Sample records for conditional probability method

  1. The Estimation of Tree Posterior Probabilities Using Conditional Clade Probability Distributions

    PubMed Central

    Larget, Bret

    2013-01-01

    In this article I introduce the idea of conditional independence of separated subtrees as a principle by which to estimate the posterior probability of trees using conditional clade probability distributions rather than simple sample relative frequencies. I describe an algorithm for these calculations and software which implements these ideas. I show that these alternative calculations are very similar to simple sample relative frequencies for high probability trees but are substantially more accurate for relatively low probability trees. The method allows the posterior probability of unsampled trees to be calculated when these trees contain only clades that are in other sampled trees. Furthermore, the method can be used to estimate the total probability of the set of sampled trees which provides a measure of the thoroughness of a posterior sample. [Bayesian phylogenetics; conditional clade distributions; improved accuracy; posterior probabilities of trees.] PMID:23479066

  2. Relative Contributions of Three Descriptive Methods: Implications for Behavioral Assessment

    ERIC Educational Resources Information Center

    Pence, Sacha T.; Roscoe, Eileen M.; Bourret, Jason C.; Ahearn, William H.

    2009-01-01

    This study compared the outcomes of three descriptive analysis methods--the ABC method, the conditional probability method, and the conditional and background probability method--to each other and to the results obtained from functional analyses. Six individuals who had been diagnosed with developmental delays and exhibited problem behavior…

  3. The estimation of tree posterior probabilities using conditional clade probability distributions.

    PubMed

    Larget, Bret

    2013-07-01

    In this article I introduce the idea of conditional independence of separated subtrees as a principle by which to estimate the posterior probability of trees using conditional clade probability distributions rather than simple sample relative frequencies. I describe an algorithm for these calculations and software which implements these ideas. I show that these alternative calculations are very similar to simple sample relative frequencies for high probability trees but are substantially more accurate for relatively low probability trees. The method allows the posterior probability of unsampled trees to be calculated when these trees contain only clades that are in other sampled trees. Furthermore, the method can be used to estimate the total probability of the set of sampled trees which provides a measure of the thoroughness of a posterior sample.

  4. Option volatility and the acceleration Lagrangian

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.; Cao, Yang

    2014-01-01

    This paper develops a volatility formula for option on an asset from an acceleration Lagrangian model and the formula is calibrated with market data. The Black-Scholes model is a simpler case that has a velocity dependent Lagrangian. The acceleration Lagrangian is defined, and the classical solution of the system in Euclidean time is solved by choosing proper boundary conditions. The conditional probability distribution of final position given the initial position is obtained from the transition amplitude. The volatility is the standard deviation of the conditional probability distribution. Using the conditional probability and the path integral method, the martingale condition is applied, and one of the parameters in the Lagrangian is fixed. The call option price is obtained using the conditional probability and the path integral method.

  5. An Alternative Teaching Method of Conditional Probabilities and Bayes' Rule: An Application of the Truth Table

    ERIC Educational Resources Information Center

    Satake, Eiki; Vashlishan Murray, Amy

    2015-01-01

    This paper presents a comparison of three approaches to the teaching of probability to demonstrate how the truth table of elementary mathematical logic can be used to teach the calculations of conditional probabilities. Students are typically introduced to the topic of conditional probabilities--especially the ones that involve Bayes' rule--with…

  6. Study on conditional probability of surface rupture: effect of fault dip and width of seismogenic layer

    NASA Astrophysics Data System (ADS)

    Inoue, N.

    2017-12-01

    The conditional probability of surface ruptures is affected by various factors, such as shallow material properties, process of earthquakes, ground motions and so on. Toda (2013) pointed out difference of the conditional probability of strike and reverse fault by considering the fault dip and width of seismogenic layer. This study evaluated conditional probability of surface rupture based on following procedures. Fault geometry was determined from the randomly generated magnitude based on The Headquarters for Earthquake Research Promotion (2017) method. If the defined fault plane was not saturated in the assumed width of the seismogenic layer, the fault plane depth was randomly provided within the seismogenic layer. The logistic analysis was performed to two data sets: surface displacement calculated by dislocation methods (Wang et al., 2003) from the defined source fault, the depth of top of the defined source fault. The estimated conditional probability from surface displacement indicated higher probability of reverse faults than that of strike faults, and this result coincides to previous similar studies (i.e. Kagawa et al., 2004; Kataoka and Kusakabe, 2005). On the contrary, the probability estimated from the depth of the source fault indicated higher probability of thrust faults than that of strike and reverse faults, and this trend is similar to the conditional probability of PFDHA results (Youngs et al., 2003; Moss and Ross, 2011). The probability of combined simulated results of thrust and reverse also shows low probability. The worldwide compiled reverse fault data include low fault dip angle earthquake. On the other hand, in the case of Japanese reverse fault, there is possibility that the conditional probability of reverse faults with less low dip angle earthquake shows low probability and indicates similar probability of strike fault (i.e. Takao et al., 2013). In the future, numerical simulation by considering failure condition of surface by the source fault would be performed in order to examine the amount of the displacement and conditional probability quantitatively.

  7. Conservative Analytical Collision Probabilities for Orbital Formation Flying

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell

    2004-01-01

    The literature offers a number of approximations for analytically and/or efficiently computing the probability of collision between two space objects. However, only one of these techniques is a completely analytical approximation that is suitable for use in the preliminary design phase, when it is more important to quickly analyze a large segment of the trade space than it is to precisely compute collision probabilities. Unfortunately, among the types of formations that one might consider, some combine a range of conditions for which this analytical method is less suitable. This work proposes a simple, conservative approximation that produces reasonable upper bounds on the collision probability in such conditions. Although its estimates are much too conservative under other conditions, such conditions are typically well suited for use of the existing method.

  8. Conservative Analytical Collision Probability for Design of Orbital Formations

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell

    2004-01-01

    The literature offers a number of approximations for analytically and/or efficiently computing the probability of collision between two space objects. However, only one of these techniques is a completely analytical approximation that is suitable for use in the preliminary design phase, when it is more important to quickly analyze a large segment of the trade space than it is to precisely compute collision probabilities. Unfortunately, among the types of formations that one might consider, some combine a range of conditions for which this analytical method is less suitable. This work proposes a simple, conservative approximation that produces reasonable upper bounds on the collision probability in such conditions. Although its estimates are much too conservative under other conditions, such conditions are typically well suited for use of the existing method.

  9. Decomposition of conditional probability for high-order symbolic Markov chains.

    PubMed

    Melnik, S S; Usatenko, O V

    2017-07-01

    The main goal of this paper is to develop an estimate for the conditional probability function of random stationary ergodic symbolic sequences with elements belonging to a finite alphabet. We elaborate on a decomposition procedure for the conditional probability function of sequences considered to be high-order Markov chains. We represent the conditional probability function as the sum of multilinear memory function monomials of different orders (from zero up to the chain order). This allows us to introduce a family of Markov chain models and to construct artificial sequences via a method of successive iterations, taking into account at each step increasingly high correlations among random elements. At weak correlations, the memory functions are uniquely expressed in terms of the high-order symbolic correlation functions. The proposed method fills the gap between two approaches, namely the likelihood estimation and the additive Markov chains. The obtained results may have applications for sequential approximation of artificial neural network training.

  10. Decomposition of conditional probability for high-order symbolic Markov chains

    NASA Astrophysics Data System (ADS)

    Melnik, S. S.; Usatenko, O. V.

    2017-07-01

    The main goal of this paper is to develop an estimate for the conditional probability function of random stationary ergodic symbolic sequences with elements belonging to a finite alphabet. We elaborate on a decomposition procedure for the conditional probability function of sequences considered to be high-order Markov chains. We represent the conditional probability function as the sum of multilinear memory function monomials of different orders (from zero up to the chain order). This allows us to introduce a family of Markov chain models and to construct artificial sequences via a method of successive iterations, taking into account at each step increasingly high correlations among random elements. At weak correlations, the memory functions are uniquely expressed in terms of the high-order symbolic correlation functions. The proposed method fills the gap between two approaches, namely the likelihood estimation and the additive Markov chains. The obtained results may have applications for sequential approximation of artificial neural network training.

  11. Bootstrap imputation with a disease probability model minimized bias from misclassification due to administrative database codes.

    PubMed

    van Walraven, Carl

    2017-04-01

    Diagnostic codes used in administrative databases cause bias due to misclassification of patient disease status. It is unclear which methods minimize this bias. Serum creatinine measures were used to determine severe renal failure status in 50,074 hospitalized patients. The true prevalence of severe renal failure and its association with covariates were measured. These were compared to results for which renal failure status was determined using surrogate measures including the following: (1) diagnostic codes; (2) categorization of probability estimates of renal failure determined from a previously validated model; or (3) bootstrap methods imputation of disease status using model-derived probability estimates. Bias in estimates of severe renal failure prevalence and its association with covariates were minimal when bootstrap methods were used to impute renal failure status from model-based probability estimates. In contrast, biases were extensive when renal failure status was determined using codes or methods in which model-based condition probability was categorized. Bias due to misclassification from inaccurate diagnostic codes can be minimized using bootstrap methods to impute condition status using multivariable model-derived probability estimates. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Methods, apparatus and system for notification of predictable memory failure

    DOEpatents

    Cher, Chen-Yong; Andrade Costa, Carlos H.; Park, Yoonho; Rosenburg, Bryan S.; Ryu, Kyung D.

    2017-01-03

    A method for providing notification of a predictable memory failure includes the steps of: obtaining information regarding at least one condition associated with a memory; calculating a memory failure probability as a function of the obtained information; calculating a failure probability threshold; and generating a signal when the memory failure probability exceeds the failure probability threshold, the signal being indicative of a predicted future memory failure.

  13. Probabilistic Approach to Conditional Probability of Release of Hazardous Materials from Railroad Tank Cars during Accidents

    DOT National Transportation Integrated Search

    2009-10-13

    This paper describes a probabilistic approach to estimate the conditional probability of release of hazardous materials from railroad tank cars during train accidents. Monte Carlo methods are used in developing a probabilistic model to simulate head ...

  14. Comparision of the different probability distributions for earthquake hazard assessment in the North Anatolian Fault Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yilmaz, Şeyda, E-mail: seydayilmaz@ktu.edu.tr; Bayrak, Erdem, E-mail: erdmbyrk@gmail.com; Bayrak, Yusuf, E-mail: bayrak@ktu.edu.tr

    In this study we examined and compared the three different probabilistic distribution methods for determining the best suitable model in probabilistic assessment of earthquake hazards. We analyzed a reliable homogeneous earthquake catalogue between a time period 1900-2015 for magnitude M ≥ 6.0 and estimated the probabilistic seismic hazard in the North Anatolian Fault zone (39°-41° N 30°-40° E) using three distribution methods namely Weibull distribution, Frechet distribution and three-parameter Weibull distribution. The distribution parameters suitability was evaluated Kolmogorov-Smirnov (K-S) goodness-of-fit test. We also compared the estimated cumulative probability and the conditional probabilities of occurrence of earthquakes for different elapsed timemore » using these three distribution methods. We used Easyfit and Matlab software to calculate these distribution parameters and plotted the conditional probability curves. We concluded that the Weibull distribution method was the most suitable than other distribution methods in this region.« less

  15. An Inverse Problem for a Class of Conditional Probability Measure-Dependent Evolution Equations

    PubMed Central

    Mirzaev, Inom; Byrne, Erin C.; Bortz, David M.

    2016-01-01

    We investigate the inverse problem of identifying a conditional probability measure in measure-dependent evolution equations arising in size-structured population modeling. We formulate the inverse problem as a least squares problem for the probability measure estimation. Using the Prohorov metric framework, we prove existence and consistency of the least squares estimates and outline a discretization scheme for approximating a conditional probability measure. For this scheme, we prove general method stability. The work is motivated by Partial Differential Equation (PDE) models of flocculation for which the shape of the post-fragmentation conditional probability measure greatly impacts the solution dynamics. To illustrate our methodology, we apply the theory to a particular PDE model that arises in the study of population dynamics for flocculating bacterial aggregates in suspension, and provide numerical evidence for the utility of the approach. PMID:28316360

  16. Conditional, Time-Dependent Probabilities for Segmented Type-A Faults in the WGCEP UCERF 2

    USGS Publications Warehouse

    Field, Edward H.; Gupta, Vipin

    2008-01-01

    This appendix presents elastic-rebound-theory (ERT) motivated time-dependent probabilities, conditioned on the date of last earthquake, for the segmented type-A fault models of the 2007 Working Group on California Earthquake Probabilities (WGCEP). These probabilities are included as one option in the WGCEP?s Uniform California Earthquake Rupture Forecast 2 (UCERF 2), with the other options being time-independent Poisson probabilities and an ?Empirical? model based on observed seismicity rate changes. A more general discussion of the pros and cons of all methods for computing time-dependent probabilities, as well as the justification of those chosen for UCERF 2, are given in the main body of this report (and the 'Empirical' model is also discussed in Appendix M). What this appendix addresses is the computation of conditional, time-dependent probabilities when both single- and multi-segment ruptures are included in the model. Computing conditional probabilities is relatively straightforward when a fault is assumed to obey strict segmentation in the sense that no multi-segment ruptures occur (e.g., WGCEP (1988, 1990) or see Field (2007) for a review of all previous WGCEPs; from here we assume basic familiarity with conditional probability calculations). However, and as we?ll see below, the calculation is not straightforward when multi-segment ruptures are included, in essence because we are attempting to apply a point-process model to a non point process. The next section gives a review and evaluation of the single- and multi-segment rupture probability-calculation methods used in the most recent statewide forecast for California (WGCEP UCERF 1; Petersen et al., 2007). We then present results for the methodology adopted here for UCERF 2. We finish with a discussion of issues and possible alternative approaches that could be explored and perhaps applied in the future. A fault-by-fault comparison of UCERF 2 probabilities with those of previous studies is given in the main part of this report.

  17. GEOGRAPHIC-SPECIFIC WATER QUALITY CRITERIA DEVELOPMENT WITH MONITORING DATA USING CONDITIONAL PROBABILITIES - A PROPOSED APPROACH

    EPA Science Inventory

    A conditional probability approach using monitoring data to develop geographic-specific water quality criteria for protection of aquatic life is presented. Typical methods to develop criteria using existing monitoring data are limited by two issues: (1) how to extrapolate to an...

  18. Probability Issues in without Replacement Sampling

    ERIC Educational Resources Information Center

    Joarder, A. H.; Al-Sabah, W. S.

    2007-01-01

    Sampling without replacement is an important aspect in teaching conditional probabilities in elementary statistics courses. Different methods proposed in different texts for calculating probabilities of events in this context are reviewed and their relative merits and limitations in applications are pinpointed. An alternative representation of…

  19. Computing under-ice discharge: A proof-of-concept using hydroacoustics and the Probability Concept

    NASA Astrophysics Data System (ADS)

    Fulton, John W.; Henneberg, Mark F.; Mills, Taylor J.; Kohn, Michael S.; Epstein, Brian; Hittle, Elizabeth A.; Damschen, William C.; Laveau, Christopher D.; Lambrecht, Jason M.; Farmer, William H.

    2018-07-01

    Under-ice discharge is estimated using open-water reference hydrographs; however, the ratings for ice-affected sites are generally qualified as poor. The U.S. Geological Survey (USGS), in collaboration with the Colorado Water Conservation Board, conducted a proof-of-concept to develop an alternative method for computing under-ice discharge using hydroacoustics and the Probability Concept. The study site was located south of Minturn, Colorado (CO), USA, and was selected because of (1) its proximity to the existing USGS streamgage 09064600 Eagle River near Minturn, CO, and (2) its ease-of-access to verify discharge using a variety of conventional methods. From late September 2014 to early March 2015, hydraulic conditions varied from open water to under ice. These temporal changes led to variations in water depth and velocity. Hydroacoustics (tethered and uplooking acoustic Doppler current profilers and acoustic Doppler velocimeters) were deployed to measure the vertical-velocity profile at a singularly important vertical of the channel-cross section. Because the velocity profile was non-standard and cannot be characterized using a Power Law or Log Law, velocity data were analyzed using the Probability Concept, which is a probabilistic formulation of the velocity distribution. The Probability Concept-derived discharge was compared to conventional methods including stage-discharge and index-velocity ratings and concurrent field measurements; each is complicated by the dynamics of ice formation, pressure influences on stage measurements, and variations in cross-sectional area due to ice formation. No particular discharge method was assigned as truth. Rather one statistical metric (Kolmogorov-Smirnov; KS), agreement plots, and concurrent measurements provided a measure of comparability between various methods. Regardless of the method employed, comparisons between each method revealed encouraging results depending on the flow conditions and the absence or presence of ice cover. For example, during lower discharges dominated by under-ice and transition (intermittent open-water and under-ice) conditions, the KS metric suggests there is not sufficient information to reject the null hypothesis and implies that the Probability Concept and index-velocity rating represent similar distributions. During high-flow, open-water conditions, the comparisons are less definitive; therefore, it is important that the appropriate analytical method and instrumentation be selected. Six conventional discharge measurements were collected concurrently with Probability Concept-derived discharges with percent differences (%) of -9.0%, -21%, -8.6%, 17.8%, 3.6%, and -2.3%. This proof-of-concept demonstrates that riverine discharges can be computed using the Probability Concept for a range of hydraulic extremes (variations in discharge, open-water and under-ice conditions) immediately after the siting phase is complete, which typically requires one day. Computing real-time discharges is particularly important at sites, where (1) new streamgages are planned, (2) river hydraulics are complex, and (3) shifts in the stage-discharge rating are needed to correct the streamflow record. Use of the Probability Concept does not preclude the need to maintain a stage-area relation. Both the Probability Concept and index-velocity rating offer water-resource managers and decision makers alternatives for computing real-time discharge for open-water and under-ice conditions.

  20. Computing under-ice discharge: A proof-of-concept using hydroacoustics and the Probability Concept

    USGS Publications Warehouse

    Fulton, John W.; Henneberg, Mark F.; Mills, Taylor J.; Kohn, Michael S.; Epstein, Brian; Hittle, Elizabeth A.; Damschen, William C.; Laveau, Christopher D.; Lambrecht, Jason M.; Farmer, William H.

    2018-01-01

    Under-ice discharge is estimated using open-water reference hydrographs; however, the ratings for ice-affected sites are generally qualified as poor. The U.S. Geological Survey (USGS), in collaboration with the Colorado Water Conservation Board, conducted a proof-of-concept to develop an alternative method for computing under-ice discharge using hydroacoustics and the Probability Concept.The study site was located south of Minturn, Colorado (CO), USA, and was selected because of (1) its proximity to the existing USGS streamgage 09064600 Eagle River near Minturn, CO, and (2) its ease-of-access to verify discharge using a variety of conventional methods. From late September 2014 to early March 2015, hydraulic conditions varied from open water to under ice. These temporal changes led to variations in water depth and velocity. Hydroacoustics (tethered and uplooking acoustic Doppler current profilers and acoustic Doppler velocimeters) were deployed to measure the vertical-velocity profile at a singularly important vertical of the channel-cross section. Because the velocity profile was non-standard and cannot be characterized using a Power Law or Log Law, velocity data were analyzed using the Probability Concept, which is a probabilistic formulation of the velocity distribution. The Probability Concept-derived discharge was compared to conventional methods including stage-discharge and index-velocity ratings and concurrent field measurements; each is complicated by the dynamics of ice formation, pressure influences on stage measurements, and variations in cross-sectional area due to ice formation.No particular discharge method was assigned as truth. Rather one statistical metric (Kolmogorov-Smirnov; KS), agreement plots, and concurrent measurements provided a measure of comparability between various methods. Regardless of the method employed, comparisons between each method revealed encouraging results depending on the flow conditions and the absence or presence of ice cover.For example, during lower discharges dominated by under-ice and transition (intermittent open-water and under-ice) conditions, the KS metric suggests there is not sufficient information to reject the null hypothesis and implies that the Probability Concept and index-velocity rating represent similar distributions. During high-flow, open-water conditions, the comparisons are less definitive; therefore, it is important that the appropriate analytical method and instrumentation be selected. Six conventional discharge measurements were collected concurrently with Probability Concept-derived discharges with percent differences (%) of −9.0%, −21%, −8.6%, 17.8%, 3.6%, and −2.3%.This proof-of-concept demonstrates that riverine discharges can be computed using the Probability Concept for a range of hydraulic extremes (variations in discharge, open-water and under-ice conditions) immediately after the siting phase is complete, which typically requires one day. Computing real-time discharges is particularly important at sites, where (1) new streamgages are planned, (2) river hydraulics are complex, and (3) shifts in the stage-discharge rating are needed to correct the streamflow record. Use of the Probability Concept does not preclude the need to maintain a stage-area relation. Both the Probability Concept and index-velocity rating offer water-resource managers and decision makers alternatives for computing real-time discharge for open-water and under-ice conditions.

  1. The Effects of Phonotactic Probability and Neighborhood Density on Adults' Word Learning in Noisy Conditions

    PubMed Central

    Storkel, Holly L.; Lee, Jaehoon; Cox, Casey

    2016-01-01

    Purpose Noisy conditions make auditory processing difficult. This study explores whether noisy conditions influence the effects of phonotactic probability (the likelihood of occurrence of a sound sequence) and neighborhood density (phonological similarity among words) on adults' word learning. Method Fifty-eight adults learned nonwords varying in phonotactic probability and neighborhood density in either an unfavorable (0-dB signal-to-noise ratio [SNR]) or a favorable (+8-dB SNR) listening condition. Word learning was assessed using a picture naming task by scoring the proportion of phonemes named correctly. Results The unfavorable 0-dB SNR condition showed a significant interaction between phonotactic probability and neighborhood density in the absence of main effects. In particular, adults learned more words when phonotactic probability and neighborhood density were both low or both high. The +8-dB SNR condition did not show this interaction. These results are inconsistent with those from a prior adult word learning study conducted under quiet listening conditions that showed main effects of word characteristics. Conclusions As the listening condition worsens, adult word learning benefits from a convergence of phonotactic probability and neighborhood density. Clinical implications are discussed for potential populations who experience difficulty with auditory perception or processing, making them more vulnerable to noise. PMID:27788276

  2. A probability space for quantum models

    NASA Astrophysics Data System (ADS)

    Lemmens, L. F.

    2017-06-01

    A probability space contains a set of outcomes, a collection of events formed by subsets of the set of outcomes and probabilities defined for all events. A reformulation in terms of propositions allows to use the maximum entropy method to assign the probabilities taking some constraints into account. The construction of a probability space for quantum models is determined by the choice of propositions, choosing the constraints and making the probability assignment by the maximum entropy method. This approach shows, how typical quantum distributions such as Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein are partly related with well-known classical distributions. The relation between the conditional probability density, given some averages as constraints and the appropriate ensemble is elucidated.

  3. Reliability computation using fault tree analysis

    NASA Technical Reports Server (NTRS)

    Chelson, P. O.

    1971-01-01

    A method is presented for calculating event probabilities from an arbitrary fault tree. The method includes an analytical derivation of the system equation and is not a simulation program. The method can handle systems that incorporate standby redundancy and it uses conditional probabilities for computing fault trees where the same basic failure appears in more than one fault path.

  4. Height probabilities in the Abelian sandpile model on the generalized finite Bethe lattice

    NASA Astrophysics Data System (ADS)

    Chen, Haiyan; Zhang, Fuji

    2013-08-01

    In this paper, we study the sandpile model on the generalized finite Bethe lattice with a particular boundary condition. Using a combinatorial method, we give the exact expressions for all single-site probabilities and some two-site joint probabilities. As a by-product, we prove that the height probabilities of bulk vertices are all the same for the Bethe lattice with certain given boundary condition, which was found from numerical evidence by Grassberger and Manna ["Some more sandpiles," J. Phys. (France) 51, 1077-1098 (1990)], 10.1051/jphys:0199000510110107700 but without a proof.

  5. Probabilities of good, marginal, and poor flying conditions for space shuttle ferry flights

    NASA Technical Reports Server (NTRS)

    Whiting, D. M.; Guttman, N. B.

    1977-01-01

    Empirical probabilities are provided for good, marginal, and poor flying weather for ferrying the Space Shuttle Orbiter from Edwards AFB, California, to Kennedy Space Center, Florida, and from Edwards AFB to Marshall Space Flight Center, Alabama. Results are given by month for each overall route plus segments of each route. The criteria for defining a day as good, marginal, or poor and the method of computing the relative frequencies and conditional probabilities for monthly reference periods are described.

  6. Study on optimization method of test conditions for fatigue crack detection using lock-in vibrothermography

    NASA Astrophysics Data System (ADS)

    Min, Qing-xu; Zhu, Jun-zhen; Feng, Fu-zhou; Xu, Chao; Sun, Ji-wei

    2017-06-01

    In this paper, the lock-in vibrothermography (LVT) is utilized for defect detection. Specifically, for a metal plate with an artificial fatigue crack, the temperature rise of the defective area is used for analyzing the influence of different test conditions, i.e. engagement force, excitation intensity, and modulated frequency. The multivariate nonlinear and logistic regression models are employed to estimate the POD (probability of detection) and POA (probability of alarm) of fatigue crack, respectively. The resulting optimal selection of test conditions is presented. The study aims to provide an optimized selection method of the test conditions in the vibrothermography system with the enhanced detection ability.

  7. Modeling highway travel time distribution with conditional probability models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira Neto, Francisco Moraes; Chin, Shih-Miao; Hwang, Ho-Ling

    ABSTRACT Under the sponsorship of the Federal Highway Administration's Office of Freight Management and Operations, the American Transportation Research Institute (ATRI) has developed performance measures through the Freight Performance Measures (FPM) initiative. Under this program, travel speed information is derived from data collected using wireless based global positioning systems. These telemetric data systems are subscribed and used by trucking industry as an operations management tool. More than one telemetric operator submits their data dumps to ATRI on a regular basis. Each data transmission contains truck location, its travel time, and a clock time/date stamp. Data from the FPM program providesmore » a unique opportunity for studying the upstream-downstream speed distributions at different locations, as well as different time of the day and day of the week. This research is focused on the stochastic nature of successive link travel speed data on the continental United States Interstates network. Specifically, a method to estimate route probability distributions of travel time is proposed. This method uses the concepts of convolution of probability distributions and bivariate, link-to-link, conditional probability to estimate the expected distributions for the route travel time. Major contribution of this study is the consideration of speed correlation between upstream and downstream contiguous Interstate segments through conditional probability. The established conditional probability distributions, between successive segments, can be used to provide travel time reliability measures. This study also suggests an adaptive method for calculating and updating route travel time distribution as new data or information is added. This methodology can be useful to estimate performance measures as required by the recent Moving Ahead for Progress in the 21st Century Act (MAP 21).« less

  8. Relative contributions of three descriptive methods: implications for behavioral assessment.

    PubMed

    Pence, Sacha T; Roscoe, Eileen M; Bourret, Jason C; Ahearn, William H

    2009-01-01

    This study compared the outcomes of three descriptive analysis methods-the ABC method, the conditional probability method, and the conditional and background probability method-to each other and to the results obtained from functional analyses. Six individuals who had been diagnosed with developmental delays and exhibited problem behavior participated. Functional analyses indicated that participants' problem behavior was maintained by social positive reinforcement (n = 2), social negative reinforcement (n = 2), or automatic reinforcement (n = 2). Results showed that for all but 1 participant, descriptive analysis outcomes were similar across methods. In addition, for all but 1 participant, the descriptive analysis outcome differed substantially from the functional analysis outcome. This supports the general finding that descriptive analysis is a poor means of determining functional relations.

  9. Ratio-of-Mediator-Probability Weighting for Causal Mediation Analysis in the Presence of Treatment-by-Mediator Interaction

    ERIC Educational Resources Information Center

    Hong, Guanglei; Deutsch, Jonah; Hill, Heather D.

    2015-01-01

    Conventional methods for mediation analysis generate biased results when the mediator-outcome relationship depends on the treatment condition. This article shows how the ratio-of-mediator-probability weighting (RMPW) method can be used to decompose total effects into natural direct and indirect effects in the presence of treatment-by-mediator…

  10. Ratio-of-Mediator-Probability Weighting for Causal Mediation Analysis in the Presence of Treatment-by-Mediator Interaction

    ERIC Educational Resources Information Center

    Hong, Guanglei; Deutsch, Jonah; Hill, Heather D.

    2015-01-01

    Conventional methods for mediation analysis generate biased results when the mediator--outcome relationship depends on the treatment condition. This article shows how the ratio-of-mediator-probability weighting (RMPW) method can be used to decompose total effects into natural direct and indirect effects in the presence of treatment-by-mediator…

  11. Intervals for posttest probabilities: a comparison of 5 methods.

    PubMed

    Mossman, D; Berger, J O

    2001-01-01

    Several medical articles discuss methods of constructing confidence intervals for single proportions and the likelihood ratio, but scant attention has been given to the systematic study of intervals for the posterior odds, or the positive predictive value, of a test. The authors describe 5 methods of constructing confidence intervals for posttest probabilities when estimates of sensitivity, specificity, and the pretest probability of a disorder are derived from empirical data. They then evaluate each method to determine how well the intervals' coverage properties correspond to their nominal value. When the estimates of pretest probabilities, sensitivity, and specificity are derived from more than 80 subjects and are not close to 0 or 1, all methods generate intervals with appropriate coverage properties. When these conditions are not met, however, the best-performing method is an objective Bayesian approach implemented by a simple simulation using a spreadsheet. Physicians and investigators can generate accurate confidence intervals for posttest probabilities in small-sample situations using the objective Bayesian approach.

  12. The General Necessary Condition for the Validity of Dirac's Transition Perturbation Theory

    NASA Technical Reports Server (NTRS)

    Quang, Nguyen Vinh

    1996-01-01

    For the first time, from the natural requirements for the successive approximation the general necessary condition of validity of the Dirac's method is explicitly established. It is proved that the conception of 'the transition probability per unit time' is not valid. The 'super-platinium rules' for calculating the transition probability are derived for the arbitrarily strong time-independent perturbation case.

  13. Method for localizing and isolating an errant process step

    DOEpatents

    Tobin, Jr., Kenneth W.; Karnowski, Thomas P.; Ferrell, Regina K.

    2003-01-01

    A method for localizing and isolating an errant process includes the steps of retrieving from a defect image database a selection of images each image having image content similar to image content extracted from a query image depicting a defect, each image in the selection having corresponding defect characterization data. A conditional probability distribution of the defect having occurred in a particular process step is derived from the defect characterization data. A process step as a highest probable source of the defect according to the derived conditional probability distribution is then identified. A method for process step defect identification includes the steps of characterizing anomalies in a product, the anomalies detected by an imaging system. A query image of a product defect is then acquired. A particular characterized anomaly is then correlated with the query image. An errant process step is then associated with the correlated image.

  14. Prediction of Conditional Probability of Survival After Surgery for Gastric Cancer: A Study Based on Eastern and Western Large Data Sets.

    PubMed

    Zhong, Qing; Chen, Qi-Yue; Li, Ping; Xie, Jian-Wei; Wang, Jia-Bin; Lin, Jian-Xian; Lu, Jun; Cao, Long-Long; Lin, Mi; Tu, Ru-Hong; Zheng, Chao-Hui; Huang, Chang-Ming

    2018-04-20

    The dynamic prognosis of patients who have undergone curative surgery for gastric cancer has yet to be reported. Our objective was to devise an accurate tool for predicting the conditional probability of survival for these patients. We analyzed 11,551 gastric cancer patients from the Surveillance, Epidemiology, and End Results database. Two-thirds of the patients were selected randomly for the development set and one-third for the validation set. Two nomograms were constructed to predict the conditional probability of overall survival and the conditional probability of disease-specific survival, using conditional survival methods. We then applied these nomograms to the 4,001 patients in the database from Fujian Medical University Union Hospital, Fuzhou, China, one of the most active Chinese institutes. The 5-year conditional probability of overall survival of the patients was 41.6% immediately after resection and increased to 52.8%, 68.2%, and 80.4% at 1, 2, and 3 years after gastrectomy. The 5-year conditional probability of disease-specific survival "increased" from 48.9% at the time of gastrectomy to 59.8%, 74.7%, and 85.5% for patients surviving 1, 2, and 3 years, respectively. Sex; race; age; depth of tumor invasion; lymph node metastasis; and tumor size, site, and grade were associated with overall survival and disease-specific survival (P <.05). Within the Surveillance, Epidemiology, and End Results validation set, the accuracy of the conditional probability of overall survival nomogram was 0.77, 0.81, 0.82, and 0.82 at 1, 3, 5, and 10 years after gastrectomy, respectively. Within the other validation set from the Fujian Medical University Union Hospital (n = 4,001), the accuracy of the conditional probability of overall survival nomogram was 0.76, 0.79, 0.77, and 0.77 at 1, 3, 5, and 10 years, respectively. The accuracy of the conditional probability of disease-specific survival model was also favorable. The calibration curve demonstrated good agreement between the predicted and observed survival rates. Based on the large Eastern and Western data sets, we developed and validated the first conditional nomogram for prediction of conditional probability of survival for patients with gastric cancer to allow consideration of the duration of survivorship. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Extreme river flow dependence in Northern Scotland

    NASA Astrophysics Data System (ADS)

    Villoria, M. Franco; Scott, M.; Hoey, T.; Fischbacher-Smith, D.

    2012-04-01

    Various methods for the spatial analysis of hydrologic data have been developed recently. Here we present results using the conditional probability approach proposed by Keef et al. [Appl. Stat. (2009): 58,601-18] to investigate spatial interdependence in extreme river flows in Scotland. This approach does not require the specification of a correlation function, being mostly suitable for relatively small geographical areas. The work is motivated by the Flood Risk Management Act (Scotland (2009)) which requires maps of flood risk that take account of spatial dependence in extreme river flow. The method is based on two conditional measures of spatial flood risk: firstly the conditional probability PC(p) that a set of sites Y = (Y 1,...,Y d) within a region C of interest exceed a flow threshold Qp at time t (or any lag of t), given that in the specified conditioning site X > Qp; and, secondly the expected number of sites within C that will exceed a flow Qp on average (given that X > Qp). The conditional probabilities are estimated using the conditional distribution of Y |X = x (for large x), which can be modeled using a semi-parametric approach (Heffernan and Tawn [Roy. Statist. Soc. Ser. B (2004): 66,497-546]). Once the model is fitted, pseudo-samples can be generated to estimate functionals of the joint tails of the distribution of (Y,X). Conditional return level plots were directly compared to traditional return level plots thus improving our understanding of the dependence structure of extreme river flow events. Confidence intervals were calculated using block bootstrapping methods (100 replicates). We report results from applying this approach to a set of four rivers (Dulnain, Lossie, Ewe and Ness) in Northern Scotland. These sites were chosen based on data quality, spatial location and catchment characteristics. The river Ness, being the largest (catchment size 1839.1km2) was chosen as the conditioning river. Both the Ewe (441.1km2) and Ness catchments have predominantly impermeable bedrock, with the Ewe's one being very wet. The Lossie(216km2) and Dulnain (272.2km2) both contain significant areas of glacial deposits. River flow in the Dulnain is usually affected by snowmelt. In all cases, the conditional probability of each of the three rivers (Dulnain, Lossie, Ewe) decreases as the event in the conditioning river (Ness) becomes more extreme. The Ewe, despite being the furthest of the three sites from the Ness shows the strongest dependence, with relatively high (>0.4) conditional probabilities even for very extreme events (>0.995). Although the Lossie is closer geographically to the Ness than the Ewe, it shows relatively low conditional probabilities and can be considered independent of the Ness for very extreme events (> 0.990). The conditional probabilities seem to reflect the different catchment characteristics and dominant precipitation generating events, with the Ewe being more similar to the Ness than the other two rivers. This interpretation suggests that the conditional method may yield improved estimates of extreme events, but the approach is time consuming. An alternative model that is easier to implement, using a spatial quantile regression, is currently being investigated, which would also allow the introduction of further covariates, essential as the effects of climate change are incorporated into estimation procedures.

  16. Evidence reasoning method for constructing conditional probability tables in a Bayesian network of multimorbidity.

    PubMed

    Du, Yuanwei; Guo, Yubin

    2015-01-01

    The intrinsic mechanism of multimorbidity is difficult to recognize and prediction and diagnosis are difficult to carry out accordingly. Bayesian networks can help to diagnose multimorbidity in health care, but it is difficult to obtain the conditional probability table (CPT) because of the lack of clinically statistical data. Today, expert knowledge and experience are increasingly used in training Bayesian networks in order to help predict or diagnose diseases, but the CPT in Bayesian networks is usually irrational or ineffective for ignoring realistic constraints especially in multimorbidity. In order to solve these problems, an evidence reasoning (ER) approach is employed to extract and fuse inference data from experts using a belief distribution and recursive ER algorithm, based on which evidence reasoning method for constructing conditional probability tables in Bayesian network of multimorbidity is presented step by step. A multimorbidity numerical example is used to demonstrate the method and prove its feasibility and application. Bayesian network can be determined as long as the inference assessment is inferred by each expert according to his/her knowledge or experience. Our method is more effective than existing methods for extracting expert inference data accurately and is fused effectively for constructing CPTs in a Bayesian network of multimorbidity.

  17. A Method of Face Detection with Bayesian Probability

    NASA Astrophysics Data System (ADS)

    Sarker, Goutam

    2010-10-01

    The objective of face detection is to identify all images which contain a face, irrespective of its orientation, illumination conditions etc. This is a hard problem, because the faces are highly variable in size, shape lighting conditions etc. Many methods have been designed and developed to detect faces in a single image. The present paper is based on one `Appearance Based Method' which relies on learning the facial and non facial features from image examples. This in its turn is based on statistical analysis of examples and counter examples of facial images and employs Bayesian Conditional Classification Rule to detect the probability of belongingness of a face (or non-face) within an image frame. The detection rate of the present system is very high and thereby the number of false positive and false negative detection is substantially low.

  18. Calibrating random forests for probability estimation.

    PubMed

    Dankowski, Theresa; Ziegler, Andreas

    2016-09-30

    Probabilities can be consistently estimated using random forests. It is, however, unclear how random forests should be updated to make predictions for other centers or at different time points. In this work, we present two approaches for updating random forests for probability estimation. The first method has been proposed by Elkan and may be used for updating any machine learning approach yielding consistent probabilities, so-called probability machines. The second approach is a new strategy specifically developed for random forests. Using the terminal nodes, which represent conditional probabilities, the random forest is first translated to logistic regression models. These are, in turn, used for re-calibration. The two updating strategies were compared in a simulation study and are illustrated with data from the German Stroke Study Collaboration. In most simulation scenarios, both methods led to similar improvements. In the simulation scenario in which the stricter assumptions of Elkan's method were not met, the logistic regression-based re-calibration approach for random forests outperformed Elkan's method. It also performed better on the stroke data than Elkan's method. The strength of Elkan's method is its general applicability to any probability machine. However, if the strict assumptions underlying this approach are not met, the logistic regression-based approach is preferable for updating random forests for probability estimation. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  19. On estimating probability of presence from use-availability or presence-background data.

    PubMed

    Phillips, Steven J; Elith, Jane

    2013-06-01

    A fundamental ecological modeling task is to estimate the probability that a species is present in (or uses) a site, conditional on environmental variables. For many species, available data consist of "presence" data (locations where the species [or evidence of it] has been observed), together with "background" data, a random sample of available environmental conditions. Recently published papers disagree on whether probability of presence is identifiable from such presence-background data alone. This paper aims to resolve the disagreement, demonstrating that additional information is required. We defined seven simulated species representing various simple shapes of response to environmental variables (constant, linear, convex, unimodal, S-shaped) and ran five logistic model-fitting methods using 1000 presence samples and 10 000 background samples; the simulations were repeated 100 times. The experiment revealed a stark contrast between two groups of methods: those based on a strong assumption that species' true probability of presence exactly matches a given parametric form had highly variable predictions and much larger RMS error than methods that take population prevalence (the fraction of sites in which the species is present) as an additional parameter. For six species, the former group grossly under- or overestimated probability of presence. The cause was not model structure or choice of link function, because all methods were logistic with linear and, where necessary, quadratic terms. Rather, the experiment demonstrates that an estimate of prevalence is not just helpful, but is necessary (except in special cases) for identifying probability of presence. We therefore advise against use of methods that rely on the strong assumption, due to Lele and Keim (recently advocated by Royle et al.) and Lancaster and Imbens. The methods are fragile, and their strong assumption is unlikely to be true in practice. We emphasize, however, that we are not arguing against standard statistical methods such as logistic regression, generalized linear models, and so forth, none of which requires the strong assumption. If probability of presence is required for a given application, there is no panacea for lack of data. Presence-background data must be augmented with an additional datum, e.g., species' prevalence, to reliably estimate absolute (rather than relative) probability of presence.

  20. Estimating rare events in biochemical systems using conditional sampling.

    PubMed

    Sundar, V S

    2017-01-28

    The paper focuses on development of variance reduction strategies to estimate rare events in biochemical systems. Obtaining this probability using brute force Monte Carlo simulations in conjunction with the stochastic simulation algorithm (Gillespie's method) is computationally prohibitive. To circumvent this, important sampling tools such as the weighted stochastic simulation algorithm and the doubly weighted stochastic simulation algorithm have been proposed. However, these strategies require an additional step of determining the important region to sample from, which is not straightforward for most of the problems. In this paper, we apply the subset simulation method, developed as a variance reduction tool in the context of structural engineering, to the problem of rare event estimation in biochemical systems. The main idea is that the rare event probability is expressed as a product of more frequent conditional probabilities. These conditional probabilities are estimated with high accuracy using Monte Carlo simulations, specifically the Markov chain Monte Carlo method with the modified Metropolis-Hastings algorithm. Generating sample realizations of the state vector using the stochastic simulation algorithm is viewed as mapping the discrete-state continuous-time random process to the standard normal random variable vector. This viewpoint opens up the possibility of applying more sophisticated and efficient sampling schemes developed elsewhere to problems in stochastic chemical kinetics. The results obtained using the subset simulation method are compared with existing variance reduction strategies for a few benchmark problems, and a satisfactory improvement in computational time is demonstrated.

  1. Internal Medicine residents use heuristics to estimate disease probability

    PubMed Central

    Phang, Sen Han; Ravani, Pietro; Schaefer, Jeffrey; Wright, Bruce; McLaughlin, Kevin

    2015-01-01

    Background Training in Bayesian reasoning may have limited impact on accuracy of probability estimates. In this study, our goal was to explore whether residents previously exposed to Bayesian reasoning use heuristics rather than Bayesian reasoning to estimate disease probabilities. We predicted that if residents use heuristics then post-test probability estimates would be increased by non-discriminating clinical features or a high anchor for a target condition. Method We randomized 55 Internal Medicine residents to different versions of four clinical vignettes and asked them to estimate probabilities of target conditions. We manipulated the clinical data for each vignette to be consistent with either 1) using a representative heuristic, by adding non-discriminating prototypical clinical features of the target condition, or 2) using anchoring with adjustment heuristic, by providing a high or low anchor for the target condition. Results When presented with additional non-discriminating data the odds of diagnosing the target condition were increased (odds ratio (OR) 2.83, 95% confidence interval [1.30, 6.15], p = 0.009). Similarly, the odds of diagnosing the target condition were increased when a high anchor preceded the vignette (OR 2.04, [1.09, 3.81], p = 0.025). Conclusions Our findings suggest that despite previous exposure to the use of Bayesian reasoning, residents use heuristics, such as the representative heuristic and anchoring with adjustment, to estimate probabilities. Potential reasons for attribute substitution include the relative cognitive ease of heuristics vs. Bayesian reasoning or perhaps residents in their clinical practice use gist traces rather than precise probability estimates when diagnosing. PMID:27004080

  2. Essential health care among Mexican indigenous people in a universal coverage context.

    PubMed

    Servan-Mori, Edson; Pelcastre-Villafuerte, Blanca; Heredia-Pi, Ileana; Montoya-Rodríguez, Arain

    2014-01-01

    To analyze the influence of indigenous condition on essential health care among Mexican children, older people and women in reproductive age. The influence of indigenous condition on the probability of receiving medical care due to acute respiratory infection (ARI) and acute diarrheal disease (ADD), vaccination coverage; and antenatal care (ANC) was analyzed using the 2012 National Health Survey and non-experimental matching methods. Indigenous condition does not influence per-se vaccination coverage (in < 1 year), probability of attention of ARI's and ADD's as well as, timely, frequent, and quality ANC. Being indigenous and older adult increases 9% the probability of receiving a fulfilled vaccination schedule. Unfavorable structural conditions in which Mexican indigenous live constitutes the persistent mechanisms of their health vulnerability. Public policy should consider this level of intervention, in a way that intensive and focalized health strategies contribute to improve their health condition and life.

  3. Quantitative assessment of building fire risk to life safety.

    PubMed

    Guanquan, Chu; Jinhua, Sun

    2008-06-01

    This article presents a quantitative risk assessment framework for evaluating fire risk to life safety. Fire risk is divided into two parts: probability and corresponding consequence of every fire scenario. The time-dependent event tree technique is used to analyze probable fire scenarios based on the effect of fire protection systems on fire spread and smoke movement. To obtain the variation of occurrence probability with time, Markov chain is combined with a time-dependent event tree for stochastic analysis on the occurrence probability of fire scenarios. To obtain consequences of every fire scenario, some uncertainties are considered in the risk analysis process. When calculating the onset time to untenable conditions, a range of fires are designed based on different fire growth rates, after which uncertainty of onset time to untenable conditions can be characterized by probability distribution. When calculating occupant evacuation time, occupant premovement time is considered as a probability distribution. Consequences of a fire scenario can be evaluated according to probability distribution of evacuation time and onset time of untenable conditions. Then, fire risk to life safety can be evaluated based on occurrence probability and consequences of every fire scenario. To express the risk assessment method in detail, a commercial building is presented as a case study. A discussion compares the assessment result of the case study with fire statistics.

  4. RELATIVE CONTRIBUTIONS OF THREE DESCRIPTIVE METHODS: IMPLICATIONS FOR BEHAVIORAL ASSESSMENT

    PubMed Central

    Pence, Sacha T; Roscoe, Eileen M; Bourret, Jason C; Ahearn, William H

    2009-01-01

    This study compared the outcomes of three descriptive analysis methods—the ABC method, the conditional probability method, and the conditional and background probability method—to each other and to the results obtained from functional analyses. Six individuals who had been diagnosed with developmental delays and exhibited problem behavior participated. Functional analyses indicated that participants' problem behavior was maintained by social positive reinforcement (n  =  2), social negative reinforcement (n  =  2), or automatic reinforcement (n  =  2). Results showed that for all but 1 participant, descriptive analysis outcomes were similar across methods. In addition, for all but 1 participant, the descriptive analysis outcome differed substantially from the functional analysis outcome. This supports the general finding that descriptive analysis is a poor means of determining functional relations. PMID:19949536

  5. Metocean design parameter estimation for fixed platform based on copula functions

    NASA Astrophysics Data System (ADS)

    Zhai, Jinjin; Yin, Qilin; Dong, Sheng

    2017-08-01

    Considering the dependent relationship among wave height, wind speed, and current velocity, we construct novel trivariate joint probability distributions via Archimedean copula functions. Total 30-year data of wave height, wind speed, and current velocity in the Bohai Sea are hindcast and sampled for case study. Four kinds of distributions, namely, Gumbel distribution, lognormal distribution, Weibull distribution, and Pearson Type III distribution, are candidate models for marginal distributions of wave height, wind speed, and current velocity. The Pearson Type III distribution is selected as the optimal model. Bivariate and trivariate probability distributions of these environmental conditions are established based on four bivariate and trivariate Archimedean copulas, namely, Clayton, Frank, Gumbel-Hougaard, and Ali-Mikhail-Haq copulas. These joint probability models can maximize marginal information and the dependence among the three variables. The design return values of these three variables can be obtained by three methods: univariate probability, conditional probability, and joint probability. The joint return periods of different load combinations are estimated by the proposed models. Platform responses (including base shear, overturning moment, and deck displacement) are further calculated. For the same return period, the design values of wave height, wind speed, and current velocity obtained by the conditional and joint probability models are much smaller than those by univariate probability. Considering the dependence among variables, the multivariate probability distributions provide close design parameters to actual sea state for ocean platform design.

  6. Improved first-order uncertainty method for water-quality modeling

    USGS Publications Warehouse

    Melching, C.S.; Anmangandla, S.

    1992-01-01

    Uncertainties are unavoidable in water-quality modeling and subsequent management decisions. Monte Carlo simulation and first-order uncertainty analysis (involving linearization at central values of the uncertain variables) have been frequently used to estimate probability distributions for water-quality model output due to their simplicity. Each method has its drawbacks: Monte Carlo simulation's is mainly computational time; and first-order analysis are mainly questions of accuracy and representativeness, especially for nonlinear systems and extreme conditions. An improved (advanced) first-order method is presented, where the linearization point varies to match the output level whose exceedance probability is sought. The advanced first-order method is tested on the Streeter-Phelps equation to estimate the probability distribution of critical dissolved-oxygen deficit and critical dissolved oxygen using two hypothetical examples from the literature. The advanced first-order method provides a close approximation of the exceedance probability for the Streeter-Phelps model output estimated by Monte Carlo simulation using less computer time - by two orders of magnitude - regardless of the probability distributions assumed for the uncertain model parameters.

  7. a Probability-Based Statistical Method to Extract Water Body of TM Images with Missing Information

    NASA Astrophysics Data System (ADS)

    Lian, Shizhong; Chen, Jiangping; Luo, Minghai

    2016-06-01

    Water information cannot be accurately extracted using TM images because true information is lost in some images because of blocking clouds and missing data stripes, thereby water information cannot be accurately extracted. Water is continuously distributed in natural conditions; thus, this paper proposed a new method of water body extraction based on probability statistics to improve the accuracy of water information extraction of TM images with missing information. Different disturbing information of clouds and missing data stripes are simulated. Water information is extracted using global histogram matching, local histogram matching, and the probability-based statistical method in the simulated images. Experiments show that smaller Areal Error and higher Boundary Recall can be obtained using this method compared with the conventional methods.

  8. A Method for Evaluating Tuning Functions of Single Neurons based on Mutual Information Maximization

    NASA Astrophysics Data System (ADS)

    Brostek, Lukas; Eggert, Thomas; Ono, Seiji; Mustari, Michael J.; Büttner, Ulrich; Glasauer, Stefan

    2011-03-01

    We introduce a novel approach for evaluation of neuronal tuning functions, which can be expressed by the conditional probability of observing a spike given any combination of independent variables. This probability can be estimated out of experimentally available data. By maximizing the mutual information between the probability distribution of the spike occurrence and that of the variables, the dependence of the spike on the input variables is maximized as well. We used this method to analyze the dependence of neuronal activity in cortical area MSTd on signals related to movement of the eye and retinal image movement.

  9. Predictive probability methods for interim monitoring in clinical trials with longitudinal outcomes.

    PubMed

    Zhou, Ming; Tang, Qi; Lang, Lixin; Xing, Jun; Tatsuoka, Kay

    2018-04-17

    In clinical research and development, interim monitoring is critical for better decision-making and minimizing the risk of exposing patients to possible ineffective therapies. For interim futility or efficacy monitoring, predictive probability methods are widely adopted in practice. Those methods have been well studied for univariate variables. However, for longitudinal studies, predictive probability methods using univariate information from only completers may not be most efficient, and data from on-going subjects can be utilized to improve efficiency. On the other hand, leveraging information from on-going subjects could allow an interim analysis to be potentially conducted once a sufficient number of subjects reach an earlier time point. For longitudinal outcomes, we derive closed-form formulas for predictive probabilities, including Bayesian predictive probability, predictive power, and conditional power and also give closed-form solutions for predictive probability of success in a future trial and the predictive probability of success of the best dose. When predictive probabilities are used for interim monitoring, we study their distributions and discuss their analytical cutoff values or stopping boundaries that have desired operating characteristics. We show that predictive probabilities utilizing all longitudinal information are more efficient for interim monitoring than that using information from completers only. To illustrate their practical application for longitudinal data, we analyze 2 real data examples from clinical trials. Copyright © 2018 John Wiley & Sons, Ltd.

  10. Time-dependent landslide probability mapping

    USGS Publications Warehouse

    Campbell, Russell H.; Bernknopf, Richard L.; ,

    1993-01-01

    Case studies where time of failure is known for rainfall-triggered debris flows can be used to estimate the parameters of a hazard model in which the probability of failure is a function of time. As an example, a time-dependent function for the conditional probability of a soil slip is estimated from independent variables representing hillside morphology, approximations of material properties, and the duration and rate of rainfall. If probabilities are calculated in a GIS (geomorphic information system ) environment, the spatial distribution of the result for any given hour can be displayed on a map. Although the probability levels in this example are uncalibrated, the method offers a potential for evaluating different physical models and different earth-science variables by comparing the map distribution of predicted probabilities with inventory maps for different areas and different storms. If linked with spatial and temporal socio-economic variables, this method could be used for short-term risk assessment.

  11. Nonlinear Demodulation and Channel Coding in EBPSK Scheme

    PubMed Central

    Chen, Xianqing; Wu, Lenan

    2012-01-01

    The extended binary phase shift keying (EBPSK) is an efficient modulation technique, and a special impacting filter (SIF) is used in its demodulator to improve the bit error rate (BER) performance. However, the conventional threshold decision cannot achieve the optimum performance, and the SIF brings more difficulty in obtaining the posterior probability for LDPC decoding. In this paper, we concentrate not only on reducing the BER of demodulation, but also on providing accurate posterior probability estimates (PPEs). A new approach for the nonlinear demodulation based on the support vector machine (SVM) classifier is introduced. The SVM method which selects only a few sampling points from the filter output was used for getting PPEs. The simulation results show that the accurate posterior probability can be obtained with this method and the BER performance can be improved significantly by applying LDPC codes. Moreover, we analyzed the effect of getting the posterior probability with different methods and different sampling rates. We show that there are more advantages of the SVM method under bad condition and it is less sensitive to the sampling rate than other methods. Thus, SVM is an effective method for EBPSK demodulation and getting posterior probability for LDPC decoding. PMID:23213281

  12. Nonlinear demodulation and channel coding in EBPSK scheme.

    PubMed

    Chen, Xianqing; Wu, Lenan

    2012-01-01

    The extended binary phase shift keying (EBPSK) is an efficient modulation technique, and a special impacting filter (SIF) is used in its demodulator to improve the bit error rate (BER) performance. However, the conventional threshold decision cannot achieve the optimum performance, and the SIF brings more difficulty in obtaining the posterior probability for LDPC decoding. In this paper, we concentrate not only on reducing the BER of demodulation, but also on providing accurate posterior probability estimates (PPEs). A new approach for the nonlinear demodulation based on the support vector machine (SVM) classifier is introduced. The SVM method which selects only a few sampling points from the filter output was used for getting PPEs. The simulation results show that the accurate posterior probability can be obtained with this method and the BER performance can be improved significantly by applying LDPC codes. Moreover, we analyzed the effect of getting the posterior probability with different methods and different sampling rates. We show that there are more advantages of the SVM method under bad condition and it is less sensitive to the sampling rate than other methods. Thus, SVM is an effective method for EBPSK demodulation and getting posterior probability for LDPC decoding.

  13. A prototype method for diagnosing high ice water content probability using satellite imager data

    NASA Astrophysics Data System (ADS)

    Yost, Christopher R.; Bedka, Kristopher M.; Minnis, Patrick; Nguyen, Louis; Strapp, J. Walter; Palikonda, Rabindra; Khlopenkov, Konstantin; Spangenberg, Douglas; Smith, William L., Jr.; Protat, Alain; Delanoe, Julien

    2018-03-01

    Recent studies have found that ingestion of high mass concentrations of ice particles in regions of deep convective storms, with radar reflectivity considered safe for aircraft penetration, can adversely impact aircraft engine performance. Previous aviation industry studies have used the term high ice water content (HIWC) to define such conditions. Three airborne field campaigns were conducted in 2014 and 2015 to better understand how HIWC is distributed in deep convection, both as a function of altitude and proximity to convective updraft regions, and to facilitate development of new methods for detecting HIWC conditions, in addition to many other research and regulatory goals. This paper describes a prototype method for detecting HIWC conditions using geostationary (GEO) satellite imager data coupled with in situ total water content (TWC) observations collected during the flight campaigns. Three satellite-derived parameters were determined to be most useful for determining HIWC probability: (1) the horizontal proximity of the aircraft to the nearest overshooting convective updraft or textured anvil cloud, (2) tropopause-relative infrared brightness temperature, and (3) daytime-only cloud optical depth. Statistical fits between collocated TWC and GEO satellite parameters were used to determine the membership functions for the fuzzy logic derivation of HIWC probability. The products were demonstrated using data from several campaign flights and validated using a subset of the satellite-aircraft collocation database. The daytime HIWC probability was found to agree quite well with TWC time trends and identified extreme TWC events with high probability. Discrimination of HIWC was more challenging at night with IR-only information. The products show the greatest capability for discriminating TWC ≥ 0.5 g m-3. Product validation remains challenging due to vertical TWC uncertainties and the typically coarse spatio-temporal resolution of the GEO data.

  14. Probabilistic approach to lysozyme crystal nucleation kinetics.

    PubMed

    Dimitrov, Ivaylo L; Hodzhaoglu, Feyzim V; Koleva, Dobryana P

    2015-09-01

    Nucleation of lysozyme crystals in quiescent solutions at a regime of progressive nucleation is investigated under an optical microscope at conditions of constant supersaturation. A method based on the stochastic nature of crystal nucleation and using discrete time sampling of small solution volumes for the presence or absence of detectable crystals is developed. It allows probabilities for crystal detection to be experimentally estimated. One hundred single samplings were used for each probability determination for 18 time intervals and six lysozyme concentrations. Fitting of a particular probability function to experimentally obtained data made possible the direct evaluation of stationary rates for lysozyme crystal nucleation, the time for growth of supernuclei to a detectable size and probability distribution of nucleation times. Obtained stationary nucleation rates were then used for the calculation of other nucleation parameters, such as the kinetic nucleation factor, nucleus size, work for nucleus formation and effective specific surface energy of the nucleus. The experimental method itself is simple and adaptable and can be used for crystal nucleation studies of arbitrary soluble substances with known solubility at particular solution conditions.

  15. Structural reliability methods: Code development status

    NASA Astrophysics Data System (ADS)

    Millwater, Harry R.; Thacker, Ben H.; Wu, Y.-T.; Cruse, T. A.

    1991-05-01

    The Probabilistic Structures Analysis Method (PSAM) program integrates state of the art probabilistic algorithms with structural analysis methods in order to quantify the behavior of Space Shuttle Main Engine structures subject to uncertain loadings, boundary conditions, material parameters, and geometric conditions. An advanced, efficient probabilistic structural analysis software program, NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) was developed as a deliverable. NESSUS contains a number of integrated software components to perform probabilistic analysis of complex structures. A nonlinear finite element module NESSUS/FEM is used to model the structure and obtain structural sensitivities. Some of the capabilities of NESSUS/FEM are shown. A Fast Probability Integration module NESSUS/FPI estimates the probability given the structural sensitivities. A driver module, PFEM, couples the FEM and FPI. NESSUS, version 5.0, addresses component reliability, resistance, and risk.

  16. Structural reliability methods: Code development status

    NASA Technical Reports Server (NTRS)

    Millwater, Harry R.; Thacker, Ben H.; Wu, Y.-T.; Cruse, T. A.

    1991-01-01

    The Probabilistic Structures Analysis Method (PSAM) program integrates state of the art probabilistic algorithms with structural analysis methods in order to quantify the behavior of Space Shuttle Main Engine structures subject to uncertain loadings, boundary conditions, material parameters, and geometric conditions. An advanced, efficient probabilistic structural analysis software program, NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) was developed as a deliverable. NESSUS contains a number of integrated software components to perform probabilistic analysis of complex structures. A nonlinear finite element module NESSUS/FEM is used to model the structure and obtain structural sensitivities. Some of the capabilities of NESSUS/FEM are shown. A Fast Probability Integration module NESSUS/FPI estimates the probability given the structural sensitivities. A driver module, PFEM, couples the FEM and FPI. NESSUS, version 5.0, addresses component reliability, resistance, and risk.

  17. How to determine an optimal threshold to classify real-time crash-prone traffic conditions?

    PubMed

    Yang, Kui; Yu, Rongjie; Wang, Xuesong; Quddus, Mohammed; Xue, Lifang

    2018-08-01

    One of the proactive approaches in reducing traffic crashes is to identify hazardous traffic conditions that may lead to a traffic crash, known as real-time crash prediction. Threshold selection is one of the essential steps of real-time crash prediction. And it provides the cut-off point for the posterior probability which is used to separate potential crash warnings against normal traffic conditions, after the outcome of the probability of a crash occurring given a specific traffic condition on the basis of crash risk evaluation models. There is however a dearth of research that focuses on how to effectively determine an optimal threshold. And only when discussing the predictive performance of the models, a few studies utilized subjective methods to choose the threshold. The subjective methods cannot automatically identify the optimal thresholds in different traffic and weather conditions in real application. Thus, a theoretical method to select the threshold value is necessary for the sake of avoiding subjective judgments. The purpose of this study is to provide a theoretical method for automatically identifying the optimal threshold. Considering the random effects of variable factors across all roadway segments, the mixed logit model was utilized to develop the crash risk evaluation model and further evaluate the crash risk. Cross-entropy, between-class variance and other theories were employed and investigated to empirically identify the optimal threshold. And K-fold cross-validation was used to validate the performance of proposed threshold selection methods with the help of several evaluation criteria. The results indicate that (i) the mixed logit model can obtain a good performance; (ii) the classification performance of the threshold selected by the minimum cross-entropy method outperforms the other methods according to the criteria. This method can be well-behaved to automatically identify thresholds in crash prediction, by minimizing the cross entropy between the original dataset with continuous probability of a crash occurring and the binarized dataset after using the thresholds to separate potential crash warnings against normal traffic conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Predictive models attribute effects on fish assemblages to toxicity and habitat alteration.

    PubMed

    de Zwart, Dick; Dyer, Scott D; Posthuma, Leo; Hawkins, Charles P

    2006-08-01

    Biological assessments should both estimate the condition of a biological resource (magnitude of alteration) and provide environmental managers with a diagnosis of the potential causes of impairment. Although methods of quantifying condition are well developed, identifying and proportionately attributing impairment to probable causes remain problematic. Furthermore, analyses of both condition and cause have often been difficult to communicate. We developed an approach that (1) links fish, habitat, and chemistry data collected from hundreds of sites in Ohio (USA) streams, (2) assesses the biological condition at each site, (3) attributes impairment to multiple probable causes, and (4) provides the results of the analyses in simple-to-interpret pie charts. The data set was managed using a geographic information system. Biological condition was assessed using a RIVPACS (river invertebrate prediction and classification system)-like predictive model. The model provided probabilities of capture for 117 fish species based on the geographic location of sites and local habitat descriptors. Impaired biological condition was defined as the proportion of those native species predicted to occur at a site that were observed. The potential toxic effects of exposure to mixtures of contaminants were estimated using species sensitivity distributions and mixture toxicity principles. Generalized linear regression models described species abundance as a function of habitat characteristics. Statistically linking biological condition, habitat characteristics including mixture risks, and species abundance allowed us to evaluate the losses of species with environmental conditions. Results were mapped as simple effect and probable-cause pie charts (EPC pie diagrams), with pie sizes corresponding to magnitude of local impairment, and slice sizes to the relative probable contributions of different stressors. The types of models we used have been successfully applied in ecology and ecotoxicology, but they have not previously been used in concert to quantify impairment and its likely causes. Although data limitations constrained our ability to examine complex interactions between stressors and species, the direct relationships we detected likely represent conservative estimates of stressor contributions to local impairment. Future refinements of the general approach and specific methods described here should yield even more promising results.

  19. Use and interpretation of logistic regression in habitat-selection studies

    USGS Publications Warehouse

    Keating, Kim A.; Cherry, Steve

    2004-01-01

     Logistic regression is an important tool for wildlife habitat-selection studies, but the method frequently has been misapplied due to an inadequate understanding of the logistic model, its interpretation, and the influence of sampling design. To promote better use of this method, we review its application and interpretation under 3 sampling designs: random, case-control, and use-availability. Logistic regression is appropriate for habitat use-nonuse studies employing random sampling and can be used to directly model the conditional probability of use in such cases. Logistic regression also is appropriate for studies employing case-control sampling designs, but careful attention is required to interpret results correctly. Unless bias can be estimated or probability of use is small for all habitats, results of case-control studies should be interpreted as odds ratios, rather than probability of use or relative probability of use. When data are gathered under a use-availability design, logistic regression can be used to estimate approximate odds ratios if probability of use is small, at least on average. More generally, however, logistic regression is inappropriate for modeling habitat selection in use-availability studies. In particular, using logistic regression to fit the exponential model of Manly et al. (2002:100) does not guarantee maximum-likelihood estimates, valid probabilities, or valid likelihoods. We show that the resource selection function (RSF) commonly used for the exponential model is proportional to a logistic discriminant function. Thus, it may be used to rank habitats with respect to probability of use and to identify important habitat characteristics or their surrogates, but it is not guaranteed to be proportional to probability of use. Other problems associated with the exponential model also are discussed. We describe an alternative model based on Lancaster and Imbens (1996) that offers a method for estimating conditional probability of use in use-availability studies. Although promising, this model fails to converge to a unique solution in some important situations. Further work is needed to obtain a robust method that is broadly applicable to use-availability studies.

  20. Probabilistic structural analysis methods and applications

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Wu, Y.-T.; Dias, B.; Rajagopal, K. R.

    1988-01-01

    An advanced algorithm for simulating the probabilistic distribution of structural responses due to statistical uncertainties in loads, geometry, material properties, and boundary conditions is reported. The method effectively combines an advanced algorithm for calculating probability levels for multivariate problems (fast probability integration) together with a general-purpose finite-element code for stress, vibration, and buckling analysis. Application is made to a space propulsion system turbine blade for which the geometry and material properties are treated as random variables.

  1. Probability theory versus simulation of petroleum potential in play analysis

    USGS Publications Warehouse

    Crovelli, R.A.

    1987-01-01

    An analytic probabilistic methodology for resource appraisal of undiscovered oil and gas resources in play analysis is presented. This play-analysis methodology is a geostochastic system for petroleum resource appraisal in explored as well as frontier areas. An objective was to replace an existing Monte Carlo simulation method in order to increase the efficiency of the appraisal process. Underlying the two methods is a single geologic model which considers both the uncertainty of the presence of the assessed hydrocarbon and its amount if present. The results of the model are resource estimates of crude oil, nonassociated gas, dissolved gas, and gas for a geologic play in terms of probability distributions. The analytic method is based upon conditional probability theory and a closed form solution of all means and standard deviations, along with the probabilities of occurrence. ?? 1987 J.C. Baltzer A.G., Scientific Publishing Company.

  2. Identifying sources of heterogeneity in capture probabilities: An example using the Great Tit Parus major

    USGS Publications Warehouse

    Senar, J.C.; Conroy, M.J.; Carrascal, L.M.; Domenech, J.; Mozetich, I.; Uribe, F.

    1999-01-01

    Heterogeneous capture probabilities are a common problem in many capture-recapture studies. Several methods of detecting the presence of such heterogeneity are currently available, and stratification of data has been suggested as the standard method to avoid its effects. However, few studies have tried to identify sources of heterogeneity, or whether there are interactions among sources. The aim of this paper is to suggest an analytical procedure to identify sources of capture heterogeneity. We use data on the sex and age of Great Tits captured in baited funnel traps, at two localities differing in average temperature. We additionally use 'recapture' data obtained by videotaping at feeder (with no associated trap), where the tits ringed with different colours were recorded. This allowed us to test whether individuals in different classes (age, sex and condition) are not trapped because of trap shyness or because o a reduced use of the bait. We used logistic regression analysis of the capture probabilities to test for the effects of age, sex, condition, location and 'recapture method. The results showed a higher recapture probability in the colder locality. Yearling birds (either males or females) had the highest recapture prob abilities, followed by adult males, while adult females had the lowest recapture probabilities. There was no effect of the method of 'recapture' (trap or video tape), which suggests that adult females are less often captured in traps no because of trap-shyness but because of less dependence on supplementary food. The potential use of this methodological approach in other studies is discussed.

  3. Computing Real-time Streamflow Using Emerging Technologies: Non-contact Radars and the Probability Concept

    NASA Astrophysics Data System (ADS)

    Fulton, J. W.; Bjerklie, D. M.; Jones, J. W.; Minear, J. T.

    2015-12-01

    Measuring streamflow, developing, and maintaining rating curves at new streamgaging stations is both time-consuming and problematic. Hydro 21 was an initiative by the U.S. Geological Survey to provide vision and leadership to identify and evaluate new technologies and methods that had the potential to change the way in which streamgaging is conducted. Since 2014, additional trials have been conducted to evaluate some of the methods promoted by the Hydro 21 Committee. Emerging technologies such as continuous-wave radars and computationally-efficient methods such as the Probability Concept require significantly less field time, promote real-time velocity and streamflow measurements, and apply to unsteady flow conditions such as looped ratings and unsteady-flood flows. Portable and fixed-mount radars have advanced beyond the development phase, are cost effective, and readily available in the marketplace. The Probability Concept is based on an alternative velocity-distribution equation developed by C.-L. Chiu, who pioneered the concept. By measuring the surface-water velocity and correcting for environmental influences such as wind drift, radars offer a reliable alternative for measuring and computing real-time streamflow for a variety of hydraulic conditions. If successful, these tools may allow us to establish ratings more efficiently, assess unsteady flow conditions, and report real-time streamflow at new streamgaging stations.

