotic phosphorylation process under similar reaction conditions could enable the systems chemistry of the three classes of (pre)biologically relevant molecules and their oligomers, in a single-pot aqueous environment.
Probiotics and prebiotics in the elderly
Hamilton-Miller, J
2004-01-01
Probiotics (usually lactobacilli and bifidobacteria) and prebiotics (non-digestible oligosaccharides) have been shown to be useful in preventing certain disease conditions as well as possibly promoting specific aspects of health. In the present review, the evidence from clinical trials for benefits from probiotics and prebiotics to elderly populations is presented and discussed, specifically in respect of three common conditions found in the elderly. Both probiotics and prebiotics may be helpful in malnutrition, particularly in lactose intolerance and calcium absorption, and in constipation. Probiotics have been shown clearly to boost immunity in the elderly, but the clinical significance of this remains to be clarified. These results are encouraging, and further large scale studies seem justified to establish the place of probiotic and prebiotic supplements in elderly subjects. PMID:15299153
Lambert, Jennifer E; Parnell, Jill A; Eksteen, Bertus; Raman, Maitreyi; Bomhof, Marc R; Rioux, Kevin P; Madsen, Karen L; Reimer, Raylene A
2015-12-03
Evidence for the role of the gut microbiome in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) is emerging. Strategies to manipulate the gut microbiota towards a healthier community structure are actively being investigated. Based on their ability to favorably modulate the gut microbiota, prebiotics may provide an inexpensive yet effective dietary treatment for NAFLD. Additionally, prebiotics have established benefits for glucose control and potentially weight control, both advantageous in managing fatty liver disease. Our objective is to evaluate the effects of prebiotic supplementation, adjunct to those achieved with diet-induced weight loss, on heptic injury and liver fat, the gut microbiota, inflammation, glucose tolerance, and satiety in patients with NAFLD. In a double blind, placebo controlled, parallel group study, adults (BMI ≥25) with confirmed NAFLD will be randomized to either a 16 g/d prebiotic supplemented group or isocaloric placebo group for 24 weeks (n = 30/group). All participants will receive individualized dietary counseling sessions with a registered dietitian to achieve 10 % weight loss. Primary outcome measures include change in hepatic injury (fibrosis and inflammation) and liver fat. Secondary outcomes include change in body composition, appetite and dietary adherence, glycemic and insulinemic responses and inflammatory cytokines. Mechanisms related to prebiotic-induced changes in gut microbiota (shot-gun sequencing) and their metabolic by-products (volatile organic compounds) and de novo lipogenesis (using deuterium incorporation) will also be investigated. There are currently no medications or surgical procedures approved for the treatment of NAFLD and weight loss via lifestyle modification remains the cornerstone of current care recommendations. Given that prebiotics target multiple metabolic impairments associated with NAFLD, investigating their ability to modulate the gut microbiota and hepatic health in patients with NAFLD is warranted. ClinicalTrials.gov (NCT02568605) Registered 30 September 2015.
Prebiotic Potential of a Maize-Based Soluble Fibre and Impact of Dose on the Human Gut Microbiota.
Costabile, Adele; Deaville, Eddie R; Morales, Agustin Martin; Gibson, Glenn R
2016-01-01
Dietary management of the human gut microbiota towards a more beneficial composition is one approach that may improve host health. To date, a large number of human intervention studies have demonstrated that dietary consumption of certain food products can result in significant changes in the composition of the gut microbiota i.e. the prebiotic concept. Thus the prebiotic effect is now established as a dietary approach to increase beneficial gut bacteria and it has been associated with modulation of health biomarkers and modulation of the immune system. Promitor™ Soluble Corn Fibre (SCF) is a well-known maize-derived source of dietary fibre with potential selective fermentation properties. Our aim was to determine the optimum prebiotic dose of tolerance, desired changes to microbiota and fermentation of SCF in healthy adult subjects. A double-blind, randomised, parallel study was completed where volunteers (n = 8/treatment group) consumed 8, 14 or 21 g from SCF (6, 12 and 18 g/fibre delivered respectively) over 14-d. Over the range of doses studied, SCF was well tolerated Numbers of bifidobacteria were significantly higher for the 6 g/fibre/day compared to 12 g and 18 g/fibre delivered/day (mean 9.25 and 9.73 Log10 cells/g fresh faeces in the pre-treatment and treatment periods respectively). Such a numerical change of 0.5 Log10 bifidobacteria/g fresh faeces is consistent with those changes observed for inulin-type fructans, which are recognised prebiotics. A possible prebiotic effect of SCF was therefore demonstrated by its stimulation of bifidobacteria numbers in the overall gut microbiota during a short-term intervention.
Probiotics, prebiotics and colorectal cancer prevention.
Ambalam, Padma; Raman, Maya; Purama, Ravi Kiran; Doble, Mukesh
2016-02-01
Colorectal cancer (CRC), the third major cause of mortality among various cancer types in United States, has been increasing in developing countries due to varying diet and dietary habits and occupational hazards. Recent evidences showed that composition of gut microbiota could be associated with the development of CRC and other gut dysbiosis. Modulation of gut microbiota by probiotics and prebiotics, either alone or in combination could positively influence the cross-talk between immune system and microbiota, would be beneficial in preventing inflammation and CRC. In this review, role of probiotics and prebiotics in the prevention of CRC has been discussed. Various epidemiological and experimental studies, specifically gut microbiome research has effectively improved the understanding about the role of probiotics and microbial treatment as anticarcinogenic agents. A few human studies support the beneficial effect of probiotics and prebiotics; hence, comprehensive understanding is urgent to realize the clinical applications of probiotics and prebiotics in CRC prevention. Copyright © 2016 Elsevier Ltd. All rights reserved.
Prebiotic Synthesis of Diaminopyrimidine and Thiocytosine
NASA Technical Reports Server (NTRS)
Robertson, Michael P.; Levy, Matthew; Miller, Stanley L.
1996-01-01
The reaction of guanidine hydrochloride with cyanoacetaldehyde gives high yields (40-85%) of 2,4-diaminopyrimidine under the concentrated conditions of a drying lagoon model of prebiotic synthesis, in contrast to the low yields previously obtained under more dilute conditions. The prebiotic source of cyanoacetaldehyde, cyanoacetylene, is produced from electric discharges under reducing conditions. The effect of pH and concentration of guanidine hydrochloride on the rate of synthesis and yield of diaminopyrimidine were investigated, as well as the hydrolysis of diaminopyrimidine to cytosine, isocytosine, and uracil. Thiourea also reacts with cyanoacetaldehyde to give 2-thiocytosine, but the pyrimidine yields are much lower than with guanidine hydrochloride or urea. Thiocytosine hydrolyzes to thiouracil and cytosine and then to uracil. This synthesis would have been a significant prebiotic source of 2-thiopyrimidines and 5-substituted derivatives of thiouracil, many of which occur in tRNA. The applicability of these results to the drying lagoon model of prebiotic synthesis was tested by dry-down experiments where dilute solutions of cyanoacetaldehyde, guanidine hydrochloride, and 0.5 M NaCl were evaporated over varying periods of time. The yields of diaminopyrimidine varied from 1 to 7%. These results show that drying lagoons and beaches may have been major sites of prebiotic syntheses.
Gut Microbial Flora, Prebiotics, and Probiotics in IBD: Their Current Usage and Utility
Scaldaferri, Franco; Gerardi, Viviana; Boškoski, Ivo; Bruno, Giovanni; Petito, Valentina; Laterza, Lucrezia; Cammarota, Giovanni; Gaetani, Eleonora; Sgambato, Alessandro; Gasbarrini, Antonio
2013-01-01
Inflammatory bowel diseases are chronic diseases affecting the gastrointestinal tract, whose major forms are represented by Crohn's disease (CD) and ulcerative colitis (UC). Their etiology is still unclear, although several factors have been identified as major determinants for induction or relapses. Among these, the role of the “forgotten organ”, gut microbiota, has become more appreciated in recent years. The delicate symbiotic relationship between the gut microbiota and the host appears to be lost in IBD. In this perspective, several studies have been conducted to assess the role of prebiotics and probiotics in gut microbiota modulation. This is a minireview aimed to address in an easy format (simple questions-simple answers) some common issues about the theme. An update on the role of selected constituents of gut microbiota in the pathogenesis of IBD is presented together with the analysis of the efficacy of gut microbiota modulation by prebiotics and probiotics administration in the management of IBD. PMID:23991417
Druart, Céline; Dewulf, Evelyne M; Cani, Patrice D; Neyrinck, Audrey M; Thissen, Jean-Paul; Delzenne, Nathalie M
2014-04-01
The aim of this human study was to assess the influence of prebiotic-induced gut microbiota modulation on PUFA-derived bacterial metabolites production. Therefore, we analyzed the circulating fatty acid profile including CLA/CLnA in obese women treated during 3 months with inulin-type fructan prebiotics. In these patients, we had already determined gut microbiota composition by phylogenetic microarray and qPCR analysis of 16S rDNA. Some PUFA-derived bacterial metabolites were detected in the serum of obese patients. Despite the prebiotic-induced modulation of gut microbiota, including changes in CLA/CLnA-producing bacteria, the treatment did not impact significantly on the circulating level of these metabolites. However, some PUFA-derived bacterial metabolites were positively correlated with specific fecal bacteria (Bifidobacterium spp., Eubacterium ventriosum and Lactobacillus spp.) and inversely correlated with serum cholesterol (total, LDL, HDL). These correlations suggest a potential beneficial effect of some of these metabolites but this remains to be confirmed by further investigation.
Bai, Gaowa; Tsuruta, Takeshi; Nishino, Naoki
2018-06-01
Soy, meat (mixture of pork and beef), and fish proteins were fed to rats with and without prebiotic raffinose (RAF), and the composition and fermentation of gut microbiota were examined. Bifidobacterium spp. populations were higher, and propionic acid concentration was lower in soy protein-fed than meat protein-fed rats. Likewise, Enterobacteriaceae populations were higher in fish protein-fed rats than other rats. RAF feeding increased Bifidobacterium spp. and decreased Faecalibacterium prausnitzii populations regardless of the dietary protein source. Interactions between dietary proteins and RAF were shown for Lactobacillus spp. and Clostridium perfringens group; the increase of Lactobacillus spp. populations by RAF was seen only for soy protein-fed rats, whereas the reduction of C. perfringens group by RAF was evident in fish and meat protein-fed rats. It is concluded that dietary proteins may differentially modulate the effects of prebiotic oligosaccharides on gut fermentation and microbiota, with differences observed between plant and animal proteins.
Modulation of rotavirus severe gastroenteritis by the combination of probiotics and prebiotics.
Gonzalez-Ochoa, Guadalupe; Flores-Mendoza, Lilian K; Icedo-Garcia, Ramona; Gomez-Flores, Ricardo; Tamez-Guerra, Patricia
2017-09-01
Annual mortality rates due to infectious diarrhea are about 2.2 million; children are the most vulnerable age group to severe gastroenteritis, representing group A rotaviruses as the main cause of disease. One of the main factors of rotavirus pathogenesis is the NSP4 protein, which has been characterized as a viral toxin involved in triggering several cellular responses leading to diarrhea. Furthermore, the rotavirus protein NSP1 has been associated with interferon production inhibition by inducing the degradation of interferon regulatory factors IRF3, IRF5, and IRF7. On the other hand, probiotics such as Bifidobacterium and Lactobacillus species in combination with prebiotics such as inulin, HMO, scGOS, lcFOS have been associated with improved generalized antiviral response and anti-rotavirus effect by the reduction of rotavirus infectivity and viral shedding, decreased expression of NSP4 and increased levels of specific anti-rotavirus IgAs. Moreover, these probiotics and prebiotics have been related to shorter duration and severity of rotavirus diarrhea, to the prevention of infection and reduced incidence of reinfections. In this review we will discuss in detail about the rotavirus pathogenesis and immunity, and how probiotics such as Lactobacillus and Bifidobacterium species in combination with prebiotics have been associated with the prevention or modulation of rotavirus severe gastroenteritis.
Impact of prebiotics and probiotics on skin health.
Al-Ghazzewi, F H; Tester, R F
2014-06-01
This review discusses the role of pre- and probiotics with respect to improving skin health by modulating the cutaneous microbiota. The skin ecosystem is a complex environment covered with a diverse microbiota community. These are classified as either transient or resident, where some are considered as beneficial, some essentially neutral and others pathogenic or at least have the capacity to be pathogenic. Colonisation varies between different parts of the body due to different environmental factors. Pre- and probiotic beneficial effects can be delivered topically or systemically (by ingestion). The pre- and probiotics have the capacity to optimise, maintain and restore the microbiota of the skin in different ways. Topical applications of probiotic bacteria have a direct effect at the site of application by enhancing the skin natural defence barriers. Probiotics as well as resident bacteria can produce antimicrobial peptides that benefit cutaneous immune responses and eliminate pathogens. In cosmetic formulations, prebiotics can be applied to the skin microbiota directly and increase selectively the activity and growth of beneficial 'normal' skin microbiota. Little is known about the efficacy of topically applied prebiotics. Nutritional products containing prebiotics and/or probiotics have a positive effect on skin by modulating the immune system and by providing therapeutic benefits for atopic diseases. This review underlines the potential use of pre- and probiotics for skin health.
Prebiotic effects: metabolic and health benefits.
Roberfroid, Marcel; Gibson, Glenn R; Hoyles, Lesley; McCartney, Anne L; Rastall, Robert; Rowland, Ian; Wolvers, Danielle; Watzl, Bernhard; Szajewska, Hania; Stahl, Bernd; Guarner, Francisco; Respondek, Frederique; Whelan, Kevin; Coxam, Veronique; Davicco, Marie-Jeanne; Léotoing, Laurent; Wittrant, Yohann; Delzenne, Nathalie M; Cani, Patrice D; Neyrinck, Audrey M; Meheust, Agnes
2010-08-01
The different compartments of the gastrointestinal tract are inhabited by populations of micro-organisms. By far the most important predominant populations are in the colon where a true symbiosis with the host exists that is a key for well-being and health. For such a microbiota, 'normobiosis' characterises a composition of the gut 'ecosystem' in which micro-organisms with potential health benefits predominate in number over potentially harmful ones, in contrast to 'dysbiosis', in which one or a few potentially harmful micro-organisms are dominant, thus creating a disease-prone situation. The present document has been written by a group of both academic and industry experts (in the ILSI Europe Prebiotic Expert Group and Prebiotic Task Force, respectively). It does not aim to propose a new definition of a prebiotic nor to identify which food products are classified as prebiotic but rather to validate and expand the original idea of the prebiotic concept (that can be translated in 'prebiotic effects'), defined as: 'The selective stimulation of growth and/or activity(ies) of one or a limited number of microbial genus(era)/species in the gut microbiota that confer(s) health benefits to the host.' Thanks to the methodological and fundamental research of microbiologists, immense progress has very recently been made in our understanding of the gut microbiota. A large number of human intervention studies have been performed that have demonstrated that dietary consumption of certain food products can result in statistically significant changes in the composition of the gut microbiota in line with the prebiotic concept. Thus the prebiotic effect is now a well-established scientific fact. The more data are accumulating, the more it will be recognised that such changes in the microbiota's composition, especially increase in bifidobacteria, can be regarded as a marker of intestinal health. The review is divided in chapters that cover the major areas of nutrition research where a prebiotic effect has tentatively been investigated for potential health benefits. The prebiotic effect has been shown to associate with modulation of biomarkers and activity(ies) of the immune system. Confirming the studies in adults, it has been demonstrated that, in infant nutrition, the prebiotic effect includes a significant change of gut microbiota composition, especially an increase of faecal concentrations of bifidobacteria. This concomitantly improves stool quality (pH, SCFA, frequency and consistency), reduces the risk of gastroenteritis and infections, improves general well-being and reduces the incidence of allergic symptoms such as atopic eczema. Changes in the gut microbiota composition are classically considered as one of the many factors involved in the pathogenesis of either inflammatory bowel disease or irritable bowel syndrome. The use of particular food products with a prebiotic effect has thus been tested in clinical trials with the objective to improve the clinical activity and well-being of patients with such disorders. Promising beneficial effects have been demonstrated in some preliminary studies, including changes in gut microbiota composition (especially increase in bifidobacteria concentration). Often associated with toxic load and/or miscellaneous risk factors, colon cancer is another pathology for which a possible role of gut microbiota composition has been hypothesised. Numerous experimental studies have reported reduction in incidence of tumours and cancers after feeding specific food products with a prebiotic effect. Some of these studies (including one human trial) have also reported that, in such conditions, gut microbiota composition was modified (especially due to increased concentration of bifidobacteria). Dietary intake of particular food products with a prebiotic effect has been shown, especially in adolescents, but also tentatively in postmenopausal women, to increase Ca absorption as well as bone Ca accretion and bone mineral density. Recent data, both from experimental models and from human studies, support the beneficial effects of particular food products with prebiotic properties on energy homaeostasis, satiety regulation and body weight gain. Together, with data in obese animals and patients, these studies support the hypothesis that gut microbiota composition (especially the number of bifidobacteria) may contribute to modulate metabolic processes associated with syndrome X, especially obesity and diabetes type 2. It is plausible, even though not exclusive, that these effects are linked to the microbiota-induced changes and it is feasible to conclude that their mechanisms fit into the prebiotic effect. However, the role of such changes in these health benefits remains to be definitively proven. As a result of the research activity that followed the publication of the prebiotic concept 15 years ago, it has become clear that products that cause a selective modification in the gut microbiota's composition and/or activity(ies) and thus strengthens normobiosis could either induce beneficial physiological effects in the colon and also in extra-intestinal compartments or contribute towards reducing the risk of dysbiosis and associated intestinal and systemic pathologies.
Prebiotics: A Potential Treatment Strategy for the Chemotherapy-damaged Gut?
Wang, Hanru; Geier, Mark S; Howarth, Gordon S
2016-01-01
Mucositis, characterized by ulcerative lesions along the alimentary tract, is a common consequence of many chemotherapy regimens. Chemotherapy negatively disrupts the intestinal microbiota, resulting in increased numbers of potentially pathogenic bacteria, such as Clostridia and Enterobacteriaceae, and decreased numbers of "beneficial" bacteria, such as Lactobacilli and Bifidobacteria. Agents capable of restoring homeostasis in the bowel microbiota could, therefore, be applicable to mucositis. Prebiotics are indigestible compounds, commonly oligosaccharides, that seek to reverse chemotherapy-induced intestinal dysbiosis through selective colonization of the intestinal microbiota by probiotic bacteria. In addition, evidence is emerging that certain prebiotics contribute to nutrient digestibility and absorption, modulate intestinal barrier function through effects on mucin expression, and also modify mucosal immune responses, possibly via inflammasome-mediated processes. This review examines the known mechanisms of prebiotic action, and explores their potential for reducing the severity of chemotherapy-induced mucositis in the intestine.
Cuello-Garcia, C; Fiocchi, A; Pawankar, R; Yepes-Nuñez, J J; Morgano, G P; Zhang, Y; Agarwal, A; Gandhi, S; Terracciano, L; Schünemann, H J; Brozek, J L
2017-11-01
Prevalence of allergic diseases in infants is approximately 10% reaching 20 to 30% in those with an allergic first-degree relative. Prebiotics are selectively fermented food ingredients that allow specific changes in composition/activity of the gastrointestinal microflora. They modulate immune responses, and their supplementation has been proposed as an intervention to prevent allergies. To assess in pregnant women, breastfeeding mothers, and infants (populations) the effect of supplementing prebiotics (intervention) versus no prebiotics (comparison) on the development of allergic diseases and to inform the World Allergy Organization guidelines. We performed a systematic review of studies assessing the effects of prebiotic supplementation with an intention to prevent the development of allergies. Of 446 unique records published until November 2016 in Cochrane, MEDLINE, and EMBASE, 22 studies fulfilled a priori specified criteria. We did not find any studies of prebiotics given to pregnant women or breastfeeding mothers. Prebiotic supplementation in infants, compared to placebo, had the following effects: risk of developing eczema (RR: 0.68, 95% CI: 0.40 to 1.15), wheezing/asthma (RR, 0.37; 95% CI: 0.17 to 0.80), and food allergy (RR: 0.28, 95% CI: 0.08 to 1.00). There was no evidence of an increased risk of any adverse effects (RR: 1.01, 95% CI: 0.92 to 1.10). Prebiotic supplementation had little influence growth rate (MD: 0.92 g per day faster with prebiotics, 95% CI: 0 to 1.84) and the final infant weight (MD: 0.10 kg higher with prebiotics, 95% CI: -0.09 to 0.29). The certainty of these estimates is very low due to risk of bias and imprecision of the results. Currently available evidence on prebiotic supplementation to reduce the risk of developing allergies is very uncertain. © 2017 John Wiley & Sons Ltd.
Modulation of Gut Microbiota-Brain Axis by Probiotics, Prebiotics, and Diet.
Liu, Xiaofei; Cao, Shangqing; Zhang, Xuewu
2015-09-16
There exists a bidirectional communication system between the gastrointestinal tract and the brain. Increasing evidence shows that gut microbiota can play a critical role in this communication; thus, the concept of a gut microbiota and brain axis is emerging. Here, we review recent findings in the relationship between intestinal microbes and brain function, such as anxiety, depression, stress, autism, learning, and memory. We highlight the advances in modulating brain development and behavior by probiotics, prebiotics, and diet through the gut microbiota-brain axis. A variety of mechanisms including immune, neural, and metabolic pathways may be involved in modulation of the gut microbiota-brain axis. We also discuss some future challenges. A deeper understanding of the relationship between the gut bacteria and their hosts is implicated in developing microbial-based therapeutic strategies for brain disorders.
Probiotics, Prebiotics and Immunomodulation of Gut Mucosal Defences: Homeostasis and Immunopathology
Hardy, Holly; Harris, Jennifer; Lyon, Eleanor; Beal, Jane; Foey, Andrew D.
2013-01-01
Probiotics are beneficial microbes that confer a realistic health benefit on the host, which in combination with prebiotics, (indigestible dietary fibre/carbohydrate), also confer a health benefit on the host via products resulting from anaerobic fermentation. There is a growing body of evidence documenting the immune-modulatory ability of probiotic bacteria, it is therefore reasonable to suggest that this is potentiated via a combination of prebiotics and probiotics as a symbiotic mix. The need for probiotic formulations has been appreciated for the health benefits in “topping up your good bacteria” or indeed in an attempt to normalise the dysbiotic microbiota associated with immunopathology. This review will focus on the immunomodulatory role of probiotics and prebiotics on the cells, molecules and immune responses in the gut mucosae, from epithelial barrier to priming of adaptive responses by antigen presenting cells: immune fate decision—tolerance or activation? Modulation of normal homeostatic mechanisms, coupled with findings from probiotic and prebiotic delivery in pathological studies, will highlight the role for these xenobiotics in dysbiosis associated with immunopathology in the context of inflammatory bowel disease, colorectal cancer and hypersensitivity. PMID:23760057
Clinical Effects of Prebiotics in Pediatric Population.
Orel, Rok; Reberšak, Lea Vodušek
2016-12-15
Prebiotics are non-digestible components of food that in a selective manner trigger the expansion of microbes in the gut with valuable effects for the health of the host. In our document, current literature pertaining to the clinical effects of the use of prebiotics for the treatment and prevention of some common pediatric pathology such as infantile colic, constipation, absorption of minerals, weight gain, diarrhea, respiratory infections, and eczema is reviewed. Data was collected through search of the MEDLINE, PubMed, UpToDate, Cochrane Database of Systemic Reviews, and the Cochrane Controlled Trials Register database as well as through references from relevant articles, all until September 2015. However, only the results of publications with adequate methodological quality were included. Prebiotics seem to be very appealing in treatment of many clinical conditions, explicitly in the fight against constipation, poor weight gain in preterm infants, and eczema in atopic children. In contrast to probiotics, the evidence of true clinical efficacy of prebiotics, supported with exact type and dose information are rather sparse, and there are a limited number of randomized controlled trials concerning prebiotics in children, especially beyond the age of infancy. Large well-designed, controlled, confirmatory clinical trials are required, using commercially available products, to help healthcare providers in making an appropriate decision concerning the appropriate use of prebiotics in different conditions.
Alligier, Maud; Dewulf, Evelyne M; Salazar, Nuria; Mairal, Aline; Neyrinck, Audrey M; Cani, Patrice D; Langin, Dominique; Delzenne, Nathalie M
2014-07-01
To investigate whether inulin-type fructan (ITF) prebiotics could counteract the thiazolidinedione (TZD, PPARγ activator) induced-fat mass gain, without affecting its beneficial effect on glucose homeostasis, in high-fat (HF) diet fed mice. Male C57bl6/J mice were fed a HF diet alone or supplemented with ITF prebiotics (0.2 g/day × mouse) or TZD (30 mg pioglitazone (PIO)/kg body weight × day) or both during 4 weeks. An insulin tolerance test was performed after 3 weeks of treatment. As expected, PIO improved glucose homeostasis and increased adiponectinaemia. Furthermore, it induced an over-expression of several PPARγ target genes in white adipose tissues. ITF prebiotics modulated the PIO-induced PPARγ activation in a tissue-dependent manner. The co-treatment with ITF prebiotics and PIO maintained the beneficial impact of TZD on glucose homeostasis and adiponectinaemia. Moreover, the combination of both treatments reduced fat mass accumulation, circulating lipids and hepatic triglyceride content, suggesting an overall improvement of metabolism. Finally, the co-treatment favored induction of white-to-brown fat conversion in subcutaneous adipose tissue, thereby leading to the development of brite adipocytes that could increase the oxidative capacity of the tissue. ITF prebiotics decrease adiposity and improve the metabolic response in HF fed mice treated with TZD. © 2014 The Obesity Society.
Martinez, Rafael Chacon Ruiz; Bedani, Raquel; Saad, Susana Marta Isay
2015-12-28
Probiotics and prebiotics, mainly commercialised as food ingredients and also as supplements, are considered highly profitable niche markets. However, in recent years, the food industry has suffered from a series of health claim restrictions on probiotics and prebiotics in many parts of the world, including those made by the European Food Safety Authority. Therefore, we reviewed the core benefits of probiotic and prebiotic consumption on health. A number of studies have examined the prevention and/or management of intestinal infections, respiratory tract infections, CVD, osteoporosis, urogenital infections, cavities, periodontal disease and halitosis, allergic reactions, inflammatory bowel disease and irritable bowel syndrome and Helicobacter pylori gastric infections. In fact, a deeper understanding of the mechanisms involved in human microbiota and immune system modulation by probiotics and prebiotics relies on continuous efforts to establish suitable biomarkers of health and diseases risk factors for the design of clinical trials required for health claim approval. In spite of the promising results, the performance of large, long-term, well-planned, well-aligned clinical studies is crucial to provide more reliability and a more solid basis for the outcomes achieved and to support the potential use of probiotics and prebiotics in clinical practice.
Barley β-Glucans-Containing Food Enhances Probiotic Performances of Beneficial Bacteria
Arena, Mattia P.; Caggianiello, Graziano; Fiocco, Daniela; Russo, Pasquale; Torelli, Michele; Spano, Giuseppe; Capozzi, Vittorio
2014-01-01
Currently, the majority of prebiotics in the market are derived from non-digestible oligosaccharides. Very few studies have focused on non-digestible long chain complex polysaccharides in relation to their potential as novel prebiotics. Cereals β-glucans have been investigated for immune-modulating properties and beneficial effects on obesity, cardiovascular diseases, diabetes, and cholesterol levels. Moreover, β-glucans have been reported to be highly fermentable by the intestinal microbiota in the caecum and colon, and can enhance both growth rate and lactic acid production of microbes isolated from the human intestine. In this work, we report the effects of food matrices containing barley β-glucans on growth and probiotic features of four Lactobacillus strains. Such matrices were able to improve the growth rate of the tested bacteria both in unstressed conditions and, importantly, after exposure to in vitro simulation of the digestive tract. Moreover, the effect of β-glucans-containing food on bacterial adhesion to enterocyte-like cells was analyzed and a positive influence on probiotic-enterocyte interaction was observed. PMID:24562330
New Approaches for Bacteriotherapy: Prebiotics, New-Generation Probiotics, and Synbiotics
Patel, Rachna; DuPont, Herbert L.
2015-01-01
The gut microbiota has a significant role in human health and disease. Dysbiosis of the intestinal ecosystem contributes to the development of certain illnesses that can be reversed by favorable alterations by probiotics. The published literature was reviewed to identify scientific data showing a relationship between imbalance of gut bacteria and development of diseases that can be improved by biologic products. The medical conditions vary from infectious and antibiotic-associated diarrhea to obesity to chronic neurologic disorders. A number of controlled clinical trials have been performed to show important biologic effects in a number of these conditions through administration of prebiotics, probiotics, and synbiotics. Controlled clinical trials have identified a limited number of prebiotics, probiotic strains, and synbiotics that favorably prevent or improve the symptoms of various disorders including inflammatory bowel disease, irritable bowel syndrome, infectious and antibiotic-associated diarrhea, diabetes, nonalcoholic fatty liver disease, necrotizing enterocolitis in very low birth weight infants, and hepatic encephalopathy. Studies have shown that probiotics alter gut flora and lead to elaboration of flora metabolites that influence health through 1 of 3 general mechanisms: direct antimicrobial effects, enhancement of mucosal barrier integrity, and immune modulation. Restoring the balance of intestinal flora by introducing probiotics for disease prevention and treatment could be beneficial to human health. It is also clear that significant differences exist between different probiotic species. Metagenomics and metatranscriptomics together with bioinformatics have allowed us to study the cross-talk between the gut microbiota and the host, furthering insight into the next generation of biologic products. PMID:25922396
Dewulf, Evelyne M; Cani, Patrice D; Claus, Sandrine P; Fuentes, Susana; Puylaert, Philippe G B; Neyrinck, Audrey M; Bindels, Laure B; de Vos, Willem M; Gibson, Glenn R; Thissen, Jean-Paul; Delzenne, Nathalie M
2013-08-01
To highlight the contribution of the gut microbiota to the modulation of host metabolism by dietary inulin-type fructans (ITF prebiotics) in obese women. A double blind, placebo controlled, intervention study was performed with 30 obese women treated with ITF prebiotics (inulin/oligofructose 50/50 mix; n=15) or placebo (maltodextrin; n=15) for 3 months (16 g/day). Blood, faeces and urine sampling, oral glucose tolerance test, homeostasis model assessment and impedancemetry were performed before and after treatment. The gut microbial composition in faeces was analysed by phylogenetic microarray and qPCR analysis of 16S rDNA. Plasma and urine metabolic profiles were analysed by 1H-NMR spectroscopy. Treatment with ITF prebiotics, but not the placebo, led to an increase in Bifidobacterium and Faecalibacterium prausnitzii; both bacteria negatively correlated with serum lipopolysaccharide levels. ITF prebiotics also decreased Bacteroides intestinalis, Bacteroides vulgatus and Propionibacterium, an effect associated with a slight decrease in fat mass and with plasma lactate and phosphatidylcholine levels. No clear treatment clustering could be detected for gut microbial analysis or plasma and urine metabolomic profile analyses. However, ITF prebiotics led to subtle changes in the gut microbiota that may importantly impact on several key metabolites implicated in obesity and/or diabetes. ITF prebiotics selectively changed the gut microbiota composition in obese women, leading to modest changes in host metabolism, as suggested by the correlation between some bacterial species and metabolic endotoxaemia or metabolomic signatures.
Pourabedin, Mohsen; Xu, Zhengxin; Baurhoo, Bushansingh; Chevaux, Eric; Zhao, Xin
2014-05-01
There is an increasing movement against use of antibiotic growth promoters in animal feed. Prebiotic supplementation is a potential alternative to enhance the host's natural defense through modulation of gut microbiota. In the present study, the effect of mannan oligosaccharide (MOS) and virginiamycin (VIRG) on cecal microbial ecology and intestinal morphology of broiler chickens raised under suboptimal conditions was evaluated. MOS and VIRG induced different bacterial community structures, as revealed by denaturing gradient gel electrophoresis of 16S rDNA. The antibiotic treatment reduced cecal microbial diversity while the community equitability increased. A higher bacterial diversity was observed in the cecum of MOS-supplemented birds. Quantitative polymerase chain reaction results indicated that MOS changed the cecal microbiota in favor of the Firmicutes population but not the Bacteroidetes population. No difference was observed in total bacterial counts among treatments. MOS promoted the growth of Lactobacillus spp. and Bifidobacterium spp. in the cecum and increased villus height and goblet cell numbers in the ileum and jejunum. These results provide a deeper insight into the microbial ecological changes after supplementation of MOS prebiotic in poultry diets.
Protoenzymes: the case of hyperbranched polyesters
NASA Astrophysics Data System (ADS)
Mamajanov, Irena; Cody, George D.
2017-11-01
Enzymes are biopolymeric complexes that catalyse biochemical reactions and shape metabolic pathways. Enzymes usually work with small molecule cofactors that actively participate in reaction mechanisms and complex, usually globular, polymeric structures capable of specific substrate binding, encapsulation and orientation. Moreover, the globular structures of enzymes possess cavities with modulated microenvironments, facilitating the progression of reaction(s). The globular structure is ensured by long folded protein or RNA strands. Synthesis of such elaborate complexes has proven difficult under prebiotically plausible conditions. We explore here that catalysis may have been performed by alternative polymeric structures, namely hyperbranched polymers. Hyperbranched polymers are relatively complex structures that can be synthesized under prebiotically plausible conditions; their globular structure is ensured by virtue of their architecture rather than folding. In this study, we probe the ability of tertiary amine-bearing hyperbranched polyesters to form hydrophobic pockets as a reaction-promoting medium for the Kemp elimination reaction. Our results show that polyesters formed upon reaction between glycerol, triethanolamine and organic acid containing hydrophobic groups, i.e. adipic and methylsuccinic acid, are capable of increasing the rate of Kemp elimination by a factor of up to 3 over monomeric triethanolamine. This article is part of the themed issue 'Reconceptualizing the origins of life'.
Prebiotics Mediate Microbial Interactions in a Consortium of the Infant Gut Microbiome.
Medina, Daniel A; Pinto, Francisco; Ovalle, Aline; Thomson, Pamela; Garrido, Daniel
2017-10-04
Composition of the gut microbiome is influenced by diet. Milk or formula oligosaccharides act as prebiotics, bioactives that promote the growth of beneficial gut microbes. The influence of prebiotics on microbial interactions is not well understood. Here we investigated the transformation of prebiotics by a consortium of four representative species of the infant gut microbiome, and how their interactions changed with dietary substrates. First, we optimized a culture medium resembling certain infant gut parameters. A consortium containing Bifidobacterium longum subsp. infantis , Bacteroides vulgatus , Escherichia coli and Lactobacillus acidophilus was grown on fructooligosaccharides (FOS) or 2'-fucosyllactose (2FL) in mono- or co-culture. While Bi. infantis and Ba. vulgatus dominated growth on 2FL, their combined growth was reduced. Besides, interaction coefficients indicated strong competition, especially on FOS. While FOS was rapidly consumed by the consortium, B. infantis was the only microbe displaying significant consumption of 2FL. Acid production by the consortium resembled the metabolism of microorganisms dominating growth in each substrate. Finally, the consortium was tested in a bioreactor, observing similar predominance but more pronounced acid production and substrate consumption. This study indicates that the chemical nature of prebiotics modulate microbial interactions in a consortium of infant gut species.
Microbiota and prebiotics modulation of uremic toxin generation.
Koppe, Laetitia; Fouque, Denis
2017-06-01
Recent data have shown that the host-intestinal microbiota interaction is intrinsically linked with overall health. Chronic kidney disease (CKD) could influence intestinal microbiota and gut dysbiosis is also considered as a cause of progression of kidney disease. An increasing body of evidence indicates that dysbiosis is a key contributor of uremic retention solutes (URS) accumulating in patients with CKD. The discovery of the kidney-gut axis has created new therapeutic opportunities for nutritional intervention in order to prevent adverse outcomes. One of these strategies is prebiotics, which refers to nondigestible food ingredients or substances that beneficial affect growth and/or activity of limited health-promoting bacteria in the gastrointestinal tract. The influence of prebiotics on the production and concentration of URS have been investigated in various animal and human CKD studies. However, to date, there is still paucity of high-quality intervention trials. Randomized controlled trials and adequately powered intervention studies are needed before recommending prebiotics in clinical practice. This review will outline the interconnection between CKD progression, dysbiosis and URS production and will discuss mechanisms of action and efficacy of prebiotics as a new CKD management tool, with a particular emphasis on URS generation.
Cao, Yang; Zhang, Hongxia; Jin, Yifan; Zhang, Yihe; Hayford, Frank
2018-01-01
The human gut is densely populated with diverse microbial communities that are essential to health. Prebiotics and fiber have been shown to possess the ability to modulate the gut microbiota. One of the plants being considered as a potential source of prebiotic is yacon. Yacon is an underutilized plant consumed as a traditional root-based fruit in South America. Yacon mainly contains fructooligosaccharides (FOS) and inulin. Therefore, it has bifidogenic benefits for gut health, because FOS are not easily broken down by digestive enzymes. Bioactive chemical compounds and extracts isolated from yacon have been studied for their various nutrigenomic properties, including as a prebiotic for intestinal health and their antimicrobial and antioxidant effects. This article reviewed scientific studies regarding the bioactive chemical compounds and nutrigenomic properties of extracts and isolated compounds from yacon. These findings may help in further research to investigate yacon-based nutritional products. Yacon can be considered a potential prebiotic source and a novel functional food. However, more detailed epidemiological, animal, and human clinical studies, particularly mechanism-based and phytopharmacological studies, are lacking for the development of evidence-based functional food products. PMID:29649123
Cao, Yang; Ma, Zheng Feei; Zhang, Hongxia; Jin, Yifan; Zhang, Yihe; Hayford, Frank
2018-04-12
The human gut is densely populated with diverse microbial communities that are essential to health. Prebiotics and fiber have been shown to possess the ability to modulate the gut microbiota. One of the plants being considered as a potential source of prebiotic is yacon. Yacon is an underutilized plant consumed as a traditional root-based fruit in South America. Yacon mainly contains fructooligosaccharides (FOS) and inulin. Therefore, it has bifidogenic benefits for gut health, because FOS are not easily broken down by digestive enzymes. Bioactive chemical compounds and extracts isolated from yacon have been studied for their various nutrigenomic properties, including as a prebiotic for intestinal health and their antimicrobial and antioxidant effects. This article reviewed scientific studies regarding the bioactive chemical compounds and nutrigenomic properties of extracts and isolated compounds from yacon. These findings may help in further research to investigate yacon-based nutritional products. Yacon can be considered a potential prebiotic source and a novel functional food. However, more detailed epidemiological, animal, and human clinical studies, particularly mechanism-based and phytopharmacological studies, are lacking for the development of evidence-based functional food products.
Prebiotics: Definition and protective mechanisms.
Valcheva, Rosica; Dieleman, Levinus A
2016-02-01
The increase in chronic metabolic and immunologic disorders in the modern society is linked to major changes in the dietary patterns. These chronic conditions are associated with intestinal microbiota dysbiosis where important groups of carbohydrate fermenting, short-chain fatty acids-producing bacteria are reduced. Dietary prebiotics are defined as a selectively fermented ingredients that result in specific changes in the composition and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) upon host health. Application of prebiotics may then restore the gut microbiota diversity and activity. Unlike the previously accepted prebiotics definition, where a limited number of bacterial species are involved in the prebiotic activity, new data from community-wide microbiome analysis demonstrated a broader affect of the prebiotics on the intestinal microbiota. These new findings require a revision of the current definition. In addition, prebiotics may exert immunomodulatory effects through microbiota-independent mechanisms that will require future investigations involving germ-free animal disease models. Copyright © 2016 Elsevier Ltd. All rights reserved.
Influence of the UV Environment on the Synthesis of Prebiotic Molecules.
Ranjan, Sukrit; Sasselov, Dimitar D
2016-01-01
Ultraviolet radiation is common to most planetary environments and could play a key role in the chemistry of molecules relevant to abiogenesis (prebiotic chemistry). In this work, we explore the impact of UV light on prebiotic chemistry that might occur in liquid water on the surface of a planet with an atmosphere. We consider effects including atmospheric absorption, attenuation by water, and stellar variability to constrain the UV input as a function of wavelength. We conclude that the UV environment would be characterized by broadband input, and wavelengths below 204 nm and 168 nm would be shielded out by atmospheric CO2 and water, respectively. We compare this broadband prebiotic UV input to the narrowband UV sources (e.g., mercury lamps) often used in laboratory studies of prebiotic chemistry and explore the implications for the conclusions drawn from these experiments. We consider as case studies the ribonucleotide synthesis pathway of Powner et al. (2009) and the sugar synthesis pathway of Ritson and Sutherland (2012). Irradiation by narrowband UV light from a mercury lamp formed an integral component of these studies; we quantitatively explore the impact of more realistic UV input on the conclusions that can be drawn from these experiments. Finally, we explore the constraints solar UV input places on the buildup of prebiotically important feedstock gasses like CH4 and HCN. Our results demonstrate the importance of characterizing the wavelength dependence (action spectra) of prebiotic synthesis pathways to determine how pathways derived under laboratory irradiation conditions will function under planetary prebiotic conditions.
Recent Advances in Supramolecular Assemblies with Nucleic Acids
2007-08-29
origin of life“ Abstract : A large number of surfactants are chemically simple compounds that may be obtained under presumably prebiotic ...world hypothesis), it is still unclear how RNA could have been formed under prebiotic conditions. Surfactants with their self-organizing properties may...surfactants were possibly very important in prebiotic times in the sense that they may have been involved in different physical and chemical
Rishi, Praveen; Arora, Sumeha; Kaur, Ujjwal Jit; Chopra, Kanwaljit; Kaur, Indu Pal
2017-01-01
Synergistic combination of probiotics with carbohydrate based prebiotics is widely employed for the treatment of various gut related disorders. However, such carbohydrate based prebiotics encourage the growth of pathogens and probiotics, equally. Aim of the study was (i) to explore the possibility of using epigallocatechin gallate (EGCG) a phenolic compound, as a prebiotic for L.plantarum; (ii) to develop and evaluate a microstructured synbox (microencapsulating both probiotic and EGCG together) in rat model of alcohol liver disease (ALD); and, (iii) to confirm whether the combination can address issues of EGCG bioavailability and probiotic survivability in adverse gut conditions. Growth enhancing effect of EGCG on L. plantarum (12.8±0.5 log 10 units) was significantly (p≤0.05) better than inulin (11.4±0.38 log 10 units), a natural storage carbohydrate. The formulated synbox significantly modulated the levels of alcohol, endotoxin, hepatic enzymes and restored the hepatoarchitecture in comparison to simultaneous administration of free agents. Additionally, using a battery of techniques, levels of various cellular and molecular markers viz. NF-kB/p50, TNF-α, IL12/p40, and signalling molecules TLR4, CD14, MD2, MyD88 and COX-2 were observed to be suppressed. Developed microbead synbox, as a single delivery system for both the agents showed synergism and hence, holds promise as a therapeutic option for ALD management. PMID:28060832
Oxidative acylation using thioacids
NASA Technical Reports Server (NTRS)
Liu, R.; Orgel, L. E.
1997-01-01
Several important prebiotic reactions, including the coupling of amino acids into polypeptides by the formation of amide linkages, involve acylation. Theae reactions present a challenge to the understanding of prebiotic synthesis. Condensation reactions relying on dehydrating agents are either inefficient in aqueous solution or require strongly acidic conditions and high temperatures. Activated amino acids such as thioester derivatives have therefore been suggested as likely substrates for prebiotic peptide synthesis. Here we propose a closely related route to amide bond formation involving oxidative acylation by thioacids. We find that phenylalanine, leucine and phenylphosphate are acylated efficiently in aqueous solution by thioacetic acid and an oxidizing agent. From a prebiotic point of view, oxidative acylation has the advantage of proceeding efficiently in solution and under mild conditions. We anticipate that oxidative acylation should prove to be a general method for activating carboxylic acids, including amino acids.
Self-Assembly of Phosphate Amphiphiles in Mixtures of Prebiotically Plausible Surfactants
Albertsen, A.N.; Duffy, C.D.; Sutherland, J.D.
2014-01-01
Abstract The spontaneous formation of closed bilayer structures from prebiotically plausible amphiphiles is an essential requirement for the emergence of early cells on prebiotic Earth. The sources of amphiphiles could have been both endo- and exogenous (accretion of meteorite carbonaceous material or interstellar dust particles). Among all prebiotic possible amphiphile candidates, those containing phosphate are the least investigated species because their self-assembly occurs in a seemingly too narrow range of conditions. The self-assembly of simple phosphate amphiphiles should, however, be of great interest, as contemporary membranes predominantly contain phospholipids. In contrast to common expectations, we show that these amphiphiles can be easily synthesized under prebiotically plausible environmental conditions and can efficiently form bilayer structures in the presence of various co-surfactants across a large range of pH values. Vesiculation was even observed in crude reaction mixtures that contained 1-decanol as the amphiphile precursor. The two best co-surfactants promoted vesicle formation over the entire pH range in aqueous solutions. Expanding the pH range where bilayer membranes self-assemble and remain intact is a prerequisite for the emergence of early cell-like compartments and their preservation under fluctuating environmental conditions. These mixed bilayers also retained small charged solutes, such as dyes. These results demonstrate that alkyl phosphate amphiphiles might have played a significant role as early compartment building blocks. Key Words: Vesicles—Alkyl phosphate—Prebiotic synthesis—Amphiphile mixtures. Astrobiology 14, 462–472. PMID:24885934
New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics.
Patel, Rachna; DuPont, Herbert L
2015-05-15
The gut microbiota has a significant role in human health and disease. Dysbiosis of the intestinal ecosystem contributes to the development of certain illnesses that can be reversed by favorable alterations by probiotics. The published literature was reviewed to identify scientific data showing a relationship between imbalance of gut bacteria and development of diseases that can be improved by biologic products. The medical conditions vary from infectious and antibiotic-associated diarrhea to obesity to chronic neurologic disorders. A number of controlled clinical trials have been performed to show important biologic effects in a number of these conditions through administration of prebiotics, probiotics, and synbiotics. Controlled clinical trials have identified a limited number of prebiotics, probiotic strains, and synbiotics that favorably prevent or improve the symptoms of various disorders including inflammatory bowel disease, irritable bowel syndrome, infectious and antibiotic-associated diarrhea, diabetes, nonalcoholic fatty liver disease, necrotizing enterocolitis in very low birth weight infants, and hepatic encephalopathy. Studies have shown that probiotics alter gut flora and lead to elaboration of flora metabolites that influence health through 1 of 3 general mechanisms: direct antimicrobial effects, enhancement of mucosal barrier integrity, and immune modulation. Restoring the balance of intestinal flora by introducing probiotics for disease prevention and treatment could be beneficial to human health. It is also clear that significant differences exist between different probiotic species. Metagenomics and metatranscriptomics together with bioinformatics have allowed us to study the cross-talk between the gut microbiota and the host, furthering insight into the next generation of biologic products. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Modulation of the gut microbiota by prebiotic fibres and bacteriocins
Umu, Özgün C. O.; Rudi, Knut; Diep, Dzung B.
2017-01-01
ABSTRACT The gut microbiota is considered an organ that co-develops with the host throughout its life. The composition and metabolic activities of the gut microbiota are subject to a complex interplay between the host genetics and environmental factors, such as lifestyle, diet, stress and antimicrobials. It is evident that certain prebiotics, and antimicrobials produced by lactic acid bacteria (LAB), can shape the composition of the gut microbiota and its metabolic activities to promote host health and/or prevent diseases. In this review, we aim to give an overview of the impact of prebiotic fibres, and bacteriocins from LAB, on the gut microbiota and its activities, which affect the physiology and health of the host. These represent two different mechanisms in modulating the gut microbiota, the first involving exploitative competition by which the growth of beneficial bacteria is promoted and the latter involving interference competition by which the growth of pathogens and other unwanted bacteria is prevented. For interference competition in the gut, bacteriocins offer special advantages over traditional antibiotics, in that they can be designed to act towards specific unwanted bacteria and other pathogens, without any remarkable collateral effects on beneficial microbes sharing the same niche. PMID:28959178
Dondi, Daniele; Merli, Daniele; Pretali, Luca; Fagnoni, Maurizio; Albini, Angelo; Serpone, Nick
2007-11-01
A series of prebiotic mixtures of simple molecules, sources of C, H, N, and O, were examined under conditions that may have prevailed during the Hadean eon (4.6-3.8 billion years), namely an oxygen-free atmosphere and a significant UV radiation flux over a large wavelength range due to the absence of an ozone layer. Mixtures contained a C source (methanol, acetone or other ketones), a N source (ammonia or methylamine), and an O source (water) at various molar ratios of C : H : N : O. When subjected to UV light or heated for periods of 7 to 45 days under an argon atmosphere, they yielded a narrow product distribution of a few principal compounds. Different initial conditions produced different distributions. The nature of the products was ascertained by gas chromatographic-mass spectral analysis (GC-MS). UVC irradiation of an aqueous methanol-ammonia-water prebiotic mixture for 14 days under low UV dose (6 x 10(-2) Einstein) produced methylisourea, hexamethylenetetramine (HMT), methyl-HMT and hydroxy-HMT, whereas under high UV dose (45 days; 1.9 x 10(-1) Einstein) yielded only HMT. By contrast, the prebiotic mixture composed of acetone-ammonia-water produced five principal species with acetamide as the major component; thermally the same mixture produced a different product distribution of four principal species. UVC irradiation of the CH(3)CN-NH(3)-H(2)O prebiotic mixture for 7 days gave mostly trimethyl-s-triazine, whereas in the presence of two metal oxides (TiO(2) or Fe(2)O(3)) also produced some HMT; the thermal process yielded only acetamide.
Nowak, Adriana; Śliżewska, Katarzyna; Otlewska, Anna
2015-12-01
Dietary components such as lactic acid bacteria (LAB) and prebiotics can modulate the intestinal microbiota and are thought to be involved in the reduction of colorectal cancer risk. The presented study measured, using the comet assay, the antigenotoxic activity of both probiotic and non-probiotic LAB, as well as some prebiotics and the end-products of their fermentation, against fecal water (FW). The production of short chain fatty acids by the bacteria was quantified using HPLC. Seven out of the ten tested viable strains significantly decreased DNA damage induced by FW. The most effective of them were Lactobacillus mucosae 0988 and Bifidobacterium animalis ssp. lactis Bb-12, leading to a 76% and 80% decrease in genotoxicity, respectively. The end-products of fermentation of seven prebiotics by Lactobacillus casei DN 114-001 exhibited the strongest antigenotoxic activity against FW, with fermented inulin reducing genotoxicity by 75%. Among the tested bacteria, this strain produced the highest amounts of butyrate in the process of prebiotic fermentation, and especially from resistant dextrin (4.09 μM/mL). Fermented resistant dextrin improved DNA repair by 78% in cells pre-treated with 6.8 μM methylnitronitrosoguanidine (MNNG). Fermented inulin induced stronger DNA repair in cells pre-treated with mutagens (FW, 25 μM hydrogen peroxide, or MNNG) than non-fermented inulin, and the efficiency of DNA repair after 120 min of incubation decreased by 71%, 50% and 70%, respectively. The different degrees of genotoxicity inhibition observed for the various combinations of bacteria and prebiotics suggest that this effect may be attributable to carbohydrate type, SCFA yield, and the ratio of the end-products of prebiotic fermentation. Copyright © 2015 Elsevier Inc. All rights reserved.
Dasopoulou, Maria; Briana, Despina D; Boutsikou, Theodora; Karakasidou, Eirini; Roma, Eleftheria; Costalos, Christos; Malamitsi-Puchner, Ariadne
2015-03-01
Gut hormones play an important role in the adaptation of the immature neonatal gut, and their secretion may be modulated by prebiotics. Furthermore, prebiotics are well known for their hypolipidemic potentials. We tested the hypothesis that prebiotics could alter motilin and gastrin secretion and reduce lipids in healthy preterms. A total of 167 newborns were randomized to either a prebiotics enriched formula containing dietary oligosaccharides (short-chain galacto-oligo-saccharides/long-chain fructo-oligo-saccharides [scGOS/lcFOS]), at a concentration of 0.8 g/100 ml, or a common preterm formula. Day 1 and 16 basal motilin, gastrin concentrations, and lipids were evaluated together with growth parameters, gastric residue, bowel habits, and feeding tolerance. Adverse events including necrotizing enterocolitis (NEC) and septicemia were also recorded. Mean motilin increase and day 16 mean values were greater for the intervention, compared with the control group (P = .001, P = .005, respectively), while gastrin remained high in both groups. Mean cholesterol and low density lipoprotein (LDL) increase were significantly greater in the control, compared with the intervention (P = .037, and P = .001) group. Day 16 LDL levels were significantly higher in the control group. Mean weight was increased in the control group, while gastric residue was less and stool frequency was increased in the intervention group. NEC and septicemia were not statistically different between groups. A prebiotics enriched formula resulted in significant surge of motilin relating to reduced gastric residue, compared with a common preterm formula. Mean cholesterol change was lower, while LDL was not increased in the prebiotics group, compared with the control group. © 2013 American Society for Parenteral and Enteral Nutrition.
Cani, P D; Possemiers, S; Van de Wiele, T; Guiot, Y; Everard, A; Rottier, O; Geurts, L; Naslain, D; Neyrinck, A; Lambert, D M; Muccioli, G G; Delzenne, N M
2009-08-01
Obese and diabetic mice display enhanced intestinal permeability and metabolic endotoxaemia that participate in the occurrence of metabolic disorders. Our recent data support the idea that a selective increase of Bifidobacterium spp. reduces the impact of high-fat diet-induced metabolic endotoxaemia and inflammatory disorders. Here, we hypothesised that prebiotic modulation of gut microbiota lowers intestinal permeability, by a mechanism involving glucagon-like peptide-2 (GLP-2) thereby improving inflammation and metabolic disorders during obesity and diabetes. Study 1: ob/ob mice (Ob-CT) were treated with either prebiotic (Ob-Pre) or non-prebiotic carbohydrates as control (Ob-Cell). Study 2: Ob-CT and Ob-Pre mice were treated with GLP-2 antagonist or saline. Study 3: Ob-CT mice were treated with a GLP-2 agonist or saline. We assessed changes in the gut microbiota, intestinal permeability, gut peptides, intestinal epithelial tight-junction proteins ZO-1 and occludin (qPCR and immunohistochemistry), hepatic and systemic inflammation. Prebiotic-treated mice exhibited a lower plasma lipopolysaccharide (LPS) and cytokines, and a decreased hepatic expression of inflammatory and oxidative stress markers. This decreased inflammatory tone was associated with a lower intestinal permeability and improved tight-junction integrity compared to controls. Prebiotic increased the endogenous intestinotrophic proglucagon-derived peptide (GLP-2) production whereas the GLP-2 antagonist abolished most of the prebiotic effects. Finally, pharmacological GLP-2 treatment decreased gut permeability, systemic and hepatic inflammatory phenotype associated with obesity to a similar extent as that observed following prebiotic-induced changes in gut microbiota. We found that a selective gut microbiota change controls and increases endogenous GLP-2 production, and consequently improves gut barrier functions by a GLP-2-dependent mechanism, contributing to the improvement of gut barrier functions during obesity and diabetes.
Healey, Genelle; Murphy, Rinki; Butts, Christine; Brough, Louise; Whelan, Kevin; Coad, Jane
2018-01-01
Dysbiotic gut microbiota have been implicated in human disease. Diet-based therapeutic strategies have been used to manipulate the gut microbiota towards a more favourable profile. However, it has been demonstrated that large inter-individual variability exists in gut microbiota response to a dietary intervention. The primary objective of this study was to investigate whether habitually low dietary fibre (LDF) v. high dietary fibre (HDF) intakes influence gut microbiota response to an inulin-type fructan prebiotic. In this randomised, double-blind, placebo-controlled, cross-over study, thirty-four healthy participants were classified as LDF or HDF consumers. Gut microbiota composition (16S rRNA bacterial gene sequencing) and SCFA concentrations were assessed following 3 weeks of daily prebiotic supplementation (Orafti® Synergy 1; 16 g/d) or placebo (Glucidex® 29 Premium; 16 g/d), as well as after 3 weeks of the alternative intervention, following a 3-week washout period. In the LDF group, the prebiotic intervention led to an increase in Bifidobacterium (P=0·001). In the HDF group, the prebiotic intervention led to an increase in Bifidobacterium (P<0·001) and Faecalibacterium (P=0·010) and decreases in Coprococcus (P=0·010), Dorea (P=0·043) and Ruminococcus (Lachnospiraceae family) (P=0·032). This study demonstrates that those with HDF intakes have a greater gut microbiota response and are therefore more likely to benefit from an inulin-type fructan prebiotic than those with LDF intakes. Future studies aiming to modulate the gut microbiota and improve host health, using an inulin-type fructan prebiotic, should take habitual dietary fibre intake into account.
Emergence of biological organization through thermodynamic inversion.
Kompanichenko, Vladimir
2014-01-01
Biological organization arises under thermodynamic inversion in prebiotic systems that provide the prevalence of free energy and information contribution over the entropy contribution. The inversion might occur under specific far-from-equilibrium conditions in prebiotic systems oscillating around the bifurcation point. At the inversion moment, (physical) information characteristic of non-biological systems acquires the new features: functionality, purposefulness, and control over the life processes, which transform it into biological information. Random sequences of amino acids and nucleotides, spontaneously synthesized in the prebiotic microsystem, in the primary living unit (probiont) re-assemble into functional sequences, involved into bioinformation circulation through nucleoprotein interaction, resulted in the genetic code emergence. According to the proposed concept, oscillating three-dimensional prebiotic microsystems transformed into probionts in the changeable hydrothermal medium of the early Earth. The inversion concept states that spontaneous (accidental, random) transformations in prebiotic systems cannot produce life; it is only non-spontaneous (perspective, purposeful) transformations, which are the result of thermodynamic inversion, that lead to the negentropy conversion of prebiotic systems into initial living units.
Savignac, Helene M; Couch, Yvonne; Stratford, Michael; Bannerman, David M; Tzortzis, George; Anthony, Daniel C; Burnet, Philip W J
2016-02-01
The manipulation of the enteric microbiota with specific prebiotics and probiotics, has been shown to reduce the host's inflammatory response, alter brain chemistry, and modulate anxiety behaviour in both rodents and humans. However, the neuro-immune and behavioural effects of prebiotics on sickness behaviour have not been explored. Here, adult male CD1 mice were fed with a specific mix of non-digestible galacto-oligosaccharides (Bimuno®, BGOS) for 3 weeks, before receiving a single injection of lipopolysaccharide (LPS), which induces sickness behaviour and anxiety. Locomotor and marble burying activities were assessed 4h after LPS injection, and after 24h, anxiety in the light-dark box was assessed. Cytokine expression, and key components of the serotonergic (5-Hydroxytryptamine, 5-HT) and glutamatergic system were evaluated in the frontal cortex to determine the impact of BGOS administration at a molecular level. BGOS-fed mice were less anxious in the light-dark box compared to controls 24h after the LPS injection. Elevated cortical IL-1β concentrations in control mice 28 h after LPS were not observed in BGOS-fed animals. This significant BGOS×LPS interaction was also observed for 5HT2A receptors, but not for 5HT1A receptors, 5HT, 5HIAA, NMDA receptor subunits, or other cytokines. The intake of BGOS did not influence LPS-mediated reductions in marble burying behaviour, and its effect on locomotor activity was equivocal. Together, our data show that the prebiotic BGOS has an anxiolytic effect, which may be related to the modulation of cortical IL-1β and 5-HT2A receptor expression. Our data suggest a potential role for prebiotics in the treatment of neuropsychiatric disorders where anxiety and neuroinflammation are prominent clinical features. Copyright © 2015. Published by Elsevier Inc.
Liu, Yue; Gibson, Glenn R.; Walton, Gemma E.
2016-01-01
The aging process leads to alterations of gut microbiota and modifications to the immune response, such changes may be associated with increased disease risk. Prebiotics and probiotics can modulate microbiome changes induced by aging; however, their effects have not been directly compared. The aim of this study was to use anaerobic batch culture fermenters to assess the impact of various fermentable carbohydrates and microorganisms on the gut microbiota and selected immune markers. Elderly volunteers were used as donors for these experiments to enable relevance to an aging population. The impact of fermentation supernatants on immune markers relevant to the elderly were assessed in vitro. Levels of IL-1β, IL-6, IL-8, IL-10 and TNF-α in peripheral blood mononuclear cell culture supernatants were measured using flow cytometry. Trans-galactooligosaccharides (B-GOS) and inulin both stimulated bifidobacteria compared to other treatments (p<0.05). Fermentation supernatants taken from faecal batch cultures supplemented with B-GOS, inulin, B. bifidum, L. acidophilus and Ba. coagulans inhibited LPS induced TNF-α (p<0.05). IL-10 production, induced by LPS, was enhanced by fermentation supernatants from faecal batch cultures supplemented with B-GOS, inulin, B. bifidum, L. acidophilus, Ba. coagulans and Bac. thetaiotaomicron (p<0.05). To conclude, prebiotics and probiotics could lead to potentially beneficial effects to host health by targeting specific bacterial groups, increasing saccharolytic fermentation and decreasing inflammation associated with aging. Compared to probiotics, prebiotics led to greater microbiota modulation at the genus level within the fermenters. PMID:27612304
Liu, Yue; Gibson, Glenn R; Walton, Gemma E
2016-01-01
The aging process leads to alterations of gut microbiota and modifications to the immune response, such changes may be associated with increased disease risk. Prebiotics and probiotics can modulate microbiome changes induced by aging; however, their effects have not been directly compared. The aim of this study was to use anaerobic batch culture fermenters to assess the impact of various fermentable carbohydrates and microorganisms on the gut microbiota and selected immune markers. Elderly volunteers were used as donors for these experiments to enable relevance to an aging population. The impact of fermentation supernatants on immune markers relevant to the elderly were assessed in vitro. Levels of IL-1β, IL-6, IL-8, IL-10 and TNF-α in peripheral blood mononuclear cell culture supernatants were measured using flow cytometry. Trans-galactooligosaccharides (B-GOS) and inulin both stimulated bifidobacteria compared to other treatments (p<0.05). Fermentation supernatants taken from faecal batch cultures supplemented with B-GOS, inulin, B. bifidum, L. acidophilus and Ba. coagulans inhibited LPS induced TNF-α (p<0.05). IL-10 production, induced by LPS, was enhanced by fermentation supernatants from faecal batch cultures supplemented with B-GOS, inulin, B. bifidum, L. acidophilus, Ba. coagulans and Bac. thetaiotaomicron (p<0.05). To conclude, prebiotics and probiotics could lead to potentially beneficial effects to host health by targeting specific bacterial groups, increasing saccharolytic fermentation and decreasing inflammation associated with aging. Compared to probiotics, prebiotics led to greater microbiota modulation at the genus level within the fermenters.
Rigo-Adrover, M; Saldaña-Ruíz, S; van Limpt, K; Knipping, K; Garssen, J; Knol, J; Franch, A; Castell, M; Pérez-Cano, F J
2017-06-01
Rotavirus (RV) is the leading cause of severe diarrhoea among infants and young children, and although more standardized studies are needed, there is evidence that probiotics can help to fight against RV and other infectious and intestinal pathologies. On the other hand, the effects of prebiotics have not been properly addressed in the context of an RV infection. The aim of this study was to demonstrate a protective role for a specific scGOS/lcFOS 9:1 prebiotic mixture (PRE) separately, the probiotic Bifidobacterium breve M-16V (PRO) separately and the combination of the prebiotic mixture and the probiotic (synbiotic, SYN) in a suckling rat RV infection model. The animals received the intervention from the 3rd to the 21st day of life by oral gavage. On day 7, RV was orally administered. Clinical parameters and immune response were evaluated. The intervention with the PRO reduced the incidence, severity and duration of the diarrhoea (p < 0.05). The PRE and SYN products improved clinical parameters as well, but a change in stool consistency induced by the PRE intervention hindered the observation of this effect. Both the PRE and the SYN, but not the PRO, significantly reduced viral shedding. All interventions modulated the specific antibody response in serum and intestinal washes at day 14 and 21 of life. A daily supplement of a scGOS/lcFOS 9:1 prebiotic mixture, Bifidobacterium breve M-16V or a combination of both is highly effective in modulating RV-induced diarrhoea in this preclinical model.
Simulating the UV Environment For the Synthesis of Prebiotic Molecules
NASA Astrophysics Data System (ADS)
Ranjan, S.; Sasselov, D.
2014-03-01
UV radiation plays a key role in the era of biogenesis. The young Sun was more UV-active than the modern Sun (Ribas et al. 2010), and the Earth lacked an ozone layer, implying a larger UV flux both on Earth, as well as on asteroids/comets. Ultraviolet radiation can help drive prebiotic molecule synthesis (e.g., Chyba et al. 1992; Powner et al. 2009) or destroy biologically important molecules (e.g., Johns et al. 1967). These effects are wavelength dependent: they are sensitive to ionzation, bond, and ro-vibrational transition energies of biologically relevant molecules and their precursors. When simulating the environment at biogenesis it is therefore important to ensure realistic levels of UV input, in both magnitude and spectral shape. Many laboratory simulations of biomolecule synthesis under prebiotic conditions to date have been done with atomic lamps (e.g., Powner et al. 2007). These lamps are safe, stable, and affordable UV sources, well-suited for initial studies. However, their emission spectra are a poor match to prebiotic conditions: low-pressure lamps are characterized by line emission, while higher-pressure lamps do not well-reproduce the spectrum of the young Sun. In this paper, we present spectra that are more realistic approximations to prebiotic conditions. Using published opacity lists and atmospheric models, we compute the attenuation of the flux from a young Sunanalog due to water, and from the present-day Sun due to a planetary atmosphere. We compare these spectra to those emitted by lamps used in studies today, and explore the potential biological implications of the differences. We conclude by discussing possibilities for better simulating the prebiotic UV environment in lab setups.
Probiotics, Prebiotics, and Synbiotics for the Prevention of Necrotizing Enterocolitis.
Johnson-Henry, Kathene C; Abrahamsson, Thomas R; Wu, Richard You; Sherman, Philip M
2016-09-01
Necrotizing enterocolitis (NEC) is a devastating intestinal disease in preterm infants characterized by barrier disruption, intestinal microbial dysbiosis, and persistent inflammation of the colon, which results in high mortality rates. Current strategies used to manage this disease are not sufficient, although the use of human breast milk reduces the risk of NEC. Mother's milk is regarded as a fundamental nutritional source for neonates, but pasteurization of donor breast milk affects the composition of bioactive compounds. Current research is evaluating the benefits and potential pitfalls of adding probiotics and prebiotics to pasteurized milk so as to improve the functionality of the milk and thereby reduce the burden of illness caused by NEC. Probiotics (live micro-organisms that confer health to the host) and prebiotics (nondigestible oligosaccharides that stimulate the growth of healthy bacteria) are functional foods known to mediate immune responses and modulate microbial populations in the gut. Clinical research shows strain- and compound-specific responses when probiotics or prebiotics are administered in conjunction with donor breast milk for the prevention of NEC. Despite ongoing controversy surrounding optimal treatment strategies, randomized controlled studies are now investigating the use of synbiotics to reduce the incidence and severity of NEC. Synbiotics, a combination of probiotics and prebiotics, have been proposed to enhance beneficial health effects in the intestinal tract more than either agent administered alone. This review considers the implications of using probiotic-, prebiotic-, and synbiotic-supplemented breast milk as a strategy to prevent NEC and issues that could be encountered with the preparations. © 2016 American Society for Nutrition.
Probiotics, Prebiotics, and Synbiotics for the Prevention of Necrotizing Enterocolitis12
Wu, Richard You
2016-01-01
Necrotizing enterocolitis (NEC) is a devastating intestinal disease in preterm infants characterized by barrier disruption, intestinal microbial dysbiosis, and persistent inflammation of the colon, which results in high mortality rates. Current strategies used to manage this disease are not sufficient, although the use of human breast milk reduces the risk of NEC. Mother’s milk is regarded as a fundamental nutritional source for neonates, but pasteurization of donor breast milk affects the composition of bioactive compounds. Current research is evaluating the benefits and potential pitfalls of adding probiotics and prebiotics to pasteurized milk so as to improve the functionality of the milk and thereby reduce the burden of illness caused by NEC. Probiotics (live micro-organisms that confer health to the host) and prebiotics (nondigestible oligosaccharides that stimulate the growth of healthy bacteria) are functional foods known to mediate immune responses and modulate microbial populations in the gut. Clinical research shows strain- and compound-specific responses when probiotics or prebiotics are administered in conjunction with donor breast milk for the prevention of NEC. Despite ongoing controversy surrounding optimal treatment strategies, randomized controlled studies are now investigating the use of synbiotics to reduce the incidence and severity of NEC. Synbiotics, a combination of probiotics and prebiotics, have been proposed to enhance beneficial health effects in the intestinal tract more than either agent administered alone. This review considers the implications of using probiotic-, prebiotic-, and synbiotic-supplemented breast milk as a strategy to prevent NEC and issues that could be encountered with the preparations. PMID:27633108
Calcium supplementation modulates gut microbiota in a prebiotic manner in dietary obese mice.
Chaplin, Alice; Parra, Pilar; Laraichi, Sarah; Serra, Francisca; Palou, Andreu
2016-02-01
Dietary calcium has been inversely associated with body fat and energy balance. The main scope of this study has been to assess the potential contribution of gut microbiota on energy regulation mediated by calcium. Gut microbiota in C57BL/6J mice receiving calcium supplementation under a high-fat (HF) diet were analysed by PCR and their relationships with host metabolic parameters were determined. Calcium conferred a prebiotic-like effect on gut microbiota, and animals presented lower plasmatic endotoxin levels, increased expression of angiopoietin-like 4 in intestine and lower hepatic lipid content, although increased expression of stress markers in adipose tissue and of inflammation in liver was also found. To determine whether slimming effects could be transferred to obese mice, a faecal microbial transplant (FMT) was carried out, showing that host bacteria grown under a HF diet could not be superseded by those from calcium-fed animals. Therefore, FMT was not able to transfer the beneficial effects of calcium. In conclusion, calcium modulated gut microbiota in a prebiotic manner, establishing a host cross-talk and promoting a healthier metabolic profile. However, lack of effectiveness of FMT suggests the need of further appropriate dietary factors in addition to the bacteria per se. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Emergent Sources of Prebiotics: Seaweeds and Microalgae.
de Jesus Raposo, Maria Filomena; de Morais, Alcina Maria Miranda Bernardo; de Morais, Rui Manuel Santos Costa
2016-01-28
In recent years, scientists have become aware that human microbiota, in general, and gut microbiota, in particular, play a major role in human health and diseases, such as obesity and diabetes, among others. A large number of evidence has come to light regarding the beneficial effects, either for the host or the gut microbiota, of some foods and food ingredients or biochemical compounds. Among these, the most promising seem to be polysaccharides (PS) or their derivatives, and they include the dietary fibers. Some of these PS can be found in seaweeds and microalgae, some being soluble fibers, such as alginates, fucoidans, carrageenans and exopolysaccharides, that are not fermented, at least not completely, by colonic microbiota. This review gives an overview of the importance of the dietary fibers, as well as the benefits of prebiotics, to human health. The potential of the PS from marine macro- and microalgae to act as prebiotics is discussed, and the different techniques to obtain oligosaccharides from PS are presented. The mechanisms of the benefits of fiber, in general, and the types and benefits of algal fibers in human health are highlighted. The findings of some recent studies that present the potential effects of prebiotics on animal models of algal biomass and their extracts, as well as oligo- and polysaccharides, are presented. In the future, the possibility of using prebiotics to modulate the microbiome, and, consequently, prevent certain human diseases is foreseen.
Emergent Sources of Prebiotics: Seaweeds and Microalgae
de Jesus Raposo, Maria Filomena; de Morais, Alcina Maria Miranda Bernardo; de Morais, Rui Manuel Santos Costa
2016-01-01
In recent years, scientists have become aware that human microbiota, in general, and gut microbiota, in particular, play a major role in human health and diseases, such as obesity and diabetes, among others. A large number of evidence has come to light regarding the beneficial effects, either for the host or the gut microbiota, of some foods and food ingredients or biochemical compounds. Among these, the most promising seem to be polysaccharides (PS) or their derivatives, and they include the dietary fibers. Some of these PS can be found in seaweeds and microalgae, some being soluble fibers, such as alginates, fucoidans, carrageenans and exopolysaccharides, that are not fermented, at least not completely, by colonic microbiota. This review gives an overview of the importance of the dietary fibers, as well as the benefits of prebiotics, to human health. The potential of the PS from marine macro- and microalgae to act as prebiotics is discussed, and the different techniques to obtain oligosaccharides from PS are presented. The mechanisms of the benefits of fiber, in general, and the types and benefits of algal fibers in human health are highlighted. The findings of some recent studies that present the potential effects of prebiotics on animal models of algal biomass and their extracts, as well as oligo- and polysaccharides, are presented. In the future, the possibility of using prebiotics to modulate the microbiome, and, consequently, prevent certain human diseases is foreseen. PMID:26828501
Andersen, Joakim M.; Barrangou, Rodolphe; Abou Hachem, Maher; Lahtinen, Sampo; Goh, Yong Jun; Svensson, Birte; Klaenhammer, Todd R.
