Sample records for conditionally exponential decay

  1. Effects of proliferation on the decay of thermotolerance in Chinese hamster cells.

    PubMed

    Armour, E P; Li, G C; Hahn, G M

    1985-09-01

    Development and decay of thermotolerance were observed in Chinese hamster HA-1 cells. The thermotolerance kinetics of exponentially growing and fed plateau-phase cells were compared. Following a 10-min heat exposure at 45 degrees C, cells in both growth states had similar rates of development of tolerance to a subsequent 45-min exposure at 45 degrees C. This thermotolerant state started to decay between 12 and 24 hr after the initial heat exposure. The decay appeared to initiate slightly sooner in the exponentially growing cells when compared to the fed plateau-phase cells. During the decay phase, the rate of thermotolerance decay was similar in the two growth conditions. In other experiments, cells were induced to divide at a slower rate by chronic growth (3 months) in a low concentration of fetal calf serum. Under these low serum conditions cells became more sensitive to heat and the rate of decay of thermotolerance remained the same for exponentially growing cells. Plateau-phase cells were also more sensitive, but thermotolerance decayed more rapidly in these cells. Although dramatic cell cycle perturbations were seen in the exponentially growing cells, these changes appeared not to be related to thermotolerance kinetics.

  2. Decay rates of Gaussian-type I-balls and Bose-enhancement effects in 3+1 dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawasaki, Masahiro; Yamada, Masaki; ICRR, University of Tokyo, Kashiwa, 277-8582

    2014-02-03

    I-balls/oscillons are long-lived spatially localized lumps of a scalar field which may be formed after inflation. In the scalar field theory with monomial potential nearly and shallower than quadratic, which is motivated by chaotic inflationary models and supersymmetric theories, the scalar field configuration of I-balls is approximately Gaussian. If the I-ball interacts with another scalar field, the I-ball eventually decays into radiation. Recently, it was pointed out that the decay rate of I-balls increases exponentially by the effects of Bose enhancement under some conditions and a non-perturbative method to compute the exponential growth rate has been derived. In this paper,more » we apply the method to the Gaussian-type I-ball in 3+1 dimensions assuming spherical symmetry, and calculate the partial decay rates into partial waves, labelled by the angular momentum of daughter particles. We reveal the conditions that the I-ball decays exponentially, which are found to depend on the mass and angular momentum of daughter particles and also be affected by the quantum uncertainty in the momentum of daughter particles.« less

  3. Decay rates of Gaussian-type I-balls and Bose-enhancement effects in 3+1 dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawasaki, Masahiro; Yamada, Masaki, E-mail: kawasaki@icrr.u-tokyo.ac.jp, E-mail: yamadam@icrr.u-tokyo.ac.jp

    2014-02-01

    I-balls/oscillons are long-lived spatially localized lumps of a scalar field which may be formed after inflation. In the scalar field theory with monomial potential nearly and shallower than quadratic, which is motivated by chaotic inflationary models and supersymmetric theories, the scalar field configuration of I-balls is approximately Gaussian. If the I-ball interacts with another scalar field, the I-ball eventually decays into radiation. Recently, it was pointed out that the decay rate of I-balls increases exponentially by the effects of Bose enhancement under some conditions and a non-perturbative method to compute the exponential growth rate has been derived. In this paper,more » we apply the method to the Gaussian-type I-ball in 3+1 dimensions assuming spherical symmetry, and calculate the partial decay rates into partial waves, labelled by the angular momentum of daughter particles. We reveal the conditions that the I-ball decays exponentially, which are found to depend on the mass and angular momentum of daughter particles and also be affected by the quantum uncertainty in the momentum of daughter particles.« less

  4. Necessary conditions for weighted mean convergence of Lagrange interpolation for exponential weights

    NASA Astrophysics Data System (ADS)

    Damelin, S. B.; Jung, H. S.; Kwon, K. H.

    2001-07-01

    Given a continuous real-valued function f which vanishes outside a fixed finite interval, we establish necessary conditions for weighted mean convergence of Lagrange interpolation for a general class of even weights w which are of exponential decay on the real line or at the endpoints of (-1,1).

  5. Decaying two-dimensional turbulence in a circular container.

    PubMed

    Schneider, Kai; Farge, Marie

    2005-12-09

    We present direct numerical simulations of two-dimensional decaying turbulence at initial Reynolds number 5 x 10(4) in a circular container with no-slip boundary conditions. Starting with random initial conditions the flow rapidly exhibits self-organization into coherent vortices. We study their formation and the role of the viscous boundary layer on the production and decay of integral quantities. The no-slip wall produces vortices which are injected into the bulk flow and tend to compensate the enstrophy dissipation. The self-organization of the flow is reflected by the transition of the initially Gaussian vorticity probability density function (PDF) towards a distribution with exponential tails. Because of the presence of coherent vortices the pressure PDF become strongly skewed with exponential tails for negative values.

  6. Autoregressive processes with exponentially decaying probability distribution functions: applications to daily variations of a stock market index.

    PubMed

    Porto, Markus; Roman, H Eduardo

    2002-04-01

    We consider autoregressive conditional heteroskedasticity (ARCH) processes in which the variance sigma(2)(y) depends linearly on the absolute value of the random variable y as sigma(2)(y) = a+b absolute value of y. While for the standard model, where sigma(2)(y) = a + b y(2), the corresponding probability distribution function (PDF) P(y) decays as a power law for absolute value of y-->infinity, in the linear case it decays exponentially as P(y) approximately exp(-alpha absolute value of y), with alpha = 2/b. We extend these results to the more general case sigma(2)(y) = a+b absolute value of y(q), with 0 < q < 2. We find stretched exponential decay for 1 < q < 2 and stretched Gaussian behavior for 0 < q < 1. As an application, we consider the case q=1 as our starting scheme for modeling the PDF of daily (logarithmic) variations in the Dow Jones stock market index. When the history of the ARCH process is taken into account, the resulting PDF becomes a stretched exponential even for q = 1, with a stretched exponent beta = 2/3, in a much better agreement with the empirical data.

  7. Central Limit Theorem for Exponentially Quasi-local Statistics of Spin Models on Cayley Graphs

    NASA Astrophysics Data System (ADS)

    Reddy, Tulasi Ram; Vadlamani, Sreekar; Yogeshwaran, D.

    2018-04-01

    Central limit theorems for linear statistics of lattice random fields (including spin models) are usually proven under suitable mixing conditions or quasi-associativity. Many interesting examples of spin models do not satisfy mixing conditions, and on the other hand, it does not seem easy to show central limit theorem for local statistics via quasi-associativity. In this work, we prove general central limit theorems for local statistics and exponentially quasi-local statistics of spin models on discrete Cayley graphs with polynomial growth. Further, we supplement these results by proving similar central limit theorems for random fields on discrete Cayley graphs taking values in a countable space, but under the stronger assumptions of α -mixing (for local statistics) and exponential α -mixing (for exponentially quasi-local statistics). All our central limit theorems assume a suitable variance lower bound like many others in the literature. We illustrate our general central limit theorem with specific examples of lattice spin models and statistics arising in computational topology, statistical physics and random networks. Examples of clustering spin models include quasi-associated spin models with fast decaying covariances like the off-critical Ising model, level sets of Gaussian random fields with fast decaying covariances like the massive Gaussian free field and determinantal point processes with fast decaying kernels. Examples of local statistics include intrinsic volumes, face counts, component counts of random cubical complexes while exponentially quasi-local statistics include nearest neighbour distances in spin models and Betti numbers of sub-critical random cubical complexes.

  8. Lambert-Beer law in ocean waters: optical properties of water and of dissolved/suspended material, optical energy budgets.

    PubMed

    Stavn, R H

    1988-01-15

    The role of the Lambert-Beer law in ocean optics is critically examined. The Lambert-Beer law and the three-parameter model of the submarine light field are used to construct an optical energy budget for any hydrosol. It is further applied to the analytical exponential decay coefficient of the light field and used to estimate the optical properties and effects of the dissolved/suspended component in upper ocean layers. The concepts of the empirical exponential decay coefficient (diffuse attenuation coefficient) of the light field and a constant exponential decay coefficient for molecular water are analyzed quantitatively. A constant exponential decay coefficient for water is rejected. The analytical exponential decay coefficient is used to analyze optical gradients in ocean waters.

  9. Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien

    2018-04-01

    We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad's angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543-1608, 2004), (Bull Inst Math Acad Sin 1:1-78, 2006), (Bull Inst Math Acad Sin 6:151-243, 2011) and Lee et al. (Commun Math Phys 269:17-37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.

  10. Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien

    2018-06-01

    We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad's angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543-1608, 2004), (Bull Inst Math Acad Sin 1:1-78, 2006), (Bull Inst Math Acad Sin 6:151-243, 2011) and Lee et al. (Commun Math Phys 269:17-37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.

  11. Flows in a tube structure: Equation on the graph

    NASA Astrophysics Data System (ADS)

    Panasenko, Grigory; Pileckas, Konstantin

    2014-08-01

    The steady-state Navier-Stokes equations in thin structures lead to some elliptic second order equation for the macroscopic pressure on a graph. At the nodes of the graph the pressure satisfies Kirchoff-type junction conditions. In the non-steady case the problem for the macroscopic pressure on the graph becomes nonlocal in time. In the paper we study the existence and uniqueness of a solution to such one-dimensional model on the graph for a pipe-wise network. We also prove the exponential decay of the solution with respect to the time variable in the case when the data decay exponentially with respect to time.

  12. An Exponential Stability Result of a Timoshenko System with Thermoelasticity with Second Sound and in the Presence of Delay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apalara, Tijani A., E-mail: tijani@kfupm.edu.sa; Messaoudi, Salim A., E-mail: messaoud@kfupm.edu.sa

    In this paper, we consider a one-dimensional linear thermoelastic system of Timoshenko type with a delay, where the heat flux is given by Cattaneo’s law. We prove an exponential decay result under a smallness condition on the delay and a stability number introduced first in Santos et al. (J Diff Eqs 253:2715–2733, 2012), using a method different from that of Santos et al. (J Diff Eqs 253:2715–2733, 2012). We also reproduce the polynomial decay of Santos et al. (J Diff Eqs 253:2715–2733, 2012) using the multiplier method in the case of absence of delay. The polynomial decay issue in themore » presence of a small delay is an open question.« less

  13. Evidence of the Exponential Decay Emission in the Swift Gamma-ray Bursts

    NASA Technical Reports Server (NTRS)

    Sakamoto, T.; Sato, G.; Hill, J.E.; Krimm, H.A.; Yamazaki, R.; Takami, K.; Swindell, S.; Osborne, J.P.

    2007-01-01

    We present a systematic study of the steep decay emission of gamma-ray bursts (GRBs) observed by the Swift X-Ray Telescope (XRT). In contrast to the analysis in recent literature, instead of extrapolating the data of Burst Alert Telescope (BAT) down into the XRT energy range, we extrapolated the XRT data up to the BAT energy range, 15-25 keV, to produce the BAT and XRT composite light curve. Based on our composite light curve fitting, we have confirmed the existence of an exponential decay component which smoothly connects the BAT prompt data to the XRT steep decay for several GRBs. We also find that the XRT steep decay for some of the bursts can be well fitted by a combination of a power-law with an exponential decay model. We discuss that this exponential component may be the emission from an external shock and a sign of the deceleration of the outflow during the prompt phase.

  14. Impact of oxide thickness on the density distribution of near-interface traps in 4H-SiC MOS capacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Xufang; Okamoto, Dai; Hatakeyama, Tetsuo; Sometani, Mitsuru; Harada, Shinsuke; Iwamuro, Noriyuki; Yano, Hiroshi

    2018-06-01

    The impact of oxide thickness on the density distribution of near-interface traps (NITs) in SiO2/4H-SiC structure was investigated. We used the distributed circuit model that had successfully explained the frequency-dependent characteristics of both capacitance and conductance under strong accumulation conditions for SiO2/4H-SiC MOS capacitors with thick oxides by assuming an exponentially decaying distribution of NITs. In this work, it was found that the exponentially decaying distribution is the most plausible approximation of the true NIT distribution because it successfully explained the frequency dependences of capacitance and conductance under strong accumulation conditions for various oxide thicknesses. The thickness dependence of the NIT density distribution was also characterized. It was found that the NIT density increases with increasing oxide thickness, and a possible physical reason was discussed.

  15. Simulation and prediction of the thuringiensin abiotic degradation processes in aqueous solution by a radius basis function neural network model.

    PubMed

    Zhou, Jingwen; Xu, Zhenghong; Chen, Shouwen

    2013-04-01

    The thuringiensin abiotic degradation processes in aqueous solution under different conditions, with a pH range of 5.0-9.0 and a temperature range of 10-40°C, were systematically investigated by an exponential decay model and a radius basis function (RBF) neural network model, respectively. The half-lives of thuringiensin calculated by the exponential decay model ranged from 2.72 d to 16.19 d under the different conditions mentioned above. Furthermore, an RBF model with accuracy of 0.1 and SPREAD value 5 was employed to model the degradation processes. The results showed that the model could simulate and predict the degradation processes well. Both the half-lives and the prediction data showed that thuringiensin was an easily degradable antibiotic, which could be an important factor in the evaluation of its safety. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Discrete diffraction managed solitons: Threshold phenomena and rapid decay for general nonlinearities

    NASA Astrophysics Data System (ADS)

    Choi, Mi-Ran; Hundertmark, Dirk; Lee, Young-Ran

    2017-10-01

    We prove a threshold phenomenon for the existence/non-existence of energy minimizing solitary solutions of the diffraction management equation for strictly positive and zero average diffraction. Our methods allow for a large class of nonlinearities; they are, for example, allowed to change sign, and the weakest possible condition, it only has to be locally integrable, on the local diffraction profile. The solutions are found as minimizers of a nonlinear and nonlocal variational problem which is translation invariant. There exists a critical threshold λcr such that minimizers for this variational problem exist if their power is bigger than λcr and no minimizers exist with power less than the critical threshold. We also give simple criteria for the finiteness and strict positivity of the critical threshold. Our proof of existence of minimizers is rather direct and avoids the use of Lions' concentration compactness argument. Furthermore, we give precise quantitative lower bounds on the exponential decay rate of the diffraction management solitons, which confirm the physical heuristic prediction for the asymptotic decay rate. Moreover, for ground state solutions, these bounds give a quantitative lower bound for the divergence of the exponential decay rate in the limit of vanishing average diffraction. For zero average diffraction, we prove quantitative bounds which show that the solitons decay much faster than exponentially. Our results considerably extend and strengthen the results of Hundertmark and Lee [J. Nonlinear Sci. 22, 1-38 (2012) and Commun. Math. Phys. 309(1), 1-21 (2012)].

  17. How exponential are FREDs?

    NASA Astrophysics Data System (ADS)

    Schaefer, Bradley E.; Dyson, Samuel E.

    1996-08-01

    A common Gamma-Ray Burst-light curve shape is the ``FRED'' or ``fast-rise exponential-decay.'' But how exponential is the tail? Are they merely decaying with some smoothly decreasing decline rate, or is the functional form an exponential to within the uncertainties? If the shape really is an exponential, then it would be reasonable to assign some physically significant time scale to the burst. That is, there would have to be some specific mechanism that produces the characteristic decay profile. So if an exponential is found, then we will know that the decay light curve profile is governed by one mechanism (at least for simple FREDs) instead of by complex/multiple mechanisms. As such, a specific number amenable to theory can be derived for each FRED. We report on the fitting of exponentials (and two other shapes) to the tails of ten bright BATSE bursts. The BATSE trigger numbers are 105, 257, 451, 907, 1406, 1578, 1883, 1885, 1989, and 2193. Our technique was to perform a least square fit to the tail from some time after peak until the light curve approaches background. We find that most FREDs are not exponentials, although a few come close. But since the other candidate shapes come close just as often, we conclude that the FREDs are misnamed.

  18. Repulsive Casimir force in Bose–Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Mehedi Faruk, Mir; Biswas, Shovon

    2018-04-01

    We study the Casimir effect for a three dimensional system of ideal free massive Bose gas in a slab geometry with Zaremba and anti-periodic boundary conditions. It is found that for these type of boundary conditions the resulting Casimir force is repulsive in nature, in contrast with usual periodic, Dirichlet or Neumann boundary condition where the Casimir force is attractive (Martin and Zagrebnov 2006 Europhys. Lett. 73 15). Casimir forces in these boundary conditions also maintain a power law decay function below condensation temperature and exponential decay function above the condensation temperature albeit with a positive sign, identifying the repulsive nature of the force.

  19. Analysis of projectile motion: A comparative study using fractional operators with power law, exponential decay and Mittag-Leffler kernel

    NASA Astrophysics Data System (ADS)

    Gómez-Aguilar, J. F.; Escobar-Jiménez, R. F.; López-López, M. G.; Alvarado-Martínez, V. M.

    2018-03-01

    In this paper, the two-dimensional projectile motion was studied; for this study two cases were considered, for the first one, we considered that there is no air resistance and, for the second case, we considered a resisting medium k . The study was carried out by using fractional calculus. The solution to this study was obtained by using fractional operators with power law, exponential decay and Mittag-Leffler kernel in the range of γ \\in (0,1] . These operators were considered in the Liouville-Caputo sense to use physical initial conditions with a known physical interpretation. The range and the maximum height of the projectile were obtained using these derivatives. With the aim of exploring the validity of the obtained results, we compared our results with experimental data given in the literature. A multi-objective particle swarm optimization approach was used for generating Pareto-optimal solutions for the parameters k and γ for different fixed values of velocity v0 and angle θ . The results showed some relevant qualitative differences between the use of power law, exponential decay and Mittag-Leffler law.

  20. The shock waves in decaying supersonic turbulence

    NASA Astrophysics Data System (ADS)

    Smith, M. D.; Mac Low, M.-M.; Zuev, J. M.

    2000-04-01

    We here analyse numerical simulations of supersonic, hypersonic and magnetohydrodynamic turbulence that is free to decay. Our goals are to understand the dynamics of the decay and the characteristic properties of the shock waves produced. This will be useful for interpretation of observations of both motions in molecular clouds and sources of non-thermal radiation. We find that decaying hypersonic turbulence possesses an exponential tail of fast shocks and an exponential decay in time, i.e. the number of shocks is proportional to t exp (-ktv) for shock velocity jump v and mean initial wavenumber k. In contrast to the velocity gradients, the velocity Probability Distribution Function remains Gaussian with a more complex decay law. The energy is dissipated not by fast shocks but by a large number of low Mach number shocks. The power loss peaks near a low-speed turn-over in an exponential distribution. An analytical extension of the mapping closure technique is able to predict the basic decay features. Our analytic description of the distribution of shock strengths should prove useful for direct modeling of observable emission. We note that an exponential distribution of shocks such as we find will, in general, generate very low excitation shock signatures.

  1. Disordered Kitaev chains with long-range pairing.

    PubMed

    Cai, Xiaoming

    2017-03-22

    We study the competition of disorder and superconductivity for a generalized Kitaev model in incommensurate potentials. The generalized Kitaev model describes one dimensional spinless fermions with long-range p-wave superconducting pairing, which decays with distance l as a power law  ∼[Formula: see text]. We focus on the transition from the topological superconducting phase to the topologically trivial Anderson localized phase, and effects of the exponent α on this phase transition. In the topological superconducting phase, for a system under open boundary condition the amplitude of zero-mode Majorana fermion has a hybrid exponential-algebraic decay as the distance increases from the edge. In the Anderson localized phase, some single-particle states remain critical for very strong disorders and the number of critical states increases as α decreases. In addition, except for critical disorders, the correlation function always has an exponential decay at the short range and an algebraic decay at the long range. Phase transition points are also numerically determined and the topological phase transition happens earlier at a smaller disorder strength for a system with smaller α.

  2. Complex Degradation Processes Lead to Non-Exponential Decay Patterns and Age-Dependent Decay Rates of Messenger RNA

    PubMed Central

    Deneke, Carlus; Lipowsky, Reinhard; Valleriani, Angelo

    2013-01-01

    Experimental studies on mRNA stability have established several, qualitatively distinct decay patterns for the amount of mRNA within the living cell. Furthermore, a variety of different and complex biochemical pathways for mRNA degradation have been identified. The central aim of this paper is to bring together both the experimental evidence about the decay patterns and the biochemical knowledge about the multi-step nature of mRNA degradation in a coherent mathematical theory. We first introduce a mathematical relationship between the mRNA decay pattern and the lifetime distribution of individual mRNA molecules. This relationship reveals that the mRNA decay patterns at steady state expression level must obey a general convexity condition, which applies to any degradation mechanism. Next, we develop a theory, formulated as a Markov chain model, that recapitulates some aspects of the multi-step nature of mRNA degradation. We apply our theory to experimental data for yeast and explicitly derive the lifetime distribution of the corresponding mRNAs. Thereby, we show how to extract single-molecule properties of an mRNA, such as the age-dependent decay rate and the residual lifetime. Finally, we analyze the decay patterns of the whole translatome of yeast cells and show that yeast mRNAs can be grouped into three broad classes that exhibit three distinct decay patterns. This paper provides both a method to accurately analyze non-exponential mRNA decay patterns and a tool to validate different models of degradation using decay data. PMID:23408982

  3. The Analysis of Fluorescence Decay by a Method of Moments

    PubMed Central

    Isenberg, Irvin; Dyson, Robert D.

    1969-01-01

    The fluorescence decay of the excited state of most biopolymers, and biopolymer conjugates and complexes, is not, in general, a simple exponential. The method of moments is used to establish a means of analyzing such multi-exponential decays. The method is tested by the use of computer simulated data, assuming that the limiting error is determined by noise generated by a pseudorandom number generator. Multi-exponential systems with relatively closely spaced decay constants may be successfully analyzed. The analyses show the requirements, in terms of precision, that data must meet. The results may be used both as an aid in the design of equipment and in the analysis of data subsequently obtained. PMID:5353139

  4. In situ passivation of GaAsP nanowires.

    PubMed

    Himwas, C; Collin, S; Rale, P; Chauvin, N; Patriarche, G; Oehler, F; Julien, F H; Travers, L; Harmand, J-C; Tchernycheva, M

    2017-12-08

    We report on the structural and optical properties of GaAsP nanowires (NWs) grown by molecular-beam epitaxy. By adjusting the alloy composition in the NWs, the transition energy was tuned to the optimal value required for tandem III-V/silicon solar cells. We discovered that an unintentional shell was also formed during the GaAsP NW growth. The NW surface was passivated by an in situ deposition of a radial Ga(As)P shell. Different shell compositions and thicknesses were investigated. We demonstrate that the optimal passivation conditions for GaAsP NWs (with a gap of 1.78 eV) are obtained with a 5 nm thick GaP shell. This passivation enhances the luminescence intensity of the NWs by 2 orders of magnitude and yields a longer luminescence decay. The luminescence dynamics changes from single exponential decay with a 4 ps characteristic time in non-passivated NWs to a bi-exponential decay with characteristic times of 85 and 540 ps in NWs with GaP shell passivation.

  5. On the origin of non-exponential fluorescence decays in enzyme-ligand complex

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, Jakub; Kierdaszuk, Borys

    2004-05-01

    Complex fluorescence decays have usually been analyzed with the aid of a multi-exponential model, but interpretation of the individual exponential terms has not been adequately characterized. In such cases the intensity decays were also analyzed in terms of the continuous lifetime distribution as a consequence of an interaction of fluorophore with environment, conformational heterogeneity or their dynamical nature. We show that non-exponential fluorescence decay of the enzyme-ligand complexes may results from time dependent energy transport. The latter, to our opinion, may be accounted for by electron transport from the protein tyrosines to their neighbor residues. We introduce the time-dependent hopping rate in the form v(t)~(a+bt)-1. This in turn leads to the luminescence decay function in the form I(t)=Ioexp(-t/τ1)(1+lt/γτ2)-γ. Such a decay function provides good fits to highly complex fluorescence decays. The power-like tail implies the time hierarchy in migration energy process due to the hierarchical energy-level structure. Moreover, such a power-like term is a manifestation of so called Tsallis nonextensive statistic and is suitable for description of the systems with long-range interactions, memory effect as well as with fluctuations of characteristic lifetime of fluorescence. The proposed decay function was applied in analysis of fluorescence decays of tyrosine protein, i.e. the enzyme purine nucleoside phosphorylase from E. coli in a complex with formycin A (an inhibitor) and orthophosphate (a co-substrate).

  6. Inference of the ring current ion composition by means of charge exchange decay

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Bewtra, N. K.; Hoffman, R. A.

    1978-01-01

    The analysis of the measured ion fluxes during the several day storm recovery period and the assumption that beside hydrogen other ions were present and that the decays were exponential in nature, it was possible to establish three separate lifetimes for the ions. These fitted decay lifetimes are in excellent agreement with the expected charge exchange decay lifetimes for H(+), O(+), and He(+) in the energy and L-value range of the data. This inference technique, thus, establishes the presence of measurable and appreciable quantities of oxygen and helium ions as well as protons in the storm-time ring current. Indications that He(+) may also be present under these same conditions were found.

  7. Statistical assessment of bi-exponential diffusion weighted imaging signal characteristics induced by intravoxel incoherent motion in malignant breast tumors

    PubMed Central

    Wong, Oi Lei; Lo, Gladys G.; Chan, Helen H. L.; Wong, Ting Ting; Cheung, Polly S. Y.

    2016-01-01

    Background The purpose of this study is to statistically assess whether bi-exponential intravoxel incoherent motion (IVIM) model better characterizes diffusion weighted imaging (DWI) signal of malignant breast tumor than mono-exponential Gaussian diffusion model. Methods 3 T DWI data of 29 malignant breast tumors were retrospectively included. Linear least-square mono-exponential fitting and segmented least-square bi-exponential fitting were used for apparent diffusion coefficient (ADC) and IVIM parameter quantification, respectively. F-test and Akaike Information Criterion (AIC) were used to statistically assess the preference of mono-exponential and bi-exponential model using region-of-interests (ROI)-averaged and voxel-wise analysis. Results For ROI-averaged analysis, 15 tumors were significantly better fitted by bi-exponential function and 14 tumors exhibited mono-exponential behavior. The calculated ADC, D (true diffusion coefficient) and f (pseudo-diffusion fraction) showed no significant differences between mono-exponential and bi-exponential preferable tumors. Voxel-wise analysis revealed that 27 tumors contained more voxels exhibiting mono-exponential DWI decay while only 2 tumors presented more bi-exponential decay voxels. ADC was consistently and significantly larger than D for both ROI-averaged and voxel-wise analysis. Conclusions Although the presence of IVIM effect in malignant breast tumors could be suggested, statistical assessment shows that bi-exponential fitting does not necessarily better represent the DWI signal decay in breast cancer under clinically typical acquisition protocol and signal-to-noise ratio (SNR). Our study indicates the importance to statistically examine the breast cancer DWI signal characteristics in practice. PMID:27709078

  8. Multi-exponential analysis of magnitude MR images using a quantitative multispectral edge-preserving filter.

    PubMed

    Bonny, Jean Marie; Boespflug-Tanguly, Odile; Zanca, Michel; Renou, Jean Pierre

    2003-03-01

    A solution for discrete multi-exponential analysis of T(2) relaxation decay curves obtained in current multi-echo imaging protocol conditions is described. We propose a preprocessing step to improve the signal-to-noise ratio and thus lower the signal-to-noise ratio threshold from which a high percentage of true multi-exponential detection is detected. It consists of a multispectral nonlinear edge-preserving filter that takes into account the signal-dependent Rician distribution of noise affecting magnitude MR images. Discrete multi-exponential decomposition, which requires no a priori knowledge, is performed by a non-linear least-squares procedure initialized with estimates obtained from a total least-squares linear prediction algorithm. This approach was validated and optimized experimentally on simulated data sets of normal human brains.

  9. Teaching Exponential Growth and Decay: Examples from Medicine

    ERIC Educational Resources Information Center

    Hobbie, Russell K.

    1973-01-01

    A treatment of exponential growth and decay is sketched which does not require knowledge of calculus, and hence, it can be applied to many cases in the biological and medical sciences. Some examples are bacterial growth, sterilization, clearance, and drug absorption. (DF)

  10. Robust Bayesian Fluorescence Lifetime Estimation, Decay Model Selection and Instrument Response Determination for Low-Intensity FLIM Imaging

    PubMed Central

    Rowley, Mark I.; Coolen, Anthonius C. C.; Vojnovic, Borivoj; Barber, Paul R.

    2016-01-01

    We present novel Bayesian methods for the analysis of exponential decay data that exploit the evidence carried by every detected decay event and enables robust extension to advanced processing. Our algorithms are presented in the context of fluorescence lifetime imaging microscopy (FLIM) and particular attention has been paid to model the time-domain system (based on time-correlated single photon counting) with unprecedented accuracy. We present estimates of decay parameters for mono- and bi-exponential systems, offering up to a factor of two improvement in accuracy compared to previous popular techniques. Results of the analysis of synthetic and experimental data are presented, and areas where the superior precision of our techniques can be exploited in Förster Resonance Energy Transfer (FRET) experiments are described. Furthermore, we demonstrate two advanced processing methods: decay model selection to choose between differing models such as mono- and bi-exponential, and the simultaneous estimation of instrument and decay parameters. PMID:27355322

  11. Cooperative bi-exponential decay of dye emission coupled via plasmons.

    PubMed

    Lyvers, David P; Moazzezi, Mojtaba; de Silva, Vashista C; Brown, Dean P; Urbas, Augustine M; Rostovtsev, Yuri V; Drachev, Vladimir P

    2018-06-22

    Bi-exponential decay of dye fluorescence near the surface of plasmonic metamaterials and core-shell nanoparticles is shown to be an intrinsic property of the coupled system. Indeed, the Dicke, cooperative states involve two groups of transitions: super-radiant, from the most excited to the ground states and sub-radiant, which cannot reach the ground state. The relaxation in the sub-radiant system occurs mainly due to the interaction with the plasmon modes. Our theory shows that the relaxation leads to the population of the sub-radiant states by dephasing the super-radiant Dicke states giving rise to the bi-exponential decay in agreement with the experiments. We use a set of metamaterial samples consisting of gratings of paired silver nanostrips coated with Rh800 dye molecules, having resonances in the same spectral range. The bi-exponential decay is demonstrated for Au\\SiO 2 \\ATTO655 core-shell nanoparticles as well, which persists even when averaging over a broad range of the coupling parameter.

  12. On the origin of stretched exponential (Kohlrausch) relaxation kinetics in the room temperature luminescence decay of colloidal quantum dots.

    PubMed

    Bodunov, E N; Antonov, Yu A; Simões Gamboa, A L

    2017-03-21

    The non-exponential room temperature luminescence decay of colloidal quantum dots is often well described by a stretched exponential function. However, the physical meaning of the parameters of the function is not clear in the majority of cases reported in the literature. In this work, the room temperature stretched exponential luminescence decay of colloidal quantum dots is investigated theoretically in an attempt to identify the underlying physical mechanisms associated with the parameters of the function. Three classes of non-radiative transition processes between the excited and ground states of colloidal quantum dots are discussed: long-range resonance energy transfer, multiphonon relaxation, and contact quenching without diffusion. It is shown that multiphonon relaxation cannot explain a stretched exponential functional form of the luminescence decay while such dynamics of relaxation can be understood in terms of long-range resonance energy transfer to acceptors (molecules, quantum dots, or anharmonic molecular vibrations) in the environment of the quantum dots acting as energy-donors or by contact quenching by acceptors (surface traps or molecules) distributed statistically on the surface of the quantum dots. These non-radiative transition processes are assigned to different ranges of the stretching parameter β.

  13. On the Time-Dependent Analysis of Gamow Decay

    ERIC Educational Resources Information Center

    Durr, Detlef; Grummt, Robert; Kolb, Martin

    2011-01-01

    Gamow's explanation of the exponential decay law uses complex "eigenvalues" and exponentially growing "eigenfunctions". This raises the question, how Gamow's description fits into the quantum mechanical description of nature, which is based on real eigenvalues and square integrable wavefunctions. Observing that the time evolution of any…

  14. Compressed exponential relaxation in liquid silicon: Universal feature of the crossover from ballistic to diffusive behavior in single-particle dynamics

    NASA Astrophysics Data System (ADS)

    Morishita, Tetsuya

    2012-07-01

    We report a first-principles molecular-dynamics study of the relaxation dynamics in liquid silicon (l-Si) over a wide temperature range (1000-2200 K). We find that the intermediate scattering function for l-Si exhibits a compressed exponential decay above 1200 K including the supercooled regime, which is in stark contrast to that for normal "dense" liquids which typically show stretched exponential decay in the supercooled regime. The coexistence of particles having ballistic-like motion and those having diffusive-like motion is demonstrated, which accounts for the compressed exponential decay in l-Si. An attempt to elucidate the crossover from the ballistic to the diffusive regime in the "time-dependent" diffusion coefficient is made and the temperature-independent universal feature of the crossover is disclosed.

  15. Simplifying the Mathematical Treatment of Radioactive Decay

    ERIC Educational Resources Information Center

    Auty, Geoff

    2011-01-01

    Derivation of the law of radioactive decay is considered without prior knowledge of calculus or the exponential series. Calculus notation and exponential functions are used because ultimately they cannot be avoided, but they are introduced in a simple way and explained as needed. (Contains 10 figures, 1 box, and 1 table.)

  16. Exploring Exponential Decay Using Limited Resources

    ERIC Educational Resources Information Center

    DePierro, Ed; Garafalo, Fred; Gordon, Patrick

    2018-01-01

    Science students need exposure to activities that will help them to become familiar with phenomena exhibiting exponential decay. This paper describes an experiment that allows students to determine the rate of thermal energy loss by a hot object to its surroundings. It requires limited equipment, is safe, and gives reasonable results. Students…

  17. Power function decay of hydraulic conductivity for a TOPMODEL-based infiltration routine

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Endreny, Theodore A.; Hassett, James M.

    2006-11-01

    TOPMODEL rainfall-runoff hydrologic concepts are based on soil saturation processes, where soil controls on hydrograph recession have been represented by linear, exponential, and power function decay with soil depth. Although these decay formulations have been incorporated into baseflow decay and topographic index computations, only the linear and exponential forms have been incorporated into infiltration subroutines. This study develops a power function formulation of the Green and Ampt infiltration equation for the case where the power n = 1 and 2. This new function was created to represent field measurements in the New York City, USA, Ward Pound Ridge drinking water supply area, and provide support for similar sites reported by other researchers. Derivation of the power-function-based Green and Ampt model begins with the Green and Ampt formulation used by Beven in deriving an exponential decay model. Differences between the linear, exponential, and power function infiltration scenarios are sensitive to the relative difference between rainfall rates and hydraulic conductivity. Using a low-frequency 30 min design storm with 4.8 cm h-1 rain, the n = 2 power function formulation allows for a faster decay of infiltration and more rapid generation of runoff. Infiltration excess runoff is rare in most forested watersheds, and advantages of the power function infiltration routine may primarily include replication of field-observed processes in urbanized areas and numerical consistency with power function decay of baseflow and topographic index distributions. Equation development is presented within a TOPMODEL-based Ward Pound Ridge rainfall-runoff simulation. Copyright

  18. Local perturbations perturb—exponentially-locally

    NASA Astrophysics Data System (ADS)

    De Roeck, W.; Schütz, M.

    2015-06-01

    We elaborate on the principle that for gapped quantum spin systems with local interaction, "local perturbations [in the Hamiltonian] perturb locally [the groundstate]." This principle was established by Bachmann et al. [Commun. Math. Phys. 309, 835-871 (2012)], relying on the "spectral flow technique" or "quasi-adiabatic continuation" [M. B. Hastings, Phys. Rev. B 69, 104431 (2004)] to obtain locality estimates with sub-exponential decay in the distance to the spatial support of the perturbation. We use ideas of Hamza et al. [J. Math. Phys. 50, 095213 (2009)] to obtain similarly a transformation between gapped eigenvectors and their perturbations that is local with exponential decay. This allows to improve locality bounds on the effect of perturbations on the low lying states in certain gapped models with a unique "bulk ground state" or "topological quantum order." We also give some estimate on the exponential decay of correlations in models with impurities where some relevant correlations decay faster than one would naively infer from the global gap of the system, as one also expects in disordered systems with a localized groundstate.

  19. Physical mechanism responsible for the stretched exponential decay behavior of aging organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Féry, C.; Racine, B.; Vaufrey, D.; Doyeux, H.; Cinà, S.

    2005-11-01

    The main process responsible for the luminance degradation in organic light-emitting diodes (OLEDs) driven under constant current has not yet been identified. In this paper, we propose an approach to describe the intrinsic mechanisms involved in the OLED aging. We first show that a stretched exponential decay can be used to fit almost all the luminance versus time curves obtained under different driving conditions. In this way, we are able to prove that they can all be described by employing a single free parameter model. By using an approach based on local relaxation events, we will demonstrate that a single mechanism is responsible for the dominant aging process. Furthermore, we will demonstrate that the main relaxation event is the annihilation of one emissive center. We then use our model to fit all the experimental data measured under different driving condition, and show that by carefully fitting the accelerated luminance lifetime-curves, we can extrapolate the low-luminance lifetime needed for real display applications, with a high degree of accuracy.

  20. Generalized analytical solutions to sequentially coupled multi-species advective-dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition

    NASA Astrophysics Data System (ADS)

    Chen, Jui-Sheng; Liu, Chen-Wuing; Liang, Ching-Ping; Lai, Keng-Hsin

    2012-08-01

    SummaryMulti-species advective-dispersive transport equations sequentially coupled with first-order decay reactions are widely used to describe the transport and fate of the decay chain contaminants such as radionuclide, chlorinated solvents, and nitrogen. Although researchers attempted to present various types of methods for analytically solving this transport equation system, the currently available solutions are mostly limited to an infinite or a semi-infinite domain. A generalized analytical solution for the coupled multi-species transport problem in a finite domain associated with an arbitrary time-dependent source boundary is not available in the published literature. In this study, we first derive generalized analytical solutions for this transport problem in a finite domain involving arbitrary number of species subject to an arbitrary time-dependent source boundary. Subsequently, we adopt these derived generalized analytical solutions to obtain explicit analytical solutions for a special-case transport scenario involving an exponentially decaying Bateman type time-dependent source boundary. We test the derived special-case solutions against the previously published coupled 4-species transport solution and the corresponding numerical solution with coupled 10-species transport to conduct the solution verification. Finally, we compare the new analytical solutions derived for a finite domain against the published analytical solutions derived for a semi-infinite domain to illustrate the effect of the exit boundary condition on coupled multi-species transport with an exponential decaying source boundary. The results show noticeable discrepancies between the breakthrough curves of all the species in the immediate vicinity of the exit boundary obtained from the analytical solutions for a finite domain and a semi-infinite domain for the dispersion-dominated condition.

  1. Anomalous T2 relaxation in normal and degraded cartilage.

    PubMed

    Reiter, David A; Magin, Richard L; Li, Weiguo; Trujillo, Juan J; Pilar Velasco, M; Spencer, Richard G

    2016-09-01

    To compare the ordinary monoexponential model with three anomalous relaxation models-the stretched Mittag-Leffler, stretched exponential, and biexponential functions-using both simulated and experimental cartilage relaxation data. Monte Carlo simulations were used to examine both the ability of identifying a given model under high signal-to-noise ratio (SNR) conditions and the accuracy and precision of parameter estimates under more modest SNR as would be encountered clinically. Experimental transverse relaxation data were analyzed from normal and enzymatically degraded cartilage samples under high SNR and rapid echo sampling to compare each model. Both simulation and experimental results showed improvement in signal representation with the anomalous relaxation models. The stretched exponential model consistently showed the lowest mean squared error in experimental data and closely represents the signal decay over multiple decades of the decay time (e.g., 1-10 ms, 10-100 ms, and >100 ms). The stretched exponential parameter αse showed an inverse correlation with biochemically derived cartilage proteoglycan content. Experimental results obtained at high field suggest potential application of αse as a measure of matrix integrity. Simulation reflecting more clinical imaging conditions, indicate the ability to robustly estimate αse and distinguish between normal and degraded tissue, highlighting its potential as a biomarker for human studies. Magn Reson Med 76:953-962, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  2. An efficiency-decay model for Lumen maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobashev, Georgiy; Baldasaro, Nicholas G.; Mills, Karmann C.

    Proposed is a multicomponent model for the estimation of light-emitting diode (LED) lumen maintenance using test data that were acquired in accordance with the test standards of the Illumination Engineering Society of North America, i.e., LM-80-08. Lumen maintenance data acquired with this test do not always follow exponential decay, particularly data collected in the first 1000 h or under low-stress (e.g., low temperature) conditions. This deviation from true exponential behavior makes it difficult to use the full data set in models for the estimation of lumen maintenance decay coefficient. As a result, critical information that is relevant to the earlymore » life or low-stress operation of LED light sources may be missed. We present an efficiency-decay model approach, where all lumen maintenance data can be used to provide an alternative estimate of the decay rate constant. The approach considers a combined model wherein one part describes an initial “break-in” period and another part describes the decay in lumen maintenance. During the break-in period, several mechanisms within the LED can act to produce a small (typically <; 10%) increase in luminous flux. The effect of the break-in period and its longevity is more likely to be present at low-ambient temperatures and currents, where the discrepancy between a standard TM-21 approach and our proposed model is the largest. For high temperatures and currents, the difference between the estimates becomes nonsubstantial. Finally, our approach makes use of all the collected data and avoids producing unrealistic estimates of the decay coefficient.« less

  3. An efficiency-decay model for Lumen maintenance

    DOE PAGES

    Bobashev, Georgiy; Baldasaro, Nicholas G.; Mills, Karmann C.; ...

    2016-08-25

    Proposed is a multicomponent model for the estimation of light-emitting diode (LED) lumen maintenance using test data that were acquired in accordance with the test standards of the Illumination Engineering Society of North America, i.e., LM-80-08. Lumen maintenance data acquired with this test do not always follow exponential decay, particularly data collected in the first 1000 h or under low-stress (e.g., low temperature) conditions. This deviation from true exponential behavior makes it difficult to use the full data set in models for the estimation of lumen maintenance decay coefficient. As a result, critical information that is relevant to the earlymore » life or low-stress operation of LED light sources may be missed. We present an efficiency-decay model approach, where all lumen maintenance data can be used to provide an alternative estimate of the decay rate constant. The approach considers a combined model wherein one part describes an initial “break-in” period and another part describes the decay in lumen maintenance. During the break-in period, several mechanisms within the LED can act to produce a small (typically <; 10%) increase in luminous flux. The effect of the break-in period and its longevity is more likely to be present at low-ambient temperatures and currents, where the discrepancy between a standard TM-21 approach and our proposed model is the largest. For high temperatures and currents, the difference between the estimates becomes nonsubstantial. Finally, our approach makes use of all the collected data and avoids producing unrealistic estimates of the decay coefficient.« less

  4. Unfolding of Ubiquitin Studied by Picosecond Time-Resolved Fluorescence of the Tyrosine Residue

    PubMed Central

    Noronha, Melinda; Lima, João C.; Bastos, Margarida; Santos, Helena; Maçanita, António L.

    2004-01-01

    The photophysics of the single tyrosine in bovine ubiquitin (UBQ) was studied by picosecond time-resolved fluorescence spectroscopy, as a function of pH and along thermal and chemical unfolding, with the following results: First, at room temperature (25°C) and below pH 1.5, native UBQ shows single-exponential decays. From pH 2 to 7, triple-exponential decays were observed and the three decay times were attributed to the presence of tyrosine, a tyrosine-carboxylate hydrogen-bonded complex, and excited-state tyrosinate. Second, at pH 1.5, the water-exposed tyrosine of either thermally or chemically unfolded UBQ decays as a sum of two exponentials. The double-exponential decays were interpreted and analyzed in terms of excited-state intramolecular electron transfer from the phenol to the amide moiety, occurring in one of the three rotamers of tyrosine in UBQ. The values of the rate constants indicate the presence of different unfolded states and an increase in the mobility of the tyrosine residue during unfolding. Finally, from the pre-exponential coefficients of the fluorescence decays, the unfolding equilibrium constants (KU) were calculated, as a function of temperature or denaturant concentration. Despite the presence of different unfolded states, both thermal and chemical unfolding data of UBQ could be fitted to a two-state model. The thermodynamic parameters Tm = 54.6°C, ΔHTm = 56.5 kcal/mol, and ΔCp = 890 cal/mol//K, were determined from the unfolding equilibrium constants calculated accordingly, and compared to values obtained by differential scanning calorimetry also under the assumption of a two-state transition, Tm = 57.0°C, ΔHm= 51.4 kcal/mol, and ΔCp = 730 cal/mol//K. PMID:15454455

  5. A note on free and forced Rossby wave solutions: The case of a straight coast and a channel

    NASA Astrophysics Data System (ADS)

    Graef, Federico

    2017-03-01

    The free Rossby wave (RW) solutions in an ocean with a straight coast when the offshore wavenumber of incident (l1) and reflected (l2) wave are equal or complex are discussed. If l1 = l2 the energy streams along the coast and a uniformly valid solution cannot be found; if l1,2 are complex it yields the sum of an exponentially decaying and growing (away from the coast) Rossby wave. The channel does not admit these solutions as free modes. If the wavenumber vectors of the RWs are perpendicular to the coast, the boundary condition of no normal flow is trivially satisfied and the value of the streamfunction does not need to vanish at the coast. A solution that satisfies Kelvin's theorem of time-independent circulation at the coast is proposed. The forced RW solutions when the ocean's forcing is a single Fourier component are studied. If the forcing is resonant, i.e. a free Rossby wave (RW), the linear response will depend critically on whether the wave carries energy perpendicular to the channel or not. In the first case, the amplitude of the response is linear in the direction normal to the channel, y, and in the second it has a parabolic profile in y. Examples of these solutions are shown for channels with parameters resembling the Mozambique Channel, the Tasman Sea, the Denmark Strait and the English Channel. The solutions for the single coast are unbounded, except when the forcing is a RW trapped against the coast. If the forcing is non-resonant, exponentially decaying or trapped RWs could be excited in the coast and both the exponentially ;decaying; and exponentially ;growing; RW could be excited in the channel.

  6. A Fourier method for the analysis of exponential decay curves.

    PubMed

    Provencher, S W

    1976-01-01

    A method based on the Fourier convolution theorem is developed for the analysis of data composed of random noise, plus an unknown constant "base line," plus a sum of (or an integral over a continuous spectrum of) exponential decay functions. The Fourier method's usual serious practical limitation of needing high accuracy data over a very wide range is eliminated by the introduction of convergence parameters and a Gaussian taper window. A computer program is described for the analysis of discrete spectra, where the data involves only a sum of exponentials. The program is completely automatic in that the only necessary inputs are the raw data (not necessarily in equal intervals of time); no potentially biased initial guesses concerning either the number or the values of the components are needed. The outputs include the number of components, the amplitudes and time constants together with their estimated errors, and a spectral plot of the solution. The limiting resolving power of the method is studied by analyzing a wide range of simulated two-, three-, and four-component data. The results seem to indicate that the method is applicable over a considerably wider range of conditions than nonlinear least squares or the method of moments.

  7. Exponentially decaying interaction potential of cavity solitons

    NASA Astrophysics Data System (ADS)

    Anbardan, Shayesteh Rahmani; Rimoldi, Cristina; Kheradmand, Reza; Tissoni, Giovanna; Prati, Franco

    2018-03-01

    We analyze the interaction of two cavity solitons in an optically injected vertical cavity surface emitting laser above threshold. We show that they experience an attractive force even when their distance is much larger than their diameter, and eventually they merge. Since the merging time depends exponentially on the initial distance, we suggest that the attraction could be associated with an exponentially decaying interaction potential, similarly to what is found for hydrophobic materials. We also show that the merging time is simply related to the characteristic times of the laser, photon lifetime, and carrier lifetime.

  8. Force on a storage ring vacuum chamber after sudden turn-off of a magnet power supply

    NASA Astrophysics Data System (ADS)

    Sinha, Gautam; Prabhu, S. S.

    2011-10-01

    We are commissioning a 2.5 GeV synchrotron radiation source (SRS) where electrons travel in high vacuum inside the vacuum chambers made of aluminum alloys. These chambers are kept between the pole gaps of magnets and are made to facilitate the radiation coming out of the storage ring to the experimental station. These chambers are connected by metallic bellows. During the commissioning phase of the SRS, the metallic bellows became ruptured due to the frequent tripping of the dipole magnet power supply. The machine was down for quite some time. In the case of a power supply trip, the current in the magnets decays exponentially. It was observed experimentally that the fast B field decay generates a large eddy current in the chambers and consequently the chambers are subjected to a huge Lorentz force. This motivated us to develop a theoretical model to study the force acting on a metallic plate when exposed to an exponentially decaying field and then to extend it for a rectangular vacuum chamber. The problem is formulated using Maxwell’s equations and converted to the inhomogeneous Helmholtz equation. After taking the Laplace transform, the equation is solved with appropriate boundary conditions. Final results are obtained after taking the appropriate inverse Laplace transform. The expressions for eddy current contour and magnetic field produced by the eddy current are also derived. Variations of the force on chambers of different wall thickness due to spatially varying and exponentially time decaying field are presented. The result is a general theory which can be applied to different geometries and calculation of power loss as well. Comparisons are made with results obtained by simulation using a finite element based code, for quick verification of the theoretical model.

  9. Escape time, relaxation, and sticky states of a softened Henon-Heiles model: Low-frequency vibrational mode effects and glass relaxation

    NASA Astrophysics Data System (ADS)

    Toledo-Marín, J. Quetzalcóatl; Naumis, Gerardo G.

    2018-04-01

    Here we study the relaxation of a chain consisting of three masses joined by nonlinear springs and periodic conditions when the stiffness is weakened. This system, when expressed in their normal coordinates, yields a softened Henon-Heiles system. By reducing the stiffness of one low-frequency vibrational mode, a faster relaxation is enabled. This is due to a reduction of the energy barrier heights along the softened normal mode as well as for a widening of the opening channels of the energy landscape in configurational space. The relaxation is for the most part exponential, and can be explained by a simple flux equation. Yet, for some initial conditions the relaxation follows as a power law, and in many cases there is a regime change from exponential to power-law decay. We pinpoint the initial conditions for the power-law decay, finding two regions of sticky states. For such states, quasiperiodic orbits are found since almost for all components of the initial momentum orientation, the system is trapped inside two pockets of configurational space. The softened Henon-Heiles model presented here is intended as the simplest model in order to understand the interplay of rigidity, nonlinear interactions and relaxation for nonequilibrium systems such as glass-forming melts or soft matter. Our softened system can be applied to model β relaxation in glasses and suggest that local reorientational jumps can have an exponential and a nonexponential contribution for relaxation, the latter due to asymmetric molecules sticking in cages for certain orientations.

  10. Photoluminescence study of MBE grown InGaN with intentional indium segregation

    NASA Astrophysics Data System (ADS)

    Cheung, Maurice C.; Namkoong, Gon; Chen, Fei; Furis, Madalina; Pudavar, Haridas E.; Cartwright, Alexander N.; Doolittle, W. Alan

    2005-05-01

    Proper control of MBE growth conditions has yielded an In0.13Ga0.87N thin film sample with emission consistent with In-segregation. The photoluminescence (PL) from this epilayer showed multiple emission components. Moreover, temperature and power dependent studies of the PL demonstrated that two of the components were excitonic in nature and consistent with indium phase separation. At 15 K, time resolved PL showed a non-exponential PL decay that was well fitted with the stretched exponential solution expected for disordered systems. Consistent with the assumed carrier hopping mechanism of this model, the effective lifetime, , and the stretched exponential parameter, , decrease with increasing emission energy. Finally, room temperature micro-PL using a confocal microscope showed spatial clustering of low energy emission.

  11. Memory behaviors of entropy production rates in heat conduction

    NASA Astrophysics Data System (ADS)

    Li, Shu-Nan; Cao, Bing-Yang

    2018-02-01

    Based on the relaxation time approximation and first-order expansion, memory behaviors in heat conduction are found between the macroscopic and Boltzmann-Gibbs-Shannon (BGS) entropy production rates with exponentially decaying memory kernels. In the frameworks of classical irreversible thermodynamics (CIT) and BGS statistical mechanics, the memory dependency on the integrated history is unidirectional, while for the extended irreversible thermodynamics (EIT) and BGS entropy production rates, the memory dependences are bidirectional and coexist with the linear terms. When macroscopic and microscopic relaxation times satisfy a specific relationship, the entropic memory dependences will be eliminated. There also exist initial effects in entropic memory behaviors, which decay exponentially. The second-order term are also discussed, which can be understood as the global non-equilibrium degree. The effects of the second-order term are consisted of three parts: memory dependency, initial value and linear term. The corresponding memory kernels are still exponential and the initial effects of the global non-equilibrium degree also decay exponentially.

  12. A Nonequilibrium Rate Formula for Collective Motions of Complex Molecular Systems

    NASA Astrophysics Data System (ADS)

    Yanao, Tomohiro; Koon, Wang Sang; Marsden, Jerrold E.

    2010-09-01

    We propose a compact reaction rate formula that accounts for a non-equilibrium distribution of residence times of complex molecules, based on a detailed study of the coarse-grained phase space of a reaction coordinate. We take the structural transition dynamics of a six-atom Morse cluster between two isomers as a prototype of multi-dimensional molecular reactions. Residence time distribution of one of the isomers shows an exponential decay, while that of the other isomer deviates largely from the exponential form and has multiple peaks. Our rate formula explains such equilibrium and non-equilibrium distributions of residence times in terms of the rates of diffusions of energy and the phase of the oscillations of the reaction coordinate. Rapid diffusions of energy and the phase generally give rise to the exponential decay of residence time distribution, while slow diffusions give rise to a non-exponential decay with multiple peaks. We finally make a conjecture about a general relationship between the rates of the diffusions and the symmetry of molecular mass distributions.

  13. Airspace Dimension Assessment with nanoparticles reflects lung density as quantified by MRI

    PubMed Central

    Jakobsson, Jonas K; Löndahl, Jakob; Olsson, Lars E; Diaz, Sandra; Zackrisson, Sophia; Wollmer, Per

    2018-01-01

    Background Airspace Dimension Assessment with inhaled nanoparticles is a novel method to determine distal airway morphology. This is the first empirical study using Airspace Dimension Assessment with nanoparticles (AiDA) to estimate distal airspace radius. The technology is relatively simple and potentially accessible in clinical outpatient settings. Method Nineteen never-smoking volunteers performed nanoparticle inhalation tests at multiple breath-hold times, and the difference in nanoparticle concentration of inhaled and exhaled gas was measured. An exponential decay curve was fitted to the concentration of recovered nanoparticles, and airspace dimensions were assessed from the half-life of the decay. Pulmonary tissue density was measured using magnetic resonance imaging (MRI). Results The distal airspace radius measured by AiDA correlated with lung tissue density as measured by MRI (ρ = −0.584; p = 0.0086). The linear intercept of the logarithm of the exponential decay curve correlated with forced expiratory volume in one second (FEV1) (ρ = 0.549; p = 0.0149). Conclusion The AiDA method shows potential to be developed into a tool to assess conditions involving changes in distal airways, eg, emphysema. The intercept may reflect airway properties; this finding should be further investigated.

  14. Pointwise convergence of derivatives of Lagrange interpolation polynomials for exponential weights

    NASA Astrophysics Data System (ADS)

    Damelin, S. B.; Jung, H. S.

    2005-01-01

    For a general class of exponential weights on the line and on (-1,1), we study pointwise convergence of the derivatives of Lagrange interpolation. Our weights include even weights of smooth polynomial decay near +/-[infinity] (Freud weights), even weights of faster than smooth polynomial decay near +/-[infinity] (Erdos weights) and even weights which vanish strongly near +/-1, for example Pollaczek type weights.

  15. On the heterogeneity of fluorescence lifetime of room temperature ionic liquids: onset of a journey for exploring red emitting dyes.

    PubMed

    Ghosh, Anup; Chatterjee, Tanmay; Mandal, Prasun K

    2012-06-25

    An excitation and emission wavelength dependent non-exponential fluorescence decay behaviour of room temperature ionic liquids (RTILs) has been noted. Average fluorescence lifetimes have been found to vary by a factor of three or more. Red emitting dyes dissolved in RTILs are found to follow hitherto unobserved single exponential fluorescence decay behaviour.

  16. Exponential Decay of Dispersion-Managed Solitons for General Dispersion Profiles

    NASA Astrophysics Data System (ADS)

    Green, William R.; Hundertmark, Dirk

    2016-02-01

    We show that any weak solution of the dispersion management equation describing dispersion-managed solitons together with its Fourier transform decay exponentially. This strong regularity result extends a recent result of Erdoğan, Hundertmark, and Lee in two directions, to arbitrary non-negative average dispersion and, more importantly, to rather general dispersion profiles, which cover most, if not all, physically relevant cases.

  17. Instability and sound emission from a flow over a curved surface

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Parikh, P.; Bayliss, A.

    1988-01-01

    The growth and decay of a wavepacket convecting in a boundary layer over a concave-convex surface is studied numerically using direct computations of the Navier-Stokes equations. The resulting sound radiation is computed using the linearized Euler equations with the pressure from the Navier-Stokes solution as a time-dependent boundary condition. It is shown that on the concave portion the amplitude of the wavepacket increases and its bandwidth broadens while on the convex portion some of the components in the packet are stabilized. The pressure field decays exponentially away from the surface and then algebraically exhibits a decay characteristic of acoustic waves in two dimensions. The far-field acoustic pressure exhibits a peak at a frequency corresponding to the inflow instability frequency.

  18. Nonlinear modulation of an extraordinary wave under the conditions of parametric decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorofeenko, V. G.; Krasovitskiy, V. B.; Turikov, V. A.

    2012-06-15

    A self-consistent set of Hamilton equations describing nonlinear saturation of the amplitude of oscillations excited under the conditions of parametric decay of an elliptically polarized extraordinary wave in cold plasma is solved analytically and numerically. It is shown that the exponential increase in the amplitude of the secondary wave excited at the half-frequency of the primary wave changes into a reverse process in which energy is returned to the primary wave and nonlinear oscillations propagating across the external magnetic field are generated. The system of 'slow' equations for the amplitudes, obtained by averaging the initial equations over the high-frequency period,more » is used to describe steady-state nonlinear oscillations in plasma.« less

  19. Electrostatic screening in classical Coulomb fluids: exponential or power-law decay or both? An investigation into the effect of dispersion interactions

    NASA Astrophysics Data System (ADS)

    Kjellander, Roland

    2006-04-01

    It is shown that the nature of the non-electrostatic part of the pair interaction potential in classical Coulomb fluids can have a profound influence on the screening behaviour. Two cases are compared: (i) when the non-electrostatic part equals an arbitrary finite-ranged interaction and (ii) when a dispersion r-6 interaction potential is included. A formal analysis is done in exact statistical mechanics, including an investigation of the bridge function. It is found that the Coulombic r-1 and the dispersion r-6 potentials are coupled in a very intricate manner as regards the screening behaviour. The classical one-component plasma (OCP) is a particularly clear example due to its simplicity and is investigated in detail. When the dispersion r-6 potential is turned on, the screened electrostatic potential from a particle goes from a monotonic exponential decay, exp(-κr)/r, to a power-law decay, r-8, for large r. The pair distribution function acquire, at the same time, an r-10 decay for large r instead of the exponential one. There still remains exponentially decaying contributions to both functions, but these contributions turn oscillatory when the r-6 interaction is switched on. When the Coulomb interaction is turned off but the dispersion r-6 pair potential is kept, the decay of the pair distribution function for large r goes over from the r-10 to an r-6 behaviour, which is the normal one for fluids of electroneutral particles with dispersion interactions. Differences and similarities compared to binary electrolytes are pointed out.

  20. Exploiting fast detectors to enter a new dimension in room-temperature crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, Robin L., E-mail: robin.owen@diamond.ac.uk; Paterson, Neil; Axford, Danny

    2014-05-01

    A departure from a linear or an exponential decay in the diffracting power of macromolecular crystals is observed and accounted for through consideration of a multi-state sequential model. A departure from a linear or an exponential intensity decay in the diffracting power of protein crystals as a function of absorbed dose is reported. The observation of a lag phase raises the possibility of collecting significantly more data from crystals held at room temperature before an intolerable intensity decay is reached. A simple model accounting for the form of the intensity decay is reintroduced and is applied for the first timemore » to high frame-rate room-temperature data collection.« less

  1. Krogh-cylinder and infinite-domain models for washout of an inert diffusible solute from tissue.

    PubMed

    Secomb, Timothy W

    2015-01-01

    Models based on the Krogh-cylinder concept are developed to analyze the washout from tissue by blood flow of an inert diffusible solute that permeates blood vessel walls. During the late phase of washout, the outflowing solute concentration decays exponentially with time. This washout decay rate is predicted for a range of conditions. A single capillary is assumed to lie on the axis of a cylindrical tissue region. In the classic "Krogh-cylinder" approach, a no-flux boundary condition is applied on the outside of the cylinder. An alternative "infinite-domain" approach is proposed that allows for solute exchange across the boundary, but with zero net exchange. Both models are analyzed, using finite-element and analytical methods. The washout decay rate depends on blood flow rate, tissue diffusivity and vessel permeability of solute, and assumed boundary conditions. At low blood flow rates, the washout rate can exceed the value for a single well-mixed compartment. The infinite-domain approach predicts slower washout decay rates than the Krogh-cylinder approach. The infinite-domain approach overcomes a significant limitation of the Krogh-cylinder approach, while retaining its simplicity. It provides a basis for developing methods to deduce transport properties of inert solutes from observations of washout decay rates. © 2014 John Wiley & Sons Ltd.

  2. Global existence and exponential decay of the solution for a viscoelastic wave equation with a delay

    NASA Astrophysics Data System (ADS)

    Dai, Qiuyi; Yang, Zhifeng

    2014-10-01

    In this paper, we consider initial-boundary value problem of viscoelastic wave equation with a delay term in the interior feedback. Namely, we study the following equation together with initial-boundary conditions of Dirichlet type in Ω × (0, + ∞) and prove that for arbitrary real numbers μ 1 and μ 2, the above-mentioned problem has a unique global solution under suitable assumptions on the kernel g. This improve the results of the previous literature such as Nicaise and Pignotti (SIAM J. Control Optim 45:1561-1585, 2006) and Kirane and Said-Houari (Z. Angew. Math. Phys. 62:1065-1082, 2011) by removing the restriction imposed on μ 1 and μ 2. Furthermore, we also get an exponential decay results for the energy of the concerned problem in the case μ 1 = 0 which solves an open problem proposed by Kirane and Said-Houari (Z. Angew. Math. Phys. 62:1065-1082, 2011).

  3. Effect of water-based recovery on blood lactate removal after high-intensity exercise.

    PubMed

    Lucertini, Francesco; Gervasi, Marco; D'Amen, Giancarlo; Sisti, Davide; Rocchi, Marco Bruno Luigi; Stocchi, Vilberto; Benelli, Piero

    2017-01-01

    This study assessed the effectiveness of water immersion to the shoulders in enhancing blood lactate removal during active and passive recovery after short-duration high-intensity exercise. Seventeen cyclists underwent active water- and land-based recoveries and passive water and land-based recoveries. The recovery conditions lasted 31 minutes each and started after the identification of each cyclist's blood lactate accumulation peak, induced by a 30-second all-out sprint on a cycle ergometer. Active recoveries were performed on a cycle ergometer at 70% of the oxygen consumption corresponding to the lactate threshold (the control for the intensity was oxygen consumption), while passive recoveries were performed with subjects at rest and seated on the cycle ergometer. Blood lactate concentration was measured 8 times during each recovery condition and lactate clearance was modeled over a negative exponential function using non-linear regression. Actual active recovery intensity was compared to the target intensity (one sample t-test) and passive recovery intensities were compared between environments (paired sample t-tests). Non-linear regression parameters (coefficients of the exponential decay of lactate; predicted resting lactates; predicted delta decreases in lactate) were compared between environments (linear mixed model analyses for repeated measures) separately for the active and passive recovery modes. Active recovery intensities did not differ significantly from the target oxygen consumption, whereas passive recovery resulted in a slightly lower oxygen consumption when performed while immersed in water rather than on land. The exponential decay of blood lactate was not significantly different in water- or land-based recoveries in either active or passive recovery conditions. In conclusion, water immersion at 29°C would not appear to be an effective practice for improving post-exercise lactate removal in either the active or passive recovery modes.

  4. The Impact of Accelerating Faster than Exponential Population Growth on Genetic Variation

    PubMed Central

    Reppell, Mark; Boehnke, Michael; Zöllner, Sebastian

    2014-01-01

    Current human sequencing projects observe an abundance of extremely rare genetic variation, suggesting recent acceleration of population growth. To better understand the impact of such accelerating growth on the quantity and nature of genetic variation, we present a new class of models capable of incorporating faster than exponential growth in a coalescent framework. Our work shows that such accelerated growth affects only the population size in the recent past and thus large samples are required to detect the models’ effects on patterns of variation. When we compare models with fixed initial growth rate, models with accelerating growth achieve very large current population sizes and large samples from these populations contain more variation than samples from populations with constant growth. This increase is driven almost entirely by an increase in singleton variation. Moreover, linkage disequilibrium decays faster in populations with accelerating growth. When we instead condition on current population size, models with accelerating growth result in less overall variation and slower linkage disequilibrium decay compared to models with exponential growth. We also find that pairwise linkage disequilibrium of very rare variants contains information about growth rates in the recent past. Finally, we demonstrate that models of accelerating growth may substantially change estimates of present-day effective population sizes and growth times. PMID:24381333

  5. The impact of accelerating faster than exponential population growth on genetic variation.

    PubMed

    Reppell, Mark; Boehnke, Michael; Zöllner, Sebastian

    2014-03-01

    Current human sequencing projects observe an abundance of extremely rare genetic variation, suggesting recent acceleration of population growth. To better understand the impact of such accelerating growth on the quantity and nature of genetic variation, we present a new class of models capable of incorporating faster than exponential growth in a coalescent framework. Our work shows that such accelerated growth affects only the population size in the recent past and thus large samples are required to detect the models' effects on patterns of variation. When we compare models with fixed initial growth rate, models with accelerating growth achieve very large current population sizes and large samples from these populations contain more variation than samples from populations with constant growth. This increase is driven almost entirely by an increase in singleton variation. Moreover, linkage disequilibrium decays faster in populations with accelerating growth. When we instead condition on current population size, models with accelerating growth result in less overall variation and slower linkage disequilibrium decay compared to models with exponential growth. We also find that pairwise linkage disequilibrium of very rare variants contains information about growth rates in the recent past. Finally, we demonstrate that models of accelerating growth may substantially change estimates of present-day effective population sizes and growth times.

  6. Estimation of the light field inside photosynthetic microorganism cultures through Mittag-Leffler functions at depleted light conditions

    NASA Astrophysics Data System (ADS)

    Fuente, David; Lizama, Carlos; Urchueguía, Javier F.; Conejero, J. Alberto

    2018-01-01

    Light attenuation within suspensions of photosynthetic microorganisms has been widely described by the Lambert-Beer equation. However, at depths where most of the light has been absorbed by the cells, light decay deviates from the exponential behaviour and shows a lower attenuation than the corresponding from the purely exponential fall. This discrepancy can be modelled through the Mittag-Leffler function, extending Lambert-Beer law via a tuning parameter α that takes into account the attenuation process. In this work, we describe a fractional Lambert-Beer law to estimate light attenuation within cultures of model organism Synechocystis sp. PCC 6803. Indeed, we benchmark the measured light field inside cultures of two different Synechocystis strains, namely the wild-type and the antenna mutant strain called Olive at five different cell densities, with our in silico results. The Mittag-Leffler hyper-parameter α that best fits the data is 0.995, close to the exponential case. One of the most striking results to emerge from this work is that unlike prior literature on the subject, this one provides experimental evidence on the validity of fractional calculus for determining the light field. We show that by applying the fractional Lambert-Beer law for describing light attenuation, we are able to properly model light decay in photosynthetic microorganisms suspensions.

  7. Time-delayed behaviors of transient four-wave mixing signal intensity in inverted semiconductor with carrier-injection pumping

    NASA Astrophysics Data System (ADS)

    Hu, Zhenhua; Gao, Shen; Xiang, Bowen

    2016-01-01

    An analytical expression of transient four-wave mixing (TFWM) in inverted semiconductor with carrier-injection pumping was derived from both the density matrix equation and the complex stochastic stationary statistical method of incoherent light. Numerical analysis showed that the TFWM decayed decay is towards the limit of extreme homogeneous and inhomogeneous broadenings in atoms and the decaying time is inversely proportional to half the power of the net carrier densities for a low carrier-density injection and other high carrier-density injection, while it obeys an usual exponential decay with other decaying time that is inversely proportional to half the power of the net carrier density or it obeys an unusual exponential decay with the decaying time that is inversely proportional to a third power of the net carrier density for a moderate carrier-density injection. The results can be applied to studying ultrafast carrier dephasing in the inverted semiconductors such as semiconductor laser amplifier and semiconductor optical amplifier.

  8. Exponential decay of GC content detected by strand-symmetric substitution rates influences the evolution of isochore structure.

    PubMed

    Karro, J E; Peifer, M; Hardison, R C; Kollmann, M; von Grünberg, H H

    2008-02-01

    The distribution of guanine and cytosine nucleotides throughout a genome, or the GC content, is associated with numerous features in mammals; understanding the pattern and evolutionary history of GC content is crucial to our efforts to annotate the genome. The local GC content is decaying toward an equilibrium point, but the causes and rates of this decay, as well as the value of the equilibrium point, remain topics of debate. By comparing the results of 2 methods for estimating local substitution rates, we identify 620 Mb of the human genome in which the rates of the various types of nucleotide substitutions are the same on both strands. These strand-symmetric regions show an exponential decay of local GC content at a pace determined by local substitution rates. DNA segments subjected to higher rates experience disproportionately accelerated decay and are AT rich, whereas segments subjected to lower rates decay more slowly and are GC rich. Although we are unable to draw any conclusions about causal factors, the results support the hypothesis proposed by Khelifi A, Meunier J, Duret L, and Mouchiroud D (2006. GC content evolution of the human and mouse genomes: insights from the study of processed pseudogenes in regions of different recombination rates. J Mol Evol. 62:745-752.) that the isochore structure has been reshaped over time. If rate variation were a determining factor, then the current isochore structure of mammalian genomes could result from the local differences in substitution rates. We predict that under current conditions strand-symmetric portions of the human genome will stabilize at an average GC content of 30% (considerably less than the current 42%), thus confirming that the human genome has not yet reached equilibrium.

