Zhu, Chunfang; Luong, Richard; Zhuo, Ming; Johnson, Daniel T.; McKenney, Jesse K.; Cunha, Gerald R.; Sun, Zijie
2011-01-01
The androgen signaling pathway, mediated through the androgen receptor (AR), is critical in prostate tumorigenesis. However, the precise role of AR in prostate cancer development and progression still remains largely unknown. Specifically, it is unclear whether overexpression of AR is sufficient to induce prostate tumor formation in vivo. Here, we inserted the human AR transgene with a LoxP-stop-loxP (LSL) cassette into the mouse ROSA26 locus, permitting “conditionally” activated AR transgene expression through Cre recombinase-mediated removal of the LSL cassette. By crossing this AR floxed strain with Osr1-Cre (odd skipped related) mice, in which the Osr1 promoter activates at embryonic day 11.5 in urogenital sinus epithelium, we generated a conditional transgenic line, R26hARloxP:Osr1-Cre+. Expression of transgenic AR was detected in both prostatic luminal and basal epithelial cells and is resistant to castration. Approximately one-half of the transgenic mice displayed mouse prostatic intraepithelial neoplasia (mPIN) lesions. Intriguingly, four mice (10%) developed prostatic adenocarcinomas, with two demonstrating invasive diseases. Positive immunostaining of transgenic AR protein was observed in the majority of atypical and tumor cells in the mPIN and prostatic adenocarcinomas, providing a link between transgenic AR expression and oncogenic transformation. An increase in Ki67-positive cells appeared in all mPIN and prostatic adenocarcinoma lesions of the mice. Thus, we demonstrated for the first time that conditional activation of transgenic AR expression by Osr1 promoter induces prostate tumor formation in mice. This new AR transgenic mouse line mimics the human disease and can be used for study of prostate tumorigenesis and drug development. PMID:21795710
The a“MAZE”ing World of Lung-Specific Transgenic Mice
Rawlins, Emma L.
2012-01-01
The purpose of this review is to give a comprehensive overview of transgenic mouse lines suitable for studying gene function and cellular lineage relationships in lung development, homeostasis, injury, and repair. Many of the mouse strains reviewed in this Perspective have been widely shared within the lung research community, and new strains are continuously being developed. There are many transgenic lines that target subsets of lung cells, but it remains a challenge for investigators to select the correct transgenic modules for their experiment. This review covers the tetracycline- and tamoxifen-inducible systems and focuses on conditional lines that target the epithelial cells. We point out the limitations of each strain so investigators can choose the system that will work best for their scientific question. Current mesenchymal and endothelial lines are limited by the fact that they are not lung specific. These lines are summarized in a brief overview. In addition, useful transgenic reporter mice for studying lineage relationships, promoter activity, and signaling pathways will complete our lung-specific conditional transgenic mouse shopping list. PMID:22180870
75 FR 51823 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-23
... applications. Transforming Growth Factor Beta-1 (TGF-[beta]1) Transgenic Mouse Model Description of Technology... developed a transgenic mouse model, designated [beta]1\\glo\\, which permits conditional, gene-specific... gene by Cre recombinase allows expression of TGF-[beta]1. Thus, these mice may be cross-bred with a...
Generation of a mouse with conditionally activated signaling through the BMP receptor, ALK2.
Fukuda, Tomokazu; Scott, Gregory; Komatsu, Yoshihiro; Araya, Runa; Kawano, Masako; Ray, Manas K; Yamada, Masahisa; Mishina, Yuji
2006-04-01
BMP signaling plays pleiotropic roles in various tissues. Transgenic mouse lines that overexpress BMP signaling in a tissue-specific manner would be beneficial; however, production of each tissue-specific transgenic mouse line is labor-intensive. Here, using a Cre-loxP system, we generated a conditionally overexpressing mouse line for BMP signaling through the type I receptor ALK2 (alternatively known as AVCRI, ActRI, or ActRIA). By mating this line with Cre-expression mouse lines, Cre-mediated recombination removes an intervening floxed lacZ expression cassette and thereby permits the expression of a constitutively active form of Alk2 (caAlk2) driven by a ubiquitous promoter, CAG. Tissue specificity of Cre recombination was monitored by a bicistronically expressed EGFP following Alk2 cDNA. Increased BMP signaling was confirmed by ectopic phosphorylation of SMAD1/5/8 in the areas where Cre recombination had occurred. The conditional overexpression system described here provides versatility in investigating gene functions in a tissue-specific manner without having to generate independent tissue-specific transgenic lines. Published 2006 Wiley-Liss, Inc.
Generation of a mouse model for studying the role of upregulated RTEL1 activity in tumorigenesis.
Wu, Xiaoli; Sandhu, Sumit; Nabi, Zinnatun; Ding, Hao
2012-10-01
Regulator of telomere length 1 (RTEL1) is a DNA helicase protein that has been demonstrated to be required for the maintenance of telomere length and genomic stability. It has also been found to be essential for DNA homologous recombination during DNA repairing. Human RTEL1 genomic locus (20q13.3) is frequently amplified in multiple types of human cancers, including hepatocellular carcinoma and gastrointestinal tract tumors, indicating that upregulated RTEL1 activity could be important for tumorigenesis. In this study, we have developed a conditional transgenic mouse model that overexpress mouse Rtel1 in a Cre-excision manner. By crossing with a ubiquitous Cre mouse line, we further demonstrated that these established Rtel1 conditional transgenic mice allow to efficiently and highly express a functional Rtel1 that is able to rescue the embryonic defects of Rtel1 null mouse allele. Furthermore, we demonstrated that more than 70% transgenic mice that widely overexpress Rtel1 developed liver tumors that recapitulate many malignant features of human hepatocellular carcinoma (HCC). Our work not only generated a valuable mouse model for determining the role of RTEL1 in the development of cancers, but also provided the first genetic evidence to support that amplification of RTEL1, as observed in several types of human cancers, is tumorigenic.
Pyo, Kyoung Ho; Lim, Sun Min; Kim, Hye Ryun; Sung, Young Hoon; Yun, Mi Ran; Kim, Sung-Moo; Kim, Hwan; Kang, Han Na; Lee, Ji Min; Kim, Sang Gyun; Park, Chae Won; Chang, Hyun; Shim, Hyo Sup; Lee, Han-Woong; Cho, Byoung Chul
2017-03-01
Anaplastic lymphoma receptor tyrosine kinase gene (ALK) fusion is a distinct molecular subclassification of NSCLC that is targeted by anaplastic lymphoma kinase (ALK) inhibitors. We established a transgenic mouse model that expresses tumors highly resembling human NSCLC harboring echinoderm microtubule associated protein like 4 gene (EML)-ALK fusion. We aimed to test an EML4-ALK transgenic mouse model as a platform for assessing the efficacy of ALK inhibitors and examining mechanisms of acquired resistance to ALK inhibitors. Transgenic mouse lines harboring LoxP-STOP-LoxP-FLAGS-tagged human EML4-ALK (variant 1) transgene was established by using C57BL/6N mice. The transgenic mouse model with highly lung-specific, inducible expression of echinoderm microtubule associated protein like 4-ALK fusion protein was established by crossing the EML4-ALK transgenic mice with mice expressing Cre-estrogen receptor fusion protein under the control of surfactant protein C gene (SPC). Expression of EML4-ALK transgene was induced by intraperitoneally injecting mice with tamoxifen. When the lung tumor of the mice treated with the ALK inhibitor crizotinib for 2 weeks was measured, tumor shrinkage was observed. EML4-ALK tumor developed after 1 week of tamoxifen treatment. Echinoderm microtubule associated protein like 4-ALK was strongly expressed in the lung but not in other organs. ALK and FLAGS expressions were observed by immunohistochemistry. Treatment of EML4-ALK tumor-bearing mice with crizotinib for 2 weeks induced dramatic shrinkage of tumors with no signs of toxicity. Furthermore, prolonged treatment with crizotinib led to acquired resistance in tumors, resulting in regrowth and disease progression. The resistant tumor nodules revealed acquired ALK G1202R mutations. An EML4-ALK transgenic mouse model for study of drug resistance was successfully established with short duration of tumorigenesis. This model should be a strong preclinical model for testing efficacy of ALK TKIs, providing a useful tool for investigating the mechanisms of acquired resistance and pursuing novel treatment strategies in ALK-positive lung cancer. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Wahnschaffe, U; Bitsch, A; Kielhorn, J; Mangelsdorf, I
2005-01-01
As part of a larger literature study on transgenic animals in mutagenicity testing, test results from the transgenic mutagenicity assays (lacI model; commercially available as the Big Blue® mouse, and the lacZ model; commercially available as the Muta™Mouse), were compared with the results on the same substances in the more traditional mouse bone marrow micronucleus test. 39 substances were found which had been tested in the micronucleus assay and in the above transgenic mouse systems. Although, the transgenic animal mutation assay is not directly comparable with the micronucleus test, because different genetic endpoints are examined: chromosome aberration versus gene mutation, the results for the majority of substances were in agreement. Both test systems, the transgenic mouse assay and the mouse bone marrow micronucleus test, have advantages and they complement each other. However, the transgenic animal assay has some distinct advantages over the micronucleus test: it is not restricted to one target organ and detects systemic as well as local mutagenic effects. PMID:15655069
The Laboratory Animal Sciences Program manages the expansion, processing, and distribution of1,501 genetically engineered mouse embryonic stem cell (mESC) linesharboring conditional microRNA transgenes. The Laboratory Animal Sciences Prog
Cain-Hom, Carol; Splinter, Erik; van Min, Max; Simonis, Marieke; van de Heijning, Monique; Martinez, Maria; Asghari, Vida
2017-01-01
Abstract Cre/LoxP technology is widely used in the field of mouse genetics for spatial and/or temporal regulation of gene function. For Cre lines generated via pronuclear microinjection of a Cre transgene construct, the integration site is random and in most cases not known. Integration of a transgene can disrupt an endogenous gene, potentially interfering with interpretation of the phenotype. In addition, knowledge of where the transgene is integrated is important for planning of crosses between animals carrying a conditional allele and a given Cre allele in case the alleles are on the same chromosome. We have used targeted locus amplification (TLA) to efficiently map the transgene location in seven previously published Cre and CreERT2 transgenic lines. In all lines, transgene insertion was associated with structural changes of variable complexity, illustrating the importance of testing for rearrangements around the integration site. In all seven lines the exact integration site and breakpoint sequences were identified. Our methods, data and genotyping assays can be used as a resource for the mouse community and our results illustrate the power of the TLA method to not only efficiently map the integration site of any transgene, but also provide additional information regarding the transgene integration events. PMID:28053125
Behavioral assays with mouse models of Alzheimer’s disease: practical considerations and guidelines
Puzzo, Daniela; Lee, Linda; Palmeri, Agostino; Calabrese, Giorgio; Arancio, Ottavio
2014-01-01
In Alzheimer’s disease (AD) basic research and drug discovery, mouse models are essential resources for uncovering biological mechanisms, validating molecular targets and screening potential compounds. Both transgenic and non-genetically modified mouse models enable access to different types of AD-like pathology in vivo. Although there is a wealth of genetic and biochemical studies on proposed AD pathogenic pathways, as a disease that centrally features cognitive failure, the ultimate readout for any interventions should be measures of learning and memory. This is particularly important given the lack of knowledge on disease etiology – assessment by cognitive assays offers the advantage of targeting relevant memory systems without requiring assumptions about pathogenesis. A multitude of behavioral assays are available for assessing cognitive functioning in mouse models, including ones specific for hippocampal-dependent learning and memory. Here we review the basics of available transgenic and non-transgenic AD mouse models and detail three well-established behavioral tasks commonly used for testing hippocampal-dependent cognition in mice – contextual fear conditioning, radial arm water maze and Morris water maze. In particular, we discuss the practical considerations, requirements and caveats of these behavioral testing paradigms. PMID:24462904
Role of the 5HT3 Receptor in Alcohol Drinking and Aggression Using a Transgenic Mouse Model
2006-09-01
Dissociations in hippocampal 5-hydroxytryptamine release in the rat following Pavlovian aversive conditioning to discrete and contextual stimuli. Eur J...P < 0.05]. B6SJL/F2-OE and C57Bl/6J-OE mice display improved contextual fear conditioning , whereas DBA/2J-OE mice do not. Fear conditioning to...None of the IS groups differed in freezing behavior and are not reported here. Transgene presence improved conditioning on B6SJL/F2 and C57Bl/6J
Cain-Hom, Carol; Splinter, Erik; van Min, Max; Simonis, Marieke; van de Heijning, Monique; Martinez, Maria; Asghari, Vida; Cox, J Colin; Warming, Søren
2017-05-05
Cre/LoxP technology is widely used in the field of mouse genetics for spatial and/or temporal regulation of gene function. For Cre lines generated via pronuclear microinjection of a Cre transgene construct, the integration site is random and in most cases not known. Integration of a transgene can disrupt an endogenous gene, potentially interfering with interpretation of the phenotype. In addition, knowledge of where the transgene is integrated is important for planning of crosses between animals carrying a conditional allele and a given Cre allele in case the alleles are on the same chromosome. We have used targeted locus amplification (TLA) to efficiently map the transgene location in seven previously published Cre and CreERT2 transgenic lines. In all lines, transgene insertion was associated with structural changes of variable complexity, illustrating the importance of testing for rearrangements around the integration site. In all seven lines the exact integration site and breakpoint sequences were identified. Our methods, data and genotyping assays can be used as a resource for the mouse community and our results illustrate the power of the TLA method to not only efficiently map the integration site of any transgene, but also provide additional information regarding the transgene integration events. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Urano, K; Tamaoki, N; Nomura, T
2012-01-01
Transgenic animal models have been used in small numbers in gene function studies in vivo for a period of time, but more recently, the use of a single transgenic animal model has been approved as a second species, 6-month alternative (to the routine 2-year, 2-animal model) used in short-term carcinogenicity studies for generating regulatory application data of new drugs. This article addresses many of the issues associated with the creation and use of one of these transgenic models, the rasH2 mouse, for regulatory science. The discussion includes strategies for mass producing mice with the same stable phenotype, including constructing the transgene, choosing a founder mouse, and controlling both the transgene and background genes; strategies for developing the model for regulatory science, including measurements of carcinogen susceptibility, stability of a large-scale production system, and monitoring for uniform carcinogenicity responses; and finally, efficient use of the transgenic animal model on study. Approximately 20% of mouse carcinogenicity studies for new drug applications in the United States currently use transgenic models, typically the rasH2 mouse. The rasH2 mouse could contribute to animal welfare by reducing the numbers of animals used as well as reducing the cost of carcinogenicity studies. A better understanding of the advantages and disadvantages of the transgenic rasH2 mouse will result in greater and more efficient use of this animal model in the future.
Jia, Junshuang; Lin, Xiaolin; Lin, Xia; Lin, Taoyan; Chen, Bangzhu; Hao, Weichao; Cheng, Yushuang; Liu, Yu; Dian, Meijuan; Yao, Kaitai; Xiao, Dong; Gu, Weiwang
2016-10-01
The Cre/loxP system has become an important tool for the conditional gene knockout and conditional gene expression in genetically engineered mice. The applications of this system depend on transgenic reporter mouse lines that provide Cre recombinase activity with a defined cell type-, tissue-, or developmental stage-specificity. To develop a sensitive assay for monitoring Cre-mediated DNA excisions in mice, we generated Cre-mediated excision reporter mice, designated R/L mice (R/L: mRFP(monomeric red fluorescent protein)/luciferase), express mRFP throughout embryonic development and adult stages, while Cre-mediated excision deletes a loxP-flanked mRFP reporter gene and STOP sequence, thereby activating the expression of the second reporter gene luciferase, as assayed by in vivo and ex vivo bioluminescence imaging. After germ line deletion of the floxed mRFP and STOP sequence in R/L mice by EIIa-Cre mice, the resulting luciferase transgenic mice in which the loxP-mRFP-STOP-loxP cassette is excised from all cells express luciferase in all tissues and organs examined. The expression of luciferase transgene was activated in liver of RL/Alb-Cre double transgenic mice and in brain of RL/Nestin-Cre double transgenic mice when R/L reporter mice were mated with Alb-Cre mice and Nestin-Cre mice, respectively. Our findings reveal that the double reporter R/L mouse line is able to indicate the occurrence of Cre-mediated excision from early embryonic to adult lineages. Taken together, these findings demonstrate that the R/L mice serve as a sensitive reporter for Cre-mediated DNA excision both in living animals and in organs, tissues, and cells following necropsy.
Hormone Replacement Therapy, Iron, and Breast Cancer
2004-11-01
accumulates due to the mutation of the HFE gene (hemochromatosis EeJ, iron elevated in the mouse body mimics the post-menopausal condition. In the present...model. Since iron slowly accumulates due to the mutation of the HFE gene (hemochromatosis Fe), iron elevated in the mouse body mimics the post...menopausal condition. Development of iron overloaded transgenic mice: The murine HFE gene is structurally similar to the human gene . Four different HFE gene
Mutagenicity testing with transgenic mice. Part II: Comparison with the mouse spot test
Wahnschaffe, Ulrich; Bitsch, Annette; Kielhorn, Janet; Mangelsdorf, Inge
2005-01-01
The mouse spot test, an in vivo mutation assay, has been used to assess a number of chemicals. It is at present the only in vivo mammalian test system capable of detecting somatic gene mutations according to OECD guidelines (OECD guideline 484). It is however rather insensitive, animal consuming and expensive type of test. More recently several assays using transgenic animals have been developed. From data in the literature, the present study compares the results of in vivo testing of over twenty chemicals using the mouse spot test and compares them with results from the two transgenic mouse models with the best data base available, the lacI model (commercially available as the Big Blue® mouse), and the lacZ model (commercially available as the Muta™ Mouse). There was agreement in the results from the majority of substances. No differences were found in the predictability of the transgenic animal assays and the mouse spot test for carcinogenicity. However, from the limited data available, it seems that the transgenic mouse assay has several advantages over the mouse spot test and may be a suitable test system replacing the mouse spot test for detection of gene but not chromosome mutations in vivo. PMID:15676065
Transgenic mouse models in the study of reproduction: insights into GATA protein function.
Tevosian, Sergei G
2014-07-01
For the past 2 decades, transgenic technology in mice has allowed for an unprecedented insight into the transcriptional control of reproductive development and function. The key factor among the mouse genetic tools that made this rapid advance possible is a conditional transgenic approach, a particularly versatile method of creating gene deletions and substitutions in the mouse genome. A centerpiece of this strategy is an enzyme, Cre recombinase, which is expressed from defined DNA regulatory elements that are active in the tissue of choice. The regulatory DNA element (either genetically engineered or natural) assures Cre expression only in predetermined cell types, leading to the guided deletion of genetically modified (flanked by loxP or 'floxed' by loxP) gene loci. This review summarizes and compares the studies in which genes encoding GATA family transcription factors were targeted either globally or by Cre recombinases active in the somatic cells of ovaries and testes. The conditional gene loss experiments require detailed knowledge of the spatial and temporal expression of Cre activity, and the challenges in interpreting the outcomes are highlighted. These studies also expose the complexity of GATA-dependent regulation of gonadal gene expression and suggest that gene function is highly context dependent. © 2014 Society for Reproduction and Fertility.
Lee, Seong Min; Bishop, Kathleen A; Goellner, Joseph J; O'Brien, Charles A; Pike, J Wesley
2014-06-01
The biological actions of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) are mediated by the vitamin D receptor (VDR), which is expressed in numerous target tissues in a cell type-selective manner. Recent studies using genomic analyses and recombineered bacterial artificial chromosomes (BACs) have defined the specific features of mouse and human VDR gene loci in vitro. In the current study, we introduced recombineered mouse and human VDR BACs as transgenes into mice and explored their expression capabilities in vivo. Individual transgenic mouse strains selectively expressed BAC-derived mouse or human VDR proteins in appropriate vitamin D target tissues, thereby recapitulating the tissue-specific expression of endogenous mouse VDR. The mouse VDR transgene was also regulated by 1,25(OH)2D3 and dibutyryl-cAMP. When crossed into a VDR-null mouse background, both transgenes restored wild-type basal as well as 1,25(OH)2D3-inducible gene expression patterns in the appropriate tissues. This maneuver resulted in the complete rescue of the aberrant phenotype noted in the VDR-null mouse, including systemic features associated with altered calcium and phosphorus homeostasis and disrupted production of parathyroid hormone and fibroblast growth factor 23, and abnormalities associated with the skeleton, kidney, parathyroid gland, and the skin. This study suggests that both mouse and human VDR transgenes are capable of recapitulating basal and regulated expression of the VDR in the appropriate mouse tissues and restore 1,25(OH)2D3 function. These results provide a baseline for further dissection of mechanisms integral to mouse and human VDR gene expression and offer the potential to explore the consequence of selective mutations in VDR proteins in vivo.
Zhu, Qubo; Sun, Wenyu; Okano, Kiichiro; Chen, Yu; Zhang, Ning; Maeda, Tadao; Palczewski, Krzysztof
2011-01-01
MicroRNA-183 (miR-183), miR-96, and miR-182 comprising the miR-183/96/182 cluster are highly expressed in photoreceptor cells. Although in vitro data have indicated an important role for this cluster in the retina, details of its in vivo biological activity are still unknown. To observe the impact of the miR-183/96/182 cluster on retinal maintenance and light adaptation, we generated a sponge transgenic mouse model that disrupted the activities of the three-component microRNAs simultaneously and selectively in the retina. Although our morphological and functional studies showed no differences between transgenic and wild type mice under normal laboratory lighting conditions, sponge transgenic mice displayed severe retinal degeneration after 30 min of exposure to 10,000 lux light. Histological studies showed that the outer nuclear layer thickness was dramatically reduced in the superior retina of transgenic mice. Real time PCR experiments in both the sponge transgenic mouse model and different microRNA stable cell lines identified Arrdc3, Neurod4, and caspase-2 (Casp2) as probable downstream targets of this cluster, a result also supported by luciferase assay and immunoblotting analyses. Further studies indicated that expression of both the cluster and Casp2 increased in response to light exposure. Importantly, Casp2 expression was enhanced in transgenic mice, and inhibition of Casp2 partially rescued their light-induced retinal degeneration. By connecting the microRNA and apoptotic pathways, these findings imply an important role for the miR-183/96/182 cluster in acute light-induced retinal degeneration of mice. This study demonstrates a clear involvement of miRs in the physiology of postmitotic cells in vivo. PMID:21768104
Gilbert, Rebecca S; Nunez, Brandy; Sakurai, Kumi; Fielder, Thomas; Ni, Hsiao-Tzu
2016-03-24
Growing concerns about safety of ART on human gametes, embryos, clinical outcomes and long-term health of offspring require improved methods of risk assessment to provide functionally relevant assays for quality control testing and pre-clinical studies prior to clinical implementation. The one-cell mouse embryo assay (MEA) is the most widely used for development and quality testing of human ART products; however, concerns exist due to the insensitivity/variability of this bioassay which lacks standardization and involves subjective analysis by morphology alone rather than functional analysis of the developing embryos. We hypothesized that improvements to MEA by the use of functional molecular biomarkers could enhance sensitivity and improve detection of suboptimal materials/conditions. Fresh one-cell transgenic mouse embryos with green fluorescent protein (GFP) expression driven by Pou6f1 or Cdx2 control elements were harvested and cultured to blastocysts in varied test and control conditions to compare assessment by standard morphology alone versus the added dynamic expression of GFP for screening and selection of critical raw materials and detection of suboptimal culture conditions. Transgenic mouse embryos expressing functionally relevant biomarkers of normal early embryo development can be used to monitor the developmental impact of culture conditions. This novel approach provides a superior MEA that is more meaningful and sensitive for detection of embryotoxicity than morphological assessment alone.
Boll, Björn; Bessa, Juliana; Folzer, Emilien; Ríos Quiroz, Anacelia; Schmidt, Roland; Bulau, Patrick; Finkler, Christof; Mahler, Hanns-Christian; Huwyler, Jörg; Iglesias, Antonio; Koulov, Atanas V
2017-04-03
A current concern with the use of therapeutic proteins is the likely presence of aggregates and submicrometer, subvisible, and visible particles. It has been proposed that aggregates and particles may lead to unwanted increases in the immune response with a possible impact on safety or efficacy. The aim of this study was thus to evaluate the ability of subvisible particles of a therapeutic antibody to break immune tolerance in an IgG1 transgenic mouse model and to understand the particle attributes that might play a role in this process. We investigated the immunogenic properties of subvisible particles (unfractionated, mixed populations, and well-defined particle size fractions) using a transgenic mouse model expressing a mini-repertoire of human IgG1 (hIgG1 tg). Immunization with proteinaceous subvisible particles generated by artificial stress conditions demonstrated that only subvisible particles bearing very extensive chemical modifications within the primary amino acid structure could break immune tolerance in the hIgG1 transgenic mouse model. Protein particles exhibiting low levels of chemical modification were not immunogenic in this model.
Simple and rapid determination of homozygous transgenic mice via in vivo fluorescence imaging.
Lin, Xiaolin; Jia, Junshuang; Qin, Yujuan; Lin, Xia; Li, Wei; Xiao, Gaofang; Li, Yanqing; Xie, Raoying; Huang, Hailu; Zhong, Lin; Wu, Qinghong; Wang, Wanshan; Huang, Wenhua; Yao, Kaitai; Xiao, Dong; Sun, Yan
2015-11-17
Setting up breeding programs for transgenic mouse strains require to distinguish homozygous from the heterozygous transgenic animals. The combinational use of the fluorescence reporter transgene and small animal in-vivo imaging system might allow us to rapidly and visually determine the transgenic mice homozygous for transgene(s) by the in vivo fluorescence imaging. RLG, RCLG or Rm17LG transgenic mice ubiquitously express red fluorescent protein (RFP). To identify homozygous RLG transgenic mice, whole-body fluorescence imaging for all of newborn F2-generation littermates produced by mating of RFP-positive heterozygous transgenic mice (F1-generation) derived from the same transgenic founder was performed. Subsequently, the immediate data analysis of the in vivo fluorescence imaging was carried out, which greatly facilitated us to rapidly and readily distinguish RLG transgenic individual(s) with strong fluorescence from the rest of F2-generation littermates, followed by further determining this/these RLG individual(s) showing strong fluorescence to be homozygous, as strongly confirmed by mouse mating. Additionally, homozygous RCLG or Rm17LG transgenic mice were also rapidly and precisely distinguished by the above-mentioned optical approach. This approach allowed us within the shortest time period to obtain 10, 8 and 2 transgenic mice homozygous for RLG, RCLG and Rm17LG transgene, respectively, as verified by mouse mating, indicating the practicality and reliability of this optical method. Taken together, our findings fully demonstrate that the in vivo fluorescence imaging offers a visual, rapid and reliable alternative method to the traditional approaches (i.e., mouse mating and real-time quantitative PCR) in identifying homozygous transgenic mice harboring fluorescence reporter transgene under the control of a ubiquitous promoter in the situation mentioned in this study.
Simple and rapid determination of homozygous transgenic mice via in vivo fluorescence imaging
Li, Wei; Xiao, Gaofang; Li, Yanqing; Xie, Raoying; Huang, Hailu; Zhong, Lin; Wu, Qinghong; Wang, Wanshan; Huang, Wenhua; Yao, Kaitai; Xiao, Dong; Sun, Yan
2015-01-01
Setting up breeding programs for transgenic mouse strains require to distinguish homozygous from the heterozygous transgenic animals. The combinational use of the fluorescence reporter transgene and small animal in-vivo imaging system might allow us to rapidly and visually determine the transgenic mice homozygous for transgene(s) by the in vivo fluorescence imaging. RLG, RCLG or Rm17LG transgenic mice ubiquitously express red fluorescent protein (RFP). To identify homozygous RLG transgenic mice, whole-body fluorescence imaging for all of newborn F2-generation littermates produced by mating of RFP-positive heterozygous transgenic mice (F1-generation) derived from the same transgenic founder was performed. Subsequently, the immediate data analysis of the in vivo fluorescence imaging was carried out, which greatly facilitated us to rapidly and readily distinguish RLG transgenic individual(s) with strong fluorescence from the rest of F2-generation littermates, followed by further determining this/these RLG individual(s) showing strong fluorescence to be homozygous, as strongly confirmed by mouse mating. Additionally, homozygous RCLG or Rm17LG transgenic mice were also rapidly and precisely distinguished by the above-mentioned optical approach. This approach allowed us within the shortest time period to obtain 10, 8 and 2 transgenic mice homozygous for RLG, RCLG and Rm17LG transgene, respectively, as verified by mouse mating, indicating the practicality and reliability of this optical method. Taken together, our findings fully demonstrate that the in vivo fluorescence imaging offers a visual, rapid and reliable alternative method to the traditional approaches (i.e., mouse mating and real-time quantitative PCR) in identifying homozygous transgenic mice harboring fluorescence reporter transgene under the control of a ubiquitous promoter in the situation mentioned in this study. PMID:26472024
Transgenic mouse lines for non-invasive ratiometric monitoring of intracellular chloride
Batti, Laura; Mukhtarov, Marat; Audero, Enrica; Ivanov, Anton; Paolicelli, Rosa Chiara; Zurborg, Sandra; Gross, Cornelius; Bregestovski, Piotr; Heppenstall, Paul A.
2013-01-01
Chloride is the most abundant physiological anion and participates in a variety of cellular processes including trans-epithelial transport, cell volume regulation, and regulation of electrical excitability. The development of tools to monitor intracellular chloride concentration ([Cli]) is therefore important for the evaluation of cellular function in normal and pathological conditions. Recently, several Cl-sensitive genetically encoded probes have been described which allow for non-invasive monitoring of [Cli]. Here we describe two mouse lines expressing a CFP-YFP-based Cl probe called Cl-Sensor. First, we generated transgenic mice expressing Cl-Sensor under the control of the mouse Thy1 mini promoter. Cl-Sensor exhibited good expression from postnatal day two (P2) in neurons of the hippocampus and cortex, and its level increased strongly during development. Using simultaneous whole-cell monitoring of ionic currents and Cl-dependent fluorescence, we determined that the apparent EC50 for Cli was 46 mM, indicating that this line is appropriate for measuring neuronal [Cli] in postnatal mice. We also describe a transgenic mouse reporter line for Cre-dependent conditional expression of Cl-Sensor, which was targeted to the Rosa26 locus and by incorporating a strong exogenous promoter induced robust expression upon Cre-mediated recombination. We demonstrate high levels of tissue-specific expression in two different Cre-driver lines targeting cells of the myeloid lineage and peripheral sensory neurons. Using these mice the apparent EC50 for Cli was estimated to be 61 and 54 mM in macrophages and DRG, respectively. Our data suggest that these mouse lines will be useful models for ratiometric monitoring of Cli in specific cell types in vivo. PMID:23734096
Mort, Richard Lester; Ford, Matthew Jonathan; Sakaue-Sawano, Asako; Lindstrom, Nils Olof; Casadio, Angela; Douglas, Adam Thomas; Keighren, Margaret Anne; Hohenstein, Peter; Miyawaki, Atsushi; Jackson, Ian James
2014-01-01
Markers of cell cycle stage allow estimation of cell cycle dynamics in cell culture and during embryonic development. The Fucci system incorporates genetically encoded probes that highlight G1 and S/G2/M phases of the cell cycle allowing live imaging. However the available mouse models that incorporate Fucci are beset by problems with transgene inactivation, varying expression level, lack of conditional potential and/or the need to maintain separate transgenes-there is no transgenic mouse model that solves all these problems. To address these shortfalls we re-engineered the Fucci system to create 2 bicistronic Fucci variants incorporating both probes fused using the Thosea asigna virus 2A (T2A) self cleaving peptide. We characterize these variants in stable 3T3 cell lines. One of the variants (termed Fucci2a) faithfully recapitulated the nuclear localization and cell cycle stage specific florescence of the original Fucci system. We go on to develop a conditional mouse allele (R26Fucci2aR) carefully designed for high, inducible, ubiquitous expression allowing investigation of cell cycle status in single cell lineages within the developing embryo. We demonstrate the utility of R26Fucci2aR for live imaging by using high resolution confocal microscopy of ex vivo lung, kidney and neural crest development. Using our 3T3 system we describe and validate a method to estimate cell cycle times from relatively short time-lapse sequences that we then apply to our neural crest data. The Fucci2a system and the R26Fucci2aR mouse model are compelling new tools for the investigation of cell cycle dynamics in cell culture and during mouse embryonic development.
Hoffman, Robert M
2014-01-01
We have developed a transgenic green fluorescent protein (GFP) nude mouse with ubiquitous GFP expression. The GFP nude mouse was obtained by crossing nontransgenic nude mice with the transgenic C57/B6 mouse in which the β-actin promoter drives GFP expression in essentially all tissues. In the adult mice, many organs brightly expressed GFP, including the spleen, heart, lungs, spleen, pancreas, esophagus, stomach, and duodenum as well as the circulatory system. The liver expressed GFP at a lesser level. The red fluorescent protein (RFP) transgenic nude mouse was obtained by crossing non-transgenic nude mice with the transgenic C57/B6 mouse in which the beta-actin promoter drives RFP (DsRed2) expression in essentially all tissues. In the RFP nude mouse, the organs all brightly expressed RFP, including the heart, lungs, spleen, pancreas, esophagus, stomach, liver, duodenum, the male and female reproductive systems; brain and spinal cord; and the circulatory system, including the heart, and major arteries and veins. The skinned skeleton highly expressed RFP. The bone marrow and spleen cells were also RFP positive. The cyan fluorescent protein (CFP) nude mouse was developed by crossing nontransgenic nude mice with the transgenic CK/ECFP mouse in which the β-actin promoter drives expression of CFP in almost all tissues. In the CFP nude mice, the pancreas and reproductive organs displayed the strongest fluorescence signals of all internal organs, which vary in intensity. The GFP, RFP, and CFP nude mice when transplanted with cancer cells of another color are powerful models for color-coded imaging of the tumor microenvironment (TME) at the cellular level.
Cervelli, Manuela; Bellavia, Gabriella; D'Amelio, Marcello; Cavallucci, Virve; Moreno, Sandra; Berger, Joachim; Nardacci, Roberta; Marcoli, Manuela; Maura, Guido; Piacentini, Mauro; Amendola, Roberto; Cecconi, Francesco; Mariottini, Paolo
2013-01-01
Spermine oxidase is a FAD-containing enzyme involved in polyamines catabolism, selectively oxidizing spermine to produce H2O2, spermidine, and 3-aminopropanal. Spermine oxidase is highly expressed in the mouse brain and plays a key role in regulating the levels of spermine, which is involved in protein synthesis, cell division and cell growth. Spermine is normally released by neurons at synaptic sites where it exerts a neuromodulatory function, by specifically interacting with different types of ion channels, and with ionotropic glutamate receptors. In order to get an insight into the neurobiological roles of spermine oxidase and spermine, we have deregulated spermine oxidase gene expression producing and characterizing the transgenic mouse model JoSMOrec, conditionally overexpressing the enzyme in the neocortex. We have investigated the effects of spermine oxidase overexpression in the mouse neocortex by transcript accumulation, immunohistochemical analysis, enzymatic assays and polyamine content in young and aged animals. Transgenic JoSMOrec mice showed in the neocortex a higher H2O2 production in respect to Wild-Type controls, indicating an increase of oxidative stress due to SMO overexpression. Moreover, the response of transgenic mice to excitotoxic brain injury, induced by kainic acid injection, was evaluated by analysing the behavioural phenotype, the immunodistribution of neural cell populations, and the ultrastructural features of neocortical neurons. Spermine oxidase overexpression and the consequently altered polyamine levels in the neocortex affects the cytoarchitecture in the adult and aging brain, as well as after neurotoxic insult. It resulted that the transgenic JoSMOrec mouse line is more sensitive to KA than Wild-Type mice, indicating an important role of spermine oxidase during excitotoxicity. These results provide novel evidences of the complex and critical functions carried out by spermine oxidase and spermine in the mammalian brain. PMID:23840306
ZyFISH: A Simple, Rapid and Reliable Zygosity Assay for Transgenic Mice
McHugh, Donal; O’Connor, Tracy; Bremer, Juliane; Aguzzi, Adriano
2012-01-01
Microinjection of DNA constructs into fertilized mouse oocytes typically results in random transgene integration at a single genomic locus. The resulting transgenic founders can be used to establish hemizygous transgenic mouse lines. However, practical and experimental reasons often require that such lines be bred to homozygosity. Transgene zygosity can be determined by progeny testing assays which are expensive and time-consuming, by quantitative Southern blotting which is labor-intensive, or by quantitative PCR (qPCR) which requires transgene-specific design. Here, we describe a zygosity assessment procedure based on fluorescent in situ hybridization (zyFISH). The zyFISH protocol entails the detection of transgenic loci by FISH and the concomitant assignment of homozygosity using a concise and unbiased scoring system. The method requires small volumes of blood, is scalable to at least 40 determinations per assay, and produces results entirely consistent with the progeny testing assay. This combination of reliability, simplicity and cost-effectiveness makes zyFISH a method of choice for transgenic mouse zygosity determinations. PMID:22666404
Gene silencing techniques are widely used to control gene expression and have potential for RNAi-based therapeutics. In this report, transgenic mouse lines were created for conditional knockdown of Srsf3 (SRp20) expression in liver and mammary gland tissues by expressing Srsf3-specific shRNAs driven by a U6 promoter.
NASA Astrophysics Data System (ADS)
Shegog, Ross; Lazarus, Melanie M.; Murray, Nancy G.; Diamond, Pamela M.; Sessions, Nathalie; Zsigmond, Eva
2012-10-01
The transgenic mouse model is useful for studying the causes and potential cures for human genetic diseases. Exposing high school biology students to laboratory experience in developing transgenic animal models is logistically prohibitive. Computer-based simulation, however, offers this potential in addition to advantages of fidelity and reach. This study describes and evaluates a computer-based simulation to train advanced placement high school science students in laboratory protocols, a transgenic mouse model was produced. A simulation module on preparing a gene construct in the molecular biology lab was evaluated using a randomized clinical control design with advanced placement high school biology students in Mercedes, Texas ( n = 44). Pre-post tests assessed procedural and declarative knowledge, time on task, attitudes toward computers for learning and towards science careers. Students who used the simulation increased their procedural and declarative knowledge regarding molecular biology compared to those in the control condition (both p < 0.005). Significant increases continued to occur with additional use of the simulation ( p < 0.001). Students in the treatment group became more positive toward using computers for learning ( p < 0.001). The simulation did not significantly affect attitudes toward science in general. Computer simulation of complex transgenic protocols have potential to provide a "virtual" laboratory experience as an adjunct to conventional educational approaches.
Mancini, Irene; Lampronti, Ilaria; Salvatori, Francesca; Fabbri, Enrica; Zuccato, Cristina; Cosenza, Lucia C.; Montagner, Giulia; Borgatti, Monica; Altruda, Fiorella; Fagoonee, Sharmila; Carandina, Gianni; Aiello, Vincenzo; Breda, Laura; Rivella, Stefano; Gambari, Roberto
2015-01-01
Mouse models that carry mutations causing thalassemia represent a suitable tool to test in vivo new mutation-specific therapeutic approaches. Transgenic mice carrying the β-globin IVSI-6 mutation (the most frequent in Middle-Eastern regions and recurrent in Italy and Greece) are, at present, not available. We report the production and characterization of a transgenic mouse line (TG-β-IVSI-6) carrying the IVSI-6 thalassemia point mutation within the human β-globin gene. In the TG-β-IVSI-6 mouse (a) the transgenic integration region is located in mouse chromosome 7; (b) the expression of the transgene is tissue specific; (c) as expected, normally spliced human β-globin mRNA is produced, giving rise to β-globin production and formation of a human-mouse tetrameric chimeric hemoglobin mu α-globin2/hu β-globin2 and, more importantly, (d) the aberrant β-globin-IVSI-6 RNAs are present in blood cells. The TG-β-IVSI-6 mouse reproduces the molecular features of IVSI-6 β-thalassemia and might be used as an in vivo model to characterize the effects of antisense oligodeoxynucleotides targeting the cryptic sites responsible for the generation of aberrantly spliced β-globin RNA sequences, caused by the IVSI-6 mutation. These experiments are expected to be crucial for the development of a personalized therapy for β-thalassemia. PMID:26097845
Bockamp, Ernesto; Sprengel, Rolf; Eshkind, Leonid; Lehmann, Thomas; Braun, Jan M; Emmrich, Frank; Hengstler, Jan G
2008-03-01
Many mouse models are currently available, providing avenues to elucidate gene function and to recapitulate specific pathological conditions. To a large extent, successful translation of clinical evidence or analytical data into appropriate mouse models is possible through progress in transgenic or gene-targeting technology. Beginning with a review of standard mouse transgenics and conventional gene targeting, this article will move on to discussing the basics of conditional gene expression: the tetracycline (tet)-off and tet-on systems based on the transactivators tet-controlled transactivator (Tta) and reverse tet-on transactivator (rtTA) that allow downregulation or induction of gene expression; Cre or Flp recombinase-mediated modifications, including excision, inversion, insertion and interchromosomal translocation; combination of the tet and Cre systems, permitting inducible knockout, reporter gene activation or activation of point mutations; the avian retroviral system based on delivery of rtTA specifically into cells expressing the avian retroviral receptor, which enables cell type-specific, inducible gene expression; the tamoxifen system, one of the most frequently applied steroid receptor-based systems, allows rapid activation of a fusion protein between the gene of interest and a mutant domain of the estrogen receptor, whereby activation does not depend on transcription; and techniques for cell type-specific ablation. The diphtheria toxin receptor system offers the advantage that it can be combined with the 'zoo' of Cre recombinase driver mice. Having described the basics we move on to the cutting edge: generation of genome-wide sets of conditional knockout mice. To this end, large ongoing projects apply two strategies: gene trapping based on random integration of trapping vectors into introns leading to truncation of the transcript, and gene targeting, representing the directed approach using homologous recombination. It can be expected that in the near future genome-wide sets of such mice will be available. Finally, the possibilities of conditional expression systems for investigating gene function in tissue regeneration will be illustrated by examples for neurodegenerative disease, liver regeneration and wound healing of the skin.
Montoliu, Lluís
2012-06-01
The analysis of transgenic and knockout mice always involves the establishment of matings with individuals carrying different loci, segregating independently, whose presence is expected among the progeny, according to a Mendelian distribution. The appearance of distorted inheritance ratios suggests the existence of unexpected lethal or sub-lethal phenotypes associated with some genotypes. These situations are common in a number of cases, including: testing transgenic founder mice for germ-line transmission of their transgenes; setting up heterozygous crosses to obtain homozygous individuals, both for transgenic and knockout mice; establishing matings between floxed mouse lines and suitable cre transgenic mouse lines, etc. The Pearson's χ(2) test can be used to assess the significance of the observed frequencies of genotypes/phenotypes in relation to the expected values, in order to determine whether the observed cases fit the expected distribution. Here, I describe a simple Excel workbook to compare the observed and expected distributions of genotypes/phenotypes in transgenic and knockout mouse crosses involving up to three unlinked loci by means of a χ(2) test. The file is freely available for download from my laboratory's web page at: http://www.cnb.csic.es/~montoliu/Mendel.xls .
Hoffert, Jason D; Pisitkun, Trairak; Miller, R Lance
2012-06-01
Transgenic and conditional knockout mouse models play an important role in biomedical research and their use has grown exponentially in the last 5-10 years. Generating conditional knockouts often requires breeding multiple alleles onto the background of a single mouse or group of mice. Breeding these mice depends on parental genotype, litter size, transmission frequency, and the number of breeding rounds. Therefore, a well planned breeding strategy is critical for keeping costs to a minimum. However, designing a viable breeding strategy can be challenging. With so many different variables this would be an ideal task for a computer program. To facilitate this process, we created a Java-based program called Conditional Allele Mouse Planner (CAMP). CAMP is designed to provide an estimate of the number of breeders, amount of time, and costs associated with generating mice of a particular genotype. We provide a description of CAMP, how to use it, and offer it freely as an application.
2017-12-01
AWARD NUMBER: W81XWH-13-1-0162 TITLE: Using a Novel Transgenic Mouse Model to Study c-Myc Oncogenic Pathway in Castration Resistance and...DATES COVERED 15Sept2013 - 14Sept2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Using a Novel Transgenic Mouse Model to Study c-Myc Oncogenic...for concisely studying castration response and CRPC. However, most mice never developed significant tumors. Here, we showed that ablation of p53 in this
Rodríguez Cruz, Yamila; Strehaiano, Manon; Rodríguez Obaya, Teresita; García Rodríguez, Julío César; Maurice, Tangui
2017-01-01
Erythropoietin (EPO) is a cytokine known to have effective cytoprotective action in the brain, particularly in ischemic, traumatic, inflammatory, and neurodegenerative conditions. We previously reported the neuroprotective effect of a low sialic form of EPO, Neuro-EPO, applied intranasally in rodent models of stroke or cerebellar ataxia and in a non-transgenic mouse model of Alzheimer's disease (AD). Here we analyzed the protective effect of Neuro-EPO in APPSwe mice, a reference transgenic mouse model of AD. Mice were administered 3 times a day, 3 days in the week with Neuro-EPO (125, 250 μg/kg) intranasally, between 12 and 14 months of age. Motor responses, general activity, and memory responses were analyzed during and after treatment. The deficits in spontaneous alternation, place learning in the water-maze, and novel object recognition observed in APPSwe mice were alleviated by the low dose of Neuro-EPO. Oxidative stress, neuroinflammation, trophic factor levels, and a synaptic marker were analyzed in the hippocampus or cortex of the animals. The increases in lipid peroxidation or in GFAP and Iba-1 contents in APPSwe mice were significantly reduced after Neuro-EPO. Activation of intrinsic and extrinsic apoptotic pathways was analyzed. The increases in Bax/Bcl-2 ratio, TNFα, or Fas ligand levels observed in APPSwe mice were reduced by Neuro-EPO. Finally, immunohistochemical and ELISA analyses of Aβ1-42 levels in the APPSwe mouse cortex and hippocampus showed a marked reduction in Aβ deposits and in soluble and insoluble Aβ1-42 forms. This study therefore confirmed the neuroprotective activity of EPO, particularly for an intranasally deliverable formulation, devoid of erythropoietic side effects, in a transgenic mouse model of AD. Neuro-EPO alleviated memory alterations, oxidative stress, neuroinflammation, apoptosis induction, and amyloid load in 14-month-old APPSwe mice.
Age-dependent phenotypic characteristics of a triple transgenic mouse model of Alzheimer disease.
Pietropaolo, Susanna; Feldon, Joram; Yee, Benjamin K
2008-08-01
The triple-transgenic mouse line (3 x Tg-AD) harboring PS1M146V, APPSwe, and taup301L transgenes represents the only transgenic model for Alzheimer's disease (AD) to date capturing both beta-amyloid and tau neuropathology. The present study provides an extensive behavioral characterization of the 3 x Tg-AD mouse line, evaluating the emergence of noncognitive and cognitive AD-like symptoms at two ages corresponding to the early (6-7 months) and advanced (12-13 months) stages of AD-pathology. Enhanced responsiveness to aversive stimulation was detected in mutant mice at both ages: the 3 x Tg-AD genotype enhanced acoustic startle response and facilitated performance in the cued-version of the water maze. These noncognitive phenotypes were accompanied by hyperactivity and reduced locomotor habituation in the open field at the older age. Signs of cognitive aberrations were also detected at both ages, but they were limited to associative learning. The present study suggests that this popular transgenic mouse model of AD has clear phenotypes beyond the cognitive domain, and their potential relationship to the cognitive phenotypes should be further explored.
Cohen, R D; Castellani, L W; Qiao, J H; Van Lenten, B J; Lusis, A J; Reue, K
1997-01-01
Transgenic mouse lines carrying several copies of the mouse apo A-IV gene were produced. Lipoprotein composition and function, and aortic lesion development were examined. Apo A-IV levels in the plasma of transgenic mice were elevated threefold compared with nontransgenic littermates on a chow diet, and sixfold in mice fed an atherogenic diet. Plasma concentrations of total cholesterol, HDL cholesterol, triglycerides, and free fatty acids were similar in transgenic and control mice fed a chow diet. However, with the atherogenic diet, male transgenic mice exhibited significantly higher levels of plasma triglycerides (P < 0.05), total cholesterol (P < 0.01), HDL cholesterol (P < 0.0001), and free fatty acids (P < 0.05), and lower levels of unesterified cholesterol (P < 0.05), than nontransgenic littermates. Expression of the apo A-IV transgene had a protective effect against the formation of diet-induced aortic lesions, with transgenics exhibiting lesion scores of approximately 30% those seen in control mice. HDL-sized lipoproteins isolated from transgenic mice fed the atherogenic diet promoted cholesterol efflux from cholesterol-loaded human monocytes more efficiently than comparable lipoproteins from nontransgenic counterparts. Plasma from transgenics also exhibited higher endogenous cholesterol esterification rates. Taken together, these results suggest that apo A-IV levels influence the metabolism and antiatherogenic properties of HDL. PMID:9109435
Corbin, JM.; Overcash, RF.; Wren, JD.; Coburn, A.; Tipton, GJ.; Ezzell, JA.; McNaughton, KK.; Fung, KM; Kosanke, SD.; Ruiz-Echevarria, MJ
2015-01-01
BACKGROUND Previous results from our lab indicate a tumor suppressor role for the transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) in prostate cancer (PCa). Here, we further characterize this role and uncover new functions for TMEFF2 in cancer and adult prostate regeneration. METHODS The role of TMEFF2 was examined in PCa cells using Matrigel™ cultures and allograft models of PCa cells. In addition, we developed a transgenic mouse model that expresses TMEFF2 from a prostate specific promoter. Anatomical, histological and metabolic characterizations of the transgenic mouse prostate were conducted. The effect of TMEFF2 in prostate regeneration was studied by analyzing branching morphogenesis in the TMEFF2-expressing mouse lobes and alterations in branching morphogenesis were correlated with the metabolomic profiles of the mouse lobes. The role of TMEFF2 in prostate tumorigenesis in whole animals was investigated by crossing the TMEFF2 transgenic mice with the TRAMP mouse model of PCa and analyzing the histopathological changes in the progeny. RESULTS Ectopic expression of TMEFF2 impairs growth of PCa cells in Matrigel or allograft models. Surprisingly, while TMEFF2 expression in the TRAMP mouse did not have a significant effect on the glandular prostate epithelial lesions, the double TRAMP/TMEFF2 transgenic mice displayed an increased incidence of neuroendocrine type tumors. In addition, TMEFF2 promoted increased branching specifically in the dorsal lobe of the prostate suggesting a potential role in developmental processes. These results correlated with data indicating an alteration in the metabolic profile of the dorsal lobe of the transgenic TMEFF2 mice. CONCLUSIONS Collectively, our results confirm the tumor suppressor role of TMEFF2 and suggest that ectopic expression of TMEFF2 in mouse prostate leads to additional lobe-specific effects in prostate regeneration and tumorigenesis. This points to a complex and multifunctional role for TMEFF2 during PCa progression. PMID:26417683
Corbin, Joshua M; Overcash, Ryan F; Wren, Jonathan D; Coburn, Anita; Tipton, Greg J; Ezzell, Jennifer A; McNaughton, Kirk K; Fung, Kar-Ming; Kosanke, Stanley D; Ruiz-Echevarria, Maria J
2016-01-01
Previous results from our lab indicate a tumor suppressor role for the transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) in prostate cancer (PCa). Here, we further characterize this role and uncover new functions for TMEFF2 in cancer and adult prostate regeneration. The role of TMEFF2 was examined in PCa cells using Matrigel(TM) cultures and allograft models of PCa cells. In addition, we developed a transgenic mouse model that expresses TMEFF2 from a prostate specific promoter. Anatomical, histological, and metabolic characterizations of the transgenic mouse prostate were conducted. The effect of TMEFF2 in prostate regeneration was studied by analyzing branching morphogenesis in the TMEFF2-expressing mouse lobes and alterations in branching morphogenesis were correlated with the metabolomic profiles of the mouse lobes. The role of TMEFF2 in prostate tumorigenesis in whole animals was investigated by crossing the TMEFF2 transgenic mice with the TRAMP mouse model of PCa and analyzing the histopathological changes in the progeny. Ectopic expression of TMEFF2 impairs growth of PCa cells in Matrigel or allograft models. Surprisingly, while TMEFF2 expression in the TRAMP mouse did not have a significant effect on the glandular prostate epithelial lesions, the double TRAMP/TMEFF2 transgenic mice displayed an increased incidence of neuroendocrine type tumors. In addition, TMEFF2 promoted increased branching specifically in the dorsal lobe of the prostate suggesting a potential role in developmental processes. These results correlated with data indicating an alteration in the metabolic profile of the dorsal lobe of the transgenic TMEFF2 mice. Collectively, our results confirm the tumor suppressor role of TMEFF2 and suggest that ectopic expression of TMEFF2 in mouse prostate leads to additional lobe-specific effects in prostate regeneration and tumorigenesis. This points to a complex and multifunctional role for TMEFF2 during PCa progression. © 2015 Wiley Periodicals, Inc.
Liu, Bigang; Gong, Shuai; Li, Qiuhui; Chen, Xin; Moore, John; Suraneni, Mahipal V; Badeaux, Mark D; Jeter, Collene R; Shen, Jianjun; Mehmood, Rashid; Fan, Qingxia; Tang, Dean G
2017-08-08
This project was undertaken to address a critical cancer biology question: Is overexpression of the pluripotency molecule Nanog sufficient to initiate tumor development in a somatic tissue? Nanog1 is critical for the self-renewal and pluripotency of ES cells, and its retrotransposed homolog, NanogP8 is preferentially expressed in somatic cancer cells. Our work has shown that shRNA-mediated knockdown of NanogP8 in prostate, breast, and colon cancer cells inhibits tumor regeneration whereas inducible overexpression of NanogP8 promotes cancer stem cell phenotypes and properties. To address the key unanswered question whether tissue-specific overexpression of NanogP8 is sufficient to promote tumor development in vivo , we generated a NanogP8 transgenic mouse model, in which the ARR 2 PB promoter was used to drive NanogP8 cDNA. Surprisingly, the ARR 2 PB-NanogP8 transgenic mice were viable, developed normally, and did not form spontaneous tumors in >2 years. Also, both wild type and ARR 2 PB-NanogP8 transgenic mice responded similarly to castration and regeneration and castrated ARR 2 PB-NanogP8 transgenic mice also did not develop tumors. By crossing the ARR 2 PB-NanogP8 transgenic mice with ARR 2 PB-Myc (i.e., Hi-Myc) mice, we found that the double transgenic (i.e., ARR 2 PB-NanogP8; Hi-Myc) mice showed similar tumor incidence and histology to the Hi-Myc mice. Interestingly, however, we observed white dots in the ventral lobes of the double transgenic prostates, which were characterized as overgrown ductules/buds featured by crowded atypical Nanog-expressing luminal cells. Taken together, our present work demonstrates that transgenic overexpression of NanogP8 in the mouse prostate is insufficient to initiate tumorigenesis but weakly promotes tumor development in the Hi-Myc mouse model.
TRANSGENIC MOUSE MODELS AND PARTICULATE MATTER (PM)
The hypothesis to be tested is that metal catalyzed oxidative stress can contribute to the biological effects of particulate matter. We acquired several transgenic mouse strains to test this hypothesis. Breeding of the mice was accomplished by Duke University. Particles employed ...
Ichise, Hirotake; Hori, Akiko; Shiozawa, Seiji; Kondo, Saki; Kanegae, Yumi; Saito, Izumu; Ichise, Taeko; Yoshida, Nobuaki
2016-07-29
Temporal genetic modification of mice using the ligand-inducible Cre/loxP system is an important technique that allows the bypass of embryonic lethal phenotypes and access to adult phenotypes. In this study, we generated a tamoxifen-inducible Cre-driver mouse strain for the purpose of widespread and temporal Cre recombination. The new line, named CM32, expresses the GFPneo-fusion gene in a wide variety of tissues before FLP recombination and tamoxifen-inducible Cre after FLP recombination. Using FLP-recombined CM32 mice (CM32Δ mice) and Cre reporter mouse lines, we evaluated the efficiency of Cre recombination with and without tamoxifen administration to adult mice, and found tamoxifen-dependent induction of Cre recombination in a variety of adult tissues. In addition, we demonstrated that conditional activation of an oncogene could be achieved in adults using CM32Δ mice. CM32Δ;T26 mice, which harbored a Cre recombination-driven, SV40 large T antigen-expressing transgene, were viable and fertile. No overt phenotype was found in the mice up to 3 months after birth. Although they displayed pineoblastomas (pinealoblastomas) and/or thymic enlargement due to background Cre recombination by 6 months after birth, they developed epidermal hyperplasia when administered tamoxifen. Collectively, our results suggest that the CM32Δ transgenic mouse line can be applied to the assessment of adult phenotypes in mice with loxP-flanked transgenes.
Cellular Plasticity and Heterogeneity of EGFR Mutant Lung Cancer
2016-11-01
available to the research community. Similarly, any cell lines generated in our studies will also be shared. The EGFR transgenic mouse models used in...Lines and Transgenic Mice Active Completed – May 31, 2015 NIH/NCI R01CA121210 Overcoming Acquired Resistance to EGFR Inhibitors in Lung Cancer...Active Active Labrecque Foundation Not Applicable A Translational Pilot Study on Serum Biomarkers of Lung Cancer Using Transgenic Mouse Models of
Lead suppresses chimeric human transferrin gene expression in transgenic mouse liver.
Adrian, G S; Rivera, E V; Adrian, E K; Lu, Y; Buchanan, J; Herbert, D C; Weaker, F J; Walter, C A; Bowman, B H
1993-01-01
The major iron-transport protein in serum is transferrin (TF) which also has the capacity to transport other metals. This report presents evidence that synthesis of human TF can be regulated by the metal lead. Transgenic mice carrying chimeric human TF-chloramphenicol acetyl transferase (CAT) genes received lead or sodium salts by intraperitoneal injections or in drinking water. Transgene expression in liver was suppressed 31 to 50% by the lead treatment. Lead regulates human TF transgenes at the mRNA level since liver CAT enzyme activity, CAT protein, and TF-CAT mRNA levels were all suppressed. The dosages of lead did not alter synthesis of the other liver proteins, mouse TF and albumin, as measured by Northern blot analysis of total liver RNA and rocket immunoelectrophoresis of mouse sera. Moderate levels of lead exposure were sufficient to evoke the human TF transgene response; blood lead levels in mice that received lead acetate in drinking water ranged from 30 micrograms/dl to 56 micrograms/dl. In addition to suppressing expression of TF-CAT genes in transgenic mice, lead also suppressed synthesis of TF protein in cultured human hepatoma HepG2 cells. The regulation of human TF apparently differs from the regulation of mouse TF which is unresponsive to lead exposure.
PR-Set7 is degraded in a conditional Cul4A transgenic mouse model of lung cancer
Wang, Yang; Xu, Zhidong; Mao, Jian -Hua; ...
2015-06-01
Background and objective. Maintenance of genomic integrity is essential to ensure normal organismal development and to prevent diseases such as cancer. PR-Set7 (also known as Set8) is a cell cycle regulated enzyme that catalyses monomethylation of histone 4 at Lys20 (H4K20me1) to promote chromosome condensation and prevent DNA damage. Recent studies show that CRL4CDT2-mediated ubiquitylation of PR-Set7 leads to its degradation during S phase and after DNA damage. This might occur to ensure appropriate changes in chromosome structure during the cell cycle or to preserve genome integrity after DNA damage. Methods. We developed a new model of lung tumor developmentmore » in mice harboring a conditionally expressed allele of Cul4A. We have therefore used a mouse model to demonstrate for the first time that Cul4A is oncogenic in vivo. With this model, staining of PR-Set7 in the preneoplastic and tumor lesions in AdenoCre-induced mouse lungs was performed. Meanwhile we identified higher protein level changes of γ-tubulin and pericentrin by IHC. Results. The level of PR-Set7 down-regulated in the preneoplastic and adenocarcinomous lesions following over-expression of Cul4A. We also identified higher levels of the proteins pericentrin and γ-tubulin in Cul4A mouse lungs induced by AdenoCre. Conclusion. PR-Set7 is a direct target of Cul4A for degradation and involved in the formation of lung tumors in the conditional Cul4A transgenic mouse model.« less
PR-Set7 is degraded in a conditional Cul4A transgenic mouse model of lung cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yang; Xu, Zhidong; Mao, Jian -Hua
Background and objective. Maintenance of genomic integrity is essential to ensure normal organismal development and to prevent diseases such as cancer. PR-Set7 (also known as Set8) is a cell cycle regulated enzyme that catalyses monomethylation of histone 4 at Lys20 (H4K20me1) to promote chromosome condensation and prevent DNA damage. Recent studies show that CRL4CDT2-mediated ubiquitylation of PR-Set7 leads to its degradation during S phase and after DNA damage. This might occur to ensure appropriate changes in chromosome structure during the cell cycle or to preserve genome integrity after DNA damage. Methods. We developed a new model of lung tumor developmentmore » in mice harboring a conditionally expressed allele of Cul4A. We have therefore used a mouse model to demonstrate for the first time that Cul4A is oncogenic in vivo. With this model, staining of PR-Set7 in the preneoplastic and tumor lesions in AdenoCre-induced mouse lungs was performed. Meanwhile we identified higher protein level changes of γ-tubulin and pericentrin by IHC. Results. The level of PR-Set7 down-regulated in the preneoplastic and adenocarcinomous lesions following over-expression of Cul4A. We also identified higher levels of the proteins pericentrin and γ-tubulin in Cul4A mouse lungs induced by AdenoCre. Conclusion. PR-Set7 is a direct target of Cul4A for degradation and involved in the formation of lung tumors in the conditional Cul4A transgenic mouse model.« less
Fong, Miranda Y; Farghaly, Hanan; Kakar, Sham S
2012-11-20
Pituitary tumor-transforming gene (PTTG) is an oncogene that is overexpressed in variety of tumors and exhibits characteristics of a transforming gene. Previous transgenic mouse models to access the tumorigenic potential in the pituitary and ovary have resulted in dysplasia without formation of visible tumors, possibly due to the insufficient expression of PTTG. PTTG expression level is critical for ovarian tumorigenesis in a xenograft model. Therefore, the tumorigenic function of PTTG in vivo remains unclear. We generated a transgenic mouse that overexpresses PTTG driven by the CMV promoter to determine whether PTTG functions as a transforming oncogene that is capable of initiating tumorigenesis. Transgenic animals were generated by microinjection of PTTG transgene into the male pronucleus of FVB 0.5 day old embryos. Expression levels of PTTG in tissues of transgenic animals were analyzed using an immunohistochemical analysis. H&E staining and immunohistostaining were performed to examine the type of tumor in transgenic and PTTG transgenic/p53+/- animals. PTTG transgenic offspring (TgPTTG) were monitored for tumor development at various ages. H&E analysis was performed to identify the presence of cancer and hyperplastic conditions verified with the proliferation marker PCNA and the microvessel marker CD31. Immunohistochemistry was performed to determine transgene expression, revealing localization to the epithelium of the fallopian tube, with more generalized expression in the liver, lung, kidney, and spleen. At eight months of age, 2 out of 15 TgPTTG developed ovarian cancer, 2 out of 15 developed benign tumors, 2 out of 15 developed cervical dysplasia, and 3 out of 15 developed adenomyosis of the uterus. At ten months of age, 2 out of 10 TgPTTG developed adenocarcinoma of the ovary, 1 out of 10 developed a papillary serous adenocarcinoma, and 2 out of 10 presented with atypia of ovarian epithelial cells. Tumorigenesis is a multi-step process, often requiring multiple oncogenes and/or inactivation of tumor suppressor genes. Therefore, to understand the contribution of p53 to PTTG induced tumorigenesis, we crossbred TgPTTG to p53+/- mice and maintained those 8 to 10 months. TgPTTG/p53+/- animals developed sarcomas faster than p53+/- alone as well as different tumor types in addition to cervical carcinomas in situ in 10 out of 17 females. We conclude that while PTTG is a functional transforming oncogene, it requires an additional partner to effectively promote tumorigenesis through the loss of p53 include or between function or modulation.
Quadros, Rolen M; Miura, Hiromi; Harms, Donald W; Akatsuka, Hisako; Sato, Takehito; Aida, Tomomi; Redder, Ronald; Richardson, Guy P; Inagaki, Yutaka; Sakai, Daisuke; Buckley, Shannon M; Seshacharyulu, Parthasarathy; Batra, Surinder K; Behlke, Mark A; Zeiner, Sarah A; Jacobi, Ashley M; Izu, Yayoi; Thoreson, Wallace B; Urness, Lisa D; Mansour, Suzanne L; Ohtsuka, Masato; Gurumurthy, Channabasavaiah B
2017-05-17
Conditional knockout mice and transgenic mice expressing recombinases, reporters, and inducible transcriptional activators are key for many genetic studies and comprise over 90% of mouse models created. Conditional knockout mice are generated using labor-intensive methods of homologous recombination in embryonic stem cells and are available for only ~25% of all mouse genes. Transgenic mice generated by random genomic insertion approaches pose problems of unreliable expression, and thus there is a need for targeted-insertion models. Although CRISPR-based strategies were reported to create conditional and targeted-insertion alleles via one-step delivery of targeting components directly to zygotes, these strategies are quite inefficient. Here we describe Easi-CRISPR (Efficient additions with ssDNA inserts-CRISPR), a targeting strategy in which long single-stranded DNA donors are injected with pre-assembled crRNA + tracrRNA + Cas9 ribonucleoprotein (ctRNP) complexes into mouse zygotes. We show for over a dozen loci that Easi-CRISPR generates correctly targeted conditional and insertion alleles in 8.5-100% of the resulting live offspring. Easi-CRISPR solves the major problem of animal genome engineering, namely the inefficiency of targeted DNA cassette insertion. The approach is robust, succeeding for all tested loci. It is versatile, generating both conditional and targeted insertion alleles. Finally, it is highly efficient, as treating an average of only 50 zygotes is sufficient to produce a correctly targeted allele in up to 100% of live offspring. Thus, Easi-CRISPR offers a comprehensive means of building large-scale Cre-LoxP animal resources.
Gtl2lacZ, an insertional mutation on mouse chromosome 12 with parental origin-dependent phenotype.
Schuster-Gossler, K; Simon-Chazottes, D; Guenet, J L; Zachgo, J; Gossler, A
1996-01-01
We have produced a transgenic mouse line, Gtl2lacZ (Gene trap locus 2), that carries an insertional mutation with a dominant modified pattern of inheritance:heterozygous Gtl2lacZ mice that inherited the transgene from the father show a proportionate dwarfism phenotype, whereas the penetrance and expressivity of the phenotype is strongly reduced in Gtl2lacZ mice that inherited the transgene from the mother. On a mixed genetic background this pattern of inheritance was reversible upon transmission of the transgene through the germ line of the opposite sex. On a predominantly 129/Sv genetic background, however, transgene passage through the female germ line modified the transgene effect, such that the penetrance of the mutation was drastically reduced and the phenotype was no longer obvious after subsequent male germ line transmission. Expression of the transgene, however, was neither affected by genetic background nor by parental legacy. Gtl2lacZ maps to mouse Chromosome 12 in a region that displays imprinting effects associated with maternal and paternal disomy. Our results suggest that the transgene insertion in Gtl2lacZ mice affects an endogenous gene(s) required for fetal and postnatal growth and that this gene(s) is predominantly paternally expressed.
Transgenic and gene knockout mice in gastric cancer research
Jiang, Yannan; Yu, Yingyan
2017-01-01
Mouse models are useful tool for carcinogenic study. They will greatly enrich the understanding of pathogenesis and molecular mechanisms for gastric cancer. However, only few of mice could develop gastric cancer spontaneously. With the development and improvement of gene transfer technology, investigators created a variety of transgenic and knockout/knockin mouse models of gastric cancer, such as INS-GAS mice and gastrin knockout mice. Combined with helicobacter infection and carcinogens treatment, these transgenic/knockout/knockin mice developed precancerous or cancerous lesions, which are proper for gene function study or experimental therapy. Here we review the progression of genetically engineered mouse models on gastric cancer research, and emphasize the effects of chemical carcinogens or infectious factors on carcinogenesis of genetically modified mouse. We also emphasize the histological examination on mouse stomach. We expect to provide researchers with some inspirations on this field. PMID:27713138
Noninvasive bioluminescence imaging of normal and spontaneously transformed prostate tissue in mice.
Lyons, Scott K; Lim, Ed; Clermont, Anne O; Dusich, Joan; Zhu, Lingyun; Campbell, Kenneth D; Coffee, Richard J; Grass, David S; Hunter, John; Purchio, Tony; Jenkins, Darlene
2006-05-01
Several transgenic mouse models of prostate cancer have been developed recently that are able to recapitulate many key biological features of the human condition. It would, therefore, be desirable to employ these models to test the efficacy of new therapeutics before clinical trial; however, the variable onset and non-visible nature of prostate tumor development limit their use for such applications. We now report the generation of a transgenic reporter mouse that should obviate these limitations by enabling noninvasive in vivo bioluminescence imaging of normal and spontaneously transformed prostate tissue in the mouse. We used an 11-kb fragment of the human prostate-specific antigen (PSA) promoter to achieve specific and robust expression of firefly luciferase in the prostate glands of transgenic mice. Ex vivo bioluminescence imaging and in situ hybridization analysis confirmed that luciferase expression was restricted to the epithelium in all four lobes of the prostate. We also show that PSA-Luc mice exhibit decreased but readily detectable levels of in vivo bioluminescence over extended time periods following androgen ablation. These results suggest that this reporter should enable in vivo imaging of both androgen-dependent and androgen-independent prostate tumor models. As proof-of-principle, we show that we could noninvasively image SV40 T antigen-induced prostate tumorigenesis in mice with PSA-Luc. Furthermore, we show that our noninvasive imaging strategy can be successfully used to image tumor response to androgen ablation in transgenic mice and, as a result, that we can rapidly identify individual animals capable of sustaining tumor growth in the absence of androgen.
Ye, Xiangcang; Han, Sang Jun; Tsai, Sophia Y.; DeMayo, Francesco J.; Xu, Jianming; Tsai, Ming-Jer; O'Malley, Bert W.
2005-01-01
Genetic disruption of the steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF)2/SRC-2 in mouse resulted in distinctive mutant phenotypes. To quantify their roles in the function of androgen receptor (AR) transcriptional activity in vivo, we generated a unique transgenic AR-reporter mouse and analyzed the cell-specific contributions of SRC-1 and TIF2 to the activity of AR in mouse testis. Transgenic AR-luciferase and transgenic AR-lacZ mice harbor a recombinant mouse AR gene, ARGAL4DBD, which is functionally coupled with a upstream activation sequence-mediated reporter gene (AR activity indicator). After characterization of these mice in terms of AR function, we further derived bigenic mice by crossing AR activity indicator mice with the SRC-1-/- or TIF2+/- mutant mice. Analyses of the resultant bigenic mice by in vivo imaging and luciferase assays showed that testicular AR activity was decreased significantly in those with the TIF2+/- mutation but not in the SRC-1+/- background, suggesting that TIF2 serves as the preferential coactivator for AR in testis. Immunohistological analysis confirmed that AR and TIF2 coexist in mouse testicular Sertoli cell nuclei under normal conditions. Although SRC-1 concentrates in Sertoli cell nuclei in the absence of TIF2, nuclear SRC-1 is not able to rescue AR activity in the TIF2 mutant background. Interestingly, SRC-1 appears to negatively influence AR activity, thereby counterbalancing the TIF2-stimulated AR activity. Our results provide unique in vivo insights to the multidimensional cell-type-specific interactions between AR and coregulators. PMID:15983373
Ye, Xiangcang; Han, Sang Jun; Tsai, Sophia Y; DeMayo, Francesco J; Xu, Jianming; Tsai, Ming-Jer; O'Malley, Bert W
2005-07-05
Genetic disruption of the steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF)2/SRC-2 in mouse resulted in distinctive mutant phenotypes. To quantify their roles in the function of androgen receptor (AR) transcriptional activity in vivo, we generated a unique transgenic AR-reporter mouse and analyzed the cell-specific contributions of SRC-1 and TIF2 to the activity of AR in mouse testis. Transgenic AR-luciferase and transgenic AR-lacZ mice harbor a recombinant mouse AR gene, AR(GAL4DBD), which is functionally coupled with a upstream activation sequence-mediated reporter gene (AR activity indicator). After characterization of these mice in terms of AR function, we further derived bigenic mice by crossing AR activity indicator mice with the SRC-1-/- or TIF2+/- mutant mice. Analyses of the resultant bigenic mice by in vivo imaging and luciferase assays showed that testicular AR activity was decreased significantly in those with the TIF2+/- mutation but not in the SRC-1+/- background, suggesting that TIF2 serves as the preferential coactivator for AR in testis. Immunohistological analysis confirmed that AR and TIF2 coexist in mouse testicular Sertoli cell nuclei under normal conditions. Although SRC-1 concentrates in Sertoli cell nuclei in the absence of TIF2, nuclear SRC-1 is not able to rescue AR activity in the TIF2 mutant background. Interestingly, SRC-1 appears to negatively influence AR activity, thereby counterbalancing the TIF2-stimulated AR activity. Our results provide unique in vivo insights to the multidimensional cell-type-specific interactions between AR and coregulators.
Eykyn, Thomas R.; Aksentijević, Dunja; Aughton, Karen L.; Southworth, Richard; Fuller, William; Shattock, Michael J.
2015-01-01
We investigate the potential of multiple quantum filtered (MQF) 23Na NMR to probe intracellular [Na]i in the Langendorff perfused mouse heart. In the presence of Tm(DOTP) shift reagent the triple quantum filtered (TQF) signal originated largely from the intracellular sodium pool with a 32 ± 6% contribution of the total TQF signal arising from extracellular sodium, whilst the rank 2 double-quantum filtered signal (DQF), acquired with a 54.7° flip-angle pulse, originated exclusively from the extracellular sodium pool. Given the different cellular origins of the 23Na MQF signals we propose that the TQF/DQF ratio can be used as a semi-quantitative measure of [Na]i in the mouse heart. We demonstrate a good correlation of this ratio with [Na]i measured with shift reagent at baseline and under conditions of elevated [Na]i. We compare the measurements of [Na]i using both shift reagent and TQF/DQF ratio in a cohort of wild type mouse hearts and in a transgenic PLM3SA mouse expressing a non-phosphorylatable form of phospholemman, showing a modest but measurable elevation of baseline [Na]i. MQF filtered 23Na NMR is a potentially useful tool for studying normal and pathophysiological changes in [Na]i, particularly in transgenic mouse models with altered Na regulation. PMID:26196304
Multiple ovarian transplants to rescue a transgenic line of mice.
Dawes, Joyce; Liu, Bowen; Mars, Wendy; Michalopoulos, George; Khillan, Jaspal S
2010-06-01
Transgenic mice are useful tools for studying gene function and regulation but can be difficult to successfully breed. To 'rescue' transgenic lines that are difficult to propagate, researchers use a variety of techniques. One method is ovarian transplant, in which researchers remove ovaries from a donor transgenic mouse, cryopreserve the ovarian tissue, transplant this tissue into histocompatible female mice and breed these recipient females. Though it is a useful technique, cryopreservation can potentially damage ovarian tissue, which could reduce fertility. In this article, the authors describe how they carried out ovarian transplants without cryopreservation to rescue a line of transgenic C57BL/6 mice. Other researchers who have experience with mouse reproductive surgery should be able to use this technique to rescue infertile transgenic lines of mice.
Generation of Transgenic Mouse Fluorescent Reporter Lines for Studying Hematopoietic Development
Vacaru, Andrei M.; Vitale, Joseph; Nieves, Johnathan; Baron, Margaret H.
2015-01-01
During the development of the hematopoietic system, at least 8 distinct lineages are generated in the mouse embryo. Transgenic mice expressing fluorescent proteins at various points in the hematopoietic hierarchy, from hematopoietic stem cell to multipotent progenitors to each of the final differentiated cell types, have provided valuable tools for tagging, tracking, and isolating these cells. In this chapter, we discuss general considerations in designing a transgene, survey available fluorescent probes, and methods for confirming and analyzing transgene expression in the hematopoietic systems of the embryo, fetus, and postnatal/adult animal. PMID:25064110
Genomic localization of the Z/EG transgene in the mouse genome.
Colombo, Sophie; Kumasaka, Mayuko; Lobe, Corrinne; Larue, Lionel
2010-02-01
The Z/EG transgenic mouse line, produced by Novak et al., displays tissue-specific EGFP expression after Cre-mediated recombination. The autofluorescence of EGFP allows the visualization of cells of interest displaying Cre recombination. The initial construct was designed such that cells without Cre recombination express the beta-galactosidase marker, facilitating counterselection. We used inverse PCR to identify the site of integration of the Z/EG transgene, to improve the efficiency of homozygous Z/EG mouse production. Recombined cells produced large amounts of EGFP protein, resulting in higher levels of fluorescence and therefore greater contrast with nonrecombined cells. We mapped the transgene to the G1 region of chromosome 5. This random insertion was found to have occurred 230-bp upstream from the start codon of the Rasa4 gene. The insertion of the Z/EG transgene in the C57BL/6 genetic background had no effect on Rasa4 expression. Homozygous Z/EG mice therefore had no obvious phenotype. (c) 2009 Wiley-Liss, Inc.
Assmann, Karel J M; van Son, Jacco P H F; Dïjkman, Henry B P M; Mentzel, Stef; Wetzels, Jack F M
2002-07-01
Podocytes play an important role in the development of proteinuria and focal glomerulosclerosis. Previously we have demonstrated that a combination of two monoclonal antibodies (mAb) against aminopeptidase A (APA), an enzyme present on podocytes, induces a massive acute albuminuria in mice. The present study examined the relationship between the acute antibody-induced albuminuria and the development of focal glomerulosclerosis in the Thy-1.1 transgenic mouse. This mouse expresses a hybrid human-mouse Thy-1.1 antigen on the podocytes, and slowly but spontaneously develops albuminuria and focal glomerulosclerosis. Five-week-old non-albuminuric Thy-1.1 transgenic and non-transgenic control mice were injected with anti-APA and anti-Thy-1.1 mAb or saline. Albuminuria was measured at days 1, 7, 14 and 21. At day 21 kidneys were processed for light microscopy, immunofluorescence, and electron microscopy. Injection of anti-APA and anti-Thy1.1 mAb in Thy-1.1 transgenic mice induced an albuminuria at day 1 that persisted at day 21. The acute albuminuria after injection of anti-APA mAb was more prominent but transient in non-transgenic mice. In non-trangenic mice no albuminuria could be induced with anti-Thy 1.1 mAb. Light microscopy revealed normal glomeruli at day 1 in all transgenic mice, however, at day 21 advanced glomerulosclerotic lesions were seen in mice injected with either anti-APA mAb (37+/-19% of glomeruli affected) or anti-Thy-1.1 mAb (71+/-5%). Non-transgenic mice did not reveal sclerotic lesions at any time investigated. In the transgenic mice the percentage of focal glomerulosclerosis at day 21 did not correlate with albuminuria at day 21. However, we found a highly significant correlation between percentage of focal glomerulosclerosis and the time-averaged albuminuria over the three-week study period (P < 0.001). Injection of a combination of anti-APA or anti-Thy-1.1 mAb into one mo old, non-albuminuric Thy-1.1 transgenic mice induces an acute albuminuria at day 1 that is accompanied by an accelerated focal glomerulosclerosis at day 21. We suggest that the Thy-1.1 transgenic mouse is an excellent model to study specifically the relation between podocytic injury, albuminuria and the development of focal glomerulosclerosis.
Cammarata, P R; Zhou, C; Chen, G; Singh, I; Reeves, R E; Kuszak, J R; Robinson, M L
1999-07-01
Intracellular osmotic stress is believed to be linked to the advancement of diabetic cataract. Although the accumulation of organic osmolytes (myo-inositol, sorbitol, taurine) is thought to protect the lens by maintaining osmotic homeostasis, the physiologic implication of osmotic imbalance (i.e., hyperosmotic stress caused by intracellular over-accumulation of organic osmolytes) on diabetic cataract formation is not clearly understood. Studies from this laboratory have identified several osmotic compensatory mechanisms thought to afford the lens epithelium, but not the lens fibers, protection from water stress during intervals of osmotic crisis. This model is founded on the supposition that the fibers of the lens are comparatively more susceptible to damage by osmotic insult than is the lens epithelium. To test this premise, several transgenic mouse lines were developed that over-express the bovine sodium/myo-inositol cotransporter (bSMIT) gene in lens fiber cells. Of the several transgenic mouse lines generated, two, MLR14 and MLR21, were analyzed in detail. Transgenic mRNA expression was analyzed in adult and embryonic transgenic mice by a coupled reverse transcriptase-polymerase chain reaction (RT-PCR) and in situ hybridization on embryonic tissue sections, respectively. Intralenticular myo-inositol content from individual mouse lenses was quantified by anion exchange chromatography and pulsed electrochemical detection. Ocular histology of embryonic day 15.5 (E15.5) embryos from both transgenic (TG) families was analyzed and compared to their respective nontransgenic (NTG) littermates. Both RT-PCR and in situ hybridization determined that transgene expression was higher in line MLR21 than in line MLR14. Consistent with this, intralenticular myo-inositol from MLR21 TG mice was markedly higher compared with NTG littermates or MLR14 TG mice. Histologic analysis of E15.5 MLR21 TG embryos disclosed a marked swelling in the differentiating fibers of the bow region and subcapsular fibers of the central zone, whereas the lens epithelium appeared morphologically normal. The lenticular changes, initiated early during lens development in TG MLR21 embryos, result in severe bilateral nuclear cataracts readily observable in neonates under normal rearing and dietary conditions. In contrast, TG MLR14 pups reared under standard conditions produced no lens opacity. Lens fiber swelling and related cataractous outgrowth positively correlated to the degree of lens bSMIT gene expression and intralenticular myo-inositol content. The affected (i.e., swollen) lens fibers appeared to be unable to cope with the water stress generated by the transgene-induced over-accumulation of myo-inositol and, as a result of this inability to osmoregulate, suffered osmotic damage due to water influx.
Targeting Trypsin-Inflammation Axis for Pancreatitis Therapy in a Humanized Pancreatitis Model
2016-10-01
PRSS1 gene) causing hereditary pancreatitis is now well established. We developed a transgenic mouse using a Bacterial Artificial Chromosome harboring...trypsinogen gene (PRSS1 gene) causing hereditary pancreatitis is now well established. We developed a transgenic mouse using a Bacterial Artificial... Breeding and expansion of the R122H mouse colony: Period: February 2016-present. After rederivation, the colony of R122H has been expanded at the
Anjomani Virmouni, Sara; Sandi, Chiranjeevi; Al-Mahdawi, Sahar; Pook, Mark A.
2014-01-01
Background Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder, caused by a GAA repeat expansion mutation within intron 1 of the FXN gene. We have previously established and performed preliminary characterisation of several human FXN yeast artificial chromosome (YAC) transgenic FRDA mouse models containing GAA repeat expansions, Y47R (9 GAA repeats), YG8R (90 and 190 GAA repeats) and YG22R (190 GAA repeats). Methodology/Principal Findings We now report extended cellular, molecular and functional characterisation of these FXN YAC transgenic mouse models. FXN transgene copy number analysis of the FRDA mice demonstrated that the YG22R and Y47R lines each have a single copy of the FXN transgene while the YG8R line has two copies. Single integration sites of all transgenes were confirmed by fluorescence in situ hybridisation (FISH) analysis of metaphase and interphase chromosomes. We identified significant functional deficits, together with a degree of glucose intolerance and insulin hypersensitivity, in YG8R and YG22R FRDA mice compared to Y47R and wild-type control mice. We also confirmed increased somatic GAA repeat instability in the cerebellum and brain of YG22R and YG8R mice, together with significantly reduced levels of FXN mRNA and protein in the brain and liver of YG8R and YG22R compared to Y47R. Conclusions/Significance Together these studies provide a detailed characterisation of our GAA repeat expansion-based YAC transgenic FRDA mouse models that will help investigations of FRDA disease mechanisms and therapy. PMID:25198290
Ryan, Sinéad M; Kelly, Áine M
2016-05-01
It is now well established, at least in animal models, that exercise elicits potent pro-cognitive and pro-neurogenic effects. Alzheimer's disease (AD) is one of the leading causes of dementia and represents one of the greatest burdens on healthcare systems worldwide, with no effective treatment for the disease to date. Exercise presents a promising non-pharmacological option to potentially delay the onset of or slow down the progression of AD. Exercise interventions in mouse models of AD have been explored and have been found to reduce amyloid pathology and improve cognitive function. More recent studies have expanded the research question by investigating potential pro-neurogenic and anti-inflammatory effects of exercise. In this review we summarise studies that have examined exercise-mediated effects on AD pathology, cognitive function, hippocampal neurogenesis and neuroinflammation in transgenic mouse models of AD. Furthermore, we attempt to identify the optimum exercise conditions required to elicit the greatest benefits, taking into account age and pathology of the model, as well as type and duration of exercise. Copyright © 2016 Elsevier B.V. All rights reserved.
Aberrant Wound Healing in an Epidermal Interleukin-4 Transgenic Mouse Model of Atopic Dermatitis
Zhao, Yan; Bao, Lei; Chan, Lawrence S.; DiPietro, Luisa A.; Chen, Lin
2016-01-01
Wound healing in a pre-existing Th2-dominated skin milieu was assessed by using an epidermal specific interleukin-4 (IL-4) transgenic (Tg) mouse model, which develops a pruritic inflammatory skin condition resembling human atopic dermatitis. Our results demonstrated that IL-4 Tg mice had delayed wound closure and re-epithelialization even though these mice exhibited higher degrees of epithelial cell proliferation. Wounds in IL-4 Tg mice also showed a marked enhancement in expression of inflammatory cytokines/chemokines, elevated infiltration of inflammatory cells including neutrophils, macrophages, CD3+ lymphocytes, and epidermal dendritic T lymphocytes. In addition, these mice exhibited a significantly higher level of angiogenesis as compared to wild type mice. Furthermore, wounds in IL-4 Tg mice presented with larger amounts of granulation tissue, but had less expression and deposition of collagen. Taken together, an inflamed skin condition induced by IL-4 has a pronounced negative influence on the healing process. Understanding more about the pathogenesis of wound healing in a Th2- dominated environment may help investigators explore new potential therapeutic strategies. PMID:26752054
Characterization of a new Gsx2-cre line in the developing mouse telencephalon.
Qin, Shenyue; Madhavan, Mayur; Waclaw, Ronald R; Nakafuku, Masato; Campbell, Kenneth
2016-10-01
In this study, we generated a transgenic mouse line driving Cre and EGFP expression with two putative cis-regulatory modules (CRMs) (i.e., hs687 and hs678) upstream of the homeobox gene Gsx2 (formerly Gsh2), a critical gene for establishing lateral ganglionic eminence (LGE) identity. The combination of these two CRMs drives transgene expression within the endogenous Gsx2 expression domains along the anterior-posterior neuraxis. By crossing this transgenic line with the Rosa tdTomato (Ai14) reporter mouse line, we observed a unique recombination pattern in the lateral ventral telencephalon, namely the LGE and the dorsal half of the medial GE (MGE), but not in the septum. We found robust recombination in many cell types derived from these embryonic regions, including olfactory bulb and amygdala interneurons and striatal projection neurons from the LGE, as well as cortical interneurons from the MGE and caudal GE (CGE). In summary, this transgenic mouse line represents a new tool for genetic manipulation in the LGE/CGE and the dorsal half of MGE. © 2016 Wiley Periodicals, Inc.