2011-01-01
Probiotic microbes rely on their ability to survive in the gastrointestinal tract, adhere to mucosal surfaces, and metabolize available energy sources from dietary compounds, including prebiotics. Genome sequencing projects have proposed models for understanding prebiotic catabolism, but mechanisms remain to be elucidated for many prebiotic substrates. Although β-galactooligosaccharides (GOS) are documented prebiotic compounds, little is known about their utilization by lactobacilli. This study aimed to identify genetic loci in Lactobacillus acidophilus NCFM responsible for the transport and catabolism of GOS. Whole-genome oligonucleotide microarrays were used to survey the differential global transcriptome during logarithmic growth of L. acidophilus NCFM using GOS or glucose as a sole source of carbohydrate. Within the 16.6-kbp gal-lac gene cluster, lacS, a galactoside-pentose-hexuronide permease-encoding gene, was up-regulated 5.1-fold in the presence of GOS. In addition, two β-galactosidases, LacA and LacLM, and enzymes in the Leloir pathway were also encoded by genes within this locus and up-regulated by GOS stimulation. Generation of a lacS-deficient mutant enabled phenotypic confirmation of the functional LacS permease not only for the utilization of lactose and GOS but also lactitol, suggesting a prominent role of LacS in the metabolism of a broad range of prebiotic β-galactosides, known to selectively modulate the beneficial gut microbiota. PMID:22006318
Nucleobase and amino acid formation through impacts of meteorites on the early ocean
NASA Astrophysics Data System (ADS)
Furukawa, Yoshihiro; Nakazawa, Hiromoto; Sekine, Toshimori; Kobayashi, Takamichi; Kakegawa, Takeshi
2015-11-01
The emergence of life's building blocks on the prebiotic Earth was the first crucial step for the origins of life. Extraterrestrial delivery of intact amino acids and nucleobases is the prevailing hypothesis for their availability on prebiotic Earth because of the difficulties associated with the production of these organics from terrestrial carbon and nitrogen sources under plausible prebiotic conditions. However, the variety and amounts of these intact organics delivered by meteorites would have been limited. Previous shock-recovery experiments have demonstrated that meteorite impact reactions could have generated organics on the prebiotic Earth. Here, we report on the simultaneous formation of nucleobases (cytosine and uracil) found in DNA and/or RNA, various proteinogenic amino acids (glycine, alanine, serine, aspartic acid, glutamic acid, valine, leucine, isoleucine, and proline), non-proteinogenic amino acids, and aliphatic amines in experiments simulating reactions induced by extraterrestrial objects impacting on the early oceans. To the best of our knowledge, this is the first report of the formation of nucleobases from inorganic materials by shock conditions. In these experiments, bicarbonate was used as the carbon source. Bicarbonate, which is a common dissolved carbon species in CO2-rich atmospheric conditions, was presumably the most abundant carbon species in the early oceans and in post-impact plumes. Thus, the present results expand the possibility that impact-induced reactions generated various building blocks for life on prebiotic Earth in large quantities through the use of terrestrial carbon reservoirs.
Carvalho-Wells, Andrew L; Helmolz, Kathrin; Nodet, Cecelia; Molzer, Christine; Leonard, Clare; McKevith, Brigid; Thielecke, Frank; Jackson, Kim G; Tuohy, Kieran M
2010-11-01
Epidemiological studies have shown an inverse relationship between risk of CVD and intake of whole grain (WG)-rich food. Regular consumption of breakfast cereals can provide not only an increase in dietary WG but also improvements to cardiovascular health. Various mechanisms have been proposed, including prebiotic modulation of the colonic microbiota. In the present study, the prebiotic activity of a maize-derived WG cereal (WGM) was evaluated in a double-blind, placebo-controlled human feeding study (n 32). For a period of 21 d, healthy men and women, mean age 32 (sd 8) years and BMI 23·3 (sd 0·58) kg/m2, consumed either 48 g/d WG cereal (WGM) or 48 g placebo cereal (non-whole grain (NWG)) in a crossover fashion. Faecal samples were collected at five points during the study on days 0, 21, 42, 63 and 84 (representing at baseline, after both treatments and both wash-out periods). Faecal bacteriology was assessed using fluorescence in situ hybridisation with 16S rRNA oligonucleotide probes specific for Bacteroides spp., Bifidobacterium spp., Clostridium histolyticum/perfringens subgroup, Lactobacillus-Enterococcus subgroup and total bacteria. After 21 d consumption of WGM, mean group levels of faecal bifidobacteria increased significantly compared with the control cereal (P = 0·001). After a 3-week wash-out period, bifidobacterial levels returned to pre-intervention levels. No statistically significant changes were observed in serum lipids, glucose or measures of faecal output. In conclusion, this WG maize-enriched breakfast cereal mediated a bifidogenic modulation of the gut microbiota, indicating a possible prebiotic mode of action.
Catalytic effects of glycine on prebiotic divaline and diproline formation.
Plankensteiner, Kristof; Reiner, Hannes; Rode, Bernd M
2005-07-01
The catalytic effects of the simple amino acid glycine on the formation of diproline and divaline in the prebiotically relevant salt-induced peptide formation (SIPF) reaction was investigated in systems of different amino acid starting concentrations and using the two enantiomeric forms of the respective amino acid. Results show an improved applicability of the SIPF reaction to prebiotic conditions, especially at low amino acid concentrations, as presumably present in a primordial scenario, and indicate excellent conditions and resources for chemical evolution of peptides and proteins on the early earth. For valine, furthermore differences in catalytic yield increase are found indicating a chiral selectivity of the active copper complex of the reaction and showing a connection to previously found enantiomeric differences in complex formation constants with amino acids.
Prebiotic synthesis of adenine and amino acids under Europa-like conditions
NASA Technical Reports Server (NTRS)
Levy, M.; Miller, S. L.; Brinton, K.; Bada, J. L.
2000-01-01
In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites, we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 years at -20 and -78 degrees C. In addition, the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20 degrees C. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be wider than previously thought.
Prebiotic synthesis of adenine and amino acids under Europa-like conditions.
Levy, M; Miller, S L; Brinton, K; Bada, J L
2000-06-01
In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites, we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 years at -20 and -78 degrees C. In addition, the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20 degrees C. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be wider than previously thought.
Prebiotic Synthesis of Adenine and Amino Acids Under Europa-like Conditions
NASA Technical Reports Server (NTRS)
Levy, Matthew; Miller, Stanley L.; Brinton, Karen; Bada, Jeffrey L.
2003-01-01
In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites. we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 year at -20 and -78 C. In addition the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20%. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be m der than previously thought.
Prebiotic synthesis of histidine
NASA Technical Reports Server (NTRS)
Shen, C.; Yang, L.; Miller, S. L.; Oro, J.
1990-01-01
The prebiotic formation of histidine (His) has been accomplished experimentally by the reaction of erythrose with formamidine followed by a Strecker synthesis. In the first step of this reaction sequence, the formation of imidazole-4-acetaldehyde took place by the condensation of erythrose and formamidine, two compounds that are known to be formed under prebiotic conditions. In a second step, the imidazole-4-acetaldehyde was converted to His, without isolation of the reaction products by adding HCN and ammonia to the reaction mixture. LC, HPLC, thermospray liquid chromatography-mass spectrometry, and tandem mass spectrometry were used to identify the product, which was obtained in a yield of 3.5% based on the ratio of His/erythrose. This is a new chemical synthesis of one of the basic amino acids which had not been synthesized prebiotically until now.
Mimicking the surface and prebiotic chemistry of early Earth using flow chemistry.
Ritson, Dougal J; Battilocchio, Claudio; Ley, Steven V; Sutherland, John D
2018-05-08
When considering life's aetiology, the first questions that must be addressed are "how?" and "where?" were ostensibly complex molecules, considered necessary for life's beginning, constructed from simpler, more abundant feedstock molecules on primitive Earth. Previously, we have used multiple clues from the prebiotic synthetic requirements of (proto)biomolecules to pinpoint a set of closely related geochemical scenarios that are suggestive of flow and semi-batch chemistries. We now wish to report a multistep, uninterrupted synthesis of a key heterocycle (2-aminooxazole) en route to activated nucleotides starting from highly plausible, prebiotic feedstock molecules under conditions which mimic this scenario. Further consideration of the scenario has uncovered additional pertinent and novel aspects of prebiotic chemistry, which greatly enhance the efficiency and plausibility of the synthesis.
Gomez, E; Tuohy, K M; Gibson, G R; Klinder, A; Costabile, A
2010-06-01
This study was carried out to evaluate in vitro the fermentation properties and the potential prebiotic activity of Agave-fructans extracted from Agave tequilana (Predilife). Five different commercial prebiotics were compared using 24-h pH-controlled anaerobic batch cultures inoculated with human faecal slurries. Measurement of prebiotic efficacy was obtained by comparing bacterial changes, and the production of short-chain fatty acids (SCFA) was also determined. Effects upon major groups of the microbiota were monitored over 24 h incubations by fluorescence in situ hybridization. SCFA were measured by HPLC. Fermentation of the Agave fructans (Predilife) resulted in a large increase in numbers of bifidobacteria and lactobacilli. Under the in vitro conditions used, this study has shown the differential impact of Predilife on the microbial ecology of the human gut. This is the first study reporting of a potential prebiotic mode of activity for Agave fructans investigated which significantly increased populations of bifidobacteria and lactobacilli compared to cellulose used as a control.
Induction of regulatory T cells: A role for probiotics and prebiotics to suppress autoimmunity.
Dwivedi, Mitesh; Kumar, Prasant; Laddha, Naresh C; Kemp, E Helen
2016-04-01
Regulatory T cells (Tregs) are comprised of a heterogeneous population of cells that play a vital role in suppressing inflammation and maintaining immune tolerance. Given the crucial role of Tregs in maintaining immune homeostasis, it is probably not surprising that many microbial species and their metabolites have the potential to induce Tregs. There is now great interest in the therapeutic potential of probiotics and prebiotics based strategies for a range of autoimmune disorders. This review will summarise recent findings concerning the role of probiotics and prebiotics in induction of Tregs to ameliorate the autoimmune conditions. In addition, the article is focused to explain the different mechanisms of Treg induction and function by these probiotics and prebiotics, based on the available studies till date. The article further proposes that induction of Tregs by probiotics and prebiotics could lead to the development of new therapeutic approach towards curbing the autoimmune response and as an alternative to detrimental immunosuppressive drugs. Copyright © 2016 Elsevier B.V. All rights reserved.
Nyangale, Edna P; Farmer, Sean; Keller, David; Chernoff, David; Gibson, Glenn R
2014-12-01
In advancing age, gut populations of beneficial microbes, notably Bifidobacterium spp., show a marked decline. This contributes to an environment less capable of maintaining homoeostasis. This in vitro investigation studied the possible synergistic effects of probiotic supplementation in modulating the gut microbiota enabling prebiotic therapy to in elderly persons. Single stage batch culture anaerobic fermenters were used and inoculated with fecal microbiota obtained from volunteers after taking a 28 day treatment of Bacillus coagulans GBI-30, 6086 (GanedenBC30 (BC30)) or a placebo. The response to prebiotic supplements fructooligosaccharides (FOS) and galactooligosaccharides (GOS) in the fermenters was assessed. Bacterial enumeration was carried out using fluorescent in situ hybridisation and organic acids measured by gas chromatography. Baseline populations of Faecalibacterium prausnitzii, Clostridium lituseburense and Bacillus spp. were significantly higher in those having consumed BC30 compared to the placebo. Both prebiotics increased populations of several purportedly beneficial bacterial groups in both sets of volunteers. Samples from volunteers having ingested the BC30 also increased populations of C. lituseburense, Eubacterium rectale and F. prausnitzii more so than in persons who had consumed the placebo, this also resulted in significantly higher concentrations of butyrate, acetate and propionate. This shows that consumption of BC30 and subsequent use of prebiotics resulted in elevated populations of beneficial genres of bacteria as well as organic acid production. Copyright © 2014 Elsevier Ltd. All rights reserved.
Modulation of microbiota as treatment for intestinal inflammatory disorders: An uptodate
Gallo, Antonella; Passaro, Giovanna; Gasbarrini, Antonio; Landolfi, Raffaele; Montalto, Massimo
2016-01-01
Alterations of intestinal microflora may significantly contribute to the pathogenesis of different inflammatory and autoimmune disorders. There is emerging interest on the role of selective modulation of microflora in inducing benefits in inflammatory intestinal disorders, by as probiotics, prebiotics, synbiotics, antibiotics, and fecal microbiota transplantation (FMT). To summarize recent evidences on microflora modulation in main intestinal inflammatory disorders, PubMed was searched using terms microbiota, intestinal flora, probiotics, prebiotics, fecal transplantation. More than three hundred articles published up to 2015 were selected and reviewed. Randomized placebo-controlled trials and meta-analysis were firstly included, mainly for probiotics. A meta-analysis was not performed because of the heterogeneity of these studies. Most of relevant data derived from studies on probiotics, reporting some efficacy in ulcerative colitis and in pouchitis, while disappointing results are available for Crohn’s disease. Probiotic supplementation may significantly reduce rates of rotavirus diarrhea. Efficacy of probiotics in NSAID enteropathy and irritable bowel syndrome is still controversial. Finally, FMT has been recently recognized as an efficacious treatment for recurrent Clostridium difficile infection. Modulation of intestinal flora represents a very interesting therapeutic target, although it still deserves some doubts and limitations. Future studies should be encouraged to provide new understanding about its therapeutical role. PMID:27621567
O'Connell Motherway, Mary; Kinsella, Michael; Fitzgerald, Gerald F; Sinderen, Douwe
2013-01-01
Several prebiotics, such as inulin, fructo-oligosaccharides and galacto-oligosaccharides, are widely used commercially in foods and there is convincing evidence, in particular for galacto-oligosaccharides, that prebiotics can modulate the microbiota and promote bifidobacterial growth in the intestinal tract of infants and adults. In this study we describe the identification and functional characterization of the genetic loci responsible for the transport and metabolism of purified galacto-oligosaccharides (PGOS) by Bifidobacterium breve UCC2003. We further demonstrate that an extracellular endogalactanase specified by several B. breve strains, including B. breve UCC2003, is essential for partial degradation of PGOS components with a high degree of polymerization. These partially hydrolysed PGOS components are presumed to be transported into the bifidobacterial cell via various ABC transport systems and sugar permeases where they are further degraded to galactose and glucose monomers that feed into the bifid shunt. This work significantly advances our molecular understanding of bifidobacterial PGOS metabolism and its associated genetic machinery to utilize this prebiotic. PMID:23199239
Galacto-oligosaccharides and Colorectal Cancer: Feeding our Intestinal Probiome
Bruno-Barcena, Jose M.; Azcarate-Peril, M. Andrea
2014-01-01
Prebiotics are ingredients selectively fermented by the intestinal microbiota that promote changes in the microbial community structure and/or their metabolism, conferring health benefits to the host. Studies show that β (1–4) galacto-oligosaccharides [β (1–4) GOS], lactulose and fructo-oligosaccharides increase intestinal concentration of lactate and short chain fatty acids, and stool frequency and weight, and they decrease fecal concentration of secondary bile acids, fecal pH, and nitroreductase and β-glucuronidase activities suggesting a clear role in colorectal cancer (CRC) prevention. This review summarizes research on prebiotics bioassimilation, specifically β (1–4) GOS, and their potential role in CRC. We also evaluate research that show that the impact of prebiotics on host physiology can be direct or through modulation of the gut intestinal microbiome, specifically the probiome (autochtonous beneficial bacteria), we present studies on a potential role in CRC progression to finally describe the current state of β (1–4) GOS generation for industrial production. PMID:25584074
Is there an optimal level of open-endedness in prebiotic evolution?
Markovitch, Omer; Sorek, Daniel; Lui, Leong Ting; Lancet, Doron; Krasnogor, Natalio
2012-10-01
In this paper we explore the question of whether there is an optimal set up for a putative prebiotic system leading to open-ended evolution (OEE) of the events unfolding within this system. We do so by proposing two key innovations. First, we introduce a new index that measures OEE as a function of the likelihood of events unfolding within a universe given its initial conditions. Next, we apply this index to a variant of the graded autocatalysis replication domain (GARD) model, Segre et al. (P Natl Acad Sci USA 97(8):4112-4117, 2000; Markovitch and Lancet Artif Life 18(3), 2012), and use it to study--under a unified and concise prebiotic evolutionary framework--both a variety of initial conditions of the universe and the OEE of species that evolve from them.
Is There an Optimal Level of Open-Endedness in Prebiotic Evolution?
NASA Astrophysics Data System (ADS)
Markovitch, Omer; Sorek, Daniel; Lui, Leong Ting; Lancet, Doron; Krasnogor, Natalio
2012-10-01
In this paper we explore the question of whether there is an optimal set up for a putative prebiotic system leading to open-ended evolution (OEE) of the events unfolding within this system. We do so by proposing two key innovations. First, we introduce a new index that measures OEE as a function of the likelihood of events unfolding within a universe given its initial conditions. Next, we apply this index to a variant of the graded autocatalysis replication domain (GARD) model, Segre et al. (P Natl Acad Sci USA 97(8):4112-4117, 2000; Markovitch and Lancet Artif Life 18(3), 2012), and use it to study - under a unified and concise prebiotic evolutionary framework - both a variety of initial conditions of the universe and the OEE of species that evolve from them.
Sulfidic Anion Concentrations on Early Earth for Surficial Origins-of-Life Chemistry.
Ranjan, Sukrit; Todd, Zoe R; Sutherland, John D; Sasselov, Dimitar D
2018-04-08
A key challenge in origin-of-life studies is understanding the environmental conditions on early Earth under which abiogenesis occurred. While some constraints do exist (e.g., zircon evidence for surface liquid water), relatively few constraints exist on the abundances of trace chemical species, which are relevant to assessing the plausibility and guiding the development of postulated prebiotic chemical pathways which depend on these species. In this work, we combine literature photochemistry models with simple equilibrium chemistry calculations to place constraints on the plausible range of concentrations of sulfidic anions (HS - , HSO 3 - , SO 3 2- ) available in surficial aquatic reservoirs on early Earth due to outgassing of SO 2 and H 2 S and their dissolution into small shallow surface water reservoirs like lakes. We find that this mechanism could have supplied prebiotically relevant levels of SO 2 -derived anions, but not H 2 S-derived anions. Radiative transfer modeling suggests UV light would have remained abundant on the planet surface for all but the largest volcanic explosions. We apply our results to the case study of the proposed prebiotic reaction network of Patel et al. ( 2015 ) and discuss the implications for improving its prebiotic plausibility. In general, epochs of moderately high volcanism could have been especially conducive to cyanosulfidic prebiotic chemistry. Our work can be similarly applied to assess and improve the prebiotic plausibility of other postulated surficial prebiotic chemistries that are sensitive to sulfidic anions, and our methods adapted to study other atmospherically derived trace species. Key Words: Early Earth-Origin of life-Prebiotic chemistry-Volcanism-UV radiation-Planetary environments. Astrobiology 18, xxx-xxx.
Synthesis of β-Peptide Standards for Use in Model Prebiotic Reactions
NASA Astrophysics Data System (ADS)
Forsythe, Jay G.; English, Sloane L.; Simoneaux, Rachel E.; Weber, Arthur L.
2018-05-01
A one-pot method was developed for the preparation of a series of β-alanine standards of moderate size (2 to ≥12 residues) for studies concerning the prebiotic origins of peptides. The one-pot synthesis involved two sequential reactions: (1) dry-down self-condensation of β-alanine methyl ester, yielding β-alanine peptide methyl ester oligomers, and (2) subsequent hydrolysis of β-alanine peptide methyl ester oligomers, producing a series of β-alanine peptide standards. These standards were then spiked into a model prebiotic product mixture to confirm by HPLC the formation of β-alanine peptides under plausible reaction conditions. The simplicity of this approach suggests it can be used to prepare a variety of β-peptide standards for investigating differences between α- and β-peptides in the context of prebiotic chemistry.
Transcriptional Analysis of Prebiotic Uptake and Catabolism by Lactobacillus acidophilus NCFM
Andersen, Joakim Mark; Barrangou, Rodolphe; Hachem, Maher Abou; Lahtinen, Sampo J.; Goh, Yong-Jun; Svensson, Birte; Klaenhammer, Todd R.
2012-01-01
The human gastrointestinal tract can be positively modulated by dietary supplementation of probiotic bacteria in combination with prebiotic carbohydrates. Here differential transcriptomics and functional genomics were used to identify genes in Lactobacillus acidophilus NCFM involved in the uptake and catabolism of 11 potential prebiotic compounds consisting of α- and β- linked galactosides and glucosides. These oligosaccharides induced genes encoding phosphoenolpyruvate-dependent sugar phosphotransferase systems (PTS), galactoside pentose hexuronide (GPH) permease, and ATP-binding cassette (ABC) transporters. PTS systems were upregulated primarily by di- and tri-saccharides such as cellobiose, isomaltose, isomaltulose, panose and gentiobiose, while ABC transporters were upregulated by raffinose, Polydextrose, and stachyose. A single GPH transporter was induced by lactitol and galactooligosaccharides (GOS). The various transporters were associated with a number of glycoside hydrolases from families 1, 2, 4, 13, 32, 36, 42, and 65, involved in the catabolism of various α- and β-linked glucosides and galactosides. Further subfamily specialization was also observed for different PTS-associated GH1 6-phospho-β-glucosidases implicated in the catabolism of gentiobiose and cellobiose. These findings highlight the broad oligosaccharide metabolic repertoire of L. acidophilus NCFM and establish a platform for selection and screening of both probiotic bacteria and prebiotic compounds that may positively influence the gastrointestinal microbiota. PMID:23028535
Alternative bases in the RNA world: the prebiotic synthesis of urazole and its ribosides
NASA Technical Reports Server (NTRS)
Kolb, V. M.; Dworkin, J. P.; Miller, S. L.
1994-01-01
Urazole is a five-membered heterocyclic compound which is isosteric with uracil's hydrogen-bonding segment. Urazole reacts spontaneoulsy with ribose (and other aldoses) to give a mixture of four ribosides: alpha and beta pyranosides and furanosides. This reaction occurs in aqueous solution at mild temperatures. Thermodynamic and kinetic parameters for the reaction of urazole with ribose were determined. In contrast, uracil is completely unreactive with ribose under these conditions. Urazole's unusual reactivity is ascribed to the hydrazine portion of the molecule. Urazole can be synthesized from biuret and hydrazine under prebiotic conditions. The prebiotic synthesis of guanazole, which is isosteric in part to diaminopyrimidine and cytosine, is accomplished from dicyandiamide and hydrazine. Kinetic parameters for both prebiotic reactions were measured. Urazole and guanazole are transparent in the UV, which would be a favorable property in the absence of an ozone layer on the early Earth. Urazole makes hydrogen bonds with adenine in DMSO similar to those of uracil, as established by H NMR. All of these properties make urazole an attractive potential precursor to uracil and guanazole a potential precursor to cytosine in the RNA or pre-RNA world.
Prebiotic organic matter - Possible pathways for synthesis in a geological context
NASA Technical Reports Server (NTRS)
Chang, S.
1982-01-01
Models for the accretion of the earth, core formation, differentiation of the planet into core, mantle, crust, and atmosphere, and prebiotic synthesis of organic materials are reviewed. The development of the Haldane-Oparin and Urey models is traced, and the effect of accretion time on the outgassing process and the composition of the consequent atmosphere is examined. Model prebiotic atmospheres are calculated, the extent of equilibration of the primitive atmosphere is studied and the evolution of the atmosphere prior to organic chemical evolution is reviewed. Finally, experimental progress in synthesis of biological monomers and polymers under presumed early earth conditions is covered.
Biosynthetic porphyrins and the origin of photosynthesis
NASA Technical Reports Server (NTRS)
Mauzerall, D.; Ley, A.; Mercer-Smith, J. A.
1986-01-01
Since the prebiotic atmosphere was anaerobic, if not reducing, a useful function of primordial photosynthesis would have been to photooxidize reduced substrates such as Fe(+2), S(-2) or reduced organic molecules and to emit hydrogen. Experiments have shown that the early biogenic pigments uroporphyrin and coproporphyrin do photooxidize organic compounds and emit hydrogen in the presence of a platinum catalyst. These experiments were carried out in dilute aqueous solution near neutral pH under anaerobic atmosphere, and quantum yields near 10-2 were obtained. Thus relevant prebiotic conditions were maintained. Rather then to further optimize conditions, attempts were made to replace the platinum catalyst by a more prebiotically suitable catalyst. Trials with an Fe4S4(SR)4 cluster, in analogy to the present hydrogenase and nitrogenase, were not successful. However, experiments using cobalt complexes to catalyze the formation of hydrogen are promising. In analogy with biological photosynthetic systems which group pigments, electron transfer molecules and enzymes in clusters for efficiency, it was found that binding the biogenic porphyrins to the polyvinyl alcohol used to support the platinum catalyst did increase the quantum yield of the reaction. It was also found that ultraviolet light can serve to photo-oxidize porphyrinogens to porphyrins under anaerobic conditions. Thus the formation of the colorless porphyriogens by the extraordinarily simple biosynthetic pathway would not be a problem because of the prevalence of UV light in the prebiotic, anoxic atmosphere.
Formation of the imidazolides of dinucleotides under potentially prebiotic conditions
NASA Technical Reports Server (NTRS)
Sleeper, H. L.; Lohrmann, R.; Orgel, L. E.
1978-01-01
Imidazolides of dinucleotides such as ImpApA can be formed from the corresponding dinucleotides in a two-stage process, which gives up to 15% yields under potentially prebiotic conditions. First a solution of the dinucleotide and sodium trimetaphosphate is dried out at constant temperature and humidity. This produces polyphosphates such as p(n)ApA in excellent yield (greater than or equal to 80%). The products are dissolved in water, imidazole is added, and the solution is dried out again. This yields the 5'-phosphorimidazolides.
Acemannan and Fructans from Aloe vera (Aloe barbadensis Miller) Plants as Novel Prebiotics.
Quezada, Maria Paz; Salinas, Carlos; Gotteland, Martin; Cardemil, Liliana
2017-11-22
The nutraceutical properties of Aloe vera have been attributed to a glucomannan known as acemannan. Recently information has been published about the presence of fructans in Aloe vera but there are no publications about acemannan and fructans as prebiotic compounds. This study investigated in vitro the prebiotic properties of these polysaccharides. Our results demonstrated that fructans from Aloe vera induced bacterial growth better than inulin (commercial FOS). Acemannan stimulated bacterial growth less than fructans, and as much as commercial FOS. Using qPCR to study the bacterial population of human feces fermented in a bioreactor simulating colon conditions, we found that fructans induce an increase in the population of Bifidobacterium spp. Fructans produced greater amounts of short chain fatty acids (SCFA), while the branched-chain fatty acids (BCFA) did not increase with these polysaccharides. Acemannan increased significantly acetate concentrations. Therefore, both Aloe vera polysaccharides have prebiotic potentials.
USDA-ARS?s Scientific Manuscript database
It is of interest to discover new fermentable carbohydrates sources that function as prebiotics. This study evaluated the hydrolytic digestibility, fermentative capacity, and microbiota modulating properties of temulose molasses, four hydrolyzed fractions of temulose molasses, short-chain fructooli...
Ricke, S C
2015-06-01
Fructooligosaccharide and inulin prebiotics are carbohydrate-based polymers derived from natural sources that can be utilized by certain gastrointestinal tract bacteria but not by the host animal. They are attractive as feed additives for nonconventional poultry production systems because they select for beneficial microorganisms that are thought to promote nutritional benefits to the bird and potentially limit foodborne pathogen establishment. There have been numerous studies conducted with prebiotic supplements to assess their impact in humans, animals, and conventionally raised poultry but only limited research has been conducted with birds grown under nonconventional production conditions. Much remains unknown about the specific mechanism(s) associated with their impact on the host as well as the gastrointestinal tract microflora. Utilization of several recently developed approaches such as microbiome and metabolomic analyses should offer more insight on how dietary prebiotic additives influence the development of the gastrointestinal tract microbiota and these subsequent changes correspond with alterations in a bird's physiology as it matures. As more detailed and precise studies are done with nonconventional poultry, it is likely that structurally distinct prebiotics will influence not only the gastrointestinal tract microbiota differently, but potentially interact directly and/or indirectly with the bird host in distinguishable patterns as well. These functions will be important to delineate if further applications are to be developed for specific prebiotics in nonconventional poultry production systems. © 2015 Poultry Science Association Inc.
Altieri, Clelia; Iorio, Maria Clara; Bevilacqua, Antonio; Sinigaglia, Milena
2016-01-01
Eaten foodstuffs are usually fortified with prebiotic ingredients, such as inulin and oligofructose (FOS). The main goal of this study was to evaluate the combined effects of inulin and FOS with either suboptimal pH or storage temperature on the viability of Lactobacillus reuteri DSM 20016. Data were modeled through Weibull equation for the evaluation of the microbiological shelf life and the survival time. Prebiotics enhanced the microbiological shelf life and enhanced the survival time of the target bacterium. The use of the factorial ANOVA highlighted that inulin and FOS exerted a different effect as a function of pH and temperature. Inulin prolonged survival time under acidic conditions, while the effect of glucose + FOS was significant at pH 8. Finally, temperature could act by increasing or decreasing the effect of prebiotics, as they could exert a protective effect at 30 °C but not at 44 °C. As the main output of this research, we could suggest that the effect of prebiotics on L. reuteri could be significantly affected by pH and temperature, thus pinpointing that the design of a symbiotic food should also rely on these factors.
Ohshima, Tomoko; Kojima, Yukako; Seneviratne, Chaminda J.; Maeda, Nobuko
2016-01-01
Candida is a major human fungal pathogen causing infectious conditions predominantly in the elderly and immunocompromised hosts. Although Candida resides as a member of the oral indigenous microbiota in symbiosis, some circumstances may cause microbial imbalance leading to dysbiosis and resultant oral candidiasis. Therefore, oral microbial symbiosis that suppresses the overgrowth of Candida is important for a healthy oral ecosystem. In this regard, probiotics, prebiotics, and synbiotics can be considered a potential therapeutic and preventive strategy against oral candidiasis. Prebiotics have a direct effect on microbial growth as they stimulate the growth of beneficial bacteria and suppress the growth of pathogens. Probiotics render a local protective effect against pathogens and a systemic indirect effect on immunological amelioration. Synbiotics are fusion products of prebiotics and probiotics. This mini review discusses the potential use and associated limitations of probiotics, prebiotics, and synbiotics for the prevention and treatment of oral candidiasis. We will also introduce biogenics, a recent concept derived from the work on probiotics. Biogenics advocates the use of beneficial bioactive substances produced by probiotic bacteria, whose activities are independent from the viability of probiotic bacteria in human bodies. PMID:26834728
Are Polyphosphates or Phosphate Esters Prebiotic Reagents?
NASA Technical Reports Server (NTRS)
Keefe, Anthony D.; Miller, Stanley L.
1995-01-01
It is widely held that there was a phosphate compound in prebiotic chemistry that played the role of adenosine triphosphate and that the first living organisms had ribose-phosphate in the backbone of their genetic material. However, there are no known efficient prebiotic synthesis of high-energy phosphates or phosphate esters. We review the occurrence of phosphates in nature, the efficiency of the volcanic synthesis of P4O10, the efficiency of polyphosphate synthesis by heating phosphate minerals under geological conditions, and the use of high-energy organic compounds such as cyanamide or hydrogen cyanide. These are shown to be inefficient processes especially when the hydrolysis of the polyphosphates is taken into account. For example, if a whole atmosphere of methane or carbon monoxide were converted to cyanide which somehow synthesized polyphosphates quantitatively, the polyphosphate concentration in the ocean would still have been insignificant. We also attempted to find more efficient high-energy polymerizing agents by spark discharge syntheses, but without success. There may still be undiscovered robust prebiotic syntheses of polyphosphates, or mechanisms for concentrating them, but we conclude that phosphate esters may not have been constituents of the first genetic material. Phosphoanhydrides are also unlikely as prebiotic energy sources.
Mika, Agnieszka; Day, Heidi E W; Martinez, Alexander; Rumian, Nicole L; Greenwood, Benjamin N; Chichlowski, Maciej; Berg, Brian M; Fleshner, Monika
2017-02-01
Manipulating gut microbes may improve mental health. Prebiotics are indigestible compounds that increase the growth and activity of health-promoting microorganisms, yet few studies have examined how prebiotics affect CNS function. Using an acute inescapable stressor known to produce learned helplessness behaviours such as failure to escape and exaggerated fear, we tested whether early life supplementation of a blend of two prebiotics, galactooligosaccharide (GOS) and polydextrose (PDX), and the glycoprotein lactoferrin (LAC) would attenuate behavioural and biological responses to stress later in life. Juvenile, male F344 rats were fed diets containing either GOS and PDX alone, LAC alone, or GOS, PDX and LAC. All diets altered gut bacteria, while diets containing GOS and PDX increased Lactobacillus spp. After 4 weeks, rats were exposed to inescapable stress, and either immediately killed for blood and tissues, or assessed for learned helplessness 24 h later. Diets did not attenuate stress effects on spleen weight, corticosterone and blood glucose; however, all diets differentially attenuated stress-induced learned helplessness. Notably, in situ hybridization revealed that all diets reduced stress-evoked cfos mRNA in the dorsal raphe nucleus (DRN), a structure important for learned helplessness behaviours. In addition, GOS, PDX and LAC diet attenuated stress-evoked decreases in mRNA for the 5-HT 1A autoreceptor in the DRN and increased basal BDNF mRNA within the prefrontal cortex. These data suggest early life diets containing prebiotics and/or LAC promote behavioural stress resistance and uniquely modulate gene expression in corresponding circuits. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Thompson, Robert S.; Roller, Rachel; Mika, Agnieszka; Greenwood, Benjamin N.; Knight, Rob; Chichlowski, Maciej; Berg, Brian M.; Fleshner, Monika
2017-01-01
Severe, repeated or chronic stress produces negative health outcomes including disruptions of the sleep/wake cycle and gut microbial dysbiosis. Diets rich in prebiotics and glycoproteins impact the gut microbiota and may increase gut microbial species that reduce the impact of stress. This experiment tested the hypothesis that consumption of dietary prebiotics, lactoferrin (Lf) and milk fat globule membrane (MFGM) will reduce the negative physiological impacts of stress. Male F344 rats, postnatal day (PND) 24, received a diet with prebiotics, Lf and MFGM (test) or a calorically matched control diet. Fecal samples were collected on PND 35/70/91 for 16S rRNA sequencing to examine microbial composition and, in a subset of rats; Lactobacillus rhamnosus was measured using selective culture. On PND 59, biotelemetry devices were implanted to record sleep/wake electroencephalographic (EEG). Rats were exposed to an acute stressor (100, 1.5 mA, tail shocks) on PND 87 and recordings continued until PND 94. Test diet, compared to control diet, increased fecal Lactobacillus rhamnosus colony forming units (CFU), facilitated non-rapid eye movement (NREM) sleep consolidation (PND 71/72) and enhanced rapid eye movement (REM) sleep rebound after stressor exposure (PND 87). Rats fed control diet had stress-induced reductions in alpha diversity and diurnal amplitude of temperature, which were attenuated by the test diet (PND 91). Stepwise multiple regression analysis revealed a significant linear relationship between early-life Deferribacteres (PND 35) and longer NREM sleep episodes (PND 71/72). A diet containing prebiotics, Lf and MFGM enhanced sleep quality, which was related to changes in gut bacteria and modulated the impact of stress on sleep, diurnal rhythms and the gut microbiota. PMID:28119579
Abhari, Kh; Shekarforoush, S. S; Sajedianfard, J; Hosseinzadeh, S; Nazifi, S
2015-01-01
An in vivo experiment was conducted to study the effects of probiotic Bacillus coagulans spores, with and without prebiotic, inulin, on gastrointestinal (GI) microbiota of healthy rats and its potentiality to survive in the GI tract. Forty-eight male Wistar rats were randomly divided into four groups (n=12) and fed as follows: standard diet (control), standard diet supplied with 5% w/w long chain inulin (prebiotic), standard diet with 109/day spores of B. coagulans by orogastric gavage (probiotic), and standard diet with 5% w/w long chain inulin and 109 spores/day of B. coagulans by orogastric gavage (synbiotic). Rats were fed the diets for 30 days. At day 10, 20 and 30 of experiment, 24 h post administration, four rats from each group were randomly selected and after faecal collection were sacrificed. Small intestine, cecum, and colon were excised from each rat and used for microbial analysis. Administration of synbiotic and probiotic diets led to a significant (P<0.05) increment in lactic acid bacteria (LAB), total aerobic and total anaerobic population compared the prebiotic and control diets. A significant decrease in Enterobacteriaceae counts of various segments of GI tract (except small intestine) in synbiotic, probiotic and prebiotic fed groups were also seen. The obvious decline in spores count through passing GI tract and high surviving spore counts in faecal samples showed that spores are not a normal resident of GI microbiota and affect intestinal microbiota by temporary proliferation. In conclusion, the present study clearly showed probiotic B. coagulans was efficient in beneficially modulating GI microbiota and considering transitional characteristics of B. coagulans, daily consumption of probiotic products is necessary for any long-term effect. PMID:27175187
Abhari, Kh; Shekarforoush, S S; Sajedianfard, J; Hosseinzadeh, S; Nazifi, S
2015-01-01
An in vivo experiment was conducted to study the effects of probiotic Bacillus coagulans spores, with and without prebiotic, inulin, on gastrointestinal (GI) microbiota of healthy rats and its potentiality to survive in the GI tract. Forty-eight male Wistar rats were randomly divided into four groups (n=12) and fed as follows: standard diet (control), standard diet supplied with 5% w/w long chain inulin (prebiotic), standard diet with 10(9)/day spores of B. coagulans by orogastric gavage (probiotic), and standard diet with 5% w/w long chain inulin and 10(9) spores/day of B. coagulans by orogastric gavage (synbiotic). Rats were fed the diets for 30 days. At day 10, 20 and 30 of experiment, 24 h post administration, four rats from each group were randomly selected and after faecal collection were sacrificed. Small intestine, cecum, and colon were excised from each rat and used for microbial analysis. Administration of synbiotic and probiotic diets led to a significant (P<0.05) increment in lactic acid bacteria (LAB), total aerobic and total anaerobic population compared the prebiotic and control diets. A significant decrease in Enterobacteriaceae counts of various segments of GI tract (except small intestine) in synbiotic, probiotic and prebiotic fed groups were also seen. The obvious decline in spores count through passing GI tract and high surviving spore counts in faecal samples showed that spores are not a normal resident of GI microbiota and affect intestinal microbiota by temporary proliferation. In conclusion, the present study clearly showed probiotic B. coagulans was efficient in beneficially modulating GI microbiota and considering transitional characteristics of B. coagulans, daily consumption of probiotic products is necessary for any long-term effect.
Wholegrain oat-based cereals have prebiotic potential and low glycaemic index.
Connolly, M L; Tuohy, K M; Lovegrove, J A
2012-12-28
Population studies show a positive association between increased dietary intake of wholegrains and reduced risk of cardiometabolic disorders. Consumption of wholegrain food has been associated with lower blood glucose and therefore may contribute to a low-glycaemic load diet. The ability to mediate a prebiotic modulation of gut microbiota has recently been suggested to have an inverse correlation with risk of cardiometabolic disease. To date very little work has been carried out on the functionality of wholegrain breakfast cereals in terms of glycaemic response or impact on gut microbiota. An investigation into identifying wholegrain-based breakfast cereals demonstrating both low glycaemic index (GI) and prebiotic attributes was performed. After in vitro digestion, cereal samples were supplemented to pH-controlled anaerobic batch cultures of the human faecal microbiota. Total bacteria populations increased significantly (P < 0·05) in all treated cultures, and the fermentation of a wholegrain oat cluster cereal was associated with proliferation of the Bifidobacterium genus (P = 0·02). Smaller, but significant increases in the Bifidobacterium genus were observed for a further four oat-based cereals. Significant increases in the Lactobacillus-Enterococcus group were observed for granola (P = 0·01), 100 % wholegrain aggregate (P = 0·04) and 70 % wholegrain loops (P = 0·01). Cereals demonstrating prebiotic potential were selected for GI determination in twelve healthy subjects. The wholegrain oat aggregate cereal achieved the lowest GI value (40), three other cereals ranged between 44 and 74, with instant porridge resulting in a GI value similar to the standard glucose control. The present study suggests that wholegrain oat-based breakfast cereals may be prebiotics and have the potential to have low GI.
Scarpellini, Emidio; Campanale, Mariachiara; Leone, Diana; Purchiaroni, Flaminia; Vitale, Giovanna; Lauritano, Ernesto Cristiano; Gasbarrini, Antonio
2010-10-01
Intestinal epithelium, mucosal immune system, and bacterial flora represent a morpho-functional system on dynamic balance responsible for the intestinal metabolic and trophic functions, and the regulation of mucosal and systemic host's immunity. Obesity is a pathological condition affecting a growing number of people especially in the Western countries resulting from the failure of the organism's energetic balance based on the perfect equality of income, waste, and storage. Recent evidences explain the mechanisms for the microbial regulation of the host's metabolism both in health and disease. In particular, animal studies have explained how quali-/quantitative changes in microflora composition are able to affect the absorption of the nutrients and the energy distribution. Antibiotics, prebiotics, probiotics, and symbiotics are the instruments utilized in the current clinical practice to modulate the intestinal bacterial flora in man both in health and pathologic conditions with promising preliminary results on prevention and therapy of obesity and related metabolic diseases.
A Necessary Condition for Coexistence of Autocatalytic Replicators in a Prebiotic Environment
Hernandez, Andres F.; Grover, Martha A.
2013-01-01
A necessary, but not sufficient, mathematical condition for the coexistence of short replicating species is presented here. The mathematical condition is obtained for a prebiotic environment, simulated as a fed-batch reactor, which combines monomer recycling, variable reaction order and a fixed monomer inlet flow with two replicator types and two monomer types. An extensive exploration of the parameter space in the model validates the robustness and efficiency of the mathematical condition, with nearly 1.7% of parameter sets meeting the condition and half of those exhibiting sustained coexistence. The results show that it is possible to generate a condition of coexistence, where two replicators sustain a linear growth simultaneously for a wide variety of chemistries, under an appropriate environment. The presence of multiple monomer types is critical to sustaining the coexistence of multiple replicator types. PMID:25369813
A necessary condition for coexistence of autocatalytic replicators in a prebiotic environment.
Hernandez, Andres F; Grover, Martha A
2013-07-24
A necessary, but not sufficient, mathematical condition for the coexistence of short replicating species is presented here. The mathematical condition is obtained for a prebiotic environment, simulated as a fed-batch reactor, which combines monomer recycling, variable reaction order and a fixed monomer inlet flow with two replicator types and two monomer types. An extensive exploration of the parameter space in the model validates the robustness and efficiency of the mathematical condition, with nearly 1.7% of parameter sets meeting the condition and half of those exhibiting sustained coexistence. The results show that it is possible to generate a condition of coexistence, where two replicators sustain a linear growth simultaneously for a wide variety of chemistries, under an appropriate environment. The presence of multiple monomer types is critical to sustaining the coexistence of multiple replicator types.
Aitbaev, K A; Murkamilov, I T; Fomin, V V
The paper gives an update on the role of the gut microbiome (GM) in the development of nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, alcoholic liver disease, liver cirrhosis (LC), and its complications, such as hepatic encephalopathy (HE) and hepatocellular carcinoma (HCC), and discusses the possibilities of its correction with prebiotics, probiotics, synbiotics, antibiotics, and fecal microbiota transplantation (FMT). The pathophysiology of the liver diseases in question demonstrates some common features that are characterized by pathogenic changes in the composition of the gastrointestinal tract microflora, by intestinal barrier impairments, by development of endotoxemia, by increased liver expression of proinflammatory factors, and by development of liver inflammation. In progressive liver disease, the above changes are more pronounced, which contributes to the development of LC, HE, and HCC. GM modulation using prebiotics, probiotics, synbiotics, antibiotics, and FMT diminishes dysbacteriosis, strengthens the intestinal mucosal barrier, reduces endotoxemia and liver damage, and positively affects the clinical manifestations of HE. Further investigations are needed, especially in humans, firstly, to assess a relationship of GM to the development of liver diseases in more detail and, secondly, to obtain evidence indicating the therapeutic efficacy of GM-modulating agents in large-scale, well-designed, randomized, controlled, multicenter studies.
Functional food addressing heart health: do we have to target the gut microbiota?
Ryan, Paul M; Ross, Reynolds Paul; Fitzgerald, Gerald F; Caplice, Noel M; Stanton, Catherine
2015-11-01
Health promoting functional food ingredients for cardiovascular health are generally aimed at modulating lipid metabolism in consumers. However, significant advances have furthered our understanding of the mechanisms involved in development, progression, and treatment of cardiovascular disease. In parallel, a central role of the gut microbiota, both in accelerating and attenuating cardiovascular disease, has emerged. Modulation of the gut microbiota, by use of prebiotics and probiotics, has recently shown promise in cardiovascular disease prevention. Certain prebiotics can promote a short chain fatty acid profile that alters hormone secretion and attenuates cholesterol synthesis, whereas bile salt hydrolase and exopolysaccharide-producing probiotics have been shown to actively correct hypercholesterolemia. Furthermore, specific microbial genera have been identified as potential cardiovascular disease risk factors. This effect is attributed to the ability of certain members of the gut microbiota to convert dietary quaternary amines to trimethylamine, the primary substrate of the putatively atherosclerosis-promoting compound trimethylamine-N-oxide. In this respect, current research is indicating trimethylamine-depleting Achaea - termed Archeabiotics as a potential novel dietary strategy for promoting heart health. The microbiota offers a modifiable target, which has the potential to progress or prevent cardiovascular disease development. Whereas host-targeted interventions remain the standard, current research implicates microbiota-mediated therapies as an effective means of modulating cardiovascular health.
Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies.
Panebianco, Concetta; Andriulli, Angelo; Pazienza, Valerio
2018-05-22
Cancer is a major health burden worldwide, and despite continuous advances in medical therapies, resistance to standard drugs and adverse effects still represent an important cause of therapeutic failure. There is a growing evidence that gut bacteria can affect the response to chemo- and immunotherapeutic drugs by modulating either efficacy or toxicity. Moreover, intratumor bacteria have been shown to modulate chemotherapy response. At the same time, anticancer treatments themselves significantly affect the microbiota composition, thus disrupting homeostasis and exacerbating discomfort to the patient. Here, we review the existing knowledge concerning the role of the microbiota in mediating chemo- and immunotherapy efficacy and toxicity and the ability of these therapeutic options to trigger dysbiotic condition contributing to the severity of side effects. In addition, we discuss the use of probiotics, prebiotics, synbiotics, postbiotics, and antibiotics as emerging strategies for manipulating the microbiota in order to improve therapeutic outcome or at least ensure patients a better quality of life all along of anticancer treatments.
Modulating Composition and Metabolic Activity of the Gut Microbiota in IBD Patients
Matijašić, Mario; Meštrović, Tomislav; Perić, Mihaela; Čipčić Paljetak, Hana; Panek, Marina; Vranešić Bender, Darija; Ljubas Kelečić, Dina; Krznarić, Željko; Verbanac, Donatella
2016-01-01
The healthy intestine represents a remarkable interface where sterile host tissues come in contact with gut microbiota, in a balanced state of homeostasis. The imbalance of gut homeostasis is associated with the onset of many severe pathological conditions, such as inflammatory bowel disease (IBD), a chronic gastrointestinal disorder increasing in incidence and severely influencing affected individuals. Despite the recent development of next generation sequencing and bioinformatics, the current scientific knowledge of specific triggers and diagnostic markers to improve interventional approaches in IBD is still scarce. In this review we present and discuss currently available and emerging therapeutic options in modulating composition and metabolic activity of gut microbiota in patients affected by IBD. Therapeutic approaches at the microbiota level, such as dietary interventions alone or with probiotics, prebiotics and synbiotics, administration of antibiotics, performing fecal microbiota transplantation (FMT) and the use of nematodes, all represent a promising opportunities towards establishing and maintaining of well-being as well as improving underlying IBD symptoms. PMID:27104515
Modulating Composition and Metabolic Activity of the Gut Microbiota in IBD Patients.
Matijašić, Mario; Meštrović, Tomislav; Perić, Mihaela; Čipčić Paljetak, Hana; Panek, Marina; Vranešić Bender, Darija; Ljubas Kelečić, Dina; Krznarić, Željko; Verbanac, Donatella
2016-04-19
The healthy intestine represents a remarkable interface where sterile host tissues come in contact with gut microbiota, in a balanced state of homeostasis. The imbalance of gut homeostasis is associated with the onset of many severe pathological conditions, such as inflammatory bowel disease (IBD), a chronic gastrointestinal disorder increasing in incidence and severely influencing affected individuals. Despite the recent development of next generation sequencing and bioinformatics, the current scientific knowledge of specific triggers and diagnostic markers to improve interventional approaches in IBD is still scarce. In this review we present and discuss currently available and emerging therapeutic options in modulating composition and metabolic activity of gut microbiota in patients affected by IBD. Therapeutic approaches at the microbiota level, such as dietary interventions alone or with probiotics, prebiotics and synbiotics, administration of antibiotics, performing fecal microbiota transplantation (FMT) and the use of nematodes, all represent a promising opportunities towards establishing and maintaining of well-being as well as improving underlying IBD symptoms.
Divergent prebiotic synthesis of pyrimidine and 8-oxo-purine ribonucleotides
NASA Astrophysics Data System (ADS)
Stairs, Shaun; Nikmal, Arif; Bučar, Dejan-Krešimir; Zheng, Shao-Liang; Szostak, Jack W.; Powner, Matthew W.
2017-05-01
Understanding prebiotic nucleotide synthesis is a long standing challenge thought to be essential to elucidating the origins of life on Earth. Recently, remarkable progress has been made, but to date all proposed syntheses account separately for the pyrimidine and purine ribonucleotides; no divergent synthesis from common precursors has been proposed. Moreover, the prebiotic syntheses of pyrimidine and purine nucleotides that have been demonstrated operate under mutually incompatible conditions. Here, we tackle this mutual incompatibility by recognizing that the 8-oxo-purines share an underlying generational parity with the pyrimidine nucleotides. We present a divergent synthesis of pyrimidine and 8-oxo-purine nucleotides starting from a common prebiotic precursor that yields the β-ribo-stereochemistry found in the sugar phosphate backbone of biological nucleic acids. The generational relationship between pyrimidine and 8-oxo-purine nucleotides suggests that 8-oxo-purine ribonucleotides may have played a key role in primordial nucleic acids prior to the emergence of the canonical nucleotides of biology.
Fu, Yu-Ping; Li, Li-Xia; Zhang, Bing-Zhao; Paulsen, Berit Smestad; Yin, Zhong-Qiong; Huang, Chao; Feng, Bin; Chen, Xing-Fu; Jia, Ren-Rong; Song, Xu; Ni, Xue-Qin; Jing, Bo; Wu, Fa-Ming; Zou, Yuan-Feng
2018-08-01
The inulin-type fructan was obtained by DEAE anion exchange chromatography from C. pilosula Nannf. var. modesta (Nannf.) L. T. Shen, after optimized extract condition, which was established by response surface methodology, designed using Box-Behnken factorial design and the optimum condition were: extracting 2.5 h with ratio of solvent to material 40 mL/g at 100 °C, twice. The maximum extraction yield was 20.6 ± 0.2%. It was confirmed as β-(2-1) linkage fructan, with terminal glucose, and with a degree of polymerization of 2-17 (DP av = 6), shown by the results of methanolysis, methylation, nuclear magnetic resonance and molecular weight determination. The prebiotic activity was proven on account of stimulation effect on Lactobacillus and pH reduction of medium in vitro. The results indicated that the inulin from C. pilosula could be used as a potential natural source of prebiotics. Copyright © 2018 Elsevier Ltd. All rights reserved.
Beta structures of alternating polypeptides and their possible prebiotic significance
NASA Technical Reports Server (NTRS)
Brack, A.; Orgel, L. E.
1975-01-01
A survey of the commonest amino acids formed in prebiotic conditions suggests that the earliest form of genetic coding may have specified polypeptides with a strong tendency to form stable beta-sheet structures. Poly(Val-Lys), like other polypeptides in which hydrophobic and hydrophilic residues alternate, tends to form beta structures. It is shown that bilayers with a hydrophobic interior and a hydrophilic exterior may be present in aqueous solution.
Chilled milk-based desserts as emerging probiotic and prebiotic products.
Buriti, Flávia C A; Saad, Susana M I
2014-01-01
Nowadays, food companies are endeavoring to differentiate their products through creative segmentation and positioning strategies based on superior functionality and quality. Some kinds of dairy desserts have shown a great market potential, as a function of consumers interested in healthier and functional products with fine taste and mouthfeel. In this context, chilled dairy desserts are emerging as attractive options for the incorporation of probiotic cultures and prebiotic ingredients, as seen in the previous launches from the food industry, as well as in the growing number of scientific studies dealing with this subject published in the last years. The main aspects involved in the development of probiotic and/or prebiotic dairy desserts for storage under refrigerated conditions are presented in this review.
Druart, Céline; Neyrinck, Audrey M; Dewulf, Evelyne M; De Backer, Fabienne C; Possemiers, Sam; Van de Wiele, Tom; Moens, Frédéric; De Vuyst, Luc; Cani, Patrice D; Larondelle, Yvan; Delzenne, Nathalie M
2013-09-28
In vitro experiments have shown that isolated human gut bacteria are able to metabolise PUFA into conjugated PUFA like conjugated linoleic acids (CLA). The hypothesis of the present paper was that high-fat (HF) diet feeding and supplementation with fermentable carbohydrates that have prebiotic properties modulate the in vivo production of CLA by the mouse gut microbiota. Mice were treated for 4 weeks as follows: control (CT) groups were fed a standard diet; HF groups were fed a HF diet rich in linoleic acid (18 : 2n-6); the third groups were fed with the HF diet supplemented with either inulin-type fructans (HF-ITF) or arabinoxylans (HF-Ax). HF diet feeding increased rumenic acid (cis-9,trans-11-18 : 2 CLA) content both in the caecal and liver tissues compared with the CT groups. ITF supplementation had no major effect compared with the HF diet whereas Ax supplementation increased further rumenic acid (cis-9,trans-11-18 : 2 CLA) in the caecal tissue. These differences between both prebiotics may be linked to the high fat-binding capacity of Ax that provides more substrates for bacterial metabolism and to differential modulation of the gut microbiota (specific increase in Roseburia spp. in HF-Ax v. HF). In conclusion, these experiments supply the proof of concept that the mouse gut microbiota produces CLA in vivo, with consequences on the level of CLA in the caecal and liver tissues. We postulate that the CLA-producing bacteria could be a mediator to consider in the metabolic effects of both HF diet feeding and prebiotic supplementation.
Tuohy, Kieran M; Fava, Francesca; Viola, Roberto
2014-05-01
The human gut microbiota has been identified as a possible novel CVD risk factor. This review aims to summarise recent insights connecting human gut microbiome activities with CVD and how such activities may be modulated by diet. Aberrant gut microbiota profiles have been associated with obesity, type 1 and type 2 diabetes and non-alcoholic fatty liver disease. Transfer of microbiota from obese animals induces metabolic disease and obesity in germ-free animals. Conversely, transfer of pathogen-free microbiota from lean healthy human donors to patients with metabolic disease can increase insulin sensitivity. Not only are aberrant microbiota profiles associated with metabolic disease, but the flux of metabolites derived from gut microbial metabolism of choline, phosphatidylcholine and l-carnitine has been shown to contribute directly to CVD pathology, providing one explanation for increased disease risk of eating too much red meat. Diet, especially high intake of fermentable fibres and plant polyphenols, appears to regulate microbial activities within the gut, supporting regulatory guidelines encouraging increased consumption of whole-plant foods (fruit, vegetables and whole-grain cereals), and providing the scientific rationale for the design of efficacious prebiotics. Similarly, recent human studies with carefully selected probiotic strains show that ingestion of viable microorganisms with the ability to hydrolyse bile salts can lower blood cholesterol, a recognised risk factor in CVD. Taken together such observations raise the intriguing possibility that gut microbiome modulation by whole-plant foods, probiotics and prebiotics may be at the base of healthy eating pyramids advised by regulatory agencies across the globe. In conclusion, dietary strategies which modulate the gut microbiota or their metabolic activities are emerging as efficacious tools for reducing CVD risk and indicate that indeed, the way to a healthy heart may be through a healthy gut microbiota.
Houshmand, M; Azhar, K; Zulkifli, I; Bejo, M H; Kamyab, A
2012-02-01
An experiment was conducted to determine the effects of period on the performance, immunity, and some stress indicators of broilers fed 2 levels of protein and stocked at a normal or high stocking density. Experimental treatments consisted of a 2 × 2 × 2 factorial arrangement with 2 levels of prebiotic (with or without prebiotic), 2 levels of dietary CP [NRC-recommended or low CP level (85% of NRC-recommended level)], and 2 levels of stocking density (10 birds/m(2) as the normal density or 16 birds/m(2) as the high density), for a total of 8 treatments. Each treatment had 5 replicates (cages). Birds were reared in 3-tiered battery cages with wire floors in an open-sided housing system under natural tropical conditions. Housing and general management practices were similar for all treatment groups. Starter and finisher diets in mash form were fed from 1 to 21 d and 22 to 42 d of age, respectively. Supplementation with a prebiotic had no significant effect on performance, immunity, and stress indicators (blood glucose, cholesterol, corticosterone, and heterophil:lymphocyte ratio). Protein level significantly influenced broiler performance but did not affect immunity or stress indicators (except for cholesterol level). The normal stocking density resulted in better FCR and also higher antibody titer against Newcastle disease compared with the high stocking density. However, density had no significant effect on blood levels of glucose, cholesterol, corticosterone, and the heterophil:lymphocyte ratio. Significant interactions between protein level and stocking density were observed for BW gain and final BW. The results indicated that, under the conditions of this experiment, dietary addition of a prebiotic had no significant effect on the performance, immunity, and stress indicators of broilers.
Towards microbial fermentation metabolites as markers for health benefits of prebiotics.
Verbeke, Kristin A; Boobis, Alan R; Chiodini, Alessandro; Edwards, Christine A; Franck, Anne; Kleerebezem, Michiel; Nauta, Arjen; Raes, Jeroen; van Tol, Eric A F; Tuohy, Kieran M
2015-06-01
Available evidence on the bioactive, nutritional and putative detrimental properties of gut microbial metabolites has been evaluated to support a more integrated view of how prebiotics might affect host health throughout life. The present literature inventory targeted evidence for the physiological and nutritional effects of metabolites, for example, SCFA, the potential toxicity of other metabolites and attempted to determine normal concentration ranges. Furthermore, the biological relevance of more holistic approaches like faecal water toxicity assays and metabolomics and the limitations of faecal measurements were addressed. Existing literature indicates that protein fermentation metabolites (phenol, p-cresol, indole, ammonia), typically considered as potentially harmful, occur at concentration ranges in the colon such that no toxic effects are expected either locally or following systemic absorption. The endproducts of saccharolytic fermentation, SCFA, may have effects on colonic health, host physiology, immunity, lipid and protein metabolism and appetite control. However, measuring SCFA concentrations in faeces is insufficient to assess the dynamic processes of their nutrikinetics. Existing literature on the usefulness of faecal water toxicity measures as indicators of cancer risk seems limited. In conclusion, at present there is insufficient evidence to use changes in faecal bacterial metabolite concentrations as markers of prebiotic effectiveness. Integration of results from metabolomics and metagenomics holds promise for understanding the health implications of prebiotic microbiome modulation but adequate tools for data integration and interpretation are currently lacking. Similarly, studies measuring metabolite fluxes in different body compartments to provide a more accurate picture of their nutrikinetics are needed.
NASA Technical Reports Server (NTRS)
Forsythe, J. G.; Weber, A. L.
2017-01-01
Past studies of prebiotic peptide bond synthesis have generally been carried out in the acidic to neutral pH range [1, 2]. Here we report a new process for peptide bond (amide) synthesis in the neutral to alkaline pH range that involves simple dry-down heating of amino acids in the presence of glycerol and bicarbonate. Glycerol was included in the reaction mixture as a solvent and to provide hydroxyl groups for possible formation of ester intermediates previously implicated in peptide bond synthesis under acidic to neutral conditions [1]. Bicarbonate was added to raise the reaction pH to 8-9.
Joshi, Manesh Prakash; Samanta, Anupam; Tripathy, Gyana Ranjan; Rajamani, Sudha
2017-01-01
Terrestrial geothermal fields and oceanic hydrothermal vents are considered as candidate environments for the emergence of life on Earth. Nevertheless, the ionic strength and salinity of oceans present serious limitations for the self-assembly of amphiphiles, a process that is fundamental for the formation of first protocells. Consequently, we systematically characterized the efficiency of amphiphile assembly, and vesicular stability, in terrestrial geothermal environments, both, under simulated laboratory conditions and in hot spring water samples (collected from Ladakh, India, an Astrobiologically relevant site). Combinations of prebiotically pertinent fatty acids and their derivatives were evaluated for the formation of vesicles in aforesaid scenarios. Additionally, the stability of these vesicles was characterized over multiple dehydration-rehydration cycles, at elevated temperatures. Among the combinations that were tested, mixtures of fatty acid and its glycerol derivatives were found to be the most robust, also resulting in vesicles in all of the hot spring waters that were tested. Importantly, these vesicles were stable at high temperatures, and this fatty acid system retained its vesicle forming propensity, even after multiple cycles of dehydration-rehydration. The remaining systems, however, formed vesicles only in bicine buffer. Our results suggest that certain prebiotic compartments would have had a selective advantage in terrestrial geothermal niches. Significantly, our study highlights the importance of validating results that are obtained under ‘buffered’ laboratory conditions, by verifying their plausibility in prebiotically analogous environments. PMID:29189763
Joshi, Manesh Prakash; Samanta, Anupam; Tripathy, Gyana Ranjan; Rajamani, Sudha
2017-11-30
Terrestrial geothermal fields and oceanic hydrothermal vents are considered as candidate environments for the emergence of life on Earth. Nevertheless, the ionic strength and salinity of oceans present serious limitations for the self-assembly of amphiphiles, a process that is fundamental for the formation of first protocells. Consequently, we systematically characterized the efficiency of amphiphile assembly, and vesicular stability, in terrestrial geothermal environments, both, under simulated laboratory conditions and in hot spring water samples (collected from Ladakh, India, an Astrobiologically relevant site). Combinations of prebiotically pertinent fatty acids and their derivatives were evaluated for the formation of vesicles in aforesaid scenarios. Additionally, the stability of these vesicles was characterized over multiple dehydration-rehydration cycles, at elevated temperatures. Among the combinations that were tested, mixtures of fatty acid and its glycerol derivatives were found to be the most robust, also resulting in vesicles in all of the hot spring waters that were tested. Importantly, these vesicles were stable at high temperatures, and this fatty acid system retained its vesicle forming propensity, even after multiple cycles of dehydration-rehydration. The remaining systems, however, formed vesicles only in bicine buffer. Our results suggest that certain prebiotic compartments would have had a selective advantage in terrestrial geothermal niches. Significantly, our study highlights the importance of validating results that are obtained under 'buffered' laboratory conditions, by verifying their plausibility in prebiotically analogous environments.
Automated Oligopeptide Formation Under Simple Programmable Conditions
NASA Astrophysics Data System (ADS)
Suárez-Marina, I.; Rodriguez-Garcia, M.; Surman, A. J.; Cooper, G. J. T.; Cronin, L.
2017-07-01
Traditionally, prebiotic chemistry has investigated the formation of life's precursors under very specific conditions thought to be "plausible". Herein, we explore peptide formation studying several parameters at once by using an automated platform.
Heredia, Alejandro; Colín-García, María; Puig, Teresa Pi I; Alba-Aldave, Leticia; Meléndez, Adriana; Cruz-Castañeda, Jorge A; Basiuk, Vladimir A; Ramos-Bernal, Sergio; Mendoza, Alicia Negrón
2017-12-01
Ionizing radiation may have played a relevant role in chemical reactions for prebiotic biomolecule formation on ancient Earth. Environmental conditions such as the presence of water and magnetic fields were possibly relevant in the formation of organic compounds such as amino acids. ATR-FTIR, Raman, EPR and X-ray spectroscopies provide valuable information about molecular organization of different glycine polymorphs under static magnetic fields. γ-glycine polymorph formation increases in irradiated samples interacting with static magnetic fields. The increase in γ-glycine polymorph agrees with the computer simulations. The AM1 semi-empirical simulations show a change in the catalyst behavior and dipole moment values in α and γ-glycine interaction with the static magnetic field. The simulated crystal lattice energy in α-glycine is also affected by the free radicals under the magnetic field, which decreases its stability. Therefore, solid α and γ-glycine containing free radicals under static magnetic fields might have affected the prebiotic scenario on ancient Earth by causing the oligomerization of glycine in prebiotic reactions. Copyright © 2017 Elsevier B.V. All rights reserved.
Lahav, N
1975-08-05
The formation of packets of parallel oriented platelets and separating distances of several angstrom units in montmorillonite-water systems produces an intrinsic inhomogeneity with respect to the proton donating power of internal and external zones. Stable packets can be induced by both inorganic and organic molecules or ions, in suspensions or in drying-out systems. The coexistence of zones with different proton donating power was demonstrated by the pH-sensitive color reaction of benzidine, where stable packets of montmorillonite platelets were formed by the use of either paraquat or diquat. The close proximity of the two types of zones, which can be of the order of several angstroms, produces the conditions which were defined by Katchalsky as essential for the polymerization of amino acids. Since these enviromental conditions are quite common in nature, both at present and in prebiotic times, it is proposed that the inhomogeneity of clay-water systems with respect to proton donating power should be taken into account in both theoretical and experimental efforts to demonstrate the catalytic activity of clays in prebiotic synthesis.
Miyazaki, K; Masuoka, N; Kano, M; Iizuka, R
2014-06-01
A questionnaire survey found that women suffering from abnormal bowel movements have many skin problems such as a high frequency of dry skin. Although there are similarities between the structure and barrier function mechanism of the gut and skin, experimental data are insufficient to show an association between the intestinal environment and skin conditions. Phenols, for example phenol and p-cresol, as metabolites of aromatic amino acids produced by gut bacteria, are regarded as bioactive toxins and serum biomarkers of a disturbed gut environment. Recent studies have demonstrated that phenols disturb the differentiation of monolayer-cultured keratinocytes in vitro, and that phenols produced by gut bacteria accumulate in the skin via the circulation and disrupt keratinocyte differentiation in hairless mice. Human studies have demonstrated that restriction of probiotics elevated serum free p-cresol levels and harmed skin conditions (reduced skin hydration, disrupted keratinisation). In contrast, daily intake of the prebiotic galacto-oligosaccharides (GOS) restored serum free p-cresol levels and skin conditions in adult women. Moreover, a double-blind placebo-controlled trial demonstrated that the daily intake of fermented milk containing the probiotic Bifidobacterium breve strain Yakult and prebiotic GOS reduced serum total phenol levels and prevented skin dryness and disruption of keratinisation in healthy adult women. It is concluded that phenols produced by gut bacteria are one of the causes of skin problems. Probiotics and/or prebiotics, such as B. breve strain Yakult and/or GOS, are expected to help maintain a healthy skin by decreasing phenols production by gut microbiota. These findings support the hypothesis that probiotics and prebiotics provide health benefits to the skin as well as the gut.
Prebiotics Modulate the Effects of Antibiotics on Gut Microbial Diversity and Functioning in Vitro.
Johnson, Laura P; Walton, Gemma E; Psichas, Arianna; Frost, Gary S; Gibson, Glenn R; Barraclough, Timothy G
2015-06-04
Intestinal bacteria carry out many fundamental roles, such as the fermentation of non-digestible dietary carbohydrates to produce short chain fatty acids (SCFAs), which can affect host energy levels and gut hormone regulation. Understanding how to manage this ecosystem to improve human health is an important but challenging goal. Antibiotics are the front line of defence against pathogens, but in turn they have adverse effects on indigenous microbial diversity and function. Here, we have investigated whether dietary supplementation--another method used to modulate gut composition and function--could be used to ameliorate the side effects of antibiotics. We perturbed gut bacterial communities with gentamicin and ampicillin in anaerobic batch cultures in vitro. Cultures were supplemented with either pectin (a non-fermentable fibre), inulin (a commonly used prebiotic that promotes the growth of beneficial bacteria) or neither. Although antibiotics often negated the beneficial effects of dietary supplementation, in some treatment combinations, notably ampicillin and inulin, dietary supplementation ameliorated the effects of antibiotics. There is therefore potential for using supplements to lessen the adverse effects of antibiotics. Further knowledge of such mechanisms could lead to better therapeutic manipulation of the human gut microbiota.
Ecology and Evolution in the RNA World Dynamics and Stability of Prebiotic Replicator Systems.
Szilágyi, András; Zachar, István; Scheuring, István; Kun, Ádám; Könnyű, Balázs; Czárán, Tamás
2017-11-27
As of today, the most credible scientific paradigm pertaining to the origin of life on Earth is undoubtedly the RNA World scenario. It is built on the assumption that catalytically active replicators (most probably RNA-like macromolecules) may have been responsible for booting up life almost four billion years ago. The many different incarnations of nucleotide sequence (string) replicator models proposed recently are all attempts to explain on this basis how the genetic information transfer and the functional diversity of prebiotic replicator systems may have emerged, persisted and evolved into the first living cell. We have postulated three necessary conditions for an RNA World model system to be a dynamically feasible representation of prebiotic chemical evolution: (1) it must maintain and transfer a sufficient diversity of information reliably and indefinitely, (2) it must be ecologically stable and (3) it must be evolutionarily stable. In this review, we discuss the best-known prebiotic scenarios and the corresponding models of string-replicator dynamics and assess them against these criteria. We suggest that the most popular of prebiotic replicator systems, the hypercycle, is probably the worst performer in almost all of these respects, whereas a few other model concepts (parabolic replicator, open chaotic flows, stochastic corrector, metabolically coupled replicator system) are promising candidates for development into coherent models that may become experimentally accessible in the future.
Pruszynska-Oszmalek, E; Kolodziejski, P A; Stadnicka, K; Sassek, M; Chalupka, D; Kuston, B; Nogowski, L; Mackowiak, P; Maiorano, G; Jankowski, J; Bednarczyk, M
2015-08-01
The purpose of the study was to examine the effect of 2 prebiotics and 2 synbiotics on the digestive potency of pancreas in 1-, 3-, 7-, 14-, 21-, and 34-day-old cockerels. Prebiotics (inulin and Bi²tos) and synbiotics (inulin + Lactococcus lactis subsp. lactis and Bi²tos + Lactococcus lactis subsp. cremoris) were injected in ovo into the air cell on the 12th d embryonic development. Their application increased the activity of amylase, lipase, and trypsin in the pancreas. The most pronounced changes were observed at the end of the investigated rearing period (d 34). The strongest stimulative effects on amylase were shown by both synbiotics, on lipase synbiotic Bi²tos + Lactococcus lactis subsp. cremoris, and on trypsin all the used prebiotics and synbiotics. Simultaneously, neither the absolute nor the relative mass of the pancreas in comparison to control group were changed. Also, the injected in ovo compounds did not cause a deterioration in the posthatching condition of the chicken liver, as determined by measurement of the activity of marker enzymes in the blood (alanine aminotransferase and aspartate aminotransferase). Treatment with the prebiotics and synbiotics did not change the feed conversion ratio but Bi²tos (galacto-oligosaccharide) and inulin (fructan) + Lactococcus lactis subsp. lactis significantly increased final BW. © 2015 Poultry Science Association Inc.
Speranza, Barbara; Campaniello, Daniela; Monacis, Noemi; Bevilacqua, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria
2018-06-01
The aim of this study was to develop a functional fresh cream cheese with Bifidobacterium animalis subsp. lactis DSM 10140 or Lactobacillus reuteri DSM 20016 and prebiotics (inulin, FOS and lactulose). The research was divided into two steps: in vitro evaluation of the effects of prebiotic compounds; validation at laboratory level with production of functional cream mini-cheeses. Prebiotics showed a protective effect: B. animalis subsp. lactis DSM 10140 cultivability on Petri dishes was positively influenced by lactulose, whereas fructooligosaccharides (FOS) were the prebiotic compounds able to prolong Lb. reuteri DSM 20016 cultivability. At 30 °C, a prolongation of the death time (more than 300 days) was observed, while the controls showed death time values about 100 days. At 45 °C, death time values increased from 32.2 (control) to 33, 35, and 38 days in the samples added with FOS, inulin and lactulose, respectively. Lactulose and FOS were chosen to be added to cream mini-cheeses inoculated with B. animalis subsp. lactis DSM 10140 and Lb. reuteri DSM 20016, respectively; the proposed functional cream cheese resulted in a product with favourable conditions for the viability of both probiotics which maintained cultivable cells above the recommended level during 28 days of storage at 4 °C with good sensory characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ecology and Evolution in the RNA World Dynamics and Stability of Prebiotic Replicator Systems
Szilágyi, András; Kun, Ádám; Könnyű, Balázs; Czárán, Tamás
2017-01-01
As of today, the most credible scientific paradigm pertaining to the origin of life on Earth is undoubtedly the RNA World scenario. It is built on the assumption that catalytically active replicators (most probably RNA-like macromolecules) may have been responsible for booting up life almost four billion years ago. The many different incarnations of nucleotide sequence (string) replicator models proposed recently are all attempts to explain on this basis how the genetic information transfer and the functional diversity of prebiotic replicator systems may have emerged, persisted and evolved into the first living cell. We have postulated three necessary conditions for an RNA World model system to be a dynamically feasible representation of prebiotic chemical evolution: (1) it must maintain and transfer a sufficient diversity of information reliably and indefinitely, (2) it must be ecologically stable and (3) it must be evolutionarily stable. In this review, we discuss the best-known prebiotic scenarios and the corresponding models of string-replicator dynamics and assess them against these criteria. We suggest that the most popular of prebiotic replicator systems, the hypercycle, is probably the worst performer in almost all of these respects, whereas a few other model concepts (parabolic replicator, open chaotic flows, stochastic corrector, metabolically coupled replicator system) are promising candidates for development into coherent models that may become experimentally accessible in the future. PMID:29186916
Constraints on the Early Terrestrial Surface UV Environment Relevant to Prebiotic Chemistry.