  9. Statistics of zero crossings in rough interfaces with fractional elasticity

    NASA Astrophysics Data System (ADS)

    Zamorategui, Arturo L.; Lecomte, Vivien; Kolton, Alejandro B.

    2018-04-01

    We study numerically the distribution of zero crossings in one-dimensional elastic interfaces described by an overdamped Langevin dynamics with periodic boundary conditions. We model the elastic forces with a Riesz-Feller fractional Laplacian of order z =1 +2 ζ , such that the interfaces spontaneously relax, with a dynamical exponent z , to a self-affine geometry with roughness exponent ζ . By continuously increasing from ζ =-1 /2 (macroscopically flat interface described by independent Ornstein-Uhlenbeck processes [Phys. Rev. 36, 823 (1930), 10.1103/PhysRev.36.823]) to ζ =3 /2 (super-rough Mullins-Herring interface), three different regimes are identified: (I) -1 /2 <ζ <0 , (II) 0 <ζ <1 , and (III) 1 <ζ <3 /2 . Starting from a flat initial condition, the mean number of zeros of the discretized interface (I) decays exponentially in time and reaches an extensive value in the system size, or decays as a power-law towards (II) a subextensive or (III) an intensive value. In the steady state, the distribution of intervals between zeros changes from an exponential decay in (I) to a power-law decay P (ℓ ) ˜ℓ-γ in (II) and (III). While in (II) γ =1 -θ with θ =1 -ζ the steady-state persistence exponent, in (III) we obtain γ =3 -2 ζ , different from the exponent γ =1 expected from the prediction θ =0 for infinite super-rough interfaces with ζ >1 . The effect on P (ℓ ) of short-scale smoothening is also analyzed numerically and analytically. A tight relation between the mean interval, the mean width of the interface, and the density of zeros is also reported. The results drawn from our analysis of rough interfaces subject to particular boundary conditions or constraints, along with discretization effects, are relevant for the practical analysis of zeros in interface imaging experiments or in numerical analysis.

  10. Biological electric fields and rate equations for biophotons.

    PubMed

    Alvermann, M; Srivastava, Y N; Swain, J; Widom, A

    2015-04-01

    Biophoton intensities depend upon the squared modulus of the electric field. Hence, we first make some general estimates about the inherent electric fields within various biosystems. Generally, these intensities do not follow a simple exponential decay law. After a brief discussion on the inapplicability of a linear rate equation that leads to strict exponential decay, we study other, nonlinear rate equations that have been successfully used for biosystems along with their physical origins when available.

  11. Theory for Transitions Between Exponential and Stationary Phases: Universal Laws for Lag Time

    NASA Astrophysics Data System (ADS)

    Himeoka, Yusuke; Kaneko, Kunihiko

    2017-04-01

    The quantitative characterization of bacterial growth has attracted substantial attention since Monod's pioneering study. Theoretical and experimental works have uncovered several laws for describing the exponential growth phase, in which the number of cells grows exponentially. However, microorganism growth also exhibits lag, stationary, and death phases under starvation conditions, in which cell growth is highly suppressed, for which quantitative laws or theories are markedly underdeveloped. In fact, the models commonly adopted for the exponential phase that consist of autocatalytic chemical components, including ribosomes, can only show exponential growth or decay in a population; thus, phases that halt growth are not realized. Here, we propose a simple, coarse-grained cell model that includes an extra class of macromolecular components in addition to the autocatalytic active components that facilitate cellular growth. These extra components form a complex with the active components to inhibit the catalytic process. Depending on the nutrient condition, the model exhibits typical transitions among the lag, exponential, stationary, and death phases. Furthermore, the lag time needed for growth recovery after starvation follows the square root of the starvation time and is inversely related to the maximal growth rate. This is in agreement with experimental observations, in which the length of time of cell starvation is memorized in the slow accumulation of molecules. Moreover, the lag time distributed among cells is skewed with a long time tail. If the starvation time is longer, an exponential tail appears, which is also consistent with experimental data. Our theory further predicts a strong dependence of lag time on the speed of substrate depletion, which can be tested experimentally. The present model and theoretical analysis provide universal growth laws beyond the exponential phase, offering insight into how cells halt growth without entering the death phase.

  12. Decoherence in yeast cell populations and its implications for genome-wide expression noise.

    PubMed

    Briones, M R S; Bosco, F

    2009-01-20

    Gene expression "noise" is commonly defined as the stochastic variation of gene expression levels in different cells of the same population under identical growth conditions. Here, we tested whether this "noise" is amplified with time, as a consequence of decoherence in global gene expression profiles (genome-wide microarrays) of synchronized cells. The stochastic component of transcription causes fluctuations that tend to be amplified as time progresses, leading to a decay of correlations of expression profiles, in perfect analogy with elementary relaxation processes. Measuring decoherence, defined here as a decay in the auto-correlation function of yeast genome-wide expression profiles, we found a slowdown in the decay of correlations, opposite to what would be expected if, as in mixing systems, correlations decay exponentially as the equilibrium state is reached. Our results indicate that the populational variation in gene expression (noise) is a consequence of temporal decoherence, in which the slow decay of correlations is a signature of strong interdependence of the transcription dynamics of different genes.

  13. Nonexponential Decoherence and Subdiffusion in Atom-Optics Kicked Rotor.

    PubMed

    Sarkar, Sumit; Paul, Sanku; Vishwakarma, Chetan; Kumar, Sunil; Verma, Gunjan; Sainath, M; Rapol, Umakant D; Santhanam, M S

    2017-04-28

    Quantum systems lose coherence upon interaction with the environment and tend towards classical states. Quantum coherence is known to exponentially decay in time so that macroscopic quantum superpositions are generally unsustainable. In this work, slower than exponential decay of coherences is experimentally realized in an atom-optics kicked rotor system subjected to nonstationary Lévy noise in the applied kick sequence. The slower coherence decay manifests in the form of quantum subdiffusion that can be controlled through the Lévy exponent. The experimental results are in good agreement with the analytical estimates and numerical simulations for the mean energy growth and momentum profiles of an atom-optics kicked rotor.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rout, Dipak; Vijaya, R.; Centre for Lasers and Photonics, Indian Institute of Technology Kanpur, Kanpur 208016

    Well-ordered opaline photonic crystals are grown by inward growing self-assembly method from Rhodamine B dye-doped polystyrene colloids. Subsequent to self-assembly, the crystals are infiltrated with gold nanoparticles of 40 nm diameter. Measurements of the stopband features and photoluminescence intensity from these crystals are supplemented by fluorescence decay time analysis. The fluorescence decay times from the dye-doped photonic crystals before and after the infiltration are dramatically different from each other. A lowered fluorescence decay time was observed for the case of gold infiltrated crystal along with an enhanced emission intensity. Double-exponential decay nature of the fluorescence from the dye-doped crystal gets convertedmore » into single-exponential decay upon the infiltration of gold nanoparticles due to the resonant radiative process resulting from the overlap of the surface plasmon resonance with the emission spectrum. The influence of localized surface plasmon due to gold nanoparticles on the increase in emission intensity and decrease in decay time of the emitters is established.« less

  15. Teaching Radioactive Decay and Radiometric Dating: An Analog Activity Based on Fluid Dynamics

    ERIC Educational Resources Information Center

    Claiborne, Lily L.; Miller, Calvin F.

    2012-01-01

    We present a new laboratory activity for teaching radioactive decay by using hydrodynamic processes as an analog and an evaluation of its efficacy in the classroom. A fluid flowing from an upper beaker into a lower beaker (shampoo in this case) behaves mathematically identically to radioactive decay, mimicking the exponential decay process,…

  16. Well hydraulics in pumping tests with exponentially decayed rates of abstraction in confined aquifers

    NASA Astrophysics Data System (ADS)

    Wen, Zhang; Zhan, Hongbin; Wang, Quanrong; Liang, Xing; Ma, Teng; Chen, Chen

    2017-05-01

    Actual field pumping tests often involve variable pumping rates which cannot be handled by the classical constant-rate or constant-head test models, and often require a convolution process to interpret the test data. In this study, we proposed a semi-analytical model considering an exponentially decreasing pumping rate started at a certain (higher) rate and eventually stabilized at a certain (lower) rate for cases with or without wellbore storage. A striking new feature of the pumping test with an exponentially decayed rate is that the drawdowns will decrease over a certain period of time during intermediate pumping stage, which has never been seen before in constant-rate or constant-head pumping tests. It was found that the drawdown-time curve associated with an exponentially decayed pumping rate function was bounded by two asymptotic curves of the constant-rate tests with rates equaling to the starting and stabilizing rates, respectively. The wellbore storage must be considered for a pumping test without an observation well (single-well test). Based on such characteristics of the time-drawdown curve, we developed a new method to estimate the aquifer parameters by using the genetic algorithm.

  17. Fabrication of Self-Ordered Nanoporous Alumina with 69-115 nm Interpore Distances in Sulfuric/Oxalic Acid Mixtures by Hard Anodization

    NASA Astrophysics Data System (ADS)

    Almasi Kashi, Mohammad; Ramazani, Abdolali; Mayamai, Yashar; Noormohammadi, Mohammad

    2010-01-01

    Well-ordered nanoporous arrays have been obtained using hard anodization of aluminium in oxalic/sulfuric mixture. Various ordered nanoporous alumina films with pore intervals from 69 to 115 nm were fabricated on aluminum by high current anodization approach with various sulfuric concentrations in the oxalic/sulfuric mixture electrolyte under 36-60 V. The sulfuric acid concentration was changed from 0.06 to 0.2 M. Different configurations of the current-time curve are seen to influence the self-ordering of the nanohole arrays. A current density-time curve with exponential oscillating decay configuration is seen to damage the self-ordered array of the nanopores while those with exponential decay under certain conditions cause ordered nanopore arrays. For each electrolyte mixture, the interpore distance was dependent upon the anodization voltages with proportionality constants of almost 2 nm V-1. The porosity of the samples (about 3.5%) follows the porosity rule of HA. Final anodization and increasing voltage rate (rin) as a function of sulfuric acid concentration are the main sources to influence the self-ordering of the samples.

  18. Bacterial genomes lacking long-range correlations may not be modeled by low-order Markov chains: the role of mixing statistics and frame shift of neighboring genes.

    PubMed

    Cocho, Germinal; Miramontes, Pedro; Mansilla, Ricardo; Li, Wentian

    2014-12-01

    We examine the relationship between exponential correlation functions and Markov models in a bacterial genome in detail. Despite the well known fact that Markov models generate sequences with correlation function that decays exponentially, simply constructed Markov models based on nearest-neighbor dimer (first-order), trimer (second-order), up to hexamer (fifth-order), and treating the DNA sequence as being homogeneous all fail to predict the value of exponential decay rate. Even reading-frame-specific Markov models (both first- and fifth-order) could not explain the fact that the exponential decay is very slow. Starting with the in-phase coding-DNA-sequence (CDS), we investigated correlation within a fixed-codon-position subsequence, and in artificially constructed sequences by packing CDSs with out-of-phase spacers, as well as altering CDS length distribution by imposing an upper limit. From these targeted analyses, we conclude that the correlation in the bacterial genomic sequence is mainly due to a mixing of heterogeneous statistics at different codon positions, and the decay of correlation is due to the possible out-of-phase between neighboring CDSs. There are also small contributions to the correlation from bases at the same codon position, as well as by non-coding sequences. These show that the seemingly simple exponential correlation functions in bacterial genome hide a complexity in correlation structure which is not suitable for a modeling by Markov chain in a homogeneous sequence. Other results include: use of the (absolute value) second largest eigenvalue to represent the 16 correlation functions and the prediction of a 10-11 base periodicity from the hexamer frequencies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Tailpulse signal generator

    DOEpatents

    Baker, John [Walnut Creek, CA; Archer, Daniel E [Knoxville, TN; Luke, Stanley John [Pleasanton, CA; Decman, Daniel J [Livermore, CA; White, Gregory K [Livermore, CA

    2009-06-23

    A tailpulse signal generating/simulating apparatus, system, and method designed to produce electronic pulses which simulate tailpulses produced by a gamma radiation detector, including the pileup effect caused by the characteristic exponential decay of the detector pulses, and the random Poisson distribution pulse timing for radioactive materials. A digital signal process (DSP) is programmed and configured to produce digital values corresponding to pseudo-randomly selected pulse amplitudes and pseudo-randomly selected Poisson timing intervals of the tailpulses. Pulse amplitude values are exponentially decayed while outputting the digital value to a digital to analog converter (DAC). And pulse amplitudes of new pulses are added to decaying pulses to simulate the pileup effect for enhanced realism in the simulation.

  20. Correlation functions for Hermitian many-body systems: Necessary conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, E.B.

    1994-02-01

    Lee [Phys. Rev. B 47, 8293 (1993)] has shown that the odd-numbered derivatives of the Kubo autocorrelation function vanish at [ital t]=0. We show that this condition is based on a more general property of nondiagonal Kubo correlation functions. This general property provides that certain functional forms (e.g., simple exponential decay) are not admissible for any symmetric or antisymmetric Kubo correlation function in a Hermitian many-body system. Lee's result emerges as a special case of this result. Applications to translationally invariant systems and systems with rotational symmetries are also demonstrated.

  1. Magnetic pattern at supergranulation scale: the void size distribution

    NASA Astrophysics Data System (ADS)

    Berrilli, F.; Scardigli, S.; Del Moro, D.

    2014-08-01

    The large-scale magnetic pattern observed in the photosphere of the quiet Sun is dominated by the magnetic network. This network, created by photospheric magnetic fields swept into convective downflows, delineates the boundaries of large-scale cells of overturning plasma and exhibits "voids" in magnetic organization. These voids include internetwork fields, which are mixed-polarity sparse magnetic fields that populate the inner part of network cells. To single out voids and to quantify their intrinsic pattern we applied a fast circle-packing-based algorithm to 511 SOHO/MDI high-resolution magnetograms acquired during the unusually long solar activity minimum between cycles 23 and 24. The computed void distribution function shows a quasi-exponential decay behavior in the range 10-60 Mm. The lack of distinct flow scales in this range corroborates the hypothesis of multi-scale motion flows at the solar surface. In addition to the quasi-exponential decay, we have found that the voids depart from a simple exponential decay at about 35 Mm.

  2. Velocity and stress autocorrelation decay in isothermal dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Chaudhri, Anuj; Lukes, Jennifer R.

    2010-02-01

    The velocity and stress autocorrelation decay in a dissipative particle dynamics ideal fluid model is analyzed in this paper. The autocorrelation functions are calculated at three different friction parameters and three different time steps using the well-known Groot/Warren algorithm and newer algorithms including self-consistent leap-frog, self-consistent velocity Verlet and Shardlow first and second order integrators. At low friction values, the velocity autocorrelation function decays exponentially at short times, shows slower-than exponential decay at intermediate times, and approaches zero at long times for all five integrators. As friction value increases, the deviation from exponential behavior occurs earlier and is more pronounced. At small time steps, all the integrators give identical decay profiles. As time step increases, there are qualitative and quantitative differences between the integrators. The stress correlation behavior is markedly different for the algorithms. The self-consistent velocity Verlet and the Shardlow algorithms show very similar stress autocorrelation decay with change in friction parameter, whereas the Groot/Warren and leap-frog schemes show variations at higher friction factors. Diffusion coefficients and shear viscosities are calculated using Green-Kubo integration of the velocity and stress autocorrelation functions. The diffusion coefficients match well-known theoretical results at low friction limits. Although the stress autocorrelation function is different for each integrator, fluctuates rapidly, and gives poor statistics for most of the cases, the calculated shear viscosities still fall within range of theoretical predictions and nonequilibrium studies.

  3. Physical and numerical sources of computational inefficiency in integration of chemical kinetic rate equations: Etiology, treatment and prognosis

    NASA Technical Reports Server (NTRS)

    Pratt, D. T.; Radhakrishnan, K.

    1986-01-01

    The design of a very fast, automatic black-box code for homogeneous, gas-phase chemical kinetics problems requires an understanding of the physical and numerical sources of computational inefficiency. Some major sources reviewed in this report are stiffness of the governing ordinary differential equations (ODE's) and its detection, choice of appropriate method (i.e., integration algorithm plus step-size control strategy), nonphysical initial conditions, and too frequent evaluation of thermochemical and kinetic properties. Specific techniques are recommended (and some advised against) for improving or overcoming the identified problem areas. It is argued that, because reactive species increase exponentially with time during induction, and all species exhibit asymptotic, exponential decay with time during equilibration, exponential-fitted integration algorithms are inherently more accurate for kinetics modeling than classical, polynomial-interpolant methods for the same computational work. But current codes using the exponential-fitted method lack the sophisticated stepsize-control logic of existing black-box ODE solver codes, such as EPISODE and LSODE. The ultimate chemical kinetics code does not exist yet, but the general characteristics of such a code are becoming apparent.

  4. Focus Article: Oscillatory and long-range monotonic exponential decays of electrostatic interactions in ionic liquids and other electrolytes: The significance of dielectric permittivity and renormalized charges

    NASA Astrophysics Data System (ADS)

    Kjellander, Roland

    2018-05-01

    A unified treatment of oscillatory and monotonic exponential decays of interactions in electrolytes is displayed, which highlights the role of dielectric response of the fluid in terms of renormalized (effective) dielectric permittivity and charges. An exact, but physically transparent statistical mechanical formalism is thereby used, which is presented in a systematic, pedagogical manner. Both the oscillatory and monotonic behaviors are given by an equation for the decay length of screened electrostatic interactions that is very similar to the classical expression for the Debye length. The renormalized dielectric permittivities, which have similar roles for electrolytes as the dielectric constant has for pure polar fluids, consist in general of several entities with different physical meanings. They are connected to dielectric response of the fluid on the same length scale as the decay length of the screened interactions. Only in cases where the decay length is very long, these permittivities correspond approximately to a dielectric response in the long-wavelength limit, like the dielectric constant for polar fluids. Experimentally observed long-range exponentially decaying surface forces are analyzed as well as the oscillatory forces observed for short to intermediate surface separations. Both occur in some ionic liquids and in concentrated as well as very dilute electrolyte solutions. The coexisting modes of decay are in general determined by the bulk properties of the fluid and not by the solvation of the surfaces; in the present cases, they are given by the behavior of the screened Coulomb interaction of the bulk fluid. The surface-fluid interactions influence the amplitudes and signs or phases of the different modes of the decay, but not their decay lengths and wavelengths. The similarities between some ionic liquids and very dilute electrolyte solutions as regards both the long-range monotonic and the oscillatory decays are analyzed.

  5. Shock Tube and Ballistic Range Facilities at NASA Ames Research Center

    DTIC Science & Technology

    2010-04-01

    in gun performance and launching techniques enabled Mach numbers over 10 to be realized at flight-relevant Reynolds numbers. Although the SSFF...contoured nozzle produced an accelerating supersonic flow with a concomitant exponential decay in density. A two-stage light gas gun fired models upstream...km/s, or Mach 50. Such extreme conditions could not be met by a counterflow facility consisting of the highest performance light gas gun and a

  6. The true quantum face of the "exponential" decay: Unstable systems in rest and in motion

    NASA Astrophysics Data System (ADS)

    Urbanowski, K.

    2017-12-01

    Results of theoretical studies and numerical calculations presented in the literature suggest that the survival probability P0(t) has the exponential form starting from times much smaller than the lifetime τ up to times t ⪢τ and that P0(t) exhibits inverse power-law behavior at the late time region for times longer than the so-called crossover time T ⪢ τ (The crossover time T is the time when the late time deviations of P0(t) from the exponential form begin to dominate). More detailed analysis of the problem shows that in fact the survival probability P0(t) can not take the pure exponential form at any time interval including times smaller than the lifetime τ or of the order of τ and it has has an oscillating form. We also study the survival probability of moving relativistic unstable particles with definite momentum . These studies show that late time deviations of the survival probability of these particles from the exponential-like form of the decay law, that is the transition times region between exponential-like and non-exponential form of the survival probability, should occur much earlier than it follows from the classical standard considerations.

  7. Temporal and spatial binning of TCSPC data to improve signal-to-noise ratio and imaging speed

    NASA Astrophysics Data System (ADS)

    Walsh, Alex J.; Beier, Hope T.

    2016-03-01

    Time-correlated single photon counting (TCSPC) is the most robust method for fluorescence lifetime imaging using laser scanning microscopes. However, TCSPC is inherently slow making it ineffective to capture rapid events due to the single photon product per laser pulse causing extensive acquisition time limitations and the requirement of low fluorescence emission efficiency to avoid bias of measurement towards short lifetimes. Furthermore, thousands of photons per pixel are required for traditional instrument response deconvolution and fluorescence lifetime exponential decay estimation. Instrument response deconvolution and fluorescence exponential decay estimation can be performed in several ways including iterative least squares minimization and Laguerre deconvolution. This paper compares the limitations and accuracy of these fluorescence decay analysis techniques to accurately estimate double exponential decays across many data characteristics including various lifetime values, lifetime component weights, signal-to-noise ratios, and number of photons detected. Furthermore, techniques to improve data fitting, including binning data temporally and spatially, are evaluated as methods to improve decay fits and reduce image acquisition time. Simulation results demonstrate that binning temporally to 36 or 42 time bins, improves accuracy of fits for low photon count data. Such a technique reduces the required number of photons for accurate component estimation if lifetime values are known, such as for commercial fluorescent dyes and FRET experiments, and improve imaging speed 10-fold.

  8. Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media

    NASA Astrophysics Data System (ADS)

    Przhonska, Olga V.; Hagan, David J.; Novikov, Evgueni; Lepkowicz, Richard; Van Stryland, Eric W.; Bondar, Mikhail V.; Slominsky, Yuriy L.; Kachkovski, Alexei D.

    2001-11-01

    Time-resolved excitation-probe polarization measurements are performed for polymethine and squarylium dyes in ethanol and an elastopolymer of polyurethane acrylate (PUA). These molecules exhibit strong excited-state absorption in the visible, which results in reverse saturable absorption (RSA). In pump-probe experiments, we observe a strong angular dependence of the RSA decay kinetics upon variation of the angle between pump and probe polarizations. The difference in absorption anisotropy kinetics in ethanol and PUA is detected and analyzed. Anisotropy decay curves in ethanol follow a single exponential decay leading to complete depolarization of the excited state. We also observe complete depolarization in PUA, in which case the anisotropy decay follows a double exponential behavior. Possible rotations in the PUA polymeric matrix are connected with the existence of local microcavities of free volume. We believe that the fast decay component is connected with the rotation of molecular fragments and the slower decay component is connected with the rotation of entire molecules in local microcavities, which is possible because of the elasticity of the polymeric material.

  9. Identification of the viscoelastic properties of soft materials at low frequency: performance, ill-conditioning and extrapolation capabilities of fractional and exponential models.

    PubMed

    Ciambella, J; Paolone, A; Vidoli, S

    2014-09-01

    We report about the experimental identification of viscoelastic constitutive models for frequencies ranging within 0-10Hz. Dynamic moduli data are fitted forseveral materials of interest to medical applications: liver tissue (Chatelin et al., 2011), bioadhesive gel (Andrews et al., 2005), spleen tissue (Nicolle et al., 2012) and synthetic elastomer (Osanaiye, 1996). These materials actually represent a rather wide class of soft viscoelastic materials which are usually subjected to low frequencies deformations. We also provide prescriptions for the correct extrapolation of the material behavior at higher frequencies. Indeed, while experimental tests are more easily carried out at low frequency, the identified viscoelastic models are often used outside the frequency range of the actual test. We consider two different classes of models according to their relaxation function: Debye models, whose kernel decays exponentially fast, and fractional models, including Cole-Cole, Davidson-Cole, Nutting and Havriliak-Negami, characterized by a slower decay rate of the material memory. Candidate constitutive models are hence rated according to the accurateness of the identification and to their robustness to extrapolation. It is shown that all kernels whose decay rate is too fast lead to a poor fitting and high errors when the material behavior is extrapolated to broader frequency ranges. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  10. Analog detection for cavity lifetime spectroscopy

    DOEpatents

    Zare, Richard N.; Harb, Charles C.; Paldus, Barbara A.; Spence, Thomas G.

    2001-05-15

    An analog detection system for determining a ring-down rate or decay rate 1/.tau. of an exponentially decaying ring-down beam issuing from a lifetime or ring-down cavity during a ring-down phase. Alternatively, the analog detection system determines a build-up rate of an exponentially growing beam issuing from the cavity during a ring-up phase. The analog system can be employed in continuous wave cavity ring-down spectroscopy (CW CRDS) and pulsed CRDS (P CRDS) arrangements utilizing any type of ring-down cavity including ring-cavities and linear cavities.

  11. Analog detection for cavity lifetime spectroscopy

    DOEpatents

    Zare, Richard N.; Harb, Charles C.; Paldus, Barbara A.; Spence, Thomas G.

    2003-01-01

    An analog detection system for determining a ring-down rate or decay rate 1/.tau. of an exponentially decaying ring-down beam issuing from a lifetime or ring-down cavity during a ring-down phase. Alternatively, the analog detection system determines a build-up rate of an exponentially growing beam issuing from the cavity during a ring-up phase. The analog system can be employed in continuous wave cavity ring-down spectroscopy (CW CRDS) and pulsed CRDS (P CRDS) arrangements utilizing any type of ring-down cavity including ring-cavities and linear cavities.

  12. On the claim of modulations in radon decay and their association with solar rotation

    NASA Astrophysics Data System (ADS)

    Pommé, S.; Lutter, G.; Marouli, M.; Kossert, K.; Nähle, O.

    2018-01-01

    Claims were made by Sturrock et al. that radioactive decay can be induced by interaction of the nucleus with solar neutrinos and that cyclic modulations in decay rates are indicative of the dynamics of the solar interior. They analysed a series of measurements of gamma radiation associated with the emanation and decay of radon in a sealed container at the Geological Survey of Israel (GSI) laboratory. The integral count rates in the NaI detector showed strong variations in time of year and time of day. From time-series analysis, Sturrock et al. claim the presence of small oscillations at frequencies in a range between 7.4 a-1 and 12.5 a-1, which they speculatively associated with rotational influence on the solar neutrino flux. In this work, it is argued that the GSI radon measurements are unsuited for studying the variability of decay constants, because the data are strongly influenced by environmental conditions, such as solar irradiance and rainfall. At the JRC and PTB, decay rate measurements of the radon decay chain were performed with ionisation chambers, gamma-ray spectrometers and an alpha spectrometer. No deviation from the exponential-decay law was observed. The existence of cyclic variations in the decay constants is refuted, as well as the concept of measuring solar rotation through radioactive decay.

  13. Simultaneous Gaussian and exponential inversion for improved analysis of shales by NMR relaxometry

    USGS Publications Warehouse

    Washburn, Kathryn E.; Anderssen, Endre; Vogt, Sarah J.; Seymour, Joseph D.; Birdwell, Justin E.; Kirkland, Catherine M.; Codd, Sarah L.

    2014-01-01

    Nuclear magnetic resonance (NMR) relaxometry is commonly used to provide lithology-independent porosity and pore-size estimates for petroleum resource evaluation based on fluid-phase signals. However in shales, substantial hydrogen content is associated with solid and fluid signals and both may be detected. Depending on the motional regime, the signal from the solids may be best described using either exponential or Gaussian decay functions. When the inverse Laplace transform, the standard method for analysis of NMR relaxometry results, is applied to data containing Gaussian decays, this can lead to physically unrealistic responses such as signal or porosity overcall and relaxation times that are too short to be determined using the applied instrument settings. We apply a new simultaneous Gaussian-Exponential (SGE) inversion method to simulated data and measured results obtained on a variety of oil shale samples. The SGE inversion produces more physically realistic results than the inverse Laplace transform and displays more consistent relaxation behavior at high magnetic field strengths. Residuals for the SGE inversion are consistently lower than for the inverse Laplace method and signal overcall at short T2 times is mitigated. Beyond geological samples, the method can also be applied in other fields where the sample relaxation consists of both Gaussian and exponential decays, for example in material, medical and food sciences.

  14. Near-Unity Internal Quantum Efficiency of Luminescent Silicon Nanocrystals with Ligand Passivation.

    PubMed

    Sangghaleh, Fatemeh; Sychugov, Ilya; Yang, Zhenyu; Veinot, Jonathan G C; Linnros, Jan

    2015-07-28

    Spectrally resolved photoluminescence (PL) decays were measured for samples of colloidal, ligand-passivated silicon nanocrystals. These samples have PL emission energies with peak positions in the range ∼1.4-1.8 eV and quantum yields of ∼30-70%. Their ensemble PL decays are characterized by a stretched-exponential decay with a dispersion factor of ∼0.8, which changes to an almost monoexponential character at fixed detection energies. The dispersion factors and decay rates for various detection energies were extracted from spectrally resolved curves using a mathematical approach that excluded the effect of homogeneous line width broadening. Since nonradiative recombination would introduce a random lifetime variation, leading to a stretched-exponential decay for an ensemble, we conclude that the observed monoexponential decay in size-selected ensembles signifies negligible nonradiative transitions of a similar strength to the radiative one. This conjecture is further supported as extracted decay rates agree with radiative rates reported in the literature, suggesting 100% internal quantum efficiency over a broad range of emission wavelengths. The apparent differences in the quantum yields can then be explained by a varying fraction of "dark" or blinking nanocrystals.

  15. Fractionating power and outlet stream polydispersity in asymmetrical flow field-flow fractionation. Part II: programmed operation.

    PubMed

    Williams, P Stephen

    2017-01-01

    Asymmetrical flow field-flow fractionation (As-FlFFF) is a widely used technique for analyzing polydisperse nanoparticle and macromolecular samples. The programmed decay of cross flow rate is often employed. The interdependence of the cross flow rate through the membrane and the fluid flow along the channel length complicates the prediction of elution time and fractionating power. The theory for their calculation is presented. It is also confirmed for examples of exponential decay of cross flow rate with constant channel outlet flow rate that the residual sample polydispersity at the channel outlet is quite well approximated by the reciprocal of four times the fractionating power. Residual polydispersity is of importance when online MALS or DLS detection are used to extract quantitative information on particle size or molecular weight. The theory presented here provides a firm basis for the optimization of programmed flow conditions in As-FlFFF. Graphical abstract Channel outlet polydispersity remains significant following fractionation by As-FlFFF under conditions of programmed decay of cross flow rate.

  16. Photocounting distributions for exponentially decaying sources.

    PubMed

    Teich, M C; Card, H C

    1979-05-01

    Exact photocounting distributions are obtained for a pulse of light whose intensity is exponentially decaying in time, when the underlying photon statistics are Poisson. It is assumed that the starting time for the sampling interval (which is of arbitrary duration) is uniformly distributed. The probability of registering n counts in the fixed time T is given in terms of the incomplete gamma function for n >/= 1 and in terms of the exponential integral for n = 0. Simple closed-form expressions are obtained for the count mean and variance. The results are expected to be of interest in certain studies involving spontaneous emission, radiation damage in solids, and nuclear counting. They will also be useful in neurobiology and psychophysics, since habituation and sensitization processes may sometimes be characterized by the same stochastic model.

  17. Analytically-derived sensitivities in one-dimensional models of solute transport in porous media

    USGS Publications Warehouse

    Knopman, D.S.

    1987-01-01

    Analytically-derived sensitivities are presented for parameters in one-dimensional models of solute transport in porous media. Sensitivities were derived by direct differentiation of closed form solutions for each of the odel, and by a time integral method for two of the models. Models are based on the advection-dispersion equation and include adsorption and first-order chemical decay. Boundary conditions considered are: a constant step input of solute, constant flux input of solute, and exponentially decaying input of solute at the upstream boundary. A zero flux is assumed at the downstream boundary. Initial conditions include a constant and spatially varying distribution of solute. One model simulates the mixing of solute in an observation well from individual layers in a multilayer aquifer system. Computer programs produce output files compatible with graphics software in which sensitivities are plotted as a function of either time or space. (USGS)

  18. Heterogenous fluorescence decay of (4→6)-and (4→8)-linked dimers of (+)-catechin and (-) epicatechin as a result of rotational isomerism.

    Treesearch

    Wolfgang R. Bergmann; Mary D. Barkley; Richard W. Hemingway; Wayne Mattice

    1987-01-01

    The time-resolved fluorescence of (+)-catechin and ( -)-epicatechin decays as a single exponential. In contrast dimers formed from (+)-catechin and (-)-epicatechin have more complex decays unless rotation about the interflavan bond is constrained by the introduction of a new ring. The fluorescence decay in unconstrained dimers is adequately described by the sum of two...

  19. Check the Lambert-Beer-Bouguer law: a simple trick to boost the confidence of students toward both exponential laws and the discrete approach to experimental physics

    NASA Astrophysics Data System (ADS)

    Di Capua, R.; Offi, F.; Fontana, F.

    2014-07-01

    Exponential decay is a prototypical functional behaviour for many physical phenomena, and therefore it deserves great attention in physics courses at an academic level. The absorption of the electromagnetic radiation that propagates in a dissipative medium provides an example of the decay of light intensity, as stated by the law of Lambert-Beer-Bourguer. We devised a very simple experiment to check this law. The experimental setup, its realization, and the data analysis of the experiment are definitely simple. Our main goal was to create an experiment that is accessible to all students, including those in their first year of academic courses and those with poorly equipped laboratories. As illustrated in this paper, our proposal allowed us to develop a deep discussion about some general mathematical and numerical features of exponential decay. Furthermore, the special setup of the absorbing medium (sliced in finite thickness slabs) and the experimental outcomes allow students to understand the transition from the discrete to the continuum approach in experimental physics.

  20. On the Nonlinear Stability of Plane Parallel Shear Flow in a Coplanar Magnetic Field

    NASA Astrophysics Data System (ADS)

    Xu, Lanxi; Lan, Wanli

    2017-12-01

    Lyapunov direct method has been used to study the nonlinear stability of laminar flow between two parallel planes in the presence of a coplanar magnetic field for streamwise perturbations with stress-free boundary planes. Two Lyapunov functions are defined. By means of the first, it is proved that the transverse components of the perturbations decay unconditionally and asymptotically to zero for all Reynolds numbers and magnetic Reynolds numbers. By means of the second, it is showed that the other components of the perturbations decay conditionally and exponentially to zero for all Reynolds numbers and the magnetic Reynolds numbers below π ^2/2M, where M is the maximum of the absolute value of the velocity field of the laminar flow.

  1. Exponential synchronization of neural networks with discrete and distributed delays under time-varying sampling.

    PubMed

    Wu, Zheng-Guang; Shi, Peng; Su, Hongye; Chu, Jian

    2012-09-01

    This paper investigates the problem of master-slave synchronization for neural networks with discrete and distributed delays under variable sampling with a known upper bound on the sampling intervals. An improved method is proposed, which captures the characteristic of sampled-data systems. Some delay-dependent criteria are derived to ensure the exponential stability of the error systems, and thus the master systems synchronize with the slave systems. The desired sampled-data controller can be achieved by solving a set of linear matrix inequalitys, which depend upon the maximum sampling interval and the decay rate. The obtained conditions not only have less conservatism but also have less decision variables than existing results. Simulation results are given to show the effectiveness and benefits of the proposed methods.

  2. Correlation of conformational heterogeneity of the tryptophyl side chain and time-resolved fluorescence intensity decay kinetics

    NASA Astrophysics Data System (ADS)

    Laws, William R.; Ross, J. B. Alexander

    1992-04-01

    The time-resolved fluorescence properties of a tryptophan residue should be useful for probing protein structure, function, and dynamics. To date, however, the non-single exponential fluorescence intensity decay kinetics for numerous peptides and proteins having a single tryptophan residue have not been adequately explained. Many possibilities have been considered and include: (1) contributions from the 1La and 1Lb states of indole; (2) excited-state hydrogen exchange; and (3) environmental heterogeneity from (chi) 1 and (chi) 2 rotamers. In addition, it has been suggested that generally many factors contribute to the decay and a distribution of probabilities may be more appropriate. Two recent results support multiple species due to conformational heterogeneity as the major contributor to complex kinetics. First, a rotationally constrained tryptophan analogue has fluorescence intensity decay kinetics that can be described by the sum of two exponentials with amplitudes comparable to the relative populations of the two rotational isomers. Second, the multiple exponentials observed for tyrosine-containing model compounds and peptides correlate with the (chi) 1 rotamer populations independently determined by 1H NMR. We now report similar correlations between rotamer populations and fluorescence intensity decay kinetics for a tryptophan analogue of oxytocin. It appears for this compound that either (chi) 2 rotations do not appreciably alter the indole environment, (chi) 2 rotations are rapid enough to average the observed dependence, or only one of two possible (chi) 2 populations is associated with each (chi) 1 rotamer.

  3. Decay of random correlation functions for unimodal maps

    NASA Astrophysics Data System (ADS)

    Baladi, Viviane; Benedicks, Michael; Maume-Deschamps, Véronique

    2000-10-01

    Since the pioneering results of Jakobson and subsequent work by Benedicks-Carleson and others, it is known that quadratic maps tfa( χ) = a - χ2 admit a unique absolutely continuous invariant measure for a positive measure set of parameters a. For topologically mixing tfa, Young and Keller-Nowicki independently proved exponential decay of correlation functions for this a.c.i.m. and smooth observables. We consider random compositions of small perturbations tf + ωt, with tf = tfa or another unimodal map satisfying certain nonuniform hyperbolicity axioms, and ωt chosen independently and identically in [-ɛ, ɛ]. Baladi-Viana showed exponential mixing of the associated Markov chain, i.e., averaging over all random itineraries. We obtain stretched exponential bounds for the random correlation functions of Lipschitz observables for the sample measure μωof almost every itinerary.

  4. A decades-long fast-rise-exponential-decay flare in low-luminosity AGN NGC 7213

    NASA Astrophysics Data System (ADS)

    Yan, Zhen; Xie, Fu-Guo

    2018-03-01

    We analysed the four-decades-long X-ray light curve of the low-luminosity active galactic nucleus (LLAGN) NGC 7213 and discovered a fast-rise-exponential-decay (FRED) pattern, i.e. the X-ray luminosity increased by a factor of ≈4 within 200 d, and then decreased exponentially with an e-folding time ≈8116 d (≈22.2 yr). For the theoretical understanding of the observations, we examined three variability models proposed in the literature: the thermal-viscous disc instability model, the radiation pressure instability model, and the TDE model. We find that a delayed tidal disruption of a main-sequence star is most favourable; either the thermal-viscous disc instability model or radiation pressure instability model fails to explain some key properties observed, thus we argue them unlikely.

  5. Doubling Time for Nonexponential Families of Functions

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    2010-01-01

    One special characteristic of any exponential growth or decay function f(t) = Ab[superscript t] is its unique doubling time or half-life, each of which depends only on the base "b". The half-life is used to characterize the rate of decay of any radioactive substance or the rate at which the level of a medication in the bloodstream decays as it is…

  6. Probing solvation decay length in order to characterize hydrophobicity-induced bead-bead attractive interactions in polymer chains.

    PubMed

    Das, Siddhartha; Chakraborty, Suman

    2011-08-01

    In this paper, we quantitatively demonstrate that exponentially decaying attractive potentials can effectively mimic strong hydrophobic interactions between monomer units of a polymer chain dissolved in aqueous solvent. Classical approaches to modeling hydrophobic solvation interactions are based on invariant attractive length scales. However, we demonstrate here that the solvation interaction decay length may need to be posed as a function of the relative separation distances and the sizes of the interacting species (or beads or monomers) to replicate the necessary physical interactions. As an illustrative example, we derive a universal scaling relationship for a given solute-solvent combination between the solvation decay length, the bead radius, and the distance between the interacting beads. With our formalism, the hydrophobic component of the net attractive interaction between monomer units can be synergistically accounted for within the unified framework of a simple exponentially decaying potential law, where the characteristic decay length incorporates the distinctive and critical physical features of the underlying interaction. The present formalism, even in a mesoscopic computational framework, is capable of incorporating the essential physics of the appropriate solute-size dependence and solvent-interaction dependence in the hydrophobic force estimation, without explicitly resolving the underlying molecular level details.

  7. Scintillation properties of Ce-doped (Gd0.32Y0.68)3Al5O12 transparent ceramics

    NASA Astrophysics Data System (ADS)

    Hirano, Shotaro; Okada, Go; Kawaguchi, Noriaki; Yagi, Hideki; Yanagitani, Takagimi; Yanagida, Takayuki

    2017-04-01

    In this work, we have investigated optical and scintillation properties of 0.35-0.65% Ce:(Gd0.32Y0.68)3Al5O12 (Ce:GYAG) transparent ceramics prepared by the vacuum sintering method. Obtained samples showed high transmittance in the spectral region longer than 500 nm, and two strong absorption bands were clearly observed below 380 nm and between 400 and 500 nm due to the 4f-5d transitions of Ce3+. Under UV and X-rays, we have also observed emission due to the 5d-4f transitions of Ce3+ which appeared around 500-700 nm. The emission decay profile of PL consisted of a single exponential decay component with the decay time of 62.7-64.1 ns while the scintillation decay profile was approximated by a second-order exponential decay function with the decay times of 87.3-100 ns and 1.14-1.32 μs. In addition, it has been revealed that 0.65% Ce:GYAG transparent ceramic showed a notable light yield of 18,000 ph/MeV and low afterglow (13 ppm).

  8. Characterization of plasma current quench during disruptions at HL-2A

    NASA Astrophysics Data System (ADS)

    Zhu, Jinxia; Zhang, Yipo; Dong, Yunbo; HL-2A Team

    2017-05-01

    The most essential assumptions of physics for the evaluation of electromagnetic forces on the plasma-facing components due to a disruption-induced eddy current are characteristics of plasma current quenches including the current quench rate or its waveforms. The characteristics of plasma current quenches at HL-2A have been analyzed during spontaneous disruptions. Both linear decay and exponential decay are found in the disruptions with the fastest current quenches. However, there are two stages of current quench in the slow current quench case. The first stage with an exponential decay and the second stage followed by a rapid linear decay. The faster current quench rate corresponds to the faster movement of plasma displacement. The parameter regimes on the current quench time and the current quench rates have been obtained from disruption statistics at HL-2A. There exists no remarkable difference for distributions obtained between the limiter and the divertor configuration. This data from HL-2A provides basic data of the derivation of design criteria for a large-sized machine during the current decay phase of the disruptions.

  9. Origin of stretched-exponential photoluminescence relaxation in size-separated silicon nanocrystals

    DOE PAGES

    Brown, Samuel L.; Krishnan, Retheesh; Elbaradei, Ahmed; ...

    2017-05-25

    A detailed understanding of the photoluminescence (PL) from silicon nanocrystals (SiNCs) is convoluted by the complexity of the decay mechanism, including a stretched-exponential relaxation and the presence of both nanosecond and microsecond time scales. In this publication, we analyze the microsecond PL decay of size-resolved SiNC fractions in both full-spectrum (FS) and spectrally resolved (SR) configurations, where the stretching exponent and lifetime are used to deduce a probability distribution function (PDF) of decay rates. For the PL decay measured at peak emission, we find a systematic shift and narrowing of the PDF in comparison to the FS measurements. In amore » similar fashion, we resolve the PL lifetime of the ‘blue’, ‘peak’, and ‘red’ regions of the spectrum and map PL decays of different photon energy onto their corresponding location in the PDF. Furthermore, a general trend is observed where higher and lower photon energies are correlated with shorter and longer lifetimes, respectively, which we relate to the PL line width and electron-phonon coupling.« less

  10. The discrete Fourier transform algorithm for determining decay constants—Implementation using a field programmable gate array

    NASA Astrophysics Data System (ADS)

    Bostrom, G.; Atkinson, D.; Rice, A.

    2015-04-01

    Cavity ringdown spectroscopy (CRDS) uses the exponential decay constant of light exiting a high-finesse resonance cavity to determine analyte concentration, typically via absorption. We present a high-throughput data acquisition system that determines the decay constant in near real time using the discrete Fourier transform algorithm on a field programmable gate array (FPGA). A commercially available, high-speed, high-resolution, analog-to-digital converter evaluation board system is used as the platform for the system, after minor hardware and software modifications. The system outputs decay constants at maximum rate of 4.4 kHz using an 8192-point fast Fourier transform by processing the intensity decay signal between ringdown events. We present the details of the system, including the modifications required to adapt the evaluation board to accurately process the exponential waveform. We also demonstrate the performance of the system, both stand-alone and incorporated into our existing CRDS system. Details of FPGA, microcontroller, and circuitry modifications are provided in the Appendix and computer code is available upon request from the authors.

  11. Analytical model of coincidence resolving time in TOF-PET

    NASA Astrophysics Data System (ADS)

    Wieczorek, H.; Thon, A.; Dey, T.; Khanin, V.; Rodnyi, P.

    2016-06-01

    The coincidence resolving time (CRT) of scintillation detectors is the parameter determining noise reduction in time-of-flight PET. We derive an analytical CRT model based on the statistical distribution of photons for two different prototype scintillators. For the first one, characterized by single exponential decay, CRT is proportional to the decay time and inversely proportional to the number of photons, with a square root dependence on the trigger level. For the second scintillator prototype, characterized by exponential rise and decay, CRT is proportional to the square root of the product of rise time and decay time divided by the doubled number of photons, and it is nearly independent of the trigger level. This theory is verified by measurements of scintillation time constants, light yield and CRT on scintillator sticks. Trapping effects are taken into account by defining an effective decay time. We show that in terms of signal-to-noise ratio, CRT is as important as patient dose, imaging time or PET system sensitivity. The noise reduction effect of better timing resolution is verified and visualized by Monte Carlo simulation of a NEMA image quality phantom.

  12. Effects of random initial conditions on the dynamical scaling behaviors of a fixed-energy Manna sandpile model in one dimension

    NASA Astrophysics Data System (ADS)

    Kwon, Sungchul; Kim, Jin Min

    2015-01-01

    For a fixed-energy (FE) Manna sandpile model in one dimension, we investigate the effects of random initial conditions on the dynamical scaling behavior of an order parameter. In the FE Manna model, the density ρ of total particles is conserved, and an absorbing phase transition occurs at ρc as ρ varies. In this work, we show that, for a given ρ , random initial distributions of particles lead to the domain structure in which domains with particle densities higher and lower than ρc alternate with each other. In the domain structure, the dominant length scale is the average domain length, which increases via the coalescence of adjacent domains. At ρc, the domain structure slows down the decay of an order parameter and also causes anomalous finite-size effects, i.e., power-law decay followed by an exponential one before the quasisteady state. As a result, the interplay of particle conservation and random initial conditions causes the domain structure, which is the origin of the anomalous dynamical scaling behaviors for random initial conditions.

  13. Exponential Decay of Reconstruction Error from Binary Measurements of Sparse Signals

    DTIC Science & Technology

    2014-08-01

    that the required condition of Corollary 9, namely q ≥ Cδ−4s̃ log(n/s̃), is still satisfied. The result follows from massaging the equations, as...study of the relationship of heart attacks to various factors may test whether certain subjects have heart attacks in a short window of time and other...subjects have heart attacks in a long window of time. The main message of this paper is that by carefully choosing this threshold the accuracy of

  14. Expanding sheath in a bounded plasma in the context of the post-arc phase of a vacuum arc

    NASA Astrophysics Data System (ADS)

    Sarrailh, P.; Garrigues, L.; Hagelaar, G. J. M.; Sandolache, G.; Rowe, S.; Jusselin, B.; Boeuf, J. P.

    2008-01-01

    A numerical model of sheath expansion and plasma decay in a bounded plasma subjected to a linearly increasing voltage has been developed. Numerical results obtained with a hybrid-MB model (Maxwell-Boltzmann electrons, particle ions and Poisson's equations) are compared with analytical theory and results from particle-in-cell (PIC) simulations. The hybrid-MB model is similar to models used for plasma immersion ion implantation except that plasma decay due to particle losses to the electrodes is taken into account. The comparisons with more accurate and much more time consuming PIC models show that the hybrid-MB model provides a very satisfactory description of the sheath expansion and plasma decay even for conditions where the grid spacing is much larger than the Debye length. The model is used for high plasma density conditions, corresponding to the post-arc phase of a vacuum arc circuit breaker where a vacuum gap is subject to a transient recovery voltage (TRV) after it has ceased to sustain a vacuum arc. The results show that the plasma sheath expansion is subsonic under these conditions, and that the plasma starts to decay exponentially after two rarefaction waves from the cathode and anode merge in the centre of the gap. A parametric study also shows the strong influence of the TRV rise rate and initial plasma density on the plasma decay time and on the ion current collected by each electrode. The effect of collisions between charged particles and metal atoms resulting for the electrode evaporation is also discussed.

  15. In vivo chlorine and sodium MRI of rat brain at 21.1 T.

    PubMed

    Schepkin, Victor D; Elumalai, Malathy; Kitchen, Jason A; Qian, Chunqi; Gor'kov, Peter L; Brey, William W

    2014-02-01

    MR imaging of low-gamma nuclei at the ultrahigh magnetic field of 21.1 T provides a new opportunity for understanding a variety of biological processes. Among these, chlorine and sodium are attracting attention for their involvement in brain function and cancer development. MRI of (35)Cl and (23)Na were performed and relaxation times were measured in vivo in normal rat (n = 3) and in rat with glioma (n = 3) at 21.1 T. The concentrations of both nuclei were evaluated using the center-out back-projection method. T 1 relaxation curve of chlorine in normal rat head was fitted by bi-exponential function (T 1a = 4.8 ms (0.7) T 1b = 24.4 ± 7 ms (0.3) and compared with sodium (T 1 = 41.4 ms). Free induction decays (FID) of chlorine and sodium in vivo were bi-exponential with similar rapidly decaying components of [Formula: see text] ms and [Formula: see text] ms, respectively. Effects of small acquisition matrix and bi-exponential FIDs were assessed for quantification of chlorine (33.2 mM) and sodium (44.4 mM) in rat brain. The study modeled a dramatic effect of the bi-exponential decay on MRI results. The revealed increased chlorine concentration in glioma (~1.5 times) relative to a normal brain correlates with the hypothesis asserting the importance of chlorine for tumor progression.

  16. Evolution and modulation of intracellular calcium release during long-lasting, depleting depolarization in mouse muscle

    PubMed Central

    Royer, Leandro; Pouvreau, Sandrine; Ríos, Eduardo

    2008-01-01

    Intracellular calcium signals regulate multiple cellular functions. They depend on release of Ca2+ from cellular stores into the cytosol, a process that in many types of cells appears to be tightly controlled by changes in [Ca2+] within the store. In contrast with cardiac muscle, where depletion of Ca2+ in the sarcoplasmic reticulum is a crucial determinant of termination of Ca2+ release, in skeletal muscle there is no agreement regarding the sign, or even the existence of an effect of SR Ca2+ level on Ca2+ release. To address this issue we measured Ca2+ transients in mouse flexor digitorum brevis (FDB) skeletal muscle fibres under voltage clamp, using confocal microscopy and the Ca2+ monitor rhod-2. The evolution of Ca2+ release flux was quantified during long-lasting depolarizations that reduced severely the Ca2+ content of the SR. As in all previous determinations in mammals and non-mammals, release flux consisted of an early peak, relaxing to a lower level from which it continued to decay more slowly. Decay of flux in this second stage, which has been attributed largely to depletion of SR Ca2+, was studied in detail. A simple depletion mechanism without change in release permeability predicts an exponential decay with time. In contrast, flux decreased non-exponentially, to a finite, measurable level that could be maintained for the longest pulses applied (1.8 s). An algorithm on the flux record allowed us to define a quantitative index, the normalized flux rate of change (NFRC), which was shown to be proportional to the ratio of release permeability P and inversely proportional to Ca2+ buffering power B of the SR, thus quantifying the ‘evacuability’ or ability of the SR to empty its content. When P and B were constant, flux then decayed exponentially, and NFRC was equal to the exponential rate constant. Instead, in most cases NFRC increased during the pulse, from a minimum reached immediately after the early peak in flux, to a time between 200 and 250 ms, when the index was no longer defined. NFRC increased by 111% on average (in 27 images from 18 cells), reaching 300% in some cases. The increase may reflect an increase in P, a decrease in B, or both. On experimental and theoretical grounds, both changes are to be expected upon SR depletion. A variable evacuability helps maintain a constant Ca2+ output under conditions of diminishing store Ca2+ load. PMID:18687715

  17. Experimental observations on the decay of environmental DNA from bighead and silver carps

    USGS Publications Warehouse

    Lance, Richard F.; Klymus, Katy E.; Richter, Cathy; Guan, Xin; Farrington, Heather L.; Carr, Matthew R.; Thompson, Nathan; Chapman, Duane C.; Baerwaldt, Kelly L.

    2017-01-01

    Interest in the field of environmental DNA (eDNA) is growing rapidly and eDNA surveys are becoming an important consideration for aquatic resource managers dealing with invasive species. However, in order for eDNA monitoring to mature as a research and management tool, there are several critical knowledge gaps that must be filled. One such gap is the fate of eDNA materials in the aquatic environment. Understanding the environmental factors that influence the decay of eDNA and how these factors impact detection probabilities over time and space could have significant implications for eDNA survey design and data interpretation. Here we experimentally explore decay of eDNA associated with bighead carp (Hypophthalmichthys nobilis) biological waste collected from an aquaculture filtration system and with sperm collected from captive silver carp (H. molitrix), and how decay may be influenced by differing levels of water turbulence, temperature, microbial load, and pH. We found that the decay patterns of eDNA associated with both H. nobilis biological waste and H. molitrix milt significantly fit monophasic exponential decay curves. Secondly, we observed that the highest temperature we tested resulted in a decay half-life as much as 5.5× more rapid than the lowest temperature we tested. When we suppressed microbial loads in eDNA samples, we observed that overall losses of eDNA were reduced by about 2.5×. When we amended eDNA samples with pond water the half-life of eDNA was reduced by about 2.25×, despite relatively little apparent increase in the overall microbial load. This pattern indicated that species constituency of the microbial community, in addition to microbial load, might play a critical role in eDNA degradation. A shift in pH from 6.5 to 8.0 in the samples resulted in a 1.6× reduction in eDNA halflife. Water turbulence in our study had no apparent effect on eDNA decay. When we combined different temperature, pH, and microbial load treatments to create a rapid decay condition and a slow decay condition, and tracked eDNA decay over 91 days, we observed a 5.0× greater loss of eDNA by Day 5 under rapid decay conditions than under slow decay conditions. At the end of the trials, the differences in eDNA loss between the rapid decay and baseline and slow decay conditions were 0.1× and 3.3×, respectively. Our results strongly demonstrate the potential for environmental factors to influence eDNA fate and, thus, the interpretation of eDNA survey results.

  18. Model evaluation of plant metal content and biomass yield for the phytoextraction of heavy metals by switchgrass.

    PubMed

    Chen, Bo-Ching; Lai, Hung-Yu; Juang, Kai-Wei

    2012-06-01

    To better understand the ability of switchgrass (Panicum virgatum L.), a perennial grass often relegated to marginal agricultural areas with minimal inputs, to remove cadmium, chromium, and zinc by phytoextraction from contaminated sites, the relationship between plant metal content and biomass yield is expressed in different models to predict the amount of metals switchgrass can extract. These models are reliable in assessing the use of switchgrass for phytoremediation of heavy-metal-contaminated sites. In the present study, linear and exponential decay models are more suitable for presenting the relationship between plant cadmium and dry weight. The maximum extractions of cadmium using switchgrass, as predicted by the linear and exponential decay models, approached 40 and 34 μg pot(-1), respectively. The log normal model was superior in predicting the relationship between plant chromium and dry weight. The predicted maximum extraction of chromium by switchgrass was about 56 μg pot(-1). In addition, the exponential decay and log normal models were better than the linear model in predicting the relationship between plant zinc and dry weight. The maximum extractions of zinc by switchgrass, as predicted by the exponential decay and log normal models, were about 358 and 254 μg pot(-1), respectively. To meet the maximum removal of Cd, Cr, and Zn, one can adopt the optimal timing of harvest as plant Cd, Cr, and Zn approach 450 and 526 mg kg(-1), 266 mg kg(-1), and 3022 and 5000 mg kg(-1), respectively. Due to the well-known agronomic characteristics of cultivation and the high biomass production of switchgrass, it is practicable to use switchgrass for the phytoextraction of heavy metals in situ. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Pendulum Mass Affects the Measurement of Articular Friction Coefficient

    PubMed Central

    Akelman, Matthew R.; Teeple, Erin; Machan, Jason T.; Crisco, Joseph J.; Jay, Gregory D.; Fleming, Braden C.

    2012-01-01

    Friction measurements of articular cartilage are important to determine the relative tribologic contributions made by synovial fluid or cartilage, and to assess the efficacy of therapies for preventing the development of post-traumatic osteoarthritis. Stanton’s equation is the most frequently used formula for estimating the whole joint friction coefficient (μ) of an articular pendulum, and assumes pendulum energy loss through a mass-independent mechanism. This study examines if articular pendulum energy loss is indeed mass independent, and compares Stanton’s model to an alternative model, which incorporates viscous damping, for calculating μ. Ten loads (25-100% body weight) were applied in a random order to an articular pendulum using the knees of adult male Hartley guinea pigs (n = 4) as the fulcrum. Motion of the decaying pendulum was recorded and μ was estimated using two models: Stanton’s equation, and an exponential decay function incorporating a viscous damping coefficient. μ estimates decreased as mass increased for both models. Exponential decay model fit error values were 82% less than the Stanton model. These results indicate that μ decreases with increasing mass, and that an exponential decay model provides a better fit for articular pendulum data at all mass values. In conclusion, inter-study comparisons of articular pendulum μ values should not be made without recognizing the loads used, as μ values are mass dependent. PMID:23122223

  20. Pendulum mass affects the measurement of articular friction coefficient.

    PubMed

    Akelman, Matthew R; Teeple, Erin; Machan, Jason T; Crisco, Joseph J; Jay, Gregory D; Fleming, Braden C

    2013-02-01

    Friction measurements of articular cartilage are important to determine the relative tribologic contributions made by synovial fluid or cartilage, and to assess the efficacy of therapies for preventing the development of post-traumatic osteoarthritis. Stanton's equation is the most frequently used formula for estimating the whole joint friction coefficient (μ) of an articular pendulum, and assumes pendulum energy loss through a mass-independent mechanism. This study examines if articular pendulum energy loss is indeed mass independent, and compares Stanton's model to an alternative model, which incorporates viscous damping, for calculating μ. Ten loads (25-100% body weight) were applied in a random order to an articular pendulum using the knees of adult male Hartley guinea pigs (n=4) as the fulcrum. Motion of the decaying pendulum was recorded and μ was estimated using two models: Stanton's equation, and an exponential decay function incorporating a viscous damping coefficient. μ estimates decreased as mass increased for both models. Exponential decay model fit error values were 82% less than the Stanton model. These results indicate that μ decreases with increasing mass, and that an exponential decay model provides a better fit for articular pendulum data at all mass values. In conclusion, inter-study comparisons of articular pendulum μ values should not be made without recognizing the loads used, as μ values are mass dependent. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Asymptotic decay and non-rupture of viscous sheets

    NASA Astrophysics Data System (ADS)

    Fontelos, Marco A.; Kitavtsev, Georgy; Taranets, Roman M.

    2018-06-01

    For a nonlinear system of coupled PDEs, that describes evolution of a viscous thin liquid sheet and takes account of surface tension at the free surface, we show exponential (H^1, L^2) asymptotic decay to the flat profile of its solutions considered with general initial data. Additionally, by transforming the system to Lagrangian coordinates we show that the minimal thickness of the sheet stays positive for all times. This result proves the conjecture formally accepted in the physical literature (cf. Eggers and Fontelos in Singularities: formation, structure, and propagation. Cambridge Texts in Applied Mathematics, Cambridge, 2015), that a viscous sheet cannot rupture in finite time in the absence of external forcing. Moreover, in the absence of surface tension we find a special class of initial data for which the Lagrangian solution exhibits L^2-exponential decay to the flat profile.

  2. Gradient-based stochastic estimation of the density matrix

    NASA Astrophysics Data System (ADS)

    Wang, Zhentao; Chern, Gia-Wei; Batista, Cristian D.; Barros, Kipton

    2018-03-01

    Fast estimation of the single-particle density matrix is key to many applications in quantum chemistry and condensed matter physics. The best numerical methods leverage the fact that the density matrix elements f(H)ij decay rapidly with distance rij between orbitals. This decay is usually exponential. However, for the special case of metals at zero temperature, algebraic decay of the density matrix appears and poses a significant numerical challenge. We introduce a gradient-based probing method to estimate all local density matrix elements at a computational cost that scales linearly with system size. For zero-temperature metals, the stochastic error scales like S-(d+2)/2d, where d is the dimension and S is a prefactor to the computational cost. The convergence becomes exponential if the system is at finite temperature or is insulating.

  3. The Kepler Light Curve of V344 LYR: Constraining the Thermal-Viscous Limit Cycle Instability

    NASA Technical Reports Server (NTRS)

    Cannizzo, J. K.; Still, M. D.; Howell, S. B.; Wood, M. A.; Smale, A. P.

    2010-01-01

    We present time dependent modeling based on the accretion disk limit cycle model for a 90 d light curve of the short period SU UMa-type dwarf nova V344 Lyr taken by Kepler. The unprecedented precision and cadence (1 minute) far surpass that generally available for long term light curves. The data encompass a super outburst, preceded by three normal (i.e., short) outbursts and followed by two normal outbursts. The main decay of the super outburst is nearly perfectly exponential, decaying at a rate approx.12 d/mag, while the much more rapid decays of the normal outbursts exhibit a faster-than-exponential shape. We show that the standard limit cycle model can account for the light curve, without the need for either the thermal-tidal instability or enhanced mass transfer.

  4. Life of LED-Based White Light Sources

    NASA Astrophysics Data System (ADS)

    Narendran, Nadarajah; Gu, Yimin

    2005-09-01

    Even though light-emitting diodes (LEDs) may have a very long life, poorly designed LED lighting systems can experience a short life. Because heat at the p-n-junction is one of the main factors that affect the life of the LED, by knowing the relationship between life and heat, LED system manufacturers can design and build long-lasting systems. In this study, several white LEDs from the same manufacturer were subjected to life tests at different ambient temperatures. The exponential decay of light output as a function of time provided a convenient method to rapidly estimate life by data extrapolation. The life of these LEDs decreases in an exponential manner with increasing temperature. In a second experiment,several high-power white LEDs from different manufacturers were life-tested under similar conditions. Results show that the different products have significantly different life values.

  5. Quantum discord length is enhanced while entanglement length is not by introducing disorder in a spin chain.

    PubMed

    Sadhukhan, Debasis; Roy, Sudipto Singha; Rakshit, Debraj; Prabhu, R; Sen De, Aditi; Sen, Ujjwal

    2016-01-01

    Classical correlation functions of ground states typically decay exponentially and polynomially, respectively, for gapped and gapless short-range quantum spin systems. In such systems, entanglement decays exponentially even at the quantum critical points. However, quantum discord, an information-theoretic quantum correlation measure, survives long lattice distances. We investigate the effects of quenched disorder on quantum correlation lengths of quenched averaged entanglement and quantum discord, in the anisotropic XY and XYZ spin glass and random field chains. We find that there is virtually neither reduction nor enhancement in entanglement length while quantum discord length increases significantly with the introduction of the quenched disorder.

  6. Time-resolved photoluminescence investigation of (Mg, Zn) O alloy growth on a non-polar plane

    NASA Astrophysics Data System (ADS)

    Mohammed Ali, Mohammed Jassim; Chauveau, J. M.; Bretagnon, T.

    2018-04-01

    Excitons recombination dynamics in ZnMgO alloy have been studied by time-resolved photoluminescence according to temperature. At low temperature, localisation effects of the exciton are found to play a significant role. The photoluminescence (PL) decays are bi-exponential. The short lifetime has a constant value, whereas the long lifetime shows a dependency with temperature. For temperature higher than 100 K the declines show a mono-exponential decay. The PL declines are dominated by non-radiative process at temperatures above 150 K. The PL lifetime dependancy with temperature is analysed using a model including localisation effects and non-radiative recombinations.

  7. Rate laws of the self-induced aggregation kinetics of Brownian particles

    NASA Astrophysics Data System (ADS)

    Mondal, Shrabani; Sen, Monoj Kumar; Baura, Alendu; Bag, Bidhan Chandra

    2016-03-01

    In this paper we have studied the self induced aggregation kinetics of Brownian particles in the presence of both multiplicative and additive noises. In addition to the drift due to the self aggregation process, the environment may induce a drift term in the presence of a multiplicative noise. Then there would be an interplay between the two drift terms. It may account qualitatively the appearance of the different laws of aggregation process. At low strength of white multiplicative noise, the cluster number decreases as a Gaussian function of time. If the noise strength becomes appreciably large then the variation of cluster number with time is fitted well by the mono exponentially decaying function of time. For additive noise driven case, the decrease of cluster number can be described by the power law. But in case of multiplicative colored driven process, cluster number decays multi exponentially. However, we have explored how the rate constant (in the mono exponentially cluster number decaying case) depends on strength of interference of the noises and their intensity. We have also explored how the structure factor at long time depends on the strength of the cross correlation (CC) between the additive and the multiplicative noises.

  8. Quantum mechanical generalized phase-shift approach to atom-surface scattering: a Feshbach projection approach to dealing with closed channel effects.

    PubMed

    Maji, Kaushik; Kouri, Donald J

    2011-03-28

    We have developed a new method for solving quantum dynamical scattering problems, using the time-independent Schrödinger equation (TISE), based on a novel method to generalize a "one-way" quantum mechanical wave equation, impose correct boundary conditions, and eliminate exponentially growing closed channel solutions. The approach is readily parallelized to achieve approximate N(2) scaling, where N is the number of coupled equations. The full two-way nature of the TISE is included while propagating the wave function in the scattering variable and the full S-matrix is obtained. The new algorithm is based on a "Modified Cayley" operator splitting approach, generalizing earlier work where the method was applied to the time-dependent Schrödinger equation. All scattering variable propagation approaches to solving the TISE involve solving a Helmholtz-type equation, and for more than one degree of freedom, these are notoriously ill-behaved, due to the unavoidable presence of exponentially growing contributions to the numerical solution. Traditionally, the method used to eliminate exponential growth has posed a major obstacle to the full parallelization of such propagation algorithms. We stabilize by using the Feshbach projection operator technique to remove all the nonphysical exponentially growing closed channels, while retaining all of the propagating open channel components, as well as exponentially decaying closed channel components.

  9. Very slow lava extrusion continued for more than five years after the 2011 Shinmoedake eruption observed from SAR interferometry

    NASA Astrophysics Data System (ADS)

    Ozawa, T.; Miyagi, Y.

    2017-12-01

    Shinmoe-dake located to SW Japan erupted in January 2011 and lava accumulated in the crater (e.g., Ozawa and Kozono, EPS, 2013). Last Vulcanian eruption occurred in September 2011, and after that, no eruption has occurred until now. Miyagi et al. (GRL, 2014) analyzed TerraSAR-X and Radarsat-2 SAR data acquired after the last eruption and found continuous inflation in the crater. Its inflation decayed with time, but had not terminated in May 2013. Since the time-series of inflation volume change rate fitted well to the exponential function with the constant term, we suggested that lava extrusion had continued in long-term due to deflation of shallow magma source and to magma supply from deeper source. To investigate its deformation after that, we applied InSAR to Sentinel-1 and ALOS-2 SAR data. Inflation decayed further, and almost terminated in the end of 2016. It means that this deformation has continued more than five years from the last eruption. We have found that the time series of inflation volume change rate fits better to the double-exponential function than single-exponential function with the constant term. The exponential component with the short time constant has almost settled in one year from the last eruption. Although InSAR result from TerraSAR-X data of November 2011 and May 2013 indicated deflation of shallow source under the crater, such deformation has not been obtained from recent SAR data. It suggests that this component has been due to deflation of shallow magma source with excess pressure. In this study, we found the possibility that long-term component also decayed exponentially. Then this factor may be deflation of deep source or delayed vesiculation.

  10. InP:Fe Photoconducting device

    DOEpatents

    Hammond, Robert B.; Paulter, Nicholas G.; Wagner, Ronald S.

    1984-01-01

    A photoconducting device fabricated from Fe-doped, semi-insulating InP crystals exhibits an exponential decay transient with decay time inversely related to Fe concentration. Photoconductive gain as high as 5 is demonstrated in photoconducting devices with AuGe and AuSn contacts. Response times from 150 to 1000 picoseconds can be achieved.

  11. InP:Fe photoconducting device

    DOEpatents

    Hammond, R.B.; Paulter, N.G.; Wagner, R.S.

    A photoconducting device fabricated from Fe-doped, semi-insulating InP crystals exhibits an exponential decay transient with decay time inversely related to Fe concentration. Photoconductive gain as high as 5 is demonstrated in photoconducting devices with AuGe and AuSn contacts. Response times from 150 to 1000 picoseconds can be achieved.

  12. Modeling the effects of sodium chloride on degradation of chloramphenicol in aquaculture pond sediment.

    PubMed

    Chien, Y H; Lai, H T; Liu, S M

    1999-10-01

    Sodium chloride was added to aquaculture pond sediment to determine effects of different salinities on degradation of chloramphenicol (CM). In this experiment, freshwater (0 ppt salinity) eel pond sediment slurries (10% w/v) were amended with sodium chloride to obtain salinities of 12, 24 and 36 ppt. There were no significant differences in sorption rate either between aerobic and anaerobic conditions or among various salinities. Degradation of CM fitted well to the decaying exponential curve. The degradation rates under anaerobic conditions were significantly greater than those under aerobic conditions. As salinity increased, the degradation rates decreased under both aerobic and anaerobic conditions. The differences in degradation rates either between aerobic and anaerobic conditions or among various salinities were attributed to the effects of microbial activities under different environments.

  13. In vivo chlorine and sodium MRI of rat brain at 21.1 T

    PubMed Central

    Elumalai, Malathy; Kitchen, Jason A.; Qian, Chunqi; Gor’kov, Peter L.; Brey, William W.