Foltz, Ian N; Gunasekaran, Kannan; King, Chadwick T
2016-03-01
Since the late 1990s, the use of transgenic animal platforms has transformed the discovery of fully human therapeutic monoclonal antibodies. The first approved therapy derived from a transgenic platform--the epidermal growth factor receptor antagonist panitumumab to treat advanced colorectal cancer--was developed using XenoMouse(®) technology. Since its approval in 2006, the science of discovering and developing therapeutic monoclonal antibodies derived from the XenoMouse(®) platform has advanced considerably. The emerging array of antibody therapeutics developed using transgenic technologies is expected to include antibodies and antibody fragments with novel mechanisms of action and extreme potencies. In addition to these impressive functional properties, these antibodies will be designed to have superior biophysical properties that enable highly efficient large-scale manufacturing methods. Achieving these new heights in antibody drug discovery will ultimately bring better medicines to patients. Here, we review best practices for the discovery and bio-optimization of monoclonal antibodies that fit functional design goals and meet high manufacturing standards. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Jiang, Wei; Sun, Xiaoning; Han, Yuhua; Ding, Mingxiao; Shi, Yan; Deng, Hongkui
2009-01-01
Under normal conditions, the regeneration of mouse β cells is mainly dependent on their own duplication. Although there is evidence that pancreatic progenitor cells exist around duct, whether non-β cells in the islet could also potentially contribute to β cell regeneration in vivo is still controversial. Here, we developed a novel transgenic mouse model to study the pancreatic β cell regeneration, which could specifically inhibit β cell proliferation by overexpressing p21 cip in β cells via regulation of the Tet-on system. We discovered that p21 overexpression could inhibit β-cell duplication in the transgenic mice and these mice would gradually suffer from hyperglycemia. Importantly, the recovery efficiency of the p21-overexpressing mice from streptozotocin-induced diabetes was significantly higher than control mice, which is embodied by better physiological quality and earlier emergence of insulin expressing cells. Furthermore, in the islets of these streptozotocin-treated transgenic mice, we found a large population of proliferating cells which expressed pancreatic duodenal homeobox 1 (PDX1) but not markers of terminally differentiated cells. Transcription factors characteristic of early pancreatic development, such as Nkx2.2 and NeuroD1, and pancreatic progenitor markers, such as Ngn3 and c-Met, could also be detected in these islets. Thus, our work showed for the first time that when β cell self-duplication is repressed by p21 overexpression, the markers for embryonic pancreatic progenitor cells could be detected in islets, which might contribute to the recovery of these transgenic mice from streptozotocin-induced diabetes. These discoveries could be important for exploring new diabetes therapies that directly promote the regeneration of pancreatic progenitors to differentiate into islet β cells in vivo. PMID:20020058
Kimura, Wataru; Sharkar, Mohammad Tofael Kabir; Sultana, Nishat; Islam, Mohammod Johirul; Uezato, Tadayoshi; Miura, Naoyuki
2013-06-01
Thymus development is a complicated process that includes highly dynamic morphological changes and reciprocal tissue interactions between endoderm-derived epithelial cells of the anterior foregut and neural crest-derived mesenchymal cells. We generated and characterized a Tbx1-AmCyan1 reporter transgenic mouse to visualize thymus precursor cells during early embryonic development. In transgenic embryos, AmCyan1 fluorescence was specifically detected in the endoderm of the developing 3rd and 4th pharyngeal pouches and later in thymus epithelium until E14.5. Cells expressing AmCyan1 that were isolated based on AmCyan1 fluorescence expressed endodermal, thymic, and parathyroid markers, but they did not express neural crest or endothelial markers; these findings indicated that this transgenic mouse strain could be used to collect thymic or parathyroid precursor cells or both. We also showed that in nude mice, which exhibit defects in thymus development, the thymus precursors were clearly labeled with AmCyan1. In summary, these AmCyan1-fluorescent transgenic mice are useful for investigating early thymus development.
Goodhardt, M; Babinet, C; Lutfalla, G; Kallenbach, S; Cavelier, P; Rougeon, F
1989-01-01
We have produced transgenic mice which synthesize chimeric mouse-rabbit immunoglobulin (Ig) kappa light chains following in vivo recombination of an injected unrearranged kappa gene. The exogenous gene construct contained a mouse germ-line kappa variable (V kappa) gene segment, the mouse germ-line joining (J kappa) locus including the enhancer, and the rabbit b9 constant (C kappa) region. A high level of V-J recombination of the kappa transgene was observed in spleen of the transgenic mice. Surprisingly, a particularly high degree of variability in the exact site of recombination and the presence of non germ-line encoded nucleotides (N-regions) were found at the V-J junction of the rearranged kappa transgene. Furthermore, unlike endogenous kappa genes, rearrangement of the exogenous gene occurred in T-cells of the transgenic mice. These results show that additional sequences, other than the heptamer-nonamer signal sequences and the promoter and enhancer elements, are required to obtain stage- and lineage- specific regulation of Ig kappa light chain gene rearrangement in vivo. Images PMID:2508061
Mice Expressing RHAG and RHD Human Blood Group Genes
Goossens, Dominique; da Silva, Nelly; Metral, Sylvain; Cortes, Ulrich; Callebaut, Isabelle; Picot, Julien; Mouro-Chanteloup, Isabelle; Cartron, Jean-Pierre
2013-01-01
Anti-RhD prophylaxis of haemolytic disease of the fetus and newborn (HDFN) is highly effective, but as the suppressive mechanism remains uncertain, a mouse model would be of interest. Here we have generated transgenic mice expressing human RhAG and RhD erythrocyte membrane proteins in the presence and, for human RhAG, in the absence, of mouse Rhag. Human RhAG associates with mouse Rh but not mouse Rhag on red blood cells. In Rhag knockout mice transgenic for human RHAG, the mouse Rh protein is “rescued” (re-expressed), and co-immunoprecipitates with human RhAG, indicating the presence of hetero-complexes which associate mouse and human proteins. RhD antigen was expressed from a human RHD gene on a BAC or from RHD cDNA under control of β-globin regulatory elements. RhD was never observed alone, strongly indicative that its expression absolutely depends on the presence of transgenic human RhAG. This first expression of RhD in mice is an important step in the creation of a mouse model of RhD allo-immunisation and HDFN, in conjunction with the Rh-Rhag knockout mice we have developed previously. PMID:24260394
Suppola, S; Heikkinen, S; Parkkinen, J J; Uusi-Oukari, M; Korhonen, V P; Keinänen, T; Alhonen, L; Jänne, J
2001-01-01
We have generated a hybrid transgenic mouse line overexpressing both ornithine decarboxylase (ODC) and spermidine/spermine N(1)-acetyltransferase (SSAT) under the control of the mouse metallothionein (MT) I promoter. In comparison with singly transgenic animals overexpressing SSAT, the doubly transgenic mice unexpectedly displayed much more striking signs of activated polyamine catabolism, as exemplified by a massive putrescine accumulation and an extreme reduction of hepatic spermidine and spermine pools. Interestingly, the profound depletion of the higher polyamines in the hybrid animals occurred in the presence of strikingly high ODC activity and tremendous putrescine accumulation. Polyamine catabolism in the doubly transgenic mice could be enhanced further by administration of zinc or the polyamine analogue N(1),N(11)-diethylnorspermine. In tracer experiments with [(14)C]spermidine we found that, in comparison with syngenic animals, both MT-ODC and MT-SSAT mice possessed an enhanced efflux mechanism for hepatic spermidine. In the MT-ODC animals this mechanism apparently operated in the absence of measurable SSAT activity. In the hybrid animals, spermidine efflux was stimulated further in comparison with the singly transgenic animals. In spite of a dramatic accumulation of putrescine and a profound reduction of the spermidine and spermine pools, only marginal changes were seen in the level of ODC antizyme. Even though the hybrid animals showed no liver or other organ-specific overt toxicity, except an early and permanent loss of hair, their life span was greatly reduced. These results can be understood from the perspective that catabolism is the overriding regulatory mechanism in the metabolism of the polyamines and that, even under conditions of severe depletion of spermidine and spermine, extremely high tissue pools of putrescine are not driven further to replenish the pools of the higher polyamines. PMID:11513732
NASA Technical Reports Server (NTRS)
Chakravarthy, M. V.; Fiorotto, M. L.; Schwartz, R. J.; Booth, F. W.
2001-01-01
Insulin-like growth factor-I (IGF-I) overexpression for 1-month in mouse skeletal muscle increases satellite cell proliferation potential. However, it is unknown whether this beneficial enhancement by IGF-I expression would persist over a longer-term duration in aged mice. This is an important issue to address if a prolonged course of IGF-I is to be used clinically in muscle-wasting conditions where satellite cells may become limiting. Using the IGF-I transgenic (IGF-I Tg) mouse that selectively expresses the IGF-I transgene in striated muscles, we found that 18-months of continuous IGF-I overexpression led to a loss in the enhanced in vitro proliferative capacity of satellite cells from Tg skeletal muscles. Also 18-month-old IGF-I Tg satellite cells lost the enhanced BrdU incorporation, greater pRb and Akt phosphorylations, and decreased p27(Kip1) levels initially observed in cells from 1-month-old IGF-I Tg mice. The levels of those biochemical markers reverted to similar values seen in the 18-months WT littermates. These findings, therefore, suggest that there is no further beneficial effect on enhancing satellite cell proliferation ability with persistent long-term expression of IGF-I in skeletal muscles of these transgenic mice.
Cadena-del-Castillo, Carla; Valdes-Quezada, Christian; Carmona-Aldana, Francisco; Arias, Clorinda; Bermúdez-Rattoni, Federico; Recillas-Targa, Félix
2014-01-01
Alzheimer's disease (AD) is a complex disorder whose etiology is associated with environmental and genetic factors. Recently there have been several attempts to analyze the role of epigenetic alterations in the origin and progression of this neurodegenerative condition. To evaluate the potential participation of the methylation status of the genome that may contribute to AD progression, we have studied the levels and distribution of the 5-methylcytosine and 5-hydroxymethylcytosine in different brain regions at different ages. We analyzed and quantified the immunosignal of these two epigenetic marks in young versus old wild-type mice and in the triple-transgenic mouse model of AD (3xTg-AD). The results show a decline in global 5-methylcytosine mark over time in all studied brain regions concomitant with a significant and widespread increase in 5-hydroxymethylcytosine mark in the aged transgenic mice in contrast to the age-matched controls. These differences in the methylation pattern of brain DNA in the 3xTg-AD that accumulates along age indicates abnormal formation of permissive chromatin structure associated with the increase in AD-related markers.
NASA Astrophysics Data System (ADS)
Williams, Ifor R.; Kupper, Thomas S.
1994-10-01
Keratinocytes at sites of cutaneous inflammation have increased expression of intercellular adhesion molecule 1 (ICAM-1), a cytokine-inducible adhesion molecule which binds the leukocyte integrins LFA-1 and Mac-1. Transgenic mice were prepared in which the expression of mouse ICAM-1 was targeted to basal keratinocytes by using the human K14 keratin promoter. The level of constitutive expression attained in the transgenic mice exceeded the peak level of ICAM-1 expression induced on nontransgenic mouse keratinocytes in vitro by optimal combinations of interferon γ and tumor necrosis factor α or in vivo by proinflammatory stimuli such as phorbol 12-myristate 13-acetate. In vitro adhesion assays demonstrated that cultured transgenic keratinocytes were superior to normal keratinocytes as a substrate for the LFA-1-dependent binding of mouse T cells, confirming that the transgene-encoded ICAM-1 was expressed in a functional form. However, the high level of constitutive ICAM-1 expression achieved on keratinocytes in vivo in these transgenic mice did not result in additional recruitment of CD45^+ leukocytes into transgenic epidermis, nor did it elicit dermal inflammation. Keratinocyte ICAM-1 expression also did not potentiate contact-hypersensitivity reactions to epicutaneous application of haptens. The absence of a spontaneous phenotype in these transgenic mice was not the result of increased levels of soluble ICAM-1, since serum levels of soluble ICAM-1 were equal in transgenic mice and controls. We conclude that elevated ICAM-1 expression on keratinocytes cannot act independently to influence leukocyte trafficking and elicit cutaneous inflammation.
Chang, Sunny Li-Yun; Chen, Shih-Yun; Huang, Huai-Huei; Ko, Hsin-An; Liu, Pei-Tsen; Liu, Ya-Chi; Chen, Ping-Hau; Liu, Fu-Chin
2013-01-01
Nolz-1, as a murine member of the NET zinc-finger protein family, is expressed in post-mitotic differentiating neurons of striatum during development. To explore the function of Nolz-1 in regulating the neurogenesis of forebrain, we studied the effects of ectopic expression of Nolz-1 in neural progenitors. We generated the Cre-loxP dependent conditional transgenic mice in which Nolz-1 was ectopically expressed in proliferative neural progenitors. Ectopic expression of Nolz-1 in neural progenitors by intercrossing the Nolz-1 conditional transgenic mice with the nestin-Cre mice resulted in hypoplasia of telencephalon in double transgenic mice. Decreased proliferation of neural progenitor cells were found in the telencephalon, as evidenced by the reduction of BrdU−, Ki67− and phospho-histone 3-positive cells in E11.5–12.5 germinal zone of telencephalon. Transgenic Nolz-1 also promoted cell cycle exit and as a consequence might facilitate premature differentiation of progenitors, because TuJ1-positive neurons were ectopically found in the ventricular zone and there was a general increase of TuJ1 immunoreactivity in the telencephalon. Moreover, clusters of strong TuJ1-expressing neurons were present in E12.5 germinal zone. Some of these strong TuJ1-positive clusters, however, contained apoptotic condensed DNA, suggesting that inappropriate premature differentiation may lead to abnormal apoptosis in some progenitor cells. Consistent with the transgenic mouse analysis in vivo, similar effects of Nozl-1 over-expression in induction of apoptosis, inhibition of cell proliferation and promotion of neuronal differentiation were also observed in three different N18, ST14A and N2A neural cell lines in vitro. Taken together, our study indicates that ectopic expression of Nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation and induces abnormal apoptosis in the developing telencephalon. PMID:24073229
Chang, Sunny Li-Yun; Chen, Shih-Yun; Huang, Huai-Huei; Ko, Hsin-An; Liu, Pei-Tsen; Liu, Ya-Chi; Chen, Ping-Hau; Liu, Fu-Chin
2013-01-01
Nolz-1, as a murine member of the NET zinc-finger protein family, is expressed in post-mitotic differentiating neurons of striatum during development. To explore the function of Nolz-1 in regulating the neurogenesis of forebrain, we studied the effects of ectopic expression of Nolz-1 in neural progenitors. We generated the Cre-loxP dependent conditional transgenic mice in which Nolz-1 was ectopically expressed in proliferative neural progenitors. Ectopic expression of Nolz-1 in neural progenitors by intercrossing the Nolz-1 conditional transgenic mice with the nestin-Cre mice resulted in hypoplasia of telencephalon in double transgenic mice. Decreased proliferation of neural progenitor cells were found in the telencephalon, as evidenced by the reduction of BrdU-, Ki67- and phospho-histone 3-positive cells in E11.5-12.5 germinal zone of telencephalon. Transgenic Nolz-1 also promoted cell cycle exit and as a consequence might facilitate premature differentiation of progenitors, because TuJ1-positive neurons were ectopically found in the ventricular zone and there was a general increase of TuJ1 immunoreactivity in the telencephalon. Moreover, clusters of strong TuJ1-expressing neurons were present in E12.5 germinal zone. Some of these strong TuJ1-positive clusters, however, contained apoptotic condensed DNA, suggesting that inappropriate premature differentiation may lead to abnormal apoptosis in some progenitor cells. Consistent with the transgenic mouse analysis in vivo, similar effects of Nozl-1 over-expression in induction of apoptosis, inhibition of cell proliferation and promotion of neuronal differentiation were also observed in three different N18, ST14A and N2A neural cell lines in vitro. Taken together, our study indicates that ectopic expression of Nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation and induces abnormal apoptosis in the developing telencephalon.
Berman-Booty, Lisa D.; Thomas-Ahner, Jennifer M.; Bolon, Brad; Oglesbee, Michael J.; Clinton, Steven K.; Kulp, Samuel K.; Chen, Ching-Shih; La Perle, Krista
2014-01-01
Male transgenic adenocarcinoma of the mouse prostate (TRAMP) mice are frequently used in prostate cancer research because their prostates consistently develop a series of pre-neoplastic and neoplastic lesions. Disease progression in TRAMP mouse prostates culminates in metastatic, poorly differentiated carcinomas with neuroendocrine features. The androgen dependence of the rat probasin promoter largely limits transgene expression to the prostatic epithelium. However, extra-prostatic transgene-positive lesions have been described in TRAMP mice, including renal tubulo-acinar carcinomas, neuroendocrine carcinomas of the urethra, and phyllodes-like tumors of the seminal vesicle. Here we describe the histologic and immunohistochemical features of two novel extra-prostatic lesions in TRAMP mice: primary anaplastic tumors of uncertain cell origin in the midbrain, and poorly differentiated adenocarcinomas of the submandibular salivary gland. These newly characterized tumors apparently result from transgene expression in extra-prostatic locations rather than representing metastatic prostate neoplasms because lesions were identified in both male and female mice as well as in male TRAMP mice without histologically apparent prostate tumors. In this paper we also calculate the incidences of the urethral carcinomas and renal tubulo-acinar carcinomas, further elucidate the biological behavior of the urethral carcinomas, and demonstrate the critical importance of complete necropsies even when evaluating presumably well characterized phenotypes in genetically engineered mice. PMID:24742627
Berman-Booty, Lisa D; Thomas-Ahner, Jennifer M; Bolon, Brad; Oglesbee, Michael J; Clinton, Steven K; Kulp, Samuel K; Chen, Ching-Shih; La Perle, Krista M D
2015-02-01
Male transgenic adenocarcinoma of the mouse prostate (TRAMP) mice are frequently used in prostate cancer research because their prostates consistently develop a series of preneoplastic and neoplastic lesions. Disease progression in TRAMP mouse prostates culminates in metastatic, poorly differentiated carcinomas with neuroendocrine features. The androgen dependence of the rat probasin promoter largely limits transgene expression to the prostatic epithelium. However, extra-prostatic transgene-positive lesions have been described in TRAMP mice, including renal tubuloacinar carcinomas, neuroendocrine carcinomas of the urethra, and phyllodes-like tumors of the seminal vesicle. Here, we describe the histologic and immunohistochemical features of 2 novel extra-prostatic lesions in TRAMP mice: primary anaplastic tumors of uncertain cell origin in the midbrain and poorly differentiated adenocarcinomas of the submandibular salivary gland. These newly characterized tumors apparently result from transgene expression in extra-prostatic locations rather than representing metastatic prostate neoplasms because lesions were identified in both male and female mice and in male TRAMP mice without histologically apparent prostate tumors. In this article, we also calculate the incidences of the urethral carcinomas and renal tubuloacinar carcinomas, further elucidate the biological behavior of the urethral carcinomas, and demonstrate the critical importance of complete necropsies even when evaluating presumably well characterized phenotypes in genetically engineered mice. © 2014 by The Author(s).
Joshi, Sandeep S; Tandukar, Bishal; Castaneda, Maira; Jiang, Shunlin; Diwakar, Ganesh; Hertzano, Ronna P; Hornyak, Thomas J
2018-01-01
Melanocytes are neural crest-derived cells that are responsible for mammalian hair follicle (HF) pigmentation. The Dct-LacZ transgenic mouse is extensively used to study melanocyte biology but lacks conditionally-inducible labelling and fluorescent labelling, enabling specific, viable isolation of melanocytes using fluorescence-activated cell sorting (FACS). Here, we have generated a Tet-off bitransgenic mouse model, Dct-H2BGFP, containing Dct-tTA and TRE-H2BGFP transgenes. Characterization of Dct-H2BGFP mice confirmed a pattern of Dct-H2BGFP expression in melanoblasts, melanocyte stem cells (McSCs), and terminally differentiated melanocytes similar to the expression pattern of previously published mouse models Dct-LacZ and iDct-GFP. GFP expression is regulated by doxycycline. GFP is shown to co-localize with melanocyte label-retaining cells (LRCs) identified through BrdU retention. The GFP-expressing cells identified in vivo in the bulge and the secondary hair germ of telogen HFs of Dct-H2BGFP mice express the melanocyte and melanocyte stem cell markers Dct and Kit. Using Dct-H2BGFP mice, we separated GFP-expressing cells from the telogen HF based on FACS and showed that GFP-expressing cells express high levels of Kit and Dct, and lower levels of HF epithelial keratin genes. We also show that GFP-expressing cells express high levels of the melanocyte differentiation genes Tyr, Tyrp1, and Pmel17, further substantiating their identity within the melanocyte lineage. Thus, Dct-H2BGFP mice are not only useful for the in vivo identification of melanocytic cells, but also for isolating them viably and studying their molecular and biological properties. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strauss, W.M.; Dausman, J.; Beard, C.
Molecular complementation of mutant phenotypes by transgenic technology is a potentially important tool for gene identification. A technology was developed to allow the transfer of a physically intact yeast artificial chromosome (YAC) into the germ line of the mouse. A purified 150-kilobase YAC encompassing the murine gene Col1a1 was efficiently introduced into embryonic stem (ES) cells via lipofection. Chimeric founder mice were derived from two transfected ES cell clones. These chimeras transmitted the full length transgene through the germ line, generating two transgenic mouse strains. Transgene expression was visualized as nascent transcripts in interphase nuclei and quantitated by ribonuclease protectionmore » analysis. Both assays indicated that the transgene was expressed at levels comparable to the endogenous collagen gene. 32 refs., 3 figs., 1 tab.« less
Matsukuma, S; Nakatsuru, Y; Nakagawa, K; Utakoji, T; Sugano, H; Kataoka, H; Sekiguchi, M; Ishikawa, T
1989-11-01
The E. coli ada gene encodes O6-methylguanine DNA methyltransferase (O6MTase) which repairs the methylation of guanine at the O6 position in DNA. After recombination with a Chinese hamster metallothionein I gene promoter, the ada gene was microinjected into C3H/HeN mouse zygotes. Eventually, transgenic mice containing the ada fusion DNA were generated. The integrated ada DNA complex was transmitted to the progeny in a mode conforming to tandem integration at a single chromosome site, and homozygotes were also obtained from an inter-transgenic mouse cross. RNA transcripts of the chimeric ada gene were identified in the livers of these transgenic mice using dot and Northern blot analyses. O6MTase activity was increased in the liver of transgenic mice of line No. 708, and was more than 3 times the activity found in non-transgenic mice, especially in the transgenic homozygotes. The ada gene product was detected in the liver of a transgenic homozygote by immunoblot analysis. These transgenic mice have great potential for analysis of the role played by O6MTase in chemical carcinogenesis.
Crispo, Martina; Van Maele, Laurye; Tabareau, Julien; Cayet, Delphine; Errea, Agustina; Ferreira, Ana María; Rumbo, Martin; Sirard, Jean Claude
2013-01-01
The chemokine CCL20, the unique ligand of CCR6 functions as an attractant of immune cells. Expression of CCL20 is induced by Toll-like Receptor (TLR) signaling or proinflammatory cytokine stimulation. However CCL20 is also constitutively produced at specific epithelial sites of mucosa. This expression profile is achieved by transcriptional regulation. In the present work we characterized regulatory features of mouse Ccl20 gene. Transcriptional fusions between the mouse Ccl20 promoter and the firefly luciferase (luc) encoding gene were constructed and assessed in in vitro and in vivo assays. We found that liver CCL20 expression and luciferase activity were upregulated by systemic administration of the TLR5 agonist flagellin. Using shRNA and dominant negative form specific for mouse TLR5, we showed that this expression was controlled by TLR5. To address in situ the regulation of gene activity, a transgenic mouse line harboring a functional Ccl20-luc fusion was generated. The luciferase expression was highly concordant with Ccl20 expression in different tissues. Our data indicate that the transgenic mouse model can be used to monitor activation of innate response in vivo.
Crispo, Martina; Van Maele, Laurye; Tabareau, Julien; Cayet, Delphine; Errea, Agustina; Ferreira, Ana María; Rumbo, Martin; Sirard, Jean Claude
2013-01-01
The chemokine CCL20, the unique ligand of CCR6 functions as an attractant of immune cells. Expression of CCL20 is induced by Toll-like Receptor (TLR) signaling or proinflammatory cytokine stimulation. However CCL20 is also constitutively produced at specific epithelial sites of mucosa. This expression profile is achieved by transcriptional regulation. In the present work we characterized regulatory features of mouse Ccl20 gene. Transcriptional fusions between the mouse Ccl20 promoter and the firefly luciferase (luc) encoding gene were constructed and assessed in in vitro and in vivo assays. We found that liver CCL20 expression and luciferase activity were upregulated by systemic administration of the TLR5 agonist flagellin. Using shRNA and dominant negative form specific for mouse TLR5, we showed that this expression was controlled by TLR5. To address in situ the regulation of gene activity, a transgenic mouse line harboring a functional Ccl20-luc fusion was generated. The luciferase expression was highly concordant with Ccl20 expression in different tissues. Our data indicate that the transgenic mouse model can be used to monitor activation of innate response in vivo. PMID:24265691
Kishimoto, Yasushi; Shishido, Hajime; Sawanishi, Mayumi; Toyota, Yasunori; Ueno, Masaki; Kubota, Takashi; Kirino, Yutaka; Tamiya, Takashi; Kawai, Nobuyuki
2016-12-01
This data article contains supporting information regarding the research article entitled "Traumatic brain injury accelerates amyloid-β deposition and impairs spatial learning in the triple-transgenic mouse model of Alzheimer׳s disease" (H. Shishido, Y. Kishimoto, N. Kawai, Y. Toyota, M. Ueno, T. Kubota, Y. Kirino, T. Tamiya, 2016) [1]. Triple-transgenic (3×Tg)-Alzheimer׳s disease (AD) model mice exhibited significantly poorer spatial learning than sham-treated 3×Tg-AD mice 28 days after traumatic brain injury (TBI). Correspondingly, amyloid-β (Aβ) deposition within the hippocampus was significantly greater in 3×Tg-AD mice 28 days after TBI. However, data regarding the short-term and long-term influences of TBI on amyloid precursor protein (APP) accumulation in AD model mice remain limited. Furthermore, there is little data showing whether physical activity and motor learning are affected by TBI in AD model mice. Here, we provide immunocytochemistry data confirming that TBI induces significant increases in APP accumulation in 3×Tg-AD mice at both 7 days and 28 days after TBI. Furthermore, 3×Tg-AD model mice exhibit a reduced ability to acquire conditioned responses (CRs) during delay eyeblink conditioning compared to sham-treated 3×Tg-AD model mice 28 days after TBI. However, physical activity and motor performance are not significantly changed in TBI-treated 3×Tg-AD model mice.
Gao, Xiao-Ming; Dilley, Rodney J; Samuel, Chrishan S; Percy, Elodie; Fullerton, Meryl J; Dart, Anthony M; Du, Xiao-Jun
2002-10-01
This paper addresses whether the enhanced left ventricular (LV) contractility and heart rate, seen in transgenic mice overexpressing beta -adrenergic receptor in the heart, might raise the incidence of LV rupture after myocardial infarct. Transgenic and wild-type mice underwent left coronary artery occlusion. Postinfarct deaths that occurred 1-7 days after surgery were analyzed. Hemodynamics, morphologic parameters, and collagen content in the LV were determined. A significantly lower incidence of LV rupture was observed in transgenic than in wild-type mice 3-5 days after myocardial infarct (2.5 versus 19.7%, p < 0.05), despite a similar infarct size between the two groups and better hemodynamic function in transgenic mouse hearts. Morphologic analysis showed a more severe infarct expansion in wild-type versus transgenic mice or in mice dying of rupture versus those that died of acute heart failure. Collagen content was higher in the LV of sham-operated transgenic than wild-type mice (p < 0.01) with both type I and type III collagen elevated. Such difference in collagen content between transgenic and wild-type mice was maintained in noninfarcted and infarcted LV. In conclusion, transgenic mice overexpressing beta -adrenergic receptor had a lower risk of cardiac rupture during the acute phase after infarction despite the markedly enhanced LV contractility and heart rate. As a hyperdynamic function due to beta-adrenergic activation would likely increase the risk of cardiac rupture and infarct expansion, the lack of rupture in this transgenic mouse model suggests that the interstitial collagen level is a more important factor than functional status in the pathogenesis of rupture and infarct expansion.
Ananieva, Elitsa A; Van Horn, Cynthia G; Jones, Meghan R; Hutson, Susan M
2017-02-01
Unlike other amino acids, the branched-chain amino acids (BCAAs) largely bypass first-pass liver degradation due to a lack of hepatocyte expression of the mitochondrial branched-chain aminotransferase (BCATm). This sets up interorgan shuttling of BCAAs and liver-skeletal muscle cooperation in BCAA catabolism. To explore whether complete liver catabolism of BCAAs may impact BCAA shuttling in peripheral tissues, the BCATm gene was stably introduced into mouse liver. Two transgenic mouse lines with low and high hepatocyte expression of the BCATm transgene (LivTg-LE and LivTg-HE) were created and used to measure liver and plasma amino acid concentrations and determine whether the first two BCAA enzymatic steps in liver, skeletal muscle, heart and kidney were impacted. Expression of the hepatic BCATm transgene lowered the concentrations of hepatic BCAAs while enhancing the concentrations of some nonessential amino acids. Extrahepatic BCAA metabolic enzymes and plasma amino acids were largely unaffected, and no growth rate or body composition differences were observed in the transgenic animals as compared to wild-type mice. Feeding the transgenic animals a high-fat diet did not reverse the effect of the BCATm transgene on the hepatic BCAA catabolism, nor did the high-fat diet cause elevation in plasma BCAAs. However, the high-fat-diet-fed BCATm transgenic animals experienced attenuation in the mammalian target of rapamycin (mTOR) pathway in the liver and had impaired blood glucose tolerance. These results suggest that complete liver BCAA metabolism influences the regulation of glucose utilization during diet-induced obesity. Copyright © 2016 Elsevier Inc. All rights reserved.
Ananieva, Elitsa A.; Van Horn, Cynthia G.; Jones, Meghan R.; Hutson, Susan M.
2016-01-01
Unlike other amino acids, the branched chain amino acids (BCAAs) largely bypass first pass liver degradation due to a lack of hepatocyte expression of the mitochondrial branched chain aminotransferase (BCATm). This sets up interorgan shuttling of BCAAs and liver-skeletal muscle cooperation in BCAA catabolism. To explore whether complete liver catabolism of BCAAs may impact BCAA shuttling in peripheral tissues, the BCATm gene was stably introduced into mouse liver. Two transgenic mouse lines with low and high hepatocyte expression of the BCATm transgene (LivTg-LE and LivTg-HE) were created and used to measure liver and plasma amino acid concentrations and determine whether the first two BCAA enzymatic steps in liver, skeletal muscle, heart, and kidney were impacted. Expression of the hepatic BCATm transgene lowered the concentrations of hepatic BCAAs while enhancing the concentrations of some nonessential amino acids. Extrahepatic BCAA metabolic enzymes and plasma amino acids were largely unaffected and no growth rate or body composition differences were observed in the transgenic animals as compared to wild type (WT) mice. Feeding the transgenic animals a high fat diet did not reverse the effect of the BCATm transgene on the hepatic BCAA catabolism nor did the high fat diet cause elevation in plasma BCAAs. However, the high fat diet fed BCATm transgenic animals experienced attenuation in the mammalian target of rapamycin (mTOR) pathway in the liver and had impaired blood glucose tolerance. These results suggest that complete liver BCAA metabolism influences the regulation of glucose utilization during diet-induced obesity. PMID:27886623
A transgenic approach to study argininosuccinate synthetase gene expression
2014-01-01
Background Argininosuccinate synthetase (ASS) participates in urea, nitric oxide and arginine production. Besides transcriptional regulation, a post-transcriptional regulation affecting nuclear precursor RNA stability has been reported. To study whether such post-transcriptional regulation underlines particular temporal and spatial ASS expression, and to investigate how human ASS gene behaves in a mouse background, a transgenic mouse system using a modified bacterial artificial chromosome carrying the human ASS gene tagged with EGFP was employed. Results Two lines of ASS-EGFP transgenic mice were generated: one with EGFP under transcriptional control similar to that of the endogenous ASS gene, another with EGFP under both transcriptional and post-transcriptional regulation as that of the endogenous ASS mRNA. EGFP expression in the liver, the organ for urea production, and in the intestine and kidney that are responsible for arginine biosynthesis, was examined. Organs taken from embryos E14.5 stage to young adult were examined under a fluorescence microscope either directly or after cryosectioning. The levels of EGFP and endogenous mouse Ass mRNAs were also quantified by S1 nuclease mapping. EGFP fluorescence and EGFP mRNA levels in both the liver and kidney were found to increase progressively from embryonic stage toward birth. In contrast, EGFP expression in the intestine was higher in neonates and started to decline at about 3 weeks after birth. Comparison between the EGFP profiles of the two transgenic lines indicated the developmental and tissue-specific regulation was mainly controlled at the transcriptional level. The ASS transgene was of human origin. EGFP expression in the liver followed essentially the mouse Ass pattern as evidenced by zonation distribution of fluorescence and the level of EGFP mRNA at birth. However, in the small intestine, Ass mRNA level declined sharply at 3 week of age, and yet substantial EGFP mRNA was still detectable at this stage. Thus, the time course of EGFP expression in the transgenic mice resembled that of the human ASS gene. Conclusions We demonstrate that the transgenic mouse system reported here has the merit of sensitivity and direct visualization advantage, and is ideal for annotating temporal and spatial expression profiles and the regulation mode of the ASS gene. PMID:24884799
Murai, Kiyohito; Qu, Qiuhao; Sun, GuoQiang; Ye, Peng; Li, Wendong; Asuelime, Grace; Sun, Emily; Tsai, Guochuan E; Shi, Yanhong
2014-06-24
The role of the nuclear receptor TLX in hippocampal neurogenesis and cognition has just begun to be explored. In this study, we generated a transgenic mouse model that expresses TLX under the control of the promoter of nestin, a neural precursor marker. Transgenic TLX expression led to mice with enlarged brains with an elongated hippocampal dentate gyrus and increased numbers of newborn neurons. Specific expression of TLX in adult hippocampal dentate gyrus via lentiviral transduction increased the numbers of BrdU(+) cells and BrdU(+)NeuN(+) neurons. Furthermore, the neural precursor-specific expression of the TLX transgene substantially rescued the neurogenic defects of TLX-null mice. Consistent with increased neurogenesis in the hippocampus, the TLX transgenic mice exhibited enhanced cognition with increased learning and memory. These results suggest a strong association between hippocampal neurogenesis and cognition, as well as significant contributions of TLX to hippocampal neurogenesis, learning, and memory.
Kwan, H; Pecenka, V; Tsukamoto, A; Parslow, T G; Guzman, R; Lin, T P; Muller, W J; Lee, F S; Leder, P; Varmus, H E
1992-01-01
The Wnt-1 and int-2 proto-oncogenes are transcriptionally activated by mouse mammary tumor virus insertion mutations in virus-induced tumors and encode secretory glycoproteins. To determine whether these two genes can cooperate during carcinogenesis, we have crossed two previously characterized lines of transgenic mice to obtain bitransgenic animals carrying both Wnt-1 and int-2 transgenes under the control of the mouse mammary tumor virus long terminal repeat. Mammary carcinomas appear earlier and with higher frequency in the bitransgenic animals, especially the males, than in either parental line. Nearly all bitransgenic males develop mammary neoplasms within 8 months of birth, whereas only 15% of Wnt-1 transgenic males and none of the int-2 transgenic males have tumors. In virgin bitransgenic females, tumors occur approximately 2 months earlier than in their Wnt-1 transgenic siblings; int-2 transgenic females rarely exhibit tumors. Preneoplastic glands from the bitransgenic animals of either sex demonstrate pronounced epithelial hyperplasia similar to that seen in Wnt-1 transgenic virgin females and males, and both transgenes are expressed in the hyperplastic glands and mammary tumors. RNA from the int-2 transgene is more abundant in mammary glands from bitransgenic animals than from int-2 transgenic animals; the increase is associated with high levels of RNA specific for keratin genes 14 and 18, suggesting that Wnt-1-induced epithelial hyperplasia is responsible for the observed increase in expression of the int-2 transgene. Images PMID:1530875
Degeneration of oxidative muscle fibers in HTLV-1 tax transgenic mice.
Nerenberg, M I; Wiley, C A
1989-12-01
The HTLV-1 tax gene under control of the HTLV-1 long terminal repeat (LTR) was introduced into transgenic mice. Previously tax protein expression in the muscle and peripheral nerves of three independent mouse lines was reported. Here the localization of this transgenic protein at a cellular and subcellular level is described. Tax protein was expressed in oxidative muscle fibers that developed severe progressive atrophy. It localized to the cytoplasma where it was associated with structures resembling degenerating Z bands. This pattern of muscle fiber involvement is similar to that observed in human retroviral associated myopathy. This transgenic mouse model suggests that preferential expression of the HTLV-1 viral promoter in oxidative muscle fibers may explain the productive infection of these fibers in HTLV-1 myopathy.
Sweeney, Elizabeth; Roberts, Douglas; Lin, Angela; Guldberg, Robert
2013-01-01
Despite the appreciated interdependence of skeletal and hematopoietic development, the cell and matrix components of the hematopoietic niche remain to be fully defined. Utilizing mice with disrupted function of collagen X (ColX), a major hypertrophic cartilage matrix protein associated with endochondral ossification, our data identified a cytokine defect in trabecular bone cells at the chondro-osseous hematopoietic niche as a cause for aberrant B lymphopoiesis in these mice. Specifically, analysis of ColX transgenic and null mouse chondro-osseous regions via micro-computed tomography revealed an altered trabecular bone environment. Additionally, cocultures with hematopoietic and chondro-osseous cell types highlighted impaired hematopoietic support by ColX transgenic and null mouse derived trabecular bone cells. Further, cytokine arrays with conditioned media from the trabecular osteoblast cocultures suggested an aberrant hematopoietic cytokine milieu within the chondro-osseous niche of the ColX deficient mice. Accordingly, B lymphopoiesis was rescued in the ColX mouse derived trabecular osteoblast cocultures with interlukin-7, stem cell factor, and stromal derived factor-1 supplementation. Moreover, B cell development was restored in vivo after injections of interlukin-7. These data support our hypothesis that endrochondrally-derived trabecular bone cells and matrix constituents provide cytokine-rich niches for hematopoiesis. Furthermore, this study contributes to the emerging concept that niche defects may underlie certain immuno-osseous and hematopoietic disorders. PMID:23656481
Sweeney, Elizabeth; Roberts, Douglas; Lin, Angela; Guldberg, Robert; Jacenko, Olena
2013-10-01
Despite the appreciated interdependence of skeletal and hematopoietic development, the cell and matrix components of the hematopoietic niche remain to be fully defined. Utilizing mice with disrupted function of collagen X (ColX), a major hypertrophic cartilage matrix protein associated with endochondral ossification, our data identified a cytokine defect in trabecular bone cells at the chondro-osseous hematopoietic niche as a cause for aberrant B lymphopoiesis in these mice. Specifically, analysis of ColX transgenic and null mouse chondro-osseous regions via micro-computed tomography revealed an altered trabecular bone environment. Additionally, cocultures with hematopoietic and chondro-osseous cell types highlighted impaired hematopoietic support by ColX transgenic and null mouse derived trabecular bone cells. Further, cytokine arrays with conditioned media from the trabecular osteoblast cocultures suggested an aberrant hematopoietic cytokine milieu within the chondro-osseous niche of the ColX deficient mice. Accordingly, B lymphopoiesis was rescued in the ColX mouse derived trabecular osteoblast cocultures with interlukin-7, stem cell factor, and stromal derived factor-1 supplementation. Moreover, B cell development was restored in vivo after injections of interlukin-7. These data support our hypothesis that endrochondrally-derived trabecular bone cells and matrix constituents provide cytokine-rich niches for hematopoiesis. Furthermore, this study contributes to the emerging concept that niche defects may underlie certain immuno-osseous and hematopoietic disorders.
Utility of HoxB2 enhancer-mediated Cre activity for functional studies in the developing inner ear.
Szeto, Irene Y Y; Leung, Keith K H; Sham, Mai Har; Cheah, Kathryn S E
2009-06-01
The rhombomere 4(r4)-restricted expression of the mouse Hoxb2 gene is regulated by a 1.4-kb enhancer-containing fragment. Here, we showthat transgenic mouse lines expressing cre driven by this fragment (B2-r4-Cre), activated the R26R Cre reporter in rhombomere 4 and the second branchial arch, the epithelium of the first branchial arch, apical ectodermal ridge of the limb buds and the tail region. Of particular interest is Cre activity in the developing inner ear. Cre activity was found in the preotic field and otic placode at E8.5 and otocyst at E9.5-E12.5, in the cochleovestibular and facio-acoustic ganglia at E10.5 and the vestibular and spiral ganglia and all the otic epithelia derived from the otocyst at E15.5 and P0. Our data suggest that the B2-r4-Cre transgenic mice provide an important tool for conditional gene manipulation and lineage tracing in the inner ear. In combination with other transgenic lines expressing cre exclusively in the otic vesicle, the relative contributions of the hindbrain, periotic mesenchyme and otic epithelium in otic development can be dissected. Copyright 2009 Wiley-Liss, Inc.
Mouse genetic corneal disease resulting from transgenic insertional mutagenesis
Ramalho, J S; Gregory-Evans, K; Huxley, C; Seabra, M C
2004-01-01
Background/aims: To report the generation of a new mouse model for a genetically determined corneal abnormality that occurred in transgenesis experiments. Methods: Transgenic mice expressing mutant forms of Rab27a, a GTPase that has been implicated in the pathogenesis of choroideremia, were generated. Results: Only one transgenic line (T27aT15) exhibited an unexpected eye phenotype. T27aT15 mice developed corneal opacities, usually unilateral, and cataracts, resulting in some cases in phthisical eyes. Histologically, the corneal stroma was thickened and vacuolated, and both epithelium and endothelium were thinned. The posterior segment of the eye was also affected with abnormal pigmentation, vessel narrowing, and abnormal leakage of dye upon angiography but was histologically normal. Conclusion: Eye abnormality in T27aT15 mice results from random insertional mutagenesis of the transgene as it was only observed in one line. The corneal lesion observed in T27aT15 mice most closely resembles posterior polymorphous corneal dystrophy and might result from the disruption of the equivalent mouse locus. PMID:14977782
Aberrant Cortical Activity in Multiple GCaMP6-Expressing Transgenic Mouse Lines
Buetfering, Christina; Groblewski, Peter A.; Manavi, Sahar; Miles, Jesse; White, Casey; Griffin, Fiona; Roll, Kate; Cross, Sissy; Nguyen, Thuyanh V.; Larsen, Rachael; Daigle, Tanya; Thompson, Carol L.; Olsen, Shawn; Hausser, Michael
2017-01-01
Abstract Transgenic mouse lines are invaluable tools for neuroscience but, as with any technique, care must be taken to ensure that the tool itself does not unduly affect the system under study. Here we report aberrant electrical activity, similar to interictal spikes, and accompanying fluorescence events in some genotypes of transgenic mice expressing GCaMP6 genetically encoded calcium sensors. These epileptiform events have been observed particularly, but not exclusively, in mice with Emx1-Cre and Ai93 transgenes, of either sex, across multiple laboratories. The events occur at >0.1 Hz, are very large in amplitude (>1.0 mV local field potentials, >10% df/f widefield imaging signals), and typically cover large regions of cortex. Many properties of neuronal responses and behavior seem normal despite these events, although rare subjects exhibit overt generalized seizures. The underlying mechanisms of this phenomenon remain unclear, but we speculate about possible causes on the basis of diverse observations. We encourage researchers to be aware of these activity patterns while interpreting neuronal recordings from affected mouse lines and when considering which lines to study. PMID:28932809
Dacquin, Romain; Starbuck, Michael; Schinke, Thorsten; Karsenty, Gérard
2002-06-01
Cell- and time-specific gene inactivation should enhance our knowledge of bone biology. Implementation of this technique requires construction of transgenic mouse lines expressing Cre recombinase in osteoblasts, the bone forming cell. We tested several promoter fragments for their ability to drive efficient Cre expression in osteoblasts. In the first mouse transgenic line, the Cre gene was placed under the control of the 2.3-kb proximal fragment of the alpha1(I)-collagen promoter, which is expressed at high levels in osteoblasts throughout their differentiation. Transgenic mice expressing this transgene in bone were bred with the ROSA26 reporter (R26R) strain in which the ROSA26 locus is targeted with a conditional LacZ reporter cassette. In R26R mice, Cre expression and subsequent Cre-mediated recombination lead to expression of the LacZ reporter gene, an event that can be monitored by LacZ staining. LacZ staining was detected in virtually all osteoblasts of alpha1(I)-Cre;R26R mice indicating that homologous recombination occurred in these cells. No other cell type stained blue. In the second line studied, the 1.3-kb fragment of osteocalcin gene 2 (OG2) promoter, which is active in differentiated osteoblasts, was used to drive Cre expression. OG2-Cre mice expressed Cre specifically in bone. However, cross of OG2-Cre mice with R26R mice did not lead to any detectable LacZ staining in osteoblasts. Lastly, we tested a more active artificial promoter derived from the OG2 promoter. The artificial OG2-Cre transgene was expressed by reverse transcriptase-polymerase chain reaction in cartilage and bone samples. After cross of the artificial OG2-Cre mice with R26R mice, we detected a LacZ staining in articular chondrocytes but not in osteoblasts. Our data suggest that the only promoter able to drive Cre expression at a level sufficient to induce recombination in osteoblasts is the alpha1(I)-collagen promoter. Copyright 2002 Wiley-Liss, Inc.
Magnetic resonance imaging of amyloid plaques in transgenic mouse models of Alzheimer's disease
Chamberlain, Ryan; Wengenack, Thomas M.; Poduslo, Joseph F.; Garwood, Michael; Jack, Clifford R.
2011-01-01
A major objective in the treatment of Alzheimer's disease is amyloid plaque reduction. Transgenic mouse models of Alzheimer's disease provide a controlled and consistent environment for studying amyloid plaque deposition in Alzheimer's disease. Magnetic resonance imaging is an attractive tool for longitudinal studies because it offers non-invasive monitoring of amyloid plaques. Recent studies have demonstrated the ability of magnetic resonance imaging to detect individual plaques in living mice. This review discusses the mouse models, MR pulse sequences, and parameters that have been used to image plaques and how they can be optimized for future studies. PMID:21499442
Dragunsky, Eugenia; Nomura, Tatsuji; Karpinski, Kazimir; Furesz, John; Wood, David J.; Pervikov, Yuri; Abe, Shinobu; Kurata, Takeshi; Vanloocke, Olivier; Karganova, Galina; Taffs, Rolf; Heath, Alan; Ivshina, Anna; Levenbook, Inessa
2003-01-01
OBJECTIVE: Extensive WHO collaborative studies were performed to evaluate the suitability of transgenic mice susceptible to poliovirus (TgPVR mice, strain 21, bred and provided by the Central Institute for Experimental Animals, Japan) as an alternative to monkeys in the neurovirulence test (NVT) of oral poliovirus vaccine (OPV). METHODS: Nine laboratories participated in the collaborative study on testing neurovirulence of 94 preparations of OPV and vaccine derivatives of all three serotypes in TgPVR21 mice. FINDINGS: Statistical analysis of the data demonstrated that the TgPVR21 mouse NVT was of comparable sensitivity and reproducibility to the conventional WHO NVT in simians. A statistical model for acceptance/rejection of OPV lots in the mouse test was developed, validated, and shown to be suitable for all three vaccine types. The assessment of the transgenic mouse NVT is based on clinical evaluation of paralysed mice. Unlike the monkey NVT, histological examination of central nervous system tissue of each mouse offered no advantage over careful and detailed clinical observation. CONCLUSIONS: Based on data from the collaborative studies the WHO Expert Committee for Biological Standardization approved the mouse NVT as an alternative to the monkey test for all three OPV types and defined a standard implementation process for laboratories that wish to use the test. This represents the first successful introduction of transgenic animals into control of biologicals. PMID:12764491
Expression of the G72/G30 gene in transgenic mice induces behavioral changes
Cheng, Lijun; Hattori, Eiji; Nakajima, Akira; Woehrle, Nancy S.; Opal, Mark D.; Zhang, Chunling; Grennan, Kay; Dulawa, Stephanie C.; Tang, Ya-Ping; Gershon, Elliot S.; Liu, Chunyu
2012-01-01
The G72/G30 gene complex is a candidate gene for schizophrenia and bipolar disorder. However, G72 and G30 mRNAs are expressed at very low levels in human brain, with only rare splicing forms observed. We report here G72/G30 expression profiles and behavioral changes in a G72/G30 transgenic mouse model. A human BAC clone containing the G72/G30 genomic region was used to establish the transgenic mouse model, on which gene expression studies, Western blot and behavioral tests were performed. Relative to their minimal expression in humans, G72 and G30 mRNAs were highly expressed in the transgenic mice, and had a more complex splicing pattern. The highest G72 transcript levels were found in testis, followed by cerebral cortex, with very low or undetectable levels in other tissues. No LG72 (the long putative isoform of G72) protein was detected in the transgenic mice. Whole-genome expression profiling identified 361 genes differentially-expressed in transgenic mice compared to wild-type, including genes previously implicated in neurological and psychological disorders. Relative to wild-type mice, the transgenic mice exhibited fewer stereotypic movements in the open field test, higher baseline startle responses in the course of the prepulse inhibition test, and lower hedonic responses in the sucrose preference test. The transcriptome profile changes and multiple mouse behavioral effects suggest that the G72 gene may play a role in modulating behaviors relevant to psychiatric disorders. PMID:23337943
Tajima, Shoji; Shinohara, Keiko; Fukumoto, Maiko; Zaitsu, Reiko; Miyagawa, Junichi; Hino, Shinjiro; Fan, Jun; Akasaka, Koji; Matsuoka, Masao
2006-04-01
Sea urchin arylsulfatase (Ars) gene locus has features of an insulator, i.e., blocking of enhancer and promoter interaction, and protection of a transgene against positional effects [Akasaka et al. (1999) Cell. Mol. Biol. 45, 555-565]. To examine the effect of Ars insulator on long-term expression of a transgene, the insulator was inserted into LTR of retrovirus vector harboring hrGFP gene as a reporter, and then introduced into mouse myoblast cells. The isolated clones transduced with the reporter gene with or without Ars insulator were cultured for more than 20 wk in the absence of a selection reagent, and the expression of hrGFP was periodically determined. Expression of hrGFP in four clones transduced with the reporter gene without Ars insulator was completely silenced after 20 wk of culture. On the other hand, hrGFP was expressed in all clones with Ars insulator inserted in one of the two different orientations. Histone H3 deacetylation and DNA methylation of the 5'LTR promoter region, signs for heterochromatin and silencing, were suppressed in the clones that were expressing hrGFP. Ars insulator is effective in maintaining a transgene in mouse cells in an orientation-dependent manner, and will be a useful tool to ensure stable expression of a transgene.
Importing, caring, breeding, genotyping, and phenotyping a genetic mouse in a Chinese university.
Kuo, S T; Wu, Q H; Liu, B; Xie, Z L; Wu, X; Shang, S J; Zhang, X Y; Kang, X J; Liu, L N; Zhu, F P; Wang, Y S; Hu, M Q; Xu, H D; Zhou, L; Liu, B; Chai, Z Y; Zhang, Q F; Liu, W; Teng, S S; Wang, C H; Guo, N; Dou, H Q; Zuo, P L; Zheng, L H; Zhang, C X; Zhu, D S; Wang, L; Wang, S R; Zhou, Z
2014-07-01
The genetic manipulation of the laboratory mouse has been well developed and generated more and more mouse lines for biomedical research. To advance our science exploration, it is necessary to share genetically modified mouse lines with collaborators between institutions, even in different countries. The transfer process is complicated. Significant paperwork and coordination are required, concerning animal welfare, intellectual property rights, colony health status, and biohazard. Here, we provide a practical example of importing a transgenic mice line, Dynamin 1 knockout mice, from Yale University in the USA to Perking University in China for studying cell secretion. This example including the length of time that required for paper work, mice quarantine at the receiving institution, and expansion of the mouse line for experiments. The procedure described in this paper for delivery live transgenic mice from USA to China may serve a simple reference for transferring mouse lines between other countries too.
Rat astrocytes are more supportive for mouse OPC self-renewal than mouse astrocytes in culture.
Cheng, Xuejun; Xie, Binghua; Qi, Jiajun; Zhao, Xiaofeng; Zhang, Zunyi; Qiu, Mengsheng; Yang, Junlin
2017-09-01
Mouse primary oligodendrocyte precursor cells (OPCs) are increasingly used to study the molecular mechanisms underlying the phenotype changes in oligodendrocyte differentiation and axonal myelination observed in transgenic or mutant mouse models. However, mouse OPCs are much more difficult to be isolated by the simple dissociation culture of brain tissues than their rat counterparts. To date, the mechanisms underlying the species difference in OPC preparation remain obscure. In this study, we showed that astrocytes from rats have a stronger effect than those from mouse in promoting OPC proliferation and survival in vitro. Mouse astrocytes displayed significantly weaker viability in culture and reduced potential in maintaining OPC self-renewal, as confirmed by culturing OPCs with conditioned media from rat or mouse astrocytes. These results explained the reason for why stratified cultures of OPCs and astrocytes are difficult to be achieved in mouse CNS tissues. Based on these findings, we adopted inactivated rat astrocytes as feeder cells to support the self-renewal of mouse cortical OPCs and preparation of high-purity mouse OPCs. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 907-916, 2017. © 2016 Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
Dietary fat is linked to prostate cancer (PCa), the most commonly diagnosed male cancer, but the nature and strength of the relationships between total fat, n-6 and n-3 fatty acids and PCa remain incompletely understood. Transgenic adenocarcinoma of the mouse prostate (TRAMP) mice (N=10-12 per grou...
A knock-in mouse line conditionally expressing the tumor suppressor WTX/AMER1.
Boutet, Agnès; Comai, Glenda; Charlet, Aurélie; Jian Motamedi, Fariba; Dhib, Haroun; Bandiera, Roberto; Schedl, Andreas
2017-11-01
WTX/AMER1 is an important developmental regulator, mutations in which have been identified in a proportion of patients suffering from the renal neoplasm Wilms' tumor and in the bone malformation syndrome Osteopathia Striata with Cranial Sclerosis (OSCS). Its cellular functions appear complex and the protein can be found at the membrane, within the cytoplasm and the nucleus. To understand its developmental and cellular function an allelic series for Wtx in the mouse is crucial. Whereas mice carrying a conditional knock out allele for Wtx have been previously reported, a gain-of-function mouse model that would allow studying the molecular, cellular and developmental role of Wtx is still missing. Here we describe the generation of a novel mouse strain that permits the conditional activation of WTX expression. Wtx fused to GFP was introduced downstream a stop cassette flanked by loxP sites into the Rosa26 locus by gene targeting. Ectopic WTX expression is reported after crosses with several Cre transgenic mice in different embryonic tissues. Further, functionality of the fusion protein was demonstrated in the context of a Wtx null allele. © 2017 Wiley Periodicals, Inc.
Rozier, Kelvin; Bondarenko, Vladimir E
2018-03-01
Transgenic (TG) mice overexpressing β 2 -adrenergic receptors (β 2 -ARs) demonstrate enhanced myocardial function, which manifests in increased basal adenylyl cyclase activity, enhanced atrial contractility, and increased left ventricular function in vivo. To gain insights into the mechanisms of these effects, we developed a comprehensive mathematical model of the mouse ventricular myocyte overexpressing β 2 -ARs. We found that most of the β 2 -ARs are active in control conditions in TG mice. The simulations describe the dynamics of major signaling molecules in different subcellular compartments, increased basal adenylyl cyclase activity, modifications of action potential shape and duration, and the effects on L-type Ca 2+ current and intracellular Ca 2+ concentration ([Ca 2+ ] i ) transients upon stimulation of β 2 -ARs in control, after the application of pertussis toxin, upon stimulation with a specific β 2 -AR agonist zinterol, and upon stimulation with zinterol in the presence of pertussis toxin. The model also describes the effects of the β 2 -AR inverse agonist ICI-118,551 on adenylyl cyclase activity, action potential, and [Ca 2+ ] i transients. The simulation results were compared with experimental data obtained in ventricular myocytes from TG mice overexpressing β 2 -ARs and with simulation data on wild-type mice. In conclusion, a new comprehensive mathematical model was developed that describes multiple experimental data on TG mice overexpressing β 2 -ARs and can be used to test numerous hypotheses. As an example, using the developed model, we proved the hypothesis of the major contribution of L-type Ca 2+ current to the changes in the action potential and [Ca 2+ ] i transient upon stimulation of β 2 -ARs with zinterol. NEW & NOTEWORTHY We developed a new mathematical model for transgenic mouse ventricular myocytes overexpressing β 2 -adrenoceptors that describes the experimental findings in transgenic mice. The model reveals mechanisms of the differential effects of stimulation of β 2 -adrenoceptors in wild-type and transgenic mice overexpressing β 2 -adrenoceptors.
ERIC Educational Resources Information Center
Shegog, Ross; Lazarus, Melanie M.; Murray, Nancy G.; Diamond, Pamela M.; Sessions, Nathalie; Zsigmond, Eva
2012-01-01
The transgenic mouse model is useful for studying the causes and potential cures for human genetic diseases. Exposing high school biology students to laboratory experience in developing transgenic animal models is logistically prohibitive. Computer-based simulation, however, offers this potential in addition to advantages of fidelity and reach.…
Wilcock, Donna M.; Colton, Carol A.
2009-01-01
Therapeutic approaches to the treatment of Alzheimer's disease are focused primarily on the Aß peptide which aggregates to form amyloid deposits in the brain. The amyloid hypothesis states that amyloid is the precipitating factor that results in the other pathologies of Alzheimer's, namely neurofibrillary tangles and neurodegeneration, as well as the clinical dementia. One such therapy that has attracted significant attention is anti-Aß immunotherapy. First described in 1999, immunotherapy uses anti-Aß antibodies to lower brain amyloid levels. Active immunization, in which Aß is combined with an adjuvant to stimulate an immune response producing antibodies and passive immunization, in which antibodies are directly injected, were shown to lower brain amyloid levels and improve cognition in multiple transgenic mouse models. Mechanisms of action were studied in these mice and revealed a complex set of mechanisms that depended on the type of antibody used. When active immunization advanced to clinical trials a subset of patients developed meningoencephalitis; an event not predicted in mouse studies. However, it was suspected that a T-cell response due to the type of adjuvant used was the cause of the meningoencephalitis and studies in mice indicated alternative methods of vaccination. Passive immunization has also advanced to phase III clinical trials on the basis of successful transgenic mouse studies. Reports from the active immunization clinical trial indicated that, indeed, amyloid levels in brain were reduced. While APP transgenic mouse models are useful in studying amyloid pathology these mice do not generate significant tau pathology or neuron loss. Continued development of new mouse models that do generate all of these pathologies will be critical in more accurately testing therapeutics and predicting the clinical outcome of such therapeutics. PMID:19096156
Overexpression of mouse TTF-2 gene causes cleft palate
Meng, Tian; Shi, Jia-Yu; Wu, Min; Wang, Yan; Li, Ling; Liu, Yan; Zheng, Qian; Huang, Lei; Shi, Bing
2012-01-01
In humans, mutations of the gene encoding for thyroid transcription factor-2 (TTF-2 or FOXE1) result in Bamforth syndrome. Bamforth syndrome is characterized by agenesis, cleft palate, spiky hair and choanal atresia. TTF-2 null mice (TTF-2−/−) also exhibit cleft palate, suggesting its involvement in the palatogenesis. However, the molecular pathology and genetic regulation by TTF2 remain largely unknown. In the present study, the recombinant expression vector pBROAD3-TTF-2 containing the promoter of the mouse ROSA26 gene was created to form the structural gene of mouse TTF-2 and was microinjected into the male pronuclei of fertilized ova. Sequence analysis confirmed that the TTF-2 transgenic mouse model was established successfully. The transgenic mice displayed a phenotype of cleft palate. In addition, we found that TTF-2 was highly expressed in the medial edge epithelium (MEE) from the embryonic day 12.5 (E12.5) to E14.5 in TTF-2 transgenic mice. These observations suggest that overexpression of TTF-2 during palatogenesis may contribute to formation of cleft palate. PMID:22304410
Ohkura, Sei-ichiro; Takashima, Shin-ichiro; Yoshioka, Kazuaki; Okamoto, Yasuo; Inagaki, Yutaka; Sugimoto, Naotoshi; Kitano, Teppei; Takamura, Masayuki; Wada, Takashi; Kaneko, Shuichi; Takuwa, Yoh
2017-01-01
Background: Cardiac fibroblasts, together with cardiomyocytes, occupy the majority of cells in the myocardium and are involved in myocardial remodeling. The lysophospholipid mediator sphigosine-1-phosphate (S1P) regulates functions of cardiovascular cells through multiple receptors including S1PR1–S1PR3. S1PR1 but not other S1P receptors was upregulated in angiotensin II-induced hypertrophic hearts. Therefore, we investigated a role of S1PR1 in fibroblasts for cardiac remodeling by employing transgenic mice that overexpressed S1PR1 under the control of α-smooth muscle actin promoter. In S1PR1-transgenic mouse heart, fibroblasts and/or myofibroblasts were hyperplastic, and those cells as well as vascular smooth muscle cells overexpressed S1PR1. Transgenic mice developed bi-ventricular hypertrophy by 12-week-old and diffuse interstitial fibrosis by 24-week-old without hemodynamic stress. Cardiac remodeling in transgenic mice was associated with greater ERK phosphorylation, upregulation of fetal genes, and systolic dysfunction. Transgenic mouse heart showed increased mRNA expression of angiotensin-converting enzyme and interleukin-6 (IL-6). Isolated fibroblasts from transgenic mice exhibited enhanced generation of angiotensin II, which in turn stimulated IL-6 release. Either an AT1 blocker or angiotensin-converting enzyme inhibitor prevented development of cardiac hypertrophy and fibrosis, systolic dysfunction and increased IL-6 expression in transgenic mice. Finally, administration of anti-IL-6 antibody abolished an increase in tyrosine phosphorylation of STAT3, a major signaling molecule downstream of IL-6, in the transgenic mouse heart and prevented development of cardiac hypertrophy in transgenic mice. These results demonstrate a promoting role of S1PR1 in cardiac fibroblasts for cardiac remodeling, in which angiotensin II—AT1 and IL-6 are involved. PMID:28771545
Murai, Kiyohito; Qu, Qiuhao; Sun, GuoQiang; Ye, Peng; Li, Wendong; Asuelime, Grace; Sun, Emily; Tsai, Guochuan E.; Shi, Yanhong
2014-01-01
The role of the nuclear receptor TLX in hippocampal neurogenesis and cognition has just begun to be explored. In this study, we generated a transgenic mouse model that expresses TLX under the control of the promoter of nestin, a neural precursor marker. Transgenic TLX expression led to mice with enlarged brains with an elongated hippocampal dentate gyrus and increased numbers of newborn neurons. Specific expression of TLX in adult hippocampal dentate gyrus via lentiviral transduction increased the numbers of BrdU+ cells and BrdU+NeuN+ neurons. Furthermore, the neural precursor-specific expression of the TLX transgene substantially rescued the neurogenic defects of TLX-null mice. Consistent with increased neurogenesis in the hippocampus, the TLX transgenic mice exhibited enhanced cognition with increased learning and memory. These results suggest a strong association between hippocampal neurogenesis and cognition, as well as significant contributions of TLX to hippocampal neurogenesis, learning, and memory. PMID:24927526
A Naturally Fluorescent Mgp Transgenic Mouse for Angiogenesis and Glaucoma Longitudinal Studies
Asokan, Priyadarsini; Mitra, Rajendra N.; Periasamy, Ramesh; Han, Zongchao
2018-01-01
Purpose Our goal was to generate and characterize a new mouse model in which only angiogenesis- and glaucoma-relevant tissues would be naturally fluorescent. The Matrix Gla (MGP) gene is highly expressed in vascular smooth muscle cells (VSMC) and trabecular meshwork (TM). We sought to direct our Mgp-Cre.KI mouse recombinase to VSMC/TM cells to produce their longitudinal fluorescent profiles. Methods Homozygous Mgp-Cre.KI mice were crossed with Ai9 homozygous reporter mice harboring a loxP-flanked STOP cassette preventing transcription of a DsRed fluorescent protein (tdTomato). The F1 double-heterozygous (Mgp-tdTomato) was examined by direct fluorescence, whole mount, histology, and fundus photography. Custom-made filters had 554/23 emission and 609/54 exciter nanometer wavelengths. Proof of concept of the model's usefulness was conducted by inducing guided imaging laser burns. Evaluation of a vessel's leakage and proliferation was followed by noninvasive angiography. Results The Mgp-tdTomato mouse was viable, fertile, with normal IOP and ERG. Its phenotype exhibited red paws and snout (cartilage expression), which precluded genotyping. A fluorescent red ring was seen at the limbus and confirmed to be TM expression by histology. The entire retinal vasculature was red fluorescent (VSMC) and directly visualized by fundus photography. Laser burns on the Mgp-tdTomato allowed separation of leakiness and neovascularization evaluation parameters. Conclusions The availability of a transgenic mouse naturally fluorescent in glaucoma-relevant tissues and retinal vasculature brings the unique opportunity to study a wide spectrum of single and combined glaucomatous conditions in vivo. Moreover, the Mgp-tdTomato mouse provides a new tool to study mechanisms and therapeutics of retinal angiogenesis longitudinally. PMID:29392320
A Naturally Fluorescent Mgp Transgenic Mouse for Angiogenesis and Glaucoma Longitudinal Studies.
Asokan, Priyadarsini; Mitra, Rajendra N; Periasamy, Ramesh; Han, Zongchao; Borrás, Teresa
2018-02-01
Our goal was to generate and characterize a new mouse model in which only angiogenesis- and glaucoma-relevant tissues would be naturally fluorescent. The Matrix Gla (MGP) gene is highly expressed in vascular smooth muscle cells (VSMC) and trabecular meshwork (TM). We sought to direct our Mgp-Cre.KI mouse recombinase to VSMC/TM cells to produce their longitudinal fluorescent profiles. Homozygous Mgp-Cre.KI mice were crossed with Ai9 homozygous reporter mice harboring a loxP-flanked STOP cassette preventing transcription of a DsRed fluorescent protein (tdTomato). The F1 double-heterozygous (Mgp-tdTomato) was examined by direct fluorescence, whole mount, histology, and fundus photography. Custom-made filters had 554/23 emission and 609/54 exciter nanometer wavelengths. Proof of concept of the model's usefulness was conducted by inducing guided imaging laser burns. Evaluation of a vessel's leakage and proliferation was followed by noninvasive angiography. The Mgp-tdTomato mouse was viable, fertile, with normal IOP and ERG. Its phenotype exhibited red paws and snout (cartilage expression), which precluded genotyping. A fluorescent red ring was seen at the limbus and confirmed to be TM expression by histology. The entire retinal vasculature was red fluorescent (VSMC) and directly visualized by fundus photography. Laser burns on the Mgp-tdTomato allowed separation of leakiness and neovascularization evaluation parameters. The availability of a transgenic mouse naturally fluorescent in glaucoma-relevant tissues and retinal vasculature brings the unique opportunity to study a wide spectrum of single and combined glaucomatous conditions in vivo. Moreover, the Mgp-tdTomato mouse provides a new tool to study mechanisms and therapeutics of retinal angiogenesis longitudinally.
Tamoxifen dosing for Cre-mediated recombination in experimental bronchopulmonary dysplasia.
Ruiz-Camp, Jordi; Rodríguez-Castillo, José Alberto; Herold, Susanne; Mayer, Konstantin; Vadász, István; Tallquist, Michelle D; Seeger, Werner; Ahlbrecht, Katrin; Morty, Rory E
2017-02-01
Bronchopulmonary dysplasia (BPD) is the most common complication of preterm birth characterized by blunted post-natal lung development. BPD can be modelled in mice by exposure of newborn mouse pups to elevated oxygen levels. Little is known about the mechanisms of perturbed lung development associated with BPD. The advent of transgenic mice, where genetic rearrangements can be induced in particular cell-types at particular time-points during organogenesis, have great potential to explore the pathogenic mechanisms at play during arrested lung development. Many inducible, conditional transgenic technologies available rely on the application of the estrogen-receptor modulator, tamoxifen. While tamoxifen is well-tolerated and has been widely employed in adult mice, or in healthy developing mice; tamoxifen is not well-tolerated in combination with hyperoxia, in the most widely-used mouse model of BPD. To address this, we set out to establish a safe and effective tamoxifen dosing regimen that can be used in newborn mouse pups subjected to injurious stimuli, such as exposure to elevated levels of environmental oxygen. Our data reveal that a single intraperitoneal dose of tamoxifen of 0.2 mg applied to newborn mouse pups in 10 μl Miglyol vehicle was adequate to successfully drive Cre recombinase-mediated genome rearrangements by the fifth day of life, in a murine model of BPD. The number of recombined cells was comparable to that observed in regular tamoxifen administration protocols. These findings will be useful to investigators where tamoxifen dosing is problematic in the background of injurious stimuli and mouse models of human and veterinary disease.
Squire, S; Raymackers, J M; Vandebrouck, C; Potter, A; Tinsley, J; Fisher, R; Gillis, J M; Davies, K E
2002-12-15
Duchenne muscular dystrophy results from the absence of dystrophin, a cytoskeletal protein. Previously, we have shown in a transgenic mouse model of the disease (mdx) that high levels of expression of the dystrophin-related protein, utrophin can prevent pathology. We developed a new transgenic mouse model where muscle specific utrophin expression was conditioned by addition of tetracycline in water. Transgene expression was turned on at different time points: in utero, at birth, 10 and 30 days after birth. We obtained moderate levels of expression, variable from fibre to fibre (mosaicism) but sufficient to induce a correct localization of the dystro-sarcoglycan complex. Histology revealed a reduction of necrotic foci and of the percentage of centronucleated fibres, which remained still largely above the normal level. Isometric force was not improved but the resistance to eccentric contractions was significantly stronger. When utrophin expression was activated 30 days after birth, improvements were marginal, suggesting that the age at which utrophin therapy is initiated could be an important factor. Our results also provide an unexpected insight into the pathogenesis of the dystrophinopathies. We observed a complete normalization of the characteristics of the mechano-sensitive/voltage-independent Ca(2+) channels (occurrence, open probabilities and Ca(2+) currents), while the classical markers of dystrophy were still abnormal. These observations question the role of increased Ca(2+) channel activity in initiating the dystrophic process. The new model shows that utrophin therapy, initiated after birth, can be effective, but the extent of correction of the various symptoms of dystrophinopathy critically depends on the amount of utrophin expressed.
Unal-Cevik, Isin; Gursoy-Ozdemir, Yasemin; Yemisci, Muge; Lule, Sevda; Gurer, Gunfer; Can, Alp; Müller, Veronica; Kahle, Philip J; Dalkara, Turgay
2011-01-01
Alpha-synuclein oligomerization and aggregation are considered to have a role in the pathogenesis of neurodegenerative diseases. However, despite numerous in vitro studies, the impact of aggregates in the intact brain is unclear. In vitro, oxidative/nitrative stress and acidity induce α-synuclein oligomerization. These conditions favoring α-synuclein fibrillization are present in the ischemic brain, which may serve as an in vivo model to study α-synuclein aggregation. In this study, we show that 30-minute proximal middle cerebral artery (MCA) occlusion and 72 hours reperfusion induce oligomerization of wild-type α-synuclein in the ischemic mouse brain. The nonamyloidogenic isoform β-synuclein did not form oligomers. Alpha-synuclein aggregates were confined to neurons and colocalized with ubiquitin immunoreactivity. We also found that 30 minutes proximal MCA occlusion and 24 hours reperfusion induced larger infarcts in C57BL/6(Thy1)-h[A30P]alphaSYN transgenic mice, which have an increased tendency to form synuclein fibrils. Trangenics also developed more selective neuronal necrosis when subjected to 20 minutes distal MCA occlusion and 72 hours reperfusion. Enhanced 3-nitrotyrosine immunoreactivity in transgenic mice suggests that oxidative/nitrative stress may be one of the mechanisms mediating aggregate toxicity. Thus, the increased vulnerability of transgenic mice to ischemia suggests that α-synuclein aggregates not only form during ischemia but also negatively impact neuronal survival, supporting the idea that α-synuclein misfolding may be neurotoxic. PMID:20877387
Asemu, Girma; Fishbein, Kenneth; Lao, Qi Zong; Ravindran, Arippa; Herbert, Ron; Canuto, Holly C; Spencer, Richard G; Soldatov, Nikolai M
2011-01-01
Based on stable integration of recombinant DNA into a host genome, transgenic technology has become an important genetic engineering methodology. An organism whose genetic characteristics have been altered by the insertion of foreign DNA is supposed to exhibit a new phenotype associated with the function of the transgene. However, successful insertion may not be sufficient to achieve specific modification of function. In this study we describe a strain of transgenic mouse, G7-882, generated by incorporation into the mouse genome of human CaV 1.2 α(1C) cDNA deprived of 3'-UTR to exclude transcription. We found that, in response to chronic infusion of isoproterenol, G7-882 develops dilated cardiomyopathy, a misleading "transgenic artifact" compatible with the expected function of the incorporated "correct" transgene. Specifically, using magnetic resonance imaging (MRI), we found that chronic β-adrenergic stimulation of G7-882 mice caused left ventricular hypertrophy and aggravated development of dilated cardiomyopathy, although no significant changes in the kinetics, density and voltage dependence of the calcium current were observed in G7-882 cardiomyocytes as compared to cells from wild type mice. This result illustrates the possibility that even when a functional transgene is expressed, an observed change in phenotype may be due to the artifact of "incidental incorporation" leading to misleading conclusions. To exclude this possibility and thus provide a robust tool for exploring biological function, the new transgenic phenotype must be replicated in several independently generated transgenic strains.
Expression of endogenous mouse APP modulates β-amyloid deposition in hAPP-transgenic mice.
Steffen, Johannes; Krohn, Markus; Schwitlick, Christina; Brüning, Thomas; Paarmann, Kristin; Pietrzik, Claus U; Biverstål, Henrik; Jansone, Baiba; Langer, Oliver; Pahnke, Jens
2017-06-20
Amyloid-β (Aβ) deposition is one of the hallmarks of the amyloid hypothesis in Alzheimer's disease (AD). Mouse models using APP-transgene overexpression to generate amyloid plaques have shown to model only certain parts of the disease. The extent to which the data from mice can be transferred to man remains controversial. Several studies have shown convincing treatment results in reducing Aβ and enhancing cognition in mice but failed totally in human. One model-dependent factor has so far been almost completely neglected: the endogenous expression of mouse APP and its effects on the transgenic models and the readout for therapeutic approaches.Here, we report that hAPP-transgenic models of amyloidosis devoid of endogenous mouse APP expression (mAPP-knockout / mAPPko) show increased amounts and higher speed of Aβ deposition than controls with mAPP. The number of senile plaques and the level of aggregated hAβ were elevated in mAPPko mice, while the deposition in cortical blood vessels was delayed, indicating an alteration in the general aggregation propensity of hAβ together with endogenous mAβ. Furthermore, the cellular response to Aβ deposition was modulated: mAPPko mice developed a pronounced and age-dependent astrogliosis, while microglial association to amyloid plaques was diminished. The expression of human and murine aggregation-prone proteins with differing amino acid sequences within the same mouse model might not only alter the extent of deposition but also modulate the route of pathogenesis, and thus, decisively influence the study outcome, especially in translational research.
Mouse models of neurodegenerative diseases: criteria and general methodology.
Janus, Christopher; Welzl, Hans
2010-01-01
The major symptom of Alzheimer's disease is rapidly progressing dementia, coinciding with the formation of amyloid and tau deposits in the central nervous system, and neuronal death. At present familial cases of dementias provide the most promising foundation for modelling neurodegeneration. We describe the mnemonic and other major behavioral symptoms of tauopathies, briefly outline the genetics underlying familiar cases and discuss the arising implications for modelling the disease in mostly transgenic mouse lines. We then depict to what degree the most recent mouse models replicate pathological and cognitive characteristics observed in patients.There is no universally valid behavioral test battery to evaluate mouse models. The selection of individual tests depends on the behavioral and/or memory system in focus, the type of a model and how well it replicates the pathology of a disease and the amount of control over the genetic background of the mouse model. However it is possible to provide guidelines and criteria for modelling the neurodegeneration, setting up the experiments and choosing relevant tests. One should not adopt a "one (trans)gene, one disease" interpretation, but should try to understand how the mouse genome copes with the protein expression of the transgene in question. Further, it is not possible to recommend some mouse models over others since each model is valuable within its own constraints, and the way experiments are performed often reflects the idiosyncratic reality of specific laboratories. Our purpose is to improve bridging molecular and behavioural approaches in translational research.
Pratiksha Bhatnagar; Rakesh Minocha; Subhash C. Minocha
2002-01-01
We investigated the catabolism of putrescine (Put) in a non-transgenic (NT) and a transgenic cell line of poplar (Populus nigra x maximowiczii) expressing a mouse (Mus musculus) ornithine (Orn) decarboxylase (odc) cDNA. The transgenic cells produce 3- to 4-fold higher amounts of Put than the NT...
A Mutation of the Prdm9 Mouse Hybrid Sterility Gene Carried by a Transgene.
Mihola, O; Trachtulec, Z
2017-01-01
PRDM9 is a protein with histone-3-methyltransferase activity, which specifies the sites of meiotic recombination in mammals. Deficiency of the Prdm9 gene in the laboratory mouse results in complete arrest of the meiotic prophase of both sexes. Moreover, the combination of certain PRDM9 alleles from different mouse subspecies causes hybrid sterility, e.g., the male-specific meiotic arrest found in the (PWD/Ph × C57BL/6J)F1 animals. The fertility of all these mice can be rescued using a Prdm9-containing transgene. Here we characterized a transgene made from the clone RP24-346I22 that was expected to encompass the entire Prdm9 gene. Both (PWD/Ph × C57BL/6J)F1 intersubspecific hybrid males and Prdm9-deficient laboratory mice of both sexes carrying this transgene remained sterile, suggesting that Prdm9 inactivation occurred in the Tg(RP24-346I22) transgenics. Indeed, comparative qRT-PCR analysis of testicular RNAs from transgene-positive versus negative animals revealed similar expression levels of Prdm9 mRNAs from the exons encoding the C-terminal part of the protein but elevated expression from the regions coding for the N-terminus of PRDM9, indicating that the transgenic carries a new null Prdm9 allele. Two naturally occurring alternative Prdm9 mRNA isoforms were overexpressed in Tg(RP24-346I22), one formed via splicing to a 3'-terminal exon consisting of short interspersed element B2 and one isoform including an alternative internal exon of 28 base pairs. However, the overexpression of these alternative transcripts was apparently insufficient for Prdm9 function or for increasing the fertility of the hybrid males.
Chesi, Marta; Robbiani, Davide F.; Sebag, Michael; Chng, Wee Joo; Affer, Maurizio; Tiedemann, Rodger; Valdez, Riccardo; Palmer, Stephen E.; Haas, Stephanie S.; Stewart, A. Keith; Fonseca, Rafael; Kremer, Richard; Cattoretti, Giorgio; Bergsagel, P. Leif
2008-01-01
Summary By misdirecting the activity of Activation-Induced Deaminase (AID) to a conditional MYC transgene, we have achieved sporadic, AID-dependent MYC activation in germinal center B-cells of Vk*MYC mice. Whereas control C57BL/6 mice develop benign monoclonal gammopathy with age, all Vk*MYC mice progress to an indolent multiple myeloma associated with the biological and clinical features highly characteristic of the human disease. Furthermore, antigen-dependent myeloma could be induced by immunization with a T-dependent antigen. Consistent with these findings in mice, more frequent MYC rearrangements, elevated levels of MYC mRNA and MYC target genes distinguish human patients with multiple myeloma from individuals with monoclonal gammopathy, implicating a causal role for MYC in the progression of monoclonal gammopathy to multiple myeloma in man. PMID:18242516
Conditional Lineage Ablation to Model Human Diseases
NASA Astrophysics Data System (ADS)
Lee, Paul; Morley, Gregory; Huang, Qian; Fischer, Avi; Seiler, Stephanie; Horner, James W.; Factor, Stephen; Vaidya, Dhananjay; Jalife, Jose; Fishman, Glenn I.
1998-09-01
Cell loss contributes to the pathogenesis of many inherited and acquired human diseases. We have developed a system to conditionally ablate cells of any lineage and developmental stage in the mouse by regulated expression of the diphtheria toxin A (DTA) gene by using tetracycline-responsive promoters. As an example of this approach, we targeted expression of DTA to the hearts of adult mice to model structural abnormalities commonly observed in human cardiomyopathies. Induction of DTA expression resulted in cell loss, fibrosis, and chamber dilatation. As in many human cardiomyopathies, transgenic mice developed spontaneous arrhythmias in vivo, and programmed electrical stimulation of isolated-perfused transgenic hearts demonstrated a strikingly high incidence of spontaneous and inducible ventricular tachycardia. Affected mice showed marked perturbations of cardiac gap junction channel expression and localization, including a subset with disorganized epicardial activation patterns as revealed by optical action potential mapping. These studies provide important insights into mechanisms of arrhythmogenesis and suggest that conditional lineage ablation may have wide applicability for studies of disease pathogenesis.
Limited mutagenicity of electronic cigarettes in mouse or human cells in vitro.
Tommasi, Stella; Bates, Steven E; Behar, Rachel Z; Talbot, Prue; Besaratinia, Ahmad
2017-10-01
Electronic cigarettes (e-cig), which are promoted as safe alternatives to tobacco cigarettes or as aides to smoking cessation, are becoming increasingly popular among adult chronic smokers and adolescents experimenting with tobacco products. Despite the known presence of toxicants and carcinogens in e-cig liquid and vapor, the possible carcinogenic effects of e-cig use in humans are unknown. We have utilized two validated in vitro model systems to investigate whether e-cig vapor induces mutation in mouse or human cells. We have exposed transgenic mouse fibroblasts in vitro to e-cig vapor extracts prepared from three popular brands, and determined the induction of mutagenesis in a reporter gene, the cII transgene. Furthermore, we have treated the pSP189 plasmid with e-cig vapor extract, transfected human fibroblast cells with the e-cig-treated plasmid, and screened for the induced mutations in the supF gene. We observed no statistically significant increases in relative mutant frequency in the cII transgene or supF gene in the e-cig treated mouse or human cells, respectively. Our data indicate that e-cig vapor extracts from the selected brands and at concentrations tested in this study have limited mutagenicity in both mouse and human cells in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.
Dong, Changsheng; Wang, Haidong; Xue, Linli; Dong, Yanjun; Yang, Lei; Fan, Ruiwen; Yu, Xiuju; Tian, Xue; Ma, Shuhui; Smith, George W.
2012-01-01
Coat color is a key economic trait in wool-producing species. Color development and pigmentation are controlled by complex mechanisms in animals. Here, we report the first production of an altered coat color by overexpression of miR-137 in transgenic mice. Transgenic mice overexpressing miR-137 developed a range of coat color changes from dark black to light color. Molecular analyses of the transgenic mice showed decreased expression of the major target gene termed MITF and its downstream genes, including TYR, TYRP1, and TYRP2. We also showed that melanogenesis altered by miR-137 is distinct from that affected by UV radiation in transgenic mice. Our study provides the first mouse model for the study of coat color controlled by miRNAs in animals and may have important applications in wool production. PMID:22847819
Chimeric elk/mouse prion proteins in transgenic mice.
Tamgüney, Gültekin; Giles, Kurt; Oehler, Abby; Johnson, Natrina L; DeArmond, Stephen J; Prusiner, Stanley B
2013-02-01
Chronic wasting disease (CWD) of deer and elk is a highly communicable neurodegenerative disorder caused by prions. Investigations of CWD are hampered by slow bioassays in transgenic (Tg) mice. Towards the development of Tg mice that will be more susceptible to CWD prions, we created a series of chimeric elk/mouse transgenes that encode the N terminus of elk PrP (ElkPrP) up to residue Y168 and the C terminus of mouse PrP (MoPrP) beyond residue 169 (mouse numbering), designated Elk3M(SNIVVK). Between codons 169 and 219, six residues distinguish ElkPrP from MoPrP: N169S, T173N, V183I, I202V, I214V and R219K. Using chimeric elk/mouse PrP constructs, we generated 12 Tg mouse lines and determined incubation times after intracerebral inoculation with the mouse-passaged RML scrapie or Elk1P CWD prions. Unexpectedly, one Tg mouse line expressing Elk3M(SNIVVK) exhibited incubation times of <70 days when inoculated with RML prions; a second line had incubation times of <90 days. In contrast, mice expressing full-length ElkPrP had incubation periods of >250 days for RML prions. Tg(Elk3M,SNIVVK) mice were less susceptible to CWD prions than Tg(ElkPrP) mice. Changing three C-terminal mouse residues (202, 214 and 219) to those of elk doubled the incubation time for mouse RML prions and rendered the mice resistant to Elk1P CWD prions. Mutating an additional two residues from mouse to elk at codons 169 and 173 increased the incubation times for mouse prions to >300 days, but made the mice susceptible to CWD prions. Our findings highlight the role of C-terminal residues in PrP that control the susceptibility and replication of prions.
2016-10-01
progress in subaim 1a, substantially improving the design of our proposed transgenic animal, the “deletion reporter mouse”, and are finalizing cloning...of necessary components. We expect to submit embryonic stem cells to the transgenic facility within the next few months. Furthermore, subaim 1b is...different mammary epithelial subpopulations. We will breed the reporter mouse created in aim 1 (or the CAG/UBC-GFP mouse) with BRCA1+/- and ATM+/- mutant
Shinoda, K; Nakamura, Y; Matsushita, K; Shimoda, K; Okita, H; Fukuma, M; Yamada, T; Ohde, H; Oguchi, Y; Hata, J; Umezawa, A
2001-10-01
EAT/mcl-1 (EAT), an immediate early gene, functions in a similar way to bcl-2 in neutralising Bax mediated cytotoxicity, suggesting that EAT is a blocker of cell death. The aim of this study was to determine the effect of overexpression of the human EAT gene on light induced retinal cell apoptosis. EAT transgenic mice incorporating the EF-1alpha promoter were utilised, and expression of human EAT was detected by RT-PCR. Light damage was induced by raising mice under constant illumination. Two groups of animals, EAT transgenic mice (n=14) and littermates (n=13), were examined by ERG testing and histopathology at regular time points up to 20 weeks of constant light stimulation. Electrophysiological and histopathological findings were evaluated by established systems of arbitrary scoring as scores 0-2 and scores 0-3, respectively. The mean score (SD) of ERG response was significantly lower in EAT transgenic mice (0.79 (0.89)) than in littermates (1.69 (0.48)) (p<0.01). Although the differences between the two survival curves did not reach statistical significance (p=0.1156), the estimated incidence of electrophysiological retinal damage was higher in EAT mice (0.0495/mouse/week; 95% confidence interval (CI) 0.0347-0.0500) than in littermates (0. 0199/mouse/week; 95% CI 0.0035-0.0364). The mean scores (SD) for histopathological retinal degeneration were 2.31 (0.63) in littermates and 1.43 (1.22) in EAT transgenic mice (p=0.065). However, Kaplan-Meier curves for histopathological failure in two groups of mice showed that retinal photoreceptor cells were preserved significantly against constant light in the littermate compared with transgenic mice (p=0.0241). The estimated incidence of histopathological retinal damage was 0.0042/mouse/week in the littermates (95% CI 0-0.0120) and 0.0419/mouse/week in the EAT mice (95% CI 0.0286-0.0500). Retinal photoreceptor cell apoptosis under constant light stimulation is likely to be accelerated in transgenic retina overexpressing EAT.