  4. Predicting longitudinal trajectories of health probabilities with random-effects multinomial logit regression.

    PubMed

    Liu, Xian; Engel, Charles C

    2012-12-20

    Researchers often encounter longitudinal health data characterized with three or more ordinal or nominal categories. Random-effects multinomial logit models are generally applied to account for potential lack of independence inherent in such clustered data. When parameter estimates are used to describe longitudinal processes, however, random effects, both between and within individuals, need to be retransformed for correctly predicting outcome probabilities. This study attempts to go beyond existing work by developing a retransformation method that derives longitudinal growth trajectories of unbiased health probabilities. We estimated variances of the predicted probabilities by using the delta method. Additionally, we transformed the covariates' regression coefficients on the multinomial logit function, not substantively meaningful, to the conditional effects on the predicted probabilities. The empirical illustration uses the longitudinal data from the Asset and Health Dynamics among the Oldest Old. Our analysis compared three sets of the predicted probabilities of three health states at six time points, obtained from, respectively, the retransformation method, the best linear unbiased prediction, and the fixed-effects approach. The results demonstrate that neglect of retransforming random errors in the random-effects multinomial logit model results in severely biased longitudinal trajectories of health probabilities as well as overestimated effects of covariates on the probabilities. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Simulated tempering based on global balance or detailed balance conditions: Suwa-Todo, heat bath, and Metropolis algorithms.

    PubMed

    Mori, Yoshiharu; Okumura, Hisashi

    2015-12-05

    Simulated tempering (ST) is a useful method to enhance sampling of molecular simulations. When ST is used, the Metropolis algorithm, which satisfies the detailed balance condition, is usually applied to calculate the transition probability. Recently, an alternative method that satisfies the global balance condition instead of the detailed balance condition has been proposed by Suwa and Todo. In this study, ST method with the Suwa-Todo algorithm is proposed. Molecular dynamics simulations with ST are performed with three algorithms (the Metropolis, heat bath, and Suwa-Todo algorithms) to calculate the transition probability. Among the three algorithms, the Suwa-Todo algorithm yields the highest acceptance ratio and the shortest autocorrelation time. These suggest that sampling by a ST simulation with the Suwa-Todo algorithm is most efficient. In addition, because the acceptance ratio of the Suwa-Todo algorithm is higher than that of the Metropolis algorithm, the number of temperature states can be reduced by 25% for the Suwa-Todo algorithm when compared with the Metropolis algorithm. © 2015 Wiley Periodicals, Inc.

  6. Identifiability and identification of trace continuous pollutant source.

    PubMed

    Qu, Hongquan; Liu, Shouwen; Pang, Liping; Hu, Tao

    2014-01-01

    Accidental pollution events often threaten people's health and lives, and a pollutant source is very necessary so that prompt remedial actions can be taken. In this paper, a trace continuous pollutant source identification method is developed to identify a sudden continuous emission pollutant source in an enclosed space. The location probability model is set up firstly, and then the identification method is realized by searching a global optimal objective value of the location probability. In order to discuss the identifiability performance of the presented method, a conception of a synergy degree of velocity fields is presented in order to quantitatively analyze the impact of velocity field on the identification performance. Based on this conception, some simulation cases were conducted. The application conditions of this method are obtained according to the simulation studies. In order to verify the presented method, we designed an experiment and identified an unknown source appearing in the experimental space. The result showed that the method can identify a sudden trace continuous source when the studied situation satisfies the application conditions.

  7. Maritime Search and Rescue via Multiple Coordinated UAS

    DTIC Science & Technology

    2016-01-01

    partitioning method uses the underlying probability distribution assumptions to place that probability near the geometric center of the partitions. There...During partitioning the known locations are accommodated, but the unaccounted for objects are placed into geometrically unfavorable conditions. The...Zeitlin, A.D.: UAS Sence and Avoid Develop- ment - the Challenges of Technology, Standards, and Certification. Aerospace Sciences Meeting including

  8. Rethinking the learning of belief network probabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musick, R.

    Belief networks are a powerful tool for knowledge discovery that provide concise, understandable probabilistic models of data. There are methods grounded in probability theory to incrementally update the relationships described by the belief network when new information is seen, to perform complex inferences over any set of variables in the data, to incorporate domain expertise and prior knowledge into the model, and to automatically learn the model from data. This paper concentrates on part of the belief network induction problem, that of learning the quantitative structure (the conditional probabilities), given the qualitative structure. In particular, the current practice of rotemore » learning the probabilities in belief networks can be significantly improved upon. We advance the idea of applying any learning algorithm to the task of conditional probability learning in belief networks, discuss potential benefits, and show results of applying neutral networks and other algorithms to a medium sized car insurance belief network. The results demonstrate from 10 to 100% improvements in model error rates over the current approaches.« less

  9. Conditional long-term survival following minimally invasive robotic mitral valve repair: a health services perspective.

    PubMed

    Efird, Jimmy T; Griffin, William F; Gudimella, Preeti; O'Neal, Wesley T; Davies, Stephen W; Crane, Patricia B; Anderson, Ethan J; Kindell, Linda C; Landrine, Hope; O'Neal, Jason B; Alwair, Hazaim; Kypson, Alan P; Nifong, Wiley L; Chitwood, W Randolph

    2015-09-01

    Conditional survival is defined as the probability of surviving an additional number of years beyond that already survived. The aim of this study was to compute conditional survival in patients who received a robotically assisted, minimally invasive mitral valve repair procedure (RMVP). Patients who received RMVP with annuloplasty band from May 2000 through April 2011 were included. A 5- and 10-year conditional survival model was computed using a multivariable product-limit method. Non-smoking men (≤65 years) who presented in sinus rhythm had a 96% probability of surviving at least 10 years if they survived their first year following surgery. In contrast, recent female smokers (>65 years) with preoperative atrial fibrillation only had an 11% probability of surviving beyond 10 years if alive after one year post-surgery. In the context of an increasingly managed healthcare environment, conditional survival provides useful information for patients needing to make important treatment decisions, physicians seeking to select patients most likely to benefit long-term following RMVP, and hospital administrators needing to comparatively assess the life-course economic value of high-tech surgical procedures.

  10. Risk estimation using probability machines

    PubMed Central

    2014-01-01

    Background Logistic regression has been the de facto, and often the only, model used in the description and analysis of relationships between a binary outcome and observed features. It is widely used to obtain the conditional probabilities of the outcome given predictors, as well as predictor effect size estimates using conditional odds ratios. Results We show how statistical learning machines for binary outcomes, provably consistent for the nonparametric regression problem, can be used to provide both consistent conditional probability estimation and conditional effect size estimates. Effect size estimates from learning machines leverage our understanding of counterfactual arguments central to the interpretation of such estimates. We show that, if the data generating model is logistic, we can recover accurate probability predictions and effect size estimates with nearly the same efficiency as a correct logistic model, both for main effects and interactions. We also propose a method using learning machines to scan for possible interaction effects quickly and efficiently. Simulations using random forest probability machines are presented. Conclusions The models we propose make no assumptions about the data structure, and capture the patterns in the data by just specifying the predictors involved and not any particular model structure. So they do not run the same risks of model mis-specification and the resultant estimation biases as a logistic model. This methodology, which we call a “risk machine”, will share properties from the statistical machine that it is derived from. PMID:24581306

  11. Risk estimation using probability machines.

    PubMed

    Dasgupta, Abhijit; Szymczak, Silke; Moore, Jason H; Bailey-Wilson, Joan E; Malley, James D

    2014-03-01

    Logistic regression has been the de facto, and often the only, model used in the description and analysis of relationships between a binary outcome and observed features. It is widely used to obtain the conditional probabilities of the outcome given predictors, as well as predictor effect size estimates using conditional odds ratios. We show how statistical learning machines for binary outcomes, provably consistent for the nonparametric regression problem, can be used to provide both consistent conditional probability estimation and conditional effect size estimates. Effect size estimates from learning machines leverage our understanding of counterfactual arguments central to the interpretation of such estimates. We show that, if the data generating model is logistic, we can recover accurate probability predictions and effect size estimates with nearly the same efficiency as a correct logistic model, both for main effects and interactions. We also propose a method using learning machines to scan for possible interaction effects quickly and efficiently. Simulations using random forest probability machines are presented. The models we propose make no assumptions about the data structure, and capture the patterns in the data by just specifying the predictors involved and not any particular model structure. So they do not run the same risks of model mis-specification and the resultant estimation biases as a logistic model. This methodology, which we call a "risk machine", will share properties from the statistical machine that it is derived from.

  12. Behavioral Economic Insights into Physician Tobacco Treatment Decision-Making

    PubMed Central

    Evers-Casey, Sarah; Graden, Sarah; Schnoll, Robert

    2015-01-01

    Rationale: Physicians self-report high adherence rates for Ask and Advise behaviors of tobacco dependence treatment but are much less likely to engage in “next steps” consistent with sophisticated management of chronic illness. A variety of potential explanations have been offered, yet each lacks face validity in light of experience with other challenging medical conditions. Objective: Conduct a preliminary exploration of the behavioral economics of tobacco treatment decision-making in the face of uncertain outcomes, seeking evidence that behaviors may be explained within the framework of Prospect Theory. Methods: Four physician cohorts were polled regarding their impressions of the utility of tobacco use treatment and their estimations of “success” probabilities. Contingent valuation was estimated by asking respondents to make monetary tradeoffs relative to three common chronic conditions. Measurements and Main Results: Responses from all four cohorts showed a similar pattern of high utility of tobacco use treatment but low success probability when compared with the other chronic medical conditions. Following instructional methods aimed at controverting cognitive biases related to tobacco, this pattern was reversed, with success probabilities attaining higher valuation than for diabetes. Conclusions: Important presuppositions regarding the potential “success” of tobacco-related patient interactions are likely limiting physician engagement by favoring the most secure visit outcome despite the limited potential for health gains. Under these conditions, low engagement rates would be consistent with Prospect Theory predictions. Interventions aimed at counteracting the cognitive biases limiting estimations of success probabilities seem to effectively reverse this pattern and provide clues to improving the adoption of target clinical behaviors. PMID:25664676

  13. Landsat D Thematic Mapper image dimensionality reduction and geometric correction accuracy

    NASA Technical Reports Server (NTRS)

    Ford, G. E.

    1986-01-01

    To characterize and quantify the performance of the Landsat thematic mapper (TM), techniques for dimensionality reduction by linear transformation have been studied and evaluated and the accuracy of the correction of geometric errors in TM images analyzed. Theoretical evaluations and comparisons for existing methods for the design of linear transformation for dimensionality reduction are presented. These methods include the discrete Karhunen Loeve (KL) expansion, Multiple Discriminant Analysis (MDA), Thematic Mapper (TM)-Tasseled Cap Linear Transformation and Singular Value Decomposition (SVD). A unified approach to these design problems is presented in which each method involves optimizing an objective function with respect to the linear transformation matrix. From these studies, four modified methods are proposed. They are referred to as the Space Variant Linear Transformation, the KL Transform-MDA hybrid method, and the First and Second Version of the Weighted MDA method. The modifications involve the assignment of weights to classes to achieve improvements in the class conditional probability of error for classes with high weights. Experimental evaluations of the existing and proposed methods have been performed using the six reflective bands of the TM data. It is shown that in terms of probability of classification error and the percentage of the cumulative eigenvalues, the six reflective bands of the TM data require only a three dimensional feature space. It is shown experimentally as well that for the proposed methods, the classes with high weights have improvements in class conditional probability of error estimates as expected.

  14. A Connection Admission Control Method for Web Server Systems

    NASA Astrophysics Data System (ADS)

    Satake, Shinsuke; Inai, Hiroshi; Saito, Tomoya; Arai, Tsuyoshi

    Most browsers establish multiple connections and download files in parallel to reduce the response time. On the other hand, a web server limits the total number of connections to prevent from being overloaded. That could decrease the response time, but would increase the loss probability, the probability of which a newly arriving client is rejected. This paper proposes a connection admission control method which accepts only one connection from a newly arriving client when the number of connections exceeds a threshold, but accepts new multiple connections when the number of connections is less than the threshold. Our method is aimed at reducing the response time by allowing as many clients as possible to establish multiple connections, and also reducing the loss probability. In order to reduce spending time to examine an adequate threshold for web server administrators, we introduce a procedure which approximately calculates the loss probability under a condition that the threshold is given. Via simulation, we validate the approximation and show effectiveness of the admission control.

  15. Dose-volume histogram prediction using density estimation.

    PubMed

    Skarpman Munter, Johanna; Sjölund, Jens

    2015-09-07

    Knowledge of what dose-volume histograms can be expected for a previously unseen patient could increase consistency and quality in radiotherapy treatment planning. We propose a machine learning method that uses previous treatment plans to predict such dose-volume histograms. The key to the approach is the framing of dose-volume histograms in a probabilistic setting.The training consists of estimating, from the patients in the training set, the joint probability distribution of some predictive features and the dose. The joint distribution immediately provides an estimate of the conditional probability of the dose given the values of the predictive features. The prediction consists of estimating, from the new patient, the distribution of the predictive features and marginalizing the conditional probability from the training over this. Integrating the resulting probability distribution for the dose yields an estimate of the dose-volume histogram.To illustrate how the proposed method relates to previously proposed methods, we use the signed distance to the target boundary as a single predictive feature. As a proof-of-concept, we predicted dose-volume histograms for the brainstems of 22 acoustic schwannoma patients treated with stereotactic radiosurgery, and for the lungs of 9 lung cancer patients treated with stereotactic body radiation therapy. Comparing with two previous attempts at dose-volume histogram prediction we find that, given the same input data, the predictions are similar.In summary, we propose a method for dose-volume histogram prediction that exploits the intrinsic probabilistic properties of dose-volume histograms. We argue that the proposed method makes up for some deficiencies in previously proposed methods, thereby potentially increasing ease of use, flexibility and ability to perform well with small amounts of training data.

  16. Hepatitis disease detection using Bayesian theory

    NASA Astrophysics Data System (ADS)

    Maseleno, Andino; Hidayati, Rohmah Zahroh

    2017-02-01

    This paper presents hepatitis disease diagnosis using a Bayesian theory for better understanding of the theory. In this research, we used a Bayesian theory for detecting hepatitis disease and displaying the result of diagnosis process. Bayesian algorithm theory is rediscovered and perfected by Laplace, the basic idea is using of the known prior probability and conditional probability density parameter, based on Bayes theorem to calculate the corresponding posterior probability, and then obtained the posterior probability to infer and make decisions. Bayesian methods combine existing knowledge, prior probabilities, with additional knowledge derived from new data, the likelihood function. The initial symptoms of hepatitis which include malaise, fever and headache. The probability of hepatitis given the presence of malaise, fever, and headache. The result revealed that a Bayesian theory has successfully identified the existence of hepatitis disease.

  17. Uncertain deduction and conditional reasoning.

    PubMed

    Evans, Jonathan St B T; Thompson, Valerie A; Over, David E

    2015-01-01

    There has been a paradigm shift in the psychology of deductive reasoning. Many researchers no longer think it is appropriate to ask people to assume premises and decide what necessarily follows, with the results evaluated by binary extensional logic. Most every day and scientific inference is made from more or less confidently held beliefs and not assumptions, and the relevant normative standard is Bayesian probability theory. We argue that the study of "uncertain deduction" should directly ask people to assign probabilities to both premises and conclusions, and report an experiment using this method. We assess this reasoning by two Bayesian metrics: probabilistic validity and coherence according to probability theory. On both measures, participants perform above chance in conditional reasoning, but they do much better when statements are grouped as inferences, rather than evaluated in separate tasks.

  18. Constructing inverse probability weights for continuous exposures: a comparison of methods.

    PubMed

    Naimi, Ashley I; Moodie, Erica E M; Auger, Nathalie; Kaufman, Jay S

    2014-03-01

    Inverse probability-weighted marginal structural models with binary exposures are common in epidemiology. Constructing inverse probability weights for a continuous exposure can be complicated by the presence of outliers, and the need to identify a parametric form for the exposure and account for nonconstant exposure variance. We explored the performance of various methods to construct inverse probability weights for continuous exposures using Monte Carlo simulation. We generated two continuous exposures and binary outcomes using data sampled from a large empirical cohort. The first exposure followed a normal distribution with homoscedastic variance. The second exposure followed a contaminated Poisson distribution, with heteroscedastic variance equal to the conditional mean. We assessed six methods to construct inverse probability weights using: a normal distribution, a normal distribution with heteroscedastic variance, a truncated normal distribution with heteroscedastic variance, a gamma distribution, a t distribution (1, 3, and 5 degrees of freedom), and a quantile binning approach (based on 10, 15, and 20 exposure categories). We estimated the marginal odds ratio for a single-unit increase in each simulated exposure in a regression model weighted by the inverse probability weights constructed using each approach, and then computed the bias and mean squared error for each method. For the homoscedastic exposure, the standard normal, gamma, and quantile binning approaches performed best. For the heteroscedastic exposure, the quantile binning, gamma, and heteroscedastic normal approaches performed best. Our results suggest that the quantile binning approach is a simple and versatile way to construct inverse probability weights for continuous exposures.

  19. Optimum space shuttle launch times relative to natural environment

    NASA Technical Reports Server (NTRS)

    King, R. L.

    1977-01-01

    Three sets of meteorological criteria were analyzed to determine the probabilities of favorable launch and landing conditions. Probabilities were computed for every 3 hours on a yearly basis using 14 years of weather data. These temporal probability distributions, applicable to the three sets of weather criteria encompassing benign, moderate and severe weather conditions, were computed for both Kennedy Space Center (KSC) and Edwards Air Force Base. In addition, conditional probabilities were computed for unfavorable weather conditions occurring after a delay which may or may not be due to weather conditions. Also, for KSC, the probabilities of favorable landing conditions at various times after favorable launch conditions have prevailed have been computed so that mission probabilities may be more accurately computed for those time periods when persistence strongly correlates weather conditions. Moreover, the probabilities and conditional probabilities of the occurrence of both favorable and unfavorable events for each individual criterion were computed to indicate the significance of each weather element to the overall result.

  20. Modeling summer month hydrological drought probabilities in the United States using antecedent flow conditions

    USGS Publications Warehouse

    Austin, Samuel H.; Nelms, David L.

    2017-01-01

    Climate change raises concern that risks of hydrological drought may be increasing. We estimate hydrological drought probabilities for rivers and streams in the United States (U.S.) using maximum likelihood logistic regression (MLLR). Streamflow data from winter months are used to estimate the chance of hydrological drought during summer months. Daily streamflow data collected from 9,144 stream gages from January 1, 1884 through January 9, 2014 provide hydrological drought streamflow probabilities for July, August, and September as functions of streamflows during October, November, December, January, and February, estimating outcomes 5-11 months ahead of their occurrence. Few drought prediction methods exploit temporal links among streamflows. We find MLLR modeling of drought streamflow probabilities exploits the explanatory power of temporally linked water flows. MLLR models with strong correct classification rates were produced for streams throughout the U.S. One ad hoc test of correct prediction rates of September 2013 hydrological droughts exceeded 90% correct classification. Some of the best-performing models coincide with areas of high concern including the West, the Midwest, Texas, the Southeast, and the Mid-Atlantic. Using hydrological drought MLLR probability estimates in a water management context can inform understanding of drought streamflow conditions, provide warning of future drought conditions, and aid water management decision making.

  1. Estimation of distributional parameters for censored trace level water quality data: 1. Estimation techniques

    USGS Publications Warehouse

    Gilliom, Robert J.; Helsel, Dennis R.

    1986-01-01

    A recurring difficulty encountered in investigations of many metals and organic contaminants in ambient waters is that a substantial portion of water sample concentrations are below limits of detection established by analytical laboratories. Several methods were evaluated for estimating distributional parameters for such censored data sets using only uncensored observations. Their reliabilities were evaluated by a Monte Carlo experiment in which small samples were generated from a wide range of parent distributions and censored at varying levels. Eight methods were used to estimate the mean, standard deviation, median, and interquartile range. Criteria were developed, based on the distribution of uncensored observations, for determining the best performing parameter estimation method for any particular data set. The most robust method for minimizing error in censored-sample estimates of the four distributional parameters over all simulation conditions was the log-probability regression method. With this method, censored observations are assumed to follow the zero-to-censoring level portion of a lognormal distribution obtained by a least squares regression between logarithms of uncensored concentration observations and their z scores. When method performance was separately evaluated for each distributional parameter over all simulation conditions, the log-probability regression method still had the smallest errors for the mean and standard deviation, but the lognormal maximum likelihood method had the smallest errors for the median and interquartile range. When data sets were classified prior to parameter estimation into groups reflecting their probable parent distributions, the ranking of estimation methods was similar, but the accuracy of error estimates was markedly improved over those without classification.

  2. Estimation of distributional parameters for censored trace level water quality data. 1. Estimation Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilliom, R.J.; Helsel, D.R.

    1986-02-01

    A recurring difficulty encountered in investigations of many metals and organic contaminants in ambient waters is that a substantial portion of water sample concentrations are below limits of detection established by analytical laboratories. Several methods were evaluated for estimating distributional parameters for such censored data sets using only uncensored observations. Their reliabilities were evaluated by a Monte Carlo experiment in which small samples were generated from a wide range of parent distributions and censored at varying levels. Eight methods were used to estimate the mean, standard deviation, median, and interquartile range. Criteria were developed, based on the distribution of uncensoredmore » observations, for determining the best performing parameter estimation method for any particular data det. The most robust method for minimizing error in censored-sample estimates of the four distributional parameters over all simulation conditions was the log-probability regression method. With this method, censored observations are assumed to follow the zero-to-censoring level portion of a lognormal distribution obtained by a least squares regression between logarithms of uncensored concentration observations and their z scores. When method performance was separately evaluated for each distributional parameter over all simulation conditions, the log-probability regression method still had the smallest errors for the mean and standard deviation, but the lognormal maximum likelihood method had the smallest errors for the median and interquartile range. When data sets were classified prior to parameter estimation into groups reflecting their probable parent distributions, the ranking of estimation methods was similar, but the accuracy of error estimates was markedly improved over those without classification.« less

  3. Estimation of distributional parameters for censored trace-level water-quality data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilliom, R.J.; Helsel, D.R.

    1984-01-01

    A recurring difficulty encountered in investigations of many metals and organic contaminants in ambient waters is that a substantial portion of water-sample concentrations are below limits of detection established by analytical laboratories. Several methods were evaluated for estimating distributional parameters for such censored data sets using only uncensored observations. Their reliabilities were evaluated by a Monte Carlo experiment in which small samples were generated from a wide range of parent distributions and censored at varying levels. Eight methods were used to estimate the mean, standard deviation, median, and interquartile range. Criteria were developed, based on the distribution of uncensored observations,more » for determining the best-performing parameter estimation method for any particular data set. The most robust method for minimizing error in censored-sample estimates of the four distributional parameters over all simulation conditions was the log-probability regression method. With this method, censored observations are assumed to follow the zero-to-censoring level portion of a lognormal distribution obtained by a least-squares regression between logarithms of uncensored concentration observations and their z scores. When method performance was separately evaluated for each distributional parameter over all simulation conditions, the log-probability regression method still had the smallest errors for the mean and standard deviation, but the lognormal maximum likelihood method had the smallest errors for the median and interquartile range. When data sets were classified prior to parameter estimation into groups reflecting their probable parent distributions, the ranking of estimation methods was similar, but the accuracy of error estimates was markedly improved over those without classification. 6 figs., 6 tabs.« less

  4. Identifiability and Identification of Trace Continuous Pollutant Source

    PubMed Central

    Qu, Hongquan; Liu, Shouwen; Pang, Liping; Hu, Tao

    2014-01-01

    Accidental pollution events often threaten people's health and lives, and a pollutant source is very necessary so that prompt remedial actions can be taken. In this paper, a trace continuous pollutant source identification method is developed to identify a sudden continuous emission pollutant source in an enclosed space. The location probability model is set up firstly, and then the identification method is realized by searching a global optimal objective value of the location probability. In order to discuss the identifiability performance of the presented method, a conception of a synergy degree of velocity fields is presented in order to quantitatively analyze the impact of velocity field on the identification performance. Based on this conception, some simulation cases were conducted. The application conditions of this method are obtained according to the simulation studies. In order to verify the presented method, we designed an experiment and identified an unknown source appearing in the experimental space. The result showed that the method can identify a sudden trace continuous source when the studied situation satisfies the application conditions. PMID:24892041

  5. Large margin nearest neighbor classifiers.

    PubMed

    Domeniconi, Carlotta; Gunopulos, Dimitrios; Peng, Jing

    2005-07-01

    The nearest neighbor technique is a simple and appealing approach to addressing classification problems. It relies on the assumption of locally constant class conditional probabilities. This assumption becomes invalid in high dimensions with a finite number of examples due to the curse of dimensionality. Severe bias can be introduced under these conditions when using the nearest neighbor rule. The employment of a locally adaptive metric becomes crucial in order to keep class conditional probabilities close to uniform, thereby minimizing the bias of estimates. We propose a technique that computes a locally flexible metric by means of support vector machines (SVMs). The decision function constructed by SVMs is used to determine the most discriminant direction in a neighborhood around the query. Such a direction provides a local feature weighting scheme. We formally show that our method increases the margin in the weighted space where classification takes place. Moreover, our method has the important advantage of online computational efficiency over competing locally adaptive techniques for nearest neighbor classification. We demonstrate the efficacy of our method using both real and simulated data.

  6. Predicted sequence of cortical tau and amyloid-β deposition in Alzheimer disease spectrum.

    PubMed

    Cho, Hanna; Lee, Hye Sun; Choi, Jae Yong; Lee, Jae Hoon; Ryu, Young Hoon; Lee, Myung Sik; Lyoo, Chul Hyoung

    2018-04-17

    We investigated sequential order between tau and amyloid-β (Aβ) deposition in Alzheimer disease spectrum using a conditional probability method. Two hundred twenty participants underwent 18 F-flortaucipir and 18 F-florbetaben positron emission tomography scans and neuropsychological tests. The presence of tau and Aβ in each region and impairment in each cognitive domain were determined by Z-score cutoffs. By comparing pairs of conditional probabilities, the sequential order of tau and Aβ deposition were determined. Probability for the presence of tau in the entorhinal cortex was higher than that of Aβ in all cortical regions, and in the medial temporal cortices, probability for the presence of tau was higher than that of Aβ. Conversely, in the remaining neocortex above the inferior temporal cortex, probability for the presence of Aβ was always higher than that of tau. Tau pathology in the entorhinal cortex may appear earlier than neocortical Aβ and may spread in the absence of Aβ within the neighboring medial temporal regions. However, Aβ may be required for massive tau deposition in the distant cortical areas. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Principal Score Methods: Assumptions, Extensions, and Practical Considerations

    ERIC Educational Resources Information Center

    Feller, Avi; Mealli, Fabrizia; Miratrix, Luke

    2017-01-01

    Researchers addressing posttreatment complications in randomized trials often turn to principal stratification to define relevant assumptions and quantities of interest. One approach for the subsequent estimation of causal effects in this framework is to use methods based on the "principal score," the conditional probability of belonging…

  8. Two-state and two-state plus continuum problems associated with the interaction of intense laser pulses with atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, C. W.; Payne, M. G.

    1977-02-01

    Two mathematical methods are utilized (one a form of adiabatic approximation, and the other closely related to the Zener method from collision theory) in order to calculate the probability of three-photon ionization when strong counter propagating pulses are tuned very near a two-photon resonant state. In this case the inverted populations predicted by Grischkowsky and Loy for smooth laser pulses lead to larger ionization probabilities than would be obtained for a square pulse of equal peak power and energy per pulse. The line shape of the ionization probability is also quite unusual in this problem. A sharp onset in themore » ionization probability occurs as the lasers are tuned through the exact unperturbed two-photon resonance. Under proper conditions, the change can be from a very small value to one near unity. It occurs in a very small frequency range determined by the larger of the residual Doppler effect and the reciprocal duration of the pulse. Thus, the line shape retains a Doppler-free aspect even at power levels such that power broadening would dwarf even the full Doppler effect in the case of a square pulse of equal energy and peak power. The same mathematical methods have been used to calculate line shapes for the two-photon excitation of fluorescence when the atoms see a pulsed field due to their time of passage across a tightly focused cw laser beam. Thus,the mathematical methods used above permitted accurate analytical calculations under a set of very interesting conditions.« less

  9. An extended car-following model considering the appearing probability of truck and driver's characteristics

    NASA Astrophysics Data System (ADS)

    Rong, Ying; Wen, Huiying

    2018-05-01

    In this paper, the appearing probability of truck is introduced and an extended car-following model is presented to analyze the traffic flow based on the consideration of driver's characteristics, under honk environment. The stability condition of this proposed model is obtained through linear stability analysis. In order to study the evolution properties of traffic wave near the critical point, the mKdV equation is derived by the reductive perturbation method. The results show that the traffic flow will become more disorder for the larger appearing probability of truck. Besides, the appearance of leading truck affects not only the stability of traffic flow, but also the effect of other aspects on traffic flow, such as: driver's reaction and honk effect. The effects of them on traffic flow are closely correlated with the appearing probability of truck. Finally, the numerical simulations under the periodic boundary condition are carried out to verify the proposed model. And they are consistent with the theoretical findings.

  10. Students' Understanding of Conditional Probability on Entering University

    ERIC Educational Resources Information Center

    Reaburn, Robyn

    2013-01-01

    An understanding of conditional probability is essential for students of inferential statistics as it is used in Null Hypothesis Tests. Conditional probability is also used in Bayes' theorem, in the interpretation of medical screening tests and in quality control procedures. This study examines the understanding of conditional probability of…

  11. Estimating inverse-probability weights for longitudinal data with dropout or truncation: The xtrccipw command.

    PubMed

    Daza, Eric J; Hudgens, Michael G; Herring, Amy H

    Individuals may drop out of a longitudinal study, rendering their outcomes unobserved but still well defined. However, they may also undergo truncation (for example, death), beyond which their outcomes are no longer meaningful. Kurland and Heagerty (2005, Biostatistics 6: 241-258) developed a method to conduct regression conditioning on nontruncation, that is, regression conditioning on continuation (RCC), for longitudinal outcomes that are monotonically missing at random (for example, because of dropout). This method first estimates the probability of dropout among continuing individuals to construct inverse-probability weights (IPWs), then fits generalized estimating equations (GEE) with these IPWs. In this article, we present the xtrccipw command, which can both estimate the IPWs required by RCC and then use these IPWs in a GEE estimator by calling the glm command from within xtrccipw. In the absence of truncation, the xtrccipw command can also be used to run a weighted GEE analysis. We demonstrate the xtrccipw command by analyzing an example dataset and the original Kurland and Heagerty (2005) data. We also use xtrccipw to illustrate some empirical properties of RCC through a simulation study.

  12. Estimating inverse-probability weights for longitudinal data with dropout or truncation: The xtrccipw command

    PubMed Central

    Hudgens, Michael G.; Herring, Amy H.

    2017-01-01

    Individuals may drop out of a longitudinal study, rendering their outcomes unobserved but still well defined. However, they may also undergo truncation (for example, death), beyond which their outcomes are no longer meaningful. Kurland and Heagerty (2005, Biostatistics 6: 241–258) developed a method to conduct regression conditioning on nontruncation, that is, regression conditioning on continuation (RCC), for longitudinal outcomes that are monotonically missing at random (for example, because of dropout). This method first estimates the probability of dropout among continuing individuals to construct inverse-probability weights (IPWs), then fits generalized estimating equations (GEE) with these IPWs. In this article, we present the xtrccipw command, which can both estimate the IPWs required by RCC and then use these IPWs in a GEE estimator by calling the glm command from within xtrccipw. In the absence of truncation, the xtrccipw command can also be used to run a weighted GEE analysis. We demonstrate the xtrccipw command by analyzing an example dataset and the original Kurland and Heagerty (2005) data. We also use xtrccipw to illustrate some empirical properties of RCC through a simulation study. PMID:29755297

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Shih-Jung

    Dynamic strength of the High Flux Isotope Reactor (HFIR) vessel to resist hypothetical accidents is analyzed by using the method of fracture mechanics. Vessel critical stresses are estimated by applying dynamic pressure pulses of a range of magnitudes and pulse-durations. The pulses versus time functions are assumed to be step functions. The probability of vessel fracture is then calculated by assuming a distribution of possible surface cracks of different crack depths. The probability distribution function for the crack depths is based on the form that is recommended by the Marshall report. The toughness of the vessel steel used in themore » analysis is based on the projected and embrittled value after 10 effective full power years from 1986. From the study made by Cheverton, Merkle and Nanstad, the weakest point on the vessel for fracture evaluation is known to be located within the region surrounding the tangential beam tube HB3. The increase in the probability of fracture is obtained as an extension of the result from that report for the regular operating condition to include conditions of higher dynamic pressures due to accident loadings. The increase in the probability of vessel fracture is plotted for a range of hoop stresses to indicate the vessel strength against hypothetical accident conditions.« less

  14. System and method for statistically monitoring and analyzing sensed conditions

    DOEpatents

    Pebay, Philippe P [Livermore, CA; Brandt, James M [Dublin, CA; Gentile, Ann C [Dublin, CA; Marzouk, Youssef M [Oakland, CA; Hale, Darrian J [San Jose, CA; Thompson, David C [Livermore, CA

    2011-01-04

    A system and method of monitoring and analyzing a plurality of attributes for an alarm condition is disclosed. The attributes are processed and/or unprocessed values of sensed conditions of a collection of a statistically significant number of statistically similar components subjected to varying environmental conditions. The attribute values are used to compute the normal behaviors of some of the attributes and also used to infer parameters of a set of models. Relative probabilities of some attribute values are then computed and used along with the set of models to determine whether an alarm condition is met. The alarm conditions are used to prevent or reduce the impact of impending failure.

  15. System and method for statistically monitoring and analyzing sensed conditions

    DOEpatents

    Pebay, Philippe P [Livermore, CA; Brandt, James M [Dublin, CA; Gentile, Ann C [Dublin, CA; Marzouk, Youssef M [Oakland, CA; Hale, Darrian J [San Jose, CA; Thompson, David C [Livermore, CA

    2011-01-25

    A system and method of monitoring and analyzing a plurality of attributes for an alarm condition is disclosed. The attributes are processed and/or unprocessed values of sensed conditions of a collection of a statistically significant number of statistically similar components subjected to varying environmental conditions. The attribute values are used to compute the normal behaviors of some of the attributes and also used to infer parameters of a set of models. Relative probabilities of some attribute values are then computed and used along with the set of models to determine whether an alarm condition is met. The alarm conditions are used to prevent or reduce the impact of impending failure.

  16. System and method for statistically monitoring and analyzing sensed conditions

    DOEpatents

    Pebay, Philippe P [Livermore, CA; Brandt, James M. , Gentile; Ann C. , Marzouk; Youssef M. , Hale; Darrian J. , Thompson; David, C [Livermore, CA

    2010-07-13

    A system and method of monitoring and analyzing a plurality of attributes for an alarm condition is disclosed. The attributes are processed and/or unprocessed values of sensed conditions of a collection of a statistically significant number of statistically similar components subjected to varying environmental conditions. The attribute values are used to compute the normal behaviors of some of the attributes and also used to infer parameters of a set of models. Relative probabilities of some attribute values are then computed and used along with the set of models to determine whether an alarm condition is met. The alarm conditions are used to prevent or reduce the impact of impending failure.

  17. Uncertain deduction and conditional reasoning

    PubMed Central

    Evans, Jonathan St. B. T.; Thompson, Valerie A.; Over, David E.

    2015-01-01

    There has been a paradigm shift in the psychology of deductive reasoning. Many researchers no longer think it is appropriate to ask people to assume premises and decide what necessarily follows, with the results evaluated by binary extensional logic. Most every day and scientific inference is made from more or less confidently held beliefs and not assumptions, and the relevant normative standard is Bayesian probability theory. We argue that the study of “uncertain deduction” should directly ask people to assign probabilities to both premises and conclusions, and report an experiment using this method. We assess this reasoning by two Bayesian metrics: probabilistic validity and coherence according to probability theory. On both measures, participants perform above chance in conditional reasoning, but they do much better when statements are grouped as inferences, rather than evaluated in separate tasks. PMID:25904888

  18. Probabilistic modelling of overflow, surcharge and flooding in urban drainage using the first-order reliability method and parameterization of local rain series.

    PubMed

    Thorndahl, S; Willems, P

    2008-01-01

    Failure of urban drainage systems may occur due to surcharge or flooding at specific manholes in the system, or due to overflows from combined sewer systems to receiving waters. To quantify the probability or return period of failure, standard approaches make use of the simulation of design storms or long historical rainfall series in a hydrodynamic model of the urban drainage system. In this paper, an alternative probabilistic method is investigated: the first-order reliability method (FORM). To apply this method, a long rainfall time series was divided in rainstorms (rain events), and each rainstorm conceptualized to a synthetic rainfall hyetograph by a Gaussian shape with the parameters rainstorm depth, duration and peak intensity. Probability distributions were calibrated for these three parameters and used on the basis of the failure probability estimation, together with a hydrodynamic simulation model to determine the failure conditions for each set of parameters. The method takes into account the uncertainties involved in the rainstorm parameterization. Comparison is made between the failure probability results of the FORM method, the standard method using long-term simulations and alternative methods based on random sampling (Monte Carlo direct sampling and importance sampling). It is concluded that without crucial influence on the modelling accuracy, the FORM is very applicable as an alternative to traditional long-term simulations of urban drainage systems.

  19. Contingency Space Analysis: An Alternative Method for Identifying Contingent Relations from Observational Data

    PubMed Central

    Martens, Brian K; DiGennaro, Florence D; Reed, Derek D; Szczech, Frances M; Rosenthal, Blair D

    2008-01-01

    Descriptive assessment methods have been used in applied settings to identify consequences for problem behavior, thereby aiding in the design of effective treatment programs. Consensus has not been reached, however, regarding the types of data or analytic strategies that are most useful for describing behavior–consequence relations. One promising approach involves the analysis of conditional probabilities from sequential recordings of behavior and events that follow its occurrence. In this paper we review several strategies for identifying contingent relations from conditional probabilities, and propose an alternative strategy known as a contingency space analysis (CSA). Step-by-step procedures for conducting and interpreting a CSA using sample data are presented, followed by discussion of the potential use of a CSA for conducting descriptive assessments, informing intervention design, and evaluating changes in reinforcement contingencies following treatment. PMID:18468280

  20. A Comparative Study of Automated Infrasound Detectors - PMCC and AFD with Analyst Review.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Junghyun; Hayward, Chris; Zeiler, Cleat

    Automated detections calculated by the progressive multi-channel correlation (PMCC) method (Cansi, 1995) and the adaptive F detector (AFD) (Arrowsmith et al., 2009) are compared to the signals identified by five independent analysts. Each detector was applied to a four-hour time sequence recorded by the Korean infrasound array CHNAR. This array was used because it is composed of both small (<100 m) and large (~1000 m) aperture element spacing. The four hour time sequence contained a number of easily identified signals under noise conditions that have average RMS amplitudes varied from 1.2 to 4.5 mPa (1 to 5 Hz), estimated withmore » running five-minute window. The effectiveness of the detectors was estimated for the small aperture, large aperture, small aperture combined with the large aperture, and full array. The full and combined arrays performed the best for AFD under all noise conditions while the large aperture array had the poorest performance for both detectors. PMCC produced similar results as AFD under the lower noise conditions, but did not produce as dramatic an increase in detections using the full and combined arrays. Both automated detectors and the analysts produced a decrease in detections under the higher noise conditions. Comparing the detection probabilities with Estimated Receiver Operating Characteristic (EROC) curves we found that the smaller value of consistency for PMCC and the larger p-value for AFD had the highest detection probability. These parameters produced greater changes in detection probability than estimates of the false alarm rate. The detection probability was impacted the most by noise level, with low noise (average RMS amplitude of 1.7 mPa) having an average detection probability of ~40% and high noise (average RMS amplitude of 2.9 mPa) average detection probability of ~23%.« less

  1. CPROB: A COMPUTATIONAL TOOL FOR CONDUCTING CONDITIONAL PROBABILITY ANALYSIS

    EPA Science Inventory

    Conditional probability analysis measures the probability of observing one event given that another event has occurred. In an environmental context, conditional probability analysis helps assess the association between an environmental contaminant (i.e. the stressor) and the ec...

  2. BODY SENSING SYSTEM

    NASA Technical Reports Server (NTRS)

    Mah, Robert W. (Inventor)

    2005-01-01

    System and method for performing one or more relevant measurements at a target site in an animal body, using a probe. One or more of a group of selected internal measurements is performed at the target site, is optionally combined with one or more selected external measurements, and is optionally combined with one or more selected heuristic information items, in order to reduce to a relatively small number the probable medical conditions associated with the target site. One or more of the internal measurements is optionally used to navigate the probe to the target site. Neural net information processing is performed to provide a reduced set of probable medical conditions associated with the target site.

  3. The stochastic energy-Casimir method

    NASA Astrophysics Data System (ADS)

    Arnaudon, Alexis; Ganaba, Nader; Holm, Darryl D.

    2018-04-01

    In this paper, we extend the energy-Casimir stability method for deterministic Lie-Poisson Hamiltonian systems to provide sufficient conditions for stability in probability of stochastic dynamical systems with symmetries. We illustrate this theory with classical examples of coadjoint motion, including the rigid body, the heavy top, and the compressible Euler equation in two dimensions. The main result is that stable deterministic equilibria remain stable in probability up to a certain stopping time that depends on the amplitude of the noise for finite-dimensional systems and on the amplitude of the spatial derivative of the noise for infinite-dimensional systems. xml:lang="fr"

  4. Numerical optimization using flow equations.

    PubMed

    Punk, Matthias

    2014-12-01

    We develop a method for multidimensional optimization using flow equations. This method is based on homotopy continuation in combination with a maximum entropy approach. Extrema of the optimizing functional correspond to fixed points of the flow equation. While ideas based on Bayesian inference such as the maximum entropy method always depend on a prior probability, the additional step in our approach is to perform a continuous update of the prior during the homotopy flow. The prior probability thus enters the flow equation only as an initial condition. We demonstrate the applicability of this optimization method for two paradigmatic problems in theoretical condensed matter physics: numerical analytic continuation from imaginary to real frequencies and finding (variational) ground states of frustrated (quantum) Ising models with random or long-range antiferromagnetic interactions.

  5. Numerical optimization using flow equations

    NASA Astrophysics Data System (ADS)

    Punk, Matthias

    2014-12-01

    We develop a method for multidimensional optimization using flow equations. This method is based on homotopy continuation in combination with a maximum entropy approach. Extrema of the optimizing functional correspond to fixed points of the flow equation. While ideas based on Bayesian inference such as the maximum entropy method always depend on a prior probability, the additional step in our approach is to perform a continuous update of the prior during the homotopy flow. The prior probability thus enters the flow equation only as an initial condition. We demonstrate the applicability of this optimization method for two paradigmatic problems in theoretical condensed matter physics: numerical analytic continuation from imaginary to real frequencies and finding (variational) ground states of frustrated (quantum) Ising models with random or long-range antiferromagnetic interactions.

  6. Surveillance of industrial processes with correlated parameters

    DOEpatents

    White, Andrew M.; Gross, Kenny C.; Kubic, William L.; Wigeland, Roald A.

    1996-01-01

    A system and method for surveillance of an industrial process. The system and method includes a plurality of sensors monitoring industrial process parameters, devices to convert the sensed data to computer compatible information and a computer which executes computer software directed to analyzing the sensor data to discern statistically reliable alarm conditions. The computer software is executed to remove serial correlation information and then calculate Mahalanobis distribution data to carry out a probability ratio test to determine alarm conditions.

  7. Comparison of different statistical methods for estimation of extreme sea levels with wave set-up contribution

    NASA Astrophysics Data System (ADS)

    Kergadallan, Xavier; Bernardara, Pietro; Benoit, Michel; Andreewsky, Marc; Weiss, Jérôme

    2013-04-01

    Estimating the probability of occurrence of extreme sea levels is a central issue for the protection of the coast. Return periods of sea level with wave set-up contribution are estimated here in one site : Cherbourg in France in the English Channel. The methodology follows two steps : the first one is computation of joint probability of simultaneous wave height and still sea level, the second one is interpretation of that joint probabilities to assess a sea level for a given return period. Two different approaches were evaluated to compute joint probability of simultaneous wave height and still sea level : the first one is multivariate extreme values distributions of logistic type in which all components of the variables become large simultaneously, the second one is conditional approach for multivariate extreme values in which only one component of the variables have to be large. Two different methods were applied to estimate sea level with wave set-up contribution for a given return period : Monte-Carlo simulation in which estimation is more accurate but needs higher calculation time and classical ocean engineering design contours of type inverse-FORM in which the method is simpler and allows more complex estimation of wave setup part (wave propagation to the coast for example). We compare results from the two different approaches with the two different methods. To be able to use both Monte-Carlo simulation and design contours methods, wave setup is estimated with an simple empirical formula. We show advantages of the conditional approach compared to the multivariate extreme values approach when extreme sea-level occurs when either surge or wave height is large. We discuss the validity of the ocean engineering design contours method which is an alternative when computation of sea levels is too complex to use Monte-Carlo simulation method.

  8. Prevalence and co-occurrence of addictive behaviors among former alternative high school youth: A longitudinal follow-up study

    PubMed Central

    Sussman, Steve; Pokhrel, Pallav; Sun, Ping; Rohrbach, Louise A.; Spruijt-Metz, Donna

    2015-01-01

    Background and Aims Recent work has studied addictions using a matrix measure, which taps multiple addictions through single responses for each type. This is the first longitudinal study using a matrix measure. Methods We investigated the use of this approach among former alternative high school youth (average age = 19.8 years at baseline; longitudinal n = 538) at risk for addictions. Lifetime and last 30-day prevalence of one or more of 11 addictions reviewed in other work was the primary focus (i.e., cigarettes, alcohol, hard drugs, shopping, gambling, Internet, love, sex, eating, work, and exercise). These were examined at two time-points one year apart. Latent class and latent transition analyses (LCA and LTA) were conducted in Mplus. Results Prevalence rates were stable across the two time-points. As in the cross-sectional baseline analysis, the 2-class model (addiction class, non-addiction class) fit the data better at follow-up than models with more classes. Item-response or conditional probabilities for each addiction type did not differ between time-points. As a result, the LTA model utilized constrained the conditional probabilities to be equal across the two time-points. In the addiction class, larger conditional probabilities (i.e., 0.40−0.49) were found for love, sex, exercise, and work addictions; medium conditional probabilities (i.e., 0.17−0.27) were found for cigarette, alcohol, other drugs, eating, Internet and shopping addiction; and a small conditional probability (0.06) was found for gambling. Discussion and Conclusions Persons in an addiction class tend to remain in this addiction class over a one-year period. PMID:26551909

  9. The utility of Bayesian predictive probabilities for interim monitoring of clinical trials

    PubMed Central

    Connor, Jason T.; Ayers, Gregory D; Alvarez, JoAnn

    2014-01-01

    Background Bayesian predictive probabilities can be used for interim monitoring of clinical trials to estimate the probability of observing a statistically significant treatment effect if the trial were to continue to its predefined maximum sample size. Purpose We explore settings in which Bayesian predictive probabilities are advantageous for interim monitoring compared to Bayesian posterior probabilities, p-values, conditional power, or group sequential methods. Results For interim analyses that address prediction hypotheses, such as futility monitoring and efficacy monitoring with lagged outcomes, only predictive probabilities properly account for the amount of data remaining to be observed in a clinical trial and have the flexibility to incorporate additional information via auxiliary variables. Limitations Computational burdens limit the feasibility of predictive probabilities in many clinical trial settings. The specification of prior distributions brings additional challenges for regulatory approval. Conclusions The use of Bayesian predictive probabilities enables the choice of logical interim stopping rules that closely align with the clinical decision making process. PMID:24872363

  10. Optimal nonlinear filtering using the finite-volume method

    NASA Astrophysics Data System (ADS)

    Fox, Colin; Morrison, Malcolm E. K.; Norton, Richard A.; Molteno, Timothy C. A.

    2018-01-01

    Optimal sequential inference, or filtering, for the state of a deterministic dynamical system requires simulation of the Frobenius-Perron operator, that can be formulated as the solution of a continuity equation. For low-dimensional, smooth systems, the finite-volume numerical method provides a solution that conserves probability and gives estimates that converge to the optimal continuous-time values, while a Courant-Friedrichs-Lewy-type condition assures that intermediate discretized solutions remain positive density functions. This method is demonstrated in an example of nonlinear filtering for the state of a simple pendulum, with comparison to results using the unscented Kalman filter, and for a case where rank-deficient observations lead to multimodal probability distributions.

  11. Multiple Chronic Conditions and Labor Force Outcomes: A Population Study of U.S. Adults

    PubMed Central

    Ward, Brian W.

    2015-01-01

    Background Although 1-in-5 adults have multiple (≥2) chronic conditions, limited attention has been given to the association between multiple chronic conditions and employment. Methods Cross-sectional data (2011 National Health Interview Survey) and multivariate regression analyses were used to examine the association among multiple chronic conditions, employment, and labor force outcomes for U.S. adults aged 18–64 years, controlling for covariates. Results Among U.S. adults aged 18–64 years (unweighted n=25,458), having multiple chronic conditions reduced employment probability by 11%–29%. Some individual chronic conditions decreased employment probability. Among employed adults (unweighted n=16,096), having multiple chronic conditions increased the average number of work days missed due to injury/illness in the past year by 3–9 days. Conclusions Multiple chronic conditions are be a barrier to employment and increase the number of work days missed, placing affected individuals at a financial disadvantage. Researchers interested in examining consequences of multiple chronic conditions should give consideration to labor force outcomes. PMID:26103096

  12. Covariate-adjusted Spearman's rank correlation with probability-scale residuals.

    PubMed

    Liu, Qi; Li, Chun; Wanga, Valentine; Shepherd, Bryan E

    2018-06-01

    It is desirable to adjust Spearman's rank correlation for covariates, yet existing approaches have limitations. For example, the traditionally defined partial Spearman's correlation does not have a sensible population parameter, and the conditional Spearman's correlation defined with copulas cannot be easily generalized to discrete variables. We define population parameters for both partial and conditional Spearman's correlation through concordance-discordance probabilities. The definitions are natural extensions of Spearman's rank correlation in the presence of covariates and are general for any orderable random variables. We show that they can be neatly expressed using probability-scale residuals (PSRs). This connection allows us to derive simple estimators. Our partial estimator for Spearman's correlation between X and Y adjusted for Z is the correlation of PSRs from models of X on Z and of Y on Z, which is analogous to the partial Pearson's correlation derived as the correlation of observed-minus-expected residuals. Our conditional estimator is the conditional correlation of PSRs. We describe estimation and inference, and highlight the use of semiparametric cumulative probability models, which allow preservation of the rank-based nature of Spearman's correlation. We conduct simulations to evaluate the performance of our estimators and compare them with other popular measures of association, demonstrating their robustness and efficiency. We illustrate our method in two applications, a biomarker study and a large survey. © 2017, The International Biometric Society.

  13. Determination of Acoustic Cavitation Probabilities and Thresholds Using a Single Focusing Transducer to Induce and Detect Acoustic Cavitation Events: I. Method and Terminology.

    PubMed

    Haller, Julian; Wilkens, Volker; Shaw, Adam

    2018-02-01

    A method to determine acoustic cavitation probabilities in tissue-mimicking materials (TMMs) is described that uses a high-intensity focused ultrasound (HIFU) transducer for both inducing and detecting the acoustic cavitation events. The method was evaluated by studying acoustic cavitation probabilities in agar-based TMMs with and without scatterers and for different sonication modes like continuous wave, single pulses (microseconds to milliseconds) and repeated burst signals. Acoustic cavitation thresholds (defined here as the peak rarefactional in situ pressure at which the acoustic cavitation probability reaches 50%) at a frequency of 1.06 MHz were observed between 1.1 MPa (for 1 s of continuous wave sonication) and 4.6 MPa (for 1 s of a repeated burst signal with 25-cycle burst length and 10-ms burst period) in a 3% (by weight) agar phantom without scatterers. The method and its evaluation are described, and general terminology useful for standardizing the description of insonation conditions and comparing results is provided. In the accompanying second part, the presented method is used to systematically study the acoustic cavitation thresholds in the same material for a range of sonication modes. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. [Infant and child mortality in Latin America].

    PubMed

    Behm, H; Primante, D A

    1978-04-01

    High mortality rates persist in Latin America, and data collection is made very difficult because of the lack of reliable statistics. A study was initiated in 1976 to measure the probability of mortality from birth to 2 years of age in 12 Latin American countries. The Brass method was used and applied to population censuses. Probability of mortality is extremely heterogeneous and regularly very high, varying between a maximum of 202/1000 in Bolivia, to a minimum of 112/1000 in Uruguay. In comparison, the same probability is 21/1000 in the U.S., and 11/1000 in sweden. Mortality in rural areas is much higher than in urban ones, and varies according to the degree of education of the mother, children being born to mothers who had 10 years of formal education having the lowest risk of death. Children born to the indigenous population, largely illiterate and living in the poorest of conditions, have the highest probability of death, a probability reaching 67% of all deaths under 2 years. National health services in Latin America, although vastly improved and improving, still do not meet the needs of the population, especially rural, and structural and historical conditions hamper a wider application of existing medical knowledge.

  15. A comparison of frame synchronization methods. [Deep Space Network

    NASA Technical Reports Server (NTRS)

    Swanson, L.

    1982-01-01

    Different methods are considered for frame synchronization of a concatenated block code/Viterbi link. Synchronization after Viterbi decoding, synchronization before Viterbi decoding based on hard-quantized channel symbols are all compared. For each scheme, the probability under certain conditions of true detection of sync within four 10,000 bit frames is tabulated.

  16. An iterative kernel based method for fourth order nonlinear equation with nonlinear boundary condition

    NASA Astrophysics Data System (ADS)

    Azarnavid, Babak; Parand, Kourosh; Abbasbandy, Saeid

    2018-06-01

    This article discusses an iterative reproducing kernel method with respect to its effectiveness and capability of solving a fourth-order boundary value problem with nonlinear boundary conditions modeling beams on elastic foundations. Since there is no method of obtaining reproducing kernel which satisfies nonlinear boundary conditions, the standard reproducing kernel methods cannot be used directly to solve boundary value problems with nonlinear boundary conditions as there is no knowledge about the existence and uniqueness of the solution. The aim of this paper is, therefore, to construct an iterative method by the use of a combination of reproducing kernel Hilbert space method and a shooting-like technique to solve the mentioned problems. Error estimation for reproducing kernel Hilbert space methods for nonlinear boundary value problems have yet to be discussed in the literature. In this paper, we present error estimation for the reproducing kernel method to solve nonlinear boundary value problems probably for the first time. Some numerical results are given out to demonstrate the applicability of the method.

  17. SWAPDT: A method for Short-time Withering Assessment of Probability for Drought Tolerance in Camellia sinensis validated by targeted metabolomics.

    PubMed

    Nyarukowa, Christopher; Koech, Robert; Loots, Theodor; Apostolides, Zeno

    2016-07-01

    Climate change is causing droughts affecting crop production on a global scale. Classical breeding and selection strategies for drought-tolerant cultivars will help prevent crop losses. Plant breeders, for all crops, need a simple and reliable method to identify drought-tolerant cultivars, but such a method is missing. Plant metabolism is often disrupted by abiotic stress conditions. To survive drought, plants reconfigure their metabolic pathways. Studies have documented the importance of metabolic regulation, i.e. osmolyte accumulation such as polyols and sugars (mannitol, sorbitol); amino acids (proline) during drought. This study identified and quantified metabolites in drought tolerant and drought susceptible Camellia sinensis cultivars under wet and drought stress conditions. For analyses, GC-MS and LC-MS were employed for metabolomics analysis.%RWC results show how the two drought tolerant and two drought susceptible cultivars differed significantly (p≤0.05) from one another; the drought susceptible exhibited rapid water loss compared to the drought tolerant. There was a significant variation (p<0.05) in metabolite content (amino acid, sugars) between drought tolerant and drought susceptible tea cultivars after short-time withering conditions. These metabolite changes were similar to those seen in other plant species under drought conditions, thus validating this method. The Short-time Withering Assessment of Probability for Drought Tolerance (SWAPDT) method presented here provides an easy method to identify drought tolerant tea cultivars that will mitigate the effects of drought due to climate change on crop losses. Copyright © 2016. Published by Elsevier GmbH.

  18. Surveillance of industrial processes with correlated parameters

    DOEpatents

    White, A.M.; Gross, K.C.; Kubic, W.L.; Wigeland, R.A.

    1996-12-17

    A system and method for surveillance of an industrial process are disclosed. The system and method includes a plurality of sensors monitoring industrial process parameters, devices to convert the sensed data to computer compatible information and a computer which executes computer software directed to analyzing the sensor data to discern statistically reliable alarm conditions. The computer software is executed to remove serial correlation information and then calculate Mahalanobis distribution data to carry out a probability ratio test to determine alarm conditions. 10 figs.

  19. Optimum space shuttle launch times relative to natural environment

    NASA Technical Reports Server (NTRS)

    King, R. L.

    1977-01-01

    The probabilities of favorable and unfavorable weather conditions for launch and landing of the STS under different criteria were computed for every three hours on a yearly basis using 14 years of weather data. These temporal probability distributions were considered for three sets of weather criteria encompassing benign, moderate and severe weather conditions for both Kennedy Space Center and for Edwards Air Force Base. In addition, the conditional probabilities were computed for unfavorable weather conditions occurring after a delay which may or may not be due to weather conditions. Also for KSC, the probabilities of favorable landing conditions at various times after favorable launch conditions have prevailed. The probabilities were computed to indicate the significance of each weather element to the overall result.

  20. Damage evaluation by a guided wave-hidden Markov model based method

    NASA Astrophysics Data System (ADS)

    Mei, Hanfei; Yuan, Shenfang; Qiu, Lei; Zhang, Jinjin

    2016-02-01

    Guided wave based structural health monitoring has shown great potential in aerospace applications. However, one of the key challenges of practical engineering applications is the accurate interpretation of the guided wave signals under time-varying environmental and operational conditions. This paper presents a guided wave-hidden Markov model based method to improve the damage evaluation reliability of real aircraft structures under time-varying conditions. In the proposed approach, an HMM based unweighted moving average trend estimation method, which can capture the trend of damage propagation from the posterior probability obtained by HMM modeling is used to achieve a probabilistic evaluation of the structural damage. To validate the developed method, experiments are performed on a hole-edge crack specimen under fatigue loading condition and a real aircraft wing spar under changing structural boundary conditions. Experimental results show the advantage of the proposed method.

  1. Statistical approaches to the analysis of point count data: A little extra information can go a long way

    USGS Publications Warehouse

    Farnsworth, G.L.; Nichols, J.D.; Sauer, J.R.; Fancy, S.G.; Pollock, K.H.; Shriner, S.A.; Simons, T.R.; Ralph, C. John; Rich, Terrell D.

    2005-01-01

    Point counts are a standard sampling procedure for many bird species, but lingering concerns still exist about the quality of information produced from the method. It is well known that variation in observer ability and environmental conditions can influence the detection probability of birds in point counts, but many biologists have been reluctant to abandon point counts in favor of more intensive approaches to counting. However, over the past few years a variety of statistical and methodological developments have begun to provide practical ways of overcoming some of the problems with point counts. We describe some of these approaches, and show how they can be integrated into standard point count protocols to greatly enhance the quality of the information. Several tools now exist for estimation of detection probability of birds during counts, including distance sampling, double observer methods, time-depletion (removal) methods, and hybrid methods that combine these approaches. Many counts are conducted in habitats that make auditory detection of birds much more likely than visual detection. As a framework for understanding detection probability during such counts, we propose separating two components of the probability a bird is detected during a count into (1) the probability a bird vocalizes during the count and (2) the probability this vocalization is detected by an observer. In addition, we propose that some measure of the area sampled during a count is necessary for valid inferences about bird populations. This can be done by employing fixed-radius counts or more sophisticated distance-sampling models. We recommend any studies employing point counts be designed to estimate detection probability and to include a measure of the area sampled.

  2. Speech processing using conditional observable maximum likelihood continuity mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogden, John; Nix, David

    A computer implemented method enables the recognition of speech and speech characteristics. Parameters are initialized of first probability density functions that map between the symbols in the vocabulary of one or more sequences of speech codes that represent speech sounds and a continuity map. Parameters are also initialized of second probability density functions that map between the elements in the vocabulary of one or more desired sequences of speech transcription symbols and the continuity map. The parameters of the probability density functions are then trained to maximize the probabilities of the desired sequences of speech-transcription symbols. A new sequence ofmore » speech codes is then input to the continuity map having the trained first and second probability function parameters. A smooth path is identified on the continuity map that has the maximum probability for the new sequence of speech codes. The probability of each speech transcription symbol for each input speech code can then be output.« less

  3. HMM for hyperspectral spectrum representation and classification with endmember entropy vectors

    NASA Astrophysics Data System (ADS)

    Arabi, Samir Y. W.; Fernandes, David; Pizarro, Marco A.

    2015-10-01

    The Hyperspectral images due to its good spectral resolution are extensively used for classification, but its high number of bands requires a higher bandwidth in the transmission data, a higher data storage capability and a higher computational capability in processing systems. This work presents a new methodology for hyperspectral data classification that can work with a reduced number of spectral bands and achieve good results, comparable with processing methods that require all hyperspectral bands. The proposed method for hyperspectral spectra classification is based on the Hidden Markov Model (HMM) associated to each Endmember (EM) of a scene and the conditional probabilities of each EM belongs to each other EM. The EM conditional probability is transformed in EM vector entropy and those vectors are used as reference vectors for the classes in the scene. The conditional probability of a spectrum that will be classified is also transformed in a spectrum entropy vector, which is classified in a given class by the minimum ED (Euclidian Distance) among it and the EM entropy vectors. The methodology was tested with good results using AVIRIS spectra of a scene with 13 EM considering the full 209 bands and the reduced spectral bands of 128, 64 and 32. For the test area its show that can be used only 32 spectral bands instead of the original 209 bands, without significant loss in the classification process.

  4. An Alternative Version of Conditional Probabilities and Bayes' Rule: An Application of Probability Logic

    ERIC Educational Resources Information Center

    Satake, Eiki; Amato, Philip P.

    2008-01-01

    This paper presents an alternative version of formulas of conditional probabilities and Bayes' rule that demonstrate how the truth table of elementary mathematical logic applies to the derivations of the conditional probabilities of various complex, compound statements. This new approach is used to calculate the prior and posterior probabilities…

  5. Measurement error in earnings data: Using a mixture model approach to combine survey and register data.

    PubMed

    Meijer, Erik; Rohwedder, Susann; Wansbeek, Tom

    2012-01-01

    Survey data on earnings tend to contain measurement error. Administrative data are superior in principle, but they are worthless in case of a mismatch. We develop methods for prediction in mixture factor analysis models that combine both data sources to arrive at a single earnings figure. We apply the methods to a Swedish data set. Our results show that register earnings data perform poorly if there is a (small) probability of a mismatch. Survey earnings data are more reliable, despite their measurement error. Predictors that combine both and take conditional class probabilities into account outperform all other predictors.

  6. Radiation detection method and system using the sequential probability ratio test

    DOEpatents

    Nelson, Karl E [Livermore, CA; Valentine, John D [Redwood City, CA; Beauchamp, Brock R [San Ramon, CA

    2007-07-17

    A method and system using the Sequential Probability Ratio Test to enhance the detection of an elevated level of radiation, by determining whether a set of observations are consistent with a specified model within a given bounds of statistical significance. In particular, the SPRT is used in the present invention to maximize the range of detection, by providing processing mechanisms for estimating the dynamic background radiation, adjusting the models to reflect the amount of background knowledge at the current point in time, analyzing the current sample using the models to determine statistical significance, and determining when the sample has returned to the expected background conditions.

  7. Detection method of financial crisis in Indonesia using MSGARCH models based on banking condition indicators

    NASA Astrophysics Data System (ADS)

    Sugiyanto; Zukhronah, E.; Sari, S. P.

    2018-05-01

    Financial crisis has hit Indonesia for several times resulting the needs for an early detection system to minimize the impact. One of many methods that can be used to detect the crisis is to model the crisis indicators using combination of volatility and Markov switching models [5]. There are some indicators that can be used to detect financial crisis. Three of them are the difference between interest rate on deposit and lending, the real interest rate on deposit, and the difference between real BI rate and real Fed rate which can be referred as banking condition indicators. Volatility model used to overcome the conditional variance that change over time. Combination of volatility and Markov switching models used to detect condition change on the data. The smoothed probability from the combined models can be used to detect the crisis. This research resulted that the best combined volatility and Markov switching models for the three indicators are MS-GARCH(3,1,1) models with three states assumption. Crises in mid of 1997 until 1998 has successfully detected with a certain range of smoothed probability value for the three indicators.

  8. Experimental and statistical study on fracture boundary of non-irradiated Zircaloy-4 cladding tube under LOCA conditions

    NASA Astrophysics Data System (ADS)

    Narukawa, Takafumi; Yamaguchi, Akira; Jang, Sunghyon; Amaya, Masaki

    2018-02-01

    For estimating fracture probability of fuel cladding tube under loss-of-coolant accident conditions of light-water-reactors, laboratory-scale integral thermal shock tests were conducted on non-irradiated Zircaloy-4 cladding tube specimens. Then, the obtained binary data with respect to fracture or non-fracture of the cladding tube specimen were analyzed statistically. A method to obtain the fracture probability curve as a function of equivalent cladding reacted (ECR) was proposed using Bayesian inference for generalized linear models: probit, logit, and log-probit models. Then, model selection was performed in terms of physical characteristics and information criteria, a widely applicable information criterion and a widely applicable Bayesian information criterion. As a result, it was clarified that the log-probit model was the best among the three models to estimate the fracture probability in terms of the degree of prediction accuracy for both next data to be obtained and the true model. Using the log-probit model, it was shown that 20% ECR corresponded to a 5% probability level with a 95% confidence of fracture of the cladding tube specimens.

  9. Conditional maximum-entropy method for selecting prior distributions in Bayesian statistics

    NASA Astrophysics Data System (ADS)

    Abe, Sumiyoshi

    2014-11-01

    The conditional maximum-entropy method (abbreviated here as C-MaxEnt) is formulated for selecting prior probability distributions in Bayesian statistics for parameter estimation. This method is inspired by a statistical-mechanical approach to systems governed by dynamics with largely separated time scales and is based on three key concepts: conjugate pairs of variables, dimensionless integration measures with coarse-graining factors and partial maximization of the joint entropy. The method enables one to calculate a prior purely from a likelihood in a simple way. It is shown, in particular, how it not only yields Jeffreys's rules but also reveals new structures hidden behind them.

  10. Bayesian model averaging using particle filtering and Gaussian mixture modeling: Theory, concepts, and simulation experiments

    NASA Astrophysics Data System (ADS)

    Rings, Joerg; Vrugt, Jasper A.; Schoups, Gerrit; Huisman, Johan A.; Vereecken, Harry

    2012-05-01

    Bayesian model averaging (BMA) is a standard method for combining predictive distributions from different models. In recent years, this method has enjoyed widespread application and use in many fields of study to improve the spread-skill relationship of forecast ensembles. The BMA predictive probability density function (pdf) of any quantity of interest is a weighted average of pdfs centered around the individual (possibly bias-corrected) forecasts, where the weights are equal to posterior probabilities of the models generating the forecasts, and reflect the individual models skill over a training (calibration) period. The original BMA approach presented by Raftery et al. (2005) assumes that the conditional pdf of each individual model is adequately described with a rather standard Gaussian or Gamma statistical distribution, possibly with a heteroscedastic variance. Here we analyze the advantages of using BMA with a flexible representation of the conditional pdf. A joint particle filtering and Gaussian mixture modeling framework is presented to derive analytically, as closely and consistently as possible, the evolving forecast density (conditional pdf) of each constituent ensemble member. The median forecasts and evolving conditional pdfs of the constituent models are subsequently combined using BMA to derive one overall predictive distribution. This paper introduces the theory and concepts of this new ensemble postprocessing method, and demonstrates its usefulness and applicability by numerical simulation of the rainfall-runoff transformation using discharge data from three different catchments in the contiguous United States. The revised BMA method receives significantly lower-prediction errors than the original default BMA method (due to filtering) with predictive uncertainty intervals that are substantially smaller but still statistically coherent (due to the use of a time-variant conditional pdf).

  11. [Comments on the use of the "life-table method" in orthopedics].

    PubMed

    Hassenpflug, J; Hahne, H J; Hedderich, J

    1992-01-01

    In the description of long term results, e.g. of joint replacements, survivorship analysis is used increasingly in orthopaedic surgery. The survivorship analysis is more useful to describe the frequency of failure rather than global statements in percentage. The relative probability of failure for fixed intervals is drawn from the number of controlled patients and the frequency of failure. The complementary probabilities of success are linked in their temporal sequence thus representing the probability of survival at a fixed endpoint. Necessary condition for the use of this procedure is the exact definition of moment and manner of failure. It is described how to establish survivorship tables.

  12. Two conditions for equivalence of 0-norm solution and 1-norm solution in sparse representation.

    PubMed

    Li, Yuanqing; Amari, Shun-Ichi

    2010-07-01

    In sparse representation, two important sparse solutions, the 0-norm and 1-norm solutions, have been receiving much of attention. The 0-norm solution is the sparsest, however it is not easy to obtain. Although the 1-norm solution may not be the sparsest, it can be easily obtained by the linear programming method. In many cases, the 0-norm solution can be obtained through finding the 1-norm solution. Many discussions exist on the equivalence of the two sparse solutions. This paper analyzes two conditions for the equivalence of the two sparse solutions. The first condition is necessary and sufficient, however, difficult to verify. Although the second is necessary but is not sufficient, it is easy to verify. In this paper, we analyze the second condition within the stochastic framework and propose a variant. We then prove that the equivalence of the two sparse solutions holds with high probability under the variant of the second condition. Furthermore, in the limit case where the 0-norm solution is extremely sparse, the second condition is also a sufficient condition with probability 1.