Ranjan, Sukrit; Sasselov, Dimitar D
2017-03-01
The UV environment is a key boundary condition to abiogenesis. However, considerable uncertainty exists as to planetary conditions and hence surface UV at abiogenesis. Here, we present two-stream multilayer clear-sky calculations of the UV surface radiance on Earth at 3.9 Ga to constrain the UV surface fluence as a function of albedo, solar zenith angle (SZA), and atmospheric composition. Variation in albedo and latitude (through SZA) can affect maximum photoreaction rates by a factor of >10.4; for the same atmosphere, photoreactions can proceed an order of magnitude faster at the equator of a snowball Earth than at the poles of a warmer world. Hence, surface conditions are important considerations when computing prebiotic UV fluences. For climatically reasonable levels of CO 2 , fluence shortward of 189 nm is screened out, meaning that prebiotic chemistry is robustly shielded from variations in UV fluence due to solar flares or variability. Strong shielding from CO 2 also means that the UV surface fluence is insensitive to plausible levels of CH 4 , O 2 , and O 3 . At scattering wavelengths, UV fluence drops off comparatively slowly with increasing CO 2 levels. However, if SO 2 and/or H 2 S can build up to the ≥1-100 ppm level as hypothesized by some workers, then they can dramatically suppress surface fluence and hence prebiotic photoprocesses. H 2 O is a robust UV shield for λ < 198 nm. This means that regardless of the levels of other atmospheric gases, fluence ≲198 nm is only available for cold, dry atmospheres, meaning sources with emission ≲198 (e.g., ArF excimer lasers) can only be used in simulations of cold environments with low abundance of volcanogenic gases. On the other hand, fluence at 254 nm is unshielded by H 2 O and is available across a broad range of [Formula: see text], meaning that mercury lamps are suitable for initial studies regardless of the uncertainty in primordial H 2 O and CO 2 levels. Key Words: Radiative transfer-Origin of life-Planetary environments-UV radiation-Prebiotic chemistry. Astrobiology 17, 169-204.
Nucleobases and Other Prebiotic Species from the UV Irradiation of Pyrimidine in Astrophysical Ices
NASA Technical Reports Server (NTRS)
Sandford, Scott; Materese, Christopher; Nuevo, Michel
2012-01-01
Nucleobases are aromatic N-heterocycles that constitute the informational subunits of DNA and RNA and are divided into two families: pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in meteorites and their extraterrestrial origin confirmed by isotope measurement. Although no N-heterocycles have been individually identified in the ISM, the 6.2-micron interstellar emission feature seen towards many astronomical objects suggests a population of such molecules is likely present. We report on a study of the formation of pyrimidine-based molecules, including nucleobases and other species of prebiotic interest, from the ultraviolet (UV) irradiation of pyrimidine in low temperature ices containing H2O, NH3, C3OH, and CH4, to simulate the astrophysical conditions under which prebiotic species may be formed in the Solar System.
Bouchaud, G; Castan, L; Chesné, J; Braza, F; Aubert, P; Neunlist, M; Magnan, A; Bodinier, M
2016-01-01
Food allergies affect 4-8% of children and are constantly on the rise, thus making allergies a timely issue. Most importantly, prevention strategies are nonexistent, and current therapeutic strategies have limited efficacy and need to be improved. One alternative to prevent or reduce allergies, particularly during infancy, could consist of modulating maternal immunity and microbiota using nondigestible food ingredients, such as prebiotics. For this purpose, we studied the preventive effects of prebiotics in Balb/c mothers during pregnancy and breastfeeding on food allergy development in offspring mice. After weaning, the offspring from mothers that were exposed to GOS/inulin mixture or fed a control diet were intraperitoneally sensitized to wheat proteins to induce a systemic allergic response and orally exposed to the same allergen. Immunological, physiological, and microbial parameters were analyzed. GOS/inulin mixture diet modified the microbiota of mothers and their offspring. Offspring from mothers that received GOS/inulin prebiotics were protected against food allergies and displayed lower clinical scores, specifically of IgE and histamine levels, compared to offspring from mothers fed a control diet. Moreover, GOS/inulin supplementation for the mother resulted in stronger intestinal permeability in the offspring. Enhancement of the regulatory response to allergic inflammation and changes in the Th2/Th1 balance toward a dampened Th2 response were observed in mice from GOS/inulin mixture-exposed mothers. The treatment of pregnant and lactating mice with nondigestible GOS/inulin prebiotics promotes a long-term protective effect against food allergies in the offspring. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Pallav, Kumar; Dowd, Scot E; Villafuerte, Javier; Yang, Xiaotong; Kabbani, Toufic; Hansen, Joshua; Dennis, Melinda; Leffler, Daniel A; Newburg, David S; Kelly, Ciarán P
2014-07-01
Interactions between the microbial flora of the intestine and the human host play a critical role inmaintaining intestinal health and in the pathophysiology of a wide variety of disorders such as antibiotic associated diarrhea, Clostridium difficile infection, and inflammatory bowel disease. Prebiotics can confer health benefits by beneficial effects on the intestinal microbiome, whereas antibiotics can disrupt the microbiome leading to diarrhea andother side effects. To compare the effects of the prebiotic, polysaccharopeptide from Trametes versicolor, to those of the antibiotic,amoxicillin, on the human gut microbiome Twenty-four healthy volunteers were randomized to receive PSP, amoxicillin, or no treatment (control).Stool specimens were analyzed using bTEFAP microbial ecology methods on seven occasions over 8 weeks from each participant in the active treatment groups and on three occasions for the controls. Twenty-two of 24 participants completed the protocol. PSP led to clear and consistent microbiome changes consistent with its activity as a prebiotic. Despite the diversity of the human microbiome we noted strong microbiome clustering among subjects. Baseline microbiomes tended to remain stable and to overshadow the treatment effects.Amoxicillin treatment caused substantial microbiome changes most notably an increase in Escherichia/Shigella. Antibiotic associated changes persisted to the end of the study, 42 days after antibiotic therapy ended. The microbiomes of healthy individuals show substantial diversity but remain stable over time.The antibiotic amoxicillin alters the microbiome and recovery from this disruption can take several weeks. PSP from T. versicolor acts as a prebiotic to modulate human intestinal microbiome composition.
Ford, Alexander C; Quigley, Eamonn M M; Lacy, Brian E; Lembo, Anthony J; Saito, Yuri A; Schiller, Lawrence R; Soffer, Edy E; Spiegel, Brennan M R; Moayyedi, Paul
2014-10-01
Irritable bowel syndrome (IBS) and chronic idiopathic constipation (CIC) are functional bowel disorders. Evidence suggests that disturbance in the gastrointestinal microbiota may be implicated in both conditions. We performed a systematic review and meta-analysis to examine the efficacy of prebiotics, probiotics, and synbiotics in IBS and CIC. MEDLINE, EMBASE, and the Cochrane Controlled Trials Register were searched (up to December 2013). Randomized controlled trials (RCTs) recruiting adults with IBS or CIC, which compared prebiotics, probiotics, or synbiotics with placebo or no therapy, were eligible. Dichotomous symptom data were pooled to obtain a relative risk (RR) of remaining symptomatic after therapy, with a 95% confidence interval (CI). Continuous data were pooled using a standardized or weighted mean difference with a 95% CI. The search strategy identified 3,216 citations. Forty-three RCTs were eligible for inclusion. The RR of IBS symptoms persisting with probiotics vs. placebo was 0.79 (95% CI 0.70-0.89). Probiotics had beneficial effects on global IBS, abdominal pain, bloating, and flatulence scores. Data for prebiotics and synbiotics in IBS were sparse. Probiotics appeared to have beneficial effects in CIC (mean increase in number of stools per week=1.49; 95% CI=1.02-1.96), but there were only two RCTs. Synbiotics also appeared beneficial (RR of failure to respond to therapy=0.78; 95% CI 0.67-0.92). Again, trials for prebiotics were few in number, and no definite conclusions could be drawn. Probiotics are effective treatments for IBS, although which individual species and strains are the most beneficial remains unclear. Further evidence is required before the role of prebiotics or synbiotics in IBS is known. The efficacy of all three therapies in CIC is also uncertain.
Assessment of Secondary Structure in Nucleic Acid Produced in Simulated Prebiotic Conditions
NASA Astrophysics Data System (ADS)
Glass, K.; Oye, M.; Deamer, D.; Vercoutere, W.
2017-07-01
The earliest forms of life would likely have a protocellular form, with a membrane encapsulating some form of linear charged polymer that would have enzymatic as well as genetic properties. Our experiments mimic these conditions.
From the Primitive Atmosphere to the Prebiotic Soup to the Pre-RNA World
NASA Technical Reports Server (NTRS)
Miller, Stanley L.
1996-01-01
Organic compounds would have been produced in an earth's atmosphere that was reducing. The soup would contain amino and hydroxy acids, together with smaller amounts of purines and pyrimidines. The presence' of sugars is less likely, although they can be produced by the formose reaction from formaldehyde. However, the prebiotic synthesis of RNA has not been demonstrated. One problem is that ribose is not produced selectively over other pentoses and hexoses, except under special conditions. The second problem is that ribose is unstable, with a half-life at pH7 and 100 C of 73 minutes (44 years at 0 C). Other sugars are similarly unstable. Another problem is that there is no efficient prebiotic synthesis of polyphosphates, nor the glycosidic bond of nucleosides. This suggests that there may have been an informational macromolecule that preceded RNA. The RNA world refers to the time when RNA carried both the genetic information and the catalytic activity, and was subsequently converted to the DNA/protein world when protein synthesis began. Preceeding the RNA world was the Pre-RNA world, where a backbone different from ribose phosphate was used, and the bases may have been different from adenine, uracil, guanine and cytosine. We have shown recently that cytosine and uracil can be synthesized efficiently under prebiotic conditions using a dried lagoon model instead of the usual dilute ocean hypothesis. In addition, we have shown that uracil adds formaldehyde efficiently to give 5- hydroxymethyl uracil, which in turn adds various nucleophiles to give uracil analogs of most of the amino acids that occur in proteins. For example, the ammonia, guanidine and imidazole adducts from the analogs of lysine, arginine and histidine. This suggests that the catalytic potential of RNA may have been much more extensive than previously assumed. The major problem is finding out what was the precursor to the ribose phosphate backbone. This will be the key to developing prebiotic self-replicating systems.
O'Connell Motherway, Mary; Kinsella, Michael; Fitzgerald, Gerald F; van Sinderen, Douwe
2013-01-01
Several prebiotics, such as inulin, fructo-oligosaccharides and galacto-oligosaccharides, are widely used commercially in foods and there is convincing evidence, in particular for galacto-oligosaccharides, that prebiotics can modulate the microbiota and promote bifidobacterial growth in the intestinal tract of infants and adults. In this study we describe the identification and functional characterization of the genetic loci responsible for the transport and metabolism of purified galacto-oligosaccharides (PGOS) by Bifidobacterium breve UCC2003. We further demonstrate that an extracellular endogalactanase specified by several B. breve strains, including B. breve UCC2003, is essential for partial degradation of PGOS components with a high degree of polymerization. These partially hydrolysed PGOS components are presumed to be transported into the bifidobacterial cell via various ABC transport systems and sugar permeases where they are further degraded to galactose and glucose monomers that feed into the bifid shunt. This work significantly advances our molecular understanding of bifidobacterial PGOS metabolism and its associated genetic machinery to utilize this prebiotic. © 2012 The Authors. Published by Society for Applied Microbiology and Blackwell Publishing Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Formation of Nucleobases from the UV Irradiation of Pyrimidine in Interstellar Ice Analogs
NASA Technical Reports Server (NTRS)
Milam, Stefanie N.; Nuevo, Michel; Sandford, Scott A.; Elsila, Jamie E.; Dworkin, Jason P.
2010-01-01
Previous laboratory simulations showed that complex molecules, including prebiotic compounds/can be formed under interstellar conditions from the vacuum UV irradiation of interstellar ice analogs containing H2O, CO, NH3 etc. Although some complex prebiotic species have not been confirmed In the interstellar medium, they are known to be present in meteorites. Nucleobases, the building blocks of DNA and RNA, have also been detected in meteorites. Here, we present a study of the formation of pyrimidine-based compounds from the UV irradiation of pyrimidine in H2O- and/or NH3-ices at 20-30 K, Our results show that various derivatives, induding the nucleobases uracil and cytosine, are formed under these conditions.
Reshaping the gut microbiota at an early age: functional impact on obesity risk?
Luoto, R; Collado, M C; Salminen, S; Isolauri, E
2013-01-01
Overweight and obesity can currently be considered a major threat to human health and well-being. Recent scientific advances point to an aberrant compositional development of the gut microbiota and low-grade inflammation as contributing factors, in conjunction with excessive energy intake. A high-fat/energy diet alters the gut microbiota composition, which reciprocally engenders excessive energy harvesting and storage. Further, microbial imbalance increases gut permeability, leading to metabolic endotoxemia, inflammation and insulin resistance. Local intestinal immunologic homeostasis is achieved by tolerogenic immune responses to microbial antigens. In the context of amelioration of insulin sensitivity and decreased adiposity, the potential of gut microbiota modulation with specific probiotics and prebiotics lies in the normalization of aberrant microbiota, improved gut barrier function and creation of an anti-inflammatory milieu. This would suggest a role for probiotic/prebiotic interventions in the search for preventive and therapeutic applications in weight management. © 2013 S. Karger AG, Basel.
The Impact of the Milk Glycobiome on the Neonate Gut Microbiota
Pacheco, Alline R.; Barile, Daniela; Underwood, Mark A.; Mills, David A.
2015-01-01
Human milk is a complete source of nourishment for the infant. Exclusive breastfeeding not only sustains the infant’s development but also guides the proliferation of a protective intestinal microbiota. Among the many components of milk that modulate the infant gut microbiota, the milk glycans, which comprise free oligosaccharides, glycoproteins, and glycolipids, are increasingly recognized as drivers of microbiota development and overall gut health. These glycans may display pleiotropic functions, conferring protection against infectious diseases and also acting as prebiotics, selecting for the growth of beneficial intestinal bacteria. The prebiotic effect of milk glycans has direct application to prevention of diseases such as necrotizing enterocolitis, a common and devastating disease of preterm infants. In this article, we review the impact of the human (and bovine) milk glycome on gut health through establishment of a milk-oriented microbiota in the neonate. PMID:25387230
Manufacture and prebiotic potential of oligosaccharides derived from industrial solid wastes.
Gullón, Patricia; González-Muñoz, María Jesús; Parajó, Juan Carlos
2011-05-01
The solid waste obtained in malting industries when dehulling barley grains, which was mainly made up of barley husks, spent grains and grain fragments, was subjected to a double hydrothermal processing under selected conditions. The liquor from the second stage (containing xylooligosaccharides, XOS) was refined by membrane and ion exchange processing (with or without a previous endoxylanase treatment to reduce the XOS molecular weight). Three XOS concentrates with different purity and/or molecular weight distribution were fermented in vitro with faecal inocula to assess their prebiotic potential. Succinate, lactate, formiate, acetate, propionate and butyrate were generated in fermentations, confirming the prebiotic potential of the various products assayed. The purity of XOS concentrates did not play a significant role in fermentation, whereas the sample with shorter average degree of polymerization presented a faster fermentation kinetics and led to the highest concentration of lactic acid. Copyright © 2011 Elsevier Ltd. All rights reserved.
Saladino, Raffaele; Carota, Eleonora; Botta, Giorgia; Kapralov, Mikhail; Timoshenko, Gennady N.; Rozanov, Alexei Y.; Krasavin, Eugene; Di Mauro, Ernesto
2015-01-01
Liquid formamide has been irradiated by high-energy proton beams in the presence of powdered meteorites, and the products of the catalyzed resulting syntheses were analyzed by mass spectrometry. Relative to the controls (no radiation, or no formamide, or no catalyst), an extremely rich, variegate, and prebiotically relevant panel of compounds was observed. The meteorites tested were representative of the four major classes: iron, stony iron, chondrites, and achondrites. The products obtained were amino acids, carboxylic acids, nucleobases, sugars, and, most notably, four nucleosides: cytidine, uridine, adenosine, and thymidine. In accordance with theoretical studies, the detection of HCN oligomers suggests the occurrence of mechanisms based on the generation of radical cyanide species (CN·) for the synthesis of nucleobases. Given that many of the compounds obtained are key components of extant organisms, these observations contribute to outline plausible exogenous high-energy–based prebiotic scenarios and their possible boundary conditions, as discussed. PMID:25870268
Prebiotic synthesis of phosphoenol pyruvate by α-phosphorylation-controlled triose glycolysis
NASA Astrophysics Data System (ADS)
Coggins, Adam J.; Powner, Matthew W.
2017-04-01
Phosphoenol pyruvate is the highest-energy phosphate found in living organisms and is one of the most versatile molecules in metabolism. Consequently, it is an essential intermediate in a wide variety of biochemical pathways, including carbon fixation, the shikimate pathway, substrate-level phosphorylation, gluconeogenesis and glycolysis. Triose glycolysis (generation of ATP from glyceraldehyde 3-phosphate via phosphoenol pyruvate) is among the most central and highly conserved pathways in metabolism. Here, we demonstrate the efficient and robust synthesis of phosphoenol pyruvate from prebiotic nucleotide precursors, glycolaldehyde and glyceraldehyde. Furthermore, phosphoenol pyruvate is derived within an α-phosphorylation controlled reaction network that gives access to glyceric acid 2-phosphate, glyceric acid 3-phosphate, phosphoserine and pyruvate. Our results demonstrate that the key components of a core metabolic pathway central to energy transduction and amino acid, sugar, nucleotide and lipid biosyntheses can be reconstituted in high yield under mild, prebiotically plausible conditions.
Processing and Synthesis of Pre-Biotic Chemicals in Hypervelocity Impacts
NASA Technical Reports Server (NTRS)
Brickerhoff, W. B.; Managadze, G. G.; Chumikov, A. E.; Managadze, N. G.
2005-01-01
Hypervelocity impacts (HVIs) may have played a significant role in establishing the initial organic inventory for pre-biotic chemistry on the Earth and other planetary bodies. In addition to the delivery of organic compounds intact to planetary surfaces, generally at velocities below approx.20 km/s, HVIs also enable synthesis of new molecules. The cooling post-impact plasma plumes of HVIs in the interstellar medium (ISM), the protosolar nebula (PSN), and the early solar system comprise pervasive conditions for organic synthesis. Such plasma synthesis (PS) can operate over many length scales (from nm-scale dust to planets) and energy scales (from molecular rearrangement to atomization and recondensation). HVI experiments with the flexibility to probe the highest velocities and distinguish synthetic routes are a high priority to understand the relevance of PS to exobiology. We describe here recent studies of PS at small spatial scales and extremely high velocities with pulsed laser ablation (PLA). PLA can simulate the extreme plasma conditions generated in impacts of dust particles at speeds of up to 100 km/s or more. When applied to carbonaceous solids, new and pre-biotically relevant molecular species are formed with high efficiency [1,2].
Gibson, Glenn R; Hutkins, Robert; Sanders, Mary Ellen; Prescott, Susan L; Reimer, Raylene A; Salminen, Seppo J; Scott, Karen; Stanton, Catherine; Swanson, Kelly S; Cani, Patrice D; Verbeke, Kristin; Reid, Gregor
2017-08-01
In December 2016, a panel of experts in microbiology, nutrition and clinical research was convened by the International Scientific Association for Probiotics and Prebiotics to review the definition and scope of prebiotics. Consistent with the original embodiment of prebiotics, but aware of the latest scientific and clinical developments, the panel updated the definition of a prebiotic: a substrate that is selectively utilized by host microorganisms conferring a health benefit. This definition expands the concept of prebiotics to possibly include non-carbohydrate substances, applications to body sites other than the gastrointestinal tract, and diverse categories other than food. The requirement for selective microbiota-mediated mechanisms was retained. Beneficial health effects must be documented for a substance to be considered a prebiotic. The consensus definition applies also to prebiotics for use by animals, in which microbiota-focused strategies to maintain health and prevent disease is as relevant as for humans. Ultimately, the goal of this Consensus Statement is to engender appropriate use of the term 'prebiotic' by relevant stakeholders so that consistency and clarity can be achieved in research reports, product marketing and regulatory oversight of the category. To this end, we have reviewed several aspects of prebiotic science including its development, health benefits and legislation.
Prebiotic syntheses of purines and pyrimidines
NASA Technical Reports Server (NTRS)
Basile, B.; Oro, J.; Lazcano, A.
1984-01-01
The results of experimental and theoretical investigations of the prebiotic synthesis of purines and pyramidines are surveyed. Topics examined include the synthesis of purines from HCN via 4,5-disubstituted imidazole derivatives in aqueous solutions or liquid NH3, simultaneous formation of amino acids and purines by electron irradiation of CH4-NH3-H2O mixtures, synthesis of pyrimadines from cynoacetylene, energetics, formation of bases under anhydrous or concentrated conditions, formation of bases under dilute conditions, Fischer-Tropsch-type reactions, and the role of activated intermediates. It is pointed out that the precursor compounds have been detected in the interstellar medium, on Titan, and in other solar-system bodies, and that solar-nebula HCN concentrations of the order of 1-10 mM have been estimated on the basis of meteorite measurements.
NASA Technical Reports Server (NTRS)
Meierhenrich, Uwe J.; Filippi, Jean-Jacques; Meinert, Cornelia; Vierling, Pierre; Dworkin, Jason P.
2009-01-01
Fatty acids and fatty alcohols are commonly found in experiments simulating the prebiotic 'soup'. These amphiphiles can be synthesized under prebiotic conditions, at least as long as the molecules are chemically relatively simple and do not need to be enantiomerically pure. In the context of topical origin-of-life theories, two distinct formation pathways for amphiphiles have been described; one related to geophysical sites, such as marine hydrothermal systems, and another to extraterrestrial sources, such as the proto-solar nebula, which was fed by interplanetary and interstellar nebulae. The chemical analysis of each provides individual characteristic challenges.
Question 3: The Worlds of the Prebiotic and Never Born Proteins
NASA Astrophysics Data System (ADS)
Chiarabelli, Cristiano; de Lucrezia, Davide
2007-10-01
Starting from the statement that no reliable methods are known to produce high molecular weight polypeptides under prebiotic conditions, a possible approach, at least to understand the differences between extant proteins and the possible large number of never born proteins, could be biological. Using the phage display method a large library of totally random amino acidic sequences was obtained. Consequently, different experiments to directly consider the frequency of stable folds were performed, and the interesting results obtained from such new approach are discussed in terms of contingency, contributing to the discussion on the selection mechanism of extant proteins.
Prebiotics: application in bakery and pasta products.
Padma Ishwarya, S; Prabhasankar, P
2014-01-01
The concept of functional foods has markedly moved toward gastrointestinal health. The prebiotic approach aims at achieving favorable milieu in the human gut by stimulating beneficial bacteria. Several food products act as substrates for the application of prebiotic substances and bakery products are one such category. The trend of increasing consumption of bakery products justifies the choice of using them as vehicles for delivering the prebiotic compounds. Apart from the health benefits, the prebiotic compounds also have nutritional and technological effects in the food matrix. In addition to increasing the fiber content, the candidate prebiotics also affect the rheology and final quality of bakery products. The prebiotic compounds are selected accordingly to confer desirable properties in the final product. The health advantages of prebiotics being well established, the technological advantages in bakery products such as bread and biscuits and extruded product such as pasta are discussed elaborately.
McMillan, Amy; Seney, Shannon; van der Veer, Charlotte; Kort, Remco; Sumarah, Mark W.
2017-01-01
ABSTRACT Perturbations to the vaginal microbiota can lead to dysbiosis, including bacterial vaginosis (BV), which affects a large portion of the female population. In a healthy state, the vaginal microbiota is characterized by low diversity and colonization by Lactobacillus spp., whereas in BV, these species are displaced by a highly diverse population of bacteria associated with adverse vaginal health outcomes. Since prebiotic ingestion has been a highly effective approach to invigorate lactobacilli for improved intestinal health, we hypothesized that these compounds could stimulate lactobacilli at the expense of BV organisms to maintain vaginal health. Monocultures of commensal Lactobacillus crispatus, Lactobacillus vaginalis, Lactobacillus gasseri, Lactobacillus johnsonii, Lactobacillus jensenii, and Lactobacillus iners, in addition to BV-associated organisms and Candida albicans, were tested for their ability to utilize a representative group of prebiotics consisting of lactitol, lactulose, raffinose, and oligofructose. The disaccharide lactulose was found to most broadly and specifically stimulate vaginal lactobacilli, including the strongly health-associated species L. crispatus, and importantly, not to stimulate BV organisms or C. albicans. Using freshly collected vaginal samples, we showed that exposure to lactulose promoted commensal Lactobacillus growth and dominance and resulted in healthy acidity partially through lactic acid production. This provides support for further testing of lactulose to prevent dysbiosis and potentially to reduce the need for antimicrobial agents in managing vaginal health. IMPORTANCE Bacterial vaginosis (BV) and other dysbioses of the vaginal microbiota significantly affect the quality of life of millions of women. Antimicrobial therapy is often poorly effective, causes side effects, and does not prevent recurrences. We report one of very few studies that have evaluated how prebiotics—compounds that are selectively fermented by beneficial bacteria such as Lactobacillus spp.—can modulate the vaginal microbiota. We also report use of a novel in vitro polymicrobial model to study the impact of prebiotics on the vaginal microbiota. The identification of prebiotic lactulose as enhancing Lactobacillus growth but not that of BV organisms or Candida albicans has direct application for retention of homeostasis and prevention of vaginal dysbiosis and infection. PMID:29269494
Cottin, Hervé; Guan, Yuan Yong; Noblet, Audrey; Poch, Olivier; Saiagh, Kafila; Cloix, Mégane; Macari, Frédérique; Jérome, Murielle; Coll, Patrice; Raulin, François; Stalport, Fabien; Szopa, Cyril; Bertrand, Marylène; Chabin, Annie; Westall, Frances; Chaput, Didier; Demets, René; Brack, André
2012-05-01
The PROCESS (PRebiotic Organic ChEmistry on the Space Station) experiment was part of the EXPOSE-E payload outside the European Columbus module of the International Space Station from February 2008 to August 2009. During this interval, organic samples were exposed to space conditions to simulate their evolution in various astrophysical environments. The samples used represent organic species related to the evolution of organic matter on the small bodies of the Solar System (carbonaceous asteroids and comets), the photolysis of methane in the atmosphere of Titan, and the search for organic matter at the surface of Mars. This paper describes the hardware developed for this experiment as well as the results for the glycine solid-phase samples and the gas-phase samples that were used with regard to the atmosphere of Titan. Lessons learned from this experiment are also presented for future low-Earth orbit astrochemistry investigations.
Prebiotics in Companion and Livestock Animal Nutrition
NASA Astrophysics Data System (ADS)
Barry, Kathleen A.; Vester, Brittany M.; Fahey, George C.
Prebiotic supplementation of animal diets began in an attempt to increase concentrations of beneficial intestinal microbiota. It was understood that prebiotics inhibited growth of intestinal pathogens and decreased concentrations of stool odor-causing metabolites. Since the use of prebiotics began, several countries have banned the use of antimicrobials in livestock animal feeds, and several more have placed restrictions on the quantity of antimicrobials that can be used. Prebiotic supplementation has become increasingly popular as the body of evidence supporting its use continues to grow. As this literature expands, the number of potential prebiotic substances has grown beyond those that are naturally occurring, such as those found in chicory and yeast products, to include a large number of synthetic or chemically/enzymatically manufactured prebiotics.
Trametes versicolor extract modifies human fecal microbiota composition in vitro.
Yu, Zhuo-Teng; Liu, Bo; Mukherjee, Purna; Newburg, David S
2013-06-01
Trametes versicolor is a mushroom used as a traditional Chinese medicine (Yun-zhi) for a wide array of seemingly disparate conditions. We hypothesized that many of its multiple purported activities could be mediated through stimulation of beneficial mutualist components of the microbiota. Human fecal microbiota was cultured anaerobically to determine its ability to ferment a common extract of T. versicolor, designated polysaccharide peptide (PSP), and the ability of PSP to alter the composition of the microbial community. The presence of PSP and fructooligosaccharides (FOS, a common prebiotic) in the medium, but not cellulose, significantly increased levels of Bifidobacterium spp. PSP also elevated Lactobacillus spp., while reducing Clostridium spp., Staphylococcus spp. and Enterococcus spp. Levels of Streptococcus spp., Bacteroides spp. and Escherichia did not significantly change. Fermentation of PSP increased the concentration of organic acids (lactate and short-chain fatty acids), decreased the pH, and induced β-galactosidase and β-glucosidase activities. The genera of the human microbiota that are promoted by FOS and other prebiotics are also stimulated by the Trametes versicolor extract, PSP. Thus, Trametes versicolor, a common East Asian botanical, contains putative prebiotic agents that alter human gut microbiota and pH. This prebiotic-like activity may help explain some of the plethora of the health benefits attributed to this traditional Chinese medicine.
de Marcellus, Pierre; Bertrand, Marylène; Nuevo, Michel; Westall, Frances; Le Sergeant d'Hendecourt, Louis
2011-11-01
The delivery of extraterrestrial organic materials to primitive Earth from meteorites or micrometeorites has long been postulated to be one of the origins of the prebiotic molecules involved in the subsequent apparition of life. Here, we report on experiments in which vacuum UV photo-irradiation of interstellar/circumstellar ice analogues containing H(2)O, CH(3)OH, and NH(3) led to the production of several molecules of prebiotic interest. These were recovered at room temperature in the semi-refractory, water-soluble residues after evaporation of the ice. In particular, we detected small quantities of hydantoin (2,4-imidazolidinedione), a species suspected to play an important role in the formation of poly- and oligopeptides. In addition, hydantoin is known to form under extraterrestrial, abiotic conditions, since it has been detected, along with various other derivatives, in the soluble part of organic matter of primitive carbonaceous meteorites. This result, together with other related experiments reported recently, points to the potential importance of the photochemistry of interstellar "dirty" ices in the formation of organics in Solar System materials. Such molecules could then have been delivered to the surface of primitive Earth, as well as other telluric (exo-) planets, to help trigger first prebiotic reactions with the capacity to lead to some form of primitive biomolecular activity.
Effects of prebiotics on immune system and cytokine expression.
Shokryazdan, Parisa; Faseleh Jahromi, Mohammad; Navidshad, Bahman; Liang, Juan Boo
2017-02-01
Nowadays, use of prebiotics as feed and food additives has received increasing interest because of the beneficial effects of prebiotics on the health of animals and humans. One of the beneficial effects of prebiotics is stimulation of immune system, which can be direct or indirect through increasing population of beneficial microbes or probiotics, especially lactic acid bacteria and bifidobacteria, in the gut. An important mechanism of action of probiotics and prebiotics, by which they can affect the immune system, is changing the expression of cytokines. The present review tried to summarize the findings of studies that investigated the effects of prebiotics on immune system with focusing on their effects on cytokine expression. Generally, most of reviewed studies indicated beneficial effects for prebiotics in terms of improving immune system, by increasing the expression of anti-inflammatory cytokines, while reducing the expressions of proinflammatory cytokines. However, most of studies mainly considered the indirect effects of prebiotics on the immune system (through changing the composition and population of gut microbiota), and their direct effects still need to be further studied using prebiotics with different degree of polymerization in different hosts.
Park, Si Hong; Lee, Sang In; Ricke, Steven C.
2016-01-01
Prebiotics are non-digestible carbohydrate dietary supplements that selectively stimulate the growth of one or more beneficial bacteria in the gastrointestinal tract of the host. These bacteria can inhibit colonization of pathogenic bacteria by producing antimicrobial substances such as short chain fatty acids (SCFAs) and competing for niches with pathogens within the gut. Pasture flock chickens are generally raised outdoors with fresh grass, sunlight and air, which represents different environmental growth conditions compared to conventionally raised chickens. The purpose of this study was to evaluate the difference in microbial populations from naked neck chicken ceca fed with commercial prebiotics derived from brewer’s yeast cell wall via an Illumina MiSeq platform. A total of 147 day-of-hatch naked neck chickens were distributed into 3 groups consisted of 1) C: control (no prebiotic), 2) T1: Biolex® MB40 with 0.2%, and 3) T2: Leiber® ExCel with 0.2%, consistently supplemented prebiotics during the experimental period. At 8 weeks, a total of 15 birds from each group were randomly selected and ceca removed for DNA extraction. The Illumina Miseq platform based on V4 region of 16S rRNA gene was applied for microbiome analysis. Both treatments exhibited limited impact on the microbial populations at the phylum level, with no significant differences in the OTU number of Bacteroidetes among groups and an increase of Proteobacteria OTUs for the T1 (Biolex® MB40) group. In addition there was a significant increase of genus Faecalibacterium OTU, phylum Firmicutes. According to the development of next generation sequencing (NGS), microbiome analysis based on 16S rRNA gene proved to be informative on the prebiotic impact on poultry gut microbiota in pasture-raised naked neck birds. PMID:26992104
Park, Si Hong; Lee, Sang In; Ricke, Steven C
2016-01-01
Prebiotics are non-digestible carbohydrate dietary supplements that selectively stimulate the growth of one or more beneficial bacteria in the gastrointestinal tract of the host. These bacteria can inhibit colonization of pathogenic bacteria by producing antimicrobial substances such as short chain fatty acids (SCFAs) and competing for niches with pathogens within the gut. Pasture flock chickens are generally raised outdoors with fresh grass, sunlight and air, which represents different environmental growth conditions compared to conventionally raised chickens. The purpose of this study was to evaluate the difference in microbial populations from naked neck chicken ceca fed with commercial prebiotics derived from brewer's yeast cell wall via an Illumina MiSeq platform. A total of 147 day-of-hatch naked neck chickens were distributed into 3 groups consisted of 1) C: control (no prebiotic), 2) T1: Biolex® MB40 with 0.2%, and 3) T2: Leiber® ExCel with 0.2%, consistently supplemented prebiotics during the experimental period. At 8 weeks, a total of 15 birds from each group were randomly selected and ceca removed for DNA extraction. The Illumina Miseq platform based on V4 region of 16S rRNA gene was applied for microbiome analysis. Both treatments exhibited limited impact on the microbial populations at the phylum level, with no significant differences in the OTU number of Bacteroidetes among groups and an increase of Proteobacteria OTUs for the T1 (Biolex® MB40) group. In addition there was a significant increase of genus Faecalibacterium OTU, phylum Firmicutes. According to the development of next generation sequencing (NGS), microbiome analysis based on 16S rRNA gene proved to be informative on the prebiotic impact on poultry gut microbiota in pasture-raised naked neck birds.
Prebiotic mechanisms, functions and application
USDA-ARS?s Scientific Manuscript database
In October 2012, a group of scientists met at the 10th Meeting of the International Scientific Association of Probiotics and Prebiotics (ISAPP) in Cork, Ireland to discuss issues surrounding prebiotics and their development. This article summarises outputs from the meeting. Various prebiotic defin...
Implications of extraterrestrial material on the origin of life
NASA Astrophysics Data System (ADS)
Pasek, Matthew A.
Meteoritic organic material may provide the best perspective on prebiotic chemistry. Meteorites have also been invoked as a source of prebiotic material. This study suggests a caveat to extraterrestrial organic delivery: that prebiotic meteoritic organics were too dilute to promote prebiotic reactions. However, meteoritic material provides building material for endogenous synthesis of prebiotic molecules, such as by hydrolysis of extraterrestrial organic tars, and corrosion of phosphide minerals.
Prebiotics: why definitions matter
Hutkins, Robert W; Krumbeck, Janina A; Bindels, Laure B; Cani, Patrice D; Fahey, George; Goh, Yong Jun; Hamaker, Bruce; Martens, Eric C; Mills, David A; Rastal, Robert A; Vaughan, Elaine; Sanders, Mary Ellen
2015-01-01
The prebiotic concept was introduced twenty years ago, and despite several revisions to the original definition, the scientific community has continued to debate what it means to be a prebiotic. How prebiotics are defined is important not only for the scientific community, but also for regulatory agencies, the food industry, consumers and healthcare professionals. Recent developments in community-wide sequencing and glycomics have revealed that more complex interactions occur between putative prebiotic substrates and the gut microbiota than previously considered. A consensus among scientists on the most appropriate definition of a prebiotic is necessary to enable continued use of the term. PMID:26431716
Fallucca, Francesco; Porrata, Carmen; Fallucca, Sara; Pianesi, Mario
2014-03-01
Type 2 diabetes mellitus (T2DM) is a complex disorder influenced by both genetic and environmental factors. Recent studies have suggested that an imbalance of the intestinal microbiota may be involved in the development of several human diseases, including obesity and T2DM. The main regulators of the intestinal microbiota are age, ethnicity, the immune system and diet. A high-fat diet may induce dysbiosis, which can result in a low-grade inflammatory state, obesity and other metabolic disorders. Adding prebiotics to the diet may reduce inflammation, endotoxaemia and cytokine levels as well as improving insulin resistance and glucose tolerance. The administration of prebiotics such as fermentable dietary fibres, promotes glucagon-like peptide 1 and peptide YY (anorexigenic) and decreases ghrelin (orexigenic). In a recent 21-day, intervention study in patients with T2DM, the effect of using the macrobiotic Ma-Pi 2 diet was investigated. Results suggested that it could induce a significant improvement in fasting blood glucose, plasma lipid fractions, plasma insulin and homeostasis. It is therefore possible that a diet rich in prebiotics and probiotics can play a role in T2DM management, probably due to positive intestinal microbiota modulation. However, this must be demonstrated by larger studies including randomized controlled trials that measure indicators of inflammation. Copyright © 2013 John Wiley & Sons, Ltd.
A comparative study of prebiotic and present day translational models
NASA Technical Reports Server (NTRS)
Rein, R.; Raghunathan, G.; Mcdonald, J.; Shibata, M.; Srinivasan, S.
1986-01-01
It is generally recognized that the understanding of the molecular basis of primitive translation is a fundamental step in developing a theory of the origin of life. However, even in modern molecular biology, the mechanism for the decoding of messenger RNA triplet codons into an amino acid sequence of a protein on the ribosome is understood incompletely. Most of the proposed models for prebiotic translation lack, not only experimental support, but also a careful theoretical scrutiny of their compatibility with well understood stereochemical and energetic principles of nucleic acid structure, molecular recognition principles, and the chemistry of peptide bond formation. Present studies are concerned with comparative structural modelling and mechanistic simulation of the decoding apparatus ranging from those proposed for prebiotic conditions to the ones involved in modern biology. Any primitive decoding machinery based on nucleic acids and proteins, and most likely the modern day system, has to satisfy certain geometrical constraints. The charged amino acyl and the peptidyl termini of successive adaptors have to be adjacent in space in order to satisfy the stereochemical requirements for amide bond formation. Simultaneously, the same adaptors have to recognize successive codons on the messenger. This translational complex has to be realized by components that obey nucleic acid conformational principles, stabilities, and specificities. This generalized condition greatly restricts the number of acceptable adaptor structures.
Thermal stability of tagatose in solution.
Luecke, Katherine J; Bell, Leonard N
2010-05-01
Tagatose, a monosaccharide similar to fructose, has been shown to behave as a prebiotic. To deliver this prebiotic benefit, tagatose must not degrade during the processing of foods and beverages. The objective of this study was to evaluate the thermal stability of tagatose in solutions. Tagatose solutions were prepared in 0.02 and 0.1 M phosphate and citrate buffers at pHs 3 and 7, which were then held at 60, 70, and 80 degrees C. Pseudo-1st-order rate constants for tagatose degradation were determined. In citrate and phosphate buffers at pH 3, minimal tagatose was lost and slight browning was observed. At pH 7, tagatose degradation rates were enhanced. Degradation was faster in phosphate buffer than citrate buffer. Higher buffer concentrations also increased the degradation rate constants. Enhanced browning accompanied tagatose degradation in all buffer solutions at pH 7. Using the activation energies for tagatose degradation, less than 0.5% and 0.02% tagatose would be lost under basic vat and HTST pasteurization conditions, respectively. Although tagatose does breakdown at elevated temperatures, the amount of tagatose lost during typical thermal processing conditions would be virtually negligible. Practical Application: Tagatose degradation occurs minimally during pasteurization, which may allow for its incorporation into beverages as a prebiotic.
Catalytic Role of Manganese Oxides in Prebiotic Nucleobases Synthesis from Formamide.
Bhushan, Brij; Nayak, Arunima; Kamaluddin
2016-06-01
Origin of life processes might have begun with the formation of important biomonomers, such as amino acids and nucleotides, from simple molecules present in the prebiotic environment and their subsequent condensation to biopolymers. While studying the prebiotic synthesis of naturally occurring purine and pyrimidine derivatives from formamide, the manganese oxides demonstrated not only good binding for formamide but demonstrated novel catalytic activity. A novel one pot manganese oxide catalyzed synthesis of pyrimidine nucleobases like thymine is reported along with the formation of other nucleobases like purine, 9-(hydroxyacetyl) purine, cytosine, 4(3 H)-pyrimidinone and adenine in acceptable amounts. The work reported is significant in the sense that the synthesis of thymine has exhibited difficulties especially under one pot conditions and also such has been reported only under the catalytic activity of TiO2. The lower oxides of manganese were reported to show higher potential as catalysts and their existence were favored by the reducing atmospheric conditions prevalent on early Earth; thereby confirming the hypothesis that mineral having metals in reduced form might have been more active during the course of chemical evolution. Our results further confirm the role of formamide as a probable precursor for the formation of purine and pyrimidine bases during the course of chemical evolution and origin of life.
Current status of the prebiotic synthesis of small molecules
NASA Technical Reports Server (NTRS)
Miller, Stanley L.
1986-01-01
Experiments designed to simulate conditions on the primitive earth and to demonstrate how the organic compounds that made up the first living organisms were synthesized are described. Simulated atmospheres with CH4, N2, NH3, and H2O were found to be most effective for synthesis of small prebiotic molecules, although atmospheres with H2, CO, N2, and H2O, and with H2, CO2, N2, and H2O also give good yields of organic compounds provided the H2/CO and H2/CO2 ratios are above 1 and 2, respectively. The spark discharge (which is a good source of HCN) and UV light are also important. Reasonable prebiotic syntheses were worked out for the amino acids that occur in proteins (with the exception of lysine, arginine, and histidine), and for purines, pyrimidines, sugars, and nicotinic acid. Many of the molecules that have been produced in these simulated primitive-earth experiments are found in carbonaceous chondrites.
Prebiotic chemistry in eutectic solutions at the water-ice matrix.
Menor-Salván, César; Marín-Yaseli, Margarita R
2012-08-21
A crystalline ice matrix at subzero temperatures can maintain a liquid phase where organic solutes and salts concentrate to form eutectic solutions. This concentration effect converts the confined reactant solutions in the ice matrix, sometimes making condensation and polymerisation reactions occur more favourably. These reactions occur at significantly high rates from a prebiotic chemistry standpoint, and the labile products can be protected from degradation. The experimental study of the synthesis of nitrogen heterocycles at the ice-water system showed the efficiency of this scenario and could explain the origin of nucleobases in the inner Solar System bodies, including meteorites and extra-terrestrial ices, and on the early Earth. The same conditions can also favour the condensation of monomers to form ribonucleic acid and peptides. Together with the synthesis of these monomers, the ice world (i.e., the chemical evolution in the range between the freezing point of water and the limit of stability of liquid brines, 273 to 210 K) is an under-explored experimental model in prebiotic chemistry.
Zehra, Sehrish; Khambati, Ibrahim; Vierhout, Megan; Mian, M Firoz; Buck, Rachael; Forsythe, Paul
2018-02-01
There has been increased interest in the use of dietary ingredients, including prebiotics such as human-milk oligosaccharides (HMOs), as therapeutic strategies for food allergy. Understanding the mechanisms underlying the beneficial effects of HMOs is important to realizing their therapeutic potential. Here we demonstrate that the HMO, 6'-sialyllactose (6'SL) inhibited chemokine (IL-8 and CCL20) release from T-84 and HT-29 cells stimulated with antigen-antibody complex, TNFα or PGE 2 ; an effect that was PPARγ dependent and associated with decreased activity of the transcription factors AP-1 and NFκB. In contrast, 2'-fucosyllactose (2'FL) selectively inhibited CCL20 release in response to antigen antibody complex in a PPARγ independent manner. This study reinforces the concept that structurally different oligosaccharides have distinct biological activities and identifies, for the first time, that the HMOs, 6'SL, and 2'FL, modulate human epithelial cell responses related to allergic disease. These findings encourage further investigation of the therapeutic potential of specific HMOs in food allergy. This study provides evidence for direct effects of HMOs in addition to their prebiotic role and demonstrates, for the first time, modulation of Ag-IgE complex activation of human epithelial cells that may have important implications for food-allergy. The study also reinforces the concept that structurally different oligosaccharides have distinct biological activities. In determining the composition of infant formula, addition of oligosaccharides with specific structures may provide direct modulation of immune responses and potentially attenuate symptoms or development of food allergy. © 2018 Institute of Food Technologists®.
NASA Technical Reports Server (NTRS)
Weber, Arthur L.
1994-01-01
The oxidation of 2,3-Dimercapto-1-propanol by ferric ions on the surface of iron (III) hydroxide oxide yielded polydisulfide polymers. This polymerization occured readily at low dithiol concentration under mild aqueous conditions. Polydisulfide polymers up to the 15-mer were synthesized from 1 mM dithiol in 5 ml water reacted with iron (III) hydroxide oxide (20 mg, 160 micro mole Fe) for 3 days under anaerobic conditions at 40 C and pH 4. About 91% of the dithiol was converted to short soluble oligomers and 9% to insoluble larger oligomers that were isolated with the mineral phase. Reactions at higher dithiol concentrations with the same ratio of dithiol to mineral gave a higher yield of the larger insoluble oligomers. The relationship of these results to prebiotic polymer synthesis will be discussed.
A Fluorescent G-quadruplex Sensor for Chemical RNA Copying.
Giurgiu, Constantin; Wright, Tom; O'Flaherty, Derek; Szostak, Jack
2018-06-25
Non-enzymatic RNA replication may have been one of the processes involved in the appearance of life on Earth. Attempts to recreate this process in a laboratory setting have not been successful thus far, highlighting a critical need for finding prebiotic conditions that increase the rate and the yield. Here, we present a highly parallel assay for template directed RNA synthesis that relies on the intrinsic fluorescence of a 2-aminopurine modified G-quadruplex. We demonstrate the application of the assay to examine the combined influence of multiple variables including pH, divalent metal concentrations and ribonucleotide concentrations on the copying of RNA sequences. The assay enables a direct survey of physical and chemical conditions, potentially prebiotic, which could enable the chemical replication of RNA. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Foolad, N; Armstrong, A W
2014-06-01
The purpose of this review was to identify whether supplementation with prebiotics and/or probiotics help prevent the development or reduce the severity of atopic dermatitis in children less than three years of age. Since 1997, immunostimulatory supplements, such as prebiotics and probiotics, have been investigated. Various supplementations include probiotics (single strain or mix), probiotics with formula, probiotics mix with prebiotics, and prebiotics. In this narrative review, we examined 13 key articles on prebiotics and/or probiotics, and their effects on infant atopic dermatitis. Among the selected studies, a total of 3,023 participants received supplements or placebo. Eight out of the 13 (61.5%) studies reported a significant effect on the prevention of atopic dermatitis after supplementation with probiotics and/or prebiotics. Five out of the 13 (38.5%) studies indicated significant reduction in the severity of atopic dermatitis after supplementation. Based on the available studies, supplementation with certain probiotics (Lactobacillus rhamnosus GG) appears to be an effective approach for the prevention and reduction in severity of atopic dermatitis. A mix of specific probiotic strains prevented atopic dermatitis among infants. Based on studies with prebiotics, there was a long-term reduction in the incidence of atopic dermatitis. Supplementation with prebiotics and probiotics appears useful for the reduction in the severity of atopic dermatitis. Additional interventional studies exploring prebiotics and probiotics are imperative before recommendations can be made.
Shang, Qingsen; Shan, Xindi; Cai, Chao; Hao, Jiejie; Li, Guoyun; Yu, Guangli
2016-07-13
Recently, fucoidan has been proposed as a potential prebiotic agent for functional food and pharmaceutical development. However, while previous studies illustrated favorable modulations of gut microbiota by fucoidan, changes in the overall microbial structure remain elusive. In the present study, modulations of gut microbiota by different fucoidans were studied using high throughput sequencing and bioinformatics analysis. We found that at the expense of opportunistic pathogenic bacteria such as Peptococcus, the abundance of beneficial bacteria including Lactobacillus and Ruminococcaceae was significantly increased in response to fucoidan treatment. Besides, by maintaining a more balanced composition of gut microbiota, dietary fucoidan also significantly reduced the antigen load and the inflammatory response in the host as evidenced by the decreased serum lipopolysaccharide-binding protein levels. Collectively, our results indicate that fucoidan can be used as a gut microbiota modulator for health promotion and treatment of intestinal dysbiosis.
Dietary prebiotics: Current status and new definition
USDA-ARS?s Scientific Manuscript database
In November 2008, a group of scientists met at the 6th Meeting of the International Scientific Association of Probiotics and Prebiotics (ISAPP) in London, Ontario. The aim was to discuss the functionality of prebiotics. As a result of this, it was decided that the prebiotic field as it stands is dom...
Cyanogen induced phosphorylation of D-fructose. [prebiotic modeling
NASA Technical Reports Server (NTRS)
Degani, CH.; Kawatsuji, M.; Halmann, M.
1975-01-01
It has been demonstrated that a phosphorylated sugar, identified as alpha-D-fructopyranose, can be formed as the result of cyanogen-induced phosphorylation of D-fructose at pH 8.8. The product was isolated from barium and cyclohexylammonium salts and identified on the basis of its chromatographic and electrophoretic properties, its lability to hydrolysis by alkaline phosphatase, the rate of its acid-catalyzed hydrolysis, and the results of periodate oxidation and optical rotatory measurements. These results support the suggestion that the cyanogen-induced phosphorylation of free sugars could be a possible process for formation of sugar phosphates under prebiotic conditions (Halman et al., 1969).
Prebiotic NH3 Formation: Insights from Simulations.
Stirling, András; Rozgonyi, Tamás; Krack, Matthias; Bernasconi, Marco
2016-02-15
Simulations of prebiotic NH₃ synthesis from NO₃⁻ and NO₂⁻ on pyrite surfaces under hydrothermal conditions are reported. Ab initio metadynamics calculations have successfully explored the full reaction path which explains earlier experimental observations. We have found that the reaction mechanism can be constructed from stepwise single atom transfers which are compatible with the expected reaction time scales. The roles of the hot-pressurized water and of the pyrite surfaces have been addressed. The mechanistic picture that emerged from the simulations strengthens the theory of chemoautotrophic origin of life by providing plausible reaction pathways for the formation of ammonia within the iron-sulfur-world scenario.
Evolution of specific 3'-5'-linkages in RNA in pre-biotic soup: a new hypothesis.
Kumar, Vaijayanti A
2016-11-02
This article reviews the different possibilities towards progression of the formation of DNA/RNA in the chemical world, before life, in enzyme-free conditions. The advent of deoxyribo- and ribopentose-sugars, nucleosides, nucleotides and oligonucleotides in the prebiotic soup is briefly discussed. Further, the formation of early single stranded oligomers, base-pairing possibilities and information transfer based on the stability parameters of the derived duplexes is reviewed. Each theory has its own merits and demerits which we have elaborated upon. Lastly, using clues from this literature, a possible explanation for the specific 3'-5'-linkages in RNA is proposed.
Applications of prebiotics in food industry: A review.
Singla, Vinti; Chakkaravarthi, S
2017-12-01
Benefits of prebiotics for stimulating a healthy intestinal tract are well known. From suppression of pathogens to proliferation of indigenous bacteria of intestines, prebiotics have it all. Since the research on the scope of prebiotics is expanding, new applications are coming up every day thus upgrading the choices consumer has for a healthy living. Incorporation of prebiotics in a wide range of products that food industry offers on shelf is an innovative way to replace fat and sugars along with enhancing the mouthfeel by providing better tongue lubrication. In some cases, the thermal stability of the product is improved along with other sensory, textural and physiological benefits. This paper gives an overview of the various prebiotics available from different sources and their applications in various segments of food industry, notably dairy, beverage, processed fruit-vegetable, bakery, confectionary, extruded snack, sweetener, infant formula, pet food and livestock industry. The effects observed on addition of various prebiotics are also elaborated.
A Critical Look at Prebiotics Within the Dietary Fiber Concept.
Verspreet, Joran; Damen, Bram; Broekaert, Willem F; Verbeke, Kristin; Delcour, Jan A; Courtin, Christophe M
2016-01-01
This article reviews the current knowledge of the health effects of dietary fiber and prebiotics and establishes the position of prebiotics within the broader context of dietary fiber. Although the positive health effects of specific fibers on defecation, reduction of postprandial glycemic response, and maintenance of normal blood cholesterol levels are generally accepted, other presumed health benefits of dietary fibers are still debated. There is evidence that specific dietary fibers improve the integrity of the epithelial layer of the intestines, increase the resistance against pathogenic colonization, reduce the risk of developing colorectal cancer, increase mineral absorption, and have a positive impact on the immune system, but these effects are neither generally acknowledged nor completely understood. Many of the latter effects are thought to be particularly elicited by prebiotics. Although the prebiotic concept evolved significantly during the past two decades, the line between prebiotics and nonprebiotic dietary fiber remains vague. Nevertheless, scientific evidence demonstrating the health-promoting potential of prebiotics continues to accumulate and suggests that prebiotic fibers have their rightful place in a healthy diet.
Weinborn, Valerie; Valenzuela, Carolina; Olivares, Manuel; Arredondo, Miguel; Weill, Ricardo; Pizarro, Fernando
2017-05-24
The aim of this study was to establish the effect of a prebiotic mix on heme and non-heme iron (Fe) bioavailability in humans. To this purpose, twenty-four healthy women were randomized into one of two study groups. One group ate one yogurt per day for 12 days with a prebiotic mix (prebiotic group) and the other group received the same yogurt but without the prebiotic mix (control group). Before and after the intake period, the subjects participated in Fe absorption studies. These studies used 55 Fe and 59 Fe radioactive isotopes as markers of heme Fe and non-heme Fe, respectively, and Fe absorption was measured by the incorporation of radioactive Fe into erythrocytes. The results showed that there were no significant differences in heme and non-heme Fe bioavailability in the control group. Heme Fe bioavailability of the prebiotic group increased significantly by 56% post-prebiotic intake. There were no significant differences in non-heme Fe bioavailability in this group. We concluded that daily consumption of a prebiotic mix increases heme Fe bioavailability and does not affect non-heme iron bioavailability.
Cholesterol-Lowering Effects of Probiotics and Prebiotics: A Review of in Vivo and in Vitro Findings
Ooi, Lay-Gaik; Liong, Min-Tze
2010-01-01
Probiotics are live microorganisms that promote health benefits upon consumption, while prebiotics are nondigestible food ingredients that selectively stimulate the growth of beneficial microorganisms in the gastrointestinal tract. Probiotics and/or prebiotics could be used as alternative supplements to exert health benefits, including cholesterol-lowering effects on humans. Past in vivo studies showed that the administration of probiotics and/or prebiotics are effective in improving lipid profiles, including the reduction of serum/plasma total cholesterol, LDL-cholesterol and triglycerides or increment of HDL-cholesterol. However, other past studies have also shown that probiotics and prebiotics had insignificant effects on lipid profiles, disputing the hypocholesterolemic claim. Additionally, little information is available on the effective dosage of probiotics and prebiotics needed to exert hypocholesterolemic effects. Probiotics and prebiotics have been suggested to reduce cholesterol via various mechanisms. However, more clinical evidence is needed to strengthen these proposals. Safety issues regarding probiotics and/or prebiotics have also been raised despite their long history of safe use. Although probiotic-mediated infections are rare, several cases of systemic infections caused by probiotics have been reported and the issue of antibiotic resistance has sparked much debate. Prebiotics, classified as food ingredients, are generally considered safe, but overconsumption could cause intestinal discomfort. Conscientious prescription of probiotics and/or prebiotics is crucial, especially when administering to specific high risk groups such as infants, the elderly and the immuno-compromised. PMID:20640165
[Prebiotics: concept, properties and beneficial effects].
Corzo, N; Alonso, J L; Azpiroz, F; Calvo, M A; Cirici, M; Leis, R; Lombó, F; Mateos-Aparicio, I; Plou, F J; Ruas-Madiedo, P; Rúperez, P; Redondo-Cuenca, A; Sanz, M L; Clemente, A
2015-02-07
Prebiotics are non-digestible food ingredients (oligosaccharides) that reach the colon and are used as substrate by microorganisms producing energy, metabolites and micronutrients used for the host; in addition they also stimulate the selective growth of certain beneficial species (mainly bifidobacteria and lactobacilli) in the intestinal microbiota. In this article, a multidisciplinary approach to understand the concept of prebiotic carbohydrates, their properties and beneficial effects in humans has been carried out. Definitions of prebiotics, reported by relevant international organizations and researchers, are described. A comprehensive description of accepted prebiotics having strong scientific evidence of their beneficial properties in humans (inulin-type fructans, FOS, GOS, lactulose and human milk oligosaccharides) is reported. Emerging prebiotics and those which are in the early stages of study have also included in this study. Taken into account that the chemical structure greatly influences carbohydrates prebiotic properties, the analytical techniques used for their analysis and characterization are discussed. In vitro and in vivo models used to evaluate the gastrointestinal digestion, absorption resistance and fermentability in the colon of prebiotics as well as major criteria to design robust intervention trials in humans are described. Finally, a comprehensive summary of the beneficial effects of prebiotics for health at systemic and intestinal levels is reported. The research effort on prebiotics has been intensive in last decades and has demonstrated that a multidisciplinary approach is necessary in order to claim their health benefits. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Wong, Julia M W; Kendall, Cyril W C; de Souza, Russell; Emam, Azadeh; Marchie, Augustine; Vidgen, Ed; Holmes, Candice; Jenkins, David J A
2010-09-01
The value of soy protein as part of the cholesterol-lowering diet has been questioned by recent studies. The apparent lack of effect may relate to the absence of dietary factors that increase colonic fermentation and potentiate the cholesterol-lowering effect of soy. Therefore, unabsorbable carbohydrates (prebiotics) were added to the diet with the aim of increasing colonic fermentation and so potentially increasing the hypocholesterolemic effect of soy. Twenty-three hyperlipidemic adults (11 male, 12 female; 58 +/- 7 years old; low-density lipoprotein cholesterol [LDL-C], 4.18 +/- 0.58 mmol/L) completed three 4-week diet intervention phases-a low-fat dairy diet and 10 g/d prebiotic (oligofructose-enriched inulin, a fermentable carbohydrate), a soy food-containing diet (30 g/d soy protein, 61 mg/d isoflavones from soy foods) and 10 g/d placebo (maltodextrin), and a soy food-containing diet with 10 g/d prebiotic--in a randomized controlled crossover study. Intake of soy plus prebiotic resulted in greater reductions in LDL-C (-0.18 +/- 0.07 mmol/L, P = .042) and in ratio of LDL-C to high-density lipoprotein cholesterol (-0.28 +/- 0.11, P = .041) compared with prebiotic. In addition, high-density lipoprotein cholesterol was significantly increased on soy plus prebiotic compared with prebiotic (0.06 +/- 0.02 mmol/L, P = .029). Differences in bifidobacteria, total anaerobes, aerobes, and breath hydrogen did not reach significance. Soy foods in conjunction with a prebiotic resulted in significant improvements in the lipid profile, not seen when either prebiotic or soy alone was taken. Coingestion of a prebiotic may potentiate the effectiveness of soy foods as part of the dietary strategy to lower serum cholesterol. Copyright 2010 Elsevier Inc. All rights reserved.
Influence of different prebiotics and mode of their administration on broiler chicken performance.
Bednarczyk, M; Stadnicka, K; Kozłowska, I; Abiuso, C; Tavaniello, S; Dankowiakowska, A; Sławińska, A; Maiorano, G
2016-08-01
In the post-antibiotics era, prebiotics are proposed as alternatives to antibiotic growth promoters in poultry production. The goal of this study was to compare in ovo method of prebiotic delivery with in-water supplementation and with both methods combined (in ovo+in-water) in broiler chickens. Two trials were conducted. Trial 1 was carried out to optimize the doses of two prebiotics, DN (DiNovo®, extract of beta-glucans) and BI (Bi2tos, trans-galactooligosaccharides), for in ovo delivery. The estimated parameters were hatchability and bacteriological status of the newly hatched chicks. Prebiotics were dissolved in 0.2 ml of physiological saline, at the doses: 0.18, 0.88, 3.5 and 7.0 mg/embryo; control group (C) was injected in ovo with 0.2 ml of physiological saline. Trial 2 was conducted to evaluate effects of different prebiotics (DN, BI and raffinose family oligosaccharides (RFO)) delivered in ovo, in-water and in a combined way (in ovo+in-water) on broiler chickens performance. The results of the Trial 1 indicated that the optimal dose of DN and BI prebiotics delivered in ovo, that did not reduce chicks' hatchability, was 0.88 mg/embryo (DN) and 3.5 mg/embryo (BI). Both prebiotics numerically increased number of lactobacilli and bifidobacteria in chicken feces (P>0.05). In Trial 2, all prebiotics (DN, BI and RFO) significantly increased BW gain compared with the C group (P<0.05), especially during the first 21 days of life. However, feed intake and feed conversion ratio were increased upon prebiotics delivery irrespective of method used. Injection of prebiotics in ovo combined with in-water supplementation did not express synergistic effects on broilers performance compared with in ovo injection only. Taken together, those results confirm that single in ovo prebiotics injection into the chicken embryo can successfully replace prolonged in-water supplementation post hatching.
Ferenczi, Szilamér; Szegi, Krisztián; Winkler, Zsuzsanna; Barna, Teréz; Kovács, Krisztina J.
2016-01-01
Inflammatory bowel disease shows increasing prevalence, however its pathomechanism and treatment is not fully resolved. Prebiotics are non-digestible carbohydrates which might provide an alternative to treat inflammatory conditions in the gut due to their positive effects either on the microbiome or through their direct effect on macrophages and mucosa. To test the protective effects of an oligomannan prebiotic, yeast cell wall mannooligosaccharide (MOS) was administered in dextran-sulphate-sodium (DSS)-induced mouse model of acute colitis. MOS reduced DSS-induced clinical- (weight loss, diarrhea) and histological scores (mucosal damage) as well as sickness-related anxiety. DSS treatment resulted in changes in colon microbiome with selective increase of Coliform bacteria. MOS administration attenuated colitis-related increase of Coliforms, normalized colonic muc2 expression and attenuated local expression of proinflammatory cytokines IL-1a, IL1b, IL6, KC, G-CSF and MCP1 as well as toll-like receptor TLR4 and NLRP3 inflammasome. Some of the protective effects of MOS were likely be mediated directly through local macrophages because MOS dose-dependently inhibited IL-1b and G-CSF induction following in vitro DSS challenge and IL1a, IL1b, G-SCF-, and IL6 increases after LPS treatment in mouse macrophage cell line RAW264.7. These results highlight oligomannan prebiotics as therapeutic functional food for testing in clinical trials. PMID:27658624
Non-Enzymatic Synthesis of Duplex Nucleic Acid
NASA Astrophysics Data System (ADS)
Panchal, Z.; Oye, M.; Deamer, D.; Vercoutere, W.
2017-07-01
The earliest forms of life would likely have a protocellular form, with a membrane encapsulating some form of linear charged polymer that would have genetic properties; we simulate the plausible prebiotic conditions and use a nanopore for analysis.
NASA Technical Reports Server (NTRS)
Weber, Arthur L.
1995-01-01
The oxidation of 2,3-dimercapto-1-propanol by ferric ions on the surface of iron(III) hydroxide oxide (Fe(OH)O) yielded polydisulfide oligomers. This polymerization occurred readily at low dithiol concentration under mild aqueous conditions. Polydisulfide polymers up to the 15-mer were synthesized from 1 mM dithiol in 5 ml water reacted with iron(III) hydroxide oxide (20 mg, 160 micromole Fe) for 3 days under anaerobic conditions at 40 C and pH 4. About 91% of the dithiol was converted to short soluble oligomers and 9% to insoluble larger oligomers that were isolated with the FE(OH)O phase. Reactions carried out at the same ratio of dithiol to FE(OH)O but at higher dithiol concentrations gave higher yields of the larger insoluble oligomers. The relationship of these results to prebiotic polymer synthesis is discussed.
NASA Technical Reports Server (NTRS)
Weber, Arthur L.
1995-01-01
The oxidation of 2, 3-dimercapto-1-propanol by ferric ions on the surface of iron(III) hydroxide oxide (Fe(OH)O) yielded polydisulfide oligomers. This polymerization occurred readily at low dithiol concentration under mild aqueous conditions. Polydisulfide polymers up to the 15-mer were synthesized from 1 mM dithiol in 5 ml water reacted with iron(III) hydroxide oxide (20 mg, 160 micromole Fe) for 3 days under anaerobic conditions at 40 C and pH 4. About 91% of the dithiol was converted to short soluble oligomers and 9% to insoluble larger oligomers that were isolated with the Fe(OH)O phase. Reactions carried out at the same ratio of dithiol to Fe(OH)O but at higher dithiol concentrations gave higher yields of the larger insoluble oligomers. The relationship of these results to prebiotic polymer synthesis is discussed.
Saladino, Raffaele; Šponer, Judit E; Šponer, Jiří; Costanzo, Giovanna; Pino, Samanta; Di Mauro, Ernesto
2018-06-20
Molecular Darwinian evolution is an intrinsic property of reacting pools of molecules resulting in the adaptation of the system to changing conditions. It has no a priori aim. From the point of view of the origin of life, Darwinian selection behavior, when spontaneously emerging in the ensembles of molecules composing prebiotic pools, initiates subsequent evolution of increasingly complex and innovative chemical information. On the conservation side, it is a posteriori observed that numerous biological processes are based on prebiotically promptly made compounds, as proposed by the concept of Chemomimesis. Molecular Darwinian evolution and Chemomimesis are principles acting in balanced cooperation in the frame of Systems Chemistry. The one-pot synthesis of nucleosides in radical chemistry conditions is possibly a telling example of the operation of these principles. Other indications of similar cases of molecular evolution can be found among biogenic processes.
Azeredo, Rita; Machado, Marina; Kreuz, Eva; Wuertz, Sven; Oliva-Teles, Aires; Enes, Paula; Costas, Benjamín
2017-01-01
Inclusion of prebiotics in aqua feeds, though a costly strategy, has increased as a means to improve growth. Still, its effects on health improvement are not fully disclosed. Regarding their immunestimulatory properties, research has focused on carbohydrates such as fructooligosaccharides and xylooligosaccharides demonstrating their modulatory effects on immune defences in higher vertebrates but few studies have been done on their impact on fish immunity. Replacing fish meal (FM) by plant protein (PP) sources is a current practice in the aquaculture business but their content in antinutrients is still a drawback in terms of gut well-functioning. This work intends to evaluate the short-term effect (7 or 15 days feeding the experimental diets) on juvenile European seabass (Dicentrarchus labrax) immune status of dietary i) replacement of FM by PP sources; ii) prebiotics supplementation. Six isoproteic (46%) and isolipidic (15%) diets were tested including a FM control diet (FMCTRL), a PP control diet (PPCTRL, 30 FM:70 PP) and four other diets based on either FM or PP to which short-chain fructooligosaccharides (scFOS) or xylooligosaccharides (XOS) were added at 1% (FMFOS, PPFOS, FMXOS, PPXOS). The replacement of FM by PP in the diets induced nitric oxide (NO) and lysozyme production, while immunoglobulins (Ig), monocytes percentage and gut interleukin 10 (IL10) gene expression were inhibited. Dietary scFOS supplementation inhibited total bactericidal activity and neutrophils relative percentage regardless protein source and increased plasma NO and thrombocytes percentage in fish fed FM-based diets, while monocytes percentage was increased in PPFOS-fed fish. XOS supplementation down-regulated immune gene expression in the gut while it partly enhanced systemic response. Inconsistency among results regarding FM replacement by PP-based ingredients exposes the need for further research considering both local and systemic responses. Distinct outcomes of prebiotic supplementation were highlighted reflecting sight-specific effects with no clear interaction with protein source. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cost-effectiveness model for a specific mixture of prebiotics in The Netherlands.
Lenoir-Wijnkoop, I; van Aalderen, W M C; Boehm, G; Klaassen, D; Sprikkelman, A B; Nuijten, M J C
2012-02-01
The objective of this study was to assess the cost-effectiveness of the use of prebiotics for the primary prevention of atopic dermatitis in The Netherlands. A model was constructed using decision analytical techniques. The model was developed to estimate the health economic impact of prebiotic preventive disease management of atopic dermatitis. Data sources used include published literature, clinical trials and official price/tariff lists and national population statistics. The comparator was no supplementation with prebiotics. The primary perspective for conducting the economic evaluation was based on the situation in The Netherlands in 2009. The results show that the use of prebiotics infant formula (IMMUNOFORTIS(®)) leads to an additional cost of € 51 and an increase in Quality Adjusted Life Years (QALY) of 0.108, when compared with no prebiotics. Consequently, the use of infant formula with a specific mixture of prebiotics results in an incremental cost-effectiveness ratio (ICER) of € 472. The sensitivity analyses show that the ICER remains in all analyses far below the threshold of € 20,000/QALY. This study shows that the favourable health benefit of the use of a specific mixture of prebiotics results in positive short- and long-term health economic benefits. In addition, this study demonstrates that the use of infant formula with a specific mixture of prebiotics is a highly cost-effective way of preventing atopic dermatitis in The Netherlands.
Radiation-Induced Processing of Hydrocarbons in Environments Relevant to Pluto
2001-05-07
energetic’ (characterized by high levels of electrical and geothermal activity) liquid water environment, are capable of generating significant prebiotic ...synthesis of biogenic molecules (Chyba & Sagan 1992). In this light, a potential cometary source of prebiotic organics (the precursors of biological...precursors for prebiotic molecules. This exogenous source of prebiotic organics on early Earth could provide an alternative method of accounting for
Prebiotics as functional food ingredients preventing diet-related diseases.
Florowska, A; Krygier, K; Florowski, T; Dłużewska, E
2016-05-18
This paper reviews the potential of prebiotic-containing foods in the prevention or postponement of certain diet-related diseases, such as cardiovascular diseases with hypercholesterolemia, osteoporosis, diabetes, gastrointestinal infections and gut inflammation. Also the data on prebiotics as food ingredients and their impact on food product quality are presented. Prebiotics are short chain carbohydrates that are resistant to the digestion process in the upper part of the digestive system, are not absorbed in any segment of the gastrointestinal system, and finally are selectively fermented by specific genera of colonic bacteria. The mechanisms of the beneficial impacts of prebiotics on human health are very difficult to specify directly, because their health-promoting functions are related to fermentation by intestinal microflora. The impact of prebiotics on diet-related diseases in many ways also depends on the products of their fermentation. Prebiotics as functional food ingredients also have an impact on the quality of food products, due to their textural and gelling properties. Prebiotics as food additives can be very valuable in the creation of functional food aimed at preventing or postponing many diet-related diseases. They additionally have beneficial technological properties which improve the quality of food products.
The Urinary Tract Microbiome in Health and Disease.
Aragón, Isabel M; Herrera-Imbroda, Bernardo; Queipo-Ortuño, María I; Castillo, Elisabeth; Del Moral, Julia Sequeira-García; Gómez-Millán, Jaime; Yucel, Gozde; Lara, María F
2016-11-14
The urinary tract, previously considered a sterile body niche, has emerged as the host of an array of bacteria in healthy individuals, revolutionizing the urology research field. To review the literature on microbiome implications in the urinary tract and the usefulness of probiotics/prebiotics and diet as treatment for urologic disorders. A systematic review was conducted using PubMed and Medline from inception until July 2016. The initial search identified 1419 studies and 89 were included in this systematic review. Specific bacterial communities have been found in the healthy urinary tract. Changes in this microbiome have been observed in certain urologic disorders such as urinary incontinence, urologic cancers, interstitial cystitis, neurogenic bladder dysfunction, sexually transmitted infections, and chronic prostatitis/chronic pelvic pain syndrome. The role of probiotics, prebiotics, and diet as treatment or preventive agents for urologic disorders requires further investigation. There is a microbiome associated with the healthy urinary tract that can change in urologic disorders. This represents a propitious context to identify new diagnostic, prognostic, and predictive microbiome-based biomarkers that could be used in clinical urology practice. In addition, probiotics, prebiotics, and diet modifications appear to represent an opportunity to regulate the urinary microbiome. We review the urinary microbiome of healthy individuals and its changes in relation to urinary disorders. The question to resolve is how we can modulate the microbiome to improve urinary tract health. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Dahiya, Dinesh K; Renuka; Puniya, Monica; Shandilya, Umesh K; Dhewa, Tejpal; Kumar, Nikhil; Kumar, Sanjeev; Puniya, Anil K; Shukla, Pratyoosh
2017-01-01
In the present world scenario, obesity has almost attained the level of a pandemic and is progressing at a rapid rate. This disease is the mother of all other metabolic disorders, which apart from placing an added financial burden on the concerned patient also has a negative impact on his/her well-being and health in the society. Among the various plausible factors for the development of obesity, the role of gut microbiota is very crucial. In general, the gut of an individual is inhabited by trillions of microbes that play a significant role in host energy homeostasis by their symbiotic interactions. Dysbiosis in gut microbiota causes disequilibrium in energy homeostasis that ultimately leads to obesity. Numerous mechanisms have been reported by which gut microbiota induces obesity in experimental models. However, which microbial community is directly linked to obesity is still unknown due to the complex nature of gut microbiota. Prebiotics and probiotics are the safer and effective dietary substances available, which can therapeutically alter the gut microbiota of the host. In this review, an effort was made to discuss the current mechanisms through which gut microbiota interacts with host energy metabolism in the context of obesity. Further, the therapeutic approaches (prebiotics/probiotics) that helped in positively altering the gut microbiota were discussed by taking experimental evidence from animal and human studies. In the closing statement, the challenges and future tasks within the field were discussed.