Inui, Hideyuki; Gion, Keiko; Utani, Yasushi; Wakai, Taketo; Kodama, Susumu; Eun, Heesoo; Kim, Yun-Seok; Ohkawa, Hideo
2012-01-01
The transgenic tobacco plant XD4V-26 carrying the recombinant mouse aryl hydrocarbon receptor XD4V-mediated β-glucuronidase (GUS) reporter gene expression system was used for assay of dioxins and dioxin-like compounds consisting of polychlorodibenzo-p-dioxins, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls (Co-PCBs) in actually contaminated soils. The transgenic tobacco plant XD4V-26 showed a significant dose-dependent induced GUS activity when cultured on MS medium containing PCB126 [toxic equivalency factor (TEF) = 0.1]. In contrast, PCB169 and PCB180, which have 0.03 of TEF and unassigned TEF values, respectively, did not significantly induce GUS activity under the same conditions as with PCB126. When the tobacco plants were cultivated for up to 5 weeks on actually contaminated soils with dioxins and dioxin-like compounds collected from the periphery of an incinerator used for disposal of life and industrial wastes, GUS activity in the leaves was dose-dependently increased. The plants clearly detected 360 pg-TEQ g−1 of dioxins and dioxin-like compounds in this assay. There was a positive correlation between GUS activity and TEQ value of dioxins and dioxin-like compounds in the plants. This assay does not require any extraction and purification processes for the actually contaminated soil samples. PMID:22428884
Inui, Hideyuki; Gion, Keiko; Utani, Yasushi; Wakai, Taketo; Kodama, Susumu; Eun, Heesoo; Kim, Yun-Seok; Ohkawa, Hideo
2012-01-01
The transgenic tobacco plant XD4V-26 carrying the recombinant mouse aryl hydrocarbon receptor XD4V-mediated β-glucuronidase (GUS) reporter gene expression system was used for assay of dioxins and dioxin-like compounds consisting of polychlorinated dibenzeno-p-dioxins, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls (Co-PCBs) in actually contaminated soils. The transgenic tobacco plant XD4V-26 showed a significant dose-dependent induced GUS activity when cultured on MS medium containing PCB126 [toxic equivalency factor (TEF) = 0.1]. In contrast, PCB169 and PCB180, which have 0.03 of TEF and unassigned TEF values, respectively, did not significantly induce GUS activity under the same conditions as with PCB126. When the tobacco plants were cultivated for up to 5 weeks on actually contaminated soils with dioxins and dioxin-like compounds collected from the periphery of an incinerator used for disposal of residential and industrial wastes, GUS activity in the leaves was dose-dependently increased. The plants clearly detected 360 pg-TEQ g(-1) of dioxins and dioxin-like compounds in this assay. There was a positive correlation between GUS activity and TEQ value of dioxins and dioxin-like compounds in the plants. This assay does not require any extraction and purification processes for the actually contaminated soil samples.
Inui, Hideyuki; Gion, Keiko; Utani, Yasushi; Wakai, Taketo; Kodama, Susumu; Eun, Heesoo; Kim, Yun-Seok; Ohkawa, Hideo
2012-01-01
The transgenic tobacco plant XD4V-26 carrying the recombinant mouse aryl hydrocarbon receptor XD4V-mediated β-glucuronidase (GUS) reporter gene expression system was used for assay of dioxins and dioxin-like compounds consisting of polychlorodibenzo-p-dioxins, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls (Co-PCBs) in actually contaminated soils. The transgenic tobacco plant XD4V-26 showed a significant dose-dependent induced GUS activity when cultured on MS medium containing PCB126 [toxic equivalency factor (TEF) = 0.1]. In contrast, PCB169 and PCB180, which have 0.03 of TEF and unassigned TEF values, respectively, did not significantly induce GUS activity under the same conditions as with PCB126. When the tobacco plants were cultivated for up to 5 weeks on actually contaminated soils with dioxins and dioxin-like compounds collected from the periphery of an incinerator used for disposal of life and industrial wastes, GUS activity in the leaves was dose-dependently increased. The plants clearly detected 360 pg-TEQ g(-1) of dioxins and dioxin-like compounds in this assay. There was a positive correlation between GUS activity and TEQ value of dioxins and dioxin-like compounds in the plants. This assay does not require any extraction and purification processes for the actually contaminated soil samples.
Cheng, David; Low, Jac Kee; Logge, Warren; Garner, Brett; Karl, Tim
2014-08-01
Patients suffering from Alzheimer's disease (AD) exhibit a decline in cognitive abilities including an inability to recognise familiar faces. Hallmark pathological changes in AD include the aggregation of amyloid-β (Aβ), tau protein hyperphosphorylation as well as pronounced neurodegeneration, neuroinflammation, neurotoxicity and oxidative damage. The non-psychoactive phytocannabinoid cannabidiol (CBD) exerts neuroprotective, anti-oxidant and anti-inflammatory effects and promotes neurogenesis. CBD also reverses Aβ-induced spatial memory deficits in rodents. Thus we determined the therapeutic-like effects of chronic CBD treatment (20 mg/kg, daily intraperitoneal injections for 3 weeks) on the APPswe/PS1∆E9 (APPxPS1) transgenic mouse model for AD in a number of cognitive tests, including the social preference test, the novel object recognition task and the fear conditioning paradigm. We also analysed the impact of CBD on anxiety behaviours in the elevated plus maze. Vehicle-treated APPxPS1 mice demonstrated impairments in social recognition and novel object recognition compared to wild type-like mice. Chronic CBD treatment reversed these cognitive deficits in APPxPS1 mice without affecting anxiety-related behaviours. This is the first study to investigate the effect of chronic CBD treatment on cognition in an AD transgenic mouse model. Our findings suggest that CBD may have therapeutic potential for specific cognitive impairments associated with AD.
A Mouse Model for Human Anal Cancer
Stelzer, Marie K.; Pitot, Henry C.; Liem, Amy; Schweizer, Johannes; Mahoney, Charles; Lambert, Paul F.
2010-01-01
Human anal cancers are associated with high-risk human papillomaviruses (HPVs) that cause other anogenital cancers and head and neck cancers. As with other cancers, HPV16 is the most common high-risk HPV in anal cancers. We describe the generation and characterization of a mouse model for human anal cancer. This model makes use of K14E6 and K14E7 transgenic mice in which the HPV16 E6 and E7 genes are directed in their expression to stratified squamous epithelia. HPV16 E6 and E7 possess oncogenic properties including but not limited to their capacity to inactivate the cellular tumor suppressors p53 and pRb, respectively. Both E6 and E7 were found to be functionally expressed in the anal epithelia of K14E6/K14E7 transgenic mice. To assess the susceptibility of these mice to anal cancer, mice were treated topically with dimethylbenz[a]anthracene (DMBA), a chemical carcinogen that is known to induce squamous cell carcinomas in other sites. Nearly 50% of DMBA-treated HPV16 E6/E7 transgenic mice showed overt signs of tumors; whereas, none of the like treated non-transgenic mice showed tumors. Histopathological analyses confirmed that the HPV16 transgenic mice were increased in their susceptibility to anal cancers and precancerous lesions. Biomarker analyses demonstrated that these mouse anal cancers exhibit properties that are similar to those observed in HPV-positive precursors to human anal cancer. This is the first mouse model for investigating the contributions of viral and cellular factors in anal carcinogenesis, and should provide a platform for assessing new therapeutic modalities for treating and/or preventing this type of cancer. PMID:20947489
Kakitani, Makoto; Oshima, Takeshi; Horikoshi, Kaori; Yoshitome, Tetsuo; Ueda, Akiko; Kajikawa, Miwa; Iba, Yumi; Ozone, Yoshinao; Ijima, Yuki; Yoshino, Tohko; Itoh, Mikiko; Seki, Sachiko; Aoki, Ayako; Ishihara, Toshie; Shionoya, Michiyo; Makino, Utako; Kitada, Rina; Ohguma, Atsuko; Ohta, Takami; Yoshida, Yoshimasa; Kudoh, Hiroe; Hanaoka, Kazunori; Sibuya, Kazunori; Ishida, Isao; Kakeda, Minoru; Yagi, Mikio; Yoneya, Takashi; Tomizuka, Kazuma
2005-01-01
A major challenge of the post-genomic era is the functional characterization of anonymous open reading frames (ORFs) identified by the Human Genome Project. In this context, there is a strong requirement for the development of technologies that enhance our ability to analyze gene functions at the level of the whole organism. Here, we describe a rapid and efficient procedure to generate transgenic chimaeric mice that continuously secrete a foreign protein into the systemic circulation. The transgene units were inserted into the genomic site adjacent to the endogenous immunoglobulin (Ig) κ locus by homologous recombination, using a modified mouse embryonic stem (ES) cell line that exhibits a high frequency of homologous recombination at the Igκ region. The resultant ES clones were injected into embryos derived from a B-cell-deficient host strain, thus producing chimaerism-independent, B-cell-specific transgene expression. This feature of the system eliminates the time-consuming breeding typically implemented in standard transgenic strategies and allows for evaluating the effect of ectopic transgene expression directly in the resulting chimaeric mice. To demonstrate the utility of this system we showed high-level protein expression in the sera and severe phenotypes in human EPO (hEPO) and murine thrombopoietin (mTPO) transgenic chimaeras. PMID:15914664
Soares, V da C; Gubits, R M; Feigelson, P; Costantini, F
1987-01-01
To investigate the tissue-specific and hormonal regulation of the rat alpha 2u globulin gene family, we introduced one cloned member of the gene family into the mouse germ line and studied its expression in the resulting transgenic mice. Alpha 2u globulingene 207 was microinjected on a 7-kilobase DNA fragment, and four transgenic lines were analyzed. The transgene was expressed at very high levels, specifically in the liver and the preputial gland of adult male mice. The expression in male liver was first detected at puberty, and no expression was detected in female transgenic mice. This pattern of expression is similar to the expression of endogenous alpha 2u globulin genes in the rat but differs from the expression of the homologous mouse major urinary protein (MUP) gene family in that MUPs are synthesized in female liver and not in the male preputial gland. We conclude that these differences between rat alpha 2u globulin and mouse MUP gene expression are due to evolutionary differences in cis-acting regulatory elements. The expression of the alpha 2u globulin transgene in the liver was abolished by castration and fully restored after testosterone replacement. The expression could also be induced in the livers of female mice by treatment with either testosterone or dexamethasone, following ovariectomy and adrenalectomy. Therefore, the cis-acting elements responsible for regulation by these two hormones, as well as those responsible for tissue-specific expression, are closely linked to the alpha 2u globulin gene. Images PMID:2446121
Taharaguchi, Satoshi; Yoshida, Kazuhiko; Tomioka, Yukiko; Yoshino, Saori; Uede, Toshimitsu; Ono, Etsuro
2005-05-01
Pseudorabies virus (PRV), a representative member of the alpha-herpesvirus family, causes nervous symptoms and ocular lesions, such as keratoconjunctivitis and retinal degeneration in piglets. The immediate-early protein IE180 of the PRV is known to be essential, not only in viral gene expression, but also in the cellular gene expression in host cells. The purpose of this study was to examine the effect of IE180 on the development of the mouse eye, by using transgenic technology. Transgenic mice expressing IE180 were generated and their eyes analyzed by histology, immunocytochemistry, and the bromodeoxyuridine cell proliferation assay. A fibrovascular retrolental tissue analogous to persistent hyperplastic primary vitreous (PHPV) in humans was observed in a transgenic mouse line expressing IE180. The gross anatomy of the eye showed white pupils. Analysis of hematoxylin and eosin-stained sections revealed that the retrolental tissue adhered to the neuroretina, the inner nuclear and ganglion cell layers were disorganized, and rosettelike arrangements of dysplastic photoreceptor cells were present. Bromodeoxyuridine-positive cells were detected in the retrolental tissues of postnatal day (P)1, P7, and P14 mice. The retrolental mass in the P7 transgenic mouse was composed of melanocytes and endothelial cells, which were detected by a cocktail of antibodies against endoglin, CD31, and VEGF receptor-2. The observation that the eye disease in transgenic mice is similar to that in PHPV in humans raises the possibility that expression of the immediate-early gene of alpha-herpesviruses may contribute to PHPV.
Generation of transgenic mouse model using PTTG as an oncogene.
Kakar, Sham S; Kakar, Cohin
2015-01-01
The close physiological similarity between the mouse and human has provided tools to understanding the biological function of particular genes in vivo by introduction or deletion of a gene of interest. Using a mouse as a model has provided a wealth of resources, knowledge, and technology, helping scientists to understand the biological functions, translocation, trafficking, and interaction of a candidate gene with other intracellular molecules, transcriptional regulation, posttranslational modification, and discovery of novel signaling pathways for a particular gene. Most importantly, the generation of the mouse model for a specific human disease has provided a powerful tool to understand the etiology of a disease and discovery of novel therapeutics. This chapter describes in detail the step-by-step generation of the transgenic mouse model, which can be helpful in guiding new investigators in developing successful models. For practical purposes, we will describe the generation of a mouse model using pituitary tumor transforming gene (PTTG) as the candidate gene of interest.
Cardiac phenotype induced by a dysfunctional α1C transgene
Lao, Qi Zong; Ravindran, Arippa; Herbert, Ron; Canuto, Holly C
2011-01-01
Based on stable integration of recombinant DNA into a host genome, transgenic technology has become an important genetic engineering methodology. An organism whose genetic characteristics have been altered by the insertion of foreign DNA is supposed to exhibit a new phenotype associated with the function of the transgene. However, successful insertion may not be sufficient to achieve specific modification of function. In this study we describe a strain of transgenic mouse, G7-882, generated by incorporation into the mouse genome of human Cav1.2 α1C cDNA deprived of 3′-UTR to exclude transcription. We found that, in response to chronic infusion of isoproterenol, G7-882 develops dilated cardiomyopathy, a misleading “transgenic artifact” compatible with the expected function of the incorporated “correct” transgene. Specifically, using magnetic resonance imaging (MRI), we found that chronic β-adrenergic stimulation of G7-882 mice caused left ventricular hypertrophy and aggravated development of dilated cardiomyopathy, although no significant changes in the kinetics, density and voltage dependence of the calcium current were observed in G7-882 cardiomyocytes as compared to cells from wild type mice. This result illustrates the possibility that even when a functional transgene is expressed, an observed change in phenotype may be due to the artifact of “incidental incorporation” leading to misleading conclusions. To exclude this possibility and thus provide a robust tool for exploring biological function, the new transgenic phenotype must be replicated in several independently generated transgenic strains. PMID:21224729
Nunes, Marielza Andrade; Schöwe, Natalia Mendes; Monteiro-Silva, Karla Cristina; Baraldi-Tornisielo, Ticiana; Souza, Suzzanna Ingryd Gonçalves; Balthazar, Janaina; Albuquerque, Marilia Silva; Caetano, Ariadiny Lima; Viel, Tania Araujo; Buck, Hudson Sousa
2015-01-01
The use of lithium is well established in bipolar disorders and the benefits are being demonstrated in neurodegenerative disorders. Recently, our group showed that treatment with microdose lithium stabilized the cognitive deficits observed in Alzheimer's disease (AD) patients. In order to verify the lithium microdose potential in preventing the disease development, the aim of this work was to verify the effects of chronic treatment with microdose lithium given before and after the appearance of symptoms in a mouse model of a disease similar to AD. Transgenic mice (Cg-Tg(PDGFB-APPSwInd)20Lms/2J) and their non-transgenic litter mate genetic controls were treated with lithium carbonate (0.25mg/Kg/day in drinking water) for 16 or 8 months starting at two and ten months of age, respectively [corrected]. Similar groups were treated with water. At the end of treatments, both lithium treated transgenic groups and non-transgenic mice showed no memory disruption, different from what was observed in the water treated transgenic group. Transgenic mice treated with lithium since two months of age showed decreased number of senile plaques, no neuronal loss in cortex and hippocampus and increased BDNF density in cortex, when compared to non-treated transgenic mice. It is suitable to conclude that these data support the use of microdose lithium in the prevention and treatment of Alzheimer's disease, once the neurohistopathological characteristics of the disease were modified and the memory of transgenic animals was maintained.
Monteiro-Silva, Karla Cristina; Baraldi-Tornisielo, Ticiana; Souza, Suzzanna Ingryd Gonçalves; Balthazar, Janaina; Albuquerque, Marilia Silva; Caetano, Ariadiny Lima; Viel, Tania Araujo; Buck, Hudson Sousa
2015-01-01
The use of lithium is well established in bipolar disorders and the benefits are being demonstrated in neurodegenerative disorders. Recently, our group showed that treatment with microdose lithium stabilized the cognitive deficits observed in Alzheimer’s disease (AD) patients. In order to verify the lithium microdose potential in preventing the disease development, the aim of this work was to verify the effects of chronic treatment with microdose lithium given before and after the appearance of symptoms in a mouse model of a disease similar to AD. Transgenic mice (Cg-Tg(PDGFB-APPSwInd)20Lms/2J) and their non-transgenic litter mate genetic controls were treated with lithium carbonate (1.2 mg/Kg/day in drinking water) for 16 or 8 months starting at two and ten months of age, respectively. Similar groups were treated with water. At the end of treatments, both lithium treated transgenic groups and non-transgenic mice showed no memory disruption, different from what was observed in the water treated transgenic group. Transgenic mice treated with lithium since two months of age showed decreased number of senile plaques, no neuronal loss in cortex and hippocampus and increased BDNF density in cortex, when compared to non-treated transgenic mice. It is suitable to conclude that these data support the use of microdose lithium in the prevention and treatment of Alzheimer’s disease, once the neurohistopathological characteristics of the disease were modified and the memory of transgenic animals was maintained. PMID:26605788
Putative signaling action of amelogenin utilizes the Wnt/beta-catenin pathway.
Matsuzawa, M; Sheu, T-J; Lee, Y-J; Chen, M; Li, T-F; Huang, C T; Holz, J D; Puzas, J E
2009-06-01
While it has long been known that amelogenin is essential for the proper development of enamel, its role has generally been seen as structural in nature. However, our new data implicate this protein in the regulation of cell signaling pathways in periodontal ligament cells and osteoblasts. In this article we report the successful purification of a recombinant mouse amelogenin protein and demonstrate that it has signaling activity in isolated mouse calvarial cells and human periodontal ligament cells. To determine the regulatory function of canonical Wnt signaling by amelogenin, we used TOPGAL transgenic mice. These mice express a beta-galactosidase transgene under the control of a LEF/TCF and beta-catenin-inducible promoter. To investigate in greater detail the molecular mechanisms involved in the beta-catenin signaling pathway, isolated osteoblasts and periodontal ligament cells were exposed to full-length recombinant mouse amelogenin and were evaluated for phenotypic changes and beta-catenin signaling using a TOPFLASH construct and the LacZ reporter gene. In these in vitro models, we showed that amelogenin can activate beta-catenin signaling. Using the TOPGAL transgenic mouse we showed that amelogenin expression in vivo is localized mainly around the root, the periodontal ligament and the alveolar bone.
Wong, Dickson W L; Yiu, Wai Han; Chan, Kam Wa; Li, Ye; Li, Bin; Lok, Sarah W Y; Taketo, Makoto M; Igarashi, Peter; Chan, Loretta Y Y; Leung, Joseph C K; Lai, Kar Neng; Tang, Sydney C W
2018-06-01
Imbalance of Wnt/β-catenin signaling in renal cells is associated with renal dysfunction, yet the precise mechanism is poorly understood. Previously we observed activated Wnt/β-catenin signaling in renal tubules during proteinuric nephropathy with an unknown net effect. Therefore, to identify the definitive role of tubular Wnt/β-catenin, we generated a novel transgenic "Tubcat" mouse conditionally expressing stabilized β-catenin specifically in renal tubules following tamoxifen administration. Four weeks after tamoxifen injection, uninephrectomized Tubcat mice displayed proteinuria and elevated blood urea nitrogen levels compared to non-transgenic mice, implying a detrimental effect of the activated signaling. This was associated with infiltration of the tubulointerstitium predominantly by M1 macrophages and overexpression of the inflammatory chemocytokines CCL-2 and RANTES. Induction of overload proteinuria by intraperitoneal injection of low-endotoxin bovine serum albumin following uninephrectomy for four weeks aggravated proteinuria and increased blood urea nitrogen levels to a significantly greater extent in Tubcat mice. Renal dysfunction correlated with the degree of M1 macrophage infiltration in the tubulointerstitium and renal cortical up-regulation of CCL-2, IL-17A, IL-1β, CXCL1, and ICAM-1. There was overexpression of cortical TLR-4 and NLRP-3 in Tubcat mice, independent of bovine serum albumin injection. Finally, there was no fibrosis, activation of epithelial-mesenchymal transition or non-canonical Wnt pathways observed in the kidneys of Tubcat mice. Thus, conditional activation of renal tubular Wnt/β-catenin signaling in a novel transgenic mouse model demonstrates that this pathway enhances intrarenal inflammation via the TLR-4/NLRP-3 inflammasome axis in overload proteinuria. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hesselbarth, Nico; Pettinelli, Chiara; Gericke, Martin
Tamoxifen is a selective estrogen receptor (ER) modulator which is widely used to generate inducible conditional transgenic mouse models. Activation of ER signaling plays an important role in the regulation of adipose tissue (AT) metabolism. We therefore tested the hypothesis that tamoxifen administration causes changes in AT biology in vivo. 12 weeks old male C57BL/6NTac mice were treated with either tamoxifen (n = 18) or vehicle (n = 18) for 5 consecutive days. Tamoxifen treatment effects on body composition, energy homeostasis, parameters of AT biology, glucose and lipid metabolism were investigated up to an age of 18 weeks. We found that tamoxifen treatment causes: I)more » significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations (p < 0.01), II) browning of subcutaneous AT and increased UCP-1 expression, III) increased AT proliferation marker Ki67 mRNA expression, IV) changes in adipocyte size distribution, and V) transient body composition changes. Tamoxifen may induce changes in body composition, whole body glucose and lipid metabolism and has significant effects on AT biology, which need to be considered when using Tamoxifen as a tool to induce conditional transgenic mouse models. Our data further suggest that tamoxifen-treated wildtype mice should be characterized in parallel to experimental transgenic models to control for tamoxifen administration effects. - Highlights: • Tamoxifen treatment causes significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations. • Tamoxifen induces browning of subcutaneous AT and increased UCP-1 expression. • Tamoxifen changes adipocyte size distribution, and transient body composition.« less
Cebrian-Serrano, Alberto; Zha, Shijun; Hanssen, Lars; Biggs, Daniel; Preece, Christopher
2017-01-01
Genome manipulation in the mouse via microinjection of CRISPR/Cas9 site-specific nucleases has allowed the production time for genetically modified mouse models to be significantly reduced. Successful genome manipulation in the mouse has already been reported using Cas9 supplied by microinjection of a DNA construct, in vitro transcribed mRNA and recombinant protein. Recently the use of transgenic strains of mice overexpressing Cas9 has been shown to facilitate site-specific mutagenesis via maternal supply to zygotes and this route may provide an alternative to exogenous supply. We have investigated the feasibility of supplying Cas9 genetically in more detail and for this purpose we report the generation of a transgenic mice which overexpress Cas9 ubiquitously, via a CAG-Cas9 transgene targeted to the Gt(ROSA26)Sor locus. We show that zygotes prepared from female mice harbouring this transgene are sufficiently loaded with maternally contributed Cas9 for efficient production of embryos and mice harbouring indel, genomic deletion and knock-in alleles by microinjection of guide RNAs and templates alone. We compare the mutagenesis rates and efficacy of mutagenesis using this genetic supply with exogenous Cas9 supply by either mRNA or protein microinjection. In general, we report increased generation rates of knock-in alleles and show that the levels of mutagenesis at certain genome target sites are significantly higher and more consistent when Cas9 is supplied genetically relative to exogenous supply. PMID:28081254
Plumb, Darren; Vo, Phoung; Shah, Mittal; Staines, Katherine; Sampson, Alexandra; Shefelbine, Sandra; Pitsillides, Andrew A.; Bou-Gharios, George
2016-01-01
Bone development and length relies on the growth plate formation, which is dependent on degradative enzymes such as MMPs. Indeed, deletion of specific members of this enzyme family in mice results in important joint and bone abnormalities, suggesting a role in skeletal development. As such, the control of MMP activity is vital in the complex process of bone formation and growth. We generated a transgenic mouse line to overexpress TIMP3 in mouse chondrocytes using the Col2a1-chondrocyte promoter. This overexpression in cartilage resulted in a transient shortening of growth plate in homozygote mice but bone length was restored at eight weeks of age. However, tibial bone structure and mechanical properties remained compromised. Despite no transgene expression in adult osteoblasts from transgenic mice in vitro, their differentiation capacity was decreased. Neonates, however, did show transgene expression in a subset of bone cells. Our data demonstrate for the first time that transgene function persists in the chondro-osseous lineage continuum and exert influence upon bone quantity and quality. PMID:28002442
Chumarina, Margarita; Azevedo, Carla; Bigarreau, Julie; Vignon, Clémentine; Kim, Kwang-Soo; Li, Jia-Yi; Roybon, Laurent
2017-03-01
Mouse embryonic stem cell (mESC) lines were derived by crossing heterozygous transgenic (tg) mice expressing green fluorescent protein (GFP) under the control of the rat tyrosine hydroxylase (TH) promoter, with homozygous alpha-synuclein (aSYN) mice expressing human mutant SNCA A53T under the control of the mouse Prion promoter (MoPrP), or wildtype (WT) mice. The expression of GFP and human aSYN was validated by immunocytochemistry in midbrain neuron cultures upon differentiation of mESC lines using stromal cell-derived inducing activity. These mESC lines can help to study the impact of human aSYN expression in neurons and oligodendrocytes, and also trace GFP-expressing midbrain neurons. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Chu, Van Trung; Graf, Robin; Wirtz, Tristan; Weber, Timm; Favret, Jeremy; Li, Xun; Petsch, Kerstin; Tran, Ngoc Tung; Sieweke, Michael H; Berek, Claudia; Kühn, Ralf; Rajewsky, Klaus
2016-11-01
Applying clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9)-mediated mutagenesis to primary mouse immune cells, we used high-fidelity single guide RNAs (sgRNAs) designed with an sgRNA design tool (CrispRGold) to target genes in primary B cells, T cells, and macrophages isolated from a Cas9 transgenic mouse line. Using this system, we achieved an average knockout efficiency of 80% in B cells. On this basis, we established a robust small-scale CRISPR-mediated screen in these cells and identified genes essential for B-cell activation and plasma cell differentiation. This screening system does not require deep sequencing and may serve as a precedent for the application of CRISPR/Cas9 to primary mouse cells.
Methods in Molecular Biology Mouse Genetics: Methods and Protocols | Center for Cancer Research
Mouse Genetics: Methods and Protocols provides selected mouse genetic techniques and their application in modeling varieties of human diseases. The chapters are mainly focused on the generation of different transgenic mice to accomplish the manipulation of genes of interest, tracing cell lineages, and modeling human diseases.
We have previously shown that the conazole fungicides triadimefon and propiconazole, which are tumorigenic in mouse liver, are in vivo mouse liver mutagens in the Big Blue" transgenic mutation assay when administered in feed at tumorigenic doses. The nontumorigenic conazole myclo...
We have previously shown that the conazole fungicides triadimefon and propiconazole, which are tumorigenic in mouse liver, are in vivo mouse liver mutagens in the Big Blue" transgenic mutation assay when administered in feed at tumorigenic doses. The nontumorigenic conazole myclo...
Establishment and culture optimization of a new type of pituitary immortalized cell line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kokubu, Yuko; Asashima, Makoto; Life Science Center of TARA, The University of Tsukuba, Ibaraki-ken 305-8577
The pituitary gland is a center of the endocrine system that controls homeostasis in an organism by secreting various hormones. The glandular anterior pituitary consists of five different cell types, each expressing specific hormones. However, their regulation and the appropriate conditions for their in vitro culture are not well defined. Here, we report the immortalization of mouse pituitary cells by introducing TERT, E6, and E7 transgenes. The immortalized cell lines mainly expressed a thyrotroph-specific thyroid stimulating hormone beta (Tshb). After optimization of the culture conditions, these immortalized cells proliferated and maintained morphological characteristics similar to those of primary pituitary cells undermore » sphere culture conditions in DMEM/F12 medium supplemented with N2, B27, basic FGF, and EGF. These cell lines responded to PKA or PKC pathway activators and induced the expression of Tshb mRNA. Moreover, transplantation of the immortalized cell line into subcutaneous regions and kidney capsules of mice further increased Tshb expression. These results suggest that immortalization of pituitary cells with TERT, E6, and E7 transgenes is a useful method for generating proliferating cells for the in vitro analysis of pituitary regulatory mechanisms. - Highlights: • Mouse pituitary cell lines were immortalized by introducing TERT, E6, and E7. • The immortalized cell lines mainly expressed thyroid stimulating hormone beta. • The cell lines responded to PKA or PKC pathway activators, and induced Tshb.« less
Nuglozeh, Edem
2017-07-01
Connective Tissue Growth Factor (CTGF/CCN2) is one of the six members of cysteine-rich, heparin-binding proteins, secreted as modular protein and recognised to play a major function in cell processes such as adhesion, migration, proliferation and differentiation as well as chondrogenesis, skeletogenesis, angiogenesis and wound healing. The capacity of CTGF to interact with different growth factors lends an important role during early and late development, especially in the anterior region of the embryo. CTGF Knockout (KO) mice have several craniofacial defects and bone miss shaped due to an impairment of the vascular system development during chondrogenesis. The aim of the study was to establish an association between multiple modular functions of CTGF and the phenotype and cardiovascular functions in transgenic mouse. Bicistronic cassette was constructed using pIRES expressing vector (Clontech, Palo Alto, CA). The construct harbours mouse cDNA in tandem with LacZ cDNA as a reporter gene under the control of Cytomegalovirus (CMV) promoter. The plasmid was linearised with NotI restriction enzyme, and 50 ng of linearised plasmid was injected into mouse pronucleus for the chimaera production. Immunohistochemical methods were used to assess the colocalisation renin and CTGF as well as morphology and rheology of the cardiovascular system. The chimeric mice were backcrossed against the wild-type C57BL/6 to generate hemizygous (F1) mouse. Most of the offsprings died as a result of respiratory distress and those that survived have low CTGF gene copy number, approximately 40 molecules per mouse genome. The copy number assessment on the dead pups showed 5×10 3 molecules per mouse genome explaining the threshold of the gene in terms of toxicity. Interestingly, the result of this cross showed 85% of the progenies to be positive deviating from Mendelian first law. All F2 progenies died excluding the possibility of establishing the CTGF transgenic mouse line, situation that compelled us to work at the level of hemizygosity. The histological characterisation of left ventricle shows cardiac hypertrophy together with decrease in body mass and alopecia, this compared to the wild type. The immunohistochemical staining of aorta root showed hyperplasia with increased expression and colocalisation of renin and CTGF demonstrating that CTGF may be involved in vascular tone control. Genetic engineering is a noble avenue to investigate the function of new or existing genes. Our data have shown that CTGF transgenic mouse has cardiac and aorta root hypertrophy and abnormal renin accumulation in aorta root as compared to the wild-type animals. The transgenic animals developed alopecia and lean body mass adding two new functions on pre-existing CTGF multiple functions.
Overexpression of mutant HSP27 causes axonal neuropathy in mice.
Lee, Jinho; Jung, Sung-Chul; Joo, Jaesoon; Choi, Yu-Ri; Moon, Hyo Won; Kwak, Geon; Yeo, Ha Kyung; Lee, Ji-Su; Ahn, Hye-Jee; Jung, Namhee; Hwang, Sunhee; Rheey, Jingeun; Woo, So-Youn; Kim, Ji Yon; Hong, Young Bin; Choi, Byung-Ok
2015-06-19
Mutations in heat shock 27 kDa protein 1 (HSP27 or HSPB1) cause distal hereditary motor neuropathy (dHMN) or Charcot-Marie-Tooth disease type 2 F (CMT2F) according to unknown factors. Mutant HSP27 proteins affect axonal transport by reducing acetylated tubulin. We generated a transgenic mouse model overexpressing HSP27-S135F mutant protein driven by Cytomegalovirus (CMV) immediate early promoter. The mouse phenotype was similar to dHMN patients in that they exhibit motor neuropathy. To determine the phenotypic aberration of transgenic mice, behavior test, magnetic resonance imaging (MRI), electrophysiological study, and pathology were performed. Rotarod test showed that founder mice exhibited lowered motor performance. MRI also revealed marked fatty infiltration in the anterior and posterior compartments at calf level. Electrophysiologically, compound muscle action potential (CMAP) but not motor nerve conduction velocity (MNCV) was reduced in the transgenic mice. Toluidine staining with semi-thin section of sciatic nerve showed the ratio of large myelinated axon fiber was reduced, which might cause reduced locomotion in the transgenic mice. Electron microscopy also revealed abundant aberrant myelination. Immunohistochemically, neuronal dysfunctions included elevated level of phosphorylated neurofilament and reduced level of acetylated tubulin in the sural nerve of transgenic mice. There was no additional phenotype besides motor neuronal defects. Overexpression of HSP27-S135F protein causes peripheral neuropathy. The mouse model can be applied to future development of therapeutic strategies for dHMN or CMT2F.
Lin, Xiaolin; Zhao, Wentao; Jia, Junshuang; Lin, Taoyan; Xiao, Gaofang; Wang, Shengchun; Lin, Xia; Liu, Yu; Chen, Li; Qin, Yujuan; Li, Jing; Zhang, Tingting; Hao, Weichao; Chen, Bangzhu; Xie, Raoying; Cheng, Yushuang; Xu, Kang; Yao, Kaitai; Huang, Wenhua; Xiao, Dong; Sun, Yan
2016-01-01
Targeted disruption of Cripto-1 in mice caused embryonic lethality at E7.5, whereas we unexpectedly found that ectopic Cripto-1 expression in mouse embryos also led to embryonic lethality, which prompted us to characterize the causes and mechanisms underlying embryonic death due to ectopic Cripto-1 expression. RCLG/EIIa-Cre embryos displayed complex phenotypes between embryonic day 14.5 (E14.5) and E17.5, including fatal hemorrhages (E14.5-E15.5), embryo resorption (E14.5-E17.5), pale body surface (E14.5-E16.5) and no abnormal appearance (E14.5-E16.5). Macroscopic and histological examination revealed that ectopic expression of Cripto-1 transgene in RCLG/EIIa-Cre embryos resulted in lethal cardiac defects, as evidenced by cardiac malformations, myocardial thinning, failed assembly of striated myofibrils and lack of heartbeat. In addition, Cripto-1 transgene activation beginning after E8.5 also caused the aforementioned lethal cardiac defects in mouse embryos. Furthermore, ectopic Cripto-1 expression in embryonic hearts reduced the expression of cardiac transcription factors, which is at least partially responsible for the aforementioned lethal cardiac defects. Our results suggest that hemorrhages and cardiac abnormalities are two important lethal factors in Cripto-1 transgenic mice. Taken together, these findings are the first to demonstrate that sustained Cripto-1 transgene expression after E11.5 causes fatal hemorrhages and lethal cardiac defects, leading to embryonic death at E14.5-17.5. PMID:27687577
Espinosa, J. C.; Nonno, R.; Di Bari, M.; Aguilar-Calvo, P.; Pirisinu, L.; Fernández-Borges, N.; Vanni, I.; Vaccari, G.; Marín-Moreno, A.; Frassanito, P.; Lorenzo, P.; Agrimi, U.
2016-01-01
ABSTRACT Bank vole is a rodent species that shows differential susceptibility to the experimental transmission of different prion strains. In this work, the transmission features of a panel of diverse prions with distinct origins were assayed both in bank vole expressing methionine at codon 109 (Bv109M) and in transgenic mice expressing physiological levels of bank vole PrPC (the BvPrP-Tg407 mouse line). This work is the first systematic comparison of the transmission features of a collection of prion isolates, representing a panel of diverse prion strains, in a transgenic-mouse model and in its natural counterpart. The results showed very similar transmission properties in both the natural species and the transgenic-mouse model, demonstrating the key role of the PrP amino acid sequence in prion transmission susceptibility. However, differences in the PrPSc types propagated by Bv109M and BvPrP-Tg407 suggest that host factors other than PrPC modulate prion strain features. IMPORTANCE The differential susceptibility of bank voles to prion strains can be modeled in transgenic mice, suggesting that this selective susceptibility is controlled by the vole PrP sequence alone rather than by other species-specific factors. Differences in the phenotypes observed after prion transmissions in bank voles and in the transgenic mice suggest that host factors other than the PrPC sequence may affect the selection of the substrain replicating in the animal model. PMID:27654300
The dynamics of long-term transgene expression in engrafted neural stem cells.
Lee, Jean-Pyo; Tsai, David J; In Park, Kook; Harvey, Alan R; Snyder, Evan Y
2009-07-01
To assess the dynamics and confounding variables that influence transgene expression in neural stem cells (NSCs), we generated distinct NSC clones from the same pool of cells, carrying the same reporter gene transcribed from the same promoter, transduced by the same retroviral vector, and transplanted similarly at the same differentiation state, at the same time and location, into the brains of newborn mouse littermates, and monitored in parallel for over a year in vivo (without immunosuppression). Therefore, the sole variables were transgene chromosomal insertion site and copy number. We then adapted and optimized a technique that tests, at the single cell level, persistence of stem cell-mediated transgene expression in vivo based on correlating the presence of the transgene in a given NSC's nucleus (by fluorescence in situ hybridization [FISH]) with the frequency of that transgene's product within the same cell (by combined immunohistochemistry [IHC]). Under the above-stated conditions, insertion site is likely the most contributory variable dictating transgene downregulation in an NSC after 3 months in vivo. We also observed that this obstacle could be effectively and safely counteracted by simple serial infections (as few as three) inserting redundant copies of the transgene into the prospective donor NSC. (The preservation of normal growth control mechanisms and an absence of tumorigenic potential can be readily screened and ensured ex vivo prior to transplantation.) The combined FISH/IHC strategy employed here for monitoring the dynamics of transgene expression at the single cell level in vivo may be used for other types of therapeutic and housekeeping genes in endogenous and exogenous stem cells of many organs and lineages. Copyright 2009 Wiley-Liss, Inc.
Rapamycin inhibits anal carcinogenesis in two preclinical animal models.
Stelzer, Marie K; Pitot, Henry C; Liem, Amy; Lee, Denis; Kennedy, Gregory D; Lambert, Paul F
2010-12-01
The incidence of anal cancer is increasing especially among HIV-infected persons in the HAART era. Treatment of this cancer is based upon traditional chemoradiotherapeutic approaches, which are associated with high morbidity and of limited effectiveness for patients with high-grade disease. The mammalian target of rapamycin (mTOR) pathway has been implicated in several human cancers, and is being investigated as a potential therapeutic target. In archival human anal cancers, we observed mTOR pathway activation. To assess response of anal cancer to mTOR inhibition, we utilized two newly developed mouse models, one in which anal cancers are induced to arise in HPV16 transgenic mice and the second a human anal cancer xenograft model. Using the transgenic mouse model, we assessed the preventative effect of rapamycin on neoplastic disease. We saw significant changes in the overall incidence of tumors, and tumor growth rate was also reduced. Using both the transgenic mouse and human anal xenograft mouse models, we studied the therapeutic effect of rapamycin on preexisting anal cancer. Rapamycin was found to significantly slow, if not stop, the growth of both mouse and human anal cancers. As has been seen in other cancers, rapamycin treatment led to an activation of the MAPK pathway. These results provide us cause to pursue further the evaluation of rapamycin as a therapeutic agent in the control of anal cancer. ©2010 AACR.
Ford, Dayton J; Ropka, Stacie L; Collins, George H; Jubelt, Burk
2002-09-01
Human paralytic poliomyelitis results from the destruction of spinal cord anterior horn motor neurons by human poliovirus (PV). CNS disease pathology similar to human poliomyelitis has been observed in experimentally infected chimpanzees, monkeys and wild-type mice. In this study we present a detailed examination of the clinical and histopathological features in the wild-type mouse after intracranial (i.c.) and novel intramuscular (i.m.) injection of poliovirus. Either route of poliovirus administration results in a clinical disease characterized predominately by flaccid paralysis. The observed histopathological features are compared with the histopathology reported for human paralytic poliomyelitis, experimentally infected chimpanzees, monkeys and transgenic mice expressing the human poliovirus receptor (hPVR). The observation of flaccid paralysis and anterior horn motor neuron destruction mirrors what is observed in human paralytic poliomyelitis. Our results suggest that the neuropathology observed in the wild-type mouse model is similar to what has been observed in both the human disease and in other experimental animal models, with the possible exception of the transgenic mouse model. The observed neuropathology of the wild-type mouse model more closely reflects what has been observed in human poliomyelitis, as well as in experimentally infected chimpanzees and monkeys, than does the hPVR transgenic mouse model. The previously reported poliovirus-induced white matter demyelinating disease was not observed.
Jeantet, Yannick; Cayzac, Sebastien; Cho, Yoon H
2013-01-01
To search for early abnormalities in electroencephalogram (EEG) during sleep which may precede motor symptoms in a transgenic mouse model of hereditary neurodegenerative Huntington's disease (HD). In the R6/1 transgenic mouse model of HD, rhythmic brain activity in EEG recordings was monitored longitudinally and across vigilance states through the onset and progression of disease. Mice with chronic electrode implants were recorded monthly over wake-sleep cycles (4 hours), beginning at 9-11 weeks (presymptomatic period) through 6-7 months (symptomatic period). Recording data revealed a unique β rhythm (20-35 Hz), present only in R6/1 transgenic mice, which evolves in close parallel with the disease. In addition, there was an unusual relationship between this β oscillation and vigilance states: while nearly absent during the active waking state, the β oscillation appeared with drowsiness and during slow wave sleep (SWS) and, interestingly, strengthened rather than dissipating when the brain returned to an activated state during rapid eye movement (REM) sleep. In addition to providing a new in vivo biomarker and insight into Huntington's disease pathophysiology, this serendipitous observation opens a window onto the rarely explored neurophysiology of the cortico-basal ganglia circuit during SWS and REM sleep.
The Mice Drawer System Tissue Sharing Program (MDS-TSP)
NASA Astrophysics Data System (ADS)
Biticchi, Roberta; Cancedda, Ranieri; Cilli, Michele; Cotronei, Vittorio; Costa, Delfina; Liu, Yi; Piccardi, Federica; Pignataro, Salvatore; Ruggiu, Alessandra; Tasso, Roberta; Tavella, Sara
Several organs and apparatus are affected by weightless conditions and in particular by the weightless experienced during space flights. Therefore space missions are good opportunities to investigate in a whole organism the controlling cellular and molecular mechanisms. For this type of studies mice represent an excellent animal model for several reasons: reduced body size, relatively short time needed to reach adulthood, availability of strains with different genetic background and of different transgenic lines, etc. In line with the International Space Station (ISS) development, the Italian Space Agency (ASI) contracted Thales Alenia Space Italia, the largest Italian aerospace industry, to design and build a spaceflight payload for rodent research on ISS, the Mouse Drawer System (MDS -see abstract P. Cipparelli et al.). This payload meets NIH guideline for several physical parameters to maintain 6 animals in good health conditions in a space environment. Given the interest of our laboratory in the microgravity induced skeleton alterations, we focused our attention on transgenic mice over-expressing pleiotrophin (PTN) under the control of the human bone specific osteocalcin promoter. This protein is a heparin-binding cytokine with different functions. PTN is expressed by the cells in an early differentiation stage and is upregulated in tissue injury and wound repair. PTN is specifically involved in bone formation, neurite outgrowth and angiogenesis. As PTN-transgenic mice show an increased bone mass and mineralization, we decided to use this mouse model in the flight experiment and to study its potential role in counteracting bone loss in microgravity. Not all mouse strains are equally suitable for flight. After preliminary tests in the MDS breadboard at our animal facility on the behavior of different mouse strains, PTN-transgenic mice originally obtained in the BDF strain were backcrossed in the C57Bl/J10 strain before being used in this study. In order to obtain from the animals sent to the ISS as much as possible information including also microgravity induced modifications of tissues other than bone, we associated to the MDS experiment several international group from Italian, American, Japanese Universities and from NASA and JAXA labs and we created a Tissue Sharing Program (TSP). In total 17 groups from 6 countries were involved in the program. The MDS payload containing three PTN-transgenic mice (Tg) and three wild type (Wt) mice was launched with the Shuttle STS-128, on August, 28 2009 and the MDS transferred to the ISS for three months. The payload re-entry was with the Shuttle STS-129 on November, 27 2009 in Florida. Unfortunately during this period 3 mice (two Wt and one Tg) died due to a spinal cord lesion probably occurred during the shuttle lift off, a liver pathology and a failure of the food delivery system respectively. All the three dead mice were however frozen for subsequent skeletal analysis. The remaining 3 mice had a normal behavior during the flight and appeared in excellent health conditions at the time of landing. During the MDS stay at the ISS several physical parameters were under daily check. With regard to the animal health status checking, the daily water consumption for each individual mouse revealed to be one of the most important parameter. Immediately after landing the mice were sacrificed, blood parameter were measured and all different tissues were dissected. Samples from almost the entire organism are now under investigation by the TSP team. A ground replica of the flight experiment ("ground control") was performed at the University of Genova from November 2009 to the second week of February 2010. Some of the initial results from the flight and the ground control experiments are presented in the individual abstracts.
Zhou, Wenbo; Milder, Julie B; Freed, Curt R
2008-04-11
Abnormal aggregation of human alpha-synuclein in Lewy bodies and Lewy neurites is a pathological hallmark of Parkinson disease and dementia with Lewy bodies. Studies have shown that oxidation and nitration of alpha-synuclein lead to the formation of stable dimers and oligomers through dityrosine cross-linking. Previously we have reported that tyrosine-to-cysteine mutations, particularly at the tyrosine 39 residue (Y39C), significantly enhanced alpha-synuclein fibril formation and neurotoxicity. In the current study, we have generated transgenic mice expressing the Y39C mutant human alpha-synuclein gene controlled by the mouse Thy1 promoter. Mutant human alpha-synuclein was widely expressed in transgenic mouse brain, resulting in 150% overexpression relative to endogenous mouse alpha-synuclein. At age 9-12 months, transgenic mice began to display motor dysfunction in rotarod testing. Older animals aged 15-18 months showed progressive accumulation of human alpha-synuclein oligomers, associated with worse motor function and cognitive impairment in the Morris water maze. By age 21-24 months, alpha-synuclein aggregates were further increased, accompanied by severe behavioral deficits. At this age, transgenic mice developed neuropathology, such as Lewy body-like alpha-synuclein and ubiquitin-positive inclusions, phosphorylation at Ser(129) of human alpha-synuclein, and increased apoptotic cell death. In summary, Y39C human alpha-synuclein transgenic mice show age-dependent, progressive neuronal degeneration with motor and cognitive deficits similar to diffuse Lewy body disease. The time course of alpha-synuclein oligomer accumulation coincided with behavioral and pathological changes, indicating that these oligomers may initiate protein aggregation, disrupt cellular function, and eventually lead to neuronal death.
Graumann, Franziska; Churin, Yuri; Tschuschner, Annette; Reifenberg, Kurt; Glebe, Dieter; Roderfeld, Martin; Roeb, Elke
2015-01-01
The Hepatitis B virus genome persists in the nucleus of virus infected hepatocytes where it serves as template for viral mRNA synthesis. Epigenetic modifications, including methylation of the CpG islands contribute to the regulation of viral gene expression. The present study investigates the effects of spontaneous age dependent loss of hepatitis B surface protein- (HBs) expression due to HBV-genome specific methylation as well as its proximate positive effects in HBs transgenic mice. Liver and serum of HBs transgenic mice aged 5-33 weeks were analyzed by Western blot, immunohistochemistry, serum analysis, PCR, and qRT-PCR. From the third month of age hepatic loss of HBs was observed in 20% of transgenic mice. The size of HBs-free area and the relative number of animals with these effects increased with age and struck about 55% of animals aged 33 weeks. Loss of HBs-expression was strongly correlated with amelioration of serum parameters ALT and AST. In addition lower HBs-expression went on with decreased ER-stress. The loss of surface protein expression started on transcriptional level and appeared to be regulated epigenetically by DNA methylation. The amount of the HBs-expression correlated negatively with methylation of HBV DNA in the mouse genome. Our data suggest that methylation of specific CpG sites controls gene expression even in HBs-transgenic mice with truncated HBV genome. More important, the loss of HBs expression and intracellular aggregation ameliorated cell stress and liver integrity. Thus, targeted modulation of HBs expression may offer new therapeutic approaches. Furthermore, HBs-transgenic mice depict a non-infectious mouse model to study one possible mechanism of HBs gene silencing by hypermethylation.
Wang, Yan-yan; Chen, Ru-zhui; Zhu, Xiao-nani; Liu, Jing; Li, Zhi-hui; Liu, Xiu-juan; Li, Zhi-hui; Na, Xin; Liang, Shan-shan; Qiu, Guo-guang; Zhang, Wei; Wang, Hai; Wang, Xue-lan
2012-05-01
To establish homozygous transgenic mouse strain expressing human tau isoform with P301L mutation. Five transgenic mice expressing human tau isoform with P301L mutation were obtained by microinjection into male nuclei. Homozygote and hemizygote were identified by PCR and real-time fluorescent quantitative PCR. Ninety five homozygous transgenic mice were selected, and the results indicated that homozygous transgenic mice were superior to hemizygote in simulating the changes of biological characteristics. Exogenous gene tau is able to stably transmit to next generation and the combination of SYBR Green real-time fluorescent quantitative PCR with the traditional mating is a fast, reliable and economical way to screen homozygous and hemizygous transgenic mice.
Larsson, S; Hotchkiss, G; Andäng, M; Nyholm, T; Inzunza, J; Jansson, I; Ahrlund-Richter, L
1994-01-01
We have generated three artificial hammerhead ribozymes, denoted 'Rz-b', 'Rz-c' and 'Rz-d', with different specificities for exon II of the mouse beta-2-microglobulin (beta 2M) mRNA. In this study we tested for ribozyme mediated reduction of beta 2M mRNA in a cell line and in transgenic mice. Transfections of either of the Rz-b, Rz-c or Rz-d plasmids into a mouse cell-line (NIH/3T3) revealed reductions of beta 2M mRNA substrate in each case. Ribozyme expression in individual transfected clones was accompanied with an up to 80% reduction of beta 2M mRNA levels. Rz-c was selected for a transgenic study. Seven Rz-c transgenic founder animals were identified from which three ribozyme expressing families were established and analysed. Expression of the ribozyme transgene was tested for and detected in lung, kidney and spleen. Expression was accompanied with reduction of the beta 2M mRNA levels of heterozygous (Rz+/-) animals compared to non-transgenic litter mates. The effect was most pronounced in lung with more than 90% beta 2M mRNA reduction in individual mice. In summary, expression of our ribozymes in a cell free system, in a cell-line and in transgenic mice were all accompanied with reductions of beta 2M mRNA levels. Images PMID:8036151
Morphological phenotyping of mouse hearts using optical coherence tomography
NASA Astrophysics Data System (ADS)
Cua, Michelle; Lin, Eric; Lee, Ling; Sheng, Xiaoye; Wong, Kevin S. K.; Tibbits, Glen F.; Beg, Mirza Faisal; Sarunic, Marinko V.
2014-11-01
Transgenic mouse models have been instrumental in the elucidation of the molecular mechanisms behind many genetically based cardiovascular diseases such as Marfan syndrome (MFS). However, the characterization of their cardiac morphology has been hampered by the small size of the mouse heart. In this report, we adapted optical coherence tomography (OCT) for imaging fixed adult mouse hearts, and applied tools from computational anatomy to perform morphometric analyses. The hearts were first optically cleared and imaged from multiple perspectives. The acquired volumes were then corrected for refractive distortions, and registered and stitched together to form a single, high-resolution OCT volume of the whole heart. From this volume, various structures such as the valves and myofibril bundles were visualized. The volumetric nature of our dataset also allowed parameters such as wall thickness, ventricular wall masses, and luminal volumes to be extracted. Finally, we applied the entire acquisition and processing pipeline in a preliminary study comparing the cardiac morphology of wild-type mice and a transgenic mouse model of MFS.
9th Transgenic Technology Meeting (TT2010) in Berlin, Germany: a meeting report.
Saunders, Thomas L; Sobieszczuk, Peter
2010-12-01
The first Transgenic Technology (TT) Meeting was organized in 1999 by Johannes Wilbertz, Karolinska Institute, Stockholm, Sweden as a regional meeting. The TT Meetings continued in this way, constantly gathering additional practitioners of transgenic methodologies until the breakthrough in 2005 when the 6th TT Meeting in Barcelona, Spain, hosted by Lluis Montoliu (Centro Nacional de Biotecnologia, Madrid, Spain), generated the momentum to establish the International Society for Transgenic Technologies (ISTT). Since 2006, the ISTT has continued to promote the TT Meetings and provide its membership with a forum to discuss best practices and new methods in the field. The TT2010 Meeting was held at the Max Delbrück Center for Molecular Medicine (Berlin, Germany). Participation at the TT2010 Meeting exceeded the registration capacity and set a new attendance record. Session topics included methods for the generation of rat and mouse models of human disease, fundamental and advanced topics in rodent embryonic stem cells, and the newest transgenic technologies. Short presentations from selected abstracts were of especial interest. Roundtable discussions on transgenic facility establishment and cryoarchiving of mouse lines were favorably received. Students, technical staff, and professors participated in numerous discussions and came away with practical methods and new ideas for research.
Maroulakou, I G; Anver, M; Garrett, L; Green, J E
1994-01-01
A transgenic mouse model for prostate and mammary cancer has been developed in mice containing a recombinant gene expressing the simian virus 40 early-region transforming sequences under the regulatory control of the rat prostatic steroid binding protein [C3(1)] gene. Male transgenic mice develop prostatic hyperplasia in early life that progresses to adenoma or adenocarcinoma in most animals surviving to longer than 7 months of age. Prostate cancer metastases to lung have been observed. Female animals from the same founder lines generally develop mammary hyperplasia by 3 months of age with subsequent development of mammary adenocarcinoma by 6 months of age in 100% of the animals. The development of tumors correlates with the expression of the transgene as determined by Northern blot and immunohistochemical analyses. The results of these experiments demonstrate that the C3(1) regulatory region used in these experiments is useful for targeting expression to the prostate and mammary gland. To our knowledge, this experimental system is the first reported transgenic mouse model for prostate cancer. These transgenic animals offer the opportunity to study hormone response elements in vivo and the multistage progression from normal tissue to carcinoma in the prostate and mammary glands. Images PMID:7972041
Ramalho, José S; Anders, Ross; Jaissle, Gesine B; Seeliger, Mathias W; Huxley, Clare; Seabra, Miguel C
2002-01-01
Background Transgenic mice have proven to be a powerful system to study normal and pathological gene functions. Here we describe an attempt to generate a transgenic mouse model for choroideremia (CHM), a slow-onset X-linked retinal degeneration caused by mutations in the Rab Escort Protein-1 (REP1) gene. REP1 is part of the Rab geranylgeranylation machinery, a modification that is essential for Rab function in membrane traffic. The loss of REP1 in CHM patients may trigger retinal degeneration through its effects on Rab proteins. We have previously reported that Rab27a is the Rab most affected in CHM lymphoblasts and hypothesised that the selective dysfunction of Rab27a (and possibly a few other Rab GTPases) plays an essential role in the retinal degenerative process. Results To investigate this hypothesis, we generated several lines of dominant-negative, constitutively-active and wild-type Rab27a (and Rab27b) transgenic mice whose expression was driven either by the pigment cell-specific tyrosinase promoter or the ubiquitous β-actin promoter. High levels of mRNA and protein were observed in transgenic lines expressing wild-type or constitutively active Rab27a and Rab27b. However, only modest levels of transgenic protein were expressed. Pulse-chase experiments suggest that the dominant-negative proteins, but not the constitutively-active or wild type proteins, are rapidly degraded. Consistently, no significant phenotype was observed in our transgenic lines. Coat-colour was normal, indicating normal Rab27a activity. Retinal function as determined by fundoscopy, angiography, electroretinography and histology was also normal. Conclusions We suggest that the instability of the dominant-negative mutant Rab27 proteins in vivo precludes the use of this approach to generate mouse models of disease caused by Rab27 GTPases. PMID:12401133
Condie, Brian G; Urbanski, William M
2014-01-01
Effective tools for searching the biomedical literature are essential for identifying reagents or mouse strains as well as for effective experimental design and informed interpretation of experimental results. We have built the Textpresso Site Specific Recombinases (Textpresso SSR) Web server to enable researchers who use mice to perform in-depth searches of a rapidly growing and complex part of the mouse literature. Our Textpresso Web server provides an interface for searching the full text of most of the peer-reviewed publications that report the characterization or use of mouse strains that express Cre or Flp recombinase. The database also contains most of the publications that describe the characterization or analysis of strains carrying conditional alleles or transgenes that can be inactivated or activated by site-specific recombinases such as Cre or Flp. Textpresso SSR complements the existing online databases that catalog Cre and Flp expression patterns by providing a unique online interface for the in-depth text mining of the site specific recombinase literature.
A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis
Fransén-Pettersson, Nina; Duarte, Nadia; Nilsson, Julia; Lundholm, Marie; Mayans, Sofia; Larefalk, Åsa; Hannibal, Tine D.; Hansen, Lisbeth; Schmidt-Christensen, Anja; Ivars, Fredrik; Cardell, Susanna; Palmqvist, Richard; Rozell, Björn
2016-01-01
Here we characterize a new animal model that spontaneously develops chronic inflammation and fibrosis in multiple organs, the non-obese diabetic inflammation and fibrosis (N-IF) mouse. In the liver, the N-IF mouse displays inflammation and fibrosis particularly evident around portal tracts and central veins and accompanied with evidence of abnormal intrahepatic bile ducts. The extensive cellular infiltration consists mainly of macrophages, granulocytes, particularly eosinophils, and mast cells. This inflammatory syndrome is mediated by a transgenic population of natural killer T cells (NKT) induced in an immunodeficient NOD genetic background. The disease is transferrable to immunodeficient recipients, while polyclonal T cells from unaffected syngeneic donors can inhibit the disease phenotype. Because of the fibrotic component, early on-set, spontaneous nature and reproducibility, this novel mouse model provides a unique tool to gain further insight into the underlying mechanisms mediating transformation of chronic inflammation into fibrosis and to evaluate intervention protocols for treating conditions of fibrotic disorders. PMID:27441847
Technical approaches for mouse models of human disease.
Justice, Monica J; Siracusa, Linda D; Stewart, A Francis
2011-05-01
The mouse is the leading organism for disease research. A rich resource of genetic variation occurs naturally in inbred and special strains owing to spontaneous mutations. However, one can also obtain desired gene mutations by using the following processes: targeted mutations that eliminate function in the whole organism or in a specific tissue; forward genetic screens using chemicals or transposons; or the introduction of exogenous transgenes as DNAs, bacterial artificial chromosomes (BACs) or reporter constructs. The mouse is the only mammal that provides such a rich resource of genetic diversity coupled with the potential for extensive genome manipulation, and is therefore a powerful application for modeling human disease. This poster review outlines the major genome manipulations available in the mouse that are used to understand human disease: natural variation, reverse genetics, forward genetics, transgenics and transposons. Each of these applications will be essential for understanding the diversity that is being discovered within the human population.
Liu, Wenlong; Dan, Xiuli; Wang, Ting; Lu, William W; Pan, Haobo
2016-11-01
The development of an optimal animal model that could provide fast assessments of the interaction between bone and orthopedic implants is essential for both preclinical and theoretical researches in the design of novel biomaterials. Compared with other animal models, mice have superiority in accessing the well-developed transgenic modification techniques (e.g., cell tracing, knockoff, knockin, and so on), which serve as powerful tools in studying molecular mechanisms. In this study, we introduced the establishment of a mouse model, which was specifically tailored for the assessment of bone-implant interaction in a load-bearing bone marrow microenvironment and could potentially allow the molecular mechanism study of biomaterials by using transgenic technologies. The detailed microsurgery procedures for developing a bone defect (Φ = 0.8 mm) at the metaphysis region of the mouse femur were recorded. According to our results, the osteoconductive and osseointegrative properties of a well-studied 45S5 bioactive glass were confirmed by utilizing our mouse model, verifying the reliability of this model. The feasibility and reliability of the present model were further checked by using other materials as objects of study. Furthermore, our results indicated that this animal model provided a more homogeneous tissue-implant interacting surface than the rat at the early stage of implantation and this is quite meaningful for conducting quantitative analysis. The availability of transgenic techniques to mechanism study of biomaterials was further testified by establishing our model on Nestin-GFP transgenic mice. Intriguingly, the distribution of Nestin + cells was demonstrated to be recruited to the surface of 45S5 glass as early as 3 days postsurgery, indicating that Nestin + lineage stem cells may participate in the subsequent regeneration process. In summary, the bone-implant interaction mouse model could serve as a potential candidate to evaluate the early stage tissue response near the implant surface in a bone marrow microenvironment, and it also shows great potential in making transgenic animal resource applicable to biomaterial studies, so that the design of novel biomaterials could be better guided.
The terminator mouse: salvation for primary cell culture.
Kabgani, Nazanin; Moeller, Marcus J
2013-11-01
The Terminator had to come back from the future already several times in an effort to bring salvation to mankind. In the present issue of Kidney International, Guo et al. brought us a novel transgenic mouse model: the terminator mouse. This highly elegant mouse may facilitate significantly the derivation of primary cultures of a specific cell type from a tissue containing multiple cell populations.
Frost, Jeffrey L.; Le, Kevin X.; Cynis, Holger; Ekpo, Elizabeth; Kleinschmidt, Martin; Palmour, Roberta M.; Ervin, Frank R.; Snigdha, Shikha; Cotman, Carl W.; Saido, Takaomi C.; Vassar, Robert J.; George-Hyslop, Peter St.; Ikezu, Tsuneya; Schilling, Stephan; Demuth, Hans-Ulrich; Lemere, Cynthia A.
2014-01-01
Amyloid-β (Aβ) peptides, starting with pyroglutamate at the third residue (pyroGlu-3 Aβ), are a major species deposited in the brain of Alzheimer disease (AD) patients. Recent studies suggest that this isoform shows higher toxicity and amyloidogenecity when compared to full-length Aβ peptides. Here, we report the first comprehensive and comparative IHC evaluation of pyroGlu-3 Aβ deposition in humans and animal models. PyroGlu-3 Aβ immunoreactivity (IR) is abundant in plaques and cerebral amyloid angiopathy of AD and Down syndrome patients, colocalizing with general Aβ IR. PyroGlu-3 Aβ is further present in two nontransgenic mammalian models of cerebral amyloidosis, Caribbean vervets, and beagle canines. In addition, pyroGlu-3 Aβ deposition was analyzed in 12 different AD-like transgenic mouse models. In contrast to humans, all transgenic models showed general Aβ deposition preceding pyroGlu-3 Aβ deposition. The findings varied greatly among the mouse models concerning age of onset and cortical brain region. In summary, pyroGlu-3 Aβ is a major species of β-amyloid deposited early in diffuse and focal plaques and cerebral amyloid angiopathy in humans and nonhuman primates, whereas it is deposited later in a subset of focal and vascular amyloid in AD-like transgenic mouse models. Given the proposed decisive role of pyroGlu-3 Aβ peptides for the development of human AD pathology, this study provides insights into the usage of animal models in AD studies. PMID:23747948
Shuda, Masahiro; Guastafierro, Anna; Geng, Xuehui; Shuda, Yoko; Ostrowski, Stephen M; Lukianov, Stefan; Jenkins, Frank J; Honda, Kord; Maricich, Stephen M; Moore, Patrick S; Chang, Yuan
2015-01-01
Merkel cell polyomavirus (MCV) causes the majority of human Merkel cell carcinomas (MCC) and encodes a small T (sT) antigen that transforms immortalized rodent fibroblasts in vitro. To develop a mouse model for MCV sT-induced carcinogenesis, we generated transgenic mice with a flox-stop-flox MCV sT sequence homologously recombined at the ROSA locus (ROSAsT), allowing Cre-mediated, conditional MCV sT expression. Standard tamoxifen (TMX) administration to adult UbcCreERT2; ROSAsT mice, in which Cre is ubiquitously expressed, resulted in MCV sT expression in multiple organs that was uniformly lethal within 5 days. Conversely, most adult UbcCreERT2; ROSAsT mice survived low-dose tamoxifen administration but developed ear lobe dermal hyperkeratosis and hypergranulosis. Simultaneous MCV sT expression and conditional homozygous p53 deletion generated multi-focal, poorly-differentiated, highly anaplastic tumors in the spleens and livers of mice after 60 days of TMX treatment. Mouse embryonic fibroblasts from these mice induced to express MCV sT exhibited anchorage-independent cell growth. To examine Merkel cell pathology, MCV sT expression was also induced during mid-embryogenesis in Merkel cells of Atoh1CreERT2/+; ROSAsT mice, which lead to significantly increased Merkel cell numbers in touch domes at late embryonic ages that normalized postnatally. Tamoxifen administration to adult Atoh1CreERT2/+; ROSAsT and Atoh1CreERT2/+; ROSAsT; p53flox/flox mice had no effects on Merkel cell numbers and did not induce tumor formation. Taken together, these results show that MCV sT stimulates progenitor Merkel cell proliferation in embryonic mice and is a bona fide viral oncoprotein that induces full cancer cell transformation in the p53-null setting.
Janus, Christopher; Hernandez, Carolina; deLelys, Victoria; Roder, Hanno; Welzl, Hans
2016-01-01
The major symptom of Alzheimer's disease is dementia progressing with age. Its clinical diagnosis is preceded by a long prodromal period of brain pathology that encompasses both formation of extracellular amyloid and intraneuronal tau deposits in the brain and widespread neuronal death. At present, familial cases of dementia provide the most promising foundation for modeling neurodegenerative tauopathies, a group of heterogeneous disorders characterized by prominent intracellular accumulation of hyperphosphorylated tau protein. In this chapter, we describe major behavioral hallmarks of tauopathies, briefly outline the genetics underlying familial cases, and discuss the arising implications for modeling the disease in transgenic mouse systems. The selection of tests performed to evaluate the phenotype of a model should be guided by the key behavioral hallmarks that characterize human disorder and their homology to mouse cognitive systems. We attempt to provide general guidelines and establish criteria for modeling dementia in a mouse; however, interpretations of obtained results should avoid a reductionist "one gene, one disease" explanation of model characteristics. Rather, the focus should be directed to the question of how the mouse genome can cope with the over-expression of the protein coded by transgene(s). While each model is valuable within its own constraints and the experiments performed are guided by specific hypotheses, we seek to expand upon their methodology by offering guidance spanning from issues of mouse husbandry to choices of behavioral tests and routes of drug administration that might increase the external validity of studies and consequently optimize the translational aspect of preclinical research.
Metabolic changes over the course of aging in a mouse model of tau deposition
Joly-Amado, Aurélie; Serraneau, Karisa S.; Brownlow, Milene; Marín de Evsikova, Caralina; Speakman, John R.; Gordon, Marcia N.; Morgan, Dave
2016-01-01
Weight loss and food intake disturbances that often precede cognitive decline and diagnosis have been extensively reported in Alzheimer’s disease patients. Previously, we observed that transgenic mice overexpressing tau seemed to eat more food, yet weigh less than non-transgenic littermates. Thus the present longitudinal study measured the time course of changes in metabolic state over the lifespan of the tau depositing Tg4510 mouse model of tau deposition. Although body weight was comparable to non-transgenic littermates at 2 months of age, Tg4510 mice weighed less at older ages. This was accompanied by the accumulation of tau pathology and by dramatically increased activity in all phases of the 24-hour cycle. Resting metabolic rate was also increased at 7 months of age. At 12 months near the end of the Tg4510 lifespan, there was a wasting phase, with a considerable decrease of resting metabolic rate, although hyperactivity was maintained. These diverse changes in metabolism in a mouse model of tau deposition are discussed in the context of known changes in energy metabolism in Alzheimer’s disease. PMID:27318134
Pleasant, LaTawnya; Ma, Qing; Devarajan, Mahima; Parameswaran, Priyanka; Drake, Keri; Siroky, Brian; Shay-Winkler, Kritton; Robbins, Jeffrey; Devarajan, Prasad
2017-09-01
The early events that signal renal dysfunction in presymptomatic heart failure are unclear. We tested the hypothesis that functional and mechanistic changes occur in the kidney that precede the development of symptomatic heart failure. We employed a transgenic mouse model with cardiomyocyte-specific overexpression of mutant α-B-crystallin that develops slowly progressive cardiomyopathy. Presymptomatic transgenic mice displayed an increase in serum creatinine (1.17 ± 0.34 vs. wild type 0.65 ± 0.16 mg/dl, P < 0.05) and in urinary neutrophil gelatinase-associated lipocalin (NGAL; 278.92 ± 176.24 vs. wild type 49.11 ± 22.79 ng/ml, P < 0.05) but no renal fibrosis. Presymptomatic transgenic mouse kidneys exhibited a twofold upregulation of the Ren1 gene, marked overexpression of renin protein in the tubules, and a worsened response to ischemia-reperfusion injury based on serum creatinine (2.77 ± 0.66 in transgenic mice vs. 2.01 ± 0.58 mg/dl in wild type, P < 0.05), urine NGAL (9,198.79 ± 3,799.52 in transgenic mice vs. 3,252.94 ± 2,420.36 ng/ml in wild type, P < 0.05), tubule dilation score (3.4 ± 0.5 in transgenic mice vs. 2.6 ± 0.5 in wild type, P < 0.05), tubule cast score (3.2 ± 0.4 in transgenic mice vs. 2.5 ± 0.5 in wild type, P < 0.05), and TdT-mediated dUTP nick-end labeling (TUNEL)-positive nuclei (10.1 ± 2.1 in the transgenic group vs. 5.7 ± 1.6 per 100 cells counted in wild type, P < 0.01). Our findings indicate functional renal impairment, urinary biomarker elevations, and induction of renin gene and protein expression in the kidney that occur in early presymptomatic heart failure, which increase the susceptibility to subsequent acute kidney injury. Copyright © 2017 the American Physiological Society.
The Effect of Age on the Susceptibility and Severity of Demyelination
2015-10-01
Animal facilities (completed) Task 2d- Breed the offspring and ascertain that the transgenic trait is present – (completed) Task 3e... transgenic mouse the consequence was that these mice became sicker much quicker than a cohort of mice with normal levels of neurofascin. Therefore we...disease. In addition we challenged transgenic mice that had greatly diminished amounts of the molecule which links myelin to the axon (neurofascin) to
Espinosa, J C; Nonno, R; Di Bari, M; Aguilar-Calvo, P; Pirisinu, L; Fernández-Borges, N; Vanni, I; Vaccari, G; Marín-Moreno, A; Frassanito, P; Lorenzo, P; Agrimi, U; Torres, J M
2016-12-01
Bank vole is a rodent species that shows differential susceptibility to the experimental transmission of different prion strains. In this work, the transmission features of a panel of diverse prions with distinct origins were assayed both in bank vole expressing methionine at codon 109 (Bv109M) and in transgenic mice expressing physiological levels of bank vole PrP C (the BvPrP-Tg407 mouse line). This work is the first systematic comparison of the transmission features of a collection of prion isolates, representing a panel of diverse prion strains, in a transgenic-mouse model and in its natural counterpart. The results showed very similar transmission properties in both the natural species and the transgenic-mouse model, demonstrating the key role of the PrP amino acid sequence in prion transmission susceptibility. However, differences in the PrP Sc types propagated by Bv109M and BvPrP-Tg407 suggest that host factors other than PrP C modulate prion strain features. The differential susceptibility of bank voles to prion strains can be modeled in transgenic mice, suggesting that this selective susceptibility is controlled by the vole PrP sequence alone rather than by other species-specific factors. Differences in the phenotypes observed after prion transmissions in bank voles and in the transgenic mice suggest that host factors other than the PrP C sequence may affect the selection of the substrain replicating in the animal model. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Hill, Lydia; Chaplain, Mark A J; Wolf, Roland; Kapelyukh, Yury
2017-03-01
The Cytochrome P450 (CYP) system is involved in 90% of the human body's interactions with xenobiotics and due to this, it has become an area of avid research including the creation of transgenic mice. This paper proposes a three-compartment model which is used to explain the drug metabolism in the Hepatic Reductase Null (HRN) mouse developed by the University of Dundee (Henderson, C. J., Otto, D. M. E., Carrie, D., Magnuson, M. A., McLaren, A. W., Rosewell, I. and Wolf, C. R. (2003) Inactivation of the hepatic cytochrome p450 system by conditional deletion of hepatic cytochrome p450 reductase. J. Biol. Chem. , 13480-13486). The model is compared with a two-compartment model using experimental data from studies using wild-type and HRN mice. This comparison allowed for metabolic differences between the two types of mice to be isolated. The three sets of drug data (Gefitinib, Midazolam and Thalidomide) showed that the transgenic mouse has a decreased rate of metabolism. © The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
Gratao, Ana A; Dahlhoff, Maik; Sinowatz, Fred; Wolf, Eckhard; Schneider, Marlon R
2008-01-01
The epidermal growth factor receptor (EGFR) and its ligands are emerging as key molecules in regulating female reproduction. Here, we used a transgenic mouse model to evaluate whether and at which level of the reproduction cascade higher-than-normal levels of the EGFR ligand betacellulin (BTC) in the reproductive organs affect fertility. Western blots and immunohistochemistry revealed increased BTC levels in uterus and ovaries from transgenic females, particularly evident in granulosa cells of antral follicles. Onset of puberty, estrous cyclicity, and the anatomy and histology of reproductive organs at puberty were not altered as compared to control females. Fertility tests revealed a reduction (~50%) in litter size as the major reproductive deficit of transgenic females. Embryo implantation was delayed in transgenic females, but this was not the reason for the reduced litter size. Transgenic females produced a normal number of oocytes after natural ovulation. The in vivo fertilization rate was significantly reduced in untreated transgenic females but returned to normal levels after superovulation. Impaired oocyte fertilization in the absence of superovulation treatment was associated with MAPK3/MAPK1 hyperactivation in BTC transgenic ovaries, whereas similar levels of MAPK3/MAPK1 activation were detected in transgenic and control ovaries after superovulation treatment. Thus, tight regulation of MAPK3/MAPK1 activity appears to be essential for appropriate granulosa cell function during oocyte maturation. Our study identified hitherto unknown effects of BTC overabundance in reproduction and suggests BTC as a novel candidate protein for the modulation of fertility.
Ding, Jin-Dong; Kelly, Una; Landowski, Michael; Toomey, Christopher B.; Groelle, Marybeth; Miller, Chelsey; Smith, Stephanie G.; Klingeborn, Mikael; Singhapricha, Terry; Jiang, Haixiang; Frank, Michael M.; Bowes Rickman, Catherine
2016-01-01
Complement factor H (CFH) is an important regulatory protein in the alternative pathway of the complement system, and CFH polymorphisms increase the genetic risk of age-related macular degeneration dramatically. These same human CFH variants have also been associated with dense deposit disease. To mechanistically study the function of CFH in the pathogenesis of these diseases, we created transgenic mouse lines using human CFH bacterial artificial chromosomes expressing full-length human CFH variants and crossed these to Cfh knockout (Cfh−/−) mice. Human CFH protein inhibited cleavage of mouse complement component 3 and factor B in plasma and in retinal pigment epithelium/choroid/sclera, establishing that human CFH regulates activation of the mouse alternative pathway. One of the mouse lines, which express relatively higher levels of CFH, demonstrated functional and structural protection of the retina owing to the Cfh deletion. Impaired visual function, detected as a deficit in the scotopic electroretinographic response, was improved in this transgenic mouse line compared with Cfh−/− mice, and transgenics had a thicker outer nuclear layer and less sub–retinal pigment epithelium deposit accumulation. In addition, expression of human CFH also completely protected the mice from developing kidney abnormalities associated with loss of CFH. These humanized CFH mice present a valuable model for study of the molecular mechanisms of age-related macular degeneration and dense deposit disease and for testing therapeutic targets. PMID:25447048
Glasser, S W; Korfhagen, T R; Wert, S E; Bruno, M D; McWilliams, K M; Vorbroker, D K; Whitsett, J A
1991-10-01
Transgenic mice bearing chimeric genes consisting of 5'-sequences derived from the human surfactant protein C (SP-C) gene and the bacterial chloramphenicol acetyltransferase (CAT) gene were generated. Analysis of CAT activity was utilized to demonstrate tissue-specific and developmental expression of chimeric genes containing 3.7 kb of sequences from the human SP-C gene. Lung-specific expression of the 3.7 SP-C-CAT transgene was observed in eight distinct transgenic mouse lines. Expression of the 3.7 SP-C-CAT transgene was first detected in fetal lung on day 11 of gestation and increased dramatically with advancing gestational age, reaching adult levels of activity before birth. In situ hybridization demonstrated that expression of 3.7 SP-C-CAT mRNA was confined to the distal respiratory epithelium. Antisense CAT hybridization was detected in bronchiolar and type II epithelial cells in the adult lung of the 3.7 SP-C-CAT transgenic mice. In situ hybridization of four distinct 3.7 SP-C-CAT transgenic mouse lines demonstrated bronchiolar-alveolar expression of the chimeric CAT gene, although the relative intensity of expression at each site varied within the lines studied. Glucocorticoids increased murine SP-C mRNA in fetal lung organ culture. Likewise, expression of 3.7 SP-C-CAT transgene increased during fetal lung organ or explant culture and was further enhanced by glucocorticoid in vitro. The 5'-regions of human SP-C conferred developmental, lung epithelial, and glucocorticoid-enhanced expression of bacterial CAT in transgenic mice. The increased expression of SP-C accompanying prenatal lung development and exposure to glucocorticoid is mediated, at least in part, at the transcriptional level, being influenced by cis-active elements contained within the 5'-flanking region of the human SP-C gene.
Effects of environmental enrichment on the amyotrophic lateral sclerosis mouse model.
Sorrells, A D; Corcoran-Gomez, K; Eckert, K A; Fahey, A G; Hoots, B L; Charleston, L B; Charleston, J S; Roberts, C R; Markowitz, H
2009-04-01
The manner in which an animal's environment is furnished may have significant implications for animal welfare as well as research outcomes. We evaluated four different housing conditions to determine the effects of what has been considered standard rodent enrichment and the exercise opportunities those environments allow on disease progression in the amyotrophic lateral sclerosis mouse model. Forty-eight copper/zinc superoxide dismutase mice (strain: B6SJL-TgN [SOD1-G931]1Gur) (SOD1) and 48 control (C) (strain: B6SJL-TgN[SOD1]2Gur) male mice were randomly assigned to four different conditions where 12 SOD1 and 12 C animals were allotted to each condition (n = 96). Conditions tested the effects of standard housing, a forced exercise regime, access to a mouse house and opportunity for ad libitum exercise on a running wheel. In addition to the daily all-occurrence behavioural sampling, mice were weighed and tested twice per week on gait and Rotor-Rod performance until the mice reached the age of 150 days (C) or met the criteria for our humane endpoint (SOD1). The SOD1 mice exposed to the forced exercise regime and wheel access did better in average lifespan and Rotor-Rod performance, than SOD1 mice exposed to the standard cage and mouse house conditions. In SOD1 mice, stride length remained longest throughout the progression of the disease in mice exposed to the forced exercise regime compared with other SOD1 conditions. Within the control group, mice in the standard cage and forced exercise regime conditions performed significantly less than the mice with the mouse house and wheels on the Rotor-Rod. Alpha motor neuron counts were highest in mice with wheels and in mice exposed to forced exercise regime in both mouse strains. All SOD1 mice had significantly lower alpha neuron counts than controls (P < 0.05). These data show that different enrichment strategies affect behaviour and disease progression in a transgenic mouse model, and may have implications for the effects of these strategies on experimental outcomes.
A surgical approach appropriate for targeted cochlear gene therapy in the mouse.
Jero, J; Tseng, C J; Mhatre, A N; Lalwani, A K
2001-01-01
Therapeutic manipulations of the mammalian cochlea, including cochlear gene transfer, have been predominantly studied using the guinea pig as the experimental model. With the significant developments in mouse genomics and the availability of mutant strains of mice with well-characterized hearing loss, the mouse justifiably will be the preferred animal model for therapeutic manipulations. However, the potential advantages of the mouse model have not been fully realized due to the surgical difficulty of accessing its small cochlea. This study describes a ventral approach, instead of the routinely used postauricular approach in other rodents, for accessing the mouse middle and inner ear, and its application in cochlear gene transfer. This ventral approach enabled rapid and direct delivery of liposome-transgene complex to the mouse inner ear while avoiding blood loss, facial nerve morbidity, and mortality. Transgene expression at 3 days was detected in Reissner's membrane, spiral limbus, spiral ligament, and spiral ganglion cells, in a pattern similar to that previously described in the guinea pig. The successful access and delivery of material to the mouse cochlea and the replication of gene expression seen in the guinea pig demonstrated in this study should promote the use of the mouse in future studies investigating targeted cochlear therapy.
Jeantet, Yannick; Cayzac, Sebastien; Cho, Yoon H.
2013-01-01
Study objectives To search for early abnormalities in electroencephalogram (EEG) during sleep which may precede motor symptoms in a transgenic mouse model of hereditary neurodegenerative Huntington’s disease (HD). Design In the R6/1 transgenic mouse model of HD, rhythmic brain activity in EEG recordings was monitored longitudinally and across vigilance states through the onset and progression of disease. Measurements and results Mice with chronic electrode implants were recorded monthly over wake-sleep cycles (4 hours), beginning at 9–11 weeks (presymptomatic period) through 6–7 months (symptomatic period). Recording data revealed a unique β rhythm (20–35 Hz), present only in R6/1 transgenic mice, which evolves in close parallel with the disease. In addition, there was an unusual relationship between this β oscillation and vigilance states: while nearly absent during the active waking state, the β oscillation appeared with drowsiness and during slow wave sleep (SWS) and, interestingly, strengthened rather than dissipating when the brain returned to an activated state during rapid eye movement (REM) sleep. Conclusions In addition to providing a new in vivo biomarker and insight into Huntington's disease pathophysiology, this serendipitous observation opens a window onto the rarely explored neurophysiology of the cortico-basal ganglia circuit during SWS and REM sleep. PMID:24244517
Vuong, H E; Pérez de Sevilla Müller, L; Hardi, C N; McMahon, D G; Brecha, N C
2015-10-29
Transgenic mouse lines are essential tools for understanding the connectivity, physiology and function of neuronal circuits, including those in the retina. This report compares transgene expression in the retina of a tyrosine hydroxylase (TH)-red fluorescent protein (RFP) mouse line with three catecholamine-related Cre recombinase mouse lines [TH-bacterial artificial chromosome (BAC)-, TH-, and dopamine transporter (DAT)-Cre] that were crossed with a ROSA26-tdTomato reporter line. Retinas were evaluated and immunostained with commonly used antibodies including those directed to TH, GABA and glycine to characterize the RFP or tdTomato fluorescent-labeled amacrine cells, and an antibody directed to RNA-binding protein with multiple splicing to identify ganglion cells. In TH-RFP retinas, types 1 and 2 dopamine (DA) amacrine cells were identified by their characteristic cellular morphology and type 1 DA cells by their expression of TH immunoreactivity. In the TH-BAC-, TH-, and DAT-tdTomato retinas, less than 1%, ∼ 6%, and 0%, respectively, of the fluorescent cells were the expected type 1 DA amacrine cells. Instead, in the TH-BAC-tdTomato retinas, fluorescently labeled AII amacrine cells were predominant, with some medium diameter ganglion cells. In TH-tdTomato retinas, fluorescence was in multiple neurochemical amacrine cell types, including four types of polyaxonal amacrine cells. In DAT-tdTomato retinas, fluorescence was in GABA immunoreactive amacrine cells, including two types of bistratified and two types of monostratified amacrine cells. Although each of the Cre lines was generated with the intent to specifically label DA cells, our findings show a cellular diversity in Cre expression in the adult retina and indicate the importance of careful characterization of transgene labeling patterns. These mouse lines with their distinctive cellular labeling patterns will be useful tools for future studies of retinal function and visual processing. Published by Elsevier Ltd.
2017-09-01
collaborator, Dr. Luke Dow. We bred these pairs of mice to create a colony of transgenic mice, and continue to breed them as needed. When experimental...colony of transgenic mice. When experimental mice are 8 weeks of age, they are treated with 4-hydroxytamofixen (4OHT) and put on continuous doxycycline...and human cells and transgenic mouse models. These experiments will determine the effectiveness of this approach and, if successful, will lead to
Zheng, Min; Mitra, Rajendra N; Filonov, Nazar A; Han, Zongchao
2016-03-01
Previously, we compared the efficacy of nanoparticle (NP)-mediated intron-containing rhodopsin (sgRho) vs. intronless cDNA in ameliorating retinal disease phenotypes in a rhodopsin knockout (RKO) mouse model of retinitis pigmentosa. We showed that NP-mediated sgRho delivery achieved long-term expression and phenotypic improvement in RKO mice, but not NP housing cDNA. However, the protein level of the NP-sgRho construct was only 5-10% of wild-type at 8 mo postinjection. To have a better understanding of the reduced levels of long-term expression of the vectors, in the present study, we evaluated the epigenetic changes of subretinal delivering NP-cDNA vs. NP-sgRho in the RKO mouse eyes. Following the administration, DNA methylation and histone status of specific regions (bacteria plasmid backbone, promoter, rhodopsin gene, and scaffold/matrix attachment region) of the vectors were evaluated at various time points. We documented that epigenetic transgene silencing occurred in vector-mediated gene transfer, which were caused by the plasmid backbone and the cDNA of the transgene, but not the intron-containing transgene. No toxicity or inflammation was found in the treated eyes. Our results suggest that cDNA of the rhodopsin transgene and bacteria backbone interfered with the host defense mechanism of DNA methylation-mediated transgene silencing through heterochromatin-associated modifications. © FASEB.
The mouse liver tumorigenic conazolefungicides triadimefon and propiconazole have previously been shown to be in vivo mouse liver mutagens in the Big Blue" transgenic mutation assay when administered in feed at tumorigenic doses, whereas the nontumorigenic conazole myclobutanil w...