    2017-01-01

    Object MR imaging of low-gamma nuclei at the ultrahigh magnetic field of 21.1 T provides a new opportunity for understanding a variety of biological processes. Among these, chlorine and sodium are attracting attention for their involvement in brain function and cancer development. Materials and methods MRI of 35Cl and 23Na were performed and relaxation times were measured in vivo in normal rat (n = 3) and in rat with glioma (n = 3) at 21.1 T. The concentrations of both nuclei were evaluated using the center-out back-projection method. Results T1 relaxation curve of chlorine in normal rat head was fitted by bi-exponential function (T1a = 4.8 ms (0.7) T1b = 24.4 ± 7 ms (0.3) and compared with sodium (T1 = 41.4 ms). Free induction decays (FID) of chlorine and sodium in vivo were bi-exponential with similar rapidly decaying components of T2a∗=0.4 ms and T2a∗=0.53 ms, respectively. Effects of small acquisition matrix and bi-exponential FIDs were assessed for quantification of chlorine (33.2 mM) and sodium (44.4 mM) in rat brain. Conclusion The study modeled a dramatic effect of the bi-exponential decay on MRI results. The revealed increased chlorine concentration in glioma (~1.5 times) relative to a normal brain correlates with the hypothesis asserting the importance of chlorine for tumor progression. PMID:23748497

  14. Optical coherence tomography assessment of vessel wall degradation in aneurysmatic thoracic aortas

    NASA Astrophysics Data System (ADS)

    Real, Eusebio; Eguizabal, Alma; Pontón, Alejandro; Val-Bernal, J. Fernando; Mayorga, Marta; Revuelta, José M.; López-Higuera, José; Conde, Olga M.

    2013-06-01

    Optical coherence tomographic images of ascending thoracic human aortas from aneurysms exhibit disorders on the smooth muscle cell structure of the media layer of the aortic vessel as well as elastin degradation. Ex-vivo measurements of human samples provide results that correlate with pathologist diagnosis in aneurysmatic and control aortas. The observed disorders are studied as possible hallmarks for aneurysm diagnosis. To this end, the backscattering profile along the vessel thickness has been evaluated by fitting its decay against two different models, a third order polynomial fitting and an exponential fitting. The discontinuities present on the vessel wall on aneurysmatic aortas are slightly better identified with the exponential approach. Aneurysmatic aortic walls present uneven reflectivity decay when compared with healthy vessels. The fitting error has revealed as the most favorable indicator for aneurysm diagnosis as it provides a measure of how uniform is the decay along the vessel thickness.

  15. Human vertical eye movement responses to earth horizontal pitch

    NASA Technical Reports Server (NTRS)

    Wall, C. 3rd; Petropoulos, A. E.

    1993-01-01

    The vertical eye movements in humans produced in response to head-over-heels constant velocity pitch rotation about a horizontal axis resemble those from other species. At 60 degrees/s these are persistent and tend to have non-reversing slow components that are compensatory to the direction of rotation. In most, but not all subjects, the slow component velocity was well characterized by a rapid build-up followed by an exponential decay to a non-zero baseline. Super-imposed was a cyclic or modulation component whose frequency corresponded to the time for one revolution and whose maximum amplitude occurred during a specific head orientation. All response components (exponential decay, baseline and modulation) were larger during pitch backward compared to pitch forward runs. Decay time constants were shorter during the backward runs, thus, unlike left to right yaw axis rotation, pitch responses display significant asymmetries between paired forward and backward runs.

  16. Light-induced biophotonic emission from plant tissues.

    PubMed

    Bajpai, R P; Bajpai, P K

    1992-07-01

    The emission of biophotons in the visible range, following a delay time of 2-200 seconds after exposure to light, has been measured in germinating seeds, roots, flowers, leaves, and cells. It was found that the biophotonic signals are reproducible and light-induced. The observed signals from germinating seeds of Phaseolus aures and decaying leaves of Eucalyptus are presented to show that the signals have characteristic kinetics and intensity. The kinetics of the signal was found to be independent of the stage of growth or decay, though its intensity varied with biological factors. The kinetics in the first minute is characterized by a single exponential decay term while that in the region t less than or equal to 200 s is characterized by two exponentials. The variation in the intensity of the signal with mass, state of hydration, and growth, and the effect of inhibitors in various systems (e.g. leaves, lichen, Chlorella) are reported.

  17. Decaying and growing eigenmodes in open quantum systems: Biorthogonality and the Petermann factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Soo-Young

    2009-10-15

    We study the biorthogonality between decaying and growing eigenmodes in one-dimensional potential barrier problems. It is shown that Petermann factors K{sub n} of the eigenmodes, a measure of nonorthogonality, are involved in decaying mechanism of an initially confined particle. We also show that the decay tail of the growing modes at an exceptional point (EP), where K{sub n} become infinite, is not exponential, but {approx}t{sup 2}e{sup -{gamma}{sub EP}t}, {gamma}{sub EP} the decay rate of the decaying mode at EP. In addition, the geometrical phase near an EP is illustrated by the evolution of wave function.

  18. Effects of Nitroglycerin on Regional Myocardial Blood Flow in Coronary Artery Disease

    PubMed Central

    Horwitz, Lawrence D.; Gorlin, Richard; Taylor, Warren J.; Kemp, Harvey G.

    1971-01-01

    Regional myocardial blood flow before and after sublingual nitroglycerin was measured in 10 patients with coronary artery disease. During thoracotomy, 133Xe was injected directly into the subepicardium in diseased regions of the anterior left ventricular wall, and washout rates were recorded with a scintillation counter. All disappearance curves were closely approximated by two exponential decays analyzed as two parallel flow systems by the compartmental method. The appearance of a double exponential decay pattern in diseased regions suggests that the slow phase was associated with collateral blood flow, although nonhomogeneous myocardium-to-blood partition coefficients for xenon cannot be excluded. Nitroglycerin increased the rapid phase flow in 9 of 10 patients and the slow flow in 7 of 10 patients. Average flow increased in 9 of the 10 patients (P < 0.01). Mean rapid phase flow in the control state was 110 ml/100 g per min and after nitroglycerin increased to 132 ml/100 g per min (P < 0.01); slow phase flow increased from 12 ml/100 g per min to 15 ml/100 g per min (P < 0.05). It is concluded that, under these conditions, nitroglycerin improves perfusion in regions of diseased myocardium in patients with coronary artery disease. PMID:4999635

  19. Dissipative particle dynamics study of velocity autocorrelation function and self-diffusion coefficient in terms of interaction potential strength

    NASA Astrophysics Data System (ADS)

    Zohravi, Elnaz; Shirani, Ebrahim; Pishevar, Ahmadreza; Karimpour, Hossein

    2018-07-01

    This research focuses on numerically investigating the self-diffusion coefficient and velocity autocorrelation function (VACF) of a dissipative particle dynamics (DPD) fluid as a function of the conservative interaction strength. Analytic solutions to VACF and self-diffusion coefficients in DPD were obtained by many researchers in some restricted cases including ideal gases, without the account of conservative force. As departure from the ideal gas conditions are accentuated with increasing the relative proportion of conservative force, it is anticipated that the VACF should gradually deviate from its normally expected exponentially decay. This trend is confirmed through numerical simulations and an expression in terms of the conservative force parameter, density and temperature is proposed for the self-diffusion coefficient. As it concerned the VACF, the equivalent Langevin equation describing Brownian motion of particles with a harmonic potential is adapted to the problem and reveals an exponentially decaying oscillatory pattern influenced by the conservative force parameter, dissipative parameter and temperature. Although the proposed model for obtaining the self-diffusion coefficient with consideration of the conservative force could not be verified due to computational complexities, nonetheless the Arrhenius dependency of the self-diffusion coefficient to temperature and pressure permits to certify our model over a definite range of DPD parameters.

  20. Protochlorophyll complexes with similar steady-state fluorescence characteristics can differ in fluorescence lifetimes. A model study in Triton X-100.

    PubMed

    Myśliwa-Kurdziel, Beata; Solymosi, Katalin; Kruk, Jerzy; Böddi, Béla; Strzałka, Kazimierz

    2007-03-01

    The steady-state and time-resolved fluorescence characteristics of protochlorophyll (Pchl) dissolved in neat Triton X-100 and in Triton X-100 micelles were investigated, and the fluorescence lifetimes of different Pchl spectral forms were studied. Varying the concentration of Pchl or diluting the micellar solutions either with a buffer or with a micellar solution, 631-634, 645-655, 680-692 and above 700 nm emitting Pchl complexes were prepared, the ratios of which varied from one another. The fluorescence decay of the 631-634 nm emitting (monomeric) form had a mono-exponential character with a 5.4-ns fluorescence lifetime. The long-wavelength Pchl complexes (aggregates) had two fluorescence lifetime values within a range of 1.4-3.9 ns and 0.15-0.84 ns, which showed high variability in different environments. Depending on the conditions, either mono- or double-exponential fluorescence decay was found for a fluorescence band at 680-685 nm. These data show that despite their very similar steady-state fluorescence properties, Pchl complexes can differ in fluorescence lifetimes, which may reflect different molecular structures, intrinsic geometries or different molecular interactions. This underlines the importance of complex spectroscopic analysis for a precise description of native and artificial chlorophyllous pigment forms.

  1. O (a) improvement of 2D N = (2 , 2) lattice SYM theory

    NASA Astrophysics Data System (ADS)

    Hanada, Masanori; Kadoh, Daisuke; Matsuura, So; Sugino, Fumihiko

    2018-04-01

    We perform a tree-level O (a) improvement of two-dimensional N = (2 , 2) supersymmetric Yang-Mills theory on the lattice, motivated by the fast convergence in numerical simulations. The improvement respects an exact supersymmetry Q which is needed for obtaining the correct continuum limit without a parameter fine tuning. The improved lattice action is given within a milder locality condition in which the interactions are decaying as the exponential of the distance on the lattice. We also prove that the path-integral measure is invariant under the improved Q-transformation.

  2. Non-cladding optical fiber is available for detecting blood or liquids.

    PubMed

    Takeuchi, Akihiro; Miwa, Tomohiro; Shirataka, Masuo; Sawada, Minoru; Imaizumi, Haruo; Sugibuchi, Hiroyuki; Ikeda, Noriaki

    2010-10-01

    Serious accidents during hemodialysis such as an undetected large amount of blood loss are often caused by venous needle dislodgement. A special plastic optical fiber with a low refractive index was developed for monitoring leakage in oil pipelines and in other industrial fields. To apply optical fiber as a bleeding sensor, we studied optical effects of soaking the fiber with liquids and blood in light-loss experimental settings. The non-cladding optical fiber that was used was the fluoropolymer, PFA fiber, JUNFLON™, 1 mm in diameter and 2 m in length. Light intensity was studied with an ordinary basic circuit with a light emitting source (880 nm) and photodiode set at both terminals of the fiber under certain conditions: bending the fiber, soaking with various mediums, or fixing the fiber with surgical tape. The soaking mediums were reverse osmosis (RO) water, physiological saline, glucose, porcine plasma, and porcine blood. The light intensities regressed to a decaying exponential function with the soaked length. The light intensity was not decreased at bending from 20 to 1 cm in diameter. The more the soaked length increased in all mediums, the more the light intensity decreased exponentially. The means of five estimated exponential decay constants were 0.050±0.006 standard deviation in RO water, 0.485±0.016 in physiological saline, 0.404±0.022 in 5% glucose, 0.503±0.038 in blood (Hct 40%), and 0.573±0.067 in plasma. The light intensity decreased from 5 V to about 1.5 V above 5 cm in the soaked length in mediums except for RO water and fixing with surgical tape. We confirmed that light intensity significantly and exponentially decreased with the increased length of the soaked fiber. This phenomena could ideally, clinically be applied to a bleed sensor.

  3. Existence and energy decay of a nonuniform Timoshenko system with second sound

    NASA Astrophysics Data System (ADS)

    Hamadouche, Taklit; Messaoudi, Salim A.

    2018-02-01

    In this paper, we consider a linear thermoelastic Timoshenko system with variable physical parameters, where the heat conduction is given by Cattaneo's law and the coupling is via the displacement equation. We discuss the well-posedness and the regularity of solution using the semigroup theory. Moreover, we establish the exponential decay result provided that the stability function χ r(x)=0. Otherwise, we show that the solution decays polynomially.

  4. Reverberation in a trapezoidal room

    NASA Astrophysics Data System (ADS)

    Kanev, N. G.

    2013-09-01

    The problem of sound decay in a trapezoidal room with a nonuniform distribution of wall absorption is considered. It is shown that the sound energy decay may be either anomalously slow, obeying the law ˜1/ t, or fast, obeying an exponential law. It is found that the type of the decay law depends on the presence of stable ray trajectories in the room. Manifestations of stable ray trajectories in both laboratory and field experiments are demonstrated.

  5. Analytical model for advective-dispersive transport involving flexible boundary inputs, initial distributions and zero-order productions

    NASA Astrophysics Data System (ADS)

    Chen, Jui-Sheng; Li, Loretta Y.; Lai, Keng-Hsin; Liang, Ching-Ping

    2017-11-01

    A novel solution method is presented which leads to an analytical model for the advective-dispersive transport in a semi-infinite domain involving a wide spectrum of boundary inputs, initial distributions, and zero-order productions. The novel solution method applies the Laplace transform in combination with the generalized integral transform technique (GITT) to obtain the generalized analytical solution. Based on this generalized analytical expression, we derive a comprehensive set of special-case solutions for some time-dependent boundary distributions and zero-order productions, described by the Dirac delta, constant, Heaviside, exponentially-decaying, or periodically sinusoidal functions as well as some position-dependent initial conditions and zero-order productions specified by the Dirac delta, constant, Heaviside, or exponentially-decaying functions. The developed solutions are tested against an analytical solution from the literature. The excellent agreement between the analytical solutions confirms that the new model can serve as an effective tool for investigating transport behaviors under different scenarios. Several examples of applications, are given to explore transport behaviors which are rarely noted in the literature. The results show that the concentration waves resulting from the periodically sinusoidal input are sensitive to dispersion coefficient. The implication of this new finding is that a tracer test with a periodic input may provide additional information when for identifying the dispersion coefficients. Moreover, the solution strategy presented in this study can be extended to derive analytical models for handling more complicated problems of solute transport in multi-dimensional media subjected to sequential decay chain reactions, for which analytical solutions are not currently available.

  6. Resonance and decay phenomena lead to quantum mechanical time asymmetry

    NASA Astrophysics Data System (ADS)

    Bohm, A.; Bui, H. V.

    2013-04-01

    The states (Schrödinger picture) and observables (Heisenberg picture) in the standard quantum theory evolve symmetrically in time, given by the unitary group with time extending over -∞ < t < +∞. This time evolution is a mathematical consequence of the Hilbert space boundary condition for the dynamical differential equations. However, this unitary group evolution violates causality. Moreover, it does not solve an old puzzle of Wigner: How does one describe excited states of atoms which decay exponentially, and how is their lifetime τ related to the Lorentzian width Γ? These question can be answered if one replaces the Hilbert space boundary condition by new, Hardy space boundary conditions. These Hardy space boundary conditions allow for a distinction between states (prepared by a preparation apparatus) and observables (detected by a registration apparatus). The new Hardy space quantum theory is time asymmetric, i.e, the time evolution is given by the semigroup with t0 <= t < +∞, which predicts a finite "beginning of time" t0, where t0 is the ensemble of time at which each individual system has been prepared. The Hardy space axiom also leads to the new prediction: the width Γ and the lifetime τ are exactly related by τ = hslash/Γ.

  7. A Lyapunov and Sacker–Sell spectral stability theory for one-step methods

    DOE PAGES

    Steyer, Andrew J.; Van Vleck, Erik S.

    2018-04-13

    Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly,more » exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.« less

  8. A Lyapunov and Sacker–Sell spectral stability theory for one-step methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steyer, Andrew J.; Van Vleck, Erik S.

    Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly,more » exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.« less

  9. Spectroscopic study of shock-induced decomposition in ammonium perchlorate single crystals.

    PubMed

    Gruzdkov, Y A; Winey, J M; Gupta, Y M

    2008-05-01

    Time-resolved Raman scattering measurements were performed on ammonium perchlorate (AP) single crystals under stepwise shock loading. For particular temperature and pressure conditions, the intensity of the Raman spectra in shocked AP decayed exponentially with time. This decay is attributed to shock-induced chemical decomposition in AP. A series of shock experiments, reaching peak stresses from 10-18 GPa, demonstrated that higher stresses inhibit decomposition while higher temperatures promote it. No orientation dependence was found when AP crystals were shocked normal to the (210) and (001) crystallographic planes. VISAR (velocity interferometer system for any reflector) particle velocity measurements and time-resolved optical extinction measurements carried out to verify these observations are consistent with the Raman data. The combined kinetic and spectroscopic results are consistent with a proton-transfer reaction as the first decomposition step in shocked AP.

  10. Lagrangian statistics and flow topology in forced two-dimensional turbulence.

    PubMed

    Kadoch, B; Del-Castillo-Negrete, D; Bos, W J T; Schneider, K

    2011-03-01

    A study of the relationship between Lagrangian statistics and flow topology in fluid turbulence is presented. The topology is characterized using the Weiss criterion, which provides a conceptually simple tool to partition the flow into topologically different regions: elliptic (vortex dominated), hyperbolic (deformation dominated), and intermediate (turbulent background). The flow corresponds to forced two-dimensional Navier-Stokes turbulence in doubly periodic and circular bounded domains, the latter with no-slip boundary conditions. In the double periodic domain, the probability density function (pdf) of the Weiss field exhibits a negative skewness consistent with the fact that in periodic domains the flow is dominated by coherent vortex structures. On the other hand, in the circular domain, the elliptic and hyperbolic regions seem to be statistically similar. We follow a Lagrangian approach and obtain the statistics by tracking large ensembles of passively advected tracers. The pdfs of residence time in the topologically different regions are computed introducing the Lagrangian Weiss field, i.e., the Weiss field computed along the particles' trajectories. In elliptic and hyperbolic regions, the pdfs of the residence time have self-similar algebraic decaying tails. In contrast, in the intermediate regions the pdf has exponential decaying tails. The conditional pdfs (with respect to the flow topology) of the Lagrangian velocity exhibit Gaussian-like behavior in the periodic and in the bounded domains. In contrast to the freely decaying turbulence case, the conditional pdfs of the Lagrangian acceleration in forced turbulence show a comparable level of intermittency in both the periodic and the bounded domains. The conditional pdfs of the Lagrangian curvature are characterized, in all cases, by self-similar power-law behavior with a decay exponent of order -2.

  11. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model.

    PubMed

    Bennett, Kevin M; Schmainda, Kathleen M; Bennett, Raoqiong Tong; Rowe, Daniel B; Lu, Hanbing; Hyde, James S

    2003-10-01

    Experience with diffusion-weighted imaging (DWI) shows that signal attenuation is consistent with a multicompartmental theory of water diffusion in the brain. The source of this so-called nonexponential behavior is a topic of debate, because the cerebral cortex contains considerable microscopic heterogeneity and is therefore difficult to model. To account for this heterogeneity and understand its implications for current models of diffusion, a stretched-exponential function was developed to describe diffusion-related signal decay as a continuous distribution of sources decaying at different rates, with no assumptions made about the number of participating sources. DWI experiments were performed using a spin-echo diffusion-weighted pulse sequence with b-values of 500-6500 s/mm(2) in six rats. Signal attenuation curves were fit to a stretched-exponential function, and 20% of the voxels were better fit to the stretched-exponential model than to a biexponential model, even though the latter model had one more adjustable parameter. Based on the calculated intravoxel heterogeneity measure, the cerebral cortex contains considerable heterogeneity in diffusion. The use of a distributed diffusion coefficient (DDC) is suggested to measure mean intravoxel diffusion rates in the presence of such heterogeneity. Copyright 2003 Wiley-Liss, Inc.

  12. Long-term radio and X-ray evolution of the tidal disruption event ASASSN-14li

    NASA Astrophysics Data System (ADS)

    Bright, J. S.; Fender, R. P.; Motta, S. E.; Mooley, K.; Perrott, Y. C.; van Velzen, S.; Carey, S.; Hickish, J.; Razavi-Ghods, N.; Titterington, D.; Scott, P.; Grainge, K.; Scaife, A.; Cantwell, T.; Rumsey, C.

    2018-04-01

    We report on late time radio and X-ray observations of the tidal disruption event candidate ASASSN-14li, covering the first 1000 d of the decay phase. For the first ˜200 d the radio and X-ray emission fade in concert. This phase is better fitted by an exponential decay at X-ray wavelengths, while the radio emission is well described by either an exponential or the canonical t-5/3 decay assumed for tidal disruption events. The correlation between radio and X-ray emission during this period can be fitted as L_R∝ L_X^{1.9± 0.2}. After 400 d the radio emission at 15.5 GHz has reached a plateau level of 244 ± 8 μJy which it maintains for at least the next 600 d, while the X-ray emission continues to fade exponentially. This steady level of radio emission is likely due to relic radio lobes from the weak AGN-like activity implied by historical radio observations. We note that while most existing models are based upon the evolution of ejecta which are decoupled from the central black hole, the radio-X-ray correlation during the declining phase is also consistent with core-jet emission coupled to a radiatively efficient accretion flow.

  13. An exact formulation of the time-ordered exponential using path-sums

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giscard, P.-L., E-mail: p.giscard1@physics.ox.ac.uk; Lui, K.; Thwaite, S. J.

    2015-05-15

    We present the path-sum formulation for the time-ordered exponential of a time-dependent matrix. The path-sum formulation gives the time-ordered exponential as a branched continued fraction of finite depth and breadth. The terms of the path-sum have an elementary interpretation as self-avoiding walks and self-avoiding polygons on a graph. Our result is based on a representation of the time-ordered exponential as the inverse of an operator, the mapping of this inverse to sums of walks on a graphs, and the algebraic structure of sets of walks. We give examples demonstrating our approach. We establish a super-exponential decay bound for the magnitudemore » of the entries of the time-ordered exponential of sparse matrices. We give explicit results for matrices with commonly encountered sparse structures.« less

  14. On the nature of dissipative Timoshenko systems at light of the second spectrum of frequency

    NASA Astrophysics Data System (ADS)

    Almeida Júnior, D. S.; Ramos, A. J. A.

    2017-12-01

    In the present work, we prove that there exists a relation between a physical inconsistence known as second spectrum of frequency or non-physical spectrum and the exponential decay of a dissipative Timoshenko system where the damping mechanism acts on angle rotation. The so-called second spectrum is addressed into stabilization scenario and, in particular, we show that the second spectrum of the classical Timoshenko model can be truncated by taking a damping mechanism. Also, we show that dissipative Timoshenko type systems which are free of the second spectrum [based on important physical and historical observations made by Elishakoff (Advances mathematical modeling and experimental methods for materials and structures, solid mechanics and its applications, Springer, Berlin, pp 249-254, 2010), Elishakoff et al. (ASME Am Soc Mech Eng Appl Mech Rev 67(6):1-11 2015) and Elishakoff et al. (Int J Solids Struct 109:143-151, 2017)] are exponential stable for any values of the coefficients of system. In this direction, we provide physical explanations why weakly dissipative Timoshenko systems decay exponentially according to equality between velocity of wave propagation as proved in pioneering works by Soufyane (C R Acad Sci 328(8):731-734, 1999) and also by Muñoz Rivera and Racke (Discrete Contin Dyn Syst B 9:1625-1639, 2003). Therefore, the second spectrum of the classical Timoshenko beam model plays an important role in explaining some results on exponential decay and our investigations suggest to pay attention to the eventual consequences of this spectrum on stabilization setting for dissipative Timoshenko type systems.

  15. Quantum decay model with exact explicit analytical solution

    NASA Astrophysics Data System (ADS)

    Marchewka, Avi; Granot, Er'El

    2009-01-01

    A simple decay model is introduced. The model comprises a point potential well, which experiences an abrupt change. Due to the temporal variation, the initial quantum state can either escape from the well or stay localized as a new bound state. The model allows for an exact analytical solution while having the necessary features of a decay process. The results show that the decay is never exponential, as classical dynamics predicts. Moreover, at short times the decay has a fractional power law, which differs from perturbation quantum method predictions. At long times the decay includes oscillations with an envelope that decays algebraically. This is a model where the final state can be either continuous or localized, and that has an exact analytical solution.

  16. On the Claim of Modulations in 36Cl Beta Decay and Their Association with Solar Rotation

    NASA Astrophysics Data System (ADS)

    Pommé, S.; Kossert, K.; Nähle, O.

    2017-11-01

    Recently, claims were made by Sturrock et al. ( Astropart. Phys. 42, 62, 2013), Sturrock, Fischbach, and Scargle ( Solar Phys. 291, 3467, 2016; arXiv http://arxiv.org/abs/arXiv:1705.03010, 2017) that beta decay can be induced by interaction of the nucleus with solar neutrinos and that cyclic modulations in decay rates are indicative of the dynamics of the solar interior. Transient modulations in residuals from a purely exponential decay curve were observed at frequencies near 11 a^{-1} and 12.7 a^{-1} in repeated activity measurements of a 36Cl source by Alburger, Harbottle, and Norton ( Earth Planet Sci. Lett. 78, 168, 1986) at Brookhaven National Laboratory in a period from 1984 to 1985. Sturrock et al. have speculatively associated them with rotational influence on the solar neutrino flux. In this work, more accurate 36Cl decay-rate measurements - performed at the Physikalisch-Technische Bundesanstalt Braunschweig in the period 2010 - 2013 by means of the triple-to-double coincidence ratio measurement technique - are scrutinised. The residuals from an exponential decay curve were analysed by a weighted Lomb-Scargle periodogram. The existence of modulations in the frequency range between 0.2 a^{-1} and 20 a^{-1} could be excluded down to an amplitude of about 0.0016%. The invariability of the 36Cl decay constant contradicts the speculations made about the deep solar interior on the basis of instabilities in former activity measurements.

  17. A method for nonlinear exponential regression analysis

    NASA Technical Reports Server (NTRS)

    Junkin, B. G.

    1971-01-01

    A computer-oriented technique is presented for performing a nonlinear exponential regression analysis on decay-type experimental data. The technique involves the least squares procedure wherein the nonlinear problem is linearized by expansion in a Taylor series. A linear curve fitting procedure for determining the initial nominal estimates for the unknown exponential model parameters is included as an integral part of the technique. A correction matrix was derived and then applied to the nominal estimate to produce an improved set of model parameters. The solution cycle is repeated until some predetermined criterion is satisfied.

  18. Solvent and temperature effects on the decay dynamics of [p-N,N-(dialkylamino)benzylidene]malononitriles

    NASA Astrophysics Data System (ADS)

    Safarzadeh-Amiri, A.

    1986-08-01

    The effects of solvent and temperature on the decay kinetics of p-(dialkylamino)benzylidenemalononitrile (1) and julodinemalononitrile (3) has been studied in glycerol and triacetin. The fluorescence decay curves of these compounds were non-exponential and varied slightly with wavelength. This is attributed to the existence of two ground state conformers and to reorientation of the solvent cage around solute molecules. The results were explained in terms of trans → cisphotoisomerization.

  19. Studies on Foam Decay Trend and Influence of Temperature Jump on Foam Stability in Sclerotherapy.

    PubMed

    Bai, Taoping; Chen, Yu; Jiang, Wentao; Yan, Fei; Fan, Yubo

    2018-02-01

    This study investigated the influence of temperature jump and liquid-gas ratio on foam stability to derive the foam-decay law. The experimental group conditions were as follows: mutation temperatures (10°C, 16°C, 20°C, 23°C, 25°C, and 27°C to >37°C) and liquid-gas ratios (1:1, 1:2, 1:3, and 1:4). The control group conditions were as follows: temperatures (10°C, 16°C, 20°C, 23°C, 25°C and 27°C) and liquid-gas ratios (1:1, 1:2, 1:3, and 1:4). A homemade device manufactured using the Tessari DSS method was used to prepare the foam. The decay process was videotape recorded. In the drainage rate curve, the temperature rose, and the liquid-gas ratio varied from 1:1 to 1:4, causing faster decay. In the entire process, the foam volume decreased with increasing drainage rate. The relationships were almost linear. Comparison of the experimental and control groups shows that the temperature jump results in a drainage time range of 1 to 15 seconds. The half-life ranges from 10 to 30 seconds. The maximum rate is 18.85%. Changes in the preparation temperature yields a drainage time range of 3 to 30 seconds. The half-life varies from 20 to 60 seconds. Decreasing the temperature jump range and liquid-gas ratio gradually enhances the foam stability. The foam decay time and drainage rate exhibit an exponential function distribution.

  20. Can the Earth be Dated from Decay of Its Magnetic Field?

    ERIC Educational Resources Information Center

    Dalrymple, G. Brent

    1983-01-01

    Thomas G. Barnes, geologist/creationist, argues that the geomagnetic field was created by unknown processes when earth was created and has been decaying (irreversibly/exponentially) with a half-life of about 1,400 years since then. Shows that Barnes' proposition is wrong and explains why the earth's age cannot be determined from magnetic-field…

  1. Decomposition rates for hand-piled fuels

    Treesearch

    Clinton S. Wright; Alexander M. Evans; Joseph C. Restaino

    2017-01-01

    Hand-constructed piles in eastern Washington and north-central New Mexico were weighed periodically between October 2011 and June 2015 to develop decay-rate constants that are useful for estimating the rate of piled biomass loss over time. Decay-rate constants (k) were determined by fitting negative exponential curves to time series of pile weight for each site. Piles...

  2. Profit Maximization Models for Exponential Decay Processes.

    DTIC Science & Technology

    1980-08-01

    assumptions could easily be analyzed in similar fashion. References [1] Bensoussan, A., Hurst , E.G. and Nislund, B., Management Applications of Modern...TVIPe OF r 04PORNT A i M0 CiH O .V9RAE PROFIT MAXIMIZATION .ODELS FOR EXPONENT IAL Technical Report DECAY PROCESSES August 1990 ~~~I. PtA’OR~idNG ONqG

  3. Decay of Correlations, Quantitative Recurrence and Logarithm Law for Contracting Lorenz Attractors

    NASA Astrophysics Data System (ADS)

    Galatolo, Stefano; Nisoli, Isaia; Pacifico, Maria Jose

    2018-03-01

    In this paper we prove that a class of skew products maps with non uniformly hyperbolic base has exponential decay of correlations. We apply this to obtain a logarithm law for the hitting time associated to a contracting Lorenz attractor at all the points having a well defined local dimension, and a quantitative recurrence estimation.

  4. A new approach to interpretation of heterogeneity of fluorescence decay in complex biological systems

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, Jakub; Kierdaszuk, Borys

    2005-08-01

    Decays of tyrosine fluorescence in protein-ligand complexes are described by a model of continuous distribution of fluorescence lifetimes. Resulted analytical power-like decay function provides good fits to highly complex fluorescence kinetics. Moreover, this is a manifestation of so-called Tsallis q-exponential function, which is suitable for description of the systems with long-range interactions, memory effect, as well as with fluctuations of the characteristic lifetime of fluorescence. The proposed decay functions were applied to analysis of fluorescence decays of tyrosine in a protein, i.e. the enzyme purine nucleoside phosphorylase from E. coli (the product of the deoD gene), free in aqueous solution and in a complex with formycin A (an inhibitor) and orthophosphate (a co-substrate). The power-like function provides new information about enzyme-ligand complex formation based on the physically justified heterogeneity parameter directly related to the lifetime distribution. A measure of the heterogeneity parameter in the enzyme systems is provided by a variance of fluorescence lifetime distribution. The possible number of deactivation channels and excited state mean lifetime can be easily derived without a priori knowledge of the complexity of studied system. Moreover, proposed model is simpler then traditional multi-exponential one, and better describes heterogeneous nature of studied systems.

  5. Temporal binning of time-correlated single photon counting data improves exponential decay fits and imaging speed

    PubMed Central

    Walsh, Alex J.; Sharick, Joe T.; Skala, Melissa C.; Beier, Hope T.

    2016-01-01

    Time-correlated single photon counting (TCSPC) enables acquisition of fluorescence lifetime decays with high temporal resolution within the fluorescence decay. However, many thousands of photons per pixel are required for accurate lifetime decay curve representation, instrument response deconvolution, and lifetime estimation, particularly for two-component lifetimes. TCSPC imaging speed is inherently limited due to the single photon per laser pulse nature and low fluorescence event efficiencies (<10%) required to reduce bias towards short lifetimes. Here, simulated fluorescence lifetime decays are analyzed by SPCImage and SLIM Curve software to determine the limiting lifetime parameters and photon requirements of fluorescence lifetime decays that can be accurately fit. Data analysis techniques to improve fitting accuracy for low photon count data were evaluated. Temporal binning of the decays from 256 time bins to 42 time bins significantly (p<0.0001) improved fit accuracy in SPCImage and enabled accurate fits with low photon counts (as low as 700 photons/decay), a 6-fold reduction in required photons and therefore improvement in imaging speed. Additionally, reducing the number of free parameters in the fitting algorithm by fixing the lifetimes to known values significantly reduced the lifetime component error from 27.3% to 3.2% in SPCImage (p<0.0001) and from 50.6% to 4.2% in SLIM Curve (p<0.0001). Analysis of nicotinamide adenine dinucleotide–lactate dehydrogenase (NADH-LDH) solutions confirmed temporal binning of TCSPC data and a reduced number of free parameters improves exponential decay fit accuracy in SPCImage. Altogether, temporal binning (in SPCImage) and reduced free parameters are data analysis techniques that enable accurate lifetime estimation from low photon count data and enable TCSPC imaging speeds up to 6x and 300x faster, respectively, than traditional TCSPC analysis. PMID:27446663

  6. Measuring the viscosity of whole bovine lens using a fiber optic oxygen sensing system

    PubMed Central

    Thao, Mai T.; Perez, Daniel; Dillon, James

    2014-01-01

    Purpose To obtain a better understanding of oxygen and nutrient transport within the lens, the viscosity of whole lenses was investigated using a fiber optic oxygen sensor (optode). The diffusion coefficient of oxygen was calculated using the Stokes-Einstein equation at the slip boundary condition. Methods The optode was used to measure the oxygen decay signal in samples consisting of different glycerol/water solutions with known viscosities. The oxygen decay signal was fitted to a double exponential decay rate equation, and the lifetimes (tau) were calculated. It was determined that the tau-viscosity relationship is linear, which served as the standard curve. The same procedure was applied to fresh bovine lenses, and the unknown viscosity of the bovine lens was calculated from the tau-viscosity relationship. Results The average viscosity in a whole bovine lens was determined to be 5.74±0.88 cP by our method. Using the Stokes-Einstein equation at the slip boundary condition, the diffusion coefficient for oxygen was calculated to be 8.2 × 10−6 cm2/s. Conclusions These data indicate a higher resistance to flow for oxygen and nutrients in the lens than what is currently assumed in the literature. Overall, this study allows a better understanding of oxygen transport within the lens. PMID:24505211

  7. Unusually large Stokes shift for a near-infrared emitting DNA-stabilized silver nanocluster

    NASA Astrophysics Data System (ADS)

    Ammitzbøll Bogh, Sidsel; Carro-Temboury, Miguel R.; Cerretani, Cecilia; Swasey, Steven M.; Copp, Stacy M.; Gwinn, Elisabeth G.; Vosch, Tom

    2018-04-01

    In this paper we present a new near-IR emitting silver nanocluster (NIR-DNA-AgNC) with an unusually large Stokes shift between absorption and emission maximum (211 nm or 5600 cm-1). We studied the effect of viscosity and temperature on the steady state and time-resolved emission. The time-resolved results on NIR-DNA-AgNC show that the relaxation dynamics slow down significantly with increasing viscosity of the solvent. In high viscosity solution, the spectral relaxation stretches well into the nanosecond scale. As a result of this slow spectral relaxation in high viscosity solutions, a multi-exponential fluorescence decay time behavior is observed, in contrast to the more mono-exponential decay in low viscosity solution.

  8. Penetrating transmission zeros in the design of robust servomechanism systems

    NASA Technical Reports Server (NTRS)

    Wang, S. H.; Davison, E. J.

    1981-01-01

    In the design of a robust servomechanism system, it is well known that the system cannot track a reference signal whose frequency coincides with the transmission zeros of the system. This paper proposes a new design method for overcoming this difficulty. The controller to be used employs a sampler and holding device with exponential decay. It is shown that the transmission zeros of the discretized system can be shifted by changing the rate of the exponential decay of the holding device. Thus, it is possible to design a robust controller for the discretized system to track any reference signal of given frequency, even if the given frequency coincides with the transmission zeros of the original continuous-time system.

  9. The dynamics of charge transfer with and without a barrier: A very simplified model of cyclic voltammetry.

    PubMed

    Ouyang, Wenjun; Subotnik, Joseph E

    2017-05-07

    Using the Anderson-Holstein model, we investigate charge transfer dynamics between a molecule and a metal surface for two extreme cases. (i) With a large barrier, we show that the dynamics follow a single exponential decay as expected; (ii) without any barrier, we show that the dynamics are more complicated. On the one hand, if the metal-molecule coupling is small, single exponential dynamics persist. On the other hand, when the coupling between the metal and the molecule is large, the dynamics follow a biexponential decay. We analyze the dynamics using the Smoluchowski equation, develop a simple model, and explore the consequences of biexponential dynamics for a hypothetical cyclic voltammetry experiment.

  10. Asymmetrical flow field-flow fractionation coupled with multiple detections: A complementary approach in the characterization of egg yolk plasma.

    PubMed

    Dou, Haiyang; Li, Yueqiu; Choi, Jaeyeong; Huo, Shuying; Ding, Liang; Shen, Shigang; Lee, Seungho

    2016-09-23

    The capability of asymmetrical flow field-flow fractionation (AF4) coupled with UV/VIS, multiangle light scattering (MALS) and quasi-elastic light scattering (QELS) (AF4-UV-MALS-QELS) for separation and characterization of egg yolk plasma was evaluated. The accuracy of hydrodynamic radius (Rh) obtained from QELS and AF4 theory (using both simplified and full expression of AF4 retention equations) was discussed. The conformation of low density lipoprotein (LDL) and its aggregates in egg yolk plasma was discussed based on the ratio of radius of gyration (Rg) to Rh together with the results from bio-transmission electron microscopy (Bio-TEM). The results indicate that the full retention equation is more relevant than simplified version for the Rh determination at high cross flow rate. The Rh from online QELS is reliable only at a specific range of sample concentration. The effect of programmed cross flow rate (linear and exponential decay) on the analysis of egg yolk plasma was also investigated. It was found that the use of an exponentially decaying cross flow rate not only reduces the AF4 analysis time of the egg yolk plasma, but also provides better resolution than the use of either a constant or linearly decaying cross flow rate. A combination of an exponentially decaying cross flow AF4-UV-MALS-QELS and the utilization of full retention equation was proved to be a useful method for the separation and characterization of egg yolk plasma. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. On the Prony series representation of stretched exponential relaxation

    NASA Astrophysics Data System (ADS)

    Mauro, John C.; Mauro, Yihong Z.

    2018-09-01

    Stretched exponential relaxation is a ubiquitous feature of homogeneous glasses. The stretched exponential decay function can be derived from the diffusion-trap model, which predicts certain critical values of the fractional stretching exponent, β. In practical implementations of glass relaxation models, it is computationally convenient to represent the stretched exponential function as a Prony series of simple exponentials. Here, we perform a comprehensive mathematical analysis of the Prony series approximation of the stretched exponential relaxation, including optimized coefficients for certain critical values of β. The fitting quality of the Prony series is analyzed as a function of the number of terms in the series. With a sufficient number of terms, the Prony series can accurately capture the time evolution of the stretched exponential function, including its "fat tail" at long times. However, it is unable to capture the divergence of the first-derivative of the stretched exponential function in the limit of zero time. We also present a frequency-domain analysis of the Prony series representation of the stretched exponential function and discuss its physical implications for the modeling of glass relaxation behavior.

  12. The response of multidegree-of-freedom systems with quadratic non-linearities to a harmonic parametric resonance

    NASA Astrophysics Data System (ADS)

    Nayfeh, A. H.

    1983-09-01

    An analysis is presented of the response of multidegree-of-freedom systems with quadratic non-linearities to a harmonic parametric excitation in the presence of an internal resonance of the combination type ω3 ≈ ω2 + ω1, where the ωn are the linear natural frequencies of the systems. In the case of a fundamental resonance of the third mode (i.e., Ω ≈ω 3, where Ω is the frequency of the excitation), one can identify two critical values ζ 1 and ζ 2, where ζ 2 ⩾ ζ 1, of the amplitude F of the excitation. The value F = ζ2 corresponds to the transition from stable to unstable solutions. When F < ζ1, the motion decays to zero according to both linear and non-linear theories. When F > ζ2, the motion grows exponentially with time according to the linear theory but the non-linearity limits the motion to a finite amplitude steady state. The amplitude of the third mode, which is directly excited, is independent of F, whereas the amplitudes of the first and second modes, which are indirectly excited through the internal resonance, are functions of F. When ζ1 ⩽ F ⩽ ζ2, the motion decays or achieves a finite amplitude steady state depending on the initial conditions according to the non-linear theory, whereas it decays to zero according to the linear theory. This is an example of subcritical instability. In the case of a fundamental resonance of either the first or second mode, the trivial response is the only possible steady state. When F ⩽ ζ2, the motion decays to zero according to both linear and non-linear theories. When F > ζ2, the motion grows exponentially with time according to the linear theory but it is aperiodic according to the non-linear theory. Experiments are being planned to check these theoretical results.

  13. Coherent nature of the radiation emitted in delayed luminescence of leaves

    PubMed

    Bajpai

    1999-06-07

    After exposure to light, a living system emits a photon signal of characteristic shape. The signal has a small decay region and a long tail region. The flux of photons in the decay region changes by 2 to 3 orders of magnitude, but remains almost constant in the tail region. The decaying part is attributed to delayed luminescence and the constant part to ultra-weak luminescence. Biophoton emission is the common name given to both kinds of luminescence, and photons emitted are called biophotons. The decay character of the biophoton signal is not exponential, which is suggestive of a coherent signal. We sought to establish the coherent nature by measuring the conditional probability of zero photon detection in a small interval Delta. Our measurements establish the coherent nature of biophotons emitted by different leaves at various temperatures in the range 15-50 degrees C. Our set up could measure the conditional probability for Delta

  14. Photo-dynamics of roseoflavin and riboflavin in aqueous and organic solvents

    NASA Astrophysics Data System (ADS)

    Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.

    2009-03-01

    Roseoflavin (8-dimethylamino-8-demethyl- D-riboflavin) and riboflavin in aqueous and organic solvents are studied by optical absorption spectroscopy, fluorescence spectroscopy, and fluorescence decay kinetics. Solvent polarity dependent absorption shifts are observed. The fluorescence quantum yields are solvent dependent. For roseoflavin the fluorescence decay shows a bi-exponential dependence (ps to sub-ps time constant, and 100 ps to a few ns time constant). The roseoflavin photo-dynamics is explained in terms of fast intra-molecular charge transfer (diabatic electron transfer) from the dimethylamino electron donor group to the pteridin carbonyl electron acceptor followed by intra-molecular charge recombination. The fast fluorescence component is due to direct locally-excited-state emission, and the slow fluorescence component is due to delayed locally-excited-state emission and charge transfer state emission. The fluorescence decay of riboflavin is mono-exponential. The S 1-state potential energy surface is determined by vibronic relaxation and solvation dynamics due to excited-state dipole moment changes (adiabatic optical electron transfer).

  15. Studies on color-center formation in glass utilizing measurements made during 1 to 3 MeV electron irradiation

    NASA Technical Reports Server (NTRS)

    Swyler, K. J.; Levy, P. W.

    1976-01-01

    The coloring of NBS 710 glass was studied using a facility for making optical absorption measurements during and after electron irradiation. The induced absorption contains three Gaussian shaped bands. The color center growth curves contain two saturating exponential and one linear components. After irradiation the coloring decays can be described by three decreasing exponentials. At room temperature both the coloring curve plateau and coloring rate increases with increasing dose rate. Coloring measurements made at fixed dose rate but at increasing temperature indicate: (1) The coloring curve plateau decreases with increasing temperature and coloring is barely measurable near 400 C. (2) The plateau is reached more rapidly as the temperature increases. (3) The decay occurring after irradiation cannot be described by Arrhenius kinetics. At each temperature the coloring can be explained by simple kinetics. The temperature dependence of the decay can be explained if it is assumed that the thermal untrapping is controlled by a distribution of activation energies.

  16. All-sky monitor observations of the decay of A0620-00 (Nova monocerotis 1975)

    NASA Technical Reports Server (NTRS)

    Kaluzienski, L. J.; Holt, S. S.; Boldt, E. A.; Serlemitsos, P. J.

    1976-01-01

    The All-Sky X-ray Monitor onboard Ariel 5 has observed the 3-6 keV decline of the bright transient X-ray source A0620-00 on a virtually continuous basis during the period September 1975 - March 1976. The source behavior on timescales 100 minutes is characterized by smooth, exponential decays interrupted by substantial increases in October and February. The latter increase was an order-of-magnitude rise above the extrapolated exponential fall-off, and was followed by a final rapid decline. Upper limits of 2.5% and 10% were found for any periodicities in the range 0d.2 - 10d during the early and later decay phases, respectively. A probable correlation between the optical and 3-6 keV emission from A0620-00 was noted, effectively ruling out models involving traditional optical novae in favor of Roche-lobe overflow in a binary system. The existing data on the transient X-ray sources is consistent with two distinct luminosity-lifetime classes of these objects.

  17. Optical spectroscopy of BaY2F8:Dy3+

    NASA Astrophysics Data System (ADS)

    Parisi, Daniela; Toncelli, Alessandra; Tonelli, Mauro; Cavalli, Enrico; Bovero, Enrico; Belletti, Alessandro

    2005-05-01

    The optical spectra of the BaY2F8:Dy3+ laser crystal have been investigated in the 5000-30 000 cm-1 range. The Judd-Ofelt parametrization scheme has been applied to the analysis of the room temperature absorption spectra. The calculated radiative lifetime of the 4F9/2 state is 1.48 ms. Decay curves of the visible emission have been measured as a function of the temperature for two different Dy3+ concentrations (0.5 and 4.4%). In the case of the diluted crystal the emission profiles are single exponential with decay times consistent with the radiative lifetime. The decay curves of the concentrated crystal are not exponential and they obey the Inokuti-Hirayama model for energy transfer for an electric dipole-dipole interaction in the absence of diffusion among the donors. The emission cross section at 575 nm has been estimated using the integral β-τ method in order to assess the potentialities of this compound as a solid state laser material in the yellow region.

  18. Temperature dependence of laser induced insulator-metal transition in VO2

    NASA Astrophysics Data System (ADS)

    Wang, Siming; Bar-Ad, Shimshon; Ramirez, Juan Gabriel; Huppert, Dan; Schuller, Ivan K.

    2013-03-01

    We performed optical pump-probe experiments on VO2 thin films with low laser fluence at temperatures ranging across the insulator-metal transition (IMT). At room temperature, the reflectivity of VO2 increases in the first 400-500 fs when pumped by 150 fs laser pulses. An exponential decay of the reflectivity is observed in the following 1 ps. Interestingly, as the temperature approaches the transition temperature (340 K), the reflectivity shows a second increase on an 80 ps time scale following the exponential decay, indicating an IMT. We propose that the decay of the reflectivity is due to electron-phonon thermalization, which raises the phonon temperature and causes a superheating of the lattice. This process provides the latent heat and induces the IMT on the 80 ps time scale. The coexistence of the insulating and metallic phases is observed in the reflectivity measurements for temperatures above 340 K. This work is supported by the Air Force Office of Scientific Research No. FA9550-12-1-0381.

  19. A Fluid-driven Earthquake Cycle, Omori's Law, and Fluid-driven Aftershocks

    NASA Astrophysics Data System (ADS)

    Miller, S. A.

    2015-12-01

    Few models exist that predict the Omori's Law of aftershock rate decay, with rate-state friction the only physically-based model. ETAS is a probabilistic model of cascading failures, and is sometimes used to infer rate-state frictional properties. However, the (perhaps dominant) role of fluids in the earthquake process is being increasingly realised, so a fluid-based physical model for Omori's Law should be available. In this talk, I present an hypothesis for a fluid-driven earthquake cycle where dehydration and decarbonization at depth provides continuous sources of buoyant high pressure fluids that must eventually make their way back to the surface. The natural pathway for fluid escape is along plate boundaries, where in the ductile regime high pressure fluids likely play an integral role in episodic tremor and slow slip earthquakes. At shallower levels, high pressure fluids pool at the base of seismogenic zones, with the reservoir expanding in scale through the earthquake cycle. Late in the cycle, these fluids can invade and degrade the strength of the brittle crust and contribute to earthquake nucleation. The mainshock opens permeable networks that provide escape pathways for high pressure fluids and generate aftershocks along these flow paths, while creating new pathways by the aftershocks themselves. Thermally activated precipitation then seals up these pathways, returning the system to a low-permeability environment and effective seal during the subsequent tectonic stress buildup. I find that the multiplicative effect of an exponential dependence of permeability on the effective normal stress coupled with an Arrhenius-type, thermally activated exponential reduction in permeability results in Omori's Law. I simulate this scenario using a very simple model that combines non-linear diffusion and a step-wise increase in permeability when a Mohr Coulomb failure condition is met, and allow permeability to decrease as an exponential function in time. I show very strong spatial correlations of the simulated evolved permeability and fluid pressure field with aftershock hypocenters from this 1992 Landers and 1994 Northridge aftershock sequences, and reproduce the observed aftershock decay rates. Controls on the decay rates (p-value) will also be discussed.

  20. Stretched exponential dynamics of coupled logistic maps on a small-world network

    NASA Astrophysics Data System (ADS)

    Mahajan, Ashwini V.; Gade, Prashant M.

    2018-02-01

    We investigate the dynamic phase transition from partially or fully arrested state to spatiotemporal chaos in coupled logistic maps on a small-world network. Persistence of local variables in a coarse grained sense acts as an excellent order parameter to study this transition. We investigate the phase diagram by varying coupling strength and small-world rewiring probability p of nonlocal connections. The persistent region is a compact region bounded by two critical lines where band-merging crisis occurs. On one critical line, the persistent sites shows a nonexponential (stretched exponential) decay for all p while for another one, it shows crossover from nonexponential to exponential behavior as p → 1 . With an effectively antiferromagnetic coupling, coupling to two neighbors on either side leads to exchange frustration. Apart from exchange frustration, non-bipartite topology and nonlocal couplings in a small-world network could be a reason for anomalous relaxation. The distribution of trap times in asymptotic regime has a long tail as well. The dependence of temporal evolution of persistence on initial conditions is studied and a scaling form for persistence after waiting time is proposed. We present a simple possible model for this behavior.

  1. Exponential fading to white of black holes in quantum gravity

    NASA Astrophysics Data System (ADS)

    Barceló, Carlos; Carballo-Rubio, Raúl; Garay, Luis J.

    2017-05-01

    Quantization of the gravitational field may allow the existence of a decay channel of black holes into white holes with an explicit time-reversal symmetry. The definition of a meaningful decay probability for this channel is studied in spherically symmetric situations. As a first nontrivial calculation, we present the functional integration over a set of geometries using a single-variable function to interpolate between black-hole and white-hole geometries in a bounded region of spacetime. This computation gives a finite result which depends only on the Schwarzschild mass and a parameter measuring the width of the interpolating region. The associated probability distribution displays an exponential decay law on the latter parameter, with a mean lifetime inversely proportional to the Schwarzschild mass. In physical terms this would imply that matter collapsing to a black hole from a finite radius bounces back elastically and instantaneously, with negligible time delay as measured by external observers. These results invite to reconsider the ultimate nature of astrophysical black holes, providing a possible mechanism for the formation of black stars instead of proper general relativistic black holes. The existence of both this decay channel and black stars can be tested in future observations of gravitational waves.

  2. Propagation of Disturbances in AC Electricity Grids.

    PubMed

    Tamrakar, Samyak; Conrath, Michael; Kettemann, Stefan

    2018-04-24

    The energy transition towards high shares of renewable energy will affect the stability of electricity grids in many ways. Here, we aim to study its impact on propagation of disturbances by solving nonlinear swing equations describing coupled rotating masses of synchronous generators and motors on different grid topologies. We consider a tree, a square grid and as a real grid topology, the german transmission grid. We identify ranges of parameters with different transient dynamics: the disturbance decays exponentially in time, superimposed by oscillations with the fast decay rate of a single node, or with a smaller decay rate without oscillations. Most remarkably, as the grid inertia is lowered, nodes may become correlated, slowing down the propagation from ballistic to diffusive motion, decaying with a power law in time. Applying linear response theory we show that tree grids have a spectral gap leading to exponential relaxation as protected by topology and independent on grid size. Meshed grids are found to have a spectral gap which decreases with increasing grid size, leading to slow power law relaxation and collective diffusive propagation of disturbances. We conclude by discussing consequences if no measures are undertaken to preserve the grid inertia in the energy transition.

  3. Efficient full decay inversion of MRS data with a stretched-exponential approximation of the ? distribution

    NASA Astrophysics Data System (ADS)

    Behroozmand, Ahmad A.; Auken, Esben; Fiandaca, Gianluca; Christiansen, Anders Vest; Christensen, Niels B.

    2012-08-01

    We present a new, efficient and accurate forward modelling and inversion scheme for magnetic resonance sounding (MRS) data. MRS, also called surface-nuclear magnetic resonance (surface-NMR), is the only non-invasive geophysical technique that directly detects free water in the subsurface. Based on the physical principle of NMR, protons of the water molecules in the subsurface are excited at a specific frequency, and the superposition of signals from all protons within the excited earth volume is measured to estimate the subsurface water content and other hydrological parameters. In this paper, a new inversion scheme is presented in which the entire data set is used, and multi-exponential behaviour of the NMR signal is approximated by the simple stretched-exponential approach. Compared to the mono-exponential interpretation of the decaying NMR signal, we introduce a single extra parameter, the stretching exponent, which helps describe the porosity in terms of a single relaxation time parameter, and helps to determine correct initial amplitude and relaxation time of the signal. Moreover, compared to a multi-exponential interpretation of the MRS data, the decay behaviour is approximated with considerably fewer parameters. The forward response is calculated in an efficient numerical manner in terms of magnetic field calculation, discretization and integration schemes, which allows fast computation while maintaining accuracy. A piecewise linear transmitter loop is considered for electromagnetic modelling of conductivities in the layered half-space providing electromagnetic modelling of arbitrary loop shapes. The decaying signal is integrated over time windows, called gates, which increases the signal-to-noise ratio, particularly at late times, and the data vector is described with a minimum number of samples, that is, gates. The accuracy of the forward response is investigated by comparing a MRS forward response with responses from three other approaches outlining significant differences between the three approaches. All together, a full MRS forward response is calculated in about 20 s and scales so that on 10 processors the calculation time is reduced to about 3-4 s. The proposed approach is examined through synthetic data and through a field example, which demonstrate the capability of the scheme. The results of the field example agree well the information from an in-site borehole.

  4. The decay width of stringy hadrons

    NASA Astrophysics Data System (ADS)

    Sonnenschein, Jacob; Weissman, Dorin

    2018-02-01

    In this paper we further develop a string model of hadrons by computing their strong decay widths and comparing them to experiment. The main decay mechanism is that of a string splitting into two strings. The corresponding total decay width behaves as Γ = π/2 ATL where T and L are the tension and length of the string and A is a dimensionless universal constant. We show that this result holds for a bosonic string not only in the critical dimension. The partial width of a given decay mode is given by Γi / Γ =Φi exp ⁡ (- 2 πCmsep2 / T) where Φi is a phase space factor, msep is the mass of the "quark" and "antiquark" created at the splitting point, and C is a dimensionless coefficient close to unity. Based on the spectra of hadrons we observe that their (modified) Regge trajectories are characterized by a negative intercept. This implies a repulsive Casimir force that gives the string a "zero point length". We fit the theoretical decay width to experimental data for mesons on the trajectories of ρ, ω, π, η, K*, ϕ, D, and Ds*, and of the baryons N, Δ, Λ, and Σ. We examine both the linearity in L and the exponential suppression factor. The linearity was found to agree with the data well for mesons but less for baryons. The extracted coefficient for mesons A = 0.095 ± 0.015 is indeed quite universal. The exponential suppression was applied to both strong and radiative decays. We discuss the relation with string fragmentation and jet formation. We extract the quark-diquark structure of baryons from their decays. A stringy mechanism for Zweig suppressed decays of quarkonia is proposed and is shown to reproduce the decay width of ϒ states. The dependence of the width on spin and flavor symmetry is discussed. We further apply this model to the decays of glueballs and exotic hadrons.

  5. The possible modifications of the Hisse model for pure LANDSAT agricultural data

    NASA Technical Reports Server (NTRS)

    Peters, C.

    1982-01-01

    An idea, due to A. Feiveson, is presented for relaxing the assumption of class conditional independence of LANDSAT spectral measurements within the same patch (field). Theoretical arguments are given which show that any significant refinement of the model beyond Feiveson's proposal will not allow the reduction, essential to HISSE, of the pure data to patch summary statistics. A slight alteration of the new model is shown to be a reasonable approximation to the model which describes pure data elements from the same patch as jointly Guassian with a covariance function which exhibits exponential decay with respect to spatial separation.

  6. The possible modifications of the HISSE model for pure LANDSAT agricultural data

    NASA Technical Reports Server (NTRS)

    Peters, C.

    1981-01-01

    A method for relaxing the assumption of class conditional independence of LANDSAT spectral measurements within the same patch (field) is discussed. Theoretical arguments are given which show that any significant refinement of the model beyond this proposal will not allow the reduction, essential to HISSE, of the pure data to patch summary statistics. A slight alteration of the new model is shown to be a reasonable approximation to the model which describes pure data elements from the same patch as jointly Gaussian with a covariance function which exhibits exponential decay with respect to spatial separation.

  7. Mitigation of radon and thoron decay products by filtration.

    PubMed

    Wang, Jin; Meisenberg, Oliver; Chen, Yongheng; Karg, Erwin; Tschiersch, Jochen

    2011-09-01

    Inhalation of indoor radon ((222)Rn) and thoron ((220)Rn) decay products is the most important source of exposure to ionizing radiation for the human respiratory tract. Decreasing ventilation rates due to energy saving reasons in new buildings suggest additional active mitigation techniques to reduce the exposure in homes with high radon and thoron concentrations but poor ventilation. Filtration techniques with HEPA filters and simple surgical mask material have been tested for their potential to reduce the indoor exposure in terms of the total effective dose for mixed radon and thoron indoor atmospheres. The tests were performed inside an experimental room providing stable conditions. Filtration (at filtration rates of 0.2 h(-1) and larger) removes attached radon and thoron decay products effectively but indoor aerosol as well. Therefore the concentration of unattached decay products (which have a higher dose coefficient) may increase. The decrease of the attached decay product concentrations could be theoretically described by a slowly decreasing exponential process. For attached radon decay products, it exhibited a faster but weaker removal process compared to attached thoron decay products (-70% for attached radon decay products and -80% for attached thoron decay products at a filtration rate of 0.5 h(-1) with an HEPA filter). The concentration of unattached thoron decay products increased distinctly during the filtration process (+300%) while that of unattached radon decay products rose only slightly though at a much higher level (+17%). In the theoretical description these observed differences could be attributed to the different half-lives of the nuclides. Considering both effects, reduced attached and increased unattached decay product concentrations, filtration could significantly decrease the total effective dose from thoron whereas the overall effect on radon dose is small. A permanent filtration is recommended because of the slow decrease of the thoron decay product concentrations. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Direct measurement of electron transfer distance decay constants of single redox proteins by electrochemical tunneling spectroscopy.

    PubMed

    Artés, Juan M; Díez-Pérez, Ismael; Sanz, Fausto; Gorostiza, Pau

    2011-03-22

    We present a method to measure directly and at the single-molecule level the distance decay constant that characterizes the rate of electron transfer (ET) in redox proteins. Using an electrochemical tunneling microscope under bipotentiostatic control, we obtained current−distance spectroscopic recordings of individual redox proteins confined within a nanometric tunneling gap at a well-defined molecular orientation. The tunneling current decays exponentially, and the corresponding decay constant (β) strongly supports a two-step tunneling ET mechanism. Statistical analysis of decay constant measurements reveals differences between the reduced and oxidized states that may be relevant to the control of ET rates in enzymes and biological electron transport chains.

  9. MRI quantification of diffusion and perfusion in bone marrow by intravoxel incoherent motion (IVIM) and non-negative least square (NNLS) analysis.

    PubMed

    Marchand, A J; Hitti, E; Monge, F; Saint-Jalmes, H; Guillin, R; Duvauferrier, R; Gambarota, G

    2014-11-01

    To assess the feasibility of measuring diffusion and perfusion fraction in vertebral bone marrow using the intravoxel incoherent motion (IVIM) approach and to compare two fitting methods, i.e., the non-negative least squares (NNLS) algorithm and the more commonly used Levenberg-Marquardt (LM) non-linear least squares algorithm, for the analysis of IVIM data. MRI experiments were performed on fifteen healthy volunteers, with a diffusion-weighted echo-planar imaging (EPI) sequence at five different b-values (0, 50, 100, 200, 600 s/mm2), in combination with an STIR module to suppress the lipid signal. Diffusion signal decays in the first lumbar vertebra (L1) were fitted to a bi-exponential function using the LM algorithm and further analyzed with the NNLS algorithm to calculate the values of the apparent diffusion coefficient (ADC), pseudo-diffusion coefficient (D*) and perfusion fraction. The NNLS analysis revealed two diffusion components only in seven out of fifteen volunteers, with ADC=0.60±0.09 (10(-3) mm(2)/s), D*=28±9 (10(-3) mm2/s) and perfusion fraction=14%±6%. The values obtained by the LM bi-exponential fit were: ADC=0.45±0.27 (10(-3) mm2/s), D*=63±145 (10(-3) mm2/s) and perfusion fraction=27%±17%. Furthermore, the LM algorithm yielded values of perfusion fraction in cases where the decay was not bi-exponential, as assessed by NNLS analysis. The IVIM approach allows for measuring diffusion and perfusion fraction in vertebral bone marrow; its reliability can be improved by using the NNLS, which identifies the diffusion decays that display a bi-exponential behavior. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Gauge equivalence of the Gross Pitaevskii equation and the equivalent Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Radha, R.; Kumar, V. Ramesh

    2007-11-01

    In this paper, we construct an equivalent spin chain for the Gross-Pitaevskii equation with quadratic potential and exponentially varying scattering lengths using gauge equivalence. We have then generated the soliton solutions for the spin components S3 and S-. We find that the spin solitons for S3 and S- can be compressed for exponentially growing eigenvalues while they broaden out for decaying eigenvalues.

  11. On new non-modal hydrodynamic stability modes and resulting non-exponential growth rates - a Lie symmetry approach

    NASA Astrophysics Data System (ADS)

    Oberlack, Martin; Nold, Andreas; Sanjon, Cedric Wilfried; Wang, Yongqi; Hau, Jan

    2016-11-01

    Classical hydrodynamic stability theory for laminar shear flows, no matter if considering long-term stability or transient growth, is based on the normal-mode ansatz, or, in other words, on an exponential function in space (stream-wise direction) and time. Recently, it became clear that the normal mode ansatz and the resulting Orr-Sommerfeld equation is based on essentially three fundamental symmetries of the linearized Euler and Navier-Stokes equations: translation in space and time and scaling of the dependent variable. Further, Kelvin-mode of linear shear flows seemed to be an exception in this context as it admits a fourth symmetry resulting in the classical Kelvin mode which is rather different from normal-mode. However, very recently it was discovered that most of the classical canonical shear flows such as linear shear, Couette, plane and round Poiseuille, Taylor-Couette, Lamb-Ossen vortex or asymptotic suction boundary layer admit more symmetries. This, in turn, led to new problem specific non-modal ansatz functions. In contrast to the exponential growth rate in time of the modal-ansatz, the new non-modal ansatz functions usually lead to an algebraic growth or decay rate, while for the asymptotic suction boundary layer a double-exponential growth or decay is observed.

  12. Obstructive sleep apnea alters sleep stage transition dynamics.

    PubMed

    Bianchi, Matt T; Cash, Sydney S; Mietus, Joseph; Peng, Chung-Kang; Thomas, Robert

    2010-06-28

    Enhanced characterization of sleep architecture, compared with routine polysomnographic metrics such as stage percentages and sleep efficiency, may improve the predictive phenotyping of fragmented sleep. One approach involves using stage transition analysis to characterize sleep continuity. We analyzed hypnograms from Sleep Heart Health Study (SHHS) participants using the following stage designations: wake after sleep onset (WASO), non-rapid eye movement (NREM) sleep, and REM sleep. We show that individual patient hypnograms contain insufficient number of bouts to adequately describe the transition kinetics, necessitating pooling of data. We compared a control group of individuals free of medications, obstructive sleep apnea (OSA), medical co-morbidities, or sleepiness (n = 374) with mild (n = 496) or severe OSA (n = 338). WASO, REM sleep, and NREM sleep bout durations exhibited multi-exponential temporal dynamics. The presence of OSA accelerated the "decay" rate of NREM and REM sleep bouts, resulting in instability manifesting as shorter bouts and increased number of stage transitions. For WASO bouts, previously attributed to a power law process, a multi-exponential decay described the data well. Simulations demonstrated that a multi-exponential process can mimic a power law distribution. OSA alters sleep architecture dynamics by decreasing the temporal stability of NREM and REM sleep bouts. Multi-exponential fitting is superior to routine mono-exponential fitting, and may thus provide improved predictive metrics of sleep continuity. However, because a single night of sleep contains insufficient transitions to characterize these dynamics, extended monitoring of sleep, probably at home, would be necessary for individualized clinical application.

  13. The time-course of protection of the RTS,S vaccine against malaria infections and clinical disease.

    PubMed

    Penny, Melissa A; Pemberton-Ross, Peter; Smith, Thomas A

    2015-11-04

    Recent publications have reported follow-up of the RTS,S/AS01 malaria vaccine candidate Phase III trials at 11 African sites for 32 months (or longer). This includes site- and time-specific estimates of incidence and efficacy against clinical disease with four different vaccination schedules. These data allow estimation of the time-course of protection against infection associated with two different ages of vaccination, both with and without a booster dose. Using an ensemble of individual-based stochastic models, each trial cohort in the Phase III trial was simulated assuming many different hypothetical profiles for the vaccine efficacy against infection in time, for both the primary course and boosting dose and including the potential for either exponential or non-exponential decay. The underlying profile of protection was determined by Bayesian fitting of these model predictions to the site- and time-specific incidence of clinical malaria over 32 months (or longer) of follow-up. Using the same stochastic models, projections of clinical efficacy in each of the sites were modelled and compared to available observed trial data. The initial protection of RTS,S immediately following three doses is estimated as providing an efficacy against infection of 65 % (when immunizing infants aged 6-12 weeks old) and 91 % (immunizing children aged 5-17 months old at first vaccination). This protection decays relatively rapidly, with an approximately exponential decay for the 6-12 weeks old cohort (with a half-life of 7.2 months); for the 5-17 months old cohort a biphasic decay with a similar half-life is predicted, with an initial rapid decay followed by a slower decay. The boosting dose was estimated to return protection to an efficacy against infection of 50-55 % for both cohorts. Estimates of clinical efficacy by trial site are consistent with those reported in the trial for all cohorts. The site- and time-specific clinical observations from the RTS,S/AS01 trial data allowed a reasonably precise estimation of the underlying vaccine protection against infection which is consistent with common underlying efficacy and decay rates across the trial sites. This calibration suggests that the decay in efficacy against clinical disease is more rapid than that against infection because of age-shifts in the incidence of disease. The dynamical models predict that clinical effectiveness will continue to decay and that likely effects beyond the time-scale of the trial will be small.

  14. Generalization of the event-based Carnevale-Hines integration scheme for integrate-and-fire models.

    PubMed

    van Elburg, Ronald A J; van Ooyen, Arjen

    2009-07-01

    An event-based integration scheme for an integrate-and-fire neuron model with exponentially decaying excitatory synaptic currents and double exponential inhibitory synaptic currents has been introduced by Carnevale and Hines. However, the integration scheme imposes nonphysiological constraints on the time constants of the synaptic currents, which hamper its general applicability. This letter addresses this problem in two ways. First, we provide physical arguments demonstrating why these constraints on the time constants can be relaxed. Second, we give a formal proof showing which constraints can be abolished. As part of our formal proof, we introduce the generalized Carnevale-Hines lemma, a new tool for comparing double exponentials as they naturally occur in many cascaded decay systems, including receptor-neurotransmitter dissociation followed by channel closing. Through repeated application of the generalized lemma, we lift most of the original constraints on the time constants. Thus, we show that the Carnevale-Hines integration scheme for the integrate-and-fire model can be employed for simulating a much wider range of neuron and synapse types than was previously thought.

  15. Structural, optical absorption and photoluminescence spectral studies of Sm3+ ions in Alkaline-Earth Boro Tellurite glasses

    NASA Astrophysics Data System (ADS)

    Siva Rama Krishna Reddy, K.; Swapna, K.; Mahamuda, Sk.; Venkateswarlu, M.; Srinivas Prasad, M. V. V. K.; Rao, A. S.; Prakash, G. Vijaya

    2018-05-01

    Sm3+ ions doped Alkaline-Earth Boro Tellurite (AEBT) glasses were prepared by using conventional melt quenching technique and characterized using the spectroscopic techniques such as FT-IR, optical absorption, emission and decay spectral measurements to understand their utility in optoelectronic devices. From absorption spectra, the bonding parameters, nephelauxetic ratios were determined to know the nature of bonding between Sm3+ ions and its surrounding ligands. From the measured oscillator strengths, the Judd-Ofelt (J-O) intensity parameters were evaluated and in turn used to estimate various radiative parameters for the fluorescent levels of Sm3+ ions in AEBT glasses. The PL spectra of Sm3+ ions exhibit three emission bands corresponding to the transitions 4G5/2 → 6H5/2, 6H7/2 and 6H9/2 in the visible region for which the emission cross-sections and branching ratios were evaluated. The decay spectral profiles measured for 4G5/2 → 6H7/2 transition showed single exponential for lower concentration and non-exponential for higher concentration of doped rare earth ion in the as prepared glasses. Conversion of decay spectral profiles from single to non-exponential have been analyzed using Inokuti-Hirayama (I-H) model to understand the energy transfer mechanism involved in the decay process. CIE Chromaticity coordinates were measured using emission spectral data to identify the exact region of emission from the as-prepared glasses. From the evaluated radiative parameters, emission cross-sections and quantum efficiencies, it was observed that AEBT glass with 1 mol% of Sm3+ ions is more suitable for designing optoelectronic devices.