  13. Most Probable Number Rapid Viability PCR Method to Detect Viable Spores of Bacillus anthracis in Swab Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letant, S E; Kane, S R; Murphy, G A

    2008-05-30

    This note presents a comparison of Most-Probable-Number Rapid Viability (MPN-RV) PCR and traditional culture methods for the quantification of Bacillus anthracis Sterne spores in macrofoam swabs generated by the Centers for Disease Control and Prevention (CDC) for a multi-center validation study aimed at testing environmental swab processing methods for recovery, detection, and quantification of viable B. anthracis spores from surfaces. Results show that spore numbers provided by the MPN RV-PCR method were in statistical agreement with the CDC conventional culture method for all three levels of spores tested (10{sup 4}, 10{sup 2}, and 10 spores) even in the presence ofmore » dirt. In addition to detecting low levels of spores in environmental conditions, the MPN RV-PCR method is specific, and compatible with automated high-throughput sample processing and analysis protocols.« less

  14. A comparison of numerical solutions of partial differential equations with probabilistic and possibilistic parameters for the quantification of uncertainty in subsurface solute transport.

    PubMed

    Zhang, Kejiang; Achari, Gopal; Li, Hua

    2009-11-03

    Traditionally, uncertainty in parameters are represented as probabilistic distributions and incorporated into groundwater flow and contaminant transport models. With the advent of newer uncertainty theories, it is now understood that stochastic methods cannot properly represent non random uncertainties. In the groundwater flow and contaminant transport equations, uncertainty in some parameters may be random, whereas those of others may be non random. The objective of this paper is to develop a fuzzy-stochastic partial differential equation (FSPDE) model to simulate conditions where both random and non random uncertainties are involved in groundwater flow and solute transport. Three potential solution techniques namely, (a) transforming a probability distribution to a possibility distribution (Method I) then a FSPDE becomes a fuzzy partial differential equation (FPDE), (b) transforming a possibility distribution to a probability distribution (Method II) and then a FSPDE becomes a stochastic partial differential equation (SPDE), and (c) the combination of Monte Carlo methods and FPDE solution techniques (Method III) are proposed and compared. The effects of these three methods on the predictive results are investigated by using two case studies. The results show that the predictions obtained from Method II is a specific case of that got from Method I. When an exact probabilistic result is needed, Method II is suggested. As the loss or gain of information during a probability-possibility (or vice versa) transformation cannot be quantified, their influences on the predictive results is not known. Thus, Method III should probably be preferred for risk assessments.

  15. Health Monitoring Survey of Bell 412EP Transmissions

    NASA Technical Reports Server (NTRS)

    Tucker, Brian E.; Dempsey, Paula J.

    2016-01-01

    Health and usage monitoring systems (HUMS) use vibration-based Condition Indicators (CI) to assess the health of helicopter powertrain components. A fault is detected when a CI exceeds its threshold value. The effectiveness of fault detection can be judged on the basis of assessing the condition of actual components from fleet aircraft. The Bell 412 HUMS-equipped helicopter is chosen for such an evaluation. A sample of 20 aircraft included 12 aircraft with confirmed transmission and gearbox faults (detected by CIs) and eight aircraft with no known faults. The associated CI data is classified into "healthy" and "faulted" populations based on actual condition and these populations are compared against their CI thresholds to quantify the probability of false alarm and the probability of missed detection. Receiver Operator Characteristic analysis is used to optimize thresholds. Based on the results of the analysis, shortcomings in the classification method are identified for slow-moving CI trends. Recommendations for improving classification using time-dependent receiver-operator characteristic methods are put forth. Finally, lessons learned regarding OEM-operator communication are presented.

  16. Detection, prevalence, and transmission of avian hematozoa in waterfowl at the Arctic/sub-Arctic interface: co-infections, viral interactions, and sources of variation.

    USGS Publications Warehouse

    Meixell, Brandt W.; Arnold, Todd W.; Lindberg, Mark S.; Smith, Matthew M.; Runstadler, Jonathan A.; Ramey, Andy M.

    2016-01-01

    Methods: We used molecular methods to screen blood samples and cloacal/oropharyngeal swabs collected from 1347 ducks of five species during May-August 2010, in interior Alaska, for the presence of hematozoa, Influenza A Virus (IAV), and IAV antibodies. Using models to account for imperfect detection of parasites, we estimated seasonal variation in prevalence of three parasite genera (Haemoproteus, Plasmodium, Leucocytozoon) and investigated how co-infection with parasites and viruses were related to the probability of infection. Results: We detected parasites from each hematozoan genus in adult and juvenile ducks of all species sampled. Seasonal patterns in detection and prevalence varied by parasite genus and species, age, and sex of duck hosts. The probabilities of infection for Haemoproteus and Leucocytozoon parasites were strongly positively correlated, but hematozoa infection was not correlated with IAV infection or serostatus. The probability of Haemoproteus infection was negatively related to body condition in juvenile ducks; relationships between Leucocytozoon infection and body condition varied among host species. Conclusions: We present prevalence estimates for Haemoproteus, Leucocytozoon, and Plasmodium infections in waterfowl at the interface of the sub-Arctic and Arctic and provide evidence for local transmission of all three parasite genera. Variation in prevalence and molecular detection of hematozoa parasites in wild ducks is influenced by seasonal timing and a number of host traits. A positive correlation in co-infection of Leucocytozoon and Haemoproteus suggests that infection probability by parasites in one or both genera is enhanced by infection with the other, or that encounter rates of hosts and genus-specific vectors are correlated. Using size-adjusted mass as an index of host condition, we did not find evidence for strong deleterious consequences of hematozoa infection in wild ducks.

  17. Shoot Development and Extension of Quercus serrata Saplings in Response to Insect Damage and Nutrient Conditions

    PubMed Central

    MIZUMACHI, ERI; MORI, AKIRA; OSAWA, NAOYA; AKIYAMA, REIKO; TOKUCHI, NAOKO

    2006-01-01

    • Background and Aims Plants have the ability to compensate for damage caused by herbivores. This is important to plant growth, because a plant cannot always avoid damage, even if it has developed defence mechanisms against herbivores. In previous work, we elucidated the herbivory-induced compensatory response of Quercus (at both the individual shoot and whole sapling levels) in both low- and high-nutrient conditions throughout one growing season. In this study, we determine how the compensatory growth of Quercus serrata saplings is achieved at different nutrient levels. • Methods Quercus serrata saplings were grown under controlled conditions. Length, number of leaves and percentage of leaf area lost on all extension units (EUs) were measured. • Key Results Both the probability of flushing and the length of subsequent EUs significantly increased with an increase in the length of the parent EU. The probability of flushing increased with an increase in leaf damage of the parent EU, but the length of subsequent EUs decreased. This indicates that EU growth is fundamentally regulated at the individual EU level. The probabilities of a second and third flush were significantly higher in plants in high-nutrient soil than those in low-nutrient soil. The subsequent EUs of damaged saplings were also significantly longer at high-nutrient conditions. • Conclusions An increase in the probability of flushes in response to herbivore damage is important for damaged saplings to produce new EUs; further, shortening the length of EUs helps to effectively reproduce foliage lost by herbivory. The probability of flushing also varied according to soil nutrient levels, suggesting that the compensatory growth of individual EUs in response to local damage levels is affected by the nutrients available to the whole sapling. PMID:16709576

  18. Behavioral economic insights into physician tobacco treatment decision-making.

    PubMed

    Leone, Frank T; Evers-Casey, Sarah; Graden, Sarah; Schnoll, Robert

    2015-03-01

    Physicians self-report high adherence rates for Ask and Advise behaviors of tobacco dependence treatment but are much less likely to engage in "next steps" consistent with sophisticated management of chronic illness. A variety of potential explanations have been offered, yet each lacks face validity in light of experience with other challenging medical conditions. Conduct a preliminary exploration of the behavioral economics of tobacco treatment decision-making in the face of uncertain outcomes, seeking evidence that behaviors may be explained within the framework of Prospect Theory. Four physician cohorts were polled regarding their impressions of the utility of tobacco use treatment and their estimations of "success" probabilities. Contingent valuation was estimated by asking respondents to make monetary tradeoffs relative to three common chronic conditions. Responses from all four cohorts showed a similar pattern of high utility of tobacco use treatment but low success probability when compared with the other chronic medical conditions. Following instructional methods aimed at controverting cognitive biases related to tobacco, this pattern was reversed, with success probabilities attaining higher valuation than for diabetes. Important presuppositions regarding the potential "success" of tobacco-related patient interactions are likely limiting physician engagement by favoring the most secure visit outcome despite the limited potential for health gains. Under these conditions, low engagement rates would be consistent with Prospect Theory predictions. Interventions aimed at counteracting the cognitive biases limiting estimations of success probabilities seem to effectively reverse this pattern and provide clues to improving the adoption of target clinical behaviors.

  19. The maximum entropy method of moments and Bayesian probability theory

    NASA Astrophysics Data System (ADS)

    Bretthorst, G. Larry

    2013-08-01

    The problem of density estimation occurs in many disciplines. For example, in MRI it is often necessary to classify the types of tissues in an image. To perform this classification one must first identify the characteristics of the tissues to be classified. These characteristics might be the intensity of a T1 weighted image and in MRI many other types of characteristic weightings (classifiers) may be generated. In a given tissue type there is no single intensity that characterizes the tissue, rather there is a distribution of intensities. Often this distributions can be characterized by a Gaussian, but just as often it is much more complicated. Either way, estimating the distribution of intensities is an inference problem. In the case of a Gaussian distribution, one must estimate the mean and standard deviation. However, in the Non-Gaussian case the shape of the density function itself must be inferred. Three common techniques for estimating density functions are binned histograms [1, 2], kernel density estimation [3, 4], and the maximum entropy method of moments [5, 6]. In the introduction, the maximum entropy method of moments will be reviewed. Some of its problems and conditions under which it fails will be discussed. Then in later sections, the functional form of the maximum entropy method of moments probability distribution will be incorporated into Bayesian probability theory. It will be shown that Bayesian probability theory solves all of the problems with the maximum entropy method of moments. One gets posterior probabilities for the Lagrange multipliers, and, finally, one can put error bars on the resulting estimated density function.

  20. The Probability Approach to English If-Conditional Sentences

    ERIC Educational Resources Information Center

    Wu, Mei

    2012-01-01

    Users of the Probability Approach choose the right one from four basic types of conditional sentences--factual, predictive, hypothetical and counterfactual conditionals, by judging how likely (i.e. the probability) the event in the result-clause will take place when the condition in the if-clause is met. Thirty-three students from the experimental…

  1. PROBABILITY SURVEYS , CONDITIONAL PROBABILITIES AND ECOLOGICAL RISK ASSESSMENT

    EPA Science Inventory

    We show that probability-based environmental resource monitoring programs, such as the U.S. Environmental Protection Agency's (U.S. EPA) Environmental Monitoring and Assessment Program, and conditional probability analysis can serve as a basis for estimating ecological risk over ...

  2. PROBABILITY SURVEYS, CONDITIONAL PROBABILITIES, AND ECOLOGICAL RISK ASSESSMENT

    EPA Science Inventory

    We show that probability-based environmental resource monitoring programs, such as U.S. Environmental Protection Agency's (U.S. EPA) Environmental Monitoring and Asscssment Program EMAP) can be analyzed with a conditional probability analysis (CPA) to conduct quantitative probabi...

  3. Local linear estimation of concordance probability with application to covariate effects models on association for bivariate failure-time data.

    PubMed

    Ding, Aidong Adam; Hsieh, Jin-Jian; Wang, Weijing

    2015-01-01

    Bivariate survival analysis has wide applications. In the presence of covariates, most literature focuses on studying their effects on the marginal distributions. However covariates can also affect the association between the two variables. In this article we consider the latter issue by proposing a nonstandard local linear estimator for the concordance probability as a function of covariates. Under the Clayton copula, the conditional concordance probability has a simple one-to-one correspondence with the copula parameter for different data structures including those subject to independent or dependent censoring and dependent truncation. The proposed method can be used to study how covariates affect the Clayton association parameter without specifying marginal regression models. Asymptotic properties of the proposed estimators are derived and their finite-sample performances are examined via simulations. Finally, for illustration, we apply the proposed method to analyze a bone marrow transplant data set.

  4. Digital simulation of an arbitrary stationary stochastic process by spectral representation.

    PubMed

    Yura, Harold T; Hanson, Steen G

    2011-04-01

    In this paper we present a straightforward, efficient, and computationally fast method for creating a large number of discrete samples with an arbitrary given probability density function and a specified spectral content. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In contrast to previous work, where the analyses were limited to auto regressive and or iterative techniques to obtain satisfactory results, we find that a single application of the inverse transform method yields satisfactory results for a wide class of arbitrary probability distributions. Although a single application of the inverse transform technique does not conserve the power spectra exactly, it yields highly accurate numerical results for a wide range of probability distributions and target power spectra that are sufficient for system simulation purposes and can thus be regarded as an accurate engineering approximation, which can be used for wide range of practical applications. A sufficiency condition is presented regarding the range of parameter values where a single application of the inverse transform method yields satisfactory agreement between the simulated and target power spectra, and a series of examples relevant for the optics community are presented and discussed. Outside this parameter range the agreement gracefully degrades but does not distort in shape. Although we demonstrate the method here focusing on stationary random processes, we see no reason why the method could not be extended to simulate non-stationary random processes. © 2011 Optical Society of America

  5. Probability Surveys, Conditional Probability, and Ecological Risk Assessment

    EPA Science Inventory

    We show that probability-based environmental resource monitoring programs, such as the U.S. Environmental Protection Agency’s (U.S. EPA) Environmental Monitoring and Assessment Program, and conditional probability analysis can serve as a basis for estimating ecological risk over ...

  6. Probability of detecting nematode infestations for quarantine sampling with imperfect extraction efficacy

    PubMed Central

    Chen, Peichen; Liu, Shih-Chia; Liu, Hung-I; Chen, Tse-Wei

    2011-01-01

    For quarantine sampling, it is of fundamental importance to determine the probability of finding an infestation when a specified number of units are inspected. In general, current sampling procedures assume 100% probability (perfect) of detecting a pest if it is present within a unit. Ideally, a nematode extraction method should remove all stages of all species with 100% efficiency regardless of season, temperature, or other environmental conditions; in practice however, no method approaches these criteria. In this study we determined the probability of detecting nematode infestations for quarantine sampling with imperfect extraction efficacy. Also, the required sample and the risk involved in detecting nematode infestations with imperfect extraction efficacy are presented. Moreover, we developed a computer program to calculate confidence levels for different scenarios with varying proportions of infestation and efficacy of detection. In addition, a case study, presenting the extraction efficacy of the modified Baermann's Funnel method on Aphelenchoides besseyi, is used to exemplify the use of our program to calculate the probability of detecting nematode infestations in quarantine sampling with imperfect extraction efficacy. The result has important implications for quarantine programs and highlights the need for a very large number of samples if perfect extraction efficacy is not achieved in such programs. We believe that the results of the study will be useful for the determination of realistic goals in the implementation of quarantine sampling. PMID:22791911

  7. Predicting missing links and identifying spurious links via likelihood analysis

    NASA Astrophysics Data System (ADS)

    Pan, Liming; Zhou, Tao; Lü, Linyuan; Hu, Chin-Kun

    2016-03-01

    Real network data is often incomplete and noisy, where link prediction algorithms and spurious link identification algorithms can be applied. Thus far, it lacks a general method to transform network organizing mechanisms to link prediction algorithms. Here we use an algorithmic framework where a network’s probability is calculated according to a predefined structural Hamiltonian that takes into account the network organizing principles, and a non-observed link is scored by the conditional probability of adding the link to the observed network. Extensive numerical simulations show that the proposed algorithm has remarkably higher accuracy than the state-of-the-art methods in uncovering missing links and identifying spurious links in many complex biological and social networks. Such method also finds applications in exploring the underlying network evolutionary mechanisms.

  8. Predicting missing links and identifying spurious links via likelihood analysis

    PubMed Central

    Pan, Liming; Zhou, Tao; Lü, Linyuan; Hu, Chin-Kun

    2016-01-01

    Real network data is often incomplete and noisy, where link prediction algorithms and spurious link identification algorithms can be applied. Thus far, it lacks a general method to transform network organizing mechanisms to link prediction algorithms. Here we use an algorithmic framework where a network’s probability is calculated according to a predefined structural Hamiltonian that takes into account the network organizing principles, and a non-observed link is scored by the conditional probability of adding the link to the observed network. Extensive numerical simulations show that the proposed algorithm has remarkably higher accuracy than the state-of-the-art methods in uncovering missing links and identifying spurious links in many complex biological and social networks. Such method also finds applications in exploring the underlying network evolutionary mechanisms. PMID:26961965

  9. Profit intensity and cases of non-compliance with the law of demand/supply

    NASA Astrophysics Data System (ADS)

    Makowski, Marcin; Piotrowski, Edward W.; Sładkowski, Jan; Syska, Jacek

    2017-05-01

    We consider properties of the measurement intensity ρ of a random variable for which the probability density function represented by the corresponding Wigner function attains negative values on a part of the domain. We consider a simple economic interpretation of this problem. This model is used to present the applicability of the method to the analysis of the negative probability on markets where there are anomalies in the law of supply and demand (e.g. Giffen's goods). It turns out that the new conditions to optimize the intensity ρ require a new strategy. We propose a strategy (so-called à rebours strategy) based on the fixed point method and explore its effectiveness.

  10. Incipient Fault Detection for Rolling Element Bearings under Varying Speed Conditions.

    PubMed

    Xue, Lang; Li, Naipeng; Lei, Yaguo; Li, Ningbo

    2017-06-20

    Varying speed conditions bring a huge challenge to incipient fault detection of rolling element bearings because both the change of speed and faults could lead to the amplitude fluctuation of vibration signals. Effective detection methods need to be developed to eliminate the influence of speed variation. This paper proposes an incipient fault detection method for bearings under varying speed conditions. Firstly, relative residual (RR) features are extracted, which are insensitive to the varying speed conditions and are able to reflect the degradation trend of bearings. Then, a health indicator named selected negative log-likelihood probability (SNLLP) is constructed to fuse a feature set including RR features and non-dimensional features. Finally, based on the constructed SNLLP health indicator, a novel alarm trigger mechanism is designed to detect the incipient fault. The proposed method is demonstrated using vibration signals from bearing tests and industrial wind turbines. The results verify the effectiveness of the proposed method for incipient fault detection of rolling element bearings under varying speed conditions.

  11. Incipient Fault Detection for Rolling Element Bearings under Varying Speed Conditions

    PubMed Central

    Xue, Lang; Li, Naipeng; Lei, Yaguo; Li, Ningbo

    2017-01-01

    Varying speed conditions bring a huge challenge to incipient fault detection of rolling element bearings because both the change of speed and faults could lead to the amplitude fluctuation of vibration signals. Effective detection methods need to be developed to eliminate the influence of speed variation. This paper proposes an incipient fault detection method for bearings under varying speed conditions. Firstly, relative residual (RR) features are extracted, which are insensitive to the varying speed conditions and are able to reflect the degradation trend of bearings. Then, a health indicator named selected negative log-likelihood probability (SNLLP) is constructed to fuse a feature set including RR features and non-dimensional features. Finally, based on the constructed SNLLP health indicator, a novel alarm trigger mechanism is designed to detect the incipient fault. The proposed method is demonstrated using vibration signals from bearing tests and industrial wind turbines. The results verify the effectiveness of the proposed method for incipient fault detection of rolling element bearings under varying speed conditions. PMID:28773035

  12. Monthly streamflow forecasting based on hidden Markov model and Gaussian Mixture Regression

    NASA Astrophysics Data System (ADS)

    Liu, Yongqi; Ye, Lei; Qin, Hui; Hong, Xiaofeng; Ye, Jiajun; Yin, Xingli

    2018-06-01

    Reliable streamflow forecasts can be highly valuable for water resources planning and management. In this study, we combined a hidden Markov model (HMM) and Gaussian Mixture Regression (GMR) for probabilistic monthly streamflow forecasting. The HMM is initialized using a kernelized K-medoids clustering method, and the Baum-Welch algorithm is then executed to learn the model parameters. GMR derives a conditional probability distribution for the predictand given covariate information, including the antecedent flow at a local station and two surrounding stations. The performance of HMM-GMR was verified based on the mean square error and continuous ranked probability score skill scores. The reliability of the forecasts was assessed by examining the uniformity of the probability integral transform values. The results show that HMM-GMR obtained reasonably high skill scores and the uncertainty spread was appropriate. Different HMM states were assumed to be different climate conditions, which would lead to different types of observed values. We demonstrated that the HMM-GMR approach can handle multimodal and heteroscedastic data.

  13. Modeling Women's Menstrual Cycles using PICI Gates in Bayesian Network.

    PubMed

    Zagorecki, Adam; Łupińska-Dubicka, Anna; Voortman, Mark; Druzdzel, Marek J

    2016-03-01

    A major difficulty in building Bayesian network (BN) models is the size of conditional probability tables, which grow exponentially in the number of parents. One way of dealing with this problem is through parametric conditional probability distributions that usually require only a number of parameters that is linear in the number of parents. In this paper, we introduce a new class of parametric models, the Probabilistic Independence of Causal Influences (PICI) models, that aim at lowering the number of parameters required to specify local probability distributions, but are still capable of efficiently modeling a variety of interactions. A subset of PICI models is decomposable and this leads to significantly faster inference as compared to models that cannot be decomposed. We present an application of the proposed method to learning dynamic BNs for modeling a woman's menstrual cycle. We show that PICI models are especially useful for parameter learning from small data sets and lead to higher parameter accuracy than when learning CPTs.

  14. Conditional Reliability and the Identification of Communities

    DTIC Science & Technology

    2009-11-09

    screening is needed to find the factors and interactions that may be relevant. This problem arises in numerous different settings : screening using D...related to the core communities than to each other. and 4. Develop a set of computational methods for conditional reliability. A report describing...resilience address the question: What is the probability that k nodes can communicate? The difference is that for k-terminal reliability, the k communicating

  15. A method of real-time fault diagnosis for power transformers based on vibration analysis

    NASA Astrophysics Data System (ADS)

    Hong, Kaixing; Huang, Hai; Zhou, Jianping; Shen, Yimin; Li, Yujie

    2015-11-01

    In this paper, a novel probability-based classification model is proposed for real-time fault detection of power transformers. First, the transformer vibration principle is introduced, and two effective feature extraction techniques are presented. Next, the details of the classification model based on support vector machine (SVM) are shown. The model also includes a binary decision tree (BDT) which divides transformers into different classes according to health state. The trained model produces posterior probabilities of membership to each predefined class for a tested vibration sample. During the experiments, the vibrations of transformers under different conditions are acquired, and the corresponding feature vectors are used to train the SVM classifiers. The effectiveness of this model is illustrated experimentally on typical in-service transformers. The consistency between the results of the proposed model and the actual condition of the test transformers indicates that the model can be used as a reliable method for transformer fault detection.

  16. A varying-coefficient method for analyzing longitudinal clinical trials data with nonignorable dropout

    PubMed Central

    Forster, Jeri E.; MaWhinney, Samantha; Ball, Erika L.; Fairclough, Diane

    2011-01-01

    Dropout is common in longitudinal clinical trials and when the probability of dropout depends on unobserved outcomes even after conditioning on available data, it is considered missing not at random and therefore nonignorable. To address this problem, mixture models can be used to account for the relationship between a longitudinal outcome and dropout. We propose a Natural Spline Varying-coefficient mixture model (NSV), which is a straightforward extension of the parametric Conditional Linear Model (CLM). We assume that the outcome follows a varying-coefficient model conditional on a continuous dropout distribution. Natural cubic B-splines are used to allow the regression coefficients to semiparametrically depend on dropout and inference is therefore more robust. Additionally, this method is computationally stable and relatively simple to implement. We conduct simulation studies to evaluate performance and compare methodologies in settings where the longitudinal trajectories are linear and dropout time is observed for all individuals. Performance is assessed under conditions where model assumptions are both met and violated. In addition, we compare the NSV to the CLM and a standard random-effects model using an HIV/AIDS clinical trial with probable nonignorable dropout. The simulation studies suggest that the NSV is an improvement over the CLM when dropout has a nonlinear dependence on the outcome. PMID:22101223

  17. Coherent nature of the radiation emitted in delayed luminescence of leaves

    PubMed

    Bajpai

    1999-06-07

    After exposure to light, a living system emits a photon signal of characteristic shape. The signal has a small decay region and a long tail region. The flux of photons in the decay region changes by 2 to 3 orders of magnitude, but remains almost constant in the tail region. The decaying part is attributed to delayed luminescence and the constant part to ultra-weak luminescence. Biophoton emission is the common name given to both kinds of luminescence, and photons emitted are called biophotons. The decay character of the biophoton signal is not exponential, which is suggestive of a coherent signal. We sought to establish the coherent nature by measuring the conditional probability of zero photon detection in a small interval Delta. Our measurements establish the coherent nature of biophotons emitted by different leaves at various temperatures in the range 15-50 degrees C. Our set up could measure the conditional probability for Delta

  18. Reliability modelling and analysis of a multi-state element based on a dynamic Bayesian network

    NASA Astrophysics Data System (ADS)

    Li, Zhiqiang; Xu, Tingxue; Gu, Junyuan; Dong, Qi; Fu, Linyu

    2018-04-01

    This paper presents a quantitative reliability modelling and analysis method for multi-state elements based on a combination of the Markov process and a dynamic Bayesian network (DBN), taking perfect repair, imperfect repair and condition-based maintenance (CBM) into consideration. The Markov models of elements without repair and under CBM are established, and an absorbing set is introduced to determine the reliability of the repairable element. According to the state-transition relations between the states determined by the Markov process, a DBN model is built. In addition, its parameters for series and parallel systems, namely, conditional probability tables, can be calculated by referring to the conditional degradation probabilities. Finally, the power of a control unit in a failure model is used as an example. A dynamic fault tree (DFT) is translated into a Bayesian network model, and subsequently extended to a DBN. The results show the state probabilities of an element and the system without repair, with perfect and imperfect repair, and under CBM, with an absorbing set plotted by differential equations and verified. Through referring forward, the reliability value of the control unit is determined in different kinds of modes. Finally, weak nodes are noted in the control unit.

  19. Collapse susceptibility mapping in karstified gypsum terrain (Sivas basin - Turkey) by conditional probability, logistic regression, artificial neural network models

    NASA Astrophysics Data System (ADS)

    Yilmaz, Isik; Keskin, Inan; Marschalko, Marian; Bednarik, Martin

    2010-05-01

    This study compares the GIS based collapse susceptibility mapping methods such as; conditional probability (CP), logistic regression (LR) and artificial neural networks (ANN) applied in gypsum rock masses in Sivas basin (Turkey). Digital Elevation Model (DEM) was first constructed using GIS software. Collapse-related factors, directly or indirectly related to the causes of collapse occurrence, such as distance from faults, slope angle and aspect, topographical elevation, distance from drainage, topographic wetness index- TWI, stream power index- SPI, Normalized Difference Vegetation Index (NDVI) by means of vegetation cover, distance from roads and settlements were used in the collapse susceptibility analyses. In the last stage of the analyses, collapse susceptibility maps were produced from CP, LR and ANN models, and they were then compared by means of their validations. Area Under Curve (AUC) values obtained from all three methodologies showed that the map obtained from ANN model looks like more accurate than the other models, and the results also showed that the artificial neural networks is a usefull tool in preparation of collapse susceptibility map and highly compatible with GIS operating features. Key words: Collapse; doline; susceptibility map; gypsum; GIS; conditional probability; logistic regression; artificial neural networks.

  20. Computing exact bundle compliance control charts via probability generating functions.

    PubMed

    Chen, Binchao; Matis, Timothy; Benneyan, James

    2016-06-01

    Compliance to evidenced-base practices, individually and in 'bundles', remains an important focus of healthcare quality improvement for many clinical conditions. The exact probability distribution of composite bundle compliance measures used to develop corresponding control charts and other statistical tests is based on a fairly large convolution whose direct calculation can be computationally prohibitive. Various series expansions and other approximation approaches have been proposed, each with computational and accuracy tradeoffs, especially in the tails. This same probability distribution also arises in other important healthcare applications, such as for risk-adjusted outcomes and bed demand prediction, with the same computational difficulties. As an alternative, we use probability generating functions to rapidly obtain exact results and illustrate the improved accuracy and detection over other methods. Numerical testing across a wide range of applications demonstrates the computational efficiency and accuracy of this approach.

  1. On the inequivalence of the CH and CHSH inequalities due to finite statistics

    NASA Astrophysics Data System (ADS)

    Renou, M. O.; Rosset, D.; Martin, A.; Gisin, N.

    2017-06-01

    Different variants of a Bell inequality, such as CHSH and CH, are known to be equivalent when evaluated on nonsignaling outcome probability distributions. However, in experimental setups, the outcome probability distributions are estimated using a finite number of samples. Therefore the nonsignaling conditions are only approximately satisfied and the robustness of the violation depends on the chosen inequality variant. We explain that phenomenon using the decomposition of the space of outcome probability distributions under the action of the symmetry group of the scenario, and propose a method to optimize the statistical robustness of a Bell inequality. In the process, we describe the finite group composed of relabeling of parties, measurement settings and outcomes, and identify correspondences between the irreducible representations of this group and properties of outcome probability distributions such as normalization, signaling or having uniform marginals.

  2. A Quantum Probability Model of Causal Reasoning

    PubMed Central

    Trueblood, Jennifer S.; Busemeyer, Jerome R.

    2012-01-01

    People can often outperform statistical methods and machine learning algorithms in situations that involve making inferences about the relationship between causes and effects. While people are remarkably good at causal reasoning in many situations, there are several instances where they deviate from expected responses. This paper examines three situations where judgments related to causal inference problems produce unexpected results and describes a quantum inference model based on the axiomatic principles of quantum probability theory that can explain these effects. Two of the three phenomena arise from the comparison of predictive judgments (i.e., the conditional probability of an effect given a cause) with diagnostic judgments (i.e., the conditional probability of a cause given an effect). The third phenomenon is a new finding examining order effects in predictive causal judgments. The quantum inference model uses the notion of incompatibility among different causes to account for all three phenomena. Psychologically, the model assumes that individuals adopt different points of view when thinking about different causes. The model provides good fits to the data and offers a coherent account for all three causal reasoning effects thus proving to be a viable new candidate for modeling human judgment. PMID:22593747

  3. Causal inference in survival analysis using pseudo-observations.

    PubMed

    Andersen, Per K; Syriopoulou, Elisavet; Parner, Erik T

    2017-07-30

    Causal inference for non-censored response variables, such as binary or quantitative outcomes, is often based on either (1) direct standardization ('G-formula') or (2) inverse probability of treatment assignment weights ('propensity score'). To do causal inference in survival analysis, one needs to address right-censoring, and often, special techniques are required for that purpose. We will show how censoring can be dealt with 'once and for all' by means of so-called pseudo-observations when doing causal inference in survival analysis. The pseudo-observations can be used as a replacement of the outcomes without censoring when applying 'standard' causal inference methods, such as (1) or (2) earlier. We study this idea for estimating the average causal effect of a binary treatment on the survival probability, the restricted mean lifetime, and the cumulative incidence in a competing risks situation. The methods will be illustrated in a small simulation study and via a study of patients with acute myeloid leukemia who received either myeloablative or non-myeloablative conditioning before allogeneic hematopoetic cell transplantation. We will estimate the average causal effect of the conditioning regime on outcomes such as the 3-year overall survival probability and the 3-year risk of chronic graft-versus-host disease. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Stochastic seismic inversion based on an improved local gradual deformation method

    NASA Astrophysics Data System (ADS)

    Yang, Xiuwei; Zhu, Peimin

    2017-12-01

    A new stochastic seismic inversion method based on the local gradual deformation method is proposed, which can incorporate seismic data, well data, geology and their spatial correlations into the inversion process. Geological information, such as sedimentary facies and structures, could provide significant a priori information to constrain an inversion and arrive at reasonable solutions. The local a priori conditional cumulative distributions at each node of model to be inverted are first established by indicator cokriging, which integrates well data as hard data and geological information as soft data. Probability field simulation is used to simulate different realizations consistent with the spatial correlations and local conditional cumulative distributions. The corresponding probability field is generated by the fast Fourier transform moving average method. Then, optimization is performed to match the seismic data via an improved local gradual deformation method. Two improved strategies are proposed to be suitable for seismic inversion. The first strategy is that we select and update local areas of bad fitting between synthetic seismic data and real seismic data. The second one is that we divide each seismic trace into several parts and obtain the optimal parameters for each part individually. The applications to a synthetic example and a real case study demonstrate that our approach can effectively find fine-scale acoustic impedance models and provide uncertainty estimations.

  5. New Concepts in the Evaluation of Biodegradation/Persistence of Chemical Substances Using a Microbial Inoculum

    PubMed Central

    Thouand, Gérald; Durand, Marie-José; Maul, Armand; Gancet, Christian; Blok, Han

    2011-01-01

    The European REACH Regulation (Registration, Evaluation, Authorization of CHemical substances) implies, among other things, the evaluation of the biodegradability of chemical substances produced by industry. A large set of test methods is available including detailed information on the appropriate conditions for testing. However, the inoculum used for these tests constitutes a “black box.” If biodegradation is achievable from the growth of a small group of specific microbial species with the substance as the only carbon source, the result of the test depends largely on the cell density of this group at “time zero.” If these species are relatively rare in an inoculum that is normally used, the likelihood of inoculating a test with sufficient specific cells becomes a matter of probability. Normally this probability increases with total cell density and with the diversity of species in the inoculum. Furthermore the history of the inoculum, e.g., a possible pre-exposure to the test substance or similar substances will have a significant influence on the probability. A high probability can be expected for substances that are widely used and regularly released into the environment, whereas a low probability can be expected for new xenobiotic substances that have not yet been released into the environment. Be that as it may, once the inoculum sample contains sufficient specific degraders, the performance of the biodegradation will follow a typical S shaped growth curve which depends on the specific growth rate under laboratory conditions, the so called F/M ratio (ratio between food and biomass) and the more or less toxic recalcitrant, but possible, metabolites. Normally regulators require the evaluation of the growth curve using a simple approach such as half-time. Unfortunately probability and biodegradation half-time are very often confused. As the half-time values reflect laboratory conditions which are quite different from environmental conditions (after a substance is released), these values should not be used to quantify and predict environmental behavior. The probability value could be of much greater benefit for predictions under realistic conditions. The main issue in the evaluation of probability is that the result is not based on a single inoculum from an environmental sample, but on a variety of samples. These samples can be representative of regional or local areas, climate regions, water types, and history, e.g., pristine or polluted. The above concept has provided us with a new approach, namely “Probabio.” With this approach, persistence is not only regarded as a simple intrinsic property of a substance, but also as the capability of various environmental samples to degrade a substance under realistic exposure conditions and F/M ratio. PMID:21863143

  6. Development of a methodology for probable maximum precipitation estimation over the American River watershed using the WRF model

    NASA Astrophysics Data System (ADS)

    Tan, Elcin

    A new physically-based methodology for probable maximum precipitation (PMP) estimation is developed over the American River Watershed (ARW) using the Weather Research and Forecast (WRF-ARW) model. A persistent moisture flux convergence pattern, called Pineapple Express, is analyzed for 42 historical extreme precipitation events, and it is found that Pineapple Express causes extreme precipitation over the basin of interest. An average correlation between moisture flux convergence and maximum precipitation is estimated as 0.71 for 42 events. The performance of the WRF model is verified for precipitation by means of calibration and independent validation of the model. The calibration procedure is performed only for the first ranked flood event 1997 case, whereas the WRF model is validated for 42 historical cases. Three nested model domains are set up with horizontal resolutions of 27 km, 9 km, and 3 km over the basin of interest. As a result of Chi-square goodness-of-fit tests, the hypothesis that "the WRF model can be used in the determination of PMP over the ARW for both areal average and point estimates" is accepted at the 5% level of significance. The sensitivities of model physics options on precipitation are determined using 28 microphysics, atmospheric boundary layer, and cumulus parameterization schemes combinations. It is concluded that the best triplet option is Thompson microphysics, Grell 3D ensemble cumulus, and YSU boundary layer (TGY), based on 42 historical cases, and this TGY triplet is used for all analyses of this research. Four techniques are proposed to evaluate physically possible maximum precipitation using the WRF: 1. Perturbations of atmospheric conditions; 2. Shift in atmospheric conditions; 3. Replacement of atmospheric conditions among historical events; and 4. Thermodynamically possible worst-case scenario creation. Moreover, climate change effect on precipitation is discussed by emphasizing temperature increase in order to determine the physically possible upper limits of precipitation due to climate change. The simulation results indicate that the meridional shift in atmospheric conditions is the optimum method to determine maximum precipitation in consideration of cost and efficiency. Finally, exceedance probability analyses of the model results of 42 historical extreme precipitation events demonstrate that the 72-hr basin averaged probable maximum precipitation is 21.72 inches for the exceedance probability of 0.5 percent. On the other hand, the current operational PMP estimation for the American River Watershed is 28.57 inches as published in the hydrometeorological report no. 59 and a previous PMP value was 31.48 inches as published in the hydrometeorological report no. 36. According to the exceedance probability analyses of this proposed method, the exceedance probabilities of these two estimations correspond to 0.036 percent and 0.011 percent, respectively.

  7. Methods to assess performance of models estimating risk of death in intensive care patients: a review.

    PubMed

    Cook, D A

    2006-04-01

    Models that estimate the probability of death of intensive care unit patients can be used to stratify patients according to the severity of their condition and to control for casemix and severity of illness. These models have been used for risk adjustment in quality monitoring, administration, management and research and as an aid to clinical decision making. Models such as the Mortality Prediction Model family, SAPS II, APACHE II, APACHE III and the organ system failure models provide estimates of the probability of in-hospital death of ICU patients. This review examines methods to assess the performance of these models. The key attributes of a model are discrimination (the accuracy of the ranking in order of probability of death) and calibration (the extent to which the model's prediction of probability of death reflects the true risk of death). These attributes should be assessed in existing models that predict the probability of patient mortality, and in any subsequent model that is developed for the purposes of estimating these probabilities. The literature contains a range of approaches for assessment which are reviewed and a survey of the methodologies used in studies of intensive care mortality models is presented. The systematic approach used by Standards for Reporting Diagnostic Accuracy provides a framework to incorporate these theoretical considerations of model assessment and recommendations are made for evaluation and presentation of the performance of models that estimate the probability of death of intensive care patients.

  8. Interference in the classical probabilistic model and its representation in complex Hilbert space

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei Yu.

    2005-10-01

    The notion of a context (complex of physical conditions, that is to say: specification of the measurement setup) is basic in this paper.We show that the main structures of quantum theory (interference of probabilities, Born's rule, complex probabilistic amplitudes, Hilbert state space, representation of observables by operators) are present already in a latent form in the classical Kolmogorov probability model. However, this model should be considered as a calculus of contextual probabilities. In our approach it is forbidden to consider abstract context independent probabilities: “first context and only then probability”. We construct the representation of the general contextual probabilistic dynamics in the complex Hilbert space. Thus dynamics of the wave function (in particular, Schrödinger's dynamics) can be considered as Hilbert space projections of a realistic dynamics in a “prespace”. The basic condition for representing of the prespace-dynamics is the law of statistical conservation of energy-conservation of probabilities. In general the Hilbert space projection of the “prespace” dynamics can be nonlinear and even irreversible (but it is always unitary). Methods developed in this paper can be applied not only to quantum mechanics, but also to classical statistical mechanics. The main quantum-like structures (e.g., interference of probabilities) might be found in some models of classical statistical mechanics. Quantum-like probabilistic behavior can be demonstrated by biological systems. In particular, it was recently found in some psychological experiments.

  9. Systematic review: Efficacy and safety of medical marijuana in selected neurologic disorders

    PubMed Central

    Koppel, Barbara S.; Brust, John C.M.; Fife, Terry; Bronstein, Jeff; Youssof, Sarah; Gronseth, Gary; Gloss, David

    2014-01-01

    Objective: To determine the efficacy of medical marijuana in several neurologic conditions. Methods: We performed a systematic review of medical marijuana (1948–November 2013) to address treatment of symptoms of multiple sclerosis (MS), epilepsy, and movement disorders. We graded the studies according to the American Academy of Neurology classification scheme for therapeutic articles. Results: Thirty-four studies met inclusion criteria; 8 were rated as Class I. Conclusions: The following were studied in patients with MS: (1) Spasticity: oral cannabis extract (OCE) is effective, and nabiximols and tetrahydrocannabinol (THC) are probably effective, for reducing patient-centered measures; it is possible both OCE and THC are effective for reducing both patient-centered and objective measures at 1 year. (2) Central pain or painful spasms (including spasticity-related pain, excluding neuropathic pain): OCE is effective; THC and nabiximols are probably effective. (3) Urinary dysfunction: nabiximols is probably effective for reducing bladder voids/day; THC and OCE are probably ineffective for reducing bladder complaints. (4) Tremor: THC and OCE are probably ineffective; nabiximols is possibly ineffective. (5) Other neurologic conditions: OCE is probably ineffective for treating levodopa-induced dyskinesias in patients with Parkinson disease. Oral cannabinoids are of unknown efficacy in non–chorea-related symptoms of Huntington disease, Tourette syndrome, cervical dystonia, and epilepsy. The risks and benefits of medical marijuana should be weighed carefully. Risk of serious adverse psychopathologic effects was nearly 1%. Comparative effectiveness of medical marijuana vs other therapies is unknown for these indications. PMID:24778283

  10. Stochastic optimal operation of reservoirs based on copula functions

    NASA Astrophysics Data System (ADS)

    Lei, Xiao-hui; Tan, Qiao-feng; Wang, Xu; Wang, Hao; Wen, Xin; Wang, Chao; Zhang, Jing-wen

    2018-02-01

    Stochastic dynamic programming (SDP) has been widely used to derive operating policies for reservoirs considering streamflow uncertainties. In SDP, there is a need to calculate the transition probability matrix more accurately and efficiently in order to improve the economic benefit of reservoir operation. In this study, we proposed a stochastic optimization model for hydropower generation reservoirs, in which 1) the transition probability matrix was calculated based on copula functions; and 2) the value function of the last period was calculated by stepwise iteration. Firstly, the marginal distribution of stochastic inflow in each period was built and the joint distributions of adjacent periods were obtained using the three members of the Archimedean copulas, based on which the conditional probability formula was derived. Then, the value in the last period was calculated by a simple recursive equation with the proposed stepwise iteration method and the value function was fitted with a linear regression model. These improvements were incorporated into the classic SDP and applied to the case study in Ertan reservoir, China. The results show that the transition probability matrix can be more easily and accurately obtained by the proposed copula function based method than conventional methods based on the observed or synthetic streamflow series, and the reservoir operation benefit can also be increased.

  11. Bivariate normal, conditional and rectangular probabilities: A computer program with applications

    NASA Technical Reports Server (NTRS)

    Swaroop, R.; Brownlow, J. D.; Ashwworth, G. R.; Winter, W. R.

    1980-01-01

    Some results for the bivariate normal distribution analysis are presented. Computer programs for conditional normal probabilities, marginal probabilities, as well as joint probabilities for rectangular regions are given: routines for computing fractile points and distribution functions are also presented. Some examples from a closed circuit television experiment are included.

  12. A combinatorial perspective of the protein inference problem.

    PubMed

    Yang, Chao; He, Zengyou; Yu, Weichuan

    2013-01-01

    In a shotgun proteomics experiment, proteins are the most biologically meaningful output. The success of proteomics studies depends on the ability to accurately and efficiently identify proteins. Many methods have been proposed to facilitate the identification of proteins from peptide identification results. However, the relationship between protein identification and peptide identification has not been thoroughly explained before. In this paper, we devote ourselves to a combinatorial perspective of the protein inference problem. We employ combinatorial mathematics to calculate the conditional protein probabilities (protein probability means the probability that a protein is correctly identified) under three assumptions, which lead to a lower bound, an upper bound, and an empirical estimation of protein probabilities, respectively. The combinatorial perspective enables us to obtain an analytical expression for protein inference. Our method achieves comparable results with ProteinProphet in a more efficient manner in experiments on two data sets of standard protein mixtures and two data sets of real samples. Based on our model, we study the impact of unique peptides and degenerate peptides (degenerate peptides are peptides shared by at least two proteins) on protein probabilities. Meanwhile, we also study the relationship between our model and ProteinProphet. We name our program ProteinInfer. Its Java source code, our supplementary document and experimental results are available at: >http://bioinformatics.ust.hk/proteininfer.

  13. The Effects of Phonotactic Probability and Neighborhood Density on Adults' Word Learning in Noisy Conditions.

    PubMed

    Han, Min Kyung; Storkel, Holly L; Lee, Jaehoon; Cox, Casey

    2016-11-01

    Noisy conditions make auditory processing difficult. This study explores whether noisy conditions influence the effects of phonotactic probability (the likelihood of occurrence of a sound sequence) and neighborhood density (phonological similarity among words) on adults' word learning. Fifty-eight adults learned nonwords varying in phonotactic probability and neighborhood density in either an unfavorable (0-dB signal-to-noise ratio [SNR]) or a favorable (+8-dB SNR) listening condition. Word learning was assessed using a picture naming task by scoring the proportion of phonemes named correctly. The unfavorable 0-dB SNR condition showed a significant interaction between phonotactic probability and neighborhood density in the absence of main effects. In particular, adults learned more words when phonotactic probability and neighborhood density were both low or both high. The +8-dB SNR condition did not show this interaction. These results are inconsistent with those from a prior adult word learning study conducted under quiet listening conditions that showed main effects of word characteristics. As the listening condition worsens, adult word learning benefits from a convergence of phonotactic probability and neighborhood density. Clinical implications are discussed for potential populations who experience difficulty with auditory perception or processing, making them more vulnerable to noise.

  14. Lamb wave-based damage quantification and probability of detection modeling for fatigue life assessment of riveted lap joint

    NASA Astrophysics Data System (ADS)

    He, Jingjing; Wang, Dengjiang; Zhang, Weifang

    2015-03-01

    This study presents an experimental and modeling study for damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic wafer-type sensors are employed to perform in-situ non-destructive testing during fatigue cyclical loading. A multi-feature integration method is developed to quantify the crack size using signal features of correlation coefficient, amplitude change, and phase change. In addition, probability of detection (POD) model is constructed to quantify the reliability of the developed sizing method. Using the developed crack size quantification method and the resulting POD curve, probabilistic fatigue life prediction can be performed to provide comprehensive information for decision-making. The effectiveness of the overall methodology is demonstrated and validated using several aircraft lap joint specimens from different manufactures and under different loading conditions.

  15. Pedigree data analysis with crossover interference.

    PubMed Central

    Browning, Sharon

    2003-01-01

    We propose a new method for calculating probabilities for pedigree genetic data that incorporates crossover interference using the chi-square models. Applications include relationship inference, genetic map construction, and linkage analysis. The method is based on importance sampling of unobserved inheritance patterns conditional on the observed genotype data and takes advantage of fast algorithms for no-interference models while using reweighting to allow for interference. We show that the method is effective for arbitrarily many markers with small pedigrees. PMID:12930760

  16. Optimum measurement for unambiguously discriminating two mixed states: General considerations and special cases

    NASA Astrophysics Data System (ADS)

    Herzog, Ulrike; Bergou, János A.

    2006-04-01

    Based on our previous publication [U. Herzog and J. A. Bergou, Phys. Rev. A 71, 050301(R)(2005)] we investigate the optimum measurement for the unambiguous discrimination of two mixed quantum states that occur with given prior probabilities. Unambiguous discrimination of nonorthogonal states is possible in a probabilistic way, at the expense of a nonzero probability of inconclusive results, where the measurement fails. Along with a discussion of the general problem, we give an example illustrating our method of solution. We also provide general inequalities for the minimum achievable failure probability and discuss in more detail the necessary conditions that must be fulfilled when its absolute lower bound, proportional to the fidelity of the states, can be reached.

  17. Sightability adjustment methods for aerial surveys of wildlife populations

    USGS Publications Warehouse

    Steinhorst, R.K.; Samuel, M.D.

    1989-01-01

    Aerial surveys are routinely conducted to estimate the abundance of wildlife species and the rate of population change. However, sightability of animal groups is acknowledged as a significant source of bias in these estimates. Recent research has focused on the development of sightability models to predict the probability of sighting groups under various conditions. Given such models, we show how sightability can be incorporated into the estimator of population size as a probability of response using standard results from sample surveys. We develop formulas for the cases where the sighting probability must be estimated. An example, using data from a helicopter survey of moose in Alberta (Jacobson, Alberta Oil Sands Research Project Report, 1976), is given to illustrate the technique.

  18. Low-flow characteristics of Virginia streams

    USGS Publications Warehouse

    Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute

    2011-01-01

    Low-flow annual non-exceedance probabilities (ANEP), called probability-percent chance (P-percent chance) flow estimates, regional regression equations, and transfer methods are provided describing the low-flow characteristics of Virginia streams. Statistical methods are used to evaluate streamflow data. Analysis of Virginia streamflow data collected from 1895 through 2007 is summarized. Methods are provided for estimating low-flow characteristics of gaged and ungaged streams. The 1-, 4-, 7-, and 30-day average streamgaging station low-flow characteristics for 290 long-term, continuous-record, streamgaging stations are determined, adjusted for instances of zero flow using a conditional probability adjustment method, and presented for non-exceedance probabilities of 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.02, 0.01, and 0.005. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression equations to estimate annual non-exceedance probabilities at gaged and ungaged sites and are summarized for 290 long-term, continuous-record streamgaging stations, 136 short-term, continuous-record streamgaging stations, and 613 partial-record streamgaging stations. Regional regression equations for six physiographic regions use basin characteristics to estimate 1-, 4-, 7-, and 30-day average low-flow annual non-exceedance probabilities at gaged and ungaged sites. Weighted low-flow values that combine computed streamgaging station low-flow characteristics and annual non-exceedance probabilities from regional regression equations provide improved low-flow estimates. Regression equations developed using the Maintenance of Variance with Extension (MOVE.1) method describe the line of organic correlation (LOC) with an appropriate index site for low-flow characteristics at 136 short-term, continuous-record streamgaging stations and 613 partial-record streamgaging stations. Monthly streamflow statistics computed on the individual daily mean streamflows of selected continuous-record streamgaging stations and curves describing flow-duration are presented. Text, figures, and lists are provided summarizing low-flow estimates, selected low-flow sites, delineated physiographic regions, basin characteristics, regression equations, error estimates, definitions, and data sources. This study supersedes previous studies of low flows in Virginia.

  19. A Deterministic Annealing Approach to Clustering AIRS Data

    NASA Technical Reports Server (NTRS)

    Guillaume, Alexandre; Braverman, Amy; Ruzmaikin, Alexander

    2012-01-01

    We will examine the validity of means and standard deviations as a basis for climate data products. We will explore the conditions under which these two simple statistics are inadequate summaries of the underlying empirical probability distributions by contrasting them with a nonparametric, method called Deterministic Annealing technique

  20. Inherent limitations of probabilistic models for protein-DNA binding specificity

    PubMed Central

    Ruan, Shuxiang

    2017-01-01

    The specificities of transcription factors are most commonly represented with probabilistic models. These models provide a probability for each base occurring at each position within the binding site and the positions are assumed to contribute independently. The model is simple and intuitive and is the basis for many motif discovery algorithms. However, the model also has inherent limitations that prevent it from accurately representing true binding probabilities, especially for the highest affinity sites under conditions of high protein concentration. The limitations are not due to the assumption of independence between positions but rather are caused by the non-linear relationship between binding affinity and binding probability and the fact that independent normalization at each position skews the site probabilities. Generally probabilistic models are reasonably good approximations, but new high-throughput methods allow for biophysical models with increased accuracy that should be used whenever possible. PMID:28686588

  1. Beginning Bayes

    ERIC Educational Resources Information Center

    Erickson, Tim

    2017-01-01

    Understanding a Bayesian perspective demands comfort with conditional probability and with probabilities that appear to change as we acquire additional information. This paper suggests a simple context in conditional probability that helps develop the understanding students would need for a successful introduction to Bayesian reasoning.

  2. Site-to-Source Finite Fault Distance Probability Distribution in Probabilistic Seismic Hazard and the Relationship Between Minimum Distances

    NASA Astrophysics Data System (ADS)

    Ortega, R.; Gutierrez, E.; Carciumaru, D. D.; Huesca-Perez, E.

    2017-12-01

    We present a method to compute the conditional and no-conditional probability density function (PDF) of the finite fault distance distribution (FFDD). Two cases are described: lines and areas. The case of lines has a simple analytical solution while, in the case of areas, the geometrical probability of a fault based on the strike, dip, and fault segment vertices is obtained using the projection of spheres in a piecewise rectangular surface. The cumulative distribution is computed by measuring the projection of a sphere of radius r in an effective area using an algorithm that estimates the area of a circle within a rectangle. In addition, we introduce the finite fault distance metrics. This distance is the distance where the maximum stress release occurs within the fault plane and generates a peak ground motion. Later, we can apply the appropriate ground motion prediction equations (GMPE) for PSHA. The conditional probability of distance given magnitude is also presented using different scaling laws. A simple model of constant distribution of the centroid at the geometrical mean is discussed, in this model hazard is reduced at the edges because the effective size is reduced. Nowadays there is a trend of using extended source distances in PSHA, however it is not possible to separate the fault geometry from the GMPE. With this new approach, it is possible to add fault rupture models separating geometrical and propagation effects.

  3. Tuberculosis in a South African prison – a transmission modelling analysis

    PubMed Central

    Johnstone-Robertson, Simon; Lawn, Stephen D; Welte, Alex; Bekker, Linda-Gail; Wood, Robin

    2015-01-01

    Background Prisons are recognised internationally as institutions with very high tuberculosis (TB) burdens where transmission is predominantly determined by contact between infectious and susceptible prisoners. A recent South African court case described the conditions under which prisoners awaiting trial were kept. With the use of these data, a mathematical model was developed to explore the interactions between incarceration conditions and TB control measures. Methods Cell dimensions, cell occupancy, lock-up time, TB incidence and treatment delays were derived from court evidence and judicial reports. Using the Wells-Riley equation and probability analyses of contact between prisoners, we estimated the current TB transmission probability within prison cells, and estimated transmission probabilities of improved levels of case finding in combination with implementation of national and international minimum standards for incarceration. Results Levels of overcrowding (230%) in communal cells and poor TB case finding result in annual TB transmission risks of 90% per annum. Implementing current national or international cell occupancy recommendations would reduce TB transmission probabilities by 30% and 50%, respectively. Improved passive case finding, modest ventilation increase or decreased lock-up time would minimally impact on transmission if introduced individually. However, active case finding together with implementation of minimum national and international standards of incarceration could reduce transmission by 50% and 94%, respectively. Conclusions Current conditions of detention for awaiting-trial prisoners are highly conducive for spread of drug-sensitive and drug-resistant TB. Combinations of simple well-established scientific control measures should be implemented urgently. PMID:22272961

  4. The Integrated Medical Model - Optimizing In-flight Space Medical Systems to Reduce Crew Health Risk and Mission Impacts

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Walton, Marlei; Minard, Charles; Saile, Lynn; Myers, Jerry; Butler, Doug; Lyengar, Sriram; Fitts, Mary; Johnson-Throop, Kathy

    2009-01-01

    The Integrated Medical Model (IMM) is a decision support tool used by medical system planners and designers as they prepare for exploration planning activities of the Constellation program (CxP). IMM provides an evidence-based approach to help optimize the allocation of in-flight medical resources for a specified level of risk within spacecraft operational constraints. Eighty medical conditions and associated resources are represented in IMM. Nine conditions are due to Space Adaptation Syndrome. The IMM helps answer fundamental medical mission planning questions such as What medical conditions can be expected? What type and quantity of medical resources are most likely to be used?", and "What is the probability of crew death or evacuation due to medical events?" For a specified mission and crew profile, the IMM effectively characterizes the sequence of events that could potentially occur should a medical condition happen. The mathematical relationships among mission and crew attributes, medical conditions and incidence data, in-flight medical resources, potential clinical and crew health end states are established to generate end state probabilities. A Monte Carlo computational method is used to determine the probable outcomes and requires up to 25,000 mission trials to reach convergence. For each mission trial, the pharmaceuticals and supplies required to diagnose and treat prevalent medical conditions are tracked and decremented. The uncertainty of patient response to treatment is bounded via a best-case, worst-case, untreated case algorithm. A Crew Health Index (CHI) metric, developed to account for functional impairment due to a medical condition, provides a quantified measure of risk and enables risk comparisons across mission scenarios. The use of historical in-flight medical data, terrestrial surrogate data as appropriate, and space medicine subject matter expertise has enabled the development of a probabilistic, stochastic decision support tool capable of optimizing in-flight medical systems based on crew and mission parameters. This presentation will illustrate how to apply quantitative risk assessment methods to optimize the mass and volume of space-based medical systems for a space flight mission given the level of crew health and mission risk.

  5. Estimated Accuracy of Three Common Trajectory Statistical Methods

    NASA Technical Reports Server (NTRS)

    Kabashnikov, Vitaliy P.; Chaikovsky, Anatoli P.; Kucsera, Tom L.; Metelskaya, Natalia S.

    2011-01-01

    Three well-known trajectory statistical methods (TSMs), namely concentration field (CF), concentration weighted trajectory (CWT), and potential source contribution function (PSCF) methods were tested using known sources and artificially generated data sets to determine the ability of TSMs to reproduce spatial distribution of the sources. In the works by other authors, the accuracy of the trajectory statistical methods was estimated for particular species and at specified receptor locations. We have obtained a more general statistical estimation of the accuracy of source reconstruction and have found optimum conditions to reconstruct source distributions of atmospheric trace substances. Only virtual pollutants of the primary type were considered. In real world experiments, TSMs are intended for application to a priori unknown sources. Therefore, the accuracy of TSMs has to be tested with all possible spatial distributions of sources. An ensemble of geographical distributions of virtual sources was generated. Spearman s rank order correlation coefficient between spatial distributions of the known virtual and the reconstructed sources was taken to be a quantitative measure of the accuracy. Statistical estimates of the mean correlation coefficient and a range of the most probable values of correlation coefficients were obtained. All the TSMs that were considered here showed similar close results. The maximum of the ratio of the mean correlation to the width of the correlation interval containing the most probable correlation values determines the optimum conditions for reconstruction. An optimal geographical domain roughly coincides with the area supplying most of the substance to the receptor. The optimal domain s size is dependent on the substance decay time. Under optimum reconstruction conditions, the mean correlation coefficients can reach 0.70 0.75. The boundaries of the interval with the most probable correlation values are 0.6 0.9 for the decay time of 240 h and 0.5 0.95 for the decay time of 12 h. The best results of source reconstruction can be expected for the trace substances with a decay time on the order of several days. Although the methods considered in this paper do not guarantee high accuracy they are computationally simple and fast. Using the TSMs in optimum conditions and taking into account the range of uncertainties, one can obtain a first hint on potential source areas.

  6. Know the risk, take the win: how executive functions and probability processing influence advantageous decision making under risk conditions.

    PubMed

    Brand, Matthias; Schiebener, Johannes; Pertl, Marie-Theres; Delazer, Margarete

    2014-01-01

    Recent models on decision making under risk conditions have suggested that numerical abilities are important ingredients of advantageous decision-making performance, but empirical evidence is still limited. The results of our first study show that logical reasoning and basic mental calculation capacities predict ratio processing and that ratio processing predicts decision making under risk. In the second study, logical reasoning together with executive functions predicted probability processing (numeracy and probability knowledge), and probability processing predicted decision making under risk. These findings suggest that increasing an individual's understanding of ratios and probabilities should lead to more advantageous decisions under risk conditions.

  7. Flood Risk and Asset Management

    DTIC Science & Technology

    2012-09-01

    use by third parties of results or methods presented in this report. The Company also stresses that various sections of this report rely on data...inundation probability  Levee contribution to risk The methods used in FRE have been applied to establish the National Flood Risk in England and...be noted that when undertaking high level probabilistic risk assessments in the UK, if a defence’s condition is unknown, grade 3 is applied with

  8. Sampling--how big a sample?

    PubMed

    Aitken, C G

    1999-07-01

    It is thought that, in a consignment of discrete units, a certain proportion of the units contain illegal material. A sample of the consignment is to be inspected. Various methods for the determination of the sample size are compared. The consignment will be considered as a random sample from some super-population of units, a certain proportion of which contain drugs. For large consignments, a probability distribution, known as the beta distribution, for the proportion of the consignment which contains illegal material is obtained. This distribution is based on prior beliefs about the proportion. Under certain specific conditions the beta distribution gives the same numerical results as an approach based on the binomial distribution. The binomial distribution provides a probability for the number of units in a sample which contain illegal material, conditional on knowing the proportion of the consignment which contains illegal material. This is in contrast to the beta distribution which provides probabilities for the proportion of a consignment which contains illegal material, conditional on knowing the number of units in the sample which contain illegal material. The interpretation when the beta distribution is used is much more intuitively satisfactory. It is also much more flexible in its ability to cater for prior beliefs which may vary given the different circumstances of different crimes. For small consignments, a distribution, known as the beta-binomial distribution, for the number of units in the consignment which are found to contain illegal material, is obtained, based on prior beliefs about the number of units in the consignment which are thought to contain illegal material. As with the beta and binomial distributions for large samples, it is shown that, in certain specific conditions, the beta-binomial and hypergeometric distributions give the same numerical results. However, the beta-binomial distribution, as with the beta distribution, has a more intuitively satisfactory interpretation and greater flexibility. The beta and the beta-binomial distributions provide methods for the determination of the minimum sample size to be taken from a consignment in order to satisfy a certain criterion. The criterion requires the specification of a proportion and a probability.

  9. Evaluating species richness: biased ecological inference results from spatial heterogeneity in species detection probabilities

    USGS Publications Warehouse

    McNew, Lance B.; Handel, Colleen M.

    2015-01-01

    Accurate estimates of species richness are necessary to test predictions of ecological theory and evaluate biodiversity for conservation purposes. However, species richness is difficult to measure in the field because some species will almost always be overlooked due to their cryptic nature or the observer's failure to perceive their cues. Common measures of species richness that assume consistent observability across species are inviting because they may require only single counts of species at survey sites. Single-visit estimation methods ignore spatial and temporal variation in species detection probabilities related to survey or site conditions that may confound estimates of species richness. We used simulated and empirical data to evaluate the bias and precision of raw species counts, the limiting forms of jackknife and Chao estimators, and multi-species occupancy models when estimating species richness to evaluate whether the choice of estimator can affect inferences about the relationships between environmental conditions and community size under variable detection processes. Four simulated scenarios with realistic and variable detection processes were considered. Results of simulations indicated that (1) raw species counts were always biased low, (2) single-visit jackknife and Chao estimators were significantly biased regardless of detection process, (3) multispecies occupancy models were more precise and generally less biased than the jackknife and Chao estimators, and (4) spatial heterogeneity resulting from the effects of a site covariate on species detection probabilities had significant impacts on the inferred relationships between species richness and a spatially explicit environmental condition. For a real dataset of bird observations in northwestern Alaska, the four estimation methods produced different estimates of local species richness, which severely affected inferences about the effects of shrubs on local avian richness. Overall, our results indicate that neglecting the effects of site covariates on species detection probabilities may lead to significant bias in estimation of species richness, as well as the inferred relationships between community size and environmental covariates.

  10. Detection of sea otters in boat-based surveys of Prince William Sound, Alaska

    USGS Publications Warehouse

    Udevitz, Mark S.; Bodkin, James L.; Costa, Daniel P.

    1995-01-01

    Boat-based surveys have been commonly used to monitor sea otter populations, but there has been little quantitative work to evaluate detection biases that may affect these surveys. We used ground-based observers to investigate sea otter detection probabilities in a boat-based survey of Prince William Sound, Alaska. We estimated that 30% of the otters present on surveyed transects were not detected by boat crews. Approximately half (53%) of the undetected otters were missed because the otters left the transects, apparently in response to the approaching boat. Unbiased estimates of detection probabilities will be required for obtaining unbiased population estimates from boat-based surveys of sea otters. Therefore, boat-based surveys should include methods to estimate sea otter detection probabilities under the conditions specific to each survey. Unbiased estimation of detection probabilities with ground-based observers requires either that the ground crews detect all of the otters in observed subunits, or that there are no errors in determining which crews saw each detected otter. Ground-based observer methods may be appropriate in areas where nearly all of the sea otter habitat is potentially visible from ground-based vantage points.

  11. Improving Bedload Transport Predictions by Incorporating Hysteresis

    NASA Astrophysics Data System (ADS)

    Crowe Curran, J.; Gaeuman, D.

    2015-12-01

    The importance of unsteady flow on sediment transport rates has long been recognized. However, the majority of sediment transport models were developed under steady flow conditions that did not account for changing bed morphologies and sediment transport during flood events. More recent research has used laboratory data and field data to quantify the influence of hysteresis on bedload transport and adjust transport models. In this research, these new methods are combined to improve further the accuracy of bedload transport rate quantification and prediction. The first approach defined reference shear stresses for hydrograph rising and falling limbs, and used these values to predict total and fractional transport rates during a hydrograph. From this research, a parameter for improving transport predictions during unsteady flows was developed. The second approach applied a maximum likelihood procedure to fit a bedload rating curve to measurements from a number of different coarse bed rivers. Parameters defining the rating curve were optimized for values that maximized the conditional probability of producing the measured bedload transport rate. Bedload sample magnitude was fit to a gamma distribution, and the probability of collecting N particles in a sampler during a given time step was described with a Poisson probability density function. Both approaches improved estimates of total transport during large flow events when compared to existing methods and transport models. Recognizing and accounting for the changes in transport parameters over time frames on the order of a flood or flood sequence influences the choice of method for parameter calculation in sediment transport calculations. Those methods that more tightly link the changing flow rate and bed mobility have the potential to improve bedload transport rates.

  12. Problems in radiation transfer in astrophysics: An escape probability treatment of line overlap and a model of masers around VX Sgr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockett, P.B.

    1989-01-01

    The escape probability formalism is used in this dissertation to treat two problems in astrophysical radiative transfer. The first problem concerns line overlap, which occurs when two or more spectral lines lie close enough together that there is a significant probability that a photon emitted in one of the lines can be absorbed in another. The second problem involves creating a detailed model of the masers around the supergiant star, VX Sgr. The author has developed an escape probability procedure that accounts for the effects of line overlap by integrating the amount of absorption in each of the overlapping lines.more » This method was used to test the accuracy of a simpler escape probability formalism developed by Elitzur and Netzer that utilized rectangular line profiles. Good agreement between the two methods was found for a wide range of physical conditions. The more accurate method was also used to examine the effects of line overlap of the far infrared lines of the OH molecule. This overlap did have important effects on the level populations and could cause maser emission. He has also developed a detailed model of the OH 1612 and water masers around VX Sgr. He found that the masers can be adequately explained using reasonable estimates for the physical parameters. He also was able to provide a tighter constraint on the highly uncertain mass loss rate from the star. He had less success modeling the SiO masers. His explanation will require a more exact method of treating the many levels involved and also a more accurate knowledge of the relevant physical input parameters.« less

  13. Problems in radiative transfer in astrophysics: An escape probability treatment of line overlap and a model of the masers around VX Sgr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockett, P.B.

    1989-01-01

    The escape probability formalism is used to treat two problems in astrophysical radiative transfer. The first problem concerns line overlap, which occurs when two or more spectral lines lie close enough together that there is a significant probability that a photon emitted in one of the lines can be absorbed in another. The second problem involved creating a detailed model of the masers around the supergiant star, VX Sgr. An escape probability procedure was developed that accounts for the effects of line overlap by integrating the amount of absorption in each of the overlapping lines. This method was used tomore » test the accuracy of a simpler escape probability formalism developed by Elitzur and Netzer that utilized rectangular line profiles. Good agreement between the two methods was found for a wide range of physical conditions. The more accurate method was also used to examine the effects of line overlap of the far infrared lines of the OH molecule. This overlap did have important effects on the level populations and could cause maser emission. A detailed model of the OH 1612 and water masers around VX Sgr were also developed. The masers can be adequately explained using reasonable estimates for the physical parameters. It is possible to provide a tighter constraint on the highly uncertain mass loss rate from the star. Modeling the SiO masers was less successful. Their explanation will require a more exact method of treating the many levels involved and also a more accurate knowledge of the relevant physical input parameters.« less

  14. Detection of image structures using the Fisher information and the Rao metric.

    PubMed

    Maybank, Stephen J

    2004-12-01

    In many detection problems, the structures to be detected are parameterized by the points of a parameter space. If the conditional probability density function for the measurements is known, then detection can be achieved by sampling the parameter space at a finite number of points and checking each point to see if the corresponding structure is supported by the data. The number of samples and the distances between neighboring samples are calculated using the Rao metric on the parameter space. The Rao metric is obtained from the Fisher information which is, in turn, obtained from the conditional probability density function. An upper bound is obtained for the probability of a false detection. The calculations are simplified in the low noise case by making an asymptotic approximation to the Fisher information. An application to line detection is described. Expressions are obtained for the asymptotic approximation to the Fisher information, the volume of the parameter space, and the number of samples. The time complexity for line detection is estimated. An experimental comparison is made with a Hough transform-based method for detecting lines.