Investigation of the mechanism of action of alemtuzumab in a human CD52 transgenic mouse model
Hu, Yanping; Turner, Michael J; Shields, Jacqueline; Gale, Matthew S; Hutto, Elizabeth; Roberts, Bruce L; Siders, William M; Kaplan, Johanne M
2009-01-01
Alemtuzumab is a humanized monoclonal antibody against CD52, an antigen found on the surface of normal and malignant lymphocytes. It is approved for the treatment of B-cell chronic lymphocytic leukaemia and is undergoing Phase III clinical trials for the treatment of multiple sclerosis. The exact mechanism by which alemtuzumab mediates its biological effects in vivo is not clearly defined and mechanism of action studies have been hampered by the lack of cross-reactivity between human and mouse CD52. To address this issue, a transgenic mouse expressing human CD52 (hCD52) was created. Transgenic mice did not display any phenotypic abnormalities and were able to mount normal immune responses. The tissue distribution of hCD52 and the level of expression by various immune cell populations were comparable to those seen in humans. Treatment with alemtuzumab replicated the transient increase in serum cytokines and depletion of peripheral blood lymphocytes observed in humans. Lymphocyte depletion was not as profound in lymphoid organs, providing a possible explanation for the relatively low incidence of infection in alemtuzumab-treated patients. Interestingly, both lymphocyte depletion and cytokine induction by alemtuzumab were largely independent of complement and appeared to be mediated by neutrophils and natural killer cells because removal of these populations with antibodies to Gr-1 or asialo-GM-1, respectively, strongly inhibited the activity of alemtuzumab whereas removal of complement by treatment with cobra venom factor had no impact. The hCD52 transgenic mouse appears to be a useful model and has provided evidence for the previously uncharacterized involvement of neutrophils in the activity of alemtuzumab. PMID:19740383
Bambino, Kathryn; Lacko, Lauretta A; Hajjar, Katherine A; Stuhlmann, Heidi
2014-07-01
Epidermal growth factor-like domain 7 (Egfl7) expression in the developing embryo is largely restricted to sites of mesodermal progenitors of angioblasts/hemangioblasts and the vascular endothelium. We hypothesize that Egfl7 marks the endothelial lineage during embryonic development, and can be used to define the emergence of endothelial progenitor cells, as well as to visualize newly-forming vasculature in the embryo and during the processes of physiologic and pathologic angiogenesis in the adult. We have generated a transgenic mouse strain that expresses enhanced green fluorescent protein (eGFP) under the control of a minimal Egfl7 regulatory sequence (Egfl7:eGFP). Expression of the transgene recapitulated that of endogenous Egfl7 at sites of vasculogenesis and angiogenesis in the allantois, yolk sac, and in the embryo proper. The transgene was not expressed in the quiescent endothelium of most adult organs. However, the uterus and ovary, which undergo vascular growth and remodeling throughout the estrus cycle, expressed high levels of Egfl7:eGFP. Importantly, expression of the Egfl7:eGFP transgene was induced in adult neovasculature. We also found that increased Egfl7 expression contributed to pathologic revascularization in the mouse retina. To our knowledge, this is the first mouse model that enables monitoring of endothelial cells at sites of active vasculogenesis and angiogenesis. This model also facilitated the isolation and characterization of EGFL7(+) endothelial cell populations by fluorescence activated cell sorting (FACS). Together, our results demonstrate that the Egfl7:eGFP reporter mouse is a valuable tool that can be used to elucidate the mechanisms by which blood vessels form during development and under pathologic circumstances. © 2014 Wiley Periodicals, Inc.
Palavicini, Juan Pablo; Wang, Hongjie; Minond, Dmitriy; Bianchi, Elisabetta; Xu, Shaohua; Lakshmana, Madepalli K
2014-01-01
Loss of synaptic proteins and functional synapses in the brains of patients with Alzheimer's disease (AD) as well as transgenic mouse models expressing amyloid-β protein precursor is now well established. However, the earliest age at which such loss of synapses occurs, and whether known markers of AD progression accelerate functional deficits is completely unknown. We previously showed that RanBP9 overexpression leads to enhanced amyloid plaque burden in a mouse model of AD. In this study, we found significant reductions in the levels of synaptophysin and spinophilin, compared with wild-type controls, in both the cortex and the hippocampus of 5- and 6-month old but not 3- or 4-month old APΔE9/RanBP9 triple transgenic mice, and not in APΔE9 double transgenic mice, nor in RanBP9 single transgenic mice. Interestingly, amyloid plaque burden was also increased in the APΔE9/RanBP9 mice at 5-6 months. Consistent with these results, we found significant deficits in learning and memory in the APΔE9/RanBP9 mice at 5 and 6 month. These data suggest that increased amyloid plaques and accelerated learning and memory deficits and loss of synaptic proteins induced by RanBP9 are correlated. Most importantly, APΔE9/RanBP9 mice also showed significantly reduced levels of the phosphorylated form of cofilin in the hippocampus. Taken together these data suggest that RanBP9 overexpression down-regulates cofilin, causes early synaptic deficits and impaired learning, and accelerates accumulation of amyloid plaques in the mouse brain.
A mouse model for human anal cancer.
Stelzer, Marie K; Pitot, Henry C; Liem, Amy; Schweizer, Johannes; Mahoney, Charles; Lambert, Paul F
2010-12-01
Human anal cancers are associated with high-risk human papillomaviruses (HPV) that cause other anogenital cancers and head and neck cancers. As with other cancers, HPV16 is the most common high-risk HPV in anal cancers. We describe the generation and characterization of a mouse model for human anal cancer. This model makes use of K14E6 and K14E7 transgenic mice in which the HPV16 E6 and E7 genes are directed in their expression to stratified squamous epithelia. HPV16 E6 and E7 possess oncogenic properties including, but not limited to, their capacity to inactivate the cellular tumor suppressors p53 and pRb, respectively. Both E6 and E7 were found to be functionally expressed in the anal epithelia of K14E6/K14E7 transgenic mice. To assess the susceptibility of these mice to anal cancer, mice were treated topically with dimethylbenz[a]anthracene (DMBA), a chemical carcinogen that is known to induce squamous cell carcinomas in other sites. Nearly 50% of DMBA-treated HPV16 E6/E7 transgenic mice showed overt signs of tumors, whereas none of the like-treated nontransgenic mice showed tumors. Histopathologic analyses confirmed that the HPV16 transgenic mice were increased in their susceptibility to anal cancers and precancerous lesions. Biomarker analyses demonstrated that these mouse anal cancers exhibit properties that are similar to those observed in HPV-positive precursors to human anal cancer. This is the first mouse model for investigating the contributions of viral and cellular factors in anal carcinogenesis, and should provide a platform for assessing new therapeutic modalities for treating and/or preventing this type of cancer. ©2010 AACR.
DOSE-RESPONSE STUDIES OF SODIUM ARSENITE IN THE SKIN OF K6/ODC TRANSGENIC MOUSE
It has previously been observed that chronic exposure to inorganic arsenic and/or its metabolites increase(s) tumor frequency in the skin of K6/ODC transgenic mice. To identify potential biomarkers and modes of action for this skin tumorigenicity, gene expression profiles w...
Lowey, Susan; Bretton, Vera; Gulick, James; Robbins, Jeffrey; Trybus, Kathleen M
2013-05-24
Familial hypertrophic cardiomyopathy (FHC) is a major cause of sudden cardiac death in young athletes. The discovery in 1990 that a point mutation at residue 403 (R403Q) in the β-myosin heavy chain (MHC) caused a severe form of FHC was the first of many demonstrations linking FHC to mutations in muscle proteins. A mouse model for FHC has been widely used to study the mechanochemical properties of mutated cardiac myosin, but mouse hearts express α-MHC, whereas the ventricles of larger mammals express predominantly β-MHC. To address the role of the isoform backbone on function, we generated a transgenic mouse in which the endogenous α-MHC was partially replaced with transgenically encoded β-MHC or α-MHC. A His6 tag was cloned at the N terminus, along with R403Q, to facilitate isolation of myosin subfragment 1 (S1). Stopped flow kinetics were used to measure the equilibrium constants and rates of nucleotide binding and release for the mouse S1 isoforms bound to actin. For the wild-type isoforms, we found that the affinity of MgADP for α-S1 (100 μM) is ~ 4-fold weaker than for β-S1 (25 μM). Correspondingly, the MgADP release rate for α-S1 (350 s(-1)) is ~3-fold greater than for β-S1 (120 s(-1)). Introducing the R403Q mutation caused only a minor reduction in kinetics for β-S1, but R403Q in α-S1 caused the ADP release rate to increase by 20% (430 s(-1)). These transient kinetic studies on mouse cardiac myosins provide strong evidence that the functional impact of an FHC mutation on myosin depends on the isoform backbone.
BRI2 (ITM2b) Inhibits Aβ Deposition in Vivo
Kim, Jungsu; Miller, Victor M.; Levites, Yona; West, Karen Jansen; Zwizinski, Craig W.; Moore, Brenda D.; Troendle, Fredrick J.; Bann, Maralyssa; Verbeeck, Christophe; Price, Robert W.; Smithson, Lisa; Sonoda, Leilani; Wagg, Kayleigh; Rangachari, Vijayaraghavan; Zou, Fanggeng; Younkin, Steven G.; Graff-Radford, Neill; Dickson, Dennis; Rosenberry, Terrone; Golde, Todd E.
2008-01-01
Analyses of the biologic effects of mutations in the BRI2 (ITM2b) and the amyloid β precursor protein (APP) genes support the hypothesis that cerebral accumulation of amyloidogenic peptides in familial British and familial Danish dementias and Alzheimer’s disease (AD) is associated with neurodegeneration. We have used somatic brain transgenic technology to express the BRI2 and BRI2-Aβ1-40 transgenes in amyloid β protein precursor (APP) mouse models. Expression of BRI2-Aβ1-40 mimics the suppressive effect previously observed using conventional transgenic methods, further validating the somatic brain transgenic methodology. Unexpectedly, we also find that expression of wild type human BRI2 reduces cerebral Aβ deposition in an AD mouse model. Additional data indicate that the 23 amino acid peptide, Bri23, released from BRI2 by normal processing is present in human cerebrospinal fluid (CSF), inhibits Aβ aggregation in vitro, and mediates its anti-amyloidogenic effect in vivo. These studies demonstrate that BRI2 is a novel mediator of Aβ deposition in vivo. PMID:18524908
Bernardo, Bianca C.; Sapra, Geeta; Patterson, Natalie L.; Cemerlang, Nelly; Kiriazis, Helen; Ueyama, Tomomi; Febbraio, Mark A.; McMullen, Julie R.
2015-01-01
Previous animal studies had shown that increasing heat shock protein 70 (Hsp70) using a transgenic, gene therapy or pharmacological approach provided cardiac protection in models of acute cardiac stress. Furthermore, clinical studies had reported associations between Hsp70 levels and protection against atrial fibrillation (AF). AF is the most common cardiac arrhythmia presenting in cardiology clinics and is associated with increased rates of heart failure and stroke. Improved therapies for AF and heart failure are urgently required. Despite promising observations in animal studies which targeted Hsp70, we recently reported that increasing Hsp70 was unable to attenuate cardiac dysfunction and pathology in a mouse model which develops heart failure and intermittent AF. Given our somewhat unexpected finding and the extensive literature suggesting Hsp70 provides cardiac protection, it was considered important to assess whether Hsp70 could provide protection in another mouse model of heart failure and AF. The aim of the current study was to determine whether increasing Hsp70 could attenuate adverse cardiac remodeling, cardiac dysfunction and episodes of arrhythmia in a mouse model of heart failure and AF due to overexpression of Muscle-Restricted Coiled-Coil (MURC). Cardiac function and pathology were assessed in mice at approximately 12 months of age. We report here, that chronic overexpression of Hsp70 was unable to provide protection against cardiac dysfunction, conduction abnormalities, fibrosis or characteristic molecular markers of the failing heart. In summary, elevated Hsp70 may provide protection in acute cardiac stress settings, but appears insufficient to protect the heart under chronic cardiac disease conditions. PMID:26660322
Bernardo, Bianca C; Sapra, Geeta; Patterson, Natalie L; Cemerlang, Nelly; Kiriazis, Helen; Ueyama, Tomomi; Febbraio, Mark A; McMullen, Julie R
2015-01-01
Previous animal studies had shown that increasing heat shock protein 70 (Hsp70) using a transgenic, gene therapy or pharmacological approach provided cardiac protection in models of acute cardiac stress. Furthermore, clinical studies had reported associations between Hsp70 levels and protection against atrial fibrillation (AF). AF is the most common cardiac arrhythmia presenting in cardiology clinics and is associated with increased rates of heart failure and stroke. Improved therapies for AF and heart failure are urgently required. Despite promising observations in animal studies which targeted Hsp70, we recently reported that increasing Hsp70 was unable to attenuate cardiac dysfunction and pathology in a mouse model which develops heart failure and intermittent AF. Given our somewhat unexpected finding and the extensive literature suggesting Hsp70 provides cardiac protection, it was considered important to assess whether Hsp70 could provide protection in another mouse model of heart failure and AF. The aim of the current study was to determine whether increasing Hsp70 could attenuate adverse cardiac remodeling, cardiac dysfunction and episodes of arrhythmia in a mouse model of heart failure and AF due to overexpression of Muscle-Restricted Coiled-Coil (MURC). Cardiac function and pathology were assessed in mice at approximately 12 months of age. We report here, that chronic overexpression of Hsp70 was unable to provide protection against cardiac dysfunction, conduction abnormalities, fibrosis or characteristic molecular markers of the failing heart. In summary, elevated Hsp70 may provide protection in acute cardiac stress settings, but appears insufficient to protect the heart under chronic cardiac disease conditions.
Dufresne, Andrew T; Gromeier, Matthias
2004-09-14
Coxsackievirus A21 (CAV21) is classified within the species Human enterovirus C (HEV-C) of the Enterovirus genus of picornaviruses. HEV-C share striking homology with the polioviruses (PV), their closest kin among the enteroviruses. Despite a high level of sequence identity, CAV21 and PV cause distinct clinical disease typically attributed to their differential use of host receptors. PV cause poliomyelitis, whereas CAV21 shares a receptor and a propensity to cause upper respiratory tract infections with the major group rhinoviruses. As a model for CAV21 infection, we have developed transgenic mice that express human intercellular adhesion molecule 1, the cell-surface receptor for CAV21. Surprisingly, CAV21 administered to these mice via the intramuscular route causes a paralytic condition consistent with poliomyelitis. The virus appears to invade the CNS by retrograde axonal transport, as has been demonstrated to occur in analogous PV infections. We detected human intercellular adhesion molecule 1 expression on both transgenic mouse and human spinal cord anterior horn motor neurons, indicating that members of HEV-C may share PV's potential to elicit poliomyelitis in humans.
Sly, William S.; Vogler, Carole; Grubb, Jeffrey H.; Zhou, Mi; Jiang, Jinxing; Zhou, Xiao Yan; Tomatsu, Shunji; Bi, Yanhua; Snella, Elizabeth M.
2001-01-01
Mucopolysaccharidosis type VII (MPS VII; Sly syndrome) is an autosomal recessive lysosomal storage disorder due to an inherited deficiency of β-glucuronidase. A naturally occurring mouse model for this disease was discovered at The Jackson Laboratory and shown to be due to homozygosity for a 1-bp deletion in exon 10 of the gus gene. The murine model MPS VII (gusmps/mps) has been very well characterized and used extensively to evaluate experimental strategies for lysosomal storage diseases, including bone marrow transplantation, enzyme replacement therapy, and gene therapy. To enhance the value of this model for enzyme and gene therapy, we produced a transgenic mouse expressing the human β-glucuronidase cDNA with an amino acid substitution at the active site nucleophile (E540A) and bred it onto the MPS VII (gusmps/mps) background. We demonstrate here that the mutant mice bearing the active site mutant human transgene retain the clinical, morphological, biochemical, and histopathological characteristics of the original MPS VII (gusmps/mps) mouse. However, they are now tolerant to immune challenge with human β-glucuronidase. This “tolerant MPS VII mouse model” should be useful for preclinical trials evaluating the effectiveness of enzyme and/or gene therapy with the human gene products likely to be administered to human patients with MPS VII. PMID:11226217
Human CD22 Inhibits Murine B Cell Receptor Activation in a Human CD22 Transgenic Mouse Model.
Bednar, Kyle J; Shanina, Elena; Ballet, Romain; Connors, Edward P; Duan, Shiteng; Juan, Joana; Arlian, Britni M; Kulis, Michael D; Butcher, Eugene C; Fung-Leung, Wai-Ping; Rao, Tadimeti S; Paulson, James C; Macauley, Matthew S
2017-11-01
CD22, a sialic acid-binding Ig-type lectin (Siglec) family member, is an inhibitory coreceptor of the BCR with established roles in health and disease. The restricted expression pattern of CD22 on B cells and most B cell lymphomas has made CD22 a therapeutic target for B cell-mediated diseases. Models to better understand how in vivo targeting of CD22 translates to human disease are needed. In this article, we report the development of a transgenic mouse expressing human CD22 (hCD22) in B cells and assess its ability to functionally substitute for murine CD22 (mCD22) for regulation of BCR signaling, Ab responses, homing, and tolerance. Expression of hCD22 on transgenic murine B cells is comparable to expression on human primary B cells, and it colocalizes with mCD22 on the cell surface. Murine B cells expressing only hCD22 have identical calcium (Ca 2+ ) flux responses to anti-IgM as mCD22-expressing wild-type B cells. Furthermore, hCD22 transgenic mice on an mCD22 -/- background have restored levels of marginal zone B cells and Ab responses compared with deficiencies observed in CD22 -/- mice. Consistent with these observations, hCD22 transgenic mice develop normal humoral responses in a peanut allergy oral sensitization model. Homing of B cells to Peyer's patches was partially rescued by expression of hCD22 compared with CD22 -/- B cells, although not to wild-type levels. Notably, Siglec-engaging antigenic liposomes formulated with an hCD22 ligand were shown to prevent B cell activation, increase cell death, and induce tolerance in vivo. This hCD22 transgenic mouse will be a valuable model for investigating the function of hCD22 and preclinical studies targeting hCD22. Copyright © 2017 by The American Association of Immunologists, Inc.
A regulatory toolbox of MiniPromoters to drive selective expression in the brain.
Portales-Casamar, Elodie; Swanson, Douglas J; Liu, Li; de Leeuw, Charles N; Banks, Kathleen G; Ho Sui, Shannan J; Fulton, Debra L; Ali, Johar; Amirabbasi, Mahsa; Arenillas, David J; Babyak, Nazar; Black, Sonia F; Bonaguro, Russell J; Brauer, Erich; Candido, Tara R; Castellarin, Mauro; Chen, Jing; Chen, Ying; Cheng, Jason C Y; Chopra, Vik; Docking, T Roderick; Dreolini, Lisa; D'Souza, Cletus A; Flynn, Erin K; Glenn, Randy; Hatakka, Kristi; Hearty, Taryn G; Imanian, Behzad; Jiang, Steven; Khorasan-zadeh, Shadi; Komljenovic, Ivana; Laprise, Stéphanie; Liao, Nancy Y; Lim, Jonathan S; Lithwick, Stuart; Liu, Flora; Liu, Jun; Lu, Meifen; McConechy, Melissa; McLeod, Andrea J; Milisavljevic, Marko; Mis, Jacek; O'Connor, Katie; Palma, Betty; Palmquist, Diana L; Schmouth, Jean-François; Swanson, Magdalena I; Tam, Bonny; Ticoll, Amy; Turner, Jenna L; Varhol, Richard; Vermeulen, Jenny; Watkins, Russell F; Wilson, Gary; Wong, Bibiana K Y; Wong, Siaw H; Wong, Tony Y T; Yang, George S; Ypsilanti, Athena R; Jones, Steven J M; Holt, Robert A; Goldowitz, Daniel; Wasserman, Wyeth W; Simpson, Elizabeth M
2010-09-21
The Pleiades Promoter Project integrates genomewide bioinformatics with large-scale knockin mouse production and histological examination of expression patterns to develop MiniPromoters and related tools designed to study and treat the brain by directed gene expression. Genes with brain expression patterns of interest are subjected to bioinformatic analysis to delineate candidate regulatory regions, which are then incorporated into a panel of compact human MiniPromoters to drive expression to brain regions and cell types of interest. Using single-copy, homologous-recombination "knockins" in embryonic stem cells, each MiniPromoter reporter is integrated immediately 5' of the Hprt locus in the mouse genome. MiniPromoter expression profiles are characterized in differentiation assays of the transgenic cells or in mouse brains following transgenic mouse production. Histological examination of adult brains, eyes, and spinal cords for reporter gene activity is coupled to costaining with cell-type-specific markers to define expression. The publicly available Pleiades MiniPromoter Project is a key resource to facilitate research on brain development and therapies.
Aït-Azzouzene, D; Langkopf, A; Cohen, J; Bleux, C; Gendron, M C; Kanellopoulos-Langevin, C
1998-05-01
Among the numerous hypotheses proposed to explain the absence of fetal rejection by the mother in mammals, it has been suggested that regulation of expression of the polymorphic major histocompatibility complex (MHC) at the fetal-maternal interface plays a major role. In addition to a lack of MHC gene expression in the placenta throughout gestation, the absence of polymorphic MHC molecules on the early embryo, as well as their low level of expression after midgestation, could contribute to this important biologic phenomenon. In order to test this hypothesis, we have produced transgenic mice able to express polymorphic MHC class I molecules early in embryogenesis. We have placed the MHC class la gene H-2Kb under the control of a housekeeping gene promoter, the hydroxy-methyl-glutaryl coenzyme A reductase (HMG) gene minimal promoter. This construct has been tested for functionality after transfection into mouse fibroblast L cells. The analysis of three founder transgenic mice and their progeny suggested that fetoplacental units that could express the H-2Kb heavy chains are unable to survive in utero beyond midgestation. We have shown further that a much higher resorption rate, on days 11 to 13 of embryonic development, is observed among transgenic embryos developing from eggs microinjected at the one-cell stage with the pHMG-Kb construct than in control embryos. This lethality is not due to immune phenomena, since it is observed in histocompatible combinations between mother and fetus. These results are discussed in the context of what is currently known about the regulation of MHC expression at the fetal-maternal interface and in various transgenic mouse models.
Martín-Granado, Víctor; Ortiz-Rivero, Sara; Carmona, Rita; Gutiérrez-Herrero, Sara; Barrera, Mario; San-Segundo, Laura; Sequera, Celia; Perdiguero, Pedro; Lozano, Francisco; Martín-Herrero, Francisco; González-Porras, José Ramón; Muñoz-Chápuli, Ramón; Porras, Almudena; Guerrero, Carmen
2017-12-19
Previous observations indicated that C3G (RAPGEF1) promotes α-granule release, evidenced by the increase in P-selectin exposure on the platelet surface following its activation. The goal of the present study is to further characterize the potential function of C3G as a modulator of the platelet releasate and its implication in the regulation of angiogenesis. Proteomic analysis revealed a decreased secretion of anti-angiogenic factors from activated transgenic C3G and C3G∆Cat platelets. Accordingly, the secretome from both transgenic platelets had an overall pro-angiogenic effect as evidenced by an in vitro capillary-tube formation assay with HUVECs (human umbilical vein endothelial cells) and by two in vivo models of heterotopic tumor growth. In addition, transgenic C3G expression in platelets greatly increased mouse melanoma cells metastasis. Moreover, immunofluorescence microscopy showed that the pro-angiogenic factors VEGF and bFGF were partially retained into α-granules in thrombin- and ADP-activated mouse platelets from both, C3G and C3GΔCat transgenic mice. The observed interaction between C3G and Vesicle-associated membrane protein (Vamp)-7 could explain these results. Concomitantly, increased platelet spreading in both transgenic platelets upon thrombin activation supports this novel function of C3G in α-granule exocytosis. Collectively, our data point out to the co-existence of Rap1GEF-dependent and independent mechanisms mediating C3G effects on platelet secretion, which regulates pathological angiogenesis in tumors and other contexts. The results herein support an important role for platelet C3G in angiogenesis and metastasis.
Brownlow, Milene L; Benner, Leif; D'Agostino, Dominic; Gordon, Marcia N; Morgan, Dave
2013-01-01
Dietary manipulations are increasingly viewed as possible approaches to treating neurodegenerative diseases. Previous studies suggest that Alzheimer's disease (AD) patients present an energy imbalance with brain hypometabolism and mitochondrial deficits. Ketogenic diets (KDs), widely investigated in the treatment and prevention of seizures, have been suggested to bypass metabolic deficits present in AD brain by providing ketone bodies as an alternative fuel to neurons. We investigated the effects of a ketogenic diet in two transgenic mouse lines. Five months old APP/PS1 (a model of amyloid deposition) and Tg4510 (a model of tau deposition) mice were offered either a ketogenic or a control (NIH-31) diet for 3 months. Body weight and food intake were monitored throughout the experiment, and blood was collected at 4 weeks and 4 months for ketone and glucose assessments. Both lines of transgenic mice weighed less than nontransgenic mice, yet, surprisingly, had elevated food intake. The ketogenic diet did not affect these differences in body weight or food consumption. Behavioral testing during the last two weeks of treatment found that mice offered KD performed significantly better on the rotarod compared to mice on the control diet independent of genotype. In the open field test, both transgenic mouse lines presented increased locomotor activity compared to nontransgenic, age-matched controls, and this effect was not influenced by KD. The radial arm water maze identified learning deficits in both transgenic lines with no significant differences between diets. Tissue measures of amyloid, tau, astroglial and microglial markers in transgenic lines showed no differences between animals fed the control or the ketogenic diet. These data suggest that ketogenic diets may play an important role in enhancing motor performance in mice, but have minimal impact on the phenotype of murine models of amyloid or tau deposition.
Correction of mouse ornithine transcarbamylase deficiency by gene transfer into the germ line.
Cavard, C; Grimber, G; Dubois, N; Chasse, J F; Bennoun, M; Minet-Thuriaux, M; Kamoun, P; Briand, P
1988-01-01
The sparse fur with abnormal skin and hair (Spf-ash) mouse is a model for the human X-linked hereditary disorder, ornithine transcarbamylase (OTC) deficiency. In Spf-ash mice, both OTC mRNA and enzyme activity are 5% of control values resulting in hyperammonemia, pronounced orotic aciduria and an abnormal phenotype characterized by growth retardation and sparse fur. Using microinjection, we introduced a construction containing rat OTC cDNA linked to the SV40 early promoter into fertilized eggs of Spf-ash mice. The expression of the transgene resulted in the development of a transgenic mouse whose phenotype and orotic acid excretion are fully normalized. Thus, the possibility of correcting hereditary enzymatic defect by gene transfer of heterologous cDNA coding for the normal enzyme has been demonstrated. Images PMID:3162766
Lu, Yanmei; Hoyte, Kwame; Montgomery, William H; Luk, Wilman; He, Dongping; Meilandt, William J; Zuchero, Y Joy Yu; Atwal, Jasvinder K; Scearce-Levie, Kimberly; Watts, Ryan J; DeForge, Laura E
2016-05-01
Transgenic mice that overexpress human amyloid precursor protein with Swedish or London (APPswe or APPlon) mutations have been widely used for preclinical Alzheimer's disease (AD) drug development. AD patients, however, rarely possess these mutations or overexpress APP. We developed a sensitive ELISA that specifically and accurately measures low levels of endogenous Aβ40 in mouse plasma, brain and CSF. In wild-type mice treated with a bispecific anti-TfR/BACE1 antibody, significant Aβ reductions were observed in the periphery and the brain. APPlon transgenic mice showed a slightly less reduction, whereas APPswe mice did not have any decrease. This sensitive and well-characterized mouse Aβ40 assay enables the use of wild-type mice for preclinical PK/PD and efficacy studies of potential AD therapeutics.
Role of Non neuronal Cells in Tauopathies After Brain Injury
2016-09-01
task is 100%. Complete. This has led to a delay in the ability to breed mice to obtain four Page 5 of 13 transgenes needed for the GFAP C5a Tg...the C1inh and C5GFAP transgenic mice from the respective institutions and breed them the obtain the crosses needed for the study and begin the TBI...understanding this elusive delay in onset of symptoms. This mouse is bred to mice with novel transgenes associated with complement activation: one
Honda, Shin-Ichiro; Wakatsuki, Toru; Harada, Nobuhiro
2011-01-01
Aromatase in the mouse brain is expressed only in the nerve cells of specific brain regions with a transient peak during the neonatal period when sexual behaviors become organized. The aromatase-knockout (ArKO) mouse, generated to shed light on the physiological functions of estrogen in the brain, exhibited various abnormal behaviors, concomitant with undetectable estrogen and increased androgen in the blood. To further elucidate the effects of neurosteroidal estrogens on behavioral phenotypes, we first prepared an brain-specific aromatase transgenic (bsArTG) mouse by introduction of a human aromatase transgene controlled under a −6.5 kb upstream region of the brain-specific promoter of the mouse aromatase gene into fertilized mouse eggs, because the −6.5 kb promoter region was previously shown to contain the minimal essential element responsible for brain-specific spatiotemporal expression. Then, an ArKO mouse expressing the human aromatase only in the brain was generated by crossing the bsArTG mouse with the ArKO mouse. The resulting mice (ArKO/bsArTG mice) nearly recovered from abnormal sexual, aggressive, and locomotive (exploratory) behaviors, in spite of having almost the same serum levels of estrogen and androgen as the adult ArKO mouse. These results suggest that estrogens locally synthesized in the specific neurons of the perinatal mouse brain directly act on the neurons and play crucial roles in the organization of neuronal networks participating in the control of sexual, aggressive, and locomotive (exploratory) behaviors. PMID:22654807
Green, Larry L
2014-03-01
Transgenic mice have yielded seven of the ten currently-approved human antibody drugs, making them the most successful platform for the discovery of fully human antibody therapeutics. The use of the in vivo immune system helps drive this success by taking advantage of the natural selection process that produces antibodies with desirable characteristics. Appropriately genetically-engineered mice act as robust engines for the generation of diverse repertoires of affinity- matured fully human variable regions with intrinsic properties necessary for successful antibody drug development including high potency, specificity, manufacturability, solubility and low risk of immunogenicity. A broad range of mAb drug targets are addressable in these mice, comprising both secreted and transmembrane targets, including membrane multi-spanning targets, as well as human target antigens that share high sequence identity with their mouse orthologue. Transgenic mice can routinely yield antibodies with sub-nanomolar binding affinity for their antigen, with lead candidate mAbs frequently possessing affinities for binding to their target of less than 100 picomolar, without requiring any ex vivo affinity optimization. While the originator transgenic mice platforms are no longer broadly available, a new generation of transgenic platforms is in development for discovery of the next wave of human therapeutic antibodies.
Nociti, Francisco H.; Somerman, Martha J.
2014-01-01
Teeth are mineralized organs composed of three unique hard tissues, enamel, dentin, and cementum, and supported by the surrounding alveolar bone. Although odontogenesis differs from osteogenesis in several respects, tooth mineralization is susceptible to similar developmental failures as bone. Here we discuss conditions fitting under the umbrella of rickets, which traditionally referred to skeletal disease associated with vitamin D deficiency but has been more recently expanded to include newly identified factors involved in endocrine regulation of vitamin D, phosphate, and calcium, including phosphate-regulating endopeptidase homolog, X-linked, fibroblast growth factor 23, and dentin matrix protein 1. Systemic mineral metabolism intersects with local regulation of mineralization, and factors including tissue nonspecific alkaline phosphatase are necessary for proper mineralization, where rickets can result from loss of activity of tissue nonspecific alkaline phosphatase. Individuals suffering from rickets often bear the additional burden of a defective dentition, and transgenic mouse models have aided in understanding the nature and mechanisms involved in tooth defects, which may or may not parallel rachitic bone defects. This report reviews dental effects of the range of rachitic disorders, including discussion of etiologies of hereditary forms of rickets, a survey of resulting bone and tooth mineralization disorders, and a discussion of mechanisms, known and hypothesized, involved in the observed dental pathologies. Descriptions of human pathology are augmented by analysis of transgenic mouse models, and new interpretations are brought to bear on questions of how teeth are affected under conditions of rickets. In short, the rachitic tooth will be revealed. PMID:23939820
Rodriguez-Ortiz, Carlos J; Hoshino, Hitomi; Cheng, David; Liu-Yescevitz, Liqun; Blurton-Jones, Mathew; Wolozin, Benjamin; LaFerla, Frank M; Kitazawa, Masashi
2013-08-01
Mutations in valosin-containing protein (VCP) cause a rare, autosomal dominant disease called inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD). One-third of patients with IBMPFD develop frontotemporal dementia, characterized by an extensive neurodegeneration in the frontal and temporal lobes. Neuropathologic hallmarks include nuclear and cytosolic inclusions positive to ubiquitin and transactive response DNA-binding protein 43 (TDP-43) in neurons and glial activation in affected regions. However, the pathogenic mechanisms by which mutant VCP triggers neurodegeneration remain unknown. Herein, we generated a mouse model selectively overexpressing a human mutant VCP in neurons to study pathogenic mechanisms of mutant VCP-mediated neurodegeneration and cognitive impairment. The overexpression of VCPA232E mutation in forebrain regions produced significant progressive impairments of cognitive function, including deficits in spatial memory, object recognition, and fear conditioning. Although overexpressed or endogenous VCP did not seem to focally aggregate inside neurons, TDP-43 and ubiquitin accumulated with age in transgenic mouse brains. TDP-43 was also found to co-localize with stress granules in the cytosolic compartment. Together with the appearance of high-molecular-weight TDP-43 in cytosolic fractions, these findings demonstrate the mislocalization and accumulation of abnormal TDP-43 in the cytosol of transgenic mice, which likely lead to an increase in cellular stress and cognitive impairment. Taken together, these results highlight an important pathologic link between VCP and cognition. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Impact of conditional deletion of the pro-apoptotic BCL-2 family member BIM in mice.
Herold, M J; Stuchbery, R; Mérino, D; Willson, T; Strasser, A; Hildeman, D; Bouillet, P
2014-10-09
The pro-apoptotic BH3-only BCL-2 family member BIM is a critical determinant of hematopoietic cell development and homeostasis. It has been argued that the striking hematopoietic abnormalities of BIM-deficient mice (accumulation of lymphocytes and granulocytes) may be the result of the loss of the protein throughout the whole animal rather than a consequence intrinsic to the loss of BIM in hematopoietic cells. To address this issue and allow the deletion of BIM in specific cell types in future studies, we have developed a mouse strain with a conditional Bim allele as well as a new Cre transgenic strain, Vav-CreER, in which the tamoxifen-inducible CreER recombinase (fusion protein) is predominantly expressed in the hematopoietic system. We show that acute loss of BIM in the adult mouse rapidly results in the hematopoietic phenotypes previously observed in mice lacking BIM in all tissues. This includes changes in thymocyte subpopulations, increased white blood cell counts and resistance of lymphocytes to BIM-dependent apoptotic stimuli, such as cytokine deprivation. We have validated this novel conditional Bim knockout mouse model using established and newly developed CreER strains (Rosa26-CreER and Vav-CreER) and will make these exciting new tools for studies on cell death and cancer available.
ECTODERMAL WNT/β-CATENIN SIGNALING SHAPES THE MOUSE FACE
Reid, Bethany S.; Yang, Hui; Melvin, Vida Senkus; Taketo, Makoto M.; Williams, Trevor
2010-01-01
The canonical Wnt/β-catenin pathway is an essential component of multiple developmental processes. To investigate the role of this pathway in the ectoderm during facial morphogenesis, we generated conditional β-catenin mouse mutants using a novel ectoderm-specific Cre recombinase transgenic line. Our results demonstrate that ablating or stabilizing β-catenin in the embryonic ectoderm causes dramatic changes in facial morphology. There are accompanying alterations in the expression of Fgf8 and Shh, key molecules that establish a signaling center critical for facial patterning, the frontonasal ectodermal zone (FEZ). These data indicate that Wnt/β-catenin signaling within the ectoderm is critical for facial development and further suggest that this pathway is an important mechanism for generating the diverse facial shapes of vertebrates during evolution. PMID:21087601
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikeda, Kazuhiro; Tsukui, Tohru; Imazawa, Yukiko
2012-09-07
Highlights: Black-Right-Pointing-Pointer Conditional transgenic mice expressing constitutively active estrogen receptor {alpha} (caER{alpha}) in chondrocytes were developed. Black-Right-Pointing-Pointer Expression of caER{alpha} in chondrocytes impaired longitudinal bone growth in mice. Black-Right-Pointing-Pointer caER{alpha} affects chondrocyte proliferation and differentiation. Black-Right-Pointing-Pointer This mouse model is useful for understanding the physiological role of ER{alpha}in vivo. -- Abstract: Estrogen plays important roles in the regulation of chondrocyte proliferation and differentiation, which are essential steps for longitudinal bone growth; however, the mechanisms of estrogen action on chondrocytes have not been fully elucidated. In the present study, we generated conditional transgenic mice, designated as caER{alpha}{sup ColII}, expressing constitutively activemore » mutant estrogen receptor (ER) {alpha} in chondrocytes, using the chondrocyte-specific type II collagen promoter-driven Cre transgenic mice. caER{alpha}{sup ColII} mice showed retardation in longitudinal growth, with short bone lengths. BrdU labeling showed reduced proliferation of hypertrophic chondrocytes in the proliferating layer of the growth plate of tibia in caER{alpha}{sup ColII} mice. In situ hybridization analysis of type X collagen revealed that the maturation of hypertrophic chondrocytes was impaired in caER{alpha}{sup ColII} mice. These results suggest that ER{alpha} is a critical regulator of chondrocyte proliferation and maturation during skeletal development, mediating longitudinal bone growth in vivo.« less
Broad AOX expression in a genetically tractable mouse model does not disturb normal physiology
Szibor, Marten; Dhandapani, Praveen K.; Dufour, Eric; Holmström, Kira M.; Zhuang, Yuan; Salwig, Isabelle; Wittig, Ilka; Heidler, Juliana; Gizatullina, Zemfira; Fuchs, Helmut; Gailus-Durner, Valérie; de Angelis, Martin Hrabě; Nandania, Jatin; Velagapudi, Vidya; Wietelmann, Astrid; Rustin, Pierre; Gellerich, Frank N.; Braun, Thomas
2017-01-01
ABSTRACT Plants and many lower organisms, but not mammals, express alternative oxidases (AOXs) that branch the mitochondrial respiratory chain, transferring electrons directly from ubiquinol to oxygen without proton pumping. Thus, they maintain electron flow under conditions when the classical respiratory chain is impaired, limiting excess production of oxygen radicals and supporting redox and metabolic homeostasis. AOX from Ciona intestinalis has been used to study and mitigate mitochondrial impairments in mammalian cell lines, Drosophila disease models and, most recently, in the mouse, where multiple lentivector-AOX transgenes conferred substantial expression in specific tissues. Here, we describe a genetically tractable mouse model in which Ciona AOX has been targeted to the Rosa26 locus for ubiquitous expression. The AOXRosa26 mouse exhibited only subtle phenotypic effects on respiratory complex formation, oxygen consumption or the global metabolome, and showed an essentially normal physiology. AOX conferred robust resistance to inhibitors of the respiratory chain in organello; moreover, animals exposed to a systemically applied LD50 dose of cyanide did not succumb. The AOXRosa26 mouse is a useful tool to investigate respiratory control mechanisms and to decipher mitochondrial disease aetiology in vivo. PMID:28067626
Methylarsonous acid [MMA(III)], a common metabolite of inorganic arsenic metabolism, increases tumor frequency in the skin of K6/ODC transgenic mice following a chronic exposure. To characterize gene expression profiles predictive of MMA(III) exposure and mode of action of carcin...
Genetic engineering of a mouse: Dr. Frank Ruddle and somatic cell genetics.
Jones, Dennis
2011-06-01
Genetic engineering is the process of modifying an organism's genetic composition by adding foreign genes to produce desired traits or evaluate function. Dr. Jon W. Gordon and Sterling Professor Emeritus at Yale Dr. Frank H. Ruddle were pioneers in mammalian gene transfer research. Their research resulted in production of the first transgenic animals, which contained foreign DNA that was passed on to offspring. Transgenic mice have revolutionized biology, medicine, and biotechnology in the 21st century. In brief, this review revisits their creation of transgenic mice and discusses a few evolving applications of their transgenic technology used in biomedical research.
NASA Technical Reports Server (NTRS)
Grill, Mischala A.; Bales, Mark A.; Fought, Amber N.; Rosburg, Kristopher C.; Munger, Stephanie J.; Antin, Parker B.
2003-01-01
Tightly regulated control of over-expression is often necessary to study one aspect or time point of gene function and, in transgenesis, may help to avoid lethal effects and complications caused by ubiquitous over-expression. We have utilized the benefits of an optimized tet-on system and a modified muscle creatine kinase (MCK) promoter to generate a skeletal muscle-specific, doxycycline (Dox) controlled over-expression system in transgenic mice. A DNA construct was generated in which the codon optimized reverse tetracycline transactivator (rtTA) was placed under control of a skeletal muscle-specific version of the mouse MCK promoter. Transgenic mice containing this construct expressed rtTA almost exclusively in skeletal muscles. These mice were crossed to a second transgenic line containing a bi-directional promoter centered on a tet responder element driving both a luciferase reporter gene and a tagged gene of interest; in this case the calpain inhibitor calpastatin. Compound hemizygous mice showed high level, Dox dependent muscle-specific luciferase activity often exceeding 10,000-fold over non-muscle tissues of the same mouse. Western and immunocytochemical analysis demonstrated similar Dox dependent muscle-specific induction of the tagged calpastatin protein. These findings demonstrate the effectiveness and flexibility of the tet-on system to provide a tightly regulated over-expression system in adult skeletal muscle. The MCKrtTA transgenic lines can be combined with other transgenic responder lines for skeletal muscle-specific over-expression of any target gene of interest.
Fujimoto, Yoshikazu; Tomioka, Yukiko; Ozaki, Kinuyo; Takeda, Keiko; Suyama, Haruka; Yamamoto, Sayo; Takakuwa, Hiroki; Morimatsu, Masami; Uede, Toshimitsu; Ono, Etsuro
2017-07-01
Herpesvirus entry mediator A (HVEM), nectin-1 and nectin-2 are cellular receptors of glycoprotein D (gD) of herpes simplex virus type-2 (HSV-2). It has been shown that soluble forms of HSV gD receptors have the antiviral potential in cultured cells and transgenic mice. Here, to compare antiviral potential of soluble forms of HVEM, nectin-1 and nectin-2 against HSV-2 infections in vivo, transgenic mice expressing fusion proteins consisting of the entire ectodomain of HVEM, nectin-1 or nectin-2 and the Fc portion of human IgG (HVEMIg, nectin-1Ig and nectin-2Ig, respectively) were intraperitoneally infected with HSV-2. In the infection with 3 MLD50 (50 % mouse lethal dose), effective resistance was not observed in transgenic mice expressing nectin-2Ig. In a transgenic mouse line with high expression of nectin-1Ig, significant protection from the infection with 30 and 300 MLD50 was observed (survival rate of 100 and 71 %, respectively). On the other hand, transgenic mice expressing HVEMIg showed a complete resistance to the lethal infection even with 300 MLD50 (survival rate of 100 %). These results demonstrated that HVEMIg could exert effective antiviral activities against HSV-2 infections in vivo as compared with other soluble forms of HSV gD receptors.
Analysis of the mutations inducedd by conazole fungicides in vivo
The mouse liver tumorigenic conazo1e fungicides triadimefon and propiconazo1e have previously been shown to be in vivo mouse liver mutagens in the Big Blue" transgenic mutation assay when administered in feed at tumorigenic doses, whereas the nontumorigenic conazo1e myc1obutani1 ...
Cardiac c-Kit Biology Revealed by Inducible Transgenesis.
Gude, Natalie A; Firouzi, Fareheh; Broughton, Kathleen M; Ilves, Kelli; Nguyen, Kristine P; Payne, Christina R; Sacchi, Veronica; Monsanto, Megan M; Casillas, Alexandria R; Khalafalla, Farid G; Wang, Bingyan J; Ebeid, David E; Alvarez, Roberto; Dembitsky, Walter P; Bailey, Barbara A; van Berlo, Jop; Sussman, Mark A
2018-06-22
Biological significance of c-Kit as a cardiac stem cell marker and role(s) of c-Kit+ cells in myocardial development or response to pathological injury remain unresolved because of varied and discrepant findings. Alternative experimental models are required to contextualize and reconcile discordant published observations of cardiac c-Kit myocardial biology and provide meaningful insights regarding clinical relevance of c-Kit signaling for translational cell therapy. The main objectives of this study are as follows: demonstrating c-Kit myocardial biology through combined studies of both human and murine cardiac cells; advancing understanding of c-Kit myocardial biology through creation and characterization of a novel, inducible transgenic c-Kit reporter mouse model that overcomes limitations inherent to knock-in reporter models; and providing perspective to reconcile disparate viewpoints on c-Kit biology in the myocardium. In vitro studies confirm a critical role for c-Kit signaling in both cardiomyocytes and cardiac stem cells. Activation of c-Kit receptor promotes cell survival and proliferation in stem cells and cardiomyocytes of either human or murine origin. For creation of the mouse model, the cloned mouse c-Kit promoter drives Histone2B-EGFP (enhanced green fluorescent protein; H2BEGFP) expression in a doxycycline-inducible transgenic reporter line. The combination of c-Kit transgenesis coupled to H2BEGFP readout provides sensitive, specific, inducible, and persistent tracking of c-Kit promoter activation. Tagging efficiency for EGFP+/c-Kit+ cells is similar between our transgenic versus a c-Kit knock-in mouse line, but frequency of c-Kit+ cells in cardiac tissue from the knock-in model is 55% lower than that from our transgenic line. The c-Kit transgenic reporter model reveals intimate association of c-Kit expression with adult myocardial biology. Both cardiac stem cells and a subpopulation of cardiomyocytes express c-Kit in uninjured adult heart, upregulating c-Kit expression in response to pathological stress. c-Kit myocardial biology is more complex and varied than previously appreciated or documented, demonstrating validity in multiple points of coexisting yet heretofore seemingly irreconcilable published findings. © 2018 American Heart Association, Inc.
2013-01-01
Introduction The development of an appropriate procedure for lentiviral gene transduction into keratinocyte stem cells is crucial for stem cell biology and regenerative medicine for genetic disorders of the skin. However, there is little information available on the efficiency of lentiviral transduction into human keratinocyte stem/progenitor cells and the effects of gene transduction procedures on growth potential of the stem cells by systematic assessment. Methods In this study, we explored the conditions for efficient expansion of human keratinocyte stem/progenitor cells carrying a transgene with a lentiviral vector, by using the culture of keratinocytes on a feeder layer of 3 T3 mouse fibroblasts. The gene transduction and expansion of keratinocytes carrying a transgene were analyzed by Western blotting, quantitative PCR, and flow cytometry. Results Polybrene (hexadiamine bromide) markedly enhanced the efficiency of lentiviral gene transduction, but negatively affected the maintenance of the keratinocyte stem/progenitor cells at a concentration higher than 5 μg/ml. Rho-assiciated kinase (ROCK) inhibitor Y-27632, a small molecule which enhanced keratinocyte proliferation, significantly interfered with the lentiviral transduction into cultured human keratinocytes. However, a suitable combination of polybrene and Y-27632 effectively expanded keratinocytes carrying a transgene. Conclusions This study provides information for effective expansion of cultured human keratinocyte stem/progenitor cells carrying a transgene. This point is particularly significant for the application of genetically modified keratinocyte stem/progenitor stem cells in regenerative medicine. PMID:24406242
Advanced transgenic approaches to understand alcohol-related phenotypes in animals.
Bilbao, Ainhoa
2013-01-01
During the past two decades, the use of genetically manipulated animal models in alcohol research has greatly improved the understanding of the mechanisms underlying alcohol addiction. In this chapter, we present an overview of the progress made in this field by summarizing findings obtained from studies of mice harboring global and conditional mutations in genes that influence alcohol-related phenotypes. The first part reviews behavioral paradigms for modeling the different phases of the alcohol addiction cycle and other alcohol-induced behavioral phenotypes in mice. The second part reviews the current data available using genetic models targeting the main neurotransmitter and neuropeptide systems involved in the reinforcement and stress pathways, focusing on the phenotypes modeling the alcohol addiction cycle. Finally, the third part will discuss the current findings and future directions, and proposes advanced transgenic mouse models for their potential use in alcohol research.
Establishment and culture optimization of a new type of pituitary immortalized cell line.
Kokubu, Yuko; Asashima, Makoto; Kurisaki, Akira
2015-08-07
The pituitary gland is a center of the endocrine system that controls homeostasis in an organism by secreting various hormones. The glandular anterior pituitary consists of five different cell types, each expressing specific hormones. However, their regulation and the appropriate conditions for their in vitro culture are not well defined. Here, we report the immortalization of mouse pituitary cells by introducing TERT, E6, and E7 transgenes. The immortalized cell lines mainly expressed a thyrotroph-specific thyroid stimulating hormone beta (Tshb). After optimization of the culture conditions, these immortalized cells proliferated and maintained morphological characteristics similar to those of primary pituitary cells under sphere culture conditions in DMEM/F12 medium supplemented with N2, B27, basic FGF, and EGF. These cell lines responded to PKA or PKC pathway activators and induced the expression of Tshb mRNA. Moreover, transplantation of the immortalized cell line into subcutaneous regions and kidney capsules of mice further increased Tshb expression. These results suggest that immortalization of pituitary cells with TERT, E6, and E7 transgenes is a useful method for generating proliferating cells for the in vitro analysis of pituitary regulatory mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.
Pinheiro, Barbara S; Seidl, Simon S; Habazettl, Eva; Gruber, Bernadette E; Bregolin, Tanja; Zernig, Gerald
2016-04-01
Impaired social interaction is a hallmark symptom of many psychiatric diseases, including dependence syndromes (substance use disorders). Helping the addict reorient her/his behavior away from the drug of abuse toward social interaction would be of considerable therapeutic benefit. To study the neural basis of such a reorientation, we have developed several animal models in which the attractiveness of a dyadic (i.e. one-to-one) social interaction (DSI) can be compared directly with that of cocaine as a prototypical drug of abuse. Our models are based on the conditioned place preference (CPP) paradigm. In an ongoing effort to validate our experimental paradigms in C57BL/6 mice to make use of the plethora of transgenic models available in this genus, we found the following: (a) DSI with a live mouse produced CPP, whereas an interaction with an inanimate mouse-like object (i.e. a 'toy mouse'; toy mouse interaction) led to conditioned place aversion - but only in the Jackson substrain (C57BL/6J). (b) In the NIH substrain (C57BL/6N), both DSI and toy mouse interaction produced individual aversion in more than 50% of the tested mice. (c) Four 15 min DSI episodes did not result in the development of an observable hierarchy, that is, dominance/subordination behavior in the overwhelming majority (i.e. 30 of 32) of the tested Jackson mouse pairs. Therefore, dominance/subordination does not seem to be a confounding variable in our paradigm, at least not in C57BL/6J mice. Respective data for NIH mice were too limited to allow any conclusion. The present findings indicate that (a) DSI with a live mouse produces CPP to a greater degree than an interaction with an inanimate object resembling a mouse and that (b) certain substrain differences with respect to CPP/aversion to DSI do exist between the Jax and NIH substrain of C57BL/6 mice. These differences have to be considered when choosing a proper mouse substrain model for investigating the neural basis of DSI reward versus drug reward.
Chauderlier, Alban; Delattre, Lucie; Buée, Luc; Galas, Marie-Christine
2017-01-01
Oxidative damage is an early event in neurodegenerative disorders such as Alzheimer disease. To increase oxidative stress in AD-related mouse models is essential to study early mechanisms involved in the physiopathology of these diseases. In this chapter, we describe an experimental mouse model of transient and acute hyperthermic stress to induce in vivo an increase of oxidative stress in the brain of any kind of wild-type or transgenic mouse.
Effects of Multimodal Analgesia on the Success of Mouse Embryo Transfer Surgery
Parker, John M.; Austin, Jamie; Wilkerson, James; Carbone, Larry
2011-01-01
Multimodal analgesia is promoted as the best practice pain management for invasive animal research procedures. Universal acceptance and incorporation of multimodal analgesia requires assessing potential effects on study outcome. The focus of this study was to assess effects on embryo survival after multimodal analgesia comprising an opioid and nonsteroidal antiinflammatory drug (NSAID) compared with opioid-only analgesia during embryo transfer procedures in transgenic mouse production. Mice were assigned to receive either carprofen (5 mg/kg) with buprenorphine (0.1 mg/kg; CB) or vehicle with buprenorphine (0.1 mg/kg; VB) in a prospective, double-blinded placebo controlled clinical trial. Data were analyzed in surgical sets of 1 to 3 female mice receiving embryos chimeric for a shared targeted embryonic stem-cell clone and host blastocyst cells. A total of 99 surgical sets were analyzed, comprising 199 Crl:CD1 female mice and their 996 offspring. Neither yield (pups weaned per embryo implanted in the surgical set) nor birth rate (average number of pups weaned per dam in the set) differed significantly between the CB and VB conditions. Multimodal opioid–NSAID analgesia appears to have no significant positive or negative effect on the success of producing novel lines of transgenic mice by blastocyst transfer. PMID:21838973
Renoir, Thibault; Pang, Terence Y; Shikano, Yoshiko; Li, Shanshan; Hannan, Anthony J
2015-01-01
We previously reported sex differences in depression-like behaviours in a mouse model of Huntington's disease (HD). We hypothesized that immune response could also be altered in HD mice in a sex-dependent manner. Here, we assessed the molecular effects of an acute challenge with lipopolysaccharides (LPS) in female versus male R6/1 transgenic HD mice. We found an enhancement of LPS-induced TNF-α gene expression in the hypothalamus of female HD mice. TNF-α serum levels following LPS administration were also higher in female HD mice compared to WT animals. In contrast, male HD mice exhibited reduced LPS-induced TNF-α gene expression compared to WT animals. Our findings suggest that immune response to LPS is altered in HD mice in a sex-dependent manner. These pro-inflammatory abnormalities may contribute to the sexually dimorphic depression-like behaviours displayed by this mouse model of HD.
Buscara, Laurine; Montazer-Torbati, Fatemeh; Chadi, Sead; Auguste, Aurélie; Laubier, Johann; Chassot, Anne-Amandine; Renault, Lauriane; Passet, Bruno; Costa, José; Pannetier, Maëlle; Vilotte, Marthe; Chaboissier, Marie-Christine; Vilotte, Jean-Luc; Pailhoux, Eric; Le Provost, Fabienne
2009-08-01
RSPO1 is a newly discovered gene involved in sex differentiation. Two goat BAC clones encompassing the RSPO1 gene (gRSPO1) were injected into mouse oocytes and several transgenic lines derived. Both clones induced gRSPO1 over-expression in various tissues, including male and female gonads, with no obvious phenotype and normal sex-ratios. Introgression of the gRSPO1 transgene into a mouse RSPO1 knockout genotype resulted in the rescue of the fertility and the disappearance of the masculinized gonadic features of the females, demonstrating the functionality of the goat protein in a mouse context. On the contrary, over-expression of gRSPO1 within a mSRY or a gSRY-XX genotypes did not interfere with the SRY-induced male phenotype.
Successful sanitation of an EDIM-infected mouse colony by breeding cessation.
Held, N; Hedrich, H J; Bleich, A
2011-10-01
Despite decreasing prevalence, rotavirus infections still rank among the most important viral infections in colonies of laboratory mice. Although the disease is characterized by low mortality and a relatively short and mild clinical period, the infection has the potential to alter the outcome of experiments substantially. For animal facilities, it is therefore essential to eradicate the virus. Here we report a successful sanitation of a rotavirus-infected mouse colony in an animal facility. Despite a high ratio of transgenic and partially immunodeficient strains, a permanent eradication of the virus was achieved by euthanasia of highly susceptible mice, a prolonged breeding cessation in areas containing immunocompromised mice and a strict hygienic management. The management of a rotavirus infection reported here is a feasible and inexpensive opportunity for sanitation that benefits from maintaining most of the animal population, even in today's mouse colonies comprising mainly transgenic mice with unknown or compromised immune status.
Zou, Junhui; Wang, Wenbin; Pan, Yung-Wei; Abel, Glen M.
2015-01-01
Abstract Although there is evidence that adult neurogenesis contributes to the therapeutic efficacy of chronic antidepressant treatment for anxiety and depression disorders, the role of adult neurogenesis in the onset of depression-related symptoms is still open to question. To address this issue, we utilized a transgenic mouse strain in which adult neurogenesis was specifically and conditionally impaired by Nestin-CreER-driven, inducible knockout (icKO) of erk5 MAP kinase in Nestin-expressing neural progenitors of the adult mouse brain upon tamoxifen administration. Here, we report that inhibition of adult neurogenesis by this mechanism is not associated with an increase of the baseline anxiety or depression in non-stressed animals, nor does it increase the animal’s susceptibility to depression after chronic unpredictable stress treatment. Our findings indicate that impaired adult neurogenesis does not lead to anxiety or depression. PMID:26464972
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Ying; Adachi, Hiroaki, E-mail: hadachi-ns@umin.org; Department of Neurology, University of Occupational and Environmental Health School of Medicine, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555
Spinal and bulbar muscular atrophy (SBMA) is an inherited motor neuron disease caused by the expansion of a polyglutamine (polyQ)-encoding tract within the androgen receptor (AR) gene. The pathologic features of SBMA are motor neuron loss in the spinal cord and brainstem and diffuse nuclear accumulation and nuclear inclusions of mutant AR in residual motor neurons and certain visceral organs. Hepatocyte growth factor (HGF) is a polypeptide growth factor which has neuroprotective properties. To investigate whether HGF overexpression can affect disease progression in a mouse model of SBMA, we crossed SBMA transgenic model mice expressing an AR gene with anmore » expanded CAG repeat with mice overexpressing HGF. Here, we report that high expression of HGF induces Akt phosphorylation and modestly ameliorated motor symptoms in an SBMA transgenic mouse model treated with or without castration. These findings suggest that HGF overexpression can provide a potential therapeutic avenue as a combination therapy with disease-modifying therapies in SBMA. - Highlights: • HGF overexpression ameliorates the motor phenotypes of the SBMA mouse model. • HGF overexpression induces Akt phosphorylation in the SBMA mouse model. • This is the first report of combination therapy in a mouse model of polyQ diseases.« less
Germ-Line Recombination Activity of the Widely Used hGFAP-Cre and Nestin-Cre Transgenes
Zhang, Jiong; Dublin, Pavel; Griemsmann, Stephanie; Klein, Alexandra; Brehm, Ralph; Bedner, Peter; Fleischmann, Bernd K.; Steinhäuser, Christian; Theis, Martin
2013-01-01
Herein we demonstrate with PCR, immunodetection and reporter gene approaches that the widely used human Glial Fibrillary Acidic Protein (hGFAP)-Cre transgene exhibits spontaneous germ-line recombination activity in leading to deletion in brain, heart and tail tissue with high frequency. The ectopic activity of hGFAP-Cre requires a rigorous control. We likewise observed that a second widely used nestin-Cre transgene shows germ-line deletion. Here we describe procedures to identify mice with germ-line recombination mediated by the hGFAP-Cre and nestin-Cre transgenes. Such control is essential to avoid pleiotropic effects due to germ-line deletion of loxP-flanked target genes and to maintain the CNS-restricted deletion status in transgenic mouse colonies. PMID:24349371
Ewulonu, U K; Snyder, L; Silver, L M; Schimenti, J C
1996-03-01
Transgenic mice were generated to localize essential promoter elements in the mouse testis-expressed Tcp-10 genes. These genes are expressed exclusively in male germ cells, and exhibit a diffuse range of transcriptional start sites, possibly due to the absence of a TATA box. A series of transgene constructs containing different amounts of 5' flanking DNA revealed that all sequences necessary for appropriate temporal and tissue-specific transcription of Tcp-10 reside between positions -1 to -973. All transgenic animals containing these sequences expressed a chimeric transgene at high levels, in a pattern that paralleled the endogenous genes. These experiments further defined a 227 bp fragment from -746 to -973 that was absolutely essential for expression. In a gel-shift assay, this 227-bp fragment bound nuclear protein from testis, but not other tissues, to yield two retarded bands. Sequence analysis of this fragment revealed a half-site for the AP-2 transcription factor recognition sequence. Gel shift assays using native or mutant oligonucleotides demonstrated that the putative AP-2 recognition sequence was essential for generating the retarded bands. Since the binding activity is testis-specific, but AP-2 expression is not exclusive to male germ cells, it is possible that transcription of Tcp-10 requires interaction between AP-2 and a germ cell-specific transcription factor.
Augmentation of sensory-evoked hemodynamic response in an early Alzheimer's disease mouse model.
Kim, Jinho; Jeong, Yong
2013-01-01
Based on enlarged blood oxygen level-dependent (BOLD) responses in cognitively normal subjects at risk for Alzheimer's disease (AD), compensatory neuronal hyperactivation has been proposed as an early marker for diagnosis of AD. The BOLD response results from neurovascular coupling, i.e., hemodynamic response induced by neuronal activity. However, there has been no evidence of task-induced increases in hemodynamic response in animal models of AD. Here, we observed an augmented hemodynamic response pattern in a transgenic AβPP(SWE)/PS1ΔE9 mouse model of AD using three in vivo imaging methods: intrinsic optical signal imaging, multi-photon laser scanning microscopy, and laser Doppler flowmetry. Sensory stimulation resulted in augmented and prolonged hemodynamic responses in transgenic mice evidenced by changes in total, oxygenated, and deoxygenated hemoglobin concentration. This difference between transgenic and wild-type mice was significant at 7 months of age when amyloid plaques and cerebral amyloid angiopathy had developed but not at younger or older ages. Correspondingly, sensory stimulation-induced pial arteriole diameter was also augmented and prolonged in transgenic mice at 7 months of age. Cerebral blood flow response in transgenic mice was augmented but not prolonged. These results are consistent with the existence of BOLD signal hyperactivation in non-demented AD-risk human subjects, supporting its potential use as an early diagnostic marker of AD.
AβPP/PS1 Transgenic Mice Show Sex Differences in the Cerebellum Associated with Aging.
Ordoñez-Gutierrez, Lara; Fernandez-Perez, Ivan; Herrera, Jose Luis; Anton, Marta; Benito-Cuesta, Irene; Wandosell, Francisco
2016-09-06
Cerebellar pathology has been related to presenilin 1 mutations in certain pedigrees of familial Alzheimer's disease. However, cerebellum tissue has not been intensively analyzed in transgenic models of mutant presenilins. Furthermore, the effect of the sex of the mice was not systematically analyzed, despite the fact that important gender differences in the evolution of the disease in the human population have been described. We analyzed whether the progression of amyloidosis in a double transgenic mouse, AβPP/PS1, is susceptible to aging and differentially affects males and females. The accumulation of amyloid in the cerebellum differentially affects males and females of the AβPP/PS1 transgenic line, which was found to be ten-fold higher in 15-month-old females. Amyloid-β accumulation was more evident in the molecular layer of the cerebellum, but glia reaction was only observed in the granular layer of the older mice. The sex divergence was also observed in other neuronal, survival, and autophagic markers. The cerebellum plays an important role in the evolution of the pathology in this transgenic mouse model. Sex differences could be crucial for a complete understanding of this disease. We propose that the human population could be studied in this way. Sex-specific treatment strategies in human populations could show a differential response to the therapeutic approach.
Dan, Lu; Liu, Shen; Shang, Shengzhe; Zhang, Huihua; Zhang, Ran; Li, Ning
2018-04-20
Targeted gene modification is a novel intervention strategy to increase disease resistance more quickly than traditional animal breeding. Human lysozyme, a natural, non-specific immune factor, participates in innate immunity, exerts a wide range of antimicrobial activities against pathogens, and has immuneregulatory effects. Therefore, it is a candidate gene for improved disease resistance in animals. In this study, we successfully generated a transgenic mouse model by microinjecting a modified bacterial artificial chromosome containing a recombinant human lysozyme (rhLZ) gene into the pronuclei of fertilized mouse embryos. rhLZ was expressed in serum, liver, spleen, lung, kidney, stomach, small intestine, and large intestine but not in milk. rhLZ protein concentrations in the serum of transgenic mice ranged from 2.09 to 2.60 mg/l. To examine the effect of rhLZ on intestinal microbiota, total aerobes, total anaerobes, Clostridium, Enterococcus, Streptococcus, Salmonella, Escherichia coli, Staphylococcus, Bifidobacterium, and Lactobacillus were measured in the intestines of transgenic and wild type mice. Results showed that Bifidobacteria were significantly increased (p < 0.001), whereas Salmonella were significantly decreased (p < 0.001) in transgenic mice compared to wild type mice. Our study suggests that rhLZ expression is a potential strategy to increase animal disease resistance. Copyright © 2018 Elsevier B.V. All rights reserved.
Podsypanina, Katrina; Politi, Katerina; Beverly, Levi J; Varmus, Harold E
2008-04-01
Most, if not all, cancers are composed of cells in which more than one gene has a cancer-promoting mutation. Although recent evidence has shown the benefits of therapies targeting a single mutant protein, little attention has been given to situations in which experimental tumors are induced by multiple cooperating oncogenes. Using combinations of doxycycline-inducible and constitutive Myc and mutant Kras transgenes expressed in mouse mammary glands, we show that tumors induced by the cooperative actions of two oncogenes remain dependent on the activity of a single oncogene. Deinduction of either oncogene individually, or both oncogenes simultaneously, led to partial or complete tumor regression. Prolonged remission followed deinduction of Kras(G12D) in the context of continued Myc expression, deinduction of a MYC transgene with continued expression of mutant Kras produced modest effects on life extension, whereas simultaneous deinduction of both MYC and Kras(G12D) transgenes further improved survival. Disease relapse after deinduction of both oncogenes was associated with reactivation of both oncogenic transgenes in all recurrent tumors, often in conjunction with secondary somatic mutations in the tetracycline transactivator transgene, MMTV-rtTA, rendering gene expression doxycycline-independent. These results demonstrate that tumor viability is maintained by each gene in a combination of oncogenes and that targeted approaches will also benefit from combination therapies.
Arsenault, Patrick R.; Pei, Fei; Lee, Rebecca; Kerestes, Heddy; Percy, Melanie J.; Keith, Brian; Simon, M. Celeste; Lappin, Terence R. J.; Khurana, Tejvir S.; Lee, Frank S.
2013-01-01
The central pathway for controlling red cell mass is the PHD (prolyl hydroxylase domain protein):hypoxia-inducible factor (HIF) pathway. HIF, which is negatively regulated by PHD, activates numerous genes, including ones involved in erythropoiesis, such as the ERYTHROPOIETIN (EPO) gene. Recent studies have implicated PHD2 as the key PHD isoform regulating red cell mass. Studies of humans have identified erythrocytosis-associated, heterozygous point mutations in the PHD2 gene. A key question concerns the mechanism by which human mutations lead to phenotypes. In the present report, we generated and characterized a mouse line in which a P294R knock-in mutation has been introduced into the mouse Phd2 locus to model the first reported human PHD2 mutation (P317R). Phd2P294R/+ mice display a degree of erythrocytosis equivalent to that seen in Phd2+/− mice. The Phd2P294R/+-associated erythrocytosis is reversed in a Hif2a+/−, but not a Hif1a+/− background. Additional studies using various conditional knock-outs of Phd2 reveal that erythrocytosis can be induced by homozygous and heterozygous knock-out of Phd2 in renal cortical interstitial cells using a Pax3-Cre transgene or by homozygous knock-out of Phd2 in hematopoietic progenitors driven by a Vav1-Cre transgene. These studies formally prove that a missense mutation in PHD2 is the cause of the erythrocytosis, show that this occurs through haploinsufficiency, and point to multifactorial control of red cell mass by PHD2. PMID:24121508
Case Study: Polycystic Livers in a Transgenic Mouse Line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovaglio, Jamie A.; Artwohl, James E.; Ward, Christopher J.
Three mice (2 male, 1 female; age, 5 to 16 mo) from a mouse line transgenic for keratin 14 (K14)-driven LacZ expression and on an outbred Crl:CD1(ICR) background, were identified as having distended abdomens and livers that were diffusely enlarged by numerous cysts (diameter, 0.1 to 2.0 cm). Histopathology revealed hepatic cysts lined by biliary type epithelium and mild chronic inflammation, and confirmed the absence of parasites. Among 21 related mice, 5 additional affected mice were identified via laparotomy. Breeding of these 5 mice (after 5 mo of age) did not result in any offspring; the K14 mice with olycysticmore » livers failed to reproduce. Affected male mice had degenerative testicular lesions, and their sperm was immotile. Nonpolycystic K14 control male mice bred well, had no testicular lesions, and had appropriate sperm motility. Genetic analysis did not identify an association of this phenotype with the transgene or insertion site.« less
A regulatory toolbox of MiniPromoters to drive selective expression in the brain
Portales-Casamar, Elodie; Swanson, Douglas J.; Liu, Li; de Leeuw, Charles N.; Banks, Kathleen G.; Ho Sui, Shannan J.; Fulton, Debra L.; Ali, Johar; Amirabbasi, Mahsa; Arenillas, David J.; Babyak, Nazar; Black, Sonia F.; Bonaguro, Russell J.; Brauer, Erich; Candido, Tara R.; Castellarin, Mauro; Chen, Jing; Chen, Ying; Cheng, Jason C. Y.; Chopra, Vik; Docking, T. Roderick; Dreolini, Lisa; D'Souza, Cletus A.; Flynn, Erin K.; Glenn, Randy; Hatakka, Kristi; Hearty, Taryn G.; Imanian, Behzad; Jiang, Steven; Khorasan-zadeh, Shadi; Komljenovic, Ivana; Laprise, Stéphanie; Liao, Nancy Y.; Lim, Jonathan S.; Lithwick, Stuart; Liu, Flora; Liu, Jun; Lu, Meifen; McConechy, Melissa; McLeod, Andrea J.; Milisavljevic, Marko; Mis, Jacek; O'Connor, Katie; Palma, Betty; Palmquist, Diana L.; Schmouth, Jean-François; Swanson, Magdalena I.; Tam, Bonny; Ticoll, Amy; Turner, Jenna L.; Varhol, Richard; Vermeulen, Jenny; Watkins, Russell F.; Wilson, Gary; Wong, Bibiana K. Y.; Wong, Siaw H.; Wong, Tony Y. T.; Yang, George S.; Ypsilanti, Athena R.; Jones, Steven J. M.; Holt, Robert A.; Goldowitz, Daniel; Wasserman, Wyeth W.; Simpson, Elizabeth M.
2010-01-01
The Pleiades Promoter Project integrates genomewide bioinformatics with large-scale knockin mouse production and histological examination of expression patterns to develop MiniPromoters and related tools designed to study and treat the brain by directed gene expression. Genes with brain expression patterns of interest are subjected to bioinformatic analysis to delineate candidate regulatory regions, which are then incorporated into a panel of compact human MiniPromoters to drive expression to brain regions and cell types of interest. Using single-copy, homologous-recombination “knockins” in embryonic stem cells, each MiniPromoter reporter is integrated immediately 5′ of the Hprt locus in the mouse genome. MiniPromoter expression profiles are characterized in differentiation assays of the transgenic cells or in mouse brains following transgenic mouse production. Histological examination of adult brains, eyes, and spinal cords for reporter gene activity is coupled to costaining with cell-type–specific markers to define expression. The publicly available Pleiades MiniPromoter Project is a key resource to facilitate research on brain development and therapies. PMID:20807748
Wang, Chun-Yan; Zheng, Wei; Wang, Tao; Xie, Jing-Wei; Wang, Si-Ling; Zhao, Bao-Lu; Teng, Wei-Ping; Wang, Zhan-You
2011-04-01
Huperzine A (HupA) is a reversible and selective inhibitor of acetylcholinesterase (AChE), and it has multiple targets when used for Alzheimer's disease (AD) therapy. In this study, we searched for new mechanisms by which HupA could activate Wnt signaling and reduce amyloidosis in AD brain. A nasal gel containing HupA was prepared. No obvious toxicity of intranasal administration of HupA was found in mice. HupA was administered intranasally to β-amyloid (Aβ) precursor protein and presenilin-1 double-transgenic mice for 4 months. We observed an increase in ADAM10 and a decrease in BACE1 and APP695 protein levels and, subsequently, a reduction in Aβ levels and Aβ burden were present in HupA-treated mouse brain, suggesting that HupA enhances the nonamyloidogenic APP cleavage pathway. Importantly, our results further showed that HupA inhibited GSK3α/β activity, and enhanced the β-catenin level in the transgenic mouse brain and in SH-SY5Y cells overexpressing Swedish mutation APP, suggesting that the neuroprotective effect of HupA is not related simply to its AChE inhibition and antioxidation, but also involves other mechanisms, including targeting of the Wnt/β-catenin signaling pathway in AD brain.
Wang, Chun-Yan; Zheng, Wei; Wang, Tao; Xie, Jing-Wei; Wang, Si-Ling; Zhao, Bao-Lu; Teng, Wei-Ping; Wang, Zhan-You
2011-01-01
Huperzine A (HupA) is a reversible and selective inhibitor of acetylcholinesterase (AChE), and it has multiple targets when used for Alzheimer's disease (AD) therapy. In this study, we searched for new mechanisms by which HupA could activate Wnt signaling and reduce amyloidosis in AD brain. A nasal gel containing HupA was prepared. No obvious toxicity of intranasal administration of HupA was found in mice. HupA was administered intranasally to β-amyloid (Aβ) precursor protein and presenilin-1 double-transgenic mice for 4 months. We observed an increase in ADAM10 and a decrease in BACE1 and APP695 protein levels and, subsequently, a reduction in Aβ levels and Aβ burden were present in HupA-treated mouse brain, suggesting that HupA enhances the nonamyloidogenic APP cleavage pathway. Importantly, our results further showed that HupA inhibited GSK3α/β activity, and enhanced the β-catenin level in the transgenic mouse brain and in SH-SY5Y cells overexpressing Swedish mutation APP, suggesting that the neuroprotective effect of HupA is not related simply to its AChE inhibition and antioxidation, but also involves other mechanisms, including targeting of the Wnt/β-catenin signaling pathway in AD brain. PMID:21289607
Miller, Kerry Ann; Davidson, Scott; Liaros, Angela; Barrow, John; Lear, Marissa; Heine, Danielle; Hoppler, Stefan; MacKenzie, Alasdair
2008-05-15
Double knockouts of the Msx1 and Msx2 genes in the mouse result in severe cardiac outflow tract malformations similar to those frequently found in newborn infants. Despite the known role of the Msx genes in cardiac formation little is known of the regulatory systems (ligand receptor, signal transduction and protein-DNA interactions) that regulate the tissue-specific expression of the Msx genes in mammals during the formation of the outflow tract. In the present study we have used a combination of multi-species comparative genomics, mouse transgenic analysis and in-situ hybridisation to predict and validate the existence of a remote ultra-conserved enhancer that supports the expression of the Msx1 gene in migrating mouse cardiac neural crest and the outflow tract primordia. Furthermore, culturing of embryonic explants derived from transgenic lines with agonists of the PKC and PKA signal transduction systems demonstrates that this remote enhancer is influenced by PKA but not PKC dependent gene regulatory systems. These studies demonstrate the efficacy of combining comparative genomics and transgenic analyses and provide a platform for the study of the possible roles of Msx gene mis-regulation in the aetiology of congenital heart malformation.
Mutation Analysis in Cultured Cells of Transgenic Rodents
Zheng, Albert; Bates, Steven E.; Tommasi, Stella
2018-01-01
To comply with guiding principles for the ethical use of animals for experimental research, the field of mutation research has witnessed a shift of interest from large-scale in vivo animal experiments to small-sized in vitro studies. Mutation assays in cultured cells of transgenic rodents constitute, in many ways, viable alternatives to in vivo mutagenicity experiments in the corresponding animals. A variety of transgenic rodent cell culture models and mutation detection systems have been developed for mutagenicity testing of carcinogens. Of these, transgenic Big Blue® (Stratagene Corp., La Jolla, CA, USA, acquired by Agilent Technologies Inc., Santa Clara, CA, USA, BioReliance/Sigma-Aldrich Corp., Darmstadt, Germany) mouse embryonic fibroblasts and the λ Select cII Mutation Detection System have been used by many research groups to investigate the mutagenic effects of a wide range of chemical and/or physical carcinogens. Here, we review techniques and principles involved in preparation and culturing of Big Blue® mouse embryonic fibroblasts, treatment in vitro with chemical/physical agent(s) of interest, determination of the cII mutant frequency by the λ Select cII assay and establishment of the mutation spectrum by DNA sequencing. We describe various approaches for data analysis and interpretation of the results. Furthermore, we highlight representative studies in which the Big Blue® mouse cell culture model and the λ Select cII assay have been used for mutagenicity testing of diverse carcinogens. We delineate the advantages of this approach and discuss its limitations, while underscoring auxiliary methods, where applicable. PMID:29337872
Ibusuki, Rie; Uto, Hirofumi; Arima, Shiho; Mawatari, Seiichi; Setoguchi, Yoshiko; Iwashita, Yuji; Hashimoto, Shinichi; Maeda, Takuro; Tanoue, Shiro; Kanmura, Shuji; Oketani, Makoto; Ido, Akio; Tsubouchi, Hirohito
2013-11-01
Neutrophils infiltrate the livers of patients with nonalcoholic steatohepatitis (NASH). Human neutrophil peptides (HNPs) induce cytokine and chemokine production under inflammatory conditions, which may contribute to the progression of NASH. In this study, we focused on the effects of HNP-1 on hepatic steatosis and fibrosis in a mouse model of NASH induced by a choline-deficient, L-amino acid-defined (CDAA) diet. We generated transgenic mice expressing HNP-1 under the control of a β-actin-based promoter. HNP-1 transgenic and wild-type C57BL/6N mice were fed a CDAA diet for 16 weeks to induce hepatic steatosis and fibrosis. Serological and histological features were examined, and the effects of HNP-1 on hepatic stellate cell lines were assessed. HNP-1 transgenic and wild-type mice fed the CDAA diet showed no significant differences in serum alanine aminotransferase levels or the degree of hepatic steatosis based on Oil red O staining and hepatic triglyceride content. In contrast, Sirius Red and Azan staining showed significantly more severe hepatic fibrosis in HNP-1 transgenic mice compared with wild-type mice. In addition, significantly more α-smooth muscle actin-positive hepatic stellate cells were observed in the transgenic mice than in the wild-type mice. Finally, the proliferation of the LI90 hepatic stellate cell line increased in response to HNP-1. Our data indicate that HNP-1 enhances hepatic fibrosis in fatty liver by inducing hepatic stellate cell proliferation. Thus, neutrophil-derived HNP-1 may contribute to the progression of NASH. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Pal, Sukumar; Tifrea, Delia F; Zhong, Guangming; de la Maza, Luis M
2018-01-01
Chlamydia trachomatis is the leading cause of infection-induced infertility in women. Attempts to control this epidemic with screening programs and antibiotic therapy have failed. Currently, a vaccine to prevent C. trachomatis infections is not available. In order to develop an animal model for evaluating vaccine antigens that can be applied to humans, we used C. trachomatis serovar D (strain UW-3/Cx) to induce infertility in mice whose major histocompatibility complex class II antigen was replaced with the human leukocyte antigen DR4 (HLA-DR4). Transcervical inoculation of medroxyprogesterone-treated HLA-DR4 transgenic mice with 5 × 10 5 C. trachomatis D inclusion forming units (IFU) induced a significant reduction in fertility, with a mean number of embryos/mouse of 4.4 ± 1.3 compared to 7.8 ± 0.5 for the uninfected control mice ( P < 0.05). A similar fertility reduction was elicited in the wild-type (WT) C57BL/6 mice (4.3 ± 1.4 embryos/mouse) compared to the levels of the WT controls (9.1 ± 0.4 embryos/mouse) ( P < 0.05). Following infection, WT mice mounted more robust humoral and cellular immune responses than HLA-DR4 mice. As determined by vaginal shedding, HLA-DR4 mice were more susceptible to a transcervical C. trachomatis D infection than WT mice. To assess if HLA-DR4 transgenic and WT mice could be protected by vaccination, 10 4 IFU of C. trachomatis D was delivered intranasally, and mice were challenged transcervically 6 weeks later with 5 × 10 5 IFU of C. trachomatis D. As determined by severity and length of vaginal shedding, WT C57BL/6 and HLA-DR4 mice were significantly protected by vaccination. The advantages and limitations of the HLA-DR4 transgenic mouse model for evaluating human C. trachomatis vaccine antigens are discussed. Copyright © 2017 American Society for Microbiology.
Insulators to improve expression of a 3(')IgH LCR-driven reporter gene in transgenic mouse models.
Guglielmi, Laurence; Le Bert, Marc; Truffinet, Véronique; Cogné, Michel; Denizot, Yves
2003-08-01
A locus control region (LCR) containing four transcriptional enhancers lies downstream of the IgH chain locus. We studied transgenes carrying a 3(')IgH LCR-driven GFP reporter gene for expression and B cell differentiation stage specificity. We also compared transgenes that were or were not flanked by two copies of the beta-globin HS4 insulator, an element defined by its ability to protect transgenes from the influences of surrounding genes at the insertion site. Results indicate that insulators are instrumental in sustaining GFP expression in GFP-3(')LCR transgenic mice when they were included. Flow cytometry experiments reported a strictly B cell specific GFP expression from pre-B cells in bone marrow to mature B cells in spleen. Despite addition of 5(')HS4 insulators to the GFP-3(')LCR construct, complete transgene silencing occurred in some transgenic lines and was systematically observed in ageing animals from all lines.
The Human Splice Variant Δ16HER2 Induces Rapid Tumor Onset in a Reporter Transgenic Mouse
Iezzi, Manuela; Zenobi, Santa; Montani, Maura; Pietrella, Lucia; Kalogris, Cristina; Rossini, Anna; Ciravolo, Valentina; Castagnoli, Lorenzo; Tagliabue, Elda; Pupa, Serenella M.; Musiani, Piero; Monaci, Paolo; Menard, Sylvie; Amici, Augusto
2011-01-01
Several transgenic mice models solidly support the hypothesis that HER2 (ERBB2) overexpression or mutation promotes tumorigenesis. Recently, a HER2 splice variant lacking exon-16 (Δ16HER2) has been detected in human breast carcinomas. This alternative protein, a normal byproduct of HER2, has an increased transforming potency compared to wild-type (wt) HER2 receptors. To examine the ability of Δ16HER2 to transform mammary epithelium in vivo and to monitor Δ16HER2-driven tumorigenesis in live mice, we generated and characterized a mouse line that transgenically expresses both human Δ16HER2 and firefly luciferase under the transcriptional control of the MMTV promoter. All the transgenic females developed multifocal mammary tumors with a rapid onset and an average latency of 15.11 weeks. Immunohistochemical analysis revealed the concurrent expression of luciferase and the human Δ16HER2 oncogene only in the mammary gland and in strict correlation with tumor development. Transgenic Δ16HER2 expressed on the tumor cell plasma membrane from spontaneous mammary adenocarcinomas formed constitutively active homodimers able to activate the oncogenic signal transduction pathway mediated through Src kinase. These new transgenic animals demonstrate the ability of the human Δ16HER2 isoform to transform “per se” mammary epithelium in vivo. The high tumor incidence as well as the short latency strongly suggests that the Δ16HER2 splice variant represents the transforming form of the HER2 oncoprotein. PMID:21559085
NASA Astrophysics Data System (ADS)
Murakami, Takashi; Kobayashi, Eiji
2005-04-01
The rat represents a perfect animal for broadening medical experiments, because its physiology has been well understood in the history of experimental animals. In addition, its larger body size takes enough advantage for surgical manipulation, compared to the mouse. Many rat models mimicking human diseases, therefore, have been used in a variety of biomedical studies including physiology, pharmacology, transplantation, and immunology. In an effort to create the specifically designed rats for biomedical research and regenerative medicine, we have developed the engineered rat system on the basis of transgenic technology and succeeded in establishing various transgenic rat strains. The transgenic rats with green fluorescent protein (GFP) were generated in the two different strains (Wistar and Lewis), in which GFP is driven under the chicken beta-actin promoter and cytomegalovirus enhancer (CAG promoter). Their GFP expression levels were different in each organ, but the Lewis line expressed GFP strongly and ubiquitously in most of the organs compared with that of Wistar. For red fluorescence, DsRed2 was transduced to the Wistar rats: one line specifically expresses DsRed2 in the liver under the mouse albumin promoter, another is designed for the Cre/LoxP system as the double reporter rat (the initial DsRed2 expression turns on GFP in the presence of Cre recombinase). LacZ-transgenic rats represent blue color, and LacZ is driven the CAG (DA) or ROSA26 promoter (Lewis). Our unique transgenic rats" system highlights the powerful performance for the elucidation of many cellular processes in regenerative medicine, leading to innovative medical treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, S.D.; Cooper, P.; Fung, J.
Genetic factors affecting post-natal g-globin expression - a major modifier of the severity of both b-thalassemia and sickle cell anemia, have been difficult to study. This is especially so in mice, an organism lacking a globin gene with an expression pattern equivalent to that of human g-globin. To model the human b-cluster in mice, with the goal of screening for loci affecting human g-globin expression in vivo, we introduced a human b-globin cluster YAC transgene into the genome of FVB mice . The b-cluster contained a Greek hereditary persistence of fetal hemoglobin (HPFH) g allele resulting in postnatal expression ofmore » human g-globin in transgenic mice. The level of human g-globin for various F1 hybrids derived from crosses between the FVB transgenics and other inbred mouse strains was assessed. The g-globin level of the C3HeB/FVB transgenic mice was noted to be significantly elevated. To map genes affecting postnatal g-globin expression, a 20 centiMorgan (cM) genome scan of a C3HeB/F VB transgenics [prime] FVB backcross was performed, followed by high-resolution marker analysis of promising loci. From this analysis we mapped a locus within a 2.2 cM interval of mouse chromosome 1 at a LOD score of 4.2 that contributes 10.4% of variation in g-globin expression level. Combining transgenic modeling of the human b-globin gene cluster with quantitative trait analysis, we have identified and mapped a murine locus that impacts on human g-globin expression in vivo.« less
A Co-Receptor Independent Transgenic Human TCR Mediates Anti-Tumor and Anti-Self Immunity in Mice
Mehrotra, Shikhar; Al-Khami, Amir A.; Klarquist, Jared; Husain, Shahid; Naga, Osama; Eby, Jonathan M.; Murali, Anuradha K.; Lyons, Gretchen E.; Li, Mingli; Spivey, Natali D.; Norell, Håkan; Martins da Palma, Telma; Onicescu, Georgiana; Diaz-Montero, C. Marcela; Garrett-Mayer, Elizabeth; Cole, David J.; Le Poole, I. Caroline; Nishimura, Michael I.
2013-01-01
Recent advancements in T cell immunotherapy suggest that T cells engineered with high affinity T cell receptors (TCR) can offer better tumor regression. However, whether a high affinity TCR alone is sufficient to control tumor growth, or the T cell subset bearing the TCR is also important remains unclear. Using the human tyrosinase epitope reactive, CD8 independent, high affinity TCR isolated from MHC class-I restricted CD4+ T cells obtained from tumor infiltrating lymphocytes of a metastatic melanoma patient, we developed a novel TCR transgenic mouse with a C57BL/6 background. This HLA-A2 restricted TCR was positively selected on both CD4+ and CD8+ single-positive (SP) cells. However, when the TCR transgenic mouse was developed with an HLA-A2 background, the transgenic TCR was primarily expressed by CD3+CD4-CD8- double-negative (DN) T cells. TIL 1383I TCR transgenic CD4+, CD8+ and CD4-CD8- T cells were functional and retained the ability to control tumor growth without the need for vaccination or cytokine support in vivo. Furthermore, the HLA-A2+/human tyrosinase TCR double transgenic mice developed spontaneous hair depigmentation and had visual defects that progressed with age. Our data show that the expression of the high affinity TIL 1383I TCR alone in CD3+ T cells is sufficient to control the growth of murine and human melanoma and the presence or absence of CD4 and CD8 co-receptors had little effect on its functional capacity. PMID:22798675
Hepatic SILAC proteomic data from PANDER transgenic model.