Dahiya, Dinesh K.; Renuka; Puniya, Monica; Shandilya, Umesh K.; Dhewa, Tejpal; Kumar, Nikhil; Kumar, Sanjeev; Puniya, Anil K.; Shukla, Pratyoosh
2017-01-01
In the present world scenario, obesity has almost attained the level of a pandemic and is progressing at a rapid rate. This disease is the mother of all other metabolic disorders, which apart from placing an added financial burden on the concerned patient also has a negative impact on his/her well-being and health in the society. Among the various plausible factors for the development of obesity, the role of gut microbiota is very crucial. In general, the gut of an individual is inhabited by trillions of microbes that play a significant role in host energy homeostasis by their symbiotic interactions. Dysbiosis in gut microbiota causes disequilibrium in energy homeostasis that ultimately leads to obesity. Numerous mechanisms have been reported by which gut microbiota induces obesity in experimental models. However, which microbial community is directly linked to obesity is still unknown due to the complex nature of gut microbiota. Prebiotics and probiotics are the safer and effective dietary substances available, which can therapeutically alter the gut microbiota of the host. In this review, an effort was made to discuss the current mechanisms through which gut microbiota interacts with host energy metabolism in the context of obesity. Further, the therapeutic approaches (prebiotics/probiotics) that helped in positively altering the gut microbiota were discussed by taking experimental evidence from animal and human studies. In the closing statement, the challenges and future tasks within the field were discussed. PMID:28421057
Effect of storage conditions on quality of prebiotic dark chocolate.
Norhayati, H; Rasma, Suzielawanis I; Mohd, Khan A
2013-04-01
A prebiotic such as inulin is a well-known functional plant food ingredient. It is capable of stimulating growth of beneficial bifidobacteria in the intestine thus protecting against intestinal infections, preventing constipation, increasing mineral absorption, reducing the incidence of colon cancer, and producing B vitamins. Inulin added to food therefore has to be stable during food processing especially against heat treatment, low pH and Maillard reaction. Newly developed dark chocolate, DC-1, containing inulin (replacing sugar component) as an added value, was stored at 18 degrees C, 60% relative humidity and 25 degrees C, 80% relative humidity (RH) to determine shelf life stability compared to control dark chocolate, DC-0 (with high content of sugar). Sensory evaluation (quantitative descriptive analysis), water activity (a(w)), microbiological content and presence of inulin after storage of the prebiotic chocolate under both conditions were evaluated to determine shelf life. The DC-1 chocolate had at least 12 months of shelf life at 18 degrees C, 60% RH with better acceptance than DC-0; moreover, it did not experience microbiological and inulin content changes. At 25 degrees C, 80% RH, the growth of Aspergillus sp. was observed on the surface of both DC-0 and DC-1 with a(w) > 0.50 after a 2-month storage. Shelf life stability of DC-1 is almost similar to DC-0.
Atmospheric Prebiotic Chemistry and Organic Hazes
Trainer, Melissa G.
2013-01-01
Earth’s atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of prebiotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer – if formed – would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere. PMID:24143126
Atmospheric Prebiotic Chemistry and Organic Hazes.
Trainer, Melissa G
2013-08-01
Earth's atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of prebiotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer - if formed - would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere.
Barcenas-Walls, Jose R.; Suchodolski, Jan S.; Steiner, Jörg M.
2017-01-01
Prebiotics are selectively fermentable dietary compounds that result in changes in the composition and/or activity of the intestinal microbiota, thus conferring benefits upon host health. In veterinary medicine, commercially available products containing prebiotics have not been well studied with regard to the changes they trigger on the composition of the gut microbiota. This study evaluated the effect of a commercially available nutraceutical containing fructo-oligosaccharides (FOS) and inulin on the fecal microbiota of healthy cats and dogs when administered for 16 days. Fecal samples were collected at two time points before and at two time points during prebiotic administration. Total genomic DNA was obtained from fecal samples and 454-pyrosequencing was used for 16S rRNA gene bacterial profiling. The linear discriminant analysis (LDA) effect size (LEfSe) method was used for detecting bacterial taxa that may respond (i.e., increase or decrease in its relative abundance) to prebiotic administration. Prebiotic administration was associated with a good acceptance and no side effects (e.g., diarrhea) were reported by the owners. A low dose of prebiotics (50 mL total regardless of body weight with the end product containing 0.45% of prebiotics) revealed a lower abundance of Gammaproteobacteria and a higher abundance of Veillonellaceae during prebiotic administration in cats, while Staphylococcaceae showed a higher abundance during prebiotic administration in dogs. These differences were not sufficient to separate bacterial communities as shown by analysis of weighted UniFrac distance metrics. A predictive approach of the fecal bacterial metagenome using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) also did not reveal differences between the period before and during prebiotic administration. A second trial using a higher dose of prebiotics (3.2 mL/kg body weight with the end product containing 3.1% of prebiotics) was tested in dogs and revealed a lower abundance of Dorea (family Clostridiaceae) and a higher abundance of Megamonas and other (unknown) members of Veillonellaceae during prebiotic administration. Again, these changes were not sufficient to separate bacterial communities or predicted metabolic profiles according to treatment. A closer analysis of bacterial communities at all time-points revealed highly individualized patterns of variation. This study shows a high interindividual variation of fecal bacterial communities from pet cats and dogs, that these communities are relatively stable over time, and that some of this variation can be attributable to prebiotic administration, a phenomenon that may be affected by the amount of the prebiotic administered in the formulation. This study also provides insights into the response of gut bacterial communities in pet cats and dogs during administration of commercially available products containing prebiotics. More studies are needed to explore potentially beneficial effects on host health beyond changes in bacterial communities. PMID:28439463
Constraints on the Early Terrestrial Surface UV Environment Relevant to Prebiotic Chemistry
NASA Astrophysics Data System (ADS)
Ranjan, Sukrit; Sasselov, Dimitar D.
2017-03-01
The UV environment is a key boundary condition to abiogenesis. However, considerable uncertainty exists as to planetary conditions and hence surface UV at abiogenesis. Here, we present two-stream multilayer clear-sky calculations of the UV surface radiance on Earth at 3.9 Ga to constrain the UV surface fluence as a function of albedo, solar zenith angle (SZA), and atmospheric composition. Variation in albedo and latitude (through SZA) can affect maximum photoreaction rates by a factor of >10.4; for the same atmosphere, photoreactions can proceed an order of magnitude faster at the equator of a snowball Earth than at the poles of a warmer world. Hence, surface conditions are important considerations when computing prebiotic UV fluences. For climatically reasonable levels of CO2, fluence shortward of 189 nm is screened out, meaning that prebiotic chemistry is robustly shielded from variations in UV fluence due to solar flares or variability. Strong shielding from CO2 also means that the UV surface fluence is insensitive to plausible levels of CH4, O2, and O3. At scattering wavelengths, UV fluence drops off comparatively slowly with increasing CO2 levels. However, if SO2 and/or H2S can build up to the ≥1-100 ppm level as hypothesized by some workers, then they can dramatically suppress surface fluence and hence prebiotic photoprocesses. H2O is a robust UV shield for λ < 198 nm. This means that regardless of the levels of other atmospheric gases, fluence ≲198 nm is only available for cold, dry atmospheres, meaning sources with emission ≲198 (e.g., ArF excimer lasers) can only be used in simulations of cold environments with low abundance of volcanogenic gases. On the other hand, fluence at 254 nm is unshielded by H2O and is available across a broad range of NCO2, meaning that mercury lamps are suitable for initial studies regardless of the uncertainty in primordial H2O and CO2 levels.
Bioastrophysical aspects of low energy ion irradiation of frozen anthracene containing water.
Tuleta, M; Gabła, L; Madej, J
2001-08-13
The origin of life on Earth remains a fascinating mystery in spite of many theories existing on this subject. However, it seems that simple prebiotic molecules could play an essential role in the formation of more complex organisms. In our experiment, we synthesized a class of these molecules (quinones) bombarding frozen anthracene containing water with low energy hydrogen ions. This experiment roughly simulated the astrophysical conditions which one can find in the solar system. Thus, we can hypothesize that prebiotic molecules could be created by interaction of the solar wind with interplanetary dust grains. The delivery of these molecules to early Earth may have contributed to the generation of life on our planet.
Shi, Yuqin; Liu, Jun; Yan, Qiaojuan; You, Xin; Yang, Shaoqing; Jiang, Zhengqiang
2018-05-15
Prebiotic effects of curdlan (1 → 3)-β-d-glucan oligosaccharides (GOS) were examined. GOS was tolerant against simulated gastrointestinal digestion, as well as low pH, thermal, and Maillard reaction conditions likely occurred during food processing. Growth of tested Lactobacillus (L.) strains was improved by GOS except L. brevis NRRL B-4527. E. coli did not grow on GOS as the only carbon source. In vitro batch fermentation using human faecal microbiota showed that GOS significantly increased the population of Lactobacillus sp. followed by Bifidobacterium sp. and Bacteroides sp. Growth of L. strains on GOS produced lactic acid, acetic, and propionic acid with decreased culture medium pH. Utilization pattern of GOS by representative L. strains was strain dependent. GOS with degree of polymerization (DP) of 2 and 3 were readily consumed. Findings here indicated that curdlan GOS (DP = 2 and 3) are promising physiologically active prebiotics for improvement of human intestinal health. Copyright © 2018 Elsevier Ltd. All rights reserved.
Atmospheric production of glycolaldehyde under hazy prebiotic conditions.
Harman, Chester E; Kasting, James F; Wolf, Eric T
2013-04-01
The early Earth's atmosphere, with extremely low levels of molecular oxygen and an appreciable abiotic flux of methane, could have been a source of organic compounds necessary for prebiotic chemistry. Here, we investigate the formation of a key RNA precursor, glycolaldehyde (2-hydroxyacetaldehyde, or GA) using a 1-dimensional photochemical model. Maximum atmospheric production of GA occurs when the CH4:CO2 ratio is close to 0.02. The total atmospheric production rate of GA remains small, only 1 × 10(7) mol yr(-1). Somewhat greater amounts of GA production, up to 2 × 10(8) mol yr(-1), could have been provided by the formose reaction or by direct delivery from space. Even with these additional production mechanisms, open ocean GA concentrations would have remained at or below ~1 μM, much smaller than the 1-2 M concentrations required for prebiotic synthesis routes like those proposed by Powner et al. (Nature 459:239-242, 2009). Additional production or concentration mechanisms for GA, or alternative formation mechanisms for RNA, are needed, if this was indeed how life originated on the early Earth.
attempted prebiotic synthesis of pseudouridine
NASA Astrophysics Data System (ADS)
DWORKIN, JASON P.
1997-08-01
Pseudouridine is a modified base found in all tRNA and rRNA. Hence, it is reasonable to think that pseudouridine was important in the early evolution, if not the origin, of life. Since uracil reacts rapidly with formaldehyde and other aldehydes at the C-5 position, it is plausible that pseudouridine could be synthesized in a similar way by the reaction of the C-5 of uracil with the C-1 of ribose. The determining factor is whether the ribose could react with the uracil faster than ribose decomposes. However, both rates are determined by the amount of free aldehyde in the ribose. Various plausible prebiotic reactions were investigated and none showed pseudouridine above the detection limit (<0.01%). Only unreacted uracil and ribose decomposition products could be observed. Thus the rate of addition of ribose to uracil is much slower than the decomposition of ribose under any reasonable prebiotic conditions. Unless efficient non-biological catalysts for any of these reactions exist, pseudouridine would not have been synthesized to any significant extent without the use of biologically produced enzymes.
Attempted prebiotic synthesis of pseudouridine
NASA Technical Reports Server (NTRS)
Dworkin, J. P.; Miller, S. L. (Principal Investigator)
1997-01-01
Pseudouridine is a modified base found in all tRNA and rRNA. Hence, it is reasonable to think that pseudouridine was important in the early evolution, if not the origin, of life. Since uracil reacts rapidly with formaldehyde and other aldehydes at the C-5 position, it is plausible that pseudouridine could be synthesized in a similar way by the reaction of the C-5 of uracil with the C-1 of ribose. The determining factor is whether the ribose could react with the uracil faster than ribose decomposes. However, both rates are determined by the amount of free aldehyde in the ribose. Various plausible prebiotic reactions were investigated and none showed pseudouridine above the detection limit (<0.01%). Only unreacted uracil and ribose decomposition products could be observed. Thus the rate of addition of ribose to uracil is much slower than the decomposition of ribose under any reasonable prebiotic conditions. Unless efficient non-biological catalysts for any of these reactions exist, pseudouridine would not have been synthesized to any significant extent without the use of biologically produced enzymes.
Terrestrial planets under the young Sun
NASA Astrophysics Data System (ADS)
Airapetian, Vladimir S.
2018-06-01
Are we alone in the Universe? Is life unique to Earth or a common phenomenon? These fundamental questions represent major puzzles of contemporary science, and were inspiration for a NASA conference on the prebiotic conditions of the early Solar System.
Conditions for the emergence of life on the early Earth: summary and reflections
Jortner, Joshua
2006-01-01
This review attempts to situate the emergence of life on the early Earth within the scientific issues of the operational and mechanistic description of life, the conditions and constraints of prebiotic chemistry, together with bottom-up molecular fabrication and biomolecular nanofabrication and top-down miniaturization approaches to the origin of terrestrial life. PMID:17008225
Silk, D B A; Davis, A; Vulevic, J; Tzortzis, G; Gibson, G R
2009-03-01
Gut microflora-mucosal interactions may be involved in the pathogenesis of irritable bowel syndrome (IBS). To investigate the efficacy of a novel prebiotic trans-galactooligosaccharide in changing the colonic microflora and improve the symptoms in IBS sufferers. In all, 44 patients with Rome II positive IBS completed a 12-week single centre parallel crossover controlled clinical trial. Patients were randomized to receive either 3.5 g/d prebiotic, 7 g/d prebiotic or 7 g/d placebo. IBS symptoms were monitored weekly and scored according to a 7-point Likert scale. Changes in faecal microflora, stool frequency and form (Bristol stool scale) subjective global assessment (SGA), anxiety and depression and QOL scores were also monitored. The prebiotic significantly enhanced faecal bifidobacteria (3.5 g/d P < 0.005; 7 g/d P < 0.001). Placebo was without effect on the clinical parameters monitored, while the prebiotic at 3.5 g/d significantly changed stool consistency (P < 0.05), improved flatulence (P < 0.05) bloating (P < 0.05), composite score of symptoms (P < 0.05) and SGA (P < 0.05). The prebiotic at 7 g/d significantly improved SGA (P < 0.05) and anxiety scores (P < 0.05). The galactooligosaccharide acted as a prebiotic in specifically stimulating gut bifidobacteria in IBS patients and is effective in alleviating symptoms. These findings suggest that the prebiotic has potential as a therapeutic agent in IBS.
Quantum entanglement in photoactive prebiotic systems.
Tamulis, Arvydas; Grigalavicius, Mantas
2014-06-01
This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modelled photoactive prebiotic kernel systems. We define our modelled self-assembled supramolecular photoactive centres, composed of one or more sensitizer molecules, precursors of fatty acids and a number of water molecules, as a photoactive prebiotic kernel systems. We propose that life first emerged in the form of such minimal photoactive prebiotic kernel systems and later in the process of evolution these photoactive prebiotic kernel systems would have produced fatty acids and covered themselves with fatty acid envelopes to become the minimal cells of the Fatty Acid World. Specifically, we model self-assembling of photoactive prebiotic systems with observed quantum entanglement phenomena. We address the idea that quantum entanglement was important in the first stages of origins of life and evolution of the biospheres because simultaneously excite two prebiotic kernels in the system by appearance of two additional quantum entangled excited states, leading to faster growth and self-replication of minimal living cells. The quantum mechanically modelled possibility of synthesizing artificial self-reproducing quantum entangled prebiotic kernel systems and minimal cells also impacts the possibility of the most probable path of emergence of protocells on the Earth or elsewhere. We also examine the quantum entangled logic gates discovered in the modelled systems composed of two prebiotic kernels. Such logic gates may have application in the destruction of cancer cells or becoming building blocks of new forms of artificial cells including magnetically active ones.
Initialization of metabolism in prebiotic petroleum
NASA Astrophysics Data System (ADS)
Mekki-Berrada, Ali
The theoretical and bibliographical work on the geochemical origin of life, which I present here, it works on the assumption that: "The class of more complex molecules of life that can have a geochemical and abiotic origin is the class of fatty acid with long aliphatic chain". This idea comes from the controversy over the abiotic oil industry, and the first measurements of abiotic oil at mid-ocean ridges (Charlou J.L. et al. 2002, Proskurowski G. et al. 2008). To go further and propose a comprehensive experimentation on the origin of life, I propose in this article the idea that the prebiotic soup or prebiotic petroleum would stem from the diagenesis of the gas clathrates/sediments mixture. Gas, H2S H2 N2 CH4 CO2, are produced at mid-ocean ridges, and at large-scale at the seafloor, by serpentinization. Sediments contain hydrogenophosphates as a source of phosphate and minerals to the surface catalysis. Extreme conditions experienced by some prokaryotes and pressures and temperatures of submarine oilfields of fossil petroleum are close. The hydrostatic pressure is around 1.5 kbar and the temperature is below 150 °C. This experiment I propose is quite feasible today since these conditions are used: In research and exploration of fossil petroleum; In the field of organic chemistry called "green chemistry" and where temperatures remain low and the pressure can reach 10 kbar; to study the biology of prokaryotes living in the fossil petroleum of industrial interest, these studies are quite comparable to experiment with prebiotic oil; Finally, this experiment can be based on research on abiotic CH4 on Mars and abiotic hydrocarbons on Titan. The next step in the theoretical research of the origin of life is the abiotic synthesis of liposomes. Abiotic synthesis liposomes just requires synthesis of glycerol and ethanolamine (or serine) esterifying the phosphate and fatty acid. The state of research on the abiotic synthesis of these molecules shows that synthesis of glycerol in the laboratory and in industry are so drastic and complex that I proposed initialization metabolism in fatty acid vesicles with hydrogenation by H2 of glyceraldehyde-P or dihydroxyacetone-P to glycerol-3P after esterification to the fatty acid. Hydrogenation is assumed to be facilitated by the catalyst power of the multi-anionic surface of these vesicles. https://en.wikiversity.org/wiki/Prebiotic_Petroleum
Growth Studies of Probiotic Bacteria on Short Chain Glucomannan, a Potential Prebiotic Substrate
2012-12-05
PROBIOTIC BACTERIA ON SHORT CHAIN GLUCOMANNAN, A POTENTIAL PREBIOTIC SUBSTRATE by Wayne S. Muller Steve Arcidiacono Adam Liebowitz Ken Racicot... PROBIOTIC BACTERIA ON SHORT CHAIN GLUCOMANNAN, A POTENTIAL PREBIOTIC SUBSTRATE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER PE...commercial prebiotic substrates. All three substrates had similar degree of polymerization (DP) of 2-9. Five probiotic bacteria were evaluated for
Thermodynamic Basis for the Emergence of Genomes during Prebiotic Evolution
2012-05-01
Thermodynamic Basis for the Emergence of Genomes during Prebiotic Evolution Hyung-June Woo, Ravi Vijaya Satya, Jaques Reifman* DoD Biotechnology High...polymerases are above, near, and below a critical point, respectively. The prebiotic evolution therefore must have crossed this critical region. Over...among many potential oligomers capable of templated replication, RNAs may have evolved to form prebiotic genomes due to the value of their nonenzymatic
Prebiotics and Inflammatory Bowel Disease.
Rasmussen, Heather E; Hamaker, Bruce R
2017-12-01
Dietary fiber, specifically prebiotics, is the primary source of energy for the gut microbiota and thus has the potential to beneficially modify microbiota composition. Prebiotics have been used in both in vitro studies and with animal models of colitis with largely positive results. Human studies are few and have been conducted with only a few select prebiotics, primarily fructan-containing fibers. Although disease activity and inflammatory markers have improved, more needs to be learned about the specific prebiotic compounds and how they can be used to best improve the gut microbiota to counter changes induced by inflammatory bowel disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Prebiotic index evaluation of crude laminaran of Sargassum sp. using feces of wistar rats
NASA Astrophysics Data System (ADS)
Chamidah, A.
2018-03-01
Today, prebiotics are often added to food. This compound is a food substance which could not be digested, yet benefiting the host by selectively stimulating the growth or activity of one or more bacteria in the colon to improve the health of the host. One of the foodstuffs derived from algae, which could not be digested is laminaran (β-Glucan). The relationship between microflora with the added prebiotics was tested by measuring their prebiotic index, which is supported by total sugars and laminaran levels. The results showed that total sugar content of Laminaran Acid Extract (LAE) (9.075 %) was higher than that of Laminaran Modified Extract (LME) (7.355 %), while the laminaran level of LME (42.23 %) was higher than that of LAE (30.92 %). HPLC test result confirmed the presence of laminaran. The obtained prebiotic index values of LAE and LME were 1.29 and 2.10, respectively, with a negative index score for LAE prebiotic, yet positive one for LME in terms of probiotic from Lactobacillus group. Laminaran extract, especially LME, deserves to be regarded as a prebiotic candidate.
Barengolts, Elena
2016-10-01
To review the data from randomized controlled trials (RCTs) for the roles of microbiota, pre-, pro- and synbiotics in metabolic conditions (obesity, prediabetes, and diabetes mellitus type 2 [DM2]). Primary literature was reviewed on the topics including RCTs of pre-, pro- and synbiotics use for metabolic disease. Gut bacteria (microbiota) benefit digestion and have multiple other functions. Microbiota could increase harvesting of energy from the food and cause subclinical inflammation seen in metabolic disorders. Diet-related interventions including prebiotics, probiotics, and synbiotics (combining pre-and probiotics) may benefit metabolic conditions. Prebiotics are complex carbohydrates (i.e., dietary fiber). Results of RCTs of prebiotics suggested a neutral effect on body weight, decreased fasting and postprandial glucose, and improved insulin sensitivity and lipid profile. Some inflammation markers were reduced, sometimes substantially (20-30%). RCTs for probiotics demonstrated significant but small effects on body weight (<3%) and metabolic parameters. The effect was seen mostly with fermented milk or yogurt compared to capsule form, consumption for at least 8 weeks, and use of multiple rather than a single bacterial strain. Changes in microbiota were seen at times with both pre- and probiotics. Pickled and fermented foods, particularly vegetables and beans, could serve as a dietary source of pre-, pro-, and synbiotics. These foods showed possible benefits for morbidity and mortality in prospective cohort studies. Pre-, pro-, and synbiotics could prove useful, but further research is needed to clarify their clinical relevance for the prevention and management of metabolic disease. A1c = glycohemoglobin A1c CI = confidence interval CVD = cardiovascular disease GMB = gut (large bowel) microbiota DM2 = diabetes mellitus type 2 HOMA-IR = homeostatic model assessment of insulin resistance LDL = low-density lipoprotein LPS = lipopolysaccharide NAFLD = nonalcoholic fatty liver disease RCT = randomized controlled trial SMD = standardized mean difference TG = triglycerides.
Imitating prebiotic homochirality on Earth.
Breslow, Ronald; Levine, Mindy; Cheng, Zhan-Ling
2010-02-01
We show how the amino acids needed on prebiotic earth in their homochiral L form can be produced by a reaction of L-alpha-methyl amino acids-that have been identified in the Murchison meteorite-with alpha-keto acids under credible prebiotic conditions. When they are simply heated together they perform a process of decarboxylative transamination but with almost no chiral transfer, and that in the wrong direction, producing D-amino acids from the L-alpha-methyl amino acids. With copper ion a square planar complex with two of the reaction intermediates is formed, and now there is the desired L to L transformation, producing small enantioexcesses of the normal L-amino acids. We also show how these can be amplified, not by making more of the L form but by increasing its concentration in water solution. The process can start with a miniscule excess and in one step generate water solutions with L/D ratios in the over 90% region. Kinetic processes can exceed the results from equilibria. We have also examined such amplifications with ribonucleosides, and have shown that initial modest excesses of the D-nucleosides can be amplified to afford water solutions with D to L ratios in the high 90's. We have shown that the homochiral compound has two effects on the solubility of the racemate. On one hand it decreases the solubility of the racemate by its role in the solubility product, as a theoretical equation predicts. On the other hand, it increases the solubility of the racemate by changing the nature of the solvent, acting as a cosolvent with the water. This explains why the amplification, while large, is not as large as the simple theoretical equation predicts. Thus when credible examples are produced where small enantioexcesses of D-ribose are created under credible prebiotic conditions, the prerequisites for the RNA world will have been exemplified.
Kuo, Shiu-Ming; Merhige, Patricia M; Hagey, Lee R
2013-01-01
Previous studies have suggested roles of probiotics and prebiotics on body weight management and intestinal function. Here, the effects of a dietary prebiotic, inulin (50 mg/g diet), and probiotic, Bfidobacterium animalis subsp. lactis (Bb12) (final dose verified at 10(5) colony forming unit (cfu)/g diet, comparable to human consumption), were determined separately and in combination in mice using cellulose-based AIN-93G diets under conditions allowed for the growth of commensal bacteria. Continuous consumption of Bb12 and/or inulin did not affect food intake or body, liver, and spleen weights of young and adult mice. Fecal bile acid profiles were determined by nanoESI-MS/MS tandem mass spectrometry. In the presence of inulin, more bacterial deconjugation of taurine from primary bile acids was observed along with an increased cecal weight. Consumption of inulin in the absence or presence of Bb12 also increased the villus cell height in the proximal colon along with a trend of higher bile acid sulfation by intestinal cells. Feeding Bb12 alone at the physiological dose did not affect bile acid deconjugation and had little effect on other intestinal indices. Although interleukin (IL)10-null mice are susceptible to enterocolitis, they maintained the same body weight as the wild type mice under our specific pathogen-free housing condition and showed no signs of inflammation. Nevertheless, they had smaller cecum suggesting a mildly compromised intestinal development even before the disease manifestation. Our results are consistent with the notion that dietary factors such as prebiotics play important roles in the growth of intestinal microbiota and may impact on the intestinal health. In addition, fecal bile acid profiling could potentially be a non-invasive tool in monitoring the intestinal environment.
NASA Astrophysics Data System (ADS)
Carny, Ohad; Gazit, Ehud
2011-04-01
Any attempt to uncover the origins of life must tackle the known `blind watchmaker problem'. That is to demonstrate the likelihood of the emergence of a prebiotic system simple enough to be formed spontaneously and yet complex enough to allow natural selection that will lead to Darwinistic evolution. Studies of short aromatic peptides revealed their ability to self-assemble into ordered and stable structures. The unique physical and chemical characteristics of these peptide assemblies point out to their possible role in the origins of life. We have explored mechanisms by which self-assembling short peptides and RNA fragments could interact together and go through a molecular co-evolution, using diphenylalanine supramolecular assemblies as a model system. The spontaneous formation of these self-assembling peptides under prebiotic conditions, through the salt-induced peptide formation (SIPF) pathway was demonstrated. These peptide assemblies possess the ability to bind and stabilize ribonucleotides in a sequence-depended manner, thus increase their relative fitness. The formation of these peptide assemblies is dependent on the homochirality of the peptide monomers: while homochiral peptides (L-Phe-L-Phe and D-Phe-D-Phe) self-assemble rapidly in aqueous environment, heterochiral diastereoisomers (L-Phe-D-Phe and D-Phe-L-Phe) do not tend to self-assemble. This characteristic consists with the homochirality of all living matter. Finally, based on these findings, we propose a model for the role of short self-assembling peptides in the prebiotic molecular evolution and the origin of life.
Carny, Ohad; Gazit, Ehud
2011-04-01
Any attempt to uncover the origins of life must tackle the known 'blind watchmaker problem'. That is to demonstrate the likelihood of the emergence of a prebiotic system simple enough to be formed spontaneously and yet complex enough to allow natural selection that will lead to Darwinistic evolution. Studies of short aromatic peptides revealed their ability to self-assemble into ordered and stable structures. The unique physical and chemical characteristics of these peptide assemblies point out to their possible role in the origins of life. We have explored mechanisms by which self-assembling short peptides and RNA fragments could interact together and go through a molecular co-evolution, using diphenylalanine supramolecular assemblies as a model system. The spontaneous formation of these self-assembling peptides under prebiotic conditions, through the salt-induced peptide formation (SIPF) pathway was demonstrated. These peptide assemblies possess the ability to bind and stabilize ribonucleotides in a sequence-depended manner, thus increase their relative fitness. The formation of these peptide assemblies is dependent on the homochirality of the peptide monomers: while homochiral peptides (L-Phe-L-Phe and D-Phe-D-Phe) self-assemble rapidly in aqueous environment, heterochiral diastereoisomers (L-Phe-D-Phe and D-Phe-L-Phe) do not tend to self-assemble. This characteristic consists with the homochirality of all living matter. Finally, based on these findings, we propose a model for the role of short self-assembling peptides in the prebiotic molecular evolution and the origin of life.
The case for a Martian origin for Earth life
NASA Astrophysics Data System (ADS)
Benner, Steven A.; Kim, Hyo-Joong
2015-09-01
Classical prebiotic chemistry, which has for the last half century explored the reactivity of small organic molecules in glassware environments under the control of chemists, has left unanswered multiple paradoxes with respect to the origins of life. Many of these can be approached, and possibly solved, by placing organic molecular reactivity within the context of the rocks, minerals, hydrosphere, and atmosphere of a prebiotic earth. This new direction in prebiotic chemistry is discussed here, with special emphasis on the role of minerals in constraining the inherent propensity of carbohydrates to devolve to form unproductively complex mixtures of materials. We focus in particular on minerals containing the elements boron and molybdenum, which is produced in discontinuous synthesis model for the emergence of RNA as the first Darwinian molecule. Further, the role of desert environments to manage the "water paradox" is discussed in the context of many classes of processes that have been proposed to deliver RNA under prebiotic conditions. If current models are correct to suggest that early Earth may have been largely flooded at the time when life originated, Then those desert environments may not have been available. However, the inventory of water on Mars has always been less than on Earth and, as Kirschvink has pointed out, intercourse between the two planets was frequent during the time when life is emerging on either planets. This suggests that desert like environments may have been present on early Mars, if they were not present on early Earth.
Toward a Personalized Approach in Prebiotics Research.
Dey, Moul
2017-01-26
Recent characterization of the human microbiome and its influences on health have led to dramatic conceptual shifts in dietary bioactives research. Prebiotic foods that include many dietary fibers and resistant starches are perceived as beneficial for maintaining a healthy gut microbiota. This article brings forward some current perspectives in prebiotic research to discuss why reporting of individual variations in response to interventions will be important to discern suitability of prebiotics as a disease prevention tool.
Brüssow, Harald
2016-09-01
The gut microbiome research is going from a descriptive into an intervention phase. To optimize beneficial microbe-host interaction, we need to understand how to steer the system by modulating the nutrient input with which the system is literally fed (e.g. diets, fibres, prebiotics, human milk oligosaccharides), and we must learn how to modulate the composition of the gut microbiota by adding beneficial microbes (e.g. probiotics, faecal transplants) and by eliminating disturbing microbial members using, for example, bacteriophages in this highly complex ecosystem. The current status of the field is reviewed together with an outlook what might be expected until 2020, highlighting obstacles to progress and possible solutions to these problems. © 2016 The Author. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Hypocholesterolemic Properties and Prebiotic Effects of Mexican Ganoderma lucidum in C57BL/6 Mice.
Meneses, María E; Martínez-Carrera, Daniel; Torres, Nimbe; Sánchez-Tapia, Mónica; Aguilar-López, Miriam; Morales, Porfirio; Sobal, Mercedes; Bernabé, Teodoro; Escudero, Helios; Granados-Portillo, Omar; Tovar, Armando R
2016-01-01
Edible and medicinal mushrooms contain bioactive compounds with promising effects on several cardiovascular risk biomarkers. However, strains of Ganoderma lucidum of Mexican origin have not yet been studied. Standardized extracts of G. lucidum (Gl) were given to C57BL/6 mice fed a high-cholesterol diet compared with the drug simvastatin. The effects of the extracts on serum biochemical parameters, liver lipid content, cholesterol metabolism, and the composition of gut microbiota were assessed. Acetylsalicylic acid (10 mM) added to the cultivation substrate modulated properties of Gl extracts obtained from mature basidiomata. Compared to the high-cholesterol diet group, the consumption of Gl extracts significantly reduced total serum cholesterol (by 19.2% to 27.1%), LDL-C (by 4.5% to 35.1%), triglyceride concentration (by 16.3% to 46.6%), hepatic cholesterol (by 28.7% to 52%) and hepatic triglycerides (by 43.8% to 56.6%). These effects were associated with a significant reduction in the expression of lipogenic genes (Hmgcr, Srebp1c, Fasn, and Acaca) and genes involved in reverse cholesterol transport (Abcg5 and Abcg8), as well as an increase in Ldlr gene expression in the liver. No significant changes were observed in the gene expression of Srebp2, Abca1 or Cyp7a1. In several cases, Gl-1 or Gl-2 extracts showed better effects on lipid metabolism than the drug simvastatin. A proposed mechanism of action for the reduction in cholesterol levels is mediated by α-glucans and β-glucans from Gl, which promoted decreased absorption of cholesterol in the gut, as well as greater excretion of fecal bile acids and cholesterol. The prebiotic effects of Gl-1 and Gl-2 extracts modulated the composition of gut microbiota and produced an increase in the Lactobacillaceae family and Lactobacillus genus level compared to the control group, high-cholesterol diet group and group supplemented with simvastatin. Mexican genetic resources of Gl represent a new source of bioactive compounds showing hypocholesterolemic properties and prebiotic effects.
Hypocholesterolemic Properties and Prebiotic Effects of Mexican Ganoderma lucidum in C57BL/6 Mice
Meneses, María E.; Martínez-Carrera, Daniel; Torres, Nimbe; Sánchez-Tapia, Mónica; Aguilar-López, Miriam; Morales, Porfirio; Sobal, Mercedes; Bernabé, Teodoro; Escudero, Helios; Granados-Portillo, Omar; Tovar, Armando R.
2016-01-01
Edible and medicinal mushrooms contain bioactive compounds with promising effects on several cardiovascular risk biomarkers. However, strains of Ganoderma lucidum of Mexican origin have not yet been studied. Standardized extracts of G. lucidum (Gl) were given to C57BL/6 mice fed a high-cholesterol diet compared with the drug simvastatin. The effects of the extracts on serum biochemical parameters, liver lipid content, cholesterol metabolism, and the composition of gut microbiota were assessed. Acetylsalicylic acid (10 mM) added to the cultivation substrate modulated properties of Gl extracts obtained from mature basidiomata. Compared to the high-cholesterol diet group, the consumption of Gl extracts significantly reduced total serum cholesterol (by 19.2% to 27.1%), LDL-C (by 4.5% to 35.1%), triglyceride concentration (by 16.3% to 46.6%), hepatic cholesterol (by 28.7% to 52%) and hepatic triglycerides (by 43.8% to 56.6%). These effects were associated with a significant reduction in the expression of lipogenic genes (Hmgcr, Srebp1c, Fasn, and Acaca) and genes involved in reverse cholesterol transport (Abcg5 and Abcg8), as well as an increase in Ldlr gene expression in the liver. No significant changes were observed in the gene expression of Srebp2, Abca1 or Cyp7a1. In several cases, Gl-1 or Gl-2 extracts showed better effects on lipid metabolism than the drug simvastatin. A proposed mechanism of action for the reduction in cholesterol levels is mediated by α-glucans and β-glucans from Gl, which promoted decreased absorption of cholesterol in the gut, as well as greater excretion of fecal bile acids and cholesterol. The prebiotic effects of Gl-1 and Gl-2 extracts modulated the composition of gut microbiota and produced an increase in the Lactobacillaceae family and Lactobacillus genus level compared to the control group, high-cholesterol diet group and group supplemented with simvastatin. Mexican genetic resources of Gl represent a new source of bioactive compounds showing hypocholesterolemic properties and prebiotic effects. PMID:27438015
Hypolipidemic Effect of Red Gram (Cajanus cajan L.) Prebiotic Oligosaccharides in Wistar NIN Rats.
Shakappa, Devindra; Talari, Aruna; Rajkumar, Hemalatha; Shujauddin, Mohammed
2017-08-24
The hypolipidemic effect of red gram prebiotics of raffinose family oligosaccharides was studied in Wistar National Institute of Nutrition male rat strain. The study consisted of 36 rats randomly divided into three groups of 12 rats each. For 16 weeks, Group I was fed with the control diet; Group II was fed with a diet containing 3% standard raffinose as the reference group; Group III received the diet containing 3% red gram prebiotics. The results showed that the gain in body weight was low in the red gram prebiotics-supplemented group followed by the control group; highest increase of body weight was seen in the raffinose standard-fed group. Serum glucose levels of the red gram prebiotic-fed group decreased 14.92% compared to the control group and increased 2.07% compared to the reference group. The decrease in serum triglycerides (TG) levels of the red gram prebiotic-fed groups was 32.76% compared to the control group and 33.64% compared to the reference group. Decrease in the serum TC of the red gram-fed animals was 18.51% and 4.63% compared to the control group and the reference group, respectively. Increase in the level of serum high-density lipoprotein cholesterol (HDL-C) in the red gram-fed animals was 18.51% compared to the control group and 4.63% compared to the reference group. The present study can be a proof for the use of prebiotics as a preventive measure for overweight and obesity in humans, and legume prebiotics can be explored as a novel prebiotic product in the consumer market.
Perna canaliculus and the Intestinal Microbiome.
Saltzman, Emma Tali; Thomsen, Michael; Hall, Sean; Vitetta, Luis
2017-06-30
Natural medicines are often an attractive option for patients diagnosed with chronic conditions. Three main classes of bioactives that have been reported from marine mussel extracts include proteins, lipids and carbohydrates. Commercially, the most relevant species of marine mollusks belong to two genera, Perna and Mytilus. Specifically, the Perna canaliculus species has been repeatedly demonstrated to harbor anti-inflammatory compounds such as omega-3 polyunsaturated fatty acids ( ω -3 PUFAs) that can ameliorate pro-inflammatory conditions, or proteins that can promote thrombin inhibitory activity. Recent clinical studies have posited that extracts from green-lipped mussels may lead to prebiotic activity in the intestinal microbiome that in turn has been reported to improve symptoms of osteoarthritis of the knee. Prebiotics have been reported to favorably interact with the intestinal microbiome through the proliferation of beneficial bacteria in the gut, suppressing exogenous and endogenous intestinal infections and promoting homeostasis by balancing local pro- and anti-inflammatory actions. Bioactive compounds from Perna canaliculus are functional foods and, in this regard, may positively interact with the intestinal microbiome and provide novel therapeutic solutions for intra-intestinal and extra-intestinal inflammatory conditions.
Pharmabiotic Manipulation of the Microbiota in Gastrointestinal Disorders: A Clinical Perspective.
Giron, Fanny; Quigley, Eamonn M M
2018-04-24
The advent and widespread availability of high-throughput technology has revolutionized the assessment of the communities of microorganisms that inhabit the gastrointestinal tract - the gut microbiota. As our understanding of the role of the microbiota in health and human disease increases so to do efforts to prevent and treat disease through the modulation of the microbiota. Several strategies are available to us and range from time honored approaches, such as antibiotics and probiotics, to changes in diet, the administration of prebiotics as food supplements and fecal microbiota transplantation. Of these, diet is perhaps the most pervasive but often ignored modulator of the microbiota and a failure to recognize its impact complicates the interpretation of many microbiota studies. The impacts of antibiotics on the microbiotia are more complex than originally thought and, though antibiotics can be life-saving, their effects on commensal bacterial populations can have devastating consequences. Though there have been many studies of, and even more claims made for, probiotics, the majority of available studies suffer from significant deficits in study design and execution and many claims remain to be substantiated. Though holding much promise, the study of prebiotics in human disease is still in its infancy. Possibilities other than the administration of live organisms have been identified through efforts to mine the microbiota for novel therapeutics and include dead organisms, bacterial components, small molecules elaborated by bacteria and even bacterial DNA; the term pharmabiotic has been introduced to encompass the full range of therapeutic possibilities that the microbiota offers.
Vidal, Sara; Tapia-Paniagua, Silvana Teresa; Moriñigo, Jesús Miguel; Lobo, Carmen; García de la Banda, Inés; Balebona, María Del Carmen; Moriñigo, Miguel Ángel
2016-11-01
The interaction host-intestinal microbiota is essential for the immunological homeostasis of the host. Probiotics, prebiotics and synbiotics are promising tools for the manipulation of the intestinal microbiota towards beneficial effects to the host. The objective of this study was to evaluate the modulation effect on the intestinal microbiota and the transcription of genes involved in the immune response in head kidney of Solea senegalensis after administration of diet supplemented with the prebiotic alginate and the probiotic Shewanella putrefaciens Pdp11 CECT 7627 (SpPdp11). The results showed higher adaptability to dietary changes in the intestinal microbiota of fish fed diet with alginate and SpPdp11 together compared to those fish that received an alginate-supplemented diet. The alginate-supplemented diet produced up-regulation of genes encoding proteins involved in immunological responses, such as complement, lysozyme G and transferrin, and oxidative stress, such as NADPH oxidase and glutation peroxidase. On the other hand, the administration of alginate combined with SpPdp11 resulted in a significant increase of the transcription of genes encoding for glutation peroxidase and HSP70, indicating a potential protective effect of SpPdp11 against oxidative stress. In addition, these effects were maintained after the suspension of the probiotic treatment. The relationship between the modulation of the intestinal microbiota and the expression of genes with protective effect against the oxidative stress was demonstrated by the Principal Components Analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Prebiotics from Marine Macroalgae for Human and Animal Health Applications
O’Sullivan, Laurie; Murphy, Brian; McLoughlin, Peter; Duggan, Patrick; Lawlor, Peadar G.; Hughes, Helen; Gardiner, Gillian E.
2010-01-01
The marine environment is an untapped source of bioactive compounds. Specifically, marine macroalgae (seaweeds) are rich in polysaccharides that could potentially be exploited as prebiotic functional ingredients for both human and animal health applications. Prebiotics are non-digestible, selectively fermented compounds that stimulate the growth and/or activity of beneficial gut microbiota which, in turn, confer health benefits on the host. This review will introduce the concept and potential applications of prebiotics, followed by an outline of the chemistry of seaweed polysaccharides. Their potential for use as prebiotics for both humans and animals will be highlighted by reviewing data from both in vitro and in vivo studies conducted to date. PMID:20714423
Hu, Kai; Dars, Abdul Ghani; Liu, Qiudou; Xie, Bijun; Sun, Zhida
2018-08-01
Maturity has important effects on the phytochemical and biochemical characteristics of fruits. It affects the quality, nutritional value, harvest time and commercial operations. In this study, Keitt, Sensation and Xiangya mango cultivars in four distinct stages from southwest China were evaluated for their phytochemical profiling and antioxidant activities in real time. Furthermore, the biochemical characteristics indices polyphenol oxidase (PPO), peroxidase (POD), superoxide dismutase (SOD) and pectin methylesterase (PME) activities were determined. Antioxidant compounds such as vitamin C, total phenolic, total flavonoid and total carotenoid content were also analysed. A total of 34 phenolic compounds were identified and quantitatively monitored by UPLC-ESI-QTOF-MS. Consecutive degradation of phenolic acids and its derivatives were observed upon maturity. We found that in addition to carotenoids, phenolic acids could also be used as a measurement index of maturity in mango. Mango juices and its phenolic extracts may be used as potential prebiotics for modulating probiotic proliferation. Copyright © 2018. Published by Elsevier Ltd.
Toward a Personalized Approach in Prebiotics Research
Dey, Moul
2017-01-01
Recent characterization of the human microbiome and its influences on health have led to dramatic conceptual shifts in dietary bioactives research. Prebiotic foods that include many dietary fibers and resistant starches are perceived as beneficial for maintaining a healthy gut microbiota. This article brings forward some current perspectives in prebiotic research to discuss why reporting of individual variations in response to interventions will be important to discern suitability of prebiotics as a disease prevention tool. PMID:28134778
Oligosaccharides in infant formula: more evidence to validate the role of prebiotics.
Vandenplas, Yvan; Zakharova, Irina; Dmitrieva, Yulia
2015-05-14
The gastrointestinal (GI) microbiota differs between breast-fed and classic infant formula-fed infants. Breast milk is rich in prebiotic oligosaccharides (OS) and may also contain some probiotics, but scientific societies do not recommend the addition of prebiotic OS or probiotics to standard infant formula. Nevertheless, many infant formula companies often add one or the other or both. Different types of prebiotic OS are used in infant formula, including galacto-oligosaccharide, fructo-oligosaccharide, polydextrose and mixtures of these OS, but none adds human milk OS. There is evidence that the addition of prebiotics to infant formula brings the GI microbiota of formula-fed infants closer to that of breast-fed infants. Prebiotics change gut metabolic activity (by decreasing stool pH and increasing SCFA), have a bifidogenic effect and bring stool consistency and defecation frequency closer to those of breast-fed infants. Although there is only limited evidence that these changes in GI microbiota induce a significant clinical benefit for the immune system, interesting positive trends have been observed in some markers. Additionally, adverse effects are extremely seldom. Prebiotics are added to infant formula because breast milk contains human milk OS. Because most studies suggest a trend of beneficial effects and because these ingredients are very safe, prebiotics bring infant formula one step closer to the golden standard of breast milk.
Plaudis, H; Pupelis, G; Zeiza, K; Boka, V
2012-01-01
Experience with administration of synbiotics (prebiotics/probiotics) in patients with severe acute pancreatitis (SAP) has demonstrated immunomodulatory capacity. The aim of this trial was evaluation of the feasibility and perspective of early clinical application of oral synbiotic/prebiotic supplements in patients with SAP. 90 SAP patients were enrolled during the period from 2005-2008. Patients were stratified according to the feeding mode. CONTROL (n = 32) group received standard whole protein feeding formula. SYNBIO (n = 30) and FIBRE groups (n = 28) received early (within first 24-48 hours) synbiotic or prebiotic supplements. Oral administration of synbiotics or prebiotics was commenced when patients were able to sip water. Daily provided average volume and calories of synbiotic/prebiotic blends were smaller compared to the CONTROL, p = 0.001. Oral administration of synbiotic/prebiotic supplements was associated with lower infection rate (pancreatic and peripancreatic necrosis) compared to the CONTROL, (p = 0.03; p = 0.001), lower rate of surgical interventions, p = 0.005, shorter ICU (p = 0.05) and hospital stay (p = 0.03). Synbiotic supplemented enteral stimulation of the gut resulted in reduced mortality rate compared to the CONTROL, p = 0.02. Early low volume oral synbiotic/prebiotic supplemented enteral stimulation of the gut seems to be a potentially valuable complement to the routine treatment protocol of SAP.
Fiber, prebiotics, and diarrhea: what, why, when and how.
Generoso, Simone de Vasconcelos; Lages, Priscilla Ceci; Correia, Maria Isabel Toulsson Davisson
2016-07-15
Dietary fiber and prebiotics have been the focus of research and discussion for decades, but there are still pending concepts and definitions, in particular when addressing their use in the prevention and treatment of diarrhea. The purpose of this review is to present the latest advances in the understanding of dietary fiber and prebiotics, to review their proven role in the management of diarrhea, and to postulate the best timings and optimal doses. The use of prebiotics has encompassed not only prevention but also the treatment of distinct types of diarrhea, at different treatment moments, and with regard to various different markers of outcome. Furthermore, the description of soluble fibers claiming to be prebiotics, and vice versa, has too often been the tone in the literature, which has led to misconceptions in classification and, consequently, confusion over the interpretation of results. It remains difficult to establish a consensus about the real impact of fiber and prebiotics on the prevention and therapy of diarrhea. The review highlights the overlapping concepts of fiber and prebiotics, and supports the need for adequate individualization of their use, according to the goal - either prevention or treatment of diarrhea - as well as the optimal timing and dose to be used. Nonetheless, viscous soluble fibers seem to be the best option in treating diarrhea, whereas prebiotics are more important in preventing and avoiding recurrence.
Synbiotics, probiotics or prebiotics in infant formula for full term infants: a systematic review
2012-01-01
Background Synbiotics, probiotics or prebiotics are being added to infant formula to promote growth and development in infants. Previous reviews (2007 to 2011) on term infants given probiotics or prebiotics focused on prevention of allergic disease and food hypersensitivity. This review focused on growth and clinical outcomes in term infants fed only infant formula containing synbiotics, probiotics or prebiotics. Methods Cochrane methodology was followed using randomized controlled trials (RCTs) which compared term infant formula containing probiotics, prebiotics or synbiotics to conventional infant formula with / without placebo among healthy full term infants. The mean difference (MD) and corresponding 95% confidence intervals (CI) were reported for continuous outcomes, risk ratio (RR) and corresponding 95% CI for dichotomous outcomes. Where appropriate, meta-analysis was performed; heterogeneity was explored using subgroup and sensitivity analyses. If studies were too diverse a narrative synthesis was provided. Results Three synbiotic studies (N = 475), 10 probiotics studies (N = 933) and 12 prebiotics studies (N = 1563) were included. Synbiotics failed to significantly increase growth in boys and girls. Use of synbiotics increased stool frequency, had no impact on stool consistency, colic, spitting up / regurgitation, crying, restlessness or vomiting. Probiotics in formula also failed to have any significant effect on growth, stool frequency or consistency. Probiotics did not lower the incidence of diarrhoea, colic, spitting up / regurgitation, crying, restlessness or vomiting. Prebiotics in formula did increase weight gain but had no impact on length or head circumference gain. Prebiotics increased stool frequency but had no impact on stool consistency, the incidence of colic, spitting up / regurgitation, crying, restlessness or vomiting. There was no impact of prebiotics on the volume of formula tolerated, infections and gastrointestinal microflora. The quality of evidence was compromised by imprecision, inconsistency of results, use of different study preparations and publication bias. Authors’ conclusions There is not enough evidence to state that supplementation of term infant formula with synbiotics, probiotics or prebiotics does result in improved growth or clinical outcomes in term infants. There is no data available to establish if synbiotics are superior to probiotics or prebiotics. PMID:23035863
Synbiotics, probiotics or prebiotics in infant formula for full term infants: a systematic review.
Mugambi, Mary N; Musekiwa, Alfred; Lombard, Martani; Young, Taryn; Blaauw, Reneé
2012-10-04
Synbiotics, probiotics or prebiotics are being added to infant formula to promote growth and development in infants. Previous reviews (2007 to 2011) on term infants given probiotics or prebiotics focused on prevention of allergic disease and food hypersensitivity. This review focused on growth and clinical outcomes in term infants fed only infant formula containing synbiotics, probiotics or prebiotics. Cochrane methodology was followed using randomized controlled trials (RCTs) which compared term infant formula containing probiotics, prebiotics or synbiotics to conventional infant formula with / without placebo among healthy full term infants. The mean difference (MD) and corresponding 95% confidence intervals (CI) were reported for continuous outcomes, risk ratio (RR) and corresponding 95% CI for dichotomous outcomes. Where appropriate, meta-analysis was performed; heterogeneity was explored using subgroup and sensitivity analyses. If studies were too diverse a narrative synthesis was provided. Three synbiotic studies (N = 475), 10 probiotics studies (N = 933) and 12 prebiotics studies (N = 1563) were included. Synbiotics failed to significantly increase growth in boys and girls. Use of synbiotics increased stool frequency, had no impact on stool consistency, colic, spitting up / regurgitation, crying, restlessness or vomiting. Probiotics in formula also failed to have any significant effect on growth, stool frequency or consistency. Probiotics did not lower the incidence of diarrhoea, colic, spitting up / regurgitation, crying, restlessness or vomiting. Prebiotics in formula did increase weight gain but had no impact on length or head circumference gain. Prebiotics increased stool frequency but had no impact on stool consistency, the incidence of colic, spitting up / regurgitation, crying, restlessness or vomiting. There was no impact of prebiotics on the volume of formula tolerated, infections and gastrointestinal microflora. The quality of evidence was compromised by imprecision, inconsistency of results, use of different study preparations and publication bias. There is not enough evidence to state that supplementation of term infant formula with synbiotics, probiotics or prebiotics does result in improved growth or clinical outcomes in term infants. There is no data available to establish if synbiotics are superior to probiotics or prebiotics.
Robertson, M P; Miller, S L
1995-05-05
Under prebiotic conditions, formaldehyde adds to uracil at the C-5 position to produce 5-hydroxymethyluracil with favorable rates and equilibria. Hydroxymethyluracil adds a variety of nucleophiles, such as ammonia, glycine, guanidine, hydrogen sulfide, hydrogen cyanide, imidazole, indole, and phenol, to give 5-substituted uracils with the side chains of most of the 20 amino acids in proteins. These reactions are sufficiently robust that, if uracil had been present on the primitive Earth, then these substituted uracils would also have been present. The ribozymes of the RNA world would have included many of the functional groups found in proteins today, and their catalytic activities may have been considerably greater than presently assumed.
NASA Technical Reports Server (NTRS)
Grunthaner, Frank J.; Bada, Jeffrey L.; Mathies, Richard; Hutt, Lester; Grunthaner, Paula; Grannan, Sabrina; Lin, Gisela; Blaney, Diana L.; McDonald, Gene; Becker, Luann
1996-01-01
Any strategy for investigating whether abiotic and/or biotic organic molecules are present on Mars and the search for biosignatures should focus on compounds which are readily synthesized under plausible prebiotic conditions, play an essential role in biochemistry as we know it and have properties such as chirality (handedness) which can be used to distinguish between abiotic vs. biotic origins (1). Amino acids are one of the few compound classes that fulfill all these requirements. They are synthesized in high yields in prebiotic simulation experiments, are one of the more abundant types of organic compounds present in carbonaceous meteorites and only the L-enantiomers are used in the proteins and enzymes in life on Earth.
Prebiotic condensation reactions using cyanamide
NASA Technical Reports Server (NTRS)
Sherwood, E.; Nooner, D. W.; Eichberg, J.; Epps, D. E.; Oro, J.
1978-01-01
Condensation reactions in cyanamide, 4-amino-5-imidazole-carboxamide and cyanamide, imidazole systems under dehydrating conditions at moderate temperatures (60 to 100 deg C) were investigated. The cyanamide, imidazole system was used for synthesis of palmitoylglycerols from ammonium palmitate and glycerol. With the addition of deoxythymidine to the former system, P1, P2-dideoxythymidine 5 prime-phosphate was obtained; the same cyanamide, 4-amino-5-imidazole-carboxamide system was used to synthesize deoxythymidine oligonucleotides using deoxythymidine 5 prime-phosphate and deoxythymidine 5 prime-triphosphate, and peptides using glycine, phenylalanine or isoleucine with adenosine 5 prime-triphosphate. The pH requirements for these reactions make their prebiotic significance questionable; however, it is conceivable that they could occur in stable pockets of low interlayer acidity in a clay such as montmorillonite.
NASA Technical Reports Server (NTRS)
Robertson, M. P.; Miller, S. L.
1995-01-01
Under prebiotic conditions, formaldehyde adds to uracil at the C-5 position to produce 5-hydroxymethyluracil with favorable rates and equilibria. Hydroxymethyluracil adds a variety of nucleophiles, such as ammonia, glycine, guanidine, hydrogen sulfide, hydrogen cyanide, imidazole, indole, and phenol, to give 5-substituted uracils with the side chains of most of the 20 amino acids in proteins. These reactions are sufficiently robust that, if uracil had been present on the primitive Earth, then these substituted uracils would also have been present. The ribozymes of the RNA world would have included many of the functional groups found in proteins today, and their catalytic activities may have been considerably greater than presently assumed.
Exploring the Fate of Nitrogen Heterocycles in Complex Prebiotic Mixtures
NASA Technical Reports Server (NTRS)
Smith, Karen E.; Callahan, Michael P.; Cleaves, Henderson J.; Dworkin, Jason P.; House, Christopher H.
2011-01-01
A long standing question in the field of prebiotic chemistry is the origin of the genetic macromolecules DNA and RNA. DNA and RNA have very complex structures with repeating subunits of nucleotides, which are composed of nucleobases (nitrogen heterocycles) connected to sugar-phosphate. Due to the instability of some nucleobases (e.g. cytosine), difficulty of synthesis and instability of D-ribose, and the likely scarcity of polyphosphates necessary for the modern nucleotides, alternative nucleotides have been proposed for constructing the first genetic material. Thus, we have begun to investigate the chemistry of nitrogen heterocycles in plausible, complex prebiotic mixtures in an effort to identify robust reactions and potential alternative nucleotides. We have taken a complex prebiotic mixture produced by a spark discharge acting on a gas mixture of N2, CO2, CH4, and H2, and reacted it with four nitrogen heterocycles: uracil, 5-hydroxymethyluracil, guanine, and isoxanthopterin (2-amino-4,7-dihydroxypteridine). The products of the reaction between the spark mixture and each nitrogen heterocycle were characterized by liquid chromatography coupled to UV spectroscopy and Orbitrap mass spectrometry. We found that the reaction between the spark mixtUl'e and isoxanthopterin formed one major product, which was a cyanide adduct. 5-hydroxymethyluracil also reacted with the spark mixture to form a cyanide adduct, uracil-5-acetonitrile, which has been synthesized previously by reacting HCN with S-hydroxymethyluracil. Unlike isoxanthopterin, the chromatogram of the 5-hydroxymethyluracil reaction was much more complex with multiple products including spark-modified dimers. Additionally, we observed that HMU readily self-polymerizes in solution to a variety of oligomers consistent with those suggested by Cleaves. Guanine and uracil, the biological nucleobases, did not react with the spark mixture, even at high temperature (100 C). This suggests that there are alternative nucleobases which are more reactive under prebiotic conditions and may have been involved in producing precursor nucleotides.
Bugging allergy; role of pre-, pro- and synbiotics in allergy prevention.
West, Christina E; Dzidic, Majda; Prescott, Susan L; Jenmalm, Maria C
2017-10-01
Large-scale biodiversity loss and complex changes in social behaviors are altering human microbial ecology. This is increasingly implicated in the global rise in inflammatory diseases, most notably the "allergy epidemic" in very early life. Colonization of human ecological niches, particularly the gastrointestinal tract, is critical for normal local and systemic immune development and regulation. Disturbances in composition, diversity and timing of microbial colonization have been associated with increased allergy risk, indicating the importance of strategies to restore a dysbiotic gut microbiota in the primary prevention of allergic diseases, including the administration of probiotics, prebiotics and synbiotics. Here, we summarize and discuss findings of randomized clinical trials that have examined the effects of these microbiome-related strategies on short and long-term allergy preventative effects - including new guidelines from the World Allergy Organization which now recommend probiotics and prebiotics for allergy prevention under certain conditions. The relatively low quality evidence, limited comparative studies and large heterogeneity between studies, have collectively hampered recommendations on specific probiotic strains, specific timing and specific conditions for the most effective preventive management. At the same time the risk of using available products is low. While further research is needed before specific practice guidelines on supplement probiotics and prebiotics, it is equally important that the underlying dietary and lifestyle factors of dysbiosis are addressed at both the individual and societal levels. Copyright © 2017 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.
Evidence for reactive reduced phosphorus species in the early Archean ocean
Pasek, Matthew A.; Harnmeijer, Jelte P.; Buick, Roger; Gull, Maheen; Atlas, Zachary
2013-01-01
It has been hypothesized that before the emergence of modern DNA–RNA–protein life, biology evolved from an “RNA world.” However, synthesizing RNA and other organophosphates under plausible early Earth conditions has proved difficult, with the incorporation of phosphorus (P) causing a particular problem because phosphate, where most environmental P resides, is relatively insoluble and unreactive. Recently, it has been proposed that during the Hadean–Archean heavy bombardment by extraterrestrial impactors, meteorites would have provided reactive P in the form of the iron–nickel phosphide mineral schreibersite. This reacts in water, releasing soluble and reactive reduced P species, such as phosphite, that could then be readily incorporated into prebiotic molecules. Here, we report the occurrence of phosphite in early Archean marine carbonates at levels indicating that this was an abundant dissolved species in the ocean before 3.5 Ga. Additionally, we show that schreibersite readily reacts with an aqueous solution of glycerol to generate phosphite and the membrane biomolecule glycerol–phosphate under mild thermal conditions, with this synthesis using a mineral source of P. Phosphite derived from schreibersite was, hence, a plausible reagent in the prebiotic synthesis of phosphorylated biomolecules and was also present on the early Earth in quantities large enough to have affected the redox state of P in the ocean. Phosphorylated biomolecules like RNA may, thus, have first formed from the reaction of reduced P species with the prebiotic organic milieu on the early Earth. PMID:23733935
Marzorati, Massimo; Van de Wiele, Tom
The gastrointestinal tract (GIT) hosts the most complex microbial community in the human body. Given the extensive metabolic potential which is present in this community, this additional organ is of key importance to maintain a healthy status and several diseases are frequently correlated with an alteration of the composition/functionality of the gut microbiota. Consequently, there is a great interest in identifying potential approaches that could modulate the microbiota and its metabolism to bring about a positive health effect. A classical approach to reach this goal is the use of prebiotics and/or probiotics. How to study the potential effect of new prebiotics/probiotics and how to localize this effect along the full GIT? Human intervention trials are the golden standard to validate functional properties of food products. Yet, most studies on gut microbiota are based on the analysis of fecal samples because they are easily collected in a non-invasive manner. A complementary option is represented by well-designed in vitro simulation technologies. Among all the available systems, the Simulator of Human Intestinal Microbial Ecosystem has already been shown to be a useful model for nutrition studies in terms of analysis of the intestinal microbial community composition and activity. The Simulator of Human Intestinal Microbial Ecosystem is a scientifically validated platform representing the physiology and microbiology of the adult human GIT. Furthermore, recent advances in in vitro modelling also allow to combine the study of bacteria-host interactions, such as mucosal adhesion and interaction with the immune system, thereby further increasing the value of the scientific output.
Lee, Yeonmi; Yoshitsugu, Reika; Kikuchi, Keidai; Joe, Ga-Hyun; Tsuji, Misaki; Nose, Takuma; Shimizu, Hidehisa; Hara, Hiroshi; Minamida, Kimiko; Miwa, Kazunori; Ishizuka, Satoshi
2016-08-01
Intestinal bacteria are involved in bile acid (BA) deconjugation and/or dehydroxylation and are responsible for the production of secondary BA. However, an increase in the production of secondary BA modulates the intestinal microbiota due to the bactericidal effects and promotes cancer risk in the liver and colon. The ingestion of Bacillus coagulans improves constipation via the activation of bowel movement to promote defaecation in humans, which may alter BA metabolism in the intestinal contents. BA secretion is promoted with high-fat diet consumption, and the ratio of cholic acid (CA):chenodeoxycholic acid in primary BA increases with ageing. The dietary supplementation of CA mimics the BA environment in diet-induced obesity and ageing. We investigated whether B. coagulans lilac-01 and soya pulp influence both BA metabolism and the maintenance of host health in CA-supplemented diet-fed rats. In CA-fed rats, soya pulp significantly increased the production of secondary BA such as deoxycholic acid and ω-muricholic acids, and soya pulp ingestion alleviated problems related to plasma adiponectin and gut permeability in rats fed the CA diet. The combination of B. coagulans and soya pulp successfully suppressed the increased production of secondary BA in CA-fed rats compared with soya pulp itself, without impairing the beneficial effects of soya pulp ingestion. In conclusion, it is possible that a combination of prebiotics and probiotics can be used to avoid an unnecessary increase in the production of secondary BA in the large intestine without impairing the beneficial functions of prebiotics.
Potentially Prebiotic Syntheses of Condensed Phosphates
NASA Technical Reports Server (NTRS)
Keefe, Anthony D.; Miller, Stanley L.
1996-01-01
In view of the importance of a prebiotic source of high energy phosphates, we have investigated a number of potentially prebiotic processes to produce condensed phosphates from orthophosphate and cyclic trimetaphosphate from tripolyphosphate. The reagents investigated include polymerizing nitriles, acid anhydrides, lactones, hexamethylene tetramine and carbon suboxide. A number of these processes give substantial yields of pyrophosphate from orthophosphate and trimetaphosphate from tripolyphosphate. Although these reactions may have been applicable in local areas, they are not sufficiently robust to have been of importance in the prebiotic open ocean.
Modulation of the human gut microbiota by dietary fibres occurs at the species level.
Chung, Wing Sun Faith; Walker, Alan W; Louis, Petra; Parkhill, Julian; Vermeiren, Joan; Bosscher, Douwina; Duncan, Sylvia H; Flint, Harry J
2016-01-11
Dietary intake of specific non-digestible carbohydrates (including prebiotics) is increasingly seen as a highly effective approach for manipulating the composition and activities of the human gut microbiota to benefit health. Nevertheless, surprisingly little is known about the global response of the microbial community to particular carbohydrates. Recent in vivo dietary studies have demonstrated that the species composition of the human faecal microbiota is influenced by dietary intake. There is now potential to gain insights into the mechanisms involved by using in vitro systems that produce highly controlled conditions of pH and substrate supply. We supplied two alternative non-digestible polysaccharides as energy sources to three different human gut microbial communities in anaerobic, pH-controlled continuous-flow fermentors. Community analysis showed that supply of apple pectin or inulin resulted in the highly specific enrichment of particular bacterial operational taxonomic units (OTUs; based on 16S rRNA gene sequences). Of the eight most abundant Bacteroides OTUs detected, two were promoted specifically by inulin and six by pectin. Among the Firmicutes, Eubacterium eligens in particular was strongly promoted by pectin, while several species were stimulated by inulin. Responses were influenced by pH, which was stepped up, and down, between 5.5, 6.0, 6.4 and 6.9 in parallel vessels within each experiment. In particular, several experiments involving downshifts to pH 5.5 resulted in Faecalibacterium prausnitzii replacing Bacteroides spp. as the dominant sequences observed. Community diversity was greater in the pectin-fed than in the inulin-fed fermentors, presumably reflecting the differing complexity of the two substrates. We have shown that particular non-digestible dietary carbohydrates have enormous potential for modifying the gut microbiota, but these modifications occur at the level of individual strains and species and are not easily predicted a priori. Furthermore, the gut environment, especially pH, plays a key role in determining the outcome of interspecies competition. This makes it crucial to put greater effort into identifying the range of bacteria that may be stimulated by a given prebiotic approach. Both for reasons of efficacy and of safety, the development of prebiotics intended to benefit human health has to take account of the highly individual species profiles that may result.
Vandenplas, Yvan; Greef, Elisabeth De; Veereman, Gigi
2014-01-01
The gastrointestinal microbiota of breast-fed babies differ from classic standard formula fed infants. While mother's milk is rich in prebiotic oligosaccharides and contains small amounts of probiotics, standard infant formula doesn’t. Different prebiotic oligosaccharides are added to infant formula: galacto-oligosaccharides, fructo-oligosaccharide, polydextrose, and mixtures of these. There is evidence that addition of prebiotics in infant formula alters the gastrointestinal (GI) microbiota resembling that of breastfed infants. They are added to infant formula because of their presence in breast milk. Infants on these supplemented formula have a lower stool pH, a better stool consistency and frequency and a higher concentration of bifidobacteria in their intestine compared to infants on a non-supplemented standard formula. Since most studies suggest a trend for beneficial clinical effects, and since these ingredients are very safe, prebiotics bring infant formula one step closer to breastmilk, the golden standard. However, despite the fact that adverse events are rare, the evidence on prebiotics of a significant health benefit throughout the alteration of the gut microbiota is limited. PMID:25535999
Vandenplas, Yvan; De Greef, Elisabeth; Veereman, Gigi
2014-01-01
The gastrointestinal microbiota of breast-fed babies differ from classic standard formula fed infants. While mother's milk is rich in prebiotic oligosaccharides and contains small amounts of probiotics, standard infant formula doesn't. Different prebiotic oligosaccharides are added to infant formula: galacto-oligosaccharides, fructo-oligosaccharide, polydextrose, and mixtures of these. There is evidence that addition of prebiotics in infant formula alters the gastrointestinal (GI) microbiota resembling that of breastfed infants. They are added to infant formula because of their presence in breast milk. Infants on these supplemented formula have a lower stool pH, a better stool consistency and frequency and a higher concentration of bifidobacteria in their intestine compared to infants on a non-supplemented standard formula. Since most studies suggest a trend for beneficial clinical effects, and since these ingredients are very safe, prebiotics bring infant formula one step closer to breastmilk, the golden standard. However, despite the fact that adverse events are rare, the evidence on prebiotics of a significant health benefit throughout the alteration of the gut microbiota is limited.
Probiotics and prebiotics--perspectives and challenges.
Figueroa-González, Ivonne; Quijano, Guillermo; Ramírez, Gerardo; Cruz-Guerrero, Alma
2011-06-01
Owing to their health benefits, probiotics and prebiotics are nowadays widely used in yogurts and fermented milks, which are leader products of functional foods worldwide. The world market for functional foods has grown rapidly in the last three decades, with an estimated size in 2003 of ca US$ 33 billion, while the European market estimation exceeded US$ 2 billion in the same year. However, the production of probiotics and prebiotics at industrial scale faces several challenges, including the search for economical and abundant raw materials for prebiotic production, the low-cost production of probiotics and the improvement of probiotic viability after storage or during the manufacturing process of the functional food. In this review, functional foods based on probiotics and prebiotics are introduced as a key biotechnological field with tremendous potential for innovation. A concise state of the art addressing the fundamentals and challenges for the development of new probiotic- and prebiotic-based foods is presented, the niches for future research being clearly identified and discussed. Copyright © 2011 Society of Chemical Industry.
Prebiotic Wheat Bran Fractions Induce Specific Microbiota Changes
D’hoe, Kevin; Conterno, Lorenza; Fava, Francesca; Falony, Gwen; Vieira-Silva, Sara; Vermeiren, Joan; Tuohy, Kieran; Raes, Jeroen
2018-01-01
Wheat bran fibers are considered beneficial to human health through their impact on gut microbiota composition and activity. Here, we assessed the prebiotic potential of selected bran fractions by performing a series of fecal slurry anaerobic fermentation experiments using aleurone as well as total, ultrafine, and soluble wheat bran (swb) as carbon sources. By combining amplicon-based community profiling with a fluorescent in situ hybridization (FISH) approach, we found that incubation conditions favor the growth of Proteobacteria such as Escherichia and Bilophila. These effects were countered in all but one [total wheat bran (twb)] fermentation experiments. Growth of Bifidobacterium species was stimulated after fermentation using ultrafine, soluble, and twb, in the latter two as part of a general increase in bacterial load. Both ultrafine and swb fermentation resulted in a trade-off between Bifidobacterium and Bilophila, as previously observed in human dietary supplementation studies looking at the effect of inulin-type fructans on the human gut microbiota. Aleurone selectively stimulated growth of Dorea and butyrate-producing Roseburia. All fermentation experiments induced enhanced gas production; increased butyrate concentrations were only observed following soluble bran incubation. Our results open perspectives for the development of aleurone as a complementary prebiotic selectively targeting colon butyrate producers. PMID:29416529
Rajagopalan, Gobinath; Shanmugavelu, Kavitha; Yang, Kun-Lin
2017-07-01
Xylooligosaccharides (XOS) are emerging prebiotics which can be produced from lignocellulosic biomass including agro-residues and hardwood. In this study, we report the production of XOS from thermal-alkali pretreated hardwood such as mahogany and mango by using a purified xylanase from Clostridium strain BOH3. In the first approach, pure xylan is extracted from mahogany and mango hardwood and then the pure xylan is hydrolyzed by using the xylanase. In this case, 572 and 504mg XOS/g pure xylan were obtained from mahogany and mango woods, respectively. In the second approach, the same xylanase is employed to hydrolyze sawdust of hardwood after different types of pretreatments. After a thermal (121°C for 15min) pretreatment under a mild alkaline (0.05N NaOH) condition, the pretreated mahogany and mango sawdust can be utilized directly to produce 89.5 and 67.6mg XOS/g pretreated sawdust, respectively. XOS produced from the pretreated sawdust show strong prebiotic effects on Bifidobacteria and Lactobacilli. This report shows the possibility of producing XOS from pretreated woody wastes without using pure xylan as a substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.
A prebiotic template-directed peptide synthesis based on amyloids.
Rout, Saroj K; Friedmann, Michael P; Riek, Roland; Greenwald, Jason
2018-01-16
The prebiotic replication of information-coding molecules is a central problem concerning life's origins. Here, we report that amyloids composed of short peptides can direct the sequence-selective, regioselective and stereoselective condensation of amino acids. The addition of activated DL-arginine and DL-phenylalanine to the peptide RFRFR-NH 2 in the presence of the complementary template peptide Ac-FEFEFEFE-NH 2 yields the isotactic product FRFRFRFR-NH 2 , 1 of 64 possible triple addition products, under conditions in which the absence of template yields only single and double additions of mixed stereochemistry. The templating mechanism appears to be general in that a different amyloid formed by (Orn)V(Orn)V(Orn)V(Orn)V-NH 2 and Ac-VDVDVDVDV-NH 2 is regioselective and stereoselective for N-terminal, L-amino-acid addition while the ornithine-valine peptide alone yields predominantly sidechain condensation products with little stereoselectivity. Furthermore, the templating reaction is stable over a wide range of pH (5.6-8.6), salt concentration (0-4 M NaCl), and temperature (25-90 °C), making the amyloid an attractive model for a prebiotic peptide replicating system.
Chemical evolution on Titan: comparisons to the prebiotic earth.
Clarke, D W; Ferris, J P
1997-06-01
Models for the origin of Titan's atmosphere, the processing of the atmosphere and surface and its exobiological role are reviewed. Titan has gained widespread acceptance in the origin of life field as a model for the types of evolutionary processes that could have occurred on prebiotic Earth. Both Titan and Earth possess significant atmospheres (> or = 1 atm) composed mainly of molecular nitrogen with smaller amounts of more reactive species. Both of these atmospheres are processed primarily by solar ultraviolet light with high energy particles interactions contributing to a lesser extent. The products of these reactions condense or are dissolved in other atmospheric species (aerosols/clouds) and fall to the surface. There these products may have been further processed on Titan and the primitive Earth by impacting comets and meteorites. While the low temperatures on Titan (approximately 72-180 K) preclude the presence of permanent liquid water on the surface, it has been suggested that tectonic activity or impacts by meteors and comets could produce liquid water pools on the surface for thousands of years. Hydrolysis and oligomerization reactions in these pools might form chemicals of prebiological significance. Other direct comparisons between the conditions on present day Titan and those proposed for prebiotic Earth are also presented.
Understanding Organics in Meteorites and the Pre-Biotic Environment
NASA Technical Reports Server (NTRS)
Zare, Richard N.