  16. Optical and luminescence properties of Dy3+ ions in phosphate based glasses

    NASA Astrophysics Data System (ADS)

    Rasool, Sk. Nayab; Rama Moorthy, L.; Jayasankar, C. K.

    2013-08-01

    Phosphate glasses with compositions of 44P2O5 + 17K2O + 9Al2O3 + (30 - x)CaF2 + xDy2O3 (x = 0.05, 0.1, 0.5, 1.0, 2.0, 3.0 and 4.0 mol %) were prepared and characterized by X-ray diffraction (XRD), differential thermal analysis (DTA), Fourier transform infrared (FTIR), optical absorption, emission and decay measurements. The observed absorption bands were analyzed by using the free-ion Hamiltonian (HFI) model. The Judd-Ofelt (JO) analysis has been performed and the intensity parameters (Ωλ, λ = 2, 4, 6) were evaluated in order to predict the radiative properties of the excited states. From the emission spectra, the effective band widths (Δλeff), stimulated emission cross-sections (σ(λp)), yellow to blue (Y/B) intensity ratios and chromaticity color coordinates (x, y) have been determined. The fluorescence decays from the 4F9/2 level of Dy3+ ions were measured by monitoring the intense 4F9/2 → 6H15/2 transition (486 nm). The experimental lifetimes (τexp) are found to decrease with the increase of Dy3+ ions concentration due to the quenching process. The decay curves are perfectly single exponential at lower concentrations and gradually changes to non-exponential for higher concentrations. The non-exponential decay curves are well fitted to the Inokuti-Hirayama (IH) model for S = 6, which indicates that the energy transfer between the donor and acceptor is of dipole-dipole type. The systematic analysis of revealed that the energy transfer mechanism strongly depends on Dy3+ ions concentration and the host glass composition.

  17. Molecular Basis of Paralytic Neurotoxin Action on Voltage-Sensitive Sodium Channels

    DTIC Science & Technology

    1987-10-20

    reaching a new steady state rate of inactivation after 5 min. Fig. 6C shows a family of sodium currents elicited by depolarizations to test potentials...Fig. 7 compares time courses of decay of sodium currents during test pulses to +10 mV for 70 msec in the presence or absence of I x 10-7 CsTx on semi...logarithmic coordinates. The decay of the sodium currents in the absence of toxin was described by a single exponential with a decay constant of 0.7

  18. The decay of 'mesotrons' (1939-1943), experimental particle physics in the age of innocence

    NASA Astrophysics Data System (ADS)

    Rossi, B.

    An account is given of the experimental work carried out by the author and his associates during the years 1939 through 1943, which produced the first unambiguous evidence of the spontaneous decay of 'mesotrons', showed that this decay occurred according to an exponential law, as expected, and measured the mean life with a 3 percent accuracy. A byproduct of this work was a verification of the relativistic equation for the dilation of time intervals. Previously announced in STAR as N81-76151

  19. Tensor tomography on Cartan–Hadamard manifolds

    NASA Astrophysics Data System (ADS)

    Lehtonen, Jere; Railo, Jesse; Salo, Mikko

    2018-04-01

    We study the geodesic x-ray transform on Cartan–Hadamard manifolds, generalizing the x-ray transforms on Euclidean and hyperbolic spaces that arise in medical and seismic imaging. We prove solenoidal injectivity of this transform acting on functions and tensor fields of any order. The functions are assumed to be exponentially decaying if the sectional curvature is bounded, and polynomially decaying if the sectional curvature decays at infinity. This work extends the results of Lehtonen (2016 arXiv:1612.04800) to dimensions n ≥slant 3 and to the case of tensor fields of any order.

  20. Event-based cluster synchronization of coupled genetic regulatory networks

    NASA Astrophysics Data System (ADS)

    Yue, Dandan; Guan, Zhi-Hong; Li, Tao; Liao, Rui-Quan; Liu, Feng; Lai, Qiang

    2017-09-01

    In this paper, the cluster synchronization of coupled genetic regulatory networks with a directed topology is studied by using the event-based strategy and pinning control. An event-triggered condition with a threshold consisting of the neighbors' discrete states at their own event time instants and a state-independent exponential decay function is proposed. The intra-cluster states information and extra-cluster states information are involved in the threshold in different ways. By using the Lyapunov function approach and the theories of matrices and inequalities, we establish the cluster synchronization criterion. It is shown that both the avoidance of continuous transmission of information and the exclusion of the Zeno behavior are ensured under the presented triggering condition. Explicit conditions on the parameters in the threshold are obtained for synchronization. The stability criterion of a single GRN is also given under the reduced triggering condition. Numerical examples are provided to validate the theoretical results.

  1. A General Exponential Framework for Dimensionality Reduction.

    PubMed

    Wang, Su-Jing; Yan, Shuicheng; Yang, Jian; Zhou, Chun-Guang; Fu, Xiaolan

    2014-02-01

    As a general framework, Laplacian embedding, based on a pairwise similarity matrix, infers low dimensional representations from high dimensional data. However, it generally suffers from three issues: 1) algorithmic performance is sensitive to the size of neighbors; 2) the algorithm encounters the well known small sample size (SSS) problem; and 3) the algorithm de-emphasizes small distance pairs. To address these issues, here we propose exponential embedding using matrix exponential and provide a general framework for dimensionality reduction. In the framework, the matrix exponential can be roughly interpreted by the random walk over the feature similarity matrix, and thus is more robust. The positive definite property of matrix exponential deals with the SSS problem. The behavior of the decay function of exponential embedding is more significant in emphasizing small distance pairs. Under this framework, we apply matrix exponential to extend many popular Laplacian embedding algorithms, e.g., locality preserving projections, unsupervised discriminant projections, and marginal fisher analysis. Experiments conducted on the synthesized data, UCI, and the Georgia Tech face database show that the proposed new framework can well address the issues mentioned above.

  2. THE TEMPORAL AND SPECTRAL CHARACTERISTICS OF 'FAST RISE AND EXPONENTIAL DECAY' GAMMA-RAY BURST PULSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Z. Y.; Ma, L.; Yin, Y.

    2010-08-01

    In this paper, we have analyzed the temporal and spectral behavior of 52 fast rise and exponential decay (FRED) pulses in 48 long-duration gamma-ray bursts (GRBs) observed by the CGRO/BATSE, using a pulse model with two shape parameters and the Band model with three shape parameters, respectively. It is found that these FRED pulses are distinguished both temporally and spectrally from those in the long-lag pulses. In contrast to the long-lag pulses, only one parameter pair indicates an evident correlation among the five parameters, which suggests that at least four parameters are needed to model burst temporal and spectral behavior.more » In addition, our studies reveal that these FRED pulses have the following correlated properties: (1) long-duration pulses have harder spectra and are less luminous than short-duration pulses and (2) the more asymmetric the pulses are, the steeper are the evolutionary curves of the peak energy (E{sub p}) in the {nu}f{sub {nu}} spectrum within the pulse decay phase. Our statistical results give some constraints on the current GRB models.« less

  3. Model-based analysis of multi-shell diffusion MR data for tractography: How to get over fitting problems

    PubMed Central

    Jbabdi, Saad; Sotiropoulos, Stamatios N; Savio, Alexander M; Graña, Manuel; Behrens, Timothy EJ

    2012-01-01

    In this article, we highlight an issue that arises when using multiple b-values in a model-based analysis of diffusion MR data for tractography. The non-mono-exponential decay, commonly observed in experimental data, is shown to induce over-fitting in the distribution of fibre orientations when not considered in the model. Extra fibre orientations perpendicular to the main orientation arise to compensate for the slower apparent signal decay at higher b-values. We propose a simple extension to the ball and stick model based on a continuous Gamma distribution of diffusivities, which significantly improves the fitting and reduces the over-fitting. Using in-vivo experimental data, we show that this model outperforms a simpler, noise floor model, especially at the interfaces between brain tissues, suggesting that partial volume effects are a major cause of the observed non-mono-exponential decay. This model may be helpful for future data acquisition strategies that may attempt to combine multiple shells to improve estimates of fibre orientations in white matter and near the cortex. PMID:22334356

  4. Normal Mode Analysis on the Relaxation of AN Excited Nitromethane Molecule in Argon Bath

    NASA Astrophysics Data System (ADS)

    Rivera-Rivera, Luis A.; Wagner, Albert F.

    2017-06-01

    In our previous work [Rivera-Rivera et al. J. Chem. Phys. 142, 014303 (2015).] classical molecular dynamics simulations followed, in an Ar bath, the relaxation of nitromethane (CH_3NO_2) instantaneously excited by statistically distributing 50 kcal/mol among all its internal degrees of freedom. The 300 K Ar bath was at pressures of 10 to 400 atm. Both rotational and vibrational energies exhibited multi-exponential decay. This study explores mode-specific mechanisms at work in the decay process. With the separation of rotation and vibration developed by Rhee and Kim [J. Chem. Phys. 107, 1394 (1997).], one can show that the vibrational kinetic energy decomposes only into vibrational normal modes while the rotational and Coriolis energies decompose into both vibrational and rotational normal modes. Then the saved CH_3NO_2 positions and momenta can be converted into mode-specific energies whose decay over 1000 ps can be monitored. The results identify vibrational and rotational modes that promote/resist energy lost and drive multi-exponential behavior. In addition to mode-specificity, the results show disruption of IVR with increasing pressure.

  5. Time since death and decay rate constants of Norway spruce and European larch deadwood in subalpine forests determined using dendrochronology and radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Petrillo, M.; Cherubini, P.; Fravolini, G.; Ascher, J.; Schärer, M.; Synal, H.-A.; Bertoldi, D.; Camin, F.; Larcher, R.; Egli, M.

    2015-09-01

    Due to the large size and highly heterogeneous spatial distribution of deadwood, the time scales involved in the coarse woody debris (CWD) decay of Picea abies (L.) Karst. and Larix decidua Mill. in Alpine forests have been poorly investigated and are largely unknown. We investigated the CWD decay dynamics in an Alpine valley in Italy using the five-decay class system commonly employed for forest surveys, based on a macromorphological and visual assessment. For the decay classes 1 to 3, most of the dendrochronological samples were cross-dated to assess the time that had elapsed since tree death, but for decay classes 4 and 5 (poorly preserved tree rings) and some others not having enough tree rings, radiocarbon dating was used. In addition, density, cellulose and lignin data were measured for the dated CWD. The decay rate constants for spruce and larch were estimated on the basis of the density loss using a single negative exponential model. In the decay classes 1 to 3, the ages of the CWD were similar varying between 1 and 54 years for spruce and 3 and 40 years for larch with no significant differences between the classes; classes 1-3 are therefore not indicative for deadwood age. We found, however, distinct tree species-specific differences in decay classes 4 and 5, with larch CWD reaching an average age of 210 years in class 5 and spruce only 77 years. The mean CWD rate constants were 0.012 to 0.018 yr-1 for spruce and 0.005 to 0.012 yr-1 for larch. Cellulose and lignin time trends half-lives (using a multiple-exponential model) could be derived on the basis of the ages of the CWD. The half-lives for cellulose were 21 yr for spruce and 50 yr for larch. The half-life of lignin is considerably higher and may be more than 100 years in larch CWD.

  6. False-vacuum decay in generalized extended inflation

    NASA Technical Reports Server (NTRS)

    Holman, Richard; Kolb, Edward W.; Vadas, Sharon L.; Wang, Yun

    1990-01-01

    False-vacuum decay was studied in context of generalized extended inflationary theories, and the bubble nucleation rates was computed for these theories in the limit of G(sub N) yields 0. It was found that the time dependence of the nucleation rate can be exponentially strong through the time dependence of the Jordan-Brans-Dicke field. This can have a pronounced effect on whether extended inflation can be successfully implemented.

  7. VizieR Online Data Catalog: Catalog of Kepler flare stars (Van Doorsselaere+, 2017)

    NASA Astrophysics Data System (ADS)

    van Doorsselaere, T.; Shariati, H.; Debosscher, J.

    2017-11-01

    With an automated detection method, we have identified stellar flares in the long cadence observations of Kepler during quarter 15. We list each flare time for the respective Kepler objects. Furthermore, we list the flare amplitude and decay time after fitting the flare light curve with an exponential decay. Flare start times in long cadence data of Kepler during quarter 15. (1 data file).

  8. Siphons, Water Clocks, Cooling Coffee, and Leaking Capacitors: Classroom Activities and a Few Equations to Help Students Understand Radioactive Decay and Other Exponential Processes

    ERIC Educational Resources Information Center

    Brady, John B.

    2009-01-01

    Although an understanding of radiometric dating is central to the preparation of every geologist, many students struggle with the concepts and mathematics of radioactive decay. Physical demonstrations and hands-on experiments can be used to good effect in addressing this teaching conundrum. Water, heat, and electrons all move or flow in response…

  9. Disorder in Protein Crystals.

    NASA Astrophysics Data System (ADS)

    Clarage, James Braun, II

    1990-01-01

    Methods have been developed for analyzing the diffuse x-ray scattering in the halos about a crystal's Bragg reflections as a means of determining correlations in atomic displacements in protein crystals. The diffuse intensity distribution for rhombohedral insulin, tetragonal lysozyme, and triclinic lysozyme crystals was best simulated in terms of exponential displacement correlation functions. About 90% of the disorder can be accounted for by internal movements correlated with a decay distance of about 6A; the remaining 10% corresponds to intermolecular movements that decay in a distance the order of size of the protein molecule. The results demonstrate that protein crystals fit into neither the Einstein nor the Debye paradigms for thermally fluctuating crystalline solids. Unlike the Einstein model, there are correlations in the atomic displacements, but these correlations decay more steeply with distance than predicted by the Debye-Waller model for an elastic solid. The observed displacement correlations are liquid -like in the sense that they decay exponentially with the distance between atoms, just as positional correlations in a liquid. This liquid-like disorder is similar to the disorder observed in 2-D crystals of polystyrene latex spheres, and similar systems where repulsive interactions dominate; hence, these colloidal crystals appear to provide a better analogy for the dynamics of protein crystals than perfectly elastic lattices.

  10. Elastic constants and dynamics in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Humpert, Anja; Allen, Michael P.

    2015-09-01

    In this paper, we present molecular dynamics calculations of the Frank elastic constants, and associated time correlation functions, in nematic liquid crystals. We study two variants of the Gay-Berne potential, and use system sizes of half a million molecules, significantly larger than in previous studies of elastic behaviour. Equilibrium orientational fluctuations in reciprocal (k-) space were calculated, to determine the elastic constants by fitting at low |k|; our results indicate that small system size may be a source of inaccuracy in previous work. Furthermore, the dynamics of the Gay-Berne nematic were studied by calculating time correlation functions of components of the order tensor, together with associated components of the velocity field, for a set of wave vectors k. Confirming our earlier work, we found exponential decay for splay and twist correlations, and oscillatory exponential decay for the bend correlation. In this work, we confirm similar behaviour for the corresponding velocity components. In all cases, the decay rates, and oscillation frequencies, were found to be accurately proportional to k2 for small k, as predicted by the equations of nematodynamics. However, the observation of oscillatory bend fluctuations, and corresponding oscillatory shear flow decay, is in contradiction to the usual assumptions appearing in the literature, and in standard texts. We discuss the advantages and drawbacks of using large systems in these calculations.

  11. Depth-Penetrating Temperature Measurements of Thermal Barrier Coatings Incorporating Thermographic Phosphors

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Bencic, Timothy J..; Allison, Stephen W.; Beshears, David L.

    2003-01-01

    Thermographic phosphors have been previously demonstrated to provide effective non-contact, emissivity-independent surface temperature measurements. Because of the translucent nature of thermal barrier coatings (TBCs), thermographic phosphor-based temperature measurements can be extended beyond the surface to provide depth-selective temperature measurements by incorporating the thermographic phosphor layer at the depth where the temperature measurement is desired. In this paper, thermographic phosphor (Y2O3:Eu) fluorescence decay time measurements are demonstrated to provide through-the-coating thickness temperature readings up to 1100 C with the phosphor layer residing beneath a 100 micron thick TBC (plasma-sprayed 8wt% yttria-stabilized zirconia). With an appropriately chosen excitation wavelength and detection configuration, it is shown that sufficient phosphor emission is generated to provide effective temperature measurements, despite the attenuation of both the excitation and emission intensities by the overlying TBC. This depth-penetrating temperature measurement capability should prove particularly useful for TBC diagnostics where a large thermal gradient is typically present across the TBC thickness. The fluorescence decay from the Y2O3:Eu layer exhibited both an initial short-term exponential rise and a longer-term exponential decay. The rise time constant was demonstrated to provide better temperature indication below 500 C while the decay time constant was a better indicator at higher temperatures.

  12. Single-channel activations and concentration jumps: comparison of recombinant NR1a/NR2A and NR1a/NR2D NMDA receptors

    PubMed Central

    Wyllie, David J A; Béhé, Philippe; Colquhoun, David

    1998-01-01

    We have expressed recombinant NR1a/NR2A and NR1a/NR2D N-methyl-D-aspartate (NMDA) receptor channels in Xenopus oocytes and made recordings of single-channel and macroscopic currents in outside-out membrane patches. For each receptor type we measured (a) the individual single-channel activations evoked by low glutamate concentrations in steady-state recordings, and (b) the macroscopic responses elicited by brief concentration jumps with high agonist concentrations, and we explore the relationship between these two sorts of observation. Low concentration (5–100 nM) steady-state recordings of NR1a/NR2A and NR1a/NR2D single-channel activity generated shut-time distributions that were best fitted with a mixture of five and six exponential components, respectively. Individual activations of either receptor type were resolved as bursts of openings, which we refer to as ‘super-clusters’. During a single activation, NR1a/NR2A receptors were open for 36 % of the time, but NR1a/NR2D receptors were open for only 4 % of the time. For both, distributions of super-cluster durations were best fitted with a mixture of six exponential components. Their overall mean durations were 35.8 and 1602 ms, respectively. Steady-state super-clusters were aligned on their first openings and averaged. The average was well fitted by a sum of exponentials with time constants taken from fits to super-cluster length distributions. It is shown that this is what would be expected for a channel that shows simple Markovian behaviour. The current through NR1a/NR2A channels following a concentration jump from zero to 1 mM glutamate for 1 ms was well fitted by three exponential components with time constants of 13 ms (rising phase), 70 ms and 350 ms (decaying phase). Similar concentration jumps on NR1a/NR2D channels were well fitted by two exponentials with means of 45 ms (rising phase) and 4408 ms (decaying phase) components. During prolonged exposure to glutamate, NR1a/NR2A channels desensitized with a time constant of 649 ms, while NR1a/NR2D channels exhibited no apparent desensitization. We show that under certain conditions, the time constants for the macroscopic jump response should be the same as those for the distribution of super-cluster lengths, though the resolution of the latter is so much greater that it cannot be expected that all the components will be resolvable in a macroscopic current. Good agreement was found for jumps on NR1a/NR2D receptors, and for some jump experiments on NR1a/NR2A. However, the latter were rather variable and some were slower than predicted. Slow decays were associated with patches that had large currents. PMID:9625862

  13. Recurrence time statistics for finite size intervals

    NASA Astrophysics Data System (ADS)

    Altmann, Eduardo G.; da Silva, Elton C.; Caldas, Iberê L.

    2004-12-01

    We investigate the statistics of recurrences to finite size intervals for chaotic dynamical systems. We find that the typical distribution presents an exponential decay for almost all recurrence times except for a few short times affected by a kind of memory effect. We interpret this effect as being related to the unstable periodic orbits inside the interval. Although it is restricted to a few short times it changes the whole distribution of recurrences. We show that for systems with strong mixing properties the exponential decay converges to the Poissonian statistics when the width of the interval goes to zero. However, we alert that special attention to the size of the interval is required in order to guarantee that the short time memory effect is negligible when one is interested in numerically or experimentally calculated Poincaré recurrence time statistics.

  14. Numerical investigation of MHD flow with Soret and Dufour effect

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Nasir, Tehreem; Khan, Muhammad Ijaz; Alsaedi, Ahmed

    2018-03-01

    This paper describes the flow due to an exponentially curved surface subject to Soret and Dufour effects. Nonlinear velocity is considered. Exponentially curved stretchable sheet induced the flow. Fluid is electrical conducting through constant applied magnetic field. The governing flow expressions are reduced to ordinary ones and then tackled by numerical technique (Built-in-Shooting). Impacts of various flow variables on the dimensionless velocity, concentration and temperature fields are graphically presented and discussed in detail. Skin friction coefficient and Sherwood and Nusselt numbers are studied through graphs. Furthermore it is observed that Soret and Dufour variables regulate heat and mass transfer rates. It is also noteworthy that velocity decays for higher magnetic variable. Skin friction magnitude decays via curvature and magnetic variables. Also mass transfer gradient or rate of mass transport enhances for higher estimations of curvature parameter and Schmidt number.

  15. Thermodynamics and kinetics of the sulfation of porous calcium silicate

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Kohl, F. J.

    1981-01-01

    The sulfation of plasma sprayed calcium silicate in flowing SO2/air mixtures at 900 and 1000 C was investigated thermogravimetrically. Reaction products were analyzed using electron microprobe and X-ray diffraction analysis techniques, and results were compared with thermodynamic predictions. The percentage, by volume, of SO2 in air was varied between 0.036 and 10 percent. At 10 percent SO2 the weight gain curve displays a concave downward shoulder early in the sulfation process. An analytical model was developed which treats the initial process as one which decays exponentially with increasing time and the subsequent process as one which decays exponentially with increasing weight gain. At lower SO2 levels the initial rate is controlled by the reactant flow rate. At 1100 C and 0.036 percent SO2 there is no reaction, in agreement with thermodynamic predictions.

  16. Stimulation Efficiency With Decaying Exponential Waveforms in a Wirelessly Powered Switched-Capacitor Discharge Stimulation System.

    PubMed

    Lee, Hyung-Min; Howell, Bryan; Grill, Warren M; Ghovanloo, Maysam

    2018-05-01

    The purpose of this study was to test the feasibility of using a switched-capacitor discharge stimulation (SCDS) system for electrical stimulation, and, subsequently, determine the overall energy saved compared to a conventional stimulator. We have constructed a computational model by pairing an image-based volume conductor model of the cat head with cable models of corticospinal tract (CST) axons and quantified the theoretical stimulation efficiency of rectangular and decaying exponential waveforms, produced by conventional and SCDS systems, respectively. Subsequently, the model predictions were tested in vivo by activating axons in the posterior internal capsule and recording evoked electromyography (EMG) in the contralateral upper arm muscles. Compared to rectangular waveforms, decaying exponential waveforms with time constants >500 μs were predicted to require 2%-4% less stimulus energy to activate directly models of CST axons and 0.4%-2% less stimulus energy to evoke EMG activity in vivo. Using the calculated wireless input energy of the stimulation system and the measured stimulus energies required to evoke EMG activity, we predict that an SCDS implantable pulse generator (IPG) will require 40% less input energy than a conventional IPG to activate target neural elements. A wireless SCDS IPG that is more energy efficient than a conventional IPG will reduce the size of an implant, require that less wireless energy be transmitted through the skin, and extend the lifetime of the battery in the external power transmitter.

  17. Spectroscopic investigations of Nd3+ doped Lithium Lead Alumino Borate glasses for 1.06 μm laser applications

    NASA Astrophysics Data System (ADS)

    Deopa, Nisha; Rao, A. S.; Gupta, Mohini; Vijaya Prakash, G.

    2018-01-01

    Neodymium doped lithium lead alumino borate glasses were synthesized with the molar composition 10Li2Osbnd 10PbOsbnd (10-x) Al2O3sbnd 70B2O3sbnd x Nd2O3 (where, x = 0.1, 0.5, 1.0, 1.5, 2.0 and 2.5 mol %) via conventional melt quenching technique to understand their lasing potentialities using the absorption, emission and photoluminescence decay spectral measurements. The oscillator strengths measured from the absorption spectra were used to estimate the Judd-Ofelt intensity parameters using least square fitting procedure. The emission spectra recorded for the as-prepared glasses under investigation exhibit two emission transitions 4F3/2 → 4I11/2 (1063 nm) and 4F3/2 → 4I9/2 (1350 nm) for which radiative parameters have been evaluated. The emission intensity increases with increase in Nd3+ ion concentration up to 1 mol % and beyond concentration quenching took place. The decay profile shows single exponential nature for lower Nd3+ ion concentration and non-exponential for higher concentration. To elucidate the nature of energy transfer process, the non-exponential decay curves were well fitted to Inokuti-Hirayama model. The relatively higher values of emission cross-sections, branching ratios and quantum efficiency values obtained for 1.0 mol% of Nd3+ ions in LiPbAlB glass suggests it's aptness in generating lasing action at 1063 nm in NIR region.

  18. Experimental Magnetohydrodynamic Energy Extraction from a Pulsed Detonation

    DTIC Science & Technology

    2015-03-01

    experimental data taken in this thesis will follow voltage profiles similar to Fig. 2. Notice the initial section in Fig. 2 shows exponential decay consistent...equal that time constant. The exponential curves in Fig. 2 show how changing the time constant can change the charge and/or discharge rate of the...see Fig. 1), at a sampling rate of 1 MHz. Shielded wire and a common ground were used throughout the DAQ system to avoid capacitive issues in the

  19. Transient chaos in the Lorenz-type map with periodic forcing.

    PubMed

    Maslennikov, Oleg V; Nekorkin, Vladimir I; Kurths, Jürgen

    2018-03-01

    We consider a case study of perturbing a system with a boundary crisis of a chaotic attractor by periodic forcing. In the static case, the system exhibits persistent chaos below the critical value of the control parameter but transient chaos above the critical value. We discuss what happens to the system and particularly to the transient chaotic dynamics if the control parameter periodically oscillates. We find a non-exponential decaying behavior of the survival probability function, study the impact of the forcing frequency and amplitude on the escape rate, analyze the phase-space image of the observed dynamics, and investigate the influence of initial conditions.

  20. Transient chaos in the Lorenz-type map with periodic forcing

    NASA Astrophysics Data System (ADS)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.; Kurths, Jürgen

    2018-03-01

    We consider a case study of perturbing a system with a boundary crisis of a chaotic attractor by periodic forcing. In the static case, the system exhibits persistent chaos below the critical value of the control parameter but transient chaos above the critical value. We discuss what happens to the system and particularly to the transient chaotic dynamics if the control parameter periodically oscillates. We find a non-exponential decaying behavior of the survival probability function, study the impact of the forcing frequency and amplitude on the escape rate, analyze the phase-space image of the observed dynamics, and investigate the influence of initial conditions.

  1. Spin-lattice relaxation of 13C in solid amino acids using the CP-MAS technique

    NASA Astrophysics Data System (ADS)

    Naito, A.; Ganapathy, S.; Akasaka, K.; McDowell, C. A.

    It is shown by a simple application of relaxation theory that the 13C magnetization decays nonexponentially, in principle, in the CP-MAS experiment because of the distribution of the spin-lattice relaxation times; however, the deviation from the exponential decay is quite small. The transient Overhauser effect also contributes appreciably to the nonexponential decay of the 13C magnetization when the protons are not saturated during the 13C T1 measurements and the correlation time of the group rotational motion satisfies the condition, ω2τc2 ≦ 1. It is shown by both experiment and theory that the transient Overhauser effect in the solid state is much smaller than that expected for the liquid state. The 13C spin-lattice relaxation times of L-alanine, deutero- L-alanine, glycine, and L-serine were determined for the individual carbon atoms. The experimentally obtained 13C T1 values agree well with calculated ones, showing that the CH 3 group rotation provides the main source of the relaxation in alanine, while the NH 3+ group motion plays an important role for the relaxation in glycine and serene.

  2. Inference of the ring current ion composition by means of charge exchange decay

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Hoffman, R. A.; Bewtra, N. K.

    1981-01-01

    The analysis of data from the Explorer 45 (S3-A) electrostatic analyzer in the energy range 5-30 keV has provided some new results on the ring current ion composition. It has been well established that the storm time ring current has a decay time of several days, during which the particle fluxes decrease nearly monotonically. By analyzing the measured ion fluxes during the several day storm recovery period and assuming that beside hydrogen other ions were present and that the decays were exponential in nature, three separate lifetimes for the ions were established. These fitted decay lifetimes are in excellent agreement with the expected charge exchange decay lifetimes for H(+), O(+) and He(+) in the energy and L value range of the data.

  3. On the decay of outbursts in dwarf novae nad X-ray novae

    NASA Technical Reports Server (NTRS)

    Cannizzo, John K.

    1994-01-01

    We perform computations using a time-dependent model for the accretion disk limit-cycle mechanism to examine the decay of the optical light following the peak of a dwarf nova outburst. We present the results of a parameter study of the physical input variables which affect the decay rate. In the model, the decay is brought about by a cooling transition front which begins at large radii in the disk and moves inward. The nature of the decay is strongly influenced by the radial dependence of the accretion disk viscosity parameter alpha. To obtain exponential decays for typical dwarf nova parameters, we require alpha proportional to r(exp epsilon(sub 0)), where epsilon(sub 0) approximately = 0.3-0.4. The exact value of epsilon(sub 0) which produces exponential decays depends on factors such as the mass of the accreting star and the inner radius of the accretion disk. Therefore, the observed ubiquity of exponential decays in two different types of systems (dwarf novae and X-ray novae) leads us to believe that alpha is an unnatural scaling for the viscosity. The physics of the cooling transition front must be self-regulating in that the timescale (-parital derivative of lnSigma(r)/partial derivative +)(exp -1) (where Sigma is the surface density) for mass extraction across the front remains constant. This may be consistent with a scaling alpha proportional to (h/r)(exp n), where h is the local disk semi-thickness and n approximately 1-2. As regards the speed of the cooling front, we find v(sub F)(r) proportional to r(exp p), where p approximately 3 at large radii, with an abrupt transition to p approximately 0 at some smaller radius. The r(exp 3) dependence is much steeper than has been found by previous workers and appears to result from the strong variation of specific heat within the cooling front when the front resides at a large radius in the disk. The outflow of disk material across the cooling front causes a significant departure of dln T(sub dff0/dln r from the standard value of -0.75 (expected from steady state accretion) within about 0.2 dex in radius of the break associated with the cooling front -- T(sub eff) aproximately 10(exp 3.9) K (r/10(exp 10 cm)) (exp -0.1). These effects should be observable with eclipse mapping. Finally, it appears that the relatively slow decay rate for the optical flux in the 1975 outburst of A0620-00 can be accounted for if the primary is a approximately 10 Solar mass black hole.

  4. Catalytic Bioscavengers Human Butyrylcholinesterase and Paraoxonase Sequestered to the Center for CNS

    DTIC Science & Technology

    2010-04-01

    of radiolabeling fusion proteins without the denaturing effects coincident with oxidative radio-iodination associated with the chloramine T method...organ PS product = [(%ID/g)/AUC]*1000 Reportable Outcomes (1) The plasma concentration decay curve for AGT-185 is shown in Figure 1. The % of...injected dose (ID)/mL decreases rapidly in plasma following IV injection. This plasma decay curve was fit to the bi-exponential equation described above

  5. On the rates of decay to equilibrium in degenerate and defective Fokker-Planck equations

    NASA Astrophysics Data System (ADS)

    Arnold, Anton; Einav, Amit; Wöhrer, Tobias

    2018-06-01

    We establish sharp long time asymptotic behaviour for a family of entropies to defective Fokker-Planck equations and show that, much like defective finite dimensional ODEs, their decay rate is an exponential multiplied by a polynomial in time. The novelty of our study lies in the amalgamation of spectral theory and a quantitative non-symmetric hypercontractivity result, as opposed to the usual approach of the entropy method.

  6. Mechanisms of chaos in billiards: dispersing, defocusing and nothing else

    NASA Astrophysics Data System (ADS)

    Bunimovich, Leonid A.

    2018-02-01

    We explain and justify that the only mechanisms of chaotic dynamics for billiards are dispersing and defocusing. We also introduce boomerang billiards which dynamics demonstrate that two rather broadly accepted views about some features of nonlinear dynamics are actually wrong. Namely correlations in billiards having focusing components of the boundary can decay exponentially, and continuous time correlations for a billiard flow may decay faster than discrete time correlations for a billiard map.

  7. Proportional Feedback Control of Energy Intake During Obesity Pharmacotherapy.

    PubMed

    Hall, Kevin D; Sanghvi, Arjun; Göbel, Britta

    2017-12-01

    Obesity pharmacotherapies result in an exponential time course for energy intake whereby large early decreases dissipate over time. This pattern of declining drug efficacy to decrease energy intake results in a weight loss plateau within approximately 1 year. This study aimed to elucidate the physiology underlying the exponential decay of drug effects on energy intake. Placebo-subtracted energy intake time courses were examined during long-term obesity pharmacotherapy trials for 14 different drugs or drug combinations within the theoretical framework of a proportional feedback control system regulating human body weight. Assuming each obesity drug had a relatively constant effect on average energy intake and did not affect other model parameters, our model correctly predicted that long-term placebo-subtracted energy intake was linearly related to early reductions in energy intake according to a prespecified equation with no free parameters. The simple model explained about 70% of the variance between drug studies with respect to the long-term effects on energy intake, although a significant proportional bias was evident. The exponential decay over time of obesity pharmacotherapies to suppress energy intake can be interpreted as a relatively constant effect of each drug superimposed on a physiological feedback control system regulating body weight. © 2017 The Obesity Society.

  8. Heavy tailed bacterial motor switching statistics define macroscopic transport properties during upstream contamination by E. coli

    NASA Astrophysics Data System (ADS)

    Figueroa-Morales, N.; Rivera, A.; Altshuler, E.; Darnige, T.; Douarche, C.; Soto, R.; Lindner, A.; Clément, E.

    The motility of E. Coli bacteria is described as a run and tumble process. Changes of direction correspond to a switch in the flagellar motor rotation. The run time distribution is described as an exponential decay of characteristic time close to 1s. Remarkably, it has been demonstrated that the generic response for the distribution of run times is not exponential, but a heavy tailed power law decay, which is at odds with the motility findings. We investigate the consequences of the motor statistics in the macroscopic bacterial transport. During upstream contamination processes in very confined channels, we have identified very long contamination tongues. Using a stochastic model considering bacterial dwelling times on the surfaces related to the run times, we are able to reproduce qualitatively and quantitatively the evolution of the contamination profiles when considering the power law run time distribution. However, the model fails to reproduce the qualitative dynamics when the classical exponential run and tumble distribution is considered. Moreover, we have corroborated the existence of a power law run time distribution by means of 3D Lagrangian tracking. We then argue that the macroscopic transport of bacteria is essentially determined by the motor rotation statistics.

  9. Floquet states of a kicked particle in a singular potential: Exponential and power-law profiles

    NASA Astrophysics Data System (ADS)

    Paul, Sanku; Santhanam, M. S.

    2018-03-01

    It is well known that, in the chaotic regime, all the Floquet states of kicked rotor system display an exponential profile resulting from dynamical localization. If the kicked rotor is placed in an additional stationary infinite potential well, its Floquet states display power-law profile. It has also been suggested in general that the Floquet states of periodically kicked systems with singularities in the potential would have power-law profile. In this work, we study the Floquet states of a kicked particle in finite potential barrier. By varying the height of finite potential barrier, the nature of transition in the Floquet state from exponential to power-law decay profile is studied. We map this system to a tight-binding model and show that the nature of decay profile depends on energy band spanned by the Floquet states (in unperturbed basis) relative to the potential height. This property can also be inferred from the statistics of Floquet eigenvalues and eigenvectors. This leads to an unusual scenario in which the level spacing distribution, as a window in to the spectral correlations, is not a unique characteristic for the entire system.

  10. Two-dimensional infrared spectroscopy of supercooled water.

    PubMed

    Perakis, Fivos; Hamm, Peter

    2011-05-12

    We present two-dimensional infrared (2D IR) spectra of the OD stretch vibration of isotope diluted water (HOD/H(2)O) from ambient conditions (293 K) down to the metastable supercooled regime (260 K). We observe that spectral diffusion slows down from 700 fs to 2.6 ps as we lower the temperature. A comparison between measurements performed at the magic angle with those at parallel polarization shows that the 2D IR line shape is affected by the frequency-dependent anisotropy decay in the case of parallel polarization, altering the extracted correlation decay. A fit within the framework of an Arrhenius law reveals an activation energy of E(a) = 6.2 ± 0.2 kcal/mol and a pre-exponential factor of 1/A = 0.02 ± 0.01 fs. Alternatively, a power law fit results in an exponent γ = 2.2 and a singularity temperature T(s) = 221 K. We tentatively conclude that the power law provides the better physical picture to describe the dynamics of liquid water around the freezing point.

  11. Combined two-dimensional velocity and temperature measurements of natural convection using a high-speed camera and temperature-sensitive particles

    NASA Astrophysics Data System (ADS)

    Someya, Satoshi; Li, Yanrong; Ishii, Keiko; Okamoto, Koji

    2011-01-01

    This paper proposes a combined method for two-dimensional temperature and velocity measurements in liquid and gas flows using temperature-sensitive particles (TSPs), a pulsed ultraviolet laser, and a high-speed camera. TSPs respond to temperature changes in the flow and can also serve as tracers for the velocity field. The luminescence from the TSPs was recorded at 15,000 frames per second as sequential images for a lifetime-based temperature analysis. These images were also used for the particle image velocimetry calculations. The temperature field was estimated using several images, based on the lifetime method. The decay curves for various temperature conditions fit well to exponential functions, and from these the decay constants at each temperature were obtained. The proposed technique was applied to measure the temperature and velocity fields in natural convection driven by a Marangoni force and buoyancy in a rectangular tank. The accuracy of the temperature measurement of the proposed technique was ±0.35-0.40°C.

  12. Two-point correlation function in systems with van der Waals type interaction

    NASA Astrophysics Data System (ADS)

    Dantchev, D.

    2001-09-01

    The behavior of the bulk two-point correlation function G( r; T| d ) in d-dimensional system with van der Waals type interactions is investigated and its consequences on the finite-size scaling properties of the susceptibility in such finite systems with periodic boundary conditions is discussed within mean-spherical model which is an example of Ornstein and Zernike type theory. The interaction is supposed to decay at large distances r as r - (d + σ), with 2 < d < 4, 2 < σ < 4 and d + σ≤6. It is shown that G( r; T| d ) decays as r - (d - 2) for 1 ≪ r≪ξ, exponentially for ξ≪ r≪ r *, where r * = (σ - 2)ξlnξ, and again in a power law as r - (d + σ) for r≫ r *. The analytical form of the leading-order scaling function of G( r; T| d ) in any of these regimes is derived.

  13. Motion of a Rigid Body in a Special Lorentz Gas: Loss of Memory Effect

    NASA Astrophysics Data System (ADS)

    Koike, Kai

    2018-06-01

    Linear motion of a rigid body in a special kind of Lorentz gas is mathematically analyzed. The rigid body moves against gas drag according to Newton's equation. The gas model is a special Lorentz gas consisting of gas molecules and background obstacles, which was introduced in Tsuji and Aoki (J Stat Phys 146:620-645, 2012). The specular boundary condition is imposed on the resulting kinetic equation. This study complements the numerical study by Tsuji and Aoki cited above—although the setting in this paper is slightly different from theirs, qualitatively the same asymptotic behavior is proved: The velocity V(t) of the rigid body decays exponentially if the obstacles undergo thermal motion; if the obstacles are motionless, then the velocity V(t) decays algebraically with a rate t^{- 5} independent of the spatial dimension. This demonstrates the idea that interaction of the molecules with the background obstacles destroys the memory effect due to recollision.

  14. Exponential decline of aftershocks of the M7.9 1868 great Kau earthquake, Hawaii, through the 20th century

    USGS Publications Warehouse

    Klein, F.W.; Wright, Tim

    2008-01-01

    The remarkable catalog of Hawaiian earthquakes going back to the 1820s is based on missionary diaries, newspaper accounts, and instrumental records and spans the great M7.9 Kau earthquake of April 1868 and its aftershock sequence. The earthquake record since 1868 defines a smooth curve complete to M5.2 of the declining rate into the 21st century, after five short volcanic swarms are removed. A single aftershock curve fits the earthquake record, even with numerous M6 and 7 main shocks and eruptions. The timing of some moderate earthquakes may be controlled by magmatic stresses, but their overall long-term rate reflects one of aftershocks of the Kau earthquake. The 1868 earthquake is, therefore, the largest and most controlling stress event in the 19th and 20th centuries. We fit both the modified Omori (power law) and stretched exponential (SE) functions to the earthquakes. We found that the modified Omori law is a good fit to the M ??? 5.2 earthquake rate for the first 10 years or so and the more rapidly declining SE function fits better thereafter, as supported by three statistical tests. The switch to exponential decay suggests that a possible change in aftershock physics may occur from rate and state fault friction, with no change in the stress rate, to viscoelastic stress relaxation. The 61-year exponential decay constant is at the upper end of the range of geodetic relaxation times seen after other global earthquakes. Modeling deformation in Hawaii is beyond the scope of this paper, but a simple interpretation of the decay suggests an effective viscosity of 1019 to 1020 Pa s pertains in the volcanic spreading of Hawaii's flanks. The rapid decline in earthquake rate poses questions for seismic hazard estimates in an area that is cited as one of the most hazardous in the United States.

  15. Rapid Global Fitting of Large Fluorescence Lifetime Imaging Microscopy Datasets

    PubMed Central

    Warren, Sean C.; Margineanu, Anca; Alibhai, Dominic; Kelly, Douglas J.; Talbot, Clifford; Alexandrov, Yuriy; Munro, Ian; Katan, Matilda

    2013-01-01

    Fluorescence lifetime imaging (FLIM) is widely applied to obtain quantitative information from fluorescence signals, particularly using Förster Resonant Energy Transfer (FRET) measurements to map, for example, protein-protein interactions. Extracting FRET efficiencies or population fractions typically entails fitting data to complex fluorescence decay models but such experiments are frequently photon constrained, particularly for live cell or in vivo imaging, and this leads to unacceptable errors when analysing data on a pixel-wise basis. Lifetimes and population fractions may, however, be more robustly extracted using global analysis to simultaneously fit the fluorescence decay data of all pixels in an image or dataset to a multi-exponential model under the assumption that the lifetime components are invariant across the image (dataset). This approach is often considered to be prohibitively slow and/or computationally expensive but we present here a computationally efficient global analysis algorithm for the analysis of time-correlated single photon counting (TCSPC) or time-gated FLIM data based on variable projection. It makes efficient use of both computer processor and memory resources, requiring less than a minute to analyse time series and multiwell plate datasets with hundreds of FLIM images on standard personal computers. This lifetime analysis takes account of repetitive excitation, including fluorescence photons excited by earlier pulses contributing to the fit, and is able to accommodate time-varying backgrounds and instrument response functions. We demonstrate that this global approach allows us to readily fit time-resolved fluorescence data to complex models including a four-exponential model of a FRET system, for which the FRET efficiencies of the two species of a bi-exponential donor are linked, and polarisation-resolved lifetime data, where a fluorescence intensity and bi-exponential anisotropy decay model is applied to the analysis of live cell homo-FRET data. A software package implementing this algorithm, FLIMfit, is available under an open source licence through the Open Microscopy Environment. PMID:23940626

  16. The Impact of Water Loading on Estimates of Postglacial Decay Times in Hudson Bay

    NASA Astrophysics Data System (ADS)

    Han, H. K.; Gomez, N. A.

    2016-12-01

    Ongoing glacial isostatic adjustment (GIA) due to surface loading (ice and water) variations since the Last Glacial Maximum (LGM) has been contributing to sea level changes globally throughout the Holocene, especially in regions like the Canada that were heavily glaciated during the LGM. The spatial and temporal distribution of GIA and relative sea level change are attributed to the ice history and the rheological structure of the solid Earth, both of which are uncertain. It has been shown that relative sea level curves in previously glaciated regions follow an exponential-like form, and the post glacial decay times associated with that form have weak sensitivity to the details of the ice loading history (Andrews 1970, Walcott 1980, Mitrovica & Peltier 1995). Post glacial decay time estimates may therefore be used to constrain the Earth's structure and improve GIA predictions. However, estimates of decay times in Hudson Bay in the literature differ significantly due to a number of sources of uncertainty and bias (Mitrovica et al. 2000). Previous decay time analyses have not considered the potential bias that surface loading associated with Holocene sea level changes can introduce in decay time estimates derived from nearby relative sea level observations. We explore the spatial patterns of post glacial decay time predictions in previously glaciated regions, and their sensitivity to ice and water loading history. We compute post glacial sea level changes over the last deglaciation from 21ka to the modern associated with the ICE5G (Peltier, 2004) and ICE6G (Argus et al. 2014, Peltier et al. 2015) ice history models. We fit exponential curves to the modeled relative sea level changes, and compute maps of post glacial decay time predictions across North America and the Arctic. In addition, we decompose the modeled relative sea level changes into contributions from water and ice loading effects, and compute the impact of water loading redistribution since the LGM on present day decay times. We show that Holocene water loading in the Hudson Bay may introduce significant bias in decay time estimates and we highlight locations where biases are minimized.

  17. Transdermal delivery of therapeutic agent

    NASA Technical Reports Server (NTRS)

    Kwiatkowski, Krzysztof C. (Inventor); Hayes, Ryan T. (Inventor); Magnuson, James W. (Inventor); Giletto, Anthony (Inventor)

    2008-01-01

    A device for the transdermal delivery of a therapeutic agent to a biological subject that includes a first electrode comprising a first array of electrically conductive microprojections for providing electrical communication through a skin portion of the subject to a second electrode comprising a second array of electrically conductive microprojections. Additionally, a reservoir for holding the therapeutic agent surrounding the first electrode and a pulse generator for providing an exponential decay pulse between the first and second electrodes may be provided. A method includes the steps of piercing a stratum corneum layer of skin with two arrays of conductive microprojections, encapsulating the therapeutic agent into biocompatible charged carriers, surrounding the conductive microprojections with the therapeutic agent, generating an exponential decay pulse between the two arrays of conductive microprojections to create a non-uniform electrical field and electrokinetically driving the therapeutic agent through the stratum corneum layer of skin.

  18. Edge Extraction by an Exponential Function Considering X-ray Transmission Characteristics

    NASA Astrophysics Data System (ADS)

    Kim, Jong Hyeong; Youp Synn, Sang; Cho, Sung Man; Jong Joo, Won

    2011-04-01

    3-D radiographic methodology has been into the spotlight for quality inspection of mass product or in-service inspection of aging product. To locate a target object in 3-D space, its characteristic contours such as edge length, edge angle, and vertices are very important. In spite of a simple geometry product, it is very difficult to get clear shape contours from a single radiographic image. The image contains scattering noise at the edges and ambiguity coming from X-Ray absorption within the body. This article suggests a concise method to extract whole edges from a single X-ray image. At the edge point of the object, the intensity of the X-ray decays exponentially as the X-ray penetrates the object. Considering this X-Ray decaying property, edges are extracted by using the least square fitting with the control of Coefficient of Determination.

  19. Decay of postexercise augmentation in the Lambert-Eaton myasthenic syndrome: effect of cooling.

    PubMed

    Maddison, P; Newsom-Davis, J; Mills, K R

    1998-04-01

    The effect of local cooling on surface recorded compound muscle action potential (CMAP) amplitude was studied in five patients with the Lambert-Eaton myasthenic syndrome (LEMS). The time course of decay of postexercise augmentation of CMAP amplitude characteristically seen in patients with LEMS was determined. We recorded the CMAP from abductor digiti minimi (ADM) in response to supramaximal stimulation of the ulnar nerve. Thirty consecutive stimuli were delivered at 1 Hz immediately after a 10-second period of maximal voluntary contraction. Skin surface temperature was recorded throughout. Initial testing at approximately 30 degrees C was repeated after cooling the hand and forearm by 6 to 12 degrees C. The effects of blood flow on temperature were counteracted by the application of a sphygmomanometer cuff, inflated above systolic blood pressure. The CMAP amplitude following contraction decayed in an exponential manner both during warm and cold conditions. The mean time constant for decay (1/b) in all patients was increased by approximately 25% after cooling. This prolongation of the period of postexercise augmentation of CMAP amplitude in LEMS after cooling concurs with patient reports of symptomatic improvement in cold weather. The mechanism for this benefit is thought to be due to reduction in the rate of removal of calcium ions from the nerve terminal following stimulation, similar to that seen in animal models of short-term synaptic enhancement.

  20. Stretched-to-compressed-exponential crossover observed in the electrical degradation kinetics of some spinel-metallic screen-printed structures

    NASA Astrophysics Data System (ADS)

    Balitska, V.; Shpotyuk, O.; Brunner, M.; Hadzaman, I.

    2018-02-01

    Thermally-induced (170 °C) degradation-relaxation kinetics is examined in screen-printed structures composed of spinel Cu0.1Ni0.1Co1.6Mn1.2O4 ceramics with conductive Ag or Ag-Pd layered electrodes. Structural inhomogeneities due to Ag and Ag-Pd diffusants in spinel phase environment play a decisive role in non-exponential kinetics of negative relative resistance drift. If Ag migration in spinel is inhibited by Pd addition due to Ag-Pd alloy, the kinetics attains stretched exponential behavior with ∼0.58 exponent, typical for one-stage diffusion in structurally-dispersive media. Under deep Ag penetration into spinel ceramics, as for thick films with Ag-layered electrodes, the degradation kinetics drastically changes, attaining features of two-step diffusing process governed by compressed-exponential dependence with power index of ∼1.68. Crossover from stretched- to compressed-exponential kinetics in spinel-metallic structures is mapped on free energy landscape of non-barrier multi-well system under strong perturbation from equilibrium, showing transition with a character downhill scenario resulting in faster than exponential decaying.

  1. Europium containing red light-emitting fibers made by electrohydrodynamic casting

    NASA Astrophysics Data System (ADS)

    Gan, Yong X.; Panahi, Niousha; Yu, Christina; Gan, Jeremy B.; Cheng, Wanli

    2018-05-01

    Red light-emitting polymeric micro- and nanofibers were made by electrohydrodynamic co-casting of two fluids. One fluid contains a 10 wt% concentration europium (III) complex dissolved in a dimethylformamide (DMF) solvent. The europium complex, an Eu3+ compound with the nominal formula of Eu(BA)3phen/PAN, consists of polyacrylonitrile (PAN), 1,10-phenanthroline (phen), and benzoic acid (BA). The other fluid consists of iron metal oxide nanoparticles dispersed in a solution containing 10 wt% polyacrylonitrile polymer in DMF solvent. The two fluids were electrohydrodynamically co-cast onto a soft tissue paper using a stainless steel coaxial nozzle. The intensity of the electric field used for the co-casting was 1.5 kV/cm. Scanning electron microscopic observation on the fibers obtained from the co-casting was made. The size of the fibers ranges from several hundreds of nanometers to several microns. Energy dispersive X-ray spectroscopic analysis of the fibers confirmed that the major elements included C, O, Fe, and Eu. The fluorescence of the two types of fibers was tested under the excitation of a UV light source. It was found that when the europium complex-containing solution was the sheath fluid and the iron-containing solution was the core, the prepared fibers showed red light-emitting behavior under ultraviolet light. Time-dependent fluorescence shows the two-stage decaying behavior. The first stage lasts about 2000 s and the intensity of fluorescence decreases linearly. The second stage reveals the slow decaying behavior and it lasts longer than 3 h. Based on the bi-exponential data fitting using a processing MATLAB code, the fluorescence-related constants were extracted. A bi-exponential formula was proposed to describe the time-dependent fluorescence behavior of the fiber made by the europium complex-containing solution as the sheath fluid. The decaying in the fluorescence shows two different stages. The first stage lasts about 2000 s and it is characterized by a fast decaying model. The intensity of fluorescence decreases linearly. The second stage has a slow decaying feature. It takes over 3 h for the fluorescence to die out completely. Bi-exponential data fitting shows that the time constant for the decay of fluorescence is about 10,000 s.

  2. The role of spin–rotation coupling in the non-exponential decay of hydrogen-like heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambiase, Gaetano, E-mail: lambiase@sa.infn.it; INFN, Sezione di Napoli; International Institute for Advanced Scientific Studies, 89019 Vietri sul Mare

    2013-05-15

    Recent experiments carried out at the storage ring of GSI in Darmstadt reveal an unexpected oscillation in the orbital electron capture and subsequent decay of hydrogen-like {sup 140}Pr{sup 58+}, {sup 142}Pm{sup 60+} and {sup 122}I{sup 52+}. The modulations have periods of 7.069(8) s, 7.10(22) s and 6.1 s respectively in the laboratory frame and are superimposed on the expected exponential decays. In this paper we propose a semiclassical model in which the observed modulations arise from the coupling of rotation to the spins of electron and nucleus. We show that the modulations are connected to quantum beats and to themore » effect of the Thomas precession on the spins of bound electron and nucleus, the magnetic moment precessions of electron and nucleus and their cyclotron frequencies. We also show that the spin–spin coupling of electron and nucleus, though dominant relative to the magnetic moment coupling of electron and nucleus with the storage ring magnetic field, does not contribute to the modulation because these terms average out during the time of flight of the ions, or cancel out. The model also predicts that the anomaly cannot be observed if the motion of the ions is rectilinear, or if the ions are stopped in a target (decay of neutral atoms in solid environments). It also supports the notion that no modulation occurs for the β{sup +}-decay branch. -- Highlights: ► Spin precession of the spin of nucleus and electron in storage ring. ► Coupling of rotation to the spin of electron and nucleus. ► Modulation in the decay probability of the heavy ions induced by quantum beats. ► Comparison with experimental data.« less

  3. Alteration of the fast excitatory postsynaptic current by barium in voltage-clamped amphibian sympathetic ganglion cells.

    PubMed Central

    Connor, E. A.; Parsons, R. L.

    1984-01-01

    Barium-induced alterations in fast excitatory postsynaptic currents (e.p.s.cs) have been studied in voltage-clamped bullfrog sympathetic ganglion B cells. In the presence of 2-8 mM barium, e.p.s.c. decay was prolonged and in many cells the e.p.s.c. decay phase deviated from a single exponential function. The decay phase in these cases was more accurately described as the sum of two exponential functions. The frequency of occurrence of a complex decay increased both with increasing barium concentration and with hyperpolarization. Miniature e.p.s.c. decay also was prolonged in barium-treated cells. E.p.s.c. amplitude was not markedly affected by barium (2-8 mM) in cells voltage-clamped to -50 mV whereas at -90 mV there was a progressive increase in peak size with increasing barium concentration. In control cells the e.p.s.c.-voltage relationship was linear between -20 and -100 mV; however, this relationship became progressively non-linear with membrane hyperpolarization in barium-treated cells. The e.p.s.c. reversal potential was shifted to a more negative value in the presence of barium. There was a voltage-dependent increase in charge movement during the e.p.s.c. in barium-treated cells which was not present in control cells. We conclude that the voltage-dependent alteration in e.p.s.c. decay time course, peak amplitude and charge movement in barium-treated cells is due to a direct postsynaptic action of barium on the kinetics of receptor-channel gating in postganglionic sympathetic neurones. PMID:6333261

  4. Exponential-fitted methods for integrating stiff systems of ordinary differential equations: Applications to homogeneous gas-phase chemical kinetics

    NASA Technical Reports Server (NTRS)

    Pratt, D. T.

    1984-01-01

    Conventional algorithms for the numerical integration of ordinary differential equations (ODEs) are based on the use of polynomial functions as interpolants. However, the exact solutions of stiff ODEs behave like decaying exponential functions, which are poorly approximated by polynomials. An obvious choice of interpolant are the exponential functions themselves, or their low-order diagonal Pade (rational function) approximants. A number of explicit, A-stable, integration algorithms were derived from the use of a three-parameter exponential function as interpolant, and their relationship to low-order, polynomial-based and rational-function-based implicit and explicit methods were shown by examining their low-order diagonal Pade approximants. A robust implicit formula was derived by exponential fitting the trapezoidal rule. Application of these algorithms to integration of the ODEs governing homogenous, gas-phase chemical kinetics was demonstrated in a developmental code CREK1D, which compares favorably with the Gear-Hindmarsh code LSODE in spite of the use of a primitive stepsize control strategy.

  5. FLIMX: A Software Package to Determine and Analyze the Fluorescence Lifetime in Time-Resolved Fluorescence Data from the Human Eye.

    PubMed

    Klemm, Matthias; Schweitzer, Dietrich; Peters, Sven; Sauer, Lydia; Hammer, Martin; Haueisen, Jens

    2015-01-01

    Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a new technique for measuring the in vivo autofluorescence intensity decays generated by endogenous fluorophores in the ocular fundus. Here, we present a software package called FLIM eXplorer (FLIMX) for analyzing FLIO data. Specifically, we introduce a new adaptive binning approach as an optimal tradeoff between the spatial resolution and the number of photons required per pixel. We also expand existing decay models (multi-exponential, stretched exponential, spectral global analysis, incomplete decay) to account for the layered structure of the eye and present a method to correct for the influence of the crystalline lens fluorescence on the retina fluorescence. Subsequently, the Holm-Bonferroni method is applied to FLIO measurements to allow for group comparisons between patients and controls on the basis of fluorescence lifetime parameters. The performance of the new approaches was evaluated in five experiments. Specifically, we evaluated static and adaptive binning in a diabetes mellitus patient, we compared the different decay models in a healthy volunteer and performed a group comparison between diabetes patients and controls. An overview of the visualization capabilities and a comparison of static and adaptive binning is shown for a patient with macular hole. FLIMX's applicability to fluorescence lifetime imaging microscopy is shown in the ganglion cell layer of a porcine retina sample, obtained by a laser scanning microscope using two-photon excitation.

  6. Ambient condition bias stress stability of vanadium (IV) oxide phthalocyanine based p-channel organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Obaidulla, Sk Md; Singh, Subhash; Mohapatra, Y. N.; Giri, P. K.

    2018-01-01

    High bias-stress stability and low threshold voltage (V th) shift under ambient conditions are highly desirable for practical applications of organic field-effect transistors (OFETs). We demonstrate here a 20-fold enhancement in the bias-stress stability for hexamethyledisilazane (HMDS) treated vanadium (IV) oxide phthalocyanine (VOPc) based OFETs as compared to the bare VOPc case under ambient conditions. VOPc based OFETs were fabricated on bare (non treated) SiO2 and a HMDS monolayer passivated SiO2 layer, with an operating voltage of 40 V. The devices with top contact gold (Au) electrodes exhibit excellent p-channel behavior with a moderate hole mobility for the HMDS-treated device. It is demonstrated that the time dependent ON-current decay and V th shift can be effectively controlled by using self-assembled monolayers of HMDS on the VOPc layer. For the HMDS-treated case, the bias stress stability study shows the stretched exponential decay of drain current by only ~15% during the long-term operation with constant bias voltage under ambient conditions, while it shows a large decay of  >70% for the nontreated devices operated for 1000 s. The corresponding characteric decay time constant (τ) is 104 s for the HMDS treated case, while that of the the non-treated SiO2 case is only ~480 s under ambient conditions. The inferior performance of the device with bare SiO2 is traced to the charge trapping at the voids in the inter-grain region of the films, while it is almost negligible for the HMDS-treated case, as confirmed from the AFM and XRD analyses. It is believed that HMDS treatment provides an excellent interface with a low density of traps and passivates the dangling bonds, which improve the charge transport characteristics. Also, the surface morphology of the VOPc film clearly influences the device performance. Thus, the HMDS treatment provides a very attractive approach for attaining long-term air stability and a low V th shift for the VOPc based OFET devices.

  7. Leaf litter decomposition in Torna stream before and after a red mud disaster.

    PubMed

    Kucserka, T; Karádi-Kovács, Kata; Vass, M; Selmeczy, G B; Hubai, Katalin Eszter; Üveges, Viktória; Kacsala, I; Törő, N; Padisák, Judit

    2014-03-01

    The aim of the study was to estimate the breakdown of the allochthonous litter in an artificial stream running in an agricultural area and compare it with the same values following a toxic mud spill into the same stream. Litter bags were filled with three types of leaves (Quercus robur, Populus tremula and Salix alba) and placed to the bottom of the river. Ergosterol was used to detect fungal biomass. We supposed the absence of fungi and the retardation of leaf litter decomposition. Only pH and conductivity increased significantly. Leaf mass loss after the catastrophe was much slower than in 2009 and the decay curves did not follow the exponential decay model. Prior to the catastrophe, leaf mass loss was fast in Torna, compared to other streams in the area. The reason is that the stream is modified, the bed is trapezoid and covered with concrete stones. Fungal biomass was lower, than in the pre-disaster experiment, because fungi did not have enough leaves to sporulate. Leaf mass loss followed the exponential decay curve before the disaster, but after that it was possible only after a non-change period.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proctor, Timothy; Rudinger, Kenneth; Young, Kevin

    Randomized benchmarking (RB) is widely used to measure an error rate of a set of quantum gates, by performing random circuits that would do nothing if the gates were perfect. In the limit of no finite-sampling error, the exponential decay rate of the observable survival probabilities, versus circuit length, yields a single error metric r. For Clifford gates with arbitrary small errors described by process matrices, r was believed to reliably correspond to the mean, over all Clifford gates, of the average gate infidelity between the imperfect gates and their ideal counterparts. We show that this quantity is not amore » well-defined property of a physical gate set. It depends on the representations used for the imperfect and ideal gates, and the variant typically computed in the literature can differ from r by orders of magnitude. We present new theories of the RB decay that are accurate for all small errors describable by process matrices, and show that the RB decay curve is a simple exponential for all such errors. Here, these theories allow explicit computation of the error rate that RB measures (r), but as far as we can tell it does not correspond to the infidelity of a physically allowed (completely positive) representation of the imperfect gates.« less

  9. Transient hydrodynamic finite-size effects in simulations under periodic boundary conditions

    NASA Astrophysics Data System (ADS)

    Asta, Adelchi J.; Levesque, Maximilien; Vuilleumier, Rodolphe; Rotenberg, Benjamin

    2017-06-01

    We use lattice-Boltzmann and analytical calculations to investigate transient hydrodynamic finite-size effects induced by the use of periodic boundary conditions. These effects are inevitable in simulations at the molecular, mesoscopic, or continuum levels of description. We analyze the transient response to a local perturbation in the fluid and obtain the local velocity correlation function via linear response theory. This approach is validated by comparing the finite-size effects on the steady-state velocity with the known results for the diffusion coefficient. We next investigate the full time dependence of the local velocity autocorrelation function. We find at long times a crossover between the expected t-3 /2 hydrodynamic tail and an oscillatory exponential decay, and study the scaling with the system size of the crossover time, exponential rate and amplitude, and oscillation frequency. We interpret these results from the analytic solution of the compressible Navier-Stokes equation for the slowest modes, which are set by the system size. The present work not only provides a comprehensive analysis of hydrodynamic finite-size effects in bulk fluids, which arise regardless of the level of description and simulation algorithm, but also establishes the lattice-Boltzmann method as a suitable tool to investigate such effects in general.

  10. Compactness and robustness: Applications in the solution of integral equations for chemical kinetics and electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Zhou, Yajun

    This thesis employs the topological concept of compactness to deduce robust solutions to two integral equations arising from chemistry and physics: the inverse Laplace problem in chemical kinetics and the vector wave scattering problem in dielectric optics. The inverse Laplace problem occurs in the quantitative understanding of biological processes that exhibit complex kinetic behavior: different subpopulations of transition events from the "reactant" state to the "product" state follow distinct reaction rate constants, which results in a weighted superposition of exponential decay modes. Reconstruction of the rate constant distribution from kinetic data is often critical for mechanistic understandings of chemical reactions related to biological macromolecules. We devise a "phase function approach" to recover the probability distribution of rate constants from decay data in the time domain. The robustness (numerical stability) of this reconstruction algorithm builds upon the continuity of the transformations connecting the relevant function spaces that are compact metric spaces. The robust "phase function approach" not only is useful for the analysis of heterogeneous subpopulations of exponential decays within a single transition step, but also is generalizable to the kinetic analysis of complex chemical reactions that involve multiple intermediate steps. A quantitative characterization of the light scattering is central to many meteoro-logical, optical, and medical applications. We give a rigorous treatment to electromagnetic scattering on arbitrarily shaped dielectric media via the Born equation: an integral equation with a strongly singular convolution kernel that corresponds to a non-compact Green operator. By constructing a quadratic polynomial of the Green operator that cancels out the kernel singularity and satisfies the compactness criterion, we reveal the universality of a real resonance mode in dielectric optics. Meanwhile, exploiting the properties of compact operators, we outline the geometric and physical conditions that guarantee a robust solution to the light scattering problem, and devise an asymptotic solution to the Born equation of electromagnetic scattering for arbitrarily shaped dielectric in a non-perturbative manner.

  11. Deriving sulfamethoxazole dissipation endpoints in pasture soils using first order and biphasic kinetic models.

    PubMed

    Srinivasan, Prakash; Sarmah, Ajit K; Rohan, Maheswaran

    2014-08-01

    Single first-order (SFO) kinetic model is often used to derive the dissipation endpoints of an organic chemical in soil. This model is used due to its simplicity and requirement by regulatory agencies. However, using the SFO model for all types of decay pattern could lead to under- or overestimation of dissipation endpoints when the deviation from first-order is significant. In this study the performance of three biphasic kinetic models - bi-exponential decay (BEXP), first-order double exponential decay (FODED), and first-order two-compartment (FOTC) models was evaluated using dissipation datasets of sulfamethoxazole (SMO) antibiotic in three different soils under varying concentration, depth, temperature, and sterile conditions. Corresponding 50% (DT50) and 90% (DT90) dissipation times for the antibiotics were numerically obtained and compared against those obtained using the SFO model. The fit of each model to the measured values was evaluated based on an array of statistical measures such as coefficient of determination (R(2)adj), root mean square error (RMSE), chi-square (χ(2)) test at 1% significance, Bayesian Information Criteria (BIC) and % model error. Box-whisker residual plots were also used to compare the performance of each model to the measured datasets. The antibiotic dissipation was successfully predicted by all four models. However, the nonlinear biphasic models improved the goodness-of-fit parameters for all datasets. Deviations from datasets were also often less evident with the biphasic models. The fits of FOTC and FODED models for SMO dissipation datasets were identical in most cases, and were found to be superior to the BEXP model. Among the biphasic models, the FOTC model was found to be the most suitable for obtaining the endpoints and could provide a mechanistic explanation for SMO dissipation in the soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Non-London electrodynamics in a multiband London model: Anisotropy-induced nonlocalities and multiple magnetic field penetration lengths

    NASA Astrophysics Data System (ADS)

    Silaev, Mihail; Winyard, Thomas; Babaev, Egor

    2018-05-01

    The London model describes strongly type-2 superconductors as massive vector field theories, where the magnetic field decays exponentially at the length scale of the London penetration length. This also holds for isotropic multiband extensions, where the presence of multiple bands merely renormalizes the London penetration length. We show that, by contrast, the magnetic properties of anisotropic multiband London models are not this simple, and the anisotropy leads to the interband phase differences becoming coupled to the magnetic field. This results in the magnetic field in such systems having N +1 penetration lengths, where N is the number of field components or bands. That is, in a given direction, the magnetic field decay is described by N +1 modes with different amplitudes and different decay length scales. For certain anisotropies we obtain magnetic modes with complex masses. That means that magnetic field decay is not described by a monotonic exponential increment set by a real penetration length but instead is oscillating. Some of the penetration lengths are shown to diverge away from the superconducting phase transition when the mass of the phase-difference mode vanishes. Finally the anisotropy-driven hybridization of the London mode with the Leggett modes can provide an effectively nonlocal magnetic response in the nominally local London model. Focusing on the two-component model, we discuss the magnetic field inversion that results from the effective nonlocality, both near the surface of the superconductor and around vortices. In the regime where the magnetic field decay becomes nonmonotonic, the multiband London superconductor is shown to form weakly-bound states of vortices.

  13. Sensitivity of nonuniform sampling NMR.

    PubMed

    Palmer, Melissa R; Suiter, Christopher L; Henry, Geneive E; Rovnyak, James; Hoch, Jeffrey C; Polenova, Tatyana; Rovnyak, David

    2015-06-04

    Many information-rich multidimensional experiments in nuclear magnetic resonance spectroscopy can benefit from a signal-to-noise ratio (SNR) enhancement of up to about 2-fold if a decaying signal in an indirect dimension is sampled with nonconsecutive increments, termed nonuniform sampling (NUS). This work provides formal theoretical results and applications to resolve major questions about the scope of the NUS enhancement. First, we introduce the NUS Sensitivity Theorem in which any decreasing sampling density applied to any exponentially decaying signal always results in higher sensitivity (SNR per square root of measurement time) than uniform sampling (US). Several cases will illustrate this theorem and show that even conservative applications of NUS improve sensitivity by useful amounts. Next, we turn to a serious limitation of uniform sampling: the SNR by US decreases for extending evolution times, and thus total experimental times, beyond 1.26T2 (T2 = signal decay constant). Thus, SNR and resolution cannot be simultaneously improved by extending US beyond 1.26T2. We find that NUS can eliminate this constraint, and we introduce the matched NUS SNR Theorem: an exponential sampling density matched to the signal decay always improves the SNR with additional evolution time. Though proved for a specific case, broader classes of NUS densities also improve SNR with evolution time. Applications of these theoretical results are given for a soluble plant natural product and a solid tripeptide (u-(13)C,(15)N-MLF). These formal results clearly demonstrate the inadequacies of applying US to decaying signals in indirect nD-NMR dimensions, supporting a broader adoption of NUS.

  14. Effective pathway of charge transfer in DNA duplex

    NASA Astrophysics Data System (ADS)

    Kim, Seongjin; Yi, Juyeon; Hwang, Sun-Yong

    2009-03-01

    We examine the most efficient route for charge propagation in DNA duplex. We find a direct path along one strand and a detour using the complementary strand compete with each other. Charge tends to take the path along the strand whose energy levels are close to its energy, and yet there exists a crossover length Nc so that for a transfer over a distance shorter than Nc the direct path is always advantageous. We obtain the analytic results for the behavior together with various decay types such as a constant decay, an exponential decay, and a crossover between them, whose validity is confirmed by the numerical calculation.