Athanason, Mark G; Stevens, Stanley M; Burkhardt, Brant R
2016-12-01
This article contains raw and processed data related to research published in "Quantitative Proteomic Profiling Reveals Hepatic Lipogenesis and Liver X Receptor Activation in the PANDER Transgenic Model" (M.G. Athanason, W.A. Ratliff, D. Chaput, C.B. MarElia, M.N. Kuehl, S.M., Jr. Stevens, B.R. Burkhardt (2016)) [1], and was generated by "spike-in" SILAC-based proteomic analysis of livers obtained from the PANcreatic-Derived factor (PANDER) transgenic mouse (PANTG) under various metabolic conditions [1]. The mass spectrometry output of the PANTG and wild-type B6SJLF mice liver tissue and resulting proteome search from MaxQuant 1.2.2.5 employing the Andromeda search algorithm against the UniprotKB reference database for Mus musculus has been deposited to the ProteomeXchange Consortium (http://www.proteomexchange.org) via the PRIDE partner repository with dataset identifiers PRIDE: PXD004171 and doi:10.6019/PXD004171. Protein ratio values representing PANTG/wild-type obtained by MaxQuant analysis were input into the Perseus processing suite to determine statistical significance using the Significance A outlier test (p<0.05). Differentially expressed proteins using this approach were input into Ingenuity Pathway Analysis to determined altered pathways and upstream regulators that were altered in PANTG mice.
USDA-ARS?s Scientific Manuscript database
Studies on patients, large animal models and transgenic mouse models have shown a strong association of atrial fibrosis with atrial fibrillation (AF). However, it is unclear whether there is a causal relationship between atrial fibrosis and AF or whether these events appear as a result of independen...
Bilbao, Ainhoa; Rieker, Claus; Cannella, Nazzareno; Parlato, Rosanna; Golda, Slawomir; Piechota, Marcin; Korostynski, Michal; Engblom, David; Przewlocki, Ryszard; Schütz, Günther; Spanagel, Rainer; Parkitna, Jan R.
2014-01-01
It is suggested that striatal cAMP responsive element binding protein (CREB) regulates sensitivity to psychostimulants. To test the cell-specificity of this hypothesis we examined the effects of a dominant-negative CREB protein variant expressed in dopamine receptor D1 (D1R) neurons on cocaine-induced behaviors. A transgenic mouse strain was generated by pronuclear injection of a BAC-derived transgene harboring the A-CREB sequence under the control of the D1R gene promoter. Compared to wild-type, drug-naïve mutants showed moderate alterations in gene expression, especially a reduction in basal levels of activity-regulated transcripts such as Arc and Egr2. The behavioral responses to cocaine were elevated in mutant mice. Locomotor activity after acute treatment, psychomotor sensitization after intermittent drug injections and the conditioned locomotion after saline treatment were increased compared to wild-type littermates. Transgenic mice had significantly higher cocaine conditioned place preference, displayed normal extinction of the conditioned preference, but showed an augmented cocaine-seeking response following priming-induced reinstatement. This enhanced cocaine-seeking response was associated with increased levels of activity-regulated transcripts and prodynorphin. The primary reinforcing effects of cocaine were not altered in the mutant mice as they did not differ from wild-type in cocaine self-administration under a fixed ratio schedule at the training dose. Collectively, our data indicate that expression of a dominant-negative CREB variant exclusively in neurons expressing D1R is sufficient to recapitulate the previously reported behavioral phenotypes associated with virally expressed dominant-negative CREB. PMID:24966820
McLachlan, Sandra M; Aliesky, Holly A; Chen, Chun-Rong; Chong, Gao; Rapoport, Basil
2012-01-01
Transgenic mice with the human thyrotropin-receptor (TSHR) A-subunit targeted to the thyroid are tolerant of the transgene. In transgenics that express low A-subunit levels (Lo-expressors), regulatory T cell (Treg) depletion using anti-CD25 before immunization with adenovirus encoding the A-subunit (A-sub-Ad) breaks tolerance, inducing extensive thyroid lymphocytic infiltration, thyroid damage and antibody spreading to other thyroid proteins. In contrast, no thyroiditis develops in Hi-expressor transgenics or wild-type mice. Our present goal was to determine if thyroiditis could be induced in Hi-expressor transgenics using a more potent immunization protocol: Treg depletion, priming with Complete Freund's Adjuvant (CFA) + A-subunit protein and further Treg depletions before two boosts with A-sub-Ad. As controls, anti-CD25 treated Hi- and Lo-expressors and wild-type mice were primed with CFA+ mouse thyroglobulin (Tg) or CFA alone before A-sub-Ad boosting. Thyroiditis developed after CFA+A-subunit protein or Tg and A-sub-Ad boosting in Lo-expressor transgenics but Hi- expressors (and wild-type mice) were resistant to thyroiditis induction. Importantly, in Lo-expressors, thyroiditis was associated with the development of antibodies to the mouse TSHR downstream of the A-subunit. Unexpectedly, we observed that the effect of bacterial products on the immune system is a "double-edged sword". On the one hand, priming with CFA (mycobacteria emulsified in oil) plus A-subunit protein broke tolerance to the A-subunit in Hi-expressor transgenics leading to high TSHR antibody levels. On the other hand, prior treatment with CFA in the absence of A-subunit protein inhibited responses to subsequent immunization with A-sub-Ad. Consequently, adjuvant activity arising in vivo after bacterial infections combined with a protein autoantigen can break self-tolerance but in the absence of the autoantigen, adjuvant activity can inhibit the induction of immunity to autoantigens (like the TSHR) displaying strong self-tolerance.
McLachlan, Sandra M.; Aliesky, Holly A.; Chen, Chun-Rong; Chong, Gao; Rapoport, Basil
2012-01-01
Transgenic mice with the human thyrotropin-receptor (TSHR) A-subunit targeted to the thyroid are tolerant of the transgene. In transgenics that express low A-subunit levels (Lo-expressors), regulatory T cell (Treg) depletion using anti-CD25 before immunization with adenovirus encoding the A-subunit (A-sub-Ad) breaks tolerance, inducing extensive thyroid lymphocytic infiltration, thyroid damage and antibody spreading to other thyroid proteins. In contrast, no thyroiditis develops in Hi-expressor transgenics or wild-type mice. Our present goal was to determine if thyroiditis could be induced in Hi-expressor transgenics using a more potent immunization protocol: Treg depletion, priming with Complete Freund's Adjuvant (CFA) + A-subunit protein and further Treg depletions before two boosts with A-sub-Ad. As controls, anti-CD25 treated Hi- and Lo-expressors and wild-type mice were primed with CFA+ mouse thyroglobulin (Tg) or CFA alone before A-sub-Ad boosting. Thyroiditis developed after CFA+A-subunit protein or Tg and A-sub-Ad boosting in Lo-expressor transgenics but Hi- expressors (and wild-type mice) were resistant to thyroiditis induction. Importantly, in Lo-expressors, thyroiditis was associated with the development of antibodies to the mouse TSHR downstream of the A-subunit. Unexpectedly, we observed that the effect of bacterial products on the immune system is a “double-edged sword”. On the one hand, priming with CFA (mycobacteria emulsified in oil) plus A-subunit protein broke tolerance to the A-subunit in Hi-expressor transgenics leading to high TSHR antibody levels. On the other hand, prior treatment with CFA in the absence of A-subunit protein inhibited responses to subsequent immunization with A-sub-Ad. Consequently, adjuvant activity arising in vivo after bacterial infections combined with a protein autoantigen can break self-tolerance but in the absence of the autoantigen, adjuvant activity can inhibit the induction of immunity to autoantigens (like the TSHR) displaying strong self-tolerance. PMID:22970131
[Development of a hepatitis B virus carrier transgenic mice model].
Caner, Müge; Arat, Sezen; Bircan, Rifat
2008-01-01
The studies for the development of transgenic mice models which provide important profits for the studies concerning immunopathogenesis of hepatitis B virus (HBV) infections are in progress since 20 years. For this purpose different lineages bearing whole HBV genome or selected viral genes have been developed and their usage in clarifying the HBV replication and pathogenesis mechanisms have been emphasized. The aim of this study was to develop and breed a HBV carrier mice model. In the study the full HBV genome has been transferred to mouse embryos by microinjection procedure. Following transgenic manipulation, the HBV carriers among the daughter mice have been detected by molecular methods in which HBV-DNA replication and expression have been shown. The manipulations for transgene transfers have been performed in TUBITAK Marmara Research Center Transgene Laboratory, Gebze, Istanbul. The HBV-DNA carrier mice have been demonstrated by polymerase chain reaction (PCR) using the DNA samples obtained from tail tissues and also by dot-blot hybridization of the mice sera. Integrated HBV-DNA has been detected by applying in-situ hybridization to the liver tissue sections. HBV-DNA expression has been shown by reverse transcriptase PCR method with total RNA molecules that have been isolated from the liver tissues of the HBV-DNA carrier mice. HBsAg has been detected in the liver by immunohistochemical method, and HBsAg and HBeAg have additionally been demonstrated by ELISA. HBV genome, expression of the genome and the expression products have been determined in approximately 10% of the mice of which HBV-DNA have been transferred. By inbreeding heterozygote carrier mice, homozygote HBV transgenic mice line have been obtained. These HBV transgenic mice are the first lineages developed in our country. It is hopefully thought that this HBV carrier transgenic mouse model may contribute to the studies on the pathogenesis of HBV infections which are important health problems in the world as well as in Turkey.
Altered Baseline and Nicotine-Mediated Behavioral and Cholinergic Profiles in ChAT-Cre Mouse Lines.
Chen, Edison; Lallai, Valeria; Sherafat, Yasmine; Grimes, Nickolas P; Pushkin, Anna N; Fowler, J P; Fowler, Christie D
2018-02-28
The recent development of transgenic rodent lines expressing cre recombinase in a cell-specific manner, along with advances in engineered viral vectors, has permitted in-depth investigations into circuit function. However, emerging evidence has begun to suggest that genetic modifications may introduce unexpected caveats. In the current studies, we sought to extensively characterize male and female mice from both the ChAT (BAC) -Cre mouse line, created with the bacterial artificial chromosome (BAC) method, and ChAT (IRES) -Cre mouse line, generated with the internal ribosome entry site (IRES) method. ChAT (BAC) -Cre transgenic and wild-type mice did not differ in general locomotor behavior, anxiety measures, drug-induced cataplexy, nicotine-mediated hypolocomotion, or operant food training. However, ChAT (BAC) -Cre transgenic mice did exhibit significant deficits in intravenous nicotine self-administration, which paralleled an increase in vesicular acetylcholine transporter and choline acetyltransferase (ChAT) hippocampal expression. For the ChAT (IRES) -Cre line, transgenic mice exhibited deficits in baseline locomotor, nicotine-mediated hypolocomotion, and operant food training compared with wild-type and hemizygous littermates. No differences among ChAT (IRES) -Cre wild-type, hemizygous, and transgenic littermates were found in anxiety measures, drug-induced cataplexy, and nicotine self-administration. Given that increased cre expression was present in the ChAT (IRES) -Cre transgenic mice, as well as a decrease in ChAT expression in the hippocampus, altered neuronal function may underlie behavioral phenotypes. In contrast, ChAT (IRES) -Cre hemizygous mice were more similar to wild-type mice in both protein expression and the majority of behavioral assessments. As such, interpretation of data derived from ChAT-Cre rodents must consider potential limitations dependent on the line and/or genotype used in research investigations. SIGNIFICANCE STATEMENT Altered baseline and/or nicotine-mediated behavioral profiles were discovered in transgenic mice from the ChAT (BAC) -Cre and ChAT (IRES) -Cre lines. Given that these cre-expressing mice have become increasingly used by the scientific community, either independently with chemicogenetic and optogenetic viral vectors or crossed with other transgenic lines, the current studies highlight important considerations for the interpretation of data from previous and future experimental investigations. Moreover, the current findings detail the behavioral effects of either increased or decreased baseline cholinergic signaling mechanisms on locomotor, anxiety, learning/memory, and intravenous nicotine self-administration behaviors. Copyright © 2018 the authors 0270-6474/18/382177-12$15.00/0.
Brownlow, Milene L.; Benner, Leif; D’Agostino, Dominic; Gordon, Marcia N.; Morgan, Dave
2013-01-01
Dietary manipulations are increasingly viewed as possible approaches to treating neurodegenerative diseases. Previous studies suggest that Alzheimer’s disease (AD) patients present an energy imbalance with brain hypometabolism and mitochondrial deficits. Ketogenic diets (KDs), widely investigated in the treatment and prevention of seizures, have been suggested to bypass metabolic deficits present in AD brain by providing ketone bodies as an alternative fuel to neurons. We investigated the effects of a ketogenic diet in two transgenic mouse lines. Five months old APP/PS1 (a model of amyloid deposition) and Tg4510 (a model of tau deposition) mice were offered either a ketogenic or a control (NIH-31) diet for 3 months. Body weight and food intake were monitored throughout the experiment, and blood was collected at 4 weeks and 4 months for ketone and glucose assessments. Both lines of transgenic mice weighed less than nontransgenic mice, yet, surprisingly, had elevated food intake. The ketogenic diet did not affect these differences in body weight or food consumption. Behavioral testing during the last two weeks of treatment found that mice offered KD performed significantly better on the rotarod compared to mice on the control diet independent of genotype. In the open field test, both transgenic mouse lines presented increased locomotor activity compared to nontransgenic, age-matched controls, and this effect was not influenced by KD. The radial arm water maze identified learning deficits in both transgenic lines with no significant differences between diets. Tissue measures of amyloid, tau, astroglial and microglial markers in transgenic lines showed no differences between animals fed the control or the ketogenic diet. These data suggest that ketogenic diets may play an important role in enhancing motor performance in mice, but have minimal impact on the phenotype of murine models of amyloid or tau deposition. PMID:24069439
Transgenic mice in developmental toxicology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woychik, R.P.
1992-12-31
Advances in molecular biology and embryology are being utilized for the generation of transgenic mice, animals that contain specific additions, deletions, or modifications of genes or sequences in their DNA. Mouse embryonic stem cells and homologous recombination procedures have made it possible to target specific DNA structural alterations to highly localized region in the host chromosomes. The majority of the DNA structural rearrangements in transgenic mice can be passed through the germ line and used to establish new genetic traits in the carrier animals. Since the use of transgenic mice is having such an enormous impact on so many areasmore » of mammalian biological research, including developmental toxicology, the objective of this review is to briefly describe the fundamental methodologies for generating transgenic mice and to describe one particular application that has direct relevance to the field of genetic toxicology.« less
Transgenic mice in developmental toxicology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woychik, R.P.
1992-01-01
Advances in molecular biology and embryology are being utilized for the generation of transgenic mice, animals that contain specific additions, deletions, or modifications of genes or sequences in their DNA. Mouse embryonic stem cells and homologous recombination procedures have made it possible to target specific DNA structural alterations to highly localized region in the host chromosomes. The majority of the DNA structural rearrangements in transgenic mice can be passed through the germ line and used to establish new genetic traits in the carrier animals. Since the use of transgenic mice is having such an enormous impact on so many areasmore » of mammalian biological research, including developmental toxicology, the objective of this review is to briefly describe the fundamental methodologies for generating transgenic mice and to describe one particular application that has direct relevance to the field of genetic toxicology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takemura, Takayo; Yoshida, Yuichi; Kiso, Shinichi, E-mail: kiso@gh.med.osaka-u.ac.jp
Highlights: •HB-EGF expression was increased during the development of liver fibrosis. •Conditional HB-EGF knockout mouse showed enhanced experimental liver fibrosis. •HB-EGF antagonized TGF-β-induced activation of hepatic stellate cells. •We report a possible protective role of HB-EGF in cholestatic liver fibrosis. -- Abstract: Our aims were to evaluate the involvement of heparin-binding EGF-like growth factor (HB-EGF) in liver fibrogenesis of humans and mice and to elucidate the effect of HB-EGF deficiency on cholestatic liver fibrosis using conditional HB-EGF knockout (KO) mice. We first demonstrated that gene expression of HB-EGF had a positive significant correlation with that of collagen in human fibroticmore » livers, and was increased in bile duct ligation (BDL)-induced fibrotic livers in mouse. We then generated conditional HB-EGF knockout (KO) mice using the interferon inducible Mx-1 promoter driven Cre recombinase transgene and wild type (WT) and KO mice were subjected to BDL. After BDL, KO mice exhibited enhanced liver fibrosis with increased expression of collagen, compared with WT mice. Finally, we used mouse hepatic stellate cells (HSCs) to examine the role of HB-EGF in the activation of these cells and showed that HB-EGF antagonized TGF-β-induced gene expression of collagen in mouse primary HSCs. Interestingly, HB-EGF did not prevent the TGF-β-induced nuclear accumulation of Smad3, but did lead to stabilization of the Smad transcriptional co-repressor TG-interacting factor. In conclusion, our data suggest a possible protective role of HB-EGF in cholestatic liver fibrosis.« less
Grimm, Christian; Wenzel, Andreas; Stanescu, Dinu; Samardzija, Marijana; Hotop, Svenja; Groszer, Mathias; Naash, Muna; Gassmann, Max; Remé, Charlotte
2010-01-01
Elevation of erythropoietin (Epo) concentrations by hypoxic preconditioning or application of recombinant human Epo (huEpo) protects the mouse retina against light-induced degeneration by inhibiting photoreceptor cell apoptosis. Because photoreceptor apoptosis is also the common path to cell loss in retinal dystrophies such as retinitis pigmentosa (RP), we tested whether high levels of huEpo would reduce apoptotic cell death in two mouse models of human RP. We combined the two respective mutant mouse lines with a transgenic line (tg6) that constitutively overexpresses huEpo mainly in neural tissues. Transgenic expression of huEpo caused constitutively high levels of Epo in the retina and protected photoreceptors against light-induced degeneration; however, the presence of high levels of huEpo did not affect the course or the extent of retinal degeneration in a light-independent (rd1) and a light-accelerated (VPP) mouse model of RP. Similarly, repetitive intraperitoneal injections of recombinant huEpo did not protect the retina in the rd1 and the VPP mouse. Lack of neuroprotection by Epo in the two models of inherited retinal degeneration was not caused by adaptational downregulation of Epo receptor. Our results suggest that apoptotic mechanisms during acute, light-induced photoreceptor cell death differ from those in genetically based retinal degeneration. Therapeutic intervention with cell death in inherited retinal degeneration may therefore require different drugs and treatments. PMID:15215287
Precise and in situ genetic humanization of 6 Mb of mouse immunoglobulin genes.
Macdonald, Lynn E; Karow, Margaret; Stevens, Sean; Auerbach, Wojtek; Poueymirou, William T; Yasenchak, Jason; Frendewey, David; Valenzuela, David M; Giallourakis, Cosmas C; Alt, Frederick W; Yancopoulos, George D; Murphy, Andrew J
2014-04-08
Genetic humanization, which involves replacing mouse genes with their human counterparts, can create powerful animal models for the study of human genes and diseases. One important example of genetic humanization involves mice humanized for their Ig genes, allowing for human antibody responses within a mouse background (HumAb mice) and also providing a valuable platform for the generation of fully human antibodies as therapeutics. However, existing HumAb mice do not have fully functional immune systems, perhaps because of the manner in which they were genetically humanized. Heretofore, most genetic humanizations have involved disruption of the endogenous mouse gene with simultaneous introduction of a human transgene at a new and random location (so-called KO-plus-transgenic humanization). More recent efforts have attempted to replace mouse genes with their human counterparts at the same genetic location (in situ humanization), but such efforts involved laborious procedures and were limited in size and precision. We describe a general and efficient method for very large, in situ, and precise genetic humanization using large compound bacterial artificial chromosome-based targeting vectors introduced into mouse ES cells. We applied this method to genetically humanize 3-Mb segments of both the mouse heavy and κ light chain Ig loci, by far the largest genetic humanizations ever described. This paper provides a detailed description of our genetic humanization approach, and the companion paper reports that the humoral immune systems of mice bearing these genetically humanized loci function as efficiently as those of WT mice.
Functional conservation of Gsdma cluster genes specifically duplicated in the mouse genome.
Tanaka, Shigekazu; Mizushina, Youichi; Kato, Yoriko; Tamura, Masaru; Shiroishi, Toshihiko
2013-10-03
Mouse Gasdermin A3 (Gsdma3) is the causative gene for dominant skin mutations exhibiting alopecia. Mouse has two other Gsdma3-related genes, Gsdma and Gsdma2, whereas human and rat have only one related gene. To date, no skin mutation has been reported for human GSDMA and rat Gsdma as well as mouse Gsdma and Gsdma2. Therefore, it is possible that only Gsdma3 has gain-of-function type mutations to cause dominant skin phenotype. To elucidate functional divergence among the Gsdma-related genes in mice, and to infer the function of the human and rat orthologs, we examined in vivo function of mouse Gsdma by generating Gsdma knockout mice and transgenic mice that overexpress wild-type Gsdma or Gsdma harboring a point mutation (Alanine339Threonine). The Gsdma knockout mice shows no visible phenotype, indicating that Gsdma is not essential for differentiation of epidermal cells and maintenance of the hair cycle, and that Gsdma is expressed specifically both in the inner root sheath of hair follicles and in suprabasal cell layers, whereas Gsdma3 is expressed only in suprabasal layers. By contrast, both types of the transgenic mice exhibited epidermal hyperplasia resembling the Gsdma3 mutations, although the phenotype depended on the genetic background. These results indicate that the mouse Gsdma and Gsdma3 genes share common function to regulate epithelial maintenance and/or homeostasis, and suggest that the function of human GSDMA and rat Gsdma, which are orthologs of mouse Gsdma, is conserved as well.
Ferguson, Carolyn; Hardy, Steven L; Werner, David F; Hileman, Stanley M; DeLorey, Timothy M; Homanics, Gregg E
2007-01-01
Background The β3 subunit of the γ-aminobutyric acid type A receptor (GABAA-R) has been reported to be important for palate formation, anesthetic action, and normal nervous system function. This subunit has also been implicated in the pathogenesis of Angelman syndrome and autism spectrum disorder. To further investigate involvement of this subunit, we previously produced mice with a global knockout of β3. However, developmental abnormalities, compensation, reduced viability, and numerous behavioral abnormalities limited the usefulness of that murine model. To overcome many of these limitations, a mouse line with a conditionally inactivated β3 gene was engineered. Results Gene targeting and embryonic stem cell technologies were used to create mice in which exon 3 of the β3 subunit was flanked by loxP sites (i.e., floxed). Crossing the floxed β3 mice to a cre general deleter mouse line reproduced the phenotype of the previously described global knockout. Pan-neuronal knockout of β3 was achieved by crossing floxed β3 mice to Synapsin I-cre transgenic mice. Palate development was normal in pan-neuronal β3 knockouts but ~61% died as neonates. Survivors were overtly normal, fertile, and were less sensitive to etomidate. Forebrain selective knockout of β3 was achieved using α CamKII-cre transgenic mice. Palate development was normal in forebrain selective β3 knockout mice. These knockouts survived the neonatal period, but ~30% died between 15–25 days of age. Survivors had reduced reproductive fitness, reduced sensitivity to etomidate, were hyperactive, and some became obese. Conclusion Conditional inactivation of the β3 gene revealed novel insight into the function of this GABAA-R subunit. The floxed β3 knockout mice described here will be very useful for conditional knockout studies to further investigate the role of the β3 subunit in development, ethanol and anesthetic action, normal physiology, and pathophysiologic processes. PMID:17927825
Ghelfi, Elisa; Yu, Chen-Wei; Elmasri, Harun; Terwelp, Matthew; Lee, Chun G.; Bhandari, Vineet; Comhair, Suzy A.; Erzurum, Serpil C.; Hotamisligil, Gökhan S.; Elias, Jack A.; Cataltepe, Sule
2014-01-01
Neovascularization of the airways occurs in several inflammatory lung diseases, including asthma. Vascular endothelial growth factor (VEGF) plays an important role in vascular remodeling in the asthmatic airways. Fatty acid binding protein 4 (FABP4 or aP2) is an intracellular lipid chaperone that is induced by VEGF in endothelial cells. FABP4 exhibits a proangiogenic function in vitro, but whether it plays a role in modulation of angiogenesis in vivo is not known. We hypothesized that FABP4 promotes VEGF-induced airway angiogenesis and investigated this hypothesis with the use of a transgenic mouse model with inducible overexpression of VEGF165 under a CC10 promoter [VEGF-TG (transgenic) mice]. We found a significant increase in FABP4 mRNA levels and density of FABP4-expressing vascular endothelial cells in mouse airways with VEGF overexpression. FABP4−/− mouse airways showed a significant decrease in neovessel formation and endothelial cell proliferation in response to VEGF overexpression. These alterations in airway vasculature were accompanied by attenuated expression of proinflammatory mediators. Furthermore, VEGF-TG/FABP4−/− mice showed markedly decreased expression of endothelial nitric oxide synthase, a well-known mediator of VEGF-induced responses, compared with VEGF-TG mice. Finally, the density of FABP4-immunoreactive vessels in endobronchial biopsy specimens was significantly higher in patients with asthma than in control subjects. Taken together, these data unravel FABP4 as a potential target of pathologic airway remodeling in asthma. PMID:23391391
High-fidelity Glucagon-CreER mouse line generated by CRISPR-Cas9 assisted gene targeting.
Ackermann, Amanda M; Zhang, Jia; Heller, Aryel; Briker, Anna; Kaestner, Klaus H
2017-03-01
α-cells are the second most prominent cell type in pancreatic islets and are responsible for producing glucagon to increase plasma glucose levels in times of fasting. α-cell dysfunction and inappropriate glucagon secretion occur in both type 1 and type 2 diabetes. Thus, there is growing interest in studying both normal function and pathophysiology of α-cells. However, tools to target gene ablation or activation specifically of α-cells have been limited, compared to those available for β-cells. Previous Glucagon-Cre and Glucagon-CreER transgenic mouse lines have suffered from transgene silencing, and the only available Glucagon-CreER "knock-in" mouse line results in glucagon haploinsufficiency, which can confound the interpretation of gene deletion analyses. Therefore, we sought to develop a Glucagon-CreER T2 mouse line that would maintain normal glucagon expression and would be less susceptible to transgene silencing. We utilized CRISPR-Cas9 technology to insert an IRES-CreER T2 sequence into the 3' UTR of the Glucagon ( Gcg ) locus in mouse embryonic stem cells (ESCs). Targeted ESC clones were then injected into mouse blastocysts to obtain Gcg-CreER T2 mice. Recombination efficiency in GCG + pancreatic α-cells and glucagon-like peptide 1 positive (GLP1 + ) enteroendocrine L-cells was measured in Gcg-CreER T2 ; Rosa26-LSL-YFP mice injected with tamoxifen during fetal development and adulthood. Tamoxifen injection of Gcg-CreER T2 ; Rosa26-LSL-YFP mice induced high recombination efficiency of the Rosa26-LSL-YFP locus in perinatal and adult α-cells (88% and 95%, respectively), as well as in first-wave fetal α-cells (36%) and adult enteroendocrine L-cells (33%). Mice homozygous for the Gcg-CreER T2 allele were phenotypically normal. We successfully derived a Gcg-CreER T2 mouse line that expresses CreER T2 in pancreatic α-cells and enteroendocrine L-cells without disrupting preproglucagon gene expression. These mice will be a useful tool for performing temporally controlled genetic manipulation specifically in these cell types.
Search Strategies Used by "APP" Transgenic Mice during Navigation in the Morris Water Maze
ERIC Educational Resources Information Center
Janus, Christopher
2004-01-01
TgCRND8 mice represent a transgenic mouse model of Alzheimer's disease, with onset of cognitive impairment and increasing amyloid-[beta] plaques in their brains at 12 weeks of age. In this study, the spatial memory in 25- to 30-week-old TgCRND8 mice was analyzed in two reference and one working memory Morris water maze (MWM) tests. In reference…
Transgenic expression of cyclooxygenase-2 (COX2) causes premature aging phenotypes in mice.
Kim, Joohwee; Vaish, Vivek; Feng, Mingxiao; Field, Kevin; Chatzistamou, Ioulia; Shim, Minsub
2016-10-07
Cyclooxygenase (COX) is a key enzyme in the biosynthesis of prostanoids, lipid signaling molecules that regulate various physiological processes. COX2, one of the isoforms of COX, is highly inducible in response to a wide variety of cellular and environmental stresses. Increased COX2 expression is thought to play a role in the pathogenesis of many age-related diseases. COX2 expression is also reported to be increased in the tissues of aged humans and mice, which suggests the involvement of COX2 in the aging process. However, it is not clear whether the increased COX2 expression is causal to or a result of aging. We have now addressed this question by creating an inducible COX2 transgenic mouse model. Here we show that post-natal expression of COX2 led to a panel of aging-related phenotypes. The expression of p16, p53, and phospho-H2AX was increased in the tissues of COX2 transgenic mice. Additionally, adult mouse lung fibroblasts from COX2 transgenic mice exhibited increased expression of the senescence-associated β-galactosidase. Our study reveals that the increased COX2 expression has an impact on the aging process and suggests that modulation of COX2 and its downstream signaling may be an approach for intervention of age-related disorders.
Gaupp, Stefanie; Arezzo, Joseph; Dutta, Dipankar J.; John, Gareth R.; Raine, Cedric S.
2013-01-01
Central nervous system hypomyelination is a feature common to a number of transgenic (Tg) mouse lines that express a variety of unrelated exogenous (i.e. non-CNS) transgenes. In this report we document hypomyelination structurally by immunocytochemistry and functionally in the Tg line MBP-JE, which overexpresses the chemokine CCL2 (MCP-1) within oligodendrocytes targeted by a myelin basic protein (MBP) promoter. Analysis of hypomyelinated optic nerves of Tg mice revealed progressive decrease in oligodendrocyte numbers with age (p < 0.01). Although molecular mechanisms underlying hypomyelination in this and other Tg models remain largely unknown, we present preliminary findings on oligodendrocyte progenitor cell (OPC) cultures in which, although OPC expressed CCR2, the receptor for CCL2, treatment with CCL2 had no significant effect on OPC proliferation, differentiation or apoptosis. We suggest that hypomyelination in the MBP-JE model might not be due to CCL2 expression but rather the result of transcriptional dysfunction related to random insertion of the MBP promoter that disrupts myelinogenesis and leads to oligodendrocytes demise. Because an MBP promoter is a common denominator in most Tg lines displaying hypomyelination, we hypothesize that use of myelin gene sequences in the regulator region of transgenic constructs might underlie this perturbation of myelination in such models. PMID:22082665
Lu, Jiaxiong; Guan, Shan; Zhao, Yanling; Yu, Yang; Woodfield, Sarah E; Zhang, Huiyuan; Yang, Kristine L; Bieerkehazhi, Shayahati; Qi, Lin; Li, Xiaonan; Gu, Jerry; Xu, Xin; Jin, Jingling; Muscal, Jodi A; Yang, Tianshu; Xu, Guo-Tong; Yang, Jianhua
2017-08-01
Activating germline mutations of anaplastic lymphoma kinase (ALK) occur in most cases of hereditary neuroblastoma (NB) and the constitutively active kinase activity of ALK promotes cell proliferation and survival in NB. Therefore, ALK kinase is a potential therapeutic target for NB. In this study, we show that the novel ALK inhibitor alectinib effectively suppressed cell proliferation and induces apoptosis in NB cell lines with either wild-type ALK or mutated ALK (F1174L and D1091N) by blocking ALK-mediated PI3K/Akt/mTOR signaling. In addition, alectinib enhanced doxorubicin-induced cytotoxicity and apoptosis in NB cells. Furthermore, alectinib induced apoptosis in an orthotopic xenograft NB mouse model. Also, in the TH-MYCN transgenic mouse model, alectinib resulted in decreased tumor growth and prolonged survival time. These results indicate that alectinib may be a promising therapeutic agent for the treatment of NB. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Feng; Leong, Wenyan; Su, Kai; Fang, Yu; Wang, Dong-An
2013-05-01
Stromal cell-derived factor-1 (SDF-1), also known as a homing factor, is a potent chemokine that activates and directs mobilization, migration, and retention of certain cell species via systemic circulation. The responding homing cells largely consist of activated stem cells, so that, in case of tissue lesions, such SDF-1-induced cell migration may execute recruitment of endogenous stem cells to perform autoreparation and compensatory regeneration in situ. In this study, a recombinant adenoviral vector carrying SDF-1 transgene was constructed and applied to transduce a novel scaffold-free living hyaline cartilage graft (SDF-t-LhCG). As an engineered transgenic living tissue, SDF-t-LhCG is capable of continuously producing and releasing SDF-1 in vitro and in vivo. The in vitro trials were examined with ELISA, while the in vivo trials were subsequently performed via a subcutaneous implantation of SDF-t-LhCG in a nude mouse model, followed by series of biochemical and biological analyses. The results indicate that transgenic SDF-1 enhanced the presence of this chemokine in mouse's circulation system; in consequence, SDF-1-induced activation and recruitment of endogenous stem cells were also augmented in both peripheral blood and SDF-t-LhCG implant per se. These results were obtained via flow cytometry analyses on mouse blood samples and implanted SDF-t-LhCG samples, indicating an upregulation of the CXCR4(+)(SDF-1 receptor) cell population, accompanied by upregulation of the CD34(+), CD44(+), and Sca-1(+) cell populations as well as a downregulation of the CD11b(+) cell population. With the supply of SDF-1-recruited endogenous stem cells, enhanced chondrogenesis was observed in SDF-t-LhCG implants in situ.
Southwell, Amber L; Skotte, Niels H; Villanueva, Erika B; Østergaard, Michael E; Gu, Xiaofeng; Kordasiewicz, Holly B; Kay, Chris; Cheung, Daphne; Xie, Yuanyun; Waltl, Sabine; Dal Cengio, Louisa; Findlay-Black, Hailey; Doty, Crystal N; Petoukhov, Eugenia; Iworima, Diepiriye; Slama, Ramy; Ooi, Jolene; Pouladi, Mahmoud A; Yang, X William; Swayze, Eric E; Seth, Punit P; Hayden, Michael R
2017-03-15
Huntington disease (HD) is a neurodegenerative disease caused by a mutation in the huntingtin (HTT) gene. HTT is a large protein, interacts with many partners and is involved in many cellular pathways, which are perturbed in HD. Therapies targeting HTT directly are likely to provide the most global benefit. Thus there is a need for preclinical models of HD recapitulating human HTT genetics. We previously generated a humanized mouse model of HD, Hu97/18, by intercrossing BACHD and YAC18 mice with knockout of the endogenous mouse HD homolog (Hdh). Hu97/18 mice recapitulate the genetics of HD, having two full-length, genomic human HTT transgenes heterozygous for the HD mutation and polymorphisms associated with HD in populations of Caucasian descent. We have now generated a companion model, Hu128/21, by intercrossing YAC128 and BAC21 mice on the Hdh-/- background. Hu128/21 mice have two full-length, genomic human HTT transgenes heterozygous for the HD mutation and polymorphisms associated with HD in populations of East Asian descent and in a minority of patients from other ethnic groups. Hu128/21 mice display a wide variety of HD-like phenotypes that are similar to YAC128 mice. Additionally, both transgenes in Hu128/21 mice match the human HTT exon 1 reference sequence. Conversely, the BACHD transgene carries a floxed, synthetic exon 1 sequence. Hu128/21 mice will be useful for investigations of human HTT that cannot be addressed in Hu97/18 mice, for developing therapies targeted to exon 1, and for preclinical screening of personalized HTT lowering therapies in HD patients of East Asian descent. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Yuan, Shu-min; Gao, Kai; Wang, Dong-mei; Quan, Xiong-zhi; Liu, Jiang-ning; Ma, Chun-mei; Qin, Chuan; Zhang, Lian-feng
2011-01-01
Aim: To investigate the effect of evodiamine (a quinolone alkaloid from the fruit of Evodia rutaecarpa) on the progression of Alzheimer's disease in SAMP8 and APPswe/PS1ΔE9 transgenic mouse models. Methods: The mice at age of 5 months were randomized into the model group, two evodiamine (50 mg·kg−1·d−1 and 100 mg·kg−1·d−1) groups and an Aricept (2 mg·kg−1·d−1) group. The littermates of no-transgenic mice and senescence accelerated mouse/resistance 1 mice (SAMR1) were used as controls. After 4 weeks of treatment, learning abilities and memory were assessed using Morris water-maze test, and glucose uptake by the brain was detected using positron emission tomography/computed tomography (PET/CT). Expression levels of IL-1β, IL-6, and TNF-α in brain tissues were detected using ELISA. Expression of COX-2 protein was determined using Western blot. Results: In Morris water-maze test, evodiamine (100 mg·kg−1·d−1) significantly alleviated the impairments of learning ability and memory. Evodiamine (100 mg·kg−1·d−1) also reversed the inhibition of glucose uptake due to development of Alzheimer's disease traits in mice. Furthermore, the dose of evodiamine significantly decreased the expression of IL-1β, IL-6, TNF-α, and COX-2 that were involved in the inflammation due to Alzheimer's disease. Conclusion: The results indicate that evodiamine (100 mg·kg−1·d−1) improves cognitive abilities in the transgenic models of Alzheimer's disease. PMID:21278785
The nuclear import factor importin α4 can protect against oxidative stress.
Young, Julia C; Ly-Huynh, Jennifer D; Lescesen, Helen; Miyamoto, Yoichi; Browne, Cate; Yoneda, Yoshihiro; Koopman, Peter; Loveland, Kate L; Jans, David A
2013-10-01
The importin (IMP) superfamily of nuclear transport proteins is essential to key developmental pathways, including in the murine testis where expression of the 6 distinct IMPα proteins is highly dynamic. Present predominantly from the spermatocyte stage onwards, IMPα4 is unique in showing a striking nuclear localization, a property we previously found to be linked to maintenance of pluripotency in embryonic stem cells and to the cellular stress response in cultured cells. Here we examine the role of IMPα4 in vivo for the first time using a novel transgenic mouse model in which we overexpress an IMPα4-EGFP fusion protein from the protamine 1 promoter to recapitulate endogenous testicular germ cell IMPα4 expression in spermatids. IMPα4 overexpression did not affect overall fertility, testis morphology/weight or spermatogenic progression under normal conditions, but conferred significantly (>30%) increased resistance to oxidative stress specifically in the spermatid subpopulation expressing the transgene. Consistent with a cell-specific role for IMPα4 in protecting against oxidative stress, haploid germ cells from IMPα4 null mice were significantly (c. 30%) less resistant to oxidative stress than wild type controls. These results from two unique and complementary mouse models demonstrate a novel protective role for IMPα4 in stress responses specifically within haploid male germline cells, with implications for male fertility and genetic integrity. Copyright © 2013 Elsevier B.V. All rights reserved.
Wang, Chao; Xie, Wei; Zhu, Jinfeng; Dang, Rui; Wang, Decai
2014-01-01
To observe the early prevention effect of the compound nutrients recipe for cognitive dysfunction of Alzheimer' s disease model-APP-PSN transgenic mouse. 36 APP-PSN transgenic mice aged two months randomly were divided into the intervention group supplied with compound recipe in the diet and the control group fed based feed, the former had high dose and low dose, 12 APP-PSN transgenic negative mice aged two months as the negative control were fed based feed. After 3 months' intervention, four groups' cognitive functions were evaluated using the Morris water maze, active avoidance experiment and jumping stair experiment. There was not statistically different between all the four groups for the weight and food intake. Compared with the control group, Morris water maze's incubation period of the intervention group was lower obviously, and jumping stair experiment's incubation period of the intervention group was higher obviously. In the active avoidance experiment, the high and low dose intervention group' s conditioned response accounted about 46.67% and 45.00% respectively, and the control group's conditioned response accounted about 20.83%. The differences of the three behavioral experiments between control group and intervention group had the statistical significance (P < 0.05), so the same as between control group and negative control group (P < 0.05). And there was no difference between intervention group and negative control group for the three behavioral experiments. The early supplementation with compound nutrition could postpone the occurrence and development of Alzheimer' s disease mice model's cognitive dysfunction.
Hawley, Catherine A; Rojo, Rocio; Raper, Anna; Sauter, Kristin A; Lisowski, Zofia M; Grabert, Kathleen; Bain, Calum C; Davis, Gemma M; Louwe, Pieter A; Ostrowski, Michael C; Hume, David A; Pridans, Clare; Jenkins, Stephen J
2018-03-15
CSF1 is the primary growth factor controlling macrophage numbers, but whether expression of the CSF1 receptor differs between discrete populations of mononuclear phagocytes remains unclear. We have generated a Csf1r -mApple transgenic fluorescent reporter mouse that, in combination with lineage tracing, Alexa Fluor 647-labeled CSF1-Fc and CSF1, and a modified Δ Csf1- enhanced cyan fluorescent protein (ECFP) transgene that lacks a 150 bp segment of the distal promoter, we have used to dissect the differentiation and CSF1 responsiveness of mononuclear phagocyte populations in situ. Consistent with previous Csf1r- driven reporter lines, Csf1r -mApple was expressed in blood monocytes and at higher levels in tissue macrophages, and was readily detectable in whole mounts or with multiphoton microscopy. In the liver and peritoneal cavity, uptake of labeled CSF1 largely reflected transgene expression, with greater receptor activity in mature macrophages than monocytes and tissue-specific expression in conventional dendritic cells. However, CSF1 uptake also differed between subsets of monocytes and discrete populations of tissue macrophages, which in macrophages correlated with their level of dependence on CSF1 receptor signaling for survival rather than degree of transgene expression. A double Δ Csf1r -ECFP- Csf1r -mApple transgenic mouse distinguished subpopulations of microglia in the brain, and permitted imaging of interstitial macrophages distinct from alveolar macrophages, and pulmonary monocytes and conventional dendritic cells. The Csf1r- mApple mice and fluorescently labeled CSF1 will be valuable resources for the study of macrophage and CSF1 biology, which are compatible with existing EGFP-based reporter lines. Copyright © 2018 The Authors.
Virus vector-mediated genetic modification of brain tumor stromal cells after intravenous delivery.
Volak, Adrienn; LeRoy, Stanley G; Natasan, Jeya Shree; Park, David J; Cheah, Pike See; Maus, Andreas; Fitzpatrick, Zachary; Hudry, Eloise; Pinkham, Kelsey; Gandhi, Sheetal; Hyman, Bradley T; Mu, Dakai; GuhaSarkar, Dwijit; Stemmer-Rachamimov, Anat O; Sena-Esteves, Miguel; Badr, Christian E; Maguire, Casey A
2018-05-16
The malignant primary brain tumor, glioblastoma (GBM) is generally incurable. New approaches are desperately needed. Adeno-associated virus (AAV) vector-mediated delivery of anti-tumor transgenes is a promising strategy, however direct injection leads to focal transgene spread in tumor and rapid tumor division dilutes out the extra-chromosomal AAV genome, limiting duration of transgene expression. Intravenous (IV) injection gives widespread distribution of AAV in normal brain, however poor transgene expression in tumor, and high expression in non-target cells which may lead to ineffective therapy and high toxicity, respectively. Delivery of transgenes encoding secreted, anti-tumor proteins to tumor stromal cells may provide a more stable and localized reservoir of therapy as they are more differentiated than fast-dividing tumor cells. Reactive astrocytes and tumor-associated macrophage/microglia (TAMs) are stromal cells that comprise a large portion of the tumor mass and are associated with tumorigenesis. In mouse models of GBM, we used IV delivery of exosome-associated AAV vectors driving green fluorescent protein expression by specific promoters (NF-κB-responsive promoter and a truncated glial fibrillary acidic protein promoter), to obtain targeted transduction of TAMs and reactive astrocytes, respectively, while avoiding transgene expression in the periphery. We used our approach to express the potent, yet toxic anti-tumor cytokine, interferon beta, in tumor stroma of a mouse model of GBM, and achieved a modest, yet significant enhancement in survival compared to controls. Noninvasive genetic modification of tumor microenvironment represents a promising approach for therapy against cancers. Additionally, the vectors described here may facilitate basic research in the study of tumor stromal cells in situ.
Keene, C. Dirk; Rodrigues, Cecilia M. P.; Eich, Tacjana; Chhabra, Manik S.; Steer, Clifford J.; Low, Walter C.
2002-01-01
Huntington's disease (HD) is an untreatable neurological disorder caused by selective and progressive degeneration of the caudate nucleus and putamen of the basal ganglia. Although the etiology of HD pathology is not fully understood, the observed loss of neuronal cells is thought to occur primarily through apoptosis. Furthermore, there is evidence in HD that cell death is mediated through mitochondrial pathways, and mitochondrial deficits are commonly associated with HD. We have previously reported that treatment with tauroursodeoxycholic acid (TUDCA), a hydrophilic bile acid, prevented neuropathology and associated behavioral deficits in the 3-nitropropionic acid rat model of HD. We therefore examined whether TUDCA would also be neuroprotective in a genetic mouse model of HD. Our results showed that systemically administered TUDCA led to a significant reduction in striatal neuropathology of the R6/2 transgenic HD mouse. Specifically, R6/2 mice began receiving TUDCA at 6 weeks of age and exhibited reduced striatal atrophy, decreased striatal apoptosis, as well as fewer and smaller size ubiquitinated neuronal intranuclear huntingtin inclusions. Moreover, locomotor and sensorimotor deficits were significantly improved in the TUDCA-treated mice. In conclusion, TUDCA is a nontoxic, endogenously produced hydrophilic bile acid that is neuroprotective in a transgenic mouse model of HD and, therefore, may provide a novel and effective treatment in patients with HD. PMID:12149470
Time-controllable Nkcc1 knockdown replicates reversible hearing loss in postnatal mice.
Watabe, Takahisa; Xu, Ming; Watanabe, Miho; Nabekura, Junichi; Higuchi, Taiga; Hori, Karin; Sato, Mitsuo P; Nin, Fumiaki; Hibino, Hiroshi; Ogawa, Kaoru; Masuda, Masatsugu; Tanaka, Kenji F
2017-10-19
Identification of the causal effects of specific proteins on recurrent and partially reversible hearing loss has been difficult because of the lack of an animal model that provides reversible gene knockdown. We have developed the transgenic mouse line Actin-tTS::Nkcc1 tetO/tetO for manipulatable expression of the cochlear K + circulation protein, NKCC1. Nkcc1 transcription was blocked by the binding of a tetracycline-dependent transcriptional silencer to the tetracycline operator sequences inserted upstream of the Nkcc1 translation initiation site. Administration of the tetracycline derivative doxycycline reversibly regulated Nkcc1 knockdown. Progeny from pregnant/lactating mothers fed doxycycline-free chow from embryonic day 0 showed strong suppression of Nkcc1 expression (~90% downregulation) and Nkcc1 null phenotypes at postnatal day 35 (P35). P35 transgenic mice from mothers fed doxycycline-free chow starting at P0 (delivery) showed weaker suppression of Nkcc1 expression (~70% downregulation) and less hearing loss with mild cochlear structural changes. Treatment of these mice at P35 with doxycycline for 2 weeks reactivated Nkcc1 transcription to control levels and improved hearing level at high frequency; i.e., these doxycycline-treated mice exhibited partially reversible hearing loss. Thus, development of the Actin-tTS::Nkcc1 tetO/tetO transgenic mouse line provides a mouse model for the study of variable hearing loss through reversible knockdown of Nkcc1.
Ceccom, Johnatan; Coslédan, Frédéric; Halley, Hélène; Francès, Bernard; Lassalle, Jean Michel; Meunier, Bernard
2012-01-01
Alzheimer's disease (AD) is a neurodegenerative syndrom involving many different biological parameters, including the accumulation of copper metal ions in Aβ amyloid peptides due to a perturbation of copper circulation and homeostasis within the brain. Copper-containing amyloids activated by endogenous reductants are able to generate an oxidative stress that is involved in the toxicity of abnormal amyloids and contribute to the progressive loss of neurons in AD. Since only few drugs are currently available for the treatment of AD, we decided to design small molecules able to interact with copper and we evaluated these drug-candidates with non-transgenic mice, since AD is mainly an aging disease, not related to genetic disorders. We created a memory deficit mouse model by a single icv injection of Aβ(1-42) peptide, in order to mimic the early stage of the disease and the key role of amyloid oligomers in AD. No memory deficit was observed in the control mice with the antisense Aβ(42-1) peptide. Here we report the capacity of a new copper-specific chelating agent, a bis-8-aminoquinoline PA1637, to fully reverse the deficit of episodic memory after three weeks of treatment by oral route on non-transgenic amyloid-impaired mice. Clioquinol and memantine have been used as comparators to validate this fast and efficient mouse model.
Fielitz, Kathrin; Althoff, Kristina; De Preter, Katleen; Nonnekens, Julie; Ohli, Jasmin; Elges, Sandra; Hartmann, Wolfgang; Klöppel, Günter; Knösel, Thomas; Schulte, Marc; Klein-Hitpass, Ludger; Beisser, Daniela; Reis, Henning; Eyking, Annette; Cario, Elke; Schulte, Johannes H; Schramm, Alexander; Schüller, Ulrich
2016-11-15
Amplification or overexpression of MYCN is involved in development and maintenance of multiple malignancies. A subset of these tumors originates from neural precursors, including the most aggressive forms of the childhood tumors, neuroblastoma and medulloblastoma. In order to model the spectrum of MYCN-driven neoplasms in mice, we transgenically overexpressed MYCN under the control of the human GFAP-promoter that, among other targets, drives expression in neural progenitor cells. However, LSL-MYCN;hGFAP-Cre double transgenic mice did neither develop neural crest tumors nor tumors of the central nervous system, but presented with neuroendocrine tumors of the pancreas and, less frequently, the pituitary gland. Pituitary tumors expressed chromogranin A and closely resembled human pituitary adenomas. Pancreatic tumors strongly produced and secreted glucagon, suggesting that they derived from glucagon- and GFAP-positive islet cells. Interestingly, 3 out of 9 human pancreatic neuroendocrine tumors expressed MYCN, supporting the similarity of the mouse tumors to the human system. Serial transplantations of mouse tumor cells into immunocompromised mice confirmed their fully transformed phenotype. MYCN-directed treatment by AuroraA- or Brd4-inhibitors resulted in significantly decreased cell proliferation in vitro and reduced tumor growth in vivo. In summary, we provide a novel mouse model for neuroendocrine tumors of the pancreas and pituitary gland that is dependent on MYCN expression and that may help to evaluate MYCN-directed therapies.
Suzuki, Mikiko; Ohneda, Kinuko; Hosoya-Ohmura, Sakie; Tsukamoto, Saho; Ohneda, Osamu; Philipsen, Sjaak; Yamamoto, Masayuki
2006-07-15
Erythroid progenitors have the potential to proliferate rapidly in response to environmental stimuli. This process is referred to as stress erythropoiesis, with erythropoietin (EPO) playing central roles in its promotion. In this study, we wanted to elucidate the molecular mechanisms governing the regulation of stress erythropoiesis and the maintenance of red-cell homeostasis. This was achieved by our development of a noninvasive real-time monitoring system for erythropoiesis using transgenic mouse lines expressing luciferase under the control of the mouse Gata1 hematopoietic regulatory domain (G1-HRD-luc) or human beta-globin locus control region (Hbb-LCR-luc). Optical bioluminescence images revealed that the luciferase was specifically expressed in spleen and bone marrow and was induced rapidly in response to anemia and hypoxia stimuli. The G1-HRD-luc activity tracked the emergence and disappearance of proerythroblast-stage progenitors, whereas the Hbb-LCR-luc activity tracked erythroblasts and later stage erythroid cells. Increased plasma EPO concentration preceded an increase in G1-HRD-luc, supporting our contention that EPO acts as the key upstream signal in stress erythropoiesis. Hence, we conclude that G1-HRD-luc and Hbb-LCR-luc reporters are differentially activated during stress erythropoiesis and that the transgenic mouse lines used serve as an important means for understanding the homeostatic regulation of erythropoiesis.
Kuzmanov, Uros; Guo, Hongbo; Buchsbaum, Diana; Cosme, Jake; Abbasi, Cynthia; Isserlin, Ruth; Sharma, Parveen; Gramolini, Anthony O.; Emili, Andrew
2016-01-01
Phospholamban (PLN) plays a central role in Ca2+ homeostasis in cardiac myocytes through regulation of the sarco(endo)plasmic reticulum Ca2+-ATPase 2A (SERCA2A) Ca2+ pump. An inherited mutation converting arginine residue 9 in PLN to cysteine (R9C) results in dilated cardiomyopathy (DCM) in humans and transgenic mice, but the downstream signaling defects leading to decompensation and heart failure are poorly understood. Here we used precision mass spectrometry to study the global phosphorylation dynamics of 1,887 cardiac phosphoproteins in early affected heart tissue in a transgenic R9C mouse model of DCM compared with wild-type littermates. Dysregulated phosphorylation sites were quantified after affinity capture and identification of 3,908 phosphopeptides from fractionated whole-heart homogenates. Global statistical enrichment analysis of the differential phosphoprotein patterns revealed selective perturbation of signaling pathways regulating cardiovascular activity in early stages of DCM. Strikingly, dysregulated signaling through the Notch-1 receptor, recently linked to cardiomyogenesis and embryonic cardiac stem cell development and differentiation but never directly implicated in DCM before, was a prominently perturbed pathway. We verified alterations in Notch-1 downstream components in early symptomatic R9C transgenic mouse cardiomyocytes compared with wild type by immunoblot analysis and confocal immunofluorescence microscopy. These data reveal unexpected connections between stress-regulated cell signaling networks, specific protein kinases, and downstream effectors essential for proper cardiac function. PMID:27742792
Lieu, Christopher A.; Chinta, Shankar J.; Rane, Anand; Andersen, Julie K.
2013-01-01
We have previously shown that increases in astrocytic monoamine oxidase-B (MAO-B) expression, mimicking that which occurs with aging and in neurodegenerative disease, in a doxycycline (dox)-inducible transgenic mouse model evokes neuropathological similarities to what is observed in the human parkinsonian brain. Additional behavioral and neuropathological studies could provide further validation for its usage as a model for Parkinson’s disease (PD). In the present study, we utilized a battery of behavioral tests to evaluate age-related phenotype in this model. In the open field test, we found that dox-induction impaired motor ability with decreases in movement and ambulatory function as well as diminished stereotypical, repetitive movement episodes in both young and old mice. Older mice also showed decreased motor performance in the pole test when compared to younger mice. Furthermore, dox-induced older mice displayed severe hindlimb clasping and the most significant loss of dopamine (DA) in the striatum when compared to young and non-induced animals. Additionally, increased MAO-B activity significantly correlated with decreased expression of striatal DA. The results of our study further confirms that the dox-inducible astrocytic MAO-B transgenic mouse displays similar age-related behavioral and neuropathological features to other models of PD, and could serve as a useful tool to study PD pathophysiology and for the evaluation of therapeutic interventions. PMID:23326597
Lieu, Christopher A; Chinta, Shankar J; Rane, Anand; Andersen, Julie K
2013-01-01
We have previously shown that increases in astrocytic monoamine oxidase-B (MAO-B) expression, mimicking that which occurs with aging and in neurodegenerative disease, in a doxycycline (dox)-inducible transgenic mouse model evokes neuropathological similarities to what is observed in the human parkinsonian brain. Additional behavioral and neuropathological studies could provide further validation for its usage as a model for Parkinson's disease (PD). In the present study, we utilized a battery of behavioral tests to evaluate age-related phenotype in this model. In the open field test, we found that dox-induction impaired motor ability with decreases in movement and ambulatory function as well as diminished stereotypical, repetitive movement episodes in both young and old mice. Older mice also showed decreased motor performance in the pole test when compared to younger mice. Furthermore, dox-induced older mice displayed severe hindlimb clasping and the most significant loss of dopamine (DA) in the striatum when compared to young and non-induced animals. Additionally, increased MAO-B activity significantly correlated with decreased expression of striatal DA. The results of our study further confirms that the dox-inducible astrocytic MAO-B transgenic mouse displays similar age-related behavioral and neuropathological features to other models of PD, and could serve as a useful tool to study PD pathophysiology and for the evaluation of therapeutic interventions.
2010-01-01
Background Brahma-related gene 1 (Brg1, also known as Smarca4 and Snf2β) encodes an adenosine-5'-triphosphate (ATP)-dependent catalytical subunit of the (switch/sucrose nonfermentable) (SWI/SNF) chromatin remodeling complexes. SWI/SNF complexes are recruited to chromatin through multiple mechanisms, including specific DNA-binding factors (for example, heat shock transcription factor 4 (Hsf4) and paired box gene 6 (Pax6)), chromatin structural proteins (for example, high-mobility group A1 (HMGA1)) and/or acetylated core histones. Previous studies have shown that a single amino acid substitution (K798R) in the Brg1 ATPase domain acts via a dominant-negative (dn) mechanism. Genetic studies have demonstrated that Brg1 is an essential gene for early (that is, prior implantation) mouse embryonic development. Brg1 also controls neural stem cell maintenance, terminal differentiation of multiple cell lineages and organs including the T-cells, glial cells and limbs. Results To examine the roles of Brg1 in mouse lens development, a dnBrg1 transgenic construct was expressed using the lens-specific αA-crystallin promoter in postmitotic lens fiber cells. Morphological studies revealed abnormal lens fiber cell differentiation in transgenic lenses resulting in cataract. Electron microscopic studies showed abnormal lens suture formation and incomplete karyolysis (that is, denucleation) of lens fiber cells. To identify genes regulated by Brg1, RNA expression profiling was performed in embryonic day 15.5 (E15.5) wild-type and dnBrg1 transgenic lenses. In addition, comparisons between differentially expressed genes in dnBrg1 transgenic, Pax6 heterozygous and Hsf4 homozygous lenses identified multiple genes coregulated by Brg1, Hsf4 and Pax6. DNase IIβ, a key enzyme required for lens fiber cell denucleation, was found to be downregulated in each of the Pax6, Brg1 and Hsf4 model systems. Lens-specific deletion of Brg1 using conditional gene targeting demonstrated that Brg1 was required for lens fiber cell differentiation, for expression of DNase IIβ, for lens fiber cell denucleation and indirectly for retinal development. Conclusions These studies demonstrate a cell-autonomous role for Brg1 in lens fiber cell terminal differentiation and identified DNase IIβ as a potential direct target of SWI/SNF complexes. Brg1 is directly or indirectly involved in processes that degrade lens fiber cell chromatin. The presence of nuclei and other organelles generates scattered light incompatible with the optical requirements for the lens. PMID:21118511
Transgenic mouse models enabling photolabeling of individual neurons in vivo.
Peter, Manuel; Bathellier, Brice; Fontinha, Bruno; Pliota, Pinelopi; Haubensak, Wulf; Rumpel, Simon
2013-01-01
One of the biggest tasks in neuroscience is to explain activity patterns of individual neurons during behavior by their cellular characteristics and their connectivity within the neuronal network. To greatly facilitate linking in vivo experiments with a more detailed molecular or physiological analysis in vitro, we have generated and characterized genetically modified mice expressing photoactivatable GFP (PA-GFP) that allow conditional photolabeling of individual neurons. Repeated photolabeling at the soma reveals basic morphological features due to diffusion of activated PA-GFP into the dendrites. Neurons photolabeled in vivo can be re-identified in acute brain slices and targeted for electrophysiological recordings. We demonstrate the advantages of PA-GFP expressing mice by the correlation of in vivo firing rates of individual neurons with their expression levels of the immediate early gene c-fos. Generally, the mouse models described in this study enable the combination of various analytical approaches to characterize living cells, also beyond the neurosciences.
Wang, Yang; Xu, Zhidong; Mao, Jian -Hua; ...
2015-06-08
Background: Lung cancer is the leading cause of morbidity and death worldwide. Although the available lung cancer animal models have been informative and further propel our understanding of human lung cancer, they still do not fully recapitulate the complexities of human lung cancer. The pathogenesis of lung cancer remains highly elusive because of its aggressive biologic nature and considerable heterogeneity, compared to other cancers. The association of Cul4A amplification with aggressive tumor growth and poor prognosis has been suggested. Our previous study suggested that Cul4A is oncogenic in vitro, but its oncogenic role in vivo has not been studied. Methods:more » Viral delivery approaches have been used extensively to model cancer in mouse models. In our experiments, we used Cre-recombinase induced overexpression of the Cul4A gene in transgenic mice to study the role of Cul4A on lung tumor initiation and progression and have developed a new model of lung tumor development in mice harboring a conditionally expressed allele of Cul4A. Results: Here we show that the use of a recombinant adenovirus expressing Cre-recombinase (“AdenoCre”) to induce Cul4A overexpression in the lungs of mice allows controls of the timing and multiplicity of tumor initiation. Following our mouse models, we are able to study the potential role of Cul4A in the development and progression in pulmonary adenocarcinoma as well. Conclusion: Our findings indicate that Cul4A is oncogenic in vivo, and this mouse model is a tool in understanding the mechanisms of Cul4A in human cancers and for testing experimental therapies targeting Cul4A.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yang; Xu, Zhidong; Mao, Jian -Hua
Background: Lung cancer is the leading cause of morbidity and death worldwide. Although the available lung cancer animal models have been informative and further propel our understanding of human lung cancer, they still do not fully recapitulate the complexities of human lung cancer. The pathogenesis of lung cancer remains highly elusive because of its aggressive biologic nature and considerable heterogeneity, compared to other cancers. The association of Cul4A amplification with aggressive tumor growth and poor prognosis has been suggested. Our previous study suggested that Cul4A is oncogenic in vitro, but its oncogenic role in vivo has not been studied. Methods:more » Viral delivery approaches have been used extensively to model cancer in mouse models. In our experiments, we used Cre-recombinase induced overexpression of the Cul4A gene in transgenic mice to study the role of Cul4A on lung tumor initiation and progression and have developed a new model of lung tumor development in mice harboring a conditionally expressed allele of Cul4A. Results: Here we show that the use of a recombinant adenovirus expressing Cre-recombinase (“AdenoCre”) to induce Cul4A overexpression in the lungs of mice allows controls of the timing and multiplicity of tumor initiation. Following our mouse models, we are able to study the potential role of Cul4A in the development and progression in pulmonary adenocarcinoma as well. Conclusion: Our findings indicate that Cul4A is oncogenic in vivo, and this mouse model is a tool in understanding the mechanisms of Cul4A in human cancers and for testing experimental therapies targeting Cul4A.« less
Polycythemia in transgenic mice expressing the human erythropoietin gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semenza, G.L.; Traystman, M.D.; Gearhart, J.D.
1989-04-01
Erythropoietin is a glycoprotein hormone that regulates mammalian erythropoiesis. To study the expression of the human erythropoietin gene, EPO, 4 kilobases of DNA encompassing the gene with 0.4 kilobase of 5{prime} flanking sequence and 0.7 kilobase of 3{prime} flanking sequence was microinjected into fertilized mouse eggs. Transgenic mice were generated that are polycythemic, with increased erythrocytic indices in peripheral blood, increased numbers of erythroid precursors in hematopoietic tissue, and increased serum erythropoietin levels. Transgenic homozygotes show a greater degree of polycythemia than do heterozygotes as well as striking extramedullary erythropoiesis. Human erythropoietin RNA was found not only in fetal liver,more » adult liver, and kidney but also in all other transgenic tissues analyzed. Anemia induced increased human erythropoietin RNA levels in liver but not kidney. These transgenic mice represent a unique model of polycythemia due to increased erythropoietin levels.« less
Nas transgenic mouse line allows visualization of Notch pathway activity in vivo.
Souilhol, Céline; Cormier, Sarah; Monet, Marie; Vandormael-Pournin, Sandrine; Joutel, Anne; Babinet, Charles; Cohen-Tannoudji, Michel
2006-06-01
The Notch signaling pathway plays multiple and important roles in mammals. However, several aspects of its action, in particular, the precise mapping of its sites of activity, remain unclear. To address this issue, we generated a transgenic line carrying a construct consisting of a nls-lacZ reporter gene under the control of a minimal promoter and multiple RBP-Jkappa binding sites. Here we show that this transgenic line, which we termed NAS (for Notch Activity Sensor), displays an expression profile that is consistent with current knowledge on Notch activity sites in mice, even though it may not report on all these sites. Moreover, we observe that NAS transgene expression is abolished in a RBP-Jkappa-deficient background, indicating that it indeed requires Notch/RBP-Jkappa signaling pathway activity. Thus, the NAS transgenic line constitutes a valuable and versatile tool to gain further insights into the complex and various functions of the Notch signaling pathway.
Riluzole does not improve lifespan or motor function in three ALS mouse models.
Hogg, Marion C; Halang, Luise; Woods, Ina; Coughlan, Karen S; Prehn, Jochen H M
2018-08-01
Riluzole is the most widespread therapeutic for treatment of the progressive degenerative disease amyotrophic lateral sclerosis (ALS). Riluzole gained FDA approval in 1995 before the development of ALS mouse models. We assessed riluzole in three transgenic ALS mouse models: the SOD1 G93A model, the TDP-43 A315T model, and the recently developed FUS (1-359) model. Age, sex and litter-matched mice were treated with riluzole (22 mg/kg) in drinking water or vehicle (DMSO) from symptom onset. Lifespan was assessed and motor function tests were carried out twice weekly to determine whether riluzole slowed disease progression. Riluzole treatment had no significant benefit on lifespan in any of the ALS mouse models tested. Riluzole had no significant impact on decline in motor performance in the FUS (1-359) and SOD1 G93A transgenic mice as assessed by Rotarod and stride length analysis. Riluzole is widely prescribed for ALS patients despite questions surrounding its efficacy. Our data suggest that if riluzole was identified as a therapeutic candidate today it would not progress past pre-clinical assessment. This raises questions about the standards used in pre-clinical assessment of therapeutic candidates for the treatment of ALS.
Synuclein impairs trafficking and signaling of BDNF in a mouse model of Parkinson's disease.
Fang, Fang; Yang, Wanlin; Florio, Jazmin B; Rockenstein, Edward; Spencer, Brian; Orain, Xavier M; Dong, Stephanie X; Li, Huayan; Chen, Xuqiao; Sung, Kijung; Rissman, Robert A; Masliah, Eliezer; Ding, Jianqing; Wu, Chengbiao
2017-06-20
Recent studies have demonstrated that hyperphosphorylation of tau protein plays a role in neuronal toxicities of α-synuclein (ASYN) in neurodegenerative disease such as familial Alzheimer's disease (AD), dementia with Lewy bodies (DLB) and Parkinson's disease. Using a transgenic mouse model of Parkinson's disease (PD) that expresses GFP-ASYN driven by the PDGF-β promoter, we investigated how accumulation of ASYN impacted axonal function. We found that retrograde axonal trafficking of brain-derived neurotrophic factor (BDNF) in DIV7 cultures of E18 cortical neurons was markedly impaired at the embryonic stage, even though hyperphosphorylation of tau was not detectable in these neurons at this stage. Interestingly, we found that overexpressed ASYN interacted with dynein and induced a significant increase in the activated levels of small Rab GTPases such as Rab5 and Rab7, both key regulators of endocytic processes. Furthermore, expression of ASYN resulted in neuronal atrophy in DIV7 cortical cultures of either from E18 transgenic mouse model or from rat E18 embryos that were transiently transfected with ASYN-GFP for 72 hrs. Our studies suggest that excessive ASYN likely alters endocytic pathways leading to axonal dysfunction in embryonic cortical neurons in PD mouse models.
2011-01-01
Background Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that affects spinal cord and cortical motor neurons. An increasing amount of evidence suggests that mitochondrial dysfunction contributes to motor neuron death in ALS. Peroxisome proliferator-activated receptor gamma co-activator-1α (PGC-1α) is a principal regulator of mitochondrial biogenesis and oxidative metabolism. Results In this study, we examined whether PGC-1α plays a protective role in ALS by using a double transgenic mouse model where PGC-1α is over-expressed in an SOD1 transgenic mouse (TgSOD1-G93A/PGC-1α). Our results indicate that PGC-1α significantly improves motor function and survival of SOD1-G93A mice. The behavioral improvements were accompanied by reduced blood glucose level and by protection of motor neuron loss, restoration of mitochondrial electron transport chain activities and inhibition of stress signaling in the spinal cord. Conclusion Our results demonstrate that PGC-1α plays a beneficial role in a mouse model of ALS, suggesting that PGC-1α may be a potential therapeutic target for ALS therapy. PMID:21771318
Genes and Alcohol Consumption: Studies with Mutant Mice
Mayfield, Jody; Arends, Michael A.; Harris, R. Adron; Blednov, Yuri A.
2017-01-01
In this chapter, we review the effects of global null mutant and overexpressing transgenic mouse lines on voluntary self-administration of alcohol. We examine approximately 200 publications pertaining to the effects of 155 mouse genes on alcohol consumption in different drinking models. The targeted genes vary in function and include neurotransmitter, ion channel, neuroimmune, and neuropeptide signaling systems. The alcohol self-administration models include operant conditioning, two- and four-bottle choice continuous and intermittent access, drinking in the dark limited access, chronic intermittent ethanol, and scheduled high alcohol consumption tests. Comparisons of different drinking models using the same mutant mice are potentially the most informative, and we will highlight those examples. More mutants have been tested for continuous two-bottle choice consumption than any other test; of the 137 mouse genes examined using this model, 97 (72%) altered drinking in at least one sex. Overall, the effects of genetic manipulations on alcohol drinking often depend on the sex of the mice, alcohol concentration and time of access, genetic background, as well as the drinking test. PMID:27055617
Tang, Bin; Dutt, Karoni; Papale, Ligia; Rusconi, Raffaella; Shankar, Anupama; Hunter, Jessica; Tufik, Sergio; Yu, Frank H.; Catterall, William A.; Mantegazza, Massimo; Goldin, Alan L.; Escayg, Andrew
2009-01-01
Mutations in the voltage-gated sodium channel SCN1A are responsible for a number of seizure disorders including Generalized Epilepsy with Febrile Seizures Plus (GEFS+) and Severe Myoclonic Epilepsy of Infancy (SMEI). To determine the effects of SCN1A mutations on channel function in vivo, we generated a bacterial artificial chromosome (BAC) transgenic mouse model that expresses the human SCN1A GEFS+ mutation, R1648H. Mice with the R1648H mutation exhibit a more severe response to the proconvulsant kainic acid compared with mice expressing a control Scn1a transgene. Electrophysiological analysis of dissociated neurons from mice with the R1648H mutation reveal delayed recovery from inactivation and increased use-dependent inactivation only in inhibitory bipolar neurons, as well as a hyperpolarizing shift in the voltage dependence of inactivation only in excitatory pyramidal neurons. These results demonstrate that the effects of SCN1A mutations are cell type-dependent and that the R1648H mutation specifically leads to a reduction in interneuron excitability. PMID:19409490
Lallemand, Y; Luria, V; Haffner-Krausz, R; Lonai, P
1998-03-01
A transgenic mouse strain with early and uniform expression of the Cre site-specific recombinase is described. In this strain, PGK-Crem, Cre is driven by the early acting PGK-1 promoter, but, probably due to cis effects at the integration site, the recombinase is under dominant maternal control. When Cre is transmitted by PGK-Crem females mated to males that carry a reporter transgene flanked by loxP sites, even offspring that do not inherit PGK-Cre delete the target gene. It follows that in the PGK-Crem female Cre activity commences in the diploid phase of oogenesis. In PGK-Crem crosses complete recombination was observed in all organs, including testis and ovary. We prepared a mouse stock that is homozygous for PGK-Crem and at the albino (c) locus. This strain will be useful for the early and uniform induction of ectopic and dominant negative mutations, for the in vivo removal of selective elements from targeted mutations and in connection with the manipulation of targeted loci in 'knock in' and related technologies.
Ohmoto, Makoto; Matsumoto, Ichiro; Yasuoka, Akihito; Yoshihara, Yoshihiro; Abe, Keiko
2008-08-01
We established transgenic mouse lines expressing a transneuronal tracer, wheat germ agglutinin (WGA), under the control of mouse T1R3 gene promoter/enhancer. In the taste buds, WGA transgene was faithfully expressed in T1R3-positive sweet/umami taste receptor cells. WGA protein was transferred not laterally to the synapse-bearing, sour-responsive type III cells in the taste buds but directly to a subset of neurons in the geniculate and nodose/petrosal ganglia, and further conveyed to a rostro-central region of the nucleus of solitary tract. In addition, WGA was expressed in solitary chemoreceptor cells in the nasal epithelium and transferred along the trigeminal sensory pathway to the brainstem neurons. The solitary chemoreceptor cells endogenously expressed T1R3 together with bitter taste receptors T2Rs. This result shows an exceptional signature of receptor expression. Thus, the t1r3-WGA transgenic mice revealed the sweet/umami gustatory pathways from taste receptor cells and the trigeminal neural pathway from solitary chemoreceptor cells.
Cell-type Specific Optogenetic Mice for Dissecting Neural Circuitry Function
Zhao, Shengli; Ting, Jonathan T.; Atallah, Hisham E.; Qiu, Li; Tan, Jie; Gloss, Bernd; Augustine, George J.; Deisseroth, Karl; Luo, Minmin; Graybiel, Ann M.; Feng, Guoping
2011-01-01
Optogenetic methods have emerged as powerful tools for dissecting neural circuit connectivity, function, and dysfunction. We used a Bacterial Artificial Chromosome (BAC) transgenic strategy to express Channelrhodopsin2 (ChR2) under the control of cell-type specific promoter elements. We provide a detailed functional characterization of the newly established VGAT-ChR2-EYFP, ChAT-ChR2-EYFP, TPH2-ChR2-EYFP and Pvalb-ChR2-EYFP BAC transgenic mouse lines and demonstrate the utility of these lines for precisely controlling action potential firing of GABAergic, cholinergic, serotonergic, and parvalbumin+ neuron subsets using blue light. This resource of cell type-specific ChR2 mouse lines will facilitate the precise mapping of neuronal connectivity and the dissection of the neural basis of behavior. PMID:21985008
A Transgenic Mouse Model of Poliomyelitis.
Koike, Satoshi; Nagata, Noriyo
2016-01-01
Transgenic mice (tg mice) that express the human poliovirus receptor (PVR), CD155, are susceptible to poliovirus and develop a neurological disease that resembles human poliomyelitis. Assessment of the neurovirulence levels of poliovirus strains, including mutant viruses produced by reverse genetics, circulating vaccine-derived poliovirus, and vaccine candidates, is useful for basic research of poliovirus pathogenicity, the surveillance of circulating polioviruses, and the quality control of oral live poliovirus vaccines, and does not require the use of monkeys. Furthermore, PVR-tg mice are useful for studying poliovirus tissue tropism and host immune responses. PVR-tg mice can be bred with mice deficient in the genes involved in viral pathogenicity. This report describes the methods used to analyze the pathogenicity and immune responses of poliovirus using the PVR-tg mouse model.
Dissecting the Functions of Autophagy in Breast Cancer Associated Fibroblasts
2014-10-01
compound transgenic mouse model of mammary cancer (MMTV-PyMT) harboring genetic deletion of Atg12 in stromal fibroblasts using the fibroblast specific...Cre;MMTV-PyMT mice (months 2-18). Using the breeding strategy outlined in Figure 1, we have successfully generated these quadruple transgenic mice...could then use for generating lysate and interrogation by Western blot (Fig. 7). However, our data suggest that the autophagy incompetent MMFs (from
Urbanski, William M; Condie, Brian G
2009-12-01
Textpresso Site Specific Recombinases (http://ssrc.genetics.uga.edu/) is a text-mining web server for searching a database of more than 9,000 full-text publications. The papers and abstracts in this database represent a wide range of topics related to site-specific recombinase (SSR) research tools. Included in the database are most of the papers that report the characterization or use of mouse strains that express Cre recombinase as well as papers that describe or analyze mouse lines that carry conditional (floxed) alleles or SSR-activated transgenes/knockins. The database also includes reports describing SSR-based cloning methods such as the Gateway or the Creator systems, papers reporting the development or use of SSR-based tools in systems such as Drosophila, bacteria, parasites, stem cells, yeast, plants, zebrafish, and Xenopus as well as publications that describe the biochemistry, genetics, or molecular structure of the SSRs themselves. Textpresso Site Specific Recombinases is the only comprehensive text-mining resource available for the literature describing the biology and technical applications of SSRs. (c) 2009 Wiley-Liss, Inc.
Fox, Alyson; Kaur, Satbir; Li, Bifang; Panesar, Moh; Saha, Uma; Davis, Clare; Dragoni, Ilaria; Colley, Sian; Ritchie, Tim; Bevan, Stuart; Burgess, Gillian; McIntyre, Peter
2005-01-01
We describe the properties of a novel nonpeptide kinin B1 receptor antagonist, NVP-SAA164, and demonstrate its in vivo activity in models of inflammatory pain in transgenic mice expressing the human B1 receptor. NVP-SAA164 showed high affinity for the human B1 receptor expressed in HEK293 cells (Ki 8 nM), and inhibited increases in intracellular calcium induced by desArg10kallidin (desArg10KD) (IC50 33 nM). While a similar high affinity was observed in monkey fibroblasts (Ki 7.7 nM), NVP-SAA164 showed no affinity for the rat B1 receptor expressed in Cos-7 cells. In transgenic mice in which the native B1 receptor was deleted and the gene encoding the human B1 receptor was inserted (hB1 knockin, hB1-KI), hB1 receptor mRNA was induced in tissues following LPS treatment. No mRNA encoding the mouse or human B1 receptor was detected in mouse B1 receptor knockout (mB1-KO) mice following LPS treatment. Freund's complete adjuvant-induced mechanical hyperalgesia was similar in wild-type and hB1-KI mice, but was significantly reduced in mB1-KO animals. Mechanical hyperalgesia induced by injection of the B1 agonist desArg10KD into the contralateral paw 24 h following FCA injection was similar in wild-type and hB1-KI mice, but was absent in mB1-KO animals. Oral administration of NVP-SAA164 produced a dose-related reversal of FCA-induced mechanical hyperalgesia and desArg10KD-induced hyperalgesia in hB1-KI mice, but was inactive against inflammatory pain in wild-type mice. These data demonstrate the use of transgenic technology to investigate the in vivo efficacy of species selective agents and show that NVP-SAA164 is a novel orally active B1 receptor antagonist, providing further support for the utility of B1 receptor antagonists in inflammatory pain conditions in man. PMID:15685199
Neurobehavioral characterization of APP23 transgenic mice with the SHIRPA primary screen.
Lalonde, R; Dumont, M; Staufenbiel, M; Strazielle, C
2005-02-10
The SHIRPA primary screen comprises 40 measures covering various reflexes and basic sensorimotor functions. This multi-test battery was used to compare non-transgenic controls with APP23 transgenic mice, expressing the 751 isoform of human beta-amyloid precursor protein and characterized by amyloid deposits in parenchyma and vessel walls. The APP23 mice were distinguishable from controls by pathological limb reflexes, myoclonic jumping, seizure activity, and tail malformation. In addition, this mouse model of Alzheimer's disease was also marked by a crooked swimming trajectory. APP23 mice were also of lighter weight and were less inclined to stay immobile during a transfer arousal test. Despite the neurologic signs, APP23 transgenic mice were not deficient in stationary beam, coat-hanger, and rotorod tests, indicating intact motor coordination abilities.
Use Of Transgenic Mice In UDP-Glucuronosyltransferase (UGT) Studies
Ou, Zhimin; Huang, Min; Zhao, Lizi; Xie, Wen
2009-01-01
Transgenic mouse models are useful to understand the function and regulation of drug metabolizing enzymes in vivo. This article is intended to describe the general strategies and to discuss specific examples on how to use transgenic, gene knockout, and humanized mice to study the function as well as genetic and pharmacological regulation of UDP-glucuronosyltransferases (UGTs). The physiological and pharmacological implications of transcription factor-mediated UGT regulation will also be discussed. The UGT-regulating transcription factors to be discussed in this article include nuclear hormone receptors (NRs), aryl hydrocarbon receptor (AhR), and nuclear factor erythroid 2-related factor 2 (Nrf2). PMID:20070245
Modulation of TCRβ surface expression during TCR revision.
Simmons, Kalynn B; Wubeshet, Maramawit; Ames, Kristina T; McMahan, Catherine J; Hale, J Scott; Fink, Pamela J
2012-01-01
TCR revision is a tolerance mechanism by which self-reactive TCRs expressed by mature CD4(+) peripheral T cells are replaced by receptors encoded by genes generated by post-thymic DNA rearrangement. The downmodulation of surface TCR expression initiates TCR revision, and serves as a likely trigger for the induction of the recombinase machinery. We show here in a Vβ5 transgenic mouse model system that downregulation of the self-reactive transgene-encoded TCR is not maintained by transgene loss or diminished transcription or translation. The downregulation of surface TCR expression likely occurs in two stages, only one of which requires tolerogen expression. Copyright © 2011 Elsevier Inc. All rights reserved.
Host range phenotype induced by mutations in the internal ribosomal entry site of poliovirus RNA.
Shiroki, K; Ishii, T; Aoki, T; Ota, Y; Yang, W X; Komatsu, T; Ami, Y; Arita, M; Abe, S; Hashizume, S; Nomoto, A
1997-01-01
Most poliovirus strains infect only primates. The host range (HR) of poliovirus is thought to be primarily determined by a cell surface molecule that functions as poliovirus receptor (PVR), since it has been shown that transgenic mice are made poliovirus sensitive by introducing the human PVR gene into the genome. The relative levels of neurovirulence of polioviruses tested in these transgenic mice were shown to correlate well with the levels tested in monkeys (H. Horie et al., J. Virol. 68:681-688, 1994). Mutants of the virulent Mahoney strain of poliovirus have been generated by disruption of nucleotides 128 to 134, at stem-loop II within the 5' noncoding region, and four of these mutants multiplicated well in human HeLa cells but poorly in mouse TgSVA cells that had been established from the kidney of the poliovirus-sensitive transgenic mouse. Neurovirulence tests using the two animal models revealed that these mutants were strongly attenuated only in tests with the mouse model and were therefore HR mutants. The virus infection cycle in TgSVA cells was restricted by an internal ribosomal entry site (IRES)-dependent initiation process of translation. Viral protein synthesis and the associated block of cellular protein synthesis were not observed in TgSVA cells infected with three of four HR mutants and was evident at only a low level in the remaining mutant. The mutant RNAs were functional in a cell-free protein synthesis system from HeLa cells but not in those from TgSVA and mouse neuroblastoma NS20Y cells. These results suggest that host factor(s) affecting IRES-dependent translation of poliovirus differ between human and mouse cells and that the mutant IRES constructs detect species differences in such host factor(s). The IRES could potentially be a host range determinant for poliovirus infection. PMID:8985316
Pan-PPAR agonist IVA337 is effective in experimental lung fibrosis and pulmonary hypertension.
Avouac, Jerome; Konstantinova, Irena; Guignabert, Christophe; Pezet, Sonia; Sadoine, Jeremy; Guilbert, Thomas; Cauvet, Anne; Tu, Ly; Luccarini, Jean-Michel; Junien, Jean-Louis; Broqua, Pierre; Allanore, Yannick
2017-11-01
To evaluate the antifibrotic effects of the pan-peroxisome proliferator-activated receptor (PPAR) agonist IVA337 in preclinical mouse models of pulmonary fibrosis and related pulmonary hypertension (PH). IVA337 has been evaluated in the mouse model of bleomycin-induced pulmonary fibrosis and in Fra-2 transgenic mice, this latter being characterised by non-specific interstitial pneumonia and severe vascular remodelling of pulmonary arteries leading to PH. Mice received two doses of IVA337 (30 mg/kg or 100 mg/kg) or vehicle administered by daily oral gavage up to 4 weeks. IVA337 demonstrated at a dose of 100 mg/kg a marked protection from the development of lung fibrosis in both mouse models compared with mice receiving 30 mg/kg of IVA337 or vehicle. Histological score was markedly reduced by 61% in the bleomycin model and by 50% in Fra-2 transgenic mice, and total lung hydroxyproline concentrations decreased by 28% and 48%, respectively, as compared with vehicle-treated mice. IVA337 at 100 mg/kg also significantly decreased levels of fibrogenic markers in lesional lungs of both mouse models. In addition, IVA337 substantially alleviated PH in Fra-2 transgenic mice by improving haemodynamic measurements and vascular remodelling. In primary human lung fibroblasts, IVA337 inhibited in a dose-dependent manner fibroblast to myofibroblasts transition induced by TGF-β and fibroblast proliferation mediated by PDGF. We demonstrate that treatment with 100 mg/kg IVA337 prevents lung fibrosis in two complementary animal models and substantially attenuates PH in the Fra-2 mouse model. These findings confirm that the pan-PPAR agonist IVA337 is an appealing therapeutic candidate for these cardiopulmonary involvements. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Gollapudi, Sampath K; Tardiff, Jil C; Chandra, Murali
2015-04-15
Given the differential impact of α- and β-myosin heavy chain (MHC) isoforms on how troponin T (TnT) modulates contractile dynamics, we hypothesized that the effects of dilated cardiomyopathy (DCM) mutations in TnT would be altered differently by α- and β-MHC. We characterized dynamic contractile features of normal (α-MHC) and transgenic (β-MHC) mouse cardiac muscle fibers reconstituted with a mouse TnT analog (TnTR144W) of the human DCM R141W mutation. TnTR144W did not alter maximal tension but attenuated myofilament Ca(2+) sensitivity (pCa50) to a similar extent in α- and β-MHC fibers. TnTR144W attenuated the speed of cross-bridge (XB) distortion dynamics (c) by 24% and the speed of XB recruitment dynamics (b) by 17% in α-MHC fibers; however, both b and c remained unaltered in β-MHC fibers. Likewise, TnTR144W attenuated the rates of XB detachment (g) and tension redevelopment (ktr) only in α-MHC fibers. TnTR144W also decreased the impact of strained XBs on the recruitment of new XBs (γ) by 30% only in α-MHC fibers. Because c, b, g, ktr, and γ are strongly influenced by thin filament-based cooperative mechanisms, we conclude that the TnTR144W- and β-MHC-mediated changes in the thin filament interact to produce a less severe functional phenotype, compared with that brought about by TnTR144W and α-MHC. These observations provide a basis for lower mortality rates of humans (β-MHC) harboring the TnTR141W mutant compared with transgenic mouse studies. Our findings strongly suggest that some caution is necessary when extrapolating data from transgenic mouse studies to human hearts. Copyright © 2015 the American Physiological Society.