2003-01-01
(1) Refinement of the analytic capabilities of our experiment via characterization of molecule-specific response and the effects upon analysis of the type of sample under investigation; (2) Measurement of polycyclic aromatic hydrocarbons (PAHs) with high sensitivity and spatial resolution within extraterrestrial samples; (3) Investigation of the interstellar reactions of PAHs via the analysis of species formed in systems modeling dust grains and ices; (4) Investigations into the potential role of PAHs in prebiotic and early biotic chemistry via photoreactions of PAHs under simulated prebiotic Earth conditions. To meet these objectives, we use microprobe laser-desorption, laser-ionization mass spectrometry (MuL(exp 2)MS), which is a sensitive, selective, and spatially resolved technique for detection of aromatic compounds. Appendix A presents a description of the MuL(exp 2)MS technique. The initial grant proposal was for a three-year funding period, while the award was given for a one-year interim period. Because of this change in time period, emphasis was shifted from the first research goal, which was more development-oriented, in order to focus more on the other analysis-oriented goals. The progress made on each of the four research areas is given below.
From Probiotic to Prebiotic Using Thermal Spring Water.
Zeichner, Joshua; Seite, Sophie
2018-06-01
La Roche-Posay Thermal Spring Water (LRP-TSW) exhibits both probiotic and prebiotic properties enhancing the diversity of the skin microbiota. A review was undertaken to explore the role of LRP-TSW as a topical probiotic and prebiotic therapy in improving the diversity of the skin microbiota and reducing dryness and pruritus in inflammatory skin diseases. The concentration of minerals and non-pathogenic microbes in LRP-TSW may explain its therapeutic benefit when used for inflammatory skin diseases. Clinical studies have shown that topical LRP-TSW treatment results in increases in Gram-negative bacteria with reduction of Gram-positive bacteria, and improvements in skin microbial diversity. At the same time skin condition in atopic dermatitis, psoriasis, and general dryness in otherwise healthy skin, has been shown to improve. Enhancement of skin microbiota diversity using topical LRP-TSW may offer a valuable option for the treatment and maintenance of inflammatory skin diseases. J Drugs Dermatol. 2018;17(6):657-662.
THIS ARTICLE HAD BEEN MADE AVAILABLE FREE OF CHARGE.
PLEASE SCROLL DOWN TO ACCESS THE FULL TEXT OF THIS ARTICLE WITHOUT LOGGING IN.
NO PURCHASE NECESSARY.
PLEASE CONTACT THE PUBLISHER WITH ANY QUESTIONS.
.Formation of Amino Acid Thioesters for Prebiotic Peptide Synthesis: Catalysis By Amino Acid Products
NASA Technical Reports Server (NTRS)
Weber, Arthur L.; DeVincenzi, Donald L. (Technical Monitor)
1999-01-01
The origin of life can be described as a series of events in which a prebiotic chemical process came increasingly under the control of its catalytic products. In our search for this prebiotic process that yielded catalytic takeover products (such as polypeptides), we have been investigating a reaction system that generates peptide-forming amino acid thioesters from formaldehyde, glycolaldehyde, and ammonia in the presence of thiols. As shown below, this model process begins by aldol condensation of formaldehyde and glycolaldehyde to give trioses and releases. These sugars then undergo beta-dehydration yielding their respective alpha-ketoaldehydes. Addition of ammonia to the alpha-ketoaldehydes yields imines which can either: (a) rearrange in the presence of thesis to give amino acid thioesters or (be react with another molecule of aldehyde to give imidazoles. This 'one-pot' reaction system operates under mild aqueous conditions, and like modem amino acid biosynthesis, uses sugar intermediates which are converted to products by energy-yielding redox reactions. Recently, we discovered that amino acids, such as the alanine reaction product, catalyze the first and second steps of the process. In the presence of ammonia the process also generates other synthetically useful products, like the important biochemical -- pyruvic acid.
Prebiotic organic synthesis under hydrothermal conditions: an overview
NASA Astrophysics Data System (ADS)
Simoneit, Bernd R. T.
Organic compounds which are obviously synthesized from inorganic precursors (e.g., CO) by hydrothermal activity are currently a research topic in prebiotic chemistry leading to the origin of life. However, such de novo products would be overwhelmed in present Earth environments, by an excess of thermal alteration (pyrolysis) products formed from contemporary life (e.g., hydrocarbons, alkanoic acids, etc.). Thus, organic syntheses must be demonstrated and distinguished from organic matter alteration initially in the laboratory and then in the field. Organic synthesis under hydrothermal conditions is theoretically possible and various established industrial processes are used to synthesize organic compounds from inorganic substrates with the aid of catalysts. A set of Strecker-type synthesis experiments has been carried out under hydrothermal conditions (150 °C), producing various amino acids. The formation of lipid compounds during an aqueous organic synthesis (Fischer-Tropsch-type) reaction was reported, using solutions of oxalic acid (also formic acid) as the carbon and hydrogen sources, and heating at discrete temperatures (50° intervals) from 100 to 400 °C. The maximum lipid yield, especially for oxygenated compounds was in the window of 150-250 °C. The compounds range from C6 to >C33, including n-alkanols, n-alkanoic acids, n-alkyl formates, n-alkanones, and n-alkanes, all with no carbon number preferences. These lipid compounds, especially the acids, can form lipid bilayers or micelles, potential precursors for membranes. Reductive condensation (i.e., dehydration) reactions also occur under simulated hydrothermal conditions and form amide, nitrile and ester bonds. The chemistry and kinetics of the condensation reactions are under further study and have the potential for oligomerization of acid-amides in aqueous medium. Abiotic organic compounds are not biomarkers per se because they do not originate from biosynthesis. Thus, they should be regarded as a distinctly separate group, termed prebiotic or synthetic organic compounds, in explorations for evidence of life.
Prebiotic Organic Synthesis under Hydrothermal Conditions - An Overview
NASA Astrophysics Data System (ADS)
Simoneit, B.
Organic compounds which are obviously synthesized from inorganic precursors (e.g., CO) by hydrothermal activity are currently a research topic in prebiotic chemistry leading to the origin of life. However, such de novo products would be overwhelmed in present Earth environments, by an excess of thermal alteration (pyrolysis) products formed from contemporary life (e.g., hydrocarbons, alkanoic acids, etc.). Thus, organic syntheses must be demonstrated and distinguished from organic matter alteration initially in the laboratory and then in the field. Organic synthesis under hydrothermal conditions is theoretically possible and various established industrial processes are used to synthesize organic compounds from inorganic substrates with the aid of catalysts. A set of Strecker-type synthesis experiments has been carried out under hydrothermal conditions (150°C), producing various amino acids. The formation of lipid compounds during an aqueous organic synthesis (Fischer-Tropsch-type) reaction was reported, using solutions of oxalic acid (also formic acid) as the carbon and hydrogen sources, and heating at discrete temperatures (50° intervals) from 100- 400°C. The maximum lipid yield, especially for oxygenated compounds was in the window of 150-250°C. The compounds range from C6 to >C3 3 , including n-alkanols, n-alkanoic acids, n-alkyl formates, n-alkanones, and n-alkanes, all with no carbon number preferences. These lipid compounds, especially the acids, can form lipid bilayers or micelles, potential precursors for membranes. Reductive condensation (i.e., dehydration) reactions also occur under simulated hydrothermal conditions and form amide, nitrile and ester bonds. The chemistry and kinetics of the condensation reactions are under further study and have the potential for oligomerization of acid-amides in aqueous medium. Abiotic organic compounds are not biomarkers per se because they do not originate from biosynthesis. Thus, they should be regarded as a distinctly separate group, termed prebiotic or synthetic organic compounds, in explorations for evidence of life.
Endogenous Synthesis of Prebiotic Organic Molecules
NASA Technical Reports Server (NTRS)
Miller, Stanley L.
1996-01-01
The necessary condition for the synthesis of organic compounds on the primitive earth is the presence of reducing conditions. This means an atmosphere of CH4, CO, or CO2 + H2. The atmospheric nitrogen can be N2 with a trace of NH3, but NH4(+) is needed in the ocean at least for amino acid synthesis. Many attempts have been made to use CO2 + H2O atmospheres for prebiotic synthesis, but these give at best extremely low yields of organic compounds, except in the presence of H2. Even strong reducing agents such as FeS + H2S or the mineral assemblages of the submarine vents fail to give significant yields of organic compounds with CO2. There appears to be a high kinetic barrier to the non-biological reduction of CO2 at low temperatures using geological reducing agents. The most abundant source of energy for prebiotic synthesis is ultraviolet light followed by electric discharges, with electric discharges being more efficient, although it is not clear which was the important energy source. Photochemical process would also make significant contributions. In an atmosphere Of CO2, N2, and H2O with no H2, the production rates of HCN and H2CO would be very low, 0.001 or less than that of a relatively reducing atmosphere. The concentration of organic compounds under these non-reducing conditions would be so low that there is doubt whether the concentration mechanism would be adequate for further steps toward the origin of life. A number of workers have calculated the influx of comets and meteorites on the primitive earth as a source of organic compounds. We conclude that while some organic material was added to the earth from comets and meteorites the amount available from these sources at a given time was at best only a few percent of that from earth bases syntheses under reducing conditions.
Geochemical Origin of Biological Molecules
NASA Astrophysics Data System (ADS)
Bassez, Marie-Paule
2013-04-01
A model for the geochemical origin of biological molecules is presented. Rocks such as peridotites and basalts, which contain ferromagnesian minerals, evolve in the presence of water. Their hydrolysis is an exothermic reaction which generates heat and a release of H2 and of minerals with modified structures. The hydrogen reacts with the CO2 embedded inside the rock or with the CO2 of the environment to form CO in an hydrothermal process. With the N2 of the environment, and with an activation source arising from cosmic radiation, ferromagnesian rocks might evolve towards the abiotic formation of biological molecules, such as peptide like macromolecules which produce amino acids after acid hydrolysis. The reactions concerned are described. The production of hydrothermal CO is discussed in geological sites containing ferromagnesian silicate minerals and the low intensity of the Earth's magnetic field during Paleoarchaean Era is also discussed. It is concluded that excitation sources arising from cosmic radiation were much more abundant during Paleoarchaean Era and that macromolecular structures of biological relevance might consequently form during Archaean Eon, as a product of the chemical evolution of the rocks and of their mineral contents. This synthesis of abiotically formed biological molecules is consecutively discussed for meteorites and other planets such as Mars. This model for the geochemical origin of biological molecules has first been proposed in 2008 in the context of reactions involving catalysers such as kaolinite [Bassez 2008a] and then presented in conferences and articles [Bassez 2008b, 2009, 2012; Bassez et al. 2009a to 2012b]. BASSEZ M.P. 2008a Synthèse prébiotique dans les conditions hydrothermales, CNRIUT'08, Lyon 29-30/05/2008, Conf. and open access article:http://liris.cnrs.fr/~cnriut08/actes/ 29 mai 11h-12h40. BASSEZ M.P. 2008b Prebiotic synthesis under hydrothermal conditions, ISSOL'08, P2-6, Firenze-Italy, 24-29/08/2008. Poster at the Conference and abstract in OLEB, 2008, 39 (3-4) 223. BASSEZ M.P. 2009 Prebiotic synthesis under hydothermal conditions, C. R. Chimie, Académie des Sciences, Paris 12 (6-7) : 801-807. BASSEZ M.P. 2012 A model for a geochemical origin of life in preparation BASSEZ M.P., TAKANO Y., OHKOUCHI N. 2009a Organic analysis of peridotite rocks from Ashadze and Logatchev hydrothermal sites, Int. J. Mol. Sci. 10(7): 2986-2998. BASSEZ M.P., TAKANO Y., OHKOUCHI N. 2009b Organic analysis of peridotite rocks from the MAR, AGU fall meeting, P43C-1441, San Francisco, 14-18/12/2009. BASSEZ M.P., TAKANO Y. 2010a Prebiotic organic globules, Nature Precedings: Posted 21 Jul http://hdl:10101/npre.2010.4694.1. BASSEZ M.P., TAKANO Y., OHKOUCHI N. 2010b Organic analysis of peridotite rocks, First chemical steps towards the Origin of Life colloquium, Turin 16-17/09/2010. BASSEZ M.P., TAKANO Y., OHKOUCHI N. 2011a A search for prebiotic molecular signatures inside rocks, Geobiology in Space exploration workshop, P sans n°, Marrakech 07-14/02/2011. BASSEZ M.P., TAKANO Y., OHKOUCHI N. 2011b Detection of molecular biosignatures inside rocks, Origins 2011 ISSOL and Bioastronomy conference, P2-17, Montpellier, 04-08/07/2011. BASSEZ M.P., TAKANO Y., 2011c Organic microstructures, Origins 2011 ISSOL and Bioastronomy conference, P2-34, Montpellier, 04-08/07/2011. BASSEZ M.P., TAKANO Y. KOBAYASHI K. 2011d Prebiotic organic microstructures, Nature Precedings: Posted 14 Nov. http://hdl.handle.net/10101/npre.2011.4694.2 BASSEZ M.P., TAKANO Y., KOBAYASHI K. 2012a Prebiotic organic microstructures, Origin of Life Gordon Research Conference P4, Galveston, 08-13/01/2012. BASSEZ M.P., TAKANO Y., KOBAYASHI K. 2012b Prebiotic organic microstructures, Orig. Life Evol. Biosph. 42 (4) : 307-316.
USDA-ARS?s Scientific Manuscript database
"Prebiotics" are substances that enhance the growth of beneficial bacteria in the gastrointestinal tract of host animals. To be of value, prebiotics must provide a selective nutrient source for desirable gut bacteria, especially Bifidobacterium, while reducing the incidence of undesirable bacteria ...
Cruz-Guerrero, Alma; Hernández-Sánchez, Humberto; Rodríguez-Serrano, Gabriela; Gómez-Ruiz, Lorena; García-Garibay, Mariano; Figueroa-González, Ivonne
2014-08-01
Probiotics and prebiotics are among the most important functional food ingredients worldwide. The proven benefits of such ingredients to human health have encouraged the development of functional foods containing both probiotics and prebiotics. In this work, the production of antimicrobial compounds coupled to the uptake of commercial prebiotics by probiotic bacteria was investigated. The probiotic bacteria studied were able to take up commercial prebiotic carbohydrates to the same or higher extent than that observed for lactose (control carbohydrate). The growth of probiotic bacteria was coupled to the production of antimicrobials such as short-chain fatty acids (SCFA), H2 O2 and bacteriocins. A higher production of antimicrobial compounds was recorded with Oligomate 55® compared with Regulact® and Frutafit® (3-5 and 10-115 times higher SCFA and H2 O2 production, respectively). The probiotic bacteria grown with Oligomate 55® also produced bacteriocins and other non-identified antimicrobial compounds. The antimicrobials produced by the probiotic bacteria inhibited up to 50% the growth of model pathogens such as Escherichia coli, Listeria innocua and Micrococcus luteus compared with control cultures. The results here obtained are useful for the adequate selection of probiotic/prebiotics pairs and therefore in the development of efficient functional foods. © 2013 Society of Chemical Industry.
IMMUNO-MODULATORY PROPERTIES OF PREBIOTICS EXTRACTED FROM vernonia amygdalina.
Im, Ezeonu; Ae, Asuquo; Bn, Ukwah; Po, Ukoha
2016-01-01
Vernonia amygdalina , commonly called bitter-leaf, is widely consumed in many parts of Africa, and Nigeria, in particular. The leaf extract has been reported to have antimicrobial, anti-plasmodial, anti-helminthic, as well as prebiotic properties, but its immuno-modulatory effects have not been well-studied, neither have the prebiotics been identified. This study evaluated the immuno-modulatory properties of the aqueous leaf extract and identified the prebiotic components. The immuno-modulatory potential was evaluated by monitoring the effects of oral administration of the extract on immunological, haematological and lipid profiles of Rattus norvegicus , while the prebiotic components were identified by thin layer chromatography (TLC), following liquid-liquid fractionation of the extract. Consumption of the extract caused significant increases in CD4+-, white blood cell-, total lymphocyte- and high density lipid (HDL) counts; decreases in low density lipid (LDL) and triglycerides and no significant effect on haemoglobin (Hb) and packed cell volume (PCV) in the blood of test animals. The water-soluble fraction of the extract contained most of the phyto-constituents of the extract and Thin Layer Chromatographic analysis of the fraction revealed the presence of fructo-oligosaccharide and galacto-oligosaccharide prebiotics. The results from this study have shown that the aqueous leaf extract of V. amygdalina has positive immune-modulatory and haematologic effects and contains some important prebiotic compounds.
A Chemist’s Perspective on the Role of Phosphorus at the Origins of Life
Fernández-García, Christian; Coggins, Adam J.
2017-01-01
The central role that phosphates play in biological systems, suggests they also played an important role in the emergence of life on Earth. In recent years, numerous important advances have been made towards understanding the influence that phosphates may have had on prebiotic chemistry, and here, we highlight two important aspects of prebiotic phosphate chemistry. Firstly, we discuss prebiotic phosphorylation reactions; we specifically contrast aqueous electrophilic phosphorylation, and aqueous nucleophilic phosphorylation strategies, with dry-state phosphorylations that are mediated by dissociative phosphoryl-transfer. Secondly, we discuss the non-structural roles that phosphates can play in prebiotic chemistry. Here, we focus on the mechanisms by which phosphate has guided prebiotic reactivity through catalysis or buffering effects, to facilitating selective transformations in neutral water. Several prebiotic routes towards the synthesis of nucleotides, amino acids, and core metabolites, that have been facilitated or controlled by phosphate acting as a general acid–base catalyst, pH buffer, or a chemical buffer, are outlined. These facile and subtle mechanisms for incorporation and exploitation of phosphates to orchestrate selective, robust prebiotic chemistry, coupled with the central and universally conserved roles of phosphates in biochemistry, provide an increasingly clear message that understanding phosphate chemistry will be a key element in elucidating the origins of life on Earth. PMID:28703763
Probiotics and prebiotics in prevention and treatment of diseases in infants and children.
Vandenplas, Yvan; Veereman-Wauters, Genevieve; De Greef, Elisabeth; Peeters, Stefaan; Casteels, Ann; Mahler, Tania; Devreker, Thierry; Hauser, Bruno
2011-01-01
To evaluate the impact of probiotics and prebiotics on the health of children. MEDLINE and LILACS were searched for relevant English and French-language articles. Human milk is rich in prebiotic oligosaccharides and may contain some probiotics. No data suggest that addition of probiotics to infant formula may be harmful, but evidence of its efficacy is insufficient for its recommendation. Since data suggest that addition of specific prebiotic oligosaccharides may reduce infections and atopy in healthy infants, their addition to infant formula seems reasonable. Long-term health benefits of pro- and prebiotics on the developing immune system remain to be proven. Selected probiotics reduce the duration of infectious diarrhea by 1 day, but evidence in prevention is lacking, except in antibiotic-associated diarrhea. Some specific probiotics prevent necrotizing enterocolitis, and other microorganisms may be beneficial in Helicobacter pylori gastritis and in infantile colic. Evidence is insufficient to recommend probiotics in prevention and treatment of atopic dermatitis. The use of probiotics in constipation, irritable bowel syndrome, inflammatory bowel disease, and extra-intestinal infections requires more studies. Duration of administration, microbial dosage, and species used need further validation for both pro- and prebiotics. Unjustified health claims are a major threat for the pro- and prebiotic concept.
Saladino, Raffaele; Botta, Giorgia; Bizzarri, Bruno Mattia; Di Mauro, Ernesto; Garcia Ruiz, Juan Manuel
2016-05-17
The pathway from simple abiotically made organic compounds to the molecular bricks of life, as we know it, is unknown. The most efficient geological abiotic route to organic compounds results from the aqueous dissolution of olivine, a reaction known as serpentinization (Sleep, N.H., et al. (2004) Proc. Natl. Acad. Sci. USA 101, 12818-12822). In addition to molecular hydrogen and a reducing environment, serpentinization reactions lead to high-pH alkaline brines that can become easily enriched in silica. Under these chemical conditions, the formation of self-assembled nanocrystalline mineral composites, namely silica/carbonate biomorphs and metal silicate hydrate (MSH) tubular membranes (silica gardens), is unavoidable (Kellermeier, M., et al. In Methods in Enzymology, Research Methods in Biomineralization Science (De Yoreo, J., Ed.) Vol. 532, pp 225-256, Academic Press, Burlington, MA). The osmotically driven membranous structures have remarkable catalytic properties that could be operating in the reducing organic-rich chemical pot in which they form. Among one-carbon compounds, formamide (NH2CHO) has been shown to trigger the formation of complex prebiotic molecules under mineral-driven catalytic conditions (Saladino, R., et al. (2001) Biorganic & Medicinal Chemistry, 9, 1249-1253), proton irradiation (Saladino, R., et al. (2015) Proc. Natl. Acad. Sci. USA, 112, 2746-2755), and laser-induced dielectric breakdown (Ferus, M., et al. (2015) Proc Natl Acad Sci USA, 112, 657-662). Here, we show that MSH membranes are catalysts for the condensation of NH2CHO, yielding prebiotically relevant compounds, including carboxylic acids, amino acids, and nucleobases. Membranes formed by the reaction of alkaline (pH 12) sodium silicate solutions with MgSO4 and Fe2(SO4)3·9H2O show the highest efficiency, while reactions with CuCl2·2H2O, ZnCl2, FeCl2·4H2O, and MnCl2·4H2O showed lower reactivities. The collections of compounds forming inside and outside the tubular membrane are clearly specific, demonstrating that the mineral self-assembled membranes at the same time create space compartmentalization and selective catalysis of the synthesis of relevant compounds. Rather than requiring odd local conditions, the prebiotic organic chemistry scenario for the origin of life appears to be common at a universal scale and, most probably, earlier than ever thought for our planet.
Roberts, Justin D; Suckling, Craig A; Peedle, Georgia Y; Murphy, Joseph A; Dawkins, Tony G; Roberts, Michael G
2016-11-17
Gastrointestinal (GI) ischemia during exercise is associated with luminal permeability and increased systemic lipopolysaccharides (LPS). This study aimed to assess the impact of a multistrain pro/prebiotic/antioxidant intervention on endotoxin unit levels and GI permeability in recreational athletes. Thirty healthy participants (25 males, 5 females) were randomly assigned either a multistrain pro/prebiotic/antioxidant (LAB⁴ ANTI ; 30 billion CFU·day -1 containing 10 billion CFU·day -1 Lactobacillus acidophilus CUL-60 (NCIMB 30157), 10 billion CFU·day -1 Lactobacillus acidophillus CUL-21 (NCIMB 30156), 9.5 billion CFU·day -1 Bifidobacterium bifidum CUL-20 (NCIMB 30172) and 0.5 billion CFU·day -1 Bifidobacterium animalis subspecies lactis CUL-34 (NCIMB 30153)/55.8 mg·day -1 fructooligosaccharides/ 400 mg·day -1 α-lipoic acid, 600 mg·day -1 N -acetyl-carnitine); matched pro/prebiotic (LAB⁴) or placebo (PL) for 12 weeks preceding a long-distance triathlon. Plasma endotoxin units (via Limulus amebocyte lysate chromogenic quantification) and GI permeability (via 5 h urinary lactulose (L): mannitol (M) recovery) were assessed at baseline, pre-race and six days post-race. Endotoxin unit levels were not significantly different between groups at baseline (LAB⁴ ANTI : 8.20 ± 1.60 pg·mL -1 ; LAB⁴: 8.92 ± 1.20 pg·mL -1 ; PL: 9.72 ± 2.42 pg·mL -1 ). The use of a 12-week LAB⁴ ANTI intervention significantly reduced endotoxin units both pre-race (4.37 ± 0.51 pg·mL -1 ) and six days post-race (5.18 ± 0.57 pg·mL -1 ; p = 0.03, ηp² = 0.35), but only six days post-race with LAB⁴ (5.01 ± 0.28 pg·mL -1 ; p = 0.01, ηp² = 0.43). In contrast, endotoxin units remained unchanged with PL. L:M significantly increased from 0.01 ± 0.01 at baseline to 0.06 ± 0.01 with PL only ( p = 0.004, ηp² = 0.51). Mean race times (h:min:s) were not statistically different between groups despite faster times with both pro/prebiotoic groups (LAB⁴ ANTI : 13:17:07 ± 0:34:48; LAB⁴: 12:47:13 ± 0:25:06; PL: 14:12:51 ± 0:29:54; p > 0.05). Combined multistrain pro/prebiotic use may reduce endotoxin unit levels, with LAB⁴ ANTI potentially conferring an additive effect via combined GI modulation and antioxidant protection.
Huff, G R; Huff, W E; Rath, N C; El-Gohary, F A; Zhou, Z Y; Shini, S
2015-05-01
Prebiotics consisting of resistant starch may alter intestinal ecology, thus modulating inflammation and increasing intestinal health through increased cecal production of short-chain fatty acids (SCFA). Probiotics may directly alter the intestinal microbiome, resulting in the same effects. We hypothesize that adding prebiotics and probiotics to feed may protect the gut of young chicks under stress. Studies 1, 2, and 3 evaluated treatments in a cold stress (CS) and Escherichia coli (EC) oral challenge to 430 day-old broiler chicks for 3 wk. In study 1, prebiotics were administered as 15% of the diet during the first week only and consisted of the following: Hi-Maize resistant starch (HM), potato starch (PS), or raw potato (RP). In studies 2 and 3, the PS treatment was identical to study 1, and an additional probiotic treatment (PRO) was administered in feed and water. In study 1, PS protected BW during the first week and decreased the mortality of CS/EC-challenged birds during the first week and wk 3, while RP decreased the mortality of warm-brooded birds challenged with EC during the first week. In study 2, PS decreased and PRO increased the main effect mean (MEM) of the first week BW. PS and PRO numerically decreased the feed conversion ratio (FCR) by 23 and 29 points, respectively, in CS/EC-challenged birds with no effects on mortality. In study 3, PS decreased and PRO increased the first week and wk 3 MEM BW. PS numerically increased FCR by 16 points, while PRO decreased FCR by 2 points. Both PS and PRO tended to increase overall mortality, and PRO significantly increased mortality in the CS/EC challenge. These results suggest that the effects of PS may be too variable in this challenge model for further study; however, the PRO treatment improved production values and may have potential as an alternative to antibiotics during the first weeks after hatch. © 2015 Poultry Science Association Inc.
Formation of nucleoside 5'-polyphosphates from nucleotides and trimetaphosphate
NASA Technical Reports Server (NTRS)
Lohrmann, R.
1975-01-01
Nucleoside 5'-polyphosphates (N5PP) formed when solutions of nucleoside 5'-phosphates (N5P) and trimetaphosphate (TMP) are dessicated at room temperature are studied by paper chromatography, electrophoresis, and metal catalytic reactions. Divalent Mg ion exhibited superior catalytic function to other divalent metal ions in the reaction. Major reaction products are indicated. The importance of the N5PP series, TMP, and N5-triphosphate as substrates of RNA and DNA synthesis, and under postulated prebiotic conditions likely to obtain during prebiological ages of the earth, is emphasized and discussed. Alternate drying and wetting, evaporation from a prebiotic puddle, concentration of solubles in the remaining liquid phase, metal catalysis, and the role of these substances in the formation of amino acids and long-chain polyphosphates are considered.
Roto, Stephanie M.; Rubinelli, Peter M.; Ricke, Steven C.
2015-01-01
The poultry industry has been searching for a replacement for antibiotic growth promoters in poultry feed as public concerns over the use of antibiotics and the appearance of antibiotic resistance has become more intense. An ideal replacement would be feed amendments that could eliminate pathogens and disease while retaining economic value via improvements on body weight and feed conversion ratios. Establishing a healthy gut microbiota can have a positive impact on growth and development of both body weight and the immune system of poultry while reducing pathogen invasion and disease. The addition of prebiotics to poultry feed represents one such recognized way to establish a healthy gut microbiota. Prebiotics are feed additives, mainly in the form of specific types of carbohydrates that are indigestible to the host while serving as substrates to select beneficial bacteria and altering the gut microbiota. Beneficial bacteria in the ceca easily ferment commonly studied prebiotics, producing short-chain fatty acids, while pathogenic bacteria and the host are unable to digest their molecular bonds. Prebiotic-like substances are less commonly studied, but show promise in their effects on the prevention of pathogen colonization, improvements on the immune system, and host growth. Inclusion of yeast and yeast derivatives as probiotic and prebiotic-like substances, respectively, in animal feed has demonstrated positive associations with growth performance and modification of gut morphology. This review will aim to link together how such prebiotics and prebiotic-like substances function to influence the native and beneficial microorganisms that result in a diverse and well-developed gut microbiota. PMID:26664957
USDA-ARS?s Scientific Manuscript database
The objective of this study was to evaluate the effects of dietary Aspergillus meal (AM), a prebiotic on performance and bone parameters of neonatal turkey poults. Prebiotics are nondigestible food ingredients that beneficially affect the host and have been shown to stimulate calcium and magnesium a...
Prebiotics and synbiotics: dietary strategies for improving gut health.
Krumbeck, Janina A; Maldonado-Gomez, Maria X; Ramer-Tait, Amanda E; Hutkins, Robert W
2016-03-01
A wide range of dietary carbohydrates, including prebiotic food ingredients, fermentable fibers, and milk oligosaccharides, are able to produce significant changes in the intestinal microbiota. These shifts in the microbial community are often characterized by increased levels of bifidobacteria and lactobacilli. More recent studies have revealed that species of Faecalibacterium, Akkermansia, and other less well studied members may also be enriched. We review the implications of these recent studies on future design of prebiotics and synbiotics to promote gastrointestinal health. Investigations assessing the clinical outcomes associated with dietary modification of the gut microbiota have shown systemic as well as specific health benefits. Both prebiotic oligosaccharides comprised of a linear arrangement of simple sugars, as well as fiber-rich foods containing complex carbohydrates, have been used in these trials. However, individual variability and nonresponding study participants can make the outcome of dietary interventions less predictable. In contrast, synergistic synbiotics containing prebiotics that specifically stimulate a cognate probiotic provide additional options for personalized gut therapies. This review describes recent research on how prebiotics and fermentable fibers can influence the gut microbiota and result in improvements to human health.
Rössle, Christian; Brunton, Nigel; Gormley, Ronan T; Wouters, Rudy; Butler, Francis
2011-01-01
The aim of this study was to apply an edible coating containing prebiotics such as oligofructose and inulin to fresh-cut apple wedges. An assessment of the quality, sensory, polyphenol, and volatile attributes of coated and uncoated fresh-cut apple wedges was also undertaken. Fructan analysis showed that all prebiotics remained stable over the 14-d storage period and an intake of 100 g of apple supplies 1 to 3 g of prebiotics. Browning index, firmness, acidity remained stable throughout the 14 d compared to the control while applying prebiotic coatings resulted in an increase in soluble solids. Sensory and visual assessment indicated acceptable quality of apple wedges coated with prebiotics. HPLC analysis showed that levels of polyphenolic compounds were more stable in coated apple wedges (without prebiotic inclusions) than in uncoated control apples. No difference was found between O(2) and CO(2) headspace concentration of coated and uncoated samples. Significant differences (P < 0.001) were found for headspace volatile production between the samples. Most coated samples showed lower volatile production in the headspace than uncoated samples.
USDA-ARS?s Scientific Manuscript database
There has been a lot of interest in the use of pre and probiotics to increase growth and improve disease resistance in the catfish industry. This study aimed to evaluate a commercially available prebiotic and probiotic under conditions simulating commercial production in hybrid catfish. The dietar...
Antihypertensive Properties of Plant-Based Prebiotics
Yeo, Siok-Koon; Ooi, Lay-Gaik; Lim, Ting-Jin; Liong, Min-Tze
2009-01-01
Hypertension is one of the major risk factors for cardiovascular disease. Although various drugs for its treatment have been synthesized, the occurring side effects have generated the need for natural interventions for the treatment and prevention of hypertension. Dietary intervention such as the administration of prebiotics has been seen as a highly acceptable approach. Prebiotics are indigestible food ingredients that bypass digestion and reach the lower gut as substrates for indigenous microflora. Most of the prebiotics used as food adjuncts, such as inulin, fructooligosaccharides, dietary fiber and gums, are derived from plants. Experimental evidence from recent studies has suggested that prebiotics are capable of reducing and preventing hypertension. This paper will discuss some of the mechanisms involved, the evidence generated from both in-vitro experiments and in-vivo trials and some controversial findings that are raised. PMID:20111692
NASA Technical Reports Server (NTRS)
Miller, S. L.; Schlesinger, G.
1993-01-01
The reaction of NH3 and SO3(2-) with ethylene sulfide is shown to be a prebiotic synthesis of cysteamine and 2-mercaptoethanesulfonic acid (coenzyme M). A similar reaction with ethylene imine would give cysteamine and taurine. Ethylene oxide would react with NH3 and N(CH3)3 to give the phospholipid components ethanolamine and choline. The prebiotic sources of ethylene sulfide, ethylene imine and ethylene oxide are discussed. Cysteamine itself is not a suitable thioester for metabolic processes because of acyl transfer to the amino group, but this can be prevented by using an amide of cysteamine. The use of cysteamine in coenzyme A may have been due to its prebiotic abundance. The facile prebiotic synthesis of both cysteamine and coenzyme M suggests that they were involved in very early metabolic pathways.
Potential Role of Inorganic Confined Environments in Prebiotic Phosphorylation.
Dass, Avinash Vicholous; Jaber, Maguy; Brack, André; Foucher, Frédéric; Kee, Terence P; Georgelin, Thomas; Westall, Frances
2018-03-05
A concise outlook on the potential role of confinement in phosphorylation and phosphate condensation pertaining to prebiotic chemistry is presented. Inorganic confinement is a relatively uncharted domain in studies concerning prebiotic chemistry, and even more so in terms of experimentation. However, molecular crowding within confined dimensions is central to the functioning of contemporary biology. There are numerous advantages to confined environments and an attempt to highlight this fact, within this article, has been undertaken, keeping in context the limitations of aqueous phase chemistry in phosphorylation and, to a certain extent, traditional approaches in prebiotic chemistry.
Potential Role of Inorganic Confined Environments in Prebiotic Phosphorylation
Jaber, Maguy; Brack, André; Foucher, Frédéric; Kee, Terence P.; Westall, Frances
2018-01-01
A concise outlook on the potential role of confinement in phosphorylation and phosphate condensation pertaining to prebiotic chemistry is presented. Inorganic confinement is a relatively uncharted domain in studies concerning prebiotic chemistry, and even more so in terms of experimentation. However, molecular crowding within confined dimensions is central to the functioning of contemporary biology. There are numerous advantages to confined environments and an attempt to highlight this fact, within this article, has been undertaken, keeping in context the limitations of aqueous phase chemistry in phosphorylation and, to a certain extent, traditional approaches in prebiotic chemistry. PMID:29510574
Prebiotic Lipidic Amphiphiles and Condensing Agents on the Early Earth
Fiore, Michele; Strazewski, Peter
2016-01-01
It is still uncertain how the first minimal cellular systems evolved to the complexity required for life to begin, but it is obvious that the role of amphiphilic compounds in the origin of life is one of huge relevance. Over the last four decades a number of studies have demonstrated how amphiphilic molecules can be synthesized under plausibly prebiotic conditions. The majority of these experiments also gave evidence for the ability of so formed amphiphiles to assemble in closed membranes of vesicles that, in principle, could have compartmented first biological processes on early Earth, including the emergence of self-replicating systems. For a competitive selection of the best performing molecular replicators to become operative, some kind of bounded units capable of harboring them are indispensable. Without the competition between dynamic populations of different compartments, life itself could not be distinguished from an otherwise disparate array or network of molecular interactions. In this review, we describe experiments that demonstrate how different prebiotically-available building blocks can become precursors of phospholipids that form vesicles. We discuss the experimental conditions that resemble plausibly those of the early Earth (or elsewhere) and consider the analytical methods that were used to characterize synthetic products. Two brief sections focus on phosphorylating agents, catalysts and coupling agents with particular attention given to their geochemical context. In Section 5, we describe how condensing agents such as cyanamide and urea can promote the abiotic synthesis of phospholipids. We conclude the review by reflecting on future studies of phospholipid compartments, particularly, on evolvable chemical systems that include giant vesicles composed of different lipidic amphiphiles. PMID:27043635
Notay, Manisha; Foolad, Negar; Vaughn, Alexandra R; Sivamani, Raja K
2017-12-01
Probiotic, prebiotic, and synbiotic supplementation is becoming more prevalent nowadays. Clinical studies have demonstrated some of the medical benefits of probiotics, prebiotics, and synbiotics within dermatology but an evidence-based review of their effects in adults is needed. The aim of this study was to identify evidence for the use of supplementation with probiotics, prebiotics, or synbiotics for the prevention and treatment of dermatological diseases in adults. We conducted a search of the Ovid MEDLINE, Cochrane Central Register of Controlled trials and EMBASE electronic databases from 1 January 1946 to 11 January 2017. Trials examining supplementation in the treatment of dermatological diseases using oral or topical probiotics, synbiotics, and prebiotics in adults over the age of 18 years were selected. Of 315 articles, 12 met the inclusion criteria. Nutritional supplementation with probiotics and prebiotics was shown to improve atopic dermatitis (AD) symptomatology, quality of life, or clinical severity in six of nine studies. One study in psoriasis was shown to improve inflammatory markers, and one study suggested that probiotics could be used as adjunctive therapy in the treatment of acne. Preliminary studies are optimistic for the use of some strains of probiotics for symptomatic and clinical improvement in AD, and as adjunctive treatment with antibiotics for acne. Further research is necessary to better assess how probiotics and prebiotics may be used within dermatology.
Porras, David; Nistal, Esther; Martínez-Flórez, Susana; Pisonero-Vaquero, Sandra; Olcoz, José Luis; Jover, Ramiro; González-Gallego, Javier; García-Mediavilla, María Victoria; Sánchez-Campos, Sonia
2017-01-01
Gut microbiota is involved in obesity, metabolic syndrome and the progression of nonalcoholic fatty liver disease (NAFLD). It has been recently suggested that the flavonoid quercetin may have the ability to modulate the intestinal microbiota composition, suggesting a prebiotic capacity which highlights a great therapeutic potential in NAFLD. The present study aims to investigate benefits of experimental treatment with quercetin on gut microbial balance and related gut-liver axis activation in a nutritional animal model of NAFLD associated to obesity. C57BL/6J mice were challenged with high fat diet (HFD) supplemented or not with quercetin for 16 weeks. HFD induced obesity, metabolic syndrome and the development of hepatic steatosis as main hepatic histological finding. Increased accumulation of intrahepatic lipids was associated with altered gene expression related to lipid metabolism, as a result of deregulation of their major modulators. Quercetin supplementation decreased insulin resistance and NAFLD activity score, by reducing the intrahepatic lipid accumulation through its ability to modulate lipid metabolism gene expression, cytochrome P450 2E1 (CYP2E1)-dependent lipoperoxidation and related lipotoxicity. Microbiota composition was determined via 16S ribosomal RNA Illumina next-generation sequencing. Metagenomic studies revealed HFD-dependent differences at phylum, class and genus levels leading to dysbiosis, characterized by an increase in Firmicutes/Bacteroidetes ratio and in Gram-negative bacteria, and a dramatically increased detection of Helicobacter genus. Dysbiosis was accompanied by endotoxemia, intestinal barrier dysfunction and gut-liver axis alteration and subsequent inflammatory gene overexpression. Dysbiosis-mediated toll-like receptor 4 (TLR-4)-NF-κB signaling pathway activation was associated with inflammasome initiation response and reticulum stress pathway induction. Quercetin reverted gut microbiota imbalance and related endotoxemia-mediated TLR-4 pathway induction, with subsequent inhibition of inflammasome response and reticulum stress pathway activation, leading to the blockage of lipid metabolism gene expression deregulation. Our results support the suitability of quercetin as a therapeutic approach for obesity-associated NAFLD via its anti-inflammatory, antioxidant and prebiotic integrative response. Copyright © 2016 Elsevier Inc. All rights reserved.
In Vitro Fermentation Patterns of Rice Bran Components by Human Gut Microbiota.
Pham, Tung; Teoh, Keat Thomas; Savary, Brett J; Chen, Ming-Hsuan; McClung, Anna; Lee, Sun-Ok
2017-11-12
Whole grain rice is a rich source of fiber, nutrients, and phytochemicals that may promote gastrointestinal health, but such beneficial components are typically removed with the bran during polishing. Soluble feruloylated arabinoxylan oligosaccharides (FAXO) and polyphenols (RBPP) isolated from rice bran are hypothesized to have positive impacts on human gut microbiota through a prebiotic function. Using an in vitro human fecal fermentation bioassay, FAXO and RBPP treatments were assessed for short-chain fatty acids (SCFA) production patterns and by evaluating their impacts on the phylogentic composition of human gut microbiota by 16S rRNA gene sequencing. Fresh fecal samples collected from healthy adults ( n = 10, 5 males, 5 females) were diluted with anaerobic medium. Each sample received five treatments: CTRL (no substrates), FOS (fructooligosaccharides), FAXO, RBPP, and MIX (FAXO with RBPP). Samples were incubated at 37 °C and an aliquot was withdrawn at 0, 4, 8, 12, and 24 h Results showed that SCFA production was significantly increased with FAXO and was comparable to fermentation with FOS, a well-established prebiotic. RBPP did not increase SCFA productions, and no significant differences in total SCFA production were observed between FAXO and MIX, indicating that RBPP does not modify FAXO fermentation. Changes in microbiota population were found in FAXO treatment, especially in Bacteroides , Prevotella , and Dorea populations, indicating that FAXO might modulate microbiota profiles. RBPP and MIX increased Faecalibacterium , specifically F. prausnitzii . Combined FAXO and RBPP fermentation increased abundance of butyrogenic bacteria, Coprococcus and Roseburia , suggesting some interactive activity. Results from this study support the potential for FAXO and RBPP from rice bran to promote colon health through a prebiotic function.
In Vitro Fermentation Patterns of Rice Bran Components by Human Gut Microbiota
Pham, Tung; Savary, Brett J.; Teoh, Keat (Thomas); Chen, Ming-Hsuan; McClung, Anna; Lee, Sun-Ok
2017-01-01
Whole grain rice is a rich source of fiber, nutrients, and phytochemicals that may promote gastrointestinal health, but such beneficial components are typically removed with the bran during polishing. Soluble feruloylated arabinoxylan oligosaccharides (FAXO) and polyphenols (RBPP) isolated from rice bran are hypothesized to have positive impacts on human gut microbiota through a prebiotic function. Using an in vitro human fecal fermentation bioassay, FAXO and RBPP treatments were assessed for short-chain fatty acids (SCFA) production patterns and by evaluating their impacts on the phylogentic composition of human gut microbiota by 16S rRNA gene sequencing. Fresh fecal samples collected from healthy adults (n = 10, 5 males, 5 females) were diluted with anaerobic medium. Each sample received five treatments: CTRL (no substrates), FOS (fructooligosaccharides), FAXO, RBPP, and MIX (FAXO with RBPP). Samples were incubated at 37 °C and an aliquot was withdrawn at 0, 4, 8, 12, and 24 h Results showed that SCFA production was significantly increased with FAXO and was comparable to fermentation with FOS, a well-established prebiotic. RBPP did not increase SCFA productions, and no significant differences in total SCFA production were observed between FAXO and MIX, indicating that RBPP does not modify FAXO fermentation. Changes in microbiota population were found in FAXO treatment, especially in Bacteroides, Prevotella, and Dorea populations, indicating that FAXO might modulate microbiota profiles. RBPP and MIX increased Faecalibacterium, specifically F. prausnitzii. Combined FAXO and RBPP fermentation increased abundance of butyrogenic bacteria, Coprococcus and Roseburia, suggesting some interactive activity. Results from this study support the potential for FAXO and RBPP from rice bran to promote colon health through a prebiotic function. PMID:29137150
Smith, Stuart C; Choy, Rachel; Johnson, Stuart K; Hall, Ramon S; Wildeboer-Veloo, Alida C M; Welling, Gjalt W
2006-09-01
Changes in the composition of gastrointestinal microbiota by dietary interventions using pro- and prebiotics provide opportunity for improving health and preventing disease. However, the capacity of lupin kernel fiber (LKFibre), a novel legume-derived food ingredient, to act as a prebiotic and modulate the colonic microbiota in humans needed investigation. The present study aimed to determine the effect of LKFibre on human intestinal microbiota by quantitative fluorescent in situ hybridization (FISH) analysis. A total of 18 free-living healthy males between the ages of 24 and 64 years consumed a control diet and a LKFibre diet (containing an additional 17-30 g/day fiber beyond that of the control-incorporated into daily food items) for 28 days with a 28-day washout period in a single-blind, randomized, crossover dietary intervention design. Fecal samples were collected for 3 days towards the end of each diet and microbial populations analyzed by FISH analysis using 16S rRNA gene-based oligonucleotide probes targeting total and predominant microbial populations. Significantly higher levels of Bifidobacterium spp. (P = 0.001) and significantly lower levels of the clostridia group of C. ramosum, C. spiroforme and C. cocleatum (P = 0.039) were observed on the LKFibre diet compared with the control. No significant differences between the LKFibre and the control diet were observed for total bacteria, Lactobacillus spp., the Eubacterium spp., the C. histolyticum/C. lituseburense group and the Bacteroides-Prevotella group. Ingestion of LKFibre stimulated colonic bifidobacteria growth, which suggests that this dietary fiber may be considered as a prebiotic and may beneficially contribute to colon health.
Van den Abbeele, Pieter; Marzorati, Massimo; Derde, Melanie; De Weirdt, Rosemarie; Joan, Vermeiren; Possemiers, Sam; Van de Wiele, Tom
2016-01-01
The microbiota that colonises the intestinal mucus may particularly affect human health given its proximity to the epithelium. For instance, the presence of the adherent-invasive Escherichia coli (AIEC) in this mucosal microbiota has been correlated with Crohn’s disease. Using short-term screening assays and a novel long-term dynamic gut model, which comprises a simulated mucosal environment (M-SHIME), we investigated how (potential) pro- and prebiotics may repress colonisation of AIEC from mucus. Despite that during the short-term screening assays, some of the investigated Lactobacillus strains adhered strongly to mucins, none of them competed with AIEC for mucin-adhesion. In contrast, AIEC survival and growth during co-culture batch incubations was decreased by Lactobacillus rhamnosus GG and L. reuteri 1063, which correlated with (undissociated) lactic acid and reuterin levels. Regarding the prebiotics, long-chain arabinoxylans (LC-AX) lowered the initial mucin-adhesion of AIEC, while both inulin (IN) and galacto-oligosaccharides (GOS) limited AIEC survival and growth during batch incubations. L. reuteri 1063, LC-AX and IN were thus retained for a long-term study with the M-SHIME. All treatments repressed AIEC from mucus without affecting AIEC numbers in the luminal content. As a possible explanation, L. reuteri 1063 treatment increased lactobacilli levels in mucus, while LC-AX and IN additionally increased mucosal bifidobacteria levels, thus leading to antimicrobial effects against AIEC in mucus. Overall, this study shows that pro- and prebiotics can beneficially modulate the in vitro mucosal microbiota, thus limiting occurrence of opportunistic pathogens among those mucosal microbes which may directly interact with the host given their proximity to the epithelium. PMID:28721250
Van den Abbeele, Pieter; Marzorati, Massimo; Derde, Melanie; De Weirdt, Rosemarie; Joan, Vermeiren; Possemiers, Sam; Van de Wiele, Tom
2016-01-01
The microbiota that colonises the intestinal mucus may particularly affect human health given its proximity to the epithelium. For instance, the presence of the adherent-invasive Escherichia coli (AIEC) in this mucosal microbiota has been correlated with Crohn's disease. Using short-term screening assays and a novel long-term dynamic gut model, which comprises a simulated mucosal environment (M-SHIME), we investigated how (potential) pro- and prebiotics may repress colonisation of AIEC from mucus. Despite that during the short-term screening assays, some of the investigated Lactobacillus strains adhered strongly to mucins, none of them competed with AIEC for mucin-adhesion. In contrast, AIEC survival and growth during co-culture batch incubations was decreased by Lactobacillus rhamnosus GG and L. reuteri 1063, which correlated with (undissociated) lactic acid and reuterin levels. Regarding the prebiotics, long-chain arabinoxylans (LC-AX) lowered the initial mucin-adhesion of AIEC, while both inulin (IN) and galacto-oligosaccharides (GOS) limited AIEC survival and growth during batch incubations. L. reuteri 1063, LC-AX and IN were thus retained for a long-term study with the M-SHIME. All treatments repressed AIEC from mucus without affecting AIEC numbers in the luminal content. As a possible explanation, L. reuteri 1063 treatment increased lactobacilli levels in mucus, while LC-AX and IN additionally increased mucosal bifidobacteria levels, thus leading to antimicrobial effects against AIEC in mucus. Overall, this study shows that pro- and prebiotics can beneficially modulate the in vitro mucosal microbiota, thus limiting occurrence of opportunistic pathogens among those mucosal microbes which may directly interact with the host given their proximity to the epithelium.
Prebiotic effects of bovine lactoferrin on specific probiotic bacteria.
Chen, Po-Wen; Liu, Zhen-Shu; Kuo, Tai-Chen; Hsieh, Min-Chi; Li, Zhe-Wei
2017-04-01
Bovine lactoferrin (bLf) is a natural iron-binding protein and it has been suggested to be a prebiotic agent, but this finding remains inconclusive. This study explores the prebiotic potential of bLf in 14 probiotics. Initially, bLf (1-32 mg/mL) treatment showed occasional and slight prebiotic activity in several probiotics only during the late experimental period (48, 78 h) at 37 °C. We subsequently supposed that bLf exerts stronger prebiotic effects when probiotic growth has been temperately retarded. Therefore, we incubated the probiotics at different temperatures, namely 37 °C, 28 °C, room temperature (approximately 22-24 °C), and 22 °C, to retard or inhibit their growth. As expected, bLf showed more favorable prebiotic activity in several probiotics when their growth was partially retarded at room temperature. Furthermore, at 22 °C, the growth of Bifidobacterium breve, Lactobacillus coryniformis, L. delbrueckii, L. acidophilus, B. angulatum, B. catenulatum, and L. paraplantarum were completely blocked. Notably, these probiotics started regrowing in the presence of bLf (1-32 mg/mL) in a significant and dose-dependent manner. Accordingly, bLf significantly increased the growth of Pediococcus pentosaceus, L. rhamnosus, and L. paracasei (BCRC 17483; a locally isolated strain) when their growth was retarded by incubation at 22 °C. In conclusion, bLf showed inconsistent prebiotic activity in the 14 probiotics at 37 °C, but revealed strong prebiotic activity in 10 probiotic strains at 22 °C. Therefore, this study enables determining additional roles of Lf in probiotic strains, which can facilitate developing novel combinational approaches by simultaneously using Lf and specific probiotics.
Parnell, Jill A.; Reimer, Raylene A.
2013-01-01
Prebiotic fibres have been proposed to promote weight loss and lower serum cholesterol; however, the mechanisms are not fully understood. The aim of the present research was to identify possible mechanisms through which prebiotic fibres improve serum lipids. Lean and obese JCR:La-cp rats aged 8 weeks consumed one of three diets supplemented with 0, 10 or 20 % prebiotic fibre for 10 weeks. Rats were anaesthetised and a fasting blood sample was taken for lipid analysis. Real-time PCR was used to determine gene expression for cholesterol and fatty acid regulatory genes in liver tissue. Liver and caecal digesta cholesterol and TAG content were quantified. Both doses of prebiotic fibre lowered serum cholesterol levels by 24 % in the obese hyperlipidaemic rats (P<0·05). This change was associated with an increase in caecal digesta as well as an up-regulation of genes involved in cholesterol synthesis and bile production. Additionally, there was a 42 % reduction in TAG accumulation in the liver of the obese rats with 10 % prebiotic diet (P<0·05); however, no change in liver fatty acid synthase (FAS). Prebiotic fibres appear to lower cholesterol levels through increased cholesterol excretion in the form of bile and inhibit the accumulation of TAG in the liver through a mechanism unrelated to FAS. These effects appear to be limited to the obese model and particularly the 10 % dose. The present work is significant as it provides insight into the mechanisms of action for prebiotic fibres on lipid metabolism and furthers the development of dietary treatments for hypercholesterolaemia. PMID:20021705
Modulation of Gut Microbiota in the Management of Metabolic Disorders: The Prospects and Challenges
Erejuwa, Omotayo O.; Sulaiman, Siti A.; Ab Wahab, Mohd S.
2014-01-01
The gut microbiota plays a number of important roles including digestion, metabolism, extraction of nutrients, synthesis of vitamins, prevention against pathogen colonization, and modulation of the immune system. Alterations or changes in composition and biodiversity of the gut microbiota have been associated with many gastrointestinal tract (GIT) disorders such as inflammatory bowel disease and colon cancer. Recent evidence suggests that altered composition and diversity of gut microbiota may play a role in the increased prevalence of metabolic diseases. This review article has two main objectives. First, it underscores approaches (such as probiotics, prebiotics, antimicrobial agents, bariatric surgery, and weight loss strategies) and their prospects in modulating the gut microbiota in the management of metabolic diseases. Second, it highlights some of the current challenges and discusses areas of future research as it relates to the gut microbiota and metabolic diseases. The prospect of modulating the gut microbiota seems promising. However, considering that research investigating the role of gut microbiota in metabolic diseases is still in its infancy, more rigorous and well-designed in vitro, animal and clinical studies are needed. PMID:24608927
In vitro prebiotic effects of seaweed polysaccharides
NASA Astrophysics Data System (ADS)
Chen, Xiaolin; Sun, Yuhao; Hu, Linfeng; Liu, Song; Yu, Huahua; Xing, Rong'e.; Li, Rongfeng; Wang, Xueqin; Li, Pengcheng
2017-09-01
Although prebiotic activities of alginate and agar oligosaccharides isolated from seaweeds have been reported, it remains unknown whether seaweed polysaccharides have prebiotic activity. In this study, we isolated polysaccharides from four species of seaweeds, such as Grateloupia filicina (GFP), Eucheuma spinosum (ESP), Ulva pertusa (UPP), and Ascophyllum nodosum (ANP), and characterized their structures and prebiotic effects in vitro. The results showed that these polysaccharides were different in total sugar and sulfate contents as well as monosaccharide composition. GFP and ESP significantly promoted bifidobacterium proliferation and 0.1% ESP and 0.4% GFP resulted in the highest proliferation rates of beneficial bacteria, whereas UPP and ANP inhibited the growth of beneficial bacteria at all tested concentrations (0.1%-0.5%). The different behaviors of the four seaweed-originated polysaccharides might be reflected by differences in monosaccharide composition and structure. Therefore, polysaccharides isolated from GFP and ESP could be utilized as prebiotics. However, more studies must be carried out in vivo.
Prebiotics as immunostimulants in aquaculture: a review.
Song, Seong Kyu; Beck, Bo Ram; Kim, Daniel; Park, John; Kim, Jungjoon; Kim, Hyun Duk; Ringø, Einar
2014-09-01
Prebiotics are indigestible fibers that increase beneficial gut commensal bacteria resulting in improvements of the host's health. The beneficial effects of prebiotics are due to the byproducts generated from their fermentation by gut commensal bacteria. In this review, the direct effects of prebiotics on the innate immune system of fish are discussed. Prebiotics, such as fructooligosaccharide, mannanoligosaccharide, inulin, or β-glucan, are called immunosaccharides. They directly enhance innate immune responses including: phagocytic activation, neutrophil activation, activation of the alternative complement system, increased lysozyme activity, and more. Immunosaccharides directly activate the innate immune system by interacting with pattern recognition receptors (PRR) expressed on innate immune cells. They can also associate with microbe associated molecular patterns (MAMPs) to activate innate immune cells. However, the underlying mechanisms involved in innate immune cell activation need to be further explored. Many studies have indicated that immunosaccharides are beneficial to both finfish and shellfish. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mechanisms of Prebiotic Impact on Health
NASA Astrophysics Data System (ADS)
Steed, H.; Macfarlane, S.
Prebiotics were originally defined as non-digestible food ingredients that beneficially affect the host by selectively stimulating the growth and/or activities of one or a limited number of bacteria in the colon, thereby improving host health (Gibson and Roberfroid, 1995). However, a more recent definition is that “A prebiotic is a selectively fermented ingredient that allows specific changes, both in the composition and/or activity in the gastrointestinal microbiota that confers benefits upon host wellbeing and health” (Gibson et al., 2004). The principal concept associated with both of these definitions is that the prebiotic has a selective effect on the microbiota that results in an improvement in the health of the host. Common prebiotics in use include inulins, fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS), soya-oligosaccharides, xylo-oligosaccharides, pyrodextrins, isomalto-oligosaccharides and lactulose. The majority of studies carried out to date have focused on inulin, FOS and GOS (Macfarlane et al., 2008).
Prebiotics, probiotics, synbiotics, and the immune system: experimental data and clinical evidence.
Frei, Remo; Akdis, Mübeccel; O'Mahony, Liam
2015-03-01
The intestinal immune system is constantly exposed to foreign antigens, which for the most part should be tolerated. Certain probiotics, prebiotics, and synbiotics are able to influence immune responses. In this review, we highlight the recent publications (within the last 2 years) that have substantially progressed this field. The immunological mechanisms underpinning probiotics, prebiotics, and synbiotics effects continue to be better defined with novel mechanisms being described for dendritic cells, epithelial cells, T regulatory cells, effector lymphocytes, natural killer T cells, and B cells. Many of the mechanisms being described are bacterial strain or metabolite specific, and should not be extrapolated to other probiotics or prebiotics. In addition, the timing of intervention seems to be important, with potentially the greatest effects being observed early in life. In this review, we discuss the recent findings relating to probiotics, prebiotics, and synbiotics, specifically their effects on immunological functions.
Stability of Lactobacillus rhamnosus GG in prebiotic edible films
Soukoulis, Christos; Behboudi-Jobbehdar, Solmaz; Yonekura, Lina; Parmenter, Christopher; Fisk, Ian D.
2014-01-01
The concept of prebiotic edible films as effective vehicles for encapsulating probiotic living cells is presented. Four soluble fibres (inulin, polydextrose, glucose-oligosaccharides and wheat dextrin) were selected as prebiotic co-components of gelatine based matrices plasticised with glycerol and used for the immobilisation of Lactobacillusrhamnosus GG. The addition of prebiotics was associated with a more compact and uniform film structure, with no detectable interspaces or micropores; probiotic inclusion did not significantly change the structure of the films. Glucose-oligosaccharides and polydextrose significantly enhanced L. rhamnosus GG viability during air drying (by 300% and 75%, respectively), whilst a 33% and 80% reduction in viable counts was observed for inulin and wheat dextrin. Contrarily, inulin was the most effective at controlling the sub-lethal effects on L. rhamnosus GG during storage. However, in all cases the supplementation of edible films with prebiotics ameliorated the storage stability of L. rhamnosus GG. PMID:24767059
Nallagatla, Himaja; Hemalatha, Rajkumar; Kondapalli, Narendra Babu; Mohammed, Shujauddin
2017-06-01
Prebiotics from various regularly consumed cereals and novel substrates are currently being utilised as functional foods. The aim of this study was to determine the effect of synbiotic, formulated with prebiotic extracted from natural resources like green gram (Vigna radiata) along with probiotic Lactobacillus rhamnosus GG (LGG) in modulating immune responses in the offspring when supplemented during gestation and lactation. Synbiotic supplementation was effective in improving cell mediated immunity and humoral immunity among F0 dams. Among F1 pups (F1 Syn + and F1 Syn-), synbiotic supplementation showed significantly heightened (P < 0.05) splenocyte proliferation, increased interleukin-10, interferon gamma and interleukin-17 responses, leucocyte phagocytic ability and increased secretory-immunoglobulin A. However, four-fold increase in IgG titres to Hepatitis-B vaccine was observed only in those mice that were supplemented with synbiotic postweaning (F1 Syn+). Synbiotic supplementation to pregnant dams affected the offspring's cellular and mucosal immunity favorably. However, IgG response to Hepatitis-B vaccine was influenced positively only when the supplementation was extended to the offsprings in the post weaning period. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Kong, Qing; Dong, Shiyuan; Gao, Jian; Jiang, Chaoyu
2016-10-01
In vitro fermentation of the sulfated polysaccharides from seaweeds Enteromorpha prolifera and Laminaria japonica and their prebiotic effects on human fecal microbiota were investigated in this study. The sulfated polysaccharides were fermented in vitro for 48h by human fecal cultures. When 0.8g MWCOL (polysaccharides MWCO<30kD) from L. japonica was fermented, the pH in fecal cultures decreased from 6.5 to 5.1 and the levels of short chain fatty acids, such as acetic, butyric and lactic acids all significantly increased. After 48h fermentation, 0.8g MWCOL showed good effect on modulating the gut microflora balance, because the beneficial strains (Lactobacillus and Bifidobacterium) were both significantly higher than those in control group (p<0.05). As far as we know, this is the first report that consumption of sulfated polysaccharides from E. prolifera and L. japonica is beneficial to the ecosystem of the intestinal tract by increasing the populations of probiotics and short chain fatty acids. Furthermore, our reports indicated that molecular weight of sulfated polysaccharide from marine algae is related to its prebiotic effects. Copyright © 2016 Elsevier B.V. All rights reserved.
Functional Effects of Prebiotic Fructans in Colon Cancer and Calcium Metabolism in Animal Models.
Rivera-Huerta, Marisol; Lizárraga-Grimes, Vania Lorena; Castro-Torres, Ibrahim Guillermo; Tinoco-Méndez, Mabel; Macías-Rosales, Lucía; Sánchez-Bartéz, Francisco; Tapia-Pérez, Graciela Guadalupe; Romero-Romero, Laura; Gracia-Mora, María Isabel
2017-01-01
Inulin-type fructans are polymers of fructose molecules and are known for their capacity to enhance absorption of calcium and magnesium, to modulate gut microbiota and energy metabolism, and to improve glycemia. We evaluated and compared the effects of Chicory inulin "Synergy 1®" and inulin from Mexican agave "Metlin®" in two experimental models of colon cancer and bone calcium metabolism in mice and rats. Inulins inhibited the development of dextran sulfate sodium-induced colitis and colon cancer in mice; these fructans reduced the concentration of tumor necrosis factor alpha and prevented the formation of intestinal polyps, villous atrophy, and lymphoid hyperplasia. On the other hand, inulin treatments significantly increased bone densitometry (femur and vertebra) in ovariectomized rats without altering the concentration of many serum biochemical parameters and urinary parameters. Histopathology results were compared between different experimental groups. There were no apparent histological changes in rats treated with inulins and a mixture of inulins-isoflavones. Our results showed that inulin-type fructans have health-promoting properties related to enhanced calcium absorption, potential anticancer properties, and anti-inflammatory effects. The use of inulin as a prebiotic can improve health and prevent development of chronic diseases such as cancer and osteoporosis.
Thiennimitr, Parameth; Yasom, Sakawdaurn; Tunapong, Wannipa; Chunchai, Titikorn; Wanchai, Keerati; Pongchaidecha, Anchalee; Lungkaphin, Anusorn; Sirilun, Sasithorn; Chaiyasut, Chaiyavat; Chattipakorn, Nipon; Chattipakorn, Siriporn C
2018-03-20
The beneficial effects of pro-, pre-, and synbiotics on obesity with insulin resistance have been reported previously. However, the strain-specific effect of probiotics and the combination with various types of prebiotic fiber yield controversial outcomes and limit clinical applications. Our previous study demonstrated that the probiotic Lactobacillus paracasei (L. paracasei) HII01, prebiotic xylooligosaccharide (XOS), and synbiotics share similar efficacy in attenuating cardiac mitochondrial dysfunction in obese-insulin resistant rats. Nonetheless, the roles of HII01 and XOS on gut dysbiosis and gut inflammation under obese-insulin resistant conditions have not yet, to our knowledge, been investigated. Our hypothesis was that pro-, pre-, and synbiotics improve the metabolic parameters in obese-insulin resistant rats by reducing gut dysbiosis and gut inflammation. Male Wistar rats were fed with either a normal or high-fat diet that contained 19.77% and 59.28% energy from fat, respectively, for 12 wk. Then, the high-fat diet rats were fed daily with a 10 8 colony forming unit of the probiotic HII01, 10% prebiotic XOS, and synbiotics for 12 wk. The metabolic parameters, serum lipopolysaccharide levels, fecal Firmicutes/Bacteroidetes ratios, levels of Enterobacteriaceae, Bifidobacteria, and gut proinflammatory cytokine gene expression were quantified. The consumption of probiotic L. paracasei HII01, prebiotic XOS, and synbiotics for 12 wk led to a decrease in metabolic endotoxemia, gut dysbiosis (a reduction in the Firmicutes/Bacteroidetes ratio and Enterobacteriaceae), and gut inflammation in obese-insulin resistant rats. Pro-, pre-, and synbiotics reduced gut dysbiosis and gut inflammation, which lead to improvements in metabolic dysfunction in obese-insulin resistant rats. Copyright © 2018 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Our goal was to evaluate calcium absorption in infants fed a formula containing prebiotics (PF) and one without prebiotics (CF), and to compare calcium absorption from these formulas with a group of human milk-fed (HM) infants. A dual tracer stable isotope method was used to assess calcium absorptio...
Pre- and probiotics for allergy prevention: time to revisit recommendations?
Forsberg, A; West, C E; Prescott, S L; Jenmalm, M C
2016-12-01
Reduced intensity and diversity of microbial exposure is considered a major factor driving abnormal postnatal immune maturation and increasing allergy prevalence, particularly in more affluent regions. Quantitatively, the largest important source of early immune-microbial interaction, the gut microbiota, is of particular interest in this context, with variations in composition and diversity in the first months of life associated with subsequent allergy development. Attempting to restore the health consequences of the 'dysbiotic drift' in modern society, interventions modulating gut microbiota for allergy prevention have been evaluated in several randomized placebo-controlled trials. In this review, we provide an overview of these trials and discuss recommendations from international expert bodies regarding prebiotic, probiotic and synbiotic interventions. Recent guidelines from the World Allergy Organization recommend the use of probiotics for the primary prevention of eczema in pregnant and breastfeeding mothers of infants at high risk for developing allergy and in high-risk infants. It is however stressed that these recommendations are conditional, based on very low-quality evidence and great heterogeneity between studies, which also impedes specific and practical advice to consumers on the most effective regimens. We discuss how the choice of probiotic strains, timing and duration of administration can critically influence the outcome due to different effects on immune modulation and gut microbiota composition. Furthermore, we propose strategies to potentially improve allergy-preventive effects and enable future evidence-based implementation. © 2016 John Wiley & Sons Ltd.
Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota.
Chang, Chih-Jung; Lin, Chuan-Sheng; Lu, Chia-Chen; Martel, Jan; Ko, Yun-Fei; Ojcius, David M; Tseng, Shun-Fu; Wu, Tsung-Ru; Chen, Yi-Yuan Margaret; Young, John D; Lai, Hsin-Chih
2015-06-23
Obesity is associated with low-grade chronic inflammation and intestinal dysbiosis. Ganoderma lucidum is a medicinal mushroom used in traditional Chinese medicine with putative anti-diabetic effects. Here, we show that a water extract of Ganoderma lucidum mycelium (WEGL) reduces body weight, inflammation and insulin resistance in mice fed a high-fat diet (HFD). Our data indicate that WEGL not only reverses HFD-induced gut dysbiosis-as indicated by the decreased Firmicutes-to-Bacteroidetes ratios and endotoxin-bearing Proteobacteria levels-but also maintains intestinal barrier integrity and reduces metabolic endotoxemia. The anti-obesity and microbiota-modulating effects are transmissible via horizontal faeces transfer from WEGL-treated mice to HFD-fed mice. We further show that high molecular weight polysaccharides (>300 kDa) isolated from the WEGL extract produce similar anti-obesity and microbiota-modulating effects. Our results indicate that G. lucidum and its high molecular weight polysaccharides may be used as prebiotic agents to prevent gut dysbiosis and obesity-related metabolic disorders in obese individuals.
Lohner, Szimonetta; Küllenberg, Daniela; Antes, Gerd; Decsi, Tamás; Meerpohl, Joerg J
2014-08-01
Prebiotics, defined as nondigestible dietary ingredients resistant to gastric acidity and fermented by the intestinal flora, are used to positively influence the composition of intestinal flora, thereby promoting health benefits. The objective of this systematic review was to assess the efficacy of prebiotics in the prevention of acute infectious diseases in children. A systematic literature search was conducted using the Ovid Medline, Scopus, Web of Science, and Cochrane Library's Central databases. Finally, five randomized controlled trials, all of them investigating infants and children 0-24 months of age, were included in the review. Pooled estimates from three studies revealed a statistically significant decrease in the number of infectious episodes requiring antibiotic therapy in the prebiotic group as compared with the placebo group (rate ratio 0.68; 95% confidence interval 0.61-0.77). Studies available indicate that prebiotics may also be effective in decreasing the rate of overall infections in infants and children 0-24 months of age. Further studies in the age group 3-18 years are required to determine whether prebiotics can be considered for the prevention of acute infectious diseases in the older pediatric population. © 2014 International Life Sciences Institute.
2012-01-01
Background Previous reviews (2005 to 2009) on preterm infants given probiotics or prebiotics with breast milk or mixed feeds focused on prevention of Necrotizing Enterocolitis, sepsis and diarrhea. This review assessed if probiotics, prebiotics led to improved growth and clinical outcomes in formula fed preterm infants. Methods Cochrane methodology was followed using randomized controlled trials (RCTs) which compared preterm formula containing probiotic(s) or prebiotic(s) to conventional preterm formula in preterm infants. The mean difference (MD) and corresponding 95% confidence intervals (CI) were reported for continuous outcomes, risk ratio (RR) and corresponding 95% CI for dichotomous outcomes. Heterogeneity was assessed by visual inspection of forest plots and a chi2 test. An I2 test assessed inconsistencies across studies. I2> 50% represented substantial heterogeneity. Results Four probiotics studies (N=212), 4 prebiotics studies (N=126) were included. Probiotics: There were no significant differences in weight gain (MD 1.96, 95% CI: -2.64 to 6.56, 2 studies, n=34) or in maximal enteral feed (MD 35.20, 95% CI: -7.61 to 78.02, 2 studies, n=34), number of stools per day increased significantly in probiotic group (MD 1.60, 95% CI: 1.20 to 2.00, 1 study, n=20). Prebiotics: Galacto-oligosaccharide / Fructo-oligosaccharide (GOS/FOS) yielded no significant difference in weight gain (MD 0.04, 95% CI: -2.65 to 2.73, 2 studies, n=50), GOS/FOS yielded no significant differences in length gain (MD 0.01, 95% CI: -0.03 to 0.04, 2 studies, n=50). There were no significant differences in head growth (MD −0.01, 95% CI: -0.02 to 0.00, 2 studies, n=76) or age at full enteral feed (MD −0.79, 95% CI: -2.20 to 0.61, 2 studies, n=86). Stool frequency increased significantly in prebiotic group (MD 0.80, 95% CI: 0.48 to 1.1, 2 studies, n=86). GOS/FOS and FOS yielded higher bifidobacteria counts in prebiotics group (MD 2.10, 95% CI: 0.96 to 3.24, n=27) and (MD 0.48, 95% CI: 0.28 to 0.68, n=56). Conclusions There is not enough evidence to state that supplementation with probiotics or prebiotics results in improved growth and clinical outcomes in exclusively formula fed preterm infants. PMID:22928998
Planetary Sources for Reducing Sulfur Compounds for Cyanosulfidic Origins of Life Chemistry
NASA Astrophysics Data System (ADS)
Ranjan, S.; Todd, Z. R.; Sutherland, J.; Sasselov, D. D.
2017-12-01
A key challenge in origin-of-life studies is understanding the chemistry that lead to the origin of the key biomolecules of life, such as the components of nucleic acids, sugars, lipids, and proteins. Prebiotic reaction networks based upon reductive homologation of nitriles (e.g., Patel et al. 2015), are building a tantalizing picture of sustained abiotic synthesis of activated ribonucleotides, amino acids and lipid precursors under environmental conditions thought to have been available on early Earth. Sulfidic anions in aqueous solution (e.g., HS-, HSO3-) under near-UV irradiation play important roles in these chemical pathways. However, the sources and availability of these anions on early Earth have not yet been quantitatively constrained. Here, we evaluate the potential for the atmosphere to serve as a source of sulfidic anions, via dissolution of volcanically-outgassed SO2 and H2S into water reservoirs. We combine photochemical modeling from the literature (Hu et al. 2013) with equilibrium chemistry calculations to place constraints on the partial pressures of SO2 and H2S required to reach the elevated concentrations of sulfidic anions (≥1 μM) thought to be necessary for prebiotic chemistry. We find that micromolar levels of SO2-derived anions (HSO3-, SO3(2-)) are possible through simple exposure of aqueous reservoirs like shallow lakes to the atmosphere, assuming total sulfur emission flux comparable to today. Millimolar levels of these compounds are available during the epochs of elevated volcanism, due to elevated sulfur emission flux. Radiative transfer modeling suggests the atmospheric sulfur will not block the near-UV radiation also required for the cyanosulfidic chemistry. However, H2S-derived anions (e.g., HS-) reach only sub-micromolar levels from atmospheric sources, meaning that prebiotic chemistry invoking such molecules must invoke specialized, local sources. Prebiotic chemistry invoking SO2-derived anions may be considered more robust than chemistry invoking H2S-derived anions. In general, epochs of moderately high volcanism may have been especially conducive to cyanosulfidic prebiotic chemistry.