  15. Maximum entropy approach to statistical inference for an ocean acoustic waveguide.

    PubMed

    Knobles, D P; Sagers, J D; Koch, R A

    2012-02-01

    A conditional probability distribution suitable for estimating the statistical properties of ocean seabed parameter values inferred from acoustic measurements is derived from a maximum entropy principle. The specification of the expectation value for an error function constrains the maximization of an entropy functional. This constraint determines the sensitivity factor (β) to the error function of the resulting probability distribution, which is a canonical form that provides a conservative estimate of the uncertainty of the parameter values. From the conditional distribution, marginal distributions for individual parameters can be determined from integration over the other parameters. The approach is an alternative to obtaining the posterior probability distribution without an intermediary determination of the likelihood function followed by an application of Bayes' rule. In this paper the expectation value that specifies the constraint is determined from the values of the error function for the model solutions obtained from a sparse number of data samples. The method is applied to ocean acoustic measurements taken on the New Jersey continental shelf. The marginal probability distribution for the values of the sound speed ratio at the surface of the seabed and the source levels of a towed source are examined for different geoacoustic model representations. © 2012 Acoustical Society of America

  16. Reliability modelling and analysis of a multi-state element based on a dynamic Bayesian network

    PubMed Central

    Xu, Tingxue; Gu, Junyuan; Dong, Qi; Fu, Linyu

    2018-01-01

    This paper presents a quantitative reliability modelling and analysis method for multi-state elements based on a combination of the Markov process and a dynamic Bayesian network (DBN), taking perfect repair, imperfect repair and condition-based maintenance (CBM) into consideration. The Markov models of elements without repair and under CBM are established, and an absorbing set is introduced to determine the reliability of the repairable element. According to the state-transition relations between the states determined by the Markov process, a DBN model is built. In addition, its parameters for series and parallel systems, namely, conditional probability tables, can be calculated by referring to the conditional degradation probabilities. Finally, the power of a control unit in a failure model is used as an example. A dynamic fault tree (DFT) is translated into a Bayesian network model, and subsequently extended to a DBN. The results show the state probabilities of an element and the system without repair, with perfect and imperfect repair, and under CBM, with an absorbing set plotted by differential equations and verified. Through referring forward, the reliability value of the control unit is determined in different kinds of modes. Finally, weak nodes are noted in the control unit. PMID:29765629

  17. Crash probability estimation via quantifying driver hazard perception.

    PubMed

    Li, Yang; Zheng, Yang; Wang, Jianqiang; Kodaka, Kenji; Li, Keqiang

    2018-07-01

    Crash probability estimation is an important method to predict the potential reduction of crash probability contributed by forward collision avoidance technologies (FCATs). In this study, we propose a practical approach to estimate crash probability, which combines a field operational test and numerical simulations of a typical rear-end crash model. To consider driver hazard perception characteristics, we define a novel hazard perception measure, called as driver risk response time, by considering both time-to-collision (TTC) and driver braking response to impending collision risk in a near-crash scenario. Also, we establish a driving database under mixed Chinese traffic conditions based on a CMBS (Collision Mitigation Braking Systems)-equipped vehicle. Applying the crash probability estimation in this database, we estimate the potential decrease in crash probability owing to use of CMBS. A comparison of the results with CMBS on and off shows a 13.7% reduction of crash probability in a typical rear-end near-crash scenario with a one-second delay of driver's braking response. These results indicate that CMBS is positive in collision prevention, especially in the case of inattentive drivers or ole drivers. The proposed crash probability estimation offers a practical way for evaluating the safety benefits in the design and testing of FCATs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Negative emotion enhances mnemonic precision and subjective feelings of remembering in visual long-term memory.

    PubMed

    Xie, Weizhen; Zhang, Weiwei

    2017-09-01

    Negative emotion sometimes enhances memory (higher accuracy and/or vividness, e.g., flashbulb memories). The present study investigates whether it is the qualitative (precision) or quantitative (the probability of successful retrieval) aspect of memory that drives these effects. In a visual long-term memory task, observers memorized colors (Experiment 1a) or orientations (Experiment 1b) of sequentially presented everyday objects under negative, neutral, or positive emotions induced with International Affective Picture System images. In a subsequent test phase, observers reconstructed objects' colors or orientations using the method of adjustment. We found that mnemonic precision was enhanced under the negative condition relative to the neutral and positive conditions. In contrast, the probability of successful retrieval was comparable across the emotion conditions. Furthermore, the boost in memory precision was associated with elevated subjective feelings of remembering (vividness and confidence) and metacognitive sensitivity in Experiment 2. Altogether, these findings suggest a novel precision-based account for emotional memories. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Flag-based detection of weak gas signatures in long-wave infrared hyperspectral image sequences

    NASA Astrophysics Data System (ADS)

    Marrinan, Timothy; Beveridge, J. Ross; Draper, Bruce; Kirby, Michael; Peterson, Chris

    2016-05-01

    We present a flag manifold based method for detecting chemical plumes in long-wave infrared hyperspectral movies. The method encodes temporal and spatial information related to a hyperspectral pixel into a flag, or nested sequence of linear subspaces. The technique used to create the flags pushes information about the background clutter, ambient conditions, and potential chemical agents into the leading elements of the flags. Exploiting this temporal information allows for a detection algorithm that is sensitive to the presence of weak signals. This method is compared to existing techniques qualitatively on real data and quantitatively on synthetic data to show that the flag-based algorithm consistently performs better on data when the SINRdB is low, and beats the ACE and MF algorithms in probability of detection for low probabilities of false alarm even when the SINRdB is high.

  20. On the Empirical Importance of the Conditional Skewness Assumption in Modelling the Relationship between Risk and Return

    NASA Astrophysics Data System (ADS)

    Pipień, M.

    2008-09-01

    We present the results of an application of Bayesian inference in testing the relation between risk and return on the financial instruments. On the basis of the Intertemporal Capital Asset Pricing Model, proposed by Merton we built a general sampling distribution suitable in analysing this relationship. The most important feature of our assumptions is that the skewness of the conditional distribution of returns is used as an alternative source of relation between risk and return. This general specification relates to Skewed Generalized Autoregressive Conditionally Heteroscedastic-in-Mean model. In order to make conditional distribution of financial returns skewed we considered the unified approach based on the inverse probability integral transformation. In particular, we applied hidden truncation mechanism, inverse scale factors, order statistics concept, Beta and Bernstein distribution transformations and also a constructive method. Based on the daily excess returns on the Warsaw Stock Exchange Index we checked the empirical importance of the conditional skewness assumption on the relation between risk and return on the Warsaw Stock Market. We present posterior probabilities of all competing specifications as well as the posterior analysis of the positive sign of the tested relationship.

  1. Mathematical Analysis of a Multiple-Look Concept Identification Model.

    ERIC Educational Resources Information Center

    Cotton, John W.

    The behavior of focus samples central to the multiple-look model of Trabasso and Bower is examined by three methods. First, exact probabilities of success conditional upon a certain brief history of stimulation are determined. Second, possible states of the organism during the experiment are defined and a transition matrix for those states…

  2. Sample Selection in Randomized Experiments: A New Method Using Propensity Score Stratified Sampling

    ERIC Educational Resources Information Center

    Tipton, Elizabeth; Hedges, Larry; Vaden-Kiernan, Michael; Borman, Geoffrey; Sullivan, Kate; Caverly, Sarah

    2014-01-01

    Randomized experiments are often seen as the "gold standard" for causal research. Despite the fact that experiments use random assignment to treatment conditions, units are seldom selected into the experiment using probability sampling. Very little research on experimental design has focused on how to make generalizations to well-defined…

  3. Hard choices in assessing survival past dams — a comparison of single- and paired-release strategies

    USGS Publications Warehouse

    Zydlewski, Joseph D.; Stich, Daniel S.; Sigourney, Douglas B.

    2017-01-01

    Mark–recapture models are widely used to estimate survival of salmon smolts migrating past dams. Paired releases have been used to improve estimate accuracy by removing components of mortality not attributable to the dam. This method is accompanied by reduced precision because (i) sample size is reduced relative to a single, large release; and (ii) variance calculations inflate error. We modeled an idealized system with a single dam to assess trade-offs between accuracy and precision and compared methods using root mean squared error (RMSE). Simulations were run under predefined conditions (dam mortality, background mortality, detection probability, and sample size) to determine scenarios when the paired release was preferable to a single release. We demonstrate that a paired-release design provides a theoretical advantage over a single-release design only at large sample sizes and high probabilities of detection. At release numbers typical of many survival studies, paired release can result in overestimation of dam survival. Failures to meet model assumptions of a paired release may result in further overestimation of dam-related survival. Under most conditions, a single-release strategy was preferable.

  4. Adaptive aperture for Geiger mode avalanche photodiode flash ladar systems.

    PubMed

    Wang, Liang; Han, Shaokun; Xia, Wenze; Lei, Jieyu

    2018-02-01

    Although the Geiger-mode avalanche photodiode (GM-APD) flash ladar system offers the advantages of high sensitivity and simple construction, its detection performance is influenced not only by the incoming signal-to-noise ratio but also by the absolute number of noise photons. In this paper, we deduce a hyperbolic approximation to estimate the noise-photon number from the false-firing percentage in a GM-APD flash ladar system under dark conditions. By using this hyperbolic approximation function, we introduce a method to adapt the aperture to reduce the number of incoming background-noise photons. Finally, the simulation results show that the adaptive-aperture method decreases the false probability in all cases, increases the detection probability provided that the signal exceeds the noise, and decreases the average ranging error per frame.

  5. Adaptive aperture for Geiger mode avalanche photodiode flash ladar systems

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Han, Shaokun; Xia, Wenze; Lei, Jieyu

    2018-02-01

    Although the Geiger-mode avalanche photodiode (GM-APD) flash ladar system offers the advantages of high sensitivity and simple construction, its detection performance is influenced not only by the incoming signal-to-noise ratio but also by the absolute number of noise photons. In this paper, we deduce a hyperbolic approximation to estimate the noise-photon number from the false-firing percentage in a GM-APD flash ladar system under dark conditions. By using this hyperbolic approximation function, we introduce a method to adapt the aperture to reduce the number of incoming background-noise photons. Finally, the simulation results show that the adaptive-aperture method decreases the false probability in all cases, increases the detection probability provided that the signal exceeds the noise, and decreases the average ranging error per frame.

  6. Command History. United States Military Assistance Command, Vietnam 1965. Sanitized

    DTIC Science & Technology

    1965-01-01

    support elements within the ARM battalion 4 ese methods of encadrement were studied in relation to language , security, support, mutual US/ARYN acceptance...problema, and conditions and capabilities within ARYN units, Problew comn to all three methods were the language barrier, increased ewosure of US...DECCU•(ACV took the position that US assmption of command was neither feasible nor desirable, vwng to the language barrier as won as the probable non

  7. Updating: Learning versus Supposing

    ERIC Educational Resources Information Center

    Zhao, Jiaying; Crupi, Vincenzo; Tentori, Katya; Fitelson, Branden; Osherson, Daniel

    2012-01-01

    Bayesian orthodoxy posits a tight relationship between conditional probability and updating. Namely, the probability of an event "A" after learning "B" should equal the conditional probability of "A" given "B" prior to learning "B". We examine whether ordinary judgment conforms to the orthodox view. In three experiments we found substantial…

  8. Target intersection probabilities for parallel-line and continuous-grid types of search

    USGS Publications Warehouse

    McCammon, R.B.

    1977-01-01

    The expressions for calculating the probability of intersection of hidden targets of different sizes and shapes for parallel-line and continuous-grid types of search can be formulated by vsing the concept of conditional probability. When the prior probability of the orientation of a widden target is represented by a uniform distribution, the calculated posterior probabilities are identical with the results obtained by the classic methods of probability. For hidden targets of different sizes and shapes, the following generalizations about the probability of intersection can be made: (1) to a first approximation, the probability of intersection of a hidden target is proportional to the ratio of the greatest dimension of the target (viewed in plane projection) to the minimum line spacing of the search pattern; (2) the shape of the hidden target does not greatly affect the probability of the intersection when the largest dimension of the target is small relative to the minimum spacing of the search pattern, (3) the probability of intersecting a target twice for a particular type of search can be used as a lower bound if there is an element of uncertainty of detection for a particular type of tool; (4) the geometry of the search pattern becomes more critical when the largest dimension of the target equals or exceeds the minimum spacing of the search pattern; (5) for elongate targets, the probability of intersection is greater for parallel-line search than for an equivalent continuous square-grid search when the largest dimension of the target is less than the minimum spacing of the search pattern, whereas the opposite is true when the largest dimension exceeds the minimum spacing; (6) the probability of intersection for nonorthogonal continuous-grid search patterns is not greatly different from the probability of intersection for the equivalent orthogonal continuous-grid pattern when the orientation of the target is unknown. The probability of intersection for an elliptically shaped target can be approximated by treating the ellipse as intermediate between a circle and a line. A search conducted along a continuous rectangular grid can be represented as intermediate between a search along parallel lines and along a continuous square grid. On this basis, an upper and lower bound for the probability of intersection of an elliptically shaped target for a continuous rectangular grid can be calculated. Charts have been constructed that permit the values for these probabilities to be obtained graphically. The use of conditional probability allows the explorationist greater flexibility in considering alternate search strategies for locating hidden targets. ?? 1977 Plenum Publishing Corp.

  9. Music-evoked incidental happiness modulates probability weighting during risky lottery choices

    PubMed Central

    Schulreich, Stefan; Heussen, Yana G.; Gerhardt, Holger; Mohr, Peter N. C.; Binkofski, Ferdinand C.; Koelsch, Stefan; Heekeren, Hauke R.

    2014-01-01

    We often make decisions with uncertain consequences. The outcomes of the choices we make are usually not perfectly predictable but probabilistic, and the probabilities can be known or unknown. Probability judgments, i.e., the assessment of unknown probabilities, can be influenced by evoked emotional states. This suggests that also the weighting of known probabilities in decision making under risk might be influenced by incidental emotions, i.e., emotions unrelated to the judgments and decisions at issue. Probability weighting describes the transformation of probabilities into subjective decision weights for outcomes and is one of the central components of cumulative prospect theory (CPT) that determine risk attitudes. We hypothesized that music-evoked emotions would modulate risk attitudes in the gain domain and in particular probability weighting. Our experiment featured a within-subject design consisting of four conditions in separate sessions. In each condition, the 41 participants listened to a different kind of music—happy, sad, or no music, or sequences of random tones—and performed a repeated pairwise lottery choice task. We found that participants chose the riskier lotteries significantly more often in the “happy” than in the “sad” and “random tones” conditions. Via structural regressions based on CPT, we found that the observed changes in participants' choices can be attributed to changes in the elevation parameter of the probability weighting function: in the “happy” condition, participants showed significantly higher decision weights associated with the larger payoffs than in the “sad” and “random tones” conditions. Moreover, elevation correlated positively with self-reported music-evoked happiness. Thus, our experimental results provide evidence in favor of a causal effect of incidental happiness on risk attitudes that can be explained by changes in probability weighting. PMID:24432007

  10. Music-evoked incidental happiness modulates probability weighting during risky lottery choices.

    PubMed

    Schulreich, Stefan; Heussen, Yana G; Gerhardt, Holger; Mohr, Peter N C; Binkofski, Ferdinand C; Koelsch, Stefan; Heekeren, Hauke R

    2014-01-07

    We often make decisions with uncertain consequences. The outcomes of the choices we make are usually not perfectly predictable but probabilistic, and the probabilities can be known or unknown. Probability judgments, i.e., the assessment of unknown probabilities, can be influenced by evoked emotional states. This suggests that also the weighting of known probabilities in decision making under risk might be influenced by incidental emotions, i.e., emotions unrelated to the judgments and decisions at issue. Probability weighting describes the transformation of probabilities into subjective decision weights for outcomes and is one of the central components of cumulative prospect theory (CPT) that determine risk attitudes. We hypothesized that music-evoked emotions would modulate risk attitudes in the gain domain and in particular probability weighting. Our experiment featured a within-subject design consisting of four conditions in separate sessions. In each condition, the 41 participants listened to a different kind of music-happy, sad, or no music, or sequences of random tones-and performed a repeated pairwise lottery choice task. We found that participants chose the riskier lotteries significantly more often in the "happy" than in the "sad" and "random tones" conditions. Via structural regressions based on CPT, we found that the observed changes in participants' choices can be attributed to changes in the elevation parameter of the probability weighting function: in the "happy" condition, participants showed significantly higher decision weights associated with the larger payoffs than in the "sad" and "random tones" conditions. Moreover, elevation correlated positively with self-reported music-evoked happiness. Thus, our experimental results provide evidence in favor of a causal effect of incidental happiness on risk attitudes that can be explained by changes in probability weighting.

  11. CProb: a computational tool for conducting conditional probability analysis.

    PubMed

    Hollister, Jeffrey W; Walker, Henry A; Paul, John F

    2008-01-01

    Conditional probability is the probability of observing one event given that another event has occurred. In an environmental context, conditional probability helps to assess the association between an environmental contaminant (i.e., the stressor) and the ecological condition of a resource (i.e., the response). These analyses, when combined with controlled experiments and other methodologies, show great promise in evaluating ecological conditions from observational data and in defining water quality and other environmental criteria. Current applications of conditional probability analysis (CPA) are largely done via scripts or cumbersome spreadsheet routines, which may prove daunting to end-users and do not provide access to the underlying scripts. Combining spreadsheets with scripts eases computation through a familiar interface (i.e., Microsoft Excel) and creates a transparent process through full accessibility to the scripts. With this in mind, we developed a software application, CProb, as an Add-in for Microsoft Excel with R, R(D)com Server, and Visual Basic for Applications. CProb calculates and plots scatterplots, empirical cumulative distribution functions, and conditional probability. In this short communication, we describe CPA, our motivation for developing a CPA tool, and our implementation of CPA as a Microsoft Excel Add-in. Further, we illustrate the use of our software with two examples: a water quality example and a landscape example. CProb is freely available for download at http://www.epa.gov/emap/nca/html/regions/cprob.

  12. Probability in reasoning: a developmental test on conditionals.

    PubMed

    Barrouillet, Pierre; Gauffroy, Caroline

    2015-04-01

    Probabilistic theories have been claimed to constitute a new paradigm for the psychology of reasoning. A key assumption of these theories is captured by what they call the Equation, the hypothesis that the meaning of the conditional is probabilistic in nature and that the probability of If p then q is the conditional probability, in such a way that P(if p then q)=P(q|p). Using the probabilistic truth-table task in which participants are required to evaluate the probability of If p then q sentences, the present study explored the pervasiveness of the Equation through ages (from early adolescence to adulthood), types of conditionals (basic, causal, and inducements) and contents. The results reveal that the Equation is a late developmental achievement only endorsed by a narrow majority of educated adults for certain types of conditionals depending on the content they involve. Age-related changes in evaluating the probability of all the conditionals studied closely mirror the development of truth-value judgements observed in previous studies with traditional truth-table tasks. We argue that our modified mental model theory can account for this development, and hence for the findings related with the probability task, which do not consequently support the probabilistic approach of human reasoning over alternative theories. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Iteroparity in the variable environment of the salamander Ambystoma tigrinum

    USGS Publications Warehouse

    Church, D.R.; Bailey, L.L.; Wilbur, H.M.; Kendall, W.L.; Hines, J.E.

    2007-01-01

    Simultaneous estimation of survival, reproduction, and movement is essential to understanding how species maximize lifetime reproduction in environments that vary across space and time. We conducted a four-year, capture–recapture study of three populations of eastern tiger salamanders (Ambystoma tigrinum tigrinum) and used multistate mark–recapture statistical methods to estimate the manner in which movement, survival, and breeding probabilities vary under different environmental conditions across years and among populations and habitats. We inferred how individuals may mitigate risks of mortality and reproductive failure by deferring breeding or by moving among populations. Movement probabilities among populations were extremely low despite high spatiotemporal variation in reproductive success and survival, suggesting possible costs to movements among breeding ponds. Breeding probabilities varied between wet and dry years and according to whether or not breeding was attempted in the previous year. Estimates of survival in the nonbreeding, forest habitat varied among populations but were consistent across time. Survival in breeding ponds was generally high in years with average or high precipitation, except for males in an especially ephemeral pond. A drought year incurred severe survival costs in all ponds to animals that attempted breeding. Female salamanders appear to defer these episodic survival costs of breeding by choosing not to breed in years when the risk of adult mortality is high. Using stochastic simulations of survival and breeding under historical climate conditions, we found that an interaction between breeding probabilities and mortality limits the probability of multiple breeding attempts differently between the sexes and among populations.

  14. Modeling and Computing of Stock Index Forecasting Based on Neural Network and Markov Chain

    PubMed Central

    Dai, Yonghui; Han, Dongmei; Dai, Weihui

    2014-01-01

    The stock index reflects the fluctuation of the stock market. For a long time, there have been a lot of researches on the forecast of stock index. However, the traditional method is limited to achieving an ideal precision in the dynamic market due to the influences of many factors such as the economic situation, policy changes, and emergency events. Therefore, the approach based on adaptive modeling and conditional probability transfer causes the new attention of researchers. This paper presents a new forecast method by the combination of improved back-propagation (BP) neural network and Markov chain, as well as its modeling and computing technology. This method includes initial forecasting by improved BP neural network, division of Markov state region, computing of the state transition probability matrix, and the prediction adjustment. Results of the empirical study show that this method can achieve high accuracy in the stock index prediction, and it could provide a good reference for the investment in stock market. PMID:24782659

  15. Probabilistic Structural Analysis Methods (PSAM) for select space propulsion system structural components

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.

    1987-01-01

    The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.

  16. Probabilistic Structural Analysis Methods for select space propulsion system structural components (PSAM)

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Burnside, O. H.; Wu, Y.-T.; Polch, E. Z.; Dias, J. B.

    1988-01-01

    The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.

  17. Internal Medicine residents use heuristics to estimate disease probability.

    PubMed

    Phang, Sen Han; Ravani, Pietro; Schaefer, Jeffrey; Wright, Bruce; McLaughlin, Kevin

    2015-01-01

    Training in Bayesian reasoning may have limited impact on accuracy of probability estimates. In this study, our goal was to explore whether residents previously exposed to Bayesian reasoning use heuristics rather than Bayesian reasoning to estimate disease probabilities. We predicted that if residents use heuristics then post-test probability estimates would be increased by non-discriminating clinical features or a high anchor for a target condition. We randomized 55 Internal Medicine residents to different versions of four clinical vignettes and asked them to estimate probabilities of target conditions. We manipulated the clinical data for each vignette to be consistent with either 1) using a representative heuristic, by adding non-discriminating prototypical clinical features of the target condition, or 2) using anchoring with adjustment heuristic, by providing a high or low anchor for the target condition. When presented with additional non-discriminating data the odds of diagnosing the target condition were increased (odds ratio (OR) 2.83, 95% confidence interval [1.30, 6.15], p = 0.009). Similarly, the odds of diagnosing the target condition were increased when a high anchor preceded the vignette (OR 2.04, [1.09, 3.81], p = 0.025). Our findings suggest that despite previous exposure to the use of Bayesian reasoning, residents use heuristics, such as the representative heuristic and anchoring with adjustment, to estimate probabilities. Potential reasons for attribute substitution include the relative cognitive ease of heuristics vs. Bayesian reasoning or perhaps residents in their clinical practice use gist traces rather than precise probability estimates when diagnosing.

  18. A new theoretical approach to analyze complex processes in cytoskeleton proteins.

    PubMed

    Li, Xin; Kolomeisky, Anatoly B

    2014-03-20

    Cytoskeleton proteins are filament structures that support a large number of important biological processes. These dynamic biopolymers exist in nonequilibrium conditions stimulated by hydrolysis chemical reactions in their monomers. Current theoretical methods provide a comprehensive picture of biochemical and biophysical processes in cytoskeleton proteins. However, the description is only qualitative under biologically relevant conditions because utilized theoretical mean-field models neglect correlations. We develop a new theoretical method to describe dynamic processes in cytoskeleton proteins that takes into account spatial correlations in the chemical composition of these biopolymers. Our approach is based on analysis of probabilities of different clusters of subunits. It allows us to obtain exact analytical expressions for a variety of dynamic properties of cytoskeleton filaments. By comparing theoretical predictions with Monte Carlo computer simulations, it is shown that our method provides a fully quantitative description of complex dynamic phenomena in cytoskeleton proteins under all conditions.

  19. Precipitation intensity probability distribution modelling for hydrological and construction design purposes

    NASA Astrophysics Data System (ADS)

    Koshinchanov, Georgy; Dimitrov, Dobri

    2008-11-01

    The characteristics of rainfall intensity are important for many purposes, including design of sewage and drainage systems, tuning flood warning procedures, etc. Those estimates are usually statistical estimates of the intensity of precipitation realized for certain period of time (e.g. 5, 10 min., etc) with different return period (e.g. 20, 100 years, etc). The traditional approach in evaluating the mentioned precipitation intensities is to process the pluviometer's records and fit probability distribution to samples of intensities valid for certain locations ore regions. Those estimates further become part of the state regulations to be used for various economic activities. Two problems occur using the mentioned approach: 1. Due to various factors the climate conditions are changed and the precipitation intensity estimates need regular update; 2. As far as the extremes of the probability distribution are of particular importance for the practice, the methodology of the distribution fitting needs specific attention to those parts of the distribution. The aim of this paper is to make review of the existing methodologies for processing the intensive rainfalls and to refresh some of the statistical estimates for the studied areas. The methodologies used in Bulgaria for analyzing the intensive rainfalls and produce relevant statistical estimates: The method of the maximum intensity, used in the National Institute of Meteorology and Hydrology to process and decode the pluviometer's records, followed by distribution fitting for each precipitation duration period; As the above, but with separate modeling of probability distribution for the middle and high probability quantiles. Method is similar to the first one, but with a threshold of 0,36 mm/min of intensity; Another method proposed by the Russian hydrologist G. A. Aleksiev for regionalization of estimates over some territory, improved and adapted by S. Gerasimov for Bulgaria; Next method is considering only the intensive rainfalls (if any) during the day with the maximal annual daily precipitation total for a given year; Conclusions are drown on the relevance and adequacy of the applied methods.

  20. SU-F-T-450: The Investigation of Radiotherapy Quality Assurance and Automatic Treatment Planning Based On the Kernel Density Estimation Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, J; Fan, J; Hu, W

    Purpose: To develop a fast automatic algorithm based on the two dimensional kernel density estimation (2D KDE) to predict the dose-volume histogram (DVH) which can be employed for the investigation of radiotherapy quality assurance and automatic treatment planning. Methods: We propose a machine learning method that uses previous treatment plans to predict the DVH. The key to the approach is the framing of DVH in a probabilistic setting. The training consists of estimating, from the patients in the training set, the joint probability distribution of the dose and the predictive features. The joint distribution provides an estimation of the conditionalmore » probability of the dose given the values of the predictive features. For the new patient, the prediction consists of estimating the distribution of the predictive features and marginalizing the conditional probability from the training over this. Integrating the resulting probability distribution for the dose yields an estimation of the DVH. The 2D KDE is implemented to predict the joint probability distribution of the training set and the distribution of the predictive features for the new patient. Two variables, including the signed minimal distance from each OAR (organs at risk) voxel to the target boundary and its opening angle with respect to the origin of voxel coordinate, are considered as the predictive features to represent the OAR-target spatial relationship. The feasibility of our method has been demonstrated with the rectum, breast and head-and-neck cancer cases by comparing the predicted DVHs with the planned ones. Results: The consistent result has been found between these two DVHs for each cancer and the average of relative point-wise differences is about 5% within the clinical acceptable extent. Conclusion: According to the result of this study, our method can be used to predict the clinical acceptable DVH and has ability to evaluate the quality and consistency of the treatment planning.« less

  1. Generalized Galilean transformations and the measurement problem in the entropic dynamics approach to quantum theory

    NASA Astrophysics Data System (ADS)

    Johnson, David T.

    Quantum mechanics is an extremely successful and accurate physical theory, yet since its inception, it has been afflicted with numerous conceptual difficulties. The primary subject of this thesis is the theory of entropic quantum dynamics (EQD), which seeks to avoid these conceptual problems by interpreting quantum theory from an informational perspective. We begin by reviewing Cox's work in describing probability theory as a means of rationally and consistently quantifying uncertainties. We then discuss how probabilities can be updated according to either Bayes' theorem or the extended method of maximum entropy (ME). After that discussion, we review the work of Caticha and Giffin that shows that Bayes' theorem is a special case of ME. This important result demonstrates that the ME method is the general method for updating probabilities. We then review some motivating difficulties in quantum mechanics before discussing Caticha's work in deriving quantum theory from the approach of entropic dynamics, which concludes our review. After entropic dynamics is introduced, we develop the concepts of symmetries and transformations from an informational perspective. The primary result is the formulation of a symmetry condition that any transformation must satisfy in order to qualify as a symmetry in EQD. We then proceed to apply this condition to the extended Galilean transformation. This transformation is of interest as it exhibits features of both special and general relativity. The transformation yields a gravitational potential that arises from an equivalence of information. We conclude the thesis with a discussion of the measurement problem in quantum mechanics. We discuss the difficulties that arise in the standard quantum mechanical approach to measurement before developing our theory of entropic measurement. In entropic dynamics, position is the only observable. We show how a theory built on this one observable can account for the multitude of measurements present in quantum theory. Furthermore, we show that the Born rule need not be postulated, but can be derived in EQD. Finally, we show how the wave function can be updated by the ME method as the phase is constructed purely in terms of probabilities.

  2. Biostimulators: A New Trend towards Solving an Old Problem.

    PubMed

    Posmyk, Małgorzata M; Szafrańska, Katarzyna

    2016-01-01

    Stresses provoked by adverse living conditions are inherent to a changing environment (climate change and anthropogenic influence) and they are basic factors that limit plant development and yields. Agriculture always struggled with this problem. The survey of non-toxic, natural, active substances useful in protection, and stimulation of plants growing under suboptimal and even harmful conditions, as well as searching for the most effective methods for their application, will direct our activities toward sustainable development and harmony with nature. It seems highly probable that boosting natural plant defense strategies by applying biostimulators will help to solve an old problem of poor yield in plant cultivation, by provoking their better growth and development even under suboptimal environmental conditions. This work is a concise review of such substances and methods of their application to plants.

  3. The Formalism of Generalized Contexts and Decay Processes

    NASA Astrophysics Data System (ADS)

    Losada, Marcelo; Laura, Roberto

    2013-04-01

    The formalism of generalized contexts for quantum histories is used to investigate the possibility to consider the survival probability as the probability of no decay property at a given time conditional to no decay property at an earlier time. A negative result is found for an isolated system. The inclusion of two quantum measurement instruments at two different times makes possible to interpret the survival probability as a conditional probability of the whole system.

  4. Probabilistic liquefaction hazard analysis at liquefied sites of 1956 Dunaharaszti earthquake, in Hungary

    NASA Astrophysics Data System (ADS)

    Győri, Erzsébet; Gráczer, Zoltán; Tóth, László; Bán, Zoltán; Horváth, Tibor

    2017-04-01

    Liquefaction potential evaluations are generally made to assess the hazard from specific scenario earthquakes. These evaluations may estimate the potential in a binary fashion (yes/no), define a factor of safety or predict the probability of liquefaction given a scenario event. Usually the level of ground shaking is obtained from the results of PSHA. Although it is determined probabilistically, a single level of ground shaking is selected and used within the liquefaction potential evaluation. In contrary, the fully probabilistic liquefaction potential assessment methods provide a complete picture of liquefaction hazard, namely taking into account the joint probability distribution of PGA and magnitude of earthquake scenarios; both of which are key inputs in the stress-based simplified methods. Kramer and Mayfield (2007) has developed a fully probabilistic liquefaction potential evaluation method using a performance-based earthquake engineering (PBEE) framework. The results of the procedure are the direct estimate of the return period of liquefaction and the liquefaction hazard curves in function of depth. The method combines the disaggregation matrices computed for different exceedance frequencies during probabilistic seismic hazard analysis with one of the recent models for the conditional probability of liquefaction. We have developed a software for the assessment of performance-based liquefaction triggering on the basis of Kramer and Mayfield method. Originally the SPT based probabilistic method of Cetin et al. (2004) was built-in into the procedure of Kramer and Mayfield to compute the conditional probability however there is no professional consensus about its applicability. Therefore we have included not only Cetin's method but Idriss and Boulanger (2012) SPT based moreover Boulanger and Idriss (2014) CPT based procedures into our computer program. In 1956, a damaging earthquake of magnitude 5.6 occurred in Dunaharaszti, in Hungary. Its epicenter was located about 5 km from the southern boundary of Budapest. The quake caused serious damages in the epicentral area and in the southern districts of the capital. The epicentral area of the earthquake is located along the Danube River. Sand boils were observed in some locations that indicated the occurrence of liquefaction. Because their exact locations were recorded at the time of the earthquake, in situ geotechnical measurements (CPT and SPT) could be performed at two (Dunaharaszti and Taksony) sites. The different types of measurements enabled the probabilistic liquefaction hazard computations at the two studied sites. We have compared the return periods of liquefaction that were computed using different built-in simplified stress based methods.

  5. A Simple Method for Estimating Informative Node Age Priors for the Fossil Calibration of Molecular Divergence Time Analyses

    PubMed Central

    Nowak, Michael D.; Smith, Andrew B.; Simpson, Carl; Zwickl, Derrick J.

    2013-01-01

    Molecular divergence time analyses often rely on the age of fossil lineages to calibrate node age estimates. Most divergence time analyses are now performed in a Bayesian framework, where fossil calibrations are incorporated as parametric prior probabilities on node ages. It is widely accepted that an ideal parameterization of such node age prior probabilities should be based on a comprehensive analysis of the fossil record of the clade of interest, but there is currently no generally applicable approach for calculating such informative priors. We provide here a simple and easily implemented method that employs fossil data to estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade, which can be used to fit an informative parametric prior probability distribution on a node age. Specifically, our method uses the extant diversity and the stratigraphic distribution of fossil lineages confidently assigned to a clade to fit a branching model of lineage diversification. Conditioning this on a simple model of fossil preservation, we estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade. The likelihood surface of missing history can then be translated into a parametric prior probability distribution on the age of the clade of interest. We show that the method performs well with simulated fossil distribution data, but that the likelihood surface of missing history can at times be too complex for the distribution-fitting algorithm employed by our software tool. An empirical example of the application of our method is performed to estimate echinoid node ages. A simulation-based sensitivity analysis using the echinoid data set shows that node age prior distributions estimated under poor preservation rates are significantly less informative than those estimated under high preservation rates. PMID:23755303

  6. P values are only an index to evidence: 20th- vs. 21st-century statistical science.

    PubMed

    Burnham, K P; Anderson, D R

    2014-03-01

    Early statistical methods focused on pre-data probability statements (i.e., data as random variables) such as P values; these are not really inferences nor are P values evidential. Statistical science clung to these principles throughout much of the 20th century as a wide variety of methods were developed for special cases. Looking back, it is clear that the underlying paradigm (i.e., testing and P values) was weak. As Kuhn (1970) suggests, new paradigms have taken the place of earlier ones: this is a goal of good science. New methods have been developed and older methods extended and these allow proper measures of strength of evidence and multimodel inference. It is time to move forward with sound theory and practice for the difficult practical problems that lie ahead. Given data the useful foundation shifts to post-data probability statements such as model probabilities (Akaike weights) or related quantities such as odds ratios and likelihood intervals. These new methods allow formal inference from multiple models in the a prior set. These quantities are properly evidential. The past century was aimed at finding the "best" model and making inferences from it. The goal in the 21st century is to base inference on all the models weighted by their model probabilities (model averaging). Estimates of precision can include model selection uncertainty leading to variances conditional on the model set. The 21st century will be about the quantification of information, proper measures of evidence, and multi-model inference. Nelder (1999:261) concludes, "The most important task before us in developing statistical science is to demolish the P-value culture, which has taken root to a frightening extent in many areas of both pure and applied science and technology".

  7. [Comparison of two algorithms for development of design space-overlapping method and probability-based method].

    PubMed

    Shao, Jing-Yuan; Qu, Hai-Bin; Gong, Xing-Chu

    2018-05-01

    In this work, two algorithms (overlapping method and the probability-based method) for design space calculation were compared by using the data collected from extraction process of Codonopsis Radix as an example. In the probability-based method, experimental error was simulated to calculate the probability of reaching the standard. The effects of several parameters on the calculated design space were studied, including simulation number, step length, and the acceptable probability threshold. For the extraction process of Codonopsis Radix, 10 000 times of simulation and 0.02 for the calculation step length can lead to a satisfactory design space. In general, the overlapping method is easy to understand, and can be realized by several kinds of commercial software without coding programs, but the reliability of the process evaluation indexes when operating in the design space is not indicated. Probability-based method is complex in calculation, but can provide the reliability to ensure that the process indexes can reach the standard within the acceptable probability threshold. In addition, there is no probability mutation in the edge of design space by probability-based method. Therefore, probability-based method is recommended for design space calculation. Copyright© by the Chinese Pharmaceutical Association.

  8. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies

    ERIC Educational Resources Information Center

    Austin, Peter C.

    2011-01-01

    The propensity score is the probability of treatment assignment conditional on observed baseline characteristics. The propensity score allows one to design and analyze an observational (nonrandomized) study so that it mimics some of the particular characteristics of a randomized controlled trial. In particular, the propensity score is a balancing…

  9. Probabilistic sensitivity analysis for decision trees with multiple branches: use of the Dirichlet distribution in a Bayesian framework.

    PubMed

    Briggs, Andrew H; Ades, A E; Price, Martin J

    2003-01-01

    In structuring decision models of medical interventions, it is commonly recommended that only 2 branches be used for each chance node to avoid logical inconsistencies that can arise during sensitivity analyses if the branching probabilities do not sum to 1. However, information may be naturally available in an unconditional form, and structuring a tree in conditional form may complicate rather than simplify the sensitivity analysis of the unconditional probabilities. Current guidance emphasizes using probabilistic sensitivity analysis, and a method is required to provide probabilistic probabilities over multiple branches that appropriately represents uncertainty while satisfying the requirement that mutually exclusive event probabilities should sum to 1. The authors argue that the Dirichlet distribution, the multivariate equivalent of the beta distribution, is appropriate for this purpose and illustrate its use for generating a fully probabilistic transition matrix for a Markov model. Furthermore, they demonstrate that by adopting a Bayesian approach, the problem of observing zero counts for transitions of interest can be overcome.

  10. Using dynamic geometry software for teaching conditional probability with area-proportional Venn diagrams

    NASA Astrophysics Data System (ADS)

    Radakovic, Nenad; McDougall, Douglas

    2012-10-01

    This classroom note illustrates how dynamic visualization can be used to teach conditional probability and Bayes' theorem. There are two features of the visualization that make it an ideal pedagogical tool in probability instruction. The first feature is the use of area-proportional Venn diagrams that, along with showing qualitative relationships, describe the quantitative relationship between two sets. The second feature is the slider and animation component of dynamic geometry software enabling students to observe how the change in the base rate of an event influences conditional probability. A hypothetical instructional sequence using a well-known breast cancer example is described.

  11. Comparison of three Bayesian methods to estimate posttest probability in patients undergoing exercise stress testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morise, A.P.; Duval, R.D.

    To determine whether recent refinements in Bayesian methods have led to improved diagnostic ability, 3 methods using Bayes' theorem and the independence assumption for estimating posttest probability after exercise stress testing were compared. Each method differed in the number of variables considered in the posttest probability estimate (method A = 5, method B = 6 and method C = 15). Method C is better known as CADENZA. There were 436 patients (250 men and 186 women) who underwent stress testing (135 had concurrent thallium scintigraphy) followed within 2 months by coronary arteriography. Coronary artery disease ((CAD), at least 1 vesselmore » with greater than or equal to 50% diameter narrowing) was seen in 169 (38%). Mean pretest probabilities using each method were not different. However, the mean posttest probabilities for CADENZA were significantly greater than those for method A or B (p less than 0.0001). Each decile of posttest probability was compared to the actual prevalence of CAD in that decile. At posttest probabilities less than or equal to 20%, there was underestimation of CAD. However, at posttest probabilities greater than or equal to 60%, there was overestimation of CAD by all methods, especially CADENZA. Comparison of sensitivity and specificity at every fifth percentile of posttest probability revealed that CADENZA was significantly more sensitive and less specific than methods A and B. Therefore, at lower probability thresholds, CADENZA was a better screening method. However, methods A or B still had merit as a means to confirm higher probabilities generated by CADENZA (especially greater than or equal to 60%).« less

  12. A field test for differences in condition among trapped and shot mallards

    USGS Publications Warehouse

    Reinecke, K.J.; Shaiffer, C.W.

    1988-01-01

    We tested predictions from the condition bias hypothesis (Weatherland and Greenwood 1981) regarding the effects of sampling methods of body weights of mallards (Anas platyrhynchos) at White River National Wildlife Refuge (WRNWR), Arkansas, during 24 November-8 December 1985. Body weights of 84 mallards caught with unbaited rocket nets in a natural wetland were used as experimental controls and compared to the body weights of 70 mallards captured with baited rocket nets, 86 mallards captured with baited swim-in traps, and 130 mallards killed by hunters. We found no differences (P > 0.27) in body weight among sampling methods, but body condition (wt/wing length) of the birds killed by hunters was less (P 0.75 for differences > 50 g. The condition bias hypothesis probably applies to ducks killed by hunters but not to trapping operations when substantial (> 20 at 1 time) numbers of birds are captured.

  13. Unification of field theory and maximum entropy methods for learning probability densities

    NASA Astrophysics Data System (ADS)

    Kinney, Justin B.

    2015-09-01

    The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.

  14. Unification of field theory and maximum entropy methods for learning probability densities.

    PubMed

    Kinney, Justin B

    2015-09-01

    The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.

  15. Acoustic-assisted fluidic hourglasses

    NASA Astrophysics Data System (ADS)

    Guimaraes, Tamara; Marin, Alvaro; Kaehler, Christian J.; Barnkob, Rune

    2017-11-01

    Microfluidic devices are prone to get clogged when suspensions are forced through narrow passages. Such clogging events occur when particles form arches that block the channel. In this work we study the clogging probabilities in a microfluidic hourglass when subject to ultrasound. We measure the clogging probabilities for certain ranges of sound amplitudes and particle-to-neck size ratios in which clogging events are more likely to occur. The ultrasound induces acoustic radiation forces on the suspended particles, leading to particle migration perpendicular to the channel flow direction. The transverse particle rearrangement can significantly reduce the clogging probability by decreasing the chances of arching in the narrowing of the passage. We show that by choosing proper sound actuation conditions, the method is reliable, non-intrusive, preventive, and allows to increase the life of fluidic devices (microfluidic or larger) with particles in a wide range of sizes.

  16. Stochastic models for the Trojan Y-Chromosome eradication strategy of an invasive species.

    PubMed

    Wang, Xueying; Walton, Jay R; Parshad, Rana D

    2016-01-01

    The Trojan Y-Chromosome (TYC) strategy, an autocidal genetic biocontrol method, has been proposed to eliminate invasive alien species. In this work, we develop a Markov jump process model for this strategy, and we verify that there is a positive probability for wild-type females going extinct within a finite time. Moreover, when sex-reversed Trojan females are introduced at a constant population size, we formulate a stochastic differential equation (SDE) model as an approximation to the proposed Markov jump process model. Using the SDE model, we investigate the probability distribution and expectation of the extinction time of wild-type females by solving Kolmogorov equations associated with these statistics. The results indicate how the probability distribution and expectation of the extinction time are shaped by the initial conditions and the model parameters.

  17. The World According to de Finetti: On de Finetti's Theory of Probability and Its Application to Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Berkovitz, Joseph

    Bruno de Finetti is one of the founding fathers of the subjectivist school of probability, where probabilities are interpreted as rational degrees of belief. His work on the relation between the theorems of probability and rationality is among the corner stones of modern subjective probability theory. De Finetti maintained that rationality requires that degrees of belief be coherent, and he argued that the whole of probability theory could be derived from these coherence conditions. De Finetti's interpretation of probability has been highly influential in science. This paper focuses on the application of this interpretation to quantum mechanics. We argue that de Finetti held that the coherence conditions of degrees of belief in events depend on their verifiability. Accordingly, the standard coherence conditions of degrees of belief that are familiar from the literature on subjective probability only apply to degrees of belief in events which could (in principle) be jointly verified; and the coherence conditions of degrees of belief in events that cannot be jointly verified are weaker. While the most obvious explanation of de Finetti's verificationism is the influence of positivism, we argue that it could be motivated by the radical subjectivist and instrumental nature of probability in his interpretation; for as it turns out, in this interpretation it is difficult to make sense of the idea of coherent degrees of belief in, and accordingly probabilities of unverifiable events. We then consider the application of this interpretation to quantum mechanics, concentrating on the Einstein-Podolsky-Rosen experiment and Bell's theorem.

  18. Simulating the component counts of combinatorial structures.

    PubMed

    Arratia, Richard; Barbour, A D; Ewens, W J; Tavaré, Simon

    2018-02-09

    This article describes and compares methods for simulating the component counts of random logarithmic combinatorial structures such as permutations and mappings. We exploit the Feller coupling for simulating permutations to provide a very fast method for simulating logarithmic assemblies more generally. For logarithmic multisets and selections, this approach is replaced by an acceptance/rejection method based on a particular conditioning relationship that represents the distribution of the combinatorial structure as that of independent random variables conditioned on a weighted sum. We show how to improve its acceptance rate. We illustrate the method by estimating the probability that a random mapping has no repeated component sizes, and establish the asymptotic distribution of the difference between the number of components and the number of distinct component sizes for a very general class of logarithmic structures. Copyright © 2018. Published by Elsevier Inc.

  19. Shallow slip amplification and enhanced tsunami hazard unravelled by dynamic simulations of mega-thrust earthquakes

    PubMed Central

    Murphy, S.; Scala, A.; Herrero, A.; Lorito, S.; Festa, G.; Trasatti, E.; Tonini, R.; Romano, F.; Molinari, I.; Nielsen, S.

    2016-01-01

    The 2011 Tohoku earthquake produced an unexpected large amount of shallow slip greatly contributing to the ensuing tsunami. How frequent are such events? How can they be efficiently modelled for tsunami hazard? Stochastic slip models, which can be computed rapidly, are used to explore the natural slip variability; however, they generally do not deal specifically with shallow slip features. We study the systematic depth-dependence of slip along a thrust fault with a number of 2D dynamic simulations using stochastic shear stress distributions and a geometry based on the cross section of the Tohoku fault. We obtain a probability density for the slip distribution, which varies both with depth, earthquake size and whether the rupture breaks the surface. We propose a method to modify stochastic slip distributions according to this dynamically-derived probability distribution. This method may be efficiently applied to produce large numbers of heterogeneous slip distributions for probabilistic tsunami hazard analysis. Using numerous M9 earthquake scenarios, we demonstrate that incorporating the dynamically-derived probability distribution does enhance the conditional probability of exceedance of maximum estimated tsunami wave heights along the Japanese coast. This technique for integrating dynamic features in stochastic models can be extended to any subduction zone and faulting style. PMID:27725733

  20. Influence of maneuverability on helicopter combat effectiveness

    NASA Technical Reports Server (NTRS)

    Falco, M.; Smith, R.

    1982-01-01

    A computational procedure employing a stochastic learning method in conjunction with dynamic simulation of helicopter flight and weapon system operation was used to derive helicopter maneuvering strategies. The derived strategies maximize either survival or kill probability and are in the form of a feedback control based upon threat visual or warning system cues. Maneuverability parameters implicit in the strategy development include maximum longitudinal acceleration and deceleration, maximum sustained and transient load factor turn rate at forward speed, and maximum pedal turn rate and lateral acceleration at hover. Results are presented in terms of probability of skill for all combat initial conditions for two threat categories.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuyver, T.; Fias, S., E-mail: sfias@vub.ac.be; De Proft, F.

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based onmore » the atom-atom polarizability.« less

  2. FASP, an analytic resource appraisal program for petroleum play analysis

    USGS Publications Warehouse

    Crovelli, R.A.; Balay, R.H.

    1986-01-01

    An analytic probabilistic methodology for resource appraisal of undiscovered oil and gas resources in play analysis is presented in a FORTRAN program termed FASP. This play-analysis methodology is a geostochastic system for petroleum resource appraisal in explored as well as frontier areas. An established geologic model considers both the uncertainty of the presence of the assessed hydrocarbon and its amount if present. The program FASP produces resource estimates of crude oil, nonassociated gas, dissolved gas, and gas for a geologic play in terms of probability distributions. The analytic method is based upon conditional probability theory and many laws of expectation and variance. ?? 1986.

  3. Multifractal diffusion entropy analysis: Optimal bin width of probability histograms

    NASA Astrophysics Data System (ADS)

    Jizba, Petr; Korbel, Jan

    2014-11-01

    In the framework of Multifractal Diffusion Entropy Analysis we propose a method for choosing an optimal bin-width in histograms generated from underlying probability distributions of interest. The method presented uses techniques of Rényi’s entropy and the mean squared error analysis to discuss the conditions under which the error in the multifractal spectrum estimation is minimal. We illustrate the utility of our approach by focusing on a scaling behavior of financial time series. In particular, we analyze the S&P500 stock index as sampled at a daily rate in the time period 1950-2013. In order to demonstrate a strength of the method proposed we compare the multifractal δ-spectrum for various bin-widths and show the robustness of the method, especially for large values of q. For such values, other methods in use, e.g., those based on moment estimation, tend to fail for heavy-tailed data or data with long correlations. Connection between the δ-spectrum and Rényi’s q parameter is also discussed and elucidated on a simple example of multiscale time series.

  4. Estimation of the Thermal Process in the Honeycomb Panel by a Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Gusev, S. A.; Nikolaev, V. N.

    2018-01-01

    A new Monte Carlo method for estimating the thermal state of the heat insulation containing honeycomb panels is proposed in the paper. The heat transfer in the honeycomb panel is described by a boundary value problem for a parabolic equation with discontinuous diffusion coefficient and boundary conditions of the third kind. To obtain an approximate solution, it is proposed to use the smoothing of the diffusion coefficient. After that, the obtained problem is solved on the basis of the probability representation. The probability representation is the expectation of the functional of the diffusion process corresponding to the boundary value problem. The process of solving the problem is reduced to numerical statistical modelling of a large number of trajectories of the diffusion process corresponding to the parabolic problem. It was used earlier the Euler method for this object, but that requires a large computational effort. In this paper the method is modified by using combination of the Euler and the random walk on moving spheres methods. The new approach allows us to significantly reduce the computation costs.

  5. A method to establish stimulus control and compliance with instructions.

    PubMed

    Borgen, John G; Charles Mace, F; Cavanaugh, Brenna M; Shamlian, Kenneth; Lit, Keith R; Wilson, Jillian B; Trauschke, Stephanie L

    2017-10-01

    We evaluated a unique procedure to establish compliance with instructions in four young children diagnosed with autism spectrum disorder (ASD) who had low levels of compliance. Our procedure included methods to establish a novel therapist as a source of positive reinforcement, reliably evoke orienting responses to the therapist, increase the number of exposures to instruction-compliance-reinforcer contingencies, and minimize the number of exposures to instruction-noncompliance-no reinforcer contingencies. We further alternated between instructions with a high probability of compliance (high-p instructions) with instructions that had a prior low probability of compliance (low-p instructions) as soon as low-p instructions lost stimulus control. The intervention is discussed in relation to the conditions necessary for the development of stimulus control and as an example of a variation of translational research. © 2017 Society for the Experimental Analysis of Behavior.

  6. Implementation of the Iterative Proportion Fitting Algorithm for Geostatistical Facies Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Yupeng, E-mail: yupeng@ualberta.ca; Deutsch, Clayton V.

    2012-06-15

    In geostatistics, most stochastic algorithm for simulation of categorical variables such as facies or rock types require a conditional probability distribution. The multivariate probability distribution of all the grouped locations including the unsampled location permits calculation of the conditional probability directly based on its definition. In this article, the iterative proportion fitting (IPF) algorithm is implemented to infer this multivariate probability. Using the IPF algorithm, the multivariate probability is obtained by iterative modification to an initial estimated multivariate probability using lower order bivariate probabilities as constraints. The imposed bivariate marginal probabilities are inferred from profiles along drill holes or wells.more » In the IPF process, a sparse matrix is used to calculate the marginal probabilities from the multivariate probability, which makes the iterative fitting more tractable and practical. This algorithm can be extended to higher order marginal probability constraints as used in multiple point statistics. The theoretical framework is developed and illustrated with estimation and simulation example.« less

  7. Dynamic Forecasting Conditional Probability of Bombing Attacks Based on Time-Series and Intervention Analysis.

    PubMed

    Li, Shuying; Zhuang, Jun; Shen, Shifei

    2017-07-01

    In recent years, various types of terrorist attacks occurred, causing worldwide catastrophes. According to the Global Terrorism Database (GTD), among all attack tactics, bombing attacks happened most frequently, followed by armed assaults. In this article, a model for analyzing and forecasting the conditional probability of bombing attacks (CPBAs) based on time-series methods is developed. In addition, intervention analysis is used to analyze the sudden increase in the time-series process. The results show that the CPBA increased dramatically at the end of 2011. During that time, the CPBA increased by 16.0% in a two-month period to reach the peak value, but still stays 9.0% greater than the predicted level after the temporary effect gradually decays. By contrast, no significant fluctuation can be found in the conditional probability process of armed assault. It can be inferred that some social unrest, such as America's troop withdrawal from Afghanistan and Iraq, could have led to the increase of the CPBA in Afghanistan, Iraq, and Pakistan. The integrated time-series and intervention model is used to forecast the monthly CPBA in 2014 and through 2064. The average relative error compared with the real data in 2014 is 3.5%. The model is also applied to the total number of attacks recorded by the GTD between 2004 and 2014. © 2016 Society for Risk Analysis.

  8. Using Dynamic Geometry Software for Teaching Conditional Probability with Area-Proportional Venn Diagrams

    ERIC Educational Resources Information Center

    Radakovic, Nenad; McDougall, Douglas

    2012-01-01

    This classroom note illustrates how dynamic visualization can be used to teach conditional probability and Bayes' theorem. There are two features of the visualization that make it an ideal pedagogical tool in probability instruction. The first feature is the use of area-proportional Venn diagrams that, along with showing qualitative relationships,…

  9. Shape fabric development in rigid clast populations under pure shear: The influence of no-slip versus slip boundary conditions

    NASA Astrophysics Data System (ADS)

    Mulchrone, Kieran F.; Meere, Patrick A.

    2015-09-01

    Shape fabrics of elliptical objects in rocks are usually assumed to develop by passive behavior of inclusions with respect to the surrounding material leading to shape-based strain analysis methods belonging to the Rf/ϕ family. A probability density function is derived for the orientational characteristics of populations of rigid ellipses deforming in a pure shear 2D deformation with both no-slip and slip boundary conditions. Using maximum likelihood a numerical method is developed for estimating finite strain in natural populations deforming for both mechanisms. Application to a natural example indicates the importance of the slip mechanism in explaining clast shape fabrics in deformed sediments.

  10. Potential Use of a Bayesian Network for Discriminating Flash Type from Future GOES-R Geostationary Lightning Mapper (GLM) data

    NASA Technical Reports Server (NTRS)

    Solakiewiz, Richard; Koshak, William

    2008-01-01

    Continuous monitoring of the ratio of cloud flashes to ground flashes may provide a better understanding of thunderstorm dynamics, intensification, and evolution, and it may be useful in severe weather warning. The National Lighting Detection Network TM (NLDN) senses ground flashes with exceptional detection efficiency and accuracy over most of the continental United States. A proposed Geostationary Lightning Mapper (GLM) aboard the Geostationary Operational Environmental Satellite (GOES-R) will look at the western hemisphere, and among the lightning data products to be made available will be the fundamental optical flash parameters for both cloud and ground flashes: radiance, area, duration, number of optical groups, and number of optical events. Previous studies have demonstrated that the optical flash parameter statistics of ground and cloud lightning, which are observable from space, are significantly different. This study investigates a Bayesian network methodology for discriminating lightning flash type (ground or cloud) using the lightning optical data and ancillary GOES-R data. A Directed Acyclic Graph (DAG) is set up with lightning as a "root" and data observed by GLM as the "leaves." This allows for a direct calculation of the joint probability distribution function for the lighting type and radiance, area, etc. Initially, the conditional probabilities that will be required can be estimated from the Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) together with NLDN data. Directly manipulating the joint distribution will yield the conditional probability that a lightning flash is a ground flash given the evidence, which consists of the observed lightning optical data [and possibly cloud data retrieved from the GOES-R Advanced Baseline Imager (ABI) in a more mature Bayesian network configuration]. Later, actual GLM and NLDN data can be used to refine the estimates of the conditional probabilities used in the model; i.e., the Bayesian network is a learning network. Methods for efficient calculation of the conditional probabilities (e.g., an algorithm using junction trees), finding data conflicts, goodness of fit, and dealing with missing data will also be addressed.

  11. Statistical learning of action: the role of conditional probability.

    PubMed

    Meyer, Meredith; Baldwin, Dare

    2011-12-01

    Identification of distinct units within a continuous flow of human action is fundamental to action processing. Such segmentation may rest in part on statistical learning. In a series of four experiments, we examined what types of statistics people can use to segment a continuous stream involving many brief, goal-directed action elements. The results of Experiment 1 showed no evidence for sensitivity to conditional probability, whereas Experiment 2 displayed learning based on joint probability. In Experiment 3, we demonstrated that additional exposure to the input failed to engender sensitivity to conditional probability. However, the results of Experiment 4 showed that a subset of adults-namely, those more successful at identifying actions that had been seen more frequently than comparison sequences-were also successful at learning conditional-probability statistics. These experiments help to clarify the mechanisms subserving processing of intentional action, and they highlight important differences from, as well as similarities to, prior studies of statistical learning in other domains, including language.

  12. Factors associated with geographic variation in cost per episode of care for three medical conditions

    PubMed Central

    2014-01-01

    Objective To identify associations between market factors, especially relative reimbursement rates, and the probability of surgery and cost per episode for three medical conditions (cataract, benign prostatic neoplasm, and knee degeneration) with multiple treatment options. Methods We use 2004–2006 Medicare claims data for elderly beneficiaries from sixty nationally representative communities to estimate multivariate models for the probability of surgery and cost per episode of care as a function local market factors, including Medicare physician reimbursement for surgical versus non-surgical treatment and the availability of primary care and specialty physicians. We used Symmetry’s Episode Treatment Groups (ETG) software to group claims into episodes for the three conditions (n = 540,874 episodes). Results Higher Medicare reimbursement for surgical episodes and greater availability of the relevant specialists are significantly associated with more surgery and higher cost per episode for all three conditions, while greater availability of primary care physicians is significantly associated with less frequent surgery and lower cost per episode. Conclusion Relative Medicare reimbursement rates for surgical vs. non-surgical treatments and the availability of both primary care physicians and relevant specialists are associated with the likelihood of surgery and cost per episode. PMID:24949281

  13. An estimation method of the direct benefit of a waterlogging control project applicable to the changing environment

    NASA Astrophysics Data System (ADS)

    Zengmei, L.; Guanghua, Q.; Zishen, C.

    2015-05-01

    The direct benefit of a waterlogging control project is reflected by the reduction or avoidance of waterlogging loss. Before and after the construction of a waterlogging control project, the disaster-inducing environment in the waterlogging-prone zone is generally different. In addition, the category, quantity and spatial distribution of the disaster-bearing bodies are also changed more or less. Therefore, under the changing environment, the direct benefit of a waterlogging control project should be the reduction of waterlogging losses compared to conditions with no control project. Moreover, the waterlogging losses with or without the project should be the mathematical expectations of the waterlogging losses when rainstorms of all frequencies meet various water levels in the drainage-accepting zone. So an estimation model of the direct benefit of waterlogging control is proposed. Firstly, on the basis of a Copula function, the joint distribution of the rainstorms and the water levels are established, so as to obtain their joint probability density function. Secondly, according to the two-dimensional joint probability density distribution, the dimensional domain of integration is determined, which is then divided into small domains so as to calculate the probability for each of the small domains and the difference between the average waterlogging loss with and without a waterlogging control project, called the regional benefit of waterlogging control project, under the condition that rainstorms in the waterlogging-prone zone meet the water level in the drainage-accepting zone. Finally, it calculates the weighted mean of the project benefit of all small domains, with probability as the weight, and gets the benefit of the waterlogging control project. Taking the estimation of benefit of a waterlogging control project in Yangshan County, Guangdong Province, as an example, the paper briefly explains the procedures in waterlogging control project benefit estimation. The results show that the waterlogging control benefit estimation model constructed is applicable to the changing conditions that occur in both the disaster-inducing environment of the waterlogging-prone zone and disaster-bearing bodies, considering all conditions when rainstorms of all frequencies meet different water levels in the drainage-accepting zone. Thus, the estimation method of waterlogging control benefit can reflect the actual situation more objectively, and offer a scientific basis for rational decision-making for waterlogging control projects.

  14. A Hybrid Generalized Hidden Markov Model-Based Condition Monitoring Approach for Rolling Bearings

    PubMed Central

    Liu, Jie; Hu, Youmin; Wu, Bo; Wang, Yan; Xie, Fengyun

    2017-01-01

    The operating condition of rolling bearings affects productivity and quality in the rotating machine process. Developing an effective rolling bearing condition monitoring approach is critical to accurately identify the operating condition. In this paper, a hybrid generalized hidden Markov model-based condition monitoring approach for rolling bearings is proposed, where interval valued features are used to efficiently recognize and classify machine states in the machine process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition (VMD). Parameters of the VMD, in the form of generalized intervals, provide a concise representation for aleatory and epistemic uncertainty and improve the robustness of identification. The multi-scale permutation entropy method is applied to extract state features from the decomposed signals in different operating conditions. Traditional principal component analysis is adopted to reduce feature size and computational cost. With the extracted features’ information, the generalized hidden Markov model, based on generalized interval probability, is used to recognize and classify the fault types and fault severity levels. Finally, the experiment results show that the proposed method is effective at recognizing and classifying the fault types and fault severity levels of rolling bearings. This monitoring method is also efficient enough to quantify the two uncertainty components. PMID:28524088

  15. Probability and predictors of treatment-seeking for substance use disorders in the U.S

    PubMed Central

    Blanco, Carlos; Iza, Miren; Rodríguez-Fernández, Jorge Mario; Baca-García, Enrique; Wang, Shuai; Olfson, Mark

    2016-01-01

    Background Little is known about to what extent treatment-seeking behavior varies across individuals with alcohol abuse, alcohol dependence, drug abuse, and drug dependence. Methods The sample included respondents from the Wave 2 of the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) who reported a lifetime diagnosis alcohol abuse, alcohol dependence, drug abuse, or drug dependence. Unadjusted and adjusted hazard ratios are presented for time to first treatment contact by sociodemographic characteristics and comorbid psychiatric disorders. Individuals were censored from the analyses if their condition remitted prior to seeking treatment. Results In the first year after disorder onset, rates of treatment-seeking were 13% for drug dependence, 5% for alcohol dependence, 2% for drug abuse, and 1% for alcohol abuse. The lifetime probability of seeking treatment among individuals who did not remit was also highest for drug dependence (90%), followed by drug abuse (60%), alcohol dependence (54%), and alcohol abuse (16%). Having had previous treatment contact for a substance use disorder (SUD) increased the probability of seeking treatment for another SUD. By contrast, an early age of SUD onset, belonging to an older cohort, and a higher level of education decreased the lifetime probability of treatment contact for SUD. The role of comorbid mental disorders was more complex, with some disorders increasing and other decreasing the probability of seeking treatment. Conclusions Given high rates of SUD and their substantial health and economic burden, these patterns suggest the need for innovative approaches to increase treatment access for individuals with SUD. PMID:25725934

  16. Reliable evaluation of the quantal determinants of synaptic efficacy using Bayesian analysis

    PubMed Central

    Beato, M.

    2013-01-01

    Communication between neurones in the central nervous system depends on synaptic transmission. The efficacy of synapses is determined by pre- and postsynaptic factors that can be characterized using quantal parameters such as the probability of neurotransmitter release, number of release sites, and quantal size. Existing methods of estimating the quantal parameters based on multiple probability fluctuation analysis (MPFA) are limited by their requirement for long recordings to acquire substantial data sets. We therefore devised an algorithm, termed Bayesian Quantal Analysis (BQA), that can yield accurate estimates of the quantal parameters from data sets of as small a size as 60 observations for each of only 2 conditions of release probability. Computer simulations are used to compare its performance in accuracy with that of MPFA, while varying the number of observations and the simulated range in release probability. We challenge BQA with realistic complexities characteristic of complex synapses, such as increases in the intra- or intersite variances, and heterogeneity in release probabilities. Finally, we validate the method using experimental data obtained from electrophysiological recordings to show that the effect of an antagonist on postsynaptic receptors is correctly characterized by BQA by a specific reduction in the estimates of quantal size. Since BQA routinely yields reliable estimates of the quantal parameters from small data sets, it is ideally suited to identify the locus of synaptic plasticity for experiments in which repeated manipulations of the recording environment are unfeasible. PMID:23076101

  17. Operational foreshock forecasting: Fifteen years after

    NASA Astrophysics Data System (ADS)

    Ogata, Y.

    2010-12-01

    We are concerned with operational forecasting of the probability that events are foreshocks of a forthcoming earthquake that is significantly larger (mainshock). Specifically, we define foreshocks as the preshocks substantially smaller than the mainshock by a magnitude gap of 0.5 or larger. The probability gain of foreshock forecast is extremely high compare to long-term forecast by renewal processes or various alarm-based intermediate-term forecasts because of a large event’s low occurrence rate in a short period and a narrow target region. Thus, it is desired to establish operational foreshock probability forecasting as seismologists have done for aftershocks. When a series of earthquakes occurs in a region, we attempt to discriminate foreshocks from a swarm or mainshock-aftershock sequence. Namely, after real time identification of an earthquake cluster using methods such as the single-link algorithm, the probability is calculated by applying statistical features that discriminate foreshocks from other types of clusters, by considering the events' stronger proximity in time and space and tendency towards chronologically increasing magnitudes. These features were modeled for probability forecasting and the coefficients of the model were estimated in Ogata et al. (1996) for the JMA hypocenter data (M≧4, 1926-1993). Currently, fifteen years has passed since the publication of the above-stated work so that we are able to present the performance and validation of the forecasts (1994-2009) by using the same model. Taking isolated events into consideration, the probability of the first events in a potential cluster being a foreshock vary in a range between 0+% and 10+% depending on their locations. This conditional forecasting performs significantly better than the unconditional (average) foreshock probability of 3.7% throughout Japan region. Furthermore, when we have the additional events in a cluster, the forecast probabilities range more widely from nearly 0% to about 40% depending on the discrimination features among the events in the cluster. This conditional forecasting further performs significantly better than the unconditional foreshock probability of 7.3%, which is the average probability of the plural events in the earthquake clusters. Indeed, the frequency ratios of the actual foreshocks are consistent with the forecasted probabilities. Reference: Ogata, Y., Utsu, T. and Katsura, K. (1996). Statistical discrimination of foreshocks from other earthquake clusters, Geophys. J. Int. 127, 17-30.

  18. [Effects of prefrontal ablations on the reaction of the active choice of feeder under different probability and value of the reinforcement on dog].

    PubMed

    Preobrazhenskaia, L A; Ioffe, M E; Mats, V N

    2004-01-01

    The role of the prefrontal cortex was investigated on the reaction of the active choice of the two feeders under changes value and probability reinforcement. The experiments were performed on 2 dogs with prefrontal ablation (g. proreus). Before the lesions the dogs were taught to receive food in two different feeders to conditioned stimuli with equally probable alimentary reinforcement. After ablation in the inter-trial intervals the dogs were running from the one feeder to another. In the answer to conditioned stimuli for many times the dogs choose the same feeder. The disturbance of the behavior after some times completely restored. In the experiments with competition of probability events and values of reinforcement the dogs chose the feeder with low-probability but better quality of reinforcement. In the experiments with equal value but different probability the intact dogs chose the feeder with higher probability. In our experiments the dogs with prefrontal lesions chose the each feeder equiprobably. Thus in condition of free behavior one of different functions of the prefrontal cortex is the reactions choose with more probability of reinforcement.

  19. Monte Carlo based protocol for cell survival and tumour control probability in BNCT.

    PubMed

    Ye, S J

    1999-02-01

    A mathematical model to calculate the theoretical cell survival probability (nominally, the cell survival fraction) is developed to evaluate preclinical treatment conditions for boron neutron capture therapy (BNCT). A treatment condition is characterized by the neutron beam spectra, single or bilateral exposure, and the choice of boron carrier drug (boronophenylalanine (BPA) or boron sulfhydryl hydride (BSH)). The cell survival probability defined from Poisson statistics is expressed with the cell-killing yield, the 10B(n,alpha)7Li reaction density, and the tolerable neutron fluence. The radiation transport calculation from the neutron source to tumours is carried out using Monte Carlo methods: (i) reactor-based BNCT facility modelling to yield the neutron beam library at an irradiation port; (ii) dosimetry to limit the neutron fluence below a tolerance dose (10.5 Gy-Eq); (iii) calculation of the 10B(n,alpha)7Li reaction density in tumours. A shallow surface tumour could be effectively treated by single exposure producing an average cell survival probability of 10(-3)-10(-5) for probable ranges of the cell-killing yield for the two drugs, while a deep tumour will require bilateral exposure to achieve comparable cell kills at depth. With very pure epithermal beams eliminating thermal, low epithermal and fast neutrons, the cell survival can be decreased by factors of 2-10 compared with the unmodified neutron spectrum. A dominant effect of cell-killing yield on tumour cell survival demonstrates the importance of choice of boron carrier drug. However, these calculations do not indicate an unambiguous preference for one drug, due to the large overlap of tumour cell survival in the probable ranges of the cell-killing yield for the two drugs. The cell survival value averaged over a bulky tumour volume is used to predict the overall BNCT therapeutic efficacy, using a simple model of tumour control probability (TCP).