  15. Codecaying Dark Matter.

    PubMed

    Dror, Jeff Asaf; Kuflik, Eric; Ng, Wee Hao

    2016-11-18

    We propose a new mechanism for thermal dark matter freeze-out, called codecaying dark matter. Multicomponent dark sectors with degenerate particles and out-of-equilibrium decays can codecay to obtain the observed relic density. The dark matter density is exponentially depleted through the decay of nearly degenerate particles rather than from Boltzmann suppression. The relic abundance is set by the dark matter annihilation cross section, which is predicted to be boosted, and the decay rate of the dark sector particles. The mechanism is viable in a broad range of dark matter parameter space, with a robust prediction of an enhanced indirect detection signal. Finally, we present a simple model that realizes codecaying dark matter.

  16. Nonlinear observers with linearizable error dynamics

    NASA Technical Reports Server (NTRS)

    Krener, A. J.; Respondek, W.

    1985-01-01

    A new method for designing asymptotic observers for a class of nonlinear systems is presented. The error between the state of the systems and the state of the observer in appropriate coordinates evolves linearly and can be made to decay aribtrarily exponentially fast.

  17. Physics Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Discusses dice model of exponential radionuclide decay; glancing and collinear perfectly elastic collisions; digital capacitance meter; use of top pan balance in physics; microcomputer calculation of gradient of straight line (includes complete Commodore PET computer program); Fresnel lenses; low-voltage radiant heater; Wheatssone's bridge used as…

  18. Persistence of opinion in the Sznajd consensus model: computer simulation

    NASA Astrophysics Data System (ADS)

    Stauffer, D.; de Oliveira, P. M. C.

    2002-12-01

    The density of never changed opinions during the Sznajd consensus-finding process decays with time t as 1/t^θ. We find θ simeq 3/8 for a chain, compatible with the exact Ising result of Derrida et al. In higher dimensions, however, the exponent differs from the Ising θ. With simultaneous updating of sublattices instead of the usual random sequential updating, the number of persistent opinions decays roughly exponentially. Some of the simulations used multi-spin coding.

  19. Ising model simulation in directed lattices and networks

    NASA Astrophysics Data System (ADS)

    Lima, F. W. S.; Stauffer, D.

    2006-01-01

    On directed lattices, with half as many neighbours as in the usual undirected lattices, the Ising model does not seem to show a spontaneous magnetisation, at least for lower dimensions. Instead, the decay time for flipping of the magnetisation follows an Arrhenius law on the square and simple cubic lattice. On directed Barabási-Albert networks with two and seven neighbours selected by each added site, Metropolis and Glauber algorithms give similar results, while for Wolff cluster flipping the magnetisation decays exponentially with time.

  20. On the Existence of Non-Oscillatory Phase Functions for Second Order Ordinary Differential Equations in the High-Frequency Regime

    DTIC Science & Technology

    2014-08-04

    Chebyshev coefficients of both r and q decay exponentially, although those of r decay at a slightly slower rate. 10.2. Evaluation of Legendre polynomials ...In this experiment, we compare the cost of evaluating Legendre polynomials of large order using the standard recurrence relation with the cost of...doing so with a nonoscillatory phase function. For any integer n ě 0, the Legendre polynomial Pnpxq of order n is a solution of the second order

  1. Quantum decoherence in electronic current flowing through carbon nanotubes induced by thermal atomic vibrations

    NASA Astrophysics Data System (ADS)

    Ishizeki, Keisuke; Sasaoka, Kenji; Konabe, Satoru; Souma, Satofumi; Yamamoto, Takahiro

    2018-06-01

    We theoretically investigate quantum decoherence in electronic currents flowing through metallic carbon nanotubes caused by thermal atomic vibrations using the time-dependent Schrödinger equation for an open system. We reveal that the quantum coherence of conduction electrons decays exponentially with tube length at a fixed temperature, and that the decay rate increases with temperature. We also find that the phase relaxation length due to the thermal atomic vibrations is inversely proportional to temperature.

  2. A mathematical approach for evaluating nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.

    1986-01-01

    A mathematical equation is presented which gives a quantitative relationship between time-voltage discharge curves, when a cell's ampere-hour capacity is determined at a constant discharge current. In particular the equation quantifies the initial exponential voltage decay; the rate of voltage decay; the overall voltage shift of the curve and the total capacity of the cell at the given discharge current. The results of 12 nickel-hydrogen boiler plate cells cycled to 80 percent depth-of-discharge (DOD) are discussed in association with these equations.

  3. Continuous-Tone Electrostatic Electrography

    DTIC Science & Technology

    1948-12-15

    TRANSLATOR <»>: Schaf fort, R.M. Williams, D.I. WfOiwp, L*E, = TYRS. SERIES . NUMBER AND PERIOD OF R*RO«T COVERED: Quarterly Progress ropt fjT...a passing wire (a ohöft distance abo’ve tho plato) or a series qf point a or othor oourpoo of aom<^> ^mat similar geometry hold at high voltage In... temporale of tho plat©» If tho dark decay i„s not of thermal : origin, an exponential typo of decay would still ho anticipated. Ih such caoe

  4. Beauty at a glance: The feeling of beauty and the amplitude of pleasure are independent of stimulus duration.

    PubMed

    Brielmann, Aenne A; Vale, Lauren; Pelli, Denis G

    2017-12-01

    Over time, how does beauty develop and decay? Common sense suggests that beauty is intensely felt only after prolonged experience of the object. Here, we present one of various stimuli for a variable duration (1-30 s), measure the observers' pleasure over time, and, finally, ask whether they felt beauty. On each trial, participants (N = 21) either see an image that they had chosen as "movingly beautiful," see an image with prerated valence, or suck a candy. During the stimulus and a further 60 s, participants rate pleasure continuously using a custom touchscreen web app, EmotionTracker.com. After each trial, participants judge whether they felt beauty. Across all stimulus kinds, durations, and beauty responses, the dynamic pleasure rating has a stereotypical time course that is well fit by a one-parameter model with a brief exponential onset (roughly 2.5 s), a sustained plateau during stimulus presentation, and a long exponential decay (roughly 70 s). Across conditions, only the plateau amplitude varies. Beauty and pleasure amplitude are nearly independent of stimulus duration. The final beauty rating is positively correlated with pleasure amplitude (r = 0.60), and nearly independent of duration (r = 0.10). Beauty's independence from duration is unlike Bentham's 18th-century notion of value (utility), which he supposed to depend on the product of pleasure amplitude and duration. Participants report having felt pleasure as strongly after a mere 1 s stimulus as after longer durations, up to 30 s. Thus, we find that amplitude of pleasure is independent of stimulus duration.

  5. In Situ Dynamics of F-Specific RNA Bacteriophages in a Small River: New Way to Assess Viral Propagation in Water Quality Studies.

    PubMed

    Fauvel, Blandine; Gantzer, Christophe; Cauchie, Henry-Michel; Ogorzaly, Leslie

    2017-03-01

    The occurrence and propagation of enteric viruses in rivers constitute a major public health issue. However, little information is available on the in situ transport and spread of viruses in surface water. In this study, an original in situ experimental approach using the residence time of the river water mass was developed to accurately follow the propagation of F-specific RNA bacteriophages (FRNAPHs) along a 3-km studied river. Surface water and sediment of 9 sampling campaigns were collected and analyzed using both infectivity and RT-qPCR assays. In parallel, some physico-chemical variables such as flow rate, water temperature, conductivity and total suspended solids were measured to investigate the impact of environmental conditions on phage propagation. For campaigns with low flow rate and high temperature, the results highlight a decrease of infectious phage concentration along the river, which was successfully modelled according to a first-order negative exponential decay. The monitoring of infectious FRNAPHs belonging mainly to the genogroup II was confirmed with direct phage genotyping and total phage particle quantification. Reported k decay coefficients according to exponential models allowed for the determination of the actual in situ distance and time necessary for removing 90 % of infectious phage particles. This present work provides a new way to assess the true in situ viral propagation along a small river. These findings can be highly useful in water quality and risk assessment studies to determine the viral contamination spread from a point contamination source to the nearest recreational areas.

  6. Mid-Infrared Lifetime Imaging for Viability Evaluation of Lettuce Seeds Based on Time-Dependent Thermal Decay Characterization

    PubMed Central

    Kim, Ghiseok; Kim, Geon Hee; Ahn, Chi-Kook; Yoo, Yoonkyu; Cho, Byoung-Kwan

    2013-01-01

    An infrared lifetime thermal imaging technique for the measurement of lettuce seed viability was evaluated. Thermal emission signals from mid-infrared images of healthy seeds and seeds aged for 24, 48, and 72 h were obtained and reconstructed using regression analysis. The emission signals were fitted with a two-term exponential model that had two amplitudes and two time variables as lifetime parameters. The lifetime thermal decay parameters were significantly different for seeds with different aging times. Single-seed viability was visualized using thermal lifetime images constructed from the calculated lifetime parameter values. The time-dependent thermal signal decay characteristics, along with the decay amplitude and delay time images, can be used to distinguish aged lettuce seeds from normal seeds. PMID:23529120

  7. Imaging the He2 quantum halo state using a free electron laser

    PubMed Central

    Zeller, Stefan; Kunitski, Maksim; Voigtsberger, Jörg; Kalinin, Anton; Schottelius, Alexander; Schober, Carl; Waitz, Markus; Sann, Hendrik; Hartung, Alexander; Bauer, Tobias; Pitzer, Martin; Trinter, Florian; Goihl, Christoph; Janke, Christian; Richter, Martin; Kastirke, Gregor; Weller, Miriam; Czasch, Achim; Kitzler, Markus; Braune, Markus; Grisenti, Robert E.; Schmidt, Lothar Ph. H.; Schöffler, Markus S.; Williams, Joshua B.; Jahnke, Till; Dörner, Reinhard

    2016-01-01

    Quantum tunneling is a ubiquitous phenomenon in nature and crucial for many technological applications. It allows quantum particles to reach regions in space which are energetically not accessible according to classical mechanics. In this “tunneling region,” the particle density is known to decay exponentially. This behavior is universal across all energy scales from nuclear physics to chemistry and solid state systems. Although typically only a small fraction of a particle wavefunction extends into the tunneling region, we present here an extreme quantum system: a gigantic molecule consisting of two helium atoms, with an 80% probability that its two nuclei will be found in this classical forbidden region. This circumstance allows us to directly image the exponentially decaying density of a tunneling particle, which we achieved for over two orders of magnitude. Imaging a tunneling particle shows one of the few features of our world that is truly universal: the probability to find one of the constituents of bound matter far away is never zero but decreases exponentially. The results were obtained by Coulomb explosion imaging using a free electron laser and furthermore yielded He2’s binding energy of 151.9±13.3 neV, which is in agreement with most recent calculations. PMID:27930299

  8. Infinite-disorder critical points of models with stretched exponential interactions

    NASA Astrophysics Data System (ADS)

    Juhász, Róbert

    2014-09-01

    We show that an interaction decaying as a stretched exponential function of distance, J(l)˜ e-cl^a , is able to alter the universality class of short-range systems having an infinite-disorder critical point. To do so, we study the low-energy properties of the random transverse-field Ising chain with the above form of interaction by a strong-disorder renormalization group (SDRG) approach. We find that the critical behavior of the model is controlled by infinite-disorder fixed points different from those of the short-range model if 0 < a < 1/2. In this range, the critical exponents calculated analytically by a simplified SDRG scheme are found to vary with a, while, for a > 1/2, the model belongs to the same universality class as its short-range variant. The entanglement entropy of a block of size L increases logarithmically with L at the critical point but, unlike the short-range model, the prefactor is dependent on disorder in the range 0 < a < 1/2. Numerical results obtained by an improved SDRG scheme are found to be in agreement with the analytical predictions. The same fixed points are expected to describe the critical behavior of, among others, the random contact process with stretched exponentially decaying activation rates.

  9. Electron transfer from nucleophilic species to N,N,N prime ,N prime -tetramethylbenzidine cation in micellar media: Effect of interfacial electrical potential on cation decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grand, D.; Hautecloque, S.

    1990-01-25

    Electron-transfer reaction between N,N,N{prime},N{prime}-tetramethylbenzidine cation (TMB{sup +}) and neutral nucleophiles, pyridine (Py) and triethylamine (Et{sub 3}N), is studied in NaLS micellar media. A biphasic decay of TMB{sup +} follows the laser-induced TMB photoionization. The very fast decay is attributed to an electron transfer between reactants located in the core of the micelle. The slow decay would correspond to an electron transfer from the nucleophile solubilized in the aqueous phase to TMB{sup +} embedded in the lipidic phase. The role of the electrical interfacial potential {Delta}{psi} is evidenced. The rate constant of the TMB{sup +} slow decay displays an exponential functionmore » of {Delta}{psi}. The effect of the localization and distance of the reactants is emphasized.« less

  10. Development of numerical model for predicting heat generation and temperatures in MSW landfills.

    PubMed

    Hanson, James L; Yeşiller, Nazli; Onnen, Michael T; Liu, Wei-Lien; Oettle, Nicolas K; Marinos, Janelle A

    2013-10-01

    A numerical modeling approach has been developed for predicting temperatures in municipal solid waste landfills. Model formulation and details of boundary conditions are described. Model performance was evaluated using field data from a landfill in Michigan, USA. The numerical approach was based on finite element analysis incorporating transient conductive heat transfer. Heat generation functions representing decomposition of wastes were empirically developed and incorporated to the formulation. Thermal properties of materials were determined using experimental testing, field observations, and data reported in literature. The boundary conditions consisted of seasonal temperature cycles at the ground surface and constant temperatures at the far-field boundary. Heat generation functions were developed sequentially using varying degrees of conceptual complexity in modeling. First a step-function was developed to represent initial (aerobic) and residual (anaerobic) conditions. Second, an exponential growth-decay function was established. Third, the function was scaled for temperature dependency. Finally, an energy-expended function was developed to simulate heat generation with waste age as a function of temperature. Results are presented and compared to field data for the temperature-dependent growth-decay functions. The formulations developed can be used for prediction of temperatures within various components of landfill systems (liner, waste mass, cover, and surrounding subgrade), determination of frost depths, and determination of heat gain due to decomposition of wastes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Boundary versus bulk behavior of time-dependent correlation functions in one-dimensional quantum systems

    NASA Astrophysics Data System (ADS)

    Eliëns, I. S.; Ramos, F. B.; Xavier, J. C.; Pereira, R. G.

    2016-05-01

    We study the influence of reflective boundaries on time-dependent responses of one-dimensional quantum fluids at zero temperature beyond the low-energy approximation. Our analysis is based on an extension of effective mobile impurity models for nonlinear Luttinger liquids to the case of open boundary conditions. For integrable models, we show that boundary autocorrelations oscillate as a function of time with the same frequency as the corresponding bulk autocorrelations. This frequency can be identified as the band edge of elementary excitations. The amplitude of the oscillations decays as a power law with distinct exponents at the boundary and in the bulk, but boundary and bulk exponents are determined by the same coupling constant in the mobile impurity model. For nonintegrable models, we argue that the power-law decay of the oscillations is generic for autocorrelations in the bulk, but turns into an exponential decay at the boundary. Moreover, there is in general a nonuniversal shift of the boundary frequency in comparison with the band edge of bulk excitations. The predictions of our effective field theory are compared with numerical results obtained by time-dependent density matrix renormalization group (tDMRG) for both integrable and nonintegrable critical spin-S chains with S =1 /2 , 1, and 3 /2 .

  12. Application of sound and temperature to control boundary-layer transition

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio; Parikh, Paresh; Bayliss, A.; Huang, L. S.; Bryant, T. D.

    1987-01-01

    The growth and decay of a wave packet convecting in a boundary layer over a concave-convex surface and its active control by localized surface heating are studied numerically using direct computations of the Navier-Stokes equations. The resulting sound radiations are computed using linearized Euler equations with the pressure from the Navier-Stokes solution as a time-dependent boundary condition. It is shown that on the concave portion the amplitude of the wave packet increases and its bandwidth broadens while on the convex portion some of the components in the packet are stabilized. The pressure field decays exponentially away from the surface and then algebraically, exhibiting a decay characteristic of acoustic waves in two dimensions. The far-field acoustic behavior exhibits a super-directivity type of behavior with a beaming downstream. Active control by surface heating is shown to reduce the growth of the wave packet but have little effect on acoustic far field behavior for the cases considered. Active control by sound emanating from the surface of an airfoil in the vicinity of the leading edge is experimentally investigated. The purpose is to control the separated region at high angles of attack. The results show that injection of sound at shedding frequency of the flow is effective in an increase of lift and reduction of drag.

  13. Measurement of magnetostatic mode excitation and relaxation in permalloy films using scanning Kerr imaging

    NASA Astrophysics Data System (ADS)

    Tamaru, S.; Bain, J. A.; van de Veerdonk, R. J. M.; Crawford, T. M.; Covington, M.; Kryder, M. H.

    2004-09-01

    This work presents experimental results of magnetostatic mode excitation using scanning Kerr microscopy under continuous sinusoidal excitation in the microwave frequency range. This technique was applied to 100nm thick permalloy coupons excited in two different ways. In the first experiment, the uniform (Kittel) mode was excited at frequencies in 2.24-8.00GHz . The resonant condition was effectively described with the conventional Kittel mode equation. The LLG damping parameter α increased significantly with decreasing bias field. It was confirmed that this increase was caused by multidomain structure and ripple domains formed under weak bias fields, as suggested by other studies. In the second experiment, propagating magnetostatic mode surface waves were excited. They showed an exponential amplitude decay and a linear phase variation with distance from the drive field source, consistent with a decaying plane wave. The Damon-Eshbach (DE) model was extended to include a finite energy damping and used to analyze the results. It was found that the wave number and the decay constant were reasonably well described by the extended DE model. In contrast to the first experiment, no significant variation of α with frequency or bias field was seen in this second experiment, where spatial inhomogeneities in the magnetization are less significant.

  14. Current pulse amplifier transmits detector signals with minimum distortion and attenuation

    NASA Technical Reports Server (NTRS)

    Bush, N. E.

    1967-01-01

    Amplifier translates the square pulses generated by a boron-trifluoride neutron sensitive detector located adjacent to a nuclear reactor to slower, long exponential decay pulses. These pulses are transmitted over long coaxial cables with minimum distortion and loss of frequency.

  15. Determination of time of death in forensic science via a 3-D whole body heat transfer model.

    PubMed

    Bartgis, Catherine; LeBrun, Alexander M; Ma, Ronghui; Zhu, Liang

    2016-12-01

    This study is focused on developing a whole body heat transfer model to accurately simulate temperature decay in a body postmortem. The initial steady state temperature field is simulated first and the calculated weighted average body temperature is used to determine the overall heat transfer coefficient at the skin surface, based on thermal equilibrium before death. The transient temperature field postmortem is then simulated using the same boundary condition and the temperature decay curves at several body locations are generated for a time frame of 24h. For practical purposes, curve fitting techniques are used to replace the simulations with a proposed exponential formula with an initial time delay. It is shown that the obtained temperature field in the human body agrees very well with that in the literature. The proposed exponential formula provides an excellent fit with an R 2 value larger than 0.998. For the brain and internal organ sites, the initial time delay varies from 1.6 to 2.9h, when the temperature at the measuring site does not change significantly from its original value. The curve-fitted time constant provides the measurement window after death to be between 8h and 31h if the brain site is used, while it increases 60-95% at the internal organ site. The time constant is larger when the body is exposed to colder air, since a person usually wears more clothing when it is cold outside to keep the body warm and comfortable. We conclude that a one-size-fits-all approach would lead to incorrect estimation of time of death and it is crucial to generate a database of cooling curves taking into consideration all the important factors such as body size and shape, environmental conditions, etc., therefore, leading to accurate determination of time of death. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Structural and optical properties of Dy3+ doped Aluminofluoroborophosphate glasses for white light applications

    NASA Astrophysics Data System (ADS)

    Vijayakumar, M.; Mahesvaran, K.; Patel, Dinesh K.; Arunkumar, S.; Marimuthu, K.

    2014-11-01

    Dy3+ doped Aluminofluoroborophosphate glasses (BPAxD) have been prepared following conventional melt quenching technique and their structural and optical properties were explored through XRD, FTIR, optical absorption, excitation, emission and decay measurements. The coexistence of BO3 groups in borate rich domain and BO4 groups in phosphate rich domain have been confirmed through vibrational energy analysis. Negative bonding parameter (δ) values indicate that, the metal-ligand environment in the prepared glasses is of ionic in nature. The oscillator strength and the luminescent intensity Ωλ (λ = 2, 4 and 6) parameters are calculated using Judd-Ofelt theory. The radiative properties such as transition probability (A), stimulated emission cross-section (σpE) and branching ratios (β) have been calculated using JO intensity parameters and compared with the reported Dy3+ doped glasses. Concentration effect on Y/B intensity ratios and the CIE chromaticity coordinates were calculated for the generation of white light from the luminescence spectra. The color purity and the correlated color temperature were also calculated and the results are discussed in the present work. The decay of the 4F9/2 excited level is found to be single exponential for lower concentration and become non-exponential for higher concentration. The non-exponential behavior arises due to the efficient energy transfer between the Dy3+ ions through various non-radiative relaxation channels and the decay of the 4F9/2 excited level have been analyzed with IH model. Among the prepared glasses, BPA0.5D glass exhibits higher σpE, βR, σpE×σpE, σpE×Δλeff and η values for the 6H13/2 emission band which in turn specifies its suitability for white LEDs, laser applications and optical amplifiers.

  17. White light generation in Dy3+-doped fluorosilicate glasses for W-LED applications

    NASA Astrophysics Data System (ADS)

    Krishnaiah, K. Venkata; Jayasankar, C. K.

    2011-05-01

    Dysprosium doped fluorosilicate (SNbKZLF:SiO2-Nb2O5-K2O-ZnF2-LiF) glasses have been prepared and studied through excitation, emission and decay rate analysis. Sharp emission peaks were observed at 485 nm (blue) and 577 nm (yellow) under 387 nm excitation, which are attributed to 4F9/2 --> 6H15/2 and 4F9/2 --> 6H13/2 transitions, respectively, of Dy3+ ions. The yellow-to-blue intensity ratio increases (0.85 to 1.19) with increase in Dy3+ ion concentration. The decay rates exhibit single exponential for lower concentrations and turns into non-exponential for higher concentrations. The non-exponential nature of the decay rates are well-fitted to the Inokuti-Hirayama model for S = 6, which indicates that the nature of the energy transfer between donor and acceptor ions is of dipole-dipole type. The lifetime for the 4F9/2 level of Dy3+ ion decreases (0.42 to 0.14 ms), whereas energy transfer parameter increases (0.11 to 0.99) with increase of Dy3+ ion concentration (0.05 to 4.0 mol %). The chromaticity coordinates have been calculated from the emission spectra and analyzed with Commission International de I'Eclairage diagram. The chromaticity coordinates appeared in the white light region for all concentrations of Dy3+ ions in the present glasses. The correlated color temperature value decreases from 5597 K (closer to the day light value of 5500 K) to 4524 K with increase of Dy2O3 ion concentration from 0.01 to 4.0 mol %. These results indicate that Dy3+:SNbKZLF glasses can be considered as a potential host material for the development of white light emitting diodes.

  18. Lumley decomposition of turbulent boundary layer at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Tutkun, Murat; George, William K.

    2017-02-01

    The decomposition proposed by Lumley in 1966 is applied to a high Reynolds number turbulent boundary layer. The experimental database was created by a hot-wire rake of 143 probes in the Laboratoire de Mécanique de Lille wind tunnel. The Reynolds numbers based on momentum thickness (Reθ) are 9800 and 19 100. Three-dimensional decomposition is performed, namely, proper orthogonal decomposition (POD) in the inhomogeneous and bounded wall-normal direction, Fourier decomposition in the homogeneous spanwise direction, and Fourier decomposition in time. The first POD modes in both cases carry nearly 50% of turbulence kinetic energy when the energy is integrated over Fourier dimensions. The eigenspectra always peak near zero frequency and most of the large scale, energy carrying features are found at the low end of the spectra. The spanwise Fourier mode which has the largest amount of energy is the first spanwise mode and its symmetrical pair. Pre-multiplied eigenspectra have only one distinct peak and it matches the secondary peak observed in the log-layer of pre-multiplied velocity spectra. Energy carrying modes obtained from the POD scale with outer scaling parameters. Full or partial reconstruction of turbulent velocity signal based only on energetic modes or non-energetic modes revealed the behaviour of urms in distinct regions across the boundary layer. When urms is based on energetic reconstruction, there exists (a) an exponential decay from near wall to log-layer, (b) a constant layer through the log-layer, and (c) another exponential decay in the outer region. The non-energetic reconstruction reveals that urms has (a) an exponential decay from the near-wall to the end of log-layer and (b) a constant layer in the outer region. Scaling of urms using the outer parameters is best when both energetic and non-energetic profiles are combined.

  19. Geomorphic effectiveness of long profile shape and role of inherent geological controls, Ganga River Basin, India

    NASA Astrophysics Data System (ADS)

    Sonam, Sonam; Jain, Vikrant

    2017-04-01

    River long profile is one of the fundamental geomorphic parameters which provides a platform to study interaction of geological and geomorphic processes at different time scales. Long profile shape is governed by geological processes at 10 ^ 5 - 10 ^ 6 years' time scale and it controls the modern day (10 ^ 0 - 10 ^ 1 years' time scale) fluvial processes by controlling the spatial variability of channel slope. Identification of an appropriate model for river long profile may provide a tool to analyse the quantitative relationship between basin geology, profile shape and its geomorphic effectiveness. A systematic analysis of long profiles has been carried for the Himalayan tributaries of the Ganga River basin. Long profile shape and stream power distribution pattern is derived using SRTM DEM data (90 m spatial resolution). Peak discharge data from 34 stations is used for hydrological analysis. Lithological variability and major thrusts are marked along the river long profile. The best fit of long profile is analysed for power, logarithmic and exponential function. Second order exponential function provides the best representation of long profiles. The second order exponential equation is Z = K1*exp(-β1*L) + K2*exp(-β2*L), where Z is elevation of channel long profile, L is the length, K and β are coefficients of the exponential function. K1 and K2 are the proportion of elevation change of the long profile represented by β1 (fast) and β2 (slow) decay coefficients of the river long profile. Different values of coefficients express the variability in long profile shapes and is related with the litho-tectonic variability of the study area. Channel slope of long profile is estimated taking the derivative of exponential function. Stream power distribution pattern along long profile is estimated by superimposing the discharge and long profile slope. Sensitivity analysis of stream power distribution with decay coefficients of the second order exponential equation is evaluated for a range of coefficient values. Our analysis suggests that the amplitude of stream power peak value is dependent on K1, the proportion of elevation change coming under the fast decay exponent and the location of stream power peak is dependent of the long profile decay coefficient (β1). Different long profile shapes owing to litho-tectonic variability across the Himalayas are responsible for spatial variability of stream power distribution pattern. Most of the stream power peaks lie in the Higher Himalaya. In general, eastern rivers have higher stream power in hinterland area and low stream power in the alluvial plains. This is responsible for, 1) higher erosion rate and sediment supply in hinterland of eastern rivers, 2) the incised and stable nature of channels in the western alluvial plains and 3) aggrading channels with dynamic nature in the eastern alluvial plains. Our study shows that the spatial variability of litho-units defines the coefficients of long profile function which in turn controls the position and magnitude of stream power maxima and hence the geomorphic variability in a fluvial system.

  20. FLIMX: A Software Package to Determine and Analyze the Fluorescence Lifetime in Time-Resolved Fluorescence Data from the Human Eye

    PubMed Central

    Klemm, Matthias; Schweitzer, Dietrich; Peters, Sven; Sauer, Lydia; Hammer, Martin; Haueisen, Jens

    2015-01-01

    Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a new technique for measuring the in vivo autofluorescence intensity decays generated by endogenous fluorophores in the ocular fundus. Here, we present a software package called FLIM eXplorer (FLIMX) for analyzing FLIO data. Specifically, we introduce a new adaptive binning approach as an optimal tradeoff between the spatial resolution and the number of photons required per pixel. We also expand existing decay models (multi-exponential, stretched exponential, spectral global analysis, incomplete decay) to account for the layered structure of the eye and present a method to correct for the influence of the crystalline lens fluorescence on the retina fluorescence. Subsequently, the Holm-Bonferroni method is applied to FLIO measurements to allow for group comparisons between patients and controls on the basis of fluorescence lifetime parameters. The performance of the new approaches was evaluated in five experiments. Specifically, we evaluated static and adaptive binning in a diabetes mellitus patient, we compared the different decay models in a healthy volunteer and performed a group comparison between diabetes patients and controls. An overview of the visualization capabilities and a comparison of static and adaptive binning is shown for a patient with macular hole. FLIMX’s applicability to fluorescence lifetime imaging microscopy is shown in the ganglion cell layer of a porcine retina sample, obtained by a laser scanning microscope using two-photon excitation. PMID:26192624

  1. Thermal decay of Coulomb blockade oscillations

    NASA Astrophysics Data System (ADS)

    Idrisov, Edvin G.; Levkivskyi, Ivan P.; Sukhorukov, Eugene V.

    2017-10-01

    We study transport properties and the charge quantization phenomenon in a small metallic island connected to the leads through two quantum point contacts (QPCs). The linear conductance is calculated perturbatively with respect to weak tunneling and weak backscattering at QPCs as a function of the temperature T and gate voltage. The conductance shows Coulomb blockade (CB) oscillations as a function of the gate voltage that decay with the temperature as a result of thermally activated fluctuations of the charge in the island. The regimes of quantum T ≪EC and thermal T ≫EC fluctuations are considered, where EC is the charging energy of an isolated island. Our predictions for CB oscillations in the quantum regime coincide with previous findings by Furusaki and Matveev [Phys. Rev. B 52, 16676 (1995), 10.1103/PhysRevB.52.16676]. In the thermal regime the visibility of Coulomb blockade oscillations decays with the temperature as √{T /EC }exp(-π2T /EC) , where the exponential dependence originates from the thermal averaging over the instant charge fluctuations, while the prefactor has a quantum origin. This dependence does not depend on the strength of couplings to the leads. The differential capacitance, calculated in the case of a single tunnel junction, shows the same exponential decay, however the prefactor is linear in the temperature. This difference can be attributed to the nonlocality of the quantum effects. Our results agree with the recent experiment [Nature (London) 536, 58 (2016), 10.1038/nature19072] in the whole range of the parameter T /EC .

  2. Measurement of intercolumnar forces between parallel guanosine four-stranded helices.

    PubMed Central

    Mariani, P; Saturni, L

    1996-01-01

    The deoxyguanosine-5'-monophosphate in aqueous solution self-associates into stable structures, which include hexagonal and cholesteric columnar phases. The structural unit is a four-stranded helix, composed of a stacked array of Hoogsteen-bonded guanosine quartets. We have measured by osmotic stress method the force per unit length versus interaxial distance between helices in the hexagonal phase under various ionic conditions. Two contributions have been recognized: the first one is purely electrostatic, is effective at large distances, and shows a strong dependence on the salt concentration of the solution. The second contribution is short range, dominates at interaxial separations smaller than about 30-32 A, and rises steeply as the columns approach each other, preventing the coalescence of the helices. This repulsion has an exponential nature and shows a magnitude and a decay length insensitive to the ionic strength of the medium. Because these features are distinctive of the hydration force detected between phospholipid bilayers or between several linear macromolecules (DNA, polysaccharides, collagen), we conclude that the dominant force experienced by deoxyguanosine helices approaching contact is hydration repulsion. The observed decay length of about 0.7 A has been rationalized to emerge from the coupling between the 3-A decay length of water solvent and the helically ordered structure of the hydrophilic groups on the opposing surfaces. The present results agree with recent measurements, also showing the dependence of the hydration force decay on the structure of interacting surfaces and confirm the correlations between force and structure. Images FIGURE 1 PMID:8744324

  3. Semiclassical analysis of spectral singularities and their applications in optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostafazadeh, Ali

    2011-08-15

    Motivated by possible applications of spectral singularities in optics, we develop a semiclassical method of computing spectral singularities. We use this method to examine the spectral singularities of a planar slab gain medium whose gain coefficient varies due to the exponential decay of the intensity of the pumping beam inside the medium. For both singly and doublypumped samples, we obtain universal upper bounds on the decay constant beyond which no lasing occurs. Furthermore, we show that the dependence of the wavelength of the spectral singularities on the value of the decay constant is extremely mild. This is an indication ofmore » the stability of optical spectral singularities.« less

  4. Modified spontaneous emission of silicon nanocrystals embedded in artificial opals

    NASA Astrophysics Data System (ADS)

    Janda, Petr; Valenta, Jan; Rehspringer, Jean-Luc; Mafouana, Rodrigue R.; Linnros, Jan; Elliman, Robert G.

    2007-10-01

    Si nanocrystals (NCs) were embedded in synthetic silica opals by means of Si-ion implantation or opal impregnation with porous-Si suspensions. In both types of sample photoluminescence (PL) is strongly Bragg-reflection attenuated (up to 75%) at the frequency of the opal stop-band in a direction perpendicular to the (1 1 1) face of the perfect hcp opal structure. Time-resolved PL shows a rich distribution of decay rates, which contains both shorter and longer decay components compared with the ordinary stretched exponential decay of Si NCs. This effect reflects changes in the spontaneous emission rate of Si NCs due to variations in the local density of states of real opal containing defects.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourdon, J.C.; Peltier, B.; Cooper, G.A.

    In this paper, field drill-off test results are compared with data from laboratory simulations. A simple theory for analyzing drill-off tests is developed. The weight-on bit (WOB) decay with time is close to exponential, but large threshold WOB's, resulting from poor weight transmission downhole, are sometimes observed in field tests.

  6. Higgsplosion: Solving the hierarchy problem via rapid decays of heavy states into multiple Higgs bosons

    NASA Astrophysics Data System (ADS)

    Khoze, Valentin V.; Spannowsky, Michael

    2018-01-01

    We introduce and discuss two inter-related mechanisms operative in the electroweak sector of the Standard Model at high energies. Higgsplosion, the first mechanism, occurs at some critical energy in the 25 to 103 TeV range, and leads to an exponentially growing decay rate of highly energetic particles into multiple Higgs bosons. We argue that this is a well-controlled non-perturbative phenomenon in the Higgs-sector which involves the final state Higgs multiplicities n in the regime nλ ≫ 1 where λ is the Higgs self-coupling. If this mechanism is realised in nature, the cross-sections for producing ultra-high multiplicities of Higgs bosons are likely to become observable and even dominant in this energy range. At the same time, however, the apparent exponential growth of these cross-sections at even higher energies will be tamed and automatically cut-off by a related Higgspersion mechanism. As a result, and in contrast to previous studies, multi-Higgs production does not violate perturbative unitarity. Building on this approach, we then argue that the effects of Higgsplosion alter quantum corrections from very heavy states to the Higgs boson mass. Above a certain energy, which is much smaller than their masses, these states would rapidly decay into multiple Higgs bosons. The heavy states become unrealised as they decay much faster than they are formed. The loop integrals contributing to the Higgs mass will be cut off not by the masses of the heavy states, but by the characteristic loop momenta where their decay widths become comparable to their masses. Hence, the cut-off scale would be many orders of magnitude lower than the heavy mass scales themselves, thus suppressing their quantum corrections to the Higgs boson mass.

  7. Group Velocity for Leaky Waves

    NASA Astrophysics Data System (ADS)

    Rzeznik, Andrew; Chumakova, Lyubov; Rosales, Rodolfo

    2017-11-01

    In many linear dispersive/conservative wave problems one considers solutions in an infinite medium which is uniform everywhere except for a bounded region. In general, localized inhomogeneities of the medium cause partial internal reflection, and some waves leak out of the domain. Often one only desires the solution in the inhomogeneous region, with the exterior accounted for by radiation boundary conditions. Formulating such conditions requires definition of the direction of energy propagation for leaky waves in multiple dimensions. In uniform media such waves have the form exp (d . x + st) where d and s are complex and related by a dispersion relation. A complex s is required since these waves decay via radiation to infinity, even though the medium is conservative. We present a modified form of Whitham's Averaged Lagrangian Theory along with modulation theory to extend the classical idea of group velocity to leaky waves. This allows for solving on the bounded region by representing the waves as a linear combination of leaky modes, each exponentially decaying in time. This presentation is part of a joint project, and applications of these results to example GFD problems will be presented by L. Chumakova in the talk ``Leaky GFD Problems''. This work is partially supported by NSF Grants DMS-1614043, DMS-1719637, and 1122374, and by the Hertz Foundation.

  8. Freezing and melting water in lamellar structures.

    PubMed Central

    Gleeson, J T; Erramilli, S; Gruner, S M

    1994-01-01

    The manner in which ice forms in lamellar suspensions of dielaidoylphosphatidylethanolamine, dielaidoylphosphatidylcholine, and dioleoylphosphatidylcholine in water depends strongly on the water fraction. For weight fractions between 15 and 9%, the freezing and melting temperatures are significantly depressed below 0 degree C. The ice exhibits a continuous melting transition spanning as much as 20 degrees C. When the water weight fraction is below 9%, ice never forms at temperatures as low as -40 degrees C. We show that when water contained in a lamellar lipid suspension freezes, the ice is not found between the bilayers; it exists as pools of crystalline ice in equilibrium with the bound water associated with the polar lipid headgroups. We have used this effect, together with the known chemical potential of ice, to measure hydration forces between lipid bilayers. We find exponentially decaying hydration repulsion when the bilayers are less than about 7 A apart. For larger separations, we find significant deviations from single exponential decay. PMID:7948683

  9. Taming the runaway problem of inflationary landscapes

    NASA Astrophysics Data System (ADS)

    Hall, Lawrence J.; Watari, Taizan; Yanagida, T. T.

    2006-05-01

    A wide variety of vacua, and their cosmological realization, may provide an explanation for the apparently anthropic choices of some parameters of particle physics and cosmology. If the probability on various parameters is weighted by volume, a flat potential for slow-roll inflation is also naturally understood, since the flatter the potential the larger the volume of the subuniverse. However, such inflationary landscapes have a serious problem, predicting an environment that makes it exponentially hard for observers to exist and giving an exponentially small probability for a moderate universe like ours. A general solution to this problem is proposed, and is illustrated in the context of inflaton decay and leptogenesis, leading to an upper bound on the reheating temperature in our subuniverse. In a particular scenario of chaotic inflation and nonthermal leptogenesis, predictions can be made for the size of CP violating phases, the rate of neutrinoless double beta decay and, in the case of theories with gauge-mediated weak-scale supersymmetry, for the fundamental scale of supersymmetry breaking.

  10. Maximum nondiffracting propagation distance of aperture-truncated Airy beams

    NASA Astrophysics Data System (ADS)

    Chu, Xingchun; Zhao, Shanghong; Fang, Yingwu

    2018-05-01

    Airy beams have called attention of many researchers due to their non-diffracting, self-healing and transverse accelerating properties. A key issue in research of Airy beams and its applications is how to evaluate their nondiffracting propagation distance. In this paper, the critical transverse extent of physically realizable Airy beams is analyzed under the local spatial frequency methodology. The maximum nondiffracting propagation distance of aperture-truncated Airy beams is formulated and analyzed based on their local spatial frequency. The validity of the formula is verified by comparing the maximum nondiffracting propagation distance of an aperture-truncated ideal Airy beam, aperture-truncated exponentially decaying Airy beam and exponentially decaying Airy beam. Results show that the formula can be used to evaluate accurately the maximum nondiffracting propagation distance of an aperture-truncated ideal Airy beam. Therefore, it can guide us to select appropriate parameters to generate Airy beams with long nondiffracting propagation distance that have potential application in the fields of laser weapons or optical communications.

  11. Wealth distribution, Pareto law, and stretched exponential decay of money: Computer simulations analysis of agent-based models

    NASA Astrophysics Data System (ADS)

    Aydiner, Ekrem; Cherstvy, Andrey G.; Metzler, Ralf

    2018-01-01

    We study by Monte Carlo simulations a kinetic exchange trading model for both fixed and distributed saving propensities of the agents and rationalize the person and wealth distributions. We show that the newly introduced wealth distribution - that may be more amenable in certain situations - features a different power-law exponent, particularly for distributed saving propensities of the agents. For open agent-based systems, we analyze the person and wealth distributions and find that the presence of trap agents alters their amplitude, leaving however the scaling exponents nearly unaffected. For an open system, we show that the total wealth - for different trap agent densities and saving propensities of the agents - decreases in time according to the classical Kohlrausch-Williams-Watts stretched exponential law. Interestingly, this decay does not depend on the trap agent density, but rather on saving propensities. The system relaxation for fixed and distributed saving schemes are found to be different.

  12. Investigation of stickiness influence in the anomalous transport and diffusion for a non-dissipative Fermi-Ulam model

    NASA Astrophysics Data System (ADS)

    Livorati, André L. P.; Palmero, Matheus S.; Díaz-I, Gabriel; Dettmann, Carl P.; Caldas, Iberê L.; Leonel, Edson D.

    2018-02-01

    We study the dynamics of an ensemble of non interacting particles constrained by two infinitely heavy walls, where one of them is moving periodically in time, while the other is fixed. The system presents mixed dynamics, where the accessible region for the particle to diffuse chaotically is bordered by an invariant spanning curve. Statistical analysis for the root mean square velocity, considering high and low velocity ensembles, leads the dynamics to the same steady state plateau for long times. A transport investigation of the dynamics via escape basins reveals that depending of the initial velocity ensemble, the decay rates of the survival probability present different shapes and bumps, in a mix of exponential, power law and stretched exponential decays. After an analysis of step-size averages, we found that the stable manifolds play the role of a preferential path for faster escape, being responsible for the bumps and different shapes of the survival probability.

  13. Scaling analysis and instantons for thermally assisted tunneling and quantum Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Jiang, Zhang; Smelyanskiy, Vadim N.; Isakov, Sergei V.; Boixo, Sergio; Mazzola, Guglielmo; Troyer, Matthias; Neven, Hartmut

    2017-01-01

    We develop an instantonic calculus to derive an analytical expression for the thermally assisted tunneling decay rate of a metastable state in a fully connected quantum spin model. The tunneling decay problem can be mapped onto the Kramers escape problem of a classical random dynamical field. This dynamical field is simulated efficiently by path-integral quantum Monte Carlo (QMC). We show analytically that the exponential scaling with the number of spins of the thermally assisted quantum tunneling rate and the escape rate of the QMC process are identical. We relate this effect to the existence of a dominant instantonic tunneling path. The instanton trajectory is described by nonlinear dynamical mean-field theory equations for a single-site magnetization vector, which we solve exactly. Finally, we derive scaling relations for the "spiky" barrier shape when the spin tunneling and QMC rates scale polynomially with the number of spins N while a purely classical over-the-barrier activation rate scales exponentially with N .

  14. What Randomized Benchmarking Actually Measures

    DOE PAGES

    Proctor, Timothy; Rudinger, Kenneth; Young, Kevin; ...

    2017-09-28

    Randomized benchmarking (RB) is widely used to measure an error rate of a set of quantum gates, by performing random circuits that would do nothing if the gates were perfect. In the limit of no finite-sampling error, the exponential decay rate of the observable survival probabilities, versus circuit length, yields a single error metric r. For Clifford gates with arbitrary small errors described by process matrices, r was believed to reliably correspond to the mean, over all Clifford gates, of the average gate infidelity between the imperfect gates and their ideal counterparts. We show that this quantity is not amore » well-defined property of a physical gate set. It depends on the representations used for the imperfect and ideal gates, and the variant typically computed in the literature can differ from r by orders of magnitude. We present new theories of the RB decay that are accurate for all small errors describable by process matrices, and show that the RB decay curve is a simple exponential for all such errors. Here, these theories allow explicit computation of the error rate that RB measures (r), but as far as we can tell it does not correspond to the infidelity of a physically allowed (completely positive) representation of the imperfect gates.« less

  15. Normal mode analysis on the relaxation of an excited nitromethane molecule in argon bath

    NASA Astrophysics Data System (ADS)

    Rivera-Rivera, Luis; Wagner, Albert

    In our previous work [J. Chem. Phys. 142, 014303 (2015)] classical molecular dynamics simulations followed in an Ar bath the relaxation of nitromethane (CH3NO2) instantaneously excited by statistically distributing 50 kcal/mol among all its internal degrees of freedom. The 300 K Ar bath was at pressures of 10 to 400 atm, a range spanning the breakdown of the isolated binary collision approximation. Both rotational and vibrational energies exhibit multi-exponential decay. This study explores mode-specific mechanisms at work in the decay process. With the separation of rotation and vibration developed by Rhee and Kim [J. Chem. Phys. 107, 1394 (1997)], one can show that the vibrational kinetic energy decomposes only into vibrational normal modes while the rotational and Coriolis energies decompose into both vibrational and rotational normal modes. Then the saved CH3NO2 positions and momenta can be converted into mode-specific energies whose decay over 1000 ps can be monitored. The results identify vibrational and rotational modes that promote/resist energy lost and drive multi-exponential behavior. Increasing pressure can be shown to increasingly interfere with post-collision IVR. The work was supported by the U.S. Department of Energy, Office of Science, Chemical Sciences, Geosciences, and Biosciences Division.

  16. Short range shooting distance estimation using variable pressure SEM images of the surroundings of bullet holes in textiles.

    PubMed

    Hinrichs, Ruth; Frank, Paulo Ricardo Ost; Vasconcellos, M A Z

    2017-03-01

    Modifications of cotton and polyester textiles due to shots fired at short range were analyzed with a variable pressure scanning electron microscope (VP-SEM). Different mechanisms of fiber rupture as a function of fiber type and shooting distance were detected, namely fusing, melting, scorching, and mechanical breakage. To estimate the firing distance, the approximately exponential decay of GSR coverage as a function of radial distance from the entrance hole was determined from image analysis, instead of relying on chemical analysis with EDX, which is problematic in the VP-SEM. A set of backscattered electron images, with sufficient magnification to discriminate micrometer wide GSR particles, was acquired at different radial distances from the entrance hole. The atomic number contrast between the GSR particles and the organic fibers allowed to find a robust procedure to segment the micrographs into binary images, in which the white pixel count was attributed to GSR coverage. The decrease of the white pixel count followed an exponential decay, and it was found that the reciprocal of the decay constant, obtained from the least-square fitting of the coverage data, showed a linear dependence on the shooting distance. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  17. Kinetics and components of the flash photocurrent of isolated retinal rods of the larval salamander, Ambystoma tigrinum.

    PubMed Central

    Cobbs, W H; Pugh, E N

    1987-01-01

    1. Membrane currents initiated by intense, 20 microseconds flashes (photocurrents) were recorded from isolated salamander rods by combined extracellular suction electrodes and intracellular tight-seal electrodes either in current or voltage clamp mode. The magnitudes (mean +/- 2 S.E.M.) of the maximal photoresponses recorded by the suction and by the intracellular electrode respectively were 40 +/- 5 pA (n = 18) and 35 +/- 7 mV (n = 8) for current clamp at zero current; 43 +/- 9 pA and 66 +/- 13 (n = 11) pA for voltage clamp at the zero-current holding potential, -24 +/- 3 mV. 2. Photocurrents initiated by flashes isomerizing 0.1% or more of the outer segment's rhodopsin achieved a saturated velocity and were 95% complete in less than 50 ms. The effect of incrementing flash intensity above 0.1% isomerization can be described as a translation of the photocurrent along the time axis towards the origin. Within the interval 0-50 ms the latter two-thirds of the velocity-saturated photocurrent is well described as a single-exponential decay. The decay was much faster in voltage clamp (2.8 +/- 1.2 ms, n = 11) than in current clamp mode (17 +/- 5 ms, n = 17). 3. The initial third of the velocity-saturated photocurrent, occurring over the interval from the flash to the onset of exponential decay, followed about the same time course in current and voltage clamp. The time interval occupied by this initial 'latent' phase decreased with increasing flash intensity and attained an apparent minimum of about 7 ms in response to flashes isomerizing 10% or more of the rhodopsin at ca. 22 degrees C. 4. The hypothesis that the decay of outer segment light-sensitive membrane current is the same in current and voltage clamp was supported by an analysis of the difference between outer segment currents measured successively in the two recording modes. First, the tail of the difference current decayed exponentially with a time constant approximately equal to R x C, where R and C are independently estimated slope resistance and capacitance of the rod. Secondly, the integral of the difference current, when divided by outer segment capacitance, closely approximated the hyperpolarizing light response measured under current clamp. Thus, displacement current accounted for the difference between photocurrents measured in current and voltage clamp.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2832596

  18. X-ray detection capability of a BaCl{sub 2} single crystal scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koshimizu, Masanori; CREST, Japan Science and Technology Agency, Sanbancho, Chiyoda-ku, Tokyo 102-0075; Onodera, Kazuya

    2012-01-15

    The x-ray detection capability of a scintillation detector equipped with a BaCl{sub 2} single crystal was evaluated. The scintillation decay kinetics can be expressed by a sum of two exponential decay components. The fast and slow components have lifetimes of 1.5 and 85 ns, respectively. The total light output is 5% that of YAP:Ce. A subnanosecond timing resolution was obtained. The detection efficiency of a 67.41 keV x-ray is 87% for a detector equipped with a BaCl{sub 2} crystal 6-mm thick. Thus, excellent timing resolution and high detection efficiency can be simultaneously achieved. Additionally, luminescence decay characteristics under vacuum ultravioletmore » excitation have been investigated. Radiative decay of self-trapped excitons is thought to be responsible for the fast scintillation component.« less

  19. Equilibration and non-equilibrium steady states in PT-symmetric Toda lattice

    NASA Astrophysics Data System (ADS)

    Harter, Andrew; Joglekar, Yogesh; Saxena, Avadh

    The Toda lattice is a classical discrete integrable model, describing a chain of particles that interact through an exponentially decaying, pairwise potential. It also supports soliton solutions. We consider the fate of this lattice in the presence of localized, spatially separated, balanced drag (loss) and drive (gain). Such systems with balanced gain and loss undergo a transition, the so called parity-time (PT) symmetry breaking transition, from a quasi-equilibrium state to a state that is far removed from equilibrium. We determine the threshold for such a transition in the presence of stochastic and deterministic driving, and study the robustness of our results in the presence of different boundary conditions. This work is supported by DMR-1054020.

  20. Ground-state proton decay of 69Br and implications for the rp -process 68Se waiting-point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Andrew M; Shapira, Dan; Lynch, William

    2011-01-01

    The first direct measurement of the proton separation energy, S p , for the proton-unbound nucleus 69Br is reported. Of interest is the exponential dependence of the 2 p-capture rate on S p which can bypass the 68Se waiting-point in the astrophysical rp process. An analysis of the observed proton decay spectrum is given in terms of the 69Se mirror nucleus and the influence of S p is explored within the context of a single-zone X-ray burst model.

  1. Analysis of volumetric response of pituitary adenomas receiving adjuvant CyberKnife stereotactic radiosurgery with the application of an exponential fitting model.

    PubMed

    Yu, Yi-Lin; Yang, Yun-Ju; Lin, Chin; Hsieh, Chih-Chuan; Li, Chiao-Zhu; Feng, Shao-Wei; Tang, Chi-Tun; Chung, Tzu-Tsao; Ma, Hsin-I; Chen, Yuan-Hao; Ju, Da-Tong; Hueng, Dueng-Yuan

    2017-01-01

    Tumor control rates of pituitary adenomas (PAs) receiving adjuvant CyberKnife stereotactic radiosurgery (CK SRS) are high. However, there is currently no uniform way to estimate the time course of the disease. The aim of this study was to analyze the volumetric responses of PAs after CK SRS and investigate the application of an exponential decay model in calculating an accurate time course and estimation of the eventual outcome.A retrospective review of 34 patients with PAs who received adjuvant CK SRS between 2006 and 2013 was performed. Tumor volume was calculated using the planimetric method. The percent change in tumor volume and tumor volume rate of change were compared at median 4-, 10-, 20-, and 36-month intervals. Tumor responses were classified as: progression for >15% volume increase, regression for ≤15% decrease, and stabilization for ±15% of the baseline volume at the time of last follow-up. For each patient, the volumetric change versus time was fitted with an exponential model.The overall tumor control rate was 94.1% in the 36-month (range 18-87 months) follow-up period (mean volume change of -43.3%). Volume regression (mean decrease of -50.5%) was demonstrated in 27 (79%) patients, tumor stabilization (mean change of -3.7%) in 5 (15%) patients, and tumor progression (mean increase of 28.1%) in 2 (6%) patients (P = 0.001). Tumors that eventually regressed or stabilized had a temporary volume increase of 1.07% and 41.5% at 4 months after CK SRS, respectively (P = 0.017). The tumor volume estimated using the exponential fitting equation demonstrated high positive correlation with the actual volume calculated by magnetic resonance imaging (MRI) as tested by Pearson correlation coefficient (0.9).Transient progression of PAs post-CK SRS was seen in 62.5% of the patients receiving CK SRS, and it was not predictive of eventual volume regression or progression. A three-point exponential model is of potential predictive value according to relative distribution. An exponential decay model can be used to calculate the time course of tumors that are ultimately controlled.

  2. Thermalization and revivals after a quantum quench in conformal field theory.

    PubMed

    Cardy, John

    2014-06-06

    We consider a quantum quench in a finite system of length L described by a 1+1-dimensional conformal field theory (CFT), of central charge c, from a state with finite energy density corresponding to an inverse temperature β≪L. For times t such that ℓ/2

  3. Metal-induced gap states in ferroelectric capacitors and its relationship with complex band structures

    NASA Astrophysics Data System (ADS)

    Junquera, Javier; Aguado-Puente, Pablo

    2013-03-01

    At metal-isulator interfaces, the metallic wave functions with an energy eigenvalue within the band gap decay exponentially inside the dielectric (metal-induced gap states, MIGS). These MIGS can be actually regarded as Bloch functions with an associated complex wave vector. Usually only real values of the wave vectors are discussed in text books, since infinite periodicity is assumed and, in that situation, wave functions growing exponentially in any direction would not be physically valid. However, localized wave functions with an exponential decay are indeed perfectly valid solution of the Schrodinger equation in the presence of defects, surfaces or interfaces. For this reason, properties of MIGS have been typically discussed in terms of the complex band structure of bulk materials. The probable dependence on the interface particulars has been rarely taken into account explicitly due to the difficulties to include them into the model or simulations. We aim to characterize from first-principles simulations the MIGS in realistic ferroelectric capacitors and their connection with the complex band structure of the ferroelectric material. We emphasize the influence of the real interface beyond the complex band structure of bulk materials. Financial support provided by MICINN Grant FIS2009-12721-C04-02, and by the European Union Grant No. CP-FP 228989-2 ``OxIDes''. Computer resources provided by the RES.

  4. Imaging the He2 quantum halo state using a free electron laser

    NASA Astrophysics Data System (ADS)

    Zeller, Stefan; Kunitski, Maksim; Voigtsberger, Jörg; Kalinin, Anton; Schottelius, Alexander; Schober, Carl; Waitz, Markus; Sann, Hendrik; Hartung, Alexander; Bauer, Tobias; Pitzer, Martin; Trinter, Florian; Goihl, Christoph; Janke, Christian; Richter, Martin; Kastirke, Gregor; Weller, Miriam; Czasch, Achim; Kitzler, Markus; Braune, Markus; Grisenti, Robert E.; Schöllkopf, Wieland; Schmidt, Lothar Ph. H.; Schöffler, Markus S.; Williams, Joshua B.; Jahnke, Till; Dörner, Reinhard

    2016-12-01

    Quantum tunneling is a ubiquitous phenomenon in nature and crucial for many technological applications. It allows quantum particles to reach regions in space which are energetically not accessible according to classical mechanics. In this “tunneling region,” the particle density is known to decay exponentially. This behavior is universal across all energy scales from nuclear physics to chemistry and solid state systems. Although typically only a small fraction of a particle wavefunction extends into the tunneling region, we present here an extreme quantum system: a gigantic molecule consisting of two helium atoms, with an 80% probability that its two nuclei will be found in this classical forbidden region. This circumstance allows us to directly image the exponentially decaying density of a tunneling particle, which we achieved for over two orders of magnitude. Imaging a tunneling particle shows one of the few features of our world that is truly universal: the probability to find one of the constituents of bound matter far away is never zero but decreases exponentially. The results were obtained by Coulomb explosion imaging using a free electron laser and furthermore yielded He2’s binding energy of 151.9±13.3151.9±13.3 neV, which is in agreement with most recent calculations.

  5. Vibronic relaxation dynamics of o-dichlorobenzene in its lowest excited singlet state

    NASA Astrophysics Data System (ADS)

    Liu, Benkang; Zhao, Haiyan; Lin, Xiang; Li, Xinxin; Gao, Mengmeng; Wang, Li; Wang, Wei

    2018-01-01

    Vibronic dynamics of o-dichlorobenzene in its lowest excited singlet state, S1, is investigated in real time by using femtosecond pump-probe method, combined with time-of-flight mass spectroscopy and photoelectron velocity mapping technique. Relaxation processes for the excitation in the range of 276-252 nm can be fitted by single exponential decay model, while in the case of wavelength shorter than 252 nm two-exponential decay model must be adopted for simulating transient profiles. Lifetime constants of the vibrationally excited S1 states change from 651 ± 10 ps for 276 nm excitation to 61 ± 1 ps for 242 nm excitation. Both the internal conversion from the S1 to the highly vibrationally excited ground state S0 and the intersystem crossing from the S1 to the triplet state are supposed to play important roles in de-excitation processes. Exponential fitting of the de-excitation rates on the excitation energy implies such de-excitation process starts from the highly vibrationally excited S0 state, which is validated, by probing the relaxation following photoexcitation at 281 nm, below the S1 origin. Time-dependent photoelectron kinetic energy distributions have been obtained experimentally. As the excitation wavelength changes from 276 nm to 242 nm, different cationic vibronic vibrations can be populated, determined by the Franck-Condon factors between the large geometry distorted excited singlet states and final cationic states.

  6. The electrostatic interaction between interfacial colloidal particles

    NASA Astrophysics Data System (ADS)

    Hurd, A. J.

    1985-11-01

    The electrostatic interaction between charged, colloidal particles trapped at an air-water interface is considered using linearised Poisson-Boltzmann results for point particles. In addition to the expected screened-Coulomb contribution, which decays exponentially, an algebraic dipole-dipole interaction occurs that may account for long-range interactions in interfacial colloidal systems.

  7. Forgetting Curves: Implications for Connectionist Models

    ERIC Educational Resources Information Center

    Sikstrom, Sverker

    2002-01-01

    Forgetting in long-term memory, as measured in a recall or a recognition test, is faster for items encoded more recently than for items encoded earlier. Data on forgetting curves fit a power function well. In contrast, many connectionist models predict either exponential decay or completely flat forgetting curves. This paper suggests a…

  8. The Beer Lambert Law Measurement Made Easy

    ERIC Educational Resources Information Center

    Onorato, Pasquale; Gratton, Luigi M.; Polesell, Marta; Salmoiraghi, Alessandro; Oss, Stefano

    2018-01-01

    We propose the use of a smartphone based apparatus as a valuable tool for investigating the optical absorption of a material and to verify the exponential decay predicted by Beer's law. The very simple experimental activities presented here, suitable for undergraduate students, allows one to measure the material transmittance including its…

  9. Measurement of the Convective Heat-Transfer Coefficient

    ERIC Educational Resources Information Center

    Conti, Rosaria; Gallitto, Aurelio Agliolo; Fiordilino, Emilio

    2014-01-01

    We propose an experiment for investigating how objects cool down toward the thermal equilibrium with their surroundings. We describe the time dependence of the temperature difference of the cooling objects and the environment with an exponential decay function. By measuring the thermal constant t, we determine the convective heat-transfer…

  10. Antiferromagnetic exchange and magnetoresistance enhancement in Co-Re superlattices

    NASA Astrophysics Data System (ADS)

    Freitas, P. P.; Melo, L. V.; Trindade, I.; From, M.; Ferreira, J.; Monteiro, P.

    1992-02-01

    Co-Re superlattices were prepared that show either antiferromagnetic or ferromagnetic coupling between the Co layers depending on the Re spacer thickness. Enhanced saturation magnetoresistance occurs for antiferromagnetically coupled layers. The saturation magnetoresistance decays exponentially with Re thickness but does not depend critically on the Co thickness.

  11. On the wrong inference of long-range correlations in climate data; the case of the solar and volcanic forcing over the Tropical Pacific

    NASA Astrophysics Data System (ADS)

    Varotsos, Costas A.; Efstathiou, Maria N.

    2017-05-01

    A substantial weakness of several climate studies on long-range dependence is the conclusion of long-term memory of the climate conditions, without considering it necessary to establish the power-law scaling and to reject a simple exponential decay of the autocorrelation function. We herewith show one paradigmatic case, where a strong long-range dependence could be wrongly inferred from incomplete data analysis. We firstly apply the DFA method on the solar and volcanic forcing time series over the tropical Pacific, during the past 1000 years and the results obtained show that a statistically significant straight line fit to the fluctuation function in a log-log representation is revealed with slope higher than 0.5, which wrongly may be assumed as an indication of persistent long-range correlations in the time series. We argue that the long-range dependence cannot be concluded just from this straight line fit, but it requires the fulfilment of the two additional prerequisites i.e. reject the exponential decay of the autocorrelation function and establish the power-law scaling. In fact, the investigation of the validity of these prerequisites showed that the DFA exponent higher than 0.5 does not justify the existence of persistent long-range correlations in the temporal evolution of the solar and volcanic forcing during last millennium. In other words, we show that empirical analyses, based on these two prerequisites must not be considered as panacea for a direct proof of scaling, but only as evidence that the scaling hypothesis is plausible. We also discuss the scaling behaviour of solar and volcanic forcing data based on the Haar tool, which recently proved its ability to reliably detect the existence of the scaling effect in climate series.

  12. Maximization of current efficiency for organic pollutants oxidation at BDD, Ti/SnO2-Sb/PbO2, and Ti/SnO2-Sb anodes.

    PubMed

    Xing, Xuan; Ni, Jinren; Zhu, Xiuping; Jiang, Yi; Xia, Jianxin

    2018-08-01

    Whereas electrochemical oxidation is noted for its ability to degrade bio-refractory organics, it has also been incorrectly criticized for excessive energy consumption. The present paper rectifies this misunderstanding by demonstrating that the energy actually consumed in the degradation process is much less than that wasted in the side reaction of oxygen evolution. To minimize the side reaction, the possible highest instantaneous current efficiency (PHICE) for electrochemical oxidation of phenol at Boron-doped Diamond (BDD), Ti/SnO 2 -Sb/PbO 2 (PbO 2 ), and Ti/SnO 2 -Sb (SnO 2 ) anodes has been investigated systematically, and found to reach almost 100% at the BDD anode compared with 23% at the PbO 2 anode and 9% at the SnO 2 anode. The significant discrepancy between PHICE values at the various anodes is interpreted in terms of different existing forms of hydroxyl radicals. For each anode system, the PHICEs are maintained experimentally using a computer-controlled exponential decay current mode throughout the electrolysis process. For applications, the minimized energy consumption is predicted by response surface methodology, and demonstrated for the BDD anode system. Consequently, almost 100% current efficiency is achieved (for a relatively meagre energy consumption of 17.2 kWh kgCOD -1 ) along with excellent COD degradation efficiency by optimizing the initial current density, flow rate, electrolysis time, and exponential decay constant. Compared with galvanostatic conditions, over 70% of the energy is saved in the present study, thus demonstrating the great potential of electrochemical oxidation for practical applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Post-blink tear film dynamics in healthy and dry eyes during spontaneous blinking.

    PubMed

    Szczesna-Iskander, Dorota H

    2018-01-01

    The aim was to investigate the dynamics of post-blink tear film leveling in natural blinking conditions (NBC) for healthy subjects and those diagnosed with dry eye syndrome (DES) and to relate this phase to the tear film surface quality (TFSQ) before the following blink. The study included 19 healthy persons and 10 with dry eye, grouped according to symptoms and signs observed during examination. Lateral shearing interferometry was used to examine TFSQ. Post-blink tear film dynamics was modeled by an exponential function, characterized by the decay parameter b, and a constant, describing the level of the stabilized TFSQ. Pre-next-natural-blink TFSQ dynamics was modeled with a linear trend, described by a parameter A. The post-blink tear film dynamics reached its plateau at a significantly (P = 0.006) lower level in the normal tear film group than in the dry eye group. The median exponential decay parameter b was statistically significantly higher for the control group than for the DES group, P = 0.026. The parameter b calculated for each interblink interval was significantly correlated with the corresponding parameter A (Spearman's R = 0.35; P < 0.001). Correlation between the median b and tear film fluorescein break-up time for each subject was also found (R = 0.41, P = 0.029). Significantly faster leveling of post-natural-blink tear film was observed in the group with DES than in healthy eyes. This dynamic was correlated with the pre-next-natural-blink TFSQ and tear film stability. The results of this pilot study support previous works that advocate the importance of polar lipids in the mechanism of tear film lipid spreading. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Error analysis for fast scintillator-based inertial confinement fusion burn history measurements

    NASA Astrophysics Data System (ADS)

    Lerche, R. A.; Ognibene, T. J.

    1999-01-01

    Plastic scintillator material acts as a neutron-to-light converter in instruments that make inertial confinement fusion burn history measurements. Light output for a detected neutron in current instruments has a fast rise time (<20 ps) and a relatively long decay constant (1.2 ns). For a burst of neutrons whose duration is much shorter than the decay constant, instantaneous light output is approximately proportional to the integral of the neutron interaction rate with the scintillator material. Burn history is obtained by deconvolving the exponential decay from the recorded signal. The error in estimating signal amplitude for these integral measurements is calculated and compared with a direct measurement in which light output is linearly proportional to the interaction rate.

  15. Near-field excitation exchange between motionless point atoms located near the conductive surface

    NASA Astrophysics Data System (ADS)

    Kuraptsev, Aleksei S.; Sokolov, Igor M.

    2018-04-01

    On the basis of quantum microscopic approach we study the excitation dynamics of two motionless point atoms located near the perfectly conducting mirror. We have analyzed the spontaneous decay rate of individual atoms near the mirror as well as the strength of dipole-dipole interaction between different atoms. It is shown that the spontaneous decay rate of an excited atom significantly depends on the distance from this atom to the mirror. In the case when the interatomic separation is less or comparable with the wavelength of resonant radiation, the spontaneous decay dynamics of an excited atom is described by multi-exponential law. It depends both the interatomic separation and the spatial orientation of diatomic quasimolecule.

  16. Harmonic statistics

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2017-05-01

    The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their 'public relations' for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of this object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford's law, and 1/f noise.

  17. Universal behavior of the interoccurrence times between losses in financial markets: independence of the time resolution.

    PubMed

    Ludescher, Josef; Bunde, Armin

    2014-12-01

    We consider representative financial records (stocks and indices) on time scales between one minute and one day, as well as historical monthly data sets, and show that the distribution P(Q)(r) of the interoccurrence times r between losses below a negative threshold -Q, for fixed mean interoccurrence times R(Q) in multiples of the corresponding time resolutions, can be described on all time scales by the same q exponentials, P(Q)(r)∝1/{[1+(q-1)βr](1/(q-1))}. We propose that the asset- and time-scale-independent analytic form of P(Q)(r) can be regarded as an additional stylized fact of the financial markets and represents a nontrivial test for market models. We analyze the distribution P(Q)(r) as well as the autocorrelation C(Q)(s) of the interoccurrence times for three market models: (i) multiplicative random cascades, (ii) multifractal random walks, and (iii) the generalized autoregressive conditional heteroskedasticity [GARCH(1,1)] model. We find that only one of the considered models, the multifractal random walk model, approximately reproduces the q-exponential form of P(Q)(r) and the power-law decay of C(Q)(s).

  18. Universal behavior of the interoccurrence times between losses in financial markets: Independence of the time resolution

    NASA Astrophysics Data System (ADS)

    Ludescher, Josef; Bunde, Armin

    2014-12-01

    We consider representative financial records (stocks and indices) on time scales between one minute and one day, as well as historical monthly data sets, and show that the distribution PQ(r ) of the interoccurrence times r between losses below a negative threshold -Q , for fixed mean interoccurrence times RQ in multiples of the corresponding time resolutions, can be described on all time scales by the same q exponentials, PQ(r ) ∝1 /{[1+(q -1 ) β r ] 1 /(q -1 )} . We propose that the asset- and time-scale-independent analytic form of PQ(r ) can be regarded as an additional stylized fact of the financial markets and represents a nontrivial test for market models. We analyze the distribution PQ(r ) as well as the autocorrelation CQ(s ) of the interoccurrence times for three market models: (i) multiplicative random cascades, (ii) multifractal random walks, and (iii) the generalized autoregressive conditional heteroskedasticity [GARCH(1,1)] model. We find that only one of the considered models, the multifractal random walk model, approximately reproduces the q -exponential form of PQ(r ) and the power-law decay of CQ(s ) .

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Samuel L.; Krishnan, Retheesh; Elbaradei, Ahmed

    A detailed understanding of the photoluminescence (PL) from silicon nanocrystals (SiNCs) is convoluted by the complexity of the decay mechanism, including a stretched-exponential relaxation and the presence of both nanosecond and microsecond time scales. In this publication, we analyze the microsecond PL decay of size-resolved SiNC fractions in both full-spectrum (FS) and spectrally resolved (SR) configurations, where the stretching exponent and lifetime are used to deduce a probability distribution function (PDF) of decay rates. For the PL decay measured at peak emission, we find a systematic shift and narrowing of the PDF in comparison to the FS measurements. In amore » similar fashion, we resolve the PL lifetime of the ‘blue’, ‘peak’, and ‘red’ regions of the spectrum and map PL decays of different photon energy onto their corresponding location in the PDF. Furthermore, a general trend is observed where higher and lower photon energies are correlated with shorter and longer lifetimes, respectively, which we relate to the PL line width and electron-phonon coupling.« less

  20. A multi-timescale map of radiative and nonradiative decay pathways for excitons in CdSe quantum dots.

    PubMed

    Knowles, Kathryn E; McArthur, Eric A; Weiss, Emily A

    2011-03-22

    A combination of transient absorption (TA) and time-resolved photoluminescence (TRPL) spectroscopies performed on solution-phase samples of colloidal CdSe quantum dots (QDs) allows the construction of a time-resolved, charge carrier-resolved map of decay from the first excitonic state of the QD. Data from TA and TRPL yield the same six exponential components, with time constants ranging from ∼1 ps to 50 ns, for excitonic decay. Comparison of TA signals in the visible and near-infrared (NIR) spectral regions enables determination of the relative contributions of electron and hole dynamics to each decay component, and comparison of TA and TRPL reveals that each component represents a competition between radiative and nonradiative decay pathways. In total, these data suggest that the QD sample comprises at least three distinct populations that differ in both the radiative and nonradiative decay pathways available to the excitonic charge carriers, and provide evidence for multiple emissive excitonic states in which the hole is not in the valence band, but rather a relaxed or trapped state.