Elementary Reactions and Their Role in Gas-Phase Prebiotic Chemistry
Balucani, Nadia
2009-01-01
The formation of complex organic molecules in a reactor filled with gaseous mixtures possibly reproducing the primitive terrestrial atmosphere and ocean demonstrated more than 50 years ago that inorganic synthesis of prebiotic molecules is possible, provided that some form of energy is provided to the system. After that groundbreaking experiment, gas-phase prebiotic molecules have been observed in a wide variety of extraterrestrial objects (including interstellar clouds, comets and planetary atmospheres) where the physical conditions vary widely. A thorough characterization of the chemical evolution of those objects relies on a multi-disciplinary approach: 1) observations allow us to identify the molecules and their number densities as they are nowadays; 2) the chemistry which lies behind their formation starting from atoms and simple molecules is accounted for by complex reaction networks; 3) for a realistic modeling of such networks, a number of experimental parameters are needed and, therefore, the relevant molecular processes should be fully characterized in laboratory experiments. A survey of the available literature reveals, however, that much information is still lacking if it is true that only a small percentage of the elementary reactions considered in the models have been characterized in laboratory experiments. New experimental approaches to characterize the relevant elementary reactions in laboratory are presented and the implications of the results are discussed. PMID:19564951
Kazemalilou, Sahar; Alizadeh, Ainaz
2017-01-01
Chocolate milk is one of the most commonly used non-fermentative dairy products, which, due to high level of sucrose, could lead to diabetes and tooth decay among children. Therefore, it is important to replace sucrose with other types of sweeteners, especially, natural ones. In this research, response surface methodology (RSM) was used to optimize the ingredients formulation of prebiotic chocolate milk, date syrup as sweetener (4-10%w/w), inulin as prebiotic texturizer (0-0.5%w/w) and carrageenan as thickening agent (0-0.04%w/w) in the formulation of chocolate milk. The fitted models to predict the variables of selected responses such as pH, viscosity, total solid, sedimentation and overall acceptability of chocolate milk showed a high coefficient of determination. The independent effect of carrageenan was the most effective parameter which led to pH and sedimentation decrease but increased viscosity. Moreover, in most treatments, date syrup and inulin variables had significant effects which had a mutual impact. Optimization of the variables, based on the responses surface 3D plots showed that the sample containing 0.48% (w/w) of inulin, 0.04% (w/w) of carrageenan, and 10% of date syrup was selected as the optimum condition.
Lee, Yeong Yeh; Hassan, Siti Asma; Ismail, Intan Hakimah; Chong, Sze Yee; Raja Ali, Raja Affendi; Amin Nordin, Syafinaz; Lee, Way Seah; Majid, Noorizan Abdul
2017-12-01
The role of gut microbiota in early life and its impact on gut health and subsequent diseases remain unclear. There is a lack of research and awareness in this area, especially in the Asia-Pacific region, including Malaysia. This paper reports the position of a Malaysian Working Group on some key issues surrounding gut microbiota in early life and its role in gut health and diseases, as well as experts' stand on probiotics and prebiotics. The group reached a consensus that certain factors, including elective caesarean; premature deliveries; complementary feeding; use of antibiotics, prebiotics and/or probiotics; and exposure to the external environmental, have an impact on gut microbiota in early life. However, as evidence is lacking, especially from the Asia-Pacific region, further studies are needed to understand how gut microbiota in early life affects subsequent diseases, including allergy, inflammatory bowel disease, obesity and infantile colic. Lastly, although beneficial in acute diarrhoeal disease and probably allergic eczema, probiotics (and/or prebiotics) should be used cautiously in other gut dysbiotic conditions until more data are available. © 2017 The Authors. Journal of Paediatrics and Child Health published by John Wiley & Sons Australia, Ltd on behalf of Paediatrics and Child Health Division (The Royal Australasian College of Physicians).
Pre-biotic stage of life origin under non-photosynthetic conditions
NASA Technical Reports Server (NTRS)
Bartsev, S. I.; Mezhevikin, V. V.
2005-01-01
Spontaneous assembling of a simplest bacterial cell even if all necessary molecules are present in a solution seems to be extremely rare event and from the scientific standpoint has to be considered as impossible. Therefore, a predecessor of a living cell has to be very simple for providing its self-assembling and at the same time it should be able of progressive increase in complexity. Now phase-separated particles, first of all micelles, are put forward as possible predecessors of living cell. According to the offered working concept only phase-separated particles possessing autocatalytic properties can be considered as predecessors of living cells. The first stage of evolution of these phase-separated autocatalytic systems is the appearance of pre-biotic metabolism providing synthesis of amphiphiles for formation of capsules of these systems. This synthesis is maintained by the energy of a base reaction being a component of a planet-chemical cycle. Catalytic system providing functioning of pre-biotic metabolism is based on multivariate oligomeric autocatalyst, which reproduces itself from monomers, penetrating the particles from the outside. Since the autocatalyst realizes random polymerization then a collection of other oligomers possessing different catalytic functions is produced. In the paper the functioning of multivariate oligomeric autocatalyst in flow reactor is analyzed. c2005 Published by Elsevier Ltd on behalf of COSPAR.
An organismic critique of molecular darwinism.
Wicken, J S
1985-12-21
The molecular darwinian approach to the emergence of life treats the competition between RNA sequences for nucleotide resources as the primordial selective process in prebiotic evolution, which prescribes possible pathways for the subsequent elaboration of organizational relationships. Since success in this competition is determined by the "phenotypic" properties of RNA strands in the absence of organizational context, the genesis of biotic organization is dependent upon the establishment of co-operative, hypercyclic interactions between competing RNA sequences. The thesis of this paper is that hypercycle theory is based on unwarranted assumptions about the conditions of prebiotic evolution, and that the implications of these assumptions run counter to both empirical evidence and to the rational by which natural selection operates in evolution generally. An organismic alternative to hypercycle theory is suggested, based on the catalytic microsphere and the thermodynamics of selection.
Gamma-irradiation of malic acid in aqueous solutions. [prebiotic significance
NASA Technical Reports Server (NTRS)
Negron-Mendoza, A.; Graff, R. L.; Ponnamperuma, C.
1980-01-01
The gamma-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the nonvolatile products. Thin layer chromatography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the gamma-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.
Carbone, Donatella; Faggio, Caterina
2016-07-01
Infectious diseases in fish represent a major problem for the aquaculture field as they produce extensive damages and loss. Over the last few years, with increased development of the aquaculture industry, different methods have been used to contrast these pathologies. Common interest has led to the use of components (as additives in diets) that could contrast diseases without causing any negative impact on the environment. These components are represented by prebiotics, probiotics, and plant extracts. In this review, the effects of prebiotics are described. Prebiotics are indigestible fibres fermented by gut enzymes and commensal bacteria, whose beneficial effects are due to the by-products generated from fermentation. The influence of pre-biotics on the immune system of fish is called immunosaccharides. Mannanoligosaccharides (MOS), Fructooligosaccharides (FOS) and Inulin act at different levels in the innate immune response. For example, through phagocytosis, lysozyme activity, and the complement system activity, an increase in fish growth and an amelioration of their health status is brought about. In this review, the use of prebiotics in aquaculture, such as immunostimulants, has been highlighted: particularly in two teleost fish species, Sparus aurata and Dicentrarchus labrax. The results demonstrate that the road is still long and further studies are required, but the use of prebiotics, individually or coupled together, can open the doors to pioneering a new model of alternative components to antimicrobial agents. Copyright © 2016 Elsevier Ltd. All rights reserved.
The use of prebiotics during the first year of life for atopy prevention and treatment
de Moura, Priscilla Negrão; Rosário Filho, Nelson Augusto
2013-01-01
The incidence of allergic diseases has increased in recent decades. Therefore, the aim of this systematic review was to assess the efficacy of prebiotics for the prevention and treatment of allergic manifestations in children. We sought to conduct a systematic review of the effectiveness of prebiotics in the prevention and treatment of allergic diseases in children. We searched the MEDLINE, EMBASE, Cochrane Library, LILACS, SciELO, IBECS, Web of Science and Clinical Trials databases as well as Google Scholar and the references of the articles identified. Randomised clinical trials, in which one of the treatments was performed with prebiotics and the control group was treated with placebo, were included in the review. The data selection were performed by two reviewers, and the study quality was evaluated according to the Consolidated Standards of Reporting Trials (CONSORT) items, according to the recommendations for improving the quality of reports of randomised clinical trials. The selected studies showed heterogeneity with regard to the participants, albeit with similar outcomes. The treatment group size ranged from 134 to 259 children, and the studies compared prebiotic to placebo treatment in each group. In general, these articles showed a trend toward less allergic reactions in the groups receiving active therapy with prebiotics. Although there was a trend for reduced allergic symptoms following the administration of prebiotics, there was not sufficient evidence to establish that such treatment is effective for the prevention of allergies in children. PMID:25400918
NASA Astrophysics Data System (ADS)
Forsythe, J. G.; Weber, A. L.
2017-07-01
We report a new process for robust peptide bond synthesis in the pH 6–10 range that involves dry-down heating of amino acids in the presence of glycerol and bicarbonate (substrates: L-alanine, L-2-aminobutyric acid, β-alanine, isoserine).
On the Maillard reaction of meteoritic amino acids
NASA Astrophysics Data System (ADS)
Kolb, Vera M.; Bajagic, Milica; Liesch, Patrick J.; Philip, Ajish; Cody, George D.
2006-08-01
We have performed the Maillard reaction of a series of meteoritic amino acids with sugar ribose under simulated prebiotic conditions, in the solid state at 65°C and at the room temperature. Many meteoritic amino acids are highly reactive with ribose, even at the room temperature. We have isolated high molecular weight products that are insoluble in water, and have studied their structure by the IR (infrared) and solid-state C-13 NMR (nuclear magnetic resonance) spectroscopic methods. The functional groups and their distribution were similar among these products, and were comparable to the previously isolated insoluble organic materials from the Maillard reaction of the common amino acids with ribose. In addition, there were some similarities with the insoluble organic material that is found on Murchison. Our results suggest that the Maillard products may contribute to the composition of the part of the insoluble organic material that is found on Murchison. We have also studied the reaction of sodium silicate solution with the Maillard mixtures, to elucidate the process by which the organic compounds are preserved under prebiotic conditions.
Wang, Xiao-Meng; Li, Xiao-Bo; Peng, Ying
2017-04-01
According to the theory of traditional Chinese medicine (TCM), Qi (vital energy) is regarded as a driving force of biological activities in human body, including both nutrient substances and organ functions. Qi-invigorating TCMs are widely used to treat various symptoms and disorders, such as fatigue, obesity, immunosuppression, intestinal flora imbalance, and gastrointestinal diseases, in which Qi is considered to be reduced or depleted. Interestingly, abundant clinical evidences suggest that these disorders are associated with the alternation of intestinal flora, which directly affects disease status. Herein we review the interaction between gut microbiota and Qi-invigorating TCMs under healthy and disease conditions and discuss the mechanisms of action and applications of Qi-invigorating TCMs in enhancing health status through microbial alternation. A better understanding of the role of Qi-invigorating TCMs in modulating microbial composition and the association between intestinal microbiota and diseases would help reveal the clinical consequences of microbiota alteration and explore opportunities to harness this symbiotic relationship to improve public health. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
XANES Analysis of Organic Residues Produced from the UV Irradiation of Astrophysical Ice Analogs
2011-01-01
indicate that they contain molecular precursors of prebiotic interest such as amino acids, nitrile-bearing compounds, and amphiphilic compounds. In...living organisms on Earth remains a mystery. Among the most studied scenarios are those encompassing an extraterres- trial origin of prebiotic ...products of these residues have been partly identified using chromatography techniques, which indicate that they contain molecular precursors of prebiotic
NASA Technical Reports Server (NTRS)
Oberbeck, Verne R.; Marshall, John; Shen, Thomas
1991-01-01
The chemical evolution hypothesis of Woese (1979), according to which prebiotic reactions occurred rapidly in droplets in giant atmospheric reflux columns was criticized by Scherer (1985). This paper proposes a mechanism for prebiotic chemistry in clouds that answers Scherer's concerns and supports Woese's hypothesis. According to this mechanism, rapid prebiotic chemical evolution was facilitated on the primordial earth by cycles of condensation and evaporation of cloud drops containing clay condensation nuclei and nonvolatile monomers. For example, amino acids supplied by, or synthesized during entry of meteorites, comets, and interplanetary dust, would have been scavenged by cloud drops containing clay condensation nuclei and would be polymerized within cloud systems during cycles of condensation, freezing, melting, and evaporation of cloud drops.
Prebiotic synthesis of imidazole-4-acetaldehyde and histidine
NASA Astrophysics Data System (ADS)
Shen, Chun; Yang, Lily; Miller, Stanley L.; Oró, J.
1987-09-01
The prebiotic synthesis of imidazole-4-acetaldehyde and imidazole-4-glycol from erythrose and formamidine has been demonstrated as well as the prebiotic synthesis of imidazole-4-ethanol and imidazole-4-glycol from erythrose, formaldehyde and ammonia. The products were identified by TLC, HPLC, and LC-MS by comparison with authentic samples. The maximum yields of imidazole-4-acetaldehyde, imidazole-4-ethanol, and imidazole-4-glycol obtained in these reactions are 1.6, 5.4, 6.8% respectively, based on the erythrose. Imidazole-4-acetaldehyde would have been converted to histidine on the primitive earth by a Strecker synthesis, and several prebiotic reactions would convert imidazole-4-glycol and imidazole-4-ethanol to imidazole-4-acetaldehyde.
Methods of preventing bacterial sepsis and wound complications after liver transplantation.
Gurusamy, Kurinchi Selvan; Nagendran, Myura; Davidson, Brian R
2014-03-05
Bacterial sepsis and wound complications after liver transplantation increase mortality, morbidity, or hospital stay and are likely to increase overall transplant costs. All liver transplantation patients receive antibiotic prophylaxis. This is an update of our 2008 Cochrane systematic review on the same topic in which we identified seven randomised clinical trials. To assess the benefits and harms of different methods aimed at preventing bacterial sepsis and wound complications in people undergoing liver transplantation. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, and Science Citation Index Expanded to February 2013. We included only randomised clinical trials irrespective of language or publication status. We excluded quasi-randomised and other observational studies for assessment of benefits, but not for harms. Two review authors collected the data independently. We calculated the risk ratio (RR) or mean difference (MD) with 95% confidence intervals (CI) using fixed-effect and the random-effects models based on available-case analysis. We identified only seven trials for inclusion, including 614 participants. Only one trial was of low risk of bias risk. Overall, the quality of evidence was very low. There were five comparisons in the seven trials: selective bowel decontamination versus inactive control; selective bowel decontamination versus prebiotics with probiotics; selective bowel decontamination versus prebiotics; prebiotics with probiotics versus prebiotics; and granulocyte-colony stimulating factor (G-CSF) versus control. Four trials compared selective bowel decontamination versus placebo or no treatment. In one trial, participants were randomised to selective bowel decontamination, active lactobacillus with fibres (probiotic with prebiotic), or to inactivated lactobacillus with fibres (prebiotic). In one trial, active lactobacillus with fibres (probiotic with prebiotic) was compared with inactive lactobacillus with fibres (prebiotic). In the remaining trial, different doses of G-CSF and placebo were compared. There was no trial comparing different antibiotic prophylactic regimens in people undergoing liver transplantation. Most trials included adults undergoing elective liver transplantation. There was no significant difference in proportion of people who died or required retransplantation between the intervention and control groups in any of the five comparison groups. MORTALITY There were no differences between 190 participants (three trials); 5/87 (adjusted proportion: 6.2%) in selective bowel decontamination group versus 7/103 (6.8%) in inactive control group; RR 0.91 (95% CI 0.31 to 2.72); 63 participants (one trial); 0/32 (0%) in selective bowel decontamination group versus 0/31 (0%) in prebiotics with probiotics group; RR - not estimable; 64 participants (one trial); 0/32 (0%) in selective bowel decontamination group versus 0/32 (0%) in prebiotics group; RR - not estimable; 129 participants (two trials); 0/64 (0%) in prebiotics with probiotics group versus 0/65 (0%) in prebiotics group; RR - not estimable; and 194 participants (one trial); 22/124 (17.7%) in G-CSF group versus 10/70 (14.3%) in placebo group; RR 1.24 (95% 0.62 to 2.47). RETRANSPLANTATION There were no differences between 132 participants (two trials); 4/58 (adjusted proportion: 6.9%) in selective bowel decontamination group versus 6/74 (8.1%) in inactive control group; RR 0.85 (95% CI 0.26 to 2.85); 63 participants (one trial); 1/32 (3.1%) in selective bowel decontamination group versus 0/31 (0%) in prebiotics with probiotics group; RR 2.91 (0.12 to 68.81); 64 participants (one trial); 1/32 (3.1%) in selective bowel decontamination group versus 0/32 (0%) in prebiotics group; RR 3.00 (95% CI 0.13 to 71.00); 129 participants (two trials); 0/64 (0%) in prebiotics with probiotics group versus 1/65 (1.5%) in prebiotics group; RR 0.33 (95% CI 0.01 to 7.9); and 194 participants (one trial); 10/124 (7.1%) in G-CSF group versus 5/70 (7.1%) in placebo group; RR 1.13 (95% CI 0.4 to 3.17).There was no significant difference in the graft rejections, intensive therapy unit stay, or hospital stay between the intervention and control groups in any of the comparisons. Overall, 193/611 participants (31.6%) developed infective complications. The proportion of people who developed infective complications and the number of infective complication episodes were significantly higher in the selective bowel decontamination group than in the prebiotics with probiotics group (1 study; 63 participants; 15/32 (46.9%) in selective bowel decontamination group versus 4/31 (12.9%) in prebiotics with probiotics group; RR 3.63; 95% CI 1.36 to 9.74 and 23/32 participants (0.72 infective complications per participant) in selective bowel decontamination group versus 4/31 participants (0.13 infective complications per participant) in prebiotics with probiotics group; rate ratio 5.58; 95% CI 1.94 to 16.09). There was no significant difference between the proportion of participants who developed infection and the number of infection episodes between the intervention group and control group in any of the other comparisons.No trials reported quality of life and overall serious adverse events. Currently, there is no clear evidence for any intervention offering significant benefits in the reduction of bacterial infections and wound complications in liver transplantation. Selective bowel decontamination may even increase the rate of infections compared with prebiotics with probiotics. The confidence intervals were wide and further randomised clinical trials of low risk of bias are necessary.
Use of prebiotic carbohydrate as wall material on lime essential oil microparticles.
Campelo, Pedro Henrique; Figueiredo, Jayne de Abreu; Domingues, Rosana Zacarias; Fernandes, Regiane Victória de Barros; Botrel, Diego Alvarenga; Borges, Soraia Vilela
2017-09-01
The aim of this work was to study the use of different prebiotic biopolymers in lime essential oil microencapsulation. Whey protein isolate, inulin and oligofructose biopolymers were used. The addition of prebiotic biopolymers reduced emulsion viscosity, although it produced larger droplet sizes (0.31-0.32 µm). Moisture values (2.94-3.13 g/100 g dry solids) and water activity (0.152-0.185) were satisfactory, being within the appropriate range for powdered food quality. Total oil content, limonene retention values and antioxidant activity of the microparticles containing essential oil decreased in the presence of the carbohydrates. The addition of prebiotic biopolymers reduced the microparticle thermal stability. X-ray diffraction confirmed the amorphous characteristic of the microparticles and the interaction of the essential oil with the wall material. The presence of prebiotic biopolymers can be a good alternative for lime essential oil microparticles, mainly using fibre that has a functional food appeal and can improve consumer health.
Probiotics and prebiotics: prospects for public health and nutritional recommendations.
Sanders, Mary Ellen; Lenoir-Wijnkoop, Irene; Salminen, Seppo; Merenstein, Daniel J; Gibson, Glenn R; Petschow, Bryon W; Nieuwdorp, Max; Tancredi, Daniel J; Cifelli, Christopher J; Jacques, Paul; Pot, Bruno
2014-02-01
Probiotics and prebiotics are useful interventions for improving human health through direct or indirect effects on the colonizing microbiota. However, translation of these research findings into nutritional recommendations and public health policy endorsements has not been achieved in a manner consistent with the strength of the evidence. More progress has been made with clinical recommendations. Conclusions include that beneficial cultures, including probiotics and live cultures in fermented foods, can contribute towards the health of the general population; prebiotics, in part due to their function as a special type of soluble fiber, can contribute to the health of the general population; and a number of challenges must be addressed in order to fully realize probiotic and prebiotic benefits, including the need for greater awareness of the accumulated evidence on probiotics and prebiotics among policy makers, strategies to cope with regulatory roadblocks to research, and high-quality human trials that address outstanding research questions in the field. © 2014 New York Academy of Sciences.
Quantification of prebiotics in commercial infant formulas.
Sabater, Carlos; Prodanov, Marin; Olano, Agustín; Corzo, Nieves; Montilla, Antonia
2016-03-01
Since breastfeeding is not always possible, infant formulas (IFs) are supplemented with prebiotic oligosaccharides, such as galactooligosaccharides (GOS) and/or fructooligosaccharides (FOS) to exert similar effects to those of the breast milk. Nowadays, a great number of infant formulas enriched with prebiotics are disposal in the market, however there are scarce data about their composition. In this study, the combined use of two chromatographic methods (GC-FID and HPLC-RID) for the quantification of carbohydrates present in commercial infant formulas have been used. According to the results obtained by GC-FID for products containing prebiotics, the content of FOS, GOS and GOS/FOS was in the ranges of 1.6-5.0, 1.7-3.2, and 0.08-0.25/2.3-3.8g/100g of product, respectively. HPLC-RID analysis allowed quantification of maltodextrins with degree of polymerization (DP) up to 19. The methodology proposed here may be used for routine quality control of infant formula and other food ingredients containing prebiotics. Copyright © 2015 Elsevier Ltd. All rights reserved.
A food additive with prebiotic properties of an α-d-glucan from lactobacillus plantarum DM5.
Das, Deeplina; Baruah, Rwivoo; Goyal, Arun
2014-08-01
An α-d-glucan produced by Lactobacillus plantarum DM5 was explored for in vitro prebiotic activities. Glucan-DM5 demonstrated 21.6% solubility, 316.9% water holding capacity, 86.2% flocculation activity, 71.4% emulsification activity and a degradation temperature (Td) of 292.2°C. Glucan-DM5 exhibited lowest digestibility of 0.54% by artificial gastric juice, 0.21% by intestinal fluid and 0.32% by α-amylase whereas the standard prebiotic inulin, showed 25.23%, 5.97% and 19.13%, hydrolysis, respectively. Prebiotic activity assay of glucan-DM5 displayed increased growth of probiotic bacteria such as Bifidobacterium infantis and Lactobacillus acidophilus, but did not support the growth of non-probiotic bacteria such as Escherichia coli and Enterobacter aerogenes. The overall findings indicated that glucan from L. plantarum DM5 can serve as a potential prebiotic additive for food products. Copyright © 2014 Elsevier B.V. All rights reserved.
Roberts, Justin D.; Suckling, Craig A.; Peedle, Georgia Y.; Murphy, Joseph A.; Dawkins, Tony G.; Roberts, Michael G.
2016-01-01
Gastrointestinal (GI) ischemia during exercise is associated with luminal permeability and increased systemic lipopolysaccharides (LPS). This study aimed to assess the impact of a multistrain pro/prebiotic/antioxidant intervention on endotoxin unit levels and GI permeability in recreational athletes. Thirty healthy participants (25 males, 5 females) were randomly assigned either a multistrain pro/prebiotic/antioxidant (LAB4ANTI; 30 billion CFU·day−1 containing 10 billion CFU·day−1 Lactobacillus acidophilus CUL-60 (NCIMB 30157), 10 billion CFU·day−1 Lactobacillus acidophillus CUL-21 (NCIMB 30156), 9.5 billion CFU·day−1 Bifidobacterium bifidum CUL-20 (NCIMB 30172) and 0.5 billion CFU·day−1 Bifidobacterium animalis subspecies lactis CUL-34 (NCIMB 30153)/55.8 mg·day−1 fructooligosaccharides/ 400 mg·day−1 α-lipoic acid, 600 mg·day−1 N-acetyl-carnitine); matched pro/prebiotic (LAB4) or placebo (PL) for 12 weeks preceding a long-distance triathlon. Plasma endotoxin units (via Limulus amebocyte lysate chromogenic quantification) and GI permeability (via 5 h urinary lactulose (L): mannitol (M) recovery) were assessed at baseline, pre-race and six days post-race. Endotoxin unit levels were not significantly different between groups at baseline (LAB4ANTI: 8.20 ± 1.60 pg·mL−1; LAB4: 8.92 ± 1.20 pg·mL−1; PL: 9.72 ± 2.42 pg·mL−1). The use of a 12-week LAB4ANTI intervention significantly reduced endotoxin units both pre-race (4.37 ± 0.51 pg·mL−1) and six days post-race (5.18 ± 0.57 pg·mL−1; p = 0.03, ηp2 = 0.35), but only six days post-race with LAB4 (5.01 ± 0.28 pg·mL−1; p = 0.01, ηp2 = 0.43). In contrast, endotoxin units remained unchanged with PL. L:M significantly increased from 0.01 ± 0.01 at baseline to 0.06 ± 0.01 with PL only (p = 0.004, ηp2 = 0.51). Mean race times (h:min:s) were not statistically different between groups despite faster times with both pro/prebiotoic groups (LAB4ANTI: 13:17:07 ± 0:34:48; LAB4: 12:47:13 ± 0:25:06; PL: 14:12:51 ± 0:29:54; p > 0.05). Combined multistrain pro/prebiotic use may reduce endotoxin unit levels, with LAB4ANTI potentially conferring an additive effect via combined GI modulation and antioxidant protection. PMID:27869661
2016-01-01
The pathway from simple abiotically made organic compounds to the molecular bricks of life, as we know it, is unknown. The most efficient geological abiotic route to organic compounds results from the aqueous dissolution of olivine, a reaction known as serpentinization (Sleep, N.H., et al. (2004) Proc. Natl. Acad. Sci. USA 101, 12818–12822). In addition to molecular hydrogen and a reducing environment, serpentinization reactions lead to high-pH alkaline brines that can become easily enriched in silica. Under these chemical conditions, the formation of self-assembled nanocrystalline mineral composites, namely silica/carbonate biomorphs and metal silicate hydrate (MSH) tubular membranes (silica gardens), is unavoidable (Kellermeier, M., et al. In Methods in Enzymology, Research Methods in Biomineralization Science (De Yoreo, J., Ed.) Vol. 532, pp 225–256, Academic Press, Burlington, MA). The osmotically driven membranous structures have remarkable catalytic properties that could be operating in the reducing organic-rich chemical pot in which they form. Among one-carbon compounds, formamide (NH2CHO) has been shown to trigger the formation of complex prebiotic molecules under mineral-driven catalytic conditions (Saladino, R., et al. (2001) Biorganic & Medicinal Chemistry, 9, 1249–1253), proton irradiation (Saladino, R., et al. (2015) Proc. Natl. Acad. Sci. USA, 112, 2746–2755), and laser-induced dielectric breakdown (Ferus, M., et al. (2015) Proc Natl Acad Sci USA, 112, 657–662). Here, we show that MSH membranes are catalysts for the condensation of NH2CHO, yielding prebiotically relevant compounds, including carboxylic acids, amino acids, and nucleobases. Membranes formed by the reaction of alkaline (pH 12) sodium silicate solutions with MgSO4 and Fe2(SO4)3·9H2O show the highest efficiency, while reactions with CuCl2·2H2O, ZnCl2, FeCl2·4H2O, and MnCl2·4H2O showed lower reactivities. The collections of compounds forming inside and outside the tubular membrane are clearly specific, demonstrating that the mineral self-assembled membranes at the same time create space compartmentalization and selective catalysis of the synthesis of relevant compounds. Rather than requiring odd local conditions, the prebiotic organic chemistry scenario for the origin of life appears to be common at a universal scale and, most probably, earlier than ever thought for our planet. PMID:27115539
Pusceddu, M M; Murray, K; Gareau, M G
2018-03-01
The crosstalk between the gut and the brain has revealed a complex communication system responsible for maintaining a proper gastrointestinal homeostasis as well as affect emotional mood and cognitive functions. Recent research has revealed that beneficial manipulation of the microbiota by probiotics and prebiotics represent an emerging and novel strategy for the treatment of a large spectrum of diseases ranging from visceral pain to mood disorders. The review critically evaluates current knowledge of the effects exerted by both probiotics and prebiotics in irritable bowel syndrome (IBS) and mood disorders such as anxiety and depression. Relevant literature was identified through a search of MEDLINE via PubMed using the following words, "probiotics", "prebiotics", "microbiota", and "gut-brain axis" in combination with "stress", "depression", "IBS", and "anxiety". A number of trials have shown efficacy of probiotics and prebiotics in ameliorating both IBS related symptoms and emotional states. However, limitations have been found especially due to the small number of clinical studies, studies design, patient sample size, and placebo effect. Nonetheless, current finding supports the view that beneficial manipulation of the microbiota through both probiotics and prebiotics intake represents a novel attractive strategy to treat gut-brain axis disorders such as IBS and depression.
Quality and sensory acceptability of a chilled functional apple ready-dessert.
Keenan, D F; Brunton, N P; Gormley, T R; Butler, F
2012-04-01
An apple and dairy based ready-dessert with an added prebiotic was stored and chill temperatures and number of quality attributes were monitored during chill (4 °C) storage for 30 days. All ready-desserts were thermally processed by sous vide (P (90) > 10 min). The stability of the dairy component in ready-desserts was monitored by measuring volatile free fatty acids. Changes in these components were more evident in prebiotic-enriched samples compared to controls. However, no significant differences were observed over storage in control and prebiotic-enriched ready-desserts. This was supported by sensory analysis that showed no significant changes over storage in control or prebiotic-enriched samples. Of the other quality parameters, the addition of prebiotic inclusions resulted in lower L and b values and dry matter (p < 0.05), while increasing (p < 0.05) soluble solids content compared to control samples. Fluctuations in some of the quality parameters were also observed over storage. Rheological characteristics, i.e. flow behaviour (n), consistency index (K), storage (G'), loss (G″) and complex (G*) moduli were unaffected by prebiotic inclusion. However, storage affected the rheological characteristics of ready-desserts. A decrease (p < 0.05) in flow behaviour (n) led to concomitant increases in consistency index (K) and complex modulus (G*) values in control samples.
Prebiological evolution and the physics of the origin of life
NASA Astrophysics Data System (ADS)
Delaye, Luis; Lazcano, Antonio
2005-03-01
The basic tenet of the heterotrophic theory of the origin of life is that the maintenance and reproduction of the first living systems depended primarily on prebiotically synthesized organic molecules. It is unlikely that any single mechanism can account for the wide range of organic compounds that may have accumulated on the primitive Earth, suggesting that the prebiotic soup was formed by contributions from endogenous syntheses in reducing environments, metal sulphide-mediated synthesis in deep-sea vents, and exogenous sources such as comets, meteorites and interplanetary dust. The wide range of experimental conditions under which amino acids and nucleobases can be synthesized suggests that the abiotic syntheses of these monomers did not take place under a narrow range defined by highly selective reaction conditions, but rather under a wide variety of settings. The robustness of this type of chemistry is supported by the occurrence of most of these biochemical compounds in the Murchison meteorite. These results lend strong credence to the hypothesis that the emergence of life was the outcome of a long, but not necessarily slow, evolutionary processes. The origin of life may be best understood in terms of the dynamics and evolution of sets of chemical replicating entities. Whether such entities were enclosed within membranes is not yet clear, but given the prebiotic availability of amphiphilic compounds this may have well been the case. This scheme is not at odds with the theoretical models of self-organized emerging systems, but what is known of biology suggest that the essential traits of living systems could have not emerged in the absence of genetic material able to store, express and, upon replication, transmit to its progeny information capable of undergoing evolutionary change. How such genetic polymer first evolved is a central issue in origin-of-life studies.
Prebiological evolution and the physics of the origin of life.
Delaye, Luis; Lazcano, Antonio
2005-03-01
The basic tenet of the heterotrophic theory of the origin of life is that the maintenance and reproduction of the first living systems depended primarily on prebiotically synthesized organic molecules. It is unlikely that any single mechanism can account for the wide range of organic compounds that may have accumulated on the primitive Earth, suggesting that the prebiotic soup was formed by contributions from endogenous syntheses in reducing environments, metal sulphide-mediated synthesis in deep-sea vents, and exogenous sources such as comets, meteorites and interplanetary dust. The wide range of experimental conditions under which amino acids and nucleobases can be synthesized suggests that the abiotic syntheses of these monomers did not take place under a narrow range defined by highly selective reaction conditions, but rather under a wide variety of settings. The robustness of this type of chemistry is supported by the occurrence of most of these biochemical compounds in the Murchison meteorite. These results lend strong credence to the hypothesis that the emergence of life was the outcome of a long, but not necessarily slow, evolutionary processes. The origin of life may be best understood in terms of the dynamics and evolution of sets of chemical replicating entities. Whether such entities were enclosed within membranes is not yet clear, but given the prebiotic availability of amphiphilic compounds this may have well been the case. This scheme is not at odds with the theoretical models of self-organized emerging systems, but what is known of biology suggest that the essential traits of living systems could have not emerged in the absence of genetic material able to store, express and, upon replication, transmit to its progeny information capable of undergoing evolutionary change. How such genetic polymer first evolved is a central issue in origin-of-life studies.
Akatsu, Hiroyasu; Nagafuchi, Shinya; Kurihara, Rina; Okuda, Kenji; Kanesaka, Takeshi; Ogawa, Norihiro; Kanematsu, Takayoshi; Takasugi, Satoshi; Yamaji, Taketo; Takami, Masao; Yamamoto, Takayuki; Ohara, Hirotaka; Maruyama, Mitsuo
2016-02-01
We investigated the effect of prebiotics on the immunological response after influenza vaccination in enterally fed elderly individuals. The intervention group was given an enteral formula containing lactic acid bacteria-fermented milk products. In addition, two different types of other prebiotics, galacto-oligosaccharide and bifidogenic growth stimulator, were also given. The two prebiotics improved intestinal microbiota differently. In a control group, a standard formula without prebiotics was given. An enteral formula with (intervention group [F]) or without (control group [C]) prebiotics was given through percutaneous endoscopic gastrostomy to elderly participants for 10 weeks. Influenza vaccine was inoculated at week 4. Nutritional and biochemical indices, intestinal micro bacteria and immunological indices were analyzed. The Bifidobacterium count in groups F and C at week 0 was 6.4 ± 1.9 and 6.6 ± 3.0 (log10 [count/g feces]), respectively. Although the count in group C decreased at week 10, the count in group F increased. The Bacteroides count in group F increased from 10.7 ± 0.9 to 11.4 ± 0.5, but decreased in group C from 11.2 ± 0.2 to 10.7 ± 0.4. Although the enhanced titers of H1N1, H3N2 and B antigens against the vaccine decreased thereafter in group C, these enhanced titers in group F could be maintained. Our findings suggest that prebiotics affect the intestinal microbiota and might maintain the antibody titers in elderly individuals. © 2015 Japan Geriatrics Society.
Hume, Megan P; Nicolucci, Alissa C; Reimer, Raylene A
2017-04-01
Background: Prebiotics have been shown to improve satiety in adults with overweight and obesity; however, studies in children are limited. Objective: We examined the effects of prebiotic supplementation on appetite control and energy intake in children with overweight and obesity. Design: This study was a randomized, double-blind, placebo-controlled trial. Forty-two boys and girls, ages 7-12 y, with a body mass index (BMI) of ≥85th percentile were randomly assigned to 8 g oligofructose-enriched inulin/d or placebo (maltodextrin) for 16 wk. Objective measures of appetite included energy intake at an ad libitum breakfast buffet, 3-d food records, and fasting satiety hormone concentrations. Subjective appetite ratings were obtained from visual analog scales before and after the breakfast. Children's Eating Behavior Questionnaires were also completed by caregivers. Results: Compared with placebo, prebiotic intake resulted in significantly higher feelings of fullness ( P = 0.04) and lower prospective food consumption ( P = 0.03) at the breakfast buffet at 16 wk compared with baseline. Compared with placebo, prebiotic supplementation significantly reduced energy intake at the week 16 breakfast buffet in 11- and 12-y-olds ( P = 0.04) but not in 7- to 10-y-olds. Fasting adiponectin ( P = 0.04) and ghrelin ( P = 0.03) increased at 16 wk with the prebiotic compared with placebo. In intent-to-treat analysis, there was a trend for prebiotic supplementation to reduce BMI z score to a greater extent than placebo (-3.4%; P = 0.09) and a significant -3.8% reduction in per-protocol analysis ( P = 0.043). Conclusions: Independent of other lifestyle changes, prebiotic supplementation in children with overweight and obesity improved subjective appetite ratings. This translated into reduced energy intake in a breakfast buffet in older but not in younger children. This simple dietary change has the potential to help with appetite regulation in children with obesity. This trial was registered at clinicaltrials.gov as NCT02125955. © 2017 American Society for Nutrition.
Sealey, Wendy M.; Conley, Zachariah B.; Bensley, Molly
2015-01-01
Prebiotics have successfully been used to prevent infectious diseases in aquaculture and there is an increasing amount of literature that suggests that these products can also improve alternative protein utilization and digestion. Therefore, the objective of this study was to examine whether prebiotic supplementation increased the growth efficiency, intestinal health, and disease resistance of cutthroat trout fed a high level of dietary soybean meal. To achieve this objective, juvenile Westslope cutthroat trout (Oncorhynchus clarkii lewisi) were fed a practical type formulation with 0 or 30% dietary soybean meal with or without the commercial prebiotic (Grobiotic-A) prior to experimental exposure to Flavobacterium psychrophilum. Juvenile Westslope cutthroat trout (initial weight 7.8 g/fish ±SD of 0.5 g) were stocked at 30 fish/tank in 75 L tanks with six replicate tanks per diet and fed their respective diets for 20 weeks. Final weights of Westslope cutthroat trout were affected by neither dietary soybean meal inclusion level (P = 0.9582) nor prebiotic inclusion (P = 0.9348) and no interaction was observed (P = 0.1242). Feed conversion ratios were similarly not affected by soybean meal level (P = 0.4895), prebiotic inclusion (P = 0.3258) or their interaction (P = 0.1478). Histological examination of the distal intestine of Westslope cutthroat trout demonstrated increases in inflammation due to both increased soybean meal inclusion level (P = 0.0038) and prebiotic inclusion (P = 0.0327) without significant interaction (P = 0.3370). Feeding dietary soybean meal level at 30% increased mortality of F. psychrophilum cohabitation challenged Westslope cutthroat trout (P = 0.0345) while prebiotic inclusion tended to decrease mortality (P = 0.0671). These results indicate that subclinical alterations in intestinal inflammation levels due to high dietary inclusion levels of soybean meal could predispose Westslope cutthroat trout to F. psychrophilum infection. PMID:26379662
Sealey, Wendy M; Conley, Zachariah B; Bensley, Molly
2015-01-01
Prebiotics have successfully been used to prevent infectious diseases in aquaculture and there is an increasing amount of literature that suggests that these products can also improve alternative protein utilization and digestion. Therefore, the objective of this study was to examine whether prebiotic supplementation increased the growth efficiency, intestinal health, and disease resistance of cutthroat trout fed a high level of dietary soybean meal. To achieve this objective, juvenile Westslope cutthroat trout (Oncorhynchus clarkii lewisi) were fed a practical type formulation with 0 or 30% dietary soybean meal with or without the commercial prebiotic (Grobiotic-A) prior to experimental exposure to Flavobacterium psychrophilum. Juvenile Westslope cutthroat trout (initial weight 7.8 g/fish ±SD of 0.5 g) were stocked at 30 fish/tank in 75 L tanks with six replicate tanks per diet and fed their respective diets for 20 weeks. Final weights of Westslope cutthroat trout were affected by neither dietary soybean meal inclusion level (P = 0.9582) nor prebiotic inclusion (P = 0.9348) and no interaction was observed (P = 0.1242). Feed conversion ratios were similarly not affected by soybean meal level (P = 0.4895), prebiotic inclusion (P = 0.3258) or their interaction (P = 0.1478). Histological examination of the distal intestine of Westslope cutthroat trout demonstrated increases in inflammation due to both increased soybean meal inclusion level (P = 0.0038) and prebiotic inclusion (P = 0.0327) without significant interaction (P = 0.3370). Feeding dietary soybean meal level at 30% increased mortality of F. psychrophilum cohabitation challenged Westslope cutthroat trout (P = 0.0345) while prebiotic inclusion tended to decrease mortality (P = 0.0671). These results indicate that subclinical alterations in intestinal inflammation levels due to high dietary inclusion levels of soybean meal could predispose Westslope cutthroat trout to F. psychrophilum infection.
Abiotic formation of valine peptides under conditions of high temperature and high pressure.
Furukawa, Yoshihiro; Otake, Tsubasa; Ishiguro, Takato; Nakazawa, Hiromoto; Kakegawa, Takeshi
2012-12-01
We investigated the oligomerization of solid valine and the stabilities of valine and valine peptides under conditions of high temperature (150-200 °C) and high pressure (50-150 MPa). Experiments were performed under non-aqueous condition in order to promote dehydration reaction. After prolonged exposure of monomeric valine to elevated temperatures and pressures, the products were analyzed by liquid chromatography mass spectrometry comparing their retention times and masses. We identified linear peptides that ranged in size from dimer to hexamer, as well as a cyclic dimer. Previous studies that attempted abiotic oligomerization of valine in the absence of a catalyst have never reported valine peptides larger than a dimer. Increased reaction temperature increased the dissociative decomposition of valine and valine peptides to products such as glycine, β-alanine, ammonia, and amines by processes such as deamination, decarboxylation, and cracking. The amount of residual valine and peptide yields was greater at higher pressures at a given temperature, pressure, and reaction time. This suggests that dissociative decomposition of valine and valine peptides is reduced by pressure. Our findings are relevant to the investigation of diagenetic processes in prebiotic marine sediments where similar pressures occur under water-poor conditions. These findings also suggest that amino acids, such as valine, could have been polymerized to peptides in deep prebiotic marine sediments within a few hundred million years.
Reygner, Julie; Lichtenberger, Lydia; Elmhiri, Ghada; Dou, Samir; Bahi-Jaber, Narges; Rhazi, Larbi; Depeint, Flore; Bach, Veronique
2016-01-01
Increasing evidence indicates that chlorpyrifos (CPF), an organophosphorus insecticide, is involved in metabolic disorders. We assess the hypothesis whether supplementation with prebiotics from gestation to adulthood, through a modulation of microbiota composition and fermentative activity, alleviates CPF induced metabolic disorders of 60 days old offspring. 5 groups of Wistar rats, from gestation until weaning, received two doses of CPF pesticide: 1 mg/kg/day (CPF1) or 3.5 mg/kg/day (CPF3.5) with free access to inulin (10g/L in drinking water). Then male pups received the same treatment as dams. Metabolic profile, leptin sensitivity, insulin receptor (IR) expression in liver, gut microbiota composition and short chain fatty acid composition (SCFAs) in the colon, were analyzed at postnatal day 60 in the offspring (PND 60). CPF3.5 increased offspring’s birth body weight (BW) but decreased BW at PND60. Inulin supplementation restored the BW at PND 60 to control levels. Hyperinsulinemia and decrease in insulin receptor β in liver were seen in CPF1 exposed rats. In contrast, hyperglycemia and decrease in insulin level were found in CPF3.5 rats. Inulin restored the levels of some metabolic parameters in CPF groups to ranges comparable with the controls. The total bacterial population, short chain fatty acid (SCFA) production and butyrate levels were enhanced in CPF groups receiving inulin. Our data indicate that developmental exposure to CPF interferes with metabolism with dose related effects evident at adulthood. By modulating microbiota population and fermentative activity, inulin corrected adult metabolic disorders of rats exposed to CPF during development. Prebiotics supply may be thus considered as a novel nutritional strategy to counteract insulin resistance and diabetes induced by a continuous pesticide exposure. PMID:27760213
Álvaro-Benito, Miguel; Sainz-Polo, M. Angela; González-Pérez, David; González, Beatriz; Plou, Francisco J.; Fernández-Lobato, María; Sanz-Aparicio, Julia
2012-01-01
Schwanniomyces occidentalis β-fructofuranosidase (Ffase) is a GH32 dimeric enzyme that releases fructose from the nonreducing end of various oligosaccharides and essential storage fructans such as inulin. It also catalyzes the transfer of a fructosyl unit to an acceptor producing 6-kestose and 1-kestose, prebiotics that stimulate the growth of bacteria beneficial for human health. We report here the crystal structure of inactivated Ffase complexed with fructosylnystose and inulin, which shows the intricate net of interactions keeping the substrate tightly bound at the active site. Up to five subsites were observed, the sugar unit located at subsite +3 being recognized by interaction with the β-sandwich domain of the adjacent subunit within the dimer. This explains the high activity observed against long substrates, giving the first experimental evidence of the direct role of a GH32 β-sandwich domain in substrate binding. Crucial residues were mutated and their hydrolase/transferase (H/T) activities were fully characterized, showing the involvement of the Gln-228/Asn-254 pair in modulating the H/T ratio and the type β(2–1)/β(2–6) linkage formation. We generated Ffase mutants with new transferase activity; among them, Q228V gives almost specifically 6-kestose, whereas N254T produces a broader spectrum product including also neokestose. A model for the mechanism of the Ffase transfructosylation reaction is proposed. The results contribute to an understanding of the molecular basis regulating specificity among GH-J clan members, which represent an interesting target for rational design of enzymes, showing redesigned activities to produce tailor-made fructooligosaccharides. PMID:22511773
3 EXPOSE Missions - overview and lessons learned
NASA Astrophysics Data System (ADS)
Rabbow, E.; Willnekcer, R.; Reitz, G.; Aman, A.; Bman, B.; Cman, C.
2011-10-01
The International Space Station ISS provides a variety of external research platforms for experiments aiming at the utilization of space parameters like vacuum, temperature oscillation and in particular extraterrestrial short wavelength UV and ionizing radiation which cannot be simulated accurately in the laboratory. Three Missions, two past and one upcoming, will be presented. A family of astrobiological experimental ESA facilities called "EXPOSE" were and will be accommodated on these outside exposure platforms: on one of the external balconies of the European Columbus Module (EXPOSE-E) and on the URM-D platform on the Russian Zvezda Module (EXPOSE-R and EXPOSE-R2). Exobiological and radiation experiments, exposing chemical, biological and dosimetric samples to the harsh space environment are - and will be - accommodated on these facilities to increase our knowledge on the origin, evolution and distribution of life, on Earth and possibly beyond. The biological experiments investigate resistance and adaptation of organisms like bacteria, Achaea, fungi, lichens, plant seeds and small animals like mosquito larvae to extreme environmental conditions and underlying mechanisms like DNA repair. The organic chemical experiments analyse chemical reactions triggered by the extraterrestrial environment, especially short wavelength UV radiation, to better understand prebiotic chemistry. The facility is optimized to allow exposure of biological specimen and material samples under a variety of conditions, using optical filter systems. Environmental parameters like temperature and radiation are regularly recorded and down linked by telemetry. Two long term missions named according to their facility - EXPOSE-E and EXPOSE-R - are completed and a third mission is planned and currently prepared. Operations of all three missions including sample accommodation are performed by DLR. An overview of the two completed missions will be given including lessons learned as well as an outlook and short introduction to the next mission, EXPSOE-R2
de Souza-Barros, Fernando; Braz-Levigard, Raphael; Ching-San, Yonder; Monte, Marisa M B; Bonapace, José A P; Montezano, Viviane; Vieyra, Adalberto
2007-02-01
Phosphate (P(i)) sorption assays onto pyrite in media simulating primeval aquatic scenarios affected by hydrothermal emissions, reveal that acidic conditions favour P(i) sorption whereas mild alkaline media--as well as those simulating sulfur oxidation to SO(2-) (4)--revert this capture process. Several mechanisms relevant to P(i) availability in prebiotic eras are implicated in the modulation of these processes. Those favouring sorption are: (a) hydrophobic coating of molecules, such as acetate that could be formed in the vicinity of hydrothermal vents; (b) water and Mg(2+) bridging in the interface mineral-aqueous media; (c) surface charge neutralization by monovalent cations (Na+ and K+). The increase of both the medium pH and the SO(2-) (4) trapping by the mineral interface would provoke the release of sorbed P(i) due to charge polarization. Moreover it is shown that P(i) self-modulates its sorption, a mechanism that depends on the abundance of SO(2-) (4) in the interface. The relevance of the proposed mechanisms of P(i) capture, release and trapping arises from the need of abundant presence of this molecule for primitive phosphorylations, since--similarly to contemporary aqueous media--inorganic phosphate concentrations in primitive seas should have been low. It is proposed that the presence of sulphide minerals with high affinity to P(i) could have trapped this molecule in an efficient manner, allowing its concentration in specific niches. In these niches, the conditions studied in the present work would have been relevant for its availability in soluble form, specially in primitive insulated systems with pH gradients across the wall.
Recent advances on prebiotic lactulose production.
Sitanggang, Azis Boing; Drews, Anja; Kraume, Matthias
2016-09-01
Lactulose, a synthetic disaccharide, has received increasing interest due to its role as a prebiotic. The production of lactulose is important in the dairy industry, as it is regarded as a high value-added derivative of whey or lactose. The industrial production of lactulose is still mainly done by chemical isomerization. Due to concerns on the environmental and tedious separation processes, the enzymatic-based lactulose synthesis has been regarded as an interesting alternative. This work aims at comparing chemical and enzyme-catalyzed lactulose synthesis. With an emphasis on the latter one, this review discusses the influences of the critical operating conditions and the suited operation mode on the transgalactosylation of lactulose using microbial enzymes. As an update and supplement to other previous reviews, this work also summarizes the recent reports that highlighted the enzymatic isomerization of lactose using cellobiose 2-epimerase to produce lactulose at elevated yields.
Design of the TMT Mid-Infrared Echelle: Science Drivers and Design Overview
2006-01-01
plausibility of an extra-terrestrial origin for the prebiotic compounds that led to the emergence of life on Earth. MIRES imaging of debris disks will...explore mechanisms by which water and prebiotic organic compounds may have been delivered to planetary surfaces. These studies will be highly synergistic...that are precursors to complex prebiotic compounds. The high sensitivity also allows the exploration of a wider range of wavelengths, including those
Assessing the effects of different prebiotic dietary oligosaccharides in sheep milk ice cream.
Balthazar, C F; Silva, H L A; Vieira, A H; Neto, R P C; Cappato, L P; Coimbra, P T; Moraes, J; Andrade, M M; Calado, V M A; Granato, D; Freitas, M Q; Tavares, M I B; Raices, R S L; Silva, M C; Cruz, A G
2017-01-01
The objective of this study was to assess the effects of different prebiotic dietary oligosaccharides (inulin, fructo-oligosaccharide, galacto-oligossacaride, short-chain fructo-oligosaccharide, resistant starch, corn dietary oligosaccharide and polydextrose) in non-fat sheep milk ice cream processing through physical parameters, water mobility and thermal analysis. Overall, the fat replacement by dietary prebiotic oligosaccharides significantly decreased the melting time, melting temperature and the fraction and relaxation time for fat and bound water (T 22 ) while increased the white intensity and glass transition temperature. The replacement of sheep milk fat by prebiotics in sheep milk ice cream constitutes an interesting option to enhance nutritional aspects and develop a functional food. Copyright © 2016 Elsevier Ltd. All rights reserved.
Novel probiotics and prebiotics: road to the market.
Kumar, Himanshu; Salminen, Seppo; Verhagen, Hans; Rowland, Ian; Heimbach, Jim; Bañares, Silvia; Young, Tony; Nomoto, Koji; Lalonde, Mélanie
2015-04-01
Novel probiotics and prebiotics designed to manipulate the gut microbiota for improving health outcomes are in demand as the importance of the gut microbiota in human health is revealed. The regulations governing introduction of novel probiotics and prebiotics vary by geographical region. Novel foods and foods with health claims fall under specific regulations in several countries. The paper reviews the main requirements of the regulations in the EU, USA, Canada and Japan. We propose a number of areas that need to be addressed in any safety assessment of novel probiotics and prebiotics. These include publication of the genomic sequence, antibiotic resistance profiling, selection of appropriate in vivo model, toxicological studies (including toxin production) and definition of target population. Copyright © 2014 Elsevier Ltd. All rights reserved.
Application of inulin in cheese as prebiotic, fat replacer and texturizer: a review.
Karimi, Reza; Azizi, Mohammad Hossein; Ghasemlou, Mehran; Vaziri, Moharam
2015-03-30
Inulin is a food ingredient that belongs to a class of carbohydrates known as fructans. Nutritionally it has functional properties and health-promoting effects that include reduced calorie value, dietary fiber and prebiotic effects. Inulin is increasingly used in industrially processed dairy and non-dairy products because it is a bulking agent for use in fat replacement, textural modification and organoleptic improvement. Addition of inulin to different kinds of cheese can be beneficial in the manufacture of a reduced- or low-fat, texturized, symbiotic product. This paper gives an overview of some aspects of the microstructural, textural, rheological, prebiotic and sensorial effects of inulin incorporated in cheese as fat replacer, prebiotic and texture modifier. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kellow, Nicole J; Coughlan, Melinda T; Savige, Gayle S; Reid, Christopher M
2014-07-10
Advanced glycation endproducts (AGEs) contribute to the development of vascular complications of diabetes and have been recently implicated in the pathogenesis of diabetes. Since AGEs are generated within foodstuffs upon food processing, it is increasingly recognised that the modern diet is replete with AGEs. AGEs are thought to stimulate chronic low-grade inflammation and promote oxidative stress and have been linked to the development of insulin resistance. Simple therapeutic strategies targeted at attenuating the progression of chronic low-grade inflammation and insulin resistance are urgently required to prevent or slow the development of type 2 diabetes in susceptible individuals. Dietary modulation of the human colonic microbiota has been shown to confer a number of health benefits to the host, but its effect on advanced glycation is unknown. The aim of this article is to describe the methodology of a double-blind placebo-controlled randomised crossover trial designed to determine the effect of 12 week consumption of a prebiotic dietary supplement on the advanced glycation pathway, insulin sensitivity and chronic low-grade inflammation in adults with pre-diabetes. Thirty adults with pre-diabetes (Impaired Glucose Tolerance or Impaired Fasting Glucose) aged between 40-60 years will be randomly assigned to receive either 10 grams of prebiotic (inulin/oligofructose) daily or 10 grams placebo (maltodextrin) daily for 12 weeks. After a 2-week washout period, study subjects will crossover to receive the alternative dietary treatment for 12 weeks. The primary outcome is the difference in markers of the advanced glycation pathway carboxymethyllysine (CML) and methylglyoxal (MG) between experimental and control treatments. Secondary outcomes include HbA1c, insulin sensitivity, lipid levels, blood pressure, serum glutathione, adiponectin, IL-6, E-selectin, myeloperoxidase, C-reactive protein, Toll-like Receptor 4 (TLR4), soluble receptor for AGE (sRAGE), urinary 8-isoprostanes, faecal bacterial composition and short chain fatty acid profile. Anthropometric measures including BMI and waist circumference will be collected in addition to comprehensive dietary and lifestyle data. Prebiotics which selectively stimulate the growth of beneficial bacteria in the human colon might offer protection against AGE-related pathology in people at risk of developing type 2 diabetes. Australia and New Zealand Clinical Trials Register (ANZCTR): ACTRN12613000130763.
Comstock, Sarah S; Li, Min; Wang, Mei; Monaco, Marcia H; Kuhlenschmidt, Theresa B; Kuhlenschmidt, Mark S; Donovan, Sharon M
2017-06-01
Background: Human milk oligosaccharides (HMOs) have antimicrobial and immunomodulatory actions. It has previously been reported that these oligosaccharides contribute to the reduced duration of rotavirus-induced diarrhea in pigs. Objective: We measured the effects of HMOs and prebiotic oligosaccharides on immune cell populations from noninfected and rotavirus-infected pigs. We hypothesized that dietary HMOs would modulate systemic and gastrointestinal immunity. Methods: Colostrum-deprived newborn pigs were fed formula, formula with 4 g HMOs/L (2'-fucosyllactose, lacto- N -neotetraose, 6'-sialyllactose, 3'-sialyllactose, and free sialic acid), or formula with 3.6 g short-chain galactooligosaccharides/L and 0.4 g long-chain fructooligosaccharides/L. On day 10, half of the pigs were infected with the porcine rotavirus strain OSU. Peripheral blood mononuclear cell (PBMC), mesenteric lymph node (MLN), and ileal Peyer's patch immune cell populations were assessed with the use of flow cytometry 5 d postinfection. Interferon-γ (IFN-γ)-producing cells were assessed with the use of Enzyme-Linked ImmunoSpot assay. Results: Infection changed immune cell populations with more systemic natural killer (NK) cells, memory effector T cells, and major histocompatibility complex II + cells in infected than noninfected pigs ( P < 0.06). Regardless of infection status, HMO-fed pigs had nearly twice as many PBMC NK cells, 36% more MLN effector memory T cells, and 5 times more PBMC basophils than formula-fed pigs ( P < 0.04). These populations were intermediate in pigs fed prebiotics. PBMCs from HMO-fed noninfected pigs had twice as many IFN-γ-producing cells as did those from formula-fed noninfected pigs ( P = 0.017). The PBMCs and MLNs of formula-fed noninfected pigs had 3 times more plasmacytoid dendritic cells (pDCs) than those of HMO-fed noninfected and formula-fed infected pigs ( P < 0.04). In the MLNs, the formula-fed noninfected pigs had more macrophages, pDCs, and mature DCs ( P < 0.04) but fewer immature DCs than HMO-fed noninfected pigs ( P = 0.022). Conclusions: Dietary HMOs were more effective than prebiotics in altering systemic and gastrointestinal immune cells in pigs. These altered immune cell populations may mediate the effects of dietary HMOs on rotavirus infection susceptibility. © 2017 American Society for Nutrition.
Kaur, Sarabjeet; Sharma, Purshotam; Wetmore, Stacey D
2017-11-22
The RNA world hypothesis assumes that RNA was the first informational polymer that originated from prebiotic chemical soup. However, since the reaction of d-ribose with canonical nucleobases (A, C, G and U) fails to yield ribonucleosides (rNs) in substantial amounts, the spontaneous origin of rNs and the subsequent synthesis of RNA remains an unsolved mystery. To this end, it has been suggested that RNA may have evolved from primitive genetic material (preRNA) composed of simpler prebiotic heterocycles that spontaneously form glycosidic bonds with ribose. As an effort toward evaluating this hypothesis, the present study uses density functional theory (DFT) to assess the suitability of barbituric acid (BA) and melamine (MM) to act as prebiotic nucleobases, both of which have recently been shown to spontaneously form a glycosidic bond with ribose and organize into supramolecular assemblies in solution. The significant strength of hydrogen bonds involving BA and MM indicates that such interactions may have played a crucial role in their preferential selection over competing heterocycles that interact solely through stacking interactions from the primordial soup during the early phase of evolution. However, the greater stability of stacked dimers involving BA or MM and the canonical nucleobases compared to those consisting solely of BA and/or MM points towards the possible evolution of intermediate informational polymers consisting of prebiotic and canonical nucleobases, which could have eventually evolved into RNA. Analysis of the associated rNs reveals an anti conformational preference for the biologically-relevant β-anomer of both BA and MM rNs, which will allow complementary WC-like hydrogen bonding that can stabilize preRNA polymers. Large calculated deglycosylation barriers suggest BA rNs containing C-C glycosidic bonds are relevant in challenging prebiotic environments such as volcanic geotherms, while lower barriers indicate the MM rNs containing C-N-C glycosidic linkages may have been more likely synthesized from simple precursors such as urea-ice in icy (polar) regions. Together, our quantum chemical data clarifies the physicochemical interactions and stability of potential prebiotically-relevant constituents of BA and MM polymeric assemblies, and complements information from previous experimental studies to bolster the candidature of these heterocycles as prebiotic nucleobases.
Fiber and prebiotic supplementation in enteral nutrition: A systematic review and meta-analysis
Kamarul Zaman, Mazuin; Chin, Kin-Fah; Rai, Vineya; Majid, Hazreen Abdul
2015-01-01
AIM: To investigate fiber and prebiotic supplementation of enteral nutrition (EN) for diarrhea, fecal microbiota and short-chain fatty acids (SCFAs). METHODS: MEDLINE, EMBASE, Cochrane Library, CINAHL, Academic Search Premier, and Web of Science databases were searched for human experimental and observational cohort studies conducted between January 1990 and June 2014. The keywords used for the literature search were fiber, prebiotics and enteral nutrition. English language studies with adult patient populations on exclusive EN were selected. Abstracts and/or full texts of selected studies were reviewed and agreed upon by two independent researchers for inclusion in the meta-analysis. Tools used for the quality assessment were Jadad Scale and the Scottish Intercollegiate Guidelines Network Critical Appraisal of the Medical Literature. RESULTS: A total of 456 possible articles were retrieved, and 430 were excluded due to lack of appropriate data. Of the 26 remaining studies, only eight investigated the effects of prebiotics. Results of the meta-analysis indicated that overall, fiber reduces diarrhea in patients receiving EN (OR = 0.47; 95%CI: 0.29-0.77; P = 0.02). Subgroup analysis revealed a positive effect of fiber supplementation in EN towards diarrhea in stable patients (OR = 0.31; 95%CI: 0.19-0.51; P < 0.01), but not in critically ill patients (OR = 0.89; 95%CI: 0.41-1.92; P = 0.77). Prebiotic supplementation in EN does not improve the incidence of diarrhea despite its manipulative effect on bifidobacteria concentrations and SCFA in healthy humans. In addition, the effect of fiber and/or prebiotic supplementation towards fecal microbiota and SCFA remain disputable. CONCLUSION: Fiber helps minimize diarrhea in patients receiving EN, particularly in non-critically ill patients. However, the effect of prebiotics in moderating diarrhea is inconclusive. PMID:25954112
Burokas, Aurelijus; Arboleya, Silvia; Moloney, Rachel D; Peterson, Veronica L; Murphy, Kiera; Clarke, Gerard; Stanton, Catherine; Dinan, Timothy G; Cryan, John F
2017-10-01
The realization that the microbiota-gut-brain axis plays a critical role in health and disease, including neuropsychiatric disorders, is rapidly advancing. Nurturing a beneficial gut microbiome with prebiotics, such as fructo-oligosaccharides (FOS) and galacto-oligosaccharides (GOS), is an appealing but underinvestigated microbiota manipulation. Here we tested whether chronic prebiotic treatment modifies behavior across domains relevant to anxiety, depression, cognition, stress response, and social behavior. C57BL/6J male mice were administered FOS, GOS, or a combination of FOS+GOS for 3 weeks prior to testing. Plasma corticosterone, microbiota composition, and cecal short-chain fatty acids were measured. In addition, FOS+GOS- or water-treated mice were also exposed to chronic psychosocial stress, and behavior, immune, and microbiota parameters were assessed. Chronic prebiotic FOS+GOS treatment exhibited both antidepressant and anxiolytic effects. Moreover, the administration of GOS and the FOS+GOS combination reduced stress-induced corticosterone release. Prebiotics modified specific gene expression in the hippocampus and hypothalamus. Regarding short-chain fatty acid concentrations, prebiotic administration increased cecal acetate and propionate and reduced isobutyrate concentrations, changes that correlated significantly with the positive effects seen on behavior. Moreover, FOS+GOS reduced chronic stress-induced elevations in corticosterone and proinflammatory cytokine levels and depression-like and anxiety-like behavior in addition to normalizing the effects of stress on the microbiota. Taken together, these data strongly suggest a beneficial role of prebiotic treatment for stress-related behaviors. These findings strengthen the evidence base supporting therapeutic targeting of the gut microbiota for brain-gut axis disorders, opening new avenues in the field of nutritional neuropsychopharmacology. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Prebiotics for the management of hyperbilirubinemia in preterm neonates.
Armanian, Amir Mohammad; Barekatain, Behzad; Hoseinzadeh, Maryam; Salehimehr, Nima
2016-09-01
We evaluated if prebiotics have benefits for the management of hyperbilirubinemia in preterm neonates. Preterm neonates were entered into the study when enteral feeding volume met 30 mL/kg/day. They randomly received a mixture of short-chain galacto-oligosacarids/long-chain fructo-oligosacarids or distilled water (placebo) for 1 week. Total serum bilirubin level was measured by transcutaneous bilirubinometry. Stool frequency and meeting full enteral feeding during the study period were considered as secondary outcomes. Twenty-five neonates in each group completed the trial. Bilirubin level was decreased with the prebiotic (-1.3 ± 1.8 mg/dL, p = 0.004), but not placebo (-0.1 ± 3.3 mg/dL, p = 0.416). Peak bilirubin level was lower with the prebiotic than placebo (8.3 ± 1.7 versus 10.1 ± 2.2 mg/dL, p = 0.003). Stool frequency was increased with the prebiotic (0.7 ± 1.9 defecation/day, p = 0.014), but not with placebo (0.6 ± 1.5 defecation/day, p = 0.133). Average stool frequency (2.4 ± 0.4 versus 1.9 ± 0.5 defecation/day, p = 0.003) and frequently of meeting full enteral feeding (60% versus 16%, p = 0.002) were higher with the prebiotic than placebo. Prebiotic oligosaccharides increase stool frequency, improve feeding tolerance and reduce bilirubin level in preterm neonates and therefore can be efficacious for the management of neonatal hyperbilirubinemia.
Barengolts, Elena
2013-01-01
To review the role of human large bowel microbacteria (microbiota) in the glucose homeostasis, to address vitamin D (VD) and prebiotics interactions with microbiota, and to summarize recent randomized clinical trials (RCTs) of VD and prebiotics supplementation in prediabetes (PreDM) and type 2 diabetes mellitus (T2DM). Primary literature was reviewed in the following areas: composition and activity of human microbiota associated with PreDM and T2DM, interactions between microbiota and glucose homeostasis, the interaction of microbiota with VD/prebiotics, and RCTs of VD/prebiotics in subjects with PreDM or T2DM. The human microbiota is comprised of 100 trillion bacteria with an aggregate genome that is 150-fold larger than the human genome. Data from the animal models and human studies reveal that an "obesogenic" diet results into the initial event of microbiota transformation from symbiosis to dysbiosis. The microbial antigens, such as Gram(-) bacteria and lipopolysaccharide (LPS), translocate to the host interior and trigger increased energy harvesting and Toll-like receptor (TLR) activation with subsequent inflammatory pathways signaling. The "double hit" of steatosis (ectopic fat accumulation) and "-itis" (inflammation) and contribution of "corisks" (e.g., vitamin D deficiency [VDD]) are required to activate molecular signaling, including impaired insulin signaling and secretion, that ends with T2DM and associated diseases. Dietary changes (e.g., prebiotics, VD supplementation) may ameliorate this process if initiated prior to the process becoming irreversible. Emerging evidence suggests an important role of microbiota in glucose homeostasis. VD supplementation and prebiotics may be useful in managing PreDM and T2DM.
Effects of HIV, antiretroviral therapy and prebiotics on the active fraction of the gut microbiota.
Deusch, Simon; Serrano-Villar, Sergio; Rojo, David; Martínez-Martínez, Mónica; Bargiela, Rafael; Vázquez-Castellanos, Jorge F; Sainz, Talía; Barbas, Coral; Moya, Andrés; Moreno, Santiago; Gosalbes, María J; Estrada, Vicente; Seifert, Jana; Ferrer, Manuel
2018-06-19
In a recent blinded randomized study, we found that in HIV-infected individuals a short supplementation with prebiotics (scGOS/lcFOS/glutamine) ameliorates dysbiosis of total gut bacteria, particularly among viremic untreated patients. Our study goal was to determine the fraction of the microbiota that becomes active during the intervention and that could provide additional functional information. A total of six healthy individuals, and 16 HIV-infected patients comprising viremic untreated patients (n = 5) and antiretroviral therapy-treated patients that are further divided into immunological responders (n = 7) and immunological nonresponders (n = 4) completed the 6-week course of prebiotic treatment, including six patients receiving a placebo. Alpha and beta diversity of potentially active and total gut microbiota was evaluated using shotgun proteomics and 16S rRNA gene sequencing. HIV infection decreased dormancy and increased alpha diversity of active bacteria in comparison with the healthy controls, whose richness was not further influenced by the prebiotic intervention. The effect of the prebiotics was most evident at the beta-diversity of active bacteria, particularly within viremic untreated patients. We found that the prebiotics did not only ameliorate dysbiosis of total bacteria in viremic untreated patients but also increased the abundance of active bacteria with strong immunomodulatory properties and amino acids metabolism, namely Bifidobacteriaceae, at similar levels to those in healthy individuals. This effect was attenuated in ART-treated individuals. The effect of prebiotics was greater among ART-naive HIV-infected individuals than in ART-treated patients and healthy controls. This highlights the importance of therapies aimed at manipulating the microbiome in this group of patients.
Inversion Concept of the Origin of Life
NASA Astrophysics Data System (ADS)
Kompanichenko, V. N.
2012-06-01
The essence of the inversion concept of the origin of life can be narrowed down to the following theses: 1) thermodynamic inversion is the key transformation of prebiotic microsystems leading to their transition into primary forms of life; 2) this transformation might occur only in the microsystems oscillating around the bifurcation point under far-from-equilibrium conditions. The transformation consists in the inversion of the balance "free energy contribution / entropy contribution", from negative to positive values. At the inversion moment the microsystem radically reorganizes in accordance with the new negentropy (i.e. biological) way of organization. According to this approach, the origin-of-life process on the early Earth took place in the fluctuating hydrothermal medium. The process occurred in two successive stages: a) spontaneous self-assembly of initial three-dimensional prebiotic microsystems composed mainly of hydrocarbons, lipids and simple amino acids, or their precursors, within the temperature interval of 100-300°C (prebiotic stage); b) non-spontaneous synthesis of sugars, ATP and nucleic acids started at the inversion moment under the temperature 70-100°C (biotic stage). Macro- and microfluctuations of thermodynamic and physico-chemical parameters able to sustain this way of chemical conversion have been detected in several contemporary hydrothermal systems. A minimal self-sufficient unit of life on the early Earth was a community of simplest microorganisms (not a separate microorganism).
Dondi, Daniele; Merli, Daniele; Albini, Angelo; Zeffiro, Alberto; Serpone, Nick
2012-05-01
When a chemical system is submitted to high energy sources (UV, ionizing radiation, plasma sparks, etc.), as is expected to be the case of prebiotic chemistry studies, a plethora of reactive intermediates could form. If oxygen is present in excess, carbon dioxide and water are the major products. More interesting is the case of reducing conditions where synthetic pathways are also possible. This article examines the theoretical modeling of such systems with random-generated chemical networks. Four types of random-generated chemical networks were considered that originated from a combination of two connection topologies (viz., Poisson and scale-free) with reversible and irreversible chemical reactions. The results were analyzed taking into account the number of the most abundant products required for reaching 50% of the total number of moles of compounds at equilibrium, as this may be related to an actual problem of complex mixture analysis. The model accounts for multi-component reaction systems with no a priori knowledge of reacting species and the intermediates involved if system components are sufficiently interconnected. The approach taken is relevant to an earlier study on reactions that may have occurred in prebiotic systems where only a few compounds were detected. A validation of the model was attained on the basis of results of UVC and radiolytic reactions of prebiotic mixtures of low molecular weight compounds likely present on the primeval Earth.
Physiological Changes of Surface Membrane in Lactobacillus with Prebiotics.
Pan, Mingfang; Kumaree, Kishore K; Shah, Nagendra P
2017-03-01
Synbiotics are always considered to be beneficial in healthy manipulation of gut environment; however, the purpose of this research was to investigate the dominance of synbiotic over the individual potential of probiotics and prebiotics. Four different types of prebiotics, fructo-oligosaccharides, raffinose, inulin, and cellobiose, were evaluated based on their varying degree of polymerization, combined each with 2 different Lactobacilli strains, including Lactobacillus paracasei 276 and Lactobacillus plantarum WCFS1. The effects of synbiotics combination on the surface structure were evaluated by analyzing auto-aggregation, membrane hydrophobicity, and adhesion to Caco-2 cells. Our results showed that both Lactobacilli exhibited significantly greater degree of attachment to Caco-2 cells (23.31% and 16.85%, respectively) when using cellobiose as a substrate than with other prebiotics (P < 0.05). Intestinal adhesion ability was in correlation with the percent of auto-aggregation, both Lactobacillus exhibited higher percent of auto-aggregation in cellobiose compared to other prebiotics. These behavioral changes in terms of attachment and auto-aggregation were further supported with the changes noticed from infrared spectra (FT-IR). © 2017 Institute of Food Technologists®.
Alves Filho, Elenilson G; Silva, Lorena Mara A; de Brito, Edy S; Wurlitzer, Nedio Jair; Fernandes, Fabiano A N; Rabelo, Maria Cristiane; Fonteles, Thatyane V; Rodrigues, Sueli
2018-11-01
The effects of thermal (pasteurization and sterilization) and non-thermal (ultrasound and plasma) processing on the composition of prebiotic and non-prebiotic acerola juices were evaluated using NMR and GC-MS coupled to chemometrics. The increase in the amount of Vitamin C was the main feature observed after thermal processing, followed by malic acid, choline, trigonelline, and acetaldehyde. On the other hand, thermal processing increased the amount of 2-furoic acid, a degradation product from ascorbic acid, as well as influenced the decrease in the amount of esters and alcohols. In general, the non-thermal processing did not present relevant effect on juices composition. The addition of prebiotics (inulin and gluco-oligosaccharides) decreased the effect of processing on juices composition, which suggested a protective effect by microencapsulation. Therefore, chemometric evaluation of the 1 H qNMR and GC-MS dataset was suitable to follow changes in acerola juice under different processing. Copyright © 2018 Elsevier Ltd. All rights reserved.