Murphy, Andrew J; Macdonald, Lynn E; Stevens, Sean; Karow, Margaret; Dore, Anthony T; Pobursky, Kevin; Huang, Tammy T; Poueymirou, William T; Esau, Lakeisha; Meola, Melissa; Mikulka, Warren; Krueger, Pamela; Fairhurst, Jeanette; Valenzuela, David M; Papadopoulos, Nicholas; Yancopoulos, George D
2014-04-08
Mice genetically engineered to be humanized for their Ig genes allow for human antibody responses within a mouse background (HumAb mice), providing a valuable platform for the generation of fully human therapeutic antibodies. Unfortunately, existing HumAb mice do not have fully functional immune systems, perhaps because of the manner in which their genetic humanization was carried out. Heretofore, HumAb mice have been generated by disrupting the endogenous mouse Ig genes and simultaneously introducing human Ig transgenes at a different and random location; KO-plus-transgenic humanization. As we describe in the companion paper, we attempted to make mice that more efficiently use human variable region segments in their humoral responses by precisely replacing 6 Mb of mouse Ig heavy and kappa light variable region germ-line gene segments with their human counterparts while leaving the mouse constant regions intact, using a unique in situ humanization approach. We reasoned the introduced human variable region gene segments would function indistinguishably in their new genetic location, whereas the retained mouse constant regions would allow for optimal interactions and selection of the resulting antibodies within the mouse environment. We show that these mice, termed VelocImmune mice because they were generated using VelociGene technology, efficiently produce human:mouse hybrid antibodies (that are rapidly convertible to fully human antibodies) and have fully functional humoral immune systems indistinguishable from those of WT mice. The efficiency of the VelocImmune approach is confirmed by the rapid progression of 10 different fully human antibodies into human clinical trials.
Functional Conservation of Gsdma Cluster Genes Specifically Duplicated in the Mouse Genome
Tanaka, Shigekazu; Mizushina, Youichi; Kato, Yoriko; Tamura, Masaru; Shiroishi, Toshihiko
2013-01-01
Mouse Gasdermin A3 (Gsdma3) is the causative gene for dominant skin mutations exhibiting alopecia. Mouse has two other Gsdma3-related genes, Gsdma and Gsdma2, whereas human and rat have only one related gene. To date, no skin mutation has been reported for human GSDMA and rat Gsdma as well as mouse Gsdma and Gsdma2. Therefore, it is possible that only Gsdma3 has gain-of-function type mutations to cause dominant skin phenotype. To elucidate functional divergence among the Gsdma-related genes in mice, and to infer the function of the human and rat orthologs, we examined in vivo function of mouse Gsdma by generating Gsdma knockout mice and transgenic mice that overexpress wild-type Gsdma or Gsdma harboring a point mutation (Alanine339Threonine). The Gsdma knockout mice shows no visible phenotype, indicating that Gsdma is not essential for differentiation of epidermal cells and maintenance of the hair cycle, and that Gsdma is expressed specifically both in the inner root sheath of hair follicles and in suprabasal cell layers, whereas Gsdma3 is expressed only in suprabasal layers. By contrast, both types of the transgenic mice exhibited epidermal hyperplasia resembling the Gsdma3 mutations, although the phenotype depended on the genetic background. These results indicate that the mouse Gsdma and Gsdma3 genes share common function to regulate epithelial maintenance and/or homeostasis, and suggest that the function of human GSDMA and rat Gsdma, which are orthologs of mouse Gsdma, is conserved as well. PMID:23979942
Genetically Targeted All-Optical Electrophysiology with a Transgenic Cre-Dependent Optopatch Mouse
Lou, Shan; Adam, Yoav; Weinstein, Eli N.; Williams, Erika; Williams, Katherine; Parot, Vicente; Kavokine, Nikita; Liberles, Stephen; Madisen, Linda; Zeng, Hongkui
2016-01-01
Recent advances in optogenetics have enabled simultaneous optical perturbation and optical readout of membrane potential in diverse cell types. Here, we develop and characterize a Cre-dependent transgenic Optopatch2 mouse line that we call Floxopatch. The animals expressed a blue-shifted channelrhodopsin, CheRiff, and a near infrared Archaerhodopsin-derived voltage indicator, QuasAr2, via targeted knock-in at the rosa26 locus. In Optopatch-expressing animals, we tested for overall health, genetically targeted expression, and function of the optogenetic components. In offspring of Floxopatch mice crossed with a variety of Cre driver lines, we observed spontaneous and optically evoked activity in vitro in acute brain slices and in vivo in somatosensory ganglia. Cell-type-specific expression allowed classification and characterization of neuronal subtypes based on their firing patterns. The Floxopatch mouse line is a useful tool for fast and sensitive characterization of neural activity in genetically specified cell types in intact tissue. SIGNIFICANCE STATEMENT Optical recordings of neural activity offer the promise of rapid and spatially resolved mapping of neural function. Calcium imaging has been widely applied in this mode, but is insensitive to the details of action potential waveforms and subthreshold events. Simultaneous optical perturbation and optical readout of single-cell electrical activity (“Optopatch”) has been demonstrated in cultured neurons and in organotypic brain slices, but not in acute brain slices or in vivo. Here, we describe a transgenic mouse in which expression of Optopatch constructs is controlled by the Cre-recombinase enzyme. This animal enables fast and robust optical measurements of single-cell electrical excitability in acute brain slices and in somatosensory ganglia in vivo, opening the door to rapid optical mapping of neuronal excitability. PMID:27798186
Verma, Megha; Beaulieu-Abdelahad, David; Ait-Ghezala, Ghania; Li, Rena; Crawford, Fiona; Mullan, Michael; Paris, Daniel
2015-01-01
Anatabine is a minor tobacco alkaloid, which is also found in plants of the Solanaceae family and displays a chemical structure similarity with nicotine. We have shown previously that anatabine displays some anti-inflammatory properties and reduces microgliosis and tau phosphorylation in a pure mouse model of tauopathy. We therefore investigated the effects of a chronic oral treatment with anatabine in a transgenic mouse model (Tg PS1/APPswe) of Alzheimer's disease (AD) which displays pathological Aβ deposits, neuroinflammation and behavioral deficits. In the elevated plus maze, Tg PS1/APPswe mice exhibited hyperactivity and disinhibition compared to wild-type mice. Six and a half months of chronic oral anatabine treatment, suppressed hyperactivity and disinhibition in Tg PS1/APPswe mice compared to Tg PS1/APPswe receiving regular drinking water. Tg PS1/APPswe mice also elicited profound social interaction and social memory deficits, which were both alleviated by the anatabine treatment. We found that anatabine reduces the activation of STAT3 and NFκB in the vicinity of Aβ deposits in Tg PS1/APPswe mice resulting in a reduction of the expression of some of their target genes including Bace1, iNOS and Cox-2. In addition, a significant reduction in microgliosis and pathological deposition of Aβ was observed in the brain of Tg PS1/APPswe mice treated with anatabine. This is the first study to investigate the impact of chronic anatabine treatment on AD-like pathology and behavior in a transgenic mouse model of AD. Overall, our data show that anatabine reduces β-amyloidosis, neuroinflammation and alleviates some behavioral deficits in Tg PS1/APPswe, supporting further exploration of anatabine as a possible disease modifying agent for the treatment of AD.
Pinheiro, Barbara S.; Seidl, Simon S.; Habazettl, Eva; Gruber, Bernadette E.; Bregolin, Tanja
2016-01-01
Impaired social interaction is a hallmark symptom of many psychiatric diseases, including dependence syndromes (substance use disorders). Helping the addict reorient her/his behavior away from the drug of abuse toward social interaction would be of considerable therapeutic benefit. To study the neural basis of such a reorientation, we have developed several animal models in which the attractiveness of a dyadic (i.e. one-to-one) social interaction (DSI) can be compared directly with that of cocaine as a prototypical drug of abuse. Our models are based on the conditioned place preference (CPP) paradigm. In an ongoing effort to validate our experimental paradigms in C57BL/6 mice to make use of the plethora of transgenic models available in this genus, we found the following: (a) DSI with a live mouse produced CPP, whereas an interaction with an inanimate mouse-like object (i.e. a ‘toy mouse’; toy mouse interaction) led to conditioned place aversion – but only in the Jackson substrain (C57BL/6J). (b) In the NIH substrain (C57BL/6N), both DSI and toy mouse interaction produced individual aversion in more than 50% of the tested mice. (c) Four 15 min DSI episodes did not result in the development of an observable hierarchy, that is, dominance/subordination behavior in the overwhelming majority (i.e. 30 of 32) of the tested Jackson mouse pairs. Therefore, dominance/subordination does not seem to be a confounding variable in our paradigm, at least not in C57BL/6J mice. Respective data for NIH mice were too limited to allow any conclusion. The present findings indicate that (a) DSI with a live mouse produces CPP to a greater degree than an interaction with an inanimate object resembling a mouse and that (b) certain substrain differences with respect to CPP/aversion to DSI do exist between the Jax and NIH substrain of C57BL/6 mice. These differences have to be considered when choosing a proper mouse substrain model for investigating the neural basis of DSI reward versus drug reward. PMID:26905190
Immunocompetent Mouse Model for Tracking Cancer Progression | NCI Technology Transfer Center | TTC
The National Cancer Institute seeks licensees or research collaborators to develop and commercialize transgenic mice having immunocompetent rat growth hormone-firefly Luciferase-enhanced green fluorescent protein.
Transformation of an edible crop with the pagA gene of Bacillus anthracis.
Aziz, Mohammad Azhar; Sikriwal, Deepa; Singh, Samer; Jarugula, Sridhar; Kumar, P Anand; Bhatnagar, Rakesh
2005-09-01
Vaccination against anthrax is the most important strategy to combat the disease. This study describes a generation of edible transgenic crop expressing, functional protective antigen (PA). In vitro studies showed that the plant-expressed antigen is qualitatively similar to recombinant PA. Immunization studies in mouse animal models indicated the generation of PA-specific neutralizing antibodies and stressed the need for improving expression levels to generate higher antibody titers. Genetic engineering of a plant organelle offers immense scope for increasing levels of antigen expression. An AT-rich PA gene (pagA) coding for the 83-kDa PA molecule was thus cloned and expressed in tobacco chloroplasts. Biolistics was used for the transformation of a chloroplast genome under a set of optimized conditions. The expression of the pagA gene with 69% AT content was highly favored by an AT-rich chloroplast genome. A multifold expression level of functional PA was obtained as compared with the nuclear transgenic tobacco plants. This report describes for the first time a comprehensive study on generating transgenic plants expressing PA, which may serve as a source of an edible vaccine against anthrax. Two important achievements of expressing PA in an edible crop and use of chloroplast technology to enhance the expression levels are discussed here.
ERIC Educational Resources Information Center
Chronicle of Higher Education, 1989
1989-01-01
The European Patent Convention has informed Harvard University that its application for a patent on a genetically engineered mouse may be refused. The application was the first to obtain patent protection across most of Europe for a transgenic animal, one which has been implanted with genes from another animal. (MSE)
Bardgett, Mark E; Boeckman, Ryan; Krochmal, Daniel; Fernando, Hiran; Ahrens, Rebecca; Csernansky, John G
2003-04-15
The interpretation of learning and memory deficits in transgenic mice has largely involved theories of NMDA receptor and/or hippocampal function. However, there is little empirical data that describes what NMDA receptors or the hippocampus do in mice. This research assessed the effects of different doses of the NMDA receptor antagonist, MK-801, or different-sized hippocampal lesions on several behavioral parameters in adult male C57Bl/6 mice. In the first set of experiments, different doses of MK-801 (0.05-0.3mg/kg, s.c.) were assayed in fear conditioning, shock sensitivity, locomotion, anxiety, and position habit reversal tests. Contextual and cued fear conditioning, and position habit reversal were impaired in a dose-dependent manner. Locomotor activity was increased immediately after injection of the highest dose of MK-801. A second set of experiments determined the behavioral effects of a moderate and large excitotoxic hippocampal lesion. Both lesions impaired contextual conditioning, while the larger lesion interfered with cued conditioning. Reversal learning was significantly diminished by the large lesion, while the moderate lesion had a detrimental effect at a trend level (P<0.10). These results provide important reference data for studies involving genetic manipulations of NMDA receptor or hippocampal function in mice. Furthermore, they serve as a basis for a non-transgenic mouse model of the NMDA receptor or hippocampal dysfunction hypothesized to occur in human cognitive disorders.
Rothermel, Markus; Brunert, Daniela; Zabawa, Christine; Díaz-Quesada, Marta; Wachowiak, Matt
2013-09-18
Tools enabling the manipulation of well defined neuronal subpopulations are critical for probing complex neuronal networks. Cre recombinase (Cre) mouse driver lines in combination with the Cre-dependent expression of proteins using viral vectors--in particular, recombinant adeno-associated viral vectors (rAAVs)--have emerged as a widely used platform for achieving transgene expression in specified neural populations. However, the ability of rAAVs to further specify neuronal subsets on the basis of their anatomical connectivity has been reported as limited or inconsistent. Here, we systematically tested a variety of widely used neurotropic rAAVs for their ability to mediate retrograde gene transduction in the mouse brain. We tested pseudotyped rAAVs of several common serotypes (rAAV 2/1, 2/5, and 2/9) as well as constructs both with and without Cre-dependent expression switches. Many of the rAAVs tested--in particular, though not exclusively, Cre-dependent vectors--showed a robust capacity for retrograde infection and transgene expression. Retrograde expression was successful over distances as large as 6 mm and in multiple neuron types, including olfactory projection neurons, neocortical pyramidal cells projecting to distinct targets, and corticofugal and modulatory projection neurons. Retrograde infection using transgenes such as ChR2 allowed for optical control or optically assisted electrophysiological identification of neurons defined genetically as well as by their projection target. These results establish a widely accessible tool for achieving combinatorial specificity and stable, long-term transgene expression to isolate precisely defined neuron populations in the intact animal.
Rothermel, Markus; Brunert, Daniela; Zabawa, Christine; Díaz-Quesada, Marta
2013-01-01
Tools enabling the manipulation of well defined neuronal subpopulations are critical for probing complex neuronal networks. Cre recombinase (Cre) mouse driver lines in combination with the Cre-dependent expression of proteins using viral vectors—in particular, recombinant adeno-associated viral vectors (rAAVs)—have emerged as a widely used platform for achieving transgene expression in specified neural populations. However, the ability of rAAVs to further specify neuronal subsets on the basis of their anatomical connectivity has been reported as limited or inconsistent. Here, we systematically tested a variety of widely used neurotropic rAAVs for their ability to mediate retrograde gene transduction in the mouse brain. We tested pseudotyped rAAVs of several common serotypes (rAAV 2/1, 2/5, and 2/9) as well as constructs both with and without Cre-dependent expression switches. Many of the rAAVs tested—in particular, though not exclusively, Cre-dependent vectors—showed a robust capacity for retrograde infection and transgene expression. Retrograde expression was successful over distances as large as 6 mm and in multiple neuron types, including olfactory projection neurons, neocortical pyramidal cells projecting to distinct targets, and corticofugal and modulatory projection neurons. Retrograde infection using transgenes such as ChR2 allowed for optical control or optically assisted electrophysiological identification of neurons defined genetically as well as by their projection target. These results establish a widely accessible tool for achieving combinatorial specificity and stable, long-term transgene expression to isolate precisely defined neuron populations in the intact animal. PMID:24048849
MicroCT and microMRI imaging of a prenatal mouse model of increased brain size
NASA Astrophysics Data System (ADS)
López, Elisabeth K. N.; Stock, Stuart R.; Taketo, Makoto M.; Chenn, Anjen; Ravosa, Matthew J.
2008-08-01
There are surprisingly few experimental models of neural growth and cranial integration. This and the dearth of information regarding fetal brain development detract from a mechanistic understanding of cranial integration and its relevance to the patterning of skull form, specifically the role of encephalization on basicranial flexion. To address this shortcoming, our research uses transgenic mice expressing a stabilized form of β-catenin to isolate the effects of relative brain size on craniofacial development. These mice develop highly enlarged brains due to an increase in neural precursors, and differences between transgenic and wild-type mice are predicted to result solely from variation in brain size. Comparisons of wild-type and transgenic mice at several prenatal ages were performed using microCT (Scanco Medical MicroCT 40) and microMRI (Avance 600 WB MR spectrometer). Statistical analyses show that the larger brain of the transgenic mice is associated with a larger neurocranium and an altered basicranial morphology. However, body size and postcranial ossification do not seem to be affected by the transgene. Comparisons of the rate of postcranial and cranial ossification using microCT also point to an unexpected effect of neural growth on skull development: increased fetal encephalization may result in a compensatory decrease in the level of cranial ossification. Therefore, if other life history factors are held constant, the ontogeny of a metabolically costly structure such as a brain may occur at the expense of other cranial structures. These analyses indicate the benefits of a multifactorial approach to cranial integration using a mouse model.
Metabolic characterization of a mouse deficient in all known leptin receptor isoforms.
Osborn, Olivia; Sanchez-Alavez, Manuel; Brownell, Sara E; Ross, Brendon; Klaus, Joe; Dubins, Jeffrey; Beutler, Bruce; Conti, Bruno; Bartfai, Tamas
2010-01-01
We have characterized a newly generated mouse model of obesity, a mouse strain deficient in all five previously described leptin receptor isoforms. These transgenic mice, named the db (333)/db (333) mice, were identified from an ENU mutagenesis screen and carry a point mutation in the seventh exon of the db gene encoding the leptin receptor, resulting in a premature stop codon (Y(333)Stop) and gene product that lacks STAT signaling domains. db (333)/db (333) mice have a morbidly obese phenotype, with body weights diverging from wild type as early as 4 weeks of age (P < 0.05). To determine the contribution of the short isoforms of the leptin receptor in this metabolic phenotype, we performed an extensive metabolic characterization of the db (333)/db (333) mouse in relation to the well-characterized db/db mouse lacking only the long form of the leptin receptor. db (333)/db (333) mice have similar endocrine and metabolic parameters as previously described in other leptin receptor transgenic mice including db/db mice that lack only the long isoform of the leptin receptor. However, db (333)/db (333) mice show a subtle trend toward higher body weight and insulin levels, lower oxygen, carbon dioxide production, respiratory exchange ratio (RER), and temperature than db/db mice suggesting the short isoforms may play an additional role in energy homeostasis.
Radiation arteriopathy in the transgenic arteriovenous fistula model.
Lawton, Michael T; Arnold, Christine M; Kim, Yung J; Bogarin, Ernesto A; Stewart, Campbell L; Wulfstat, Amanda A; Derugin, Nikita; Deen, Dennis; Young, William L
2008-05-01
The transgenic arteriovenous fistula model, surgically constructed with transgenic mouse aorta interposed in common carotid artery-to-external jugular vein fistulae in nude rats, has a 4-month experimental window because patency and transgenic phenotype are lost over time. We adapted this model to investigate occlusive arteriopathy in brain arteriovenous malformations after radiosurgery by radiating grafted aorta before insertion in the fistula. We hypothesized that high-dose radiation would reproduce the arteriopathy observed clinically within the experimental time window and that deletions of endoglin (ENG) and endothelial nitric oxide synthase (eNOS) genes would modify the radiation response. Radiation arteriopathy in the common carotid arteries of 171 wild-type mice was examined with doses of 25, 80, 120, or 200 Gy (Experiment 1). Radiation arteriopathy in 68 wild-type arteriovenous fistulae was examined histologically and morphometrically with preoperative radiation doses of 0, 25, or 200 Gy (Experiment 2). Radiation arteriopathy in 51 transgenic arteriovenous fistulae (36 ENG and 15 eNOS knock-out fistulae) was examined using preoperative radiation doses of 0, 25, or 200 Gy (Experiment 3). High-dose radiation (200 Gy) of mouse common carotid arteries induced only mild arteriopathy (mean score, 0.66) without intimal hyperplasia and with high mortality (68%). Radiation arteriopathy in wild-type arteriovenous fistulae was severe (mean score, 3.5 at 200 Gy), with intimal hyperplasia and medial disruption at 3 months, decreasing luminal areas with increasing dose, and no mortality. Arteriopathy was robust in transgenic arteriovenous fistulae with ENG +/- and with eNOS +/-, with thick intimal hyperplasia in the former and distinct smooth muscle cell proliferation in the latter. The transgenic arteriovenous fistula model can be adapted to rapidly reproduce radiation arteriopathy observed in resected brain arteriovenous malformations after radiosurgery. High radiation doses accelerate the progression of arteriopathy to fit the 4-month time limitation of the model, allowing transgenic tissues to retain their phenotypes throughout the experimental window. Modified radiation responses in ENG and eNOS knock-out fistulae indicate that arteriopathy after arteriovenous malformation radiosurgery might potentially be enhanced by altered gene expression.
Fujiki, Yutaka; Tao, Kai; Bianchi, Diana W; Giel-Moloney, Maryann; Leiter, Andrew B; Johnson, Kirby L
2008-02-01
Animal models are increasingly being used for the assessment of fetal cell microchimerism in maternal tissue. We wished to determine the optimal transgenic mouse strain and analytic technique to facilitate the detection of rare transgenic microchimeric fetal cells amongst a large number of maternal wild-type cells. We evaluated two strains of mice transgenic for the enhanced green fluorescent protein (EGFP): a commercially available, commonly used strain (C57BL/6-Tg(ACTB-EGFP)10sb/J) (CAG) and a newly created strain (ROSA26-EGFP) using three different techniques: in vivo and ex vivo fluorescent imaging (for whole body and dissected organs, respectively), PCR amplification of gfp, and flow cytometry (FCM). By fluorescent imaging, organs from CAG mice were 10-fold brighter than organs from ROSA26-EGFP mice (P < 0.0001). By PCR, more transgene from CAG mice was detected compared to ROSA26-EGFP mice (P = 0.04). By FCM, ROSA26-EGFP cell fluorescence was more uniform than CAG cells. A greater proportion of cells from ROSA26-EGFP organs were positive for EGFP than cells from CAG organs, but CAG mice had a greater proportion of cells with the brightest fluorescent intensity. Each transgenic strain possesses characteristics that make it useful under specific experimental circumstances. The CAG mouse model is preferable when experiments require brighter cells, whereas ROSA26-EGFP is more appropriate when uniform or ubiquitous expression is more important than brightness. Investigators must carefully select the transgenic strain most suited to the experimental design to obtain the most consistent and reproducible data. In vivo imaging allows for phenotypic evaluation of whole animals and intact organs; however, we did not evaluate its utility for the detection of rare, fetal microchimeric cells in the maternal organs. Finally, while PCR amplification of a paternally inherited transgene does allow for the quantitative determination of rare microchimeric cells, FCM allows for both quantitative and qualitative evaluations of fetal cells at very high sensitivity in a plethora of maternal organs. (c) 2008 International Society for Analytical Cytology
Dissecting Neuronal Participation to Focal Epileptic Events in Vivo
2016-10-01
transgenic mice, whose pyramidal neurons fluoresce...Gcamp6 in pyramidal neurons. The wild type mice colony started from a breeding pair from Jackson...homozygous transgenic GP4.3 mouse. 8 Figure 4. The Matlab interface is able to
Utrophin Up-Regulation by an Artificial Transcription Factor in Transgenic Mice
Mattei, Elisabetta; Corbi, Nicoletta; Di Certo, Maria Grazia; Strimpakos, Georgios; Severini, Cinzia; Onori, Annalisa; Desantis, Agata; Libri, Valentina; Buontempo, Serena; Floridi, Aristide; Fanciulli, Maurizio; Baban, Dilair; Davies, Kay E.; Passananti, Claudio
2007-01-01
Duchenne Muscular Dystrophy (DMD) is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter “A”. Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP) demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics. PMID:17712422
NASA Astrophysics Data System (ADS)
Carreira, Ricardo J.; Shyti, Reinald; Balluff, Benjamin; Abdelmoula, Walid M.; van Heiningen, Sandra H.; van Zeijl, Rene J.; Dijkstra, Jouke; Ferrari, Michel D.; Tolner, Else A.; McDonnell, Liam A.; van den Maagdenberg, Arn M. J. M.
2015-06-01
Cortical spreading depression (CSD) is the electrophysiological correlate of migraine aura. Transgenic mice carrying the R192Q missense mutation in the Cacna1a gene, which in patients causes familial hemiplegic migraine type 1 (FHM1), exhibit increased propensity to CSD. Herein, mass spectrometry imaging (MSI) was applied for the first time to an animal cohort of transgenic and wild type mice to study the biomolecular changes following CSD in the brain. Ninety-six coronal brain sections from 32 mice were analyzed by MALDI-MSI. All MSI datasets were registered to the Allen Brain Atlas reference atlas of the mouse brain so that the molecular signatures of distinct brain regions could be compared. A number of metabolites and peptides showed substantial changes in the brain associated with CSD. Among those, different mass spectral features showed significant ( t-test, P < 0.05) changes in the cortex, 146 and 377 Da, and in the thalamus, 1820 and 1834 Da, of the CSD-affected hemisphere of FHM1 R192Q mice. Our findings reveal CSD- and genotype-specific molecular changes in the brain of FHM1 transgenic mice that may further our understanding about the role of CSD in migraine pathophysiology. The results also demonstrate the utility of aligning MSI datasets to a common reference atlas for large-scale MSI investigations.
A non-inheritable maternal Cas9-based multiple-gene editing system in mice.
Sakurai, Takayuki; Kamiyoshi, Akiko; Kawate, Hisaka; Mori, Chie; Watanabe, Satoshi; Tanaka, Megumu; Uetake, Ryuichi; Sato, Masahiro; Shindo, Takayuki
2016-01-28
The CRISPR/Cas9 system is capable of editing multiple genes through one-step zygote injection. The preexisting method is largely based on the co-injection of Cas9 DNA (or mRNA) and guide RNAs (gRNAs); however, it is unclear how many genes can be simultaneously edited by this method, and a reliable means to generate transgenic (Tg) animals with multiple gene editing has yet to be developed. Here, we employed non-inheritable maternal Cas9 (maCas9) protein derived from Tg mice with systemic Cas9 overexpression (Cas9 mice). The maCas9 protein in zygotes derived from mating or in vitro fertilization of Tg/+ oocytes and +/+ sperm could successfully edit the target genome. The efficiency of such maCas9-based genome editing was comparable to that of zygote microinjection-based genome editing widely used at present. Furthermore, we demonstrated a novel approach to create "Cas9 transgene-free" gene-modified mice using non-Tg (+/+) zygotes carrying maCas9. The maCas9 protein in mouse zygotes edited nine target loci simultaneously after injection with nine different gRNAs alone. Cas9 mouse-derived zygotes have the potential to facilitate the creation of genetically modified animals carrying the Cas9 transgene, enabling repeatable genome engineering and the production of Cas9 transgene-free mice.
NASA Astrophysics Data System (ADS)
Deng, Senyi; Wu, Qinjie; Zhao, Yuwei; Zheng, Xin; Wu, Ni; Pang, Jing; Li, Xuejing; Bi, Cheng; Liu, Xinyu; Yang, Li; Liu, Lei; Su, Weijun; Wei, Yuquan; Gong, Changyang
2015-03-01
Circulating tumor cells (CTCs) play a crucial role in tumor metastasis, but it is rare for any chemotherapy regimen to focus on killing CTCs. Herein, we describe doxorubicin (Dox) micelles that showed anti-metastatic activity by killing CTCs. Dox micelles with a small particle size and high encapsulation efficiency were obtained using a pH-induced self-assembly method. Compared with free Dox, Dox micelles exhibited improved cytotoxicity, apoptosis induction, and cellular uptake. In addition, Dox micelles showed a sustained release behavior in vitro, and in a transgenic zebrafish model, Dox micelles exhibited a longer circulation time and lower extravasation from blood vessels into surrounding tissues. Anti-tumor and anti-metastatic activities of Dox micelles were investigated in transgenic zebrafish and mouse models. In transgenic zebrafish, Dox micelles inhibited tumor growth and prolonged the survival of tumor-bearing zebrafish. Furthermore, Dox micelles suppressed tumor metastasis by killing CTCs. In addition, improved anti-tumor and anti-metastatic activities were also confirmed in mouse tumor models, where immunofluorescent staining of tumors indicated that Dox micelles induced more apoptosis and showed fewer proliferation-positive cells. There were decreased side effects in transgenic zebrafish and mice after administration of Dox micelles. In conclusion, Dox micelles showed stronger anti-tumor and anti-metastatic activities and decreased side effects both in vitro and in vivo, which may have potential applications in cancer therapy.
GFP reporter mice for the retinoblastoma-related cell cycle regulator p107
Burkhart, Deborah L.; Viatour, Patrick; Ho, Victoria M.; Sage, Julien
2009-01-01
The RB tumor suppressor gene is mutated in a broad range of human cancers, including pediatric retinoblastoma. Strikingly, however, Rb mutant mice develop tumors of the pituitary and thyroid glands, but not retinoblastoma. Mouse genetics experiments have demonstrated that p107, a protein related to pRB, is capable of preventing retinoblastoma, but not pituitary tumors, in Rb-deficient mice. Evidence suggests that the basis for this compensatory function of p107 is increased transcription of the p107 gene in response to Rb inactivation. To begin to address the context-dependency of this compensatory role of p107 and to follow p107 expression in vivo, we have generated transgenic mice carrying an enhanced GFP (eGFP) reporter inserted into a bacterial artificial chromosome (BAC) containing the mouse p107 gene. Expression of the eGFP transgene parallels that of p107 in these transgenic mice and identifies cells with a broad range of expression level for p107, even within particular organs or tissues. We also show that loss of Rb results in the upregulation of p107 transcription in specific cell populations in vivo, including subpopulations of hematopoietic cells. Thus, p107 BAC-eGFP transgenic mice serve as a useful tool to identify distinct cell types in which p107 is expressed and may have key functions in vivo, and to characterize changes in cellular networks accompanying Rb deficiency. PMID:18719374
Longitudinal in vivo imaging of retinal gliosis in a diabetic mouse model.
Kumar, Saravana; Zhuo, Lang
2010-10-01
In this study, we visualize and quantify retinal gliosis in vivo for monitoring early diabetic retinopathy (DR) in a transgenic mouse model. Onset of diabetes was triggered via intraperitoneal injection of streptozotocin (STZ) into transgenic F1 hybrid (FVB/N × C57BL/6J) mice expressing green fluorescent protein (GFP) under the control of glial fibrillary acidic protein (GFAP) promoter. Retinal glial cells are imaged once pre-STZ treatment followed by weekly post-STZ imaging for five weeks using a confocal scanning laser ophthalmoscope. Mice develop diabetes one week after STZ induction as confirmed from the high blood glucose levels (>13.9 mmol/L). A significant increase is observed in the GFAP-GFP transgene expression from astrocytic cell bodies and processes as early as week 5 for the STZ-treated mice. Retinal astrocytes also undergo hyperplasia progressively from week 0 to 5. This precedes any structural abnormalities to the retinal vasculature. Immunohistochemistry (IHC) on retinal sections as well as quantitative RT-PCR of endogenous and transgene GFAP mRNA supports our in vivo observation. Our in vivo data correlates with clinical reports with regards to retinal gliosis-related inflammatory response during early diabetic retinopathy. This opens up the possibility of using in vivo molecular imaging of retinal glial cells as a platform for monitoring the efficacy of anti-DR drug candidates which intervene at an early stage.
Mori, Takashi; Rezai-Zadeh, Kavon; Koyama, Naoki; Arendash, Gary W.; Yamaguchi, Haruyasu; Kakuda, Nobuto; Horikoshi-Sakuraba, Yuko; Tan, Jun; Town, Terrence
2012-01-01
Amyloid precursor protein (APP) proteolysis is essential for production of amyloid-β (Aβ) peptides that form β-amyloid plaques in brains of Alzheimer disease (AD) patients. Recent focus has been directed toward a group of naturally occurring anti-amyloidogenic polyphenols known as flavonoids. We orally administered the flavonoid tannic acid (TA) to the transgenic PSAPP mouse model of cerebral amyloidosis (bearing mutant human APP and presenilin-1 transgenes) and evaluated cognitive function and AD-like pathology. Consumption of TA for 6 months prevented transgene-associated behavioral impairment including hyperactivity, decreased object recognition, and defective spatial reference memory, but did not alter nontransgenic mouse behavior. Accordingly, brain parenchymal and cerebral vascular β-amyloid deposits and abundance of various Aβ species including oligomers were mitigated in TA-treated PSAPP mice. These effects occurred with decreased cleavage of the β-carboxyl-terminal APP fragment, lowered soluble APP-β production, reduced β-site APP cleaving enzyme 1 protein stability and activity, and attenuated neuroinflammation. As in vitro validation, we treated well characterized mutant human APP-overexpressing murine neuron-like cells with TA and found significantly reduced Aβ production associated with less amyloidogenic APP proteolysis. Taken together, these results raise the possibility that dietary supplementation with TA may be prophylactic for AD by inhibiting β-secretase activity and neuroinflammation and thereby mitigating AD pathology. PMID:22219198
Hassona, Mohamed D H; Elnakish, Mohammad T; Abouelnaga, Zeinb A; Alhaj, Mazin; Wani, Altaf A; Hassanain, Hamdy
2011-05-01
Hypertension represents a major risk factor for cardiovascular diseases. We have developed a novel transgenic mouse model by overexpressing the cDNA of human profilin1 in the blood vessels of transgenic mice, which led to vascular hypertrophy and hypertension. We assessed the effects of losartan, amlodipine, or atenolol on vascular hypertrophy-associated hypertension, by treating the profilin1 transgenic mice for 4 weeks. Our myograph results showed improvement in the contraction response toward phenylephrine and in the relaxation response toward acetylcholine and sodium nitrite in losartan- and amlodipine-treated profilin1 mice. Western blot analyses using mesenteric arteries of losartan- and amlodipine-treated profilin1 mice showed significant decreases in their signaling, respectively, as follows: the expression of α1 integrin (104% and 93%) and β1 integrin (116% and 109%); p-ERK1/2 (149% and 130%) and p-JNK (171% and 137%); the phospho-myosin light chain 20 (117% and 150%); and the ROCKII expression (125% and 180%). Conversely, there were significant increases in the endothelial nitric oxide synthase expression (82% and 80%) and activation (p-endothelial nitric oxide synthase) (78% and 76%). On the other hand, atenolol-treated profilin1 mice showed no significant change in all measured parameters. In conclusion, the profilin1 gene may represent a new therapeutic target in the treatment of vascular hypertrophy-associated hypertension.
Proteomic profiling of brain cortex tissues in a Tau transgenic mouse model of Alzheimer's disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Seong-Hun; Jung, In-Soo; Han, Gi-Yeon
Highlights: Black-Right-Pointing-Pointer A transgenic mouse model expressing NSE-htau23 was used. Black-Right-Pointing-Pointer 2D-gel electrophoresis to analyze the cortex proteins of transgenic mice was used. Black-Right-Pointing-Pointer Differentially expressed spots in different stages of AD were identified. Black-Right-Pointing-Pointer GSTP1 and CAII were downregulated with the progression of AD. Black-Right-Pointing-Pointer SCRN1 and ATP6VE1 were up regulated and down regulated differentially. -- Abstract: Alzheimer's disease (AD) involves regionalized neuronal death, synaptic loss, and an accumulation of intracellular neurofibrillary tangles and extracellular senile plaques. Although there have been numerous studies on tau proteins and AD in various stages of neurodegenerative disease pathology, the relationship between taumore » and AD is not yet fully understood. A transgenic mouse model expressing neuron-specific enolase (NSE)-controlled human wild-type tau (NSE-htau23), which displays some of the typical Alzheimer-associated pathological features, was used to analyze the brain proteome associated with tau tangle deposition. Two-dimensional electrophoresis was performed to compare the cortex proteins of transgenic mice (6- and 12-month-old) with those of control mice. Differentially expressed spots in different stages of AD were identified with ESI-Q-TOF (electrospray ionization quadruple time-of-flight) mass spectrometry and liquid chromatography/tandem mass spectrometry. Among the identified proteins, glutathione S-transferase P 1 (GSTP1) and carbonic anhydrase II (CAII) were down-regulated with the progression of AD, and secerin-1 (SCRN1) and V-type proton ATPase subunit E 1 (ATP6VE1) were up-regulated only in the early stages, and down-regulated in the later stages of AD. The proteins, which were further confirmed by RT-PCR at the mRNA level and with western blotting at the protein level, are expected to be good candidates as drug targets for AD. The study of up- and down-regulation of proteins during the progression of AD helps to explain the mechanisms associated with neuronal degeneration in AD.« less
iMARS--mutation analysis reporting software: an analysis of spontaneous cII mutation spectra.
Morgan, Claire; Lewis, Paul D
2006-01-31
The sensitivity of any mutational assay is determined by the level at which spontaneous mutations occur in the corresponding untreated controls. Establishing the type and frequency at which mutations occur naturally within a test system is essential if one is to draw scientifically sound conclusions regarding chemically induced mutations. Currently, mutation-spectra analysis is laborious and time-consuming. Thus, we have developed iMARS, a comprehensive mutation-spectrum analysis package that utilises routinely used methodologies and visualisation tools. To demonstrate the use and capabilities of iMARS, we have analysed the distribution, types and sequence context of spontaneous base substitutions derived from the cII gene mutation assay in transgenic animals. Analysis of spontaneous mutation spectra revealed variation both within and between the transgenic rodent test systems Big Blue Mouse, MutaMouse and Big Blue Rat. The most common spontaneous base substitutions were G:C-->A:T transitions and G:C-->T:A transversions. All Big Blue Mouse spectra were significantly different from each other by distribution and nearly all by mutation type, whereas the converse was true for the other test systems. Twenty-eight mutation hotspots were observed across all spectra generally occurring in CG, GA/TC, GG and GC dinucleotides. A mutation hotspot at nucleotide 212 occurred at a higher frequency in MutaMouse and Big Blue Rat. In addition, CG dinucleotides were the most mutable in all spectra except two Big Blue Mouse spectra. Thus, spontaneous base-substitution spectra showed more variation in distribution, type and sequence context in Big Blue Mouse relative to spectra derived from MutaMouse and Big Blue Rat. The results of our analysis provide a baseline reference for mutation studies utilising the cII gene in transgenic rodent models. The potential differences in spontaneous base-substitution spectra should be considered when making comparisons between these test systems. The ease at which iMARS has allowed us to carry out an exhaustive investigation to assess mutation distribution, mutation type, strand bias, target sequences and motifs, as well as predict mutation hotspots provides us with a valuable tool in helping to distinguish true chemically induced hotspots from background mutations and gives a true reflection of mutation frequency.
Herbst, Eric A F; Holloway, Graham P
2015-02-15
Mitochondrial function in the brain is traditionally assessed through analysing respiration in isolated mitochondria, a technique that possesses significant tissue and time requirements while also disrupting the cooperative mitochondrial reticulum. We permeabilized brain tissue in situ to permit analysis of mitochondrial respiration with the native mitochondrial morphology intact, removing the need for isolation time and minimizing tissue requirements to ∼2 mg wet weight. The permeabilized brain technique was validated against the traditional method of isolated mitochondria and was then further applied to assess regional variation in the mouse brain with ischaemia-reperfusion injuries. A transgenic mouse model overexpressing catalase within mitochondria was applied to show the contribution of mitochondrial reactive oxygen species to ischaemia-reperfusion injuries in different brain regions. This technique enhances the accessibility of addressing physiological questions in small brain regions and in applying transgenic mouse models to assess mechanisms regulating mitochondrial function in health and disease. Mitochondria function as the core energy providers in the brain and symptoms of neurodegenerative diseases are often attributed to their dysregulation. Assessing mitochondrial function is classically performed in isolated mitochondria; however, this process requires significant isolation time, demand for abundant tissue and disruption of the cooperative mitochondrial reticulum, all of which reduce reliability when attempting to assess in vivo mitochondrial bioenergetics. Here we introduce a method that advances the assessment of mitochondrial respiration in the brain by permeabilizing existing brain tissue to grant direct access to the mitochondrial reticulum in situ. The permeabilized brain preparation allows for instant analysis of mitochondrial function with unaltered mitochondrial morphology using significantly small sample sizes (∼2 mg), which permits the analysis of mitochondrial function in multiple subregions within a single mouse brain. Here this technique was applied to assess regional variation in brain mitochondrial function with acute ischaemia-reperfusion injuries and to determine the role of reactive oxygen species in exacerbating dysfunction through the application of a transgenic mouse model overexpressing catalase within mitochondria. Through creating accessibility to small regions for the investigation of mitochondrial function, the permeabilized brain preparation enhances the capacity for examining regional differences in mitochondrial regulation within the brain, as the majority of genetic models used for unique approaches exist in the mouse model. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Characterization of Gastric and Neuronal Histaminergic Populations Using a Transgenic Mouse Model
Walker, Angela K.; Park, Won-Mee; Chuang, Jen-Chieh; Perello, Mario; Sakata, Ichiro; Osborne-Lawrence, Sherri; Zigman, Jeffrey M.
2013-01-01
Histamine is a potent biogenic amine that mediates numerous physiological processes throughout the body, including digestion, sleep, and immunity. It is synthesized by gastric enterochromaffin-like cells, a specific set of hypothalamic neurons, as well as a subset of white blood cells, including mast cells. Much remains to be learned about these varied histamine-producing cell populations. Here, we report the validation of a transgenic mouse line in which Cre recombinase expression has been targeted to cells expressing histidine decarboxylase (HDC), which catalyzes the rate-limiting step in the synthesis of histamine. This was achieved by crossing the HDC-Cre mouse line with Rosa26-tdTomato reporter mice, thus resulting in the expression of the fluorescent Tomato (Tmt) signal in cells containing Cre recombinase activity. As expected, the Tmt signal co-localized with HDC-immunoreactivity within the gastric mucosa and gastric submucosa and also within the tuberomamillary nucleus of the brain. HDC expression within Tmt-positive gastric cells was further confirmed by quantitative PCR analysis of mRNA isolated from highly purified populations of Tmt-positive cells obtained by fluorescent activated cell sorting (FACS). HDC expression within these FACS-separated cells was found to coincide with other markers of both ECL cells and mast cells. Gastrin expression was co-localized with HDC expression in a subset of histaminergic gastric mucosal cells. We suggest that these transgenic mice will facilitate future studies aimed at investigating the function of histamine-producing cells. PMID:23555941
Adekeye, Adeseye; Haeri, Mohammad; Solessio, Eduardo; Knox, Barry E.
2014-01-01
The P23H mutation in rhodopsin (RhoP23H) is a prevalent cause of autosomal dominant retinitis pigmentosa. We examined the role of the ER stress proteins, Chop and Ask1, in regulating the death of rod photoreceptors in a mouse line harboring the RhoP23H rhodopsin transgene (GHL+). We used knockout mice models to determine whether Chop and Ask1 regulate rod survival or retinal degeneration. Electrophysiological recordings showed similar retinal responses and sensitivities for GHL+, GHL+/Chop−/− and GHL+/Ask1−/− animals between 4–28 weeks, by which time all three mouse lines exhibited severe loss of retinal function. Histologically, ablation of Chop and Ask1 did not rescue photoreceptor loss in young animals. However, in older mice, a regional protective effect was observed in the central retina of GHL+/Chop−/− and GHL+/Ask1−/−, a region that was severely degenerated in GHL+ mice. Our results show that in the presence of the RhoP23H transgene, the rate of decline in retinal sensitivity is similar in Chop or Ask1 ablated and wild-type retinas, suggesting that these proteins do not play a major role during the acute phase of photoreceptor loss in GHL+ mice. Instead they may be involved in regulating secondary pathological responses such as inflammation that are upregulated during later stages of disease progression. PMID:24523853
Chen, Jiang; Du, Yinan; He, Xueyan; Huang, Xingxu; Shi, Yun S
2017-03-31
The most powerful way to probe protein function is to characterize the consequence of its deletion. Compared to conventional gene knockout (KO), conditional knockout (cKO) provides an advanced gene targeting strategy with which gene deletion can be performed in a spatially and temporally restricted manner. However, for most species that are amphiploid, the widely used Cre-flox conditional KO (cKO) system would need targeting loci in both alleles to be loxP flanked, which in practice, requires time and labor consuming breeding. This is considerably significant when one is dealing with multiple genes. CRISPR/Cas9 genome modulation system is advantaged in its capability in targeting multiple sites simultaneously. Here we propose a strategy that could achieve conditional KO of multiple genes in mouse with Cre recombinase dependent Cas9 expression. By transgenic construction of loxP-stop-loxP (LSL) controlled Cas9 (LSL-Cas9) together with sgRNAs targeting EGFP, we showed that the fluorescence molecule could be eliminated in a Cre-dependent manner. We further verified the efficacy of this novel strategy to target multiple sites by deleting c-Maf and MafB simultaneously in macrophages specifically. Compared to the traditional Cre-flox cKO strategy, this sgRNAs-LSL-Cas9 cKO system is simpler and faster, and would make conditional manipulation of multiple genes feasible.
Kukreja, L; Shahidehpour, R; Kim, G; Keegan, J; Sadleir, K R; Russell, T; Csernansky, J; Mesulam, M; Vassar, R J; Wang, L; Dong, H; Geula, C
2018-05-28
Frontotemporal lobar degeneration (FTLD) is among the most prevalent dementias of early-onset. Pathologically, FTLD presents with tauopathy or TAR DNA-binding protein 43 (TDP-43) proteinopathy. A biallelic mouse model of FTLD was produced on a mix FVB/129SVE background overexpressing wild-type human TDP-43 (hTDP-43) employing tetracycline transactivator (tTA), a system widely used in mouse models of neurological disorders. tTA activates hTDP-43 which is placed downstream of the tetracycline response element (TRE). The original study on this transgenic mouse found hippocampal degeneration following hTDP-43 expression, but did not account for independent effects of tTA protein. Here, we initially analyzed the neurotoxic effects of tTA in post-weaning age mice of either sex using immunostaining and area measurements of select brain regions. We observed tTA-dependent toxicity selectively in the hippocampus affecting the dentate gyrus significantly more than CA fields, whereas hTDP-43-dependent toxicity in bigenic mice occurred in most other cortical regions. Atrophy was associated with inflammation, activation of caspase-3 and loss of neurons. The atrophy associated with tTA expression was rescuable by tetracycline analog, doxycycline in the diet. MRI studies corroborated the patterns of atrophy. tTA-induced degeneration was strain-dependent and was rescued by moving the transgene onto a congenic C57BL/6 background. Despite significant hippocampal atrophy, behavioral tests in bigenic mice revealed no hippocampally mediated memory impairment. Significant atrophy in most cortical areas due solely to TDP-43 expression indicates that this mouse model remains useful for providing critical insight into co-occurrence of TDP-43 pathology, neurodegeneration and behavioral deficits in FTLD. SIGNIFICANCE STATEMENT The tTA expression system has been widely used in mice to model neurological disorders. The technique allows investigators to reversibly turn on or off disease causing genes. Here, we report on a mouse model that overexpresses human TDP-43 using tTA and attempt to recapitulate features of TDP-43 pathology present in human FTLD. The tTA expression system is problematic, resulting in dramatic degeneration of the hippocampus. Thus, our study adds a note of caution for the use of the tTA system. However, since FTLD is primarily characterized by cortical degeneration and our mouse model shows significant atrophy in most cortical areas due to human TDP-43 overexpression, our animal model remains useful for providing critical insight on this human disease. Copyright © 2018 the authors.
Controlled insertional mutagenesis using a LINE-1 (ORFeus) gene-trap mouse model.
O'Donnell, Kathryn A; An, Wenfeng; Schrum, Christina T; Wheelan, Sarah J; Boeke, Jef D
2013-07-16
A codon-optimized mouse LINE-1 element, ORFeus, exhibits dramatically higher retrotransposition frequencies compared with its native long interspersed element 1 counterpart. To establish a retrotransposon-mediated mouse model with regulatable and potent mutagenic capabilities, we generated a tetracycline (tet)-regulated ORFeus element harboring a gene-trap cassette. Here, we show that mice expressing tet-ORFeus broadly exhibit robust retrotransposition in somatic tissues when treated with doxycycline. Consistent with a significant mutagenic burden, we observed a reduced number of double transgenic animals when treated with high-level doxycycline during embryogenesis. Transgene induction in skin resulted in a white spotting phenotype due to somatic ORFeus-mediated mutations that likely disrupt melanocyte development. The data suggest a high level of transposition in melanocyte precursors and consequent mutation of genes important for melanoblast proliferation, differentiation, or migration. These findings reveal the utility of a retrotransposon-based mutagenesis system as an alternative to existing DNA transposon systems. Moreover, breeding these mice to different tet-transactivator/reversible tet-transactivator lines supports broad functionality of tet-ORFeus because of the potential for dose-dependent, tissue-specific, and temporal-specific mutagenesis.
Han, Jenny; Han, Zhi-Yan; Sax, Barbara; Kream, Barbara E.; Hong, Sung-Hyeok; Çelik, Haydar; Tirode, Franck; Tuckermann, Jan; Toretsky, Jeffrey A.; Kenner, Lukas; Kovar, Heinrich; Lee, Sean; Sweet-Cordero, E. Alejandro; Nakamura, Takuro; Moriggl, Richard; Delattre, Olivier; Üren, Aykut
2017-01-01
Ewing sarcoma (ES) involves a tumor-specific chromosomal translocation that produces the EWS-FLI1 protein, which is required for the growth of ES cells both in vitro and in vivo. However, an EWS-FLI1-driven transgenic mouse model is not currently available. Here, we present data from six independent laboratories seeking an alternative approach to express EWS-FLI1 in different murine tissues. We used the Runx2, Col1a2.3, Col1a3.6, Prx1, CAG, Nse, NEFL, Dermo1, P0, Sox9 and Osterix promoters to target EWS-FLI1 or Cre expression. Additional approaches included the induction of an endogenous chromosomal translocation, in utero knock-in, and the injection of Cre-expressing adenovirus to induce EWS-FLI1 expression locally in multiple lineages. Most models resulted in embryonic lethality or developmental defects. EWS-FLI1-induced apoptosis, promoter leakiness, the lack of potential cofactors, and the difficulty of expressing EWS-FLI1 in specific sites were considered the primary reasons for the failed attempts to create a transgenic mouse model of ES. PMID:27191748
Cheng, Yulong; Su, Yutong; Shan, Aijing; Jiang, Xiuli; Ma, Qinyun; Wang, Weiqing; Ning, Guang; Cao, Yanan
2015-07-01
The technologies for pancreatic β-cell-specific gene overexpression or knockout are fundamental for investigations of functional genes in vivo. Here we generated the Ins1-Cre-Dsred and Ins1-rtTA mouse models, which expressed the Cre recombinase or reverse tetracycline regulatable transactivator (rtTA) without hGH minigene under the control of mouse Ins1 promoter. Our data showed that the Cre-mediated recombination and rtTA-mediated activation could be efficiently detected at embryonic day 13.5 when these models were crossed with the reporter mice (ROSA(mT/mG) or tetO-HIST1H2BJ/GFP). The Cre and rtTA expression was restricted to β-cells without leakage in the brain and other tissues. Moreover, both the transgenic lines showed normal glucose tolerance and insulin secretion. These results suggested that the Ins1-Cre-Dsred and Ins1-rtTA mice could be used to knock out or overexpress target genes in embryos and adults to facilitate β-cell researches.
Progesterone Signaling Inhibits Cervical Carcinogenesis in Mice
Yoo, Young A; Son, Jieun; Mehta, Fabiola F.; DeMayo, Francesco J.; Lydon, John P.; Chung, Sang-Hyuk
2014-01-01
Human papillomavirus is the main cause of cervical cancer, yet other nonviral cofactors are also required for the disease. The uterine cervix is a hormone-responsive tissue, and female hormones have been implicated in cervical carcinogenesis. A transgenic mouse model expressing human papillomavirus oncogenes E6 and/or E7 has proven useful to study a mechanism of hormone actions in the context of this common malignancy. Estrogen and estrogen receptor α are required for the development of cervical cancer in this mouse model. Estrogen receptor α is known to up-regulate expression of the progesterone receptor, which, on activation by its ligands, either promotes or inhibits carcinogenesis, depending on the tissue context. Here, we report that progesterone receptor inhibits cervical and vaginal epithelial cell proliferation in a ligand-dependent manner. We also report that synthetic progestin medroxyprogesterone acetate promotes regression of cancers and precancerous lesions in the female lower reproductive tracts (ie, cervix and vagina) in the human papillomavirus transgenic mouse model. Our results provide the first experimental evidence that supports the hypothesis that progesterone signaling is inhibitory for cervical carcinogenesis in vivo. PMID:24012679
Minas, Tsion Zewdu; Surdez, Didier; Javaheri, Tahereh; Tanaka, Miwa; Howarth, Michelle; Kang, Hong-Jun; Han, Jenny; Han, Zhi-Yan; Sax, Barbara; Kream, Barbara E; Hong, Sung-Hyeok; Çelik, Haydar; Tirode, Franck; Tuckermann, Jan; Toretsky, Jeffrey A; Kenner, Lukas; Kovar, Heinrich; Lee, Sean; Sweet-Cordero, E Alejandro; Nakamura, Takuro; Moriggl, Richard; Delattre, Olivier; Üren, Aykut
2017-05-23
Ewing sarcoma (ES) involves a tumor-specific chromosomal translocation that produces the EWS-FLI1 protein, which is required for the growth of ES cells both in vitro and in vivo. However, an EWS-FLI1-driven transgenic mouse model is not currently available. Here, we present data from six independent laboratories seeking an alternative approach to express EWS-FLI1 in different murine tissues. We used the Runx2, Col1a2.3, Col1a3.6, Prx1, CAG, Nse, NEFL, Dermo1, P0, Sox9 and Osterix promoters to target EWS-FLI1 or Cre expression. Additional approaches included the induction of an endogenous chromosomal translocation, in utero knock-in, and the injection of Cre-expressing adenovirus to induce EWS-FLI1 expression locally in multiple lineages. Most models resulted in embryonic lethality or developmental defects. EWS-FLI1-induced apoptosis, promoter leakiness, the lack of potential cofactors, and the difficulty of expressing EWS-FLI1 in specific sites were considered the primary reasons for the failed attempts to create a transgenic mouse model of ES.
Complex genomic rearrangement in CCS-LacZ transgenic mice.
Stroud, Dina Myers; Darrow, Bruce J; Kim, Sang Do; Zhang, Jie; Jongbloed, Monique R M; Rentschler, Stacey; Moskowitz, Ivan P G; Seidman, Jonathan; Fishman, Glenn I
2007-02-01
The cardiac conduction system (CCS)-lacZ insertional mouse mutant strain genetically labels the developing and mature CCS. This pattern of expression is presumed to reflect the site of transgene integration rather than regulatory elements within the transgene proper. We sought to characterize the genomic structure of the integration locus and identify nearby gene(s) that might potentially confer the observed CCS-specific transcription. We found rearrangement of chromosome 7 between regions D1 and E1 with altered transcription of multiple genes in the D1 region. Several lines of evidence suggested that regulatory elements from at least one gene, Slco3A1, influenced CCS-restricted reporter gene expression. In embryonic hearts, Slco3A1 was expressed in a spatial pattern similar to the CCS-lacZ transgene and was similarly neuregulin-responsive. At later stages, however, expression patterns of the transgene and Slco3A1 diverged, suggesting that the Slco3A1 locus may be necessary, but not sufficient to confer CCS-specific transgene expression in the CCS-lacZ line. (c) 2007 Wiley-Liss, Inc.
Zhou, Haibo; Liu, Junlai; Zhou, Changyang; Gao, Ni; Rao, Zhiping; Li, He; Hu, Xinde; Li, Changlin; Yao, Xuan; Shen, Xiaowen; Sun, Yidi; Wei, Yu; Liu, Fei; Ying, Wenqin; Zhang, Junming; Tang, Cheng; Zhang, Xu; Xu, Huatai; Shi, Linyu; Cheng, Leping; Huang, Pengyu; Yang, Hui
2018-03-01
Despite rapid progresses in the genome-editing field, in vivo simultaneous overexpression of multiple genes remains challenging. We generated a transgenic mouse using an improved dCas9 system that enables simultaneous and precise in vivo transcriptional activation of multiple genes and long noncoding RNAs in the nervous system. As proof of concept, we were able to use targeted activation of endogenous neurogenic genes in these transgenic mice to directly and efficiently convert astrocytes into functional neurons in vivo. This system provides a flexible and rapid screening platform for studying complex gene networks and gain-of-function phenotypes in the mammalian brain.
Poirier, Christophe; Qin, Yangjun; Adams, Carolyn P; Anaya, Yanett; Singer, Jonathan B; Hill, Annie E; Lander, Eric S; Nadeau, Joseph H; Bishop, Colin E
2004-11-01
The transgenic insertional mouse mutation Odd Sex (Ods) represents a model for the long-range regulation of Sox9. The mutation causes complete female-to-male sex reversal by inducing a male-specific expression pattern of Sox9 in XX Ods/+ embryonic gonads. We previously described an A/J strain-specific suppressor of Ods termed Odsm1(A). Here we show that phenotypic sex depends on a complex interaction between the suppressor and the transgene. Suppression can be achieved only if the transgene is transmitted paternally. In addition, the suppressor itself exhibits a maternal effect, suggesting that it may act on chromatin in the early embryo.
Poirier, Christophe; Qin, Yangjun; Adams, Carolyn P.; Anaya, Yanett; Singer, Jonathan B.; Hill, Annie E.; Lander, Eric S.; Nadeau, Joseph H.; Bishop, Colin E.
2004-01-01
The transgenic insertional mouse mutation Odd Sex (Ods) represents a model for the long-range regulation of Sox9. The mutation causes complete female-to-male sex reversal by inducing a male-specific expression pattern of Sox9 in XX Ods/+ embryonic gonads. We previously described an A/J strain-specific suppressor of Ods termed Odsm1A. Here we show that phenotypic sex depends on a complex interaction between the suppressor and the transgene. Suppression can be achieved only if the transgene is transmitted paternally. In addition, the suppressor itself exhibits a maternal effect, suggesting that it may act on chromatin in the early embryo. PMID:15579706
Cooke, Rachel E; Gherardin, Nicholas A; Harrison, Simon J; Quach, Hang; Godfrey, Dale I; Prince, Miles; Koldej, Rachel; Ritchie, David S
2016-09-06
The Vk*MYC transgenic and transplant mouse models of multiple myeloma (MM) are well established as a research tool for anti-myeloma drug discovery. However, little is known of the immune response in these models. Understanding the immunological relevance of these models is of increasing importance as immunotherapeutic drugs are developed against MM. We set out to examine how cellular immunity is affected in Vk*MYC mouse models and compare that to the immunology of patients with newly diagnosed and relapsed/refractory MM. We found that there were significant immunological responses in mice developing either spontaneous (transgenic) or transplanted MM as a consequence of the degree of tumor burden. Particularly striking were the profound B cell lymphopenia and the expansion of CD8(+) effector memory T cells within the lymphocyte population that progressively developed with advancing disease burden, mirroring changes seen in human MM. High disease burden was also associated with increased inflammatory cytokine production by T lymphocytes, which is more fitting with relapsed/refractory MM in humans. These findings have important implications for the application of this mouse model in the development of MM immunotherapies. Trial registration LitVacc ANZCTR trial ID ACTRN12613000344796; RevLite ANZCTR trial ID NCT00482261.
Ebert, Allison D; Barber, Amelia E; Heins, Brittany M; Svendsen, Clive N
2010-07-01
Huntington's disease (HD) is an autosomal dominant disorder caused by expansion of polyglutamine repeats in the huntingtin gene leading to loss of striatal and cortical neurons followed by deficits in cognition and choreic movements. Growth factor delivery to the brain has shown promise in various models of neurodegenerative diseases, including HD, by reducing neuronal death and thus limiting motor impairment. Here we used mouse neural progenitor cells (mNPCs) as growth factor delivery vehicles in the N171-82Q transgenic mouse model of HD. mNPCs derived from the developing mouse striatum were isolated and infected with lentivirus expressing either glial cell line-derived neurotrophic factor (GDNF) or green fluorescent protein (GFP). Next, mNPCs(GDNF) or mNPCs(GFP) were transplanted bilaterally into the striatum of pre-symptomatic N171-82Q mice. We found that mNPCs(GDNF), but not mNPCs(GFP), maintained rotarod function and increased striatal neuron survival out to 3months post-transplantation. Importantly, histological analysis showed GDNF expression through the duration of the experiment. Our data show that mNPCs(GDNF) can survive transplantation, secrete GDNF for several weeks and are able to maintain motor function in this model of HD. Copyright 2010 Elsevier Inc. All rights reserved.
Nas transgenic mouse line allows visualization of Notch pathway activity in vivo
Souilhol, Céline; Cormier, Sarah; Monet, Marie; Vandormael-Pournin, Sandrine; Joutel, Anne; Babinet, Charles; Cohen-Tannoudji, Michel
2006-01-01
The Notch signalling pathway plays multiple and important roles in mammals. However, several aspects of its action, in particular the precise mapping of its sites of activity, remain unclear. To address this issue, we have generated a transgenic line carrying a construct consisting of a nls-lacZ reporter gene under the control of a minimal promoter and multiple RBP-Jκ binding sites. Here we show that this transgenic line, we named NAS for Notch Activity Sensor, displays an expression profile that is consistent with current knowledge on Notch activity sites in mice, even though it may not report on all these sites. Moreover, we observe that NAS transgene expression is abolished in a RBP-Jκ deficient background indicating that it indeed requires Notch/RBP-Jκ signalling pathway activity. Thus, the NAS transgenic line constitutes a valuable and versatile tool to gain further insights into the complex and various functions of the Notch signalling pathway. PMID:16708386
Dominant Role of HPV16 E7 in Anal Carcinogenesis
Thomas, Marie K.; Pitot, Henry C.; Liem, Amy; Lambert, Paul F.
2011-01-01
Ninety percent of anal cancer is associated with human papilloma viruses (HPVs). Using our previously established HPV transgenic mouse model for anal cancer, we tested the role of the individual oncogenes E6 and E7. K14E6 and K14E7 transgenic mice were treated with dimethylbenz[a]anthracene (DMBA) to the anal canal and compared to matched nontransgenic and doubly transgenic K14E6/E7 mice. K14E7 and K14E6/E7 transgenic mice developed anal tumors (papillomas, atypias and carcinomas combined) at significantly higher rates (88% and 100%, respectively) than either K14E6 or NTG mice (18% and 19%, respectively). Likewise, K14E7 and K14E6/E7 transgenic mice developed frank cancer (carcinomas) at significantly higher rates (85% and 85%, respectively) than either K14E6 or NTG mice (18% and 10%, respectively). These findings indicate that E7 is the more potent oncogene in anal cancer caused by HPVs. PMID:21999991
Cardiac Dysfunction in HIV-1 Transgenic Mouse: Role of Stress and BAG3.
Cheung, Joseph Y; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Tilley, Douglas G; Gao, Erhe; Koch, Walter J; Rabinowitz, Joseph; Klotman, Paul E; Khalili, Kamel; Feldman, Arthur M
2015-08-01
Since highly active antiretroviral therapy improved long-term survival of acquired immunodeficiency syndrome (AIDS) patients, AIDS cardiomyopathy has become an increasingly relevant clinical problem. We used human immunodeficiency virus (HIV)-1 transgenic (Tg26) mouse to explore molecular mechanisms of AIDS cardiomyopathy. Tg26 mice had significantly lower left ventricular (LV) mass and smaller end-diastolic and end-systolic LV volumes. Under basal conditions, cardiac contractility and relaxation and single myocyte contraction dynamics were not different between wild-type (WT) and Tg26 mice. Ten days after open heart surgery, contractility and relaxation remained significantly depressed in Tg26 hearts, suggesting that Tg26 mice did not tolerate surgical stress well. To simulate heart failure in which expression of Bcl2-associated athanogene 3 (BAG3) is reduced, we down-regulated BAG3 by small hairpin ribonucleic acid in WT and Tg26 hearts. BAG3 down-regulation significantly reduced contractility in Tg26 hearts. BAG3 overexpression rescued contractile abnormalities in myocytes expressing the HIV-1 protein Tat. We conclude: (i) Tg26 mice exhibit normal contractile function at baseline; (ii) Tg26 mice do not tolerate surgical stress well; (iii) BAG3 down-regulation exacerbated cardiac dysfunction in Tg26 mice; (iv) BAG3 overexpression rescued contractile abnormalities in myocytes expressing HIV-1 protein Tat; and (v) BAG3 may occupy a role in pathogenesis of AIDS cardiomyopathy. © 2015 Wiley Periodicals, Inc.
Neutralization of soluble, synaptotoxic amyloid β species by antibodies is epitope specific.
Zago, Wagner; Buttini, Manuel; Comery, Thomas A; Nishioka, Christopher; Gardai, Shyra J; Seubert, Peter; Games, Dora; Bard, Frédérique; Schenk, Dale; Kinney, Gene G
2012-02-22
Several anti-amyloid β (Aβ) antibodies are under evaluation for the treatment of Alzheimer's disease (AD). Clinical studies using the N-terminal-directed anti-Aβ antibody bapineuzumab have demonstrated reduced brain PET-Pittsburg-B signals, suggesting the reduction of Aβ plaques, and reduced levels of total and phosphorylated tau protein in the CSF of treated AD patients. Preclinical studies using 3D6 (the murine form of bapineuzumab) have demonstrated resolution of Aβ plaque and vascular burdens, neuritic dystrophy, and preservation of synaptic density in the transgenic APP mouse models. In contrast, few studies have evaluated the direct interaction of this antibody with synaptotoxic soluble Aβ species. In the current report, we demonstrated that 3D6 binds to soluble, synaptotoxic assemblies of Aβ(1-42) and prevents multiple downstream functional consequences in rat hippocampal neurons including changes in glutamate AMPA receptor trafficking, AD-type tau phosphorylation, and loss of dendritic spines. In vivo, we further demonstrated that 3D6 prevents synaptic loss and acutely reverses the behavioral deficit in the contextual fear conditioning task in transgenic mouse models of AD, two endpoints thought to be linked to synaptotoxic soluble Aβ moieties. Importantly C-terminal anti-Aβ antibodies were ineffective on these endpoints. These results, taken with prior studies, suggest that N-terminal anti-Aβ antibodies effectively interact with both soluble and insoluble forms of Aβ and therefore appear particularly well suited for testing the Aβ hypothesis of AD.
2000-10-01
interfere with the function of the mammary cells in which they are expressed. Transgenic technology has been used to evaluate the effects of an activated... wheat germ agglutinin; pfu, plaque-forming units; Cy3, a red fluorescent used for visualization of cell structures in the presence of GFP; DAPI, a...tumorigenesis in mice. The second objective has been achieved in part using transgenic mouse technology. We have begun exploration of the third objective. BODY
Tumor Tension Induces Persistent Inflammation and Promotes Breast Cancer Aggression
2016-10-01
Task 2A. Generate the appropriate breeding scheme to build cohorts of tri- transgenic mice (MMTV-PyMT; Stat3C/+ mice and C3(1)/Tag; Stat3C/+ mice...simvastatin treatment on tumors in the C3(1)/TAg model ( transgenic , not orthotopic). I am also at the final stages of obtaining several breeding ...cytokines and degree of immunosuppression in LuBC and TNBC mouse models. Task 1A. Generate the appropriate breeding scheme to build cohorts of tri
Grigoriev, V V; Efimova, A D; Ustyugov, A A; Shevchenko, V P; Bachurin, S O; Myasoedov, N F
2016-05-01
In this paper, we showed that in the cortex of mice expressing an abberant form of FUS protein that model amyotrophic lateral sclerosis (ALS), the processes of KCl-induced and basal [(3)H]glutamate release and uptake are altered at the presymptomatic stage as compared to the non-transgenic littermates. The change in these three parameters in transgenic animals causes excitotoxicity, which, in turn, may lead to massive loss of motor neurons and the onset of ALS symptoms.
Prasad, Vikram; Lorenz, John N; Lasko, Valerie M; Nieman, Michelle L; Huang, Wei; Wang, Yigang; Wieczorek, David W; Shull, Gary E
2015-01-01
Null mutations in one copy of ATP2A2, the gene encoding sarco/endoplasmic reticulum Ca(2+)-ATPase isoform 2 (SERCA2), cause Darier disease in humans, a skin condition involving keratinocytes. Cardiac function appears to be unimpaired in Darier disease patients, with no evidence that SERCA2 haploinsufficiency itself causes heart disease. However, SERCA2 deficiency is widely considered a contributing factor in heart failure. We therefore analyzed Atp2a2 heterozygous mice to determine whether SERCA2 haploinsufficiency can exacerbate specific heart disease conditions. Despite reduced SERCA2a levels in heart, Atp2a2 heterozygous mice resembled humans in exhibiting normal cardiac physiology. When subjected to hypothyroidism or crossed with a transgenic model of reduced myofibrillar Ca(2+)-sensitivity, SERCA2 deficiency caused no enhancement of the disease state. However, when combined with a transgenic model of increased myofibrillar Ca(2+)-sensitivity, SERCA2 haploinsufficiency caused rapid onset of hypertrophy, decompensation, and death. These effects were associated with reduced expression of the antiapoptotic Hax1, increased levels of the proapoptotic genes Chop and Casp12, and evidence of perturbations in energy metabolism. These data reveal myofibrillar Ca(2+)-sensitivity to be an important determinant of the cardiac effects of SERCA2 haploinsufficiency and raise the possibility that Darier disease patients are more susceptible to heart failure under certain conditions.
Multiple autism-like behaviors in a novel transgenic mouse model
Hamilton, Shannon M.; Spencer, Corinne M.; Harrison, Wilbur R.; Yuva-Paylor, Lisa A.; Graham, Deanna F.; Daza, Ray A.M.; Hevner, Robert F.; Overbeek, Paul A.; Paylor, Richard
2011-01-01
Autism spectrum disorder (ASD) diagnoses are behaviorally-based with no defined universal biomarkers, occur at a 1:110 ratio in the population, and predominantly affect males compared to females at approximately a 4:1 ratio. One approach to investigate and identify causes of ASD is to use organisms that display abnormal behavioral responses that model ASD-related impairments. This study describes a novel transgenic mouse, MALTT, which was generated using a forward genetics approach. It was determined that the transgene integrated within a noncoding region on the X chromosome. The MALTT line exhibited a complete repertoire of ASD-like behavioral deficits in all three domains required for an ASD diagnosis: reciprocal social interaction, communication, and repetitive or inflexible behaviors. Specifically, MALTT male mice showed deficits in social interaction and interest, abnormalities in pup and juvenile ultrasonic vocalization communications, and exhibited a repetitive stereotypy. Abnormalities were also observed in the domain of sensory function, a secondary phenotype prevalently associated with ASD. Mapping and expression studies suggested that the Fam46 gene family may be linked to the observed ASD-related behaviors. The MALTT line provides a unique genetic model for examining the underlying biological mechanisms involved in ASD-related behaviors. PMID:21093492
UVB-induced mutagenesis in hairless {lambda}lacZ-transgenic mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frijhoff, A.F.W.; Rebel, H.; Mientjes, E.J.
UVB-induced mutagenesis was studied in hairless 40.6 transgenic mice (Muta{trademark}Mouse), which contain the {lambda}gt1OlacZ shuttle vector as a target for mutagenesis. Mice were exposed at the dorsal side to either single doses of 200, 500, 800, or 1000 J/m{sup 2} UVB or to two successive irradiations of either 200 and 800 J/m{sup 2} UVB, with intervals of 1,3, or 5 days, or to 800 and 200 J/m{sup 2} UVB with a 5-day interval. At 23 days after the last exposure, lacZ mutant frequencies (MF) were determined in the epidermis. The lacZ MF increased linearly with increasing dose of UVB. Themore » mutagenic effect of two successive irradiations appeared to be additive. The UV-induced mutation spectrum was dominated by G:C{r_arrow}A:T transitions at dipyrimidine sites. DNA-sequence analysis of spontaneously mutated phages showed a diverse spectrum consisting of insertions, deletions and G:C {r_arrow} A:T transitions at CpG sites. the results indicate that the hairless {lambda}lacZ-transgenic mouse is a suitable in vivo model for studying UVB-induced mutations. 29 refs., 5 tabs.« less
Ectopic transgene expression in the retina of four transgenic mouse lines
Gábriel, Robert; Erdélyi, Ferenc; Szabó, Gábor; Lawrence, J. Josh
2017-01-01
Retinal expression of transgenes was examined in four mouse lines. Two constructs were driven by the choline acetyltransferase (ChAT) promoter: green fluorescent protein conjugated to tau protein (tau-GFP) or cytosolic yellow fluorescent protein (YFP) generated through CRE recombinase-induced expression of Rosa26 (ChAT-CRE/ Rosa26YFP). Two other constructs targeted inhibitory interneurons: GABAergic horizontal and amacrine cells identified by glutamic acid decarboxylase (GAD65-GFP) or parvalbumin (PV) cells (PV-CRE/Rosa26YFP). Animals were transcardially perfused and retinal sections prepared. Antibodies against PV, calretinin (CALR), calbindin (CALB), and tyrosine hydroxylase (TH) were used to counterstain transgene-expressing cells. In PVxRosa and ChAT-tauGFP constructs, staining appeared in vertically oriented row of processes resembling Müller cells. In the ChATxRosa construct, populations of amacrine cells and neurons in the ganglion cell layer were labeled. Some cones also exhibited GFP fluorescence. CALR, PV and TH were found in none of these cells. Occasionally, we found GFP/ CALR and GFP/PV double-stained cells in the ganglion cell layer (GCL). In the GAD65-GFP construct, all layers of the neuroretina were labeled, except photoreceptors. Not all horizontal cells expressed GFP. We did not find GFP/TH double-labeled cells and GFP was rarely present in CALR-and CALB-containing cells. Many PV-positive neurons were also labeled for GFP, including small diameter amacrines. In the GCL, single labeling for GFP and PV was ascertained, as well as several CALR/PV double-stained neurons. In the GCL, cells triple labeled with GFP/CALR/ CALB were sparse. In conclusion, only one of the four transgenic constructs exhibited an expression pattern consistent with endogenous retinal protein expression, while the others strongly suggested ectopic gene expression. PMID:26563404
Comparative transgenic analysis of enhancers from the human SHOX and mouse Shox2 genomic regions.
Rosin, Jessica M; Abassah-Oppong, Samuel; Cobb, John
2013-08-01
Disruption of presumptive enhancers downstream of the human SHOX gene (hSHOX) is a frequent cause of the zeugopodal limb defects characteristic of Léri-Weill dyschondrosteosis (LWD). The closely related mouse Shox2 gene (mShox2) is also required for limb development, but in the more proximal stylopodium. In this study, we used transgenic mice in a comparative approach to characterize enhancer sequences in the hSHOX and mShox2 genomic regions. Among conserved noncoding elements (CNEs) that function as enhancers in vertebrate genomes, those that are maintained near paralogous genes are of particular interest given their ancient origins. Therefore, we first analyzed the regulatory potential of a genomic region containing one such duplicated CNE (dCNE) downstream of mShox2 and hSHOX. We identified a strong limb enhancer directly adjacent to the mShox2 dCNE that recapitulates the expression pattern of the endogenous gene. Interestingly, this enhancer requires sequences only conserved in the mammalian lineage in order to drive strong limb expression, whereas the more deeply conserved sequences of the dCNE function as a neural enhancer. Similarly, we found that a conserved element downstream of hSHOX (CNE9) also functions as a neural enhancer in transgenic mice. However, when the CNE9 transgenic construct was enlarged to include adjacent, non-conserved sequences frequently deleted in LWD patients, the transgene drove expression in the zeugopodium of the limbs. Therefore, both hSHOX and mShox2 limb enhancers are coupled to distinct neural enhancers. This is the first report demonstrating the activity of cis-regulatory elements from the hSHOX and mShox2 genomic regions in mammalian embryos.
Ryan, G R; Dai, X M; Dominguez, M G; Tong, W; Chuan, F; Chisholm, O; Russell, R G; Pollard, J W; Stanley, E R
2001-07-01
Colony-stimulating factor 1 (CSF-1) regulates the survival, proliferation, and differentiation of mononuclear phagocytes. It is expressed as a secreted glycoprotein or proteoglycan found in the circulation or as a biologically active cell-surface glycoprotein. To investigate tissue CSF-1 regulation, CSF-1-null Csf1(op)/Csf1(op) mice expressing transgenes encoding the full-length membrane-spanning CSF-1 precursor driven by 3.13 kilobases of the mouse CSF-1 promoter and first intron were characterized. Transgene expression corrected the gross osteopetrotic, neurologic, weight, tooth, and reproductive defects of Csf1(op)/Csf1(op) mice. Detailed analysis of one transgenic line revealed that circulating CSF-1, tissue macrophage numbers, hematopoietic tissue cellularity, and hematopoietic parameters were normalized. Tissue CSF-1 levels were normal except for elevations in 4 secretory tissues. Skin fibroblasts from the transgenic mice secreted normal amounts of CSF-1 but also expressed some cell-surface CSF-1. Also, lacZ driven by the same promoter/first intron revealed beta-galactosidase expression in hematopoietic, reproductive, and other tissue locations proximal to CSF-1 cellular targets, consistent with local regulation by CSF-1 at these sites. These studies indicate that the 3.13-kilobase promoter/first intron confers essentially normal CSF-1 expression. They also pinpoint new cellular sites of CSF-1 expression, including ovarian granulosa cells, mammary ductal epithelium, testicular Leydig cells, serous acinar cells of salivary gland, Paneth cells of the small intestine, as well as local sites in several other tissues.
Manuylov, Nikolay L.; Fujiwara, Yuko; Adameyko, Igor I.; Poulat, Francis
2007-01-01
We have previously established an in vivo requirement for GATA4 and FOG2 transcription factors in sexual differentiation. Fog2 null mouse fetuses or fetuses homozygous for a targeted mutation in Gata4 (Gata4ki), which cripples the GATA4-FOG2 interaction, exhibit a profound and early block in testis differentiation in both sexes. Others have shown that XX mice with the Ods transgenic insertion or the Wt1-Sox9 YAC transgene overexpress the testis differentiation gene, Sox9. Thus, these XX animals undergo dominant sex-reversal by developing into phenotypically normal, but sterile, males. Now we have determined that Fog2 haploinsufficiency prevents (suppresses) this dominant sex-reversal and Fog2+/− Wt1-Sox9 or Ods XX animals develop normally - as fertile females. The suppression of sex-reversal in Fog2 heterozygous females results from approximately 50% downregulation of the expression from the transgene-associated allele of Sox9. The GATA4/FOG2-dependent sex reversal observed in the transgenic XX gonads has to rely on gene targets other than the Y chromosome-linked Sry gene. Importantly, Fog2 null or Gata4ki/ki embryos (either XX or XY) fail to express detectable levels of Sox9 despite carrying the Ods mutation or Wt1-Sox9 transgene. Fog2 haploinsufficiency leads to a decreased amount of SOX9-positive cells in XY gonads. We conclude that FOG2 is a limiting factor in the formation of a functional GATA4/FOG2 transcription complex that is required for Sox9 expression during gonadogenesis. PMID:17540364
2010-01-01
Background Regulatory elements that control expression of specific genes during development have been shown in many cases to contain functionally-conserved modules that can be transferred between species and direct gene expression in a comparable developmental pattern. An example of such a module has been identified at the rat myosin light chain (MLC) 1/3 locus, which has been well characterised in transgenic mouse studies. This locus contains two promoters encoding two alternatively spliced isoforms of alkali myosin light chain. These promoters are differentially regulated during development through the activity of two enhancer elements. The MLC3 promoter alone has been shown to confer expression of a reporter gene in skeletal and cardiac muscle in transgenic mice and the addition of the downstream MLC enhancer increased expression levels in skeletal muscle. We asked whether this regulatory module, sufficient for striated muscle gene expression in the mouse, would drive expression in similar domains in the chicken. Results We have observed that a conserved downstream MLC enhancer is present in the chicken MLC locus. We found that the rat MLC1/3 regulatory elements were transcriptionally active in chick skeletal muscle primary cultures. We observed that a single copy lentiviral insert containing this regulatory cassette was able to drive expression of a lacZ reporter gene in the fast-fibres of skeletal muscle in chicken in three independent transgenic chicken lines in a pattern similar to the endogenous MLC locus. Reporter gene expression in cardiac muscle tissues was not observed for any of these lines. Conclusions From these results we conclude that skeletal expression from this regulatory module is conserved in a genomic context between rodents and chickens. This transgenic module will be useful in future investigations of muscle development in avian species. PMID:20184756
Clinical applications of in vivo fluorescence confocal laser scanning microscopy
NASA Astrophysics Data System (ADS)
Oh, Chilhwan; Park, Sangyong; Kim, Junhyung; Ha, Seunghan; Park, Gyuman; Lee, Gunwoo; Lee, Onseok; Chun, Byungseon; Gweon, Daegab
2008-02-01
Living skin for basic and clinical research can be evaluated by Confocal Laser Scanning Microscope (CLSM) non-invasively. CLSM imaging system can achieve skin image its native state either "in vivo" or "fresh biopsy (ex vivo)" without fixation, sectioning and staining that is necessary for routine histology. This study examines the potential fluorescent CLSM with a various exogenous fluorescent contrast agent, to provide with more resolution images in skin. In addition, in vivo fluorescent CLSM researchers will be extended a range of potential clinical application. The prototype of our CLSM system has been developed by Prof. Gweon's group. The operating parameters are composed of some units, such as illuminated wavelength 488 nm, argon illumination power up to 20mW on the skin, objective lens, 0.9NA oil immersion, axial resolution 1.0μm, field of view 200μm x 100μm (lateral resolution , 0.3μm). In human volunteer, fluorescein sodium was administrated topically and intradermally. Animal studies were done in GFP transgenic mouse, IRC mouse and pig skin. For imaging of animal skin, fluorescein sodium, acridine orange, and curcumine were used for fluorescein contrast agent. We also used the GFP transgenic mouse for fluorescein CLSM imaging. In intact skin, absorption of fluorescein sodium by individual corneocyte and hair. Intradermal administrated the fluorescein sodium, distinct outline of keratinocyte cell border could be seen. Curcumin is a yellow food dye that has similar fluorescent properties to fluorescein sodium. Acridin Orange can be highlight nuclei in viable keratinocyte. In vivo CLSM of transgenic GFP mouse enable on in vivo, high resolution view of GFP expressing skin tissue. GFP signals are brightest in corneocyte, kertinocyte, hair and eccrine gland. In intact skin, absorption of fluorescein sodium by individual corneocyte and hair. Intradermal administrated the fluorescein sodium, distinct outline of keratinocyte cell border could be seen. In papillary dermis, fluorescein distribution is more homogeneous. Curcumin is a yellow food dye that has similar fluorescent properties to fluorescein sodium. In vivo CLSM of transgenic GFP mouse enable on in vivo, high resolution view of GFP expressing skin tissue. GFP signals are brightest in corneocyte, kertinocyte, skin appendage and blood vessels. In conclusion, this study demonstrates the usefulness of CLSM as technique for imaging skin in vivo. In addition, CLSM is non-invasive, the same tissue site may be imaged over a period of time to monitor the various change such as wound healing, severity of skin diseases and effect of therapeutic management.
Yu, Zhi-Bin; Wei, Hongguang
2012-01-01
Our previous in vivo and ex vivo studies suggested that coexistence of two or more troponin T (TnT) isoforms in adult cardiac muscle decreased cardiac function and efficiency (Huang QQ, Feng HZ, Liu J, Du J, Stull LB, Moravec CS, Huang X, Jin JP, Am J Physiol Cell Physiol 294: C213–C22, 2008; Feng HZ, Jin JP, Am J Physiol Heart Circ Physiol 299: H97–H105, 2010). Here we characterized Ca2+-regulated contractility of isolated adult cardiomyocytes from transgenic mice coexpressing a fast skeletal muscle TnT together with the endogenous cardiac TnT. Without the influence of extracellular matrix, coexistence of the two TnT isoforms resulted in lower shortening amplitude, slower shortening and relengthening velocities, and longer relengthening time. The level of resting cytosolic Ca2+ was unchanged, but the peak Ca2+ transient was lowered and the durations of Ca2+ rising and decaying were longer in the transgenic mouse cardiomyocytes vs. the wild-type controls. Isoproterenol treatment diminished the differences in shortening amplitude and shortening and relengthening velocities, whereas the prolonged durations of relengthening and Ca2+ transient in the transgenic cardiomyocytes remained. At rigor state, a result from depletion of Ca2+, resting sarcomere length of the transgenic cardiomyocytes became shorter than that in wild-type cells. Inhibition of myosin motor diminished this effect of TnT function on cross bridges. The length but not width of transgenic cardiomyocytes was significantly increased compared with the wild-type controls, corresponding to longitudinal addition of sarcomeres and dilatative remodeling at the cellular level. These dominantly negative effects of normal fast TnT demonstrated that chronic coexistence of functionally distinct variants of TnT in adult cardiomyocytes reduces contractile performance with pathological consequences. PMID:22538236
Kiyuna, Tasuku; Murakami, Takashi; Tome, Yasunori; Kawaguchi, Kei; Igarashi, Kentaro; Miyake, Kentaro; Kanaya, Fuminori; Singh, Arun; Eilber, Fritz C; Hoffman, Robert M
2017-10-01
A patient-derived orthotopic xenograft (PDOX) model of undifferentiated pleomorphic sarcoma (UPS) was previously established that acquired red fluorescent protein (RFP)-expressing stroma by growth in an RFP transgenic nude mouse. In the present study, an imageable PDOX model (iPDOX) of UPS was established by orthotopic implantation in the biceps femoris of transgenic RFP nude mice. After the tumors grew to a diameter of 10 mm, they were harvested and the brightest portion of the tumors were subsequently orthotopically transplanted to both RFP and non-colored nude mice. The UPS PDOX tumor was again transplanted to RFP transgenic and non-colored nude mice, and finally a 3rd passage was made in the same manner. Five UPS tumors from each passage in both RFP and non-colored mouse models were harvested. The FV1,000 confocal microscope was used to visualize and quantitate the RFP area of the resected tumors. The average percent fluorescent area in the first passage of RFP mice was 34 ± 22%; in the second passage, 34 ± 20%; and 36 ± 11% in the third passage of RFP transgenic nude mice. The average tumor RFP area in the first passage from RFP mice to non-colored mice was 20 ± 7%; in the second passage, 28 ± 11%; in the third passage was 27 ± 13%. The present results demonstrate the extensive and stable acquisition of stroma by the UPS-tumor growing orthotopically in transgenic RFP nude mice (iPDOX). This model can be used for screening for effective drugs for individual patients and drug discovery. J. Cell. Biochem. 118: 3367-3371, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Lu, Yi; Tang, Chunyan; Zhu, Lei; Li, Jiao; Liang, Huiting; Zhang, Jie; Xu, Renshi
2016-01-01
The recent investigation suggested that the TDP-43 protein was closely related to the motor neuron degeneration in amyotrophic lateral sclerosis (ALS), but the pathogenesis contributed to motor neuron degeneration largely remained unknown. Therefore, we detected the alteration of TDP-43 expression and distribution in the adult spinal cord of the SOD1 G93A transgenic mouse model for searching the possible pathogenesis of ALS. We examined the TDP-43 expression and distribution in the different anatomic regions, segments and neural cells in the adult spinal cord at the different stages of the SOD1 wild-type and G93A transgenic model by the fluorescent immunohistochemical technology. We revealed that the amount of TDP-43 positive cell was cervical>lumbar>thoracic segment, that in the ventral horn was more than that in the dorsal horn, a few of TDP-43 protein sparsely expressed and distributed in the other regions, the TDP-43 protein weren't detected in the white matter and the central canal. The TDP-43 protein was mostly expressed and distributed in the nuclear of neuron cells and the cytoplasm of oligodendrocyte cells of the gray matter surrounding the central canal of spinal cord by the granular shape in the SOD1 wild-type and G93A transgenic mice. The amount of TDP-43 positive cell significantly increased at the onset and progression stages of ALS following with the increase of neuron death in spinal cord, particularly in the ventral horn of cervical segment at the progression stage. Our results suggested that the overexpression of TDP-43 protein in the neuron and oligodendrocyte cell causes the progressive motor neuron degeneration in the ALS-like mouse model.