  1. Interaction quantum quenches in the one-dimensional Fermi-Hubbard model

    NASA Astrophysics Data System (ADS)

    Heidrich-Meisner, Fabian; Bauer, Andreas; Dorfner, Florian; Riegger, Luis; Orso, Giuliano

    2016-05-01

    We discuss the nonequilibrium dynamics in two interaction quantum quenches in the one-dimensional Fermi-Hubbard model. First, we study the decay of the Néel state as a function of interaction strength. We observe a fast charge dynamics over which double occupancies are built up, while the long-time decay of the staggered moment is controlled by spin excitations, corroborated by the analysis of the entanglement dynamics. Second, we investigate the formation of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) correlations in a spin-imbalanced system in quenches from the noninteracting case to attractive interactions. Even though the quench puts the system at a finite energy density, peaks at the characteristic FFLO quasimomenta are visible in the quasi-momentum distribution function, albeit with an exponential decay of s-wave pairing correlations. We also discuss the imprinting of FFLO correlations onto repulsively bound pairs and their rapid decay in ramps. Supported by the DFG (Deutsche Forschungsgemeinschaft) via FOR 1807.

  2. Transitionless driving on adiabatic search algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Sangchul, E-mail: soh@qf.org.qa; Kais, Sabre, E-mail: kais@purdue.edu; Department of Chemistry, Department of Physics and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907

    We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian,more » approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.« less

  3. Entanglement properties of boundary state and thermalization

    NASA Astrophysics Data System (ADS)

    Guo, Wu-zhong

    2018-06-01

    We discuss the regularized boundary state {e}^{-{τ}_0H}\\Big|{.B>}_a on two aspects in both 2D CFT and higher dimensional free field theory. One is its entanglement and correlation properties, which exhibit exponential decay in 2D CFT, the parameter 1 /τ 0 works as a mass scale. The other concerns with its time evolution, i.e., {e}^{-itH}{e}^{-{τ}_0H}\\Big|{.B>}_a . We investigate the Kubo-Martin-Schwinger (KMS) condition on correlation function of local operators to detect the thermal properties. Interestingly we find the correlation functions in the initial state {e}^{-{τ}_0H}\\Big|{.B>}_a also partially satisfy the KMS condition. In the limit t → ∞, the correlators will exactly satisfy the KMS condition. We generally analyse quantum quench by a pure state and obtain some constraints on the possible form of 2-point correlation function in the initial state if assuming they satisfies KMS condition in the final state. As a byproduct we find in an large τ 0 limit the thermal property of 2-point function in {e}^{-{τ}_0H}\\Big|{.B>}_a also appears.

  4. Rotational reorientation dynamics of Aerosol-OT reverse micelles formed in near-critical propane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heitz, M.P.; Bright, F.V.

    1996-06-01

    The rotational reorientation kinetics of two fluorescent solutes (rhodamine 6G, R6G, and rhodamine 101, R101) have been determined in sodium bis(2-ethylhexyl) sulfosuccinate (Aerosol-OT, AOT) reverse micelles formed in liquid and near-critical propane. We show that the amount of water loading ([water]/[AOT], R), continuous phase density, and temperature all influence the solute rotational dynamics. In all cases, the decay of anisotropy data (i.e., frequency-dependent differential polarized phase angle and polarized modulation ratio) are well described by a bi-exponential decay law. We find that the faster rotational correlation times are similar to but slightly less than the values predicted for an individualmore » AOT reverse micelle rotating in propane. The recovered rotational correlation times range from 200 to 500 ps depending on experimental conditions. This faster rotational process is explained in terms of lateral diffusion of the fluorophore along the water/headgroup interfacial region within the reverse micelle. The recovered values for the slower rotational correlation times range from 7 to 18 ns. These larger rotational reorientation times are assigned to varying micelle-micelle (i.e., tail-tail) interactions in the low-density, highly compressible fluid region. We also quantify the contribution of the reverse micellar {open_quotes}aggregate{close_quotes} to the total decay of anisotropy. {copyright} {ital 1996} {ital Society for Applied Spectroscopy}« less

  5. Localization in one-dimensional lattices with non-nearest-neighbor hopping: Generalized Anderson and Aubry-Andre models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biddle, J.; Priour, D. J. Jr.; Wang, B.

    We study the quantum localization phenomena of noninteracting particles in one-dimensional lattices based on tight-binding models with various forms of hopping terms beyond the nearest neighbor, which are generalizations of the famous Aubry-Andre and noninteracting Anderson models. For the case with deterministic disordered potential induced by a secondary incommensurate lattice (i.e., the Aubry-Andre model), we identify a class of self-dual models, for which the boundary between localized and extended eigenstates are determined analytically by employing a generalized Aubry-Andre transformation. We also numerically investigate the localization properties of nondual models with next-nearest-neighbor hopping, Gaussian, and power-law decay hopping terms. We findmore » that even for these nondual models, the numerically obtained mobility edges can be well approximated by the analytically obtained condition for localization transition in the self-dual models, as long as the decay of the hopping rate with respect to distance is sufficiently fast. For the disordered potential with genuinely random character, we examine scenarios with next-nearest-neighbor hopping, exponential, Gaussian, and power-law decay hopping terms numerically. We find that the higher-order hopping terms can remove the symmetry in the localization length about the energy band center compared to the Anderson model. Furthermore, our results demonstrate that for the power-law decay case, there exists a critical exponent below which mobility edges can be found. Our theoretical results could, in principle, be directly tested in shallow atomic optical lattice systems enabling non-nearest-neighbor hopping.« less

  6. Time-Dependent Testing Evaluation and Modeling for Rubber Stopper Seal Performance.

    PubMed

    Zeng, Qingyu; Zhao, Xia

    2018-01-01

    Sufficient rubber stopper sealing performance throughout the entire sealed product life cycle is essential for maintaining container closure integrity in the parenteral packaging industry. However, prior publications have lacked systematic considerations for the time-dependent influence on sealing performance that results from the viscoelastic characteristics of the rubber stoppers. In this paper, we report results of an effort to study these effects by applying both compression stress relaxation testing and residual seal force testing for time-dependent experimental data collection. These experiments were followed by modeling fit calculations based on the Maxwell-Wiechert theory modified with the Kohlrausch-Williams-Watts stretched exponential function, resulting in a nonlinear, time-dependent sealing force model. By employing both testing evaluations and modeling calculations, an in-depth understanding of the time-dependent effects on rubber stopper sealing force was developed. Both testing and modeling data show good consistency, demonstrating that the sealing force decays exponentially over time and eventually levels off because of the viscoelastic nature of the rubber stoppers. The nonlinearity of stress relaxation derives from the viscoelastic characteristics of the rubber stoppers coupled with the large stopper compression deformation into restrained geometry conditions. The modeling fit with capability to handle actual testing data can be employed as a tool to calculate the compression stress relaxation and residual seal force throughout the entire sealed product life cycle. In addition to being time-dependent, stress relaxation is also experimentally shown to be temperature-dependent. The present work provides a new, integrated methodology framework and some fresh insights to the parenteral packaging industry for practically and proactively considering, designing, setting up, controlling, and managing stopper sealing performance throughout the entire sealed product life cycle. LAY ABSTRACT: Historical publications in the parenteral packaging industry have lacked systematic considerations for the time-dependent influence on the sealing performance that results from effects of viscoelastic characteristic of the rubber stoppers. This study applied compression stress relaxation testing and residual seal force testing for time-dependent experimental data collection. These experiments were followed by modeling fit calculations based on the Maxwell-Wiechert theory modified with the Kohlrausch-Williams-Watts stretched exponential function, resulting in a nonlinear, time-dependent sealing force model. Experimental and modeling data show good consistency, demonstrating that sealing force decays exponentially over time and eventually levels off. The nonlinearity of stress relaxation derives from the viscoelastic characteristics of the rubber stoppers coupled with the large stopper compression deformation into restrained geometry conditions. In addition to being time-dependent stress relaxation, it is also experimentally shown to be temperature-dependent. The present work provides a new, integrated methodology framework and some fresh insights to the industry for practically and proactively considering, designing, setting up, controlling, and managing of the stopper sealing performance throughout the entire sealed product life cycle. © PDA, Inc. 2018.

  7. Double-exponential decay of orientational correlations in semiflexible polyelectrolytes.

    PubMed

    Bačová, P; Košovan, P; Uhlík, F; Kuldová, J; Limpouchová, Z; Procházka, K

    2012-06-01

    In this paper we revisited the problem of persistence length of polyelectrolytes. We performed a series of Molecular Dynamics simulations using the Debye-Hückel approximation for electrostatics to test several equations which go beyond the classical description of Odijk, Skolnick and Fixman (OSF). The data confirm earlier observations that in the limit of large contour separations the decay of orientational correlations can be described by a single-exponential function and the decay length can be described by the OSF relation. However, at short countour separations the behaviour is more complex. Recent equations which introduce more complicated expressions and an additional length scale could describe the results very well on both the short and the long length scale. The equation of Manghi and Netz when used without adjustable parameters could capture the qualitative trend but deviated in a quantitative comparison. Better quantitative agreement within the estimated error could be obtained using three equations with one adjustable parameter: 1) the equation of Manghi and Netz; 2) the equation proposed by us in this paper; 3) the equation proposed by Cannavacciuolo and Pedersen. Two characteristic length scales can be identified in the data: the intrinsic or bare persistence length and the electrostatic persistence length. All three equations use a single parameter to describe a smooth crossover from the short-range behaviour dominated by the intrinsic stiffness of the chain to the long-range OSF-like behaviour.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, B.; DuCharme, G.

    We present a semi-empirical scaling law for non-resonant ion–atom single charge exchange cross sections for collisions with velocities frommore » $${10}^{7}\\,{\\rm{t}}{\\rm{o}}\\,{10}^{9}\\,\\mathrm{cm}\\,{{\\rm{s}}}^{-1}$$ and ions with positive charge $$q\\lt 8$$. Non-resonant cross sections tend to have a velocity peak at collision velocities $$v\\lesssim 1\\ {\\rm{a}}{\\rm{u}}$$ with exponential decay around this peak. We construct a scaling formula for the location of this peak then choose a functional form for the cross section curve and scale it. The velocity at which the cross section peaks, v m, is proportional to the energy defect of the collision, $${\\rm{\\Delta }}E$$, which we predict with the decay approximation. The value of the cross section maximum is proportional to the charge state q, inversely proportional to the target ionization energy I T, and inversely proportional to v m. For the shape of the cross section curve, we use a function that decays exponentially asymptotically at high and low velocities. We scale this function with parameters $${v}_{{\\rm{m}}},{I}_{{\\rm{T}}},{Z}_{{\\rm{T}}},\\mathrm{and}\\ {Z}_{{\\rm{P}}}$$, where the $${Z}_{{\\rm{T}},{\\rm{P}}}$$ are the target and projectile atomic numbers. In conclusion, for the more than 100 cross section curves that we use to find the scaling rules, the scaling law predicts cross sections within a little over a factor of 2 on average.« less

  9. Hyperfine-induced spin relaxation of a diffusively moving carrier in low dimensions: Implications for spin transport in organic semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2015-08-24

    The hyperfine coupling between the spin of a charge carrier and the nuclear spin bath is a predominant channel for the carrier spin relaxation in many organic semiconductors. We theoretically investigate the hyperfine-induced spin relaxation of a carrier performing a random walk on a d-dimensional regular lattice, in a transport regime typical for organic semiconductors. We show that in d=1 and 2, the time dependence of the space-integrated spin polarization P(t) is dominated by a superexponential decay, crossing over to a stretched-exponential tail at long times. The faster decay is attributed to multiple self-intersections (returns) of the random-walk trajectories, whichmore » occur more often in lower dimensions. We also show, analytically and numerically, that the returns lead to sensitivity of P(t) to external electric and magnetic fields, and this sensitivity strongly depends on dimensionality of the system (d=1 versus d=3). We investigate in detail the coordinate dependence of the time-integrated spin polarization σ(r), which can be probed in the spin-transport experiments with spin-polarized electrodes. We also demonstrate that, while σ(r) is essentially exponential, the effect of multiple self-intersections can be identified in transport measurements from the strong dependence of the spin-decay length on the external magnetic and electric fields.« less

  10. Semi-empirical scaling for ion-atom single charge exchange cross sections in the intermediate velocity regime

    NASA Astrophysics Data System (ADS)

    Friedman, B.; DuCharme, G.

    2017-06-01

    We present a semi-empirical scaling law for non-resonant ion-atom single charge exchange cross sections for collisions with velocities from {10}7 {{t}}{{o}} {10}9 {cm} {{{s}}}-1 and ions with positive charge q< 8. Non-resonant cross sections tend to have a velocity peak at collision velocities v≲ 1 {{a}}{{u}} with exponential decay around this peak. We construct a scaling formula for the location of this peak then choose a functional form for the cross section curve and scale it. The velocity at which the cross section peaks, v m, is proportional to the energy defect of the collision, {{Δ }}E, which we predict with the decay approximation. The value of the cross section maximum is proportional to the charge state q, inversely proportional to the target ionization energy I T, and inversely proportional to v m. For the shape of the cross section curve, we use a function that decays exponentially asymptotically at high and low velocities. We scale this function with parameters {v}{{m}},{I}{{T}},{Z}{{T}},{and} {Z}{{P}}, where the {Z}{{T},{{P}}} are the target and projectile atomic numbers. For the more than 100 cross section curves that we use to find the scaling rules, the scaling law predicts cross sections within a little over a factor of 2 on average.

  11. Flexural-gravity Wave Attenuation in a Thick Ice Shelf

    NASA Astrophysics Data System (ADS)

    Stephen, R. A.; Bromirski, P. D.; Gerstoft, P.; Chen, Z.; Wiens, D.; Aster, R. C.; Nyblade, A.

    2016-12-01

    A thirty-four station broadband seismic array was deployed on the Ross Ice Shelf, Antarctica from November 2014 to November 2017. Analyses indicate that phase speeds of infra-gravity wave and tsunami excitation in the 0.003 to 0.02 Hz band are 70 m/s, corresponding to the low frequency limit of flexural-gravity waves. Median spectral amplitudes in this band decay exponentially with distance from the shelf edge in a manner consistent with intrinsic attenuation. Seismic Q is typically 7-9, with an RMS amplitude decay of 0.04-0.05dB/km and an e-folding distance of 175-220 km. Amplitudes do not appear to drop crossing crevasse fields. Vertical and horizontal acceleration levels at stations on the floating ice shelf are 50 dB higher than those on grounded ice. Horizontal accelerations are about 15 dB higher than vertical accelerations. Median spectral levels at 0.003 Hz are within 6 dB for stations from 2 to 430 km from the shelf edge. In contrast, the levels drop by 90 dB at 0.02 Hz. Ocean gravity wave excitation has been proposed as a mechanism that can weaken ice shelves and potentially trigger disintegration events. These measurements indicate that the propensity for shelf weakening and disintegration decays exponentially with distance from the ice front for gravity waves in the 0.003 to 0.02Hz band.

  12. Direct measurement of cyclotron coherence times of high-mobility two-dimensional electron gases.

    PubMed

    Wang, X; Hilton, D J; Reno, J L; Mittleman, D M; Kono, J

    2010-06-07

    We have observed long-lived (approximately 30 ps) coherent oscillations of charge carriers due to cyclotron resonance (CR) in high-mobility two-dimensional electrons in GaAs in perpendicular magnetic fields using time-domain terahertz spectroscopy. The observed coherent oscillations were fitted well by sinusoids with exponentially-decaying amplitudes, through which we were able to provide direct and precise measures for the decay times and oscillation frequencies simultaneously. This method thus overcomes the CR saturation effect, which is known to prevent determination of true CR linewidths in high-mobility electron systems using Fourier-transform infrared spectroscopy.

  13. Tunneling of Bloch electrons through vacuum barrier

    NASA Astrophysics Data System (ADS)

    Mazin, I. I.

    2001-08-01

    Tunneling of Bloch electrons through a vacuum barrier introduces new physical effects in comparison with the textbook case of free (plane wave) electrons. For the latter, the exponential decay rate in the vacuum is minimal for electrons with the parallel component of momentum kparallel = 0, and the prefactor is defined by the electron momentum component in the normal to the surface direction. However, the decay rate of Bloch electrons may be minimal at an arbitrary kparallel ("hot spots" ), and the prefactor is determined by the electron's group velocity, rather than by its quasimomentum. We illustrate this by first-principles calculations for (110) Pd surface.

  14. Transient Postseismic Relaxation With Burger's Body Viscoelasticity

    NASA Astrophysics Data System (ADS)

    Hetland, E. A.; Hager, B. H.; O'Connell, R. J.

    2002-12-01

    Typical models used to investigate postseismic deformation are composed of an elastic layer over a Maxwell viscoelastic region. Geodetic observations made after a number of large earthquakes show a rapid exponential decay in postseismic velocity immediately after the rupture, followed by a more slowly decaying (or constant) velocity at a later time. Models of a Maxwell viscoelastic interior predict a single exponential postseismic velocity relaxation. To account for observed rapid, short-term relaxation decay, surprisingly low viscosities in the lower-crust or upper-mantle have been proposed. To model the difference in short and long time decay rates, the Maxwell element is sometimes modified to have a non-linear rheology, which results in a lower effective viscosity immediately after the rupture, evolving to a higher effective viscosity as the co-seismic stresses relax. Incorporation of models of after-slip in the lower crust on a down-dip extension of the fault have also had some success at modeling the above observations. When real rocks are subjected to a sudden change in stress or strain, e.g., that caused by an earthquake, they exhibit a transient response. The transient deformation is typically accommodated by grain boundary sliding and the longer-time deformation is accommodated by motion of dislocations. Both a short-term transient response and long-term steady creep are exhibited by a Burger's body, a Maxwell element (a spring in series with a viscous dash-pot) in series with a Voigt element (a spring in parallel with a viscous dash-pot). Typically the (transient) viscosity of the Voigt element is 10 - 100 times less than the (steady) viscosity of the Maxwell element. Thus, with a Burger's body, stress relaxation is a superposition of two exponential decays. For a model composed of an elastic layer over a viscoelastic region, the coseismic changes in stress (and strain) depend only on the elastic moduli, and are independent of the description of the viscous component of the rheology. In a Burger's body model of viscoelasticity, if the viscosity of the Voigt element is much less than that of the Maxwell element, the initial relaxation time is given by the decay time τ = η {Voigt}}/G{ {Maxwell}. Whereas, for a Maxwell rheology, the initial relaxation time is given by τ = η {Maxwell}}/G{ {Maxwell}. For both models, the initial spatial distribution of stresses is the same, which results in identical initial spatial distribution of velocities. Thus it is easy to mistake the transient response of a Burger's body for that of a Maxwell rheology with unrealistically low viscosity. Only later in the seismic cycle do the spatial patterns of velocity differ for the two rheologies.

  15. The Photoluminescence of a Fluorescent Lamp: Didactic Experiments on the Exponential Decay

    ERIC Educational Resources Information Center

    Onorato, Pasquale; Gratton, Luigi; Malgieri, Massimiliano; Oss, Stefano

    2017-01-01

    The lifetimes of the photoluminescent compounds contained in the coating of fluorescent compact lamps are usually measured using specialised instruments, including pulsed lasers and/or spectrofluorometers. Here we discuss how some low cost apparatuses, based on the use of either sensors for the educational lab or commercial digital photo cameras,…

  16. The inverse resonance problem for CMV operators

    NASA Astrophysics Data System (ADS)

    Weikard, Rudi; Zinchenko, Maxim

    2010-05-01

    We consider the class of CMV operators with super-exponentially decaying Verblunsky coefficients. For these we define the concept of a resonance. Then we prove the existence of Jost solutions and a uniqueness theorem for the inverse resonance problem: given the location of all resonances, taking multiplicities into account, the Verblunsky coefficients are uniquely determined.

  17. Individual tree-diameter growth model for the Northeastern United States

    Treesearch

    Richard M. Teck; Donald E. Hilt

    1991-01-01

    Describes a distance-independent individual-tree diameter growth model for the Northeastern United States. Diameter growth is predicted in two steps using a two parameter, sigmoidal growth function modified by a one parameter exponential decay function with species-specific coefficients. Coefficients are presented for 28 species groups. The model accounts for...

  18. Informed Conjecturing of Solutions for Differential Equations in a Modeling Context

    ERIC Educational Resources Information Center

    Winkel, Brian

    2015-01-01

    We examine two differential equations. (i) first-order exponential growth or decay; and (ii) second order, linear, constant coefficient differential equations, and show the advantage of learning differential equations in a modeling context for informed conjectures of their solution. We follow with a discussion of the complete analysis afforded by…

  19. Stability of post-fertilization traveling waves

    NASA Astrophysics Data System (ADS)

    Flores, Gilberto; Plaza, Ramón G.

    This paper studies the stability of a family of traveling wave solutions to the system proposed by Lane et al. [D.C. Lane, J.D. Murray, V.S. Manoranjan, Analysis of wave phenomena in a morphogenetic mechanochemical model and an application to post-fertilization waves on eggs, IMA J. Math. Appl. Med. Biol. 4 (4) (1987) 309-331], to model a pair of mechanochemical phenomena known as post-fertilization waves on eggs. The waves consist of an elastic deformation pulse on the egg's surface, and a free calcium concentration front. The family is indexed by a coupling parameter measuring contraction stress effects on the calcium concentration. This work establishes the spectral, linear and nonlinear orbital stability of these post-fertilization waves for small values of the coupling parameter. The usual methods for the spectral and evolution equations cannot be applied because of the presence of mixed partial derivatives in the elastic equation. Nonetheless, exponential decay of the directly constructed semigroup on the complement of the zero eigenspace is established. We show that small perturbations of the waves yield solutions to the nonlinear equations decaying exponentially to a phase-modulated traveling wave.

  20. On information loss in AdS 3/CFT 2

    DOE PAGES

    Fitzpatrick, A. Liam; Kaplan, Jared; Li, Daliang; ...

    2016-05-18

    We discuss information loss from black hole physics in AdS 3, focusing on two sharp signatures infecting CFT 2 correlators at large central charge c: ‘forbidden singularities’ arising from Euclidean-time periodicity due to the effective Hawking temperature, and late-time exponential decay in the Lorentzian region. We study an infinite class of examples where forbidden singularities can be resolved by non-perturbative effects at finite c, and we show that the resolution has certain universal features that also apply in the general case. Analytically continuing to the Lorentzian regime, we find that the non-perturbative effects that resolve forbidden singularities qualitatively change themore » behavior of correlators at times t ~S BH, the black hole entropy. This may resolve the exponential decay of correlators at late times in black hole backgrounds. By Borel resumming the 1/c expansion of exact examples, we explicitly identify ‘information-restoring’ effects from heavy states that should correspond to classical solutions in AdS 3. Lastly, our results suggest a line of inquiry towards a more precise formulation of the gravitational path integral in AdS 3.« less

  1. Per-capita GDP and nonequilibrium wealth-concentration in a model for trade

    NASA Astrophysics Data System (ADS)

    Moukarzel, Cristian F.

    2013-12-01

    Data describing the per-capita Gross Domestic Product of around two hundred countries in years 1960 to 2008 are analyzed and found to decay approximately exponentially with rank. We discuss this experimental fact in the context of a wealth exchange model called Yard-Sale exchange, in which pairs of agents (i.e. nations) 'bet' for a fraction f of the wealth of the poorest of them. If the chances for this poorest agent to win the bet are not large enough, this model presents a 'wealth condensation' phase, in which one lucky agent gets to own the whole wealth in the end. In a recent study of this model [1], it was found that, in the condensed phase, the typical wealth of an agent with rank R decays exponentially with R. By establishing a parallel between wealth of a nation and its per-capita GDP, these observations suggest that international trade rules are such that strong wealth concentration is favored. Possible extensions of this work, that also consider endogenous factors affecting the evolution of GDP, are also discussed.

  2. Asymptotic integration algorithms for nonhomogeneous, nonlinear, first order, ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Walker, K. P.; Freed, A. D.

    1991-01-01

    New methods for integrating systems of stiff, nonlinear, first order, ordinary differential equations are developed by casting the differential equations into integral form. Nonlinear recursive relations are obtained that allow the solution to a system of equations at time t plus delta t to be obtained in terms of the solution at time t in explicit and implicit forms. Examples of accuracy obtained with the new technique are given by considering systems of nonlinear, first order equations which arise in the study of unified models of viscoplastic behaviors, the spread of the AIDS virus, and predator-prey populations. In general, the new implicit algorithm is unconditionally stable, and has a Jacobian of smaller dimension than that which is acquired by current implicit methods, such as the Euler backward difference algorithm; yet, it gives superior accuracy. The asymptotic explicit and implicit algorithms are suitable for solutions that are of the growing and decaying exponential kinds, respectively, whilst the implicit Euler-Maclaurin algorithm is superior when the solution oscillates, i.e., when there are regions in which both growing and decaying exponential solutions exist.

  3. The photoluminescence of a fluorescent lamp: didactic experiments on the exponential decay

    NASA Astrophysics Data System (ADS)

    Onorato, Pasquale; Gratton, Luigi; Malgieri, Massimiliano; Oss, Stefano

    2017-01-01

    The lifetimes of the photoluminescent compounds contained in the coating of fluorescent compact lamps are usually measured using specialised instruments, including pulsed lasers and/or spectrofluorometers. Here we discuss how some low cost apparatuses, based on the use of either sensors for the educational lab or commercial digital photo cameras, can be employed to the same aim. The experiments do not require that luminescent phosphors are hazardously extracted from the compact fluorescent lamp, that also contains mercury. We obtain lifetime measurements for specific fluorescent elements of the bulb coating, in good agreement with the known values. We also address the physical mechanisms on which fluorescence lamps are based in a simplified way, suitable for undergraduate students; and we discuss in detail the physics of the lamp switch-off by analysing the time dependent spectrum, measured through a commercial fiber-optic spectrometer. Since the experiment is not hazardous in any way, requires a simple setup up with instruments which are commonly found in educational labs, and focuses on the typical features of the exponential decay, it is suitable for being performed in the undergraduate laboratory.

  4. Linear diffusion into a Faraday cage.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warne, Larry Kevin; Lin, Yau Tang; Merewether, Kimball O.

    2011-11-01

    Linear lightning diffusion into a Faraday cage is studied. An early-time integral valid for large ratios of enclosure size to enclosure thickness and small relative permeability ({mu}/{mu}{sub 0} {le} 10) is used for this study. Existing solutions for nearby lightning impulse responses of electrically thick-wall enclosures are refined and extended to calculate the nearby lightning magnetic field (H) and time-derivative magnetic field (HDOT) inside enclosures of varying thickness caused by a decaying exponential excitation. For a direct strike scenario, the early-time integral for a worst-case line source outside the enclosure caused by an impulse is simplified and numerically integrated tomore » give the interior H and HDOT at the location closest to the source as well as a function of distance from the source. H and HDOT enclosure response functions for decaying exponentials are considered for an enclosure wall of any thickness. Simple formulas are derived to provide a description of enclosure interior H and HDOT as well. Direct strike voltage and current bounds for a single-turn optimally-coupled loop for all three waveforms are also given.« less

  5. Measurements of exciton diffusion by degenerate four-wave mixing in CdS1-xSex

    NASA Astrophysics Data System (ADS)

    Schwab, H.; Pantke, K.-H.; Hvam, J. M.; Klingshirn, C.

    1992-09-01

    We performed transient-grating experiments to study the diffusion of excitons in CdS1-xSex mixed crystals. The decay of the initially created exciton density grating is well described for t<=1 ns by a stretched-exponential function. For later times this decay changes over to a behavior that is well fitted by a simple exponential function. During resonant excitation of the localized states, we find the diffusion coefficient (D) to be considerably smaller than in the binary compounds CdSe and CdS. At 4.2 K, D is below our experimental resolution which is about 0.025 cm2/s. With increasing lattice temperature (Tlattice) the diffusion coefficient increases. It was therefore possible to prove, in a diffusion experiment, that at Tlattice<=5 K the excitons are localized, while the exciton-phonon interaction leads to a delocalization and thus to the onset of diffusion. It was possible to deduce the diffusion coefficient of the extended excitons as well as the energetic position of the mobility edge.

  6. Smoothing Polymer Surfaces by Solvent-Vapor Exposure

    NASA Astrophysics Data System (ADS)

    Anthamatten, Mitchell

    2003-03-01

    Ultra-smooth polymer surfaces are of great importance in a large body of technical applications such as optical coatings, supermirrors, waveguides, paints, and fusion targets. We are investigating a simple approach to controlling surface roughness: by temporarily swelling the polymer with solvent molecules. As the solvent penetrates into the polymer, its viscosity is lowered, and surface tension forces drive surface flattening. To investigate sorption kinetics and surface-smoothing phenomena, a series of vapor-deposited poly(amic acid) films were exposed to dimethyl sulfoxide vapors. During solvent exposure, the surface topology was continuously monitored using light interference microscopy. The resulting power spectra indicate that high-frequency defects smooth faster than low-frequency defects. This frequency dependence was studied by depositing polymer films onto a series of 2D sinusoidal surfaces and performing smoothing experiments. Results show that the amplitudes of the sinusoidal surfaces decay exponentially with solvent exposure time, and the exponential decay constants are proportional to surface frequency. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  7. Long time stability of small-amplitude Breathers in a mixed FPU-KG model

    NASA Astrophysics Data System (ADS)

    Paleari, Simone; Penati, Tiziano

    2016-12-01

    In the limit of small couplings in the nearest neighbor interaction, and small total energy, we apply the resonant normal form result of a previous paper of ours to a finite but arbitrarily large mixed Fermi-Pasta-Ulam Klein-Gordon chain, i.e., with both linear and nonlinear terms in both the on-site and interaction potential, with periodic boundary conditions. An existence and orbital stability result for Breathers of such a normal form, which turns out to be a generalized discrete nonlinear Schrödinger model with exponentially decaying all neighbor interactions, is first proved. Exploiting such a result as an intermediate step, a long time stability theorem for the true Breathers of the KG and FPU-KG models, in the anti-continuous limit, is proven.

  8. Adiabatic regularization of the power spectrum in nonminimally coupled general single-field inflation

    NASA Astrophysics Data System (ADS)

    Alinea, Allan L.; Kubota, Takahiro

    2018-03-01

    We perform adiabatic regularization of power spectrum in nonminimally coupled general single-field inflation with varying speed of sound. The subtraction is performed within the framework of earlier study by Urakawa and Starobinsky dealing with the canonical inflation. Inspired by Fakir and Unruh's model on nonminimally coupled chaotic inflation, we find upon imposing near scale-invariant condition, that the subtraction term exponentially decays with the number of e -folds. As in the result for the canonical inflation, the regularized power spectrum tends to the "bare" power spectrum as the Universe expands during (and even after) inflation. This work justifies the use of the "bare" power spectrum in standard calculation in the most general context of slow-roll single-field inflation involving nonminimal coupling and varying speed of sound.

  9. Determining Correlation and Coherence Lengths in Turbulent Boundary Layer Flight Data

    NASA Technical Reports Server (NTRS)

    Palumbo, Dan

    2012-01-01

    Wall pressure data acquired during flight tests at several flight conditions are analysed and the correlation and coherence lengths of the data reported. It is found that the correlation and coherence lengths are influenced by the origin of the structure producing the pressure and the frequency bandwidth over which the analyses are performed. It is shown how the frequency bandwidth biases the correlation length and how the convection of the pressure field might reduce the coherence measured between sensors. A convected form of the cross correlation and cross spectrum is introduced to compensate for the effects of convection. Coherence lengths measured in the streamwise direction appear much longer than expected. Coherent structures detected using the convected cross correlation do not exhibit an exponential coherent power decay.

  10. Evaluating near highway air pollutant levels and estimating emission factors: Case study of Tehran, Iran.

    PubMed

    Nayeb Yazdi, Mohammad; Delavarrafiee, Maryam; Arhami, Mohammad

    2015-12-15

    A field sampling campaign was implemented to evaluate the variation in air pollutants levels near a highway in Tehran, Iran (Hemmat highway). The field measurements were used to estimate road link-based emission factors for average vehicle fleet. These factors were compared with results of an in tunnel measurement campaign (in Resalat tunnel). Roadside and in-tunnel measurements of carbon monoxide (CO) and size-fractionated particulate matter (PM) were conducted during the field campaign. The concentration gradient diagrams showed exponential decay, which represented a substantial decay, more than 50-80%, in air pollutants level in a distance between 100 and 150meters (m) of the highway. The changes in particle size distribution by distancing from highway were also captured and evaluated. The results showed particle size distribution shifted to larger size particles by distancing from highway. The empirical emission factors were obtained by using the roadside and in tunnel measurements with a hypothetical box model, floating machine model, CALINE4, CT-EMFAC or COPERT. Average CO emission factors were estimated to be in a range of 4 to 12g/km, and those of PM10 were 0.1 to 0.2g/km, depending on traffic conditions. Variations of these emission factors under real working condition with speeds were determined. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Time-reversal symmetric resolution of unity without background integrals in open quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatano, Naomichi, E-mail: hatano@iis.u-tokyo.ac.jp; Ordonez, Gonzalo, E-mail: gordonez@butler.edu

    2014-12-15

    We present a new complete set of states for a class of open quantum systems, to be used in expansion of the Green’s function and the time-evolution operator. A remarkable feature of the complete set is that it observes time-reversal symmetry in the sense that it contains decaying states (resonant states) and growing states (anti-resonant states) parallelly. We can thereby pinpoint the occurrence of the breaking of time-reversal symmetry at the choice of whether we solve Schrödinger equation as an initial-condition problem or a terminal-condition problem. Another feature of the complete set is that in the subspace of the centralmore » scattering area of the system, it consists of contributions of all states with point spectra but does not contain any background integrals. In computing the time evolution, we can clearly see contribution of which point spectrum produces which time dependence. In the whole infinite state space, the complete set does contain an integral but it is over unperturbed eigenstates of the environmental area of the system and hence can be calculated analytically. We demonstrate the usefulness of the complete set by computing explicitly the survival probability and the escaping probability as well as the dynamics of wave packets. The origin of each term of matrix elements is clear in our formulation, particularly, the exponential decays due to the resonance poles.« less

  12. On the Occurrence of Mass Inflation for the Einstein-Maxwell-Scalar Field System with a Cosmological Constant and an Exponential Price Law

    NASA Astrophysics Data System (ADS)

    Costa, João L.; Girão, Pedro M.; Natário, José; Silva, Jorge Drumond

    2018-03-01

    In this paper we study the spherically symmetric characteristic initial data problem for the Einstein-Maxwell-scalar field system with a positive cosmological constant in the interior of a black hole, assuming an exponential Price law along the event horizon. More precisely, we construct open sets of characteristic data which, on the outgoing initial null hypersurface (taken to be the event horizon), converges exponentially to a reference Reissner-Nördstrom black hole at infinity. We prove the stability of the radius function at the Cauchy horizon, and show that, depending on the decay rate of the initial data, mass inflation may or may not occur. In the latter case, we find that the solution can be extended across the Cauchy horizon with continuous metric and Christoffel symbols in {L^2_{loc}} , thus violating the Christodoulou-Chruściel version of strong cosmic censorship.

  13. Influence of proton-skin thickness on the {{\\alpha }} decays of heavy nuclei

    NASA Astrophysics Data System (ADS)

    Seif, W. M.; Abdurrahman, A.

    2018-01-01

    We investigate the effect of proton-skin thickness on the α decay process. We consider 188 neutron-deficient nuclei belonging to the isotopic chains from Te (Z = 52) to Pb (Z = 82). The calculations of the half-life are carried out in the framework of the preformed cluster model, with the Wentzel-Kramers-Brillouin penetration probability and assault frequency. It is shown that the proton-skin thickness ({\\varDelta }{{p}}) of the daughter nucleus gives rise to a total α- daughter nucleus interaction potential of relatively wide deep internal pocket and a thinner Coulomb barrier of less height. This increases the penetration probability but decreases the assault frequency. The overall impact of the proton-skin thickness appears as a decrease in the decay half-life. The proton-skin thickness decreases the stability of the nucleus. The half-lives of the proton-skinned isotopes along the isotopic chain decrease exponentially with increasing the proton-skin thickness, whereas the {Q}α -value increases with {\\varDelta }{{p}}. α-decay manifests itself as the second favorite decay mode of neutron-deficient nuclei, next to the {β }+-decay and before proton-decay. It is indicated as main, competing, and minor decay mode, at 21%, 7%, and 57%, respectively, of the investigated nuclei.

  14. Photoluminescence kinetics in CdS nanoclusters formed by the Langmuir-Blodgett technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarubanov, A. A., E-mail: alexsundr@mail.ru; Zhuravlev, K. S.

    2015-03-15

    The photoluminescence kinetics in CdS nanocrystals produced by the Langmuir-Blodgett technique is studied at a temperature of 5 K. The photoluminescence kinetics is described by the sum of two exponential functions, with characteristic times of about 30 and 160 ns. It is found that the fast and slow decay times become longer, as the nanocrystal size increases. Analysis of the data shows that the fast decay time is controlled by trion recombination in nanocrystals with defects, whereas the slow decay time is controlled by the annihilation of optically inactive excitons in nanocrystals without defects. It is established that, as themore » nanocrystal size is decreased, the fraction of imperfect nanocrystals is reduced because of an increase in the energy of defect formation.« less

  15. Molecular specificity in photoacoustic microscopy by time-resolved transient absorption.

    PubMed

    Shelton, Ryan L; Mattison, Scott P; Applegate, Brian E

    2014-06-01

    We have recently harnessed transient absorption, a resonant two-photon process, for ultrahigh resolution photoacoustic microscopy, achieving nearly an order of magnitude improvement in axial resolution. The axial resolution is optically constrained due to the two-photon process unlike traditional photoacoustic microscopy where the axial resolution is inversely proportional to the frequency bandwidth of the detector. As a resonant process, the arrival time of the two photons need not be instantaneous. Systematically recording the signal as a function of the delay between two pulses will result in the measurement of an exponential decay whose time constant is related to the molecular dynamics. This time constant, analogous to the fluorescence lifetime, but encompassing nonradiative decay as well, can be used to differentiate between molecular systems with overlapping absorption spectra. This is frequently the situation for closely related yet distinct molecules such as redox pairs. In order to enable the measure of the exponential decay, we have reconfigured our transient absorption ultrasonic microscopy (TAUM) system to incorporate two laser sources with precisely controlled pulse trains. The system was tested by measuring Rhodamine 6G, an efficient laser dye where the molecular dynamics are dominated by the fluorescence pathway. As expected, the measured exponential time constant or ground state recovery time, 3.3±0.7  ns, was similar to the well-known fluorescence lifetime, 4.11±0.05  ns. Oxy- and deoxy-hemoglobin are the quintessential pair whose relative concentration is related to the local blood oxygen saturation. We have measured the ground state recovery times of these two species in fully oxygenated and deoxygenated bovine whole blood to be 3.7±0.8  ns and 7.9±1.0  ns, respectively. Hence, even very closely related pairs of molecules may be differentiated with this technique.

  16. Linear prediction and single-channel recording.

    PubMed

    Carter, A A; Oswald, R E

    1995-08-01

    The measurement of individual single-channel events arising from the gating of ion channels provides a detailed data set from which the kinetic mechanism of a channel can be deduced. In many cases, the pattern of dwells in the open and closed states is very complex, and the kinetic mechanism and parameters are not easily determined. Assuming a Markov model for channel kinetics, the probability density function for open and closed time dwells should consist of a sum of decaying exponentials. One method of approaching the kinetic analysis of such a system is to determine the number of exponentials and the corresponding parameters which comprise the open and closed dwell time distributions. These can then be compared to the relaxations predicted from the kinetic model to determine, where possible, the kinetic constants. We report here the use of a linear technique, linear prediction/singular value decomposition, to determine the number of exponentials and the exponential parameters. Using simulated distributions and comparing with standard maximum-likelihood analysis, the singular value decomposition techniques provide advantages in some situations and are a useful adjunct to other single-channel analysis techniques.

  17. Ray-theory approach to electrical-double-layer interactions.

    PubMed

    Schnitzer, Ory

    2015-02-01

    A novel approach is presented for analyzing the double-layer interaction force between charged particles in electrolyte solution, in the limit where the Debye length is small compared with both interparticle separation and particle size. The method, developed here for two planar convex particles of otherwise arbitrary geometry, yields a simple asymptotic approximation limited to neither small zeta potentials nor the "close-proximity" assumption underlying Derjaguin's approximation. Starting from the nonlinear Poisson-Boltzmann formulation, boundary-layer solutions describing the thin diffuse-charge layers are asymptotically matched to a WKBJ expansion valid in the bulk, where the potential is exponentially small. The latter expansion describes the bulk potential as superposed contributions conveyed by "rays" emanating normally from the boundary layers. On a special curve generated by the centers of all circles maximally inscribed between the two particles, the bulk stress-associated with the ray contributions interacting nonlinearly-decays exponentially with distance from the center of the smallest of these circles. The force is then obtained by integrating the traction along this curve using Laplace's method. We illustrate the usefulness of our theory by comparing it, alongside Derjaguin's approximation, with numerical simulations in the case of two parallel cylinders at low potentials. By combining our result and Derjaguin's approximation, the interaction force is provided at arbitrary interparticle separations. Our theory can be generalized to arbitrary three-dimensional geometries, nonideal electrolyte models, and other physical scenarios where exponentially decaying fields give rise to forces.

  18. Exponential model normalization for electrical capacitance tomography with external electrodes under gap permittivity conditions

    NASA Astrophysics Data System (ADS)

    Baidillah, Marlin R.; Takei, Masahiro

    2017-06-01

    A nonlinear normalization model which is called exponential model for electrical capacitance tomography (ECT) with external electrodes under gap permittivity conditions has been developed. The exponential model normalization is proposed based on the inherently nonlinear relationship characteristic between the mixture permittivity and the measured capacitance due to the gap permittivity of inner wall. The parameters of exponential equation are derived by using an exponential fitting curve based on the simulation and a scaling function is added to adjust the experiment system condition. The exponential model normalization was applied to two dimensional low and high contrast dielectric distribution phantoms by using simulation and experimental studies. The proposed normalization model has been compared with other normalization models i.e. Parallel, Series, Maxwell and Böttcher models. Based on the comparison of image reconstruction results, the exponential model is reliable to predict the nonlinear normalization of measured capacitance in term of low and high contrast dielectric distribution.

  19. Measuring the dependence of the decay curve on the electron energy deposit in NaI(Tl)

    NASA Astrophysics Data System (ADS)

    Choong, W.-S.; Bizarri, G.; Cherepy, N. J.; Hull, G.; Moses, W. W.; Payne, S. A.

    2011-08-01

    We report on the first measurement of the decay times of NaI(Tl) as a function of the deposited electron energy. It has been suggested that the decay curve depends on the ionization density, which is correlated with the electron energy deposit in the scintillator. The ionization creates excitation states, which can decay radiatively and non-radiatively through a number of competing processes. As a result, the rate at which the excitation decays depends on the ionization density. A measurement of the decay curve as a function of the ionization density will allow us to probe the kinetic rates of the competing processes. The Scintillator Light Yield Non-proportionality Characterization Instrument (SLYNCI) measures the electron response of scintillators utilizing fast sampling ADCs to digitize the raw signals from the detectors, and so can provide a measurement of the light pulse shape from the scintillator. Using data collected with the SLYNCI instrument, the intrinsic scintillation profile is extracted on an event-by-event basis by deconvolving the raw signal with the impulse response of the system. Scintillation profiles with the same electron energy deposit are summed to obtain decay curves as a function of the deposited electron energy. The decay time constants are obtained by fitting the decay curves with a two-component exponential decay. While a slight dependence of the decay time constants on the electron energy deposit is observed, the results are not statistically significant.

  20. Density profiles of a self-gravitating lattice gas in one, two, and three dimensions

    NASA Astrophysics Data System (ADS)

    Bakhti, Benaoumeur; Boukari, Divana; Karbach, Michael; Maass, Philipp; Müller, Gerhard

    2018-04-01

    We consider a lattice gas in spaces of dimensionality D =1 ,2 ,3 . The particles are subject to a hardcore exclusion interaction and an attractive pair interaction that satisfies Gauss' law as do Newtonian gravity in D =3 , a logarithmic potential in D =2 , and a distance-independent force in D =1 . Under mild additional assumptions regarding symmetry and fluctuations we investigate equilibrium states of self-gravitating material clusters, in particular radial density profiles for closed and open systems. We present exact analytic results in several instances and high-precision numerical data in others. The density profile of a cluster with finite mass is found to exhibit exponential decay in D =1 and power-law decay in D =2 with temperature-dependent exponents in both cases. In D =2 the gas evaporates in a continuous transition at a nonzero critical temperature. We describe clusters of infinite mass in D =3 with a density profile consisting of three layers (core, shell, halo) and an algebraic large-distance asymptotic decay. In D =3 a cluster of finite mass can be stabilized at T >0 via confinement to a sphere of finite radius. In some parameter regime, the gas thus enclosed undergoes a discontinuous transition between distinct density profiles. For the free energy needed to identify the equilibrium state we introduce a construction of gravitational self-energy that works in all D for the lattice gas. The decay rate of the density profile of an open cluster is shown to transform via a stretched exponential for 1

  1. Crossover from anomalous to normal diffusion in porous media

    NASA Astrophysics Data System (ADS)

    Aarão Reis, F. D. A.; di Caprio, Dung

    2014-06-01

    Random walks (RW) of particles adsorbed in the internal walls of porous deposits produced by ballistic-type growth models are studied. The particles start at the external surface of the deposits and enter their pores in order to simulate an external flux of a species towards a porous solid. For short times, the walker concentration decays as a stretched exponential of the depth z, but a crossover to long-time normal diffusion is observed in most samples. The anomalous concentration profile remains at long times in very porous solids if the walker steps are restricted to nearest neighbors and is accompanied with subdiffusion features. These findings are correlated with a decay of the explored area with z. The study of RW of tracer particles left at the internal part of the solid rules out an interpretation by diffusion equations with position-dependent coefficients. A model of RW in a tube of decreasing cross section explains those results by showing long crossovers from an effective subdiffusion regime to an asymptotic normal diffusion. The crossover position and density are analytically calculated for a tube with area decreasing exponentially with z and show good agreement with numerical data. The anomalous decay of the concentration profile is interpreted as a templating effect of the tube shape on the total number of diffusing particles at each depth, while the volumetric concentration in the actually explored porous region may not have significant decay. These results may explain the anomalous diffusion of metal atoms in porous deposits observed in recent works. They also confirm the difficulty in interpreting experimental or computational data on anomalous transport reported in recent works, particularly if only the concentration profiles are measured.

  2. Correlation of porous and functional properties of food materials by NMR relaxometry and multivariate analysis.

    PubMed

    Haiduc, Adrian Marius; van Duynhoven, John

    2005-02-01

    The porous properties of food materials are known to determine important macroscopic parameters such as water-holding capacity and texture. In conventional approaches, understanding is built from a long process of establishing macrostructure-property relations in a rational manner. Only recently, multivariate approaches were introduced for the same purpose. The model systems used here are oil-in-water emulsions, stabilised by protein, and form complex structures, consisting of fat droplets dispersed in a porous protein phase. NMR time-domain decay curves were recorded for emulsions with varied levels of fat, protein and water. Hardness, dry matter content and water drainage were determined by classical means and analysed for correlation with the NMR data with multivariate techniques. Partial least squares can calibrate and predict these properties directly from the continuous NMR exponential decays and yields regression coefficients higher than 82%. However, the calibration coefficients themselves belong to the continuous exponential domain and do little to explain the connection between NMR data and emulsion properties. Transformation of the NMR decays into a discreet domain with non-negative least squares permits the use of multilinear regression (MLR) on the resulting amplitudes as predictors and hardness or water drainage as responses. The MLR coefficients show that hardness is highly correlated with the components that have T2 distributions of about 20 and 200 ms whereas water drainage is correlated with components that have T2 distributions around 400 and 1800 ms. These T2 distributions very likely correlate with water populations present in pores with different sizes and/or wall mobility. The results for the emulsions studied demonstrate that NMR time-domain decays can be employed to predict properties and to provide insight in the underlying microstructural features.

  3. Temperature Responses of Soil Organic Matter Components With Varying Recalcitrance

    NASA Astrophysics Data System (ADS)

    Simpson, M. J.; Feng, X.

    2007-12-01

    The response of soil organic matter (SOM) to global warming remains unclear partly due to the chemical heterogeneity of SOM composition. In this study, the decomposition of SOM from two grassland soils was investigated in a one-year laboratory incubation at six different temperatures. SOM was separated into solvent- extractable compounds, suberin- and cutin-derived compounds, and lignin monomers by solvent extraction, base hydrolysis, and CuO oxidation, respectively. These SOM components had distinct chemical structures and recalcitrance, and their decomposition was fitted by a two-pool exponential decay model. The stability of SOM components was assessed using geochemical parameters and kinetic parameters derived from model fitting. Lignin monomers exhibited much lower decay rates than solvent-extractable compounds and a relatively low percentage of lignin monomers partitioned into the labile SOM pool, which confirmed the generally accepted recalcitrance of lignin compounds. Suberin- and cutin-derived compounds had a poor fitting for the exponential decay model, and their recalcitrance was shown by the geochemical degradation parameter which stabilized during the incubation. The aliphatic components of suberin degraded faster than cutin-derived compounds, suggesting that cutin-derived compounds in the soil may be at a higher stage of degradation than suberin- derived compounds. The temperature sensitivity of decomposition, expressed as Q10, was derived from the relationship between temperature and SOM decay rates. SOM components exhibited varying temperature responses and the decomposition of the recalcitrant lignin monomers had much higher Q10 values than soil respiration or the solvent-extractable compounds decomposition. Our study shows that the decomposition of recalcitrant SOM is highly sensitive to temperature, more so than bulk soil mineralization. This observation suggests a potential acceleration in the degradation of the recalcitrant SOM pool with global warming.

  4. Exogenous carbonaceous matter in ancient martian sediments

    NASA Astrophysics Data System (ADS)

    Mojzsis, S. J.; Abramov, O.; Kereszturi, A.

    2015-12-01

    We re-evaluate the early evolution of an organic-matter rich (~10 wt. %) interplanetary dust particle flux to early Mars. Our work builds upon physical models that rely on plausible sources of exogenous debris and their dynamical rates of decay, the martian cratering record, and preservation of Noachian-Hesperian sedimentary units that have the potential to host organics. Post primary-accretionary scenarios that would have delivered abundant exogenous carbon to Mars can be imagined in two ways: a simple exponential decay with an approximately 100 Myr half-life, or as a "Sawtooth" timeline characterized by both faster-than-exponential decay from primary accretion and reduced total delivered mass. Indications are that a late bombardment spike was superposed on an otherwise broadly monotonic decline from primary accretion, of which two types are explored: a classical "Late Heavy Bombardment" (LHB) peak of impactors centered at ca. 3950 Ma and lasting 100 Myr, and a protracted bombardment typified by a sudden increase in impactor flux at ca. 4240-4100 Ma with a correspondingly longer decay time (400 Myr). Numerical models for each of the four bombardment scenarios explored in this work shows that exogenous organic matter could be a significant component of Noachian (ca. 4200-3700 Ma) and pre-Noachian (4500-4200 Ma) sediments. The discovery of organic-matter in martian sediments will be obfuscated by material of extra-areological origin. We predict that an earmark for the origin of this carbon would be correlated siderophile element abundances (e.g. Ni, Cr, and the platinoids). A time-dependent compositional relationship of C:HSEs would allow us to derive a chemochronology for pre-Hesperian (pre-3700 Ma) sedimentary units.

  5. CaV 3.1 and CaV 3.3 account for T-type Ca2+ current in GH3 cells.

    PubMed

    Mudado, M A; Rodrigues, A L; Prado, V F; Beirão, P S L; Cruz, J S

    2004-06-01

    T-type Ca2+ channels are important for cell signaling by a variety of cells. We report here the electrophysiological and molecular characteristics of the whole-cell Ca2+ current in GH3 clonal pituitary cells. The current inactivation at 0 mV was described by a single exponential function with a time constant of 18.32 +/- 1.87 ms (N = 16). The I-V relationship measured with Ca2+ as a charge carrier was shifted to the left when we applied a conditioning pre-pulse of up to -120 mV, indicating that a low voltage-activated current may be present in GH3 cells. Transient currents were first activated at -50 mV and peaked around -20 mV. The half-maximal voltage activation and the slope factors for the two conditions are -35.02 +/- 2.4 and 6.7 +/- 0.3 mV (pre-pulse of -120 mV, N = 15), and -27.0 +/- 0.97 and 7.5 +/- 0.7 mV (pre-pulse of -40 mV, N = 9). The 8-mV shift in the activation mid-point was statistically significant (P < 0.05). The tail currents decayed bi-exponentially suggesting two different T-type Ca2+ channel populations. RT-PCR revealed the presence of alpha1G (CaV3.1) and alpha1I (CaV3.3) T-type Ca2+ channel mRNA transcripts.

  6. Synaptic convergence regulates synchronization-dependent spike transfer in feedforward neural networks.

    PubMed

    Sailamul, Pachaya; Jang, Jaeson; Paik, Se-Bum

    2017-12-01

    Correlated neural activities such as synchronizations can significantly alter the characteristics of spike transfer between neural layers. However, it is not clear how this synchronization-dependent spike transfer can be affected by the structure of convergent feedforward wiring. To address this question, we implemented computer simulations of model neural networks: a source and a target layer connected with different types of convergent wiring rules. In the Gaussian-Gaussian (GG) model, both the connection probability and the strength are given as Gaussian distribution as a function of spatial distance. In the Uniform-Constant (UC) and Uniform-Exponential (UE) models, the connection probability density is a uniform constant within a certain range, but the connection strength is set as a constant value or an exponentially decaying function, respectively. Then we examined how the spike transfer function is modulated under these conditions, while static or synchronized input patterns were introduced to simulate different levels of feedforward spike synchronization. We observed that the synchronization-dependent modulation of the transfer function appeared noticeably different for each convergence condition. The modulation of the spike transfer function was largest in the UC model, and smallest in the UE model. Our analysis showed that this difference was induced by the different spike weight distributions that was generated from convergent synapses in each model. Our results suggest that, the structure of the feedforward convergence is a crucial factor for correlation-dependent spike control, thus must be considered important to understand the mechanism of information transfer in the brain.

  7. Analysis of volumetric response of pituitary adenomas receiving adjuvant CyberKnife stereotactic radiosurgery with the application of an exponential fitting model

    PubMed Central

    Yu, Yi-Lin; Yang, Yun-Ju; Lin, Chin; Hsieh, Chih-Chuan; Li, Chiao-Zhu; Feng, Shao-Wei; Tang, Chi-Tun; Chung, Tzu-Tsao; Ma, Hsin-I; Chen, Yuan-Hao; Ju, Da-Tong; Hueng, Dueng-Yuan

    2017-01-01

    Abstract Tumor control rates of pituitary adenomas (PAs) receiving adjuvant CyberKnife stereotactic radiosurgery (CK SRS) are high. However, there is currently no uniform way to estimate the time course of the disease. The aim of this study was to analyze the volumetric responses of PAs after CK SRS and investigate the application of an exponential decay model in calculating an accurate time course and estimation of the eventual outcome. A retrospective review of 34 patients with PAs who received adjuvant CK SRS between 2006 and 2013 was performed. Tumor volume was calculated using the planimetric method. The percent change in tumor volume and tumor volume rate of change were compared at median 4-, 10-, 20-, and 36-month intervals. Tumor responses were classified as: progression for >15% volume increase, regression for ≤15% decrease, and stabilization for ±15% of the baseline volume at the time of last follow-up. For each patient, the volumetric change versus time was fitted with an exponential model. The overall tumor control rate was 94.1% in the 36-month (range 18–87 months) follow-up period (mean volume change of −43.3%). Volume regression (mean decrease of −50.5%) was demonstrated in 27 (79%) patients, tumor stabilization (mean change of −3.7%) in 5 (15%) patients, and tumor progression (mean increase of 28.1%) in 2 (6%) patients (P = 0.001). Tumors that eventually regressed or stabilized had a temporary volume increase of 1.07% and 41.5% at 4 months after CK SRS, respectively (P = 0.017). The tumor volume estimated using the exponential fitting equation demonstrated high positive correlation with the actual volume calculated by magnetic resonance imaging (MRI) as tested by Pearson correlation coefficient (0.9). Transient progression of PAs post-CK SRS was seen in 62.5% of the patients receiving CK SRS, and it was not predictive of eventual volume regression or progression. A three-point exponential model is of potential predictive value according to relative distribution. An exponential decay model can be used to calculate the time course of tumors that are ultimately controlled. PMID:28121913

  8. Comparison of Apparent Diffusion Coefficient and Intravoxel Incoherent Motion for Differentiating among Glioblastoma, Metastasis, and Lymphoma Focusing on Diffusion-Related Parameter.

    PubMed

    Shim, Woo Hyun; Kim, Ho Sung; Choi, Choong-Gon; Kim, Sang Joon

    2015-01-01

    Brain tumor cellularity has been assessed by using apparent diffusion coefficient (ADC). However, the ADC value might be influenced by both perfusion and true molecular diffusion, and the perfusion effect on ADC can limit the reliability of ADC in the characterization of tumor cellularity, especially, in hypervascular brain tumors. In contrast, the IVIM technique estimates parameter values for diffusion and perfusion effects separately. The purpose of our study was to compare ADC and IVIM for differentiating among glioblastoma, metastatic tumor, and primary CNS lymphoma (PCNSL) focusing on diffusion-related parameter. We retrospectively reviewed the data of 128 patients with pathologically confirmed glioblastoma (n = 55), metastasis (n = 31), and PCNSL (n = 42) prior to any treatment. Two neuroradiologists independently calculated the maximum IVIM-f (fmax) and minimum IVIM-D (Dmin) by using 16 different b-values with a bi-exponential fitting of diffusion signal decay, minimum ADC (ADCmin) by using 0 and 1000 b-values with a mono-exponential fitting and maximum normalized cerebral blood volume (nCBVmax). The differences in fmax, Dmin, nCBVmax, and ADCmin among the three tumor pathologies were determined by one-way ANOVA with multiple comparisons. The fmax and Dmin were correlated to the corresponding nCBV and ADC using partial correlation analysis, respectively. Using a mono-exponential fitting of diffusion signal decay, the mean ADCmin was significantly lower in PCNSL than in glioblastoma and metastasis. However, using a bi-exponential fitting, the mean Dmin did not significantly differ in the three groups. The mean fmax significantly increased in the glioblastomas (reader 1, 0.103; reader 2, 0.109) and the metastasis (reader 1, 0.105; reader 2, 0.107), compared to the primary CNS lymphomas (reader 1, 0.025; reader 2, 0.023) (P < .001 for each). The correlation between fmax and the corresponding nCBV was highest in glioblastoma group, and the correlation between Dmin and the corresponding ADC was highest in primary CNS lymphomas group. Unlike ADC value derived from a mono-exponential fitting of diffusion signal, diffusion-related parametric value derived from a bi-exponential fitting with separation of perfusion effect doesn't differ among glioblastoma, metastasis, and PCNSL.

  9. The jump-off velocity of an impulsively loaded spherical shell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chabaud, Brandon M.; Brock, Jerry S.

    2012-04-13

    We consider a constant temperature spherical shell of isotropic, homogeneous, linearly elastic material with density {rho} and Lame coefficients {lambda} and {mu}. The inner and outer radii of the shell are r{sub i} and r{sub o}, respectively. We assume that the inside of the shell is a void. On the outside of the shell, we apply a uniform, time-varying pressure p(t). We also assume that the shell is initially at rest. We want to compute the jump-off time and velocity of the pressure wave, which are the first time after t = 0 at which the pressure wave from themore » outer surface reaches the inner surface. This analysis computes the jump-off velocity and time for both compressible and incompressible materials. This differs substantially from [3], where only incompressible materials are considered. We will consider the behavior of an impulsively loaded, exponentially decaying pressure wave p(t) = P{sub 0{sup e}}{sup -{alpha}t}, where {alpha} {ge} 0. We notice that a constant pressure wave P(t) = P{sub 0} is a special case ({alpha} = 0) of a decaying pressure wave. Both of these boundary conditions are considered in [3].« less

  10. Bone as an ion exchange system: evidence for a link between mechanotransduction and metabolic needs.

    PubMed

    Rubinacci, A; Covini, M; Bisogni, C; Villa, I; Galli, M; Palumbo, C; Ferretti, M; Muglia, M A; Marotti, G

    2002-04-01

    To detect whether the mutual interaction occurring between the osteocytes-bone lining cells system (OBLCS) and the bone extracellular fluid (BECF) is affected by load through a modification of the BECF-extracellular fluid (ECF; systemic extracellular fluid) gradient, mice metatarsal bones immersed in ECF were subjected ex vivo to a 2-min cyclic axial load of different amplitudes and frequencies. The electric (ionic) currents at the bone surface were measured by a vibrating probe after having exposed BECF to ECF through a transcortical hole. The application of different loads and different frequencies increased the ionic current in a dose-dependent manner. The postload current density subsequently decayed following an exponential pattern. Postload increment's amplitude and decay were dependent on bone viability. Dummy and static loads did not induce current density modifications. Because BECF is perturbed by loading, it is conceivable that OBLCS tends to restore BECF preload conditions by controlling ion fluxes at the bone-plasma interface to fulfill metabolic needs. Because the electric current reflects the integrated activity of OBLCS, its evaluation in transgenic mice engineered to possess genetic lesions in channels or matrix constituents could be helpful in the characterization of the mechanical and metabolic functions of bone.

  11. Fluorescence lifetimes of anthracycline drugs in phospholipid bilayers determined by frequency-domain fluorometry

    NASA Astrophysics Data System (ADS)

    Burke, Thomas G.; Malak, Henryk M.; Doroshow, James H.

    1990-05-01

    Time-resolved fluorescence intensity decay data from anthracycline anticancer drugs present in model membranes were obtained using a gigahertz frequency-domain fluorometer [Lakowicz et al. (1986) Rev. Sci. Instrum. 57, 2499-2506]. Exciting light of 290 nm, modulated at multiple frequencies from 8 MHz to 400 MHz, was used to study the interactions of Adriamycin, daunomycin and related antibiotics with small unilamellar vesicles composed of dimyristoylphosphatidylcholine (DMPC) at 28°C. Fluorescence decay data for drug molecules free in solution as well as bound to membranes were best fit by exponentials requiring two terms rather than by single exponential decays. For example, one-component analysis of the decay data for Adriamycin free in phosphate buffered saline (PBS) solution resulted in a reduced x2 value of 140 ((tau) = 0.88 ns), while a two-component fit resulted in a substantially smaller reduced x2 value of 2.6 ((tau)1 = 1.13 ns, (alpha)1 = 0.60, (tau)2 = 0.30 ns). Upon association with membranes, each of the anthracyclines studied displayed a larger r1 value while the r2 value remained the same or increased (for example, DMPC-bound Adriamycin showed r1 = 1.68 ns , a1 = 0 . 64 , r2 = 0 . 33 ns) . Analyses of the fluorescence emission decays of anthracyclines were also made assuming each decay is composed of a single Lorentzian distribution of lifetimes. Data taken on Adriamycin in PBS, when fit using one continuous component, displayed (tau), (alpha), w, and reduced x2 values of 0.68 ns, 1, 0.60 ns, and 9.1, respectively. The distribution became quite broad upon drug association with membrane (DMPCbound Adriamycin: (tau) = 0.75 ns, (alpha) = 1, w = 2.24 ns, x2 = 13). For each anthracycline studied, continuous component fits showed significant broadening in the distributions upon drug association with membrane. Relatively large shifts in lifetime values were observed for the carminomycin and 4-demethoxydaunomycin analogues upon binding model lipid membranes, making these agents good candidates to employ in future studies on anthracycline interactions with more environmentally-complex biological membranes.

  12. Octanol reduces end-plate channel lifetime

    PubMed Central

    Gage, Peter W.; McBurney, Robert N.; Van Helden, Dirk

    1978-01-01

    1. Post-synaptic effects of n-octanol at concentrations of 0·1-1 mM were examined in toad sartorius muscles by use of extracellular and voltage-clamp techniques. 2. Octanol depressed the amplitude and duration of miniature end-plate currents and hence depressed neuromuscular transmission. 3. The decay of miniature end-plate currents remained exponential in octanol solutions even when the time constant of decay (τD) was decreased by 80-90%. 4. The lifetime of end-plate channels, obtained by analysis of acetylcholine noise, was also decreased by octanol. The average lifetime measured from noise spectra agreed reasonably well with the time constant of decay of miniature end-plate currents, both in control solution and in octanol solutions. 5. Octanol caused a reduction in the conductance of end-plate channels. Single channel conductance was on average about 25 pS in control solution and 20 pS in octanol. 6. In most cells the normal voltage sensitivity of the decay of miniature end-plate currents was retained in octanol solutions. The lifetime of end-plate channels measured from acetylcholine noise also remained voltage-sensitive in octanol solutions. In some experiments in which channel lifetime was exceptionally reduced the voltage sensitivity was less than normal. 7. In octanol solutions, τD was still very sensitive to temperature changes in most cells although in some the temperature sensitivity of τD was clearly reduced. Changes in τD with temperature could generally be fitted by the Arrhenius equation suggesting that a single step reaction controlled the decay of currents both in control and in octanol solutions. In some cells in which τD became less than 0·3 ms, the relationship between τD and temperature became inconsistent with the Arrhenius equation. 8. As the decay of end-plate currents in octanol solutions remains exponential, and the voltage and temperature sensitivity can be unchanged even when τD is significantly reduced, it seems likely that octanol decreases τD by increasing the rate of the reaction which normally controls the lifetime of end-plate channels. PMID:203674

  13. Nocturnal Dynamics of Sleep-Wake Transitions in Patients With Narcolepsy.

    PubMed

    Zhang, Xiaozhe; Kantelhardt, Jan W; Dong, Xiao Song; Krefting, Dagmar; Li, Jing; Yan, Han; Pillmann, Frank; Fietze, Ingo; Penzel, Thomas; Zhao, Long; Han, Fang

    2017-02-01

    We investigate how characteristics of sleep-wake dynamics in humans are modified by narcolepsy, a clinical condition that is supposed to destabilize sleep-wake regulation. Subjects with and without cataplexy are considered separately. Differences in sleep scoring habits as a possible confounder have been examined. Four groups of subjects are considered: narcolepsy patients from China with (n = 88) and without (n = 15) cataplexy, healthy controls from China (n = 110) and from Europe (n = 187, 2 nights each). After sleep-stage scoring and calculation of sleep characteristic parameters, the distributions of wake-episode durations and sleep-episode durations are determined for each group and fitted by power laws (exponent α) and by exponentials (decay time τ). We find that wake duration distributions are consistent with power laws for healthy subjects (China: α = 0.88, Europe: α = 1.02). Wake durations in all groups of narcolepsy patients, however, follow the exponential law (τ = 6.2-8.1 min). All sleep duration distributions are best fitted by exponentials on long time scales (τ = 34-82 min). We conclude that narcolepsy mainly alters the control of wake-episode durations but not sleep-episode durations, irrespective of cataplexy. Observed distributions of shortest wake and sleep durations suggest that differences in scoring habits regarding the scoring of short-term sleep stages may notably influence the fitting parameters but do not affect the main conclusion. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  14. Biodegradation of Dense Non-Aqueous Phase Liquids (DNAPL) Through Bioaugmentation of Source Areas - Dover National Test Site, Dover, Delaware

    DTIC Science & Technology

    2008-08-01

    the distribution of DNAPL. The OSU research team evaluated the use of radon as a partitioning groundwater tracer. The DNAPL release fulfilled one...close to the source area generated more PCE equivalent mass over time. The exponential decay from the fitted line (predicted PCE, orange line in each

  15. Background photobleaching in raman spectra of aqueous solutions of plant toxins

    NASA Astrophysics Data System (ADS)

    Brandt, Nikolai N.; Chikishev, Andrey Y.; Tonevitsky, Alexander G.

    2002-05-01

    Kinetics of background photobleaching in Raman spectra of aqueous solutions of ricin, ricin agglutinin and ricin binding subunit were measured. It was found that the spectrum of Raman background changes upon laser irradiation. Background intensity is lower for the samples with lower molecular weight. Photobleaching is characterized by oscillations in the multi exponentially decaying intensity.

  16. The Beer Lambert law measurement made easy

    NASA Astrophysics Data System (ADS)

    Onorato, Pasquale; Gratton, Luigi M.; Polesello, Marta; Salmoiraghi, Alessandro; Oss, Stefano

    2018-05-01

    We propose the use of a smartphone based apparatus as a valuable tool for investigating the optical absorption of a material and to verify the exponential decay predicted by Beer’s law. The very simple experimental activities presented here, suitable for undergraduate students, allows one to measure the material transmittance including its dependence on the incident radiation wavelength.

  17. Post-earthquake dilatancy recovery

    NASA Technical Reports Server (NTRS)

    Scholz, C. H.

    1974-01-01

    Geodetic measurements of the 1964 Niigata, Japan earthquake and of three other examples are briefly examined. They show exponentially decaying subsidence for a year after the quakes. The observations confirm the dilatancy-fluid diffusion model of earthquake precursors and clarify the extent and properties of the dilatant zone. An analysis using one-dimensional consolidation theory is included which agrees well with this interpretation.

  18. Leaching of radionuclides from decaying blueberry leaves: Relative rate independent of concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppard, S.C.; Evenden, W.G.