Xie, Minhao; Chen, Guijie; Wan, Peng; Dai, Zhuqing; Hu, Bing; Chen, Ligen; Ou, Shiyi; Zeng, Xiaoxiong; Sun, Yi
2017-11-29
Dietary polyphenols have been considered as novel prebiotics, and polyphenols could exert their functions through modulating intestinal microbiota. The diverse bioactivities of kudingcha could derive from its phenolic compounds, but the effects of dicaffeoylquinic acids (diCQAs) from Ilex kudingcha on intestinal microbiota have not been investigated. In the present study, high-throughput sequencing and anaerobic fermentation in vitro were utilized to investigate the microecology-modulating function of I. kudingcha diCQAs. As a result, diCQAs raised the diversity and exhibited a more considerable impact than a carbon source on the microbial profile. DiCQAs increased the relative abundances of Alistipes, Bacteroides, Bifidobacterium, Butyricimonas, Clostridium sensu stricto, Escherichia/Shigella, Parasutterella, Romboutsia, Oscillibacter, Veillonella, Phascolarctobacterium, Lachnospiracea incertae sedis, Gemmiger, Streptococcus, and Haemophilus and decreased the relative abundances of Ruminococcus, Anaerostipes, Dialister, Megasphaera, Megamonas, and Prevotella. DiCQAs also affected the generation of short-chain fatty acids through microbiota. The contents of acetic and lactic acids were raised, while the production of propionic and butyric acids was reduced. Conclusively, diCQAs from I. kudingcha had significant modulating effects on intestinal microbiota in vitro, which might be the fundamental of diCQAs exerting their bioactivities.
Formation of nucleoside 5'-polyphosphates under potentially prebiological conditions
NASA Technical Reports Server (NTRS)
Lohrmann, R.
1976-01-01
The characteristics and efficiencies of biochemical reactions involving nucleoside 5'-diphosphates and -triphosphates (important substrates of RNA and DNA synthesis) under conditions corresponding to the primitive prebiotic earth are investigated. Urea catalysis of the formation of linear inorganic polyphosphates and metal ions promoting the reactions are discussed. Linear polyphosphate was incubated with Mg(++) in the presence of a nucleoside 5'-phosphate, to yield nucleoside 5'-polyphosphates when products are dried, while Mg(++) prompts depolymerization to trimetaphosphate in aqueous solutions. Plausible biogenetic pathways are examined.
Remote Sensing between Liver and Intestine: Importance of Microbial Metabolites
Fu, Zidong Donna; Cui, Julia Yue
2017-01-01
Recent technological advancements including metagenomics sequencing and metabolomics have allowed the discovery of critical functions of gut microbiota in obesity, malnutrition, neurological disorders, asthma, and xenobiotic metabolism. Classification of the human gut microbiome into distinct “enterotypes” has been proposed to serve as a new paradigm for understanding the interplay between microbial variation and human disease phenotypes, as many organs are affected by gut microbiota modifications during the pathogenesis of diseases. Gut microbiota remotely interacts with liver and other metabolic organs of the host through various microbial metabolites that are absorbed into the systemic circulation. Purpose of review The present review summarizes recent literature regarding the importance of gut microbiota in modulating the physiological and pathological responses of various host organs, and describes the functions of the known microbial metabolites that are involved in this remote sensing process, with a primary focus on the gut microbiota-liver axis. Recent findings Under physiological conditions, gut microbiota modulates the hepatic transcriptome, proteome, and metabolome, most notably down-regulating cytochrome P450 3a mediated xenobiotic metabolism. Gut microbiome also modulates the rhythmicity in liver gene expression, likely through microbial metabolites, such as butyrate and propionate that serve as epigenetic modifiers. Additionally, the production of host hormones such as primary bile acids and glucagon like peptide 1 is altered by gut microbiota to modify intermediary metabolism of the host. Summary Dysregulation of gut microbiota is implicated in various liver diseases such as alcoholic liver disease, non-alcoholic steatohepatitis, liver cirrhosis, cholangitis, and liver cancer. Gut microbiota modifiers such as probiotics and prebiotics are increasingly recognized as novel therapeutic modalities for liver and other types of human diseases. PMID:28983453
Hydrogels: Lets Thicken the Prebiotic Soup
NASA Astrophysics Data System (ADS)
Dass, A. V.; Georgelin, T.; Kee, T. P.; Brack, A.; Westall, F.
2017-07-01
We introduce a new class of material that could be interesting in prebiotic chemistry: The silica hydrogel. Inorganic cells could have provided an alternative mode of compatmentalisation on early earth.
NASA Technical Reports Server (NTRS)
Dateo, Christopher E.
2003-01-01
We develop a reacting flow model to simulate the shock induced chemistry of comets and meteoroids entering planetary atmospheres. Various atmospheric compositions comprising of simpler molecules (i.e., CH4, CO2, H2O, etc.) are investigated to determine the production efficiency of more complex prebiotic molecules as a function of composition, pressure, and entry velocity. The possible role of comets and meteoroids in creating the inventory of prebiotic material necessary for life on Early Earth is considered. Comets and meteoroids can also introduce new materials from the Interstellar Medium (ISM) to planetary atmospheres. The ablation of water from comets, introducing the element oxygen into Titan's atmosphere will also be considered and its implications for the formation of organic and prebiotic material.
Gene expression of enzymes involved in utilization of xylooligosaccharides by Lactobacillus strains
Maria, Ananieva; Margarita, Tzenova; IIlia, Iliev; Iskra, Ivanova
2014-01-01
Prebiotics are defined as food components that confer health benefits on the host through modulation of the microbiota. Xylooligosaccharides (XOS) are non-digestible oligosaccharides that have recently received increasing attention as potential prebiotic candidates. XOS are sugar oligomers composed of 1,4-linked xylopyranosyl backbone and are obtained by either chemical or, more commonly, enzymatic hydrolysis of xylan polysaccharides, extracted from the plant cell wall. The bifidogenic effect of XOS was demonstrated by both in vitro studies and small-scale in vivo human studies. Some intestinal bacterial strains are able to grow on XOS, yet numerous studies have demonstrated that the ability to utilize these oligosaccharides varies considerably among these bacteria. The aim of this study is to investigate the ability of several strains Lactobacillus to use XOS. Fifteen Lactobacillus strains, allifiated to L. plantarum, L. brevis and L. sakei, were studied. Screening procedure was performed for the ability of the strains to utilize XOS as an alternative carbon source. Only some of them utilize XOS. The growth kinetics show the presence of two lag phases, indicating that these bacteria utilize probably some monosaccharides present in the used XOS. XOS were fermented with high specificity by Bifidobacteria strains, but Lactobacilli did not metabolize XOS efficiently. PMID:26019582
Xu, Xiaofei; Yang, Jiguo; Ning, Zhengxiang; Zhang, Xuewu
2015-08-01
Aging is characterized by impaired immunity and unbalanced gut microbiota. Prebiotics have the capability to prevent or reverse age-related declines in health by modulating gut microbiota. Mushroom polysaccharides have been suggested to be potential prebiotics. However, their effects on the immunity and gut microbiota in aged mice have not been determined. This study firstly assessed the effects of a heteropolysaccharide L2 isolated from the fruit body of L. edodes on the immune response of aged mice, and then compared the composition of fecal microbiota in adult (N), old (O) and L2-treated old (Oa) mice using the high-throughput pyrosequencing technique. The results showed that L2 can restore the age-attenuated immune responses by increasing cytokine levels in peripheral blood. Moreover, L2 can partly reverse the age-altered composition of gut microbiota. The Euclidean distances (De) among 3 groups (N, O and Oa) are determined to be De(O, N) = 0.19, De(O, Oa) = 0.20, and De(N, Oa) = 0.10, i.e. there is a marked reduction in the distance from 0.19 to 0.1 by L2. This suggests the beneficial effects of L2 on enhancing immunity and improving gut health.
Gut Microbiota and Metabolic Disorders
Hur, Kyu Yeon
2015-01-01
Gut microbiota plays critical physiological roles in the energy extraction and in the control of local or systemic immunity. Gut microbiota and its disturbance also appear to be involved in the pathogenesis of diverse diseases including metabolic disorders, gastrointestinal diseases, cancer, etc. In the metabolic point of view, gut microbiota can modulate lipid accumulation, lipopolysaccharide content and the production of short-chain fatty acids that affect food intake, inflammatory tone, or insulin signaling. Several strategies have been developed to change gut microbiota such as prebiotics, probiotics, certain antidiabetic drugs or fecal microbiota transplantation, which have diverse effects on body metabolism and on the development of metabolic disorders. PMID:26124989
Aerospace Medicine and Biology. A Continuing Bibliography with Indexes
1987-12-01
GLYCERALDEHYDE AS A SOURCE OF SIMULATION ABOUT THE ORIGIN OF LIFE ENERGY AND MONOMERS FOR PREBIOTIC CONDENSATION URSULA NIESERT (Freiburg, Universitaet, Freiburg...primitive prebiotic replication system. The adsorption of Poly-C, Poly-U, Poly-A, Poly-G, and 5’-AMP, 5’-GMP, 5’-CMP and 5’-UMP onto gypsum was studied. It...Cambridge University Press. 1986. 378 p. For individual titles see A87-49035 to A87-49049. Topics discussed include prebiotic systems and evolutionary
Formation of Prebiotic Molecules in Interstellar and Cometary Ices
NASA Technical Reports Server (NTRS)
Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Dworkin, Jason; Gilette, J. Seb; Zare, Richard N.; DeVincenzi, D. (Technical Monitor)
2000-01-01
We report here on our lab studies of ice photochemistry of large organic molecules under cometary conditions. We focus on polycyclic aromatic hydrocarbons (PAHs), their photoproducts, and their similarities to molecules seen in living systems today. We note that these kinds of compounds are seen in meteorites and we propose an explanation for both their formation and their observed deuterium enrichments.
Lavado, Nieves; García de la Concepción, Juan; Babiano, Reyes; Cintas, Pedro
2018-03-15
The condensation of cyanamide and glyoxal, two well-known prebiotic monomers, in an aqueous phase has been investigated in great detail, demonstrating the formation of oligomeric species of varied structure, though consistent with generalizable patterns. This chemistry involving structurally simple substances also illustrates the possibility of building molecular complexity under prebiotically plausible conditions, not only on Earth, but also in extraterrestrial scenarios. We show that cyanamide-glyoxal reactions in water lead to mixtures comprising both acyclic and cyclic fragments, largely based on fused five- and six-membered rings, which can be predicted by computation. Remarkably, such a mixture could be identified using high-resolution electrospray ionization (ESI) mass spectrometry and spectroscopic methods. A few mechanistic pathways can be postulated, most involving the intermediacy of glyoxal cyanoimine and further chain growth, thus increasing the diversity of the observed products. This rationale is supported by theoretical analyses with clear-cut identification of all of the stationary points and transition-state structures. The properties and structural differences of oligomers obtained under thermodynamic conditions in water as opposed to those isolated by precipitation from organic media are also discussed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Delidovich, I. V.; Taran, O. P.; Simonov, A. N.; Matvienko, L. G.; Parmon, V. N.
2011-08-01
The article analyzes new and previously reported data on several catalytic and photochemical processes yielding biologically important molecules. UV-irradiation of formaldehyde aqueous solution yields acetaldehyde, glyoxal, glycolaldehyde and glyceraldehyde, which can serve as precursors of more complex biochemically relevant compounds. Photolysis of aqueous solution of acetaldehyde and ammonium nitrate results in formation of alanine and pyruvic acid. Dehydration of glyceraldehyde catalyzed by zeolite HZSM-5-17 yields pyruvaldehyde. Monosaccharides are formed in the course of the phosphate-catalyzed aldol condensation reactions of glycolaldehyde, glyceraldehyde and formaldehyde. The possibility of the direct synthesis of tetroses, keto- and aldo-pentoses from pure formaldehyde due to the combination of the photochemical production of glycolahyde and phosphate-catalyzed carbohydrate chain growth is demonstrated. Erythrulose and 3-pentulose are the main products of such combined synthesis with selectivity up to 10%. Biologically relevant aldotetroses, aldo- and ketopentoses are more resistant to the photochemical destruction owing to the stabilization in hemiacetal cyclic forms. They are formed as products of isomerization of erythrulose and 3-pentulose. The conjugation of the concerned reactions results in a plausible route to the formation of sugars, amino and organic acids from formaldehyde and ammonia under presumed 'prebiotic' conditions.
Can prebiotics and probiotics improve therapeutic outcomes for undernourished individuals?
Sheridan, Paul O; Bindels, Laure B; Saulnier, Delphine M; Reid, Gregor; Nova, Esther; Holmgren, Kerstin; O'Toole, Paul W; Bunn, James; Delzenne, Nathalie; Scott, Karen P
2014-01-01
It has become clear in recent years that the human intestinal microbiota plays an important role in maintaining health and thus is an attractive target for clinical interventions. Scientists and clinicians have become increasingly interested in assessing the ability of probiotics and prebiotics to enhance the nutritional status of malnourished children, pregnant women, the elderly, and individuals with non-communicable disease-associated malnutrition. A workshop was held by the International Scientific Association for Probiotics and Prebiotics (ISAPP), drawing on the knowledge of experts from industry, medicine, and academia, with the objective to assess the status of our understanding of the link between the microbiome and under-nutrition, specifically in relation to probiotic and prebiotic treatments for under-nourished individuals. These discussions led to four recommendations: (1) The categories of malnourished individuals need to be differentiated To improve treatment outcomes, subjects should first be categorized based on the cause of malnutrition, additional health-concerns, differences in the gut microbiota, and sociological considerations. (2) Define a baseline “healthy” gut microbiota for each category Altered nutrient requirement (for example, in pregnancy and old age) and individual variation may change what constitutes a healthy gut microbiota for the individual. (3) Perform studies using model systems to test the effectiveness of potential probiotics and prebiotics against these specific categories These should illustrate how certain microbiota profiles can be altered, as members of different categories may respond differently to the same treatment. (4) Perform robust well-designed human studies with probiotics and/or prebiotics, with appropriate, defined primary outcomes and sample size These are critical to show efficacy and understand responder and non-responder outcomes. It is hoped that these recommendations will lead to new approaches that combat malnutrition. This report is the result of discussion during an expert workshop titled “How do the microbiota and probiotics and/or prebiotics influence poor nutritional status?” held during the 10th Meeting of the International Scientific Association for Probiotics and Prebiotics (ISAPP) in Cork, Ireland from October 1–3, 2012. The complete list of workshop attendees is shown in Table 1. PMID:24637591
Can prebiotics and probiotics improve therapeutic outcomes for undernourished individuals?
Sheridan, Paul O; Bindels, Laure B; Saulnier, Delphine M; Reid, Gregor; Nova, Esther; Holmgren, Kerstin; O'Toole, Paul W; Bunn, James; Delzenne, Nathalie; Scott, Karen P
2014-01-01
It has become clear in recent years that the human intestinal microbiota plays an important role in maintaining health and thus is an attractive target for clinical interventions. Scientists and clinicians have become increasingly interested in assessing the ability of probiotics and prebiotics to enhance the nutritional status of malnourished children, pregnant women, the elderly, and individuals with non-communicable disease-associated malnutrition. A workshop was held by the International Scientific Association for Probiotics and Prebiotics (ISAPP), drawing on the knowledge of experts from industry, medicine, and academia, with the objective to assess the status of our understanding of the link between the microbiome and under-nutrition, specifically in relation to probiotic and prebiotic treatments for under-nourished individuals. These discussions led to four recommendations: (1) The categories of malnourished individuals need to be differentiated To improve treatment outcomes, subjects should first be categorized based on the cause of malnutrition, additional health-concerns, differences in the gut microbiota, and sociological considerations. (2) Define a baseline "healthy" gut microbiota for each category Altered nutrient requirement (for example, in pregnancy and old age) and individual variation may change what constitutes a healthy gut microbiota for the individual. (3) Perform studies using model systems to test the effectiveness of potential probiotics and prebiotics against these specific categories These should illustrate how certain microbiota profiles can be altered, as members of different categories may respond differently to the same treatment. (4) Perform robust well-designed human studies with probiotics and/or prebiotics, with appropriate, defined primary outcomes and sample size These are critical to show efficacy and understand responder and non-responder outcomes. It is hoped that these recommendations will lead to new approaches that combat malnutrition. This report is the result of discussion during an expert workshop titled "How do the microbiota and probiotics and/or prebiotics influence poor nutritional status?" held during the 10th Meeting of the International Scientific Association for Probiotics and Prebiotics (ISAPP) in Cork, Ireland from October 1-3, 2012. The complete list of workshop attendees is shown in Table 1.
NASA Technical Reports Server (NTRS)
Nelson, Kevin E.; Miller, Stanley L.
1992-01-01
The polymerization of ribonucleic acids or their precursors constitutes an important event in prebiotic chemistry. The various problems using ribonucleotides to make RNA suggest that there may have been a precursor. An attractive possibility are the peptide nucleic acids (PNA). PNAs are nucleotide analogs that make use of a polymer of ethylenediamine monoacetic acid (EDMA or 2-amninoethyl glycine) with the bases attached by an acetic acid. EDMA is an especially attractive alternative to the ribose phosphate or deoxyribose phosphate backbone because it contains no chiral centers and is potentially prebiotic, but there is no reported prebiotic synthesis. We have synthesized both EDMA and ethylenediamine diacetic acid (EDDA) from the prebiotic compounds ethylenediamine, formaldehyde, and hydrogen cyanide. The yields of EDMA range from 11 to 79% along with some sEDDA and uEDDA. These reactions work with concentrations of 10(exp -1)M and as low as 10(exp -4)M, and the reaction is likely to be effective at even lower concentrations. Ethylenediamine is a likely prebiotic compound, but it has not yet been demonstrated, although compounds such as ethanolamine and cysteamine have been proven to be prebiotic. Under neutral pH and heating at l00 C, EDMA is converted to the lactam, monoketopiperazine (MKP). The cyclization occurs and has an approximate ratio of MKP/EDMA = 3 at equilibrium. We have measured the solubilities of EDMA center dot H20 as 6.4 m, EDMA center dot HCl center dot H20 as 13.7 m, and EDMA center dot 2HCl center dot H20 as 3.4 m. These syntheses together with the high solubility of EDMA suggest that EDMA would concentrate in drying lagoons and might efficiently form polymers. Given the instability of ribose and the poor polymerizability of nucleotides, the prebiotic presence of EDMA and the possibility of its polymerization raises the possibility that PNAs are the progenitors of present day nucleic acids. A pre-RNA world may have existed in which PNAs or polymers with related peptide backbones were the dominant information macromolecules.
Moreno-Indias, Isabel; Sánchez-Alcoholado, Lidia; Pérez-Martínez, Pablo; Andrés-Lacueva, Cristina; Cardona, Fernando; Tinahones, Francisco; Queipo-Ortuño, María Isabel
2016-04-01
This study evaluated the possible prebiotic effect of a moderate intake of red wine polyphenols on the modulation of the gut microbiota composition and the improvement in the risk factors for the metabolic syndrome in obese patients. Ten metabolic syndrome patients and ten healthy subjects were included in a randomized, crossover, controlled intervention study. After a washout period, the subjects consumed red wine and de-alcoholized red wine over a 30 day period for each. The dominant bacterial composition did not differ significantly between the study groups after the two red wine intake periods. In the metabolic syndrome patients, red wine polyphenols significantly increased the number of fecal bifidobacteria and Lactobacillus (intestinal barrier protectors) and butyrate-producing bacteria (Faecalibacterium prausnitzii and Roseburia) at the expense of less desirable groups of bacteria such as LPS producers (Escherichia coli and Enterobacter cloacae). The changes in gut microbiota in these patients could be responsible for the improvement in the metabolic syndrome markers. Modulation of the gut microbiota by using red wine could be an effective strategy for managing metabolic diseases associated with obesity.
227 Views of RNA: Is RNA Unique in Its Chemical Isomer Space?
Meringer, Markus; Goodwin, Jay
2015-01-01
Abstract Ribonucleic acid (RNA) is one of the two nucleic acids used by extant biochemistry and plays a central role as the intermediary carrier of genetic information in transcription and translation. If RNA was involved in the origin of life, it should have a facile prebiotic synthesis. A wide variety of such syntheses have been explored. However, to date no one-pot reaction has been shown capable of yielding RNA monomers from likely prebiotically abundant starting materials, though this does not rule out the possibility that simpler, more easily prebiotically accessible nucleic acids may have preceded RNA. Given structural constraints, such as the ability to form complementary base pairs and a linear covalent polymer, a variety of structural isomers of RNA could potentially function as genetic platforms. By using structure-generation software, all the potential structural isomers of the ribosides (BC5H9O4, where B is nucleobase), as well as a set of simpler minimal analogues derived from them, that can potentially serve as monomeric building blocks of nucleic acid–like molecules are enumerated. Molecules are selected based on their likely stability under biochemically relevant conditions (e.g., moderate pH and temperature) and the presence of at least two functional groups allowing the monomers to be incorporated into linear polymers. The resulting structures are then evaluated by using molecular descriptors typically applied in quantitative structure–property relationship (QSPR) studies and predicted physicochemical properties. Several databases have been queried to determine whether any of the computed isomers had been synthesized previously. Very few of the molecules that emerge from this structure set have been previously described. We conclude that ribonucleosides may have competed with a multitude of alternative structures whose potential proto-biochemical roles and abiotic syntheses remain to be explored. Key Words: Evolution—Chemical evolution—Exobiology—Prebiotic chemistry—RNA world. Astrobiology 15, 538–558. PMID:26200431
Stalport, Fabien; Guan, Yuan Yong; Coll, Patrice; Szopa, Cyril; Macari, Frédérique; Raulin, François; Chaput, Didier; Cottin, Hervé
2010-05-01
The detection and identification of organic molecules on Mars are of prime importance to establish the existence of a possible ancient prebiotic chemistry or even a biological activity. To date, however, no complex organic compounds have been detected on Mars. The harsh environmental conditions at the surface of Mars are commonly advocated to explain this nondetection, but few studies have been implemented to test this hypothesis. To investigate the nature, abundance, and stability of organic molecules that could survive under such environmental conditions, we exposed, in low Earth orbit, organic molecules of martian astrobiological relevance to solar UV radiation (>200 nm). The experiment, called UVolution, was flown on board the Biopan ESA module, which was situated outside a Russian Foton automated capsule and exposed to space conditions for 12 days in September 2007. The targeted organic molecules [alpha-aminoisobutyric acid (AIB), mellitic acid, phthalic acid, and trimesic acid] were exposed with, and without, an analogous martian soil. Here, we present experimental results of the impact of solar UV radiation on the targeted molecules. Our results show that none of the organic molecules studied seemed to be radiotolerant to the solar UV radiation when directly exposed to it. Moreover, the presence of a mineral matrix seemed to increase the photodestruction rate. AIB, mellitic acid, phthalic acid, and trimesic acid should not be considered as primary targets for in situ molecular analyses during future surface missions if samples are only collected from the first centimeters of the top surface layer.
Krupa-Kozak, Urszula; Drabińska, Natalia; Jarocka-Cyrta, Elżbieta
2017-08-22
A lifelong gluten-free diet (GFD) is regarded as the only proven and accepted therapy for coeliac disease (CD). However, even patients who strictly follow a GFD often suffer from intestinal symptoms and malabsorption. Selective modulation of intestinal microbiota with prebiotics could remedy various symptoms associated with CD. The use of prebiotics in the treatment of intestinal diseases remains insufficiently investigated. To our knowledge, this study makes the first attempt to evaluate the effect of prebiotic supplementation on gastrointestinal symptoms and nutritional status of children with CD. We hypothesized that adherence to a GFD supplemented with oligofructose-enriched inulin (Synergy 1) would deliver health benefits to children suffering from CD without any side effects, and that it would alleviate intestinal inflammation, restore and stabilize gut microbial balance and reverse nutritional deficiencies through enhanced absorption of vitamins and minerals. A randomized, placebo-controlled clinical trial was designed to assess the impact of the Synergy 1 on paediatric CD patients following a GFD. We randomized 34 children diagnosed with CD into an intervention group receiving 10 g of the Synergy 1 supplement daily and a placebo group (receiving maltodextrin) during a 12-week nutritional intervention. Selected biochemical parameters, nutritional status and the characteristics of faecal bacteria will be determined in samples collected before and after the intervention. Analysis of vitamins and amino acids concentration in biological fluids will allow to assess the dietary intake of crucial nutrients. The compliance to a GFD will be confirmed by a Food Frequency Questionnaire (FFQ-6) and the analysis of serum anti-tissue transglutaminase and faecal gluten immunogenic peptides (GIP). The identification of the beneficial effects of the Synergy 1 supplement on children with CD could have important implications for nutritional recommendations for CD patients and for alleviating the harmful effects of the disease. ClinicalTrials.gov Registration Number: NCT03064997 .
Prebiotic Potential of Herbal Medicines Used in Digestive Health and Disease.
Peterson, Christine Tara; Sharma, Vandana; Uchitel, Sasha; Denniston, Kate; Chopra, Deepak; Mills, Paul J; Peterson, Scott N
2018-03-22
The prebiotic potential of herbal medicines has been scarcely studied. The authors therefore used anaerobic human fecal cultivation to investigate whether three herbal medicines commonly used in gastrointestinal health and disease in Ayurveda alter the growth and abundance of specific bacterial species. Profiling of cultures supplemented with Glycyrrhiza glabra, Ulmus rubra, or triphala formulation by 16S rDNA sequencing revealed profound changes in diverse taxa in human gut microbiota. Principal coordinate analysis highlights that each herbal medicine drives the formation of unique microbial communities. The relative abundance of approximately one-third of the 299 species profiled was altered by all 3 medicines, whereas additional species displayed herb-specific alterations. Herb supplementation increased the abundance of many bacteria known to promote human health, including Bifidobacterium spp., Lactobacillus spp., and Bacteroides spp. Herb supplementation resulted in the reduced relative abundance of many species, including potential pathogens such as Citrobacter freundii and Klebsiella pneumoniae. Herbal medicines induced blooms of butyrate- and propionate-producing species. U. rubra and triphala significantly increased the relative abundance of butyrate-producing bacteria, whereas G. glabra induced the largest increase in propionate-producing species. To achieve greater insight into the mechanisms through which herbal medicines alter microbial communities, the authors assessed the shifts in abundance of glycosyl hydrolase families induced by each herbal medicine. Herb supplementation, particularly G. glabra, significantly increased the representation and potential expression of several glycosyl hydrolase families. These studies are novel in highlighting the significant prebiotic potential of medicinal herbs and suggest that the health benefits of these herbs are due, at least in part, to their ability to modulate the gut microbiota in a manner predicted to improve colonic epithelium function, reduce inflammation, and protect from opportunistic infection. Forthcoming studies in human clinical trials will test the concordance of the results generated in vitro and the predictions made by genome analyses.
López-Velázquez, Gabriel; Parra-Ortiz, Minerva; De la Mora-De la Mora, Ignacio; García-Torres, Itzhel; Enríquez-Flores, Sergio; Alcántara-Ortigoza, Miguel Angel; González-del Angel, Ariadna; Velázquez-Aragón, José; Ortiz-Hernández, Rosario; Cruz-Rubio, José Manuel; Villa-Barragán, Pablo; Jiménez-Gutiérrez, Carlos; Gutiérrez-Castrellón, Pedro
2015-01-01
Background: The importance of prebiotics consumption is increasing all over the world due to their beneficial effects on health. Production of better prebiotics from endemic plants raises possibilities to enhance nutritional effects in vulnerable population groups. Fructans derived from Agave Plant have demonstrated their safety and efficacy as prebiotics in animal models. Recently, the safety in humans of two fructans obtained from Agave tequilana (Metlin® and Metlos®) was demonstrated. Methods: This study aimed to demonstrate the efficacy as prebiotics of Metlin® and Metlos® in newborns of a randomized, double blind, controlled trial with a pilot study design. Biological samples were taken at 20 ± 7 days, and three months of age from healthy babies. Outcomes of efficacy include impact on immune response, serum ferritin, C-reactive protein, bone metabolism, and gut bacteria changes. Results: There were differences statistically significant for the groups of infants fed only with infant formula and with formula enriched with Metlin® and Metlos®. Conclusions: Our results support the efficacy of Metlin® and Metlos® as prebiotics in humans, and stand the bases to recommend their consumption. Trial Registration: ClinicalTrials.gov, NCT 01251783. PMID:26529006
López-Velázquez, Gabriel; Parra-Ortiz, Minerva; Mora, Ignacio De la Mora-De la; García-Torres, Itzhel; Enríquez-Flores, Sergio; Alcántara-Ortigoza, Miguel Angel; Angel, Ariadna González-Del; Velázquez-Aragón, José; Ortiz-Hernández, Rosario; Cruz-Rubio, José Manuel; Villa-Barragán, Pablo; Jiménez-Gutiérrez, Carlos; Gutiérrez-Castrellón, Pedro
2015-10-29
The importance of prebiotics consumption is increasing all over the world due to their beneficial effects on health. Production of better prebiotics from endemic plants raises possibilities to enhance nutritional effects in vulnerable population groups. Fructans derived from Agave Plant have demonstrated their safety and efficacy as prebiotics in animal models. Recently, the safety in humans of two fructans obtained from Agave tequilana (Metlin(®) and Metlos(®)) was demonstrated. This study aimed to demonstrate the efficacy as prebiotics of Metlin(®) and Metlos(®) in newborns of a randomized, double blind, controlled trial with a pilot study design. Biological samples were taken at 20 ± 7 days, and three months of age from healthy babies. Outcomes of efficacy include impact on immune response, serum ferritin, C-reactive protein, bone metabolism, and gut bacteria changes. There were differences statistically significant for the groups of infants fed only with infant formula and with formula enriched with Metlin(®) and Metlos(®). Our results support the efficacy of Metlin(®) and Metlos(®) as prebiotics in humans, and stand the bases to recommend their consumption. ClinicalTrials.gov, NCT 01251783.
Morais, E C; Esmerino, E A; Monteiro, R A; Pinheiro, C M; Nunes, C A; Cruz, A G; Bolini, Helena M A
2016-01-01
The addition of prebiotic and sweeteners in chocolate dairy desserts opens up new opportunities to develop dairy desserts that besides having a lower calorie intake still has functional properties. In this study, prebiotic low sugar dairy desserts were evaluated by 120 consumers using a 9-point hedonic scale, in relation to the attributes of appearance, aroma, flavor, texture, and overall liking. Internal preference map using parallel factor analysis (PARAFAC) and principal component analysis (PCA) was performed using the consumer data. In addition, physical (texture profile) and optical (instrumental color) analyses were also performed. Prebiotic dairy desserts containing sucrose and sucralose were equally liked by the consumers. These samples were characterized by firmness and gumminess, which can be considered drivers of liking by the consumers. Optimization of the prebiotic low sugar dessert formulation should take in account the choice of ingredients that contribute in a positive manner for these parameters. PARAFAC allowed the extraction of more relevant information in relation to PCA, demonstrating that consumer acceptance analysis can be evaluated by simultaneously considering several attributes. Multiple factor analysis reported Rv value of 0.964, suggesting excellent concordance for both methods. © 2015 Institute of Food Technologists®
Park, Si Hong; Lee, Sang In; Kim, Sun Ae; Christensen, Karen; Ricke, Steven C
2017-01-01
Prebiotics are defined as fermentable food ingredients that selectively stimulate beneficial bacteria in the lower gastrointestinal tract of the host. The purpose of this study was to assess growth performance of broilers and the cecal microbial populations of an antibiotic, BMD50, supplemented birds compared to broiler chickens fed the prebiotic, Biolex® MB40. Weight response data including feed conversion ratios (FCR), carcasses without giblets (WOG), wing, skin, white meat were collected during processing. Extracted DNA from cecal contents was utilized for microbiome analysis via an Illumina Miseq. In conclusion, white meat yield of Biolex® MB40 supplemented group exhibited significant improvement compared to both negative control (NC) and BMD50 supplemented groups. In addition, antibiotic significantly decreased level of Lactobacillus in 2 wk compared to other groups. A significantly higher percentage of Campylobacter was observed from the 4 wk old birds treated with antibiotic BMD50 compared to the NC and prebiotic group. Retention of broiler performance and improvement of white meat yield suggest that the prebiotic MB40 appears to be a potential alternative to replace the antibiotic growth promoter.
Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents
NASA Astrophysics Data System (ADS)
Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua
2017-12-01
Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.
Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents.
Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua
2017-12-01
Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H 2 and CO 2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.
Menor-Salván, César; Marín-Yaseli, Margarita R
2013-05-10
The origin of nucleobases and other heterocycles is a classic question in the chemistry of the origins of life. The construction of laboratory models for the abiotic synthesis of nitrogen heterocycles in plausible natural conditions also aids the understanding and prediction of chemical species in the Solar System. Here, we report a new explanation for the origin of hydantoins, purines, and pyrimidines in eutectic water/ice/urea solutions driven by ultraviolet irradiation (in the 185-254 nm range, UVC) of acetylene under anoxic conditions. An analysis of the products indicates the synthesis of hydantoin and 5-hydroxyhydantoin, the purines uric acid, xanthine, and guanine, and the pyrimidines uracil and cytosine. The synthesis occurred together with the photo-oxidation of bases in a complex process for which possible pathways are proposed. In conclusion, an acetylene-containing atmosphere could contribute to the origin of nucleobases in the presence of a urea/water system by an HCN-independent mechanism. The presence of ice has a dual role as a favorable medium for the synthesis of nucleobases and protection against degradation and as a source of free radicals for the synthesis of highly oxidized heterocycles. A mechanism for the origin of hydantoins and uracil from urea in plausible conditions for prebiotic chemistry is also proposed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Prebiotics and Probiotics and Oral Health
NASA Astrophysics Data System (ADS)
Meurman, J. H.
The first part of this chapter describes the unique characteristics of the mouth with special emphasis on the oral microbiota. Next, the highly prevalent dental diseases are briefly described together with more rare but still important diseases and symptoms of the mouth. Prevention and treatment of oral and dental diseases are also discussed focusing on aspects considered important with respect to the potential application of prebiotics and probiotics. The second part of the chapter then concentrates on research data on prebiotics and probiotics in the oral health perspective, ending up with conclusions and visions for future research.
Salehimanesh, A; Mohammadi, M; Roostaei-Ali Mehr, M
2016-08-01
This study was conducted to investigate the effects of probiotic (Primalac), prebiotic (TechnoMos) and synbiotic (Primalac + TechnoMos) supplementation on performance, immune responses, intestinal morphology and bacterial populations of ileum in broilers. A total of 240 one-day-old broiler chicks were randomly divided into four treatment groups which included 60 birds. Control group did not receive any treatment. The chicks in the second, third and fourth groups were fed probiotic (0.9 g/kg), prebiotic (0.9 g/kg) and probiotic (0.9 g/kg) plus probiotic (0.9 g/kg; synbiotic), respectively, at entire period. Daily feed intake, daily weight gain and feed conversion ratio were evaluated. The birds were immunized by sheep red blood cell (SRBC) on days 12 and 29 of age and serum antibody titres were measured on days 28, 35 and 42. Newcastle vaccines administered on days 9, 18 and 27 to chicks and blood samples were collected on day 42. Intestinal morphometric assessment and enumeration of intestinal bacterial populations were performed on day 42. The results indicated that consumption of probiotic, prebiotic and synbiotic had no significant effect on daily feed intake, daily body weight gain, feed conversion ratio, carcass traits, intestinal morphology and bacterial populations of ileum (p > 0.05). Consumption of prebiotic increased total and IgM anti-SRBC titres on days 28 and 42 and antibody titre against Newcastle virus disease on day 42 (p < 0.05). Synbiotic increased only total anti-SRBC on day 28 (p < 0.05). It is concluded that consumption of prebiotic increased humoral immunity in broilers. Therefore, supplementation of diet with prebiotic for improvement of humoral immune responses is superior to synbiotic supplementation. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.
Cool Stars May Have Different Prebiotic Chemical Mix
2009-04-07
NASA Spitzer Space Telescope detected a prebiotic, or potentially life-forming, molecule called hydrogen cyanide HCN in the planet-forming disks around yellow stars like our sun, but not in the disks around cooler, reddish stars.
Probiotics and prebiotics in ulcerative colitis.
Derikx, Lauranne A A P; Dieleman, Levinus A; Hoentjen, Frank
2016-02-01
The intestinal microbiota is one of the key players in the etiology of ulcerative colitis. Manipulation of this microflora with probiotics and prebiotics is an attractive strategy in the management of ulcerative colitis. Several intervention studies for both the induction and maintenance of remission in ulcerative colitis patients have been performed. Most of these studies evaluated VSL#3 or E. Coli Nissle 1917 and in general there is evidence for efficacy of these agents for induction and maintenance of remission. However, studies are frequently underpowered, lack a control group, and are very heterogeneous investigating different probiotic strains in different study populations. The absence of well-powered robust randomized placebo-controlled trials impedes the widespread use of probiotics and prebiotics in ulcerative colitis. However, given the promising results that are currently available, probiotics and prebiotics may find their way to the treatment algorithm for ulcerative colitis in the near future. Copyright © 2016 Elsevier Ltd. All rights reserved.
Probiotics, prebiotics and child health: where are we going?
Salvini, F; Granieri, L; Gemmellaro, L; Giovannini, M
2004-01-01
Changes in gastrointestinal (GI) bacteria caused by diet, antibiotics or other factors could alter enteric and systemic immune functions; changing the gut microflora composition by diet supplementation with specific live microbiota (probiotics) may be beneficial. The 'natural' target of ingested probiotics is the intestine, its microflora and associated immune system. Most published data concern use of probiotics to prevent and treat GI infections. Evidence for possible beneficial effects on mucosal barrier dysfunctions, including food allergy, inflammatory bowel disease, and respiratory and urinary tract infections, is emerging. The role of prebiotics (non-digestible oligosaccharides that reduce the growth or virulence of pathogens and induce systemic effects) is being investigated. Preliminary studies indicate that prebiotics may be useful dietary adjuncts for managing GI infections. Prebiotic and probiotic use in infants is attempting to modify a complex microbial ecosystem. Better understanding of the long-term effects of these interventions on infant gut microflora is an important goal.
Peluso, Ilaria; Romanelli, Luca; Palmery, Maura
2014-05-01
The metabolic syndrome can be prevented by the Mediterranean diet, characterized by fiber, omega-3 polyunsaturated fatty acids and polyphenols. However, the composition of the Mediterranean diet, which can be viewed as a natural multiple supplement, is poorly controlled, and its beneficial effects poorly predictable. The metabolic syndrome is associated with intestinal dysbiosis and the gut microbioma seems to be the main target and player in the interactions occurring between probiotics, prebiotics, omega 3 polyunsaturated fatty acids, and polyphenols. From the reviewed evidence, it is reasonable to manage growth and metabolism of gut microflora with specific prebiotics and polyphenols. Even though the healthy properties of functional foods and nutraceuticals still need to be fully elucidated, available data suggest that well-designed supplements, containing the better ratio of omega-3 polyunsaturated fatty acids and antioxidants, specific probiotic strains, and selected polyphenols and prebiotics, could be useful in metabolic syndrome prevention and treatment.
Synthesis of long Prebiotic Oligomers on Mineral Surfaces
NASA Technical Reports Server (NTRS)
Ferris, James P.; Hill, Aubrey R., Jr.; Liu, Rihe; Orgel, Leslie E.
1996-01-01
Most theories of the origin of biological organization assume that polymers with lengths in the range of 30-60 monomers are needed to make a genetic system viable. But it has not proved possible to synthesize plausibly prebiotic polymers this long by condensation in aqueous solution, because hydrolysis competes with polymerization. The potential of mineral surfaces to facilitate prebiotic polymerization was pointed out long ago. Here we describe a system that models prebiotic polymerization by the oligomerization of activated monomers -both nucleotides and amino acids. We find that whereas the reactions in solution produce only short oligomers (the longest typically being a 10-mer), the presence of mineral surfaces (montmorillonite for nucleotides, illite and hydroxylapatite for amino adds) induces the formation of oligomers up to 55 monomers long. These are formed by successive "feedings" with the monomers; polymerization takes place on the mineral surfaces in a manner akin to solid-phase synthesis of biopolymers.
Forsythe, Jay G; Yu, Sheng-Sheng; Mamajanov, Irena; Grover, Martha A; Krishnamurthy, Ramanarayanan; Fernández, Facundo M; Hud, Nicholas V
2015-08-17
Although it is generally accepted that amino acids were present on the prebiotic Earth, the mechanism by which α-amino acids were condensed into polypeptides before the emergence of enzymes remains unsolved. Here, we demonstrate a prebiotically plausible mechanism for peptide (amide) bond formation that is enabled by α-hydroxy acids, which were likely present along with amino acids on the early Earth. Together, α-hydroxy acids and α-amino acids form depsipeptides-oligomers with a combination of ester and amide linkages-in model prebiotic reactions that are driven by wet-cool/dry-hot cycles. Through a combination of ester-amide bond exchange and ester bond hydrolysis, depsipeptides are enriched with amino acids over time. These results support a long-standing hypothesis that peptides might have arisen from ester-based precursors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
UV SURFACE ENVIRONMENT OF EARTH-LIKE PLANETS ORBITING FGKM STARS THROUGH GEOLOGICAL EVOLUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rugheimer, S.; Sasselov, D.; Segura, A.
2015-06-10
The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars in the circumstellar Habitable Zone for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early-Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present-day levels at 2.0 Gyr ago, 0.8 Gyr ago, and modern Earth. In addition to calculating the UVmore » flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth–Sun levels. A pre-biotic Earth orbiting GJ 581 (M3.5 V) receives 300 times less biologically effective radiation, about 2 times modern Earth–Sun levels. The UV fluxes calculated here provide a grid of model UV environments during the evolution of an Earth-like planet orbiting a range of stars. These models can be used as inputs into photo-biological experiments and for pre-biotic chemistry and early life evolution experiments.« less
Padilha, Marina; Villarreal Morales, Martha Lissete; Vieira, Antonio Diogo Silva; Costa, Mayra Garcia Maia; Saad, Susana Marta Isay
2016-05-18
The survival of two probiotic strains -Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 - incorporated into probiotic (PC) and into synbiotic (SC, with inulin + fructooligosaccharides, respectively, at 7.5 and at 2.5 g per 100 g) petit-suisse cheese was investigated in the beginning (day 1) and at the end (28 days) of storage at 4 °C when the food products were subjected to in vitro gastrointestinal simulated assays. Species-specific quantitative real time PCR (qPCR) combined with propidium monoazide (PMA-qPCR) was employed to quantify the strains. Initial La-5 and Bb-12 populations were always above 7 log CFU g(-1). The presence of the prebiotic ingredients in SC improved the Bb-12 and La-5 resistance after the 6 h assay, with higher populations in all the in vitro stages and throughout the storage period (p < 0.05), leading to equal or superior survival rates (SR) in SC of both probiotic strains, in the beginning as well as at the end of storage. The mean La-5 SR were 58% (PC) and 67% (SC), whereas the mean Bb-12 SR were 60% (PC) and 79% (SC). Our findings suggest that the addition of a prebiotic mixture in petit-suisse cheese was advantageous, since it improved both the Bb-12 and La-5 viability and tolerance under in vitro gastrointestinal simulated conditions, both in the fresh product and in the product refrigerated for 28 days.
Thermodynamic Basis for the Emergence of Genomes during Prebiotic Evolution
Woo, Hyung-June; Vijaya Satya, Ravi; Reifman, Jaques
2012-01-01
The RNA world hypothesis views modern organisms as descendants of RNA molecules. The earliest RNA molecules must have been random sequences, from which the first genomes that coded for polymerase ribozymes emerged. The quasispecies theory by Eigen predicts the existence of an error threshold limiting genomic stability during such transitions, but does not address the spontaneity of changes. Following a recent theoretical approach, we applied the quasispecies theory combined with kinetic/thermodynamic descriptions of RNA replication to analyze the collective behavior of RNA replicators based on known experimental kinetics data. We find that, with increasing fidelity (relative rate of base-extension for Watson-Crick versus mismatched base pairs), replications without enzymes, with ribozymes, and with protein-based polymerases are above, near, and below a critical point, respectively. The prebiotic evolution therefore must have crossed this critical region. Over large regions of the phase diagram, fitness increases with increasing fidelity, biasing random drifts in sequence space toward ‘crystallization.’ This region encloses the experimental nonenzymatic fidelity value, favoring evolutions toward polymerase sequences with ever higher fidelity, despite error rates above the error catastrophe threshold. Our work shows that experimentally characterized kinetics and thermodynamics of RNA replication allow us to determine the physicochemical conditions required for the spontaneous crystallization of biological information. Our findings also suggest that among many potential oligomers capable of templated replication, RNAs may have evolved to form prebiotic genomes due to the value of their nonenzymatic fidelity. PMID:22693440
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranjan, Sukrit; Sasselov, Dimitar D.; Wordsworth, Robin, E-mail: sranjan@cfa.harvard.edu
Potentially habitable planets orbiting M dwarfs are of intense astrobiological interest because they are the only rocky worlds accessible to biosignature search over the next 10+ years because of a confluence of observational effects. Simultaneously, recent experimental and theoretical work suggests that UV light may have played a key role in the origin of life on Earth, especially the origin of RNA. Characterizing the UV environment on M-dwarf planets is important for understanding whether life as we know it could emerge on such worlds. In this work, we couple radiative transfer models to observed M-dwarf spectra to determine the UVmore » environment on prebiotic Earth-analog planets orbiting M dwarfs. We calculate dose rates to quantify the impact of different host stars on prebiotically important photoprocesses. We find that M-dwarf planets have access to 100–1000 times less bioactive UV fluence than the young Earth. It is unclear whether UV-sensitive prebiotic chemistry that may have been important to abiogenesis, such as the only known prebiotically plausible pathways for pyrimidine ribonucleotide synthesis, could function on M-dwarf planets. This uncertainty affects objects like the recently discovered habitable-zone planets orbiting Proxima Centauri, TRAPPIST-1, and LHS 1140. Laboratory studies of the sensitivity of putative prebiotic pathways to irradiation level are required to resolve this uncertainty. If steady-state M-dwarf UV output is insufficient to power these pathways, transient elevated UV irradiation due to flares may suffice; laboratory studies can constrain this possibility as well.« less
NASA Astrophysics Data System (ADS)
Ranjan, Sukrit; Wordsworth, Robin; Sasselov, Dimitar D.
2017-07-01
Potentially habitable planets orbiting M dwarfs are of intense astrobiological interest because they are the only rocky worlds accessible to biosignature search over the next 10+ years because of a confluence of observational effects. Simultaneously, recent experimental and theoretical work suggests that UV light may have played a key role in the origin of life on Earth, especially the origin of RNA. Characterizing the UV environment on M-dwarf planets is important for understanding whether life as we know it could emerge on such worlds. In this work, we couple radiative transfer models to observed M-dwarf spectra to determine the UV environment on prebiotic Earth-analog planets orbiting M dwarfs. We calculate dose rates to quantify the impact of different host stars on prebiotically important photoprocesses. We find that M-dwarf planets have access to 100–1000 times less bioactive UV fluence than the young Earth. It is unclear whether UV-sensitive prebiotic chemistry that may have been important to abiogenesis, such as the only known prebiotically plausible pathways for pyrimidine ribonucleotide synthesis, could function on M-dwarf planets. This uncertainty affects objects like the recently discovered habitable-zone planets orbiting Proxima Centauri, TRAPPIST-1, and LHS 1140. Laboratory studies of the sensitivity of putative prebiotic pathways to irradiation level are required to resolve this uncertainty. If steady-state M-dwarf UV output is insufficient to power these pathways, transient elevated UV irradiation due to flares may suffice; laboratory studies can constrain this possibility as well.
dos REIS, José Maciel Caldas; PINHEIRO, Maurício Fortuna; OTI, André Takashi; FEITOSA-JUNIOR, Denilson José Silva; PANTOJA, Mauro de Souza; BARROS, Rui Sérgio Monteiro
2016-01-01
ABSTRACT Introduction: Food is a key factor both in prevention and in promoting human health. Among the functional food are highlighted probiotics and prebiotics. Patent databases are the main source of technological information about innovation worldwide, providing extensive library for research sector. Objective: Perform mapping in the main patent databases about pre and probiotics, seeking relevant information regarding the use of biotechnology, nanotechnology and genetic engineering in the production of these foods. Method: Electronic consultation was conducted (online) in the main public databases of patents in Brazil (INPI), United States (USPTO) and the European Patent Bank (EPO). The research involved the period from January 2014 to July 2015, being used in the title fields and summary of patents, the following descriptors in INPI "prebiotic", "prebiotic" "probiotics", "probiotic" and the USPTO and EPO: "prebiotic", "prebiotics", "probiotic", "probiotics". Results: This search haven't found any deposit at the brazilian patents website (INPI) in this period; US Patent &Trademark Office had registered 60 titles in patents and the European Patent Office (EPO) showed 10 documents on the issue. Conclusion: Information technology offered by genetic engineering, biotechnology and nanotechnology deposited in the form of titles and abstracts of patents in relation to early nutritional intervention as functional foods, has increasingly required to decrease the risks and control the progression of health problems. But, the existing summaries, although attractive and promising in this sense, are still incipient to recommend them safely as a therapeutic tool. Therefore, they should be seen more as diet elements and healthy lifestyles. PMID:28076487
Geobiotropy: The Evolution of Rocks in Symbiosis with Prebiotic Chemistry
NASA Astrophysics Data System (ADS)
Bassez, M. P.
2017-07-01
In their interaction with water, minerals inside rocks transform with production of elements and small molecules which intervene in prebiotic syntheses. This chemical evolution between the world of rocks and the world of life is called geobiotropy.
Schneider, Christina; Becker, Sidney; Okamura, Hidenori; Crisp, Antony; Amatov, Tynchtyk; Stadlmeier, Michael; Carell, Thomas
2018-05-14
The RNA-world hypothesis assumes that life on Earth started with small RNA molecules that catalyzed their own formation. Vital to this hypothesis is the need for prebiotic routes towards RNA. Contemporary RNA, however, is not only constructed from the four canonical nucleobases (A, C, G, and U), it also contains many chemically modified (noncanonical) bases. A still open question is whether these noncanonical bases were formed in parallel to the canonical bases (chemical origin) or later, when life demanded higher functional diversity (biological origin). Here we show that isocyanates in combination with sodium nitrite establish methylating and carbamoylating reactivity compatible with early Earth conditions. These reactions lead to the formation of methylated and amino acid modified nucleosides that are still extant. Our data provide a plausible scenario for the chemical origin of certain noncanonical bases, which suggests that they are fossils of an early Earth. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Assessment of in Vitro Digestibility of Dietary Carbohydrates Using Rat Small Intestinal Extract.
Ferreira-Lazarte, Alvaro; Olano, Agustín; Villamiel, Mar; Moreno, F Javier
2017-09-13
There are few studies on the assessment of digestibility of nondigestible carbohydrates, despite their increasingly important role in human health. In vitro digestibility of a range of dietary carbohydrates classified as digestible (maltose, sucrose, and lactose), well-recognized (lactulose, fructooligosaccharides (FOS), and two types of galactooligosaccharides (GOS) differing in the predominant glycosidic linkage), and potential (lactosucrose and GOS from lactulose, OsLu) prebiotics using a rat small intestinal extract (RSIE) under physiological conditions of temperature and pH is described. Recognized and potential prebiotics were highly resistant to RSIE digestion although partial hydrolysis at different extents was observed. FOS and lactulose were the most resistant to digestion, followed closely by OsLu and more distantly by both types of GOS and lactosucrose. In GOS, β(1 → 6) linkages were more resistant to digestion than β(1 → 4) bonds. The reported in vitro digestion model is a useful, simple, and cost-effective tool to evaluate the digestibility of dietary oligosaccharides.
RNA-based stable isotope probing (RNA-SIP) to unravel intestinal host-microbe interactions.
Egert, Markus; Weis, Severin; Schnell, Sylvia
2018-05-30
The RNA-SIP technology, introduced into molecular microbial ecology in 2002, is an elegant technique to link the structure and function of complex microbial communities, i.e. to identify microbial key-players involved in distinct degradation and assimilation processes under in-situ conditions. Due to its dependence of microbial RNA, this technique is particularly suited for environments with high numbers of very active, i.e. significantly RNA-expressing, bacteria. So far, it was mainly used in environmental studies using microbiotas from soil or water habitats. Here we outline and summarize our application of RNA-SIP for the identification of bacteria involved in the degradation and assimilation of prebiotic carbohydrates in intestinal samples of human and animal origin. Following an isotope label from a prebiotic substrate into the RNA of distinct bacterial taxa will help to better understand the functionality of these medically and economically important nutrients in an intestinal environment. Copyright © 2018 Elsevier Inc. All rights reserved.
Enhanced Synthesis of Alkyl Amino Acids in Miller's 1958 H2S Experiment
NASA Technical Reports Server (NTRS)
Parker, Eric T.; Cleaves, H. James; Callahan, Michael P.; Dworkin, James P.; Glavin, Daniel P.; Lazcano, Antonio; Bada, Jeffrey L.
2011-01-01
Stanley Miller's 1958 H2S-containing experiment, which included a simulated prebiotic atmosphere of methane (CH4), ammonia (NH3), carbon dioxide (CO2), and hydrogen sulfide (H2S) produced several alkyl amino acids, including the alpha-, beta-, and gamma-isomers of aminobutyric acid (ABA) in greater relative yields than had previously been reported from his spark discharge experiments. In the presence of H2S, aspariic and glutamic acids could yield alkyl amino acids via the formation of thioimide intermediates. Radical chemistry initiated by passing H2S through a spark discharge could have also enhanced alkyl amino acid synthesis by generating alkyl radicals that can help form the aldehyde and ketone precursors to these amino acids. We propose mechanisms that may have influenced the synthesis of certain amino acids in localized environments rich in H2S and lightning discharges, similar to conditions near volcanic systems on the early Earth, thus contributing to the prebiotic chemical inventory of the primordial Earth.
Parallel Prebiotic Origin of Canonical and Non-Canonical Purine Nucleosides
NASA Astrophysics Data System (ADS)
Becker, S.; Carell, T.
2017-07-01
RNA of all living organisms is highly modified. It is unclear if these non-canonical bases are ancestors of an early Earth or biological inventions. We investigated a prebiotic pathway that leads to canonical and non-canonical purine nucleosides.
Abhari, Khadijeh; Shekarforoush, Seyed Shahram; Hosseinzadeh, Saeid; Nazifi, Saeid; Sajedianfard, Javad; Eskandari, Mohammad Hadi
2016-01-01
Background Probiotics have been considered as an approach to addressing the consequences of different inflammatory disorders. The spore-forming probiotic strain Bacillus coagulans has demonstrated anti-inflammatory and immune-modulating effects in both animals and humans. The prebiotic inulin also potentially affects the immune system as a result of the change in the composition or fermentation profile of the gastrointestinal microbiota. Objective In the present study, an in vivo model was conducted to investigate the possible influences of probiotic B. coagulans and prebiotic inulin, both in combination and/or separately, on the downregulation of immune responses and the progression of rheumatoid arthritis (RA), using arthritis-induced rat model. Design Forty-eight healthy male Wistar rats were randomly categorized into six experimental groups as follows: 1) control: normal healthy rats fed with standard diet, 2) disease control (RA): arthritis-induced rats fed with standard diet, 3) prebiotic (PRE): RA+ 5% w/w long-chain inulin, 4) probiotic (PRO): RA+ 109 spores/day B. coagulans by orogastric gavage, 5) synbiotic (SYN): RA+ 5% w/w long-chain inulin and 109 spores/day B. coagulans, and 6) treatment control: (INDO): RA+ 3 mg/kg/day indomethacin by orogastric gavage. Feeding with the listed diets started on day 0 and continued to the end of study. On day 14, rats were injected with complete Freund's adjuvant (CFA) to induce arthritis. Arthritis activity was evaluated by the biochemical parameters and paw thickness. Biochemical assay for fibrinogen (Fn), serum amyloid A (SAA), and TNF-α and alpha-1-acid glycoprotein (α1AGp) was performed on day 21, 28, and 35 (7, 14 and 21 days post RA induction), respectively. Results Pretreatment with PRE, PRO, and SYN diets significantly inhibits SAA and Fn production in arthritic rats (P < 0.001). A significant decrease in the production of pro-inflammatory cytokines, such as TNF-α, was seen in the PRE, PRO, and SYN groups (P < 0.001), which was similar to the anti-inflammatory effect of indomethacin. Furthermore, no significant anti-inflammatory effects were observed following different treatments using α1AGp as an RA indicator. Pretreatment with all supplied diets significantly inhibited the development of paw swelling induced by CFA (P < 0.001). Conclusion The results of this study indicate that the oral intake of probiotic B. coagulans and prebiotic inulin can improve the biochemical and clinical parameters of induced RA in rat. PMID:27427194
Abhari, Khadijeh; Shekarforoush, Seyed Shahram; Hosseinzadeh, Saeid; Nazifi, Saeid; Sajedianfard, Javad; Eskandari, Mohammad Hadi
2016-01-01
Probiotics have been considered as an approach to addressing the consequences of different inflammatory disorders. The spore-forming probiotic strain Bacillus coagulans has demonstrated anti-inflammatory and immune-modulating effects in both animals and humans. The prebiotic inulin also potentially affects the immune system as a result of the change in the composition or fermentation profile of the gastrointestinal microbiota. In the present study, an in vivo model was conducted to investigate the possible influences of probiotic B. coagulans and prebiotic inulin, both in combination and/or separately, on the downregulation of immune responses and the progression of rheumatoid arthritis (RA), using arthritis-induced rat model. Forty-eight healthy male Wistar rats were randomly categorized into six experimental groups as follows: 1) control: normal healthy rats fed with standard diet, 2) disease control (RA): arthritis-induced rats fed with standard diet, 3) prebiotic (PRE): RA+ 5% w/w long-chain inulin, 4) probiotic (PRO): RA+ 10(9) spores/day B. coagulans by orogastric gavage, 5) synbiotic (SYN): RA+ 5% w/w long-chain inulin and 10(9) spores/day B. coagulans, and 6) treatment control: (INDO): RA+ 3 mg/kg/day indomethacin by orogastric gavage. Feeding with the listed diets started on day 0 and continued to the end of study. On day 14, rats were injected with complete Freund's adjuvant (CFA) to induce arthritis. Arthritis activity was evaluated by the biochemical parameters and paw thickness. Biochemical assay for fibrinogen (Fn), serum amyloid A (SAA), and TNF-α and alpha-1-acid glycoprotein (α1AGp) was performed on day 21, 28, and 35 (7, 14 and 21 days post RA induction), respectively. Pretreatment with PRE, PRO, and SYN diets significantly inhibits SAA and Fn production in arthritic rats (P < 0.001). A significant decrease in the production of pro-inflammatory cytokines, such as TNF-α, was seen in the PRE, PRO, and SYN groups (P < 0.001), which was similar to the anti-inflammatory effect of indomethacin. Furthermore, no significant anti-inflammatory effects were observed following different treatments using α1 AGp as an RA indicator. Pretreatment with all supplied diets significantly inhibited the development of paw swelling induced by CFA (P < 0.001). The results of this study indicate that the oral intake of probiotic B. coagulans and prebiotic inulin can improve the biochemical and clinical parameters of induced RA in rat.
2006-01-01
artificial chemistry. 1 Introduction Chemical evolution (i.e., prebiotic evolution) is concerned with the period of life’s history that precedes the...arrival of the first living organism [17]. Since Miller’s pioneering work [19, 20], prebiotic chemistry has been studied in various laboratory...Bada. The 1953 Stanley L. Miller experiment: fifty years of prebiotic organic chemistry. Orig Life Evol Biosph, 33(3):235–42, 2003. 145 [17] J. Maynard
Mika, A; Rumian, N; Loughridge, A B; Fleshner, M
2016-01-01
The gut microbial ecosystem can mediate the negative health impacts of stress on the host. Stressor-induced disruptions in microbial ecology (dysbiosis) can lead to maladaptive health effects, while certain probiotic organisms and their metabolites can protect against these negative impacts. Prebiotic diets and exercise are feasible and cost-effective strategies that can increase stress-protective bacteria and produce resistance against the detrimental behavioral and neurobiological impacts of stress. The goal of this review is to describe research demonstrating that both prebiotic diets and exercise produce adaptations in gut ecology and the brain that arm the organism against inescapable stress-induced learned helplessness. The results of this research support the novel hypothesis that some of the stress-protective effects of prebiotics and exercise are due to increases in stress-protective gut microbial species and their metabolites. In addition, new evidence also suggests that prebiotic diet or exercise interventions are most effective if given early in life (juvenile-adolescence) when both the gut microbial ecosystem and the brain are plastic. Based on our new understanding of the mechanistic convergence of these interventions, it is feasible to propose that in adults, both interventions delivered in combination may elevate their efficacy to promote a stress-resistant phenotype. © 2016 Elsevier Inc. All rights reserved.
The potential of resistant starch as a prebiotic.
Zaman, Siti A; Sarbini, Shahrul R
2016-01-01
Resistant starch is defined as the total amount of starch and the products of starch degradation that resists digestion in the small intestine. Starches that were able to resist the digestion will arrive at the colon where they will be fermented by the gut microbiota, producing a variety of products which include short chain fatty acids that can provide a range of physiological benefits. There are several factors that could affect the resistant starch content of a carbohydrate which includes the starch granule morphology, the amylose-amylopectin ratio and its association with other food component. One of the current interests on resistant starch is their potential to be used as a prebiotic, which is a non-digestible food ingredient that benefits the host by stimulating the growth or activity of one or a limited number of beneficial bacteria in the colon. A resistant starch must fulfill three criterions to be classified as a prebiotic; resistance to the upper gastrointestinal environment, fermentation by the intestinal microbiota and selective stimulation of the growth and/or activity of the beneficial bacteria. The market of prebiotic is expected to reach USD 198 million in 2014 led by the export of oligosaccharides. Realizing this, novel carbohydrates such as resistant starch from various starch sources can contribute to the advancement of the prebiotic industry.
Weight gain by gut microbiota manipulation in productive animals.
Angelakis, Emmanouil
2017-05-01
Antibiotics, prebiotics and probiotics are widely used as growth promoters in agriculture. In the 1940s, use of Streptomyces aureofaciens probiotics resulted in weight gain in animals, which led to the discovery of chlortetracycline. Tetracyclines, macrolides, avoparcin and penicillins have been commonly used in livestock agriculture to promote growth through increased food intake, weight gain, and improved herd health. Prebiotic supplements including oligosaccharides, fructooligosaccharides, and galactosyl-lactose improve the growth performance of animals. Probiotics used in animal feed are mainly bacterial strains of Gram-positive bacteria and have been effectively used for weight gain in chickens, pigs, ruminants and in aquaculture. Antibiotics, prebiotics and probiotics all modify the gut microbiota and the effect of a probiotic species on the digestive flora is probably determined by bacteriocin production. Regulations governing the introduction of novel probiotics and prebiotics vary by geographical region and bias is very common in industry-funded studies. Probiotic and prebiotic foods have been consumed for centuries, either as natural components of food, or as fermented foods and it is possible to cause the same weight gain effects in humans as in animals. This review presents the use of growth promoters in food-producing animals to influence food intake and weight gain. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sabater, Carlos; Olano, Agustín; Prodanov, Marin; Montilla, Antonia; Corzo, Nieves
2017-12-01
One of the most promising uses of whey permeate (WP) is the synthesis of prebiotic oligosaccharides. Herein, commercial WP was submitted to chemical isomerization catalysed by sodium borate at an alkaline pH and subsequent purification using anion-exchange resins to remove boron. Subsequently, purified mixtures were used to synthesize prebiotic oligosaccharides using β-galactosidase from Bacillus circulans. Isomerization of concentrated WP (200 g L -1 lactose) gave rise to levels of lactulose up to 155.5 g L -1 after 30 min of reaction (molar ratio of boron/lactose, 1/1; pH 12; 70 °C). Boron was removed from the isomerized WP (IWP) using the combination of a strong acid (IR-120, H + ) and a weak base (IRA-743) anion-exchange resins, reducing its level to <1 ppm, without loss of lactulose. During the transglycosylation reaction of purified IWP (lactose/lactulose ratio, 1/2.4) maximum content of prebiotic compounds was achieved, i.e. 690 g kg -1 WP after 3 h of reaction. This study shows that combined chemical-enzymatic reactions together with the purification of IWP results in an efficient synthesis of prebiotic oligosaccharides. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Chung, Wing Sun Faith; Meijerink, Marjolein; Zeuner, Birgitte; Holck, Jesper; Louis, Petra; Meyer, Anne S; Wells, Jerry M; Flint, Harry J; Duncan, Sylvia H
2017-11-01
Dietary plant cell wall carbohydrates are important in modulating the composition and metabolism of the complex gut microbiota, which can impact on health. Pectin is a major component of plant cell walls. Based on studies in model systems and available bacterial isolates and genomes, the capacity to utilise pectins for growth is widespread among colonic Bacteroidetes but relatively uncommon among Firmicutes. One Firmicutes species promoted by pectin is Eubacterium eligens. Eubacterium eligens DSM3376 utilises apple pectin and encodes a broad repertoire of pectinolytic enzymes, including a highly abundant pectate lyase of around 200 kDa that is expressed constitutively. We confirmed that certain Faecalibacterium prausnitzii strains possess some ability to utilise apple pectin and report here that F. prausnitzii strains in common with E. eligens can utilise the galacturonide oligosaccharides DP4 and DP5 derived from sugar beet pectin. Faecalibacterium prausnitzii strains have been shown previously to exert anti-inflammatory effects on host cells, but we show here for the first time that E. eligens strongly promotes the production of the anti-inflammatory cytokine IL-10 in in vitro cell-based assays. These findings suggest the potential to explore further the prebiotic potential of pectin and its derivatives to re-balance the microbiota towards an anti-inflammatory profile. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Formation of biologically relevant carboxylic acids during the gamma irradiation of acetic acid
NASA Technical Reports Server (NTRS)
Negron-Mendoza, A.; Ponnamperuma, C.
1976-01-01
Irradiation of aqueous solutions of acetic acid with gamma rays produced several carboxylic acids in small yield. Their identification was based on the technique of gas chromatography combined with mass spectrometry. Some of these acids are Krebs Cycle intermediates. Their simultaneous formation in experiments simulating the primitive conditions on the earth suggests that metabolic pathways may have had their origin in prebiotic chemical processes.
NASA Astrophysics Data System (ADS)
Yovcheva, T.; Vasileva, T.; Viraneva, A.; Cholev, D.; Bodurov, I.; Marudova, M.; Bivolarski, V.; Iliev, I.
2017-01-01
The effect of lactose concentration on the activity of the immobilised enzyme β-galactosidase from Aspergillus niger has been evaluated, considering future applications for the production of galactooligosaccahrides with prebiotic potential. The following enzyme was immobilized in xanthan and chitosan polyelectrolyte multilayers (PEMs) deposited by dip coating method on polylactic acid positively corona charged pads. The pads were charged in a corona discharge system, consisting of a corona electrode (needle), a grounded plate, and a metal grid placed between them. Positive 5 kV voltage was applied to the corona electrode. 1 kV voltage of the same polarity as that of the corona electrode was applied to the grid. The chitosan layers were crosslinked with sodium tripolyphosphate (Na-TPP). The enzyme showed a temperature optimum at 50 °C and a pH optimum at 5.0. The immobilization was carried out over the different adsorption time and optimum conditions were determined. These results give insights for further optimization of transgalactosydase reactions in order to produce galactooligosaccharides with specific structure and having pronounced better prebiotic properties. For the determination of the surface morphology of the investigated samples an atomic force microscope was used and root mean square roughness was obtained.
NASA Technical Reports Server (NTRS)
Nuevo, Michel; Milam, Stefanie N.; Sandford, Scott
2012-01-01
Although not yet identified in the interstellar medium (ISM), N-heterocycles including nucleobases the information subunits of DNA and RNA are present in carbonaceous chondrites, which indicates that molecules of biological interest can be formed in non-terrestrial environments via abiotic pathways. Recent laboratory experiments and ab-initio calculations have already shown that the irradiation of pyrimidine in pure H2O ices leads to the formation of a suite of oxidized pyrimidine derivatives, including the nucleobase uracil. In the present work, NH3:pyrimidine and H2O:NH3:pyrimidine ice mixtures with different relative proportions were irradiated with UV photons under astrophysically relevant conditions. Liquid- and gas-chromatography analysis of the resulting organic residues has led to the detection of the nucleobases uracil and cytosine, as well as other species of prebiotic interest such as urea and small amino acids. The presence of these molecules in organic residues formed under abiotic conditions supports scenarios in which extraterrestrial organics that formed in space and were subsequently delivered to telluric planets via comets and meteorites could have contributed to the inventory of molecules that triggered the first biological reactions on their surfaces.
Catalysis and prebiotic RNA synthesis
NASA Technical Reports Server (NTRS)
Ferris, James P.
1993-01-01
The essential role of catalysis for the origins of life is discussed. The status of the prebiotic synthesis of 2',5'- and 3'5'-linked oligomers of RNA is reviewed. Examples of the role of metal ion and mineral catalysis in RNA oligomer formation are discussed.
Song, L; Gao, Y; Zhang, X; Le, W
2013-08-29
Amyotrophic lateral sclerosis (ALS) is a progressive and devastating neurodegenerative disease caused by selective degeneration and death of motor neurons. So far very limited therapeutic options have emerged to treat this fatal disease. Homocysteine (Hcy) lowering drugs have been suggested to be a palliative therapy of this disease. Folate, Vitamin B12 (VitB12) and Vitamin B6 (VitB6) are important elements involved in the Hcy metabolism and we proposed that medications which could promote the absorption of folate, VitB12 and VitB6 might have benefit for ALS. Galactooligosaccharides (GOS) is a prebiotic which could significantly improve the absorption and syntheses of B Vitamins. To investigate whether GOS could provide neuroprotective effect in ALS, we applied GOS and GOS-rich prebiotic yogurt in SOD1(G93A) mice and assessed their effects on the disease progression of ALS. Our results showed that GOS and prebiotics yogurt administration significantly delayed the disease onset and prolonged the lifespan in SOD1(G93A) mice. Also, these products increased the concentration of folate, VitB12 and reduced the level of Hcy. Moreover, we found that both GOS and prebiotics yogurt attenuated motor neurons loss, improved the atrophy and mitochondrial activity in myocyte. Furthermore, we demonstrated that GOS and GOS-rich prebiotic treatment suppressed the activation of astrocytes and microglia and regulated several inflammatory- and apoptosis-related factors. Our findings suggested that GOS might have therapeutic potential for ALS, and GOS-rich prebiotic yogurt might be considered as a nutritional therapy for this disease. Copyright © 2013 IBRO. All rights reserved.
Intestinal microbiota and type 2 diabetes: from mechanism insights to therapeutic perspective.
Han, Jun-Ling; Lin, Hui-Ling
2014-12-21
The incidence of type 2 diabetes (T2DM) is rapidly increasing worldwide. However, the pathogenesis of T2DM has not yet been well explained. Recent evidence suggests that the intestinal microbiota composition is associated with obesity and T2DM. In this review, we provide an overview about the mechanisms underlying the role of intestinal microbiota in the pathogenesis of T2DM. There is clear evidence that the intestinal microbiota influences the host through its effect on body weight, bile acid metabolism, proinflammatory activity and insulin resistance, and modulation of gut hormones. Modulating gut microbiota with the use of probiotics, prebiotics, antibiotics, and fecal microbiota transplantation may have benefits for improvement in glucose metabolism and insulin resistance in the host. Further studies are required to increase our understanding of the complex interplay between intestinal microbiota and the host with T2DM. Further studies may be able to boost the development of new effective therapeutic approaches for T2DM.
Ntemiri, Alexandra; Chonchúir, Fodhla Ní; O'Callaghan, Tom F; Stanton, Catherine; Ross, R Paul; O'Toole, Paul W
2017-03-01
The potential of milk-derived glycomacropeptide (GMP) and lactose for modulating the human gut microbiota of older people, in whom loss of diversity correlates with inferior health, was investigated. We used an in vitro batch fermentation (artificial colon model) to simulate colonic fermentation processes of two GMP products, i.e., a commercially available GMP concentrate and a semipurified GMP concentrate, and lactose. Faecal samples were collected from healthy and frail older people. Samples were analyzed by Illumina Miseq sequencing of rRNA gene amplicons. The commercial GMP preparation had a positive effect on the growth of Coprococcus and Clostridium cluster XIVb and sustained a higher faecal microbiota diversity compared to control substrates or lactose. Lactose fermentation promoted the growth of Proteobacteria including Escherichia/Shigella. This work provides an in-depth insight on the potential of GMP and lactose for modulating the gut microbiota and contributes more evidence confirming the prebiotic activity of GMP.
Hernot, David C; Boileau, Thomas W; Bauer, Laura L; Middelbos, Ingmar S; Murphy, Michael R; Swanson, Kelly S; Fahey, George C
2009-02-25
It is of interest to benefit from the positive intestinal health outcomes of prebiotic consumption but with minimal gas production. This study examined gas production potential, fermentation profile, and microbial modulation properties of several types of oligosaccharides. Substrates studied included short-chain, medium-chain, and long-chain fructooligosaccharides, oligofructose-enriched inulin, galactooligosaccharide, and polydextrose. Each substrate was fermented in vitro using human fecal inoculum, and fermentation characteristics were quantified at 0, 4, 8, and 12 h. Gas and short-chain fatty acid (SCFA) production data showed that short-chain oligosaccharides were more rapidly fermented and produced more SCFA and gas than substrates with greater degrees of polymerization. Lactobacilli increased similarly among substrates. Short-chain oligosaccharides fermentation resulted in the greatest increase in bifidobacteria concentrations. Mixing short- and long-chain oligosaccharides attenuated short-chain oligosaccharide fermentation rate and extent. This study provides new information on the fermentation characteristics of some oligosaccharides used in human nutrition.
Unidirectional circulation in a prebiotic photochemical cycle
Careri, Giorgio; Wyman, Jeffries
1985-01-01
In this brief note, we suggest the possibility that a soliton-assisted unidirectional photochemical cycle has played a role in prebiotic evolution. This suggestion is based on a model calculation which is itself based on the detection of Davydov-type soliton overtones in acetanilide. PMID:16593575
Distant Site Effects of Ingested Prebiotics
Collins, Stephanie; Reid, Gregor
2016-01-01
The gut microbiome is being more widely recognized for its association with positive health outcomes, including those distant to the gastrointestinal system. This has given the ability to maintain and restore microbial homeostasis a new significance. Prebiotic compounds are appealing for this purpose as they are generally food-grade substances only degraded by microbes, such as bifidobacteria and lactobacilli, from which beneficial short-chain fatty acids are produced. Saccharides such as inulin and other fructo-oligosaccharides, galactooligosaccharides, and polydextrose have been widely used to improve gastrointestinal outcomes, but they appear to also influence distant sites. This review examined the effects of prebiotics on bone strength, neural and cognitive processes, immune functioning, skin, and serum lipid profile. The mode of action is in part affected by intestinal permeability and by fermentation products reaching target cells. As the types of prebiotics available diversify, so too will our understanding of the range of microbes able to degrade them, and the extent to which body sites can be impacted by their consumption. PMID:27571098
Distant Site Effects of Ingested Prebiotics.