Vuong, Helen E.; de Sevilla Müller, Luis Pérez; Hardi, Claudia N.; McMahon, Douglas G.; Brecha, Nicholas C.
2015-01-01
Transgenic mouse lines are essential tools for understanding the connectivity, physiology and function of neuronal circuits, including those in the retina. This report compares transgene expression in the retina of a tyrosine hydroxylase (TH)-red fluorescent protein (RFP) line with three catecholamine-related Cre recombinase lines [TH-bacterial artificial chromosome (BAC)-, TH-, and dopamine transporter (DAT)-Cre] that were crossed with a ROSA26-tdTomato reporter line. Retinas were evaluated and immunostained with commonly used antibodies including those directed to TH, GABA and glycine to characterize the RFP or tdTomato fluorescent-labeled amacrine cells, and an antibody directed to RNA-binding protein with multiple splicing to identify ganglion cells. In TH-RFP retinas, types 1 and 2 dopamine (DA) amacrine cells were identified by their characteristic cellular morphology and type 1 DA cells by their expression of TH immunoreactivity. In the TH-BAC-, TH-, and DAT-tdTomato retinas, less than 1%, ~6%, and 0%, respectively, of the fluorescent cells were the expected type 1 DA amacrine cells. Instead, in the TH-BAC-tdTomato retinas, fluorescently labeled AII amacrine cells were predominant, with some medium somal diameter ganglion cells. In TH-tdTomato retinas, fluorescence was in multiple neurochemical amacrine cell types, including four types of polyaxonal amacrine cells. In DAT-tdTomato retinas, fluorescence was in GABA immunoreactive amacrine cells, including two types of bistratified and two types of monostratified amacrine cells. Although each of the Cre lines were generated with the intent to specifically label DA cells, our findings show a cellular diversity in Cre expression in the adult retina and indicate the importance of careful characterization of transgene labeling patterns. These mouse lines with their distinctive cellular labeling patterns will be useful tools for future studies of retinal function and visual processing. PMID:26335381
Devgan, Vikram; Seshagiri, Polani B
2003-07-01
To improve efficiency of transgenesis, we compared M16 and CZB embryo culture media, supporting development to blastocysts of FVB/N mouse pronuclear-eggs, microinjected with enhanced green fluorescent protein (EGFP) transgene. When EGFP-injected-eggs were cultured (120 hr), blastocyst development was significantly (P < 0.03) higher in M16 medium (72.5 +/- 2.4%) than that in CZB (13.2 +/- 4.3%) or CZBG (CZB with 5.6 mM glucose at 48 hr culture) (62.1 +/- 3.7%) media. Blastocyst development of noninjected embryos was higher in M16 (92.0 +/- 2.6%) and CZBG (83.9 +/- 3.9%) media than in CZB (31.9 +/- 2.8%) medium (P < 0.0001). However, percentages of morulae at 72 hr were comparable in all treatments. Developed blastocysts were better in M16 than in CZB or CZBG media. Consistent with this, mean cell number per blastocyst, developed from injected embryos, was significantly (P < 0.002) higher in M16 medium (79.6), than those in CZB (31.3) or CZBG media (60.7); similar with noninjected embryos. Cell allocation to trophectoderm (TE) and inner cell mass (ICM), i.e., TE:ICM ratio, for injected blastocysts in M16 (3.0) was less than (P < 0.05) those in CZB (4.2) and CZBG (4.4) media; similar with noninjected blastocysts. Moreover, blastocysts, developed in M16 and CZBG media, hatched, attached, and exhibited trophoblast outgrowth; 18% of them showed EGFP-expression. Importantly, blastocysts from M16 medium produced live transgenic "green" pups (11%) following embryo transfer. Taken together, our results indicate that supplementation of glucose, at 48 hr of culture (CZBG), is required for morula to blastocyst transition; M16 medium, containing glucose from the beginning of culture, is superior to CZB or CZBG for supporting development of biologically viable blastocysts from EGFP-transgene-injected mouse embryos. Copyright 2003 Wiley-Liss, Inc.
Spires, Tara L; Hannan, Anthony J
2005-05-01
Neurodegenerative disorders, such as Huntington's, Alzheimer's, and Parkinson's diseases, affect millions of people worldwide and currently there are few effective treatments and no cures for these diseases. Transgenic mice expressing human transgenes for huntingtin, amyloid precursor protein, and other genes associated with familial forms of neurodegenerative disease in humans provide remarkable tools for studying neurodegeneration because they mimic many of the pathological and behavioural features of the human conditions. One of the recurring themes revealed by these various transgenic models is that different diseases may share similar molecular and cellular mechanisms of pathogenesis. Cellular mechanisms known to be disrupted at early stages in multiple neurodegenerative disorders include gene expression, protein interactions (manifesting as pathological protein aggregation and disrupted signaling), synaptic function and plasticity. Recent work in mouse models of Huntington's disease has shown that enriching the environment of transgenic animals delays the onset and slows the progression of Huntington's disease-associated motor and cognitive symptoms. Environmental enrichment is known to induce various molecular and cellular changes in specific brain regions of wild-type animals, including altered gene expression profiles, enhanced neurogenesis and synaptic plasticity. The promising effects of environmental stimulation, demonstrated recently in models of neurodegenerative disease, suggest that therapy based on the principles of environmental enrichment might benefit disease sufferers and provide insight into possible mechanisms of neurodegeneration and subsequent identification of novel therapeutic targets. Here, we review the studies of environmental enrichment relevant to some major neurodegenerative diseases and discuss their research and clinical implications.
Evaluation of synthetic vascular grafts in a mouse carotid grafting model.
Chan, Alex H P; Tan, Richard P; Michael, Praveesuda L; Lee, Bob S L; Vanags, Laura Z; Ng, Martin K C; Bursill, Christina A; Wise, Steven G
2017-01-01
Current animal models for the evaluation of synthetic grafts are lacking many of the molecular tools and transgenic studies available to other branches of biology. A mouse model of vascular grafting would allow for the study of molecular mechanisms of graft failure, including in the context of clinically relevant disease states. In this study, we comprehensively characterise a sutureless grafting model which facilitates the evaluation of synthetic grafts in the mouse carotid artery. Using conduits electrospun from polycaprolactone (PCL) we show the gradual development of a significant neointima within 28 days, found to be greatest at the anastomoses. Histological analysis showed temporal increases in smooth muscle cell and collagen content within the neointima, demonstrating its maturation. Endothelialisation of the PCL grafts, assessed by scanning electron microscopy (SEM) analysis and CD31 staining, was near complete within 28 days, together replicating two critical aspects of graft performance. To further demonstrate the potential of this mouse model, we used longitudinal non-invasive tracking of bone-marrow mononuclear cells from a transgenic mouse strain with a dual reporter construct encoding both luciferase and green fluorescent protein (GFP). This enabled characterisation of mononuclear cell homing and engraftment to PCL using bioluminescence imaging and histological staining over time (7, 14 and 28 days). We observed peak luminescence at 7 days post-graft implantation that persisted until sacrifice at 28 days. Collectively, we have established and characterised a high-throughput model of grafting that allows for the evaluation of key clinical drivers of graft performance.
ORRISS, ISABEL R.; HAJJAWI, MARK O.R.; HUESA, CARMEN; MACRAE, VICKY E.; ARNETT, TIMOTHY R.
2014-01-01
The in vitro culture of calvarial osteoblasts from neonatal rodents remains an important method for studying the regulation of bone formation. The widespread use of transgenic mice has created a particular need for a reliable, simple method that allows the differentiation and bone-forming activity of murine osteoblasts to be studied. In the present study, we established such a method and identified key differences in optimal culture conditions between mouse and rat osteoblasts. Cells isolated from neonatal rodent calvariae by collagenase digestion were cultured for 14–28 days before staining for tissue non-specific alkaline phosphatase (TNAP) and bone mineralisation (alizarin red). The reliable differentiation of mouse osteoblasts, resulting in abundant TNAP expression and the formation of mineralised ‘trabecular-shaped’ bone nodules, occurred only following culture in α minimum essential medium (αMEM) and took 21–28 days. Dexamethasone (10 nM) inhibited bone mineralisation in the mouse osteoblasts. By contrast, TNAP expression and bone formation by rat osteoblasts were observed following culture in both αMEM and Dulbecco’s modified Eagle’s medium (DMEM) after approximately 14 days (although ~3-fold more effectively in αMEM) and was strongly dependent on dexamethasone. Both the mouse and rat osteoblasts required ascorbate (50 μg/ml) for osteogenic differentiation and β-glycerophosphate (2 mM) for mineralisation. The rat and mouse osteoblasts showed similar sensitivity to the well-established inhibitors of mineralisation, inorganic pyrophosphate (PPi) and adenosine triphosphate (ATP; 1–100 μM). The high efficiency of osteogenic differentiation observed following culture in αMEM, compared with culture in DMEM possibly reflects the richer formulation of the former. These findings offer a reliable technique for inducing mouse osteoblasts to form bone in vitro and a more effective method for culturing bone-forming rat osteoblasts. PMID:25200658
Genetic address book for retinal cell types.
Siegert, Sandra; Scherf, Brigitte Gross; Del Punta, Karina; Didkovsky, Nick; Heintz, Nathaniel; Roska, Botond
2009-09-01
The mammalian brain is assembled from thousands of neuronal cell types that are organized in distinct circuits to perform behaviorally relevant computations. Transgenic mouse lines with selectively marked cell types would facilitate our ability to dissect functional components of complex circuits. We carried out a screen for cell type-specific green fluorescent protein expression in the retina using BAC transgenic mice from the GENSAT project. Among others, we identified mouse lines in which the inhibitory cell types of the night vision and directional selective circuit were selectively labeled. We quantified the stratification patterns to predict potential synaptic connectivity between marked cells of different lines and found that some of the lines enabled targeted recordings and imaging of cell types from developing or mature retinal circuits. Our results suggest the potential use of a stratification-based screening approach for characterizing neuronal circuitry in other layered brain structures, such as the neocortex.
Primary Ovarian Insufficiency Induced by Fanconi Anemia E Mutation in a Mouse Model.
Fu, Chun; Begum, Khurshida; Overbeek, Paul A
2016-01-01
In most cases of primary ovarian insufficiency (POI), the cause of the depletion of ovarian follicles is unknown. Fanconi anemia (FA) proteins are known to play important roles in follicular development. Using random insertional mutagenesis with a lentiviral transgene, we identified a family with reduced fertility in the homozygous transgenic mice. We identified the integration site and found that the lentivirus had integrated into intron 8 of the Fanconi E gene (Fance). By RT-PCR and in situ hybridization, we found that Fance transcript levels were significantly reduced. The Fance homozygous mutant mice were assayed for changes in ovarian development, follicle numbers and estrous cycle. Ovarian dysplasias and a severe lack of follicles were seen in the mutant mice. In addition, the estrous cycle was disrupted in adult females. Our results suggest that POI has been induced by the Fance mutation in this new mouse model.
Voltage-dependent ion channels in the mouse RPE: comparison with Norrie disease mice.
Wollmann, Guido; Lenzner, Steffen; Berger, Wolfgang; Rosenthal, Rita; Karl, Mike O; Strauss, Olaf
2006-03-01
We studied electrophysiological properties of cultured retinal pigment epithelial (RPE) cells from mouse and a mouse model for Norrie disease. Wild-type RPE cells revealed the expression of ion channels known from other species: delayed-rectifier K(+) channels composed of Kv1.3 subunits, inward rectifier K(+) channels, Ca(V)1.3 L-type Ca(2+) channels and outwardly rectifying Cl(-) channels. Expression pattern and the ion channel characteristics current density, blocker sensitivity, kinetics and voltage-dependence were compared in cells from wild-type and Norrie mice. Although no significant differences were observed, our study provides a base for future studies on ion channel function and dysfunction in transgenic mouse models.
Manipulation of the mouse genome: a multiple impact resource for drug discovery and development.
Prosser, Haydn; Rastan, Sohaila
2003-05-01
Few would deny that the pharmaceutical industry's investment in genomics throughout the 1990s has yet to deliver in terms of drugs on the market. The reasons are complex and beyond the scope of this review. The unique ability to manipulate the mouse genome, however, has already had a positive impact on all stages of the drug discovery process and, increasingly, on the drug development process too. We give an overview of some recent applications of so-called 'transgenic' mouse technology in pharmaceutical research and development. We show how genetic manipulation in the mouse can be employed at multiple points in the drug discovery and development process, providing new solutions to old problems.
Jin, Mayuko; Fujiwara, Eiji; Kakiuchi, Yasutaka; Okabe, Masaru; Satouh, Yuhkoh; Baba, Shoji A.; Chiba, Kazuyoshi; Hirohashi, Noritaka
2011-01-01
To fuse with oocytes, spermatozoa of eutherian mammals must pass through extracellular coats, the cumulus cell layer, and the zona pellucida (ZP). It is generally believed that the acrosome reaction (AR) of spermatozoa, essential for zona penetration and fusion with oocytes, is triggered by sperm contact with the zona pellucida. Therefore, in most previous studies of sperm–oocyte interactions in the mouse, the cumulus has been removed before insemination to facilitate the examination of sperm–zona interactions. We used transgenic mouse spermatozoa, which enabled us to detect the onset of the acrosome reaction using fluorescence microscopy. We found that the spermatozoa that began the acrosome reaction before reaching the zona were able to penetrate the zona and fused with the oocyte's plasma membrane. In fact, most fertilizing spermatozoa underwent the acrosome reaction before reaching the zona pellucida of cumulus-enclosed oocytes, at least under the experimental conditions we used. The incidence of in vitro fertilization of cumulus-free oocytes was increased by coincubating oocytes with cumulus cells, suggesting an important role for cumulus cells and their matrix in natural fertilization. PMID:21383182
Mouse Models of Human T Lymphotropic Virus Type-1–Associated Adult T-Cell Leukemia/Lymphoma
Zimmerman, B.; Niewiesk, S.; Lairmore, M. D.
2011-01-01
Human T-lymphotropic virus type-1 (HTLV-1), the first human retrovirus discovered, is the causative agent of adult T-cell leukemia/lymphoma (ATL) and a number of lymphocyte-mediated inflammatory conditions including HTLV-1–associated myelopathy/tropical spastic paraparesis. Development of animal models to study the pathogenesis of HTLV-1–associated diseases has been problematic. Mechanisms of early infection and cell-to-cell transmission can be studied in rabbits and nonhuman primates, but lesion development and reagents are limited in these species. The mouse provides a cost-effective, highly reproducible model in which to study factors related to lymphoma development and the preclinical efficacy of potential therapies against ATL. The ability to manipulate transgenic mice has provided important insight into viral genes responsible for lymphocyte transformation. Expansion of various strains of immunodeficient mice has accelerated the testing of drugs and targeted therapy against ATL. This review compares various mouse models to illustrate recent advances in the understanding of HTLV-1–associated ATL development and how improvements in these models are critical to the future development of targeted therapies against this aggressive T-cell lymphoma. PMID:20442421
Pkd1 transgenic mice: adult model of polycystic kidney disease with extrarenal and renal phenotypes
Kurbegovic, Almira; Côté, Olivier; Couillard, Martin; Ward, Christopher J.; Harris, Peter C.; Trudel, Marie
2010-01-01
While high levels of Pkd1 expression are detected in tissues of patients with autosomal dominant polycystic kidney disease (ADPKD), it is unclear whether enhanced expression could be a pathogenetic mechanism for this systemic disorder. Three transgenic mouse lines were generated from a Pkd1-BAC modified by introducing a silent tag via homologous recombination to target a sustained wild-type genomic Pkd1 expression within the native tissue and temporal regulation. These mice specifically overexpressed the Pkd1 transgene in extrarenal and renal tissues from ∼2- to 15-fold over Pkd1 endogenous levels in a copy-dependent manner. All transgenic mice reproducibly developed tubular and glomerular cysts leading to renal insufficiency. Interestingly, Pkd1TAG mice also exhibited renal fibrosis and calcium deposits in papilla reminiscent of nephrolithiasis as frequently observed in ADPKD. Similar to human ADPKD, these mice consistently displayed hepatic fibrosis and ∼15% intrahepatic cysts of the bile ducts affecting females preferentially. Moreover, a significant proportion of mice developed cardiac anomalies with severe left-ventricular hypertrophy, marked aortic arch distention and/or valvular stenosis and calcification that had profound functional impact. Of significance, Pkd1TAG mice displayed occasional cerebral lesions with evidence of ruptured and unruptured cerebral aneurysms. This Pkd1TAG mouse model demonstrates that overexpression of wild-type Pkd1 can trigger the typical adult renal and extrarenal phenotypes resembling human ADPKD. PMID:20053665
Tschiffely, Anna E; Schuh, Rosemary A; Prokai-Tatrai, Katalin; Prokai, Laszlo; Ottinger, Mary Ann
2016-07-01
Estrogens are neuroprotective and, thus, potentially useful for the therapy of Alzheimer's disease; however, clinical use of hormone therapy remains controversial due to adverse peripheral effects. The goal of this study was to investigate the benefits of treatment with 10β,17β-dihydroxyestra-1,4-dien-3-one (DHED), a brain-selective prodrug of 17β-estradiol, in comparison with the parent hormone using APPswe/PS1dE9 double transgenic mice to model the pathology of the disease. Ovariectomized and intact females were continuously treated with vehicle, 17β-estradiol, or DHED via subcutaneous osmotic pumps from 6 to 8months of age. We confirmed that this prolonged treatment with DHED did not stimulate uterine tissue, whereas 17β-estradiol treatment increased uterine weight. Amyloid precursor protein decreased in both treatment groups of intact, but not in ovariectomized double transgenic females in which ovariectomy already decreased the expression of this protein significantly. However, reduced brain amyloid-β peptide levels could be observed for both treatments. Consequently, double-transgenic ovariectomized and intact mice had higher cognitive performance compared to untreated control animals in response to both estradiol and DHED administrations. Overall, the tested brain-selective 17β-estradiol prodrug proved to be an effective early-stage intervention in an Alzheimer's disease-relevant mouse model without showing systemic impact and, thus, warrants further evaluation as a potential therapeutic candidate. Copyright © 2016 Elsevier Inc. All rights reserved.
2007-01-01
Cunha GR, Donjacour AA, Matusik RJ, Rosen JM. Prostate cancer in a transgenic mouse . Proc Natl Acad Sci U S A.1995;92(8):3439- 43 . Kanai F...data not shown). GFP expression in all cell lines was confirmed by UV microscopy and flow cytometry . Evaluation of RM1 cells for assessment of CDUPRT...for prostate cancer in a mouse model that imitates the development of human disease. J. Gene Med. (2004) 6(1): 43 -54. 108. MARTINIELLO-WILKS R
Neurobiology of secure infant attachment and attachment despite adversity: a mouse model.
Roth, T L; Raineki, C; Salstein, L; Perry, R; Sullivan-Wilson, T A; Sloan, A; Lalji, B; Hammock, E; Wilson, D A; Levitt, P; Okutani, F; Kaba, H; Sullivan, R M
2013-10-01
Attachment to an abusive caregiver has wide phylogenetic representation, suggesting that animal models are useful in understanding the neural basis underlying this phenomenon and subsequent behavioral outcomes. We previously developed a rat model, in which we use classical conditioning to parallel learning processes evoked during secure attachment (odor-stroke, with stroke mimicking tactile stimulation from the caregiver) or attachment despite adversity (odor-shock, with shock mimicking maltreatment). Here we extend this model to mice. We conditioned infant mice (postnatal day (PN) 7-9 or 13-14) with presentations of peppermint odor and either stroking or shock. We used (14) C 2-deoxyglucose (2-DG) to assess olfactory bulb and amygdala metabolic changes following learning. PN7-9 mice learned to prefer an odor following either odor-stroke or shock conditioning, whereas odor-shock conditioning at PN13-14 resulted in aversion/fear learning. 2-DG data indicated enhanced bulbar activity in PN7-9 preference learning, whereas significant amygdala activity was present following aversion learning at PN13-14. Overall, the mouse results parallel behavioral and neural results in the rat model of attachment, and provide the foundation for the use of transgenic and knockout models to assess the impact of both genetic (biological vulnerabilities) and environmental factors (abusive) on attachment-related behaviors and behavioral development. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
High-throughput automated home-cage mesoscopic functional imaging of mouse cortex
Murphy, Timothy H.; Boyd, Jamie D.; Bolaños, Federico; Vanni, Matthieu P.; Silasi, Gergely; Haupt, Dirk; LeDue, Jeff M.
2016-01-01
Mouse head-fixed behaviour coupled with functional imaging has become a powerful technique in rodent systems neuroscience. However, training mice can be time consuming and is potentially stressful for animals. Here we report a fully automated, open source, self-initiated head-fixation system for mesoscopic functional imaging in mice. The system supports five mice at a time and requires minimal investigator intervention. Using genetically encoded calcium indicator transgenic mice, we longitudinally monitor cortical functional connectivity up to 24 h per day in >7,000 self-initiated and unsupervised imaging sessions up to 90 days. The procedure provides robust assessment of functional cortical maps on the basis of both spontaneous activity and brief sensory stimuli such as light flashes. The approach is scalable to a number of remotely controlled cages that can be assessed within the controlled conditions of dedicated animal facilities. We anticipate that home-cage brain imaging will permit flexible and chronic assessment of mesoscale cortical function. PMID:27291514
Whittington, Niteace C; Wray, Susan
2017-10-23
Autofluorescence is a problem that interferes with immunofluorescent staining and complicates data analysis. Throughout the mouse embryo, red blood cells naturally fluoresce across multiple wavelengths, spanning the emission and excitation spectra of many commonly used fluorescent reporters, including antibodies, dyes, stains, probes, and transgenic proteins, making it difficult to distinguish assay fluorescence from endogenous fluorescence. Several tissue treatment methods have been developed to bypass this issue with varying degrees of success. Sudan Black B dye has been commonly used to quench autofluorescence, but can also introduce background fluorescence. Here we present a protocol for an alternative called TrueBlack Lipofuscin Autofluorescence Quencher. The protocol described in this unit demonstrates how TrueBlack efficiently quenches red blood cell autofluorescence across red and green wavelengths in fixed embryonic tissue without interfering with immunofluorescent signal intensity or introducing background staining. We also identify optimal incubation, concentration, and multiple usage conditions for routine immunofluorescence microscopy. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Applications of transgenics in studies of bone sialoprotein.
Zhang, Jin; Tu, Qisheng; Chen, Jake
2009-07-01
Bone sialoprotein (BSP) is a major non-collagenous protein in mineralizing connective tissues such as dentin, cementum and calcified cartilage tissues. As a member of the Small Integrin-Binding Ligand, N-linked Glycoprotein (SIBLING) gene family of glycoproteins, BSP is involved in regulating hydroxyapatite crystal formation in bones and teeth, and has long been used as a marker gene for osteogenic differentiation. In the most recent decade, new discoveries in BSP gene expression and regulation, bone remodeling, bone metastasis, and bone tissue engineering have been achieved with the help of transgenic mice. In this review, we discuss these new discoveries obtained from the literatures and from our own laboratory, which were derived from the use of transgenic mouse mutants related to BSP gene or its promoter activity.
Transgenic mice: an irreplaceable tool for the study of mammalian development and biology.
Babinet, C
2000-11-01
Stable integration into the mouse genome of exogenous genetic information, i.e., the creation of transgenic mice, has become a privileged way of analyzing gene function in normal development and pathology. Both gene addition and gene replacement may be performed. This has allowed, in particular, the creation of mice in which precise mutations are introduced into a given gene. Furthermore, in recent years, strategies that induce the expression of a mutation in a given type of cell and/or at a given time in development have been developed. Thus, the transgenic methodology affords a unique and irreplaceable tool for the study of mammalian development and biology and for the creation of animal models for human genetic diseases.
Dexmedetomidine Increases Tau Phosphorylation Under Normothermic Conditions In Vivo and In Vitro
Whittington, Robert A.; Virág, László; Gratuze, Maud; Petry, Franck R.; Noël, Anastasia; Poitras, Isabelle; Truchetti, Geoffrey; Marcouiller, François; Papon, Marie-Amélie; Khoury, Noura El; Wong, Kevin; Bretteville, Alexis; Morin, Françoise; Planel, Emmanuel
2015-01-01
There is developing interest in the potential association between anesthesia and the onset and progression of Alzheimer's disease. Several anesthetics have thus been demonstrated to induce tau hyperphosphorylation, an effect mostly mediated by anesthesia-induced hypothermia. Here, we tested the hypothesis that acute normothermic administration of dexmedetomidine, an intravenous sedative used in intensive care units, would result in tau hyperphosphorylation in vivo and in vitro. When administered to non-transgenic mice, dexmedetomidine induced tau hyperphosphorylation persisting up to 6h in the hippocampus for the AT8 epitope. Pretreatment with atipamezole, a highly specific α2-adrenergic receptor (α2-AR) antagonist, blocked dexmedetomidine-induced tau hyperphosphorylation. Furthermore, dexmedetomidine dose-dependently increased tau phosphorylation at AT8 in SH-SY5Y cells, impaired mice spatial memory in the Barnes maze, and promoted tau hyperphosphorylation and aggregation in transgenic hTau mice. These findings suggest that dexmedetomidine: i) increases tau phosphorylation, in vivo and in vitro, in the absence of anesthetic-induced hypothermia and through α2-AR activation, ii) promotes tau aggregation in a mouse model of tauopathy, and iii) impacts spatial reference memory. PMID:26058840
Deckers, Roel; Debeissat, Christelle; Fortin, Pierre-Yves; Moonen, Chrit T W; Couillaud, Franck
2012-01-01
Tight regulation of gene expression in the region where therapy is necessary and for the duration required to achieve a therapeutic effect and to minimise systemic toxicity is very important for clinical applications of gene therapy. Hyperthermia in combination with a temperature sensitive heat shock protein (Hsp70) promoter presents a unique approach allowing non-invasive spatio-temporal control of transgene expression. In this study we investigated the in vivo and ex vivo relationship between temperature and duration of thermal stress with respect to the resulting gene expression using an Arrhenius analysis. A transgenic mouse expressing the luciferase reporter gene under the transcriptional control of a thermosensitive promoter was used to assure identical genotype for in vivo (mouse leg) and ex vivo (bone marrow mononuclear and embryonic fibroblast cells) studies. The mouse leg and cells were heated at different temperatures and different exposure times. Bioluminescence imaging and in vitro enzymatic assay were used to measure the resulting transgene expression. We showed that temperature-induced Hsp70 promoter activation was modulated by both temperature as well as duration of hyperthermia. The relationship between temperature and duration of hyperthermia and the resulting reporter gene expression can be modelled by an Arrhenius analysis for both in vivo as well as ex vivo. However, the increase in reporter gene expression after elevating the temperature of the thermal stress with 1°C is not comparable for in vivo and ex vivo situations. This information may be valuable for optimising clinical gene therapy protocols.
Brake, Tiffany; Lambert, Paul F.
2005-01-01
Cervical cancer is a leading cause of death by cancer among women worldwide. High-risk human papillomaviruses (HPVs) are the major etiological agents for cervical cancer, but other factors likely contribute to cervical cancer, because these cancers commonly arise decades after initial exposure to HPV. Estrogen is thought to be one such cofactor; however, its temporal requirements in human cervical cancer are not known. Here we evaluate the temporal requirements of estrogen in cervical carcinogenesis in a mouse model for HPV-associated cervical cancer. Tumors arising in HPV16 transgenic mice treated with estrogen for 9 months were greatly increased in their size compared with tumors developing after 6 months of estrogen treatment. HPV16 transgenic mice treated 6 months with estrogen followed by 3 months without exogenous estrogen had significantly fewer tumors and the tumors were smaller and less aggressive than those arising in mice treated the full 9 months. Importantly, cervical cancers that arose in the mice treated the first 6 of 9 months with estrogen must have regressed, based upon the reduced incidence of cancers in these mice compared with those treated for 6 months with estrogen, then immediately analyzed. We conclude that estrogen plays a critical role not only in the genesis of cervical cancer but also in its persistence and continued development in this mouse model. These findings raise the clinically relevant possibility that, if human cervical cancer has a similar dependence on estrogen for continued tumor growth, then antiestrogen therapy may be effective in the treatment of cervical cancer. PMID:15699322
Han, Ju-Hee; Park, Shin-Young; Kim, Jin-Bum; Cho, Sung-Dae; Kim, Bumseok; Kim, Bo-Yeon; Kang, Min-Jung; Kim, Dong-Jae; Park, Jae-Hak; Park, Jong-Hwan
2013-10-01
Although various Toll-like receptors (TLRs) have been associated with immune response and tumorigenesis in the prostate cells, little is known about the role of TLR7. Accordingly, we examined the expression of TLR7 during tumour progression of TRMAP (transgenic mouse model for prostate cancer) mice and its role on cell growth. Toll-like receptor7 expression was examined by RT-polymerase chain reaction (PCR), Western blot, and immunohistochemistry. Cell growth was examined by MTT assay. Colony formation was investigated by crystal violet staining. Strong expression of TLR7 was detected in the normal prostate epithelia of Wild-type (WT) mice, but not in TLR7-deficient mice. In contrast, TLR7 expression was weak in transgenic adenocarcinoma of mouse prostate (TRAMP)-C2 cells, as compared with murine bone marrow-derived macrophages (BMDMs). Moreover, TLR7 mRNA was markedly expressed in RWPE-1 cells (non-cancerous prostate epithelial cells), but not in PC3 and DU145 (prostate cancer cells). Immunohistochemically, TLR7 expression gradually decreased in TRAMP mice depending on the pathologic grade of the prostate cells. TLR7 agonists increased both the gene and protein expression of TLR7 and promoted production of proinflammatory cytokines/chemokines and IFN-β gene expression in prostate cancer cell lines. Moreover, loxoribine inhibited the growth and colony formation of TRAMP-C2 cells dependent of TLR7. These findings suggest that TLR7 may participate in tumour suppression in the prostate cells. © 2013 John Wiley & Sons Ltd.
Miyazaki, Satsuki; Taniguchi, Hidenori; Moritoh, Yusuke; Tashiro, Fumi; Yamamoto, Tsunehiko; Yamato, Eiji; Ikegami, Hiroshi; Ozato, Keiko; Miyazaki, Jun-ichi
2010-11-01
Retinoid X receptors (RXRs) are members of the nuclear hormone receptor superfamily and are thought to be key regulators in differentiation, cellular growth, and gene expression. Although several experiments using pancreatic β-cell lines have shown that the ligands of nuclear hormone receptors modulate insulin secretion, it is not clear whether RXRs have any role in insulin secretion. To elucidate the function of RXRs in pancreatic β-cells, we generated a double-transgenic mouse in which a dominant-negative form of RXRβ was inducibly expressed in pancreatic β-cells using the Tet-On system. We also established a pancreatic β-cell line from an insulinoma caused by the β-cell-specific expression of simian virus 40 T antigen in the above transgenic mouse. In the transgenic mouse, expression of the dominant-negative RXR enhanced the insulin secretion with high glucose stimulation. In the pancreatic β-cell line, the suppression of RXRs also enhanced glucose-stimulated insulin secretion at a high glucose concentration, while 9-cis-retinoic acid, an RXR agonist, repressed it. High-density oligonucleotide microarray analysis showed that expression of the dominant-negative RXR affected the expression levels of a number of genes, some of which have been implicated in the function and/or differentiation of β-cells. These results suggest that endogenous RXR negatively regulates the glucose-stimulated insulin secretion. Given these findings, we propose that the modulation of endogenous RXR in β-cells may be a new therapeutic approach for improving impaired insulin secretion in type 2 diabetes.
De Silva, Samantha R; Charbel Issa, Peter; Singh, Mandeep S; Lipinski, Daniel M; Barnea-Cramer, Alona O; Walker, Nathan J; Barnard, Alun R; Hankins, Mark W; MacLaren, Robert E
2016-11-01
Gene therapy using adeno-associated viral (AAV) vectors for the treatment of retinal degenerations has shown safety and efficacy in clinical trials. However, very high levels of vector expression may be necessary for the treatment of conditions such as Stargardt disease where a dual vector approach is potentially needed, or in optogenetic strategies for end-stage degeneration in order to achieve maximal light sensitivity. In this study, we assessed two vectors with single capsid mutations, rAAV2/2(Y444F) and rAAV2/8(Y733F) in their ability to transduce retina in the Abca4 -/- and rd1 mouse models of retinal degeneration. We noted significantly increased photoreceptor transduction using rAAV2/8(Y733F) in the Abca4 -/- mouse, in contrast to previous work where vectors tested in this model have shown low levels of photoreceptor transduction. Bipolar cell transduction was achieved following subretinal delivery of both vectors in the rd1 mouse, and via intravitreal delivery of rAAV2/2(Y444F). The successful use of rAAV2/8(Y733F) to target bipolar cells was further validated on human tissue using an ex vivo culture system of retinal explants. Capsid mutant AAV vectors transduce human retinal cells and may be particularly suited to treat retinal degenerations in which high levels of transgene expression are required.
Trion, A; de Maat, M P M; Jukema, J W; van der Laarse, A; Maas, M C; Offerman, E H; Havekes, L M; Szalai, A J; Princen, H M G; Emeis, J J
2005-08-01
C-reactive protein (CRP) has been associated with risk of cardiovascular disease. It is not clear whether CRP is causally involved in the development of atherosclerosis. Mouse CRP is not expressed at high levels under normal conditions and increases in concentration only several-fold during an acute phase response. Because the dynamic range of human CRP is much larger, apolipoprotein E*3-Leiden (E3L) transgenic mice carrying the human CRP gene offer a unique model to study the role(s) of CRP in atherosclerosis development. Atherosclerosis development was studied in 15 male and 15 female E3L/CRP mice; E3L transgenic littermates were used as controls. The mice were fed a hypercholesterolemic diet to induce atherosclerosis development. Cholesterol exposure did not differ between E3L/CRP and E3L mice. Plasma CRP levels were on average 10.2+/-6.5 mg/L in male E3L/CRP mice, 0.2+/-0.1 mg/L in female E3L/CRP mice, and undetectable in E3L mice. Quantification of atherosclerosis showed that lesion area in E3L/CRP mice was not different from that in E3L mice. This study demonstrates that mildly elevated levels of CRP in plasma do not contribute to the development of early atherosclerosis in hypercholesterolemic E3L/CRP mice.
Reixach, Natàlia; Foss, Ted R; Santelli, Eugenio; Pascual, Jaime; Kelly, Jeffery W; Buxbaum, Joel N
2008-01-25
The transthyretin amyloidoses appear to be caused by rate-limiting tetramer dissociation and partial monomer unfolding of the human serum protein transthyretin, resulting in aggregation and extracellular deposition of amorphous aggregates and amyloid fibrils. Mice transgenic for few copies of amyloid-prone human transthyretin variants, including the aggressive L55P mutant, failed to develop deposits. Silencing the murine transthyretin gene in the presence of the L55P human gene resulted in enhanced tissue deposition. To test the hypothesis that the murine protein interacted with human transthyretin, preventing the dissociation and partial unfolding required for amyloidogenesis, we produced recombinant murine transthyretin and human/murine transthyretin heterotetramers and compared their structures and biophysical properties to recombinant human transthyretin. We found no significant differences between the crystal structures of murine and human homotetramers. Murine transthyretin is not amyloidogenic because the native homotetramer is kinetically stable under physiologic conditions and cannot dissociate into partially unfolded monomers, the misfolding and aggregation precursor. Heterotetramers composed of murine and human subunits are also kinetically stable. These observations explain the lack of transthyretin deposition in transgenics carrying a low copy number of human transthyretin genes. The incorporation of mouse subunits into tetramers otherwise composed of human amyloid-prone transthyretin subunits imposes kinetic stability, preventing dissociation and subsequent amyloidogenesis.
Onal, Melda; Bishop, Kathleen A; St John, Hillary C; Danielson, Allison L; Riley, Erin M; Piemontese, Marilina; Xiong, Jinhu; Goellner, Joseph J; O'Brien, Charles A; Pike, J Wesley
2015-05-01
Receptor activator of NF-κB ligand (RANKL) is a TNFα-like cytokine that is produced by a diverse set of lineage-specific cells and is involved in a wide variety of physiological processes that include skeletal remodeling, lymph node organogenesis, mammary gland development, and thermal regulation. Consistent with these diverse functions, control of RANKL expression is accomplished in a cell-specific fashion via a set of at least 10 regulatory enhancers that are located up to 170 kb upstream of the gene's transcriptional start site. Here we examined the in vivo consequence of introducing a contiguous DNA segment containing these components into a genetically deleted RANKL null mouse strain. In contrast to RANKL null littermates, null mice containing the transgene exhibited normalized body size, skeletal development, and bone mass as well as normal bone marrow cavities, normalized spleen weights, and the presence of developed lymph nodes. These mice also manifested normalized reproductive capacity, including the ability to lactate and to produce normal healthy litters. Consistent with this, the transgene restored endogenous-like RANKL transcript levels in several RANKL-expressing tissues. Most importantly, restoration of RANKL expression from this segment of DNA was fully capable of rescuing the complex aberrant skeletal and immune phenotype of the RANKL null mouse. RANKL also restored appropriate levels of B220+ IgM+ and B220+ IgD+ B cells in spleen. Finally, we found that RANKL expression from this transgene was regulated by exogenously administered 1,25(OH)2 D3 , parathyroid hormone (PTH), and lipopolysaccharide (LPS), thus recapitulating the ability of these same factors to regulate the endogenous gene. These findings fully highlight the properties of the Tnfsf11 gene locus predicted through previous in vitro dissection. We conclude that the mouse Tnfsf11 gene locus identified originally through unbiased chromatin immunoprecipitation with DNA microarray (ChIP-chip) analysis contains the necessary genetic information to direct appropriate tissue-specific and factor-regulated RANKL expression in vivo. © 2014 American Society for Bone and Mineral Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chajekshaul, T.; Hayek, T.; Walsh, A.
1991-08-01
Transgenic mice carrying the human apolipoprotein (apo) A-I gene (HuAITg mice) were used to examine the effects of overexpression of the human gene on high density lipoprotein (HDL) particle size distribution and metabolism. On a chow diet, control mice had HDL cholesterol and apo A-I levels of 49 {plus minus} 2 and 137 {plus minus} 12 mg/dl of plasma, respectively. HuAITg mice had HDL cholesterol, human apo A-I, and mouse apo A-I levels of 88 {plus minus} 2, 255 {plus minus} 19, and 16 {plus minus} 2 mg/dl, respectively. Nondenaturing gradient gel electrophoresis revealed control mouse plasma HDL to bemore » primarily monodisperse with a particle diameter of 10.2 nm, whereas HuAITg mouse plasma HDL was polydisperse with particles of diameter 11.4, 10.2, and 8.7 nm, which correspond in size to human HDL1, HDL2, and HDL3, respectively. In vivo turnover studies of HDL labeled with (3H)cholesteryl linoleyl ether and 125I-apo A-I were performed. In control animals, the fractional catabolic rate (FCR) for HDL cholesteryl ester was significantly more than the apo A-I FCR. In the HuAITg mice, the HDL cholesteryl ester FCR was the same as the apo A-I FCR. There were no significant differences between control and HuAITg animals in the sites of tissue removal of HDL cholesteryl ester, with the liver extracting most of the injected radioactivity. Control and HuAITg animals had comparable liver and intestinal cholesterol synthesis and LDL FCR. In conclusion, HuAITg mice have principally human and not mouse apo A-I in their plasma. This apparently causes a change in HDL particle size distribution in the transgenic mice to one resembling the human pattern. The replacement of mouse by human apo A-I also apparently causes the loss of the selective uptake pathway of HDL cholesteryl esters present in control mice.« less
Glutamatergic and Dopaminergic Neurons in the Mouse Ventral Tegmental Area
Yamaguchi, Tsuyoshi; Qi, Jia; Wang, Hui-Ling; Zhang, Shiliang; Morales, Marisela
2014-01-01
The ventral tegmental area (VTA) comprises dopamine (DA), GABA and glutamate (Glu) neurons. Some rat VTA Glu neurons, expressing vesicular glutamate transporter 2 (VGluT2), co-express tyrosine hydroxylase (TH). While transgenic mice are now being used in attempts to determine the role of VGluT2/TH neurons in reward and neuronal signaling, such neurons have not been characterized in mouse tissue. By cellular detection of VGluT2-mRNA and TH-immunoreactivity (TH-IR), we determined the cellular expression of VGluT2-mRNA within VTA TH-IR neurons in the mouse. We found that some mouse VGluT2 neurons co-expressed TH-IR, but their frequency was lower than in the rat. To determine whether low expression of TH mRNA or TH-IR accounts for this low frequency, we evaluated VTA cellular co-expression of TH-transcripts and TH-protein. Within the medial aspects of the VTA, some neurons expressed TH mRNA but lacked TH-IR; among them a subset co-expressed VGluT2 mRNA. To determine if lack of VTA TH-IR was due to TH trafficking, we tagged VTA TH neurons by cre-inducible expression of mCherry in TH::Cre mice. By dual immunofluorescence, we detected axons containing mCherry, but lacking TH-IR, in the lateral habenula, indicating that mouse low frequency of VGluT2 mRNA (+)/TH-IR (+) neurons is due to lack of synthesis of TH protein, rather than TH-protein trafficking. In conclusion, VGluT2 neurons are present in the rat and mouse VTA, but they differ in the populations of VGluT2/TH and TH neurons. We reveal that under normal conditions, the translation of TH protein is suppressed in the mouse mesohabenular TH neurons. PMID:25572002
Anxiety-like behavior in transgenic mice with brain expression of neuropeptide Y.
Inui, A; Okita, M; Nakajima, M; Momose, K; Ueno, N; Teranishi, A; Miura, M; Hirosue, Y; Sano, K; Sato, M; Watanabe, M; Sakai, T; Watanabe, T; Ishida, K; Silver, J; Baba, S; Kasuga, M
1998-01-01
Neuropeptide Y (NPY), one of the most abundant peptide transmitters in the mammalian brain, is assumed to play an important role in behavior and its disorders. To understand the long-term modulation of neuronal functions by NPY, we raised transgenic mice created with a novel central nervous system (CNS) neuron-specific expression vector of human Thy- gene fragment linked to mouse NPY cDNA. In situ hybridization analysis demonstrated transgene-derived NPY expression in neurons (e.g., in the hippocampus, cerebral cortex, and the arcuate nucleus of the hypothalamus) in the transgenic mice. The modest increase of NPY protein in the brain was demonstrated by semiquantitative immunohistochemical analysis and by radioreceptor assay (115% in transgenic mice compared to control littermates). Double-staining experiments indicated colocalization of the transgene-derived NPY message and NPY protein in the same neurons, such as in the arcuate nucleus. The transgenic mice displayed behavioral signs of anxiety and hypertrophy of adrenal zona fasciculata cells, but no change in food intake was observed. The anxiety-like behavior of transgenic mice was reversed, at least in part, by administration of corticotropin-releasing factor (CRF) antagonists, alpha-helical CRF9-41, into the third cerebral ventricle. These results suggest that NPY has a role in anxiety and behavioral responses to stress partly via the CRF neuronal system. This genetic model may provide a unique opportunity to study human anxiety and emotional disorders.
Kaufmann, Martin; Lee, Seong Min; Pike, J. Wesley
2015-01-01
Vitamin D receptor (VDR)-mediated 1,25-dihydroxyvitamin D3 (1,25(OH)2D3)-dependent gene expression is compromised in the VDR null mouse. The biological consequences include: hypocalcemia, hypophosphatemia, elevated parathyroid hormone (PTH) and 1,25(OH)2D3, and consequential skeletal abnormalities. CYP24A1 is a cytochrome P450 enzyme that is involved in the side chain oxidation and destruction of both 1,25(OH)2D3 and 25-hydroxyvitamin D3 (25-OH-D3). In the current studies, we used liquid chromatography-tandem mass spectrometry technology to compare the metabolic profiles of VDR null mice fed either a normal or a calcium and phosphate-enriched rescue diet and to assess the consequence of transgenic expression of either mouse or human VDR genes in the same background. Serum 1,25(OH)2D3 levels in VDR null mice on normal chow were highly elevated (>3000 pg/mL) coincident with undetectable levels of catabolites such as 24,25-(OH)2D3 and 25-OH-D3-26,23-lactone normally observed in wild-type mice. The rescue diet corrected serum Ca++, PTH, and 1,25(OH)2D3 values and restored basal expression of Cyp24a1 as evidenced by both renal expression of Cyp24a1 and detection of 24,25-(OH)2D3 and the 25-OH-D3-26,23-lactone. Unexpectedly, this diet also resulted in supranormal levels of 3-epi-24,25-(OH)2D3 and 3-epi-25-OH-D3-26,23-lactone. The reappearance of serum 24,25-(OH)2D3 and renal Cyp24a1 expression after rescue suggests that basal levels of Cyp24a1 may be repressed by high PTH. Introduction of transgenes for either mouse or human VDR also normalized vitamin D metabolism in VDR null mice, whereas this metabolic pattern was unaffected by a transgene encoding a ligand binding-deficient mutant (L233S) human VDR. We conclude that liquid chromatography-tandem mass spectrometry-based metabolic profiling is an ideal analytical method to study mouse models with alterations in calcium/phosphate homeostasis. PMID:26441239
Conley, Shannon; Nour, May; Fliesler, Steven J; Naash, Muna I
2007-12-01
R172W is a common mutation in the human retinal degeneration slow (RDS) gene, associated with a late-onset dominant macular dystrophy. In this study, the authors characterized a mouse model that closely mimics the human phenotype and tested the feasibility of gene supplementation as a disease treatment strategy. Transgenic mouse lines carrying the R172W mutation were generated. The retinal phenotype associated with this mutation in a low-expresser line (L-R172W) was examined, both structurally (histology with correlative immunohistochemistry) and functionally (electroretinography). By examining animals over time and with various rds genetic backgrounds, the authors evaluated the dominance of the defect. To assess the efficacy of gene transfer therapy as a treatment for this defect, a previously characterized transgenic line expressing the normal mouse peripherin/Rds (NMP) was crossed with a higher-expresser Rds line harboring the R172W mutation (H-R172W). Functional, structural, and biochemical analyses were used to assess rescue of the retinal disease phenotype. In the wild-type (WT) background, L-R172W mice exhibited late-onset (12-month) dominant cone degeneration without any apparent effect on rods. The degeneration was slightly accelerated (9 months) in the rds(+/-) background. L-R172W retinas did not form outer segments in the absence of endogenous Rds. With use of the H-R172W line on an rds(+/-) background for proof-of-principle genetic supplementation studies, the NMP transgene product rescued rod and cone functional defects and supported outer segment integrity up to 3 months of age, but the rescue effect did not persist in older (11-month) animals. The R172W mutation leads to dominant cone degeneration in the mouse model, regardless of the expression level of the transgene. In contrast, effects of the mutation on rods are dose dependent, underscoring the usefulness of the L-R172W line as a faithful model of the human phenotype. This model may prove helpful in future studies on the mechanisms of cone degeneration and for elucidating the different roles of Rds in rods and cones. This study provides evidence that Rds genetic supplementation can be used to partially rescue visual function. Although this strategy is capable of rescuing haploinsufficiency, it does not rescue the long-term degeneration associated with a gain-of-function mutation.
Balic, Anamaria; Aguila, H. Leonardo; Mina, Mina
2010-01-01
Transgenic mouse lines in which GFP expression is under the control of tissue-and stage specific promoters have provided powerful experimental tools for identification and isolation of cells at specific stage of differentiation along a lineage. In the present study we used primary cell cultures derived from the dental pulp from pOBCol3.6GFP and pOBCol2.3GFP transgenic mice as a model to develop markers for early stages of odontoblast differentiation from progenitor cells. We analyzed the temporal and spatial expression of 2.3-GFP and 3.6-GFP during in vitro mineralization. Using FACS to separate cells based on GFP expression, we obtained relatively homogenous sub-populations of cells and analyzed their dentinogenic potentials and their progression into odontoblasts. Our observations showed that these transgenes were activated before the onset of matrix deposition and in cells at different stages of polarization. The 3.6-GFP transgene was activated in cells in early stages of polarization whereas the 2.3-GFP transgene was activated at a later stage of polarization just before or at the time of formation of secretory odontoblast. PMID:20728593
Aftab Hussain, Aftab; Pavithra, I S; Sreevathsa, Rohini; Nataraja, K N; Babu, Naveen
2016-08-01
Plants have developed several adaptive strategies to enhance the availability and uptake of phosphorus (P) from the soil under conditions of P deficiency. Exudation of organic acids like citrate is one of the important strategies. In this study, we developed transgenic pigeonpea (Cajanus cajan) over-expressing Dacus carota citrate synthase (DcCs) gene to increase the synthesis and exudation of citrate. Transgenic plants were generated through agro bacterium mediated in-planta transformation technique. Integration and expression of the transgene was confirmed by genomic Southern and RT-PCR analysis. We observed that the transgenic lines had more tissue P and chlorophyll content, and also citrate synthase content higher in the roots. Further, transgenic lines had more vigorous root system both under P sufficient and deficient conditions with more lateral roots and root hairs under P deficient conditions. We conclude that the transgenic pigeonpea plants have the capacity to acquire more P under P deficient conditions.
Mono-allelic expression of variegating transgene locus in the mouse.
Opsahl, Margaret L; Springbett, Anthea; Lathe, Richard; Colman, Alan; McClenaghan, Margaret; Whitelaw, C Bruce A
2003-12-01
We have generated transgenic mice which express an ovine beta-lactoglobulin transgene during lactation. In two transgenic lines, BLG/7 and BLG/45, beta-lactoglobulin protein levels vary between siblings, reflected at the cellular level by a mosaic transgene expression pattern in the mammary tissue that is reminiscent of position effect variegation. To investigate whether this variegating expression profile can be affected by the introduction of an identical variegating locus on the homologous chromosome, we compared the beta-lactoglobulin expression profiles in mice hemizygous or homozygous for the transgene locus. In BLG/45 mice, milk protein analysis revealed that transgene expression was effectively doubled in homozygous compared to hemizygous mice. In contrast, beta-lactoglobulin protein in hemizygous and homozygous BLG/7 mice displayed a similar range; although minimum expression levels were doubled in the homozygous population, the maximum level of expression was indistinguishable between the two populations. Fluorescent in situ hybridisation (FISH) for transgene mRNA indicated that for a given protein level, the extent of cellular expression is similar in both BLG/7 populations. In homozygous mice genomic DNA and nuclear RNA FISH demonstrated that only one of the two BLG/7 loci is active in expressing cells, while two transcription foci were present in BLG/45 homozygous mice. This mono-allelic transgene expression pattern is not inherited through the germline, as hemizygous mice bred from homozygous parents expressed at the expected hemizygous population level. We discuss these observations in the context of known epigenetic events such as imprinting and trans-inactivation.
Kim, Hyeon-Joong; Kim, Dae-Joong; Shin, Eun-Ju; Lee, Byung-Hwan; Choi, Sun-Hye; Hwang, Sung-Hee; Rhim, Hyewhon; Cho, Ik-Hyun; Kim, Hyoung-Chun; Nah, Seung-Yeol
2016-12-01
We previously showed that gintonin, an exogenous lysophosphatidic acid (LPA) receptor ligand, attenuated β-amyloid plaque formation in the cortex and hippocampus, and restored β-amyloid-induced memory dysfunction. Both endogenous LPA and LPA receptors play a key role in embryonic brain development. However, little is known about whether gintonin can induce hippocampal cell proliferation in adult wild-type mice and an APPswe/PSEN-1 double Tg mouse model of Alzheimer's disease (AD). In the present study, we examined the effects of gintonin on the proliferation of hippocampal neural progenitor cells (NPCs) in vitro and its effects on the hippocampal cell proliferation in wild-type mice and a transgenic AD mouse model. Gintonin treatment increased 5-bromo-2'-deoxyuridine (BrdU) incorporation in hippocampal NPCs in a dose- and time-dependent manner. Gintonin (0.3 μg/ml) increased the immunostaining of glial fibrillary acidic protein, NeuN, and LPA1 receptor in hippocampal NPCs. However, the gintonin-induced increase in BrdU incorporation and immunostaining of biomarkers was blocked by an LPA1/3 receptor antagonist and Ca 2+ chelator. Oral administration of the gintonin-enriched fraction (50 and 100 mg/kg) increased hippocampal BrdU incorporation and LPA1/3 receptor expression in adult wild-type and transgenic AD mice. The present study showed that gintonin could increase the number of hippocampal neurons in adult wild-type mice and a transgenic AD mouse model. Our results indicate that gintonin-mediated hippocampal cell proliferation contributes to the gintonin-mediated restorative effect against β-amyloid-induced hippocampal dysfunction. These results support the use of gintonin for the prevention or treatment of neurodegenerative diseases such as AD via promotion of hippocampal neurogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Riabov, V.; Tretyakova, I.; Alexander, R. B.; Pushko, P.; Klyushnenkova, E. N.
2015-01-01
The goal of this study was to determine if an alphavirus-based vaccine encoding human Prostate-Specific Antigen (PSA) could generate an effective anti-tumor immune response in a stringent mouse model of prostate cancer. DR2bxPSA F1 male mice expressing human PSA and HLA-DRB1*1501 transgenes were vaccinated with virus-like particle vector encoding PSA (VLPV-PSA) followed by the challenge with Transgenic Adenocarcinoma of Mouse Prostate cells engineered to express PSA (TRAMP-PSA). PSA-specific cellular and humoral immune responses were measured before and after tumor challenge. PSA and CD8 reactivity in the tumors was detected by immunohistochemistry. Tumor growth was compared in vaccinated and control groups. We found that VLPV-PSA could infect mouse dendritic cells in vitro and induce a robust PSA-specific immune response in vivo. A substantial proportion of splenic CD8+ T cells (19.6±7.4%) produced IFNγ in response to the immunodominant peptide PSA65–73. In the blood of vaccinated mice, 18.4±4.1% of CD8+ T cells were PSA-specific as determined by the staining with H-2Db/PSA65–73 dextramers. VLPV-PSA vaccination also strongly stimulated production of IgG2a/b anti-PSA antibodies. Tumors in vaccinated mice showed low levels of PSA expression and significant CD8 T cell infiltration. Tumor growth in VLPV-PSA vaccinated mice was significantly delayed at early time points (p=0.002, Gehan-Breslow test). Our data suggest that TC-83-based VLPV-PSA vaccine can efficiently overcome immune tolerance to PSA, mediate rapid clearance of PSA-expressing tumor cells and delay tumor growth. The VLPV-PSA vaccine will undergo further testing for the immunotherapy of prostate cancer. PMID:26319744
Verma, Megha; Beaulieu-Abdelahad, David; Ait-Ghezala, Ghania; Li, Rena; Crawford, Fiona; Mullan, Michael; Paris, Daniel
2015-01-01
Anatabine is a minor tobacco alkaloid, which is also found in plants of the Solanaceae family and displays a chemical structure similarity with nicotine. We have shown previously that anatabine displays some anti-inflammatory properties and reduces microgliosis and tau phosphorylation in a pure mouse model of tauopathy. We therefore investigated the effects of a chronic oral treatment with anatabine in a transgenic mouse model (Tg PS1/APPswe) of Alzheimer’s disease (AD) which displays pathological Aβ deposits, neuroinflammation and behavioral deficits. In the elevated plus maze, Tg PS1/APPswe mice exhibited hyperactivity and disinhibition compared to wild-type mice. Six and a half months of chronic oral anatabine treatment, suppressed hyperactivity and disinhibition in Tg PS1/APPswe mice compared to Tg PS1/APPswe receiving regular drinking water. Tg PS1/APPswe mice also elicited profound social interaction and social memory deficits, which were both alleviated by the anatabine treatment. We found that anatabine reduces the activation of STAT3 and NFκB in the vicinity of Aβ deposits in Tg PS1/APPswe mice resulting in a reduction of the expression of some of their target genes including Bace1, iNOS and Cox-2. In addition, a significant reduction in microgliosis and pathological deposition of Aβ was observed in the brain of Tg PS1/APPswe mice treated with anatabine. This is the first study to investigate the impact of chronic anatabine treatment on AD-like pathology and behavior in a transgenic mouse model of AD. Overall, our data show that anatabine reduces β-amyloidosis, neuroinflammation and alleviates some behavioral deficits in Tg PS1/APPswe, supporting further exploration of anatabine as a possible disease modifying agent for the treatment of AD. PMID:26010758
Therapeutic Evaluation of Mesenchymal Stem Cells in Chronic Gut Inflammation
2015-09-01
activate mouse splenocytes obtained from OT2 transgenic (tg) mice with ovalbumin peptide ( OVA ) and quantify T cell proliferation in vitro. The T...cell receptors (TCR) on CD4+ T cells in OT2 tg mice recognize only OVA presented by the major histocompatibility complex II (MHC II) expressed on...mouse OT2 splenocytes with OVA in the presence of increasing numbers of un-manipulated or irradiated hMSCs, we observe little or no suppression of T
In Vivo Imaging of mdrla Gene Expression
2005-06-01
svImJ mouse strain, compatible with the ES cells used in our Transgenic Mouse Facility. b. Engineer PGK-neo and Renilla luciferase cassettes...inserted between the two loxP sites, upstream of the Neo cassette. A cloning strategy was then devised to fuse Renilla luciferase in-frame with the...sites: B, BamHI; E, EcoRI; S, ScaI. PGK-neo: neo under the control of the PGK promoter. Luc: Renilla luciferase fused in- frame with the translated
2014-10-01
Previously I had determined that Rpl22 functions as a haploinsufficient tumor suppressor in mouse T - cell lymphoma model by activating the NF B and...preclinical animal models of T cell malignancy as well as in the manipulation of development of primary hematopoietic stem cells in vitro and in vivo...allelic inactivation can accelerate the development of T - cell lymphoma in a mouse model where disease is driven by a MyrAkt2-transgene. Rpl22 inactivation
Kojima-ishii, Kanako; Kure, Shigeo; Ichinohe, Akiko; Shinka, Toshikatsu; Narisawa, Ayumi; Komatsuzaki, Shoko; Kanno, Junnko; Kamada, Fumiaki; Aoki, Yoko; Yokoyama, Hiroyuki; Oda, Masaya; Sugawara, Taku; Mizoi, Kazuo; Nakahara, Daiichiro; Matsubara, Yoichi
2008-09-01
Glycine encephalopathy (GE) is caused by an inherited deficiency of the glycine cleavage system (GCS) and characterized by accumulation of glycine in body fluids and various neurologic symptoms. Coma and convulsions develop in neonates in typical GE while psychomotor retardation and behavioral abnormalities in infancy and childhood are observed in mild GE. Recently, we have established a transgenic mouse line (low-GCS) with reduced GCS activity (29% of wild-type (WT) C57BL/6) and accumulation of glycine in the brain (Stroke, 2007; 38:2157). The purpose of the present study is to characterize behavioral features of the low-GCS mouse as a model of mild GE. Two other transgenic mouse lines were also analyzed: high-GCS mice with elevated GCS activity and low-GCS-2 mice with reduced GCS activity. As compared with controls, low-GCS mice manifested increased seizure susceptibility, aggressiveness and anxiety-like activity, which resembled abnormal behaviors reported in mild GE, whereas high-GCS mice were less sensitive to seizures, hypoactive and less anxious. Antagonists for the glycine-binding site of the N-methyl-D-aspartate receptor significantly ameliorated elevated locomotor activity and seizure susceptibility in the low-GCS mice. Our results suggest the usefulness of low-GCS mice as a mouse model for mild GE and a novel therapeutic strategy.
N-acetyltransferase 2 activity and folate levels
Cao, Wen; Strnatka, Diana; McQueen, Charlene A.; Hunter, Robert J.; Erickson, Robert P.
2010-01-01
Aims To determine whether increased N-acetyltransferase (NAT) activity might have a toxic effect during development and an influence on folate levels since previous work has shown that only low levels of exogenous NAT can be achieved in constitutionally transgenic mice (Cao, et al, 2005) Main Methods A human NAT1 tet-inducible construct was used that would not be expressed until the inducer was delivered. Human NAT1 cDNA was cloned into pTRE2 and injected into mouse oocytes. Two transgenic lines were crossed to mouse line TgN(rtTahCMV)4Uh containing the CMV promoted “teton.”Measurements of red blood cell folate levels in inbred strains of mice were performed. Key findings Only low levels of human NAT1 could be achieved in kidney (highly responsive in other studies) whether the inducer, doxycycline, was given by gavage or in drinking water.An inverse correlation of folate levels with Nat2 enzyme activity was found. Significance Since increasing NAT1 activity decrease folate in at least one tissue, the detrimental effect of expression of human NAT1 in combination with endogenous mouse Nat2 may be a consequence of increased catabolism of folate. PMID:19932120
Transgenic analysis of the medaka mesp-b enhancer in somitogenesis.
Terasaki, Harumi; Murakami, Ryohei; Yasuhiko, Yukuto; Shin-I, Tadasu; Kohara, Yuji; Saga, Yumiko; Takeda, Hiroyuki
2006-04-01
Somitogenesis is a critical step during the formation of metameric structures in vertebrates. Recent studies in mouse, chick, zebrafish and Xenopus have revealed that several factors, such as T-box genes, Notch/Delta, Wnt, retinoic acid and FGF signaling, are involved in the specification of nascent somites. By interacting with these pathways, the Mesp2-like bHLH transcription factors are transiently expressed in the anterior presomitic mesoderm and play a crucial role in somite formation. The regulatory mechanisms of Mesp2 and its related genes during somitogenesis have been studied in mouse and Xenopus. However, the precise mechanism that regulates the transcriptional activity of Mesp2 has yet to be determined. In our current report, we identify the essential enhancer element of medaka mesp-b, an orthologue of mouse Mesp2, using transgenic techniques and embryo manipulation. Our results demonstrate that a region of approximately 2.8 kb, upstream of the mesp-b gene, is responsible for both the initiation and anterior localization of mesp-b transcription within a somite primordium. Furthermore, putative motifs for both T-box transcription factors and Notch/Delta signaling are present in this enhancer region and are essential for activity.
Cheung, Connie; Gonzalez, Frank J
2008-01-01
Cytochrome P450s (P450s) are important enzymes involved in the metabolism of xenobiotics, particularly clinically used drugs, and are also responsible for metabolic activation of chemical carcinogens and toxins. Many xenobiotics can activate nuclear receptors that in turn induce the expression of genes encoding xenobiotic metabolizing enzymes and drug transporters. Marked species differences in the expression and regulation of cytochromes P450 and xenobiotic nuclear receptors exist. Thus obtaining reliable rodent models to accurately reflect human drug and carcinogen metabolism is severely limited. Humanized transgenic mice were developed in an effort to create more reliable in vivo systems to study and predict human responses to xenobiotics. Human P450s or human xenobiotic-activated nuclear receptors were introduced directly or replaced the corresponding mouse gene, thus creating “humanized” transgenic mice. Mice expressing human CYP1A1/CYP1A2, CYP2E1, CYP2D6, CYP3A4, CY3A7, PXR, PPARα were generated and characterized. These humanized mouse models offers a broad utility in the evaluation and prediction of toxicological risk that may aid in the development of safer drugs. PMID:18682571
Temporally and spatially controllable gene expression and knockout in mouse urothelium.
Zhou, Haiping; Liu, Yan; He, Feng; Mo, Lan; Sun, Tung-Tien; Wu, Xue-Ru
2010-08-01
Urothelium that lines almost the entire urinary tract performs important functions and is prone to assaults by urinary microbials, metabolites, and carcinogens. To improve our understanding of urothelial physiology and disease pathogenesis, we sought to develop two novel transgenic systems, one that would allow inducible and urothelium-specific gene expression, and another that would allow inducible and urothelium-specific knockout. Toward this end, we combined the ability of the mouse uroplakin II promoter (mUPII) to drive urothelium-specific gene expression with a versatile tetracycline-mediated inducible system. We found that, when constructed under the control of mUPII, only a modified, reverse tetracycline trans-activator (rtTA-M2), but not its original version (rtTA), could efficiently trans-activate reporter gene expression in mouse urothelium on doxycycline (Dox) induction. The mUPII/rtTA-M2-inducible system retained its strict urothelial specificity, had no background activity in the absence of Dox, and responded rapidly to Dox administration. Using a reporter gene whose expression was secondarily controlled by histone remodeling, we were able to identify, colocalize with 5-bromo-2-deoxyuridine incorporation, and semiquantify newly divided urothelial cells. Finally, we established that, when combined with a Cre recombinase under the control of the tetracycline operon, the mUPII-driven rtTA-M2 could inducibly inactivate any gene of interest in mouse urothelium. The establishment of these two new transgenic mouse systems enables the manipulation of gene expression and/or inactivation in adult mouse urothelium at any given time, thus minimizing potential compensatory effects due to gene overexpression or loss and allowing more accurate modeling of urothelial diseases than previously reported constitutive systems.
Cebula, Marcin; Ochel, Aaron; Hillebrand, Upneet; Pils, Marina C.; Schirmbeck, Reinhold; Hauser, Hansjörg; Wirth, Dagmar
2013-01-01
The liver has the ability to prime immune responses against neo antigens provided upon infections. However, T cell immunity in liver is uniquely modulated by the complex tolerogenic property of this organ that has to also cope with foreign agents such as endotoxins or food antigens. In this respect, the nature of intrahepatic T cell responses remains to be fully characterized. To gain deeper insight into the mechanisms that regulate the CD8+ T cell responses in the liver, we established a novel OVA_X_CreERT2 mouse model. Upon tamoxifen administration OVA antigen expression is observed in a fraction of hepatocytes, resulting in a mosaic expression pattern. To elucidate the cross-talk of CD8+ T cells with antigen-expressing hepatocytes, we adoptively transferred Kb/OVA257-264-specific OT-I T cells to OVA_X_CreERT2 mice or generated triple transgenic OVA_X CreERT2_X_OT-I mice. OT-I T cells become activated in OVA_X_CreERT2 mice and induce an acute and transient hepatitis accompanied by liver damage. In OVA_X_CreERT2_X_OT-I mice, OVA induction triggers an OT-I T cell mediated, fulminant hepatitis resulting in 50% mortality. Surviving mice manifest a long lasting hepatitis, and recover after 9 weeks. In these experimental settings, recovery from hepatitis correlates with a complete loss of OVA expression indicating efficient clearance of the antigen-expressing hepatocytes. Moreover, a relapse of hepatitis can be induced upon re-induction of cured OVA_X_CreERT2_X_OT-I mice indicating absence of tolerogenic mechanisms. This pathogen-free, conditional mouse model has the advantage of tamoxifen inducible tissue specific antigen expression that reflects the heterogeneity of viral antigen expression and enables the study of intrahepatic immune responses to both de novo and persistent antigen. It allows following the course of intrahepatic immune responses: initiation, the acute phase and antigen clearance. PMID:23869228
Acute acetaminophen toxicity in transgenic mice with elevated hepatic glutathione.
Rzucidlo, S J; Bounous, D I; Jones, D P; Brackett, B G
2000-06-01
Previous studies demonstrated that elevation of hepatic glutathione (GSH) concentrations protect against acetaminophen (APAP) hepatotoxicity in mice. Employing transgenic mice overexpressing glutathione synthetase, this study was conducted to determine if sustained elevation of hepatic GSH concentrations could ameliorate or prevent APAP toxicity. International Cancer Research transgenic mouse males and matched (ie same strain, sex, and age) control nontransgenic mice were pretreated ip with GSH synthetase substrate gamma-glutamylcysteinyl ethyl ester (gamma-GCE) or with saline. After a 16-h fast, mice received a single dose of 500 mg APAP/kg bw in saline ip and were sacrificed 4 h later. Other mice similarly pretreated were killed without APAP challenge. The elevated GSH concentrations in transgenic mice livers did not lessen APAP hepatotoxicity. Instead higher degrees of hepatotoxicity and nephrotoxicity were observed in transgenic mice than in controls as indicated by higher serum alanine aminotransferase activity and more severe histopathological lesions in transgenic mice livers and kidneys. Pretreatment with gamma-GCE did not affect either initial or post-APAP treatment tissue GSH concentrations or observed degrees of toxicity. Detection of a higher level of serum APAP in transgenic mice and the histopathological lesions found in transgenic mice kidneys together with no observable nephrotoxicity in control mice indicated early kidney damage in transgenic mice. Our findings suggest that high levels of GSH-APAP conjugates resulting from increased GSH concentrations in the livers of transgenic mice caused rapid kidney damage. Compromised excretory ability may have caused retention of APAP, which, in effect, elicited higher hepatotoxicity than that observed in nontransgenic mice.
Airway-Specific Inducible Transgene Expression Using Aerosolized Doxycycline
Tata, Purushothama Rao; Pardo-Saganta, Ana; Prabhu, Mythili; Vinarsky, Vladimir; Law, Brandon M.; Fontaine, Benjamin A.; Tager, Andrew M.
2013-01-01
Tissue-specific transgene expression using tetracycline (tet)-regulated promoter/operator elements has been used to revolutionize our understanding of cellular and molecular processes. However, because most tet-regulated mouse strains use promoters of genes expressed in multiple tissues, to achieve exclusive expression in an organ of interest is often impossible. Indeed, in the extreme case, unwanted transgene expression in other organ systems causes lethality and precludes the study of the transgene in the actual organ of interest. Here, we describe a novel approach to activating tet-inducible transgene expression solely in the airway by administering aerosolized doxycycline. By optimizing the dose and duration of aerosolized doxycycline exposure in mice possessing a ubiquitously expressed Rosa26 promoter–driven reverse tet-controlled transcriptional activator (rtTA) element, we induce transgene expression exclusively in the airways. We detect no changes in the cellular composition or proliferative behavior of airway cells. We used this newly developed method to achieve airway basal stem cell–specific transgene expression using a cytokeratin 5 (also known as keratin 5)–driven rtTA driver line to induce Notch pathway activation. We observed a more robust mucous metaplasia phenotype than in mice receiving doxycycline systemically. In addition, unwanted phenotypes outside of the lung that were evident when doxycycline was received systemically were now absent. Thus, our approach allows for rapid and efficient airway-specific transgene expression. After the careful strain by strain titration of the dose and timing of doxycycline inhalation, a suite of preexisting transgenic mice can now be used to study airway biology specifically in cases where transient transgene expression is sufficient to induce a phenotype. PMID:23848320
Sumner, Dale R; Virdi, Amarjit S
2012-01-01
An exogenous supply of growth factors and bioreplaceable scaffolds may help bone regeneration. The aim of this study was to examine the effects of TGF-β1 and VEGF-A transgenes on the osteogenic potential of bone marrow stromal cells. Rat bone marrow stromal cells were transfected with plasmids encoding mouse TGF-β1 and/or VEGF-A complementary DNAs and cultured for up to 28 days. Furthermore, collagen scaffolds carrying combinations of the plasmids-transfected cells were implanted subcutaneously in rats. The transgenes increased alkaline phosphatase activity, enhanced mineralized nodule formation, and elevated osteogenic gene expressions in vitro. In vivo, messenger RNA expression of osteogenic genes such as BMPs and Runx2 elevated higher by the transgenes. The data indicate that exogenous TGF-β1 and VEGF-A acted synergistically and could induce osteoblastic differentiation of bone marrow stromal cells in both cell culture and an animal model. The results may provide valuable information to optimize protocols for transgene-and-cell-based tissue engineering. PMID:22962632
Lu, Xiao-Hong
2009-01-01
Basal ganglia neurodegenerative disorders, such as Parkinson's disease (PD) and Huntington's disease (HD), are characterized by not only spectrum of motor deficits, ranging form hypokinesia to hyperkinesia, but also emotional, cognitive, and psychiatric manifestations. The symptoms and pathogenic mechanism of these disorders should be viewed as dysfunctions of specific cortico-subcortical neurocircuits. Transgenic approaches using large genomic inserts, such as bacterial artificial chromosome (BAC)-mediated transgenesis, due to its capacity to propagate large-size genomic DNA and faithful production of endogenous-like gene expression pattern/lever, have provided an ideal basis for the generation of transgenic mice as model for basal ganglia neurodegenerative disorders, as well as the functional and structural analysis of neurocircuits. In this chapter, the basic concepts and practical approaches about application of BAC transgenic system are introduced. Existent major BAC transgenic mouse models for PD and HD are evaluated according to their construct, face, and predicative validity. Finally, considerations, possible solutions, and future perspectives of using BAC transgenic approach to study basal ganglia neurodegenerative disorders are discussed.
In Vivo Regulation of Hepatitis B Virus Replication by Peroxisome Proliferators†
Guidotti, Luca G.; Eggers, Carrie M.; Raney, Anneke K.; Chi, Susan Y.; Peters, Jeffrey M.; Gonzalez, Frank J.; McLachlan, Alan
1999-01-01
The role of the peroxisome proliferator-activated receptor α (PPARα) in regulating hepatitis B virus (HBV) transcription and replication in vivo was investigated in an HBV transgenic mouse model. Treatment of HBV transgenic mice with the peroxisome proliferators Wy-14,643 and clofibric acid resulted in a less than twofold increase in HBV transcription rates and steady-state levels of HBV RNAs in the livers of these mice. In male mice, this increase in transcription was associated with a 2- to 3-fold increase in replication intermediates, whereas in female mice it was associated with a 7- to 14-fold increase in replication intermediates. The observed increases in transcription and replication were dependent on PPARα. HBV transgenic mice lacking this nuclear hormone receptor showed similar levels of HBV transcripts and replication intermediates as untreated HBV transgenic mice expressing PPARα but failed to demonstrate alterations in either RNA or DNA synthesis in response to peroxisome proliferators. Therefore, it appears that very modest alterations in transcription can, under certain circumstances, result in relatively large increases in HBV replication in HBV transgenic mice. PMID:10559356
Pesticide exposure exacerbates alpha-synucleinopathy in an A53T transgenic mouse model.
Norris, Erin H; Uryu, Kunihiro; Leight, Susan; Giasson, Benoit I; Trojanowski, John Q; Lee, Virginia M-Y
2007-02-01
The factors initiating or contributing to the pathogenesis of Parkinson's disease and related neurodegenerative synucleinopathies are still largely unclear, but environmental factors such as pesticides have been implicated. In this study, A53T mutant human alpha-synuclein transgenic mice (M83), which develop alpha-synuclein neuropathology, were treated with the pesticides paraquat and maneb (either singly or together), and their effects were analyzed. Immunohistochemical and biochemical analyses showed that chronic treatment of M83 transgenic mice with both pesticides (but not with either pesticide alone) drastically increased neuronal alpha-synuclein pathology throughout the central nervous system including the hippocampus, cerebellum, and sensory and auditory cortices. alpha-Synuclein-associated mitochondrial degeneration was observed in M83 but not in wild-type alpha-synuclein transgenic mice. Because alpha-synuclein inclusions accumulated in pesticide-exposed M83 transgenic mice without a motor phenotype, we conclude that alpha-synuclein aggregate formation precedes disease onset. These studies support the notion that environmental factors causing nitrative damage are closely linked to mechanisms underlying the formation of alpha-synuclein pathologies and the onset of Parkinson's-like neurodegeneration.
Zhou, Yanrong; Lin, Yanli; Wu, Xiaojie; Xiong, Fuyin; Lv, Yuemeng; Zheng, Tao; Huang, Peitang; Chen, Hongxing
2012-02-01
Transgene expression for the mammary gland bioreactor aimed at producing recombinant proteins requires optimized expression vector construction. Previously we presented a hybrid gene locus strategy, which was originally tested with human lactoferrin (hLF) as target transgene, and an extremely high-level expression of rhLF ever been achieved as to 29.8 g/l in mice milk. Here to demonstrate the broad application of this strategy, another 38.4 kb mWAP-htPA hybrid gene locus was constructed, in which the 3-kb genomic coding sequence in the 24-kb mouse whey acidic protein (mWAP) gene locus was substituted by the 17.4-kb genomic coding sequence of human tissue plasminogen activator (htPA), exactly from the start codon to the end codon. Corresponding five transgenic mice lines were generated and the highest expression level of rhtPA in the milk attained as to 3.3 g/l. Our strategy will provide a universal way for the large-scale production of pharmaceutical proteins in the mammary gland of transgenic animals.
Pesticide Exposure Exacerbates α-Synucleinopathy in an A53T Transgenic Mouse Model
Norris, Erin H.; Uryu, Kunihiro; Leight, Susan; Giasson, Benoit I.; Trojanowski, John Q.; Lee, Virginia M.-Y.
2007-01-01
The factors initiating or contributing to the pathogenesis of Parkinson’s disease and related neurodegenerative synucleinopathies are still largely unclear, but environmental factors such as pesticides have been implicated. In this study, A53T mutant human α-synuclein transgenic mice (M83), which develop α-synuclein neuropathology, were treated with the pesticides paraquat and maneb (either singly or together), and their effects were analyzed. Immunohistochemical and biochemical analyses showed that chronic treatment of M83 transgenic mice with both pesticides (but not with either pesticide alone) drastically increased neuronal α-synuclein pathology throughout the central nervous system including the hippocampus, cerebellum, and sensory and auditory cortices. α-Synuclein-associated mitochondrial degeneration was observed in M83 but not in wild-type α-synuclein transgenic mice. Because α-synuclein inclusions accumulated in pesticide-exposed M83 transgenic mice without a motor phenotype, we conclude that α-synuclein aggregate formation precedes disease onset. These studies support the notion that environmental factors causing nitrative damage are closely linked to mechanisms underlying the formation of α-synuclein pathologies and the onset of Parkinson’s-like neurodegeneration. PMID:17255333
Dominant role of HPV16 E7 in anal carcinogenesis.
Thomas, Marie K; Pitot, Henry C; Liem, Amy; Lambert, Paul F
2011-12-20
Ninety percent of anal cancer is associated with human papilloma viruses (HPVs). Using our previously established HPV transgenic mouse model for anal cancer, we tested the role of the individual oncogenes E6 and E7. K14E6 and K14E7 transgenic mice were treated with dimethylbenz[a]anthracene (DMBA) to the anal canal and compared to matched nontransgenic and doubly transgenic K14E6/E7 mice. K14E7 and K14E6/E7 transgenic mice developed anal tumors (papillomas, atypias and carcinomas combined) at significantly higher rates (88% and 100%, respectively) than either K14E6 or NTG mice (18% and 19%, respectively). Likewise, K14E7 and K14E6/E7 transgenic mice developed frank cancer (carcinomas) at significantly higher rates (85% and 85%, respectively) than either K14E6 or NTG mice (18% and 10%, respectively). These findings indicate that E7 is the more potent oncogene in anal cancer caused by HPVs. Copyright © 2011 Elsevier Inc. All rights reserved.
Mouse brain magnetic resonance microscopy: Applications in Alzheimer disease.
Lin, Lan; Fu, Zhenrong; Xu, Xiaoting; Wu, Shuicai
2015-05-01
Over the past two decades, various Alzheimer's disease (AD) trangenetic mice models harboring genes with mutation known to cause familial AD have been created. Today, high-resolution magnetic resonance microscopy (MRM) technology is being widely used in the study of AD mouse models. It has greatly facilitated and advanced our knowledge of AD. In this review, most of the attention is paid to fundamental of MRM, the construction of standard mouse MRM brain template and atlas, the detection of amyloid plaques, following up on brain atrophy and the future applications of MRM in transgenic AD mice. It is believed that future testing of potential drugs in mouse models with MRM will greatly improve the predictability of drug effect in preclinical trials. © 2015 Wiley Periodicals, Inc.
Yuan, Ren; Kulkarni, Trupti; Wei, Fu; Shah, Girish V
2005-01-14
It was previously shown that calcitonin-like pituitary peptide (pit-CT) is synthesized and secreted by gonadotrophs, and pit-CT inhibits PRL gene transcription and lactotroph cell proliferation. Present studies examined long-term consequences of pit-CT overexpression on the functioning of mouse anterior pituitary (AP) gland. Targeted overexpression of pit-CT in gonadotrophs of mouse pituitaries was achieved by generating mice overexpressing bovine luteinizing hormone (LH)-alpha subunit promoter-pit-CT cDNA transgene. Transgenic (pit-CT+) mice displayed chronic but selective overexpression of pit-CT in gonadotrophs. The mice also displayed a dramatic decline in PRL gene expression as assessed by PRL mRNA abundance, PRL immunohistochemistry (IHC) and serum PRL levels. LH secretion in pit-CT+ mice was also reduced, without any change in FSH secretion. Reproductive abnormalities such as prolonged estrous cycles, reduced pregnancy rate, delivery of smaller litters, increased neonatal mortality and deficient lactation were also observed. Administration of PRL during early pregnancy significantly increased the pregnancy rate and neonatal survival of newborns. These results demonstrate that overexpression of pit-CT leads to chronic hypoprolactinemia and reproductive dysfunction in female mice, and reinforces the possibility that gonadotroph-derived pit-CT is an important paracrine regulator of lactotroph function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandenberg, P.; Khillan, J.S.; Prockop, D.J.
A minigene version of the human gene for type II procollagen (COL2AI) was prepared that lacked a large central region containing 12 of the 52 exons and therefore 291 of the 1523 codons of the gene. The construct was modeled after sporadic in-frame deletions of collagen genes that cause synthesis of shortened pro{alpha} chains that associate with normal pro{alpha} chains and thereby cause degradation of the shortened and normal pro{alpha} chains through a process called procollagen suicide. The gene construct was used to prepare five lines of transgenic mice expressing the minigene. A large proportion of the mice expressing themore » minigene developed a phenotype of a chondrodysplasia with dwarfism, short and thick limbs, a short snout, a cranial bulge, a cleft palate, and delayed mineralization of bone. A number of mice died shortly after birth. Microscopic examination of cartilage revealed decreased density and organization of collagen fibrils. In cultured chondrocytes from the transgenic mice, the minigene was expressed as shortened pro{alpha}1(II) chains that were disulfide-linked to normal mouse pro{alpha}1(II) chains. Therefore, the phenotype is probably explained by depletion of the endogenous mouse type II procollagen through the phenomenon of procollagen suicide.« less
Deeg, Christoph M; Hassan, Ebrahim; Mutz, Pascal; Rheinemann, Lara; Götz, Veronika; Magar, Linda; Schilling, Mirjam; Kallfass, Carsten; Nürnberger, Cindy; Soubies, Sébastien; Kochs, Georg; Haller, Otto; Schwemmle, Martin; Staeheli, Peter
2017-05-01
Zoonotic transmission of influenza A viruses can give rise to devastating pandemics, but currently it is impossible to predict the pandemic potential of circulating avian influenza viruses. Here, we describe a new mouse model suitable for such risk assessment, based on the observation that the innate restriction factor MxA represents an effective species barrier that must be overcome by zoonotic viruses. Our mouse lacks functional endogenous Mx genes but instead carries the human MX1 locus as a transgene. Such transgenic mice were largely resistant to highly pathogenic avian H5 and H7 influenza A viruses, but were almost as susceptible to infection with influenza viruses of human origin as nontransgenic littermates. Influenza A viruses that successfully established stable lineages in humans have acquired adaptive mutations which allow partial MxA escape. Accordingly, an engineered avian H7N7 influenza virus carrying a nucleoprotein with signature mutations typically found in human virus isolates was more virulent in transgenic mice than parental virus, demonstrating that a few amino acid changes in the viral target protein can mediate escape from MxA restriction in vivo. Similar mutations probably need to be acquired by emerging influenza A viruses before they can spread in the human population. © 2017 Deeg et al.
Avgoustidis, Dimitris; Nisyrios, Themistoklis; Nkenke, Emeka; Lijnen, Roger; Ragos, Vassilis; Perrea, Despina; Donta, Ismini; Vaena, Apostolia; Yapijakis, Christos; Vairaktaris, Eleftherios
2012-01-01
In an effort to assess the role of plasminogen activator inhibitor-1 (PAI-1) in oral squamous cancer development and progression, two different carcinogen treatment protocols were conducted. Protocol I included mice from a PAI-1 transgenic (Tg) breed (n=56) and their wild-type (WT) counterparts (n=56), divided into one control group and two main experimental groups, treated with 7,12-dimethylbenz[a]anthracene (DMBA) for 8 and 16 weeks, respectively. Protocol II included the same number and types of animals and groups, which were similarly treated with 4-Nitroquinoline 1-oxide (4-NQO) in drinking water. Two drugs that affect plasma PAI-1 levels, enalapril and pravastatin, were administered to certain subgroups of animals in both protocols. None of the animals developed macroscopically-visible oral cancer lesions. Eleven animals under Protocol I and 52 animals under Protocol II died. Skin lesions were noted only in DMBA-treated animals (n=9). Almost all animals administered with 4-NQO developed alopecia and lost weight, while two of them developed stomach tumours, and one female mouse developed a large ovarian cyst. Transgenic mice may respond differently when used in well-established carcinogen models and oral carcinogenesis is hard to achieve in these rodents.
Magar, Linda; Schilling, Mirjam; Kallfass, Carsten; Nürnberger, Cindy; Soubies, Sébastien; Kochs, Georg; Schwemmle, Martin
2017-01-01
Zoonotic transmission of influenza A viruses can give rise to devastating pandemics, but currently it is impossible to predict the pandemic potential of circulating avian influenza viruses. Here, we describe a new mouse model suitable for such risk assessment, based on the observation that the innate restriction factor MxA represents an effective species barrier that must be overcome by zoonotic viruses. Our mouse lacks functional endogenous Mx genes but instead carries the human MX1 locus as a transgene. Such transgenic mice were largely resistant to highly pathogenic avian H5 and H7 influenza A viruses, but were almost as susceptible to infection with influenza viruses of human origin as nontransgenic littermates. Influenza A viruses that successfully established stable lineages in humans have acquired adaptive mutations which allow partial MxA escape. Accordingly, an engineered avian H7N7 influenza virus carrying a nucleoprotein with signature mutations typically found in human virus isolates was more virulent in transgenic mice than parental virus, demonstrating that a few amino acid changes in the viral target protein can mediate escape from MxA restriction in vivo. Similar mutations probably need to be acquired by emerging influenza A viruses before they can spread in the human population. PMID:28396461
Outstanding animal studies in allergy I. From asthma to food allergy and anaphylaxis.
Jensen-Jarolim, Erika; Pali-Schöll, Isabella; Roth-Walter, Franziska
2017-06-01
Animal models published within the past 18 months on asthma, food allergy and anaphylaxis, all conditions of rising public health concern, were reviewed. While domestic animals spontaneously develop asthma, food allergy and anaphylaxis, in animal models, divergent sensitization and challenge routes, dosages, intervals and antigens are used to induce asthmatic, food allergic or anaphylactic phenotypes. This must be considered in the interpretation of results. Instead of model antigens, gradually relevant allergens such as house dust mite in asthma, and food allergens like peanut, apple and peach in food allergy research were used. Novel engineered mouse models such as a mouse with a T-cell receptor for house dust mite allergen Der p 1, or with transgenic human hFcγR genes, facilitated the investigation of single molecules of interest. Whole-body plethysmography has become a state-of-the-art in-vivo readout in asthma research. In food allergy and anaphylaxis research, novel techniques were developed allowing real-time monitoring of in-vivo effects following allergen challenge. Networks to share tissues were established as an effort to reduce animal experiments in allergy which cannot be replaced by in-vitro measures. Natural and artificial animal models were used to explore the pathophysiology of asthma, food allergy and anaphylaxis and to improve prophylactic and therapeutic measures. Especially the novel mouse models mimicking molecular aspects of the complex immune network in asthma, food allergy and anaphylaxis will facilitate proof-of-concept studies under controlled conditions.