  20. The Context Matters: Outcome Probability and Expectation Mismatch Modulate the Feedback Negativity When Self-Evaluation of Response Correctness Is Possible

    PubMed Central

    Leue, Anja; Cano Rodilla, Carmen; Beauducel, André

    2015-01-01

    Individuals typically evaluate whether their performance and the obtained feedback match. Previous research has shown that feedback negativity (FN) depends on outcome probability and feedback valence. It is, however, less clear to what extent previous effects of outcome probability on FN depend on self-evaluations of response correctness. Therefore, we investigated the effects of outcome probability on FN amplitude in a simple go/no-go task that allowed for the self-evaluation of response correctness. We also investigated effects of performance incompatibility and feedback valence. In a sample of N = 22 participants, outcome probability was manipulated by means of precues, feedback valence by means of monetary feedback, and performance incompatibility by means of feedback that induced a match versus mismatch with individuals' performance. We found that the 100% outcome probability condition induced a more negative FN following no-loss than the 50% outcome probability condition. The FN following loss was more negative in the 50% compared to the 100% outcome probability condition. Performance-incompatible loss resulted in a more negative FN than performance-compatible loss. Our results indicate that the self-evaluation of the correctness of responses should be taken into account when the effects of outcome probability and expectation mismatch on FN are investigated. PMID:26783525

  1. The Context Matters: Outcome Probability and Expectation Mismatch Modulate the Feedback Negativity When Self-Evaluation of Response Correctness Is Possible.

    PubMed

    Leue, Anja; Cano Rodilla, Carmen; Beauducel, André

    2015-01-01

    Individuals typically evaluate whether their performance and the obtained feedback match. Previous research has shown that feedback negativity (FN) depends on outcome probability and feedback valence. It is, however, less clear to what extent previous effects of outcome probability on FN depend on self-evaluations of response correctness. Therefore, we investigated the effects of outcome probability on FN amplitude in a simple go/no-go task that allowed for the self-evaluation of response correctness. We also investigated effects of performance incompatibility and feedback valence. In a sample of N = 22 participants, outcome probability was manipulated by means of precues, feedback valence by means of monetary feedback, and performance incompatibility by means of feedback that induced a match versus mismatch with individuals' performance. We found that the 100% outcome probability condition induced a more negative FN following no-loss than the 50% outcome probability condition. The FN following loss was more negative in the 50% compared to the 100% outcome probability condition. Performance-incompatible loss resulted in a more negative FN than performance-compatible loss. Our results indicate that the self-evaluation of the correctness of responses should be taken into account when the effects of outcome probability and expectation mismatch on FN are investigated.

  2. An operational system of fire danger rating over Mediterranean Europe

    NASA Astrophysics Data System (ADS)

    Pinto, Miguel M.; DaCamara, Carlos C.; Trigo, Isabel F.; Trigo, Ricardo M.

    2017-04-01

    A methodology is presented to assess fire danger based on the probability of exceedance of prescribed thresholds of daily released energy. The procedure is developed and tested over Mediterranean Europe, defined by latitude circles of 35 and 45°N and meridians of 10°W and 27.5°E, for the period 2010-2016. The procedure involves estimating the so-called static and daily probabilities of exceedance. For a given point, the static probability is estimated by the ratio of the number of daily fire occurrences releasing energy above a given threshold to the total number of occurrences inside a cell centred at the point. The daily probability of exceedance which takes into account meteorological factors by means of the Canadian Fire Weather Index (FWI) is in turn estimated based on a Generalized Pareto distribution with static probability and FWI as covariates of the scale parameter. The rationale of the procedure is that small fires, assessed by the static probability, have a weak dependence on weather, whereas the larger fires strongly depend on concurrent meteorological conditions. It is shown that observed frequencies of exceedance over the study area for the period 2010-2016 match with the estimated values of probability based on the developed models for static and daily probabilities of exceedance. Some (small) variability is however found between different years suggesting that refinements can be made in future works by using a larger sample to further increase the robustness of the method. The developed methodology presents the advantage of evaluating fire danger with the same criteria for all the study area, making it a good parameter to harmonize fire danger forecasts and forest management studies. Research was performed within the framework of EUMETSAT Satellite Application Facility for Land Surface Analysis (LSA SAF). Part of methods developed and results obtained are on the basis of the platform supported by The Navigator Company that is currently providing information about fire meteorological danger for Portugal for a wide range of users.

  3. Automatic registration of terrestrial point clouds based on panoramic reflectance images and efficient BaySAC

    NASA Astrophysics Data System (ADS)

    Kang, Zhizhong

    2013-10-01

    This paper presents a new approach to automatic registration of terrestrial laser scanning (TLS) point clouds utilizing a novel robust estimation method by an efficient BaySAC (BAYes SAmpling Consensus). The proposed method directly generates reflectance images from 3D point clouds, and then using SIFT algorithm extracts keypoints to identify corresponding image points. The 3D corresponding points, from which transformation parameters between point clouds are computed, are acquired by mapping the 2D ones onto the point cloud. To remove false accepted correspondences, we implement a conditional sampling method to select the n data points with the highest inlier probabilities as a hypothesis set and update the inlier probabilities of each data point using simplified Bayes' rule for the purpose of improving the computation efficiency. The prior probability is estimated by the verification of the distance invariance between correspondences. The proposed approach is tested on four data sets acquired by three different scanners. The results show that, comparing with the performance of RANSAC, BaySAC leads to less iterations and cheaper computation cost when the hypothesis set is contaminated with more outliers. The registration results also indicate that, the proposed algorithm can achieve high registration accuracy on all experimental datasets.

  4. Healthiness of Survival and Quality of Death Among Oldest Old in China Using Fuzzy Sets

    PubMed Central

    Gu, Danan; Zeng, Yi

    2012-01-01

    Objectives To investigate healthiness of survival and quality of death among oldest-old Chinese. Methods Grade of Membership (GoM) method is applied to fulfill our goals using a nationwide longitudinal survey in China. Results GoM method generates six pure types/profiles for healthiness of survival and five profiles/types for quality of death. The authors combine these 11 profiles into 4 groups. On average, a Chinese oldest old from 1998 to 2000 had 48% probability of experiencing healthy survival, with 30% experiencing unhealthy survival, 11% having nonsuffering death, and 11% having suffering death. Similar memberships of dying with nonsuffering conditions are found across ages among the decedents. Men have a higher probability of being in healthy survival and nonsuffering death as compared to women. Marriage, high social connections, nonsmoking, and regular exercise are important contributors to healthy survival and quality of death. Discussion It is possible to live to ages 100 and beyond without much suffering. PMID:22992893

  5. Mines Systems Safety Improvement Using an Integrated Event Tree and Fault Tree Analysis

    NASA Astrophysics Data System (ADS)

    Kumar, Ranjan; Ghosh, Achyuta Krishna

    2017-04-01

    Mines systems such as ventilation system, strata support system, flame proof safety equipment, are exposed to dynamic operational conditions such as stress, humidity, dust, temperature, etc., and safety improvement of such systems can be done preferably during planning and design stage. However, the existing safety analysis methods do not handle the accident initiation and progression of mine systems explicitly. To bridge this gap, this paper presents an integrated Event Tree (ET) and Fault Tree (FT) approach for safety analysis and improvement of mine systems design. This approach includes ET and FT modeling coupled with redundancy allocation technique. In this method, a concept of top hazard probability is introduced for identifying system failure probability and redundancy is allocated to the system either at component or system level. A case study on mine methane explosion safety with two initiating events is performed. The results demonstrate that the presented method can reveal the accident scenarios and improve the safety of complex mine systems simultaneously.

  6. Risk forewarning model for rice grain Cd pollution based on Bayes theory.

    PubMed

    Wu, Bo; Guo, Shuhai; Zhang, Lingyan; Li, Fengmei

    2018-03-15

    Cadmium (Cd) pollution of rice grain caused by Cd-contaminated soils is a common problem in southwest and central south China. In this study, utilizing the advantages of the Bayes classification statistical method, we established a risk forewarning model for rice grain Cd pollution, and put forward two parameters (the prior probability factor and data variability factor). The sensitivity analysis of the model parameters illustrated that sample size and standard deviation influenced the accuracy and applicable range of the model. The accuracy of the model was improved by the self-renewal of the model through adding the posterior data into the priori data. Furthermore, this method can be used to predict the risk probability of rice grain Cd pollution under similar soil environment, tillage and rice varietal conditions. The Bayes approach thus represents a feasible method for risk forewarning of heavy metals pollution of agricultural products caused by contaminated soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Probability distribution of haplotype frequencies under the two-locus Wright-Fisher model by diffusion approximation.

    PubMed

    Boitard, Simon; Loisel, Patrice

    2007-05-01

    The probability distribution of haplotype frequencies in a population, and the way it is influenced by genetical forces such as recombination, selection, random drift ...is a question of fundamental interest in population genetics. For large populations, the distribution of haplotype frequencies for two linked loci under the classical Wright-Fisher model is almost impossible to compute because of numerical reasons. However the Wright-Fisher process can in such cases be approximated by a diffusion process and the transition density can then be deduced from the Kolmogorov equations. As no exact solution has been found for these equations, we developed a numerical method based on finite differences to solve them. It applies to transient states and models including selection or mutations. We show by several tests that this method is accurate for computing the conditional joint density of haplotype frequencies given that no haplotype has been lost. We also prove that it is far less time consuming than other methods such as Monte Carlo simulations.

  8. Probability density function modeling of scalar mixing from concentrated sources in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Bakosi, J.; Franzese, P.; Boybeyi, Z.

    2007-11-01

    Dispersion of a passive scalar from concentrated sources in fully developed turbulent channel flow is studied with the probability density function (PDF) method. The joint PDF of velocity, turbulent frequency and scalar concentration is represented by a large number of Lagrangian particles. A stochastic near-wall PDF model combines the generalized Langevin model of Haworth and Pope [Phys. Fluids 29, 387 (1986)] with Durbin's [J. Fluid Mech. 249, 465 (1993)] method of elliptic relaxation to provide a mathematically exact treatment of convective and viscous transport with a nonlocal representation of the near-wall Reynolds stress anisotropy. The presence of walls is incorporated through the imposition of no-slip and impermeability conditions on particles without the use of damping or wall-functions. Information on the turbulent time scale is supplied by the gamma-distribution model of van Slooten et al. [Phys. Fluids 10, 246 (1998)]. Two different micromixing models are compared that incorporate the effect of small scale mixing on the transported scalar: the widely used interaction by exchange with the mean and the interaction by exchange with the conditional mean model. Single-point velocity and concentration statistics are compared to direct numerical simulation and experimental data at Reτ=1080 based on the friction velocity and the channel half width. The joint model accurately reproduces a wide variety of conditional and unconditional statistics in both physical and composition space.

  9. Many-body calculations of low energy eigenstates in magnetic and periodic systems with self healing diffusion Monte Carlo: steps beyond the fixed-phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reboredo, Fernando A.

    The self-healing diffusion Monte Carlo algorithm (SHDMC) [Reboredo, Hood and Kent, Phys. Rev. B {\\bf 79}, 195117 (2009), Reboredo, {\\it ibid.} {\\bf 80}, 125110 (2009)] is extended to study the ground and excited states of magnetic and periodic systems. A recursive optimization algorithm is derived from the time evolution of the mixed probability density. The mixed probability density is given by an ensemble of electronic configurations (walkers) with complex weight. This complex weigh allows the amplitude of the fix-node wave function to move away from the trial wave function phase. This novel approach is both a generalization of SHDMC andmore » the fixed-phase approximation [Ortiz, Ceperley and Martin Phys Rev. Lett. {\\bf 71}, 2777 (1993)]. When used recursively it improves simultaneously the node and phase. The algorithm is demonstrated to converge to the nearly exact solutions of model systems with periodic boundary conditions or applied magnetic fields. The method is also applied to obtain low energy excitations with magnetic field or periodic boundary conditions. The potential applications of this new method to study periodic, magnetic, and complex Hamiltonians are discussed.« less

  10. Using radar imagery for crop discrimination: a statistical and conditional probability study

    USGS Publications Warehouse

    Haralick, R.M.; Caspall, F.; Simonett, D.S.

    1970-01-01

    A number of the constraints with which remote sensing must contend in crop studies are outlined. They include sensor, identification accuracy, and congruencing constraints; the nature of the answers demanded of the sensor system; and the complex temporal variances of crops in large areas. Attention is then focused on several methods which may be used in the statistical analysis of multidimensional remote sensing data.Crop discrimination for radar K-band imagery is investigated by three methods. The first one uses a Bayes decision rule, the second a nearest-neighbor spatial conditional probability approach, and the third the standard statistical techniques of cluster analysis and principal axes representation.Results indicate that crop type and percent of cover significantly affect the strength of the radar return signal. Sugar beets, corn, and very bare ground are easily distinguishable, sorghum, alfalfa, and young wheat are harder to distinguish. Distinguishability will be improved if the imagery is examined in time sequence so that changes between times of planning, maturation, and harvest provide additional discriminant tools. A comparison between radar and photography indicates that radar performed surprisingly well in crop discrimination in western Kansas and warrants further study.

  11. A simplified fragility analysis of fan type cable stayed bridges

    NASA Astrophysics Data System (ADS)

    Khan, R. A.; Datta, T. K.; Ahmad, S.

    2005-06-01

    A simplified fragility analysis of fan type cable stayed bridges using Probabilistic Risk Analysis (PRA) procedure is presented for determining their failure probability under random ground motion. Seismic input to the bridge support is considered to be a risk consistent response spectrum which is obtained from a separate analysis. For the response analysis, the bridge deck is modeles as a beam supported on spring at different points. The stiffnesses of the springs are determined by a separate 2D static analysis of cable-tower-deck system. The analysis provides a coupled stiffness matrix for the spring system. A continuum method of analysis using dynamic stiffness is used to determine the dynamic properties of the bridges. The response of the bridge deck is obtained by the response spectrum method of analysis as applied to multidegree of freedom system which duly takes into account the quasi-static component of bridge deck vibration. The fragility analysis includes uncertainties arising due to the variation in ground motion, material property, modeling, method of analysis, ductility factor and damage concentration effect. Probability of failure of the bridge deck is determined by the First Order Second Moment (FOSM) method of reliability. A three span double plane symmetrical fan type cable stayed bridge of total span 689 m, is used as an illustrative example. The fragility curves for the bridge deck failure are obtained under a number of parametric variations. Some of the important conclusions of the study indicate that (i) not only vertical component but also the horizontal component of ground motion has considerable effect on the probability of failure; (ii) ground motion with no time lag between support excitations provides a smaller probability of failure as compared to ground motion with very large time lag between support excitation; and (iii) probability of failure may considerably increase soft soil condition.

  12. The Influence of Baseline Marijuana Use on Treatment of Cocaine Dependence: Application of an Informative-Priors Bayesian Approach

    PubMed Central

    Green, Charles; Schmitz, Joy; Lindsay, Jan; Pedroza, Claudia; Lane, Scott; Agnelli, Rob; Kjome, Kimberley; Moeller, F. Gerard

    2012-01-01

    Background: Marijuana use is prevalent among patients with cocaine dependence and often non-exclusionary in clinical trials of potential cocaine medications. The dual-focus of this study was to (1) examine the moderating effect of baseline marijuana use on response to treatment with levodopa/carbidopa for cocaine dependence; and (2) apply an informative-priors, Bayesian approach for estimating the probability of a subgroup-by-treatment interaction effect. Method: A secondary data analysis of two previously published, double-blind, randomized controlled trials provided complete data for the historical (Study 1: N = 64 placebo), and current (Study 2: N = 113) data sets. Negative binomial regression evaluated Treatment Effectiveness Scores (TES) as a function of medication condition (levodopa/carbidopa, placebo), baseline marijuana use (days in past 30), and their interaction. Results: Bayesian analysis indicated that there was a 96% chance that baseline marijuana use predicts differential response to treatment with levodopa/carbidopa. Simple effects indicated that among participants receiving levodopa/carbidopa the probability that baseline marijuana confers harm in terms of reducing TES was 0.981; whereas the probability that marijuana confers harm within the placebo condition was 0.163. For every additional day of marijuana use reported at baseline, participants in the levodopa/carbidopa condition demonstrated a 5.4% decrease in TES; while participants in the placebo condition demonstrated a 4.9% increase in TES. Conclusion: The potential moderating effect of marijuana on cocaine treatment response should be considered in future trial designs. Applying Bayesian subgroup analysis proved informative in characterizing this patient-treatment interaction effect. PMID:23115553

  13. Saturated fluorescence method for determination of atomic transition probabilities: Application to the Ar i 430.0-nm (1s4-3p8) transition and the lifetime determination of the upper level

    NASA Astrophysics Data System (ADS)

    Hirabayashi, A.; Okuda, S.; Nambu, Y.; Fujimoto, T.

    1987-01-01

    We have developed a new method for determination of atomic transition probabilities based on laser-induced-fluorescence spectroscopy (LIFS). In the method one produces a known population of atoms in the upper level under investigation and relates it to an observed absolute line intensity. We have applied this method to the argon 430.0-nm line (1s4-3p8): In an argon discharge plasma the 1s5-level population and spatial distribution are determined by the self-absorption method combined with LIFS under conditions where the 3p8-level population is much lower than that of the 1s5 level. When intense laser light of 419.1 nm (1s5-3p8) irradiates the plasma and saturates the 3p8-level population, the produced 3p8-level population and its alignment can be determined from the 1s5-level parameters as determined above, by solving the master equation on the basis of broad-line excitation. By comparing the observed absolute fluorescence intensity of the 430.0-nm line with the above population, we have determined the transition probability to be A=(3.94+/-0.60)×105 s-1. We also determined the 3p8-level lifetime by LIFS. Several factors which might affect the measurement are discussed. The result is τ=127+/-10 ns.

  14. Encounter risk analysis of rainfall and reference crop evapotranspiration in the irrigation district

    NASA Astrophysics Data System (ADS)

    Zhang, Jinping; Lin, Xiaomin; Zhao, Yong; Hong, Yang

    2017-09-01

    Rainfall and reference crop evapotranspiration are random but mutually affected variables in the irrigation district, and their encounter situation can determine water shortage risks under the contexts of natural water supply and demand. However, in reality, the rainfall and reference crop evapotranspiration may have different marginal distributions and their relations are nonlinear. In this study, based on the annual rainfall and reference crop evapotranspiration data series from 1970 to 2013 in the Luhun irrigation district of China, the joint probability distribution of rainfall and reference crop evapotranspiration are developed with the Frank copula function. Using the joint probability distribution, the synchronous-asynchronous encounter risk, conditional joint probability, and conditional return period of different combinations of rainfall and reference crop evapotranspiration are analyzed. The results show that the copula-based joint probability distributions of rainfall and reference crop evapotranspiration are reasonable. The asynchronous encounter probability of rainfall and reference crop evapotranspiration is greater than their synchronous encounter probability, and the water shortage risk associated with meteorological drought (i.e. rainfall variability) is more prone to appear. Compared with other states, there are higher conditional joint probability and lower conditional return period in either low rainfall or high reference crop evapotranspiration. For a specifically high reference crop evapotranspiration with a certain frequency, the encounter risk of low rainfall and high reference crop evapotranspiration is increased with the decrease in frequency. For a specifically low rainfall with a certain frequency, the encounter risk of low rainfall and high reference crop evapotranspiration is decreased with the decrease in frequency. When either the high reference crop evapotranspiration exceeds a certain frequency or low rainfall does not exceed a certain frequency, the higher conditional joint probability and lower conditional return period of various combinations likely cause a water shortage, but the water shortage is not severe.

  15. Estimating soil moisture exceedance probability from antecedent rainfall

    NASA Astrophysics Data System (ADS)

    Cronkite-Ratcliff, C.; Kalansky, J.; Stock, J. D.; Collins, B. D.

    2016-12-01

    The first storms of the rainy season in coastal California, USA, add moisture to soils but rarely trigger landslides. Previous workers proposed that antecedent rainfall, the cumulative seasonal rain from October 1 onwards, had to exceed specific amounts in order to trigger landsliding. Recent monitoring of soil moisture upslope of historic landslides in the San Francisco Bay Area shows that storms can cause positive pressure heads once soil moisture values exceed a threshold of volumetric water content (VWC). We propose that antecedent rainfall could be used to estimate the probability that VWC exceeds this threshold. A major challenge to estimating the probability of exceedance is that rain gauge records are frequently incomplete. We developed a stochastic model to impute (infill) missing hourly precipitation data. This model uses nearest neighbor-based conditional resampling of the gauge record using data from nearby rain gauges. Using co-located VWC measurements, imputed data can be used to estimate the probability that VWC exceeds a specific threshold for a given antecedent rainfall. The stochastic imputation model can also provide an estimate of uncertainty in the exceedance probability curve. Here we demonstrate the method using soil moisture and precipitation data from several sites located throughout Northern California. Results show a significant variability between sites in the sensitivity of VWC exceedance probability to antecedent rainfall.

  16. Sensitivity and Bias in Decision-Making under Risk: Evaluating the Perception of Reward, Its Probability and Value

    PubMed Central

    Sharp, Madeleine E.; Viswanathan, Jayalakshmi; Lanyon, Linda J.; Barton, Jason J. S.

    2012-01-01

    Background There are few clinical tools that assess decision-making under risk. Tests that characterize sensitivity and bias in decisions between prospects varying in magnitude and probability of gain may provide insights in conditions with anomalous reward-related behaviour. Objective We designed a simple test of how subjects integrate information about the magnitude and the probability of reward, which can determine discriminative thresholds and choice bias in decisions under risk. Design/Methods Twenty subjects were required to choose between two explicitly described prospects, one with higher probability but lower magnitude of reward than the other, with the difference in expected value between the two prospects varying from 3 to 23%. Results Subjects showed a mean threshold sensitivity of 43% difference in expected value. Regarding choice bias, there was a ‘risk premium’ of 38%, indicating a tendency to choose higher probability over higher reward. An analysis using prospect theory showed that this risk premium is the predicted outcome of hypothesized non-linearities in the subjective perception of reward value and probability. Conclusions This simple test provides a robust measure of discriminative value thresholds and biases in decisions under risk. Prospect theory can also make predictions about decisions when subjective perception of reward or probability is anomalous, as may occur in populations with dopaminergic or striatal dysfunction, such as Parkinson's disease and schizophrenia. PMID:22493669

  17. Statistical Inference in Hidden Markov Models Using k-Segment Constraints

    PubMed Central

    Titsias, Michalis K.; Holmes, Christopher C.; Yau, Christopher

    2016-01-01

    Hidden Markov models (HMMs) are one of the most widely used statistical methods for analyzing sequence data. However, the reporting of output from HMMs has largely been restricted to the presentation of the most-probable (MAP) hidden state sequence, found via the Viterbi algorithm, or the sequence of most probable marginals using the forward–backward algorithm. In this article, we expand the amount of information we could obtain from the posterior distribution of an HMM by introducing linear-time dynamic programming recursions that, conditional on a user-specified constraint in the number of segments, allow us to (i) find MAP sequences, (ii) compute posterior probabilities, and (iii) simulate sample paths. We collectively call these recursions k-segment algorithms and illustrate their utility using simulated and real examples. We also highlight the prospective and retrospective use of k-segment constraints for fitting HMMs or exploring existing model fits. Supplementary materials for this article are available online. PMID:27226674

  18. Small target detection based on difference accumulation and Gaussian curvature under complex conditions

    NASA Astrophysics Data System (ADS)

    Zhang, He; Niu, Yanxiong; Zhang, Hao

    2017-12-01

    Small target detection is a significant subject in infrared search and track and other photoelectric imaging systems. The small target is imaged under complex conditions, which contains clouds, horizon and bright part. In this paper, a novel small target detection method is proposed based on difference accumulation, clustering and Gaussian curvature. Difference accumulation varies from regions. Therefore, after obtaining difference accumulations, clustering is applied to determine whether the pixel belongs to the heterogeneous region, and eliminate heterogeneous region. Then Gaussian curvature is used to separate target from the homogeneous region. Experiments are conducted for verification, along with comparisons to several other methods. The experimental results demonstrate that our method has an advantage of 1-2 orders of magnitude on SCRG and BSF than others. Given that the false alarm rate is 1, the detection probability can be approximately 0.9 by using proposed method.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, H; Chen, Z; Nath, R

    Purpose: kV fluoroscopic imaging combined with MV treatment beam imaging has been investigated for intrafractional motion monitoring and correction. It is, however, subject to additional kV imaging dose to normal tissue. To balance tracking accuracy and imaging dose, we previously proposed an adaptive imaging strategy to dynamically decide future imaging type and moments based on motion tracking uncertainty. kV imaging may be used continuously for maximal accuracy or only when the position uncertainty (probability of out of threshold) is high if a preset imaging dose limit is considered. In this work, we propose more accurate methods to estimate tracking uncertaintymore » through analyzing acquired data in real-time. Methods: We simulated motion tracking process based on a previously developed imaging framework (MV + initial seconds of kV imaging) using real-time breathing data from 42 patients. Motion tracking errors for each time point were collected together with the time point’s corresponding features, such as tumor motion speed and 2D tracking error of previous time points, etc. We tested three methods for error uncertainty estimation based on the features: conditional probability distribution, logistic regression modeling, and support vector machine (SVM) classification to detect errors exceeding a threshold. Results: For conditional probability distribution, polynomial regressions on three features (previous tracking error, prediction quality, and cosine of the angle between the trajectory and the treatment beam) showed strong correlation with the variation (uncertainty) of the mean 3D tracking error and its standard deviation: R-square = 0.94 and 0.90, respectively. The logistic regression and SVM classification successfully identified about 95% of tracking errors exceeding 2.5mm threshold. Conclusion: The proposed methods can reliably estimate the motion tracking uncertainty in real-time, which can be used to guide adaptive additional imaging to confirm the tumor is within the margin or initialize motion compensation if it is out of the margin.« less

  20. A TCP model for external beam treatment of intermediate-risk prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, Sean; Putten, Wil van der

    2013-03-15

    Purpose: Biological models offer the ability to predict clinical outcomes. The authors describe a model to predict the clinical response of intermediate-risk prostate cancer to external beam radiotherapy for a variety of fractionation regimes. Methods: A fully heterogeneous population averaged tumor control probability model was fit to clinical outcome data for hyper, standard, and hypofractionated treatments. The tumor control probability model was then employed to predict the clinical outcome of extreme hypofractionation regimes, as utilized in stereotactic body radiotherapy. Results: The tumor control probability model achieves an excellent level of fit, R{sup 2} value of 0.93 and a root meanmore » squared error of 1.31%, to the clinical outcome data for hyper, standard, and hypofractionated treatments using realistic values for biological input parameters. Residuals Less-Than-Or-Slanted-Equal-To 1.0% are produced by the tumor control probability model when compared to clinical outcome data for stereotactic body radiotherapy. Conclusions: The authors conclude that this tumor control probability model, used with the optimized radiosensitivity values obtained from the fit, is an appropriate mechanistic model for the analysis and evaluation of external beam RT plans with regard to tumor control for these clinical conditions.« less

  1. Expert Knowledge-Based Automatic Sleep Stage Determination by Multi-Valued Decision Making Method

    NASA Astrophysics Data System (ADS)

    Wang, Bei; Sugi, Takenao; Kawana, Fusae; Wang, Xingyu; Nakamura, Masatoshi

    In this study, an expert knowledge-based automatic sleep stage determination system working on a multi-valued decision making method is developed. Visual inspection by a qualified clinician is adopted to obtain the expert knowledge database. The expert knowledge database consists of probability density functions of parameters for various sleep stages. Sleep stages are determined automatically according to the conditional probability. Totally, four subjects were participated. The automatic sleep stage determination results showed close agreements with the visual inspection on sleep stages of awake, REM (rapid eye movement), light sleep and deep sleep. The constructed expert knowledge database reflects the distributions of characteristic parameters which can be adaptive to variable sleep data in hospitals. The developed automatic determination technique based on expert knowledge of visual inspection can be an assistant tool enabling further inspection of sleep disorder cases for clinical practice.

  2. Opinion evolution and rare events in an open community

    NASA Astrophysics Data System (ADS)

    Ye, Yusong; Yang, Zhuoqin; Zhang, Zili

    2016-11-01

    There are many multi-stable phenomena in society. To explain these multi-stable phenomena, we have studied opinion evolution in an open community. We focus on probability of transition (or the mean transition time) that the system transfer from one state to another. We suggest a bistable model to provide an interpretation of these phenomena. The quasi-potential method that we used is the most important method to calculate the transition time and it can be used to determine the whole probability density. We study the condition of bistability and then discuss rare events in a multi-stable system. In our model, we find that two parameters, ;temperature; and ;persuading intensity,; influence the behavior of the system; a suitable ;persuading intensity; and low ;temperature; make the system more stable. This means that the transition rarely happens. The asymmetric phenomenon caused by ;public-opinion; is also discussed.

  3. Two proposed convergence criteria for Monte Carlo solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forster, R.A.; Pederson, S.P.; Booth, T.E.

    1992-01-01

    The central limit theorem (CLT) can be applied to a Monte Carlo solution if two requirements are satisfied: (1) The random variable has a finite mean and a finite variance; and (2) the number N of independent observations grows large. When these two conditions are satisfied, a confidence interval (CI) based on the normal distribution with a specified coverage probability can be formed. The first requirement is generally satisfied by the knowledge of the Monte Carlo tally being used. The Monte Carlo practitioner has a limited number of marginal methods to assess the fulfillment of the second requirement, such asmore » statistical error reduction proportional to 1/[radical]N with error magnitude guidelines. Two proposed methods are discussed in this paper to assist in deciding if N is large enough: estimating the relative variance of the variance (VOV) and examining the empirical history score probability density function (pdf).« less

  4. Tracking the Sensory Environment: An ERP Study of Probability and Context Updating in ASD

    PubMed Central

    Westerfield, Marissa A.; Zinni, Marla; Vo, Khang; Townsend, Jeanne

    2014-01-01

    We recorded visual event-related brain potentials (ERPs) from 32 adult male participants (16 high-functioning participants diagnosed with Autism Spectrum Disorder (ASD) and 16 control participants, ranging in age from 18–53 yrs) during a three-stimulus oddball paradigm. Target and non-target stimulus probability was varied across three probability conditions, whereas the probability of a third non-target stimulus was held constant in all conditions. P3 amplitude to target stimuli was more sensitive to probability in ASD than in TD participants, whereas P3 amplitude to non-target stimuli was less responsive to probability in ASD participants. This suggests that neural responses to changes in event probability are attention-dependant in high-functioning ASD. The implications of these findings for higher-level behaviors such as prediction and planning are discussed. PMID:24488156

  5. Modeling the probability distribution of peak discharge for infiltrating hillslopes

    NASA Astrophysics Data System (ADS)

    Baiamonte, Giorgio; Singh, Vijay P.

    2017-07-01

    Hillslope response plays a fundamental role in the prediction of peak discharge at the basin outlet. The peak discharge for the critical duration of rainfall and its probability distribution are needed for designing urban infrastructure facilities. This study derives the probability distribution, denoted as GABS model, by coupling three models: (1) the Green-Ampt model for computing infiltration, (2) the kinematic wave model for computing discharge hydrograph from the hillslope, and (3) the intensity-duration-frequency (IDF) model for computing design rainfall intensity. The Hortonian mechanism for runoff generation is employed for computing the surface runoff hydrograph. Since the antecedent soil moisture condition (ASMC) significantly affects the rate of infiltration, its effect on the probability distribution of peak discharge is investigated. Application to a watershed in Sicily, Italy, shows that with the increase of probability, the expected effect of ASMC to increase the maximum discharge diminishes. Only for low values of probability, the critical duration of rainfall is influenced by ASMC, whereas its effect on the peak discharge seems to be less for any probability. For a set of parameters, the derived probability distribution of peak discharge seems to be fitted by the gamma distribution well. Finally, an application to a small watershed, with the aim to test the possibility to arrange in advance the rational runoff coefficient tables to be used for the rational method, and a comparison between peak discharges obtained by the GABS model with those measured in an experimental flume for a loamy-sand soil were carried out.

  6. Conduction of molecular electronic devices: qualitative insights through atom-atom polarizabilities.

    PubMed

    Stuyver, T; Fias, S; De Proft, F; Fowler, P W; Geerlings, P

    2015-03-07

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability.

  7. Dynamic properties of epidemic spreading on finite size complex networks

    NASA Astrophysics Data System (ADS)

    Li, Ying; Liu, Yang; Shan, Xiu-Ming; Ren, Yong; Jiao, Jian; Qiu, Ben

    2005-11-01

    The Internet presents a complex topological structure, on which computer viruses can easily spread. By using theoretical analysis and computer simulation methods, the dynamic process of disease spreading on finite size networks with complex topological structure is investigated. On the finite size networks, the spreading process of SIS (susceptible-infected-susceptible) model is a finite Markov chain with an absorbing state. Two parameters, the survival probability and the conditional infecting probability, are introduced to describe the dynamic properties of disease spreading on finite size networks. Our results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks. Also, knowledge about the dynamic character of virus spreading is helpful for adopting immunity policy.

  8. New normative standards of conditional reasoning and the dual-source model

    PubMed Central

    Singmann, Henrik; Klauer, Karl Christoph; Over, David

    2014-01-01

    There has been a major shift in research on human reasoning toward Bayesian and probabilistic approaches, which has been called a new paradigm. The new paradigm sees most everyday and scientific reasoning as taking place in a context of uncertainty, and inference is from uncertain beliefs and not from arbitrary assumptions. In this manuscript we present an empirical test of normative standards in the new paradigm using a novel probabilized conditional reasoning task. Our results indicated that for everyday conditional with at least a weak causal connection between antecedent and consequent only the conditional probability of the consequent given antecedent contributes unique variance to predicting the probability of conditional, but not the probability of the conjunction, nor the probability of the material conditional. Regarding normative accounts of reasoning, we found significant evidence that participants' responses were confidence preserving (i.e., p-valid in the sense of Adams, 1998) for MP inferences, but not for MT inferences. Additionally, only for MP inferences and to a lesser degree for DA inferences did the rate of responses inside the coherence intervals defined by mental probability logic (Pfeifer and Kleiter, 2005, 2010) exceed chance levels. In contrast to the normative accounts, the dual-source model (Klauer et al., 2010) is a descriptive model. It posits that participants integrate their background knowledge (i.e., the type of information primary to the normative approaches) and their subjective probability that a conclusion is seen as warranted based on its logical form. Model fits showed that the dual-source model, which employed participants' responses to a deductive task with abstract contents to estimate the form-based component, provided as good an account of the data as a model that solely used data from the probabilized conditional reasoning task. PMID:24860516

  9. New normative standards of conditional reasoning and the dual-source model.

    PubMed

    Singmann, Henrik; Klauer, Karl Christoph; Over, David

    2014-01-01

    There has been a major shift in research on human reasoning toward Bayesian and probabilistic approaches, which has been called a new paradigm. The new paradigm sees most everyday and scientific reasoning as taking place in a context of uncertainty, and inference is from uncertain beliefs and not from arbitrary assumptions. In this manuscript we present an empirical test of normative standards in the new paradigm using a novel probabilized conditional reasoning task. Our results indicated that for everyday conditional with at least a weak causal connection between antecedent and consequent only the conditional probability of the consequent given antecedent contributes unique variance to predicting the probability of conditional, but not the probability of the conjunction, nor the probability of the material conditional. Regarding normative accounts of reasoning, we found significant evidence that participants' responses were confidence preserving (i.e., p-valid in the sense of Adams, 1998) for MP inferences, but not for MT inferences. Additionally, only for MP inferences and to a lesser degree for DA inferences did the rate of responses inside the coherence intervals defined by mental probability logic (Pfeifer and Kleiter, 2005, 2010) exceed chance levels. In contrast to the normative accounts, the dual-source model (Klauer et al., 2010) is a descriptive model. It posits that participants integrate their background knowledge (i.e., the type of information primary to the normative approaches) and their subjective probability that a conclusion is seen as warranted based on its logical form. Model fits showed that the dual-source model, which employed participants' responses to a deductive task with abstract contents to estimate the form-based component, provided as good an account of the data as a model that solely used data from the probabilized conditional reasoning task.

  10. Probable Posttraumatic Stress Disorder in the US Veteran Population According to DSM-5: Results From the National Health and Resilience in Veterans Study.

    PubMed

    Wisco, Blair E; Marx, Brian P; Miller, Mark W; Wolf, Erika J; Mota, Natalie P; Krystal, John H; Southwick, Steven M; Pietrzak, Robert H

    2016-11-01

    With the publication of DSM-5, important changes were made to the diagnostic criteria for posttraumatic stress disorder (PTSD), including the addition of 3 new symptoms. Some have argued that these changes will further increase the already high rates of comorbidity between PTSD and other psychiatric disorders. This study examined the prevalence of DSM-5 PTSD, conditional probability of PTSD given certain trauma exposures, endorsement of specific PTSD symptoms, and psychiatric comorbidities in the US veteran population. Data were analyzed from the National Health and Resilience in Veterans Study (NHRVS), a Web-based survey of a cross-sectional, nationally representative, population-based sample of 1,484 US veterans, which was fielded from September through October 2013. Probable PTSD was assessed using the PTSD Checklist-5. The weighted lifetime and past-month prevalence of probable DSM-5 PTSD was 8.1% (SE = 0.7%) and 4.7% (SE = 0.6%), respectively. Conditional probability of lifetime probable PTSD ranged from 10.1% (sudden death of close family member or friend) to 28.0% (childhood sexual abuse). The DSM-5 PTSD symptoms with the lowest prevalence among veterans with probable PTSD were trauma-related amnesia and reckless and self-destructive behavior. Probable PTSD was associated with increased odds of mood and anxiety disorders (OR = 7.6-62.8, P < .001), substance use disorders (OR = 3.9-4.5, P < .001), and suicidal behaviors (OR = 6.7-15.1, P < .001). In US veterans, the prevalence of DSM-5 probable PTSD, conditional probability of probable PTSD, and odds of psychiatric comorbidity were similar to prior findings with DSM-IV-based measures; we found no evidence that changes in DSM-5 increase psychiatric comorbidity. Results underscore the high rates of exposure to both military and nonmilitary trauma and the high public health burden of DSM-5 PTSD and comorbid conditions in veterans. © Copyright 2016 Physicians Postgraduate Press, Inc.

  11. Assessing the independent and combined effects of subsidies for antimalarials and rapid diagnostic testing on fever management decisions in the retail sector: results from a factorial randomised trial in western Kenya

    PubMed Central

    Prudhomme O'Meara, Wendy; Mohanan, Manoj; Laktabai, Jeremiah; Lesser, Adriane; Platt, Alyssa; Maffioli, Elisa; Turner, Elizabeth L; Menya, Diana

    2016-01-01

    Objectives There is an urgent need to understand how to improve targeting of artemisinin combination therapy (ACT) to patients with confirmed malaria infection, including subsidised ACTs sold over-the-counter. We hypothesised that offering an antimalarial subsidy conditional on a positive malaria rapid diagnostic test (RDT) would increase uptake of testing and improve rational use of ACTs. Methods We designed a 2×2 factorial randomised experiment evaluating 2 levels of subsidy for RDTs and ACTs. Between July 2014 and June 2015, 444 individuals with a malaria-like illness who had not sought treatment were recruited from their homes. We used scratch cards to allocate participants into 4 groups in a ratio of 1:1:1:1. Participants were eligible for an unsubsidised or fully subsidised RDT and 1 of 2 levels of ACT subsidy (current retail price or an additional subsidy conditional on a positive RDT). Treatment decisions were documented 1 week later. Our primary outcome was uptake of malaria testing. Secondary outcomes evaluated ACT consumption among those with a negative test, a positive test or no test. Results Offering a free RDT increased the probability of testing by 18.6 percentage points (adjusted probability difference (APD), 95% CI 5.9 to 31.3). An offer of a conditional ACT subsidy did not have an additional effect on the probability of malaria testing when the RDT was free (APD=2.7; 95% CI −8.6 to 14.1). However, receiving the conditional ACT subsidy increased the probability of taking an ACT following a positive RDT by 19.5 percentage points (APD, 95% CI 2.2 to 36.8). Overall, the proportion who took ACT following a negative test was lower than those who took ACT without being tested, indicated improved targeting among those who were tested. Conclusions Both subsidies improved appropriate fever management, demonstrating the impact of these costs on decision making. However, the conditional ACT subsidy did not increase testing. We conclude that each of the subsidies primarily impacts the most immediate decision. Trial registration number NCT02199977. PMID:28588946

  12. Quantitative risk assessment of landslides triggered by earthquakes and rainfall based on direct costs of urban buildings

    NASA Astrophysics Data System (ADS)

    Vega, Johnny Alexander; Hidalgo, Cesar Augusto

    2016-11-01

    This paper outlines a framework for risk assessment of landslides triggered by earthquakes and rainfall in urban buildings in the city of Medellín - Colombia, applying a model that uses a geographic information system (GIS). We applied a computer model that includes topographic, geological, geotechnical and hydrological features of the study area to assess landslide hazards using the Newmark's pseudo-static method, together with a probabilistic approach based on the first order and second moment method (FOSM). The physical vulnerability assessment of buildings was conducted using structural fragility indexes, as well as the definition of damage level of buildings via decision trees and using Medellin's cadastral inventory data. The probability of occurrence of a landslide was calculated assuming that an earthquake produces horizontal ground acceleration (Ah) and considering the uncertainty of the geotechnical parameters and the soil saturation conditions of the ground. The probability of occurrence was multiplied by the structural fragility index values and by the replacement value of structures. The model implemented aims to quantify the risk caused by this kind of disaster in an area of the city of Medellín based on different values of Ah and an analysis of the damage costs of this disaster to buildings under different scenarios and structural conditions. Currently, 62% of ;Valle de Aburra; where the study area is located is under very low condition of landslide hazard and 38% is under low condition. If all buildings in the study area fulfilled the requirements of the Colombian building code, the costs of a landslide would be reduced 63% compared with the current condition. An earthquake with a return period of 475 years was used in this analysis according to the seismic microzonation study in 2002.

  13. Controlling the Shannon Entropy of Quantum Systems

    PubMed Central

    Xing, Yifan; Wu, Jun

    2013-01-01

    This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking. PMID:23818819

  14. Controlling the shannon entropy of quantum systems.

    PubMed

    Xing, Yifan; Wu, Jun

    2013-01-01

    This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking.

  15. [Scenario analysis--a method for long-term planning].

    PubMed

    Stavem, K

    2000-01-10

    Scenarios are known from the film industry, as detailed descriptions of films. This has given name to scenario analysis, a method for long term planning using descriptions of composite future pictures. This article is an introduction to the scenario method. Scenarios describe plausible, not necessarily probable, developments. They focus on problems and questions that decision makers must be aware of and prepare to deal with, and the consequences of alternative decisions. Scenarios are used in corporate and governmental planning, and they can be useful and complementary to traditional planning and extrapolation of past experience. The method is particularly useful in a rapidly changing world with shifting external conditions.

  16. Structural reliability analysis under evidence theory using the active learning kriging model

    NASA Astrophysics Data System (ADS)

    Yang, Xufeng; Liu, Yongshou; Ma, Panke

    2017-11-01

    Structural reliability analysis under evidence theory is investigated. It is rigorously proved that a surrogate model providing only correct sign prediction of the performance function can meet the accuracy requirement of evidence-theory-based reliability analysis. Accordingly, a method based on the active learning kriging model which only correctly predicts the sign of the performance function is proposed. Interval Monte Carlo simulation and a modified optimization method based on Karush-Kuhn-Tucker conditions are introduced to make the method more efficient in estimating the bounds of failure probability based on the kriging model. Four examples are investigated to demonstrate the efficiency and accuracy of the proposed method.

  17. Physiological condition of autumn-banded mallards and its relationship to hunting vulnerability

    USGS Publications Warehouse

    Hepp, G.R.; Blohm, R.J.; Reynolds, R.E.; Hines, J.E.; Nichols, J.D.

    1986-01-01

    An important topic of waterfowl ecology concerns the relationship between the physiological condition of ducks during the nonbreeding season and fitness, i.e., survival and future reproductive success. We investigated this subject using direct band recovery records of mallards (Anas platyrhynchos) banded in autumn (1 Oct-15 Dec) 1981-83 in the Mississippi Alluvial Valley (MAV) [USA]. A condition index, weight (g)/wing length (mm), was calculated for each duck, and we tested whether condition of mallards at time of banding was related to their probability of recovery during the hunting season. In 3 years, 5,610 mallards were banded and there were 234 direct recoveries. Three binary regression model was used to test the relationship between recovery probability and condition. Likelihood-ratio tests were conducted to determine the most suitable model. For mallards banded in autumn there was a negative relationship between physical condition and the probability of recovery. Mallards in poor condition at the time of banding had a greater probability of being recovered during the hunting season. In general, this was true for all ages and sex classes; however, the strongest relationship occurred for adult males.

  18. Information Use Differences in Hot and Cold Risk Processing: When Does Information About Probability Count in the Columbia Card Task?

    PubMed Central

    Markiewicz, Łukasz; Kubińska, Elżbieta

    2015-01-01

    Objective: This paper aims to provide insight into information processing differences between hot and cold risk taking decision tasks within a single domain. Decision theory defines risky situations using at least three parameters: outcome one (often a gain) with its probability and outcome two (often a loss) with a complementary probability. Although a rational agent should consider all of the parameters, s/he could potentially narrow their focus to only some of them, particularly when explicit Type 2 processes do not have the resources to override implicit Type 1 processes. Here we investigate differences in risky situation parameters' influence on hot and cold decisions. Although previous studies show lower information use in hot than in cold processes, they do not provide decision weight changes and therefore do not explain whether this difference results from worse concentration on each parameter of a risky situation (probability, gain amount, and loss amount) or from ignoring some parameters. Methods: Two studies were conducted, with participants performing the Columbia Card Task (CCT) in either its Cold or Hot version. In the first study, participants also performed the Cognitive Reflection Test (CRT) to monitor their ability to override Type 1 processing cues (implicit processes) with Type 2 explicit processes. Because hypothesis testing required comparison of the relative importance of risky situation decision weights (gain, loss, probability), we developed a novel way of measuring information use in the CCT by employing a conjoint analysis methodology. Results: Across the two studies, results indicated that in the CCT Cold condition decision makers concentrate on each information type (gain, loss, probability), but in the CCT Hot condition they concentrate mostly on a single parameter: probability of gain/loss. We also show that an individual's CRT score correlates with information use propensity in cold but not hot tasks. Thus, the affective dimension of hot tasks inhibits correct information processing, probably because it is difficult to engage Type 2 processes in such circumstances. Individuals' Type 2 processing abilities (measured by the CRT) assist greater use of information in cold tasks but do not help in hot tasks. PMID:26635652

  19. Technology-enhanced Interactive Teaching of Marginal, Joint and Conditional Probabilities: The Special Case of Bivariate Normal Distribution

    PubMed Central

    Dinov, Ivo D.; Kamino, Scott; Bhakhrani, Bilal; Christou, Nicolas

    2014-01-01

    Summary Data analysis requires subtle probability reasoning to answer questions like What is the chance of event A occurring, given that event B was observed? This generic question arises in discussions of many intriguing scientific questions such as What is the probability that an adolescent weighs between 120 and 140 pounds given that they are of average height? and What is the probability of (monetary) inflation exceeding 4% and housing price index below 110? To address such problems, learning some applied, theoretical or cross-disciplinary probability concepts is necessary. Teaching such courses can be improved by utilizing modern information technology resources. Students’ understanding of multivariate distributions, conditional probabilities, correlation and causation can be significantly strengthened by employing interactive web-based science educational resources. Independent of the type of a probability course (e.g. majors, minors or service probability course, rigorous measure-theoretic, applied or statistics course) student motivation, learning experiences and knowledge retention may be enhanced by blending modern technological tools within the classical conceptual pedagogical models. We have designed, implemented and disseminated a portable open-source web-application for teaching multivariate distributions, marginal, joint and conditional probabilities using the special case of bivariate Normal distribution. A real adolescent height and weight dataset is used to demonstrate the classroom utilization of the new web-application to address problems of parameter estimation, univariate and multivariate inference. PMID:25419016

  20. Technology-enhanced Interactive Teaching of Marginal, Joint and Conditional Probabilities: The Special Case of Bivariate Normal Distribution.

    PubMed

    Dinov, Ivo D; Kamino, Scott; Bhakhrani, Bilal; Christou, Nicolas

    2013-01-01

    Data analysis requires subtle probability reasoning to answer questions like What is the chance of event A occurring, given that event B was observed? This generic question arises in discussions of many intriguing scientific questions such as What is the probability that an adolescent weighs between 120 and 140 pounds given that they are of average height? and What is the probability of (monetary) inflation exceeding 4% and housing price index below 110? To address such problems, learning some applied, theoretical or cross-disciplinary probability concepts is necessary. Teaching such courses can be improved by utilizing modern information technology resources. Students' understanding of multivariate distributions, conditional probabilities, correlation and causation can be significantly strengthened by employing interactive web-based science educational resources. Independent of the type of a probability course (e.g. majors, minors or service probability course, rigorous measure-theoretic, applied or statistics course) student motivation, learning experiences and knowledge retention may be enhanced by blending modern technological tools within the classical conceptual pedagogical models. We have designed, implemented and disseminated a portable open-source web-application for teaching multivariate distributions, marginal, joint and conditional probabilities using the special case of bivariate Normal distribution. A real adolescent height and weight dataset is used to demonstrate the classroom utilization of the new web-application to address problems of parameter estimation, univariate and multivariate inference.

  1. Probability based models for estimation of wildfire risk

    Treesearch

    Haiganoush Preisler; D. R. Brillinger; R. E. Burgan; John Benoit

    2004-01-01

    We present a probability-based model for estimating fire risk. Risk is defined using three probabilities: the probability of fire occurrence; the conditional probability of a large fire given ignition; and the unconditional probability of a large fire. The model is based on grouped data at the 1 km²-day cell level. We fit a spatially and temporally explicit non-...

  2. New approach in bivariate drought duration and severity analysis

    NASA Astrophysics Data System (ADS)

    Montaseri, Majid; Amirataee, Babak; Rezaie, Hossein

    2018-04-01

    The copula functions have been widely applied as an advance technique to create joint probability distribution of drought duration and severity. The approach of data collection as well as the amount of data and dispersion of data series can last a significant impact on creating such joint probability distribution using copulas. Usually, such traditional analyses have shed an Unconnected Drought Runs (UDR) approach towards droughts. In other word, droughts with different durations would be independent of each other. Emphasis on such data collection method causes the omission of actual potentials of short-term extreme droughts located within a long-term UDR. Meanwhile, traditional method is often faced with significant gap in drought data series. However, a long-term UDR can be approached as a combination of short-term Connected Drought Runs (CDR). Therefore this study aims to evaluate systematically two UDR and CDR procedures in joint probability of drought duration and severity investigations. For this purpose, rainfall data (1971-2013) from 24 rain gauges in Lake Urmia basin, Iran were applied. Also, seven common univariate marginal distributions and seven types of bivariate copulas were examined. Compared to traditional approach, the results demonstrated a significant comparative advantage of the new approach. Such comparative advantages led to determine the correct copula function, more accurate estimation of copula parameter, more realistic estimation of joint/conditional probabilities of drought duration and severity and significant reduction in uncertainty for modeling.

  3. Probabilistic clustering of rainfall condition for landslide triggering

    NASA Astrophysics Data System (ADS)

    Rossi, Mauro; Luciani, Silvia; Cesare Mondini, Alessandro; Kirschbaum, Dalia; Valigi, Daniela; Guzzetti, Fausto

    2013-04-01

    Landslides are widespread natural and man made phenomena. They are triggered by earthquakes, rapid snow melting, human activities, but mostly by typhoons and intense or prolonged rainfall precipitations. In Italy mostly they are triggered by intense precipitation. The prediction of landslide triggered by rainfall precipitations over large areas is commonly based on the exploitation of empirical models. Empirical landslide rainfall thresholds are used to identify rainfall conditions for the possible landslide initiation. It's common practice to define rainfall thresholds by assuming a power law lower boundary in the rainfall intensity-duration or cumulative rainfall-duration space above which landslide can occur. The boundary is defined considering rainfall conditions associated to landslide phenomena using heuristic approaches, and doesn't consider rainfall events not causing landslides. Here we present a new fully automatic method to identify the probability of landslide occurrence associated to rainfall conditions characterized by measures of intensity or cumulative rainfall and rainfall duration. The method splits the rainfall events of the past in two groups: a group of events causing landslides and its complementary, then estimate their probabilistic distributions. Next, the probabilistic membership of the new event to one of the two clusters is estimated. The method doesn't assume a priori any threshold model, but simple exploits the real empirical distribution of rainfall events. The approach was applied in the Umbria region, Central Italy, where a catalogue of landslide timing, were obtained through the search of chronicles, blogs and other source of information in the period 2002-2012. The approach was tested using rain gauge measures and satellite rainfall estimates (NASA TRMM-v6), allowing in both cases the identification of the rainfall condition triggering landslides in the region. Compared to the other existing threshold definition methods, the prosed one (i) largely reduces the subjectivity in the choice of the threshold model and in how it is calculated, and (ii) it can be easier set-up in other study areas. The proposed approach can be conveniently integrated in existing early-warning system to improve the accuracy of the estimation of the real landslide occurrence probability associated to rainfall events and its uncertainty.

  4. Targeting the probability versus cost of feared outcomes in public speaking anxiety.

    PubMed

    Nelson, Elizabeth A; Deacon, Brett J; Lickel, James J; Sy, Jennifer T

    2010-04-01

    Cognitive-behavioral theory suggests that social phobia is maintained, in part, by overestimates of the probability and cost of negative social events. Indeed, empirically supported cognitive-behavioral treatments directly target these cognitive biases through the use of in vivo exposure or behavioral experiments. While cognitive-behavioral theories and treatment protocols emphasize the importance of targeting probability and cost biases in the reduction of social anxiety, few studies have examined specific techniques for reducing probability and cost bias, and thus the relative efficacy of exposure to the probability versus cost of negative social events is unknown. In the present study, 37 undergraduates with high public speaking anxiety were randomly assigned to a single-session intervention designed to reduce either the perceived probability or the perceived cost of negative outcomes associated with public speaking. Compared to participants in the probability treatment condition, those in the cost treatment condition demonstrated significantly greater improvement on measures of public speaking anxiety and cost estimates for negative social events. The superior efficacy of the cost treatment condition was mediated by greater treatment-related changes in social cost estimates. The clinical implications of these findings are discussed. Published by Elsevier Ltd.

  5. Conditioning geostatistical simulations of a heterogeneous paleo-fluvial bedrock aquifer using lithologs and pumping tests

    NASA Astrophysics Data System (ADS)

    Niazi, A.; Bentley, L. R.; Hayashi, M.

    2016-12-01

    Geostatistical simulations are used to construct heterogeneous aquifer models. Optimally, such simulations should be conditioned with both lithologic and hydraulic data. We introduce an approach to condition lithologic geostatistical simulations of a paleo-fluvial bedrock aquifer consisting of relatively high permeable sandstone channels embedded in relatively low permeable mudstone using hydraulic data. The hydraulic data consist of two-hour single well pumping tests extracted from the public water well database for a 250-km2 watershed in Alberta, Canada. First, lithologic models of the entire watershed are simulated and conditioned with hard lithological data using transition probability - Markov chain geostatistics (TPROGS). Then, a segment of the simulation around a pumping well is used to populate a flow model (FEFLOW) with either sand or mudstone. The values of the hydraulic conductivity and specific storage of sand and mudstone are then adjusted to minimize the difference between simulated and actual pumping test data using the parameter estimation program PEST. If the simulated pumping test data do not adequately match the measured data, the lithologic model is updated by locally deforming the lithology distribution using the probability perturbation method and the model parameters are again updated with PEST. This procedure is repeated until the simulated and measured data agree within a pre-determined tolerance. The procedure is repeated for each well that has pumping test data. The method creates a local groundwater model that honors both the lithologic model and pumping test data and provides estimates of hydraulic conductivity and specific storage. Eventually, the simulations will be integrated into a watershed-scale groundwater model.

  6. Multiple Imputation in Two-Stage Cluster Samples Using The Weighted Finite Population Bayesian Bootstrap.

    PubMed

    Zhou, Hanzhi; Elliott, Michael R; Raghunathan, Trivellore E

    2016-06-01

    Multistage sampling is often employed in survey samples for cost and convenience. However, accounting for clustering features when generating datasets for multiple imputation is a nontrivial task, particularly when, as is often the case, cluster sampling is accompanied by unequal probabilities of selection, necessitating case weights. Thus, multiple imputation often ignores complex sample designs and assumes simple random sampling when generating imputations, even though failing to account for complex sample design features is known to yield biased estimates and confidence intervals that have incorrect nominal coverage. In this article, we extend a recently developed, weighted, finite-population Bayesian bootstrap procedure to generate synthetic populations conditional on complex sample design data that can be treated as simple random samples at the imputation stage, obviating the need to directly model design features for imputation. We develop two forms of this method: one where the probabilities of selection are known at the first and second stages of the design, and the other, more common in public use files, where only the final weight based on the product of the two probabilities is known. We show that this method has advantages in terms of bias, mean square error, and coverage properties over methods where sample designs are ignored, with little loss in efficiency, even when compared with correct fully parametric models. An application is made using the National Automotive Sampling System Crashworthiness Data System, a multistage, unequal probability sample of U.S. passenger vehicle crashes, which suffers from a substantial amount of missing data in "Delta-V," a key crash severity measure.

  7. Multiple Imputation in Two-Stage Cluster Samples Using The Weighted Finite Population Bayesian Bootstrap

    PubMed Central

    Zhou, Hanzhi; Elliott, Michael R.; Raghunathan, Trivellore E.

    2017-01-01

    Multistage sampling is often employed in survey samples for cost and convenience. However, accounting for clustering features when generating datasets for multiple imputation is a nontrivial task, particularly when, as is often the case, cluster sampling is accompanied by unequal probabilities of selection, necessitating case weights. Thus, multiple imputation often ignores complex sample designs and assumes simple random sampling when generating imputations, even though failing to account for complex sample design features is known to yield biased estimates and confidence intervals that have incorrect nominal coverage. In this article, we extend a recently developed, weighted, finite-population Bayesian bootstrap procedure to generate synthetic populations conditional on complex sample design data that can be treated as simple random samples at the imputation stage, obviating the need to directly model design features for imputation. We develop two forms of this method: one where the probabilities of selection are known at the first and second stages of the design, and the other, more common in public use files, where only the final weight based on the product of the two probabilities is known. We show that this method has advantages in terms of bias, mean square error, and coverage properties over methods where sample designs are ignored, with little loss in efficiency, even when compared with correct fully parametric models. An application is made using the National Automotive Sampling System Crashworthiness Data System, a multistage, unequal probability sample of U.S. passenger vehicle crashes, which suffers from a substantial amount of missing data in “Delta-V,” a key crash severity measure. PMID:29226161

  8. Feasibility of streamlining an interactive Bayesian-based diagnostic support tool designed for clinical practice

    NASA Astrophysics Data System (ADS)

    Chen, Po-Hao; Botzolakis, Emmanuel; Mohan, Suyash; Bryan, R. N.; Cook, Tessa

    2016-03-01

    In radiology, diagnostic errors occur either through the failure of detection or incorrect interpretation. Errors are estimated to occur in 30-35% of all exams and contribute to 40-54% of medical malpractice litigations. In this work, we focus on reducing incorrect interpretation of known imaging features. Existing literature categorizes cognitive bias leading a radiologist to an incorrect diagnosis despite having correctly recognized the abnormal imaging features: anchoring bias, framing effect, availability bias, and premature closure. Computational methods make a unique contribution, as they do not exhibit the same cognitive biases as a human. Bayesian networks formalize the diagnostic process. They modify pre-test diagnostic probabilities using clinical and imaging features, arriving at a post-test probability for each possible diagnosis. To translate Bayesian networks to clinical practice, we implemented an entirely web-based open-source software tool. In this tool, the radiologist first selects a network of choice (e.g. basal ganglia). Then, large, clearly labeled buttons displaying salient imaging features are displayed on the screen serving both as a checklist and for input. As the radiologist inputs the value of an extracted imaging feature, the conditional probabilities of each possible diagnosis are updated. The software presents its level of diagnostic discrimination using a Pareto distribution chart, updated with each additional imaging feature. Active collaboration with the clinical radiologist is a feasible approach to software design and leads to design decisions closely coupling the complex mathematics of conditional probability in Bayesian networks with practice.

  9. A comprehensive multi-scenario based approach for a reliable flood-hazard assessment: a case-study application

    NASA Astrophysics Data System (ADS)

    Lanni, Cristiano; Mazzorana, Bruno; Volcan, Claudio; Bertagnolli, Rudi

    2015-04-01

    Flood hazard is generally assessed by assuming the return period of the rainfall as a proxy for the return period of the discharge and the related hydrograph. Frequently this deterministic view is extended also to the straightforward application of hydrodynamic models. However, the climate (i.e. precipitation), the catchment (i.e. geology, soil and antecedent soil-moisture condition) and the anthropogenic (i.e. drainage system and its regulation) systems interact in a complex way, and the occurrence probability of a flood inundation event can significantly differ from the occurrence probability of the triggering event (i.e. rainfall). In order to reliably determine the spatial patterns of flood intensities and probabilities, the rigorous determination of flood event scenarios is beneficial because it provides a clear, rationale method to recognize and unveil the inherent stochastic behavior of natural processes. Therefore, a multi-scenario approach for hazard assessment should be applied and should consider the possible events taking place in the area potentially subject to flooding (i.e. floodplains). Here, we apply a multi-scenario approach for the assessment of the flood hazard around the Idro lake (Italy). We consider and estimate the probability of occurrence of several scenarios related to the initial (i.e. initial water level in the lake) and boundary (i.e. shape of the hydrograph, downslope drainage, spillway opening operations) conditions characterizing the lake. Finally, we discuss the advantages and issues of the presented methodological procedure compared to traditional (and essentially deterministic) approaches.

  10. Using the Reliability Theory for Assessing the Decision Confidence Probability for Comparative Life Cycle Assessments.

    PubMed

    Wei, Wei; Larrey-Lassalle, Pyrène; Faure, Thierry; Dumoulin, Nicolas; Roux, Philippe; Mathias, Jean-Denis

    2016-03-01

    Comparative decision making process is widely used to identify which option (system, product, service, etc.) has smaller environmental footprints and for providing recommendations that help stakeholders take future decisions. However, the uncertainty problem complicates the comparison and the decision making. Probability-based decision support in LCA is a way to help stakeholders in their decision-making process. It calculates the decision confidence probability which expresses the probability of a option to have a smaller environmental impact than the one of another option. Here we apply the reliability theory to approximate the decision confidence probability. We compare the traditional Monte Carlo method with a reliability method called FORM method. The Monte Carlo method needs high computational time to calculate the decision confidence probability. The FORM method enables us to approximate the decision confidence probability with fewer simulations than the Monte Carlo method by approximating the response surface. Moreover, the FORM method calculates the associated importance factors that correspond to a sensitivity analysis in relation to the probability. The importance factors allow stakeholders to determine which factors influence their decision. Our results clearly show that the reliability method provides additional useful information to stakeholders as well as it reduces the computational time.

  11. Statistical approaches to the analysis of point count data: a little extra information can go a long way

    Treesearch

    George L. Farnsworth; James D. Nichols; John R. Sauer; Steven G. Fancy; Kenneth H. Pollock; Susan A. Shriner; Theodore R. Simons

    2005-01-01

    Point counts are a standard sampling procedure for many bird species, but lingering concerns still exist about the quality of information produced from the method. It is well known that variation in observer ability and environmental conditions can influence the detection probability of birds in point counts, but many biologists have been reluctant to abandon point...

  12. A fuzzy Bayesian network approach to quantify the human behaviour during an evacuation

    NASA Astrophysics Data System (ADS)

    Ramli, Nurulhuda; Ghani, Noraida Abdul; Ahmad, Nazihah

    2016-06-01

    Bayesian Network (BN) has been regarded as a successful representation of inter-relationship of factors affecting human behavior during an emergency. This paper is an extension of earlier work of quantifying the variables involved in the BN model of human behavior during an evacuation using a well-known direct probability elicitation technique. To overcome judgment bias and reduce the expert's burden in providing precise probability values, a new approach for the elicitation technique is required. This study proposes a new fuzzy BN approach for quantifying human behavior during an evacuation. Three major phases of methodology are involved, namely 1) development of qualitative model representing human factors during an evacuation, 2) quantification of BN model using fuzzy probability and 3) inferencing and interpreting the BN result. A case study of three inter-dependencies of human evacuation factors such as danger assessment ability, information about the threat and stressful conditions are used to illustrate the application of the proposed method. This approach will serve as an alternative to the conventional probability elicitation technique in understanding the human behavior during an evacuation.

  13. A method for modeling bias in a person's estimates of likelihoods of events

    NASA Technical Reports Server (NTRS)

    Nygren, Thomas E.; Morera, Osvaldo

    1988-01-01

    It is of practical importance in decision situations involving risk to train individuals to transform uncertainties into subjective probability estimates that are both accurate and unbiased. We have found that in decision situations involving risk, people often introduce subjective bias in their estimation of the likelihoods of events depending on whether the possible outcomes are perceived as being good or bad. Until now, however, the successful measurement of individual differences in the magnitude of such biases has not been attempted. In this paper we illustrate a modification of a procedure originally outlined by Davidson, Suppes, and Siegel (3) to allow for a quantitatively-based methodology for simultaneously estimating an individual's subjective utility and subjective probability functions. The procedure is now an interactive computer-based algorithm, DSS, that allows for the measurement of biases in probability estimation by obtaining independent measures of two subjective probability functions (S+ and S-) for winning (i.e., good outcomes) and for losing (i.e., bad outcomes) respectively for each individual, and for different experimental conditions within individuals. The algorithm and some recent empirical data are described.

  14. Hypothesis testing and earthquake prediction.

    PubMed

    Jackson, D D

    1996-04-30

    Requirements for testing include advance specification of the conditional rate density (probability per unit time, area, and magnitude) or, alternatively, probabilities for specified intervals of time, space, and magnitude. Here I consider testing fully specified hypotheses, with no parameter adjustments or arbitrary decisions allowed during the test period. Because it may take decades to validate prediction methods, it is worthwhile to formulate testable hypotheses carefully in advance. Earthquake prediction generally implies that the probability will be temporarily higher than normal. Such a statement requires knowledge of "normal behavior"--that is, it requires a null hypothesis. Hypotheses can be tested in three ways: (i) by comparing the number of actual earth-quakes to the number predicted, (ii) by comparing the likelihood score of actual earthquakes to the predicted distribution, and (iii) by comparing the likelihood ratio to that of a null hypothesis. The first two tests are purely self-consistency tests, while the third is a direct comparison of two hypotheses. Predictions made without a statement of probability are very difficult to test, and any test must be based on the ratio of earthquakes in and out of the forecast regions.

  15. Hypothesis testing and earthquake prediction.

    PubMed Central

    Jackson, D D

    1996-01-01

    Requirements for testing include advance specification of the conditional rate density (probability per unit time, area, and magnitude) or, alternatively, probabilities for specified intervals of time, space, and magnitude. Here I consider testing fully specified hypotheses, with no parameter adjustments or arbitrary decisions allowed during the test period. Because it may take decades to validate prediction methods, it is worthwhile to formulate testable hypotheses carefully in advance. Earthquake prediction generally implies that the probability will be temporarily higher than normal. Such a statement requires knowledge of "normal behavior"--that is, it requires a null hypothesis. Hypotheses can be tested in three ways: (i) by comparing the number of actual earth-quakes to the number predicted, (ii) by comparing the likelihood score of actual earthquakes to the predicted distribution, and (iii) by comparing the likelihood ratio to that of a null hypothesis. The first two tests are purely self-consistency tests, while the third is a direct comparison of two hypotheses. Predictions made without a statement of probability are very difficult to test, and any test must be based on the ratio of earthquakes in and out of the forecast regions. PMID:11607663

  16. Establishing endangered species recovery criteria using predictive simulation modeling

    USGS Publications Warehouse

    McGowan, Conor P.; Catlin, Daniel H.; Shaffer, Terry L.; Gratto-Trevor, Cheri L.; Aron, Carol

    2014-01-01

    Listing a species under the Endangered Species Act (ESA) and developing a recovery plan requires U.S. Fish and Wildlife Service to establish specific and measurable criteria for delisting. Generally, species are listed because they face (or are perceived to face) elevated risk of extinction due to issues such as habitat loss, invasive species, or other factors. Recovery plans identify recovery criteria that reduce extinction risk to an acceptable level. It logically follows that the recovery criteria, the defined conditions for removing a species from ESA protections, need to be closely related to extinction risk. Extinction probability is a population parameter estimated with a model that uses current demographic information to project the population into the future over a number of replicates, calculating the proportion of replicated populations that go extinct. We simulated extinction probabilities of piping plovers in the Great Plains and estimated the relationship between extinction probability and various demographic parameters. We tested the fit of regression models linking initial abundance, productivity, or population growth rate to extinction risk, and then, using the regression parameter estimates, determined the conditions required to reduce extinction probability to some pre-defined acceptable threshold. Binomial regression models with mean population growth rate and the natural log of initial abundance were the best predictors of extinction probability 50 years into the future. For example, based on our regression models, an initial abundance of approximately 2400 females with an expected mean population growth rate of 1.0 will limit extinction risk for piping plovers in the Great Plains to less than 0.048. Our method provides a straightforward way of developing specific and measurable recovery criteria linked directly to the core issue of extinction risk. Published by Elsevier Ltd.

  17. Stan : A Probabilistic Programming Language

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D.

    Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the No-U-Turn sampler, an adaptive form of Hamiltonian Monte Carlo sampling. Penalized maximum likelihood estimates are calculated using optimization methods such as the limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm. Stan is also a platform for computing log densities and their gradients and Hessians, which can be used in alternative algorithms such as variational Bayes, expectationmore » propagation, and marginal inference using approximate integration. To this end, Stan is set up so that the densities, gradients, and Hessians, along with intermediate quantities of the algorithm such as acceptance probabilities, are easily accessible. Stan can also be called from the command line using the cmdstan package, through R using the rstan package, and through Python using the pystan package. All three interfaces support sampling and optimization-based inference with diagnostics and posterior analysis. rstan and pystan also provide access to log probabilities, gradients, Hessians, parameter transforms, and specialized plotting.« less

  18. Trackline and point detection probabilities for acoustic surveys of Cuvier's and Blainville's beaked whales.

    PubMed

    Barlow, Jay; Tyack, Peter L; Johnson, Mark P; Baird, Robin W; Schorr, Gregory S; Andrews, Russel D; Aguilar de Soto, Natacha

    2013-09-01

    Acoustic survey methods can be used to estimate density and abundance using sounds produced by cetaceans and detected using hydrophones if the probability of detection can be estimated. For passive acoustic surveys, probability of detection at zero horizontal distance from a sensor, commonly called g(0), depends on the temporal patterns of vocalizations. Methods to estimate g(0) are developed based on the assumption that a beaked whale will be detected if it is producing regular echolocation clicks directly under or above a hydrophone. Data from acoustic recording tags placed on two species of beaked whales (Cuvier's beaked whale-Ziphius cavirostris and Blainville's beaked whale-Mesoplodon densirostris) are used to directly estimate the percentage of time they produce echolocation clicks. A model of vocal behavior for these species as a function of their diving behavior is applied to other types of dive data (from time-depth recorders and time-depth-transmitting satellite tags) to indirectly determine g(0) in other locations for low ambient noise conditions. Estimates of g(0) for a single instant in time are 0.28 [standard deviation (s.d.) = 0.05] for Cuvier's beaked whale and 0.19 (s.d. = 0.01) for Blainville's beaked whale.

  19. Stan : A Probabilistic Programming Language

    DOE PAGES

    Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D.; ...

    2017-01-01

    Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the No-U-Turn sampler, an adaptive form of Hamiltonian Monte Carlo sampling. Penalized maximum likelihood estimates are calculated using optimization methods such as the limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm. Stan is also a platform for computing log densities and their gradients and Hessians, which can be used in alternative algorithms such as variational Bayes, expectationmore » propagation, and marginal inference using approximate integration. To this end, Stan is set up so that the densities, gradients, and Hessians, along with intermediate quantities of the algorithm such as acceptance probabilities, are easily accessible. Stan can also be called from the command line using the cmdstan package, through R using the rstan package, and through Python using the pystan package. All three interfaces support sampling and optimization-based inference with diagnostics and posterior analysis. rstan and pystan also provide access to log probabilities, gradients, Hessians, parameter transforms, and specialized plotting.« less

  20. Stochastic approach for an unbiased estimation of the probability of a successful separation in conventional chromatography and sequential elution liquid chromatography.

    PubMed

    Ennis, Erin J; Foley, Joe P

    2016-07-15

    A stochastic approach was utilized to estimate the probability of a successful isocratic or gradient separation in conventional chromatography for numbers of sample components, peak capacities, and saturation factors ranging from 2 to 30, 20-300, and 0.017-1, respectively. The stochastic probabilities were obtained under conditions of (i) constant peak width ("gradient" conditions) and (ii) peak width increasing linearly with time ("isocratic/constant N" conditions). The isocratic and gradient probabilities obtained stochastically were compared with the probabilities predicted by Martin et al. [Anal. Chem., 58 (1986) 2200-2207] and Davis and Stoll [J. Chromatogr. A, (2014) 128-142]; for a given number of components and peak capacity the same trend is always observed: probability obtained with the isocratic stochastic approach

  1. Physics-based, Bayesian sequential detection method and system for radioactive contraband

    DOEpatents

    Candy, James V; Axelrod, Michael C; Breitfeller, Eric F; Chambers, David H; Guidry, Brian L; Manatt, Douglas R; Meyer, Alan W; Sale, Kenneth E

    2014-03-18

    A distributed sequential method and system for detecting and identifying radioactive contraband from highly uncertain (noisy) low-count, radionuclide measurements, i.e. an event mode sequence (EMS), using a statistical approach based on Bayesian inference and physics-model-based signal processing based on the representation of a radionuclide as a monoenergetic decomposition of monoenergetic sources. For a given photon event of the EMS, the appropriate monoenergy processing channel is determined using a confidence interval condition-based discriminator for the energy amplitude and interarrival time and parameter estimates are used to update a measured probability density function estimate for a target radionuclide. A sequential likelihood ratio test is then used to determine one of two threshold conditions signifying that the EMS is either identified as the target radionuclide or not, and if not, then repeating the process for the next sequential photon event of the EMS until one of the two threshold conditions is satisfied.

  2. Paleoseismic event dating and the conditional probability of large earthquakes on the southern San Andreas fault, California

    USGS Publications Warehouse

    Biasi, G.P.; Weldon, R.J.; Fumal, T.E.; Seitz, G.G.

    2002-01-01

    We introduce a quantitative approach to paleoearthquake dating and apply it to paleoseismic data from the Wrightwood and Pallett Creek sites on the southern San Andreas fault. We illustrate how stratigraphic ordering, sedimentological, and historical data can be used quantitatively in the process of estimating earthquake ages. Calibrated radiocarbon age distributions are used directly from layer dating through recurrence intervals and recurrence probability estimation. The method does not eliminate subjective judgements in event dating, but it does provide a means of systematically and objectively approaching the dating process. Date distributions for the most recent 14 events at Wrightwood are based on sample and contextual evidence in Fumal et al. (2002) and site context and slip history in Weldon et al. (2002). Pallett Creek event and dating descriptions are from published sources. For the five most recent events at Wrightwood, our results are consistent with previously published estimates, with generally comparable or narrower uncertainties. For Pallett Creek, our earthquake date estimates generally overlap with previous results but typically have broader uncertainties. Some event date estimates are very sensitive to details of data interpretation. The historical earthquake in 1857 ruptured the ground at both sites but is not constrained by radiocarbon data. Radiocarbon ages, peat accumulation rates, and historical constraints at Pallett Creek for event X yield a date estimate in the earliest 1800s and preclude a date in the late 1600s. This event is almost certainly the historical 1812 earthquake, as previously concluded by Sieh et al. (1989). This earthquake also produced ground deformation at Wrightwood. All events at Pallett Creek, except for event T, about A.D. 1360, and possibly event I, about A.D. 960, have corresponding events at Wrightwood with some overlap in age ranges. Event T falls during a period of low sedimentation at Wrightwood when conditions were not favorable for recording earthquake evidence. Previously proposed correlations of Pallett Creek X with Wrightwood W3 in the 1690s and Pallett Creek event V with W5 around 1480 (Fumal et al., 1993) appear unlikely after our dating reevaluation. Apparent internal inconsistencies among event, layer, and dating relationships around events R and V identify them as candidates for further investigation at the site. Conditional probabilities of earthquake recurrence were estimated using Poisson, lognormal, and empirical models. The presence of 12 or 13 events at Wrightwood during the same interval that 10 events are reported at Pallett Creek is reflected in mean recurrence intervals of 105 and 135 years, respectively. Average Poisson model 30-year conditional probabilities are about 20% at Pallett Creek and 25% at Wrightwood. The lognormal model conditional probabilities are somewhat higher, about 25% for Pallett Creek and 34% for Wrightwood. Lognormal variance ??ln estimates of 0.76 and 0.70, respectively, imply only weak time predictability. Conditional probabilities of 29% and 46%, respectively, were estimated for an empirical distribution derived from the data alone. Conditional probability uncertainties are dominated by the brevity of the event series; dating uncertainty contributes only secondarily. Wrightwood and Pallett Creek event chronologies both suggest variations in recurrence interval with time, hinting that some form of recurrence rate modulation may be at work, but formal testing shows that neither series is more ordered than might be produced by a Poisson process.

  3. How to Calculate Renyi Entropy from Heart Rate Variability, and Why it Matters for Detecting Cardiac Autonomic Neuropathy.

    PubMed

    Cornforth, David J; Tarvainen, Mika P; Jelinek, Herbert F

    2014-01-01

    Cardiac autonomic neuropathy (CAN) is a disease that involves nerve damage leading to an abnormal control of heart rate. An open question is to what extent this condition is detectable from heart rate variability (HRV), which provides information only on successive intervals between heart beats, yet is non-invasive and easy to obtain from a three-lead ECG recording. A variety of measures may be extracted from HRV, including time domain, frequency domain, and more complex non-linear measures. Among the latter, Renyi entropy has been proposed as a suitable measure that can be used to discriminate CAN from controls. However, all entropy methods require estimation of probabilities, and there are a number of ways in which this estimation can be made. In this work, we calculate Renyi entropy using several variations of the histogram method and a density method based on sequences of RR intervals. In all, we calculate Renyi entropy using nine methods and compare their effectiveness in separating the different classes of participants. We found that the histogram method using single RR intervals yields an entropy measure that is either incapable of discriminating CAN from controls, or that it provides little information that could not be gained from the SD of the RR intervals. In contrast, probabilities calculated using a density method based on sequences of RR intervals yield an entropy measure that provides good separation between groups of participants and provides information not available from the SD. The main contribution of this work is that different approaches to calculating probability may affect the success of detecting disease. Our results bring new clarity to the methods used to calculate the Renyi entropy in general, and in particular, to the successful detection of CAN.

  4. How to Calculate Renyi Entropy from Heart Rate Variability, and Why it Matters for Detecting Cardiac Autonomic Neuropathy

    PubMed Central

    Cornforth, David J.;  Tarvainen, Mika P.; Jelinek, Herbert F.

    2014-01-01

    Cardiac autonomic neuropathy (CAN) is a disease that involves nerve damage leading to an abnormal control of heart rate. An open question is to what extent this condition is detectable from heart rate variability (HRV), which provides information only on successive intervals between heart beats, yet is non-invasive and easy to obtain from a three-lead ECG recording. A variety of measures may be extracted from HRV, including time domain, frequency domain, and more complex non-linear measures. Among the latter, Renyi entropy has been proposed as a suitable measure that can be used to discriminate CAN from controls. However, all entropy methods require estimation of probabilities, and there are a number of ways in which this estimation can be made. In this work, we calculate Renyi entropy using several variations of the histogram method and a density method based on sequences of RR intervals. In all, we calculate Renyi entropy using nine methods and compare their effectiveness in separating the different classes of participants. We found that the histogram method using single RR intervals yields an entropy measure that is either incapable of discriminating CAN from controls, or that it provides little information that could not be gained from the SD of the RR intervals. In contrast, probabilities calculated using a density method based on sequences of RR intervals yield an entropy measure that provides good separation between groups of participants and provides information not available from the SD. The main contribution of this work is that different approaches to calculating probability may affect the success of detecting disease. Our results bring new clarity to the methods used to calculate the Renyi entropy in general, and in particular, to the successful detection of CAN. PMID:25250311

  5. Class-conditional feature modeling for ignitable liquid classification with substantial substrate contribution in fire debris analysis.

    PubMed

    Lopatka, Martin; Sigman, Michael E; Sjerps, Marjan J; Williams, Mary R; Vivó-Truyols, Gabriel

    2015-07-01

    Forensic chemical analysis of fire debris addresses the question of whether ignitable liquid residue is present in a sample and, if so, what type. Evidence evaluation regarding this question is complicated by interference from pyrolysis products of the substrate materials present in a fire. A method is developed to derive a set of class-conditional features for the evaluation of such complex samples. The use of a forensic reference collection allows characterization of the variation in complex mixtures of substrate materials and ignitable liquids even when the dominant feature is not specific to an ignitable liquid. Making use of a novel method for data imputation under complex mixing conditions, a distribution is modeled for the variation between pairs of samples containing similar ignitable liquid residues. Examining the covariance of variables within the different classes allows different weights to be placed on features more important in discerning the presence of a particular ignitable liquid residue. Performance of the method is evaluated using a database of total ion spectrum (TIS) measurements of ignitable liquid and fire debris samples. These measurements include 119 nominal masses measured by GC-MS and averaged across a chromatographic profile. Ignitable liquids are labeled using the American Society for Testing and Materials (ASTM) E1618 standard class definitions. Statistical analysis is performed in the class-conditional feature space wherein new forensic traces are represented based on their likeness to known samples contained in a forensic reference collection. The demonstrated method uses forensic reference data as the basis of probabilistic statements concerning the likelihood of the obtained analytical results given the presence of ignitable liquid residue of each of the ASTM classes (including a substrate only class). When prior probabilities of these classes can be assumed, these likelihoods can be connected to class probabilities. In order to compare the performance of this method to previous work, a uniform prior was assumed, resulting in an 81% accuracy for an independent test of 129 real burn samples. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Differences Among Patients That Make Their Tinnitus Worse or Better

    PubMed Central

    Tyler, Richard S.; Ji, Haihong; Coelho, Claudia; Gogel, Stephanie A.

    2015-01-01

    Purpose Our objective was to identify activities that influence tinnitus and to determine if conditional probabilities exist among such variables. Method Two hundred fifty-eight patients were asked the following two questions: “When you have your tinnitus, which of the following makes it worse?” and “Which of the following reduces your tinnitus?” Results Things that made tinnitus better included noise (31%) and relaxation (15%). Things that made tinnitus worse included being in a quiet place (48%), stress (36%), being in a noisy place (32%), and lack of sleep (27%). Almost 6% of patients suggested coffee/tea and 4% said certain foods made their tinnitus worse. Conditional probabilities indicated that for those whose tinnitus is not worse in quiet, it is usually not reduced by noise. For those whose tinnitus is not worse in noise, it is usually not reduced in quiet. Conclusion There are dramatic differences among patients. Such differences need to be considered in planning treatments. PMID:26649850

  7. An novel frequent probability pattern mining algorithm based on circuit simulation method in uncertain biological networks

    PubMed Central

    2014-01-01

    Background Motif mining has always been a hot research topic in bioinformatics. Most of current research on biological networks focuses on exact motif mining. However, due to the inevitable experimental error and noisy data, biological network data represented as the probability model could better reflect the authenticity and biological significance, therefore, it is more biological meaningful to discover probability motif in uncertain biological networks. One of the key steps in probability motif mining is frequent pattern discovery which is usually based on the possible world model having a relatively high computational complexity. Methods In this paper, we present a novel method for detecting frequent probability patterns based on circuit simulation in the uncertain biological networks. First, the partition based efficient search is applied to the non-tree like subgraph mining where the probability of occurrence in random networks is small. Then, an algorithm of probability isomorphic based on circuit simulation is proposed. The probability isomorphic combines the analysis of circuit topology structure with related physical properties of voltage in order to evaluate the probability isomorphism between probability subgraphs. The circuit simulation based probability isomorphic can avoid using traditional possible world model. Finally, based on the algorithm of probability subgraph isomorphism, two-step hierarchical clustering method is used to cluster subgraphs, and discover frequent probability patterns from the clusters. Results The experiment results on data sets of the Protein-Protein Interaction (PPI) networks and the transcriptional regulatory networks of E. coli and S. cerevisiae show that the proposed method can efficiently discover the frequent probability subgraphs. The discovered subgraphs in our study contain all probability motifs reported in the experiments published in other related papers. Conclusions The algorithm of probability graph isomorphism evaluation based on circuit simulation method excludes most of subgraphs which are not probability isomorphism and reduces the search space of the probability isomorphism subgraphs using the mismatch values in the node voltage set. It is an innovative way to find the frequent probability patterns, which can be efficiently applied to probability motif discovery problems in the further studies. PMID:25350277

  8. Assessing the Relationship Between Chronic Health Conditions and Productivity Loss Trajectories

    PubMed Central

    Pranksy, Glenn

    2014-01-01

    Objective: To examine the relationship between health conditions and the risk for membership in longitudinal trajectories of productivity loss. Methods: Trajectories of productivity loss from the ages of 25 to 44 years, previously identified in the National Longitudinal Survey of Youth (NLSY79), were combined with information on health conditions from the age 40 years health module in the NLSY79. Multinomial logistic regression was used to examine the relative risk of being in the low-risk, early-onset increasing risk, late-onset increasing risk, or high-risk trajectories compared with the no-risk trajectory for having various health conditions. Results: The trajectories with the greatest probability of productivity loss longitudinally had a greater prevalence of the individual health conditions and a greater total number of health conditions experienced. Conclusions: Health conditions are associated with specific longitudinal patterns of experiencing productivity loss. PMID:25479294

  9. An optimization method for condition based maintenance of aircraft fleet considering prognostics uncertainty.

    PubMed

    Feng, Qiang; Chen, Yiran; Sun, Bo; Li, Songjie

    2014-01-01

    An optimization method for condition based maintenance (CBM) of aircraft fleet considering prognostics uncertainty is proposed. The CBM and dispatch process of aircraft fleet is analyzed first, and the alternative strategy sets for single aircraft are given. Then, the optimization problem of fleet CBM with lower maintenance cost and dispatch risk is translated to the combinatorial optimization problem of single aircraft strategy. Remain useful life (RUL) distribution of the key line replaceable Module (LRM) has been transformed into the failure probability of the aircraft and the fleet health status matrix is established. And the calculation method of the costs and risks for mission based on health status matrix and maintenance matrix is given. Further, an optimization method for fleet dispatch and CBM under acceptable risk is proposed based on an improved genetic algorithm. Finally, a fleet of 10 aircrafts is studied to verify the proposed method. The results shows that it could realize optimization and control of the aircraft fleet oriented to mission success.

  10. An Optimization Method for Condition Based Maintenance of Aircraft Fleet Considering Prognostics Uncertainty

    PubMed Central

    Chen, Yiran; Sun, Bo; Li, Songjie

    2014-01-01

    An optimization method for condition based maintenance (CBM) of aircraft fleet considering prognostics uncertainty is proposed. The CBM and dispatch process of aircraft fleet is analyzed first, and the alternative strategy sets for single aircraft are given. Then, the optimization problem of fleet CBM with lower maintenance cost and dispatch risk is translated to the combinatorial optimization problem of single aircraft strategy. Remain useful life (RUL) distribution of the key line replaceable Module (LRM) has been transformed into the failure probability of the aircraft and the fleet health status matrix is established. And the calculation method of the costs and risks for mission based on health status matrix and maintenance matrix is given. Further, an optimization method for fleet dispatch and CBM under acceptable risk is proposed based on an improved genetic algorithm. Finally, a fleet of 10 aircrafts is studied to verify the proposed method. The results shows that it could realize optimization and control of the aircraft fleet oriented to mission success. PMID:24892046

  11. Bayesian soft X-ray tomography using non-stationary Gaussian Processes

    NASA Astrophysics Data System (ADS)

    Li, Dong; Svensson, J.; Thomsen, H.; Medina, F.; Werner, A.; Wolf, R.

    2013-08-01

    In this study, a Bayesian based non-stationary Gaussian Process (GP) method for the inference of soft X-ray emissivity distribution along with its associated uncertainties has been developed. For the investigation of equilibrium condition and fast magnetohydrodynamic behaviors in nuclear fusion plasmas, it is of importance to infer, especially in the plasma center, spatially resolved soft X-ray profiles from a limited number of noisy line integral measurements. For this ill-posed inversion problem, Bayesian probability theory can provide a posterior probability distribution over all possible solutions under given model assumptions. Specifically, the use of a non-stationary GP to model the emission allows the model to adapt to the varying length scales of the underlying diffusion process. In contrast to other conventional methods, the prior regularization is realized in a probability form which enhances the capability of uncertainty analysis, in consequence, scientists who concern the reliability of their results will benefit from it. Under the assumption of normally distributed noise, the posterior distribution evaluated at a discrete number of points becomes a multivariate normal distribution whose mean and covariance are analytically available, making inversions and calculation of uncertainty fast. Additionally, the hyper-parameters embedded in the model assumption can be optimized through a Bayesian Occam's Razor formalism and thereby automatically adjust the model complexity. This method is shown to produce convincing reconstructions and good agreements with independently calculated results from the Maximum Entropy and Equilibrium-Based Iterative Tomography Algorithm methods.

  12. Bayesian soft X-ray tomography using non-stationary Gaussian Processes.

    PubMed

    Li, Dong; Svensson, J; Thomsen, H; Medina, F; Werner, A; Wolf, R

    2013-08-01

    In this study, a Bayesian based non-stationary Gaussian Process (GP) method for the inference of soft X-ray emissivity distribution along with its associated uncertainties has been developed. For the investigation of equilibrium condition and fast magnetohydrodynamic behaviors in nuclear fusion plasmas, it is of importance to infer, especially in the plasma center, spatially resolved soft X-ray profiles from a limited number of noisy line integral measurements. For this ill-posed inversion problem, Bayesian probability theory can provide a posterior probability distribution over all possible solutions under given model assumptions. Specifically, the use of a non-stationary GP to model the emission allows the model to adapt to the varying length scales of the underlying diffusion process. In contrast to other conventional methods, the prior regularization is realized in a probability form which enhances the capability of uncertainty analysis, in consequence, scientists who concern the reliability of their results will benefit from it. Under the assumption of normally distributed noise, the posterior distribution evaluated at a discrete number of points becomes a multivariate normal distribution whose mean and covariance are analytically available, making inversions and calculation of uncertainty fast. Additionally, the hyper-parameters embedded in the model assumption can be optimized through a Bayesian Occam's Razor formalism and thereby automatically adjust the model complexity. This method is shown to produce convincing reconstructions and good agreements with independently calculated results from the Maximum Entropy and Equilibrium-Based Iterative Tomography Algorithm methods.

  13. A regulation probability model-based meta-analysis of multiple transcriptomics data sets for cancer biomarker identification.

    PubMed

    Xie, Xin-Ping; Xie, Yu-Feng; Wang, Hong-Qiang

    2017-08-23

    Large-scale accumulation of omics data poses a pressing challenge of integrative analysis of multiple data sets in bioinformatics. An open question of such integrative analysis is how to pinpoint consistent but subtle gene activity patterns across studies. Study heterogeneity needs to be addressed carefully for this goal. This paper proposes a regulation probability model-based meta-analysis, jGRP, for identifying differentially expressed genes (DEGs). The method integrates multiple transcriptomics data sets in a gene regulatory space instead of in a gene expression space, which makes it easy to capture and manage data heterogeneity across studies from different laboratories or platforms. Specifically, we transform gene expression profiles into a united gene regulation profile across studies by mathematically defining two gene regulation events between two conditions and estimating their occurring probabilities in a sample. Finally, a novel differential expression statistic is established based on the gene regulation profiles, realizing accurate and flexible identification of DEGs in gene regulation space. We evaluated the proposed method on simulation data and real-world cancer datasets and showed the effectiveness and efficiency of jGRP in identifying DEGs identification in the context of meta-analysis. Data heterogeneity largely influences the performance of meta-analysis of DEGs identification. Existing different meta-analysis methods were revealed to exhibit very different degrees of sensitivity to study heterogeneity. The proposed method, jGRP, can be a standalone tool due to its united framework and controllable way to deal with study heterogeneity.

  14. Conditional Probability Analysis: A Statistical Tool for Environmental Analysis.

    EPA Science Inventory

    The use and application of environmental conditional probability analysis (CPA) is relatively recent. The first presentation using CPA was made in 2002 at the New England Association of Environmental Biologists Annual Meeting in Newport. Rhode Island. CPA has been used since the...

  15. Approaches to quantifying long-term continental shelf sediment transport with an example from the Northern California STRESS mid-shelf site

    NASA Astrophysics Data System (ADS)

    Harris, Courtney K.; Wiberg, Patricia L.

    1997-09-01

    Modeling shelf sediment transport rates and bed reworking depths is problematic when the wave and current forcing conditions are not precisely known, as is usually the case when long-term sedimentation patterns are of interest. Two approaches to modeling sediment transport under such circumstances are considered. The first relies on measured or simulated time series of flow conditions to drive model calculations. The second approach uses as model input probability distribution functions of bottom boundary layer flow conditions developed from wave and current measurements. Sediment transport rates, frequency of bed resuspension by waves and currents, and bed reworking calculated using the two methods are compared at the mid-shelf STRESS (Sediment TRansport on Shelves and Slopes) site on the northern California continental shelf. Current, wave and resuspension measurements at the site are used to generate model inputs and test model results. An 11-year record of bottom wave orbital velocity, calculated from surface wave spectra measured by the National Data Buoy Center (NDBC) Buoy 46013 and verified against bottom tripod measurements, is used to characterize the frequency and duration of wave-driven transport events and to estimate the joint probability distribution of wave orbital velocity and period. A 109-day record of hourly current measurements 10 m above bottom is used to estimate the probability distribution of bottom boundary layer current velocity at this site and to develop an auto-regressive model to simulate current velocities for times when direct measurements of currents are not available. Frequency of transport, the maximum volume of suspended sediment, and average flux calculated using measured wave and simulated current time series agree well with values calculated using measured time series. A probabilistic approach is more amenable to calculations over time scales longer than existing wave records, but it tends to underestimate net transport because it does not capture the episodic nature of transport events. Both methods enable estimates to be made of the uncertainty in transport quantities that arise from an incomplete knowledge of the specific timing of wave and current conditions. 1997 Elsevier Science Ltd

  16. Survival of Parents and Siblings of Supercentenarians

    PubMed Central

    Perls, Thomas; Kohler, Iliana V.; Andersen, Stacy; Schoenhofen, Emily; Pennington, JaeMi; Young, Robert; Terry, Dellara; Elo, Irma T.

    2011-01-01

    Background Given previous evidence of familial predisposition for longevity, we hypothesized that siblings and parents of supercentenarians (age ≥ 110 years) were predisposed to survival to very old age and that, relative to their birth cohorts, their relative survival probabilities (RSPs) are even higher than what has been observed for the siblings of centenarians. Methods Mean age at death conditional upon survival to ages 20 and 50 and survival probabilities from ages 20 and 50 to higher ages were determined for 50 male and 56 female siblings and 54 parents of 29 supercentenarians. These estimates were contrasted with comparable estimates based on birth cohort-specific mortality experience for the United States and Sweden. Results Conditional on survival to age 20 years, mean age at death of supercentenarians’ siblings was ~81 years for men and women. Compared with respective Swedish and U.S. birth cohorts, these estimates were 17%–20% (12–14 years) higher for the brothers and 11%–14% (8–10 years) higher for the sisters. Sisters had a 2.9 times greater probability and brothers had a 4.3 times greater probability of survival from age 20 to age 90. Mothers of supercentenarians had a 5.8 times greater probability of surviving from age 50 to age 90. Fathers also experienced an increased survival probability from age 50 to age 90 of 2.7, but it failed to attain statistical significance. Conclusions The RSPs of siblings and mothers of supercentenarians revealed a substantial survival advantage and were most pronounced at the oldest ages. The RSP to age 90 for siblings of supercentenarians was approximately the same as that reported for siblings of centenarians. It is possible that greater RSPs are observed for reaching even higher ages such as 100 years, but a larger sample of supercentenarians and their siblings and parents is needed to investigate this possibility. PMID:17895443

  17. Quantifying seining detection probability for fishes of Great Plains sand‐bed rivers

    USGS Publications Warehouse

    Mollenhauer, Robert; Logue, Daniel R.; Brewer, Shannon K.

    2018-01-01

    Species detection error (i.e., imperfect and variable detection probability) is an essential consideration when investigators map distributions and interpret habitat associations. When fish detection error that is due to highly variable instream environments needs to be addressed, sand‐bed streams of the Great Plains represent a unique challenge. We quantified seining detection probability for diminutive Great Plains fishes across a range of sampling conditions in two sand‐bed rivers in Oklahoma. Imperfect detection resulted in underestimates of species occurrence using naïve estimates, particularly for less common fishes. Seining detection probability also varied among fishes and across sampling conditions. We observed a quadratic relationship between water depth and detection probability, in which the exact nature of the relationship was species‐specific and dependent on water clarity. Similarly, the direction of the relationship between water clarity and detection probability was species‐specific and dependent on differences in water depth. The relationship between water temperature and detection probability was also species dependent, where both the magnitude and direction of the relationship varied among fishes. We showed how ignoring detection error confounded an underlying relationship between species occurrence and water depth. Despite imperfect and heterogeneous detection, our results support that determining species absence can be accomplished with two to six spatially replicated seine hauls per 200‐m reach under average sampling conditions; however, required effort would be higher under certain conditions. Detection probability was low for the Arkansas River Shiner Notropis girardi, which is federally listed as threatened, and more than 10 seine hauls per 200‐m reach would be required to assess presence across sampling conditions. Our model allows scientists to estimate sampling effort to confidently assess species occurrence, which maximizes the use of available resources. Increased implementation of approaches that consider detection error promote ecological advancements and conservation and management decisions that are better informed.

  18. On defense strategies for system of systems using aggregated correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S.; Imam, Neena; Ma, Chris Y. T.

    2017-04-01

    We consider a System of Systems (SoS) wherein each system Si, i = 1; 2; ... ;N, is composed of discrete cyber and physical components which can be attacked and reinforced. We characterize the disruptions using aggregate failure correlation functions given by the conditional failure probability of SoS given the failure of an individual system. We formulate the problem of ensuring the survival of SoS as a game between an attacker and a provider, each with a utility function composed of asurvival probability term and a cost term, both expressed in terms of the number of components attacked and reinforced.more » The survival probabilities of systems satisfy simple product-form, first-order differential conditions, which simplify the Nash Equilibrium (NE) conditions. We derive the sensitivity functions that highlight the dependence of SoS survival probability at NE on cost terms, correlation functions, and individual system survival probabilities.We apply these results to a simplified model of distributed cloud computing infrastructure.« less

  19. Single, Complete, Probability Spaces Consistent With EPR-Bohm-Bell Experimental Data

    NASA Astrophysics Data System (ADS)

    Avis, David; Fischer, Paul; Hilbert, Astrid; Khrennikov, Andrei

    2009-03-01

    We show that paradoxical consequences of violations of Bell's inequality are induced by the use of an unsuitable probabilistic description for the EPR-Bohm-Bell experiment. The conventional description (due to Bell) is based on a combination of statistical data collected for different settings of polarization beam splitters (PBSs). In fact, such data consists of some conditional probabilities which only partially define a probability space. Ignoring this conditioning leads to apparent contradictions in the classical probabilistic model (due to Kolmogorov). We show how to make a completely consistent probabilistic model by taking into account the probabilities of selecting the settings of the PBSs. Our model matches both the experimental data and is consistent with classical probability theory.

  20. Logic, probability, and human reasoning.

    PubMed

    Johnson-Laird, P N; Khemlani, Sangeet S; Goodwin, Geoffrey P

    2015-04-01

    This review addresses the long-standing puzzle of how logic and probability fit together in human reasoning. Many cognitive scientists argue that conventional logic cannot underlie deductions, because it never requires valid conclusions to be withdrawn - not even if they are false; it treats conditional assertions implausibly; and it yields many vapid, although valid, conclusions. A new paradigm of probability logic allows conclusions to be withdrawn and treats conditionals more plausibly, although it does not address the problem of vapidity. The theory of mental models solves all of these problems. It explains how people reason about probabilities and postulates that the machinery for reasoning is itself probabilistic. Recent investigations accordingly suggest a way to integrate probability and deduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Measurement of the Errors of Service Altimeter Installations During Landing-Approach and Take-Off Operations

    NASA Technical Reports Server (NTRS)

    Gracey, William; Jewel, Joseph W., Jr.; Carpenter, Gene T.

    1960-01-01

    The overall errors of the service altimeter installations of a variety of civil transport, military, and general-aviation airplanes have been experimentally determined during normal landing-approach and take-off operations. The average height above the runway at which the data were obtained was about 280 feet for the landings and about 440 feet for the take-offs. An analysis of the data obtained from 196 airplanes during 415 landing approaches and from 70 airplanes during 152 take-offs showed that: 1. The overall error of the altimeter installations in the landing- approach condition had a probable value (50 percent probability) of +/- 36 feet and a maximum probable value (99.7 percent probability) of +/- 159 feet with a bias of +10 feet. 2. The overall error in the take-off condition had a probable value of +/- 47 feet and a maximum probable value of +/- 207 feet with a bias of -33 feet. 3. The overall errors of the military airplanes were generally larger than those of the civil transports in both the landing-approach and take-off conditions. In the landing-approach condition the probable error and the maximum probable error of the military airplanes were +/- 43 and +/- 189 feet, respectively, with a bias of +15 feet, whereas those for the civil transports were +/- 22 and +/- 96 feet, respectively, with a bias of +1 foot. 4. The bias values of the error distributions (+10 feet for the landings and -33 feet for the take-offs) appear to represent a measure of the hysteresis characteristics (after effect and recovery) and friction of the instrument and the pressure lag of the tubing-instrument system.

  2. The Dependence Structure of Conditional Probabilities in a Contingency Table

    ERIC Educational Resources Information Center

    Joarder, Anwar H.; Al-Sabah, Walid S.

    2002-01-01

    Conditional probability and statistical independence can be better explained with contingency tables. In this note some special cases of 2 x 2 contingency tables are considered. In turn an interesting insight into statistical dependence as well as independence of events is obtained.

  3. Comparison of Aperture Averaging and Receiver Diversity Techniques for Free Space Optical Links in Presence of Turbulence and Various Weather Conditions

    NASA Astrophysics Data System (ADS)

    Kaur, Prabhmandeep; Jain, Virander Kumar; Kar, Subrat

    2014-12-01

    In this paper, we investigate the performance of a Free Space Optic (FSO) link considering the impairments caused by the presence of various weather conditions such as very clear air, drizzle, haze, fog, etc., and turbulence in the atmosphere. Analytic expression for the outage probability is derived using the gamma-gamma distribution for turbulence and accounting the effect of weather conditions using the Beer-Lambert's law. The effect of receiver diversity schemes using aperture averaging and array receivers on the outage probability is studied and compared. As the aperture diameter is increased, the outage probability decreases irrespective of the turbulence strength (weak, moderate and strong) and weather conditions. Similar effects are observed when the number of direct detection receivers in the array are increased. However, it is seen that as the desired level of performance in terms of the outage probability decreases, array receiver becomes the preferred choice as compared to the receiver with aperture averaging.

  4. Estimation for general birth-death processes

    PubMed Central

    Crawford, Forrest W.; Minin, Vladimir N.; Suchard, Marc A.

    2013-01-01

    Birth-death processes (BDPs) are continuous-time Markov chains that track the number of “particles” in a system over time. While widely used in population biology, genetics and ecology, statistical inference of the instantaneous particle birth and death rates remains largely limited to restrictive linear BDPs in which per-particle birth and death rates are constant. Researchers often observe the number of particles at discrete times, necessitating data augmentation procedures such as expectation-maximization (EM) to find maximum likelihood estimates. For BDPs on finite state-spaces, there are powerful matrix methods for computing the conditional expectations needed for the E-step of the EM algorithm. For BDPs on infinite state-spaces, closed-form solutions for the E-step are available for some linear models, but most previous work has resorted to time-consuming simulation. Remarkably, we show that the E-step conditional expectations can be expressed as convolutions of computable transition probabilities for any general BDP with arbitrary rates. This important observation, along with a convenient continued fraction representation of the Laplace transforms of the transition probabilities, allows for novel and efficient computation of the conditional expectations for all BDPs, eliminating the need for truncation of the state-space or costly simulation. We use this insight to derive EM algorithms that yield maximum likelihood estimation for general BDPs characterized by various rate models, including generalized linear models. We show that our Laplace convolution technique outperforms competing methods when they are available and demonstrate a technique to accelerate EM algorithm convergence. We validate our approach using synthetic data and then apply our methods to cancer cell growth and estimation of mutation parameters in microsatellite evolution. PMID:25328261

  5. Estimation for general birth-death processes.

    PubMed

    Crawford, Forrest W; Minin, Vladimir N; Suchard, Marc A

    2014-04-01

    Birth-death processes (BDPs) are continuous-time Markov chains that track the number of "particles" in a system over time. While widely used in population biology, genetics and ecology, statistical inference of the instantaneous particle birth and death rates remains largely limited to restrictive linear BDPs in which per-particle birth and death rates are constant. Researchers often observe the number of particles at discrete times, necessitating data augmentation procedures such as expectation-maximization (EM) to find maximum likelihood estimates. For BDPs on finite state-spaces, there are powerful matrix methods for computing the conditional expectations needed for the E-step of the EM algorithm. For BDPs on infinite state-spaces, closed-form solutions for the E-step are available for some linear models, but most previous work has resorted to time-consuming simulation. Remarkably, we show that the E-step conditional expectations can be expressed as convolutions of computable transition probabilities for any general BDP with arbitrary rates. This important observation, along with a convenient continued fraction representation of the Laplace transforms of the transition probabilities, allows for novel and efficient computation of the conditional expectations for all BDPs, eliminating the need for truncation of the state-space or costly simulation. We use this insight to derive EM algorithms that yield maximum likelihood estimation for general BDPs characterized by various rate models, including generalized linear models. We show that our Laplace convolution technique outperforms competing methods when they are available and demonstrate a technique to accelerate EM algorithm convergence. We validate our approach using synthetic data and then apply our methods to cancer cell growth and estimation of mutation parameters in microsatellite evolution.

  6. High effective algorithm of the detection and identification of substance using the noisy reflected THz pulse

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Trofimov, Vladislav V.; Tikhomirov, Vasily V.

    2015-08-01

    Principal limitations of the standard THz-TDS method for the detection and identification are demonstrated under real conditions (at long distance of about 3.5 m and at a high relative humidity more than 50%) using neutral substances thick paper bag, paper napkins and chocolate. We show also that the THz-TDS method detects spectral features of dangerous substances even if the THz signals were measured in laboratory conditions (at distance 30-40 cm from the receiver and at a low relative humidity less than 2%); silicon-based semiconductors were used as the samples. However, the integral correlation criteria, based on SDA method, allows us to detect the absence of dangerous substances in the neutral substances. The discussed algorithm shows high probability of the substance identification and a reliability of realization in practice, especially for security applications and non-destructive testing.

  7. Interactive effects of senescence and natural disturbance on the annual survival probabilities of snail kites

    USGS Publications Warehouse

    Reichert, Brian E.; Martin, J.; Kendall, William L.; Cattau, Christopher E.; Kitchens, Wiley M.

    2010-01-01

    Individuals in wild populations face risks associated with both intrinsic (i.e. aging) and external (i.e. environmental) sources of mortality. Condition-dependent mortality occurs when there is an interaction between such factors; however, few studies have clearly demonstrated condition-dependent mortality and some have even argued that condition-dependent mortality does not occur in wild avian populations. Using large sample sizes (2084 individuals, 3746 re-sights) of individual-based longitudinal data collected over a 33 year period (1976-2008) on multiple cohorts, we used a capture-mark-recapture framework to model age-dependent survival in the snail kite Rostrhamus sociabilis plumbeus population in Florida. Adding to the growing amount of evidence for actuarial senescence in wild populations, we found evidence of senescent declines in survival probabilities in adult kites. We also tested the hypothesis that older kites experienced condition-dependent mortality during a range-wide drought event (2000-2002). The results provide convincing evidence that the annual survival probability of senescent kites was disproportionately affected by the drought relative to the survival probability of prime-aged adults. To our knowledge, this is the first evidence of condition-dependent mortality to be demonstrated in a wild avian population, a finding which challenges recent conclusions drawn in the literature. Our study suggests that senescence and condition-dependent mortality can affect the demography of wild avian populations. Accounting for these sources of variation may be particularly important to appropriately compute estimates of population growth rate, and probabilities of quasi-extinctions.

  8. BIODEGRADATION PROBABILITY PROGRAM (BIODEG)

    EPA Science Inventory

    The Biodegradation Probability Program (BIODEG) calculates the probability that a chemical under aerobic conditions with mixed cultures of microorganisms will biodegrade rapidly or slowly. It uses fragment constants developed using multiple linear and non-linear regressions and d...

  9. Theory of atomic spectral emission intensity

    NASA Astrophysics Data System (ADS)

    Yngström, Sten

    1994-07-01

    The theoretical derivation of a new spectral line intensity formula for atomic radiative emission is presented. The theory is based on first principles of quantum physics, electrodynamics, and statistical physics. Quantum rules lead to revision of the conventional principle of local thermal equilibrium of matter and radiation. Study of electrodynamics suggests absence of spectral emission from fractions of the numbers of atoms and ions in a plasma due to radiative inhibition caused by electromagnetic force fields. Statistical probability methods are extended by the statement: A macroscopic physical system develops in the most probable of all conceivable ways consistent with the constraining conditions for the system. The crucial role of statistical physics in transforming quantum logic into common sense logic is stressed. The theory is strongly supported by experimental evidence.

  10. Bayesian anomaly detection in monitoring data applying relevance vector machine

    NASA Astrophysics Data System (ADS)

    Saito, Tomoo

    2011-04-01

    A method for automatically classifying the monitoring data into two categories, normal and anomaly, is developed in order to remove anomalous data included in the enormous amount of monitoring data, applying the relevance vector machine (RVM) to a probabilistic discriminative model with basis functions and their weight parameters whose posterior PDF (probabilistic density function) conditional on the learning data set is given by Bayes' theorem. The proposed framework is applied to actual monitoring data sets containing some anomalous data collected at two buildings in Tokyo, Japan, which shows that the trained models discriminate anomalous data from normal data very clearly, giving high probabilities of being normal to normal data and low probabilities of being normal to anomalous data.

  11. The non-Gaussian joint probability density function of slope and elevation for a nonlinear gravity wave field. [in ocean surface

    NASA Technical Reports Server (NTRS)

    Huang, N. E.; Long, S. R.; Bliven, L. F.; Tung, C.-C.

    1984-01-01

    On the basis of the mapping method developed by Huang et al. (1983), an analytic expression for the non-Gaussian joint probability density function of slope and elevation for nonlinear gravity waves is derived. Various conditional and marginal density functions are also obtained through the joint density function. The analytic results are compared with a series of carefully controlled laboratory observations, and good agreement is noted. Furthermore, the laboratory wind wave field observations indicate that the capillary or capillary-gravity waves may not be the dominant components in determining the total roughness of the wave field. Thus, the analytic results, though derived specifically for the gravity waves, may have more general applications.

  12. Evidential analysis of difference images for change detection of multitemporal remote sensing images

    NASA Astrophysics Data System (ADS)

    Chen, Yin; Peng, Lijuan; Cremers, Armin B.

    2018-03-01

    In this article, we develop two methods for unsupervised change detection in multitemporal remote sensing images based on Dempster-Shafer's theory of evidence (DST). In most unsupervised change detection methods, the probability of difference image is assumed to be characterized by mixture models, whose parameters are estimated by the expectation maximization (EM) method. However, the main drawback of the EM method is that it does not consider spatial contextual information, which may entail rather noisy detection results with numerous spurious alarms. To remedy this, we firstly develop an evidence theory based EM method (EEM) which incorporates spatial contextual information in EM by iteratively fusing the belief assignments of neighboring pixels to the central pixel. Secondly, an evidential labeling method in the sense of maximizing a posteriori probability (MAP) is proposed in order to further enhance the detection result. It first uses the parameters estimated by EEM to initialize the class labels of a difference image. Then it iteratively fuses class conditional information and spatial contextual information, and updates labels and class parameters. Finally it converges to a fixed state which gives the detection result. A simulated image set and two real remote sensing data sets are used to evaluate the two evidential change detection methods. Experimental results show that the new evidential methods are comparable to other prevalent methods in terms of total error rate.

  13. Pattern recognition for passive polarimetric data using nonparametric classifiers

    NASA Astrophysics Data System (ADS)

    Thilak, Vimal; Saini, Jatinder; Voelz, David G.; Creusere, Charles D.

    2005-08-01

    Passive polarization based imaging is a useful tool in computer vision and pattern recognition. A passive polarization imaging system forms a polarimetric image from the reflection of ambient light that contains useful information for computer vision tasks such as object detection (classification) and recognition. Applications of polarization based pattern recognition include material classification and automatic shape recognition. In this paper, we present two target detection algorithms for images captured by a passive polarimetric imaging system. The proposed detection algorithms are based on Bayesian decision theory. In these approaches, an object can belong to one of any given number classes and classification involves making decisions that minimize the average probability of making incorrect decisions. This minimum is achieved by assigning an object to the class that maximizes the a posteriori probability. Computing a posteriori probabilities requires estimates of class conditional probability density functions (likelihoods) and prior probabilities. A Probabilistic neural network (PNN), which is a nonparametric method that can compute Bayes optimal boundaries, and a -nearest neighbor (KNN) classifier, is used for density estimation and classification. The proposed algorithms are applied to polarimetric image data gathered in the laboratory with a liquid crystal-based system. The experimental results validate the effectiveness of the above algorithms for target detection from polarimetric data.

  14. Anismus: the cause of constipation? Results of investigation and treatment.

    PubMed

    Duthie, G S; Bartolo, D C

    1992-01-01

    Anismus, or failure of the somatic sphincter apparatus to relax at defecation, has been implicated as a major contributor to the problem of obstructed defecation. Current diagnostic methods depend on laboratory measurements of attempted defecation and the most complex, dynamic proctography has been the mainstay of diagnosis. Using a new computerized ambulatory method of recording sphincter function in these patients at home, we report an 80% reduction in our diagnostic rate suggesting that conventional tests fail to accurately diagnose this condition, probably because they poorly represent the natural physiology of defecation. Treatment of this distressing condition is more complex and a variety of surgical and pharmacological measures have failed. Biofeedback retraining of anorectal function of these patients has been very successful and represents the management of choice.

  15. Review of probabilistic analysis of dynamic response of systems with random parameters

    NASA Technical Reports Server (NTRS)

    Kozin, F.; Klosner, J. M.

    1989-01-01

    The various methods that have been studied in the past to allow probabilistic analysis of dynamic response for systems with random parameters are reviewed. Dynamic response may have been obtained deterministically if the variations about the nominal values were small; however, for space structures which require precise pointing, the variations about the nominal values of the structural details and of the environmental conditions are too large to be considered as negligible. These uncertainties are accounted for in terms of probability distributions about their nominal values. The quantities of concern for describing the response of the structure includes displacements, velocities, and the distributions of natural frequencies. The exact statistical characterization of the response would yield joint probability distributions for the response variables. Since the random quantities will appear as coefficients, determining the exact distributions will be difficult at best. Thus, certain approximations will have to be made. A number of techniques that are available are discussed, even in the nonlinear case. The methods that are described were: (1) Liouville's equation; (2) perturbation methods; (3) mean square approximate systems; and (4) nonlinear systems with approximation by linear systems.

  16. Probabilistic Analysis of Aircraft Gas Turbine Disk Life and Reliability

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Zaretsky, Erwin V.; August, Richard

    1999-01-01

    Two series of low cycle fatigue (LCF) test data for two groups of different aircraft gas turbine engine compressor disk geometries were reanalyzed and compared using Weibull statistics. Both groups of disks were manufactured from titanium (Ti-6Al-4V) alloy. A NASA Glenn Research Center developed probabilistic computer code Probable Cause was used to predict disk life and reliability. A material-life factor A was determined for titanium (Ti-6Al-4V) alloy based upon fatigue disk data and successfully applied to predict the life of the disks as a function of speed. A comparison was made with the currently used life prediction method based upon crack growth rate. Applying an endurance limit to the computer code did not significantly affect the predicted lives under engine operating conditions. Failure location prediction correlates with those experimentally observed in the LCF tests. A reasonable correlation was obtained between the predicted disk lives using the Probable Cause code and a modified crack growth method for life prediction. Both methods slightly overpredict life for one disk group and significantly under predict it for the other.

  17. Interval forecasting of cyberattack intensity on informatization objects of industry using probability cluster model

    NASA Astrophysics Data System (ADS)

    Krakovsky, Y. M.; Luzgin, A. N.; Mikhailova, E. A.

    2018-05-01

    At present, cyber-security issues associated with the informatization objects of industry occupy one of the key niches in the state management system. As a result of functional disruption of these systems via cyberattacks, an emergency may arise related to loss of life, environmental disasters, major financial and economic damage, or disrupted activities of cities and settlements. When cyberattacks occur with high intensity, in these conditions there is the need to develop protection against them, based on machine learning methods. This paper examines interval forecasting and presents results with a pre-set intensity level. The interval forecasting is carried out based on a probabilistic cluster model. This method involves forecasting of one of the two predetermined intervals in which a future value of the indicator will be located; probability estimates are used for this purpose. A dividing bound of these intervals is determined by a calculation method based on statistical characteristics of the indicator. Source data are used that includes a number of hourly cyberattacks using a honeypot from March to September 2013.

  18. Detection of chaotic determinism in time series from randomly forced maps

    NASA Technical Reports Server (NTRS)

    Chon, K. H.; Kanters, J. K.; Cohen, R. J.; Holstein-Rathlou, N. H.

    1997-01-01

    Time series from biological system often display fluctuations in the measured variables. Much effort has been directed at determining whether this variability reflects deterministic chaos, or whether it is merely "noise". Despite this effort, it has been difficult to establish the presence of chaos in time series from biological sytems. The output from a biological system is probably the result of both its internal dynamics, and the input to the system from the surroundings. This implies that the system should be viewed as a mixed system with both stochastic and deterministic components. We present a method that appears to be useful in deciding whether determinism is present in a time series, and if this determinism has chaotic attributes, i.e., a positive characteristic exponent that leads to sensitivity to initial conditions. The method relies on fitting a nonlinear autoregressive model to the time series followed by an estimation of the characteristic exponents of the model over the observed probability distribution of states for the system. The method is tested by computer simulations, and applied to heart rate variability data.

  19. The Testing Methods and Gender Differences in Multiple-Choice Assessment

    NASA Astrophysics Data System (ADS)

    Ng, Annie W. Y.; Chan, Alan H. S.

    2009-10-01

    This paper provides a comprehensive review of the multiple-choice assessment in the past two decades for facilitating people to conduct effective testing in various subject areas. It was revealed that a variety of multiple-choice test methods viz. conventional multiple-choice, liberal multiple-choice, elimination testing, confidence marking, probability testing, and order-of-preference scheme are available for use in assessing subjects' knowledge and decision ability. However, the best multiple-choice test method for use has not yet been identified. The review also indicated that the existence of gender differences in multiple-choice task performance might be due to the test area, instruction/scoring condition, and item difficulty.

  20. Splitting nodes and linking channels: A method for assembling biocircuits from stochastic elementary units

    NASA Astrophysics Data System (ADS)

    Ferwerda, Cameron; Lipan, Ovidiu

    2016-11-01

    Akin to electric circuits, we construct biocircuits that are manipulated by cutting and assembling channels through which stochastic information flows. This diagrammatic manipulation allows us to create a method which constructs networks by joining building blocks selected so that (a) they cover only basic processes; (b) it is scalable to large networks; (c) the mean and variance-covariance from the Pauli master equation form a closed system; and (d) given the initial probability distribution, no special boundary conditions are necessary to solve the master equation. The method aims to help with both designing new synthetic signaling pathways and quantifying naturally existing regulatory networks.

  1. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Feasibility of investigation of optical breakdown statistics using multifrequency lasers

    NASA Astrophysics Data System (ADS)

    Ulanov, S. F.

    1990-06-01

    A method proposed for investigating the statistics of bulk optical breakdown relies on multifrequency lasers, which eliminates the influence of the laser radiation intensity statistics. The method is based on preliminary recording of the peak intensity statistics of multifrequency laser radiation pulses at the caustic using the optical breakdown threshold of K8 glass. The probability density distribution function was obtained at the focus for the peak intensities of the radiation pulses of a multifrequency laser. This method may be used to study the self-interaction under conditions of bulk optical breakdown of transparent dielectrics.

  2. Applications of conformal field theory to problems in 2D percolation

    NASA Astrophysics Data System (ADS)

    Simmons, Jacob Joseph Harris

    This thesis explores critical two-dimensional percolation in bounded regions in the continuum limit. The main method which we employ is conformal field theory (CFT). Our specific results follow from the null-vector structure of the c = 0 CFT that applies to critical two-dimensional percolation. We also make use of the duality symmetry obeyed at the percolation point, and the fact that percolation may be understood as the q-state Potts model in the limit q → 1. Our first results describe the correlations between points in the bulk and boundary intervals or points, i.e. the probability that the various points or intervals are in the same percolation cluster. These quantities correspond to order-parameter profiles under the given conditions, or cluster connection probabilities. We consider two specific cases: an anchoring interval, and two anchoring points. We derive results for these and related geometries using the CFT null-vectors for the corresponding boundary condition changing (bcc) operators. In addition, we exhibit several exact relationships between these probabilities. These relations between the various bulk-boundary connection probabilities involve parameters of the CFT called operator product expansion (OPE) coefficients. We then compute several of these OPE coefficients, including those arising in our new probability relations. Beginning with the familiar CFT operator φ1,2, which corresponds to a free-fixed spin boundary change in the q-state Potts model, we then develop physical interpretations of the bcc operators. We argue that, when properly normalized, higher-order bcc operators correspond to successive fusions of multiple φ1,2, operators. Finally, by identifying the derivative of φ1,2 with the operator φ1,4, we derive several new quantities called first crossing densities. These new results are then combined and integrated to obtain the three previously known crossing quantities in a rectangle: the probability of a horizontal crossing cluster, the probability of a cluster crossing both horizontally and vertically, and the expected number of horizontal crossing clusters. These three results were known to be solutions to a certain fifth-order differential equation, but until now no physically meaningful explanation had appeared. This differential equation arises naturally in our derivation.

  3. Association between use of systematic reviews and national policy recommendations on screening newborn babies for rare diseases: systematic review and meta-analysis.

    PubMed

    Taylor-Phillips, Sian; Stinton, Chris; Ferrante di Ruffano, Lavinia; Seedat, Farah; Clarke, Aileen; Deeks, Jonathan J

    2018-05-09

    To understand whether international differences in recommendations of whether to screen for rare diseases using the newborn blood spot test might in part be explained by use of systematic review methods. Systematic review and meta-analysis. Website searches of 26 national screening organisations. Journal articles, papers, legal documents, presentations, conference abstracts, or reports relating to a national recommendation on whether to screen for any condition using the newborn blood spot test, with no restrictions on date or language. Two reviewers independently assessed whether the recommendation for or against screening included systematic reviews, and data on test accuracy, benefits of early detection, and potential harms of overdiagnosis. The odds of recommending screening according to the use of systematic review methods was estimated across conditions using meta-analysis. 93 reports were included that assessed 104 conditions across 14 countries, totalling 276 recommendations (units of analysis). Screening was favoured in 159 (58%) recommendations, not favoured in 98 (36%), and not recommended either way in 19 (7%). Only 60 (22%) of the recommendations included a systematic review. Use of a systematic review was associated with a reduced probability of screening being recommended (23/60 (38%) v 136/216 (63%), odds ratio 0.17, 95% confidence interval 0.07 to 0.43). Of the recommendations, evidence for test accuracy, benefits of early detection, and overdiagnosis was not considered in 115 (42%), 83 (30%), and 211 (76%), respectively. Using systematic review methods is associated with a reduced probability of screening being recommended. Many national policy reviews of screening for rare conditions using the newborn blood spot test do not assess the evidence on the key benefits and harms of screening. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Cyber-Physical Correlations for Infrastructure Resilience: A Game-Theoretic Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S; He, Fei; Ma, Chris Y. T.

    In several critical infrastructures, the cyber and physical parts are correlated so that disruptions to one affect the other and hence the whole system. These correlations may be exploited to strategically launch components attacks, and hence must be accounted for ensuring the infrastructure resilience, specified by its survival probability. We characterize the cyber-physical interactions at two levels: (i) the failure correlation function specifies the conditional survival probability of cyber sub-infrastructure given the physical sub-infrastructure as a function of their marginal probabilities, and (ii) the individual survival probabilities of both sub-infrastructures are characterized by first-order differential conditions. We formulate a resiliencemore » problem for infrastructures composed of discrete components as a game between the provider and attacker, wherein their utility functions consist of an infrastructure survival probability term and a cost term expressed in terms of the number of components attacked and reinforced. We derive Nash Equilibrium conditions and sensitivity functions that highlight the dependence of infrastructure resilience on the cost term, correlation function and sub-infrastructure survival probabilities. These results generalize earlier ones based on linear failure correlation functions and independent component failures. We apply the results to models of cloud computing infrastructures and energy grids.« less

  5. Evaluating the statistical power of DNA-based identification, exemplified by 'The missing grandchildren of Argentina'.

    PubMed

    Kling, Daniel; Egeland, Thore; Piñero, Mariana Herrera; Vigeland, Magnus Dehli

    2017-11-01

    Methods and implementations of DNA-based identification are well established in several forensic contexts. However, assessing the statistical power of these methods has been largely overlooked, except in the simplest cases. In this paper we outline general methods for such power evaluation, and apply them to a large set of family reunification cases, where the objective is to decide whether a person of interest (POI) is identical to the missing person (MP) in a family, based on the DNA profile of the POI and available family members. As such, this application closely resembles database searching and disaster victim identification (DVI). If parents or children of the MP are available, they will typically provide sufficient statistical evidence to settle the case. However, if one must resort to more distant relatives, it is not a priori obvious that a reliable conclusion is likely to be reached. In these cases power evaluation can be highly valuable, for instance in the recruitment of additional family members. To assess the power in an identification case, we advocate the combined use of two statistics: the Probability of Exclusion, and the Probability of Exceedance. The former is the probability that the genotypes of a random, unrelated person are incompatible with the available family data. If this is close to 1, it is likely that a conclusion will be achieved regarding general relatedness, but not necessarily the specific relationship. To evaluate the ability to recognize a true match, we use simulations to estimate exceedance probabilities, i.e. the probability that the likelihood ratio will exceed a given threshold, assuming that the POI is indeed the MP. All simulations are done conditionally on available family data. Such conditional simulations have a long history in medical linkage analysis, but to our knowledge this is the first systematic forensic genetics application. Also, for forensic markers mutations cannot be ignored and therefore current models and implementations must be extended. All the tools are freely available in Familias (http://www.familias.no) empowered by the R library paramlink. The above approach is applied to a large and important data set: 'The missing grandchildren of Argentina'. We evaluate the power of 196 families from the DNA reference databank (Banco Nacional de Datos Genéticos, http://www.bndg.gob.ar. As a result we show that 58 of the families have poor statistical power and require additional genetic data to enable a positive identification. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Translational Genomics Research Institute: Identification of Pathways Enriched with Condition-Specific Statistical Dependencies Across Four Subtypes of Glioblastoma Multiforme | Office of Cancer Genomics

    Cancer.gov

    Evaluation of Differential DependencY (EDDY) is a statistical test for the differential dependency relationship of a set of genes between two given conditions. For each condition, possible dependency network structures are enumerated and their likelihoods are computed to represent a probability distribution of dependency networks. The difference between the probability distributions of dependency networks is computed between conditions, and its statistical significance is evaluated with random permutations of condition labels on the samples.  

  7. Translational Genomics Research Institute (TGen): Identification of Pathways Enriched with Condition-Specific Statistical Dependencies Across Four Subtypes of Glioblastoma Multiforme | Office of Cancer Genomics

    Cancer.gov

    Evaluation of Differential DependencY (EDDY) is a statistical test for the differential dependency relationship of a set of genes between two given conditions. For each condition, possible dependency network structures are enumerated and their likelihoods are computed to represent a probability distribution of dependency networks. The difference between the probability distributions of dependency networks is computed between conditions, and its statistical significance is evaluated with random permutations of condition labels on the samples.  

  8. Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification.

    PubMed

    Soares, João V B; Leandro, Jorge J G; Cesar Júnior, Roberto M; Jelinek, Herbert F; Cree, Michael J

    2006-09-01

    We present a method for automated segmentation of the vasculature in retinal images. The method produces segmentations by classifying each image pixel as vessel or nonvessel, based on the pixel's feature vector. Feature vectors are composed of the pixel's intensity and two-dimensional Gabor wavelet transform responses taken at multiple scales. The Gabor wavelet is capable of tuning to specific frequencies, thus allowing noise filtering and vessel enhancement in a single step. We use a Bayesian classifier with class-conditional probability density functions (likelihoods) described as Gaussian mixtures, yielding a fast classification, while being able to model complex decision surfaces. The probability distributions are estimated based on a training set of labeled pixels obtained from manual segmentations. The method's performance is evaluated on publicly available DRIVE (Staal et al., 2004) and STARE (Hoover et al., 2000) databases of manually labeled images. On the DRIVE database, it achieves an area under the receiver operating characteristic curve of 0.9614, being slightly superior than that presented by state-of-the-art approaches. We are making our implementation available as open source MATLAB scripts for researchers interested in implementation details, evaluation, or development of methods.

  9. Conditional Probabilities and Collapse in Quantum Measurements

    NASA Astrophysics Data System (ADS)

    Laura, Roberto; Vanni, Leonardo

    2008-09-01

    We show that including both the system and the apparatus in the quantum description of the measurement process, and using the concept of conditional probabilities, it is possible to deduce the statistical operator of the system after a measurement with a given result, which gives the probability distribution for all possible consecutive measurements on the system. This statistical operator, representing the state of the system after the first measurement, is in general not the same that would be obtained using the postulate of collapse.

  10. Pre-Service Teachers' Conceptions of Probability

    ERIC Educational Resources Information Center

    Odafe, Victor U.

    2011-01-01

    Probability knowledge and skills are needed in science and in making daily decisions that are sometimes made under uncertain conditions. Hence, there is the need to ensure that the pre-service teachers of our children are well prepared to teach probability. Pre-service teachers' conceptions of probability are identified, and ways of helping them…

  11. The Efficacy of Using Diagrams When Solving Probability Word Problems in College

    ERIC Educational Resources Information Center

    Beitzel, Brian D.; Staley, Richard K.

    2015-01-01

    Previous experiments have shown a deleterious effect of visual representations on college students' ability to solve total- and joint-probability word problems. The present experiments used conditional-probability problems, known to be more difficult than total- and joint-probability problems. The diagram group was instructed in how to use tree…

  12. Conditional Survival in Pediatric Malignancies: Analysis of data from the Childhood Cancer Survivor Study and the Surveillance, Epidemiology and End Results Program

    PubMed Central

    Mertens, Ann C; Yong, Jian; Dietz, Andrew; Kreiter, Erin; Yasui, Yutaka; Bleyer, Archie; Armstrong, Gregory T; Robison, Leslie L; Wasilewski-Masker, Karen

    2015-01-01

    Background Long-term survivors of pediatric cancer are at risk for life-threatening late effects of their cancer. Previous studies have shown excesses in long-term mortality within high-risk groups defined by demographic and treatment characteristics. Methods To investigate conditional survival in a pediatric cancer population, we performed an analysis of conditional survival in the original Childhood Cancer Survivor Study (CCSS) cohort and the Surveillance, Epidemiology and End Results (SEER) database registry. The overall probability of death for patients in 5 years and 10 years after they survived 5, 10, 15, and 20 years since cancer diagnosis, and cause-specific death in 10 years for 5-year survivors were estimated using the cumulative incidence method. Results Among CCSS and SEER patients who were alive 5 years post cancer diagnosis, within each diagnosis group at least 92% are alive in the subsequent 5 years, except leukemia patients of whom only 88% of 5-year survivors remain alive in the subsequent 5 years. The probability of all-cause mortality in the next 10 years on patients who survived at least 5 years after diagnosis, was 8.8% in CCSS and 10.6% in SEER, approximately three quarter of which were due to neoplasms as causes of death. Conclusion The risk of death of pediatric cancer survivors in 10 years can vary between diagnosis groups by at most 12% even up to 20 years post diagnosis. This information is clinically important in counseling patients on their conditional survival, particularly when survivors are seen in long-term follow-up. PMID:25557134

  13. Statistics concerning the Apollo command module water landing, including the probability of occurrence of various impact conditions, sucessful impact, and body X-axis loads

    NASA Technical Reports Server (NTRS)

    Whitnah, A. M.; Howes, D. B.

    1971-01-01

    Statistical information for the Apollo command module water landings is presented. This information includes the probability of occurrence of various impact conditions, a successful impact, and body X-axis loads of various magnitudes.

  14. Combination of a Stressor-Response Model with a Conditional Probability Analysis Approach for Developing Candidate Criteria from MBSS

    EPA Science Inventory

    I show that a conditional probability analysis using a stressor-response model based on a logistic regression provides a useful approach for developing candidate water quality criteria from empirical data, such as the Maryland Biological Streams Survey (MBSS) data.

  15. Spatial prediction models for the probable biological condition of streams and rivers in the USA

    EPA Science Inventory

    The National Rivers and Streams Assessment (NRSA) is a probability-based survey conducted by the US Environmental Protection Agency and its state and tribal partners. It provides information on the ecological condition of the rivers and streams in the conterminous USA, and the ex...

  16. Random forest models for the probable biological condition of streams and rivers in the USA

    EPA Science Inventory

    The National Rivers and Streams Assessment (NRSA) is a probability based survey conducted by the US Environmental Protection Agency and its state and tribal partners. It provides information on the ecological condition of the rivers and streams in the conterminous USA, and the ex...

  17. A bottom-up robust optimization framework for identifying river basin development pathways under deep climate uncertainty

    NASA Astrophysics Data System (ADS)

    Taner, M. U.; Ray, P.; Brown, C.

    2016-12-01

    Hydroclimatic nonstationarity due to climate change poses challenges for long-term water infrastructure planning in river basin systems. While designing strategies that are flexible or adaptive hold intuitive appeal, development of well-performing strategies requires rigorous quantitative analysis that address uncertainties directly while making the best use of scientific information on the expected evolution of future climate. Multi-stage robust optimization (RO) offers a potentially effective and efficient technique for addressing the problem of staged basin-level planning under climate change, however the necessity of assigning probabilities to future climate states or scenarios is an obstacle to implementation, given that methods to reliably assign probabilities to future climate states are not well developed. We present a method that overcomes this challenge by creating a bottom-up RO-based framework that decreases the dependency on probability distributions of future climate and rather employs them after optimization to aid selection amongst competing alternatives. The iterative process yields a vector of `optimal' decision pathways each under the associated set of probabilistic assumptions. In the final phase, the vector of optimal decision pathways is evaluated to identify the solutions that are least sensitive to the scenario probabilities and are most-likely conditional on the climate information. The framework is illustrated for the planning of new dam and hydro-agricultural expansions projects in the Niger River Basin over a 45-year planning period from 2015 to 2060.

  18. Probabilistic techniques for obtaining accurate patient counts in Clinical Data Warehouses

    PubMed Central

    Myers, Risa B.; Herskovic, Jorge R.

    2011-01-01

    Proposal and execution of clinical trials, computation of quality measures and discovery of correlation between medical phenomena are all applications where an accurate count of patients is needed. However, existing sources of this type of patient information, including Clinical Data Warehouses (CDW) may be incomplete or inaccurate. This research explores applying probabilistic techniques, supported by the MayBMS probabilistic database, to obtain accurate patient counts from a clinical data warehouse containing synthetic patient data. We present a synthetic clinical data warehouse (CDW), and populate it with simulated data using a custom patient data generation engine. We then implement, evaluate and compare different techniques for obtaining patients counts. We model billing as a test for the presence of a condition. We compute billing’s sensitivity and specificity both by conducting a “Simulated Expert Review” where a representative sample of records are reviewed and labeled by experts, and by obtaining the ground truth for every record. We compute the posterior probability of a patient having a condition through a “Bayesian Chain”, using Bayes’ Theorem to calculate the probability of a patient having a condition after each visit. The second method is a “one-shot” approach that computes the probability of a patient having a condition based on whether the patient is ever billed for the condition Our results demonstrate the utility of probabilistic approaches, which improve on the accuracy of raw counts. In particular, the simulated review paired with a single application of Bayes’ Theorem produces the best results, with an average error rate of 2.1% compared to 43.7% for the straightforward billing counts. Overall, this research demonstrates that Bayesian probabilistic approaches improve patient counts on simulated patient populations. We believe that total patient counts based on billing data are one of the many possible applications of our Bayesian framework. Use of these probabilistic techniques will enable more accurate patient counts and better results for applications requiring this metric. PMID:21986292

  19. An novel frequent probability pattern mining algorithm based on circuit simulation method in uncertain biological networks.

    PubMed

    He, Jieyue; Wang, Chunyan; Qiu, Kunpu; Zhong, Wei

    2014-01-01

    Motif mining has always been a hot research topic in bioinformatics. Most of current research on biological networks focuses on exact motif mining. However, due to the inevitable experimental error and noisy data, biological network data represented as the probability model could better reflect the authenticity and biological significance, therefore, it is more biological meaningful to discover probability motif in uncertain biological networks. One of the key steps in probability motif mining is frequent pattern discovery which is usually based on the possible world model having a relatively high computational complexity. In this paper, we present a novel method for detecting frequent probability patterns based on circuit simulation in the uncertain biological networks. First, the partition based efficient search is applied to the non-tree like subgraph mining where the probability of occurrence in random networks is small. Then, an algorithm of probability isomorphic based on circuit simulation is proposed. The probability isomorphic combines the analysis of circuit topology structure with related physical properties of voltage in order to evaluate the probability isomorphism between probability subgraphs. The circuit simulation based probability isomorphic can avoid using traditional possible world model. Finally, based on the algorithm of probability subgraph isomorphism, two-step hierarchical clustering method is used to cluster subgraphs, and discover frequent probability patterns from the clusters. The experiment results on data sets of the Protein-Protein Interaction (PPI) networks and the transcriptional regulatory networks of E. coli and S. cerevisiae show that the proposed method can efficiently discover the frequent probability subgraphs. The discovered subgraphs in our study contain all probability motifs reported in the experiments published in other related papers. The algorithm of probability graph isomorphism evaluation based on circuit simulation method excludes most of subgraphs which are not probability isomorphism and reduces the search space of the probability isomorphism subgraphs using the mismatch values in the node voltage set. It is an innovative way to find the frequent probability patterns, which can be efficiently applied to probability motif discovery problems in the further studies.