Collins, Stephanie; Reid, Gregor
2016-08-26
The gut microbiome is being more widely recognized for its association with positive health outcomes, including those distant to the gastrointestinal system. This has given the ability to maintain and restore microbial homeostasis a new significance. Prebiotic compounds are appealing for this purpose as they are generally food-grade substances only degraded by microbes, such as bifidobacteria and lactobacilli, from which beneficial short-chain fatty acids are produced. Saccharides such as inulin and other fructo-oligosaccharides, galactooligosaccharides, and polydextrose have been widely used to improve gastrointestinal outcomes, but they appear to also influence distant sites. This review examined the effects of prebiotics on bone strength, neural and cognitive processes, immune functioning, skin, and serum lipid profile. The mode of action is in part affected by intestinal permeability and by fermentation products reaching target cells. As the types of prebiotics available diversify, so too will our understanding of the range of microbes able to degrade them, and the extent to which body sites can be impacted by their consumption.
Probiotics, prebiotics, and the host microbiome: the science of translation
Petschow, Bryon; Doré, Joël; Hibberd, Patricia; Dinan, Timothy; Reid, Gregor; Blaser, Martin; Cani, Patrice D; Degnan, Fred H; Foster, Jane; Gibson, Glenn; Hutton, John; Klaenhammer, Todd R; Ley, Ruth; Nieuwdorp, Max; Pot, Bruno; Relman, David; Serazin, Andrew; Sanders, Mary Ellen
2013-01-01
Recent advances in our understanding of the community structure and function of the human microbiome have implications for the potential role of probiotics and prebiotics in promoting human health. A group of experts recently met to review the latest advances in microbiota/microbiome research and discuss the implications for development of probiotics and prebiotics, primarily as they relate to effects mediated via the intestine. The goals of the meeting were to share recent advances in research on the microbiota, microbiome, probiotics, and prebiotics, and to discuss these findings in the contexts of regulatory barriers, evolving healthcare environments, and potential effects on a variety of health topics, including the development of obesity and diabetes; the long-term consequences of exposure to antibiotics early in life to the gastrointestinal (GI) microbiota; lactose intolerance; and the relationship between the GI microbiota and the central nervous system, with implications for depression, cognition, satiety, and mental health for people living in developed and developing countries. This report provides an overview of these discussions. PMID:24266656
Oligosaccharides in Food and Agriculture
NASA Astrophysics Data System (ADS)
Collins, Michelle E.; Rastall, Robert A.
Oligosaccharides are an integral part of the daily diet for humans and animals. They are primarily used for their nutritional properties, however they are currently receiving much attention due to their physiological effect on the microflora of the gastrointestinal tract. Galacto-oligosaccharides and the fructan-type oligosaccharides, namely FOS and inulin are well established as beneficial to the host and are classified as prebiotic based on data from clinical studies. These compounds dominate this sector of the market, although there are oligosaccharides emerging which have produced very interesting in vitro results in terms of prebiotic status and human trials are required to strengthen the claim. Such compounds include pectic oligosaccharides, gluco-oligosaccharides, gentio-oligosaccharides, kojio-oligosaccharides, and alternan oligosaccharides. The raw materials for production of these prebiotic compounds are derived from natural sources such as plants but also from by products of the food processing industry. In addition to being prebiotic these compounds can be incorporated into foodstuffs due to the physiochemical properties they possess.
Mandalari, G; Nueno Palop, C; Tuohy, K; Gibson, G R; Bennett, R N; Waldron, K W; Bisignano, G; Narbad, A; Faulds, C B
2007-01-01
The prebiotic effect of a pectic oligosaccharide-rich extract enzymatically derived from bergamot peel was studied using pure and mixed cultures of human faecal bacteria. This was compared to the prebiotic effect of fructo-oligosaccharides (FOS). Individual species of bifidobacteria and lactobacilli responded positively to the addition of the bergamot extract, which contained oligosaccharides in the range of three to seven. Fermentation studies were also carried out in controlled pH batch mixed human faecal cultures and changes in gut bacterial groups were monitored over 24 h by fluorescent in situ hybridisation, a culture-independent microbial assessment. Addition of the bergamot oligosaccharides (BOS) resulted in a high increase in the number of bifidobacteria and lactobacilli, whereas the clostridial population decreased. A prebiotic index (PI) was calculated for both FOS and BOS after 10 and 24 h incubation. Generally, higher PI scores were obtained after 10 h incubation, with BOS showing a greater value (6.90) than FOS (6.12).
The Composition and Organization of Cytoplasm in Prebiotic Cells
Trevors, Jack T.
2011-01-01
This article discusses the hypothesized composition and organization of cytoplasm in prebiotic cells from a theoretical perspective and also based upon what is currently known about bacterial cytoplasm. It is unknown if the first prebiotic, microscopic scale, cytoplasm was initially contained within a primitive, continuous, semipermeable membrane, or was an uncontained gel substance, that later became enclosed by a continuous membrane. Another possibility is that the first cytoplasm in prebiotic cells and a primitive membrane organized at the same time, permitting a rapid transition to the first cell(s) capable of growth and division, thus assisting with the emergence of life on Earth less than a billion years after the formation of the Earth. It is hypothesized that the organization and composition of cytoplasm progressed initially from an unstructured, microscopic hydrogel to a more complex cytoplasm, that may have been in the volume magnitude of about 0.1–0.2 μm3 (possibly less if a nanocell) prior to the first cell division. PMID:21673913
Ranjan, Sukrit; Wordsworth, Robin; Sasselov, Dimitar D
2017-08-01
Recent findings suggest that Mars may have been a clement environment for the emergence of life and may even have compared favorably to Earth in this regard. These findings have revived interest in the hypothesis that prebiotically important molecules or even nascent life may have formed on Mars and been transferred to Earth. UV light plays a key role in prebiotic chemistry. Characterizing the early martian surface UV environment is key to understanding how Mars compares to Earth as a venue for prebiotic chemistry. Here, we present two-stream, multilayer calculations of the UV surface radiance on Mars at 3.9 Ga to constrain the surface UV environment as a function of atmospheric state. We explore a wide range of atmospheric pressures, temperatures, and compositions that correspond to the diversity of martian atmospheric states consistent with available constraints. We include the effects of clouds and dust. We calculate dose rates to quantify the effect of different atmospheric states on UV-sensitive prebiotic chemistry. We find that, for normative clear-sky CO 2 -H 2 O atmospheres, the UV environment on young Mars is comparable to young Earth. This similarity is robust to moderate cloud cover; thick clouds (τ cloud ≥ 100) are required to significantly affect the martian UV environment, because cloud absorption is degenerate with atmospheric CO 2 . On the other hand, absorption from SO 2 , H 2 S, and dust is nondegenerate with CO 2 , meaning that, if these constituents build up to significant levels, surface UV fluence can be suppressed. These absorbers have spectrally variable absorption, meaning that their presence affects prebiotic pathways in different ways. In particular, high SO 2 environments may admit UV fluence that favors pathways conducive to abiogenesis over pathways unfavorable to it. However, better measurements of the spectral quantum yields of these pathways are required to evaluate this hypothesis definitively. Key Words: Radiative transfer-Origin of life-Mars-UV radiation-Prebiotic chemistry. Astrobiology 17, 687-708.
Munir, Mohammad Bodrul; Hashim, Roshada; Abdul Manaf, Mohammad Suhaimee; Nor, Siti Azizah Mohd
2016-01-01
This study used a two-phase feeding trial to determine the influence of selected dietary prebiotics and probiotics on growth performance, feed utilisation, and morphological changes in snakehead (Channa striata) fingerlings as well as the duration of these effects over a post-experimental period without supplementation. Triplicate groups of fish (22.46 ±0.17 g) were raised on six different treatment diets: three prebiotics (0.2% β-glucan, 1% galacto-oligosaccharides [GOS], 0.5% mannan-oligosaccharides [MOS]), two probiotics (1% live yeast [Saccharomyces cerevisiae] and 0.01% Lactobacillus acidophilus [LBA] powder) and a control (unsupplemented) diet; there were three replicates for each treatment. All diets contained 40% crude protein and 12% crude lipid. Fish were fed to satiation three times daily. No mortalities were recorded during Phase 1; however, 14% mortality was documented in the control and prebiotic-amended fish during Phase 2. At the end of Phase 1, growth performance and feed utilisation were significantly higher (p<0.05) in the LBA-treated fish, followed by live yeast treatment, compared with all other diets tested. The performance of fish on the three prebiotic diets were not significantly different from one another but was significantly higher than the control diet. During Phase 2 (the post-feeding phase), fish growth continued until the 6th week for the probiotic-based diets but levelled off after four weeks for the fish fed the prebiotic diets. The feed conversion ratio (FCR) was higher in all treatments during the post-feeding period. The hepatosomatic index (HSI) did not differ significantly among the tested diets. The visceral somatic index (VSI) and intraperitoneal fat (IPF) were highest in the LBA-based diet and the control diet, respectively. The body indices were significantly different (p<0.05) between Phases 1 and 2. This study demonstrates that probiotic-based diets have a more positive influence on the growth, feed utilisation, and survival of C. striata fingerlings compared with supplementation with prebiotics. PMID:27688855
The role of added feed enzymes in promoting gut health in swine and poultry.
Kiarie, Elijah; Romero, Luis F; Nyachoti, Charles M
2013-06-01
The value of added feed enzymes (FE) in promoting growth and efficiency of nutrient utilisation is well recognised in single-stomached animal production. However, the effects of FE on the microbiome of the gastrointestinal tract (GIT) are largely unrecognised. A critical role in host nutrition, health, performance and quality of the products produced is played by the intestinal microbiota. FE can make an impact on GIT microbial ecology by reducing undigested substrates and anti-nutritive factors and producing oligosaccharides in situ from dietary NSP with potential prebiotic effects. Investigations with molecular microbiology techniques have demonstrated FE-mediated responses on energy utilisation in broiler chickens that were associated with certain clusters of GIT bacteria. Furthermore, investigations using specific enteric pathogen challenge models have demonstrated the efficacy of FE in modulating gut health. Because FE probably change the substrate characteristics along the GIT, subsequent microbiota responses will vary according to the populations present at the time of administration and their reaction to such changes. Therefore, the microbiota responses to FE administration, rather than being absolute, are a continuum or a population of responses. However, recognition that FE can make an impact on the gut microbiota and thus gut health will probably stimulate development of FE capable of modulating gut microbiota to the benefit of host health under specific production conditions. The present review brings to light opportunities and challenges for the role of major FE (carbohydrases and phytase) on the gut health of poultry and swine species with a specific focus on the impact on GIT microbiota.
Gut Microbiota as a Therapeutic Target for Metabolic Disorders.
Okubo, Hirofumi; Nakatsu, Yusuke; Kushiyama, Akifumi; Yamamotoya, Takeshi; Matsunaga, Yasuka; Inoue, Masa-Ki; Fujishiro, Midori; Sakoda, Hideaki; Ohno, Haruya; Yoneda, Masayasu; Ono, Hiraku; Asano, Tomoichiro
2018-01-01
Gut microbiota play a vital role not only in the digestion and absorption of nutrients, but also in homeostatic maintenance of host immunity, metabolism and the gut barrier. Recent evidence suggests that gut microbiota alterations contribute to the pathogenesis of metabolic disorders. In this review, we discuss the association between the gut microbiota and metabolic disorders, such as obesity, type 2 diabetes mellitus and non-alcoholic fatty liver disease, and the contribution of relevant modulating interventions, focusing on recent human studies. Several studies have identified potential causal associations between gut microbiota and metabolic disorders, as well as the underlying mechanisms. The effects of modulating interventions, such as prebiotics, probiotics, fecal microbiota transplantation, and other new treatment possibilities on these metabolic disorders have also been reported. A growing body of evidence highlights the role of gut microbiota in the development of dysbiosis, which in turn influences host metabolism and disease phenotypes. Further studies are required to elucidate the precise mechanisms by which gut microbiota-derived mediators induce metabolic disorders and modulating interventions exert their beneficial effects in humans. The gut microbiota represents a novel potential therapeutic target for a range of metabolic disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Oceanic protection of prebiotic organic compounds from UV radiation
NASA Technical Reports Server (NTRS)
Cleaves, H. J.; Miller, S. L.; Bada, J. L. (Principal Investigator)
1998-01-01
It is frequently stated that UV light would cause massive destruction of prebiotic organic compounds because of the absence of an ozone layer. The elevated UV flux of the early sun compounds this problem. This applies to organic compounds of both terrestrial and extraterrestrial origin. Attempts to deal with this problem generally involve atmospheric absorbers. We show here that prebiotic organic polymers as well as several inorganic compounds are sufficient to protect oceanic organic molecules from UV degradation. This aqueous protection is in addition to any atmospheric UV absorbers and should be a ubiquitous planetary phenomenon serving to increase the size of planetary habitable zones.
Proton impact charge transfer on hydantoin - Prebiotic implications
NASA Astrophysics Data System (ADS)
Bacchus-Montabonel, Marie-Christine
2016-11-01
Formation and destruction of prebiotic compounds in astrophysical environments is a major issue in reactions concerning the origin of life. Detection of hydantoin in laboratory irradiation of interstellar ice analogues has confirmed evidence of this prebiotic compound and its stability to UV radiation or collisions may be crucial. Considering the different astrophysical environments, we have investigated theoretically proton-induced collisions with hydantoin in a wide energy range, from eV in the interstellar medium, up to keV for processes involving solar wind or supernovae shock-waves protons. Results are compared to previous investigations and qualitative trends on damage under spatial radiations are suggested.
Hummelen, Ruben; Hemsworth, Jaimie; Reid, Gregor
2010-01-01
Low serum concentrations of micronutrients, intestinal abnormalities, and an inflammatory state have been associated with HIV progression. These may be ameliorated by micronutrients, N-acetyl cysteine, probiotics, and prebiotics. This review aims to integrate the evidence from clinical trials of these interventions on the progression of HIV. Vitamin B, C, E, and folic acid have been shown to delay the progression of HIV. Supplementation with selenium, N-acetyl cysteine, probiotics, and prebiotics has considerable potential, but the evidence needs to be further substantiated. Vitamin A, iron, and zinc have been associated with adverse effects and caution is warranted for their use. PMID:22254046
NASA Astrophysics Data System (ADS)
Aspiyanto, Susilowati, Agustine; Lotulung, Puspa D.; Maryati, Yati
2017-11-01
Organic acids and polyphenol from fermentation of green vegetables by Kombucha culture are novelty functional food to achieve prebiotic and natural antioxidant. Ultrafiltration (UF) mode was performed to concentrate biomass of fermented broccoli (Brassica oleracea L.) and spinach (Amaranthus spp.) at stirrer rotation speed of 200, 300 and 400 rpm, room temperature and trans membrane pressure 40 psia for 30 minutes. Based on total organic acids, experiment activity showed that the best treatment on biomass of fermented broccoli and spinach were reached at stirrer rotation speed of 400 rpm and 300 rpm, respectively. In this condition, fermented broccoli and spinach concentrates gave total acids 0.83 % and 0.81 %, total polyphenol 0.06 % and 0.11 %, reducing sugar 63.95 mg/mL and 20.54 mg/mL, total sugars 2.43 ug/mL and 2.28 ug/mL, total solids 6.42 % and 7.17 %, respectively. Compared with feed, the optimum condition on fermented spinach and broccoli concentrates increased total acids 13.33 % and 10 %, however decreased total polyphenol 34.1 % and 41 %. Identification on monomer from fermented spinach and broccoli at optimum condition on lactic acid were dominated by monomers with molecular weights (MWs) 252.19 and 252.36 Dalton (Da.), and monomer of polyphenol dominated by monomer with MWs 193.17 and 193.22 Da. and relative intensity 100 %. Fermented broccoli has potency as prebiotic, meanwhile fermented spinach has potency as anti oxidant.
USDA-ARS?s Scientific Manuscript database
Multidisciplinary approaches enabled a better understanding of the connection between human gut microbes and health. This knowledge is rapidly changing how we think about probiotics and related –biotics (prebiotics, synbiotics, pharmabiotics and postbiotics). Functional –omics approaches are very im...
Processing, cooking, and cooling affect prebiotic concentrations in lentil (Lens culinaris Medikus)
USDA-ARS?s Scientific Manuscript database
Lentil is an important staple food crop in many regions world-wide and is a good source of protein (20-30%) and various micronutrients. Lentil contains raffinose-family oligosaccharides (RFO), resistant starch (RS), and other prebiotic compounds essential for maintenance of healthy gastrointestinal ...
Could Martian Strawberries Be? -- Prebiotic Chemical Evolution on an Early Wet Mars
NASA Astrophysics Data System (ADS)
Lerman, L.
2005-03-01
The universality of chemical physics dictates the ubiquity of bubbles, aerosols, and droplets on planets with water and simple amphiphiles. Their ability to functionally support prebiotic chemical evolution seems critical: on the early Earth and Mars, and quite likely for Titan and Europa.
Inulin and oligofructose in chronic inflammatory bowel disease.
Leenen, Celine H M; Dieleman, Levinus A
2007-11-01
Crohn's disease and ulcerative colitis, also called chronic inflammatory bowel diseases (IBD), affect up to 500 per 100,000 persons in the Western world. Recent studies in the etiology of IBD suggest that these diseases are caused by a combination of genetic, environmental, and immunological factors. Results from humans and especially animal models of colitis reported by our group and others have indicated that these diseases result from a lack of tolerance to resident intestinal bacteria in genetically susceptible hosts. Probiotic bacteria have health-promoting effects for the host when ingested and have also shown efficacy in ulcerative colitis and refractory pouchitis. In light of the efficacy of providing probiotic bacteria to patients with IBD, there has been interest in the prophylactic and therapeutic potential of inulin, oligofructose, and other prebiotics for patients with or at risk of IBD. Prebiotics are nondigestible dietary oligosaccharides that affect the host by selectively stimulating growth, activity, or both of selective intestinal (probiotic) bacteria. Prebiotics are easy to administer and, in contrast to probiotic therapy, do not require administration of large amounts of (live) bacteria and are therefore easier to administer. Studies using prebiotics, especially beta-fructan oligosaccharides, for the treatment of chronic intestinal inflammation have shown benefit in animal models of colitis. Studies using these prebiotics alone or in combination with probiotics are emerging and have shown promise. These dietary therapies could lead to novel treatments for these chronic debilitating diseases.
Liu, Zhibin; Wang, Wei; Huang, Guangwei; Zhang, Wen; Ni, Li
2016-03-30
Almonds contain considerable amounts of potential prebiotic components, and the roasting process may alter these components. The aim of this study was to compare the in vitro fermentation properties and in vivo prebiotic effect of raw and roasted almonds. In vitro, predigested raw and roasted almonds promoted the growth of Lactobacillus acidophilus (La-14) and Bifidobacterium breve (JCM 1192), and no significant differences were found between these two nuts. In a 4-week animal trial, daily intake of raw or roasted almonds promoted the population of Bifidobacterium spp. and Lactobacillus spp. and inhibited the growth of Enterococcus spp. in faeces and caecal contains of rats. Compared with roasted almonds, raw almonds had a greater bifidobacteria promotion effect. Besides, significantly higher β-galactosidase activity and lower β-glucuronidase and azoreductase activities in faeces or caecal contents of rats were observed with raw almonds than with roasted almonds. While, in terms of metabolic effects, the ingestion of roasted almonds resulted in significantly greater intestinal lipase activities. Both raw and roasted almonds exhibit potential prebiotic effects, including regulation of intestinal bacteria and improved metabolic activities. The roasting process may slightly reduce the prebiotic effects of almonds but significantly improve the metabolic effects © 2016 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Duarte, Francisca Nayara Dantas; Rodrigues, Jéssica Bezerra; da Costa Lima, Maiara; Lima, Marcos Dos Santos; Pacheco, Maria Teresa Bertoldo; Pintado, Maria Manuela Estevez; de Souza Aquino, Jailane; de Souza, Evandro Leite
2017-08-01
The prebiotic effects of a cashew apple (Anacardium occidentale L.) agro-industrial byproduct powder (CAP) on different potentially probiotic Lactobacillus strains, namely Lactobacillus acidophilus LA-05, Lactobacillus casei L-26 and Lactobacillus paracasei L-10, were assessed using in vitro experimental models. Accordingly, the growth of the Lactobacillus strains when cultivated in a broth containing CAP (20 or 30 g L -1 ), glucose (20 g L -1 ) or fructooligosaccharides (FOS) (20 g L -1 ) was monitored over 48 h; the prebiotic activity scores of CAP were determined; and the changes in pH values, production of organic acids and consumption of sugars in growth media were verified. During the 48-h cultivation, similar viable cell counts were observed for the Lactobacillus strains grown in the different media tested. The CAP presented positive prebiotic activity scores toward all the tested Lactobacillus strains, indicating a desirable selective fermentable activity relative to enteric organisms. The cultivation of the Lactobacillus strains in broth containing glucose, FOS or CAP resulted in high viable cell counts, a decreased pH, the production of organic acids and the consumption of sugars over time, revealing intense bacterial metabolic activity. The CAP exerts potential prebiotic effects on different potentially probiotic Lactobacillus strains and should be an added-value ingredient for the food industry. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Maiorano, Giuseppe; Stadnicka, Katarzyna; Tavaniello, Siria; Abiuso, Cinzia; Bogucka, Joanna; Bednarczyk, Marek
2017-02-01
The purpose of this study was to examine the effect of in ovo injection of 2 different prebiotics, DiNovo (DN; Laminaria spp., extract containing laminarin and fucoidan) and Bi 2 tos (BI; non-digestive trans-galactooligosaccharides from milk lactose digested with Bifidobacterium bifidum NCIMB 41171), on growth, slaughter traits, intramuscular fat percentage (IF) and muscle fiber diameter, and lipid oxidation of meat in chickens reared under commercial conditions, following an in ovo trial protocol. On d 12 of embryonic incubation, 350,560 Ross 308 eggs were randomly divided into 3 experimental groups and automatically injected in ovo with: physiological saline (control group), BI at dose of 3.5 mg/embryo and DN at dose of 0.88 mg/embryo. Hatched chicks (males and females) were allocated dependent on treatment group into 3 poultry houses on each farm (3 farms in total) with a stocking density of 21.2 to 21.5 chicks/m 2 At 42 d of age, 14 randomly chosen birds (7 males and 7 females), per each treatment from each farm, were individually weighed and slaughtered. The results showed no significant differences of final number of chickens/chicken house, mortality, BW per treatment, stocking density (kg/m 2 ), feed intake, feed conversion rate (FCR), and European Broiler Index among 3 experimental groups. Treatments with BI and DN were associated with slight increases (P > 0.05) in average BW and a minor improvement (P > 0.05) of FCR in BI group. Slaughtered chickens from DN and BI treated groups had significantly increase of BW, carcass weight, carcass yield, and breast muscle weight compared with the control group. IF and muscle fiber diameter were similar among groups. Males had significantly higher slaughter traits compared to females, except for breast muscle yield. The prebiotic treatments led to a higher lipid oxidation in meat, even if the detected TBA reactive substances were below the critical value recognized for meat acceptability. In conclusion, in ovo administration of prebiotics was associated with improvements in a number of parameters of relevance to commercial poultry production. © 2016 Poultry Science Association Inc.
Prebiotic Polymer Synthesis and the Origin of Glycolytic Metabolism
NASA Technical Reports Server (NTRS)
Weber, Arthur L.
1998-01-01
Our research resulted in several discoveries which contributed to understanding the origin and operation of life. (1) Most importantly, we discovered a new pathway of prebiotic amino acid synthesis in which formaldehyde and glycolaldehyde (formose reaction substrates) react with ammonia to give alanine and homoserine in the presence of thiol catalysts. The thiol-dependent synthesis of amino acids undoubtedly occurs via amino acid thioester intermediates capable of forming peptides. This 'one-pot' reaction system operates under mild aqueous conditions, and like modern amino acid biosynthesis, uses sugar intermediates which are converted to amino acids by energy-yielding redox disproportionation. Preliminary evidence suggests that this type of process can be "evolved" by a serial transfer methods that lead to enrichment of autocatalytic molecules. (2) We established that prebiotic peptide polymers can be made by condensation of amino acid thioesters (homocysteine thiolactone and S-(N-beta-orotidyl- diaminopropionic acid) ethanethiol), and that prebiotic polydisulfide polymers can be generated by oxidation of dithiols with iron(III) in minerals. (3) In our analysis of metabolism we discovered the primary energy source of biosynthesis -- chemical energy made available by the redox disproportionation of substrate carbon groups. We concluded that the energy and reactivity of sugars make them the optimal substrate for the origin and operation of terrestrial (or extraterrestrial) life. (4) Since it is likely that the use of optimal sugar substrates in biosynthesis sets the average oxidation number of functional biocarbon throughout the Universe near 0.0 (the reduction level of formaldehyde), we proposed that a line(s) in the microwave spectrum of formaldehyde could be rationally selected as a frequency for interstellar communication that symbolizes life. (5) Finally, in preparation for the analysis of Martian meteorite samples, we upgraded our HPLC system to one femtomole sensitivity, and developed a new electrophoretic method of sample preparation for HPLC analysis of the meteoritic amino acids. In a sample of the KT boundary layer from Sussex Wyoming, we found about 300 picomoles per gram of meteoritic alpha-aminoisobutyric acid per gram of KT layer.
NASA Technical Reports Server (NTRS)
Shen, Thomas C.
1999-01-01
This report summarizes the last nine years research accomplishments under Cooperative Agreement NCC2-650 between NASA, Ames Research Center and SETI Institute. Four Major research tasks are conducted: 1. Gas chromatography column development. 2. Pyrosensor development. 3. Micro-machining gas chromatography instrument development. 4. Amino acid analysis and high molecular weight polyamino acid synthesis under prebiotic conditions. The following describes these results.
Similar calcium status is present in infants fed formula with and without prebiotics
USDA-ARS?s Scientific Manuscript database
Prebiotic oligosaccharides can increase calcium absorption in adolescents and adults. Whether they affect calcium absorption in infants has not been assessed. Few data are available to compare the calcium status of infants fed modern infant formulas to that of breast fed infants. To evaluate calcium...
Effects of prebiotics on mineral absorption: mechanisms of action
USDA-ARS?s Scientific Manuscript database
There is extensive evidence in experimental animals that prebiotics, such as inulin-type fructans, can increase the absorption of a variety of minerals, including calcium, magnesium, iron, and zinc, and that they may act through several possible mechanisms. The purpose of this review is to discuss t...
USDA-ARS?s Scientific Manuscript database
Probiotics (live or inactivated beneficial microorganisms) and prebiotics (indigestible nutrients for beneficial microorganisms) have been used as additives to aquafeeds as a means to improve production (immunity and growth) in intensively-reared finfish species. The research literature has document...
23RD International Conference on Phenomena in Ionized Gases, Volume 2
1998-12-01
able voltage arcs and thermoionic converters [10]. The news for subsequent evolution into a prebiotic structure, XXIII ICPIG (Toulouse, France ) 17...possibilities of a prebiotic [9]. M.Sanduloviciu, Proc XXII ICPIG New Jersey structure in the early Earth atmosphere (a plasma like 1995, Contr. Paper 1, p
Feasibility Assessment for the Use of Cellulase in Biomass Conversion for Human Application
2003-03-25
conclude that there is potential for targeted delivery of enzymes and other functional components (e.g., peptides, probiotics, prebiotics , etc.) to...potential for targeted delivery of enzymes and other functional components (e.g., peptides, probiotics, prebiotics , etc.) to the GI tract. • There is
Study of Plasma Chemistry and Plasma Processing.
1983-01-01
m, 20% 0,0-oxybisfpropionitrile] on Chrom W column in these reactions comes from their pertinence to prebiotic was used for cyanogen and gaseous...xerography, prebiotic chemistry, and chemistry in the ionosphere. L -5- Euipment for RF Reactions Virtually all of the work on organic plasmas has used RF
USDA-ARS?s Scientific Manuscript database
This study was designed to investigate the growth promoting effects of supplementing different sources and concentrations of prebiotic yeast cell wall (YCW) products containing mannanoligosaccharides in starter broilers under an immune stress and Clostridium perfringens challenge. Through a series ...
Skoblikow, Nikolai E; Zimin, Andrei A
2018-04-01
The hypothesis of hot volcanic organic stream as the most probable and geologically plausible environment for abiogenic polycondensation is proposed. The primary synthesis of organic compounds is considered as result of an explosive volcanic (perhaps, meteorite-induced) eruption. The eruption was accompanied by a shock wave propagating in the primeval atmosphere and resulting in the formation of hot cloud of simple organic compounds-aldehydes, alcohols, amines, amino alcohols, nitriles, and amino acids-products, which are usually obtained under the artificial conditions in the spark-discharge experiments. The subsequent cooling of the organic cloud resulted in a gradual condensation and a serial precipitation of organic compounds (in order of decreasing boiling point values) into the liquid phase forming a hot, viscous and muddy organic stream (named "lithorheos"). That stream-even if the time of its existence was short-is considered here as a geologically plausible environment for abiogenic polycondensation. The substances successively prevailing in such a stream were cyanamide, acetamide, formamide, glycolonitrile, acetonitrile. An important role was played by mineral (especially, phosphate-containing) grains (named "lithosomes"), whose surface was modified with heterocyclic nitrogen compounds synthesized in the course of eruption. When such grains got into hot organic streams, their surface catalytic centers (named "lithozymes") played a decisive role in the emergence, facilitation and maintenance of prebiotic reactions and key processes characteristic of living systems. Owing to its cascade structure, the stream was a factor underlying the formation of mineral-polymeric aggregates (named "lithocytes") in the small natural streambed cavities (dimples)-as well as a factor of their further spread within larger geological locations which played a role of chemo-ecological niches. All three main stages of prebiotic evolution (primary organic synthesis, polycondensation, and formation of proto-cellular structures) are combined within a common dynamic geological process. We suppose macromolecular evolution had an extremely fast, "flash" start: the period from volcanic eruption to formation of lithocyte "populations" took not million years but just several tens of minutes. The scenario proposed can be verified experimentally with a three-module setup working with principles of dynamic (flow) chemistry in its core element.
Diet, microbes, and host genetics: the perfect storm in inflammatory bowel diseases.
Leone, Vanessa; Chang, Eugene B; Devkota, Suzanne
2013-03-01
The incidence of inflammatory bowel diseases (IBD), as well as other inflammatory conditions, has dramatically increased over the past half century. While many studies have shown that IBD exhibits a genetic component via genome-wide association studies, genetic drift alone cannot account for this increase, and other factors, such as those found in the environment must play a role, suggesting a "multiple hit" phenomenon that precipitates disease. One major environmental factor, dietary intake, has shifted to a high fat, high carbohydrate Western-type diet in developing nations, nearly in direct correlation with the increasing incidence of IBD. Recent evidence suggests that specific changes in dietary intake have led to a shift in the composite human gut microbiota, resulting in the emergence of pathobionts that can thrive under specific conditions. In the genetically susceptible host, the emerging pathobionts can lead to increasing incidence and severity of IBD and other inflammatory disorders. Since the gut microbiota is plastic and responds to dietary modulations, the use of probiotics, prebiotics, and/or dietary alterations are all intriguing complementary therapeutic approaches to alleviate IBD symptoms. However, the interactions are complex and it is unlikely that a one-size-fits all approach can be utilized across all populations affected by IBD. Exploration into and thoroughly understanding the interactions between host and microbes, primarily in the genetically susceptible host, will help define strategies that can be tailored to an individual as we move towards an era of personalized medicine to treat IBD.
NASA Astrophysics Data System (ADS)
Meierhenrich, U.; de Marcellus, P.; Meinert, C.; Myrgorodska, I.; Nahon, L.; Buhse, T.; d'Hendecourt, L.
2015-10-01
Our understanding of the molecular origin of life is based on amino acids, ribose, and nucleobases that - after their selection by prebiotic processes - initiated the evolutionary assembly of catalytic and informational polymers, being proteins and ribonucleic acids. Following previous amino acid identifications in the room-temperature residues of simulated circumstellar/interstellar ices [1,2] we have searched for a different family of molecules of potential prebiotic interest. Using multidimensional gas chromatography coupled to time-of-flight mass spectrometry, we have detected ten aldehydes, including the sugar-related glycolaldehyde and glyceraldehyde - two species considered as key prebiotic intermediates in the first steps toward the synthesis of ribonucleotides in a planetary environment.
Pyrite in contact with supercritical water: the desolation of steam.
Stirling, András; Rozgonyi, Tamás; Krack, Matthias; Bernasconi, Marco
2015-07-14
The supercritical water-pyrite interface has been studied by ab initio molecular dynamics simulation. Extreme conditions are relevant in the iron-sulfur world (ISW) theory where prebiotic chemical reactions are postulated to occur at the mineral-water interface. We have investigated the properties of this interface under such conditions. We have come to the conclusion that hot-pressurized water on pyrite leads to an interface where a dry pyrite surface is in contact with the nearby SC water without significant chemical interactions. This picture is markedly different from that under ambient conditions where the surface is fully covered with adsorbed water molecules which is of relevance for the surface reactions of the ISW hypothesis.
Manufacture of Prebiotics from Biomass Sources
NASA Astrophysics Data System (ADS)
Gullón, Patricia; Gullón, Beatriz; Moure, Andrés; Alonso, José Luis; Domínguez, Herminia; Parajó, Juan Carlos
Biomass from plant material is the most abundant and widespread renewable raw material for sustainable development, and can be employed as a source of polymeric and oligomeric carbohydrates. When ingested as a part of the diet, some biomass polysaccharides and/or their oligomeric hydrolysis products are selectively fermented in the colon, causing prebiotic effects.
NASA Astrophysics Data System (ADS)
Madariaga, J. M.; Torre-Fdez, I.; Ruiz-Galende, P.; Aramendia, J.; Gomez-Nubla, L.; Fdez-Ortiz de Vallejuelo, S.; Maguregui, M.; Castro, K.; Arana, G.
2018-04-01
Advanced methodologies based on Raman spectroscopy are proposed to detect prebiotic and biotic molecules in returned samples from Mars: (a) optical microscopy with confocal micro-Raman, (b) the SCA instrument, (c) Raman Imaging. Examples for NWA 6148.
NASA Astrophysics Data System (ADS)
Scorei, Romulus
2012-02-01
Boron is probably a prebiotic element with special importance in the so-called "sugars world". Boron is not present on Earth in its elemental form. It is found only in compounds, e.g., borax, boric acid, kernite, ulexite, colemanite and other borates. Volcanic spring waters sometimes contain boron-based acids (e.g., boric, metaboric, tetraboric and pyroboric acid). Borates influence the formation of ribofuranose from formaldehyde that feeds the "prebiotic metabolic cycle". The importance of boron in the living world is strongly related to its implications in the prebiotic origins of genetic material; consequently, we believe that throughout the evolution of life, the primary role of boron has been to provide thermal and chemical stability in hostile environments. The complexation of boric acid and borates with organic cis-diols remains the most probable chemical mechanism for the role of this element in the evolution of the living world. Because borates can stabilize ribose and form borate ester nucleotides, boron may have provided an essential contribution to the "pre-RNA world".
NASA Technical Reports Server (NTRS)
Miller, S. L.; Schlesinger, G.
1993-01-01
Pantoic acid can by synthesized in good prebiotic yield from isobutyraldehyde or alpha-ketoisovaleric acid + H2CO + HCN. Isobutyraldehyde is the Strecker precursor to valine and alpha-ketoisovaleric acid is the valine transamination product. Mg2+ and Ca2+ as well as several transition metals are catalysts for the alpha-ketoisovaleric acid reaction. Pantothenic acid is produced from pantoyl lactone (easily formed from pantoic acid) and the relatively high concentrations of beta-alanine that would be formed on drying prebiotic amino acid mixtures. There is no selectivity for this reaction over glycine, alanine, or gamma-amino butyric acid. The components of coenzyme A are discussed in terms of ease of prebiotic formation and stability and are shown to be plausible choices, but many other compounds are possible. The gamma-OH of pantoic acid needs to be capped to prevent decomposition of pantothenic acid. These results suggest that coenzyme A function was important in the earliest metabolic pathways and that the coenzyme A precursor contained most of the components of the present coenzyme.
The Prevailing Catalytic Role of Meteorites in Formamide Prebiotic Processes.
Saladino, Raffaele; Botta, Lorenzo; Di Mauro, Ernesto
2018-02-22
Meteorites are consensually considered to be involved in the origin of life on this Planet for several functions and at different levels: (i) as providers of impact energy during their passage through the atmosphere; (ii) as agents of geodynamics, intended both as starters of the Earth's tectonics and as activators of local hydrothermal systems upon their fall; (iii) as sources of organic materials, at varying levels of limited complexity; and (iv) as catalysts. The consensus about the relevance of these functions differs. We focus on the catalytic activities of the various types of meteorites in reactions relevant for prebiotic chemistry. Formamide was selected as the chemical precursor and various sources of energy were analyzed. The results show that all the meteorites and all the different energy sources tested actively afford complex mixtures of biologically-relevant compounds, indicating the robustness of the formamide-based prebiotic chemistry involved. Although in some cases the yields of products are quite small, the diversity of the detected compounds of biochemical significance underlines the prebiotic importance of meteorite-catalyzed condensation of formamide.
Phosphorus: a Case for Mineral-Organic Reactions in Prebiotic Chemistry
NASA Astrophysics Data System (ADS)
Pasek, Matthew; Herschy, Barry; Kee, Terence P.
2015-06-01
The ubiquity of phosphorus (P) in modern biochemistry suggests that P may have participated in prebiotic chemistry prior to the emergence of life. Of the major biogenic elements, phosphorus alone lacks a substantial volatile phase and its ultimate source therefore had to have been a mineral. However, as most native P minerals are chemically un-reactive within the temperature-pressure-pH regimes of contemporary life, it begs the question as to whether the most primitive early living systems on earth had access to a more chemically reactive P-mineral inventory. The meteoritic mineral schreibersite has been proposed as an important source of reactive P on the early earth. The chemistry of schreibersite as a P source is summarized and reviewed here. Recent work has also shown that reduced oxidation state P compounds were present on the early earth; these compounds lend credence to the relevance of schreibersite as a prebiotic mineral. Ultimately, schreibersite will oxidize to phosphate, but several high-energy P intermediates may have provided the reactive material necessary for incorporating P into prebiotic molecules.
Extraterrestrial flux of potentially prebiotic C, N, and P to the early Earth.
Pasek, Matthew; Lauretta, Dante
2008-02-01
With growing evidence for a heavy bombardment period ending 4-3.8 billion years ago, meteorites and comets may have been an important source of prebiotic carbon, nitrogen, and phosphorus on the early Earth. Life may have originated shortly after the late-heavy bombardment, when concentrations of organic compounds and reactive phosphorus were enough to "kick life into gear". This work quantifies the sources of potentially prebiotic, extraterrestrial C, N, and P and correlates these fluxes with a comparison to total Ir fluxes, and estimates the effect of atmosphere on the survival of material. We find (1) that carbonaceous chondrites were not a good source of organic compounds, but interplanetary dust particles provided a constant, steady flux of organic compounds to the surface of the Earth, (2) extraterrestrial metallic material was much more abundant on the early Earth, and delivered reactive P in the form of phosphide minerals to the Earth's surface, and (3) large impacts provided substantial local enrichments of potentially prebiotic reagents. These results help elucidate the potential role of extraterrestrial matter in the origin of life.
From Osteoimmunology to Osteomicrobiology: How the Microbiota and the Immune System Regulate Bone.
Hsu, Emory; Pacifici, Roberto
2018-05-01
Osteomicrobiology refers to the role of microbiota in bone health and the mechanisms by which the microbiota regulates post-natal skeletal development, bone aging, and pathologic bone loss. Here, we review recent reports linking gut microbiota to changes in bone phenotype. A pro-inflammatory cytokine milieu drives bone resorption in conditions such as sex steroid hormone deficiency. The response of the immune system to activation by the microbiome results in increased circulating osteoclastogenic cytokines in a T cell-dependent mechanism. Additionally, gut microbiota affect bone homeostasis through nutrient absorption, mediation of the IGF-1 pathway, and short chain fatty acid and metabolic products. Manipulation of microbiota through prebiotics or probiotics reduces inflammatory cytokine production, leading to changes in bone density. One mechanism of probiotic action is through upregulating tight junction proteins, increasing the strength of the gut epithelial layer, and leading to less antigen presentation and less activation of intestinal immune cells. Thus, prebiotics or probiotics may represent a future therapeutic avenue for ameliorating the risk of postmenopausal bone loss in humans.
Meteors: A Delivery Mechanism of Organic Matter to The Early Earth
NASA Technical Reports Server (NTRS)
Jenniskens, Peter; Wilson, Mike A.; Packan, Dennis; Laux, Christophe O.; Krueger, Charles H.; Boyd, Iain, D.; Popova, Olga P.; Fonda, Mark; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
All potential exogenous pre-biotic matter arrived to Earth by ways of our atmosphere, where much material was ablated during a luminous phase called 1. meteors" in rarefied flows of high (up to 270) Mach number. The recent Leonid showers offered a first glimpse into the elusive physical conditions of the ablation process and atmospheric chemistry associated with high-speed meteors. Molecular emissions were detected that trace a meteor's brilliant light to a 4,300 K warm wake rather than to the meteor's head. A new theoretical approach using the direct simulation by Monte Carlo technique identified the source-region and demonstrated that the ablation process is critical in the heating of the meteor's wake. In the head of the meteor, organic carbon appears to survive flash heating and rapid cooling. The temperatures in the wake of the meteor are just right for dissociation of CO and the formation of more complex organic compounds. The resulting materials could account for the bulk of pre-biotic organic carbon on the early Earth at the time of the origin of life.
Microspherules from Sugars in the Absence of Nitrogen
NASA Astrophysics Data System (ADS)
Rand, Danielle; Belenky, Marina; Herzfeld, Judith
2011-02-01
Reactions of short sugars under mild, plausibly prebiotic conditions yield organic microspherules that may have played a role in prebiotic chemistry as primitive reaction vessels. It has been widely thought that nitrogen chemistry, in particular Amadori rearrangement, is central to this process, Here we show that microspherules form in the absence of any nitrogen compounds if the pH is sufficiently low. In particular, while the microspherule formation induced by ammonium acetate (pH 7) is not reproduced by ammonium chloride (pH 5), it is reproduced by oxalic acid and by hydrochloric acid (pH 1). The formation of microspherules in the presence of oxalic acid is similar to that in the presence of ammonium acetate: aqueous reactions of D-erythrose, D-ribose, 2-deoxy-D-ribose and D-fructose in the presence of oxalic acid produce microspherules ranging in size from approximately 1-5 μm after eight weeks incubation at 65°C, while the aldohexoses D-glucose, D-galactose and D-mannose do not. This pattern correlates with the occurrence of furanose forms in these sugars.
Prebiotic-Like Condensations of Cyanamide and Glyoxal: Revisiting Intractable Biotars.
Lavado, Nieves; Escamilla, Juan Carlos; Ávalos, Martín; Babiano, Reyes; Cintas, Pedro; Jiménez, José Luis; Palacios, Juan Carlos
2016-09-12
We report a detailed investigation into the nature of products that are generated by the reactions of cyanamide and glyoxal, two small molecules of astrochemical and prebiotic significance, under different experimental conditions. The experimental data suggest that the formation of oligomeric structures is related in part to the formation of insoluble tholins in the presence of oxygen-containing molecules. Although oligomerization proceeds well in water, product isolation turned out to be impractical. Instead, solid precipitates were obtained easily in acetone. Crude mixtures have been thoroughly scrutinized by spectroscopic methods, in particular NMR and mass spectroscopy (ESI mode), which are all consistent with the generation of a few functional groups that are embedded into regular chains of five- and six-membered rings, thereby pointing to a supramolecular organization. Three different models of cross-condensation and chain growth are suggested. These synthetic explorations provide further insights into the formation of complex organic matter in interstellar scenarios and extraterrestrial bodies that might have played a pivotal role in chemical evolution. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Nuevo, M.; Sandford, S. A.; Cooper, G.
2017-01-01
Carbonaceous chondrites contain a large variety of organic compounds of prebiotic interest, which include amino acids, amphiphiles, nucleobases, and sugar derivatives. The presence of these compounds strongly suggests that molecules essential to life can form abiotically under astrophysical conditions. Among the sugar derivatives reported in the Murchison and Murray meteorites, only one sugar (dihydroxyacetone) was found, together with a variety of sugar alcohols and sugar acids containing up to 6 carbon atoms, including sugar acid derivatives of the biological sugars ribose and glucose. On the other hand, laboratory studies on the formation of complex organic molecules from the ultraviolet (UV) irradiation of simulated astrophysical ice mixtures consisting of H2O, CO, CO2, CH3OH, CH4, NH3, etc., at low temperature have been routinely carried out in the past 15 years. These studies have shown that the organic residues recovered at room temperature contain amino acids, amphiphiles, nucleobases, as well as other complex organics, supporting a scenario in which molecules of prebiotic interest can form in extra-terrestrial environments.
Clay energetics in chemical evolution
NASA Technical Reports Server (NTRS)
Coyne, L. M.
1986-01-01
Clays have been implicated in the origin of terrestrial life since the 1950's. Originally they were considered agents which aid in selecting, concentrating and promoting oligomerization of the organic monomeric substituents of cellular life forms. However, more recently, it has been suggested that minerals, with particular emphasis on clays, may have played a yet more fundamental role. It has been suggested that clays are prototypic life forms in themselves and that they served as a template which directed the self-assembly of cellular life. If the clay-life theory is to have other than conceptual credibility, clays must be shown by experiment to execute the operations of cellular life, not only individually, but also in a sufficiently concerted manner as to produce some semblance of the functional attributes of living cells. Current studies are focussed on the ability of clays to absorb, store and transfer energy under plausible prebiotic conditions and to use this energy to drive chemistry of prebiotic relevance. Conclusions of the work are applicable to the role of clays either as substrates for organic chemistry, or in fueling their own life-mimetic processes.
H2-rich fluids from serpentinization: Geochemical and biotic implications
Sleep, N. H.; Meibom, A.; Fridriksson, Th.; Coleman, R. G.; Bird, D. K.
2004-01-01
Metamorphic hydration and oxidation of ultramafic rocks produces serpentinites, composed of serpentine group minerals and varying amounts of brucite, magnetite, and/or FeNi alloys. These minerals buffer metamorphic fluids to extremely reducing conditions that are capable of producing hydrogen gas. Awaruite, FeNi3, forms early in this process when the serpentinite minerals are Fe-rich. Olivine with the current mantle Fe/Mg ratio was oxidized during serpentinization after the Moon-forming impact. This process formed some of the ferric iron in the Earth's mantle. For the rest of Earth's history, serpentinites covered only a small fraction of the Earth's surface but were an important prebiotic and biotic environment. Extant methanogens react H2 with CO2 to form methane. This is a likely habitable environment on large silicate planets. The catalytic properties of FeNi3 allow complex organic compounds to form within serpentinite and, when mixed with atmospherically produced complex organic matter and waters that circulated through basalts, constitutes an attractive prebiotic substrate. Conversely, inorganic catalysis of methane by FeNi3 competes with nascent and extant life. PMID:15326313
Vanhoutte, Tom; De Preter, Vicky; De Brandt, Evie; Verbeke, Kristin; Swings, Jean; Huys, Geert
2006-01-01
Diet is a major factor in maintaining a healthy human gastrointestinal tract, and this has triggered the development of functional foods containing a probiotic and/or prebiotic component intended to improve the host's health via modulation of the intestinal microbiota. In this study, a long-term placebo-controlled crossover feeding study in which each subject received several treatments was performed to monitor the effect of a prebiotic substrate (i.e., lactulose), a probiotic organism (i.e., Saccharomyces boulardii), and their synbiotic combination on the fecal microbiota of three groups of 10 healthy human subjects differing in prebiotic dose and/or intake of placebo versus synbiotic. For this purpose, denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene amplicons was used to detect possible changes in the overall bacterial composition using the universal V3 primer and to detect possible changes at the subpopulation level using group-specific primers targeting the Bacteroides fragilis subgroup, the genus Bifidobacterium, the Clostridium lituseburense group (cluster XI), and the Clostridium coccoides-Eubacterium rectale group (cluster XIVa). Although these populations remained fairly stable based on DGGE profiling, one pronounced change was observed in the universal fingerprint profiles after lactulose ingestion. Band position analysis and band sequencing revealed that a band appearing or intensifying following lactulose administration could be assigned to the species Bifidobacterium adolescentis. Subsequent analysis with real-time PCR (RT-PCR) indicated a statistically significant increase (P < 0.05) in total bifidobacteria in one of the three subject groups after lactulose administration, whereas a similar but nonsignificant trend was observed in the other two groups. Combined RT-PCR results from two subject groups indicated a borderline significant increase (P = 0.074) of B. adolescentis following lactulose intake. The probiotic yeast S. boulardii did not display any detectable universal changes in the DGGE profiles, nor did it influence the bifidobacterial levels. This study highlighted the capacity of an integrated approach consisting of DGGE analysis and RT-PCR to monitor and quantify pronounced changes in the fecal microbiota of healthy subjects upon functional food administration. PMID:16957220
Qamar, Tahir Rasool; Syed, Fatima; Nasir, Muhammad; Rehman, Habib; Zahid, Muhammad Nauman; Liu, Rui Hai; Iqbal, Sanaullah
2016-08-01
The selectivity and beneficial effects of prebiotics are mainly dependent on composition and glycosidic linkage among monosaccharide units. This is the first study to use prebiotic galacto-oligosaccharides (GOS) that contains β-1,6 and β-1,3 glycosidic linkages and the novel combination of GOS and inulin in cancer prevention. The objective of the present study is to explore the role of novel GOS and inulin against various biomarkers of colorectal cancer (CRC) and the incidence of aberrant crypt foci (ACF) in a 1,2-dimethyl hydrazine dihydrochloride (DMH)-induced rodent model. Prebiotic treatments of combined GOS and inulin (57 mg each), as well as individual doses (GOS: 76-151 mg; inulin 114 mg), were given to DMH-treated animals for 16 weeks. Our data reveal the significant preventive effect of the GOS and inulin combination against the development of CRC. It was observed that inhibition of ACF formation (55.8%) was significantly (p ≤ 0.05) higher using the GOS and inulin combination than GOS (41.4%) and inulin (51.2%) treatments alone. This combination also rendered better results on short-chain fatty acids (SCFA) and bacterial enzymatic activities. Dose-dependent effects of prebiotic treatments were also observed on cecum and fecal bacterial enzymes and on SCFA. Thus, this study demonstrated that novel combination of GOS and inulin exhibited stronger preventive activity than their individual treatments alone, and can be a promising strategy for CRC chemoprevention.
Prebiotics and synbiotics in ulcerative colitis.
Laurell, Axel; Sjöberg, Klas
2017-04-01
Ulcerative colitis (UC) is a chronic inflammatory disease of the colon with unclear pathogenesis. A dysbiotic intestinal microbiota is regarded as a key component in the disease process and there has been significant interest in developing new treatments which target the microbiota. To give an overview of the studies to date investigating prebiotics and synbiotics for the treatment of UC. A literature search of PubMed and related search engines was carried out using the terms "ulcerative colitis" in combination with "prebiotic", "synbiotic" or "dietary fibre". In total 17 studies on humans examining the effect of prebiotics in UC were found. Five major groups could be distinguished. Fructo-oligosaccharides were tried in six studies (mean 35 patients included, range 9-121). One study found a clinical response while two demonstrated indirect evidence of an effect. Germinated barley foodstuff was used in 8 studies (mean 38 patients, range 10-63). One study found an endoscopic response, while four noted a clinical response and two some indirect effects. Galacto-oligosaccharides, lactulose and resveratrol were used in one study each (mean 48 patients, range 41-52). One study found an endoscopic response and one a clinical response. There is yet inadequate evidence - especially in humans - to support any particular prebiotic in the clinical management of UC. However, due to the bulk of evidence supporting the effect of the microbiota on colonic inflammation, there is enough potential to justify further high-quality clinical trials investigating this subject.
Characteristics of Metroxylon sagu resistant starch type III as prebiotic substance.
Zi-Ni, Tan; Rosma, Ahmad; Napisah, Hussin; Karim, Alias A; Liong, Min-Tze
2015-04-01
Resistant starch type III (RS3 ) was produced from sago (Metroxylon sagu) and evaluated for its characteristics as a prebiotic. Two RS3 samples designated sago RS and HCl-sago RS contained 35.71% and 68.30% RS, respectively, were subjected to hydrolyses by gastric juice and digestive enzymes and to absorption. Both sago RS and HCl-sago RS were resistant to 180 min hydrolysis by gastric acidity at pH 1 to 4 with less than 0.85% hydrolyzed. Both samples were also resistant toward hydrolysis by gastrointestinal tract enzymes and intestinal absorption with 96.75% and 98.69% of RS3 were recovered respectively after 3.5 h digestion and overnight dialysis at 37 °C. Sago RS3 supported the growth of both beneficial (lactobacilli and Bifidobacteria) and pathogenic microbes (Escherichia coli, Campylobacter coli, and Clostridium perfringens) in the range of 2.60 to 3.91 log10 CFU/mL. Hence, prebiotic activity score was applied to describe the extent to which sago RS3 supports selective growth of the lactobacilli and bifidobacteria strains over pathogenic bacteria. The highest scores were obtained from Bifidobacterium sp. FTDC8943 grown on sago RS (+0.26) and HCl-sago RS (+0.24) followed by L. bulgaricus FTDC1511 grown on sago RS (+0.21). The findings had suggested that sago RS3 has the prebiotic partial characteristics and it is suggested to further assess the suitability of sago RS3 as a prebiotic material. © 2015 Institute of Food Technologists®
Liu, Zhibin; Wang, Wei; Huang, Guangwei; Zhang, Wen
2016-01-01
Abstract BACKGROUND Almonds contain considerable amounts of potential prebiotic components, and the roasting process may alter these components. The aim of this study was to compare the in vitro fermentation properties and in vivo prebiotic effect of raw and roasted almonds. RESULTS In vitro, predigested raw and roasted almonds promoted the growth of Lactobacillus acidophilus (La‐14) and Bifidobacterium breve (JCM 1192), and no significant differences were found between these two nuts. In a 4‐week animal trial, daily intake of raw or roasted almonds promoted the population of Bifidobacterium spp. and Lactobacillus spp. and inhibited the growth of Enterococcus spp. in faeces and caecal contains of rats. Compared with roasted almonds, raw almonds had a greater bifidobacteria promotion effect. Besides, significantly higher β‐galactosidase activity and lower β‐glucuronidase and azoreductase activities in faeces or caecal contents of rats were observed with raw almonds than with roasted almonds. While, in terms of metabolic effects, the ingestion of roasted almonds resulted in significantly greater intestinal lipase activities. CONCLUSION Both raw and roasted almonds exhibit potential prebiotic effects, including regulation of intestinal bacteria and improved metabolic activities. The roasting process may slightly reduce the prebiotic effects of almonds but significantly improve the metabolic effects.© 2016 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:26749248
NASA Astrophysics Data System (ADS)
Ranjan, Sukrit; Wordsworth, Robin; Sasselov, Dimitar D.
2017-08-01
Recent findings suggest that Mars may have been a clement environment for the emergence of life and may even have compared favorably to Earth in this regard. These findings have revived interest in the hypothesis that prebiotically important molecules or even nascent life may have formed on Mars and been transferred to Earth. UV light plays a key role in prebiotic chemistry. Characterizing the early martian surface UV environment is key to understanding how Mars compares to Earth as a venue for prebiotic chemistry. Here, we present two-stream, multilayer calculations of the UV surface radiance on Mars at 3.9 Ga to constrain the surface UV environment as a function of atmospheric state. We explore a wide range of atmospheric pressures, temperatures, and compositions that correspond to the diversity of martian atmospheric states consistent with available constraints. We include the effects of clouds and dust. We calculate dose rates to quantify the effect of different atmospheric states on UV-sensitive prebiotic chemistry. We find that, for normative clear-sky CO2-H2O atmospheres, the UV environment on young Mars is comparable to young Earth. This similarity is robust to moderate cloud cover; thick clouds (τcloud ≥ 100) are required to significantly affect the martian UV environment, because cloud absorption is degenerate with atmospheric CO2. On the other hand, absorption from SO2, H2S, and dust is nondegenerate with CO2, meaning that, if these constituents build up to significant levels, surface UV fluence can be suppressed. These absorbers have spectrally variable absorption, meaning that their presence affects prebiotic pathways in different ways. In particular, high SO2 environments may admit UV fluence that favors pathways conducive to abiogenesis over pathways unfavorable to it. However, better measurements of the spectral quantum yields of these pathways are required to evaluate this hypothesis definitively.
Armstrong, Don L.; Lancet, Doron
2018-01-01
Abstract We studied the simulated replication and growth of prebiotic vesicles composed of 140 phospholipids and cholesterol using our R-GARD (Real Graded Autocatalysis Replication Domain) formalism that utilizes currently extant lipids that have known rate constants of lipid-vesicle interactions from published experimental data. R-GARD normally modifies kinetic parameters of lipid-vesicle interactions based on vesicle composition and properties. Our original R-GARD model tracked the growth and division of one vesicle at a time in an environment with unlimited lipids at a constant concentration. We explore here a modified model where vesicles compete for a finite supply of lipids. We observed that vesicles exhibit complex behavior including initial fast unrestricted growth, followed by intervesicle competition for diminishing resources, then a second growth burst driven by better-adapted vesicles, and ending with a final steady state. Furthermore, in simulations without kinetic parameter modifications (“invariant kinetics”), the initial replication was an order of magnitude slower, and vesicles' composition variability at the final steady state was much lower. The complex kinetic behavior was not observed either in the previously published R-GARD simulations or in additional simulations presented here with only one lipid component. This demonstrates that both a finite environment (inducing selection) and multiple components (providing variation for selection to act upon) are crucial for portraying evolution-like behavior. Such properties can improve survival in a changing environment by increasing the ability of early protocellular entities to respond to rapid environmental fluctuations likely present during abiogenesis both on Earth and possibly on other planets. This in silico simulation predicts that a relatively simple in vitro chemical system containing only lipid molecules might exhibit properties that are relevant to prebiotic processes. Key Words: Phospholipid vesicles—Prebiotic compartments—Prebiotic vesicle competition—Prebiotic vesicle variability. Astrobiology 18, 419–430. PMID:29634319
Perez-Cornago, Aurora; Sanchez-Villegas, Almudena; Bes-Rastrollo, Maira; Gea, Alfredo; Molero, Patricio; Lahortiga-Ramos, Francisca; Martínez-González, Miguel Angel
2016-09-01
Yogurt and prebiotic consumption has been linked to better health. However, to our knowledge, no longitudinal study has assessed the association of yogurt and prebiotic consumption with depression risk. We longitudinally evaluated the association of yogurt and prebiotic consumption with depression risk in a Mediterranean cohort. The SUN (Seguimiento Universidad de Navarra) Project is a dynamic, prospective cohort of Spanish university graduates. A total of 14,539 men and women (mean age: 37 y) initially free of depression were assessed during a median follow-up period of 9.3 y. Validated food-frequency questionnaires at baseline and after a 10-y follow-up were used to assess prebiotic (fructans and galacto-oligosaccharide) intake and yogurt consumption (<0.5, ≥0.5 to <3, ≥3 to <7, and ≥7 servings/wk). Participants were classified as incident cases of depression when they reported a new clinical diagnosis of depression by a physician (previously validated). Multivariable Cox proportional hazards models were used to calculate HRs and 95% CIs. We identified 727 incident cases of depression during follow-up. Whole-fat yogurt intake was associated with reduced depression risk: HR for the highest [≥7 servings/wk (1 serving = 125 g)] compared with the lowest (<0.5 servings/wk) consumption: 0.78 (95% CI: 0.63, 0.98; P-trend = 0.020). When stratified by sex, this association was significant only in women (HR: 0.66; 95% CI: 0.50, 0.87; P-trend = 0.004). Low-fat yogurt consumption was associated with a higher incidence of depression (HR: 1.32; 95% CI: 1.06, 1.65; P-trend = 0.001), although this association lost significance after the exclusion of early incident cases, suggesting possible reverse causation bias. Prebiotic consumption was not significantly associated with depression risk. Our study suggests that high consumption of whole-fat yogurt was related to a lower risk of depression in women of the SUN cohort. No association was observed for prebiotics. Further studies are needed to clarify why the yogurt-depression association may differ by fat content of the yogurt. © 2016 American Society for Nutrition.
2014-01-01
Background Currently, there is a lot of interest in improving gut health, and consequently increasing Fe absorption, by managing the colonic microbial population. This is traditionally done by the consumption of probiotics, live microbial food supplements. However, an alternative, and often very effective approach, is the consumption of food ingredients known as prebiotics. Fructans and arabinoxylans are naturally occurring non-digestible oligosaccharides in wheat that exhibit prebiotic properties and may enhance intestinal iron (Fe) absorption. The aim of this study was to assess the effect of prebiotics from wheat on Fe bioavailability in vitro (Caco-2 cells) and in vivo (broiler chickens, Gallus gallus). Methods In the current study, the effect of intra-amniotic administration of wheat samples extracts at 17 d of embryonic incubation on the Fe status and possible changes in the bacterial population in intestinal content of broiler hatchlings were investigated. A group of 144 eggs were injected with the specified solution (1 ml per egg) into the amniotic fluid. Immediately after hatch (21 d) and from each treatment group, 10 chicks were euthanized and their small intestine, liver and cecum were removed for relative mRNA abundance of intestinal Fe related transporters, relative liver ferritin amounts and bacterial analysis of cecal content, respectively. Results The in vivo results are in agreement with the in vitro observations, showing no differences in the hatchling Fe status between the treatment groups, as Fe bioavailability was not increased in vitro and no significant differences were measured in the intestinal expression of DMT1, Ferroportin and DcytB in vivo. However, there was significant variation in relative amounts of bifidobacteria and lactobacilli in the intestinal content between the treatments groups, with generally more bifidobacteria being produced with increased prebiotic content. Conclusions In this study we showed that prebiotics naturally found in wheat grains/bread products significantly increased intestinal beneficial bacterial population in Fe deficient broiler chickens. With this short-term feeding trial we were not able to show differences in the Fe-status of broilers. Nevertheless, the increase in relative amounts of bifidobacteria and lactobacilli in the presence of wheat prebiotics is an important finding as these bacterial populations may affect Fe bioavailability in long-term studies. PMID:24924421
Tako, Elad; Glahn, Raymond P; Knez, Marija; Stangoulis, James Cr
2014-06-13
Currently, there is a lot of interest in improving gut health, and consequently increasing Fe absorption, by managing the colonic microbial population. This is traditionally done by the consumption of probiotics, live microbial food supplements. However, an alternative, and often very effective approach, is the consumption of food ingredients known as prebiotics. Fructans and arabinoxylans are naturally occurring non-digestible oligosaccharides in wheat that exhibit prebiotic properties and may enhance intestinal iron (Fe) absorption. The aim of this study was to assess the effect of prebiotics from wheat on Fe bioavailability in vitro (Caco-2 cells) and in vivo (broiler chickens, Gallus gallus). In the current study, the effect of intra-amniotic administration of wheat samples extracts at 17 d of embryonic incubation on the Fe status and possible changes in the bacterial population in intestinal content of broiler hatchlings were investigated. A group of 144 eggs were injected with the specified solution (1 ml per egg) into the amniotic fluid. Immediately after hatch (21 d) and from each treatment group, 10 chicks were euthanized and their small intestine, liver and cecum were removed for relative mRNA abundance of intestinal Fe related transporters, relative liver ferritin amounts and bacterial analysis of cecal content, respectively. The in vivo results are in agreement with the in vitro observations, showing no differences in the hatchling Fe status between the treatment groups, as Fe bioavailability was not increased in vitro and no significant differences were measured in the intestinal expression of DMT1, Ferroportin and DcytB in vivo. However, there was significant variation in relative amounts of bifidobacteria and lactobacilli in the intestinal content between the treatments groups, with generally more bifidobacteria being produced with increased prebiotic content. In this study we showed that prebiotics naturally found in wheat grains/bread products significantly increased intestinal beneficial bacterial population in Fe deficient broiler chickens. With this short-term feeding trial we were not able to show differences in the Fe-status of broilers. Nevertheless, the increase in relative amounts of bifidobacteria and lactobacilli in the presence of wheat prebiotics is an important finding as these bacterial populations may affect Fe bioavailability in long-term studies.
Human Centered Computing for Mars Exploration
NASA Technical Reports Server (NTRS)
Trimble, Jay
2005-01-01
The science objectives are to determine the aqueous, climatic, and geologic history of a site on Mars where conditions may have been favorable to the preservation of evidence of prebiotic or biotic processes. Human Centered Computing is a development process that starts with users and their needs, rather than with technology. The goal is a system design that serves the user, where the technology fits the task and the complexity is that of the task not of the tool.
Longo, Liam M; Tenorio, Connie A; Kumru, Ozan S; Middaugh, C Russell; Blaber, Michael
2015-01-01
The halophile environment has a number of compelling aspects with regard to the origin of structured polypeptides (i.e., proteogenesis) and, instead of a curious niche that living systems adapted into, the halophile environment is emerging as a candidate “cradle” for proteogenesis. In this viewpoint, a subsequent halophile-to-mesophile transition was a key step in early evolution. Several lines of evidence indicate that aromatic amino acids were a late addition to the codon table and not part of the original “prebiotic” set comprising the earliest polypeptides. We test the hypothesis that the availability of aromatic amino acids could facilitate a halophile-to-mesophile transition by hydrophobic core-packing enhancement. The effects of aromatic amino acid substitutions were evaluated in the core of a “primitive” designed protein enriched for the 10 prebiotic amino acids (A,D,E,G,I,L,P,S,T,V)—having an exclusively prebiotic core and requiring halophilic conditions for folding. The results indicate that a single aromatic amino acid substitution is capable of eliminating the requirement of halophile conditions for folding of a “primitive” polypeptide. Thus, the availability of aromatic amino acids could have facilitated a critical halophile-to-mesophile protein folding adaptation—identifying a selective advantage for the incorporation of aromatic amino acids into the codon table. PMID:25297559
NASA Astrophysics Data System (ADS)
Nuevo, Michel; Bredehöft, Jan Hendrik; Meierhenrich, Uwe J.; d'Hendecourt, Louis; Thiemann, Wolfram H.-P.
2010-03-01
More than 50 stable organic molecules have been detected in the interstellar medium (ISM), from ground-based and onboard-satellite astronomical observations, in the gas and solid phases. Some of these organics may be prebiotic compounds that were delivered to early Earth by comets and meteorites and may have triggered the first chemical reactions involved in the origin of life. Ultraviolet irradiation of ices simulating photoprocesses of cold solid matter in astrophysical environments have shown that photochemistry can lead to the formation of amino acids and related compounds. In this work, we experimentally searched for other organic molecules of prebiotic interest, namely, oxidized acid labile compounds. In a setup that simulates conditions relevant to the ISM and Solar System icy bodies such as comets, a condensed CH3OH:NH3â = 1:1 ice mixture was UV irradiated at ˜80 K. The molecular constituents of the nonvolatile organic residue that remained at room temperature were separated by capillary gas chromatography and identified by mass spectrometry. Urea, glycolic acid, and glycerol were detected in this residue, as well as hydroxyacetamide, glycerolic acid, and glycerol amide. These organics are interesting target molecules to be searched for in space. Finally, tentative mechanisms of formation for these compounds under interstellar/pre-cometary conditions are proposed.
Self-Assembly of Prebiotic Organic Materials from Impact Events of Amino Acid Solutions
NASA Astrophysics Data System (ADS)
Goldman, Nir
2017-06-01
Proteinogenic amino acids can be produced on or delivered to a planet via abiotic sources and were consequently likely present before the emergence of life on early Earth. However, the role that these materials played in the in the emergence of life remains an open question, in part because little is known about the survivability and reactivity of astrophysical prebiotic compounds upon impact with a planetary surface. To this end, we have used a force matched semi-empirical quantum simulation method in development in our group to study oblique impacts of aqueous glycine solutions at conditions of up to 40 GPa and 3000 K. We find that these elevated conditions induce the formation of glycine-oligomeric structures with a number of different chemical moieties such as hydroxyl and amine groups diffusing on and off the C-N backbones. The C-N backbones of these structures generally remain stable during cooling and expansion, yielding relatively large three-dimensional molecules that contain a number of different functional groups and embedded bonded regions akin to oligo-peptides. Our results help determine the role of comets and other celestial bodies in both the delivery and synthesis of polypeptides and homochirality to early Earth. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Popa, Radu; Cimpoiasu, Vily M
2013-05-01
Properties of avenues of transformation and their mutualism with forms of organization in dynamic systems are essential for understanding the evolution of prebiotic order. We have analyzed competition between two avenues of transformation in an A↔B system, using the simulation approach called BiADA (Biotic Abstract Dual Automata). We discuss means of avoiding common pitfalls of abstract system modeling and benefits of BiADA-based simulations. We describe the effect of the availability of free energy, energy sink magnitude, and autocatalysis on the evolution of energy flux and order in the system. Results indicate that prebiotic competition between avenues of transformation was more stringent in energy-limited environments. We predict that in such conditions the efficiency of autocatalysis during competition between alternative system states will increase for systems with forms of organization having short half-lives and thus information that is time-sensitive to energy starvation. Our results also offer a potential solution to Manfred Eigen's error catastrophe dilemma. In the conditions discussed above, the exponential growth of quasi species is curbed through the removal of less competitive "genetic" variants via energy starvation. We propose that one of the most important achievements (and selective edges) of a dynamic network during competition in energy-limited or energy-variable environments was the capacity to correlate the internal energy flux and the need for free energy with the availability of free energy in the environment.
Göppel, Tobias; Palyulin, Vladimir V; Gerland, Ulrich
2016-07-27
An out-of-equilibrium physical environment can drive chemical reactions into thermodynamically unfavorable regimes. Under prebiotic conditions such a coupling between physical and chemical non-equilibria may have enabled the spontaneous emergence of primitive evolutionary processes. Here, we study the coupling efficiency within a theoretical model that is inspired by recent laboratory experiments, but focuses on generic effects arising whenever reactant and product molecules have different transport coefficients in a flow-through system. In our model, the physical non-equilibrium is represented by a drift-diffusion process, which is a valid coarse-grained description for the interplay between thermophoresis and convection, as well as for many other molecular transport processes. As a simple chemical reaction, we consider a reversible dimerization process, which is coupled to the transport process by different drift velocities for monomers and dimers. Within this minimal model, the coupling efficiency between the non-equilibrium transport process and the chemical reaction can be analyzed in all parameter regimes. The analysis shows that the efficiency depends strongly on the Damköhler number, a parameter that measures the relative timescales associated with the transport and reaction kinetics. Our model and results will be useful for a better understanding of the conditions for which non-equilibrium environments can provide a significant driving force for chemical reactions in a prebiotic setting.
Díez-Municio, Marina; Montilla, Antonia; Jimeno, M Luisa; Corzo, Nieves; Olano, Agustín; Moreno, F Javier
2012-02-29
The production of new bioactive oligosaccharides is currently garnering much attention for their potential use as functional ingredients. This work addresses the enzymatic synthesis and NMR structural characterization of 2-α-D-glucopyranosyl-lactose derived from sucrose:lactose and sucrose:cheese whey permeate mixtures by using a Leuconostoc mesenteroides B-512F dextransucrase. The effect of synthesis conditions, including concentration of substrates, molar ratio of donor/acceptor, enzyme concentration, reaction time, and temperature, on the formation of transfer products is evaluated. Results indicated that cheese whey permeate is a suitable material for the synthesis of 2-α-D-glucopyranosyl-lactose, giving rise to yields around 50% (in weight respect to the initial amount of lactose) under the optimum reaction conditions. According to its structure, this trisaccharide is an excellent candidate for a new prebiotic ingredient, due to the reported high resistance of α-(1→2) linkages to the digestive enzymes in humans and animals, as well as to its potential selective stimulation of beneficial bacteria in the large intestine mainly attributed to the two linked glucose units located at the reducing end that reflects the disaccharide kojibiose (2-α-D-glucopyranosyl-D-glucose). These findings could contribute to broadening the use of important agricultural raw materials, such as sucrose or cheese whey permeates, as renewable substrates for enzymatic synthesis of oligosaccharides of nutritional interest.
Prebiotic Evolution of Nitrogen Compounds
NASA Technical Reports Server (NTRS)
Arrhenius, G.
1999-01-01
Support from this four year grant has funded our research on two general problems. One involves attempts to model the abiotic formation of simple source compounds for functional biomolecules, their concentration from dilute state in the hydrosphere and, in several cases, surface induced reactions to form precursor monomers for bioactive end products (refs. 1-5). Because of the pervasiveness and antiquity of phosphate based biochemistry and the catalytic activity of RNA we have exploring the hypothesis of an RNA World as an early stage in the emergence of life. This concept is now rather generally considered, but has been questioned due to the earlier lack of an experimentally demonstrated successful scheme for the spontaneous formation of ribose phosphate, the key backbone molecule in RNA. That impediment has now been removed. This has been achieved by demonstrating probable sources of activated (condensed) highly soluble and strongly sorbed phosphates in nature (Refs. 1,2) and effective condensation of aldehyde phosphates to form ribose phosphate in high yield (ref.6), thereby placing the RNA World concept on a somewhat safer experimental footing. Like all work in this field these experiments are oversimplifications that largely ignore competing side reactions with other compounds expected to be present. None the less our choice of experimental conditions aim at selective processes that eliminate interfering reactions. We have also sought to narrow the credibility gap by simulating geophysically and geochemically plausible conditions surrounding the putative prebiotic reactions.