Outstanding animal studies in allergy I. From asthma to food allergy and anaphylaxis
Jensen-Jarolim, Erika; Pali-Schöll, Isabella; Roth-Walter, Franziska
2017-01-01
Purpose of review Animal models published within the past 18 months on asthma, food allergy and anaphylaxis, all conditions of rising public health concern, were reviewed. Recent findings While domestic animals spontaneously develop asthma, food allergy and anaphylaxis, in animal models, divergent sensitization and challenge routes, dosages, intervals and antigens are used to induce asthmatic, food allergic or anaphylactic phenotypes. This must be considered in the interpretation of results. Instead of model antigens, gradually relevant allergens such as house dust mite in asthma, and food allergens like peanut, apple and peach in food allergy research were used. Novel engineered mouse models such as a mouse with a T-cell receptor for house dust mite allergen Der p 1, or with transgenic human hFcγR genes, facilitated the investigation of single molecules of interest. Whole-body plethysmography has become a state-of-the-art in-vivo readout in asthma research. In food allergy and anaphylaxis research, novel techniques were developed allowing real-time monitoring of in-vivo effects following allergen challenge. Networks to share tissues were established as an effort to reduce animal experiments in allergy which cannot be replaced by in-vitro measures. Summary Natural and artificial animal models were used to explore the pathophysiology of asthma, food allergy and anaphylaxis and to improve prophylactic and therapeutic measures. Especially the novel mouse models mimicking molecular aspects of the complex immune network in asthma, food allergy and anaphylaxis will facilitate proof-of-concept studies under controlled conditions. PMID:28346234
Thin and open vessel windows for intra-vital fluorescence imaging of murine cochlear blood flow
Shi, Xiaorui; Zhang, Fei; Urdang, Zachary; Dai, Min; Neng, Lingling; Zhang, Jinhui; Chen, Songlin; Ramamoorthy, Sripriya; Nuttall, Alfred L.
2014-01-01
Normal microvessel structure and function in the cochlea is essential for maintaining the ionic and metabolic homeostasis required for hearing function. Abnormal cochlear microcirculation has long been considered an etiologic factor in hearing disorders. A better understanding of cochlear blood flow (CoBF) will enable more effective amelioration of hearing disorders that result from aberrant blood flow. However, establishing the direct relationship between CoBF and other cellular events in the lateral wall and response to physio-pathological stress remains a challenge due to the lack of feasible interrogation methods and difficulty in accessing the inner ear. Here we report on new methods for studying the CoBF in a mouse model using a thin or open vessel-window in combination with fluorescence intra-vital microscopy (IVM). An open vessel-window enables investigation of vascular cell biology and blood flow permeability, including pericyte (PC) contractility, bone marrow cell migration, and endothelial barrier leakage, in wild type and fluorescent protein-labeled transgenic mouse models with high spatial and temporal resolution. Alternatively, the thin vessel-window method minimizes disruption of the homeostatic balance in the lateral wall and enables study CoBF under relatively intact physiological conditions. A thin vessel-window method can also be used for time-based studies of physiological and pathological processes. Although the small size of the mouse cochlea makes surgery difficult, the methods are sufficiently developed for studying the structural and functional changes in CoBF under normal and pathological conditions. PMID:24780131
Trehalose Improves Cognition in the Transgenic Tg2576 Mouse Model of Alzheimer's Disease.
Portbury, Stuart D; Hare, Dominic J; Sgambelloni, Charlotte; Perronnes, Kali; Portbury, Ashley J; Finkelstein, David I; Adlard, Paul A
2017-01-01
This study assessed the therapeutic utility of the autophagy enhancing stable disaccharide trehalose in the Tg2576 transgenic mouse model of Alzheimer's disease (AD) via an oral gavage of a 2% trehalose solution for 31 days. Furthermore, as AD is a neurodegenerative condition in which the transition metals, iron, copper, and zinc, are understood to be intricately involved in the cellular cascades leading to the defining pathologies of the disease, we sought to determine any parallel impact of trehalose treatment on metal levels. Trehalose treatment significantly improved performance in the Morris water maze, consistent with enhanced learning and memory. The improvement was not associated with significant modulation of full length amyloid-β protein precursor or other amyloid-β fragments. Trehalose had no effect on autophagy as assessed by western blot of the LC3-1 to LC3-2 protein ratio, and no alteration in biometals that might account for the improved cognition was observed. Biochemical analysis revealed a significant increase in the hippocampus of both synaptophysin, a synaptic vesicle protein and surrogate marker of synapses, and doublecortin, a reliable marker of neurogenesis. The growth factor progranulin was also significantly increased in the hippocampus and cortex with trehalose treatment. This study suggests that trehalose might invoke a suite of neuroprotective mechanisms that can contribute to improved cognitive performance in AD that are independent of more classical trehalose-mediated pathways, such as Aβ reduction and activation of autophagy. Thus, trehalose may have utility as a potential AD therapeutic, with conceivable implications for the treatment of other neurodegenerative disorders.
Applications of Transgenics in Studies of Bone Sialoprotein
Zhang, Jin; Tu, Qisheng; Chen, Jake
2010-01-01
Bone sialoprotein (BSP) is a major non-collagenous protein in mineralizing connective tissues such as dentin, cementum and calcified cartilage tissues. As a member of the SIBLING (Small Integrin-Binding Ligand, N-linked Glycoprotein) gene family of glycoproteins, BSP is involved in regulating hydroxyapatite crystal formation in bones and teeth, and has long been used as a marker gene for osteogenic differentiation. In the most recent decade, new discoveries in BSP gene expression and regulation, bone remodeling, bone metastasis, and bone tissue engineering have been achieved with the help of transgenic mice. In this review, we discuss these new discoveries obtained from the literatures and from our own laboratory, which were derived from the use of transgenic mouse mutants related to BSP gene or its promoter activity. PMID:19326395
Enamelin Is Critical for Ameloblast Integrity and Enamel Ultrastructure Formation
Hu, Jan C.-C.; Hu, Yuanyuan; Lu, Yuhe; Smith, Charles E.; Lertlam, Rangsiyakorn; Wright, John Timothy; Suggs, Cynthia; McKee, Marc D.; Beniash, Elia; Kabir, M. Enamul; Simmer, James P.
2014-01-01
Mutations in the human enamelin gene cause autosomal dominant hypoplastic amelogenesis imperfecta in which the affected enamel is thin or absent. Study of enamelin knockout NLS-lacZ knockin mice revealed that mineralization along the distal membrane of ameloblast is deficient, resulting in no true enamel formation. To determine the function of enamelin during enamel formation, we characterized the developing teeth of the Enam−/− mice, generated amelogenin-driven enamelin transgenic mouse models, and then introduced enamelin transgenes into the Enam−/− mice to rescue enamel defects. Mice at specific stages of development were subjected to morphologic and structural analysis using β-galactosidase staining, immunohistochemistry, and transmission and scanning electron microscopy. Enamelin expression was ameloblast-specific. In the absence of enamelin, ameloblasts pathology became evident at the onset of the secretory stage. Although the aggregated ameloblasts generated matrix-containing amelogenin, they were not able to create a well-defined enamel space or produce normal enamel crystals. When enamelin is present at half of the normal quantity, enamel was thinner with enamel rods not as tightly arranged as in wild type suggesting that a specific quantity of enamelin is critical for normal enamel formation. Enamelin dosage effect was further demonstrated in transgenic mouse lines over expressing enamelin. Introducing enamelin transgene at various expression levels into the Enam−/− background did not fully recover enamel formation while a medium expresser in the Enam+/− background did. Too much or too little enamelin abolishes the production of enamel crystals and prism structure. Enamelin is essential for ameloblast integrity and enamel formation. PMID:24603688
Takahashi, Yuki; Vikman, Elin; Nishikawa, Makiya; Ando, Mitsuru; Watanabe, Yoshihiko; Takakura, Yoshinobu
2010-09-01
The in vivo half-life of interferons (IFNs) is very short, and its extension would produce a better therapeutic outcome in IFN-based therapy. Delivery of IFN genes is one solution for providing a sustained supply. IFNs have a variety of functions, including the suppression of transgene expression, through interaction with IFN receptors (IFNRs). This suppression could prevent IFNs from being expressed from vectors delivered. Silencing the expression of IFNAR and IFNGR, the receptors for type I and II IFNs, respectively, in cells expressing IFNs may prolong transgene expression of IFNs. Mouse melanoma B16-BL6 cells or mouse liver were selected as a site expressing IFNs (not a target for IFN gene therapy) and IFN-expressing plasmid DNA was delivered with or without small interfering RNA (siRNA) targeting IFNRs. Transfection of B16-BL6 cells with siRNA targeting IFNAR1 subunit (IFNAR1) resulted in the reduced expression of IFNAR on the cell surface. This silencing significantly increased the IFN-beta production in cells that were transfected with IFN-beta-expressing plasmid DNA. Similar results were obtained with the combination of IFN-gamma and IFNGR. Co-injection of IFN-beta-expressing plasmid DNA with siRNA targeting IFNAR1 into mice resulted in sustained plasma concentration of IFN-beta. These results provide experimental evidence that the RNAi-mediated silencing of IFNRs in cells expressing IFN, such as hepatocytes, is an effective approach for improving transgene expression of IFNs when their therapeutic target comprises cells other than those expressing IFNs.
2014-01-01
Background BID functions as a bridge molecule between death-receptor and mitochondrial related apoptotic pathways to amplify apoptotic signaling. Our previous studies have demonstrated a substantial increase in BID expression in primary normal thyroid epithelia cells treated with inflammatory cytokines, including the combination of IFNγ and IL-1β or IFNγ and TNFα. The aim of this study was to determine whether an increase in BID expression in thyroid can induce autoimmune thyroiditis. Methods A transgenic mouse line that expresses human BID in thyroid cells was established by fusing a mouse thyroglobulin (Tg) promoter upstream of human BID (Tg-BID). We tested whether the increased expression of pro-apoptotic BID in thyroid would induce autoimmune thyroiditis, both in the presence and absence of 0.3% iodine water. Results Our data show that Tg-BID mice in a CBA/J (H-2 k) background do not spontaneously develop autoimmune thyroiditis for over a year. However, upon ingestion of iodine in the drinking water, autoimmune thyroiditis does develop in Tg-BID transgenic mice, as shown by a significant increase in anti-Tg antibody and mononuclear cell infiltration in the thyroid glands in 30% of mice tested. Serum T4 levels, however, were similar between iodine-treated Tg-BID transgenic mice and the wild type mice. Conclusions Our data demonstrate that increased thyroid expression of BID facilitates the development of autoimmune thyroiditis induced by iodine uptake. However, the overexpression of BID itself is not sufficient to initiate thyroiditis in CBA/J (H-2 k) mice. PMID:24957380
Tsai-Teng, Tzeng; Chin-Chu, Chen; Li-Ya, Lee; Wan-Ping, Chen; Chung-Kuang, Lu; Chien-Chang, Shen; Chi-Ying, Huang F; Chien-Chih, Chen; Shiao, Young-Ji
2016-06-27
The fruiting body of Hericium erinaceus has been demonstrated to possess anti-dementia activity in mouse model of Alzheimer's disease and people with mild cognitive impairment. However, the therapeutic potential of Hericium erinaceus mycelia on Alzheimer's disease remains unclear. In this study, the effects of erinacine A-enriched Hericium erinaceus mycelia (HE-My) on the pathological changes in APPswe/PS1dE9 transgenic mouse model of Alzheimer's disease are studied. After a 30 day oral administration to 5 month-old female APPswe/PS1dE9 transgenic mice, we found that HE-My and its ethanol extracts (HE-Et) attenuated cerebral Aβ plaque burden. It's worth noting that the attenuated portion of a plaque is the non-compact structure. The level of insulin-degrading enzyme was elevated by both HE-My and HE-Et in cerebral cortex. On the other hand, the number of plaque-activated microglia and astrocytes in cerebral cortex and hippocampus were diminished, the ratio of nerve growth factor (NGF) to NGF precursor (proNGF) was increased and hippocampal neurogenesis was promoted after these administrations. All the mentioned benefits of these administrations may therefore improve the declined activity of daily living skill in APPswe/PS1dE9 transgenic mice. These results highlight the therapeutic potential of HE-My and HE-Et on Alzheimer's disease. Therefore, the effective components of HE-My and HE-Et are worth to be developed to become a therapeutic drug for Alzheimer's disease.
Impaired Embryonic Development in Mice Overexpressing the RNA-Binding Protein TIAR
Kharraz, Yacine; Salmand, Pierre-Adrien; Camus, Anne; Auriol, Jacques; Gueydan, Cyril; Kruys, Véronique; Morello, Dominique
2010-01-01
Background TIA-1-related (TIAR) protein is a shuttling RNA-binding protein involved in several steps of RNA metabolism. While in the nucleus TIAR participates to alternative splicing events, in the cytoplasm TIAR acts as a translational repressor on specific transcripts such as those containing AU-Rich Elements (AREs). Due to its ability to assemble abortive pre-initiation complexes coalescing into cytoplasmic granules called stress granules, TIAR is also involved in the general translational arrest observed in cells exposed to environmental stress. However, the in vivo role of this protein has not been studied so far mainly due to severe embryonic lethality upon tiar invalidation. Methodology/Principal Findings To examine potential TIAR tissue-specificity in various cellular contexts, either embryonic or adult, we constructed a TIAR transgenic allele (loxPGFPloxPTIAR) allowing the conditional expression of TIAR protein upon Cre recombinase activity. Here, we report the role of TIAR during mouse embryogenesis. We observed that early TIAR overexpression led to low transgene transmission associated with embryonic lethality starting at early post-implantation stages. Interestingly, while pre-implantation steps evolved correctly in utero, in vitro cultured embryos were very sensitive to culture medium. Control and transgenic embryos developed equally well in the G2 medium, whereas culture in M16 medium led to the phosphorylation of eIF2α that accumulated in cytoplasmic granules precluding transgenic blastocyst hatching. Our results thus reveal a differential TIAR-mediated embryonic response following artificial or natural growth environment. Conclusions/Significance This study reports the importance of the tightly balanced expression of the RNA-binding protein TIAR for normal embryonic development, thereby emphasizing the role of post-transcriptional regulations in early embryonic programming. PMID:20596534
Hormone Replacement Therapy, Iron, and Breast Cancer
2005-10-01
tested in cell culture model systems and in an iron loaded transgenic mouse model. Since iron slowly accumulates due to the mutation of the HFE gene ...murine HFE gene is structurally similar to the human gene . Four different HFE gene disruptions have been reported in the mouse: an exon 4 knockout...Ex3 F Hfe Ex 5 R Figure 1. HFE gene knockout. Huang, X., DAMD-17-03-1-0717 5 mice provided by Dr. Nancy Andrews of the Howard Hughes Medical
Developing a Shared Research Facility.
ERIC Educational Resources Information Center
Goodman, Ira S.; Newcomb, Elizabeth W.
1990-01-01
Planning, creation, and current operation of the Transgenic Mouse Research Facility at the New York University Kaplan Cancer Center are discussed. The university considered need, space, funding, supervision, and marketing and followed a logical and structured management process embodying both scientific and administrative input. (Author/MSE)
Dehydration Preparation of Mouse Sperm for Vitrification and Rapid Laser Warming.
Paredes, E; Mazur, P
Mice are fundamental models of study due to their ease of breeding, manipulation, and the well-studied genome. There has been extensive research focused on the cryopreservation of mouse germaplasm, as a way to help maintain the different transgenic mouse breeds. The first protocols for mouse sperm were developed in the 90's using slow cooling and a mixture of raffinose and glycerol. Since then, the rate of success reported remains highly variable. The Aim of this work is to study factors that are key for developing vitrification protocols for ultra-rapid laser warming of mouse sperm. Our results show that due to the exquisite sensitivity of sperm cells to osmotic excursions, our target levels of dehydration (~85% water content) cannot be achieved without causing a significant decrease in sperm motility and membrane fusion. It seems likely that mouse sperm vitrification is going to be difficult to develop due to the exquisite sensitivity of mouse sperm cells to handling and dehydration.
Valverde, Paloma; Zhang, Jin; Fix, Amanda; Zhu, Ji; Ma, Wenli; Tu, Qisheng; Chen, Jake
2008-11-01
The purpose of this study was to determine the effects of bone sialoprotein (BSP) overexpression in bone metabolism in vivo by using a homozygous transgenic mouse line that constitutively overexpresses mouse BSP cDNA driven by the cytomegalovirus (CMV) promoter. CMV-BSP transgenic (TG) mice and wildtype mice were weighed, and their length, BMD, and trabecular bone volume were measured. Serum levels of RANKL, osteocalcin, osteoprotegerin (OPG), TRACP5b, and PTH were determined. Bone histomorphometry, von Kossa staining, RT-PCR analysis, Western blot, MTS assay, in vitro mineralization assay, and TRACP staining were also performed to delineate phenotypes of this transgenic mouse line. Compared with wildtype mice, adult TG mice exhibit mild dwarfism, lower values of BMD, and lower trabecular bone volume. TG mice serum contained increased calcium levels and decreased PTH levels, whereas the levels of phosphorus and magnesium were within normal limits. TG mice serum also exhibited lower levels of osteoblast differentiation markers and higher levels of markers, indicating osteoclastic activity and bone resorption. H&E staining, TRACP staining, and bone histomorphometry showed that adult TG bones were thinner and the number of giant osteoclasts in TG mice was higher, whereas there were no significant alterations in osteoblast numbers between TG mice and WT mice. Furthermore, the vertical length of the hypertrophic zone in TG mice was slightly enlarged. Moreover, ex vivo experiments indicated that overexpression of BSP decreased osteoblast population and increased osteoclastic activity. Partly because of its effects in enhancing osteoclastic activity and decreasing osteoblast population, BSP overexpression leads to an uncoupling of bone formation and resorption, which in turn results in osteopenia and mild dwarfism in mice. These findings are expected to help the development of therapies to metabolic bone diseases characterized by high serum level of BSP.
Tian, Na; Leffler, Daniel A; Kelly, Ciaran P; Hansen, Joshua; Marietta, Eric V; Murray, Joseph A; Schuppan, Detlef; Helmerhorst, Eva J
2015-12-01
Celiac disease (CD) is an inflammatory disorder triggered by ingested gluten, causing immune-mediated damage to the small-intestinal mucosa. Gluten proteins are strikingly similar in amino acid composition and sequence to proline-rich proteins (PRPs) in human saliva. On the basis of this feature and their shared destination in the gastrointestinal tract, we hypothesized that salivary PRPs may modulate gluten-mediated immune responses in CD. Parotid salivary secretions were collected from CD patients, refractory CD patients, non-CD patients with functional gastrointestinal complaints, and healthy controls. Structural similarities of PRPs with gluten were probed with anti-gliadin antibodies. Immune responses to PRPs were investigated toward CD patient-derived peripheral blood mononuclear cells and in a humanized transgenic HLA-DQ2/DQ8 mouse model for CD. Anti-gliadin antibodies weakly cross-reacted with the abundant salivary amylase but not with PRPs. Likewise, the R5 antibody, recognizing potential antigenic gluten epitopes, showed negligible reactivity to salivary proteins from all groups. Inflammatory responses in peripheral blood mononuclear cells were provoked by gliadins whereas responses to PRPs were similar to control levels, and PRPs did not compete with gliadins in immune stimulation. In vivo, PRP peptides were well tolerated and nonimmunogenic in the transgenic HLA-DQ2/DQ8 mouse model. Collectively, although structurally similar to dietary gluten, salivary PRPs were nonimmunogenic in CD patients and in a transgenic HLA-DQ2/DQ8 mouse model for CD. It is possible that salivary PRPs play a role in tolerance induction to gluten early in life. Deciphering the structural basis for the lack of immunogenicity of salivary PRPs may further our understanding of the toxicity of gluten. Copyright © 2015 the American Physiological Society.
Raymond, Gregory J.; Race, Brent; Hollister, Jason R.; Offerdahl, Danielle K.; Moore, Roger A.; Kodali, Ravindra; Raymond, Lynne D.; Hughson, Andrew G.; Rosenke, Rebecca; Long, Dan; Dorward, David W.
2012-01-01
Mammalian prions are thought to consist of misfolded aggregates (protease-resistant isoform of the prion protein [PrPres]) of the cellular prion protein (PrPC). Transmissible spongiform encephalopathy (TSE) can be induced in animals inoculated with recombinant PrP (rPrP) amyloid fibrils lacking mammalian posttranslational modifications, but this induction is inefficient in hamsters or transgenic mice overexpressing glycosylphosphatidylinositol (GPI)-anchored PrPC. Here we show that TSE can be initiated by inoculation of misfolded rPrP into mice that express wild-type (wt) levels of PrPC and that synthetic prion strain propagation and selection can be affected by GPI anchoring of the host's PrPC. To create prions de novo, we fibrillized mouse rPrP in the absence of molecular cofactors, generating fibrils with a PrPres-like protease-resistant banding profile. These fibrils induced the formation of PrPres deposits in transgenic mice coexpressing wt and GPI-anchorless PrPC (wt/GPI−) at a combined level comparable to that of PrPC expression in wt mice. Secondary passage into mice expressing wt, GPI−, or wt plus GPI− PrPC induced TSE disease with novel clinical, histopathological, and biochemical phenotypes. Contrary to laboratory-adapted mouse scrapie strains, the synthetic prion agents exhibited a preference for conversion of GPI− PrPC and, in one case, caused disease only in GPI− mice. Our data show that novel TSE agents can be generated de novo solely from purified mouse rPrP after amplification in mice coexpressing normal levels of wt and anchorless PrPC. These observations provide insight into the minimal elements required to create prions in vitro and suggest that the PrPC GPI anchor can modulate the propagation of synthetic TSE strains. PMID:22915801
Yamamoto, Kurumi; Ishimaru, Yoshiro; Ohmoto, Makoto; Matsumoto, Ichiro; Asakura, Tomiko; Abe, Keiko
2011-01-01
Polycystic kidney disease 1-like 3 (Pkd1l3) is expressed specifically in sour-sensing type III taste cells that have synaptic contacts with afferent nerve fibers in circumvallate and foliate papillae located in the posterior region of the tongue, though not in fungiform papillae or the palate. To visualize the gustatory neural pathways that originate from type III taste cells in circumvallate and foliate papillae, we established transgenic mouse lines that express the transneuronal tracer wheat germ agglutinin (WGA) under the control of the mouse Pkd1l3 gene promoter/enhancer. The WGA transgene was accurately expressed in Pkd1l3-expressing type III taste cells in circumvallate and foliate papillae. Punctate WGA protein signals appeared to be detected specifically in type III taste cells but not in other types of taste cells. WGA protein was transferred primarily to a subset of neurons located in close proximity to the glossopharyngeal nerve bundles in the nodose/petrosal ganglion. WGA signals were also observed in a small population of neurons in the geniculate ganglion. This result demonstrates the anatomical connection between taste receptor cells in the foliate papillae and the chorda tympani nerves. WGA protein was further conveyed to neurons in a rostro-central subdivision of the nucleus of the solitary tract. These findings demonstrate that the approximately 10 kb 5’-flanking region of the mouse Pkd1l3 gene functions as a type III taste cell-specific promoter/enhancer. In addition, experiments using the pkd1l3-WGA transgenic mice reveal a sour gustatory pathway that originates from taste receptor cells in the posterior region of the tongue. PMID:21883212
Ay, Muhammet; Luo, Jie; Langley, Monica; Jin, Huajun; Anantharam, Vellareddy; Kanthasamy, Arthi; Kanthasamy, Anumantha G
2017-06-01
Quercetin, one of the major flavonoids in plants, has been recently reported to have neuroprotective effects against neurodegenerative processes. However, since the molecular signaling mechanisms governing these effects are not well clarified, we evaluated quercetin's effect on the neuroprotective signaling events in dopaminergic neuronal models and further tested its efficacy in the MitoPark transgenic mouse model of Parkinson's disease (PD). Western blot analysis revealed that quercetin significantly induced the activation of two major cell survival kinases, protein kinase D1 (PKD1) and Akt in MN9D dopaminergic neuronal cells. Furthermore, pharmacological inhibition or siRNA knockdown of PKD1 blocked the activation of Akt, suggesting that PKD1 acts as an upstream regulator of Akt in quercetin-mediated neuroprotective signaling. Quercetin also enhanced cAMP response-element binding protein phosphorylation and expression of the cAMP response-element binding protein target gene brain-derived neurotrophic factor. Results from qRT-PCR, Western blot analysis, mtDNA content analysis, and MitoTracker assay experiments revealed that quercetin augmented mitochondrial biogenesis. Quercetin also increased mitochondrial bioenergetics capacity and protected MN9D cells against 6-hydroxydopamine-induced neurotoxicity. To further evaluate the neuroprotective efficacy of quercetin against the mitochondrial dysfunction underlying PD, we used the progressive dopaminergic neurodegenerative MitoPark transgenic mouse model of PD. Oral administration of quercetin significantly reversed behavioral deficits, striatal dopamine depletion, and TH neuronal cell loss in MitoPark mice. Together, our findings demonstrate that quercetin activates the PKD1-Akt cell survival signaling axis and suggest that further exploration of quercetin as a promising neuroprotective agent for treating PD may offer clinical benefits. © 2017 International Society for Neurochemistry.
Duarte-Silva, S; Silva-Fernandes, A; Neves-Carvalho, A; Soares-Cunha, C; Teixeira-Castro, A; Maciel, P
2016-01-28
A major pathological hallmark in several neurodegenerative disorders, like polyglutamine disorders (polyQ), including Machado-Joseph disease (MJD), is the formation of protein aggregates. MJD is caused by a CAG repeat expansion in the ATXN3 gene, resulting in an abnormal protein, which is prone to misfolding and forms cytoplasmic and nuclear aggregates within neurons, ultimately inducing neurodegeneration. Treatment of proteinopathies with drugs that up-regulate autophagy has shown promising results in models of polyQ diseases. Temsirolimus (CCI-779) inhibits the mammalian target of rapamycin (m-TOR), while lithium chloride (LiCl) acts by inhibiting inositol monophosphatase, both being able to induce autophagy. We have previously shown that chronic treatment with LiCl (10.4 mg/kg) had limited effects in a transgenic MJD mouse model. Also, others have shown that CCI-779 had mild positive effects in a different mouse model of the disease. It has been suggested that the combination of mTOR-dependent and -independent autophagy inducers could be a more effective therapeutic approach. To further explore this avenue toward therapy, we treated CMVMJD135 transgenic mice with a conjugation of CCI-779 and LiCl, both at concentrations known to induce autophagy and not to be toxic. Surprisingly, this combined treatment proved to be deleterious to both wild-type (wt) and transgenic animals, failing to rescue their neurological symptoms and actually exerting neurotoxic effects. These results highlight the possible dangers of manipulating autophagy in the nervous system and suggest that a better understanding of the potential disruption in the autophagy pathway in MJD is required before successful long-term autophagy modulating therapies can be developed. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Zhou, Xiaolai; Sun, Lirong; Brady, Owen Adam; Murphy, Kira A; Hu, Fenghua
2017-01-26
Mutations resulting in haploinsufficiency of progranulin (PGRN) cause frontotemporal lobar degeneration with TDP-43-positive inclusions (FTLD-TDP), a devastating neurodegenerative disease. Accumulating evidence suggest a crucial role of progranulin in maintaining proper lysosomal function during aging. TMEM106B has been identified as a risk factor for frontotemporal lobar degeneration with progranulin mutations and elevated mRNA and protein levels of TMEM106B are associated with increased risk for frontotemporal lobar degeneration. Increased levels of TMEM106B alter lysosomal morphology and interfere with lysosomal degradation. However, how progranulin and TMEM106B interact to regulate lysosomal function and frontotemporal lobar degeneration (FTLD) disease progression is still unclear. Here we report that progranulin deficiency leads to increased TMEM106B protein levels in the mouse cortex with aging. To mimic elevated levels of TMEM106B in frontotemporal lobar degeneration (FTLD) cases, we generated transgenic mice expressing TMEM106B under the neuronal specific promoter, CamKII. Surprisingly, we found that the total protein levels of TMEM106B are not altered despite the expression of the TMEM106B transgene at mRNA and protein levels, suggesting a tight regulation of TMEM106B protein levels in the mouse brain. However, progranulin deficiency results in accumulation of TMEM106B protein from the transgene expression during aging, which is accompanied by exaggerated lysosomal abnormalities and increased lipofuscin accumulation. In summary, our mouse model nicely recapitulates the interaction between progranulin and TMEM106B in human patients and supports a critical role of lysosomal dysfunction in the frontotemporal lobar degeneration (FTLD) disease progression.
Camargo, F D; Huey-Louie, D A; Finn, A V; Sassani, A B; Cozen, A E; Moriwaki, H; Schneider, D B; Agah, R; Dichek, D A
2000-11-01
The utility of adenoviral vectors is limited by immune responses to adenoviral antigens. We sought to develop immune-competent mice in which the immune response to adenoviral antigens was selectively absent. To do so, we generated mice that were transgenic for a replication-defective vector. Adenoviral antigens might be seen as self-antigens by these mice, and the mice could exhibit immunologic tolerance after postnatal exposure to adenoviral vectors. In addition, characterization of these mice could reveal potential consequences of germline transmission of an adenoviral vector, as might occur in a gene therapy trial. Injection of a "null" (not containing a transgene) E1, E3-deleted vector genome into mouse zygotes yielded five founders that were capable of transmitting the vector genome. Among offspring of these mice, transgenic pups were significantly underrepresented: 108 of 255 pups (42%) were transgenic (P<0.02 versus expected frequency of 50%). Postnatal transgenic mice, however, had no apparent abnormalities. Persistence of an adenoviral vector after intravenous injection was equivalent in livers of transgenic mice and their nontransgenic littermates. Transgenic and nontransgenic mice also had equivalent humoral and cellular immune responses to adenoviral vector injection. Mice that are transgenic for an E1, E3-deleted adenoviral genome can be easily generated; however, they are not tolerant of adenovirus. Moreover, germline transmission of an adenoviral vector genome does not prevent generation of a robust immune response after exposure to adenoviral antigens.
DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice.
Wang, Degui; Yu, Tianyu; Liu, Yongqiang; Yan, Jun; Guo, Yingli; Jing, Yuhong; Yang, Xuguang; Song, Yanfeng; Tian, Yingxia
2016-12-02
Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. Copyright © 2016 Elsevier Inc. All rights reserved.
Vaughan, Ashley M; Mikolajczak, Sebastian A; Camargo, Nelly; Lakshmanan, Viswanathan; Kennedy, Mark; Lindner, Scott E; Miller, Jessica L; Hume, Jen C C; Kappe, Stefan H I
2012-12-01
Plasmodium falciparum is the pathogenic agent of the most lethal of human malarias. Transgenic P. falciparum parasites expressing luciferase have been created to study drug interventions of both asexual and sexual blood stages but luciferase-expressing mosquito stage and liver stage parasites have not been created which has prevented the easy quantification of mosquito stage development (e.g. for transmission blocking interventions) and liver stage development (for interventions that prevent infection). To overcome this obstacle, we have created a transgenic P. falciparum NF54 parasite that expresses a GFP-luciferase transgene throughout the life cycle. Luciferase expression is robust and measurable at all life cycle stages, including midgut oocyst, salivary gland sporozoites and liver stages, where in vivo development is easily measurable using humanized mouse infections in conjunction with an in vivo imaging system. This parasite reporter strain will accelerate testing of interventions against pre-erythrocytic life cycle stages. Copyright © 2012 Elsevier B.V. All rights reserved.
Excessive amounts of mu heavy chain block B-cell development.
Zhu, Lingqiao; Chang, Cheong-Hee; Dunnick, Wesley
2011-09-01
Antigen-independent B-cell development occurs in several stages that depend on the expression of Ig heavy and light chain. We identified a line of mice that lacked mature B cells in the spleen. This mouse line carried approximately 11 copies of a transgene of the murine heavy chain constant region locus, and B-lineage cells expressed excessive amounts of the intracellular μ heavy chain. B-cell development failed in the bone marrow at the pro/pre B-cell transition, and examination of other lines with various copy numbers of the same transgene suggested that deficiencies in B-cell development increased with increased transgene copy number. Expression of a transgenic (Tg) light chain along with the Tg μ heavy chain led to minimal rescue of B-cell development in the bone marrow and B cells in the spleen. There are several potential mechanisms for the death of pro/pre B cells as a consequence of excess heavy chain expression.
Beck, Inken M; Sedlacek, Radislav
2015-02-01
The 12th Transgenic Technology meeting was held in Edinburgh on 6th-8th October 2014 and interest to participate in the meeting overcame all expectations. The TT2014 was the largest meeting ever with more than 540 scientists, technicians, and students from all over the world. The meeting had an excellent scientific program that brought information on the latest ground-breaking technologies for gene targeting and genome editing using programmable nucleases into the foreground. These presentations were well balanced with several highlights over viewing topics in embryonic stem cell research, embryogenesis, disease models, and animals in agriculture. Ample space was reserved also for short talks presenting technical development and for highlighting posters contributions. A highlight of the meeting was the award of the 10th International Society of Transgenic Technologies Prize to Janet Rossant for her outstanding contributions in the field of mouse embryogenesis.
Jhappan, C; Geiser, A G; Kordon, E C; Bagheri, D; Hennighausen, L; Roberts, A B; Smith, G H; Merlino, G
1993-01-01
Transforming growth factor-beta 1 (TGF-beta 1) possesses highly potent, diverse and often opposing cell-specific activities, and has been implicated in the regulation of a variety of physiologic and developmental processes. To determine the effects of in vivo overexpression of TGF-beta 1 on mammary gland function, transgenic mice were generated harboring a fusion gene consisting of the porcine TGF-beta 1 cDNA placed under the control of regulatory elements of the pregnancy-responsive mouse whey-acidic protein (WAP) gene. Females from two of four transgenic lines were unable to lactate due to inhibition of the formation of lobuloalveolar structures and suppression of production of endogenous milk protein. In contrast, ductal development of the mammary glands was not overtly impaired. There was a complete concordance in transgenic mice between manifestation of the lactation-deficient phenotype and expression of RNA from the WAP/TGF-beta 1 transgene, which was present at low levels in the virgin gland, but was greatly induced at mid-pregnancy. TGF-beta 1 was localized to numerous alveoli and to the periductal extracellular matrix in the mammary gland of transgenic females late in pregnancy by immunohistochemical analysis. Glands reconstituted from cultured transgenic mammary epithelial cells duplicated the inhibition of lobuloalveolar development observed in situ in the mammary glands of pregnant transgenic mice. Results from this transgenic model strongly support the hypothesis that TGF-beta 1 plays an important in vivo role in regulating the development and function of the mammary gland. Images PMID:8491177
Rodgers, Shaefali P; Born, Heather A; Das, Pritam; Jankowsky, Joanna L
2012-06-18
Transgenic mice expressing disease-associated proteins have become standard tools for studying human neurological disorders. Transgenes are often expressed using promoters chosen to drive continuous high-level expression throughout life rather than temporal and spatial fidelity to the endogenous gene. This approach has allowed us to recapitulate diseases of aging within the two-year lifespan of the laboratory mouse, but has the potential for creating aberrant phenotypes by mechanisms unrelated to the human disorder. We show that overexpression of the Alzheimer's-related amyloid precursor protein (APP) during early postnatal development leads to severe locomotor hyperactivity that can be significantly attenuated by delaying transgene onset until adulthood. Our data suggest that exposure to transgenic APP during maturation influences the development of neuronal circuits controlling motor activity. Both when matched for total duration of APP overexpression and when matched for cortical amyloid burden, animals exposed to transgenic APP as juveniles are more active in locomotor assays than animals in which APP overexpression was delayed until adulthood. In contrast to motor activity, the age of APP onset had no effect on thigmotaxis in the open field as a rough measure of anxiety, suggesting that the interaction between APP overexpression and brain development is not unilateral. Our findings indicate that locomotor hyperactivity displayed by the tet-off APP transgenic mice and several other transgenic models of Alzheimer's disease may result from overexpression of mutant APP during postnatal brain development. Our results serve as a reminder of the potential for unexpected interactions between foreign transgenes and brain development to cause long-lasting effects on neuronal function in the adult. The tet-off APP model provides an easy means of avoiding developmental confounds by allowing transgene expression to be delayed until the mice reach adulthood.
Watanabe, Seiji; Ageta-Ishihara, Natsumi; Nagatsu, Shinji; Takao, Keizo; Komine, Okiru; Endo, Fumito; Miyakawa, Tsuyoshi; Misawa, Hidemi; Takahashi, Ryosuke; Kinoshita, Makoto; Yamanaka, Koji
2014-08-29
Dominant mutations in superoxide dismutase 1 (SOD1) cause degeneration of motor neurons in a subset of inherited amyotrophic lateral sclerosis (ALS). The pathogenetic process mediated by misfolded and/or aggregated mutant SOD1 polypeptides is hypothesized to be suppressed by protein refolding. This genetic study is aimed to test whether mutant SOD1-mediated ALS pathology recapitulated in mice could be alleviated by overexpressing a longevity-related deacetylase SIRT1 whose substrates include a transcription factor heat shock factor 1 (HSF1), the master regulator of the chaperone system. We established a line of transgenic mice that chronically overexpress SIRT1 in the brain and spinal cord. While inducible HSP70 (HSP70i) was upregulated in the spinal cord of SIRT1 transgenic mice (PrP-Sirt1), no neurological and behavioral alterations were detected. To test hypothetical benefits of SIRT1 overexpression, we crossbred PrP-Sirt1 mice with two lines of ALS model mice: A high expression line that exhibits a severe phenotype (SOD1G93A-H) or a low expression line with a milder phenotype (SOD1G93A-L). The Sirt1 transgene conferred longer lifespan without altering the time of symptomatic onset in SOD1G93A-L. Biochemical analysis of the spinal cord revealed that SIRT1 induced HSP70i expression through deacetylation of HSF1 and that SOD1G93A-L/PrP-Sirt1 double transgenic mice contained less insoluble SOD1 than SOD1G93A-L mice. Parallel experiments showed that Sirt1 transgene could not rescue a more severe phenotype of SOD1G93A-H transgenic mice partly because their HSP70i level had peaked out. The genetic supplementation of SIRT1 can ameliorate a mutant SOD1-linked ALS mouse model partly through the activation of the HSF1/HSP70i chaperone system. Future studies shall include testing potential benefits of pharmacological enhancement of the deacetylation activity of SIRT1 after the onset of the symptom.
In vivo transgenic bioassays and assessment of the carcinogenic potential of pharmaceuticals.
Contrera, J F; DeGeorge, J J
1998-01-01
There is general agreement in the scientific community on the need to improve carcinogenicity testing and the assessment of human carcinogenic risk and to incorporate more information on mechanisms and modes of action into the risk assessment process. Advances in molecular biology have identified a growing number of genes such as protooncogenes and tumor-suppressor genes that are highly conserved across species and are associated with a wide variety of human and animal cancers. In vivo transgenic rodent models incorporating such mechanisms are used to identify mechanisms involved in tumor formation and as selective tests for carcinogens. Transgenic methods can be considered an extension of genetic manipulation by selective breeding, which long has been employed in science and agriculture. The use of two rodent species in carcinogenicity testing is especially important for identifying transspecies carcinogens. The capacity of a substance to induce neoplasia across species suggests that the mechanism(s) involved in the induction of the neoplasia are conserved and therefore may have significance for humans. Based on available information there is sufficient experience with some in vivo transgenic rodent carcinogenicity models to support their application as complementary second species studies in conjunction with a single 2-year rodent carcinogenicity study. The optional substitution of a second 2-year rodent carcinogenicity study with an alternative study such as an in vivo transgenic carcinogenicity study is part of the International Conference on Harmonization guidance S1B: Testing for Carcinogenicity of Pharmaceuticals. This guidance is intended to be flexible enough to accommodate a wide range of possible carcinogenicity assessment models currently under consideration or models that may be developed in the future. The use of an in vivo transgenic mouse model in place of a second 2-year mouse study will improve the assessment of carcinogenic risk by contributing insights into the mechanisms of tumorigenesis and potential human relevance not available from a standard 2-year bioassay. It is envisioned that this will stimulate the further development of more efficient and relevant methods for identifying and assessing potential human carcinogenic risk, which will benefit public health. PMID:9539006
Identification of Secretory Odontoblasts Using DMP1-GFP Transgenic Mice
Balic, Anamaria; Mina, Mina
2011-01-01
Terminal differentiation of odontoblasts from dental papilla is a long process involving several intermediate steps and changes in the transcriptional profile and expression of proteins secreted by cells in the odontoblast lineage. Transgenic mouse lines in which GFP expression is under the control of tissue-and stage specific promoters have provided powerful experimental tools for identification and isolation of cells at specific stages of differentiation along a lineage. Our previous studies showed utilization of pOBCol3.6GFP and pOBCol2.3GFP animals for identification of odontoblasts at early and late stages of polarization respectively. In the present study we used the DMP1-GFP transgenic animal as an experimental model to examine its expression during the differentiation of odontoblasts from progenitor cells in vivo and in vitro. Our observations showed that DMP1-GFP transgene is first activated in secretory/functional odontoblasts engaged in secretion of predentin and then transiently expressed at high levels in newly differentiated odontoblasts. Expression of DMP1-GFP was down-regulated in highly differentiated odontoblasts. The temporal and spatial pattern of expression of DMP1-GFP transgene closely mimics the expression of endogenous DMP1. This transgenic animal will facilitate studies of gene expression and biological functions in secretory/functional odontoblasts. PMID:21172466
Heart-specific expression of laminopathic mutations in transgenic zebrafish.
Verma, Ajay D; Parnaik, Veena K
2017-07-01
Lamins are key determinants of nuclear organization and function in the metazoan nucleus. Mutations in human lamin A cause a spectrum of genetic diseases that affect cardiac muscle and skeletal muscle as well as other tissues. A few laminopathies have been modeled using the mouse. As zebrafish is a well established model for the study of cardiac development and disease, we have investigated the effects of heart-specific lamin A mutations in transgenic zebrafish. We have developed transgenic lines of zebrafish expressing conserved lamin A mutations that cause cardiac dysfunction in humans. Expression of zlamin A mutations Q291P and M368K in the heart was driven by the zebrafish cardiac troponin T2 promoter. Homozygous mutant embryos displayed nuclear abnormalities in cardiomyocyte nuclei. Expression analysis showed the upregulation of genes involved in heart regeneration in transgenic mutant embryos and a cell proliferation marker was increased in adult heart tissue. At the physiological level, there was deviation of up to 20% from normal heart rate in transgenic embryos expressing mutant lamins. Adult homozygous zebrafish were fertile and did not show signs of early mortality. Our results suggest that transgenic zebrafish models of heart-specific laminopathies show cardiac regeneration and moderate deviations in heart rate during embryonic development. © 2017 International Federation for Cell Biology.
NASA Technical Reports Server (NTRS)
Tidball, James G.; Spencer, Melissa J.
2002-01-01
Muscle wasting is a prominent feature of several systemic diseases, neurological damage and muscle disuse. The contribution of calpain proteases to muscle wasting in any instance of muscle injury or disease has remained unknown because of the inability to specifically perturb calpain activity in vivo. We have generated a transgenic mouse with muscle-specific overexpression of calpastatin, which is the endogenous inhibitor of calpains, and induced muscle atrophy by unloading hindlimb musculature for 10 days. Expression of the transgene resulted in increases in calpastatin concentration in muscle by 30- to 50-fold, and eliminated all calpain activity that was detectable on zymograms. Muscle fibres in ambulatory, transgenic mice were smaller in diameter, but more numerous, so that muscle mass did not differ between transgenic and non-transgenic mice. This is consistent with the role of the calpain-calpastatin system in muscle cell fusion that has been observed in vitro. Overexpression of calpastatin reduced muscle atrophy by 30 % during the 10 day unloading period. In addition, calpastatin overexpression completely prevented the shift in myofibrillar myosin content from slow to fast isoforms, which normally occurs in muscle unloading. These findings indicate that therapeutics directed toward regulating the calpain-calpastatin system may be beneficial in preventing muscle mass loss in muscle injury and disease.
Tidball, James G; Spencer, Melissa J
2002-12-15
Muscle wasting is a prominent feature of several systemic diseases, neurological damage and muscle disuse. The contribution of calpain proteases to muscle wasting in any instance of muscle injury or disease has remained unknown because of the inability to specifically perturb calpain activity in vivo. We have generated a transgenic mouse with muscle-specific overexpression of calpastatin, which is the endogenous inhibitor of calpains, and induced muscle atrophy by unloading hindlimb musculature for 10 days. Expression of the transgene resulted in increases in calpastatin concentration in muscle by 30- to 50-fold, and eliminated all calpain activity that was detectable on zymograms. Muscle fibres in ambulatory, transgenic mice were smaller in diameter, but more numerous, so that muscle mass did not differ between transgenic and non-transgenic mice. This is consistent with the role of the calpain-calpastatin system in muscle cell fusion that has been observed in vitro. Overexpression of calpastatin reduced muscle atrophy by 30 % during the 10 day unloading period. In addition, calpastatin overexpression completely prevented the shift in myofibrillar myosin content from slow to fast isoforms, which normally occurs in muscle unloading. These findings indicate that therapeutics directed toward regulating the calpain-calpastatin system may be beneficial in preventing muscle mass loss in muscle injury and disease.
Bacterial magnetic particles improve testes-mediated transgene efficiency in mice.
Wang, Chao; Sun, Guanghong; Wang, Ye; Kong, Nana; Chi, Yafei; Yang, Leilei; Xin, Qiliang; Teng, Zhen; Wang, Xu; Wen, Yujun; Li, Ying; Xia, Guoliang
2017-11-01
Nano-scaled materials have been proved to be ideal DNA carriers for transgene. Bacterial magnetic particles (BMPs) help to reduce the toxicity of polyethylenimine (PEI), an efficient gene-transferring agent, and assist tissue transgene ex vivo. Here, the effectiveness of the BMP-PEI complex-conjugated foreign DNAs (BPDs) in promoting testes-mediated gene transfer (TMGT) in mouse was compared with that of liposome-conjugated foreign DNAs. The results proved that through testes injection, the clusters of BPDs successfully reached the cytoplasm and the nuclear of spermatogenesis cell, and expressed in testes of transgene founder mice. Additionally, the ratio of founder mice obtained from BPDs (88%) is about 3 times higher than the control (25%) (p < 0.05). Interestingly, the motility of sperms recovered from epididymis of the founder mice from BPD group were significantly improved, as compared with the control (p < 0.01). Based on classic breeding, the ratio of transgene mice within the first filial was significantly higher in BPDs compared with the control (73.8% versus 11.6%, p < 0.05). TMGT in this study did not produce visible histological changes in the testis. In conclusion, nano-scaled BPDs could be an alternative strategy for efficiently producing transgene mice in vivo.
Drummond, Heather A.; Gousette, Monette U.; Storm, Megan V.; Abraham, Nader G.; Csongradi, Eva
2012-01-01
Kidney-specific induction of heme oxygenase-1 (HO-1) attenuates the development of angiotensin II (Ang II) -dependent hypertension, but the relative contribution of vascular versus tubular induction of HO-1 is unknown. To determine the specific contribution of thick ascending loop of Henle (TALH) -derived HO-1, we generated a transgenic mouse in which the uromodulin promoter controlled expression of human HO-1. Quantitative RT-PCR and confocal microscopy confirmed successful localization of the HO-1 transgene to TALH tubule segments. Medullary HO activity, but not cortical HO activity, was significantly higher in transgenic mice than control mice. Enhanced TALH HO-1 attenuated the hypertension induced by Ang II delivered by an osmotic minipump for 10 days (139±3 versus 153±2 mmHg in the transgenic and control mice, respectively; P<0.05). The lower blood pressure in transgenic mice associated with a 60% decrease in medullary NKCC2 transporter expression determined by Western blot. Transgenic mice also exhibited a 36% decrease in ouabain-sensitive sodium reabsorption and a significantly attenuated response to furosemide in isolated TALH segments,. In summary, these results show that increased levels of HO-1 in the TALH can lower blood pressure by a mechanism that may include alterations in NKCC2-dependent sodium reabsorption. PMID:22323644
Li, Wen-Jing; Xu, Chang; Wang, Kun; Li, Teng-Yan; Wang, Xiao-Nan; Yang, Hui; Xing, Tiaosi; Li, Wen-Xia; Chen, Yan-Hua; Gao, Hong; Ding, Lei
2018-05-01
As a potential tumor suppressor gene, Claudin-7 (Cldn7), which is a component of tight junctions, may play an important role in colorectal cancer occurrence and development. To generate a knockout mouse model of inducible conditional Cldn7 in the intestine and analyze the phenotype of the mice after induction with tamoxifen. We constructed Cldn7-flox transgenic mice and crossed them with Villin-CreERT2 mice. The Cldn7 inducible conditional knockout mice appeared normal and were well developed at birth. We induced Cldn7 gene deletion by injecting different dosages of tamoxifen into the mice and then conducted a further phenotypic analysis. After induction for 5 days in succession at a dose of 200 µl tamoxifen in sunflower oil at 10 mg/ml per mouse every time, the mice appeared dehydrated, had a lower temperature, and displayed inactivity or death. The results of hematoxylin-eosin staining showed that the intestines of the Cldn7 inducible conditional knockout mice had severe intestinal defects that included epithelial cell sloughing, necrosis, inflammation and hyperplasia. Owing to the death of ICKO mice, we adjusted the dose of tamoxifen to a dose of 100 µl in sunflower oil at 10 mg/ml per mouse (aged more than 8 weeks old) every 4 days. And we could induce atypical hyperplasia and adenoma in the intestine. Immunofluorescent staining indicated that the intestinal epithelial structure was destroyed. Electron microscopy experimental analysis indicated that the intercellular gap along the basolateral membrane of Cldn7 inducible conditional knockout mice in the intestine was increased and that contact between the cells and matrix was loosened. We generated a model of intestinal Cldn7 inducible conditional knockout mice. Intestinal Cldn7 deletion induced by tamoxifen initiated inflammation and hyperplasia in mice.
Arsenault, Dany; Drouin-Ouellet, Janelle; Saint-Pierre, Martine; Petrou, Petros; Dubois, Marilyn; Kriz, Jasna; Barker, Roger A; Cicchetti, Antonio; Cicchetti, Francesca
2015-01-01
Key points We have developed a unique prototype to perform brain stimulation in mice. This system presents a number of advantages and new developments: 1) all stimulation parameters can be adjusted, 2) both positive and negative current pulses can be generated, guaranteeing electrically balanced stimulation regimen, 3) which can be produced with both low and high impedance electrodes, 4) the developed electrodes ensure localized stimulation and 5) can be used to stimulate and/or record brain potential and 6) in vivo recording of electric pulses allows the detection of defective electrodes (wire breakage or short circuits). This new micro-stimulator device further allows simultaneous live bioluminescence imaging of the mouse brain, enabling real time assessment of the impact of stimulation on cerebral tissue. The use of this novel tool in various transgenic mouse models of disease opens up a whole new range of possibilities in better understanding brain stimulation. Abstract Deep brain stimulation (DBS) is used to treat a number of neurological conditions and is currently being tested to intervene in neuropsychiatric conditions. However, a better understanding of how it works would ensure that side effects could be minimized and benefits optimized. We have thus developed a unique device to perform brain stimulation (BS) in mice and to address fundamental issues related to this methodology in the pre-clinical setting. This new microstimulator prototype was specifically designed to allow simultaneous live bioluminescence imaging of the mouse brain, allowing real time assessment of the impact of stimulation on cerebral tissue. We validated the authenticity of this tool in vivo by analysing the expression of toll-like receptor 2 (TLR2), corresponding to the microglial response, in the stimulated brain regions of TLR2-fluc-GFP transgenic mice, which we further corroborated with post-mortem analyses in these animals as well as in human brains of patients who underwent DBS to treat their Parkinson's disease. In the present study, we report on the development of the first BS device that allows for simultaneous live in vivo imaging in mice. This tool opens up a whole new range of possibilities that allow a better understanding of BS and how to optimize its effects through its use in murine models of disease. PMID:25653107
Dréau, Didier; Moore, Laura Jeffords; Alvarez-Berrios, Merlis P; Tarannum, Mubin; Mukherjee, Pinku; Vivero-Escoto, Juan L
2016-12-01
Mucin-1 (MUC1), a transmembrane glycoprotein is aberrantly expressed on ~90% of breast cancer and is an excellent target for nanoparticulate targeted imaging. In this study, the development of a dye-doped NIR emitting mesoporous silica nanoparticles platform conjugated to tumor-specific MUC1 antibody (ab-tMUC1-NIR-MSN) for in vivo optical detection of breast adenocarcinoma tissue is reported. The structural properties, the in vitro and in vivo performance of this nanoparticle-based probe were evaluated. In vitro studies showed that the MSN-based optical imaging nanoprobe is non-cytotoxic and targets efficiently mammary cancer cells overexpressing human tMUC1 protein. In vivo experiments with female C57BL/6 mice indicated that this platform accumulates mainly in the liver and did not induce short-term toxicity. In addition, we demonstrated that the ab-tMUC1-NIR-MSN nanoprobe specifically detects mammary gland tumors overexpressing human tMUC1 in a human MUC1 transgenic mouse model.
Di Certo, Maria Grazia; Corbi, Nicoletta; Strimpakos, Georgios; Onori, Annalisa; Luvisetto, Siro; Severini, Cinzia; Guglielmotti, Angelo; Batassa, Enrico Maria; Pisani, Cinzia; Floridi, Aristide; Benassi, Barbara; Fanciulli, Maurizio; Magrelli, Armando; Mattei, Elisabetta; Passananti, Claudio
2010-03-01
The absence of the cytoskeletal protein dystrophin results in Duchenne muscular dystrophy (DMD). The utrophin protein is the best candidate for dystrophin replacement in DMD patients. To obtain therapeutic levels of utrophin expression in dystrophic muscle, we developed an alternative strategy based on the use of artificial zinc finger transcription factors (ZF ATFs). The ZF ATF 'Jazz' was recently engineered and tested in vivo by generating a transgenic mouse specifically expressing Jazz at the muscular level. To validate the ZF ATF technology for DMD treatment we generated a second mouse model by crossing Jazz-transgenic mice with dystrophin-deficient mdx mice. Here, we show that the artificial Jazz protein restores sarcolemmal integrity and prevents the development of the dystrophic disease in mdx mice. This exclusive animal model establishes the notion that utrophin-based therapy for DMD can be efficiently developed using ZF ATF technology and candidates Jazz as a novel therapeutic molecule for DMD therapy.
Mouse models to study the interaction of risk factors for human liver cancer.
Sell, Stewart
2003-11-15
Each of the risk factors for human liver cancer (aflatoxin exposure, hepatitis B virus-associated liver injury, p53 loss, p53ser249 mutation, and male sex) also increases the incidence of hepatocellular carcinoma (HCC) in mouse models of hepatocarcinogenesis. Neonatal mice, partially hepatectomized adult mice, and p53-deficient mice each have a higher hepatocyte proliferation rate, are less able to detoxify AFB1, and form more DNA adducts than do normal wild-type controls. However, transgenic hepatitis B surface antigen mice, expressing hepatitis B surface antigen under control of the albumin promoter (alb/psx), are able to detoxify AFB1 at the same level as do wild-type mice. Thus, AFB1-induced HCC development in neonatal mice and p53+/- mice may be due to "immature" carcinogen metabolism, whereas increased HCC in transgenic hepatitis B virus mice may be due to promotion effects of increased proliferation. Future studies will explore the effects of modifying factors on the development of HCC.
Kuhla, Angela; Rühlmann, Claire; Lindner, Tobias; Polei, Stefan; Hadlich, Stefan; Krause, Bernd J; Vollmar, Brigitte; Teipel, Stefan J
2017-01-01
Transgenic animal models of Aβ pathology provide mechanistic insight into some aspects of Alzheimer disease (AD) pathology related to Aβ accumulation. Quantitative neuroimaging is a possible aid to improve translation of mechanistic findings in transgenic models to human end phenotypes of brain morphology or function. Therefore, we combined MRI-based morphometry, MRS-based NAA-assessment and quantitative histology of neurons and amyloid plaque load in the APPswe/PS1dE9 mouse model to determine the interrelationship between morphological changes, changes in neuron numbers and amyloid plaque load with reductions of NAA levels as marker of neuronal functional viability. The APPswe/PS1dE9 mouse showed an increase of Aβ plaques, loss of neurons and an impairment of NAA/Cr ratio, which however was not accompanied with brain atrophy. As brain atrophy is one main characteristic in human AD, conclusions from murine to human AD pathology should be drawn with caution.
Urigüen, L; Gil-Pisa, I; Munarriz-Cuezva, E; Berrocoso, E; Pascau, J; Soto-Montenegro, M L; Gutiérrez-Adán, A; Pintado, B; Madrigal, J L M; Castro, E; Sánchez-Blázquez, P; Ortega, J E; Guerrero, M J; Ferrer-Alcon, M; García-Sevilla, J A; Micó, J A; Desco, M; Leza, J C; Pazos, Á; Garzón, J; Meana, J J
2013-01-01
Overexpression of the mammalian homolog of the unc-18 gene (munc18-1) has been described in the brain of subjects with schizophrenia. Munc18-1 protein is involved in membrane fusion processes, exocytosis and neurotransmitter release. A transgenic mouse strain that overexpresses the protein isoform munc18-1a in the brain was characterized. This animal displays several schizophrenia-related behaviors, supersensitivity to hallucinogenic drugs and deficits in prepulse inhibition that reverse after antipsychotic treatment. Relevant brain areas (that is, cortex and striatum) exhibit reduced expression of dopamine D1 receptors and dopamine transporters together with enhanced amphetamine-induced in vivo dopamine release. Magnetic resonance imaging demonstrates decreased gray matter volume in the transgenic animal. In conclusion, the mouse overexpressing brain munc18-1a represents a new valid animal model that resembles functional and structural abnormalities in patients with schizophrenia. The animal could provide valuable insights into phenotypic aspects of this psychiatric disorder. PMID:23340504
Parachikova, Anna; Green, Kim N; Hendrix, Curt; LaFerla, Frank M
2010-11-17
Dietary supplements have been extensively studied for their beneficial effects on cognition and AD neuropathology. The current study examines the effect of a medical food cocktail consisting of the dietary supplements curcumin, piperine, epigallocatechin gallate, α-lipoic acid, N-acetylcysteine, B vitamins, vitamin C, and folate on cognitive functioning and the AD hallmark features and amyloid-beta (Aβ) in the Tg2576 mouse model of the disease. The study found that administering the medical food cocktail for 6 months improved cortical- and hippocampal- dependent learning in the transgenic mice, rendering their performance indistinguishable from non-transgenic controls. Coinciding with this improvement in learning and memory, we found that treatment resulted in decreased soluble Aβ, including Aβ oligomers, previously found to be linked to cognitive functioning. In conclusion, the current study demonstrates that combination diet consisting of natural dietary supplements improves cognitive functioning while decreasing AD neuropathology and may thus represent a safe, natural treatment for AD.
Kamm, Gretel B.; López-Leal, Rodrigo; Lorenzo, Juan R.; Franchini, Lucía F.
2013-01-01
The developmental brain gene NPAS3 stands out as a hot spot in human evolution because it contains the largest number of human-specific, fast-evolving, conserved, non-coding elements. In this paper we studied 2xHAR142, one of these elements that is located in the fifth intron of NPAS3. Using transgenic mice, we show that the mouse and chimp 2xHAR142 orthologues behave as transcriptional enhancers driving expression of the reporter gene lacZ to a similar NPAS3 expression subdomain in the mouse central nervous system. Interestingly, the human 2xHAR142 orthologue drives lacZ expression to an extended expression pattern in the nervous system. Thus, molecular evolution of 2xHAR142 provides the first documented example of human-specific heterotopy in the forebrain promoted by a transcriptional enhancer and suggests that it may have contributed to assemble the unique properties of the human brain. PMID:24218632
Arbab, Mandana; Srinivasan, Sharanya; Hashimoto, Tatsunori; Geijsen, Niels; Sherwood, Richard I.
2015-01-01
Summary We present self-cloning CRISPR/Cas9 (scCRISPR), a technology that allows for CRISPR/Cas9-mediated genomic mutation and site-specific knockin transgene creation within several hours by circumventing the need to clone a site-specific single-guide RNA (sgRNA) or knockin homology construct for each target locus. We introduce a self-cleaving palindromic sgRNA plasmid and a short double-stranded DNA sequence encoding the desired locus-specific sgRNA into target cells, allowing them to produce a locus-specific sgRNA plasmid through homologous recombination. scCRISPR enables efficient generation of gene knockouts (∼88% mutation rate) at approximately one-sixth the cost of plasmid-based sgRNA construction with only 2 hr of preparation for each targeted site. Additionally, we demonstrate efficient site-specific knockin of GFP transgenes without any plasmid cloning or genome-integrated selection cassette in mouse and human embryonic stem cells (2%–4% knockin rate) through PCR-based addition of short homology arms. scCRISPR substantially lowers the bar on mouse and human transgenesis. PMID:26527385
Tokarski, Krzysztof; Bobula, Bartosz; Zygmunt, Magdalena; Smutek, Magdalena; Kamińska, Katarzyna; Gołembiowska, Krystyna; Hess, Grzegorz; Przewlocki, Ryszard
2016-01-01
Abstract Plasticity of the brain’s dopamine system plays a crucial role in adaptive behavior by regulating appetitive motivation and the control of reinforcement learning. In this study, we investigated drug- and natural-reward conditioned behaviors in a mouse model in which the NMDA receptor-dependent plasticity of dopaminoceptive neurons was disrupted. We generated a transgenic mouse line with inducible selective inactivation of the NR1 subunit in neurons expressing dopamine D1 receptors (the NR1D1CreERT2 mice). Whole-cell recordings of spontaneous EPSCs on neurons in the nucleus accumbens confirmed that a population of neurons lacked the NMDA receptor-dependent component of the current. This effect was accompanied by impaired long-term potentiation in the nucleus accumbens and in the CA1 area of the ventral, but not the dorsal, hippocampus. Mutant mice did not differ from control animals when tested for pavlovian or instrumental conditioning. However, NR1D1CreERT2 mice acquired no preference for a context associated with administration of drugs of abuse. In the conditioned place preference paradigm, mutant mice did not spend more time in the context paired with cocaine, morphine, or ethanol, although these mice acquired a preference for sucrose jelly and an aversion to naloxone injections, as normal. Thus, we observed that the selective inducible ablation of the NMDA receptors specifically blocks drug-associated context memory with no effect on positive reinforcement in general. PMID:27294197
Sikora, Magdalena; Tokarski, Krzysztof; Bobula, Bartosz; Zajdel, Joanna; Jastrzębska, Kamila; Cieślak, Przemysław Eligiusz; Zygmunt, Magdalena; Sowa, Joanna; Smutek, Magdalena; Kamińska, Katarzyna; Gołembiowska, Krystyna; Engblom, David; Hess, Grzegorz; Przewlocki, Ryszard; Rodriguez Parkitna, Jan
2016-01-01
Plasticity of the brain's dopamine system plays a crucial role in adaptive behavior by regulating appetitive motivation and the control of reinforcement learning. In this study, we investigated drug- and natural-reward conditioned behaviors in a mouse model in which the NMDA receptor-dependent plasticity of dopaminoceptive neurons was disrupted. We generated a transgenic mouse line with inducible selective inactivation of the NR1 subunit in neurons expressing dopamine D1 receptors (the NR1(D1CreERT2) mice). Whole-cell recordings of spontaneous EPSCs on neurons in the nucleus accumbens confirmed that a population of neurons lacked the NMDA receptor-dependent component of the current. This effect was accompanied by impaired long-term potentiation in the nucleus accumbens and in the CA1 area of the ventral, but not the dorsal, hippocampus. Mutant mice did not differ from control animals when tested for pavlovian or instrumental conditioning. However, NR1(D1CreERT2) mice acquired no preference for a context associated with administration of drugs of abuse. In the conditioned place preference paradigm, mutant mice did not spend more time in the context paired with cocaine, morphine, or ethanol, although these mice acquired a preference for sucrose jelly and an aversion to naloxone injections, as normal. Thus, we observed that the selective inducible ablation of the NMDA receptors specifically blocks drug-associated context memory with no effect on positive reinforcement in general.
RAGE and tobacco smoke: insights into modeling chronic obstructive pulmonary disease
Robinson, Adam B.; Stogsdill, Jeffrey A.; Lewis, Joshua B.; Wood, Tyler T.; Reynolds, Paul R.
2012-01-01
Chronic obstructive pulmonary disease (COPD) is a progressive condition characterized by chronic airway inflammation and airspace remodeling, leading to airflow limitation that is not completely reversible. Smoking is the leading risk factor for compromised lung function stemming from COPD pathogenesis. First- and second-hand cigarette smoke contain thousands of constituents, including several carcinogens and cytotoxic chemicals that orchestrate chronic lung inflammation and destructive alveolar remodeling. Receptors for advanced glycation end-products (RAGE) are multi-ligand cell surface receptors primarily expressed by diverse lung cells. RAGE expression increases following cigarette smoke exposure and expression is elevated in the lungs of patients with COPD. RAGE is responsible in part for inducing pro-inflammatory signaling pathways that culminate in expression and secretion of several cytokines, chemokines, enzymes, and other mediators. In the current review, new transgenic mouse models that conditionally over-express RAGE in pulmonary epithelium are discussed. When RAGE is over-expressed throughout embryogenesis, apoptosis in the peripheral lung causes severe lung hypoplasia. Interestingly, apoptosis in RAGE transgenic mice occurs via conserved apoptotic pathways also known to function in advanced stages of COPD. RAGE over-expression in the adult lung models features of COPD including pronounced inflammation and loss of parenchymal tissue. Understanding the biological contributions of RAGE during cigarette smoke-induced inflammation may provide critically important insight into the pathology of COPD. PMID:22934052
SIRT1 metabolic actions: Integrating recent advances from mouse models★
Boutant, Marie; Cantó, Carles
2013-01-01
SIRT1 has attracted a lot of interest since it was discovered as a mammalian homolog of Sir2, a protein that influences longevity in yeast. Intensive early research suggested a key role of SIRT1 in mammalian development, metabolic flexibility and oxidative metabolism. However, it is the growing body of transgenic models that are allowing us to clearly define the true range of SIRT1 actions. In this review we aim to summarize the most recent lessons that transgenic animal models have taught us about the role of SIRT1 in mammalian metabolic homeostasis and lifespan. PMID:24567900
Mouse Mammary Tumor Virus c-rel Transgenic Mice Develop Mammary Tumors
Romieu-Mourez, Raphaëlle; Kim, Dong W.; Min Shin, Sang; Demicco, Elizabeth G.; Landesman-Bollag, Esther; Seldin, David C.; Cardiff, Robert D.; Sonenshein, Gail E.
2003-01-01
Amplification, overexpression, or rearrangement of the c-rel gene, encoding the c-Rel NF-κB subunit, has been reported in solid and hematopoietic malignancies. For example, many primary human breast cancer tissue samples express high levels of nuclear c-Rel. While the Rev-T oncogene v-rel causes tumors in birds, the ability of c-Rel to transform in vivo has not been demonstrated. To directly test the role of c-Rel in breast tumorigenesis, mice were generated in which overexpression of mouse c-rel cDNA was driven by the hormone-responsive mouse mammary tumor virus long terminal repeat (MMTV-LTR) promoter, and four founder lines identified. In the first cycle of pregnancy, the expression of transgenic c-rel mRNA was observed, and levels of c-Rel protein were increased in the mammary gland. Importantly, 31.6% of mice developed one or more mammary tumors at an average age of 19.9 months. Mammary tumors were of diverse histology and expressed increased levels of nuclear NF-κB. Analysis of the composition of NF-κB complexes in the tumors revealed aberrant nuclear expression of multiple subunits, including c-Rel, p50, p52, RelA, RelB, and the Bcl-3 protein, as observed previously in human primary breast cancers. Expression of the cancer-related NF-κB target genes cyclin D1, c-myc, and bcl-xl was significantly increased in grossly normal transgenic mammary glands starting the first cycle of pregnancy and increased further in mammary carcinomas compared to mammary glands from wild-type mice or virgin transgenic mice. In transient transfection analysis in untransformed breast epithelial cells, c-Rel-p52 or -p50 heterodimers either potently or modestly induced cyclin D1 promoter activity, respectively. Lastly, stable overexpression of c-Rel resulted in increased cyclin D1 and NF-κB p52 and p50 subunit protein levels. These results indicate for the first time that dysregulated expression of c-Rel, as observed in breast cancers, is capable of contributing to mammary tumorigenesis. PMID:12897145
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Alexandra S., E-mail: alexandra.long@hc-sc.gc.ca; Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON; Lemieux, Christine L.
Test batteries to screen chemicals for mutagenic hazard include several endpoints regarded as effective for detecting genotoxic carcinogens. Traditional in vivo methods primarily examine clastogenic endpoints in haematopoietic tissues. Although this approach is effective for identifying systemically distributed clastogens, some mutagens may not induce clastogenic effects; moreover, genotoxic effects may be restricted to the site of contact and/or related tissues. An OECD test guideline for transgenic rodent (TGR) gene mutation assays was released in 2011, and the TGR assays permit assessment of mutagenicity in any tissue. This study assessed the responses of two genotoxicity endpoints following sub-chronic oral exposures ofmore » male Muta™Mouse to 9 carcinogenic polycyclic aromatic hydrocarbons (PAHs). Clastogenicity was assessed via induction of micronuclei in peripheral blood, and mutagenicity via induction of lacZ transgene mutations in bone marrow, glandular stomach, small intestine, liver, and lung. Additionally, the presence of bulky PAH-DNA adducts was examined. Five of the 9 PAHs elicited positive results across all endpoints in at least one tissue, and no PAHs were negative or equivocal across all endpoints. All PAHs were positive for lacZ mutations in at least one tissue (sensitivity = 100%), and for 8 PAHs, one or more initial sites of chemical contact (i.e., glandular stomach, liver, small intestine) yielded a greater response than bone marrow. Five PAHs were positive in the micronucleus assay (sensitivity = 56%). Furthermore, all PAHs produced DNA adducts in at least one tissue. The results demonstrate the utility of the TGR assay for mutagenicity assessment, especially for compounds that may not be systemically distributed. - Highlights: • The Muta™Mouse is a reliable tool for in vivo mutagenicity assessment of PAHs. • All 9 PAHs induced lacZ transgene mutations in small intestine. • Only 5 of 9 PAHs induced lacZ mutations and micronuclei in haematopoietic tissue. • Tissue-specific results are likely related to metabolism, repair, and proliferation. • For oral exposures, it is important to examine effects at the site-of-contact.« less
iRAGu: A Novel Inducible and Reversible Mouse Model for Ubiquitous Recombinase Activity
Bonnet, Marie; Sarmento, Leonor Morais; Martins, Ana C.; Sobral, Daniel; Silva, Joana; Demengeot, Jocelyne
2017-01-01
Developing lymphocytes express the recombination activating genes (RAGs) 1 and 2 products that form a site specific recombinase complex (RAG), introducing double strand DNA breaks (DSBs) at recombination signal sequences (RSSs) flanking the V, D, and J gene segments in the antigen receptor loci. The subsequent steps in the reaction consist in the ligation of DSBs by ubiquitous enzymes of the non-homologous end joining DNA repair pathway. This mutagenesis process is responsible for the generation of the very large clonal diversity of T and B lymphocytes, itself allowing the recognition of a virtually open-ended antigenic universe. Sequences resembling RSS are found at high frequency all over the genome, and involved in RAG mediated illegitimate recombination and translocations. Hence, natural and induced ectopic activity of RAG is a threat to the genome only recently underscored. Here, we report and characterize a novel mouse transgenic system for which ubiquitous expression of the recombinase is inducible. In this system, the RAG1 protein is constitutively expressed and functional, while the RAG2 protein, coupled to the estrogen receptor, becomes functionally active upon 4-hydroxytamoxifen (TAM) administration. We describe two transgenic lines. The first one, when introgressed into an endogenous Rag2−/− genetic background is faithfully recapitulating lymphocyte development, repertoire dynamics and cryptic rearrangements, in a TAM-dependent manner. In this model, deprivation of TAM is followed by lymphocyte development arrest, evidencing the reversibility of the system. The second transgenic line is leaky, as the transgenes promote lymphocyte differentiation in absence of TAM treatment. Upon TAM-induction defects in lymphocytes composition and global health reveals the deleterious effect of uncontrolled RAG activity. Overall, this novel transgenic model provides a tool where RAG activity can be specifically manipulated to assess the dynamics of lymphocyte differentiation and the challenges imposed by the recombinase on the vertebrate genome. PMID:29176980
NASA Technical Reports Server (NTRS)
Bedalov, A.; Salvatori, R.; Dodig, M.; Kapural, B.; Pavlin, D.; Kream, B. E.; Clark, S. H.; Woody, C. O.; Rowe, D. W.; Lichtler, A. C.
1998-01-01
We studied the effect of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) on organ cultures of transgenic mouse calvariae containing segments of the Col1a1 promoter extending to -3518, -2297, -1997, -1794, -1763, and -1719 bp upstream of the transcription start site fused to the chloramphenicol acetyltransferase (CAT) reporter gene. 1,25(OH)2D3 had a dose-dependent inhibitory effect on the expression of the -3518 bp promoter construct (ColCAT3.6), with maximal inhibition of about 50% at 10 nM. This level of inhibition was consistent with the previously observed effect on the endogenous Col1a1 gene in bone cell models. All of the shorter constructs were also inhibited by 10 nM 1,25(OH)2D3, suggesting that the sequences required for 1, 25(OH)2D3 inhibition are downstream of -1719 bp. The inhibitory effect of 1,25(OH)2D3 on transgene mRNA was maintained in the presence of the protein synthesis inhibitor cycloheximide, suggesting that the inhibitory effect on Col1a1 gene transcription does not require de novo protein synthesis. We also examined the in vivo effect of 1,25(OH)2D3 treatment of transgenic mice on ColCAT activity, and found that 48 h treatment caused a dose-dependent inhibition of CAT activity in calvariae comparable to that observed in organ cultures. In conclusion, we demonstrated that 1,25(OH)2D3 inhibits Col1A1 promoter activity in transgenic mouse calvariae, both in vivo and in vitro. The results indicate that there is a 1, 25(OH)2D3 responsive element downstream of -1719 bp. The inhibitory effect does not require new protein synthesis.
Garza-Manero, Sylvia; Arias, Clorinda; Bermúdez-Rattoni, Federico; Vaca, Luis; Zepeda, Angélica
2015-01-01
Alzheimer's disease (AD) is a neurodegenerative disorder characterized clinically by the progressive decline of memory and cognition. Histopathologically, two main hallmarks have been identified in AD: amyloid-β peptide extracellular neuritic plaques and neurofibrillary tangles formed by posttranslational modified tau protein. A definitive diagnosis can only be achieved after the post mortem verification of the histological mentioned alterations. Therefore, the development of biomarkers that allow an early diagnosis and/or predict disease progression is imperative. The prospect of a blood-based biomarker is possible with the finding of circulating microRNAs (miRNAs), a class of small non-coding RNAs of 22–25 nucleotides length that regulate mRNA translation rate. miRNAs travel through blood and recent studies performed in potential AD cases suggest the possibility of finding pathology-associated differences in circulating miRNA levels that may serve to assist in early diagnosis of the disease. However, these studies analyzed samples at a single time-point, limiting the use of miRNAs as biomarkers in AD progression. In this study we evaluated miRNA levels in plasma samples at different time-points of the evolution of an AD-like pathology in a transgenic mouse model of the disease (3xTg-AD). We performed multiplex qRT-PCR and compared the plasmatic levels of 84 miRNAs previously associated to central nervous system development and disease. No significant differences were detected between WT and transgenic young mice. However, age-related significant changes in miRNA abundance were observed for both WT and transgenic mice, and some of these were specific for the 3xTg-AD. In agreement, variations in the levels of particular miRNAs were identified between WT and transgenic old mice thus suggesting that the age-dependent evolution of the AD-like pathology, rather than the presence and expression of the transgenes, modifies the circulating miRNA levels in the 3xTg-AD mice. PMID:25745387
Garza-Manero, Sylvia; Arias, Clorinda; Bermúdez-Rattoni, Federico; Vaca, Luis; Zepeda, Angélica
2015-01-01
Alzheimer's disease (AD) is a neurodegenerative disorder characterized clinically by the progressive decline of memory and cognition. Histopathologically, two main hallmarks have been identified in AD: amyloid-β peptide extracellular neuritic plaques and neurofibrillary tangles formed by posttranslational modified tau protein. A definitive diagnosis can only be achieved after the post mortem verification of the histological mentioned alterations. Therefore, the development of biomarkers that allow an early diagnosis and/or predict disease progression is imperative. The prospect of a blood-based biomarker is possible with the finding of circulating microRNAs (miRNAs), a class of small non-coding RNAs of 22-25 nucleotides length that regulate mRNA translation rate. miRNAs travel through blood and recent studies performed in potential AD cases suggest the possibility of finding pathology-associated differences in circulating miRNA levels that may serve to assist in early diagnosis of the disease. However, these studies analyzed samples at a single time-point, limiting the use of miRNAs as biomarkers in AD progression. In this study we evaluated miRNA levels in plasma samples at different time-points of the evolution of an AD-like pathology in a transgenic mouse model of the disease (3xTg-AD). We performed multiplex qRT-PCR and compared the plasmatic levels of 84 miRNAs previously associated to central nervous system development and disease. No significant differences were detected between WT and transgenic young mice. However, age-related significant changes in miRNA abundance were observed for both WT and transgenic mice, and some of these were specific for the 3xTg-AD. In agreement, variations in the levels of particular miRNAs were identified between WT and transgenic old mice thus suggesting that the age-dependent evolution of the AD-like pathology, rather than the presence and expression of the transgenes, modifies the circulating miRNA levels in the 3xTg-AD mice.
Tian, Mi; Tang, Li; Wu, Yuanyuan; Beddhu, Srinivasan; Huang, Yufeng
2018-06-06
Adiponectin (ApN) is a multifunctional adipokine. However high, rather than low, concentrations of ApN are unexpectedly found in patients with chronic kidney disease (CKD) via an as yet unknown mechanism and the role of ApN in CKD is unclear. We, herein, investigated the effect of ApN overexpression on the progressive renal injury resulted from deoxycorticosterone acetate-salt (DOCA) and angiotensin II (Ang-II) infusion using a transgenic, inducible ApN-overexpressing mouse model. Three groups of mice (wild type receiving no infusion (WT), WT and cyp1a1 ApN transgenic mice (ApN-Tg) receiving DOCA+Ang-II infusion (WT/DOCA+Ang-II and ApN-Tg/DOCA+Ang-II)) were assigned to receive a normal food containing 0.15% of the transgene inducer indol-3-carbinol (I3C) for 3 weeks. The I3C-induced ApN-Tg/DOCA+Ang-II mice, not the WT or WT/DOCA+Ang-II mice, overexpressing ApN in liver resulted in 3.15-fold increases in circulating ApN than non-transgenic controls. Of note, these transgenic mice receiving DOCA+Ang-II infusion were still hypertensive but had much less albuminuria and glomerular and tubulointerstitial fibrosis, which were associated with ameliorated podocyte injury determined by ameliorated podocyte loss and foot process effacement; and alleviated tubular injury determined by ameliorated mRNA overexpression of KIM-1 and NGAL and mRNA decreases of cubilin and megalin in tubular cells, compared with WT/DOCA+Ang-II mice. In addition, renal production of NF-kB-p65, NAPDH oxidase-2 and p47phox, and MAPK-related cellular proliferation, which were induced in WT/DOCA+Ang-II mice, were markedly reduced in ApN-Tg/DOCA+Ang-II mice. These results indicate that elevated ApN in CKD mouse model is renal protective. Enhancing adiponectin production or signaling may have therapeutic potential for CKD.
NASA Technical Reports Server (NTRS)
Chang, P. Y.; Kanazawa, N.; Lutze-Mann, L.; Winegar, R. A.
2001-01-01
Exposure to heavy particle radiation in the galacto-cosmic environment poses a significant risk in space exploration and the evaluation of radiation-induced genetic damage in tissues, especially in the central nervous system, is an important consideration in long-term manned space missions. We used a plasmid-based transgenic mouse model system, with the pUR288 lacZ transgene integrated in the genome of every cell of C57Bl/6(lacZ) mice, to evaluate the genetic damage induced by iron particle radiation. In order to examine the importance of genetic background on the radiation sensitivity of individuals, we cross-bred p53 wild-type lacZ transgenic mice with p53 nullizygous mice, producing lacZ transgenic mice that were either hemizygous or nullizygous for the p53 tumor suppressor gene. Animals were exposed to an acute dose of 1 Gy of iron particles and the lacZ mutation frequency (MF) in the brain was measured at time intervals from 1 to 16 weeks post-irradiation. Our results suggest that iron particles induced an increase in lacZ MF (2.4-fold increase in p53+/+ mice, 1.3-fold increase in p53+/- mice and 2.1-fold increase in p53-/- mice) and that this induction is both temporally regulated and p53 genotype dependent. Characterization of mutants based on their restriction patterns showed that the majority of the mutants arising spontaneously are derived from point mutations or small deletions in all three genotypes. Radiation induced alterations in the spectrum of deletion mutants and reorganization of the genome, as evidenced by the selection of mutants containing mouse genomic DNA. These observations are unique in that mutations in brain tissue after particle radiation exposure have never before been reported owing to technical limitations in most other mutation assays.
Stimulated single fiber electromyography in the mouse: techniques and normative data
NASA Technical Reports Server (NTRS)
Gooch, C. L.; Mosier, D. R.
2001-01-01
As the number of new transgenic mouse models of human neuromuscular disease continues to increase, the development of sophisticated electrophysiologic techniques for assessing the peripheral nervous system in these models has become important. Neuromuscular junction (NMJ) dysfunction, in particular, is often not detectable by morphologic or other techniques. To enable sensitive testing of murine NMJ function, we developed and tested a method for stimulated single fiber electromyography (S-SFEMG) in the gastrocnemius muscles of anesthetized mice. Jitter was assessed by measuring the mean consecutive latency difference (MCD) of single fiber responses to sciatic nerve stimulation at 2 HZ. Mean MCD values in normothermic mice were in the range of 6-8 micros for different strains, with no MCD values exceeding 25 micros. Reduced core temperature (to 29 degrees--30 degrees C) resulted in increased jitter, whereas intubation and mechanical ventilation of mice did not alter these values. Intraperitoneal and intravenous injection of vecuronium, however, resulted in progressively increased jitter followed by blocking in continuously monitored fibers. These observations validate the utility of S-SFEMG in mice as an index of NMJ function under a variety of physiologic conditions, and suggest that a high safety factor for neuromuscular transmission exists at mouse NMJs. Copyright 2001 John Wiley & Sons, Inc.
Koopmans, Bastijn; Smit, August B; Verhage, Matthijs; Loos, Maarten
2017-04-04
Systematic, standardized and in-depth phenotyping and data analyses of rodent behaviour empowers gene-function studies, drug testing and therapy design. However, no data repositories are currently available for standardized quality control, data analysis and mining at the resolution of individual mice. Here, we present AHCODA-DB, a public data repository with standardized quality control and exclusion criteria aimed to enhance robustness of data, enabled with web-based mining tools for the analysis of individually and group-wise collected mouse phenotypic data. AHCODA-DB allows monitoring in vivo effects of compounds collected from conventional behavioural tests and from automated home-cage experiments assessing spontaneous behaviour, anxiety and cognition without human interference. AHCODA-DB includes such data from mutant mice (transgenics, knock-out, knock-in), (recombinant) inbred strains, and compound effects in wildtype mice and disease models. AHCODA-DB provides real time statistical analyses with single mouse resolution and versatile suite of data presentation tools. On March 9th, 2017 AHCODA-DB contained 650 k data points on 2419 parameters from 1563 mice. AHCODA-DB provides users with tools to systematically explore mouse behavioural data, both with positive and negative outcome, published and unpublished, across time and experiments with single mouse resolution. The standardized (automated) experimental settings and the large current dataset (1563 mice) in AHCODA-DB provide a unique framework for the interpretation of behavioural data and drug effects. The use of common ontologies allows data export to other databases such as the Mouse Phenome Database. Unbiased presentation of positive and negative data obtained under the highly standardized screening conditions increase cost efficiency of publicly funded mouse screening projects and help to reach consensus conclusions on drug responses and mouse behavioural phenotypes. The website is publicly accessible through https://public.sylics.com and can be viewed in every recent version of all commonly used browsers.
Iwamoto, Masahiro; Tamamura, Yoshihiro; Koyama, Eiki; Komori, Toshihisa; Takeshita, Nobuo; Williams, Julie A; Nakamura, Takashi; Enomoto-Iwamoto, Motomi; Pacifici, Maurizio
2007-05-01
Articular cartilage and synovial joints are critical for skeletal function, but the mechanisms regulating their development are largely unknown. In previous studies we found that the ets transcription factor ERG and its alternatively-spliced variant C-1-1 have roles in joint formation in chick. Here, we extended our studies to mouse. We found that ERG is also expressed in developing mouse limb joints. To test regulation of ERG expression, beads coated with the joint master regulator protein GDF-5 were implanted close to incipient joints in mouse limb explants; this led to rapid and strong ectopic ERG expression. We cloned and characterized several mammalian ERG variants and expressed a human C-1-1 counterpart (hERG3Delta81) throughout the cartilaginous skeleton of transgenic mice, using Col2a1 gene promoter/enhancer sequences. The skeletal phenotype was severe and neonatal lethal, and the transgenic mice were smaller than wild type littermates and their skeletons were largely cartilaginous. Limb long bone anlagen were entirely composed of chondrocytes actively expressing collagen IX and aggrecan as well as articular markers such as tenascin-C. Typical growth plates were absent and there was very low expression of maturation and hypertrophy markers, including Indian hedgehog, collagen X and MMP-13. The results suggest that ERG is part of molecular mechanisms leading chondrocytes into a permanent developmental path and become joint forming cells, and may do so by acting downstream of GDF-5.
Aoyama, Naoki; Miyoshi, Hiroyuki; Miyachi, Hitoshi; Sonoshita, Masahiro; Okabe, Masaru; Taketo, Makoto Mark
2018-05-11
Jellyfish green fluorescent protein (GFP) and firefly luciferase can serve as versatile tracking markers for identification and quantification of transplanted cancer cells in vivo. However, immune reactions against these markers can hamper the formation of syngraft tumors and metastasis that follows. Here, we report two transgenic (Tg) mouse lines that express nonfunctional mutant marker proteins, namely modified firefly luciferase (Luc2) or enhanced GFP (EGFP). These mice, named as Tg-mLuc2 and Tg-mEGFP, turned out to be immunologically tolerant to the respective tracking markers and thus efficiently accepted syngeneic cancer cells expressing the active forms of the markers. We then injected intrarectally the F 1 hybrid Tg mice (BALB/c × C57BL/6J) with Colon-26 (C26) colon cancer cells that originated from a BALB/c mouse. Even when C26 cells expressed active Luc2 or EGFP, they formed primary tumors in the Tg mice with only 10 4 cells per mouse compared with more than 10 6 cells required in the nontransgenic BALB/c hosts. Furthermore, we detected metastatic foci of C26 cells in the liver and lungs of the Tg mice by tracking the specific reporter activities. These results show the usefulness of the Tg mouse lines as recipients for transplantation experiments with the non-self tracking marker-expressing cells. © 2018 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.