  20. Secure and Efficient Signature Scheme Based on NTRU for Mobile Payment

    NASA Astrophysics Data System (ADS)

    Xia, Yunhao; You, Lirong; Sun, Zhe; Sun, Zhixin

    2017-10-01

    Mobile payment becomes more and more popular, however the traditional public-key encryption algorithm has higher requirements for hardware which is not suitable for mobile terminals of limited computing resources. In addition, these public-key encryption algorithms do not have the ability of anti-quantum computing. This paper researches public-key encryption algorithm NTRU for quantum computation through analyzing the influence of parameter q and k on the probability of generating reasonable signature value. Two methods are proposed to improve the probability of generating reasonable signature value. Firstly, increase the value of parameter q. Secondly, add the authentication condition that meet the reasonable signature requirements during the signature phase. Experimental results show that the proposed signature scheme can realize the zero leakage of the private key information of the signature value, and increase the probability of generating the reasonable signature value. It also improve rate of the signature, and avoid the invalid signature propagation in the network, but the scheme for parameter selection has certain restrictions.

  1. Infinite capacity multi-server queue with second optional service channel

    NASA Astrophysics Data System (ADS)

    Ke, Jau-Chuan; Wu, Chia-Huang; Pearn, Wen Lea

    2013-02-01

    This paper deals with an infinite-capacity multi-server queueing system with a second optional service (SOS) channel. The inter-arrival times of arriving customers, the service times of the first essential service (FES) and the SOS channel are all exponentially distributed. A customer may leave the system after the FES channel with probability (1-θ), or at the completion of the FES may immediately require a SOS with probability θ (0 <= θ <= 1). The formulae for computing the rate matrix and stationary probabilities are derived by means of a matrix analytical approach. A cost model is developed to determine the optimal values of the number of servers and the two service rates, simultaneously, at the minimal total expected cost per unit time. Quasi-Newton method are employed to deal with the optimization problem. Under optimal operating conditions, numerical results are provided in which several system performance measures are calculated based on assumed numerical values of the system parameters.

  2. Capture-recapture studies for multiple strata including non-markovian transitions

    USGS Publications Warehouse

    Brownie, C.; Hines, J.E.; Nichols, J.D.; Pollock, K.H.; Hestbeck, J.B.

    1993-01-01

    We consider capture-recapture studies where release and recapture data are available from each of a number of strata on every capture occasion. Strata may, for example, be geographic locations or physiological states. Movement of animals among strata occurs with unknown probabilities, and estimation of these unknown transition probabilities is the objective. We describe a computer routine for carrying out the analysis under a model that assumes Markovian transitions and under reduced parameter versions of this model. We also introduce models that relax the Markovian assumption and allow 'memory' to operate (i.e., allow dependence of the transition probabilities on the previous state). For these models, we sugg st an analysis based on a conditional likelihood approach. Methods are illustrated with data from a large study on Canada geese (Branta canadensis) banded in three geographic regions. The assumption of Markovian transitions is rejected convincingly for these data, emphasizing the importance of the more general models that allow memory.

  3. Creation of the BMA ensemble for SST using a parallel processing technique

    NASA Astrophysics Data System (ADS)

    Kim, Kwangjin; Lee, Yang Won

    2013-10-01

    Despite the same purpose, each satellite product has different value because of its inescapable uncertainty. Also the satellite products have been calculated for a long time, and the kinds of the products are various and enormous. So the efforts for reducing the uncertainty and dealing with enormous data will be necessary. In this paper, we create an ensemble Sea Surface Temperature (SST) using MODIS Aqua, MODIS Terra and COMS (Communication Ocean and Meteorological Satellite). We used Bayesian Model Averaging (BMA) as ensemble method. The principle of the BMA is synthesizing the conditional probability density function (PDF) using posterior probability as weight. The posterior probability is estimated using EM algorithm. The BMA PDF is obtained by weighted average. As the result, the ensemble SST showed the lowest RMSE and MAE, which proves the applicability of BMA for satellite data ensemble. As future work, parallel processing techniques using Hadoop framework will be adopted for more efficient computation of very big satellite data.

  4. Doubly robust estimation of generalized partial linear models for longitudinal data with dropouts.

    PubMed

    Lin, Huiming; Fu, Bo; Qin, Guoyou; Zhu, Zhongyi

    2017-12-01

    We develop a doubly robust estimation of generalized partial linear models for longitudinal data with dropouts. Our method extends the highly efficient aggregate unbiased estimating function approach proposed in Qu et al. (2010) to a doubly robust one in the sense that under missing at random (MAR), our estimator is consistent when either the linear conditional mean condition is satisfied or a model for the dropout process is correctly specified. We begin with a generalized linear model for the marginal mean, and then move forward to a generalized partial linear model, allowing for nonparametric covariate effect by using the regression spline smoothing approximation. We establish the asymptotic theory for the proposed method and use simulation studies to compare its finite sample performance with that of Qu's method, the complete-case generalized estimating equation (GEE) and the inverse-probability weighted GEE. The proposed method is finally illustrated using data from a longitudinal cohort study. © 2017, The International Biometric Society.

  5. Method of conditional moments (MCM) for the Chemical Master Equation: a unified framework for the method of moments and hybrid stochastic-deterministic models.

    PubMed

    Hasenauer, J; Wolf, V; Kazeroonian, A; Theis, F J

    2014-09-01

    The time-evolution of continuous-time discrete-state biochemical processes is governed by the Chemical Master Equation (CME), which describes the probability of the molecular counts of each chemical species. As the corresponding number of discrete states is, for most processes, large, a direct numerical simulation of the CME is in general infeasible. In this paper we introduce the method of conditional moments (MCM), a novel approximation method for the solution of the CME. The MCM employs a discrete stochastic description for low-copy number species and a moment-based description for medium/high-copy number species. The moments of the medium/high-copy number species are conditioned on the state of the low abundance species, which allows us to capture complex correlation structures arising, e.g., for multi-attractor and oscillatory systems. We prove that the MCM provides a generalization of previous approximations of the CME based on hybrid modeling and moment-based methods. Furthermore, it improves upon these existing methods, as we illustrate using a model for the dynamics of stochastic single-gene expression. This application example shows that due to the more general structure, the MCM allows for the approximation of multi-modal distributions.

  6. Analysis of temperature rise and the use of coolants in the dissipation of ultrasonic heat buildup during post removal.

    PubMed

    Davis, Stephen; Gluskin, Alan H; Livingood, Philip M; Chambers, David W

    2010-11-01

    This study was designed to calculate probabilities for tissue injury and to measure effectiveness of various coolant strategies in countering heat buildup produced by dry ultrasonic vibration during post removal. A simulated biological model was used to evaluate the cooling efficacy of a common refrigerant spray, water spray, and air spray in the recovery of post temperatures deep within the root canal space. The data set consisted of cervical and apical measures of temperature increase at 1-second intervals from baseline during continuous ultrasonic instrumentation until a 10 °C increase in temperature at the cervical site was registered, wherein instrumentation ceased, and the teeth were allowed to cool under ambient conditions or with the assistance of 4 coolant methods. Data were analyzed with analysis of variance by using the independent variables of time of ultrasonic application (10, 15, 20 seconds) and cooling method. In addition to the customary means, standard deviations, and analysis of variance tests, analyses were conducted to determine probabilities that procedures would reach or exceed the 10 °C threshold. Both instrumentation time and cooling agent effects were significant at P <.0001. Under the conditions of this study, it was shown that injurious heat transfer occurs in less than 1 minute during dry ultrasonic instrumentation of metallic posts. Cycles of short instrumentation times with active coolants were effective in reducing the probability of tissue damage when teeth were instrumented dry. With as little as 20 seconds of continuous dry ultrasonic instrumentation, the consequences of thermal buildup to an individual tooth might contribute to an injurious clinical outcome. Copyright © 2010 American Association of Endodontists. All rights reserved.

  7. Complementary and alternative medicine (CAM) in obstetrics and gynaecology: a survey of office-based obstetricians and gynaecologists regarding attitudes towards CAM, its provision and cooperation with other CAM providers in the state of Hesse, Germany.

    PubMed

    Münstedt, K; Maisch, M; Tinneberg, H R; Hübner, J

    2014-12-01

    Whereas we have some information on complementary medicine in the field of oncology, little is known about complementary medicine in the field of obstetrics and gynaecology especially outside of hospitals. All office-based obstetricians and gynaecologists in the state of Hesse, Germany, were contacted and asked to fill in an assessment form regarding cooperation in the field of complementary and alternative medicine (CAM), as well as the perceived efficacy of various CAM methods for a number of pathological conditions in the field of obstetrics and gynaecology. It was found that more than half of Hessian office-based obstetricians and gynaecologists had existing cooperation regarding CAM, especially with colleagues, but also midwives, pharmacists, physiotherapists, and health practitioners. The probability of cooperation was significantly inversely associated with age. It was found that the probability for advising CAM differed between various health problems. The following CAM methods were considered reasonable for the treatment of different conditions: phytotherapy for climacteric complaints and premenstrual syndrome; homoeopathy for puerperal problems; acupuncture and traditional Chinese medicine for complaints during pregnancy; and dietary supplements for the side effects of cancer therapy. The analysis shows that there is much cooperation in the field of CAM. Comparison between physicians' perceived efficacy of CAM methods and objective findings shows that there is a need for the provision of valid information in the field.

  8. What Are Probability Surveys used by the National Aquatic Resource Surveys?

    EPA Pesticide Factsheets

    The National Aquatic Resource Surveys (NARS) use probability-survey designs to assess the condition of the nation’s waters. In probability surveys (also known as sample-surveys or statistical surveys), sampling sites are selected randomly.

  9. Probabilistic Parameter Uncertainty Analysis of Single Input Single Output Control Systems

    NASA Technical Reports Server (NTRS)

    Smith, Brett A.; Kenny, Sean P.; Crespo, Luis G.

    2005-01-01

    The current standards for handling uncertainty in control systems use interval bounds for definition of the uncertain parameters. This approach gives no information about the likelihood of system performance, but simply gives the response bounds. When used in design, current methods of m-analysis and can lead to overly conservative controller design. With these methods, worst case conditions are weighted equally with the most likely conditions. This research explores a unique approach for probabilistic analysis of control systems. Current reliability methods are examined showing the strong areas of each in handling probability. A hybrid method is developed using these reliability tools for efficiently propagating probabilistic uncertainty through classical control analysis problems. The method developed is applied to classical response analysis as well as analysis methods that explore the effects of the uncertain parameters on stability and performance metrics. The benefits of using this hybrid approach for calculating the mean and variance of responses cumulative distribution functions are shown. Results of the probabilistic analysis of a missile pitch control system, and a non-collocated mass spring system, show the added information provided by this hybrid analysis.

  10. A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA

    USGS Publications Warehouse

    Ransom, Katherine M.; Nolan, Bernard T.; Traum, Jonathan A.; Faunt, Claudia; Bell, Andrew M.; Gronberg, Jo Ann M.; Wheeler, David C.; Zamora, Celia; Jurgens, Bryant; Schwarz, Gregory E.; Belitz, Kenneth; Eberts, Sandra; Kourakos, George; Harter, Thomas

    2017-01-01

    Intense demand for water in the Central Valley of California and related increases in groundwater nitrate concentration threaten the sustainability of the groundwater resource. To assess contamination risk in the region, we developed a hybrid, non-linear, machine learning model within a statistical learning framework to predict nitrate contamination of groundwater to depths of approximately 500 m below ground surface. A database of 145 predictor variables representing well characteristics, historical and current field and landscape-scale nitrogen mass balances, historical and current land use, oxidation/reduction conditions, groundwater flow, climate, soil characteristics, depth to groundwater, and groundwater age were assigned to over 6000 private supply and public supply wells measured previously for nitrate and located throughout the study area. The boosted regression tree (BRT) method was used to screen and rank variables to predict nitrate concentration at the depths of domestic and public well supplies. The novel approach included as predictor variables outputs from existing physically based models of the Central Valley. The top five most important predictor variables included two oxidation/reduction variables (probability of manganese concentration to exceed 50 ppb and probability of dissolved oxygen concentration to be below 0.5 ppm), field-scale adjusted unsaturated zone nitrogen input for the 1975 time period, average difference between precipitation and evapotranspiration during the years 1971–2000, and 1992 total landscape nitrogen input. Twenty-five variables were selected for the final model for log-transformed nitrate. In general, increasing probability of anoxic conditions and increasing precipitation relative to potential evapotranspiration had a corresponding decrease in nitrate concentration predictions. Conversely, increasing 1975 unsaturated zone nitrogen leaching flux and 1992 total landscape nitrogen input had an increasing relative impact on nitrate predictions. Three-dimensional visualization indicates that nitrate predictions depend on the probability of anoxic conditions and other factors, and that nitrate predictions generally decreased with increasing groundwater age.

  11. Probabilistic Risk Assessment for Astronaut Post Flight Bone Fracture

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Myers, Jerry; Licata, Angelo

    2015-01-01

    Introduction: Space flight potentially reduces the loading that bone can resist before fracture. This reduction in bone integrity may result from a combination of factors, the most common reported as reduction in astronaut BMD. Although evaluating the condition of bones continues to be a critical aspect of understanding space flight fracture risk, defining the loading regime, whether on earth, in microgravity, or in reduced gravity on a planetary surface, remains a significant component of estimating the fracture risks to astronauts. This presentation summarizes the concepts, development, and application of NASA's Bone Fracture Risk Module (BFxRM) to understanding pre-, post, and in mission astronaut bone fracture risk. The overview includes an assessment of contributing factors utilized in the BFxRM and illustrates how new information, such as biomechanics of space suit design or better understanding of post flight activities may influence astronaut fracture risk. Opportunities for the bone mineral research community to contribute to future model development are also discussed. Methods: To investigate the conditions in which spaceflight induced changes to bone plays a critical role in post-flight fracture probability, we implement a modified version of the NASA Bone Fracture Risk Model (BFxRM). Modifications included incorporation of variations in physiological characteristics, post-flight recovery rate, and variations in lateral fall conditions within the probabilistic simulation parameter space. The modeled fracture probability estimates for different loading scenarios at preflight and at 0 and 365 days post-flight time periods are compared. Results: For simple lateral side falls, mean post-flight fracture probability is elevated over mean preflight fracture probability due to spaceflight induced BMD loss and is not fully recovered at 365 days post-flight. In the case of more energetic falls, such as from elevated heights or with the addition of lateral movement, the contribution of space flight quality changes is much less clear, indicating more granular assessments, such as Finite Element modeling, may be needed to further assess the risks in these scenarios.

  12. Separation of components from a scale mixture of Gaussian white noises

    NASA Astrophysics Data System (ADS)

    Vamoş, Călin; Crăciun, Maria

    2010-05-01

    The time evolution of a physical quantity associated with a thermodynamic system whose equilibrium fluctuations are modulated in amplitude by a slowly varying phenomenon can be modeled as the product of a Gaussian white noise {Zt} and a stochastic process with strictly positive values {Vt} referred to as volatility. The probability density function (pdf) of the process Xt=VtZt is a scale mixture of Gaussian white noises expressed as a time average of Gaussian distributions weighted by the pdf of the volatility. The separation of the two components of {Xt} can be achieved by imposing the condition that the absolute values of the estimated white noise be uncorrelated. We apply this method to the time series of the returns of the daily S&P500 index, which has also been analyzed by means of the superstatistics method that imposes the condition that the estimated white noise be Gaussian. The advantage of our method is that this financial time series is processed without partitioning or removal of the extreme events and the estimated white noise becomes almost Gaussian only as result of the uncorrelation condition.

  13. The slow-scale linear noise approximation: an accurate, reduced stochastic description of biochemical networks under timescale separation conditions

    PubMed Central

    2012-01-01

    Background It is well known that the deterministic dynamics of biochemical reaction networks can be more easily studied if timescale separation conditions are invoked (the quasi-steady-state assumption). In this case the deterministic dynamics of a large network of elementary reactions are well described by the dynamics of a smaller network of effective reactions. Each of the latter represents a group of elementary reactions in the large network and has associated with it an effective macroscopic rate law. A popular method to achieve model reduction in the presence of intrinsic noise consists of using the effective macroscopic rate laws to heuristically deduce effective probabilities for the effective reactions which then enables simulation via the stochastic simulation algorithm (SSA). The validity of this heuristic SSA method is a priori doubtful because the reaction probabilities for the SSA have only been rigorously derived from microscopic physics arguments for elementary reactions. Results We here obtain, by rigorous means and in closed-form, a reduced linear Langevin equation description of the stochastic dynamics of monostable biochemical networks in conditions characterized by small intrinsic noise and timescale separation. The slow-scale linear noise approximation (ssLNA), as the new method is called, is used to calculate the intrinsic noise statistics of enzyme and gene networks. The results agree very well with SSA simulations of the non-reduced network of elementary reactions. In contrast the conventional heuristic SSA is shown to overestimate the size of noise for Michaelis-Menten kinetics, considerably under-estimate the size of noise for Hill-type kinetics and in some cases even miss the prediction of noise-induced oscillations. Conclusions A new general method, the ssLNA, is derived and shown to correctly describe the statistics of intrinsic noise about the macroscopic concentrations under timescale separation conditions. The ssLNA provides a simple and accurate means of performing stochastic model reduction and hence it is expected to be of widespread utility in studying the dynamics of large noisy reaction networks, as is common in computational and systems biology. PMID:22583770

  14. Estimating the Pollution Risk of Cadmium in Soil Using a Composite Soil Environmental Quality Standard

    PubMed Central

    Huang, Biao; Zhao, Yongcun

    2014-01-01

    Estimating standard-exceeding probabilities of toxic metals in soil is crucial for environmental evaluation. Because soil pH and land use types have strong effects on the bioavailability of trace metals in soil, they were taken into account by some environmental protection agencies in making composite soil environmental quality standards (SEQSs) that contain multiple metal thresholds under different pH and land use conditions. This study proposed a method for estimating the standard-exceeding probability map of soil cadmium using a composite SEQS. The spatial variability and uncertainty of soil pH and site-specific land use type were incorporated through simulated realizations by sequential Gaussian simulation. A case study was conducted using a sample data set from a 150 km2 area in Wuhan City and the composite SEQS for cadmium, recently set by the State Environmental Protection Administration of China. The method may be useful for evaluating the pollution risks of trace metals in soil with composite SEQSs. PMID:24672364

  15. Optimizing Probability of Detection Point Estimate Demonstration

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2017-01-01

    Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-18231and associated mh18232POD software gives most common methods of POD analysis. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using Point Estimate Method. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible.

  16. Exploration of Use of Copulas in Analysing the Relationship between Precipitation and Meteorological Drought in Beijing, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Linlin; Wang, Hongrui; Wang, Cheng

    Drought risk analysis is essential for regional water resource management. In this study, the probabilistic relationship between precipitation and meteorological drought in Beijing, China, was calculated under three different precipitation conditions (precipitation equal to, greater than, or less than a threshold) based on copulas. The Standardized Precipitation Evapotranspiration Index (SPEI) was calculated based on monthly total precipitation and monthly mean temperature data. The trends and variations in the SPEI were analysed using Hilbert-Huang Transform (HHT) and Mann-Kendall (MK) trend tests with a running approach. The results of the HHT and MK test indicated a significant decreasing trend in the SPEI.more » The copula-based conditional probability indicated that the probability of meteorological drought decreased as monthly precipitation increased and that 10 mm can be regarded as the threshold for triggering extreme drought. From a quantitative perspective, when R ≤ mm, the probabilities of moderate drought, severe drought, and extreme drought were 22.1%, 18%, and 13.6%, respectively. This conditional probability distribution not only revealed the occurrence of meteorological drought in Beijing but also provided a quantitative way to analyse the probability of drought under different precipitation conditions. Furthermore, the results provide a useful reference for future drought prediction.« less

  17. Exploration of Use of Copulas in Analysing the Relationship between Precipitation and Meteorological Drought in Beijing, China

    DOE PAGES

    Fan, Linlin; Wang, Hongrui; Wang, Cheng; ...

    2017-05-16

    Drought risk analysis is essential for regional water resource management. In this study, the probabilistic relationship between precipitation and meteorological drought in Beijing, China, was calculated under three different precipitation conditions (precipitation equal to, greater than, or less than a threshold) based on copulas. The Standardized Precipitation Evapotranspiration Index (SPEI) was calculated based on monthly total precipitation and monthly mean temperature data. The trends and variations in the SPEI were analysed using Hilbert-Huang Transform (HHT) and Mann-Kendall (MK) trend tests with a running approach. The results of the HHT and MK test indicated a significant decreasing trend in the SPEI.more » The copula-based conditional probability indicated that the probability of meteorological drought decreased as monthly precipitation increased and that 10 mm can be regarded as the threshold for triggering extreme drought. From a quantitative perspective, when R ≤ mm, the probabilities of moderate drought, severe drought, and extreme drought were 22.1%, 18%, and 13.6%, respectively. This conditional probability distribution not only revealed the occurrence of meteorological drought in Beijing but also provided a quantitative way to analyse the probability of drought under different precipitation conditions. Furthermore, the results provide a useful reference for future drought prediction.« less

  18. Game-Theoretic strategies for systems of components using product-form utilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S; Ma, Cheng-Yu; Hausken, K.

    Many critical infrastructures are composed of multiple systems of components which are correlated so that disruptions to one may propagate to others. We consider such infrastructures with correlations characterized in two ways: (i) an aggregate failure correlation function specifies the conditional failure probability of the infrastructure given the failure of an individual system, and (ii) a pairwise correlation function between two systems specifies the failure probability of one system given the failure of the other. We formulate a game for ensuring the resilience of the infrastructure, wherein the utility functions of the provider and attacker are products of an infrastructuremore » survival probability term and a cost term, both expressed in terms of the numbers of system components attacked and reinforced. The survival probabilities of individual systems satisfy first-order differential conditions that lead to simple Nash Equilibrium conditions. We then derive sensitivity functions that highlight the dependence of infrastructure resilience on the cost terms, correlation functions, and individual system survival probabilities. We apply these results to simplified models of distributed cloud computing and energy grid infrastructures.« less

  19. Anthropogenic warming has increased drought risk in California.

    PubMed

    Diffenbaugh, Noah S; Swain, Daniel L; Touma, Danielle

    2015-03-31

    California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ∼ 100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm-dry conditions like those that have created the acute human and ecosystem impacts associated with the "exceptional" 2012-2014 drought in California.

  20. Anthropogenic warming has increased drought risk in California

    PubMed Central

    Diffenbaugh, Noah S.; Swain, Daniel L.; Touma, Danielle

    2015-01-01

    California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ∼100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm–dry conditions like those that have created the acute human and ecosystem impacts associated with the “exceptional” 2012–2014 drought in California. PMID:25733875

  1. Site specific probability of passive acoustic detection of humpback whale calls from single fixed hydrophones.

    PubMed

    Helble, Tyler A; D'Spain, Gerald L; Hildebrand, John A; Campbell, Gregory S; Campbell, Richard L; Heaney, Kevin D

    2013-09-01

    Passive acoustic monitoring of marine mammal calls is an increasingly important method for assessing population numbers, distribution, and behavior. A common mistake in the analysis of marine mammal acoustic data is formulating conclusions about these animals without first understanding how environmental properties such as bathymetry, sediment properties, water column sound speed, and ocean acoustic noise influence the detection and character of vocalizations in the acoustic data. The approach in this paper is to use Monte Carlo simulations with a full wave field acoustic propagation model to characterize the site specific probability of detection of six types of humpback whale calls at three passive acoustic monitoring locations off the California coast. Results show that the probability of detection can vary by factors greater than ten when comparing detections across locations, or comparing detections at the same location over time, due to environmental effects. Effects of uncertainties in the inputs to the propagation model are also quantified, and the model accuracy is assessed by comparing calling statistics amassed from 24,690 humpback units recorded in the month of October 2008. Under certain conditions, the probability of detection can be estimated with uncertainties sufficiently small to allow for accurate density estimates.

  2. Journal of Naval Science. Volume 2, Number 1

    DTIC Science & Technology

    1976-01-01

    has defined a probability distribution function which fits this type of data and forms the basis for statistical analysis of test results (see...Conditions to Assess the Performance of Fire-Resistant Fluids’. Wear, 28 (1974) 29. J.N.S., Vol. 2, No. 1 APPENDIX A Analysis of Fatigue Test Data...used to produce the impulse response and the equipment required for the analysis is relatively simple. The methods that must be used to produce

  3. Estimation of post-test probabilities by residents: Bayesian reasoning versus heuristics?

    PubMed

    Hall, Stacey; Phang, Sen Han; Schaefer, Jeffrey P; Ghali, William; Wright, Bruce; McLaughlin, Kevin

    2014-08-01

    Although the process of diagnosing invariably begins with a heuristic, we encourage our learners to support their diagnoses by analytical cognitive processes, such as Bayesian reasoning, in an attempt to mitigate the effects of heuristics on diagnosing. There are, however, limited data on the use ± impact of Bayesian reasoning on the accuracy of disease probability estimates. In this study our objective was to explore whether Internal Medicine residents use a Bayesian process to estimate disease probabilities by comparing their disease probability estimates to literature-derived Bayesian post-test probabilities. We gave 35 Internal Medicine residents four clinical vignettes in the form of a referral letter and asked them to estimate the post-test probability of the target condition in each case. We then compared these to literature-derived probabilities. For each vignette the estimated probability was significantly different from the literature-derived probability. For the two cases with low literature-derived probability our participants significantly overestimated the probability of these target conditions being the correct diagnosis, whereas for the two cases with high literature-derived probability the estimated probability was significantly lower than the calculated value. Our results suggest that residents generate inaccurate post-test probability estimates. Possible explanations for this include ineffective application of Bayesian reasoning, attribute substitution whereby a complex cognitive task is replaced by an easier one (e.g., a heuristic), or systematic rater bias, such as central tendency bias. Further studies are needed to identify the reasons for inaccuracy of disease probability estimates and to explore ways of improving accuracy.

  4. Influence of item distribution pattern and abundance on efficiency of benthic core sampling

    USGS Publications Warehouse

    Behney, Adam C.; O'Shaughnessy, Ryan; Eichholz, Michael W.; Stafford, Joshua D.

    2014-01-01

    ore sampling is a commonly used method to estimate benthic item density, but little information exists about factors influencing the accuracy and time-efficiency of this method. We simulated core sampling in a Geographic Information System framework by generating points (benthic items) and polygons (core samplers) to assess how sample size (number of core samples), core sampler size (cm2), distribution of benthic items, and item density affected the bias and precision of estimates of density, the detection probability of items, and the time-costs. When items were distributed randomly versus clumped, bias decreased and precision increased with increasing sample size and increased slightly with increasing core sampler size. Bias and precision were only affected by benthic item density at very low values (500–1,000 items/m2). Detection probability (the probability of capturing ≥ 1 item in a core sample if it is available for sampling) was substantially greater when items were distributed randomly as opposed to clumped. Taking more small diameter core samples was always more time-efficient than taking fewer large diameter samples. We are unable to present a single, optimal sample size, but provide information for researchers and managers to derive optimal sample sizes dependent on their research goals and environmental conditions.

  5. Application of the Markov Chain Monte Carlo method for snow water equivalent retrieval based on passive microwave measurements

    NASA Astrophysics Data System (ADS)

    Pan, J.; Durand, M. T.; Vanderjagt, B. J.

    2015-12-01

    Markov Chain Monte Carlo (MCMC) method is a retrieval algorithm based on Bayes' rule, which starts from an initial state of snow/soil parameters, and updates it to a series of new states by comparing the posterior probability of simulated snow microwave signals before and after each time of random walk. It is a realization of the Bayes' rule, which gives an approximation to the probability of the snow/soil parameters in condition of the measured microwave TB signals at different bands. Although this method could solve all snow parameters including depth, density, snow grain size and temperature at the same time, it still needs prior information of these parameters for posterior probability calculation. How the priors will influence the SWE retrieval is a big concern. Therefore, in this paper at first, a sensitivity test will be carried out to study how accurate the snow emission models and how explicit the snow priors need to be to maintain the SWE error within certain amount. The synthetic TB simulated from the measured snow properties plus a 2-K observation error will be used for this purpose. It aims to provide a guidance on the MCMC application under different circumstances. Later, the method will be used for the snowpits at different sites, including Sodankyla, Finland, Churchill, Canada and Colorado, USA, using the measured TB from ground-based radiometers at different bands. Based on the previous work, the error in these practical cases will be studied, and the error sources will be separated and quantified.

  6. Secondary School Students' Reasoning about Conditional Probability, Samples, and Sampling Procedures

    ERIC Educational Resources Information Center

    Prodromou, Theodosia

    2016-01-01

    In the Australian mathematics curriculum, Year 12 students (aged 16-17) are asked to solve conditional probability problems that involve the representation of the problem situation with two-way tables or three-dimensional diagrams and consider sampling procedures that result in different correct answers. In a small exploratory study, we…

  7. Combination of a Stresor-Response Model with a Conditional Probability Anaylsis Approach to Develop Candidate Criteria from Empirical Data

    EPA Science Inventory

    We show that a conditional probability analysis that utilizes a stressor-response model based on a logistic regression provides a useful approach for developing candidate water quality criterai from empirical data. The critical step in this approach is transforming the response ...

  8. CONDITIONAL PROBABILITY ANALYSIS APPROACH FOR IDENTIFYING BIOLOGICAL THRESHOLD OF IMPACT FOR SEDIMENTATION: APPICATION TO FRESHWATER STREAMS IN OREGON COAST RANGE ECOREGION

    EPA Science Inventory

    A conditional probability analysis (CPA) approach has been developed for identifying biological thresholds of impact for use in the development of geographic-specific water quality criteria for protection of aquatic life. This approach expresses the threshold as the likelihood ...

  9. Survival curve estimation with dependent left truncated data using Cox's model.

    PubMed

    Mackenzie, Todd

    2012-10-19

    The Kaplan-Meier and closely related Lynden-Bell estimators are used to provide nonparametric estimation of the distribution of a left-truncated random variable. These estimators assume that the left-truncation variable is independent of the time-to-event. This paper proposes a semiparametric method for estimating the marginal distribution of the time-to-event that does not require independence. It models the conditional distribution of the time-to-event given the truncation variable using Cox's model for left truncated data, and uses inverse probability weighting. We report the results of simulations and illustrate the method using a survival study.

  10. Racial/Ethnic and County-level Disparity in Inpatient Utilization among Hawai'i Medicaid Population.

    PubMed

    Siriwardhana, Chathura; Lim, Eunjung; Aggarwal, Lovedhi; Davis, James; Hixon, Allen; Chen, John J

    2018-05-01

    We investigated racial/ethnic and county-level disparities in inpatient utilization for 15 clinical conditions among Hawaii's Medicaid population. The study was conducted using inpatient claims data from more than 200,000 Hawai'i Medicaid beneficiaries, reported in the year 2010. The analysis was performed by stratifying the Medicaid population into three age groups: children and adolescent group (1-20 years), adult group (21-64 years), and elderly group (65 years and above). Among the differences found, Asians had a low probability of inpatient admissions compared to Whites for many disease categories, while Native Hawaiian/Pacific Islanders had higher probabilities than Whites, across all age groups. Pediatric and adult groups from Hawai'i County (Big Island) had lower probabilities for inpatient admissions compared to Honolulu County (O'ahu) for most disease conditions, but higher probabilities were observed for several conditions in the elderly group. Notably, the elderly population residing on Kaua'i County (Kaua'i and Ni'ihau islands) had substantially increased odds of hospital admissions for several disease conditions, compared to Honolulu.

  11. Recent trends in the probability of high out-of-pocket medical expenses in the United States

    PubMed Central

    Baird, Katherine E

    2016-01-01

    Objective: This article measures the probability that out-of-pocket expenses in the United States exceed a threshold share of income. It calculates this probability separately by individuals’ health condition, income, and elderly status and estimates changes occurring in these probabilities between 2010 and 2013. Data and Method: This article uses nationally representative household survey data on 344,000 individuals. Logistic regressions estimate the probabilities that out-of-pocket expenses exceed 5% and alternatively 10% of income in the two study years. These probabilities are calculated for individuals based on their income, health status, and elderly status. Results: Despite favorable changes in both health policy and the economy, large numbers of Americans continue to be exposed to high out-of-pocket expenditures. For instance, the results indicate that in 2013 over a quarter of nonelderly low-income citizens in poor health spent 10% or more of their income on out-of-pocket expenses, and over 40% of this group spent more than 5%. Moreover, for Americans as a whole, the probability of spending in excess of 5% of income on out-of-pocket costs increased by 1.4 percentage points between 2010 and 2013, with the largest increases occurring among low-income Americans; the probability of Americans spending more than 10% of income grew from 9.3% to 9.6%, with the largest increases also occurring among the poor. Conclusion: The magnitude of out-of-pocket’s financial burden and the most recent upward trends in it underscore a need to develop good measures of the degree to which health care policy exposes individuals to financial risk, and to closely monitor the Affordable Care Act’s success in reducing Americans’ exposure to large medical bills. PMID:27651901

  12. Joint-layer encoder optimization for HEVC scalable extensions

    NASA Astrophysics Data System (ADS)

    Tsai, Chia-Ming; He, Yuwen; Dong, Jie; Ye, Yan; Xiu, Xiaoyu; He, Yong

    2014-09-01

    Scalable video coding provides an efficient solution to support video playback on heterogeneous devices with various channel conditions in heterogeneous networks. SHVC is the latest scalable video coding standard based on the HEVC standard. To improve enhancement layer coding efficiency, inter-layer prediction including texture and motion information generated from the base layer is used for enhancement layer coding. However, the overall performance of the SHVC reference encoder is not fully optimized because rate-distortion optimization (RDO) processes in the base and enhancement layers are independently considered. It is difficult to directly extend the existing joint-layer optimization methods to SHVC due to the complicated coding tree block splitting decisions and in-loop filtering process (e.g., deblocking and sample adaptive offset (SAO) filtering) in HEVC. To solve those problems, a joint-layer optimization method is proposed by adjusting the quantization parameter (QP) to optimally allocate the bit resource between layers. Furthermore, to make more proper resource allocation, the proposed method also considers the viewing probability of base and enhancement layers according to packet loss rate. Based on the viewing probability, a novel joint-layer RD cost function is proposed for joint-layer RDO encoding. The QP values of those coding tree units (CTUs) belonging to lower layers referenced by higher layers are decreased accordingly, and the QP values of those remaining CTUs are increased to keep total bits unchanged. Finally the QP values with minimal joint-layer RD cost are selected to match the viewing probability. The proposed method was applied to the third temporal level (TL-3) pictures in the Random Access configuration. Simulation results demonstrate that the proposed joint-layer optimization method can improve coding performance by 1.3% for these TL-3 pictures compared to the SHVC reference encoder without joint-layer optimization.

  13. A multi-source probabilistic hazard assessment of tephra dispersal in the Neapolitan area

    NASA Astrophysics Data System (ADS)

    Sandri, Laura; Costa, Antonio; Selva, Jacopo; Folch, Arnau; Macedonio, Giovanni; Tonini, Roberto

    2015-04-01

    In this study we present the results obtained from a long-term Probabilistic Hazard Assessment (PHA) of tephra dispersal in the Neapolitan area. Usual PHA for tephra dispersal needs the definition of eruptive scenarios (usually by grouping eruption sizes and possible vent positions in a limited number of classes) with associated probabilities, a meteorological dataset covering a representative time period, and a tephra dispersal model. PHA then results from combining simulations considering different volcanological and meteorological conditions through weights associated to their specific probability of occurrence. However, volcanological parameters (i.e., erupted mass, eruption column height, eruption duration, bulk granulometry, fraction of aggregates) typically encompass a wide range of values. Because of such a natural variability, single representative scenarios or size classes cannot be adequately defined using single values for the volcanological inputs. In the present study, we use a method that accounts for this within-size-class variability in the framework of Event Trees. The variability of each parameter is modeled with specific Probability Density Functions, and meteorological and volcanological input values are chosen by using a stratified sampling method. This procedure allows for quantifying hazard without relying on the definition of scenarios, thus avoiding potential biases introduced by selecting single representative scenarios. Embedding this procedure into the Bayesian Event Tree scheme enables the tephra fall PHA and its epistemic uncertainties. We have appied this scheme to analyze long-term tephra fall PHA from Vesuvius and Campi Flegrei, in a multi-source paradigm. We integrate two tephra dispersal models (the analytical HAZMAP and the numerical FALL3D) into BET_VH. The ECMWF reanalysis dataset are used for exploring different meteorological conditions. The results obtained show that PHA accounting for the whole natural variability are consistent with previous probabilities maps elaborated for Vesuvius and Campi Flegrei on the basis of single representative scenarios, but show significant differences. In particular, the area characterized by a 300 kg/m2-load exceedance probability larger than 5%, accounting for the whole range of variability (that is, from small violent strombolian to plinian eruptions), is similar to that displayed in the maps based on the medium magnitude reference eruption, but it is of a smaller extent. This is due to the relatively higher weight of the small magnitude eruptions considered in this study, but neglected in the reference scenario maps. On the other hand, in our new maps the area characterized by a 300 kg/m2-load exceedance probability larger than 1% is much larger than that of the medium magnitude reference eruption, due to the contribution of plinian eruptions at lower probabilities, again neglected in the reference scenario maps.

  14. The probability of object-scene co-occurrence influences object identification processes.

    PubMed

    Sauvé, Geneviève; Harmand, Mariane; Vanni, Léa; Brodeur, Mathieu B

    2017-07-01

    Contextual information allows the human brain to make predictions about the identity of objects that might be seen and irregularities between an object and its background slow down perception and identification processes. Bar and colleagues modeled the mechanisms underlying this beneficial effect suggesting that the brain stocks information about the statistical regularities of object and scene co-occurrence. Their model suggests that these recurring regularities could be conceptualized along a continuum in which the probability of seeing an object within a given scene can be high (probable condition), moderate (improbable condition) or null (impossible condition). In the present experiment, we propose to disentangle the electrophysiological correlates of these context effects by directly comparing object-scene pairs found along this continuum. We recorded the event-related potentials of 30 healthy participants (18-34 years old) and analyzed their brain activity in three time windows associated with context effects. We observed anterior negativities between 250 and 500 ms after object onset for the improbable and impossible conditions (improbable more negative than impossible) compared to the probable condition as well as a parieto-occipital positivity (improbable more positive than impossible). The brain may use different processing pathways to identify objects depending on whether the probability of co-occurrence with the scene is moderate (rely more on top-down effects) or null (rely more on bottom-up influences). The posterior positivity could index error monitoring aimed to ensure that no false information is integrated into mental representations of the world.

  15. Ecology of a Maryland population of black rat snakes (Elaphe o. obsoleta)

    USGS Publications Warehouse

    Stickel, L.F.; Stickel, W.H.; Schmid, F.C.

    1980-01-01

    Behavior, growth and age of black rat snakes under natural conditions were investigated by mark-recapture methods at the Patuxent Wildlife Research Center for 22 years (1942-1963), with limited observations for 13 more years (1964-1976). Over the 35-year period, 330 snakes were recorded a total of 704 times. Individual home ranges remained stable for many years; male ranges averaged at least 600 m in diam and female ranges at least 500 m, each including a diversity of habitats, evidenced also in records of foods. Population density was low, probably less than 0.5 snake/ha. Peak activity of both sexes was in May and June, with a secondary peak in September. Large trees in the midst of open areas appeared to serve a significant functional role in the behavioral life pattern of the snake population. Male combat was observed three times in the field. Male snakes grew more rapidly than females, attained larger sizes and lived longer. Some individuals of both sexes probably lived 20 years or more. Weight-length relationships changed as the snakes grew and developed heavier bodies in proportion to length. Growth apparently continued throughout life. Some individuals, however, both male and female, stopped growing for periods of I or 2 years and then resumed, a condition probably related to poor health, suggested by skin ailments.

  16. Modeling the effect of bus stops on capacity of curb lane

    NASA Astrophysics Data System (ADS)

    Luo, Qingyu; Zheng, Tianyao; Wu, Wenjing; Jia, Hongfei; Li, Jin

    With the increase of buses and bus lines, a negative effect on road section capacity is made by the prolonged delay and queuing time at bus stops. However, existing methods of measuring the negative effect pay little attention to different bus stop types in the curb lanes. This paper uses Gap theory and Queuing theory to build models for effect-time and potential capacity in different conditions, including curbside bus stops, bus bays with overflow and bus bays without overflow. In order to make the effect-time models accurate and reliable, two types of probabilities are introduced. One is the probability that the dwell time is less than the headway of curb lane at curbside bus stops; the other is the overflow probability at bus bays. Based on the fundamental road capacity model and effect-time models, potential capacity models of curb lane are designed. The new models are calibrated by the survey data from Changchun City, and verified by the simulation software of VISSIM. Furthermore, with different arrival rates of vehicles, the setting conditions of bus stops are researched. Results show that the potential capacity models have high precision. They can offer a reference for recognizing the effect of bus stops on the capacity of curb lane, which can provide a basis for planning, design and management of urban roads and bus stops.

  17. 49 CFR 173.50 - Class 1-Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... insensitive that there is very little probability of initiation or of transition from burning to detonation under normal conditions of transport. 1 The probability of transition from burning to detonation is... contain only extremely insensitive detonating substances and which demonstrate a negligible probability of...

  18. Probabilistic attribution of individual unprecedented extreme events

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, N. S.

    2016-12-01

    The last decade has seen a rapid increase in efforts to understand the influence of global warming on individual extreme climate events. Although trends in the distributions of climate observations have been thoroughly analyzed, rigorously quantifying the contribution of global-scale warming to individual events that are unprecedented in the observed record presents a particular challenge. This paper describes a method for leveraging observations and climate model ensembles to quantify the influence of historical global warming on the severity and probability of unprecedented events. This approach uses formal inferential techniques to quantify four metrics: (1) the contribution of the observed trend to the event magnitude, (2) the contribution of the observed trend to the event probability, (3) the probability of the observed trend in the current climate and a climate without human influence, and (4) the probability of the event magnitude in the current climate and a climate without human influence. Illustrative examples are presented, spanning a range of climate variables, timescales, and regions. These examples illustrate that global warming can influence the severity and probability of unprecedented extremes. In some cases - particularly high temperatures - this change is indicated by changes in the mean. However, changes in probability do not always arise from changes in the mean, suggesting that global warming can alter the frequency with which complex physical conditions co-occur. Because our framework is transparent and highly generalized, it can be readily applied to a range of climate events, regions, and levels of climate forcing.

  19. Why does Japan use the probability method to set design flood?

    NASA Astrophysics Data System (ADS)

    Nakamura, S.; Oki, T.

    2015-12-01

    Design flood is hypothetical flood to make flood prevention plan. In Japan, a probability method based on precipitation data is used to define the scale of design flood: Tone River, the biggest river in Japan, is 1 in 200 years, Shinano River is 1 in 150 years, and so on. It is one of important socio-hydrological issue how to set reasonable and acceptable design flood in a changing world. The method to set design flood vary among countries. Although the probability method is also used in Netherland, but the base data is water level or discharge data and the probability is 1 in 1250 years (in fresh water section). On the other side, USA and China apply the maximum flood method which set the design flood based on the historical or probable maximum flood. This cases can leads a question: "what is the reason why the method vary among countries?" or "why does Japan use the probability method?" The purpose of this study is to clarify the historical process which the probability method was developed in Japan based on the literature. In the late 19the century, the concept of "discharge" and modern river engineering were imported by Dutch engineers, and modern flood prevention plans were developed in Japan. In these plans, the design floods were set based on the historical maximum method. Although the historical maximum method had been used until World War 2, however, the method was changed to the probability method after the war because of limitations of historical maximum method under the specific socio-economic situations: (1) the budget limitation due to the war and the GHQ occupation, (2) the historical floods: Makurazaki typhoon in 1945, Kathleen typhoon in 1947, Ione typhoon in 1948, and so on, attacked Japan and broke the record of historical maximum discharge in main rivers and the flood disasters made the flood prevention projects difficult to complete. Then, Japanese hydrologists imported the hydrological probability statistics from the West to take account of socio-economic situation in design flood, and they applied to Japanese rivers in 1958. The probability method was applied Japan to adapt the specific socio-economic and natural situation during the confusion after the war.

  20. A procedure for landslide susceptibility zonation by the conditional analysis method1

    NASA Astrophysics Data System (ADS)

    Clerici, Aldo; Perego, Susanna; Tellini, Claudio; Vescovi, Paolo

    2002-12-01

    Numerous methods have been proposed for landslide probability zonation of the landscape by means of a Geographic Information System (GIS). Among the multivariate methods, i.e. those methods which simultaneously take into account all the factors contributing to instability, the Conditional Analysis method applied to a subdivision of the territory into Unique Condition Units is particularly straightforward from a conceptual point of view and particularly suited to the use of a GIS. In fact, working on the principle that future landslides are more likely to occur under those conditions which led to past instability, landslide susceptibility is defined by computing the landslide density in correspondence with different combinations of instability factors. The conceptual simplicity of this method, however, does not necessarily imply that it is simple to implement, especially as it requires rather complex operations and a high number of GIS commands. Moreover, there is the possibility that, in order to achieve satisfactory results, the procedure has to be repeated a few times changing the factors or modifying the class subdivision. To solve this problem, we created a shell program which, by combining the shell commands, the GIS Geographical Research Analysis Support System (GRASS) commands and the gawk language commands, carries out the whole procedure automatically. This makes the construction of a Landslide Susceptibility Map easy and fast for large areas too, and even when a high spatial resolution is adopted, as shown by application of the procedure to the Parma River basin, in the Italian Northern Apennines.

  1. Protein construct storage: Bayesian variable selection and prediction with mixtures.

    PubMed

    Clyde, M A; Parmigiani, G

    1998-07-01

    Determining optimal conditions for protein storage while maintaining a high level of protein activity is an important question in pharmaceutical research. A designed experiment based on a space-filling design was conducted to understand the effects of factors affecting protein storage and to establish optimal storage conditions. Different model-selection strategies to identify important factors may lead to very different answers about optimal conditions. Uncertainty about which factors are important, or model uncertainty, can be a critical issue in decision-making. We use Bayesian variable selection methods for linear models to identify important variables in the protein storage data, while accounting for model uncertainty. We also use the Bayesian framework to build predictions based on a large family of models, rather than an individual model, and to evaluate the probability that certain candidate storage conditions are optimal.

  2. Conditional Density Estimation with HMM Based Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Hu, Fasheng; Liu, Zhenqiu; Jia, Chunxin; Chen, Dechang

    Conditional density estimation is very important in financial engineer, risk management, and other engineering computing problem. However, most regression models have a latent assumption that the probability density is a Gaussian distribution, which is not necessarily true in many real life applications. In this paper, we give a framework to estimate or predict the conditional density mixture dynamically. Through combining the Input-Output HMM with SVM regression together and building a SVM model in each state of the HMM, we can estimate a conditional density mixture instead of a single gaussian. With each SVM in each node, this model can be applied for not only regression but classifications as well. We applied this model to denoise the ECG data. The proposed method has the potential to apply to other time series such as stock market return predictions.

  3. Role of the site of synaptic competition and the balance of learning forces for Hebbian encoding of probabilistic Markov sequences

    PubMed Central

    Bouchard, Kristofer E.; Ganguli, Surya; Brainard, Michael S.

    2015-01-01

    The majority of distinct sensory and motor events occur as temporally ordered sequences with rich probabilistic structure. Sequences can be characterized by the probability of transitioning from the current state to upcoming states (forward probability), as well as the probability of having transitioned to the current state from previous states (backward probability). Despite the prevalence of probabilistic sequencing of both sensory and motor events, the Hebbian mechanisms that mold synapses to reflect the statistics of experienced probabilistic sequences are not well understood. Here, we show through analytic calculations and numerical simulations that Hebbian plasticity (correlation, covariance, and STDP) with pre-synaptic competition can develop synaptic weights equal to the conditional forward transition probabilities present in the input sequence. In contrast, post-synaptic competition can develop synaptic weights proportional to the conditional backward probabilities of the same input sequence. We demonstrate that to stably reflect the conditional probability of a neuron's inputs and outputs, local Hebbian plasticity requires balance between competitive learning forces that promote synaptic differentiation and homogenizing learning forces that promote synaptic stabilization. The balance between these forces dictates a prior over the distribution of learned synaptic weights, strongly influencing both the rate at which structure emerges and the entropy of the final distribution of synaptic weights. Together, these results demonstrate a simple correspondence between the biophysical organization of neurons, the site of synaptic competition, and the temporal flow of information encoded in synaptic weights by Hebbian plasticity while highlighting the utility of balancing learning forces to accurately encode probability distributions, and prior expectations over such probability distributions. PMID:26257637

  4. Modelling detection probabilities to evaluate management and control tools for an invasive species

    USGS Publications Warehouse

    Christy, M.T.; Yackel Adams, A.A.; Rodda, G.H.; Savidge, J.A.; Tyrrell, C.L.

    2010-01-01

    For most ecologists, detection probability (p) is a nuisance variable that must be modelled to estimate the state variable of interest (i.e. survival, abundance, or occupancy). However, in the realm of invasive species control, the rate of detection and removal is the rate-limiting step for management of this pervasive environmental problem. For strategic planning of an eradication (removal of every individual), one must identify the least likely individual to be removed, and determine the probability of removing it. To evaluate visual searching as a control tool for populations of the invasive brown treesnake Boiga irregularis, we designed a mark-recapture study to evaluate detection probability as a function of time, gender, size, body condition, recent detection history, residency status, searcher team and environmental covariates. We evaluated these factors using 654 captures resulting from visual detections of 117 snakes residing in a 5-ha semi-forested enclosure on Guam, fenced to prevent immigration and emigration of snakes but not their prey. Visual detection probability was low overall (= 0??07 per occasion) but reached 0??18 under optimal circumstances. Our results supported sex-specific differences in detectability that were a quadratic function of size, with both small and large females having lower detection probabilities than males of those sizes. There was strong evidence for individual periodic changes in detectability of a few days duration, roughly doubling detection probability (comparing peak to non-elevated detections). Snakes in poor body condition had estimated mean detection probabilities greater than snakes with high body condition. Search teams with high average detection rates exhibited detection probabilities about twice that of search teams with low average detection rates. Surveys conducted with bright moonlight and strong wind gusts exhibited moderately decreased probabilities of detecting snakes. Synthesis and applications. By emphasizing and modelling detection probabilities, we now know: (i) that eradication of this species by searching is possible, (ii) how much searching effort would be required, (iii) under what environmental conditions searching would be most efficient, and (iv) several factors that are likely to modulate this quantification when searching is applied to new areas. The same approach can be use for evaluation of any control technology or population monitoring programme. ?? 2009 The Authors. Journal compilation ?? 2009 British Ecological Society.

  5. Multiple Chronic Conditions and Hospitalizations Among Recipients of Long-Term Services and Supports

    PubMed Central

    Van Cleave, Janet H.; Egleston, Brian L.; Abbott, Katherine M.; Hirschman, Karen B.; Rao, Aditi; Naylor, Mary D.

    2016-01-01

    Background Among older adults receiving long term-services and supports (LTSS), debilitating hospitalizations is a pervasive clinical and research problem. Multiple chronic conditions (MCC) are prevalent in LTSS recipients. However, the combination of MCC and diseases associated with hospitalizations of LTSS recipients is unclear. Objective The purpose of this analysis was to determine the association between classes of MCC in newly enrolled LTSS recipients and the number of hospitalizations over a one-year period following enrollment. Methods This report is based on secondary analysis of extant data from a longitudinal cohort study of 470 new recipients of LTSS, ages 60 years and older, receiving services in assisted living facilities, nursing homes, or through home- and community-based services. Using baseline chronic conditions reported in medical records, latent class analysis (LCA) was used to identify classes of MCC and posterior probabilities of membership in each class. Poisson regressions were used to estimate the relative ratio between posterior probabilities of class membership and number of hospitalizations during the 3 month period prior to the start of LTSS (baseline) and then every three months forward through 12 months. Results Three latent MCC-based classes named Cardiopulmonary, Cerebrovascular/Paralysis, and All Other Conditions were identified. The Cardiopulmonary class was associated with elevated numbers of hospitalization compared to the All Other Conditions class (relative ratio [RR] = 1.88, 95% CI [1.33, 2.65], p < .001). Conclusion Older LTSS recipients with a combination of MCCs that includes cardiopulmonary conditions have increased risk for hospitalization. PMID:27801713

  6. A discussion on the origin of quantum probabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holik, Federico, E-mail: olentiev2@gmail.com; Departamento de Matemática - Ciclo Básico Común, Universidad de Buenos Aires - Pabellón III, Ciudad Universitaria, Buenos Aires; Sáenz, Manuel

    We study the origin of quantum probabilities as arising from non-Boolean propositional-operational structures. We apply the method developed by Cox to non distributive lattices and develop an alternative formulation of non-Kolmogorovian probability measures for quantum mechanics. By generalizing the method presented in previous works, we outline a general framework for the deduction of probabilities in general propositional structures represented by lattices (including the non-distributive case). -- Highlights: •Several recent works use a derivation similar to that of R.T. Cox to obtain quantum probabilities. •We apply Cox’s method to the lattice of subspaces of the Hilbert space. •We obtain a derivationmore » of quantum probabilities which includes mixed states. •The method presented in this work is susceptible to generalization. •It includes quantum mechanics and classical mechanics as particular cases.« less

  7. Generalized Bloch theorem for complex periodic potentials: A powerful application to quantum transport calculations

    NASA Astrophysics Data System (ADS)

    Zhang, X.-G.; Varga, Kalman; Pantelides, Sokrates T.

    2007-07-01

    Band-theoretic methods with periodically repeated supercells have been a powerful approach for ground-state electronic structure calculations but have not so far been adapted for quantum transport problems with open boundary conditions. Here, we introduce a generalized Bloch theorem for complex periodic potentials and use a transfer-matrix formulation to cast the transmission probability in a scattering problem with open boundary conditions in terms of the complex wave vectors of a periodic system with absorbing layers, allowing a band technique for quantum transport calculations. The accuracy and utility of the method are demonstrated by the model problems of the transmission of an electron over a square barrier and the scattering of a phonon in an inhomogeneous nanowire. Application to the resistance of a twin boundary in nanocrystalline copper yields excellent agreement with recent experimental data.

  8. On the origins of approximations for stochastic chemical kinetics.

    PubMed

    Haseltine, Eric L; Rawlings, James B

    2005-10-22

    This paper considers the derivation of approximations for stochastic chemical kinetics governed by the discrete master equation. Here, the concepts of (1) partitioning on the basis of fast and slow reactions as opposed to fast and slow species and (2) conditional probability densities are used to derive approximate, partitioned master equations, which are Markovian in nature, from the original master equation. Under different conditions dictated by relaxation time arguments, such approximations give rise to both the equilibrium and hybrid (deterministic or Langevin equations coupled with discrete stochastic simulation) approximations previously reported. In addition, the derivation points out several weaknesses in previous justifications of both the hybrid and equilibrium systems and demonstrates the connection between the original and approximate master equations. Two simple examples illustrate situations in which these two approximate methods are applicable and demonstrate the two methods' efficiencies.

  9. Amplitude modulation of sound from wind turbines under various meteorological conditions.

    PubMed

    Larsson, Conny; Öhlund, Olof

    2014-01-01

    Wind turbine (WT) sound annoys some people even though the sound levels are relatively low. This could be because of the amplitude modulated "swishing" characteristic of the turbine sound, which is not taken into account by standard procedures for measuring average sound levels. Studies of sound immission from WTs were conducted continually between 19 August 2011 and 19 August 2012 at two sites in Sweden. A method for quantifying the degree and strength of amplitude modulation (AM) is introduced here. The method reveals that AM at the immission points occur under specific meteorological conditions. For WT sound immission, the wind direction and sound speed gradient are crucial for the occurrence of AM. Interference between two or more WTs could probably enhance AM. The mechanisms by which WT sound is amplitude modulated are not fully understood.

  10. Radar prediction of absolute rain fade distributions for earth-satellite paths and general methods for extrapolation of fade statistics to other locations

    NASA Technical Reports Server (NTRS)

    Goldhirsh, J.

    1982-01-01

    The first absolute rain fade distribution method described establishes absolute fade statistics at a given site by means of a sampled radar data base. The second method extrapolates absolute fade statistics from one location to another, given simultaneously measured fade and rain rate statistics at the former. Both methods employ similar conditional fade statistic concepts and long term rain rate distributions. Probability deviations in the 2-19% range, with an 11% average, were obtained upon comparison of measured and predicted levels at given attenuations. The extrapolation of fade distributions to other locations at 28 GHz showed very good agreement with measured data at three sites located in the continental temperate region.

  11. Bivariate categorical data analysis using normal linear conditional multinomial probability model.

    PubMed

    Sun, Bingrui; Sutradhar, Brajendra

    2015-02-10

    Bivariate multinomial data such as the left and right eyes retinopathy status data are analyzed either by using a joint bivariate probability model or by exploiting certain odds ratio-based association models. However, the joint bivariate probability model yields marginal probabilities, which are complicated functions of marginal and association parameters for both variables, and the odds ratio-based association model treats the odds ratios involved in the joint probabilities as 'working' parameters, which are consequently estimated through certain arbitrary 'working' regression models. Also, this later odds ratio-based model does not provide any easy interpretations of the correlations between two categorical variables. On the basis of pre-specified marginal probabilities, in this paper, we develop a bivariate normal type linear conditional multinomial probability model to understand the correlations between two categorical variables. The parameters involved in the model are consistently estimated using the optimal likelihood and generalized quasi-likelihood approaches. The proposed model and the inferences are illustrated through an intensive simulation study as well as an analysis of the well-known Wisconsin Diabetic Retinopathy status data. Copyright © 2014 John Wiley & Sons, Ltd.

  12. The general setting for the zero-flux condition: The lagrangian and zero-flux conditions that give the heisenberg equation of motion.

    PubMed

    Anderson, James S M; Ayers, Paul W

    2018-06-30

    Generalizing our recent work on relativistic generalizations of the quantum theory of atoms in molecules, we present the general setting under which the principle of stationary action for a region leads to open quantum subsystems. The approach presented here is general and works for any Hamiltonian, and when a reasonable Lagrangian is selected, it often leads to the integral of the Laplacian of the electron density on the region vanishing as a necessary condition for the zero-flux surface. Alternatively, with this method, one can design a Lagrangian that leads to a surface of interest (though this Lagrangian may not be, and indeed probably will not be, "reasonable"). For any reasonable Lagrangian for the electronic wave function and any two-component method (related by integration by parts to the Hamiltonian) considered, the Bader definition of an atom is recaptured. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  13. Optimization of culturing conditions of recombined Escherichia coli to produce umami octopeptide-containing protein.

    PubMed

    Zhang, Yin; Wei, Xiong; Lu, Zhou; Pan, Zhongli; Gou, Xinhua; Venkitasamy, Chandrasekar; Guo, Siya; Zhao, Liming

    2017-07-15

    Using synthesized peptides to verify the taste of natural peptides was probably the leading cause for tasting disputes regarding umami peptides. A novel method was developed to prepare the natural peptide which could be used to verify the taste of umami peptide. A controversial octopeptide was selected and gene engineering was used to structure its Escherichia coli. expressing vector. A response surface method was adopted to optimize the expression conditions of the recombinant protein. The results of SDS-PAGE for the recombinant protein indicated that the recombinant expression system was successfully structured. The fitting results of the response surface experiment showed that the OD 600 value was the key factor which influenced the expression of the recombinant protein. The optimal culturing process conditions predicted with the fitting model were an OD 600 value of 0.5, an IPTG concentration of 0.6mM, a culturing temperature of 28.75°C and a culturing time of 5h. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Data Delivery Method Based on Neighbor Nodes' Information in a Mobile Ad Hoc Network

    PubMed Central

    Hayashi, Takuma; Taenaka, Yuzo; Okuda, Takeshi; Yamaguchi, Suguru

    2014-01-01

    This paper proposes a data delivery method based on neighbor nodes' information to achieve reliable communication in a mobile ad hoc network (MANET). In a MANET, it is difficult to deliver data reliably due to instabilities in network topology and wireless network condition which result from node movement. To overcome such unstable communication, opportunistic routing and network coding schemes have lately attracted considerable attention. Although an existing method that employs such schemes, MAC-independent opportunistic routing and encoding (MORE), Chachulski et al. (2007), improves the efficiency of data delivery in an unstable wireless mesh network, it does not address node movement. To efficiently deliver data in a MANET, the method proposed in this paper thus first employs the same opportunistic routing and network coding used in MORE and also uses the location information and transmission probabilities of neighbor nodes to adapt to changeable network topology and wireless network condition. The simulation experiments showed that the proposed method can achieve efficient data delivery with low network load when the movement speed is relatively slow. PMID:24672371

  15. Data delivery method based on neighbor nodes' information in a mobile ad hoc network.

    PubMed

    Kashihara, Shigeru; Hayashi, Takuma; Taenaka, Yuzo; Okuda, Takeshi; Yamaguchi, Suguru

    2014-01-01

    This paper proposes a data delivery method based on neighbor nodes' information to achieve reliable communication in a mobile ad hoc network (MANET). In a MANET, it is difficult to deliver data reliably due to instabilities in network topology and wireless network condition which result from node movement. To overcome such unstable communication, opportunistic routing and network coding schemes have lately attracted considerable attention. Although an existing method that employs such schemes, MAC-independent opportunistic routing and encoding (MORE), Chachulski et al. (2007), improves the efficiency of data delivery in an unstable wireless mesh network, it does not address node movement. To efficiently deliver data in a MANET, the method proposed in this paper thus first employs the same opportunistic routing and network coding used in MORE and also uses the location information and transmission probabilities of neighbor nodes to adapt to changeable network topology and wireless network condition. The simulation experiments showed that the proposed method can achieve efficient data delivery with low network load when the movement speed is relatively slow.

  16. Solving portfolio selection problems with minimum transaction lots based on conditional-value-at-risk

    NASA Astrophysics Data System (ADS)

    Setiawan, E. P.; Rosadi, D.

    2017-01-01

    Portfolio selection problems conventionally means ‘minimizing the risk, given the certain level of returns’ from some financial assets. This problem is frequently solved with quadratic or linear programming methods, depending on the risk measure that used in the objective function. However, the solutions obtained by these method are in real numbers, which may give some problem in real application because each asset usually has its minimum transaction lots. In the classical approach considering minimum transaction lots were developed based on linear Mean Absolute Deviation (MAD), variance (like Markowitz’s model), and semi-variance as risk measure. In this paper we investigated the portfolio selection methods with minimum transaction lots with conditional value at risk (CVaR) as risk measure. The mean-CVaR methodology only involves the part of the tail of the distribution that contributed to high losses. This approach looks better when we work with non-symmetric return probability distribution. Solution of this method can be found with Genetic Algorithm (GA) methods. We provide real examples using stocks from Indonesia stocks market.

  17. Galerkin methods for Boltzmann-Poisson transport with reflection conditions on rough boundaries

    NASA Astrophysics Data System (ADS)

    Morales Escalante, José A.; Gamba, Irene M.

    2018-06-01

    We consider in this paper the mathematical and numerical modeling of reflective boundary conditions (BC) associated to Boltzmann-Poisson systems, including diffusive reflection in addition to specularity, in the context of electron transport in semiconductor device modeling at nano scales, and their implementation in Discontinuous Galerkin (DG) schemes. We study these BC on the physical boundaries of the device and develop a numerical approximation to model an insulating boundary condition, or equivalently, a pointwise zero flux mathematical condition for the electron transport equation. Such condition balances the incident and reflective momentum flux at the microscopic level, pointwise at the boundary, in the case of a more general mixed reflection with momentum dependant specularity probability p (k →). We compare the computational prediction of physical observables given by the numerical implementation of these different reflection conditions in our DG scheme for BP models, and observe that the diffusive condition influences the kinetic moments over the whole domain in position space.

  18. Approximation of Failure Probability Using Conditional Sampling

    NASA Technical Reports Server (NTRS)

    Giesy. Daniel P.; Crespo, Luis G.; Kenney, Sean P.

    2008-01-01

    In analyzing systems which depend on uncertain parameters, one technique is to partition the uncertain parameter domain into a failure set and its complement, and judge the quality of the system by estimating the probability of failure. If this is done by a sampling technique such as Monte Carlo and the probability of failure is small, accurate approximation can require so many sample points that the computational expense is prohibitive. Previous work of the authors has shown how to bound the failure event by sets of such simple geometry that their probabilities can be calculated analytically. In this paper, it is shown how to make use of these failure bounding sets and conditional sampling within them to substantially reduce the computational burden of approximating failure probability. It is also shown how the use of these sampling techniques improves the confidence intervals for the failure probability estimate for a given number of sample points and how they reduce the number of sample point analyses needed to achieve a given level of confidence.

  19. Pedigrees, Prizes, and Prisoners: The Misuse of Conditional Probability

    ERIC Educational Resources Information Center

    Carlton, Matthew A.

    2005-01-01

    We present and discuss three examples of misapplication of the notion of conditional probability. In each example, we present the problem along with a published and/or well-known incorrect--but seemingly plausible--solution. We then give a careful treatment of the correct solution, in large part to show how careful application of basic probability…

  20. Unsolved Problems in Evolutionary Theory

    DTIC Science & Technology

    1967-01-01

    finding the probability of survival of a single new mutant). Most natural populations probably satisfy these conditions , as is illustrated by the...Ykl) of small quantities adding to zero. Then under suitable conditions on the function f(x), (3) xi + Yi,t+i = fi(x) + YE yjfi(tf) + O(y yt...It is clear that a sufficient condition for the point x to be locally stable is that all the roots of the matrix, (4) (a j) = ____ should have moduli

  1. The oilspill risk analysis model of the U. S. Geological Survey

    USGS Publications Warehouse

    Smith, R.A.; Slack, J.R.; Wyant, Timothy; Lanfear, K.J.

    1982-01-01

    The U.S. Geological Survey has developed an oilspill risk analysis model to aid in estimating the environmental hazards of developing oil resources in Outer Continental Shelf (OCS) lease areas. The large, computerized model analyzes the probability of spill occurrence, as well as the likely paths or trajectories of spills in relation to the locations of recreational and biological resources which may be vulnerable. The analytical methodology can easily incorporate estimates of weathering rates , slick dispersion, and possible mitigating effects of cleanup. The probability of spill occurrence is estimated from information on the anticipated level of oil production and method of route of transport. Spill movement is modeled in Monte Carlo fashion with a sample of 500 spills per season, each transported by monthly surface current vectors and wind velocities sampled from 3-hour wind transition matrices. Transition matrices are based on historic wind records grouped in 41 wind velocity classes, and are constructed seasonally for up to six wind stations. Locations and monthly vulnerabilities of up to 31 categories of environmental resources are digitized within an 800,000 square kilometer study area. Model output includes tables of conditional impact probabilities (that is, the probability of hitting a target, given that a spill has occured), as well as probability distributions for oilspills occurring and contacting environmental resources within preselected vulnerability time horizons. (USGS)

  2. The oilspill risk analysis model of the U. S. Geological Survey

    USGS Publications Warehouse

    Smith, R.A.; Slack, J.R.; Wyant, T.; Lanfear, K.J.

    1980-01-01

    The U.S. Geological Survey has developed an oilspill risk analysis model to aid in estimating the environmental hazards of developing oil resources in Outer Continental Shelf (OCS) lease areas. The large, computerized model analyzes the probability of spill occurrence, as well as the likely paths or trajectories of spills in relation to the locations of recreational and biological resources which may be vulnerable. The analytical methodology can easily incorporate estimates of weathering rates , slick dispersion, and possible mitigating effects of cleanup. The probability of spill occurrence is estimated from information on the anticipated level of oil production and method and route of transport. Spill movement is modeled in Monte Carlo fashion with a sample of 500 spills per season, each transported by monthly surface current vectors and wind velocities sampled from 3-hour wind transition matrices. Transition matrices are based on historic wind records grouped in 41 wind velocity classes, and are constructed seasonally for up to six wind stations. Locations and monthly vulnerabilities of up to 31 categories of environmental resources are digitized within an 800,000 square kilometer study area. Model output includes tables of conditional impact probabilities (that is, the probability of hitting a target, given that a spill has occurred), as well as probability distributions for oilspills occurring and contacting environmental resources within preselected vulnerability time horizons. (USGS)

  3. SA45. Amotivation in Schizophrenia, Bipolar Disorder, and Major Depressive Disorder: A Preliminary Comparison Study

    PubMed Central

    Zou, Ying-min; Ni, Ke; Wang, Yang-yu; Yu, En-qing; Lui, Simon S. Y.; Cheung, Eric F. C.; Chan, Raymond C. K.

    2017-01-01

    Abstract Background: Deficits in reward processing, such as approaching motivation, reward learning and effort-based decision-making, have been observed in patients with schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). However, little is known about the nature of reward-processing deficits in these 3 diagnostic groups. The present study aimed to compare and contrast amotivation in these 3 diagnostic groups using an effort-based decision-making task. Methods: Sixty patients (19 SCZ patients, 18 BD patients and 23 MDD patients) and 27 healthy controls (HC) were recruited for the present study. The Effort Expenditure for Reward Task (EEfRT) was administered to evaluate their effort allocation pattern. This task required participants to choose easy or hard tasks in response to different levels of reward magnitude and reward probability. Results: Results showed that SCZ, BD, and MDD patients chose fewer hard tasks compared to HC. As reward magnitude increased, MDD patients made the least effort to gain reward compared to the other groups. When reward probability was intermediate, MDD patients chose fewer hard tasks than SCZ patients, whereas BD patients and HC chose more hard tasks than MDD and SCZ patients. When the reward probability was high, all 3 groups of patients tried fewer hard tasks than HC. Moreover, SCZ and MDD patients were less likely to choose hard tasks than BD patients and HC in the intermediate estimated value conditions. However, in the highest estimated value condition, there was no group difference in hard task choices between these 3 clinical groups, and they were all less motivated than HC. Conclusion: SCZ, BD, and MDD patients shared common deficits in gaining reward if the reward probability and estimated value were high. SCZ and MDD patients showed less motivation than BD patients in gaining reward when the reward probability and estimated value was intermediate.