    Leaching of radionuclides from decaying vegetation has not been extensively investigated, especially for radionuclides other than {sup 137}Cs. The authors obtained leaves of blueberry (Vaccinium angustifolium {times} V. corymbosum) that contained over 25-fold ranges in Se, Cs, and I concentrations, as well as a small quantity of leaves containing detectable U. All were contaminated by way of root uptake. Leaching took place for a period of 1 yr in the laboratory, using leach water from forest litter. Monthly, measurements were made of the radionuclide contents and decaying leaf dry weights. The data conformed to an exponential decay model with twomore » first-order components. In no case did the relative loss rates vary systematically with the initial tissue radionuclide concentrations. Loss rates decreased in the order Cs > I > U > dry wt. > Se. Because of the low leaching rate of Se relative to the loss of dry weight, decaying litter may actually accumulate elements such as Se. Accumulation of radionuclides in litter could have important implications for lateral transport, recycling, and direct incorporation into edible mushrooms.« less

  19. Dependence of two-proton radioactivity on nuclear pairing models

    NASA Astrophysics Data System (ADS)

    Oishi, Tomohiro; Kortelainen, Markus; Pastore, Alessandro

    2017-10-01

    Sensitivity of two-proton emitting decay to nuclear pairing correlation is discussed within a time-dependent three-body model. We focus on the 6Be nucleus assuming α +p +p configuration, and its decay process is described as a time evolution of the three-body resonance state. For a proton-proton subsystem, a schematic density-dependent contact (SDDC) pairing model is employed. From the time-dependent calculation, we observed the exponential decay rule of a two-proton emission. It is shown that the density dependence does not play a major role in determining the decay width, which can be controlled only by the asymptotic strength of the pairing interaction. This asymptotic pairing sensitivity can be understood in terms of the dynamics of the wave function driven by the three-body Hamiltonian, by monitoring the time-dependent density distribution. With this simple SDDC pairing model, there remains an impossible trinity problem: it cannot simultaneously reproduce the empirical Q value, decay width, and the nucleon-nucleon scattering length. This problem suggests that a further sophistication of the theoretical pairing model is necessary, utilizing the two-proton radioactivity data as the reference quantities.

  20. Efficiency Analysis of Waveform Shape for Electrical Excitation of Nerve Fibers

    PubMed Central

    Wongsarnpigoon, Amorn; Woock, John P.; Grill, Warren M.

    2011-01-01

    Stimulation efficiency is an important consideration in the stimulation parameters of implantable neural stimulators. The objective of this study was to analyze the effects of waveform shape and duration on the charge, power, and energy efficiency of neural stimulation. Using a population model of mammalian axons and in vivo experiments on cat sciatic nerve, we analyzed the stimulation efficiency of four waveform shapes: square, rising exponential, decaying exponential, and rising ramp. No waveform was simultaneously energy-, charge-, and power-optimal, and differences in efficiency among waveform shapes varied with pulse width (PW) For short PWs (≤ 0.1 ms), square waveforms were no less energy-efficient than exponential waveforms, and the most charge-efficient shape was the ramp. For long PWs (≥0.5 ms), the square was the least energy-efficient and charge-efficient shape, but across most PWs, the square was the most power-efficient shape. Rising exponentials provided no practical gains in efficiency over the other shapes, and our results refute previous claims that the rising exponential is the energy-optimal shape. An improved understanding of how stimulation parameters affect stimulation efficiency will help improve the design and programming of implantable stimulators to minimize tissue damage and extend battery life. PMID:20388602

  1. Correction Approach for Delta Function Convolution Model Fitting of Fluorescence Decay Data in the Case of a Monoexponential Reference Fluorophore.

    PubMed

    Talbot, Clifford B; Lagarto, João; Warren, Sean; Neil, Mark A A; French, Paul M W; Dunsby, Chris

    2015-09-01

    A correction is proposed to the Delta function convolution method (DFCM) for fitting a multiexponential decay model to time-resolved fluorescence decay data using a monoexponential reference fluorophore. A theoretical analysis of the discretised DFCM multiexponential decay function shows the presence an extra exponential decay term with the same lifetime as the reference fluorophore that we denote as the residual reference component. This extra decay component arises as a result of the discretised convolution of one of the two terms in the modified model function required by the DFCM. The effect of the residual reference component becomes more pronounced when the fluorescence lifetime of the reference is longer than all of the individual components of the specimen under inspection and when the temporal sampling interval is not negligible compared to the quantity (τR (-1) - τ(-1))(-1), where τR and τ are the fluorescence lifetimes of the reference and the specimen respectively. It is shown that the unwanted residual reference component results in systematic errors when fitting simulated data and that these errors are not present when the proposed correction is applied. The correction is also verified using real data obtained from experiment.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranson, W.F.; Schaeffel, J.A.; Murphree, E.A.

    The response of prestressed and preheated plates subject to an exponentially decaying blast load was experimentally determined. A grid was reflected from the front surface of the plate and the response was recorded with a high speed camera. The camera used in this analysis was a rotating drum camera operating at 20,000 frames per second with a maximum of 224 frames at 39 microseconds separation. Inplane tension loads were applied to the plate by means of air cylinders. Maximum biaxial load applied to the plate was 500 pounds. Plate preheating was obtained with resistance heaters located in the specimen platemore » holder with a maximum capability of 500F. Data analysis was restricted to the maximum conditions at the center of the plate. Strains were determined from the photographic data and the stresses were calculated from the strain data. Results were obtained from zero preload conditions to a maximum of 480 pounds inplane tension loads and a plate temperature of 490F. The blast load ranged from 6 to 23 psi.« less

  3. Impact of Environmental Conditions on the Survival of Cryptosporidium and Giardia on Environmental Surfaces

    PubMed Central

    Alum, Absar; Absar, Isra M.; Asaad, Hamas; Rubino, Joseph R.; Ijaz, M. Khalid

    2014-01-01

    The objective of this study was to find out the impact of environmental conditions on the survival of intestinal parasites on environmental surfaces commonly implicated in the transmission of these parasites. The study was performed by incubating Cryptosporidium and Giardia (oo)cysts on environmentally relevant surfaces such as brushed stainless steel, formica, ceramic, fabric, and skin. Parallel experiments were conducted using clean and soiled coupons incubated under three temperatures. The die-off coefficient rates (K) were calculated using first-order exponential formula. For both parasites, the fastest die-off was recorded on fabric, followed by ceramic, formica, skin, and steel. Die-off rates were directly correlated to the incubation temperatures and surface porosity. The presence of organic matter enhanced the survivability of the resting stages of test parasites. The decay rates calculated in this study can be used in models for public health decision-making process and highlights the mitigation role of hand hygiene agents in their prevention and control. PMID:25045350

  4. Bi-exponential T2 analysis of healthy and diseased Achilles tendons: an in vivo preliminary magnetic resonance study and correlation with clinical score.

    PubMed

    Juras, Vladimir; Apprich, Sebastian; Szomolanyi, Pavol; Bieri, Oliver; Deligianni, Xeni; Trattnig, Siegfried

    2013-10-01

    To compare mono- and bi-exponential T2 analysis in healthy and degenerated Achilles tendons using a recently introduced magnetic resonance variable-echo-time sequence (vTE) for T2 mapping. Ten volunteers and ten patients were included in the study. A variable-echo-time sequence was used with 20 echo times. Images were post-processed with both techniques, mono- and bi-exponential [T2 m, short T2 component (T2 s) and long T2 component (T2 l)]. The number of mono- and bi-exponentially decaying pixels in each region of interest was expressed as a ratio (B/M). Patients were clinically assessed with the Achilles Tendon Rupture Score (ATRS), and these values were correlated with the T2 values. The means for both T2 m and T2 s were statistically significantly different between patients and volunteers; however, for T2 s, the P value was lower. In patients, the Pearson correlation coefficient between ATRS and T2 s was -0.816 (P = 0.007). The proposed variable-echo-time sequence can be successfully used as an alternative method to UTE sequences with some added benefits, such as a short imaging time along with relatively high resolution and minimised blurring artefacts, and minimised susceptibility artefacts and chemical shift artefacts. Bi-exponential T2 calculation is superior to mono-exponential in terms of statistical significance for the diagnosis of Achilles tendinopathy. • Magnetic resonance imaging offers new insight into healthy and diseased Achilles tendons • Bi-exponential T2 calculation in Achilles tendons is more beneficial than mono-exponential • A short T2 component correlates strongly with clinical score • Variable echo time sequences successfully used instead of ultrashort echo time sequences.

  5. Decay of superconducting correlations for gauged electrons in dimensions D ≤ 4

    NASA Astrophysics Data System (ADS)

    Tada, Yasuhiro; Koma, Tohru

    2018-03-01

    We study lattice superconductors coupled to gauge fields, such as an attractive Hubbard model in electromagnetic fields, with a standard gauge fixing. We prove upper bounds for a two-point Cooper pair correlation at finite temperatures in spatial dimensions D ≤ 4. The upper bounds decay exponentially in three dimensions and by power law in four dimensions. These imply the absence of the superconducting long-range order for the Cooper pair amplitude as a consequence of fluctuations of the gauge fields. Since our results hold for the gauge fixing Hamiltonian, they cannot be obtained as a corollary of Elitzur's theorem.

  6. Wigner functions for evanescent waves.

    PubMed

    Petruccelli, Jonathan C; Tian, Lei; Oh, Se Baek; Barbastathis, George

    2012-09-01

    We propose phase space distributions, based on an extension of the Wigner distribution function, to describe fields of any state of coherence that contain evanescent components emitted into a half-space. The evanescent components of the field are described in an optical phase space of spatial position and complex-valued angle. Behavior of these distributions upon propagation is also considered, where the rapid decay of the evanescent components is associated with the exponential decay of the associated phase space distributions. To demonstrate the structure and behavior of these distributions, we consider the fields generated from total internal reflection of a Gaussian Schell-model beam at a planar interface.

  7. Detection of weak signals in memory thermal baths.

    PubMed

    Jiménez-Aquino, J I; Velasco, R M; Romero-Bastida, M

    2014-11-01

    The nonlinear relaxation time and the statistics of the first passage time distribution in connection with the quasideterministic approach are used to detect weak signals in the decay process of the unstable state of a Brownian particle embedded in memory thermal baths. The study is performed in the overdamped approximation of a generalized Langevin equation characterized by an exponential decay in the friction memory kernel. A detection criterion for each time scale is studied: The first one is referred to as the receiver output, which is given as a function of the nonlinear relaxation time, and the second one is related to the statistics of the first passage time distribution.

  8. Non-Classical Smoothening of Nano-Scale Surface Corrugations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, Michael J.; Chason, Eric; Erlebacher, Jonah

    1999-05-20

    We report the first experimental observation of non-classical morphological equilibration of a corrugated crystalline surface. Periodic rippled structures with wavelengths of 290-550 nm were made on Si(OO1) by sputter rippling and then annealed at 650 - 750 °C. In contrast to the classical exponential decay with time, the ripple amplitude, A {lambda}(t), followed an inverse linear decay, A {lambda}(t)= A {lambda}(0)/(1 +k {lambda}t), agreeing with a prediction of Ozdemir and Zangwill. We measure the activation energy for surface relaxation to be 1.6±0.2 eV, consistent with an interpretation that dimers mediate transport.

  9. Acoustic field of a pulsating cylinder in a rarefied gas: Thermoviscous and curvature effects

    NASA Astrophysics Data System (ADS)

    Ben Ami, Y.; Manela, A.

    2017-09-01

    We study the acoustic field of a circular cylinder immersed in a rarefied gas and subject to harmonic small-amplitude normal-to-wall displacement and heat-flux excitations. The problem is analyzed in the entire range of gas rarefaction rates and excitation frequencies, considering both single cylinder and coaxial cylinders setups. Numerical calculations are carried out via the direct simulation Monte Carlo method, applying a noniterative algorithm to impose the boundary heat-flux condition. Analytical predictions are obtained in the limits of ballistic- and continuum-flow conditions. Comparing with a reference inviscid continuum solution, the results illustrate the specific impacts of gas rarefaction and boundary curvature on the acoustic source efficiency. Inspecting the far-field properties of the generated disturbance, the continuum-limit solution exhibits an exponential decay of the signal with the distance from the source, reflecting thermoviscous effects, and accompanied by an inverse square-root decay, characteristic of the inviscid problem. Stronger attenuation is observed in the ballistic limit, where boundary curvature results in "geometric reduction" of the molecular layer affected by the source, and the signal vanishes at a distance of few acoustic wavelengths from the cylinder. The combined effects of mechanical and thermal excitations are studied to seek for optimal conditions to monitor the vibroacoustic signal. The impact of boundary curvature becomes significant in the ballistic-flow regime, where the optimal heat-flux amplitude required for sound reduction decreases with the distance from the source and is essentially a function of the acoustic-wavelength-scaled distance only.

  10. Experimental investigation of gravity wave turbulence and of non-linear four wave interactions..

    NASA Astrophysics Data System (ADS)

    Berhanu, Michael

    2017-04-01

    Using the large basins of the Ecole Centrale de Nantes (France), non-linear interactions of gravity surface waves are experimentally investigated. In a first part we study statistical properties of a random wave field regarding the insights from the Wave Turbulence Theory. In particular freely decaying gravity wave turbulence is generated in a closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonl-inear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, non-linear and dissipative time scales to test the time scale separation. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant of the weak turbulence theory is evaluated. In a second part, resonant interactions of oblique surface gravity waves in a large basin are studied. We generate two oblique waves crossing at an acute angle. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory. L. Deike, B. Miquel, P. Gutiérrez, T. Jamin, B. Semin, M. Berhanu, E. Falcon and F. Bonnefoy, Role of the basin boundary conditions in gravity wave turbulence, Journal of Fluid Mechanics 781, 196 (2015) F. Bonnefoy, F. Haudin, G. Michel, B. Semin, T. Humbert, S. Aumaître, M. Berhanu and E. Falcon, Observation of resonant interactions among surface gravity waves, Journal of Fluid Mechanics (Rapids) 805, R3 (2016)

  11. Modification of a method-of-characteristics solute-transport model to incorporate decay and equilibrium-controlled sorption or ion exchange

    USGS Publications Warehouse

    Goode, D.J.; Konikow, Leonard F.

    1989-01-01

    The U.S. Geological Survey computer model of two-dimensional solute transport and dispersion in ground water (Konikow and Bredehoeft, 1978) has been modified to incorporate the following types of chemical reactions: (1) first-order irreversible rate-reaction, such as radioactive decay; (2) reversible equilibrium-controlled sorption with linear, Freundlich, or Langmuir isotherms; and (3) reversible equilibrium-controlled ion exchange for monovalent or divalent ions. Numerical procedures are developed to incorporate these processes in the general solution scheme that uses method-of- characteristics with particle tracking for advection and finite-difference methods for dispersion. The first type of reaction is accounted for by an exponential decay term applied directly to the particle concentration. The second and third types of reactions are incorporated through a retardation factor, which is a function of concentration for nonlinear cases. The model is evaluated and verified by comparison with analytical solutions for linear sorption and decay, and by comparison with other numerical solutions for nonlinear sorption and ion exchange.

  12. Deformation dependence of proton decay rates and angular distributions in a time-dependent approach

    NASA Astrophysics Data System (ADS)

    Carjan, N.; Talou, P.; Strottman, D.

    1998-12-01

    A new, time-dependent, approach to proton decay from axially symmetric deformed nuclei is presented. The two-dimensional time-dependent Schrödinger equation for the interaction between the emitted proton and the rest of the nucleus is solved numerically for well defined initial quasi-stationary proton states. Applied to the hypothetical proton emission from excited states in deformed nuclei of 208Pb, this approach shows that the problem cannot be reduced to one dimension. There are in general more than one directions of emission with wide distributions around them, determined mainly by the quantum numbers of the initial wave function rather than by the potential landscape. The distribution of the "residual" angular momentum and its variation in time play a major role in the determination of the decay rate. In a couple of cases, no exponential decay was found during the calculated time evolution (2×10-21 sec) although more than half of the wave function escaped during that time.

  13. Uncovering Patterns of Inter-Urban Trip and Spatial Interaction from Social Media Check-In Data

    PubMed Central

    Liu, Yu; Sui, Zhengwei; Kang, Chaogui; Gao, Yong

    2014-01-01

    The article revisits spatial interaction and distance decay from the perspective of human mobility patterns and spatially-embedded networks based on an empirical data set. We extract nationwide inter-urban movements in China from a check-in data set that covers half a million individuals within 370 cities to analyze the underlying patterns of trips and spatial interactions. By fitting the gravity model, we find that the observed spatial interactions are governed by a power law distance decay effect. The obtained gravity model also closely reproduces the exponential trip displacement distribution. The movement of an individual, however, may not obey the same distance decay effect, leading to an ecological fallacy. We also construct a spatial network where the edge weights denote the interaction strengths. The communities detected from the network are spatially cohesive and roughly consistent with province boundaries. We attribute this pattern to different distance decay parameters between intra-province and inter-province trips. PMID:24465849

  14. Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data.

    PubMed

    Liu, Yu; Sui, Zhengwei; Kang, Chaogui; Gao, Yong

    2014-01-01

    The article revisits spatial interaction and distance decay from the perspective of human mobility patterns and spatially-embedded networks based on an empirical data set. We extract nationwide inter-urban movements in China from a check-in data set that covers half a million individuals within 370 cities to analyze the underlying patterns of trips and spatial interactions. By fitting the gravity model, we find that the observed spatial interactions are governed by a power law distance decay effect. The obtained gravity model also closely reproduces the exponential trip displacement distribution. The movement of an individual, however, may not obey the same distance decay effect, leading to an ecological fallacy. We also construct a spatial network where the edge weights denote the interaction strengths. The communities detected from the network are spatially cohesive and roughly consistent with province boundaries. We attribute this pattern to different distance decay parameters between intra-province and inter-province trips.

  15. Influence of Energetic Disorder on Exciton Lifetime and Photoluminescence Efficiency in Conjugated Polymers.

    PubMed

    Rörich, Irina; Mikhnenko, Oleksandr V; Gehrig, Dominik; Blom, Paul W M; Crăciun, N Irina

    2017-02-16

    Using time-resolved photoluminescence (TRPL) spectroscopy the exciton lifetime in a range of conjugated polymers is investigated. For poly(p-phenylenevinylene) (PPV)-based derivatives and a polyspirobifluorene copolymer (PSBF) we find that the exciton lifetime is correlated with the energetic disorder. Better ordered polymers exhibit a single exponential PL decay with exciton lifetimes of a few hundred picoseconds, whereas polymers with a larger degree of disorder show multiexponential PL decays with exciton lifetimes in the nanosecond regime. These observations are consistent with diffusion-limited exciton quenching at nonradiative recombination centers. The measured PL decay time reflects the time that excitons need to diffuse toward these quenching sites. Conjugated polymers with large energetic disorder and thus longer exciton lifetime also exhibit a higher photoluminescence quantum yield due to the slower exciton diffusion toward nonradiative quenching sites.

  16. Coarsening and persistence in a one-dimensional system of orienting arrowheads: Domain-wall kinetics with A +B →0

    NASA Astrophysics Data System (ADS)

    Khandkar, Mahendra D.; Stinchcombe, Robin; Barma, Mustansir

    2017-01-01

    We demonstrate the large-scale effects of the interplay between shape and hard-core interactions in a system with left- and right-pointing arrowheads <> on a line, with reorientation dynamics. This interplay leads to the formation of two types of domain walls, >< (A ) and <> (B ). The correlation length in the equilibrium state diverges exponentially with increasing arrowhead density, with an ordered state of like orientations arising in the limit. In this high-density limit, the A domain walls diffuse, while the B walls are static. In time, the approach to the ordered state is described by a coarsening process governed by the kinetics of domain-wall annihilation A +B →0 , quite different from the A +A →0 kinetics pertinent to the Glauber-Ising model. The survival probability of a finite set of walls is shown to decay exponentially with time, in contrast to the power-law decay known for A +A →0 . In the thermodynamic limit with a finite density of walls, coarsening as a function of time t is studied by simulation. While the number of walls falls as t-1/2, the fraction of persistent arrowheads decays as t-θ where θ is close to 1/4 , quite different from the Ising value. The global persistence too has θ =1/4 , as follows from a heuristic argument. In a generalization where the B walls diffuse slowly, θ varies continuously, increasing with increasing diffusion constant.

  17. Coarsening and persistence in a one-dimensional system of orienting arrowheads: Domain-wall kinetics with A+B→0.

    PubMed

    Khandkar, Mahendra D; Stinchcombe, Robin; Barma, Mustansir

    2017-01-01

    We demonstrate the large-scale effects of the interplay between shape and hard-core interactions in a system with left- and right-pointing arrowheads <> on a line, with reorientation dynamics. This interplay leads to the formation of two types of domain walls, >< (A) and <> (B). The correlation length in the equilibrium state diverges exponentially with increasing arrowhead density, with an ordered state of like orientations arising in the limit. In this high-density limit, the A domain walls diffuse, while the B walls are static. In time, the approach to the ordered state is described by a coarsening process governed by the kinetics of domain-wall annihilation A+B→0, quite different from the A+A→0 kinetics pertinent to the Glauber-Ising model. The survival probability of a finite set of walls is shown to decay exponentially with time, in contrast to the power-law decay known for A+A→0. In the thermodynamic limit with a finite density of walls, coarsening as a function of time t is studied by simulation. While the number of walls falls as t^{-1/2}, the fraction of persistent arrowheads decays as t^{-θ} where θ is close to 1/4, quite different from the Ising value. The global persistence too has θ=1/4, as follows from a heuristic argument. In a generalization where the B walls diffuse slowly, θ varies continuously, increasing with increasing diffusion constant.

  18. Semi-empirical scaling for ion–atom single charge exchange cross sections in the intermediate velocity regime

    DOE PAGES

    Friedman, B.; DuCharme, G.

    2017-05-11

    We present a semi-empirical scaling law for non-resonant ion–atom single charge exchange cross sections for collisions with velocities frommore » $${10}^{7}\\,{\\rm{t}}{\\rm{o}}\\,{10}^{9}\\,\\mathrm{cm}\\,{{\\rm{s}}}^{-1}$$ and ions with positive charge $$q\\lt 8$$. Non-resonant cross sections tend to have a velocity peak at collision velocities $$v\\lesssim 1\\ {\\rm{a}}{\\rm{u}}$$ with exponential decay around this peak. We construct a scaling formula for the location of this peak then choose a functional form for the cross section curve and scale it. The velocity at which the cross section peaks, v m, is proportional to the energy defect of the collision, $${\\rm{\\Delta }}E$$, which we predict with the decay approximation. The value of the cross section maximum is proportional to the charge state q, inversely proportional to the target ionization energy I T, and inversely proportional to v m. For the shape of the cross section curve, we use a function that decays exponentially asymptotically at high and low velocities. We scale this function with parameters $${v}_{{\\rm{m}}},{I}_{{\\rm{T}}},{Z}_{{\\rm{T}}},\\mathrm{and}\\ {Z}_{{\\rm{P}}}$$, where the $${Z}_{{\\rm{T}},{\\rm{P}}}$$ are the target and projectile atomic numbers. In conclusion, for the more than 100 cross section curves that we use to find the scaling rules, the scaling law predicts cross sections within a little over a factor of 2 on average.« less

  19. Non-linear Frequency Shifts, Mode Couplings, and Decay Instability of Plasma Waves

    NASA Astrophysics Data System (ADS)

    Affolter, Mathew; Anderegg, F.; Driscoll, C. F.; Valentini, F.

    2015-11-01

    We present experiments and theory for non-linear plasma wave decay to longer wavelengths, in both the oscillatory coupling and exponential decay regimes. The experiments are conducted on non-neutral plasmas in cylindrical Penning-Malmberg traps, θ-symmetric standing plasma waves have near acoustic dispersion ω (kz) ~kz - αkz2 , discretized by kz =mz (π /Lp) . Large amplitude waves exhibit non-linear frequency shifts δf / f ~A2 and Fourier harmonic content, both of which are increased as the plasma dispersion is reduced. Non-linear coupling rates are measured between large amplitude mz = 2 waves and small amplitude mz = 1 waves, which have a small detuning Δω = 2ω1 -ω2 . At small excitation amplitudes, this detuning causes the mz = 1 mode amplitude to ``bounce'' at rate Δω , with amplitude excursions ΔA1 ~ δn2 /n0 consistent with cold fluid theory and Vlasov simulations. At larger excitation amplitudes, where the non-linear coupling exceeds the dispersion, phase-locked exponential growth of the mz = 1 mode is observed, in qualitative agreement with simple 3-wave instability theory. However, significant variations are observed experimentally, and N-wave theory gives stunningly divergent predictions that depend sensitively on the dispersion-moderated harmonic content. Measurements on higher temperature Langmuir waves and the unusual ``EAW'' (KEEN) waves are being conducted to investigate the effects of wave-particle kinetics on the non-linear coupling rates. Department of Energy Grants DE-SC0002451and DE-SC0008693.

  20. Strain energy release rates of composite interlaminar end-notch and mixed-mode fracture: A sublaminate/ply level analysis and a computer code

    NASA Technical Reports Server (NTRS)

    Valisetty, R. R.; Chamis, C. C.

    1987-01-01

    A computer code is presented for the sublaminate/ply level analysis of composite structures. This code is useful for obtaining stresses in regions affected by delaminations, transverse cracks, and discontinuities related to inherent fabrication anomalies, geometric configurations, and loading conditions. Particular attention is focussed on those layers or groups of layers (sublaminates) which are immediately affected by the inherent flaws. These layers are analyzed as homogeneous bodies in equilibrium and in isolation from the rest of the laminate. The theoretical model used to analyze the individual layers allows the relevant stresses and displacements near discontinuities to be represented in the form of pure exponential-decay-type functions which are selected to eliminate the exponential-precision-related difficulties in sublaminate/ply level analysis. Thus, sublaminate analysis can be conducted without any restriction on the maximum number of layers, delaminations, transverse cracks, or other types of discontinuities. In conjunction with the strain energy release rate (SERR) concept and composite micromechanics, this computational procedure is used to model select cases of end-notch and mixed-mode fracture specimens. The computed stresses are in good agreement with those from a three-dimensional finite element analysis. Also, SERRs compare well with limited available experimental data.

  1. Room temperature deposition of gold onto the diffuse and sharp diffraction spot Si(111)-( 3 × 3) R30° Au surfaces

    NASA Astrophysics Data System (ADS)

    Plass, Richard; Marks, Laurence D.

    1996-06-01

    Room temperature gold depositions onto Si(111)-( 3 × 3) R30° Au surfaces with diffuse and sharp diffraction spots [Surf. Sci. 242 (1991) 73] (diffuse and sharp 3 × 3 Au hereafter) under UHV conditions has been monitored using transmission electron diffraction (TED). Both systems display an increase in surface structure diffraction spot intensities up to the completion of 1.0 monolayer (ML) after which the surface beams display an exponential decrease in intensity with coverage. The exponential decay rate decreases after roughly 1.33 ML. These results can be attributed to gold initially diffusing to and filling 3 × 3 Au gold trimer sites in vacancy type surface domain walls [Surf. Sci. 342 (1995) 233], then filling one of three possible sites on the 3 × 3 Au structure with essentially no surface diffusion, disrupting nearby gold trimers. Gold deposition onto the diffuse type structure caused the formation and expansion of satellite arcs around the strongest 3 × 3 beams similar to those seen by others [Surf. Sci. 242 (1991) 73; Jpn. J. Appl. Phys. 16 (1977) 891; J. Vac. Sci. Technol. A 10 (1992) 3486] at elevated temperatures while the sharp structure displayed only a modest shoulder formation near the strongest 3 × 3 beams.

  2. Developing a polymeric sensor to monitor intracellular conditions

    NASA Astrophysics Data System (ADS)

    Mudarri, Timothy C.; Leo, Donald J.; Wood, Brett C.; Shires, Peter K.

    2004-07-01

    Ionic electroactive polymers have been developed as mechanical sensors or actuators, taking advantage of the electromechanical coupling of the materials. This research attempts to take advantage of the chemomechanical and chemoelectrical coupling by characterizing the transient response as the polymer undergoes an ion exchange, thus using the polymer for ionic sensing. Nafion is a biocompatible material, and an implantable polymeric ion sensor which has applications in the biomedical field for bone healing research. An ion sensor and a strain gauge could determine the effects of motion allowed at the fracture site, thus improving rehabilitation procedures for bone fractures. The charge sensitivity of the material and the capacitance of the material were analyzed to determine the transient response. Both measures indicate a change when immersed in ionic salt solutions. It is demonstrated that measuring the capacitance is the best indicator of an ion exchange. Relative to a flat response in deionized water (+/-2%), the capacitance of the polymer exhibits an exponential decay of ~25% of its peak when placed in a salt solution. A linear correlation between the time constant of the decay and the ionic size of the exchanging ion was developed that could reasonably predict a diffusing ion. Tests using an energy dispersive spectrometer (EDS) indicate that 90% of the exchange occurs in the first 20 minutes, shown by both capacitance decay and an atomic level scan. The diffusion rate time constant was found to within 0.3% of the capacitance time constant, confirming the ability of capacitance to measure ion exchange.

  3. Opening up the QCD axion window

    NASA Astrophysics Data System (ADS)

    Agrawal, Prateek; Marques-Tavares, Gustavo; Xue, Wei

    2018-03-01

    We present a new mechanism to deplete the energy density of the QCD axion, making decay constants as high as f a ≃ 1017 GeV viable for generic initial conditions. In our setup, the axion couples to a massless dark photon with a coupling that is moderately stronger than the axion coupling to gluons. Dark photons are produced copiously through a tachyonic instability when the axion field starts oscillating, and an exponential suppression of the axion density can be achieved. For a large part of the parameter space this dark radiation component of the universe can be observable in upcoming CMB experiments. Such dynamical depletion of the axion density ameliorates the isocurvature bound on the scale of inflation. The depletion also amplifies the power spectrum at scales that enter the horizon before particle production begins, potentially leading to axion miniclusters.

  4. Memory effects on a resonate-and-fire neuron model subjected to Ornstein-Uhlenbeck noise

    NASA Astrophysics Data System (ADS)

    Paekivi, S.; Mankin, R.; Rekker, A.

    2017-10-01

    We consider a generalized Langevin equation with an exponentially decaying memory kernel as a model for the firing process of a resonate-and-fire neuron. The effect of temporally correlated random neuronal input is modeled as Ornstein-Uhlenbeck noise. In the noise-induced spiking regime of the neuron, we derive exact analytical formulas for the dependence of some statistical characteristics of the output spike train, such as the probability distribution of the interspike intervals (ISIs) and the survival probability, on the parameters of the input stimulus. Particularly, on the basis of these exact expressions, we have established sufficient conditions for the occurrence of memory-time-induced transitions between unimodal and multimodal structures of the ISI density and a critical damping coefficient which marks a dynamical transition in the behavior of the system.

  5. Studies of Elementary Reactions of Chemical Importance in the Atmospheres of Planets

    NASA Technical Reports Server (NTRS)

    Nesbitt, Fred L.

    2001-01-01

    The methyl self-reaction was studied at T = 298 K and 202 K and at three different pressures, P = 0.5, 1.0, and 2.1 Torr. The experimental measurements were performed in our discharge flow-mass spectrometer (DF-MS) apparatus. The methyl radicals were generated by the reaction of F with methane. Passing a mixture of molecular fluorine, F2, in helium through a microwave cavity generated the atomic fluorine reagent. The atomic F enters the flow tube through a rear port on the flow tube. The methane reagent enters the flow tube through a movable injector located coaxial in the flow tube. The decay of methyl radical signal was monitored at a mass/charge ratio (m/z) of 15 as a function of the injector distance. To minimize secondary chemistry from the reaction CH3 + F to CH2 + HF the initial [CH4](sub 0)/[F](sub 0) was above 37.0 and typically 100. This ensures a 1:1 relationship between initial [F] and [CH3]. A titration of F with excess Cl2 yields the initial [F](sub 0). Our experimental methodology to accurately measure the mass spectrometer scaling factor, i.e., the relationship between initial signal and [CH3](sub 0) has been improved. Now we measure the CH3 signal decay under exponential decay conditions at low initial [F](sub 0), 3x10(exp 11) molecule/cc, in the presence of Cl2. This minimizes the second-order decay contributed by the CH3 self-reaction and a simple extrapolation of the 1n(signal) vs time plot to t = 0 gives the initial signal. This provides the desired relationship between initial signal at 15 amu and [CH3](sub 0). The resulting calibration is then applied to the observed decay of the CH3 signal at high concentrations of CH3 assuming linearity of this scaling factor.

  6. Anomalous yet Brownian.

    PubMed

    Wang, Bo; Anthony, Stephen M; Bae, Sung Chul; Granick, Steve

    2009-09-08

    We describe experiments using single-particle tracking in which mean-square displacement is simply proportional to time (Fickian), yet the distribution of displacement probability is not Gaussian as should be expected of a classical random walk but, instead, is decidedly exponential for large displacements, the decay length of the exponential being proportional to the square root of time. The first example is when colloidal beads diffuse along linear phospholipid bilayer tubes whose radius is the same as that of the beads. The second is when beads diffuse through entangled F-actin networks, bead radius being less than one-fifth of the actin network mesh size. We explore the relevance to dynamic heterogeneity in trajectory space, which has been extensively discussed regarding glassy systems. Data for the second system might suggest activated diffusion between pores in the entangled F-actin networks, in the same spirit as activated diffusion and exponential tails observed in glassy systems. But the first system shows exceptionally rapid diffusion, nearly as rapid as for identical colloids in free suspension, yet still displaying an exponential probability distribution as in the second system. Thus, although the exponential tail is reminiscent of glassy systems, in fact, these dynamics are exceptionally rapid. We also compare with particle trajectories that are at first subdiffusive but Fickian at the longest measurement times, finding that displacement probability distributions fall onto the same master curve in both regimes. The need is emphasized for experiments, theory, and computer simulation to allow definitive interpretation of this simple and clean exponential probability distribution.

  7. Fourier Transforms of Pulses Containing Exponential Leading and Trailing Profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warshaw, S I

    2001-07-15

    In this monograph we discuss a class of pulse shapes that have exponential rise and fall profiles, and evaluate their Fourier transforms. Such pulses can be used as models for time-varying processes that produce an initial exponential rise and end with the exponential decay of a specified physical quantity. Unipolar examples of such processes include the voltage record of an increasingly rapid charge followed by a damped discharge of a capacitor bank, and the amplitude of an electromagnetic pulse produced by a nuclear explosion. Bipolar examples include acoustic N waves propagating for long distances in the atmosphere that have resultedmore » from explosions in the air, and sonic booms generated by supersonic aircraft. These bipolar pulses have leading and trailing edges that appear to be exponential in character. To the author's knowledge the Fourier transforms of such pulses are not generally well-known or tabulated in Fourier transform compendia, and it is the purpose of this monograph to derive and present these transforms. These Fourier transforms are related to a definite integral of a ratio of exponential functions, whose evaluation we carry out in considerable detail. From this result we derive the Fourier transforms of other related functions. In all Figures showing plots of calculated curves, the actual numbers used for the function parameter values and dependent variables are arbitrary and non-dimensional, and are not identified with any particular physical phenomenon or model.« less

  8. Modeling the pressure inactivation of Escherichia coli and Salmonella typhimurium in sapote mamey ( Pouteria sapota (Jacq.) H.E. Moore & Stearn) pulp.

    PubMed

    Saucedo-Reyes, Daniela; Carrillo-Salazar, José A; Román-Padilla, Lizbeth; Saucedo-Veloz, Crescenciano; Reyes-Santamaría, María I; Ramírez-Gilly, Mariana; Tecante, Alberto

    2018-03-01

    High hydrostatic pressure inactivation kinetics of Escherichia coli ATCC 25922 and Salmonella enterica subsp. enterica serovar Typhimurium ATCC 14028 ( S. typhimurium) in a low acid mamey pulp at four pressure levels (300, 350, 400, and 450 MPa), different exposure times (0-8 min), and temperature of 25 ± 2℃ were obtained. Survival curves showed deviations from linearity in the form of a tail (upward concavity). The primary models tested were the Weibull model, the modified Gompertz equation, and the biphasic model. The Weibull model gave the best goodness of fit ( R 2 adj  > 0.956, root mean square error < 0.290) in the modeling and the lowest Akaike information criterion value. Exponential-logistic and exponential decay models, and Bigelow-type and an empirical models for b'( P) and n( P) parameters, respectively, were tested as alternative secondary models. The process validation considered the two- and one-step nonlinear regressions for making predictions of the survival fraction; both regression types provided an adequate goodness of fit and the one-step nonlinear regression clearly reduced fitting errors. The best candidate model according to the Akaike theory information, with better accuracy and more reliable predictions was the Weibull model integrated by the exponential-logistic and exponential decay secondary models as a function of time and pressure (two-step procedure) or incorporated as one equation (one-step procedure). Both mathematical expressions were used to determine the t d parameter, where the desired reductions ( 5D) (considering d = 5 ( t 5 ) as the criterion of 5 Log 10 reduction (5 D)) in both microorganisms are attainable at 400 MPa for 5.487 ± 0.488 or 5.950 ± 0.329 min, respectively, for the one- or two-step nonlinear procedure.

  9. Turbulent combustion in aluminum-air clouds for different scale explosion fields

    NASA Astrophysics Data System (ADS)

    Kuhl, Allen L.; Balakrishnan, Kaushik; Bell, John B.; Beckner, Vincent E.

    2017-01-01

    This paper explores "scaling issues" associated with Al particle combustion in explosions. The basic idea is the following: in this non-premixed combustion system, the global burning rate is controlled by rate of turbulent mixing of fuel (Al particles) with air. From similarity considerations, the turbulent mixing rates should scale with the explosion length and time scales. However, the induction time for ignition of Al particles depends on an Arrhenius function, which is independent of the explosion length and time. To study this, we have performed numerical simulations of turbulent combustion in unconfined Al-SDF (shock-dispersed-fuel) explosion fields at different scales. Three different charge masses were assumed: 1-g, 1-kg and 1-T Al-powder charges. We found that there are two combustion regimes: an ignition regime—where the burning rate decays as a power-law function of time, and a turbulent combustion regime—where the burning rate decays exponentially with time. This exponential dependence is typical of first order reactions and the more general concept of Life Functions that control the dynamics of evolutionary systems. Details of the combustion model are described. Results, including mean and rms profiles in combustion cloud and fuel consumption histories, are presented.

  10. Further Improvement in 3DGRAPE

    NASA Technical Reports Server (NTRS)

    Alter, Stephen

    2004-01-01

    3DGRAPE/AL:V2 denotes version 2 of the Three-Dimensional Grids About Anything by Poisson's Equation with Upgrades from Ames and Langley computer program. The preceding version, 3DGRAPE/AL, was described in Improved 3DGRAPE (ARC-14069) NASA Tech Briefs, Vol. 21, No. 5 (May 1997), page 66. These programs are so named because they generate volume grids by iteratively solving Poisson's Equation in three dimensions. The grids generated by the various versions of 3DGRAPE have been used in computational fluid dynamics (CFD). The main novel feature of 3DGRAPE/AL:V2 is the incorporation of an optional scheme in which anisotropic Lagrange-based trans-finite interpolation (ALBTFI) is coupled with exponential decay functions to compute and blend interior source terms. In the input to 3DGRAPE/AL:V2 the user can specify whether or not to invoke ALBTFI in combination with exponential-decay controls, angles, and cell size for controlling the character of grid lines. Of the known programs that solve elliptic partial differential equations for generating grids, 3DGRAPE/AL:V2 is the only code that offers a combination of speed and versatility with most options for controlling the densities and other characteristics of grids for CFD.

  11. Theoretical analysis of oscillatory terms in lattice heat-current time correlation functions and their contributions to thermal conductivity

    NASA Astrophysics Data System (ADS)

    Pereverzev, Andrey; Sewell, Tommy

    2018-03-01

    Lattice heat-current time correlation functions for insulators and semiconductors obtained using molecular dynamics (MD) simulations exhibit features of both pure exponential decay and oscillatory-exponential decay. For some materials the oscillatory terms contribute significantly to the lattice heat conductivity calculated from the correlation functions. However, the origin of the oscillatory terms is not well understood, and their contribution to the heat conductivity is accounted for by fitting them to empirical functions. Here, a translationally invariant expression for the heat current in terms of creation and annihilation operators is derived. By using this full phonon-picture definition of the heat current and applying the relaxation-time approximation we explain, at least in part, the origin of the oscillatory terms in the lattice heat-current correlation function. We discuss the relationship between the crystal Hamiltonian and the magnitude of the oscillatory terms. A solvable one-dimensional model is used to illustrate the potential importance of terms that are omitted in the commonly used phonon-picture expression for the heat current. While the derivations are fully quantum mechanical, classical-limit expressions are provided that enable direct contact with classical quantities obtainable from MD.

  12. An exponential decay model for mediation.

    PubMed

    Fritz, Matthew S

    2014-10-01

    Mediation analysis is often used to investigate mechanisms of change in prevention research. Results finding mediation are strengthened when longitudinal data are used because of the need for temporal precedence. Current longitudinal mediation models have focused mainly on linear change, but many variables in prevention change nonlinearly across time. The most common solution to nonlinearity is to add a quadratic term to the linear model, but this can lead to the use of the quadratic function to explain all nonlinearity, regardless of theory and the characteristics of the variables in the model. The current study describes the problems that arise when quadratic functions are used to describe all nonlinearity and how the use of nonlinear functions, such as exponential decay, address many of these problems. In addition, nonlinear models provide several advantages over polynomial models including usefulness of parameters, parsimony, and generalizability. The effects of using nonlinear functions for mediation analysis are then discussed and a nonlinear growth curve model for mediation is presented. An empirical example using data from a randomized intervention study is then provided to illustrate the estimation and interpretation of the model. Implications, limitations, and future directions are also discussed.

  13. Finite Correlation Length Implies Efficient Preparation of Quantum Thermal States

    NASA Astrophysics Data System (ADS)

    Brandão, Fernando G. S. L.; Kastoryano, Michael J.

    2018-05-01

    Preparing quantum thermal states on a quantum computer is in general a difficult task. We provide a procedure to prepare a thermal state on a quantum computer with a logarithmic depth circuit of local quantum channels assuming that the thermal state correlations satisfy the following two properties: (i) the correlations between two regions are exponentially decaying in the distance between the regions, and (ii) the thermal state is an approximate Markov state for shielded regions. We require both properties to hold for the thermal state of the Hamiltonian on any induced subgraph of the original lattice. Assumption (ii) is satisfied for all commuting Gibbs states, while assumption (i) is satisfied for every model above a critical temperature. Both assumptions are satisfied in one spatial dimension. Moreover, both assumptions are expected to hold above the thermal phase transition for models without any topological order at finite temperature. As a building block, we show that exponential decay of correlation (for thermal states of Hamiltonians on all induced subgraphs) is sufficient to efficiently estimate the expectation value of a local observable. Our proof uses quantum belief propagation, a recent strengthening of strong sub-additivity, and naturally breaks down for states with topological order.

  14. Do humans show velocity-storage in the vertical rVOR?

    PubMed

    Bertolini, G; Bockisch, C J; Straumann, D; Zee, D S; Ramat, S

    2008-01-01

    To investigate the contribution of the vestibular velocity-storage mechanism (VSM) to the vertical rotational vestibulo-ocular reflex (rVOR) we recorded eye movements evoked by off-vertical axis rotation (OVAR) using whole-body constant-velocity pitch rotations about an earth-horizontal, interaural axis in four healthy human subjects. Subjects were tumbled forward, and backward, at 60 deg/s for over 1 min using a 3D turntable. Slow-phase velocity (SPV) responses were similar to the horizontal responses elicited by OVAR along the body longitudinal axis, ('barbecue' rotation), with exponentially decaying amplitudes and a residual, otolith-driven sinusoidal response with a bias. The time constants of the vertical SPV ranged from 6 to 9 s. These values are closer to those that reflect the dynamic properties of vestibular afferents than the typical 20 s produced by the VSM in the horizontal plane, confirming the relatively smaller contribution of the VSM to these vertical responses. Our preliminary results also agree with the idea that the VSM velocity response aligns with the direction of gravity. The horizontal and torsional eye velocity traces were also sinusoidally modulated by the change in gravity, but showed no exponential decay.

  15. Exploiting the Adaptation Dynamics to Predict the Distribution of Beneficial Fitness Effects

    PubMed Central

    2016-01-01

    Adaptation of asexual populations is driven by beneficial mutations and therefore the dynamics of this process, besides other factors, depends on the distribution of beneficial fitness effects. It is known that on uncorrelated fitness landscapes, this distribution can only be of three types: truncated, exponential and power law. We performed extensive stochastic simulations to study the adaptation dynamics on rugged fitness landscapes, and identified two quantities that can be used to distinguish the underlying distribution of beneficial fitness effects. The first quantity studied here is the fitness difference between successive mutations that spread in the population, which is found to decrease in the case of truncated distributions, remains nearly a constant for exponentially decaying distributions and increases when the fitness distribution decays as a power law. The second quantity of interest, namely, the rate of change of fitness with time also shows quantitatively different behaviour for different beneficial fitness distributions. The patterns displayed by the two aforementioned quantities are found to hold good for both low and high mutation rates. We discuss how these patterns can be exploited to determine the distribution of beneficial fitness effects in microbial experiments. PMID:26990188

  16. Out-of-time-order correlators in finite open systems

    NASA Astrophysics Data System (ADS)

    Syzranov, S. V.; Gorshkov, A. V.; Galitski, V.

    2018-04-01

    We study out-of-time-order correlators (OTOCs) of the form for a quantum system weakly coupled to a dissipative environment. Such an open system may serve as a model of, e.g., a small region in a disordered interacting medium coupled to the rest of this medium considered as an environment. We demonstrate that for a system with discrete energy levels the OTOC saturates exponentially ∝∑aie-t /τi+const to a constant value at t →∞ , in contrast with quantum-chaotic systems which exhibit exponential growth of OTOCs. Focusing on the case of a two-level system, we calculate microscopically the decay times τi and the value of the saturation constant. Because some OTOCs are immune to dephasing processes and some are not, such correlators may decay on two sets of parametrically different time scales related to inelastic transitions between the system levels and to pure dephasing processes, respectively. In the case of a classical environment, the evolution of the OTOC can be mapped onto the evolution of the density matrix of two systems coupled to the same dissipative environment.

  17. Properties of one-dimensional anharmonic lattice solitons

    NASA Astrophysics Data System (ADS)

    Szeftel, Jacob; Laurent-Gengoux, Pascal; Ilisca, Ernest; Hebbache, Mohamed

    2000-12-01

    The existence of bell- and kink-shaped solitons moving at constant velocity while keeping a permanent profile is studied in infinite periodic monoatomic chains of arbitrary anharmonicity by taking advantage of the equation of motion being integrable with respect to solitons. A second-order, non-linear differential equation involving advanced and retarded terms must be solved, which is done by implementing a scheme based on the finite element and Newton's methods. If the potential has a harmonic limit, the asymptotic time-decay behaves exponentially and there is a dispersion relation between propagation velocity and decay time. Inversely if the potential has no harmonic limit, the asymptotic regime shows up either as a power-law or faster than exponential. Excellent agreement is achieved with Toda's model. Illustrative examples are also given for the Fermi-Pasta-Ulam and sine-Gordon potentials. Owing to integrability an effective one-body potential is worked out in each case. Lattice and continuum solitons differ markedly from one another as regards the amplitude versus propagation velocity relationship and the asymptotic time behavior. The relevance of the linear stability analysis when applied to solitons propagating in an infinite crystal is questioned. The reasons preventing solitons from arising in a diatomic lattice are discussed.

  18. Charge relaxation and dynamics in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Kwok, H. L.

    2006-08-01

    Charge relaxation in dispersive materials is often described in terms of the stretched exponential function (Kohlrausch law). The process can be explained using a "hopping" model which in principle, also applies to charge transport such as current conduction. This work analyzed reported transient photoconductivity data on functionalized pentacene single crystals using a geometric hopping model developed by B. Sturman et al and extracted values (or range of values) on the materials parameters relevant to charge relaxation as well as charge transport. Using the correlated disorder model (CDM), we estimated values of the carrier mobility for the pentacene samples. From these results, we observed the following: i) the transport site density appeared to be of the same order of magnitude as the carrier density; ii) it was possible to extract lower bound values on the materials parameters linked to the transport process; and iii) by matching the simulated charge decay to the transient photoconductivity data, we were able to refine estimates on the materials parameters. The data also allowed us to simulate the stretched exponential decay. Our observations suggested that the stretching index and the carrier mobility were related. Physically, such interdependence would allow one to demarcate between localized molecular interactions and distant coulomb interactions.

  19. An Exponential Decay Model for Mediation

    PubMed Central

    Fritz, Matthew S.

    2013-01-01

    Mediation analysis is often used to investigate mechanisms of change in prevention research. Results finding mediation are strengthened when longitudinal data are used because of the need for temporal precedence. Current longitudinal mediation models have focused mainly on linear change, but many variables in prevention change nonlinearly across time. The most common solution to nonlinearity is to add a quadratic term to the linear model, but this can lead to the use of the quadratic function to explain all nonlinearity, regardless of theory and the characteristics of the variables in the model. The current study describes the problems that arise when quadratic functions are used to describe all nonlinearity and how the use of nonlinear functions, such as exponential decay, addresses many of these problems. In addition, nonlinear models provide several advantages over polynomial models including usefulness of parameters, parsimony, and generalizability. The effects of using nonlinear functions for mediation analysis are then discussed and a nonlinear growth curve model for mediation is presented. An empirical example using data from a randomized intervention study is then provided to illustrate the estimation and interpretation of the model. Implications, limitations, and future directions are also discussed. PMID:23625557

  20. Complex network study of Brazilian soccer players

    NASA Astrophysics Data System (ADS)

    Onody, Roberto N.; de Castro, Paulo A.

    2004-09-01

    Although being a very popular sport in many countries, soccer has not received much attention from the scientific community. In this paper, we study soccer from a complex network point of view. First, we consider a bipartite network with two kinds of vertices or nodes: the soccer players and the clubs. Real data were gathered from the 32 editions of the Brazilian soccer championship, in a total of 13411 soccer players and 127 clubs. We find a lot of interesting and perhaps unsuspected results. The probability that a Brazilian soccer player has worked at N clubs or played M games shows an exponential decay while the probability that he has scored G goals is power law. Now, if two soccer players who have worked at the same club at the same time are connected by an edge, then a new type of network arises (composed exclusively by soccer player nodes). Our analysis shows that for this network the degree distribution decays exponentially. We determine the exact values of the clustering coefficient, the assortativity coefficient and the average shortest path length and compare them with those of the Erdös-Rényi and configuration model. The time evolution of these quantities are calculated and the corresponding results discussed.

  1. Ruthenium trisbipyridine as a candidate for gas-phase spectroscopic studies in a Fourier transform mass spectrometer

    DOE PAGES

    Scott, Jill R.; Ham, Jason E.; Durham, Bill; ...

    2004-01-01

    Metal polypyridines are excellent candidates for gas-phase optical experiments where their intrinsic properties can be studied without complications due to the presence of solvent. The fluorescence lifetimes of [Ru(bpy) 3 ] 1+ trapped in an optical detection cell within a Fourier transform mass spectrometer were obtained using matrix-assisted laser desorption/ionization to generate the ions with either 2,5-dihydroxybenzoic acid (DHB) or sinapinic acid (SA) as matrix. All transients acquired, whether using DHB or SA for ion generation, were best described as approximately exponential decays. The rate constant for transients derived using DHB as matrix was 4×10 7 s −1 , whilemore » the rate constant using SA was 1×10 7 s −1 . Some suggestions of multiple exponential decay were evident although limited by the quality of the signals. Photodissociation experiments revealed that [Ru(bpy) 3 ] 1+ generated using DHB can decompose to [Ru(bpy) 2 ] 1+ , whereas ions generated using SA showed no decomposition. Comparison of the mass spectra with the fluorescence lifetimes illustrates the promise of incorporating optical detection with trapped ion mass spectrometry techniques.« less

  2. Optical absorption, TL and IRSL of basic plagioclase megacrysts from the pinacate (Sonora, Mexico) quaternary alkalic volcanics.

    PubMed

    Chernov, V; Paz-Moreno, F; Piters, T M; Barboza-Flores, M

    2006-01-01

    The paper presents the first results of an investigation on optical absorption (OA), thermally and infrared stimulated luminescence (TL and IRSL) of the Pinacate plagioclase (labradorite). The OA spectra reveal two bands with maxima at 1.0 and 3.2 eV connected with absorption of the Fe3+ and Fe2+ and IR absorption at wavelengths longer than 2700 nm. The ultraviolet absorption varies exponentially with the photon energy following the 'vitreous' empirical Urbach rule indicating exponential distribution of localised states in the forbidden band. The natural TL is peaked at 700 K. Laboratory beta irradiation creates a very broad TL peak with maximum at 430 K. The change of the 430 K TL peak shape under the thermal cleaning procedure and dark storage after irradiation reveals a monotonous increasing of the activation energy that can be explained by the exponential distribution of traps. The IRSL response is weak and exhibits a typical decay behaviour.

  3. Humans Can Adopt Optimal Discounting Strategy under Real-Time Constraints

    PubMed Central

    Schweighofer, N; Shishida, K; Han, C. E; Okamoto, Y; Tanaka, S. C; Yamawaki, S; Doya, K

    2006-01-01

    Critical to our many daily choices between larger delayed rewards, and smaller more immediate rewards, are the shape and the steepness of the function that discounts rewards with time. Although research in artificial intelligence favors exponential discounting in uncertain environments, studies with humans and animals have consistently shown hyperbolic discounting. We investigated how humans perform in a reward decision task with temporal constraints, in which each choice affects the time remaining for later trials, and in which the delays vary at each trial. We demonstrated that most of our subjects adopted exponential discounting in this experiment. Further, we confirmed analytically that exponential discounting, with a decay rate comparable to that used by our subjects, maximized the total reward gain in our task. Our results suggest that the particular shape and steepness of temporal discounting is determined by the task that the subject is facing, and question the notion of hyperbolic reward discounting as a universal principle. PMID:17096592

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliazar, Iddo, E-mail: eliazar@post.tau.ac.il

    The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their ‘public relations’ for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of thismore » object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford’s law, and 1/f noise. - Highlights: • Harmonic statistics are described and reviewed in detail. • Connections to various statistical laws are established. • Connections to perturbation, renormalization and dynamics are established.« less

  5. 1/f oscillations in a model of moth populations oriented by diffusive pheromones

    NASA Astrophysics Data System (ADS)

    Barbosa, L. A.; Martins, M. L.; Lima, E. R.

    2005-01-01

    An individual-based model for the population dynamics of Spodoptera frugiperda in a homogeneous environment is proposed. The model involves moths feeding plants, mating through an anemotaxis search (i.e., oriented by odor dispersed in a current of air), and dying due to resource competition or at a maximum age. As observed in the laboratory, the females release pheromones at exponentially distributed time intervals, and it is assumed that the ranges of the male flights follow a power-law distribution. Computer simulations of the model reveal the central role of anemotaxis search for the persistence of moth population. Such stationary populations are exponentially distributed in age, exhibit random temporal fluctuations with 1/f spectrum, and self-organize in disordered spatial patterns with long-range correlations. In addition, the model results demonstrate that pest control through pheromone mass trapping is effective only if the amounts of pheromone released by the traps decay much slower than the exponential distribution for calling female.

  6. TEMPORAL EVOLUTION AND SPATIAL DISTRIBUTION OF WHITE-LIGHT FLARE KERNELS IN A SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawate, T.; Ishii, T. T.; Nakatani, Y.

    2016-12-10

    On 2011 September 6, we observed an X2.1-class flare in continuum and H α with a frame rate of about 30 Hz. After processing images of the event by using a speckle-masking image reconstruction, we identified white-light (WL) flare ribbons on opposite sides of the magnetic neutral line. We derive the light curve decay times of the WL flare kernels at each resolution element by assuming that the kernels consist of one or two components that decay exponentially, starting from the peak time. As a result, 42% of the pixels have two decay-time components with average decay times of 15.6 andmore » 587 s, whereas the average decay time is 254 s for WL kernels with only one decay-time component. The peak intensities of the shorter decay-time component exhibit good spatial correlation with the WL intensity, whereas the peak intensities of the long decay-time components tend to be larger in the early phase of the flare at the inner part of the flare ribbons, close to the magnetic neutral line. The average intensity of the longer decay-time components is 1.78 times higher than that of the shorter decay-time components. If the shorter decay time is determined by either the chromospheric cooling time or the nonthermal ionization timescale and the longer decay time is attributed to the coronal cooling time, this result suggests that WL sources from both regions appear in 42% of the WL kernels and that WL emission of the coronal origin is sometimes stronger than that of chromospheric origin.« less

  7. Exponential synchronization of delayed neutral-type neural networks with Lévy noise under non-Lipschitz condition

    NASA Astrophysics Data System (ADS)

    Ma, Shuo; Kang, Yanmei

    2018-04-01

    In this paper, the exponential synchronization of stochastic neutral-type neural networks with time-varying delay and Lévy noise under non-Lipschitz condition is investigated for the first time. Using the general Itô's formula and the nonnegative semi-martingale convergence theorem, we derive general sufficient conditions of two kinds of exponential synchronization for the drive system and the response system with adaptive control. Numerical examples are presented to verify the effectiveness of the proposed criteria.

  8. Self-diffusion and microscopic dynamics in a gold-silicon liquid investigated with quasielastic neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evenson, Zach, E-mail: Zachary.Evenson@frm2.tum.de; Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt; Yang, Fan

    2016-03-21

    We use incoherent quasielastic neutron scattering to study the atomic dynamics of gold in a eutectic Au{sub 81}Si{sub 19} melt. Despite the glass-forming nature of this system, the gold self-diffusivity displays an Arrhenius behavior with a low activation energy characteristic of simple liquids. At high temperatures, long-range transport of gold atoms is well described by hydrodynamic theory with a simple exponential decay of the self-correlation function. On cooling towards the melting temperature, structural relaxation crosses over to a highly stretched exponential behavior. This suggests the onset of a heterogeneous dynamics, even in the equilibrium melt, and is indicative of amore » very fragile liquid.« less

  9. Anderson localization of partially incoherent light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capeta, D.; Radic, J.; Buljan, H.

    We study Anderson localization and propagation of partially spatially incoherent wavepackets in linear disordered potentials, motivated by the insight that interference phenomena resulting from multiple scattering are affected by the coherence of the waves. We find that localization is delayed by incoherence: the more incoherent the waves are, the longer they diffusively spread while propagating in the medium. However, if all the eigenmodes of the system are exponentially localized (as in one- and two-dimensional disordered systems), any partially incoherent wavepacket eventually exhibits localization with exponentially decaying tails, after sufficiently long propagation distances. Interestingly, we find that the asymptotic behavior ofmore » the incoherent beam is similar to that of a single instantaneous coherent realization of the beam.« less

  10. Beyond the usual mapping functions in GPS, VLBI and Deep Space tracking.

    NASA Astrophysics Data System (ADS)

    Barriot, Jean-Pierre; Serafini, Jonathan; Sichoix, Lydie

    2014-05-01

    We describe here a new algorithm to model the water contents of the atmosphere (including ZWD) from GPS slant wet delays relative to a single receiver. We first make the assumption that the water vapor contents are mainly governed by a scale height (exponential law), and secondly that the departures from this decaying exponential can be mapped as a set of low degree 3D Zernike functions (w.r.t. space) and Tchebyshev polynomials (w.r.t. time.) We compare this new algorithm with previous algorithms known as mapping functions in GPS, VLBI and Deep Space tracking and give an example with data acquired over a one day time span at the Geodesy Observatory of Tahiti.

  11. A growth model for directed complex networks with power-law shape in the out-degree distribution

    PubMed Central

    Esquivel-Gómez, J.; Stevens-Navarro, E.; Pineda-Rico, U.; Acosta-Elias, J.

    2015-01-01

    Many growth models have been published to model the behavior of real complex networks. These models are able to reproduce several of the topological properties of such networks. However, in most of these growth models, the number of outgoing links (i.e., out-degree) of nodes added to the network is constant, that is all nodes in the network are born with the same number of outgoing links. In other models, the resultant out-degree distribution decays as a poisson or an exponential distribution. However, it has been found that in real complex networks, the out-degree distribution decays as a power-law. In order to obtain out-degree distribution with power-law behavior some models have been proposed. This work introduces a new model that allows to obtain out-degree distributions that decay as a power-law with an exponent in the range from 0 to 1. PMID:25567141

  12. On linear Landau Damping for relativistic plasmas via Gevrey regularity

    NASA Astrophysics Data System (ADS)

    Young, Brent

    2015-10-01

    We examine the phenomenon of Landau Damping in relativistic plasmas via a study of the relativistic Vlasov-Poisson system (both on the torus and on R3) linearized around a sufficiently nice, spatially uniform kinetic equilibrium. We find that exponential decay of spatial Fourier modes is impossible under modest symmetry assumptions. However, by assuming the equilibrium and initial data are sufficiently regular functions of velocity for a given wavevector (in particular that they exhibit a kind of Gevrey regularity), we show that it is possible for the mode associated to this wavevector to decay like exp ⁡ (-| t | δ) (with 0 < δ < 1) if the magnitude of the wavevector exceeds a certain critical size which depends on the character of the interaction. We also give a heuristic argument why one should not expect such rapid decay for modes with wavevectors below this threshold.

  13. High frequency sound propagation in a network of interconnecting streets

    NASA Astrophysics Data System (ADS)

    Hewett, D. P.

    2012-12-01

    We propose a new model for the propagation of acoustic energy from a time-harmonic point source through a network of interconnecting streets in the high frequency regime, in which the wavelength is small compared to typical macro-lengthscales such as street widths/lengths and building heights. Our model, which is based on geometrical acoustics (ray theory), represents the acoustic power flow from the source along any pathway through the network as the integral of a power density over the launch angle of a ray emanating from the source, and takes into account the key phenomena involved in the propagation, namely energy loss by wall absorption, energy redistribution at junctions, and, in 3D, energy loss to the atmosphere. The model predicts strongly anisotropic decay away from the source, with the power flow decaying exponentially in the number of junctions from the source, except along the axial directions of the network, where the decay is algebraic.

  14. Localization Counteracts Decoherence in Noisy Floquet Topological Chains

    NASA Astrophysics Data System (ADS)

    Rieder, M.-T.; Sieberer, L. M.; Fischer, M. H.; Fulga, I. C.

    2018-05-01

    The topological phases of periodically driven, or Floquet systems, rely on a perfectly periodic modulation of system parameters in time. Even the smallest deviation from periodicity leads to decoherence, causing the boundary (end) states to leak into the system's bulk. Here, we show that in one dimension this decay of topologically protected end states depends fundamentally on the nature of the bulk states: a dispersive bulk results in an exponential decay, while a localized bulk slows the decay down to a diffusive process. The localization can be due to disorder, which remarkably counteracts decoherence even when it breaks the symmetry responsible for the topological protection. We derive this result analytically, using a novel, discrete-time Floquet-Lindblad formalism and confirm our findings with the help of numerical simulations. Our results are particularly relevant for experiments, where disorder can be tailored to protect Floquet topological phases from decoherence.

  15. Controlled decoherence in a quantum Lévy kicked rotator

    NASA Astrophysics Data System (ADS)

    Schomerus, Henning; Lutz, Eric

    2008-06-01

    We develop a theory describing the dynamics of quantum kicked rotators (modeling cold atoms in a pulsed optical field) which are subjected to combined amplitude and timing noise generated by a renewal process (acting as an engineered reservoir). For waiting-time distributions of variable exponent (Lévy noise), we demonstrate the existence of a regime of nonexponential loss of phase coherence. In this regime, the momentum dynamics is subdiffusive, which also manifests itself in a non-Gaussian limiting distribution and a fractional power-law decay of the inverse participation ratio. The purity initially decays with a stretched exponential which is followed by two regimes of power-law decay with different exponents. The averaged logarithm of the fidelity probes the sprinkling distribution of the renewal process. These analytical results are confirmed by numerical computations on quantum kicked rotators subjected to noise events generated by a Yule-Simon distribution.

  16. Optimal Decay of Wannier functions in Chern and Quantum Hall Insulators

    NASA Astrophysics Data System (ADS)

    Monaco, Domenico; Panati, Gianluca; Pisante, Adriano; Teufel, Stefan

    2018-01-01

    We investigate the localization properties of independent electrons in a periodic background, possibly including a periodic magnetic field, as e. g. in Chern insulators and in quantum Hall systems. Since, generically, the spectrum of the Hamiltonian is absolutely continuous, localization is characterized by the decay, as {|x| → ∞} , of the composite (magnetic) Wannier functions associated to the Bloch bands below the Fermi energy, which is supposed to be in a spectral gap. We prove the validity of a localization dichotomy in the following sense: either there exist exponentially localized composite Wannier functions, and correspondingly the system is in a trivial topological phase with vanishing Hall conductivity, or the decay of any composite Wannier function is such that the expectation value of the squared position operator, or equivalently of the Marzari-Vanderbilt localization functional, is {+ ∞} . In the latter case, the Bloch bundle is topologically non-trivial, and one expects a non-zero Hall conductivity.

  17. Intra-Cavity Total Reflection For High Sensitivity Measurement Of Optical Properties

    DOEpatents

    Pipino, Andrew Charles Rule

    1999-11-16

    An optical cavity resonator device is provided for conducting sensitive murement of optical absorption by matter in any state with diffraction-limited spatial resolution through utilization of total internal reflection within a high-Q (high quality, low loss) optical cavity. Intracavity total reflection generates an evanescent wave that decays exponentially in space at a point external to the cavity, thereby providing a localized region where absorbing materials can be sensitively probed through alteration of the Q-factor of the otherwise isolated cavity. When a laser pulse is injected into the cavity and passes through the evanescent state, an amplitude loss resulting from absorption is incurred that reduces the lifetime of the pulse in the cavity. By monitoring the decay of the injected pulse, the absorption coefficient of manner within the evanescent wave region is accurately obtained from the decay time measurement.

  18. Intra-Cavity Total Reflection For High Sensitivity Measurement Of Optical Properties

    DOEpatents

    Pipino, Andrew C. R.; Hudgens, Jeffrey W.

    1999-08-24

    An optical cavity resonator device is provided for conducting sensitive murement of optical absorption by matter in any state with diffraction-limited spatial resolution through utilization of total internal reflection within a high-Q (high quality, low loss) optical cavity. Intracavity total reflection generates an evanescent wave that decays exponentially in space at a point external to the cavity, thereby providing a localized region where absorbing materials can be sensitively probed through alteration of the Q-factor of the otherwise isolated cavity. When a laser pulse is injected into the cavity and passes through the evanescent state, an amplitude loss resulting from absorption is incurred that reduces the lifetime of the pulse in the cavity. By monitoring the decay of the injected pulse, the absorption coefficient of manner within the evanescent wave region is accurately obtained from the decay time measurement.

  19. Decay and growth laws in homogeneous shear turbulence

    NASA Astrophysics Data System (ADS)

    Briard, Antoine; Gomez, Thomas; Mons, Vincent; Sagaut, Pierre

    2016-07-01

    Homogeneous anisotropic turbulence has been widely studied in the past decades, both numerically and experimentally. Shear flows have received a particular attention because of the numerous physical phenomena they exhibit. In the present paper, both the decay and growth of anisotropy in homogeneous shear flows at high Reynolds numbers are revisited thanks to a recent eddy-damped quasi-normal Markovian closure adapted to homogeneous anisotropic turbulence. The emphasis is put on several aspects: an asymptotic model for the slow part of the pressure-strain tensor is derived for the return to isotropy process when mean velocity gradients are released. Then, a general decay law for purely anisotropic quantities in Batchelor turbulence is proposed. At last, a discussion is proposed to explain the scattering of global quantities obtained in DNS and experiments in sustained shear flows: the emphasis is put on the exponential growth rate of the kinetic energy and on the shear parameter.

  20. Correlation of tryptophan fluorescence intensity decay parameters with sup 1 H NMR-determined rotamer conformations: (tryptophan sup 2 )oxytocin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, J.B.A.; Schwartz, G.P.; Laws, W.R.

    1992-02-18

    While the fluorescence decay kinetics of tyrosine model compounds can be explained in terms of heterogeneity derived from the three ground-state {chi}{sup 1} rotamers, a similar correlation has yet to be directly observed for a tryptophan residue. In addition, the asymmetric indole ring might also lead to heterogeneity from {chi}{sup 2} rotations. In this paper, the time-resolved and steady-state fluorescence properties of (tryptophan{sup 2})oxytocin at pH 3 are presented and compared with {sup 1}H NMR results. According to the unrestricted analyses of individual fluorescence decay curves taken as a function of emission wavelength-independent decay constants, only three exponential terms aremore » required. In addition, the preexponential weighting factors (amplitudes) have the same relative relationship (weights) as the {sup 1}H NMR-determined {chi}{sup 1} rotamer populations of the indole side chain. {sup 15}N was used in heteronuclear coupling experiments to confirm the rotamer assignments. Inclusion of a linked function restricting the decay amplitudes to the {chi}{sup 1} rotamer populations in the individual decay curve analyses and in the global analysis confirms this correlation. According to qualitative nuclear Overhauser data, there are two {chi}{sup 2} populations.« less

  1. Kinetic study of the plastoquinone pool availability correlated with H2O2 release in seawater and antioxidant responses in the red alga Kappaphycus alvarezii exposed to single or combined high light, chilling and chemical stresses.

    PubMed

    Barros, Marcelo P; Necchi, Orlando; Colepicolo, Pio; Pedersén, Marianne

    2006-11-01

    Under biotic/abiotic stresses, the red alga Kappaphycus alvarezii reportedly releases massive amounts of H(2)O(2) into the surrounding seawater. As an essential redox signal, the role of chloroplast-originated H(2)O(2) in the orchestration of overall antioxidant responses in algal species has thus been questioned. This work purported to study the kinetic decay profiles of the redox-sensitive plastoquinone pool correlated to H(2)O(2) release in seawater, parameters of oxidative lesions and antioxidant enzyme activities in the red alga Kappaphycus alvarezii under the single or combined effects of high light, low temperature, and sub-lethal doses of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which are inhibitors of the thylakoid electron transport system. Within 24 h, high light and chilling stresses distinctly affected the availability of the PQ pool for photosynthesis, following Gaussian and exponential kinetic profiles, respectively, whereas combined stimuli were mostly reflected in exponential decays. No significant correlation was found in a comparison of the PQ pool levels after 24 h with either catalase (CAT) or ascorbate peroxidase (APX) activities, although the H(2)O(2) concentration in seawater (R=0.673), total superoxide dismutase activity (R=0.689), and particularly indexes of protein (R=0.869) and lipid oxidation (R=0.864), were moderately correlated. These data suggest that the release of H(2)O(2) from plastids into seawater possibly impaired efficient and immediate responses of pivotal H(2)O(2)-scavenging activities of CAT and APX in the red alga K. alvarezii, culminating in short-term exacerbated levels of protein and lipid oxidation. These facts provided a molecular basis for the recognized limited resistance of the red alga K. alvarezii under unfavorable conditions, especially under chilling stress.