  4. Estimating juvenile Chinook salmon (Oncorhynchus tshawytscha) abundance from beach seine data collected in the Sacramento–San Joaquin Delta and San Francisco Bay, California

    USGS Publications Warehouse

    Perry, Russell W.; Kirsch, Joseph E.; Hendrix, A. Noble

    2016-06-17

    Resource managers rely on abundance or density metrics derived from beach seine surveys to make vital decisions that affect fish population dynamics and assemblage structure. However, abundance and density metrics may be biased by imperfect capture and lack of geographic closure during sampling. Currently, there is considerable uncertainty about the capture efficiency of juvenile Chinook salmon (Oncorhynchus tshawytscha) by beach seines. Heterogeneity in capture can occur through unrealistic assumptions of closure and from variation in the probability of capture caused by environmental conditions. We evaluated the assumptions of closure and the influence of environmental conditions on capture efficiency and abundance estimates of Chinook salmon from beach seining within the Sacramento–San Joaquin Delta and the San Francisco Bay. Beach seine capture efficiency was measured using a stratified random sampling design combined with open and closed replicate depletion sampling. A total of 56 samples were collected during the spring of 2014. To assess variability in capture probability and the absolute abundance of juvenile Chinook salmon, beach seine capture efficiency data were fitted to the paired depletion design using modified N-mixture models. These models allowed us to explicitly test the closure assumption and estimate environmental effects on the probability of capture. We determined that our updated method allowing for lack of closure between depletion samples drastically outperformed traditional data analysis that assumes closure among replicate samples. The best-fit model (lowest-valued Akaike Information Criterion model) included the probability of fish being available for capture (relaxed closure assumption), capture probability modeled as a function of water velocity and percent coverage of fine sediment, and abundance modeled as a function of sample area, temperature, and water velocity. Given that beach seining is a ubiquitous sampling technique for many species, our improved sampling design and analysis could provide significant improvements in density and abundance estimation.

  5. Electrophysiological evidence that top-down knowledge controls working memory processing for subsequent visual search.

    PubMed

    Kawashima, Tomoya; Matsumoto, Eriko

    2016-03-23

    Items in working memory guide visual attention toward a memory-matching object. Recent studies have shown that when searching for an object this attentional guidance can be modulated by knowing the probability that the target will match an item in working memory. Here, we recorded the P3 and contralateral delay activity to investigate how top-down knowledge controls the processing of working memory items. Participants performed memory task (recognition only) and memory-or-search task (recognition or visual search) in which they were asked to maintain two colored oriented bars in working memory. For visual search, we manipulated the probability that target had the same color as memorized items (0, 50, or 100%). Participants knew the probabilities before the task. Target detection in 100% match condition was faster than that in 50% match condition, indicating that participants used their knowledge of the probabilities. We found that the P3 amplitude in 100% condition was larger than in other conditions and that contralateral delay activity amplitude did not vary across conditions. These results suggest that more attention was allocated to the memory items when observers knew in advance that their color would likely match a target. This led to better search performance despite using qualitatively equal working memory representations.

  6. ELIPGRID-PC: A PC program for calculating hot spot probabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, J.R.

    1994-10-01

    ELIPGRID-PC, a new personal computer program has been developed to provide easy access to Singer`s 1972 ELIPGRID algorithm for hot-spot detection probabilities. Three features of the program are the ability to determine: (1) the grid size required for specified conditions, (2) the smallest hot spot that can be sampled with a given probability, and (3) the approximate grid size resulting from specified conditions and sampling cost. ELIPGRID-PC also provides probability of hit versus cost data for graphing with spread-sheets or graphics software. The program has been successfully tested using Singer`s published ELIPGRID results. An apparent error in the original ELIPGRIDmore » code has been uncovered and an appropriate modification incorporated into the new program.« less

  7. An Assessment of Hydrazine, Hydrazine Hydrate and Liquid Ammonia as Fuels for Rocket Propulsion

    DTIC Science & Technology

    1949-08-01

    oxide, hyponitrites, or potassium nitrososulphite; decomposition of aminogunnidine; hydrolysis of bis-dinzo acetic acid; and nlso n cyclic process due to... Dehydration of hydrnzinc hydrnte. This may be carried out with caustic alknli, quick- lime or baryto. The method is probably suitable for laboratory scale...certaini that it can be opernted under safe conditions. These disadvontages should not be so formidable if only a partial dehydration were desired. In this

  8. Modeling of molecular nitrogen collisions and dissociation processes for direct simulation Monte Carlo.

    PubMed

    Parsons, Neal; Levin, Deborah A; van Duin, Adri C T; Zhu, Tong

    2014-12-21

    The Direct Simulation Monte Carlo (DSMC) method typically used for simulating hypersonic Earth re-entry flows requires accurate total collision cross sections and reaction probabilities. However, total cross sections are often determined from extrapolations of relatively low-temperature viscosity data, so their reliability is unknown for the high temperatures observed in hypersonic flows. Existing DSMC reaction models accurately reproduce experimental equilibrium reaction rates, but the applicability of these rates to the strong thermal nonequilibrium observed in hypersonic shocks is unknown. For hypersonic flows, these modeling issues are particularly relevant for nitrogen, the dominant species of air. To rectify this deficiency, the Molecular Dynamics/Quasi-Classical Trajectories (MD/QCT) method is used to accurately compute collision and reaction cross sections for the N2(Σg+1)-N2(Σg+1) collision pair for conditions expected in hypersonic shocks using a new potential energy surface developed using a ReaxFF fit to recent advanced ab initio calculations. The MD/QCT-computed reaction probabilities were found to exhibit better physical behavior and predict less dissociation than the baseline total collision energy reaction model for strong nonequilibrium conditions expected in a shock. The MD/QCT reaction model compared well with computed equilibrium reaction rates and shock-tube data. In addition, the MD/QCT-computed total cross sections were found to agree well with established variable hard sphere total cross sections.

  9. Stage line diagram: an age-conditional reference diagram for tracking development.

    PubMed

    van Buuren, Stef; Ooms, Jeroen C L

    2009-05-15

    This paper presents a method for calculating stage line diagrams, a novel type of reference diagram useful for tracking developmental processes over time. Potential fields of applications include: dentistry (tooth eruption), oncology (tumor grading, cancer staging), virology (HIV infection and disease staging), psychology (stages of cognitive development), human development (pubertal stages) and chronic diseases (stages of dementia). Transition probabilities between successive stages are modeled as smoothly varying functions of age. Age-conditional references are calculated from the modeled probabilities by the mid-P value. It is possible to eliminate the influence of age by calculating standard deviation scores (SDS). The method is applied to the empirical data to produce reference charts on secondary sexual maturation. The mean of the empirical SDS in the reference population is close to zero, whereas the variance depends on age. The stage line diagram provides quick insight into both status (in SDS) and tempo (in SDS/year) of development of an individual child. Other measures (e.g. height SDS, body mass index SDS) from the same child can be added to the chart. Diagrams for sexual maturation are available as a web application at http://vps.stefvanbuuren.nl/puberty. The stage line diagram expresses status and tempo of discrete changes on a continuous scale. Wider application of these measures scores opens up new analytic possibilities. (c) 2009 John Wiley & Sons, Ltd.

  10. Specifying the Probability Characteristics of Funnel Plot Control Limits: An Investigation of Three Approaches

    PubMed Central

    Manktelow, Bradley N.; Seaton, Sarah E.

    2012-01-01

    Background Emphasis is increasingly being placed on the monitoring and comparison of clinical outcomes between healthcare providers. Funnel plots have become a standard graphical methodology to identify outliers and comprise plotting an outcome summary statistic from each provider against a specified ‘target’ together with upper and lower control limits. With discrete probability distributions it is not possible to specify the exact probability that an observation from an ‘in-control’ provider will fall outside the control limits. However, general probability characteristics can be set and specified using interpolation methods. Guidelines recommend that providers falling outside such control limits should be investigated, potentially with significant consequences, so it is important that the properties of the limits are understood. Methods Control limits for funnel plots for the Standardised Mortality Ratio (SMR) based on the Poisson distribution were calculated using three proposed interpolation methods and the probability calculated of an ‘in-control’ provider falling outside of the limits. Examples using published data were shown to demonstrate the potential differences in the identification of outliers. Results The first interpolation method ensured that the probability of an observation of an ‘in control’ provider falling outside either limit was always less than a specified nominal probability (p). The second method resulted in such an observation falling outside either limit with a probability that could be either greater or less than p, depending on the expected number of events. The third method led to a probability that was always greater than, or equal to, p. Conclusion The use of different interpolation methods can lead to differences in the identification of outliers. This is particularly important when the expected number of events is small. We recommend that users of these methods be aware of the differences, and specify which interpolation method is to be used prior to any analysis. PMID:23029202

  11. Bayesian network representing system dynamics in risk analysis of nuclear systems

    NASA Astrophysics Data System (ADS)

    Varuttamaseni, Athi

    2011-12-01

    A dynamic Bayesian network (DBN) model is used in conjunction with the alternating conditional expectation (ACE) regression method to analyze the risk associated with the loss of feedwater accident coupled with a subsequent initiation of the feed and bleed operation in the Zion-1 nuclear power plant. The use of the DBN allows the joint probability distribution to be factorized, enabling the analysis to be done on many simpler network structures rather than on one complicated structure. The construction of the DBN model assumes conditional independence relations among certain key reactor parameters. The choice of parameter to model is based on considerations of the macroscopic balance statements governing the behavior of the reactor under a quasi-static assumption. The DBN is used to relate the peak clad temperature to a set of independent variables that are known to be important in determining the success of the feed and bleed operation. A simple linear relationship is then used to relate the clad temperature to the core damage probability. To obtain a quantitative relationship among different nodes in the DBN, surrogates of the RELAP5 reactor transient analysis code are used. These surrogates are generated by applying the ACE algorithm to output data obtained from about 50 RELAP5 cases covering a wide range of the selected independent variables. These surrogates allow important safety parameters such as the fuel clad temperature to be expressed as a function of key reactor parameters such as the coolant temperature and pressure together with important independent variables such as the scram delay time. The time-dependent core damage probability is calculated by sampling the independent variables from their probability distributions and propagate the information up through the Bayesian network to give the clad temperature. With the knowledge of the clad temperature and the assumption that the core damage probability has a one-to-one relationship to it, we have calculated the core damage probably as a function of transient time. The use of the DBN model in combination with ACE allows risk analysis to be performed with much less effort than if the analysis were done using the standard techniques.

  12. Uncovering Longitudinal Health Care Behaviors for Millions of Medicaid Enrollees: A Multistate Comparison of Pediatric Asthma Utilization.

    PubMed

    Hilton, Ross; Zheng, Yuchen; Fitzpatrick, Anne; Serban, Nicoleta

    2018-01-01

    This study introduces a framework for analyzing and visualizing health care utilization for millions of children, with a focus on pediatric asthma, one of the major chronic respiratory conditions. The data source is the 2005 to 2012 Medicaid Analytic Extract claims for 10 Southeast states. The study population consists of Medicaid-enrolled children with persistent asthma. We translate multiyear, individual-level medical claims into sequences of discrete utilization events, which are modeled using Markov renewal processes and model-based clustering. Network analysis is used to visualize utilization profiles. The method is general, allowing the study of other chronic conditions. The study population consists of 1.5 million children with persistent asthma. All states have profiles with high probability of asthma controller medication, as large as 60.6% to 90.2% of the state study population. The probability of consecutive asthma controller prescriptions ranges between 0.75 and 0.95. All states have utilization profiles with uncontrolled asthma with 4.5% to 22.9% of the state study population. The probability for controller medication is larger than for short-term medication after a physician visit but not after an emergency department (ED) visit or hospitalization. Transitions from ED or hospitalization generally have a lower probability into physician office (between 0.11 and 0.38) than into ED or hospitalization (between 0.20 and 0.59). In most profiles, children who take asthma controller medication do so regularly. Follow-up physician office visits after an ED encounter or hospitalization are observed at a low rate across all states. Finally, all states have a proportion of children who have uncontrolled asthma, meaning they do not take controller medication while they have severe outcomes.

  13. Effects of acute administration of nicotinic and muscarinic cholinergic agonists and antagonists on performance in different cost–benefit decision making tasks in rats

    PubMed Central

    Mendez, Ian A.; Gilbert, Ryan J.; Bizon, Jennifer L.

    2012-01-01

    Rationale Alterations in cost–benefit decision making accompany numerous neuropsychiatric conditions, including schizophrenia, attention deficit hyperactivity disorder, and addiction. Central cholinergic systems have been linked to the etiology and/or treatment of many of these conditions, but little is known about the role of cholinergic signaling in cost–benefit decision making. Objectives The goal of these experiments was to determine how cholinergic signaling is involved in cost–benefit decision making, using a behavioral pharmacological approach. Methods Male Long-Evans rats were trained in either “probability discounting” or “delay discounting” tasks, in which rats made discrete-trial choices between a small food reward and a large food reward associated with either varying probabilities of omission or varying delays to delivery, respectively. The effects of acute administration of different doses of nicotinic and muscarinic acetylcholine receptor agonists and antagonists were assessed in each task. Results In the probability discounting task, acute nicotine administration (1.0 mg/kg) significantly increased choice of the large risky reward, and control experiments suggested that this was due to robust nicotine-induced impairments in behavioral flexibility. In the delay discounting task, the muscarinic antagonists scopolamine (0.03, 0.1, and 0.3 mg/kg) and atropine (0.3 mg/kg) both significantly increased choice of the small immediate reward. Neither mecamylamine nor oxotremorine produced reliable effects on either of the decision making tasks. Conclusions These data suggest that cholinergic receptors play multiple roles in decision making contexts which include consideration of reward delay or probability. These roles should be considered when targeting these receptors for therapeutic purposes. PMID:22760484

  14. Modeling stream fish distributions using interval-censored detection times.

    PubMed

    Ferreira, Mário; Filipe, Ana Filipa; Bardos, David C; Magalhães, Maria Filomena; Beja, Pedro

    2016-08-01

    Controlling for imperfect detection is important for developing species distribution models (SDMs). Occupancy-detection models based on the time needed to detect a species can be used to address this problem, but this is hindered when times to detection are not known precisely. Here, we extend the time-to-detection model to deal with detections recorded in time intervals and illustrate the method using a case study on stream fish distribution modeling. We collected electrofishing samples of six fish species across a Mediterranean watershed in Northeast Portugal. Based on a Bayesian hierarchical framework, we modeled the probability of water presence in stream channels, and the probability of species occupancy conditional on water presence, in relation to environmental and spatial variables. We also modeled time-to-first detection conditional on occupancy in relation to local factors, using modified interval-censored exponential survival models. Posterior distributions of occupancy probabilities derived from the models were used to produce species distribution maps. Simulations indicated that the modified time-to-detection model provided unbiased parameter estimates despite interval-censoring. There was a tendency for spatial variation in detection rates to be primarily influenced by depth and, to a lesser extent, stream width. Species occupancies were consistently affected by stream order, elevation, and annual precipitation. Bayesian P-values and AUCs indicated that all models had adequate fit and high discrimination ability, respectively. Mapping of predicted occupancy probabilities showed widespread distribution by most species, but uncertainty was generally higher in tributaries and upper reaches. The interval-censored time-to-detection model provides a practical solution to model occupancy-detection when detections are recorded in time intervals. This modeling framework is useful for developing SDMs while controlling for variation in detection rates, as it uses simple data that can be readily collected by field ecologists.

  15. Advanced reliability methods for structural evaluation

    NASA Technical Reports Server (NTRS)

    Wirsching, P. H.; Wu, Y.-T.

    1985-01-01

    Fast probability integration (FPI) methods, which can yield approximate solutions to such general structural reliability problems as the computation of the probabilities of complicated functions of random variables, are known to require one-tenth the computer time of Monte Carlo methods for a probability level of 0.001; lower probabilities yield even more dramatic differences. A strategy is presented in which a computer routine is run k times with selected perturbed values of the variables to obtain k solutions for a response variable Y. An approximating polynomial is fit to the k 'data' sets, and FPI methods are employed for this explicit form.

  16. Investigating the relationship between predictability and imbalance in minimisation: a simulation study

    PubMed Central

    2013-01-01

    Background The use of restricted randomisation methods such as minimisation is increasing. This paper investigates under what conditions it is preferable to use restricted randomisation in order to achieve balance between treatment groups at baseline with regard to important prognostic factors and whether trialists should be concerned that minimisation may be considered deterministic. Methods Using minimisation as the randomisation algorithm, treatment allocation was simulated for hypothetical patients entering a theoretical study having values for prognostic factors randomly assigned with a stipulated probability. The number of times the allocation could have been determined with certainty and the imbalances which might occur following randomisation using minimisation were examined. Results Overall treatment balance is relatively unaffected by reducing the probability of allocation to optimal treatment group (P) but within-variable balance can be affected by any P <1. This effect is magnified by increased numbers of prognostic variables, the number of categories within them and the prevalence of these categories within the study population. Conclusions In general, for smaller trials, probability of treatment allocation to the treatment group with fewer numbers requires a larger value P to keep treatment and variable groups balanced. For larger trials probability of allocation values from P = 0.5 to P = 0.8 can be used while still maintaining balance. For one prognostic variable there is no significant benefit in terms of predictability in reducing the value of P. However, for more than one prognostic variable, significant reduction in levels of predictability can be achieved with the appropriate choice of P for the given trial design. PMID:23537389

  17. Influence of Psychiatric Comorbidity on Recovery and Recurrence in Generalized Anxiety Disorder, Social Phobia, and Panic Disorder: A 12-Year Prospective Study

    PubMed Central

    Bruce, Steven E.; Yonkers, Kimberly A.; Otto, Michael W.; Eisen, Jane L.; Weisberg, Risa B.; Pagano, Maria; Shea, M. Tracie; Keller, Martin B.

    2012-01-01

    Objective The authors sought to observe the long-term clinical course of anxiety disorders over 12 years and to examine the influence of comorbid psychiatric disorders on recovery from or recurrence of panic disorder, generalized anxiety disorder, and social phobia. Method Data were drawn from the Harvard/Brown Anxiety Disorders Research Program, a prospective, naturalistic, longitudinal, multicenter study of adults with a current or past history of anxiety disorders. Probabilities of recovery and recurrence were calculated by using standard survival analysis methods. Proportional hazards regression analyses with time-varying covariates were conducted to determine risk ratios for possible comorbid psychiatric predictors of recovery and recurrence. Results Survival analyses revealed an overall chronic course for the majority of the anxiety disorders. Social phobia had the smallest probability of recovery after 12 years of follow-up. Moreover, patients who had prospectively observed recovery from their intake anxiety disorder had a high probability of recurrence over the follow-up period. The overall clinical course was worsened by several comorbid psychiatric conditions, including major depression and alcohol and other substance use disorders, and by comorbidity of generalized anxiety disorder and panic disorder with agoraphobia. Conclusions These data depict the anxiety disorders as insidious, with a chronic clinical course, low rates of recovery, and relatively high probabilities of recurrence. The presence of particular comorbid psychiatric disorders significantly lowered the likelihood of recovery from anxiety disorders and increased the likelihood of their recurrence. The findings add to the understanding of the nosology and treatment of these disorders. PMID:15930067

  18. Sleep Disruption Medical Intervention Forecasting (SDMIF) Module for the Integrated Medical Model

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Brooker, John; Mallis, Melissa; Hursh, Steve; Caldwell, Lynn; Myers, Jerry

    2011-01-01

    The NASA Integrated Medical Model (IMM) assesses the risk, including likelihood and impact of occurrence, of all credible in-flight medical conditions. Fatigue due to sleep disruption is a condition that could lead to operational errors, potentially resulting in loss of mission or crew. Pharmacological consumables are mitigation strategies used to manage the risks associated with sleep deficits. The likelihood of medical intervention due to sleep disruption was estimated with a well validated sleep model and a Monte Carlo computer simulation in an effort to optimize the quantity of consumables. METHODS: The key components of the model are the mission parameter program, the calculation of sleep intensity and the diagnosis and decision module. The mission parameter program was used to create simulated daily sleep/wake schedules for an ISS increment. The hypothetical schedules included critical events such as dockings and extravehicular activities and included actual sleep time and sleep quality. The schedules were used as inputs to the Sleep, Activity, Fatigue and Task Effectiveness (SAFTE) Model (IBR Inc., Baltimore MD), which calculated sleep intensity. Sleep data from an ISS study was used to relate calculated sleep intensity to the probability of sleep medication use, using a generalized linear model for binomial regression. A human yes/no decision process using a binomial random number was also factored into sleep medication use probability. RESULTS: These probability calculations were repeated 5000 times resulting in an estimate of the most likely amount of sleep aids used during an ISS mission and a 95% confidence interval. CONCLUSIONS: These results were transferred to the parent IMM for further weighting and integration with other medical conditions, to help inform operational decisions. This model is a potential planning tool for ensuring adequate sleep during sleep disrupted periods of a mission.

  19. Prevalence and co-occurrence of addictive behaviors among former alternative high school youth: A longitudinal follow-up study.

    PubMed

    Sussman, Steve; Pokhrel, Pallav; Sun, Ping; Rohrbach, Louise A; Spruijt-Metz, Donna

    2015-09-01

    Recent work has studied addictions using a matrix measure, which taps multiple addictions through single responses for each type. This is the first longitudinal study using a matrix measure. We investigated the use of this approach among former alternative high school youth (average age = 19.8 years at baseline; longitudinal n = 538) at risk for addictions. Lifetime and last 30-day prevalence of one or more of 11 addictions reviewed in other work was the primary focus (i.e., cigarettes, alcohol, hard drugs, shopping, gambling, Internet, love, sex, eating, work, and exercise). These were examined at two time-points one year apart. Latent class and latent transition analyses (LCA and LTA) were conducted in Mplus. Prevalence rates were stable across the two time-points. As in the cross-sectional baseline analysis, the 2-class model (addiction class, non-addiction class) fit the data better at follow-up than models with more classes. Item-response or conditional probabilities for each addiction type did not differ between time-points. As a result, the LTA model utilized constrained the conditional probabilities to be equal across the two time-points. In the addiction class, larger conditional probabilities (i.e., 0.40-0.49) were found for love, sex, exercise, and work addictions; medium conditional probabilities (i.e., 0.17-0.27) were found for cigarette, alcohol, other drugs, eating, Internet and shopping addiction; and a small conditional probability (0.06) was found for gambling. Persons in an addiction class tend to remain in this addiction class over a one-year period.

  20. Random-Forest Classification of High-Resolution Remote Sensing Images and Ndsm Over Urban Areas

    NASA Astrophysics Data System (ADS)

    Sun, X. F.; Lin, X. G.

    2017-09-01

    As an intermediate step between raw remote sensing data and digital urban maps, remote sensing data classification has been a challenging and long-standing research problem in the community of remote sensing. In this work, an effective classification method is proposed for classifying high-resolution remote sensing data over urban areas. Starting from high resolution multi-spectral images and 3D geometry data, our method proceeds in three main stages: feature extraction, classification, and classified result refinement. First, we extract color, vegetation index and texture features from the multi-spectral image and compute the height, elevation texture and differential morphological profile (DMP) features from the 3D geometry data. Then in the classification stage, multiple random forest (RF) classifiers are trained separately, then combined to form a RF ensemble to estimate each sample's category probabilities. Finally the probabilities along with the feature importance indicator outputted by RF ensemble are used to construct a fully connected conditional random field (FCCRF) graph model, by which the classification results are refined through mean-field based statistical inference. Experiments on the ISPRS Semantic Labeling Contest dataset show that our proposed 3-stage method achieves 86.9% overall accuracy on the test data.

  1. Short assessment of the Big Five: robust across survey methods except telephone interviewing.

    PubMed

    Lang, Frieder R; John, Dennis; Lüdtke, Oliver; Schupp, Jürgen; Wagner, Gert G

    2011-06-01

    We examined measurement invariance and age-related robustness of a short 15-item Big Five Inventory (BFI-S) of personality dimensions, which is well suited for applications in large-scale multidisciplinary surveys. The BFI-S was assessed in three different interviewing conditions: computer-assisted or paper-assisted face-to-face interviewing, computer-assisted telephone interviewing, and a self-administered questionnaire. Randomized probability samples from a large-scale German panel survey and a related probability telephone study were used in order to test method effects on self-report measures of personality characteristics across early, middle, and late adulthood. Exploratory structural equation modeling was used in order to test for measurement invariance of the five-factor model of personality trait domains across different assessment methods. For the short inventory, findings suggest strong robustness of self-report measures of personality dimensions among young and middle-aged adults. In old age, telephone interviewing was associated with greater distortions in reliable personality assessment. It is concluded that the greater mental workload of telephone interviewing limits the reliability of self-report personality assessment. Face-to-face surveys and self-administrated questionnaire completion are clearly better suited than phone surveys when personality traits in age-heterogeneous samples are assessed.

  2. The analysis of a generic air-to-air missile simulation model

    NASA Technical Reports Server (NTRS)

    Kaplan, Joseph A.; Chappell, Alan R.; Mcmanus, John W.

    1994-01-01

    A generic missile model was developed to evaluate the benefits of using a dynamic missile fly-out simulation system versus a static missile launch envelope system for air-to-air combat simulation. This paper examines the performance of a launch envelope model and a missile fly-out model. The launch envelope model bases its probability of killing the target aircraft on the target aircraft's position at the launch time of the weapon. The benefits gained from a launch envelope model are the simplicity of implementation and the minimal computational overhead required. A missile fly-out model takes into account the physical characteristics of the missile as it simulates the guidance, propulsion, and movement of the missile. The missile's probability of kill is based on the missile miss distance (or the minimum distance between the missile and the target aircraft). The problems associated with this method of modeling are a larger computational overhead, the additional complexity required to determine the missile miss distance, and the additional complexity of determining the reason(s) the missile missed the target. This paper evaluates the two methods and compares the results of running each method on a comprehensive set of test conditions.

  3. Statistical-Dynamical Seasonal Forecasts of Central-Southwest Asian Winter Precipitation.

    NASA Astrophysics Data System (ADS)

    Tippett, Michael K.; Goddard, Lisa; Barnston, Anthony G.

    2005-06-01

    Interannual precipitation variability in central-southwest (CSW) Asia has been associated with East Asian jet stream variability and western Pacific tropical convection. However, atmospheric general circulation models (AGCMs) forced by observed sea surface temperature (SST) poorly simulate the region's interannual precipitation variability. The statistical-dynamical approach uses statistical methods to correct systematic deficiencies in the response of AGCMs to SST forcing. Statistical correction methods linking model-simulated Indo-west Pacific precipitation and observed CSW Asia precipitation result in modest, but statistically significant, cross-validated simulation skill in the northeast part of the domain for the period from 1951 to 1998. The statistical-dynamical method is also applied to recent (winter 1998/99 to 2002/03) multimodel, two-tier December-March precipitation forecasts initiated in October. This period includes 4 yr (winter of 1998/99 to 2001/02) of severe drought. Tercile probability forecasts are produced using ensemble-mean forecasts and forecast error estimates. The statistical-dynamical forecasts show enhanced probability of below-normal precipitation for the four drought years and capture the return to normal conditions in part of the region during the winter of 2002/03.May Kabul be without gold, but not without snow.—Traditional Afghan proverb

  4. Effects of sampling conditions on DNA-based estimates of American black bear abundance

    USGS Publications Warehouse

    Laufenberg, Jared S.; Van Manen, Frank T.; Clark, Joseph D.

    2013-01-01

    DNA-based capture-mark-recapture techniques are commonly used to estimate American black bear (Ursus americanus) population abundance (N). Although the technique is well established, many questions remain regarding study design. In particular, relationships among N, capture probability of heterogeneity mixtures A and B (pA and pB, respectively, or p, collectively), the proportion of each mixture (π), number of capture occasions (k), and probability of obtaining reliable estimates of N are not fully understood. We investigated these relationships using 1) an empirical dataset of DNA samples for which true N was unknown and 2) simulated datasets with known properties that represented a broader array of sampling conditions. For the empirical data analysis, we used the full closed population with heterogeneity data type in Program MARK to estimate N for a black bear population in Great Smoky Mountains National Park, Tennessee. We systematically reduced the number of those samples used in the analysis to evaluate the effect that changes in capture probabilities may have on parameter estimates. Model-averaged N for females and males were 161 (95% CI = 114–272) and 100 (95% CI = 74–167), respectively (pooled N = 261, 95% CI = 192–419), and the average weekly p was 0.09 for females and 0.12 for males. When we reduced the number of samples of the empirical data, support for heterogeneity models decreased. For the simulation analysis, we generated capture data with individual heterogeneity covering a range of sampling conditions commonly encountered in DNA-based capture-mark-recapture studies and examined the relationships between those conditions and accuracy (i.e., probability of obtaining an estimated N that is within 20% of true N), coverage (i.e., probability that 95% confidence interval includes true N), and precision (i.e., probability of obtaining a coefficient of variation ≤20%) of estimates using logistic regression. The capture probability for the larger of 2 mixture proportions of the population (i.e., pA or pB, depending on the value of π) was most important for predicting accuracy and precision, whereas capture probabilities of both mixture proportions (pA and pB) were important to explain variation in coverage. Based on sampling conditions similar to parameter estimates from the empirical dataset (pA = 0.30, pB = 0.05, N = 250, π = 0.15, and k = 10), predicted accuracy and precision were low (60% and 53%, respectively), whereas coverage was high (94%). Increasing pB, the capture probability for the predominate but most difficult to capture proportion of the population, was most effective to improve accuracy under those conditions. However, manipulation of other parameters may be more effective under different conditions. In general, the probabilities of obtaining accurate and precise estimates were best when p≥ 0.2. Our regression models can be used by managers to evaluate specific sampling scenarios and guide development of sampling frameworks or to assess reliability of DNA-based capture-mark-recapture studies.

  5. Probability Elicitation Under Severe Time Pressure: A Rank-Based Method.

    PubMed

    Jaspersen, Johannes G; Montibeller, Gilberto

    2015-07-01

    Probability elicitation protocols are used to assess and incorporate subjective probabilities in risk and decision analysis. While most of these protocols use methods that have focused on the precision of the elicited probabilities, the speed of the elicitation process has often been neglected. However, speed is also important, particularly when experts need to examine a large number of events on a recurrent basis. Furthermore, most existing elicitation methods are numerical in nature, but there are various reasons why an expert would refuse to give such precise ratio-scale estimates, even if highly numerate. This may occur, for instance, when there is lack of sufficient hard evidence, when assessing very uncertain events (such as emergent threats), or when dealing with politicized topics (such as terrorism or disease outbreaks). In this article, we adopt an ordinal ranking approach from multicriteria decision analysis to provide a fast and nonnumerical probability elicitation process. Probabilities are subsequently approximated from the ranking by an algorithm based on the principle of maximum entropy, a rule compatible with the ordinal information provided by the expert. The method can elicit probabilities for a wide range of different event types, including new ways of eliciting probabilities for stochastically independent events and low-probability events. We use a Monte Carlo simulation to test the accuracy of the approximated probabilities and try the method in practice, applying it to a real-world risk analysis recently conducted for DEFRA (the U.K. Department for the Environment, Farming and Rural Affairs): the prioritization of animal health threats. © 2015 Society for Risk Analysis.

  6. Stochastic sampled-data control for synchronization of complex dynamical networks with control packet loss and additive time-varying delays.

    PubMed

    Rakkiyappan, R; Sakthivel, N; Cao, Jinde

    2015-06-01

    This study examines the exponential synchronization of complex dynamical networks with control packet loss and additive time-varying delays. Additionally, sampled-data controller with time-varying sampling period is considered and is assumed to switch between m different values in a random way with given probability. Then, a novel Lyapunov-Krasovskii functional (LKF) with triple integral terms is constructed and by using Jensen's inequality and reciprocally convex approach, sufficient conditions under which the dynamical network is exponentially mean-square stable are derived. When applying Jensen's inequality to partition double integral terms in the derivation of linear matrix inequality (LMI) conditions, a new kind of linear combination of positive functions weighted by the inverses of squared convex parameters appears. In order to handle such a combination, an effective method is introduced by extending the lower bound lemma. To design the sampled-data controller, the synchronization error system is represented as a switched system. Based on the derived LMI conditions and average dwell-time method, sufficient conditions for the synchronization of switched error system are derived in terms of LMIs. Finally, numerical example is employed to show the effectiveness of the proposed methods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Probabilistic Analysis of a Composite Crew Module

    NASA Technical Reports Server (NTRS)

    Mason, Brian H.; Krishnamurthy, Thiagarajan

    2011-01-01

    An approach for conducting reliability-based analysis (RBA) of a Composite Crew Module (CCM) is presented. The goal is to identify and quantify the benefits of probabilistic design methods for the CCM and future space vehicles. The coarse finite element model from a previous NASA Engineering and Safety Center (NESC) project is used as the baseline deterministic analysis model to evaluate the performance of the CCM using a strength-based failure index. The first step in the probabilistic analysis process is the determination of the uncertainty distributions for key parameters in the model. Analytical data from water landing simulations are used to develop an uncertainty distribution, but such data were unavailable for other load cases. The uncertainty distributions for the other load scale factors and the strength allowables are generated based on assumed coefficients of variation. Probability of first-ply failure is estimated using three methods: the first order reliability method (FORM), Monte Carlo simulation, and conditional sampling. Results for the three methods were consistent. The reliability is shown to be driven by first ply failure in one region of the CCM at the high altitude abort load set. The final predicted probability of failure is on the order of 10-11 due to the conservative nature of the factors of safety on the deterministic loads.

  8. Simulation and optimization of continuous extractive fermentation with recycle system

    NASA Astrophysics Data System (ADS)

    Widjaja, Tri; Altway, Ali; Rofiqah, Umi; Airlangga, Bramantyo

    2017-05-01

    Extractive fermentation is continuous fermentation method which is believed to be able to substitute conventional fermentation method (batch). The recovery system and ethanol refinery will be easier. Continuous process of fermentation will make the productivity increase although the unconverted sugar in continuous fermentation is still in high concentration. In order to make this process more efficient, the recycle process was used. Increasing recycle flow will enhance the probability of sugar to be re-fermented. However, this will make ethanol enter fermentation column. As a result, the accumulated ethanol will inhibit the growth of microorganism. This research aims to find optimum conditions of solvent to broth ratio (S:B) and recycle flow to fresh feed ratio in order to produce the best yield and productivity. This study employed optimization by Hooke Jeeves method using Matlab 7.8 software. The result indicated that optimum condition occured in S: B=2.615 and R: F=1.495 with yield = 50.2439 %.

  9. Atmospheric control on ground and space based early warning system for hazard linked to ash injection into the atmosphere

    NASA Astrophysics Data System (ADS)

    Caudron, Corentin; Taisne, Benoit; Whelley, Patrick; Garces, Milton; Le Pichon, Alexis

    2014-05-01

    Violent volcanic eruptions are common in the Southeast Asia which is bordered by active subduction zones with hundreds of active volcanoes. The physical conditions at the eruptive vent are difficult to estimate, especially when there are only a few sensors distributed around the volcano. New methods are therefore required to tackle this problem. Among them, satellite imagery and infrasound may rapidly provide information on strong eruptions triggered at volcanoes which are not closely monitored by on-site instruments. The deployment of an infrasonic array located at Singapore will increase the detection capability of the existing IMS network. In addition, the location of Singapore with respect to those volcanoes makes it the perfect site to identify erupting blasts based on the wavefront characteristics of the recorded signal. There are ~750 active or potentially active volcanoes within 4000 kilometers of Singapore. They have been combined into 23 volcanic zones that have clear azimuth with respect to Singapore. Each of those zones has been assessed for probabilities of eruptive styles, from moderate (Volcanic Explosivity Index of 3) to cataclysmic (VEI 8) based on remote morphologic analysis. Ash dispersal models have been run using wind velocity profiles from 2010 to 2012 and hypothetical eruption scenarios for a range of eruption explosivities. Results can be used to estimate the likelihood of volcanic ash at any location in SE Asia. Seasonal changes in atmospheric conditions will strongly affect the potential to detect small volcanic eruptions with infrasound and clouds can hide eruption plumes from satellites. We use the average cloud cover for each zone to estimate the probability of eruption detection from space, and atmospheric models to estimate the probability of eruption detection with infrasound. Using remote sensing in conjunction with infrasound improves detection capabilities as each method is capable of detecting eruptions when the other is 'blind' or 'defened' by adverse atmospheric conditions. According to its location, each volcanic zone will be associated with a threshold value (minimum VEI detectable) depending on the seasonality of the wind velocity profile in the region and the cloud cover.

  10. Assessing the impact of climate and land use changes on extreme floods in a large tropical catchment

    NASA Astrophysics Data System (ADS)

    Jothityangkoon, Chatchai; Hirunteeyakul, Chow; Boonrawd, Kowit; Sivapalan, Murugesu

    2013-05-01

    In the wake of the recent catastrophic floods in Thailand, there is considerable concern about the safety of large dams designed and built some 50 years ago. In this paper a distributed rainfall-runoff model appropriate for extreme flood conditions is used to generate revised estimates of the Probable Maximum Flood (PMF) for the Upper Ping River catchment (area 26,386 km2) in northern Thailand, upstream of location of the large Bhumipol Dam. The model has two components: a continuous water balance model based on a configuration of parameters estimated from climate, soil and vegetation data and a distributed flood routing model based on non-linear storage-discharge relationships of the river network under extreme flood conditions. The model is implemented under several alternative scenarios regarding the Probable Maximum Precipitation (PMP) estimates and is also used to estimate the potential effects of both climate change and land use and land cover changes on the extreme floods. These new estimates are compared against estimates using other hydrological models, including the application of the original prediction methods under current conditions. Model simulations and sensitivity analyses indicate that a reasonable Probable Maximum Flood (PMF) at the dam site is 6311 m3/s, which is only slightly higher than the original design flood of 6000 m3/s. As part of an uncertainty assessment, the estimated PMF is sensitive to the design method, input PMP, land use changes and the floodplain inundation effect. The increase of PMP depth by 5% can cause a 7.5% increase in PMF. Deforestation by 10%, 20%, 30% can result in PMF increases of 3.1%, 6.2%, 9.2%, respectively. The modest increase of the estimated PMF (to just 6311 m3/s) in spite of these changes is due to the factoring of the hydraulic effects of trees and buildings on the floodplain as the flood situation changes from normal floods to extreme floods, when over-bank flows may be the dominant flooding process, leading to a substantial reduction in the PMF estimates.

  11. Quantum-correlation breaking channels, quantum conditional probability and Perron-Frobenius theory

    NASA Astrophysics Data System (ADS)

    Chruściński, Dariusz

    2013-03-01

    Using the quantum analog of conditional probability and classical Bayes theorem we discuss some aspects of particular entanglement breaking channels: quantum-classical and classical-classical channels. Applying the quantum analog of Perron-Frobenius theorem we generalize the recent result of Korbicz et al. (2012) [8] on full and spectrum broadcasting from quantum-classical channels to arbitrary quantum channels.

  12. When Is Statistical Evidence Superior to Anecdotal Evidence in Supporting Probability Claims? The Role of Argument Type

    ERIC Educational Resources Information Center

    Hoeken, Hans; Hustinx, Lettica

    2009-01-01

    Under certain conditions, statistical evidence is more persuasive than anecdotal evidence in supporting a claim about the probability that a certain event will occur. In three experiments, it is shown that the type of argument is an important condition in this respect. If the evidence is part of an argument by generalization, statistical evidence…

  13. Transfer of Solutions to Conditional Probability Problems: Effects of Example Problem Format, Solution Format, and Problem Context

    ERIC Educational Resources Information Center

    Chow, Alan F.; Van Haneghan, James P.

    2016-01-01

    This study reports the results of a study examining how easily students are able to transfer frequency solutions to conditional probability problems to novel situations. University students studied either a problem solved using the traditional Bayes formula format or using a natural frequency (tree diagram) format. In addition, the example problem…

  14. Hydrologic risk analysis in the Yangtze River basin through coupling Gaussian mixtures into copulas

    NASA Astrophysics Data System (ADS)

    Fan, Y. R.; Huang, W. W.; Huang, G. H.; Li, Y. P.; Huang, K.; Li, Z.

    2016-02-01

    In this study, a bivariate hydrologic risk framework is proposed through coupling Gaussian mixtures into copulas, leading to a coupled GMM-copula method. In the coupled GMM-Copula method, the marginal distributions of flood peak, volume and duration are quantified through Gaussian mixture models and the joint probability distributions of flood peak-volume, peak-duration and volume-duration are established through copulas. The bivariate hydrologic risk is then derived based on the joint return period of flood variable pairs. The proposed method is applied to the risk analysis for the Yichang station on the main stream of the Yangtze River, China. The results indicate that (i) the bivariate risk for flood peak-volume would keep constant for the flood volume less than 1.0 × 105 m3/s day, but present a significant decreasing trend for the flood volume larger than 1.7 × 105 m3/s day; and (ii) the bivariate risk for flood peak-duration would not change significantly for the flood duration less than 8 days, and then decrease significantly as duration value become larger. The probability density functions (pdfs) of the flood volume and duration conditional on flood peak can also be generated through the fitted copulas. The results indicate that the conditional pdfs of flood volume and duration follow bimodal distributions, with the occurrence frequency of the first vertex decreasing and the latter one increasing as the increase of flood peak. The obtained conclusions from the bivariate hydrologic analysis can provide decision support for flood control and mitigation.

  15. Clinical and sonographic risk factors and complications of shoulder dystocia - a case-control study with parity and gestational age matched controls.

    PubMed

    Parantainen, Jukka; Palomäki, Outi; Talola, Nina; Uotila, Jukka

    2014-06-01

    To examine the clinical risk factors and complications of shoulder dystocia today and to evaluate ultrasound methods predicting it. Retrospective, matched case-control study at a University Hospital with 5000 annual deliveries. The study population consisted of 152 deliveries complicated by shoulder dystocia over a period of 8.5 years (January 2004-June 2012) and 152 controls matched for gestational age and parity. The data was collected from the medical records of mothers and children and analyzed by conditional logistic regression. Incidences and odds ratios were calculated for risk factors and complications. Antenatal ultrasound data was analyzed when available by conditional logistic regression to test for significant differences between study groups. Birthweight (OR 12.1 for ≥4000 g; 95% CI 4.18-35.0) and vacuum extraction (OR 3.98; 95% CI 1.25-12.7) remained the most significant clinical risk factors. Only a trend of an association of pregestational or gestational diabetes was noticed (OR 1.87; 95% CI 0.997-3.495, probability of type II error 51%). Of the complications of shoulder dystocia the incidence of brachial plexus palsies was high (40%). Antenatal ultrasound method based on the difference between abdominal and biparietal diameters had a significant difference between cases and controls. The impact of diabetes as a risk factor has diminished, which may reflect improved screening and treatment. Antenatal ultrasound methods are showing some promise, but the predictive value of ultrasound alone is probably low. Copyright © 2014. Published by Elsevier Ireland Ltd.

  16. Highly sensitive determination of polycyclic aromatic hydrocarbons in ambient air dust by gas chromatography-mass spectrometry after molecularly imprinted polymer extraction.

    PubMed

    Krupadam, Reddithota J; Bhagat, Bhagyashree; Khan, Muntazir S

    2010-08-01

    A method based on solid--phase extraction with a molecularly imprinted polymer (MIP) has been developed to determine five probable human carcinogenic polycyclic aromatic hydrocarbons (PAHs) in ambient air dust by gas chromatography-mass spectrometry (GC-MS). Molecularly imprinted poly(vinylpyridine-co-ethylene glycol dimethacrylate) was chosen as solid-phase extraction (SPE) material for PAHs. The conditions affecting extraction efficiency, for example surface properties, concentration of PAHs, and equilibration times were evaluated and optimized. Under optimum conditions, pre-concentration factors for MIP-SPE ranged between 80 and 93 for 10 mL ambient air dust leachate. PAHs recoveries from MIP-SPE after extraction from air dust were between 85% and 97% and calibration graphs of the PAHs showed a good linearity between 10 and 1000 ng L(-1) (r = 0.99). The extraction efficiency of MIP for PAHs was compared with that of commercially available SPE materials--powdered activated carbon (PAC) and polystyrene-divinylbenzene resin (XAD)--and it was shown that the extraction capacity of the MIP was better than that of the other two SPE materials. Organic matter in air dust had no effect on MIP extraction, which produced a clean extract for GC-MS analysis. The detection limit of the method proposed in this article is 0.15 ng L(-1) for benzo[a]pyrene, which is a marker molecule of air pollution. The method has been applied to the determination of probable carcinogenic PAHs in air dust of industrial zones and satisfactory results were obtained.

  17. Probability Quantization for Multiplication-Free Binary Arithmetic Coding

    NASA Technical Reports Server (NTRS)

    Cheung, K. -M.

    1995-01-01

    A method has been developed to improve on Witten's binary arithmetic coding procedure of tracking a high value and a low value. The new method approximates the probability of the less probable symbol, which improves the worst-case coding efficiency.

  18. Condition-dependent reproductive effort in frogs infected by a widespread pathogen

    PubMed Central

    Roznik, Elizabeth A.; Sapsford, Sarah J.; Pike, David A.; Schwarzkopf, Lin; Alford, Ross A.

    2015-01-01

    To minimize the negative effects of an infection on fitness, hosts can respond adaptively by altering their reproductive effort or by adjusting their timing of reproduction. We studied effects of the pathogenic fungus Batrachochytrium dendrobatidis on the probability of calling in a stream-breeding rainforest frog (Litoria rheocola). In uninfected frogs, calling probability was relatively constant across seasons and body conditions, but in infected frogs, calling probability differed among seasons (lowest in winter, highest in summer) and was strongly and positively related to body condition. Infected frogs in poor condition were up to 40% less likely to call than uninfected frogs, whereas infected frogs in good condition were up to 30% more likely to call than uninfected frogs. Our results suggest that frogs employed a pre-existing, plastic, life-history strategy in response to infection, which may have complex evolutionary implications. If infected males in good condition reproduce at rates equal to or greater than those of uninfected males, selection on factors affecting disease susceptibility may be minimal. However, because reproductive effort in infected males is positively related to body condition, there may be selection on mechanisms that limit the negative effects of infections on hosts. PMID:26063847

  19. Streamflow distribution maps for the Cannon River drainage basin, southeast Minnesota, and the St. Louis River drainage basin, northeast Minnesota

    USGS Publications Warehouse

    Smith, Erik A.; Sanocki, Chris A.; Lorenz, David L.; Jacobsen, Katrin E.

    2017-12-27

    Streamflow distribution maps for the Cannon River and St. Louis River drainage basins were developed by the U.S. Geological Survey, in cooperation with the Legislative-Citizen Commission on Minnesota Resources, to illustrate relative and cumulative streamflow distributions. The Cannon River was selected to provide baseline data to assess the effects of potential surficial sand mining, and the St. Louis River was selected to determine the effects of ongoing Mesabi Iron Range mining. Each drainage basin (Cannon, St. Louis) was subdivided into nested drainage basins: the Cannon River was subdivided into 152 nested drainage basins, and the St. Louis River was subdivided into 353 nested drainage basins. For each smaller drainage basin, the estimated volumes of groundwater discharge (as base flow) and surface runoff flowing into all surface-water features were displayed under the following conditions: (1) extreme low-flow conditions, comparable to an exceedance-probability quantile of 0.95; (2) low-flow conditions, comparable to an exceedance-probability quantile of 0.90; (3) a median condition, comparable to an exceedance-probability quantile of 0.50; and (4) a high-flow condition, comparable to an exceedance-probability quantile of 0.02.Streamflow distribution maps were developed using flow-duration curve exceedance-probability quantiles in conjunction with Soil-Water-Balance model outputs; both the flow-duration curve and Soil-Water-Balance models were built upon previously published U.S. Geological Survey reports. The selected streamflow distribution maps provide a proactive water management tool for State cooperators by illustrating flow rates during a range of hydraulic conditions. Furthermore, after the nested drainage basins are highlighted in terms of surface-water flows, the streamflows can be evaluated in the context of meeting specific ecological flows under different flow regimes and potentially assist with decisions regarding groundwater and surface-water appropriations. Presented streamflow distribution maps are foundational work intended to support the development of additional streamflow distribution maps that include statistical constraints on the selected flow conditions.

  20. Class dependency of fuzzy relational database using relational calculus and conditional probability

    NASA Astrophysics Data System (ADS)

    Deni Akbar, Mohammad; Mizoguchi, Yoshihiro; Adiwijaya

    2018-03-01

    In this paper, we propose a design of fuzzy relational database to deal with a conditional probability relation using fuzzy relational calculus. In the previous, there are several researches about equivalence class in fuzzy database using similarity or approximate relation. It is an interesting topic to investigate the fuzzy dependency using equivalence classes. Our goal is to introduce a formulation of a fuzzy relational database model using the relational calculus on the category of fuzzy relations. We also introduce general formulas of the relational calculus for the notion of database operations such as ’projection’, ’selection’, ’injection’ and ’natural join’. Using the fuzzy relational calculus and conditional probabilities, we introduce notions of equivalence class, redundant, and dependency in the theory fuzzy relational database.

  1. Evaluation of methods for identifying spawning sites and habitat selection for alosines

    USGS Publications Warehouse

    Harris, Julianne E.; Hightower, Joseph E.

    2010-01-01

    Characterization of riverine spawning habitat is important for the management and restoration of anadromous alosines. We examined the relative effectiveness of oblique plankton tows and spawning pads for collecting the eggs of American shad Alosa sapidissima, hickory shad A. mediocris, and “river herring” (a collective term for alewife A. pseudoharengus and blueback herring A. aestivalis) in the Roanoke River, North Carolina. Relatively nonadhesive American shad eggs were only collected by plankton tows, whereas semiadhesive hickory shad and river herring eggs were collected by both methods. Compared with spawning pads, oblique plankton tows had higher probabilities of collecting eggs and led to the identification of longer spawning periods. In assumed spawning areas, twice-weekly plankton sampling for 15 min throughout the spawning season had a 95% or greater probability of collecting at least one egg for all alosines; however, the probabilities were lower in areas with more limited spawning. Comparisons of plankton tows, spawning pads, and two other methods of identifying spawning habitat (direct observation of spawning and examination of female histology) suggested differences in effectiveness and efficiency. Riverwide information on spawning sites and timing for all alosines is most efficiently obtained by plankton sampling. Spawning pads and direct observations of spawning are the best ways to determine microhabitat selectivity for appropriate species, especially when spawning sites have previously been identified. Histological examination can help determine primary spawning sites but is most useful when information on reproductive biology and spawning periodicity is also desired. The target species, riverine habitat conditions, and research goals should be considered when selecting methods with which to evaluate alosine spawning habitat.

  2. Expert Elicitations of 2100 Emission of CO2

    NASA Astrophysics Data System (ADS)

    Ho, Emily; Bosetti, Valentina; Budescu, David; Keller, Klaus; van Vuuren, Detlef

    2017-04-01

    Emission scenarios such as Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathways (RCPs) are used intensively for climate research (e.g. climate change projections) and policy analysis. While the range of these scenarios provides an indication of uncertainty, these scenarios are typically not associated with probability values. Some studies (e.g. Vuuren et al, 2007; Gillingham et al., 2015) took a different approach associating baseline emission pathways (conditionally) with probability distributions. This paper summarizes three studies where climate change experts were asked to conduct pair-wise comparisons of possible ranges of 2100 greenhouse gas emissions and rate the relative likelihood of the ranges. The elicitation was performed under two sets of assumptions: 1) a situation where no climate policies are introduced beyond the ones already in place (baseline scenario), and 2) a situation in which countries have ratified the voluntary policies in line with the long term target embedded in the 2015 Paris Agreement. These indirect relative judgments were used to construct subjective cumulative distribution functions. We show that by using a ratio scaling method that invokes relative likelihoods of scenarios, a subjective probability distribution can be derived for each expert that expresses their beliefs in the projected greenhouse gas emissions range in 2100. This method is shown to elicit stable estimates that require minimal adjustment and is relatively invariant to the partition of the domain of interest. Experts also rated the method as being easy and intuitive to use. We also report results of a study that allowed participants to choose their own ranges of greenhouse gas emissions to remove potential anchoring bias. We discuss the implications of the use of this method for facilitating comparison and communication of beliefs among diverse users of climate science research.

  3. Probability techniques for reliability analysis of composite materials

    NASA Technical Reports Server (NTRS)

    Wetherhold, Robert C.; Ucci, Anthony M.

    1994-01-01

    Traditional design approaches for composite materials have employed deterministic criteria for failure analysis. New approaches are required to predict the reliability of composite structures since strengths and stresses may be random variables. This report will examine and compare methods used to evaluate the reliability of composite laminae. The two types of methods that will be evaluated are fast probability integration (FPI) methods and Monte Carlo methods. In these methods, reliability is formulated as the probability that an explicit function of random variables is less than a given constant. Using failure criteria developed for composite materials, a function of design variables can be generated which defines a 'failure surface' in probability space. A number of methods are available to evaluate the integration over the probability space bounded by this surface; this integration delivers the required reliability. The methods which will be evaluated are: the first order, second moment FPI methods; second order, second moment FPI methods; the simple Monte Carlo; and an advanced Monte Carlo technique which utilizes importance sampling. The methods are compared for accuracy, efficiency, and for the conservativism of the reliability estimation. The methodology involved in determining the sensitivity of the reliability estimate to the design variables (strength distributions) and importance factors is also presented.

  4. Stability Analysis of Multi-Sensor Kalman Filtering over Lossy Networks

    PubMed Central

    Gao, Shouwan; Chen, Pengpeng; Huang, Dan; Niu, Qiang

    2016-01-01

    This paper studies the remote Kalman filtering problem for a distributed system setting with multiple sensors that are located at different physical locations. Each sensor encapsulates its own measurement data into one single packet and transmits the packet to the remote filter via a lossy distinct channel. For each communication channel, a time-homogeneous Markov chain is used to model the normal operating condition of packet delivery and losses. Based on the Markov model, a necessary and sufficient condition is obtained, which can guarantee the stability of the mean estimation error covariance. Especially, the stability condition is explicitly expressed as a simple inequality whose parameters are the spectral radius of the system state matrix and transition probabilities of the Markov chains. In contrast to the existing related results, our method imposes less restrictive conditions on systems. Finally, the results are illustrated by simulation examples. PMID:27104541

  5. 14 CFR 25.801 - Ditching.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., under reasonably probable water conditions, the flotation time and trim of the airplane will allow the... provision is shown by buoyancy and trim computations, appropriate allowances must be made for probable...

  6. Hidden Markov models for fault detection in dynamic systems

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic J. (Inventor)

    1995-01-01

    The invention is a system failure monitoring method and apparatus which learns the symptom-fault mapping directly from training data. The invention first estimates the state of the system at discrete intervals in time. A feature vector x of dimension k is estimated from sets of successive windows of sensor data. A pattern recognition component then models the instantaneous estimate of the posterior class probability given the features, p(w(sub i) (vertical bar)/x), 1 less than or equal to i isless than or equal to m. Finally, a hidden Markov model is used to take advantage of temporal context and estimate class probabilities conditioned on recent past history. In this hierarchical pattern of information flow, the time series data is transformed and mapped into a categorical representation (the fault classes) and integrated over time to enable robust decision-making.

  7. Hidden Markov models for fault detection in dynamic systems

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic J. (Inventor)

    1993-01-01

    The invention is a system failure monitoring method and apparatus which learns the symptom-fault mapping directly from training data. The invention first estimates the state of the system at discrete intervals in time. A feature vector x of dimension k is estimated from sets of successive windows of sensor data. A pattern recognition component then models the instantaneous estimate of the posterior class probability given the features, p(w(sub i) perpendicular to x), 1 less than or equal to i is less than or equal to m. Finally, a hidden Markov model is used to take advantage of temporal context and estimate class probabilities conditioned on recent past history. In this hierarchical pattern of information flow, the time series data is transformed and mapped into a categorical representation (the fault classes) and integrated over time to enable robust decision-making.

  8. How mutation affects evolutionary games on graphs

    PubMed Central

    Allen, Benjamin; Traulsen, Arne; Tarnita, Corina E.; Nowak, Martin A.

    2011-01-01

    Evolutionary dynamics are affected by population structure, mutation rates and update rules. Spatial or network structure facilitates the clustering of strategies, which represents a mechanism for the evolution of cooperation. Mutation dilutes this effect. Here we analyze how mutation influences evolutionary clustering on graphs. We introduce new mathematical methods to evolutionary game theory, specifically the analysis of coalescing random walks via generating functions. These techniques allow us to derive exact identity-by-descent (IBD) probabilities, which characterize spatial assortment on lattices and Cayley trees. From these IBD probabilities we obtain exact conditions for the evolution of cooperation and other game strategies, showing the dual effects of graph topology and mutation rate. High mutation rates diminish the clustering of cooperators, hindering their evolutionary success. Our model can represent either genetic evolution with mutation, or social imitation processes with random strategy exploration. PMID:21473871

  9. Short-term capture of the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Qi, Yi; de Ruiter, Anton

    2018-06-01

    In this paper, the short-term capture (STC) of an asteroid in the Earth-Moon system is proposed and investigated. First, the space condition of STC is analysed and five subsets of the feasible region are defined and discussed. Then, the time condition of STC is studied by parameter scanning in the Sun-Earth-Moon-asteroid restricted four-body problem. Numerical results indicate that there is a clear association between the distributions of the time probability of STC and the five subsets. Next, the influence of the Jacobi constant on STC is examined using the space and time probabilities of STC. Combining the space and time probabilities of STC, we propose a STC index to evaluate the probability of STC comprehensively. Finally, three potential STC asteroids are found and analysed.

  10. Cavity master equation for the continuous time dynamics of discrete-spin models.

    PubMed

    Aurell, E; Del Ferraro, G; Domínguez, E; Mulet, R

    2017-05-01

    We present an alternate method to close the master equation representing the continuous time dynamics of interacting Ising spins. The method makes use of the theory of random point processes to derive a master equation for local conditional probabilities. We analytically test our solution studying two known cases, the dynamics of the mean-field ferromagnet and the dynamics of the one-dimensional Ising system. We present numerical results comparing our predictions with Monte Carlo simulations in three different models on random graphs with finite connectivity: the Ising ferromagnet, the random field Ising model, and the Viana-Bray spin-glass model.

  11. Cavity master equation for the continuous time dynamics of discrete-spin models

    NASA Astrophysics Data System (ADS)

    Aurell, E.; Del Ferraro, G.; Domínguez, E.; Mulet, R.

    2017-05-01

    We present an alternate method to close the master equation representing the continuous time dynamics of interacting Ising spins. The method makes use of the theory of random point processes to derive a master equation for local conditional probabilities. We analytically test our solution studying two known cases, the dynamics of the mean-field ferromagnet and the dynamics of the one-dimensional Ising system. We present numerical results comparing our predictions with Monte Carlo simulations in three different models on random graphs with finite connectivity: the Ising ferromagnet, the random field Ising model, and the Viana-Bray spin-glass model.

  12. Dynamic probability control limits for risk-adjusted Bernoulli CUSUM charts.

    PubMed

    Zhang, Xiang; Woodall, William H

    2015-11-10

    The risk-adjusted Bernoulli cumulative sum (CUSUM) chart developed by Steiner et al. (2000) is an increasingly popular tool for monitoring clinical and surgical performance. In practice, however, the use of a fixed control limit for the chart leads to a quite variable in-control average run length performance for patient populations with different risk score distributions. To overcome this problem, we determine simulation-based dynamic probability control limits (DPCLs) patient-by-patient for the risk-adjusted Bernoulli CUSUM charts. By maintaining the probability of a false alarm at a constant level conditional on no false alarm for previous observations, our risk-adjusted CUSUM charts with DPCLs have consistent in-control performance at the desired level with approximately geometrically distributed run lengths. Our simulation results demonstrate that our method does not rely on any information or assumptions about the patients' risk distributions. The use of DPCLs for risk-adjusted Bernoulli CUSUM charts allows each chart to be designed for the corresponding particular sequence of patients for a surgeon or hospital. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Development of a European Ensemble System for Seasonal Prediction: Application to crop yield

    NASA Astrophysics Data System (ADS)

    Terres, J. M.; Cantelaube, P.

    2003-04-01

    Western European agriculture is highly intensive and the weather is the main source of uncertainty for crop yield assessment and for crop management. In the current system, at the time when a crop yield forecast is issued, the weather conditions leading up to harvest time are unknown and are therefore a major source of uncertainty. The use of seasonal weather forecast would bring additional information for the remaining crop season and has valuable benefit for improving the management of agricultural markets and environmentally sustainable farm practices. An innovative method for supplying seasonal forecast information to crop simulation models has been developed in the frame of the EU funded research project DEMETER. It consists in running a crop model on each individual member of the seasonal hindcasts to derive a probability distribution of crop yield. Preliminary results of cumulative probability function of wheat yield provides information on both the yield anomaly and the reliability of the forecast. Based on the spread of the probability distribution, the end-user can directly quantify the benefits and risks of taking weather-sensitive decisions.

  14. Influence of atmospheric properties on detection of wood-warbler nocturnal flight calls

    NASA Astrophysics Data System (ADS)

    Horton, Kyle G.; Stepanian, Phillip M.; Wainwright, Charlotte E.; Tegeler, Amy K.

    2015-10-01

    Avian migration monitoring can take on many forms; however, monitoring active nocturnal migration of land birds is limited to a few techniques. Avian nocturnal flight calls are currently the only method for describing migrant composition at the species level. However, as this method develops, more information is needed to understand the sources of variation in call detection. Additionally, few studies examine how detection probabilities differ under varying atmospheric conditions. We use nocturnal flight call recordings from captive individuals to explore the dependence of flight call detection on atmospheric temperature and humidity. Height or distance from origin had the largest influence on call detection, while temperature and humidity also influenced detectability at higher altitudes. Because flight call detection varies with both atmospheric conditions and flight height, improved monitoring across time and space will require correction for these factors to generate standardized metrics of songbird migration.

  15. Evaluation of critical nuclear power plant electrical cable response to severe thermal fire conditions

    NASA Astrophysics Data System (ADS)

    Taylor, Gabriel James

    The failure of electrical cables exposed to severe thermal fire conditions are a safety concern for operating commercial nuclear power plants (NPPs). The Nuclear Regulatory Commission (NRC) has promoted the use of risk-informed and performance-based methods for fire protection which resulted in a need to develop realistic methods to quantify the risk of fire to NPP safety. Recent electrical cable testing has been conducted to provide empirical data on the failure modes and likelihood of fire-induced damage. This thesis evaluated numerous aspects of the data. Circuit characteristics affecting fire-induced electrical cable failure modes have been evaluated. In addition, thermal failure temperatures corresponding to cable functional failures have been evaluated to develop realistic single point thermal failure thresholds and probability distributions for specific cable insulation types. Finally, the data was used to evaluate the prediction capabilities of a one-dimension conductive heat transfer model used to predict cable failure.

  16. AIS-2 radiometry and a comparison of methods for the recovery of ground reflectance

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Green, Robert O.; Vane, Gregg; Bruegge, Carol J.; Alley, Ronald E.; Curtiss, Brian J.

    1987-01-01

    A field experiment and its results involving Airborne Imaging Spectrometer-2 data are described. The radiometry and spectral calibration of the instrument are critically examined in light of laboratory and field measurements. Three methods of compensating for the atmosphere in the search for ground reflectance are compared. It was found that laboratory determined responsitivities are 30 to 50 percent less than expected for conditions of the flight for both short and long wavelength observations. The combined system atmosphere surface signal to noise ratio, as indexed by the mean response divided by the standard deviation for selected areas, lies between 40 and 110, depending upon how scene averages are taken, and is 30 percent less for flight conditions than for laboratory. Atmospheric and surface variations may contribute to this difference. It is not possible to isolate instrument performance from the present data. As for methods of data reduction, the so-called scene average or log-residual method fails to recover any feature present in the surface reflectance, probably because of the extreme homogeneity of the scene.

  17. Rooting phylogenetic trees under the coalescent model using site pattern probabilities.

    PubMed

    Tian, Yuan; Kubatko, Laura

    2017-12-19

    Phylogenetic tree inference is a fundamental tool to estimate ancestor-descendant relationships among different species. In phylogenetic studies, identification of the root - the most recent common ancestor of all sampled organisms - is essential for complete understanding of the evolutionary relationships. Rooted trees benefit most downstream application of phylogenies such as species classification or study of adaptation. Often, trees can be rooted by using outgroups, which are species that are known to be more distantly related to the sampled organisms than any other species in the phylogeny. However, outgroups are not always available in evolutionary research. In this study, we develop a new method for rooting species tree under the coalescent model, by developing a series of hypothesis tests for rooting quartet phylogenies using site pattern probabilities. The power of this method is examined by simulation studies and by application to an empirical North American rattlesnake data set. The method shows high accuracy across the simulation conditions considered, and performs well for the rattlesnake data. Thus, it provides a computationally efficient way to accurately root species-level phylogenies that incorporates the coalescent process. The method is robust to variation in substitution model, but is sensitive to the assumption of a molecular clock. Our study establishes a computationally practical method for rooting species trees that is more efficient than traditional methods. The method will benefit numerous evolutionary studies that require rooting a phylogenetic tree without having to specify outgroups.

  18. Assessment of variability in the hydrological cycle of the Loess Plateau, China: examining dependence structures of hydrological processes

    NASA Astrophysics Data System (ADS)

    Guo, A.; Wang, Y.

    2017-12-01

    Investigating variability in dependence structures of hydrological processes is of critical importance for developing an understanding of mechanisms of hydrological cycles in changing environments. In focusing on this topic, present work involves the following: (1) identifying and eliminating serial correlation and conditional heteroscedasticity in monthly streamflow (Q), precipitation (P) and potential evapotranspiration (PE) series using the ARMA-GARCH model (ARMA: autoregressive moving average; GARCH: generalized autoregressive conditional heteroscedasticity); (2) describing dependence structures of hydrological processes using partial copula coupled with the ARMA-GARCH model and identifying their variability via copula-based likelihood-ratio test method; and (3) determining conditional probability of annual Q under different climate scenarios on account of above results. This framework enables us to depict hydrological variables in the presence of conditional heteroscedasticity and to examine dependence structures of hydrological processes while excluding the influence of covariates by using partial copula-based ARMA-GARCH model. Eight major catchments across the Loess Plateau (LP) are used as study regions. Results indicate that (1) The occurrence of change points in dependence structures of Q and P (PE) varies across the LP. Change points of P-PE dependence structures in all regions almost fully correspond to the initiation of global warming, i.e., the early 1980s. (3) Conditional probabilities of annual Q under various P and PE scenarios are estimated from the 3-dimensional joint distribution of (Q, P and PE) based on the above change points. These findings shed light on mechanisms of the hydrological cycle and can guide water supply planning and management, particularly in changing environments.

  19. The relationship between violence in Northern Mexico and potentially avoidable hospitalizations in the USA-Mexico border region.

    PubMed

    Geissler, Kimberley; Stearns, Sally C; Becker, Charles; Thirumurthy, Harsha; Holmes, George M

    2016-03-01

    Substantial proportions of US residents in the USA-Mexico border region cross into Mexico for health care; increases in violence in northern Mexico may have affected this access. We quantified associations between violence in Mexico and decreases in access to care for border county residents. We also examined associations between border county residence and access. We used hospital inpatient data for Arizona, California and Texas (2005-10) to estimate associations between homicide rates and the probability of hospitalization for ambulatory care sensitive (ACS) conditions. Hospitalizations for ACS conditions were compared with homicide rates in Mexican municipalities matched by patient residence. A 1 SD increase in the homicide rate of the nearest Mexican municipality was associated with a 2.2 percentage point increase in the probability of being hospitalized for an ACS condition for border county patients. Residence in a border county was associated with a 1.3 percentage point decrease in the probability of being hospitalized for an ACS condition. Increased homicide rates in Mexico were associated with increased hospitalizations for ACS conditions in the USA, although residence in a border county was associated with decreased probability of being hospitalized for an ACS condition. Expanding access in the border region may mitigate these effects by providing alternative sources of care. © The Author 2015. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Probability estimation with machine learning methods for dichotomous and multicategory outcome: theory.

    PubMed

    Kruppa, Jochen; Liu, Yufeng; Biau, Gérard; Kohler, Michael; König, Inke R; Malley, James D; Ziegler, Andreas

    2014-07-01

    Probability estimation for binary and multicategory outcome using logistic and multinomial logistic regression has a long-standing tradition in biostatistics. However, biases may occur if the model is misspecified. In contrast, outcome probabilities for individuals can be estimated consistently with machine learning approaches, including k-nearest neighbors (k-NN), bagged nearest neighbors (b-NN), random forests (RF), and support vector machines (SVM). Because machine learning methods are rarely used by applied biostatisticians, the primary goal of this paper is to explain the concept of probability estimation with these methods and to summarize recent theoretical findings. Probability estimation in k-NN, b-NN, and RF can be embedded into the class of nonparametric regression learning machines; therefore, we start with the construction of nonparametric regression estimates and review results on consistency and rates of convergence. In SVMs, outcome probabilities for individuals are estimated consistently by repeatedly solving classification problems. For SVMs we review classification problem and then dichotomous probability estimation. Next we extend the algorithms for estimating probabilities using k-NN, b-NN, and RF to multicategory outcomes and discuss approaches for the multicategory probability estimation problem using SVM. In simulation studies for dichotomous and multicategory dependent variables we demonstrate the general validity of the machine learning methods and compare it with logistic regression. However, each method fails in at least one simulation scenario. We conclude with a discussion of the failures and give recommendations for selecting and tuning the methods. Applications to real data and example code are provided in a companion article (doi:10.1002/bimj.201300077). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Top