  2. Controlling dynamical entanglement in a Josephson tunneling junction

    NASA Astrophysics Data System (ADS)

    Ziegler, K.

    2017-12-01

    We analyze the evolution of an entangled many-body state in a Josephson tunneling junction and its dependence on the number of bosons and interaction strength. A N00N state, which is a superposition of two complementary Fock states, appears in the evolution with sufficient probability only for a moderate many-body interaction on an intermediate time scale. This time scale is inversely proportional to the tunneling rate. Many-body interaction strongly supports entanglement: The probability for creating an entangled state decays exponentially with the number of particles without many-body interaction, whereas it decays only like the inverse square root of the number of particles in the presence of many-body interaction.

  3. Plasma fluctuations as Markovian noise.

    PubMed

    Li, B; Hazeltine, R D; Gentle, K W

    2007-12-01

    Noise theory is used to study the correlations of stationary Markovian fluctuations that are homogeneous and isotropic in space. The relaxation of the fluctuations is modeled by the diffusion equation. The spatial correlations of random fluctuations are modeled by the exponential decay. Based on these models, the temporal correlations of random fluctuations, such as the correlation function and the power spectrum, are calculated. We find that the diffusion process can give rise to the decay of the correlation function and a broad frequency spectrum of random fluctuations. We also find that the transport coefficients may be estimated by the correlation length and the correlation time. The theoretical results are compared with the observed plasma density fluctuations from the tokamak and helimak experiments.

  4. Pair luminescence in Cr3+ -doped Ba2Mg(BO3)2

    NASA Astrophysics Data System (ADS)

    Bondzior, Bartosz; Miniajluk, Natalia; Dereń, Przemysław J.

    2018-05-01

    Cr3+ ions were introduced to the Ba2Mg(BO3)2 host to provide information about the site occupation, crystal field strength, and the site symmetry. The samples were synthesized by solid-state reaction. Emission observed under 440 nm excitation was characteristic for Cr3+ ions in strong octahedral ligand field with Dq/B parameter ratio 2.74 and sharp R line at 698 nm. The charge mismatch between Cr3+ dopant and Mg2+ host ion is compensated by the creation of Cr3+ pair in the vicinity of Ba or Mg vacancy. The emission decay curve is bi-exponential with decay times 1.2 and 13.3 ms.

  5. Biofilm formation and local electrostatic force characteristics of Escherichia coli O157:H7 observed by electrostatic force microscopy

    NASA Astrophysics Data System (ADS)

    Oh, Y. J.; Jo, W.; Yang, Y.; Park, S.

    2007-04-01

    The authors report growth media dependence of electrostatic force characteristics in Escherichia coli O157:H7 biofilm through local measurement by electrostatic force microscopy (EFM). The difference values of electrostatic interaction between the bacterial surface and the abiotic surface show an exponential decay behavior during biofilm development. In the EFM data, the biofilm in the low nutrient media shows a faster decay than the biofilm in the rich media. The surface potential in the bacterial cells was changed from 957to149mV. Local characterization of extracellular materials extracted from the bacteria reveals the progress of the biofilm formation and functional complexities.

  6. The luminescence characteristics of CsI(Na) crystal under α and X/γ excitation

    NASA Astrophysics Data System (ADS)

    Liu, Jinliang; Liu, Fang; Ouyang, Xiaoping; Liu, Bin; Chen, Liang; Ruan, Jinlu; Zhang, Zhongbing; Liu, Jun

    2013-01-01

    In this paper, we study the effective decay time characteristic of CsI(Na) crystal under 239Pu alpha particle and 137Cs gamma-ray excitation using a single photon counting decay time measurement system. The measurement system employs a silicon optical fiber to couple and transit single photon. The slow decay time component of CsI(Na) crystal is 460-550 ns. We observe a 15 ns fast decay component under alpha particle excitation. In addition, we find that the primary stage of the falling edge in the decay time curve is non-exponential and drops rapidly when CsI(Na) crystal is excited by 239Pu alpha particles. Since the high density of self-trapped-excitons (STEs) is produced in alpha particle excitation process, we propose that the fast falling edge is corresponding to the quenching process of STEs which transit with non-radiation in the case of high excitation density. To prove this proposal, we excited the CsI(Na) crystal with sub-nanosecond intensive pulsed X-ray radiation. Our X-ray impinging results show that the fast falling edge also exists under low energy (average 100 keV) bremsstrahlung X-ray excitation.

  7. The footprint of urban heat island effect in China

    Treesearch

    Decheng Zhou; Shuqing Zhao; Liangxia Zhang; Ge Sun; Yongqiang Liu

    2015-01-01

    Urban heat island (UHI) is one major anthropogenic modification to the Earth system that transcends its physical boundary. Using MODIS data from 2003 to 2012, we showed that the UHI effect decayed exponentially toward rural areas for majority of the 32 Chinese cities. We found an obvious urban/ rural temperature “cliff”, and estimated that the footprint of UHI effect (...

  8. Quantum Mechanical Noise in a Michelson Interferometer with Nonclassical Inputs: Nonperturbative Treatment

    NASA Technical Reports Server (NTRS)

    King, Sun-Kun

    1996-01-01

    The variances of the quantum-mechanical noise in a two-input-port Michelson interferometer within the framework of the Loudon-Ni model were solved exactly in two general cases: (1) one coherent state input and one squeezed state input, and (2) two photon number states inputs. Low intensity limit, exponential decaying signal and the noise due to mixing were discussed briefly.

  9. Effect of ethanol variation on the internal environment of sol-gel bulk and thin films with aging.

    PubMed

    Gupta, R; Mozumdar, S; Chaudhury, N K

    2005-10-15

    Sol-gel derived bulk and thin films were prepared from different compositions at low pH ( approximately 2.0) containing varying concentrations of ethanol from 15 to 60% at constant water (H(2)O)/tetraethyl-orthosilicate (TEOS) ratio (R=4). The fluorescence microscopic and spectroscopic measurements on fluorescent probe, Hoechst 33258 (H258) entrapped in these compositions were carried out at different days of storage to monitor the effects of concentration of ethanol on the internal environment of sol-gel materials. Fluorescence microscopic observations on sol-gel thin films, prepared by dip coating technique depicted uniform and cracked surface at withdrawal speed 1cm/min (high speed) and 0.1cm/min (low speed) respectively, which did not change during aging. Fluorescence spectral measurements showed emission maximum of H258 at approximately 535 nm in fresh sols at all concentrations of ethanol which depicted slight blue shift to 512 nm during aging in bulk. No such spectral shift has been observed in sol-gel thin films coated at high speed whereas thin films coated at low speed clearly showed an additional band at approximately 404 nm at 45 and 60% concentration of ethanol after about one month of storage. Analysis of the fluorescence lifetime data indicated single exponential decay (1.6-1.8 ns) in fresh sol and from third day onwards, invariably double exponential decay with a short (tau(1)) and a long (tau(2)) component were observed in sol-gel bulk with a dominant tau(1) at approximately 1.2 ns at all concentrations of ethanol. A double exponential decay consisting of a short component (tau(1)) at approximately 0.2 ns and a long component (tau(2)) at approximately 3.5 ns were observed at all ethanol concentrations in both fresh and aged sol-gel thin films. Further, distribution analysis of lifetimes of H258 showed two mean lifetimes with increased width in aged bulk and thin films. These results are likely to have strong implications in designing the internal environment for applications in biosensors.

  10. Statistical Properties of Lorenz-like Flows, Recent Developments and Perspectives

    NASA Astrophysics Data System (ADS)

    Araujo, Vitor; Galatolo, Stefano; Pacifico, Maria José

    We comment on the mathematical results about the statistical behavior of Lorenz equations and its attractor, and more generally on the class of singular hyperbolic systems. The mathematical theory of such kind of systems turned out to be surprisingly difficult. It is remarkable that a rigorous proof of the existence of the Lorenz attractor was presented only around the year 2000 with a computer-assisted proof together with an extension of the hyperbolic theory developed to encompass attractors robustly containing equilibria. We present some of the main results on the statistical behavior of such systems. We show that for attractors of three-dimensional flows, robust chaotic behavior is equivalent to the existence of certain hyperbolic structures, known as singular-hyperbolicity. These structures, in turn, are associated with the existence of physical measures: in low dimensions, robust chaotic behavior for flows ensures the existence of a physical measure. We then give more details on recent results on the dynamics of singular-hyperbolic (Lorenz-like) attractors: (1) there exists an invariant foliation whose leaves are forward contracted by the flow (and further properties which are useful to understand the statistical properties of the dynamics); (2) there exists a positive Lyapunov exponent at every orbit; (3) there is a unique physical measure whose support is the whole attractor and which is the equilibrium state with respect to the center-unstable Jacobian; (4) this measure is exact dimensional; (5) the induced measure on a suitable family of cross-sections has exponential decay of correlations for Lipschitz observables with respect to a suitable Poincaré return time map; (6) the hitting time associated to Lorenz-like attractors satisfy a logarithm law; (7) the geometric Lorenz flow satisfies the Almost Sure Invariance Principle (ASIP) and the Central Limit Theorem (CLT); (8) the rate of decay of large deviations for the volume measure on the ergodic basin of a geometric Lorenz attractor is exponential; (9) a class of geometric Lorenz flows exhibits robust exponential decay of correlations; (10) all geometric Lorenz flows are rapidly mixing and their time-1 map satisfies both ASIP and CLT.

  11. Spectroscopic properties and radiation damage investigation of a diamond based Schottky diode for ion-beam therapy microdosimetry

    NASA Astrophysics Data System (ADS)

    Verona, C.; Magrin, G.; Solevi, P.; Grilj, V.; Jakšić, M.; Mayer, R.; Marinelli, Marco; Verona-Rinati, G.

    2015-11-01

    In this work, a detailed analysis of the properties of a novel microdosimeter based on a synthetic single crystal diamond is reported. Focused ion microbeams were used to investigate the device spectropscopic properties as well as the induced radiation damage effects. A diamond based Schottky diode was fabricated by chemical vapor deposition with a very thin detecting region, about 400 nm thick (approximately 1.4 μm water equivalent thickness), corresponding to the typical size in microdosimetric measurements. A 200 × 200 μm2 square metallic contact was patterned on the diamond surface by standard photolithography to define the sensitive area. Experimental measurements were carried out at the Ruder Bo\\vskovic' Institute microbeam facility using 4 MeV carbon and 5 MeV silicon ions. Ion beam induced charge maps were employed to characterize the microdosimeter response in terms of its charge collection properties. A stable response with no evidence of polarization or memory effects was observed up to the maximum investigated ion beam flux of about 1.7 × 109 ions.cm-2.s-1. A homogeneity of the response about 6% was found over the sensitive region with a well-defined confinement of the response within the active area. Tests of the radiation damage effect were performed by selectively irradiating small areas of the device with different ion fluences, up to about 1012 ions/cm2. An exponential decrease of the charge collection efficiency was observed with a characteristic decay constant of about 4.8 MGy and 1 MGy for C and Si ions, respectively. The experimental data were analyzed by means of GEANT4 Monte Carlo simulations. A direct correlation between the diamond damaging effect and the Non Ionizing Energy Loss (NIEL) fraction was found. In particular, an exponential decay of the charge collection efficiency with an exponential decay as a function of NIEL is observed, with a characteristic constant of about 9.3 kGy-NIEL for both carbon and silicon ions.

  12. Reductive dehalogenation of carbon tetrachloride by Escherichia coli K-12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Criddle, C.S.; DeWitt, J.T.; McCarty, P.L.

    1990-11-01

    The formation of radicals from carbon tetrachloride (CT) is often invoked to explain the product distribution resulting from its transformation. Radicals formed by reduction of CT presumably react with constituents of the surrounding milieu to give the observed product distribution. The patterns of transformation observed in this work were consistent with such as hypothesis. In cultures of Escherichia coli K-12, the pathways and rates of CT transformation were dependent on the electron acceptor condition of the media. Use of oxygen and nitrate as electron acceptors generally prevented CT metabolism. At low oxygen levels ({approximately}1%), however, transformation of ({sup 14}C)CT tomore » {sup 14}CO{sub 2} and attachment to cell material did occur, in accord with reports of CT fate in mammalian cell cultures. Under fumarate-respiring conditions, ({sup 14}C)CT was recovered as {sup 14}CO{sub 2}, chloroform, and a nonvolatile fraction. In contrast, fermenting conditions resulted in more chloroform, more cell-bound {sup 14}C, and almost no {sup 14}CO{sub 2}. Rates of transformation of CT were faster under fermenting conditions than under fumarate-respiring conditions. Transformation rates also decreased over time, suggesting the gradual exhaustion of transformation activity. This loss was modeled with a simple exponential decay term.« less

  13. Molecular modeling of proteinlike inclusions in lipid bilayers: lipid-mediated interactions.

    PubMed

    Kik, Richard A; Leermakers, Frans A M; Kleijn, J Mieke

    2010-02-01

    We investigated the insertion of transmembrane structures in a lipid bilayer and their interactions using self-consistent field theory. The lipids are coarse-grained on a united-atom level and consist of a phosphatidylcholinelike headgroup and two hydrophobic tails. The inclusions, acting as simple models for proteins that span biological membranes, are rigid rods (radius R ) with a hydrophobic surface and hydrophilic end caps. The insertion free energy Omega of an individual rod is strongly regulated by the affinity between its hydrophobic surface and the lipid tails. This affinity also controls the best match of the hydrophobic length of the rod with that of the bilayer. The line tension tau(=Omega/2piR) is practically independent of R . The perturbations in the bilayer as a function of distance from the inclusion, have the shape of a damped oscillation. The wavelength and decay length are related to the elastic properties of the bilayer and do not depend on R . These results are used to analyze how the lipid matrix affects the interaction between transmembrane objects, for computational reasons considering the limit of R-->infinity . Contributions on different length scales can be distinguished: (i) a long-range elastic interaction, which is an exponentially decaying oscillation; (ii) an exponentially decaying repulsion on an intermediate length scale, resulting from the loss of conformational entropy of the lipid tails; and (iii) a short-range interaction due to the finite compressibility of the lipid tails, which manifests either as a depletion attraction if there is no affinity between the tails and the inclusions' surface or, otherwise, as an oscillatory structural force.

  14. Synthesis, characterization and optical properties of NH4Dy(PO3)4

    NASA Astrophysics Data System (ADS)

    Chemingui, S.; Ferhi, M.; Horchani-Naifer, K.; Férid, M.

    2014-09-01

    Polycrystalline powders of NH4Dy(PO3)4 polyphosphate have been grown by the flux method. This compound was found to be isotopic with NH4Ce(PO3)4 and RbHo(PO3)4. It crystallizes in the monoclinic space group P21/n with unit cell parameters a=10.474(6) Å, b=9.011(4) Å, c=10.947(7) Å and β=106.64(3)°. The title compound has been transformed to triphosphate Dy(PO3)3 after calcination at 800 °C. Powder X-ray diffraction, infrared and Raman spectroscopies and the differential thermal analysis have been used to identify these materials. The spectroscopic properties have been investigated through absorption, excitation, emission spectra and decay curves of Dy3+ ion in both compounds at room temperature. The emission spectra show the characteristic emission bands of Dy3+ in the two compounds, before and after calcination. The integrated emission intensity ratios of the yellow to blue (IY/IB) transitions and the chromaticity properties have been determined from emission spectra. The decay curves are found to be double-exponential. The non-exponential behavior of the decay rates was related to the resonant energy transfer as well as cross-relaxation between the donor and acceptor Dy3+ ions. The determined properties have been discussed as function of crystal structure of both compounds. They reveal that NH4Dy(PO3)4 is promising for white light generation but Dy(PO3)3 is potential candidates in field emission display (FED) and plasma display panel (PDP) devices.

  15. Aeolian transport in the field: A comparison of the effects of different surface treatments

    NASA Astrophysics Data System (ADS)

    Dong, Zhibao; Lv, Ping; Zhang, Zhengcai; Qian, Guangqiang; Luo, Wanyin

    2012-05-01

    Aeolian transport represents the result of wind-surface interactions, and therefore depends strongly on variations in the characteristics of the sediment surface. We conducted field observations of aeolian transport of typical dune sand in three 80 m × 80 m plots with different surface treatments: gravel-covered sand, enclosed shifting sand, and open (unprotected) shifting sand. The study was performed at the Shapotou Aeolian Experiment Site in the southeastern part of China's Tengger Desert to compare the effects of these different surface treatments on aeolian transport. To do so, we analyzed the flux density profiles and transport rates above each surface. The flux density profiles for all three treatments followed the exponential decay law that was proposed by most previous researchers to describe the saltation flux density profiles. Coefficients of the exponential decay function were defined as a function of the surface and the wind velocity. The enclosed and open plots with shifting sand had similar flux density profiles, but the flux density above gravel-covered plots showed that transport decayed more slowly with increasing height, producing flux density profiles with a higher average saltation height. The transport rate above the three treatment plots tended to increase proportionally with the cube of the mean wind velocity and with the maximum wind velocity during the observation period, but was more strongly correlated with the square of drift potential. Transport rates above the plot with open shifting sand were greater than those above the plots with enclosed shifting sand and the gravel-covered plot.

  16. Direct Simulation of Magnetic Resonance Relaxation Rates and Line Shapes from Molecular Trajectories

    PubMed Central

    Rangel, David P.; Baveye, Philippe C.; Robinson, Bruce H.

    2012-01-01

    We simulate spin relaxation processes, which may be measured by either continuous wave or pulsed magnetic resonance techniques, using trajectory-based simulation methodologies. The spin–lattice relaxation rates are extracted numerically from the relaxation simulations. The rates obtained from the numerical fitting of the relaxation curves are compared to those obtained by direct simulation from the relaxation Bloch–Wangsness–Abragam– Redfield theory (BWART). We have restricted our study to anisotropic rigid-body rotational processes, and to the chemical shift anisotropy (CSA) and a single spin–spin dipolar (END) coupling mechanisms. Examples using electron paramagnetic resonance (EPR) nitroxide and nuclear magnetic resonance (NMR) deuterium quadrupolar systems are provided. The objective is to compare those rates obtained by numerical simulations with the rates obtained by BWART. There is excellent agreement between the simulated and BWART rates for a Hamiltonian describing a single spin (an electron) interacting with the bath through the chemical shift anisotropy (CSA) mechanism undergoing anisotropic rotational diffusion. In contrast, when the Hamiltonian contains both the chemical shift anisotropy (CSA) and the spin–spin dipolar (END) mechanisms, the decay rate of a single exponential fit of the simulated spin–lattice relaxation rate is up to a factor of 0.2 smaller than that predicted by BWART. When the relaxation curves are fit to a double exponential, the slow and fast rates extracted from the decay curves bound the BWART prediction. An extended BWART theory, in the literature, includes the need for multiple relaxation rates and indicates that the multiexponential decay is due to the combined effects of direct and cross-relaxation mechanisms. PMID:22540276

  17. Non-cooperative immobilization of residual water bound in lyophilized photosynthetic lamellae.

    PubMed

    Harańczyk, Hubert; Baran, Ewelina; Nowak, Piotr; Florek-Wojciechowska, Małgorzata; Leja, Anna; Zalitacz, Dorota; Strzałka, Kazimierz

    2015-12-01

    This study applied 1H-NMR in time and in frequency domain measurements to monitor the changes that occur in bound water dynamics at decreased temperature and with increased hydration level in lyophilizates of native wheat photosynthetic lamellae and in photosynthetic lamellae reconstituted from lyophilizate. Proton relaxometry (measured as free induction decay = FID) distinguishes a Gaussian component S within the NMR signal (o). This comes from protons of the solid matrix of the lamellae and consists of (i) an exponentially decaying contribution L1 from mobile membrane protons, presumably from lipids, and from water that is tightly bound to the membrane surface and thus restricted in mobility; and (ii) an exponentially decaying component L2 from more mobile, loosely bound water pool. Both proton relaxometry data and proton spectroscopy show that dry lyophilizate incubated in dry air, i.e., at a relative humidity (p/p0) of 0% reveals a relatively high hydration level. The observed liquid signal most likely originates from mobile membrane protons and a tightly bound water fraction that is sealed in pores of dry lyophilizate and thus restricted in mobility. The estimations suggest that the amount of sealed water does not exceed the value characteristic for the main hydration shell of a phospholipid. Proton spectra collected for dry lyophilizate of photosynthetic lamellae show a continuous decrease in the liquid signal component without a distinct freezing transition when it is cooled down to -60ºC, which is significantly lower than the homogeneous ice nucleation temperature [Bronshteyn, V.L. et al. Biophys. J. 65 (1993) 1853].

  18. Return probability after a quench from a domain wall initial state in the spin-1/2 XXZ chain

    NASA Astrophysics Data System (ADS)

    Stéphan, Jean-Marie

    2017-10-01

    We study the return probability and its imaginary (τ) time continuation after a quench from a domain wall initial state in the XXZ spin chain, focusing mainly on the region with anisotropy \\vert Δ\\vert < 1 . We establish exact Fredholm determinant formulas for those, by exploiting a connection to the six-vertex model with domain wall boundary conditions. In imaginary time, we find the expected scaling for a partition function of a statistical mechanical model of area proportional to τ2 , which reflects the fact that the model exhibits the limit shape phenomenon. In real time, we observe that in the region \\vert Δ\\vert <1 the decay for long time t is nowhere continuous as a function of anisotropy: it is Gaussian at roots of unity and exponential otherwise. We also determine that the front moves as x_f(t)=t\\sqrt{1-Δ^2} , by the analytic continuation of known arctic curves in the six-vertex model. Exactly at \\vert Δ\\vert =1 , we find the return probability decays as e-\\zeta(3/2) \\sqrt{t/π}t1/2O(1) . It is argued that this result provides an upper bound on spin transport. In particular, it suggests that transport should be diffusive at the isotropic point for this quench.

  19. Quantification of temperature persistence over the Northern Hemisphere land-area

    NASA Astrophysics Data System (ADS)

    Pfleiderer, Peter; Coumou, Dim

    2017-10-01

    Extreme weather events such as heat waves and floods are damaging to society and their contribution to future climate impacts is expected to be large. Such extremes are often related to persistent local weather conditions. Weather persistence is linked to sea surface temperatures, soil-moisture (especially in summer) and large-scale circulation patterns and these factors can alter under past and future climate change. Though persistence is a key characteristic for extreme weather events, to date the climatology and potential changes in persistence have only been poorly documented. Here, we present a systematic analysis of temperature persistence for the northern hemisphere land area. We define persistence as the length of consecutive warm or cold days and use spatial clustering techniques to create regional persistence distributions. We find that persistence is longest in the Arctic and shortest in the mid-latitudes. Parameterizations of the regional persistence distributions show that they are characterized by an exponential decay with a drop in the decay rate for very persistent events, implying that feedback mechanisms are important in prolonging these events. For the mid-latitudes, we find that persistence in summer has increased over the past 60 years. The changes are particularly pronounced for prolonged events suggesting a lengthening in the duration of heat waves.

  20. Spins Dynamics in a Dissipative Environment: Hierarchal Equations of Motion Approach Using a Graphics Processing Unit (GPU).

    PubMed

    Tsuchimoto, Masashi; Tanimura, Yoshitaka

    2015-08-11

    A system with many energy states coupled to a harmonic oscillator bath is considered. To study quantum non-Markovian system-bath dynamics numerically rigorously and nonperturbatively, we developed a computer code for the reduced hierarchy equations of motion (HEOM) for a graphics processor unit (GPU) that can treat the system as large as 4096 energy states. The code employs a Padé spectrum decomposition (PSD) for a construction of HEOM and the exponential integrators. Dynamics of a quantum spin glass system are studied by calculating the free induction decay signal for the cases of 3 × 2 to 3 × 4 triangular lattices with antiferromagnetic interactions. We found that spins relax faster at lower temperature due to transitions through a quantum coherent state, as represented by the off-diagonal elements of the reduced density matrix, while it has been known that the spins relax slower due to suppression of thermal activation in a classical case. The decay of the spins are qualitatively similar regardless of the lattice sizes. The pathway of spin relaxation is analyzed under a sudden temperature drop condition. The Compute Unified Device Architecture (CUDA) based source code used in the present calculations is provided as Supporting Information .

  1. Saturation of the magnetorotational instability at large Elsasser number

    NASA Astrophysics Data System (ADS)

    Jamroz, B.; Julien, K.; Knobloch, E.

    2008-09-01

    The magnetorotational instability is investigated within the shearing box approximation in the large Elsasser number regime. In this regime, which is of fundamental importance to astrophysical accretion disk theory, shear is the dominant source of energy, but the instability itself requires the presence of a weaker vertical magnetic field. Dissipative effects are weaker still but not negligible. The regime explored retains the condition that (viscous and ohmic) dissipative forces do not play a role in the leading order linear instability mechanism. However, they are sufficiently large to permit a nonlinear feedback mechanism whereby the turbulent stresses generated by the MRI act on and modify the local background shear in the angular velocity profile. To date this response has been omitted in shearing box simulations and is captured by a reduced pde model derived here from the global MHD fluid equations using multiscale asymptotic perturbation theory. Results from numerical simulations of the reduced pde model indicate a linear phase of exponential growth followed by a nonlinear adjustment to algebraic growth and decay in the fluctuating quantities. Remarkably, the velocity and magnetic field correlations associated with these algebraic growth and decay laws conspire to achieve saturation of the angular momentum transport. The inclusion of subdominant ohmic dissipation arrests the algebraic growth of the fluctuations on a longer, dissipative time scale.

  2. Saturation of the Magnetorotational Instability at Large Elssaser Number

    NASA Astrophysics Data System (ADS)

    Julien, Keith; Jamroz, Benjamin; Knobloch, Edgar

    2009-11-01

    The MRI is believed to play an important role in accretion disk physics in extracting angular momentum from the disk and allowing accretion to take place. The instability is investigated within the shearing box approximation under conditions of fundamental importance to astrophysical accretion disk theory. The shear is taken to be the dominant source of energy, but the instability itself requires the presence of a weaker vertical magnetic field. Dissipative effects are suffiently weak that the Elsasser number is large. Thus dissipative forces do not play a role in the leading order linear instability mechanism. However, they are sufficiently large to permit a nonlinear feedback mechanism whereby the turbulent stresses generated by the MRI act on and modify the local background shear in the angular velocity profile. To date this response has been omitted in shearing box simulations and is captured by a reduced pde model derived from the global MHD fluid equations using multiscale asymptotic perturbation theory. Results from simulations of the model indicate a linear phase of exponential growth followed by a nonlinear adjustment to algebraic growth and decay in the fluctuating quantities. Remarkably, the velocity and magnetic field correlations associated with these growth and decay laws conspire to achieve saturation of angular momentum transport.

  3. A statistical study of decaying kink oscillations detected using SDO/AIA

    NASA Astrophysics Data System (ADS)

    Goddard, C. R.; Nisticò, G.; Nakariakov, V. M.; Zimovets, I. V.

    2016-01-01

    Context. Despite intensive studies of kink oscillations of coronal loops in the last decade, a large-scale statistically significant investigation of the oscillation parameters has not been made using data from the Solar Dynamics Observatory (SDO). Aims: We carry out a statistical study of kink oscillations using extreme ultraviolet imaging data from a previously compiled catalogue. Methods: We analysed 58 kink oscillation events observed by the Atmospheric Imaging Assembly (AIA) on board SDO during its first four years of operation (2010-2014). Parameters of the oscillations, including the initial apparent amplitude, period, length of the oscillating loop, and damping are studied for 120 individual loop oscillations. Results: Analysis of the initial loop displacement and oscillation amplitude leads to the conclusion that the initial loop displacement prescribes the initial amplitude of oscillation in general. The period is found to scale with the loop length, and a linear fit of the data cloud gives a kink speed of Ck = (1330 ± 50) km s-1. The main body of the data corresponds to kink speeds in the range Ck = (800-3300) km s-1. Measurements of 52 exponential damping times were made, and it was noted that at least 21 of the damping profiles may be better approximated by a combination of non-exponential and exponential profiles rather than a purely exponential damping envelope. There are nine additional cases where the profile appears to be purely non-exponential and no damping time was measured. A scaling of the exponential damping time with the period is found, following the previously established linear scaling between these two parameters.

  4. New Mathematical Functions for Vacuum System Analysis

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael S.

    2017-01-01

    A new bivariate function has been found that provides solutions of integrals having the form u (sup minus eta) e (sup u) du which arise when developing predictions for the behavior of pressure within a rigid volume under high vacuum conditions in the presence of venting as well as sources characterized by power law transient decay over the range [0,1] for eta and for u greater than or equal to 0. A few properties of the new function are explored in this work. For instance the eta equals 1/2 case reproduces the Dawson function. In addition, a slight variation of the solution technique reproduces the exponential integral for eta equals 1. The technique used to generate these functions leads to an approach for solving a more general class of nonlinear ordinary differential equations, with the potential for identifying other new functions that solve other integrals.

  5. Gas identification by dynamic measurements of SnO2 sensors

    NASA Astrophysics Data System (ADS)

    Vorobioff, Juan; Rodriguez, Daniel; Boselli, Alfredo; Lamagna, Alberto; Rinaldi, Carlos

    2011-09-01

    It is well know that the use of chambers with the sensors in the e-nose improves the measurements, due to a constant gas flow and the controlled temperature sensors[1]. Normally, the chamber temperature is above room temperature due to the heat generated by the heater of sensors. Also, the chamber takes a long time to reach a stable equilibrium temperature and it depends on enviromental conditions. Besides, the temperature variations modify the humidity producing variations in resistance measurements[2]. In this work using a heater system that controls the temperature of the chamber, the desorption process on SnO2 sensor array was study[3]. Also, it was fitted the data signal sensors using a two exponential decay functions in order to determine the desorbing constant process. These constants were used to classify and identify different alcohols and their concentrations.

  6. Permeability of the continental crust: Implications of geothermal data and metamorphic systems

    USGS Publications Warehouse

    Manning, C.E.; Ingebritsen, S.E.

    1999-01-01

    In the upper crust, where hydraulic gradients are typically 10 MPa km-1, the mean permeabilities required to accommodate the estimated metamorphic fluid fluxes decrease from ~10-16 m2 to ~10-18 m2 between 5- and 12-km depth. Below ~12 km, which broadly corresponds to the brittle-plastic transition, mean k is effectively independent of depth at ~10(-18.5??1) m2. Consideration of the permeability values inferred from thermal modeling and metamorphic fluxes suggests a quasi-exponential decay of permeability with depth of log k ~ -3.2 log z - 14, where k is in meters squared and z is in kilometers. At mid to lower crustal depths this curve lies just below the threshold value for significant advection of heat. Such conditions may represent an optimum for metamorphism, allowing the maximum transport of fluid and solute mass that is possible without advective cooling.

  7. Maximum initial growth-rate of strong-shock-driven Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana I.; Bhowmich, Aklant K.; Dell, Zachary R.; Pandian, Arun; Stanic, Milos; Stellingwerf, Robert F.; Swisher, Nora C.

    2017-10-01

    We focus on classical problem of dependence on the initial conditions of the initial growth-rate of strong shocks driven Richtmyer-Meshkov instability (RMI) by developing a novel empirical model and by employing rigorous theories and Smoothed Particle Hydrodynamics (SPH) simulations to describe the simulations data with statistical confidence in a broad parameter regime. For given values of the shock strength, fluids' density ratio, and wavelength of the initial perturbation of the fluid interface, we find the maximum value of RMI initial growth-rate, the corresponding amplitude scale of the initial perturbation, and the maximum fraction of interfacial energy. This amplitude scale is independent of the shock strength and density ratio, and is characteristic quantity of RMI dynamics. We discover the exponential decay of the ratio of the initial and linear growth-rates of RMI with the initial perturbation amplitude that excellently agrees with available data. National Science Foundation, USA.

  8. Maximum initial growth-rate of strong-shock-driven Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana I.; Bhowmich, Aklant K.; Dell, Zachary R.; Pandian, Arun; Stanic, Milos; Stellingwerf, Robert F.; Swisher, Nora C.

    2017-11-01

    We focus on classical problem of dependence on the initial conditions of the initial growth-rate of strong shocks driven Richtmyer-Meshkov instability (RMI) by developing a novel empirical model and by employing rigorous theories and Smoothed Particle Hydrodynamics (SPH) simulations to describe the simulations data with statistical confidence in a broad parameter regime. For given values of the shock strength, fluids' density ratio, and wavelength of the initial perturbation of the fluid interface, we find the maximum value of RMI initial growth-rate, the corresponding amplitude scale of the initial perturbation, and the maximum fraction of interfacial energy. This amplitude scale is independent of the shock strength and density ratio, and is characteristic quantity of RMI dynamics. We discover the exponential decay of the ratio of the initial and linear growth-rates of RMI with the initial perturbation amplitude that excellently agrees with available data. National Science Foundation, USA.

  9. Ionic fluids with r-6 pair interactions have power-law electrostatic screening

    NASA Astrophysics Data System (ADS)

    Kjellander, Roland; Forsberg, Björn

    2005-06-01

    The decay behaviour of radial distribution functions for large distances r is investigated for classical Coulomb fluids where the ions interact with an r-6 potential (e.g. a dispersion interaction) in addition to the Coulombic and the short-range repulsive potentials (e.g. a hard core). The pair distributions and the density-density (NN), charge-density (QN) and charge-charge (QQ) correlation functions are investigated analytically and by Monte Carlo simulations. It is found that the NN correlation function ultimately decays like r-6 for large r, just as it does for fluids of electroneutral particles interacting with an r-6 potential. The prefactor is proportional to the squared compressibility in both cases. The QN correlations decay in general like r-8 and the QQ correlations like r-10 in the ionic fluid. The average charge density around an ion decays generally like r-8 and the average electrostatic potential like r-6. This behaviour is in stark contrast to the decay behaviour for classical Coulomb fluids in the absence of the r-6 potential, where all these functions decay exponentially for large r. The power-law decays are, however, the same as for quantum Coulomb fluids. This indicates that the inclusion of the dispersion interaction as an effective r-6 interaction potential in classical systems yields the same decay behaviour for the pair correlations as in quantum ionic systems. An exceptional case is the completely symmetric binary electrolyte for which only the NN correlation has a power-law decay but not the QQ correlations. These features are shown by an analysis of the bridge function.

  10. Y 3-xMg 2AlSi 2O 12: Cex3+ phosphors - prospective for warm-white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Katelnikovas, Arturas; Bareika, Tomas; Vitta, Pranciškus; Jüstel, Thomas; Winkler, Holger; Kareiva, Aivaras; Žukauskas, Artūras; Tamulaitis, Gintautas

    2010-07-01

    Y 3-xMg 2AlSi 2O 12: Cex3+ (YMASG:Ce) phosphors were synthesized by sol-gel combustion technique at different temperatures from 1400 to 1550 °C. Samples with x = 0.015, 0.03, 0.045, and 0.06 were fabricated and characterized using powder X-ray diffraction (XRD), photoluminescence spectroscopy, and fluorescence lifetime measurements in frequency domain. XRD patterns confirmed single-phase garnet crystal structure for all the samples independently of their substitutional level and annealing temperature. In respect to Y 3Al 5O 12:Ce 3+ (YAG:Ce) phosphor, which was synthesized for comparison by a different sol-gel procedure, the photoluminescence band of these garnets is red shifted, indicating a prospective for application of this novel phosphor in warm-white light emitting diodes (LEDs). The luminescence decays bi-exponentially. The main component has a characteristic decay time decreasing from 72 to of 50 ns with increasing sintering temperature and cerium content, while ˜2% of the excitation decays with a characteristic decay time of ˜8 ns.

  11. Kinetics of a Collagen-Like Polypeptide Fragmentation after Mid-IR Free-Electron Laser Ablation

    PubMed Central

    Zavalin, Andrey; Hachey, David L.; Sundaramoorthy, Munirathinam; Banerjee, Surajit; Morgan, Steven; Feldman, Leonard; Tolk, Norman; Piston, David W.

    2008-01-01

    Tissue ablation with mid-infrared irradiation tuned to collagen vibrational modes results in minimal collateral damage. The hypothesis for this effect includes selective scission of protein molecules and excitation of surrounding water molecules, with the scission process currently favored. In this article, we describe the postablation infrared spectral decay kinetics in a model collagen-like peptide (Pro-Pro-Gly)10. We find that the decay is exponential with different decay times for other, simpler dipeptides. Furthermore, we find that collagen-like polypeptides, such as (Pro-Pro-Gly)10, show multiple decay times, indicating multiple scission locations and cross-linking to form longer chain molecules. In combination with data from high-resolution mass spectrometry, we interpret these products to result from the generation of reactive intermediates, such as free radicals, cyanate ions, and isocyanic acid, which can form cross-links and protein adducts. Our results lead to a more complete explanation of the reduced collateral damage resulting from infrared laser irradiation through a mechanism involving cross-linking in which collagen-like molecules form a network of cross-linked fibers. PMID:18441025

  12. Bridgman growth and scintillation properties of calcium tungstate single crystal

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhai; Jiang, Linwen; Chen, Yaping; Chen, Peng; Chen, Hongbing; Mao, Rihua

    2017-12-01

    CaWO4 single crystal with large size was grown by Bridgman method. The results of transmission spectra show that the transmittance of CaWO4 crystal reaches 79-85% in 320-800 nm wavelength range. The refraction index is near 1.80 in visible and infrared region. CaWO4 crystal shows a broad emission band centered at 424 nm under X-ray excitation and centered at 416 nm under ultraviolet (λex = 280 nm) excitation. The decay kinetics of CaWO4 single crystal shows double-exponential decay with fast decay constant τ1 = 5.4 μs and slow decay constant τ2 = 177.1 μs. The energy resolution of CaWO4 crystal was found to be 31.6% in the net peak of 545.9 channel. Meanwhile, the absolute output is at the lever of 19,000 ± 1000 photons/MeV. The results indicate the scintillator of CaWO4 single crystal has great potential in the applications of high-energy physics and nuclear physics due to its high light output and great energy resolution.

  13. Time-resolved fluorescence spectroscopic study of flavin fluorescence in purified enzymes of bioluminescent bacteria

    NASA Astrophysics Data System (ADS)

    Vetrova, Elena; Kudryasheva, N.; Cheng, K.

    2006-10-01

    Time-resolved fluorescence intensity and anisotropy decay measurements have been used to study the environment and rotational mobility of endogenous flavin in two purified enzymes of bioluminescent bacteria, Luciferase from Photobacterium leiognathi and NAD(P)H:FMN-oxidoreductase from Vibrio fischeri. We compared the time-resolved fluorescence parameters, intensity decay lifetimes, rotational correlation times, and their fractional contribution, of the endogeneous flavin fluorescence in each of the two enzymes in the presence or absence of quinones of different structures and redox potentials. The endogeneous flavin exhibited multi-exponential decay characteristics as compared to a single decay lifetime of around 5 ns for free flavin, suggesting a complex and heterogeneous environment of flavin bound to the enzyme. In addition, a significant increase in the rotational correlation time and a certain degree of ordering of the molecule were observed for endogenous flavin when compared to a single and fast rotational correlation time of 150 ps of free flavin. Quinone significantly altered both the lifetime and rotational characteristics of endogenous flavin suggesting specific interactions of quinones to the endogeneous flavin in the bacterial enzyme.

  14. Exponential Decay Nonlinear Regression Analysis of Patient Survival Curves: Preliminary Assessment in Non-Small Cell Lung Cancer

    PubMed Central

    Stewart, David J.; Behrens, Carmen; Roth, Jack; Wistuba, Ignacio I.

    2010-01-01

    Background For processes that follow first order kinetics, exponential decay nonlinear regression analysis (EDNRA) may delineate curve characteristics and suggest processes affecting curve shape. We conducted a preliminary feasibility assessment of EDNRA of patient survival curves. Methods EDNRA was performed on Kaplan-Meier overall survival (OS) and time-to-relapse (TTR) curves for 323 patients with resected NSCLC and on OS and progression-free survival (PFS) curves from selected publications. Results and Conclusions In our resected patients, TTR curves were triphasic with a “cured” fraction of 60.7% (half-life [t1/2] >100,000 months), a rapidly-relapsing group (7.4%, t1/2=5.9 months) and a slowly-relapsing group (31.9%, t1/2=23.6 months). OS was uniphasic (t1/2=74.3 months), suggesting an impact of co-morbidities; hence, tumor molecular characteristics would more likely predict TTR than OS. Of 172 published curves analyzed, 72 (42%) were uniphasic, 92 (53%) were biphasic, 8 (5%) were triphasic. With first-line chemotherapy in advanced NSCLC, 87.5% of curves from 2-3 drug regimens were uniphasic vs only 20% of those with best supportive care or 1 drug (p<0.001). 54% of curves from 2-3 drug regimens had convex rapid-decay phases vs 0% with fewer agents (p<0.001). Curve convexities suggest that discontinuing chemotherapy after 3-6 cycles “synchronizes” patient progression and death. With postoperative adjuvant chemotherapy, the PFS rapid-decay phase accounted for a smaller proportion of the population than in controls (p=0.02) with no significant difference in rapid-decay t1/2, suggesting adjuvant chemotherapy may move a subpopulation of patients with sensitive tumors from the relapsing group to the cured group, with minimal impact on time to relapse for a larger group of patients with resistant tumors. In untreated patients, the proportion of patients in the rapid-decay phase increased (p=0.04) while rapid-decay t1/2 decreased (p=0.0004) with increasing stage, suggesting that higher stage may be associated with tumor cells that both grow more rapidly and have a higher probability of surviving metastatic processes than in early stage tumors. This preliminary assessment of EDNRA suggests that it may be worth exploring this approach further using more sophisticated, statistically rigorous nonlinear modelling approaches. Using such approaches to supplement standard survival analyses could suggest or support specific testable hypotheses. PMID:20627364

  15. Low mass SN Ia and the late light curve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colgate, S.A.; Fryer, C.L.; Hand, K.P.

    1995-12-31

    The late bolometric light curves of type Ia supernovae, when measured accurately over several years, show an exponential decay with a 56d half-life over a drop in luminosity of 8 magnitudes (10 half-lives). The late-time light curve is thought to be governed by the decay of Co{sup 56}, whose 77d half-life must then be modified to account for the observed decay time. Two mechanisms, both relying upon the positron fraction of the Co{sup 56} decay, have been proposed to explain this modification. One explanation requires a large amount of emission at infra-red wavelengths where it would not be detected. Themore » other explanation has proposed a progressive transparency or leakage of the high energy positrons (Colgate, Petschek and Kriese, 1980). For the positrons to leak out of the expanding nebula at the required rate necessary to produce the modified 56d exponential, the mass of the ejecta from a one foe (10{sup 51} erg in kinetic energy) explosion must be small, M{sub ejec} = 0.4M{sub {circle_dot}} with M{sub ejec} {proportional_to} KE{sup 0.5}. Thus, in this leakage explanation, any reasonable estimate of the total energy of the explosion requires that the ejected mass be very much less than the Chandrasekhar mass of 1.4M{sub {circle_dot}}. This is very difficult to explain with the ``canonical`` Chandrasekhar-mass thermonuclear explosion that disintegrates the original white dwarf star. This result leads us to pursue alternate mechanisms of type Ia supernovae. These mechanisms include sub-Chandrasekhar thermonuclear explosions and the accretion induced collapse of Chandrasekhar mass white dwarfs. We will summarize the advantages and disadvantages of both mechanisms with considerable detail spent on our new accretion induced collapse simulations. These mechanisms lead to lower Ni{sup 56} production and hence result in type Ia supernovae with luminosities decreased down to {approximately} 50% that predicted by the ``standard`` model.« less

  16. Conditional optimal spacing in exponential distribution.

    PubMed

    Park, Sangun

    2006-12-01

    In this paper, we propose the conditional optimal spacing defined as the optimal spacing after specifying a predetermined order statistic. If we specify a censoring time, then the optimal inspection times for grouped inspection can be determined from this conditional optimal spacing. We take an example of exponential distribution, and provide a simple method of finding the conditional optimal spacing.

  17. Nanoconfined ionic liquids: Disentangling electrostatic and viscous forces

    NASA Astrophysics Data System (ADS)

    Lhermerout, Romain; Perkin, Susan

    2018-01-01

    Recent reports of surface forces across nanoconfined ionic liquids have revealed the existence of an anomalously long-ranged interaction apparently of electrostatic origin. Ionic liquids are viscous, and therefore it is important to inspect rigorously whether the observed repulsive forces are indeed equilibrium forces or, rather, arise from the viscous force during drainage of the fluid between two confining surfaces. In this paper we present our direct measurements of surface forces between mica sheets approaching in the ionic liquid [C2C1Im ] [NTf2] , exploring three orders of magnitude in approach velocity. Trajectories are systematically fitted by solving the equation of motion, allowing us to disentangle the viscous and equilibrium contributions. First, we find that the drainage obeys classical hydrodynamics with a negative slip boundary condition in the range of the structural force, implying that a nanometer -thick portion of the liquid in the vicinity of the solid surface is composed of ordered molecules that do not contribute to the flow. Second, we show that a long-range static force must indeed be invoked, in addition to the viscous force, in order to describe the data quantitatively. This equilibrium interaction decays exponentially and with decay length in agreement with the screening length reported for the same system in previous studies. In those studies the decay was simply checked to be independent of velocity and measured at a low approach rate, rather than explicitly taking account of viscous effects: we explain why this gives indistinguishable outcomes for the screening length by noting that the viscous force is linear to very good approximation over a wide range of distances.

  18. Experimental and numerical analysis of traffic emitted nanoparticle and particulate matter dispersion at urban pollution hot-spots

    NASA Astrophysics Data System (ADS)

    Goel, Anju

    Road vehicles are a major source of airborne nanoparticles (<100 nm) and particulate matter (PM), including PM10 (≤10 mum), PM2.5 (≤2.5 mum) and PM1 (≤1 mum) emissions. Over 99% of particles, by number, are reprsented by particles below 300 nm in diameter in polluted urban environments. The small size of particles in the nano-size range enables them to enter deeper into the lungs, causing both acute and chronic adverse health effects such as asthma, cardiovascular and ischemic heart diseases. The issue of air pollution becomes more prominent at urban traffic hot-spots such as traffic intersections (TIs), where pollution pockets are created due to frequently changing driving conditions. Recent trends suggest an exponential increase in travel demand and travelling time in the UK and elsewhere over the years, which indicate a growing need for the accurate characterisation of exposure at TIs since exposure at these hot-spots can contribute disproportionately high to overall commuting exposure. Based on field observations, this thesis aims (i) to investigate the traffic driving conditions in which TIs become a hotspot for nanoparticles and PM, (ii) to estimate the extent of road that is affected by high particle number concentrations (PNCs) and PM due to presence of a signal, (iii) to assess the vertical and horizontal variations in PNC and PMC at different TIs, (iv) to estimate the associated in-cabin and pedestrian exposure at TIs, and finally (v) to predict PNCs by using freely available models of air pollution at TIs. For this thesis, two sets of experiments (i.e. mobile- and fixed-sites) were carried out to measure airborne nanoparticles and PM in the size range of (0.005-10 ?m) using a fast response differential mobility spectrometer (DMS50) and a GRIMM particle spectrometer (1.107 E). Mobile measurements were made on a circle passing through 10 TIs and fixed-site measurements were carried out at two different types of TIs (i.e. 3- and 4-way). Dispersion modelling was then performed by using California Line Source (CALINE4) and California Line Source for Queueing and Hotspot Calculations (CAL3QHC) at TIs. Several important findings were then extrapolated during the analysis. These findings indicated that congested TIs were found to become hot-spots when vehicle accelerate from idling conditions. The average length of road in longitudinal direction that is affected by high PNCs and PM was found to be highest (148 m; 89 to -59 m from the center of a TI) at a 3-way TI with built up area and lowest at 4-way TI with built-up area (79 m; 46 to -33 m). Vertical PNCs, horizontal PNCs and PM profiles followed an exponential decay. Exponential decay of PNCs in the vertical direction was much sharper at the 4-way TI than at the 3-way TI. Based on tracer gas method, particle number emission factors (PNEFs) during congested and free flow driving conditions were also estimated. The results showed that the PNEF during congested conditions can be up to 9 times higher than those during free flow conditions at a TI. In-cabin and pedestrian exposure during delay conditions was up to 7 and 7.3 times higher than exposure during free flow conditions at TIs. The modelling exercise showed that model choice to predict PNCs depends on the type of TI, size range of particles, receptor height and distance from the TI. Key findings of the proposed study could assist in validating and refining the capabilities of existing models for exposure assessment to PNCs at TIs. The proposed study will assist to enhance the scientific understanding of the problem as well as develop a database, showing the contribution of exposure at TIs towards the overall daily exposure during commuting in diverse city environments.

  19. Quantification of tillage, plant cover, and cumulative rainfall effects on soil surface microrelief by statistical, geostatistical and fractal indices

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, J.; Bertol, I.; Vidal Vázquez, E.

    2008-07-01

    Changes in soil surface microrelief with cumulative rainfall under different tillage systems and crop cover conditions were investigated in southern Brazil. Surface cover was none (fallow) or the crop succession maize followed by oats. Tillage treatments were: 1) conventional tillage on bare soil (BS), 2) conventional tillage (CT), 3) minimum tillage (MT) and 4) no tillage (NT) under maize and oats. Measurements were taken with a manual relief meter on small rectangular grids of 0.234 and 0.156 m2, throughout growing season of maize and oats, respectively. Each data set consisted of 200 point height readings, the size of the smallest cells being 3×5 cm during maize and 2×5 cm during oats growth periods. Random Roughness (RR), Limiting Difference (LD), Limiting Slope (LS) and two fractal parameters, fractal dimension (D) and crossover length (l) were estimated from the measured microtopographic data sets. Indices describing the vertical component of soil roughness such as RR, LD and l generally decreased with cumulative rain in the BS treatment, left fallow, and in the CT and MT treatments under maize and oats canopy. However, these indices were not substantially affected by cumulative rain in the NT treatment, whose surface was protected with previous crop residues. Roughness decay from initial values was larger in the BS treatment than in CT and MT treatments. Moreover, roughness decay generally tended to be faster under maize than under oats. The RR and LD indices decreased quadratically, while the l index decreased exponentially in the tilled, BS, CT and MT treatments. Crossover length was sensitive to differences in soil roughness conditions allowing a description of microrelief decay due to rainfall in the tilled treatments, although better correlations between cumulative rainfall and the most commonly used indices RR and LD were obtained. At the studied scale, parameters l and D have been found to be useful in interpreting the configuration properties of the soil surface microrelief.

  20. Population Dynamics of Viral Inactivation

    NASA Astrophysics Data System (ADS)

    Freeman, Krista; Li, Dong; Behrens, Manja; Streletzky, Kiril; Olsson, Ulf; Evilevitch, Alex

    We have investigated the population dynamics of viral inactivation in vitrousing time-resolved cryo electron microscopy combined with light and X-ray scattering techniques. Using bacteriophage λ as a model system for pressurized double-stranded DNA viruses, we found that virions incubated with their cell receptor eject their genome in a stochastic triggering process. The triggering of DNA ejection occurs in a non synchronized manner after the receptor addition, resulting in an exponential decay of the number of genome-filled viruses with time. We have explored the characteristic time constant of this triggering process at different temperatures, salt conditions, and packaged genome lengths. Furthermore, using the temperature dependence we determined an activation energy for DNA ejections. The dependences of the time constant and activation energy on internal DNA pressure, affected by salt conditions and encapsidated genome length, suggest that the triggering process is directly dependent on the conformational state of the encapsidated DNA. The results of this work provide insight into how the in vivo kinetics of the spread of viral infection are influenced by intra- and extra cellular environmental conditions. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1252522.

  1. The Citius End: World Records Progression Announces the Completion of a Brief Ultra-Physiological Quest

    PubMed Central

    Berthelot, Geoffroy; Thibault, Valérie; Tafflet, Muriel; Escolano, Sylvie; El Helou, Nour; Jouven, Xavier; Hermine, Olivier; Toussaint, Jean-François

    2008-01-01

    World records (WR) in sports illustrate the ultimate expression of human integrated muscle biology, through speed or strength performances. Analysis and prediction of man's physiological boundaries in sports and impact of external (historical or environmental) conditions on WR occurrence are subject to scientific controversy. Based on the analysis of 3263 WR established for all quantifiable official contests since the first Olympic Games, we show here that WR progression rate follows a piecewise exponential decaying pattern with very high accuracy (mean adjusted r2 values = 0.91±0.08 (s.d.)). Starting at 75% of their estimated asymptotic values in 1896, WR have now reached 99%, and, present conditions prevailing, half of all WR will not be improved by more than 0,05% in 2027. Our model, which may be used to compare future athletic performances or assess the impact of international antidoping policies, forecasts that human species' physiological frontiers will be reached in one generation. This will have an impact on the future conditions of athlete training and on the organization of competitions. It may also alter the Olympic motto and spirit. PMID:18253499

  2. The Extent to Which Dayside Reconnection Drives Field-Aligned Currents During Substorms

    NASA Astrophysics Data System (ADS)

    Forsyth, C.; Shortt, M. W.; Coxon, J.; Rae, J.; Freeman, M. P.; Kalmoni, N. M. E.; Jackman, C. M.; Anderson, B. J.

    2016-12-01

    Field-aligned currents, also known as Birkeland currents, are the agents by which energy and momentum is transferred to the ionosphere from the magnetosphere and solar wind. In order to understand this coupling, it is necessary to analyze the variations in these current systems with respect to the main energy sources of the solar wind and substorms. In this study, we perform a superposed epoch analysis of field-aligned currents determined by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) project with respect to substorm expansion phase onsets identified using the Substorm Onsets and Phases from Indices of the Electrojet (SOPHIE) technique. We examine the total upward and downward currents separately in the noon, dusk, dawn and midnight sectors. Our results show that the dusk and dawn currents have up to a 66% linear correlated with the dayside reconnection rate estimated from solar wind measurements, whereas the noon and midnight currents are not. The noon currents show little or no variation throughout the substorm cycle. The midnight currents follows the dusk currents up to 20 min before onset, after which the midnight current increases more rapidly and exponentially. At substorm onset, the exponential growth rate increases. While the midnight field-aligned currents grow exponentially after substorm onset, the auroral indices vary with a 1/6th power law. Overall, our results show that the growth and decay rates of the Region 1 and 2 current systems, which are strongest at dawn and dusk, are directly driven by the solar wind, whereas the growth and decay rates of the substorm current system, which are dominant at midnight, act independently of the upstream driver.

  3. Unruh effect for general trajectories

    NASA Astrophysics Data System (ADS)

    Obadia, N.; Milgrom, M.

    2007-03-01

    We consider two-level detectors coupled to a scalar field and moving on arbitrary trajectories in Minkowski space-time. We first derive a generic expression for the response function using a (novel) regularization procedure based on the Feynman prescription that is explicitly causal, and we compare it to other expressions used in the literature. We then use this expression to study, analytically and numerically, the time dependence of the response function in various nonstationarity situations. We show that, generically, the response function decreases like a power in the detector’s level spacing, E, for high E. It is only for stationary worldlines that the response function decays faster than any power law, in keeping with the known exponential behavior for some stationary cases. Under some conditions the (time-dependent) response function for a nonstationary worldline is well approximated by the value of the response function for a stationary worldline having the same instantaneous acceleration, torsion, and hypertorsion. While we cannot offer general conditions for this to apply, we discuss special cases; in particular, the low-energy limit for linear space trajectories.

  4. PLATELET ADHESION TO POLYURETHANE UREA UNDER PULSATILE FLOW CONDITIONS

    PubMed Central

    Navitsky, Michael A.; Taylor, Joshua O.; Smith, Alexander B.; Slattery, Margaret J.; Deutsch, Steven; Siedlecki, Christopher A.; Manning, Keefe B.

    2014-01-01

    Platelet adhesion to a polyurethane urea surface is a precursor to thrombus formation within blood-contacting cardiovascular devices, and platelets have been found to adhere strongly to polyurethane surfaces below a shear rate of approximately 500 s−1. The aim of the current work is to determine platelet adhesion properties to the polyurethane urea surface as a function of time varying shear exposure. A rotating disk system is used to study the influence of steady and pulsatile flow conditions (e.g. cardiac inflow and sawtooth waveforms) for platelet adhesion to the biomaterial surface. All experiments retain the same root mean square angular rotation velocity (29.63 rad/s) and waveform period. The disk is rotated in platelet rich bovine plasma for two hours with adhesion quantified by confocal microscopy measurements of immunofluorescently labeled bovine platelets. Platelet adhesion under pulsating flow is found to exponentially decay with increasing shear rate. Adhesion levels are found to depend upon peak platelet flux and shear rate regardless of rotational waveform. In combination with flow measurements, these results may be useful for predicting regions susceptible to thrombus formation within ventricular assist devices. PMID:24721222

  5. Application of artificial neural networks to identify equilibration in computer simulations

    NASA Astrophysics Data System (ADS)

    Leibowitz, Mitchell H.; Miller, Evan D.; Henry, Michael M.; Jankowski, Eric

    2017-11-01

    Determining which microstates generated by a thermodynamic simulation are representative of the ensemble for which sampling is desired is a ubiquitous, underspecified problem. Artificial neural networks are one type of machine learning algorithm that can provide a reproducible way to apply pattern recognition heuristics to underspecified problems. Here we use the open-source TensorFlow machine learning library and apply it to the problem of identifying which hypothetical observation sequences from a computer simulation are “equilibrated” and which are not. We generate training populations and test populations of observation sequences with embedded linear and exponential correlations. We train a two-neuron artificial network to distinguish the correlated and uncorrelated sequences. We find that this simple network is good enough for > 98% accuracy in identifying exponentially-decaying energy trajectories from molecular simulations.

  6. Synchronization of a Class of Switched Neural Networks with Time-Varying Delays via Nonlinear Feedback Control.

    PubMed

    Wang, Leimin; Shen, Yi; Zhang, Guodong

    2016-10-01

    This paper is concerned with the synchronization problem for a class of switched neural networks (SNNs) with time-varying delays. First, a new crucial lemma which includes and extends the classical exponential stability theorem is constructed. Then by using the lemma, new algebraic criteria of ψ -type synchronization (synchronization with general decay rate) for SNNs are established via the designed nonlinear feedback control. The ψ -type synchronization which is in a general framework is obtained by introducing a ψ -type function. It contains exponential synchronization, polynomial synchronization, and other synchronization as its special cases. The results of this paper are general, and they also complement and extend some previous results. Finally, numerical simulations are carried out to demonstrate the effectiveness of the obtained results.

  7. Similarity solutions for unsteady flow behind an exponential shock in a self-gravitating non-ideal gas with azimuthal magnetic field

    NASA Astrophysics Data System (ADS)

    Nath, G.; Pathak, R. P.; Dutta, Mrityunjoy

    2018-01-01

    Similarity solutions for the flow of a non-ideal gas behind a strong exponential shock driven out by a piston (cylindrical or spherical) moving with time according to an exponential law is obtained. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic. The shock wave is driven by a piston moving with time according to an exponential law. Similarity solutions exist only when the surrounding medium is of constant density. The effects of variation of ambient magnetic field, non-idealness of the gas, adiabatic exponent and gravitational parameter are worked out in detail. It is shown that the increase in the non-idealness of the gas or the adiabatic exponent of the gas or presence of magnetic field have decaying effect on the shock wave. Consideration of the isothermal flow and the self-gravitational field increase the shock strength. Also, the consideration of isothermal flow or the presence of magnetic field removes the singularity in the density distribution, which arises in the case of adiabatic flow. The result of our study may be used to interpret measurements carried out by space craft in the solar wind and in neighborhood of the Earth's magnetosphere.

  8. Laser induced fluorescence lifetime characterization of Bacillus endospore species using time correlated single photon counting analysis with the multi-exponential fit method

    NASA Astrophysics Data System (ADS)

    Smith, Clint; Edwards, Jarrod; Fisher, Andmorgan

    2010-04-01

    Rapid detection of biological material is critical for determining presence/absence of bacterial endospores within various investigative programs. Even more critical is that if select material tests positive for bacillus endospores then tests should provide data at the species level. Optical detection of microbial endospore formers such as Bacillus sp. can be heavy, cumbersome, and may only identify at the genus level. Data provided from this study will aid in characterization needed by future detection systems for further rapid breakdown analysis to gain insight into a more positive signature collection of Bacillus sp. Literature has shown that fluorescence spectroscopy of endospores could be statistically separated from other vegetative genera, but could not be separated among one another. Results of this study showed endospore species separation is possible using laser-induce fluorescence with lifetime decay analysis for Bacillus endospores. Lifetime decays of B. subtilis, B. megaterium, B. coagulans, and B. anthracis Sterne strain were investigated. Using the Multi-Exponential fit method data showed three distinct lifetimes for each species within the following ranges, 0.2-1.3 ns; 2.5-7.0 ns; 7.5-15.0 ns, when laser induced at 307 nm. The four endospore species were individually separated using principle component analysis (95% CI).

  9. Dynamic heterogeneity and conditional statistics of non-Gaussian temperature fluctuations in turbulent thermal convection

    NASA Astrophysics Data System (ADS)

    He, Xiaozhou; Wang, Yin; Tong, Penger

    2018-05-01

    Non-Gaussian fluctuations with an exponential tail in their probability density function (PDF) are often observed in nonequilibrium steady states (NESSs) and one does not understand why they appear so often. Turbulent Rayleigh-Bénard convection (RBC) is an example of such a NESS, in which the measured PDF P (δ T ) of temperature fluctuations δ T in the central region of the flow has a long exponential tail. Here we show that because of the dynamic heterogeneity in RBC, the exponential PDF is generated by a convolution of a set of dynamics modes conditioned on a constant local thermal dissipation rate ɛ . The conditional PDF G (δ T |ɛ ) of δ T under a constant ɛ is found to be of Gaussian form and its variance σT2 for different values of ɛ follows an exponential distribution. The convolution of the two distribution functions gives rise to the exponential PDF P (δ T ) . This work thus provides a physical mechanism of the observed exponential distribution of δ T in RBC and also sheds light on the origin of non-Gaussian fluctuations in other NESSs.

  10. Exponential Stellar Disks in Low Surface Brightness Galaxies: A Critical Test of Viscous Evolution

    NASA Astrophysics Data System (ADS)

    Bell, Eric F.

    2002-12-01

    Viscous redistribution of mass in Milky Way-type galactic disks is an appealing way of generating an exponential stellar profile over many scale lengths, almost independent of initial conditions, requiring only that the viscous timescale and star formation timescale are approximately equal. However, galaxies with solid-body rotation curves cannot undergo viscous evolution. Low surface brightness (LSB) galaxies have exponential surface brightness profiles, yet have slowly rising, nearly solid-body rotation curves. Because of this, viscous evolution may be inefficient in LSB galaxies: the exponential profiles, instead, would give important insight into initial conditions for galaxy disk formation. Using star formation laws from the literature and tuning the efficiency of viscous processes to reproduce an exponential stellar profile in Milky Way-type galaxies, I test the role of viscous evolution in LSB galaxies. Under the conservative and not unreasonable condition that LSB galaxies are gravitationally unstable for at least a part of their lives, I find that it is impossible to rule out a significant role for viscous evolution. This type of model still offers an attractive way of producing exponential disks, even in LSB galaxies with slowly rising rotation curves.

  11. Determination of the direction to a source of antineutrinos via inverse beta decay in Double Chooz

    NASA Astrophysics Data System (ADS)

    Nikitenko, Ya.

    2016-11-01

    To determine the direction to a source of neutrinos (and antineutrinos) is an important problem for the physics of supernovae and of the Earth. The direction to a source of antineutrinos can be estimated through the reaction of inverse beta decay. We show that the reactor neutrino experiment Double Chooz has unique capabilities to study antineutrino signal from point-like sources. Contemporary experimental data on antineutrino directionality is given. A rigorous mathematical approach for neutrino direction studies has been developed. Exact expressions for the precision of the simple mean estimator of neutrinos' direction for normal and exponential distributions for a finite sample and for the limiting case of many events have been obtained.

  12. Fabrications of insulator-protected nanometer-sized electrode gaps

    NASA Astrophysics Data System (ADS)

    Arima, Akihide; Tsutsui, Makusu; Morikawa, Takanori; Yokota, Kazumichi; Taniguchi, Masateru

    2014-03-01

    We developed SiO2-coated mechanically controllable break junctions for accurate tunneling current measurements in an ionic solution. By breaking the junction, we created dielectric-protected Au nanoprobes with nanometer separation. We demonstrated that the insulator protection was capable to suppress the ionic contribution to the charge transport through the electrode gap, thereby enabled reliable characterizations of liquid-mediated exponential decay of the tunneling conductance in an electrolyte solution. From this, we found distinct roles of charge points such as molecular dipoles and ion species on the tunneling decay constant, which was attributed to local structures of molecules and ions in the confined space between the sensing electrodes. The device described here would provide improved biomolecular sensing capability of tunneling current sensors.

  13. Superstatistics model for T₂ distribution in NMR experiments on porous media.

    PubMed

    Correia, M D; Souza, A M; Sinnecker, J P; Sarthour, R S; Santos, B C C; Trevizan, W; Oliveira, I S

    2014-07-01

    We propose analytical functions for T2 distribution to describe transverse relaxation in high- and low-fields NMR experiments on porous media. The method is based on a superstatistics theory, and allows to find the mean and standard deviation of T2, directly from measurements. It is an alternative to multiexponential models for data decay inversion in NMR experiments. We exemplify the method with q-exponential functions and χ(2)-distributions to describe, respectively, data decay and T2 distribution on high-field experiments of fully water saturated glass microspheres bed packs, sedimentary rocks from outcrop and noisy low-field experiment on rocks. The method is general and can also be applied to biological systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Nonclassical Smoothening of Nanoscale Surface Corrugations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erlebacher, Jonah; Aziz, Michael J.; Chason, Eric

    2000-06-19

    We report the first experimental observation of nonclassical morphological equilibration of a corrugated crystalline surface. Periodic rippled structures with wavelengths of 290-550 nm were made on Si(001) by sputter rippling and then annealed at 650-750 degree sign C . In contrast to the classical exponential decay with time, the ripple amplitude A{sub {lambda}}(t) followed an inverse linear decay, A{sub {lambda}}(t)=A{sub {lambda}}( 0)/(1+k{sub {lambda}}t) , agreeing with a prediction of Ozdemir and Zangwill. We measure the activation energy for surface relaxation to be 1.6{+-}0.2 eV , consistent with the fundamental energies of creation and migration on Si(001). (c) 2000 The Americanmore » Physical Society.« less

  15. Attractive non-DLVO forces induced by adsorption of monovalent organic ions.

    PubMed

    Smith, Alexander M; Maroni, Plinio; Borkovec, Michal

    2017-12-20

    Direct force measurements between negatively charged colloidal particles were carried out using an atomic force microscope (AFM) in aqueous solutions containing monovalent organic cations, namely tetraphenylarsonium (Ph 4 As + ), 1-hexyl-3-methylimidazolium (HMIM + ), and 1-octyl-3-methylimidazolium (OMIM + ). These ions adsorb to the particle surface, and induce a charge reversal. The forces become attractive at the charge neutralization point, but they are stronger than van der Waals forces. This additional and unexpected attraction decays exponentially with a decay length of a few nanometers, and is strikingly similar to the one previously observed in the presence of multivalent ions. This attractive force probably originates from coupled spontaneous charge fluctuations on the respective surfaces as initially suggested by Kirkwood and Shumaker.

  16. Tissue characterization by time-resolved fluorescence spectroscopy of endogenous and exogenous fluorochromes: apparatus design and preliminary results

    NASA Astrophysics Data System (ADS)

    Glanzmann, Thomas M.; Ballini, Jean-Pierre; Jichlinski, Patrice; van den Bergh, Hubert; Wagnieres, Georges A.

    1996-12-01

    The biomedical use of an optical fiber-based spectro- temporal fluorometer that can endoscopically record the fluorescence decay of an entire spectrum without scanning is presented. The detector consists of a streak camera coupled to a spectrograph. A mode-locked argon ion pumped dye laser or a nitrogen laser-pumped dye laser are used as pulsed excitation light sources. We measured the fluorescence decays of endogenous fluorophores and of ALA-induced- protoporphyrin IX(PPIX) in an excised human bladder with a carcinoma in situ (CIS). Each autofluorescence decay can be decomposed in at least three exponential components for all tissue samples investigated if the excitation is at 425 nm. The decays of the autofluorescence of all normal sites of the human bladder are similar and they differ significantly from the decays measured on the CIS and the necrotic tissue. The fluorescence of the ALA-induced PPIX in the bladder is monoexponential with a lifetime of 15 (plus or minus 1) ns and this fluorescence lifetime does not change significantly between the normal urothelium and the CIS. A photoproduct of ALA-PPIX with a fluorescence maximum at 670 nm and a lifetime of 8 (plus or minus 1) ns was observed. The measurement of the decay of the autofluorescence allowed to correctly identify a normal tissue site that was classified as abnormal by the measurement of the ALA-PPIX fluorescence intensity.

  17. A Lie algebraic condition for exponential stability of discrete hybrid systems and application to hybrid synchronization.

    PubMed

    Zhao, Shouwei

    2011-06-01

    A Lie algebraic condition for global exponential stability of linear discrete switched impulsive systems is presented in this paper. By considering a Lie algebra generated by all subsystem matrices and impulsive matrices, when not all of these matrices are Schur stable, we derive new criteria for global exponential stability of linear discrete switched impulsive systems. Moreover, simple sufficient conditions in terms of Lie algebra are established for the synchronization of nonlinear discrete systems using a hybrid switching and impulsive control. As an application, discrete chaotic system's synchronization is investigated by the proposed method.

  18. The influence of bubble populations generated under windy conditions on the blue-green light transmission in the upper ocean: An exploratory approach

    NASA Astrophysics Data System (ADS)

    Wang, Chengan; Tan, Jianyu; Lai, Qingzhi

    2016-12-01

    The “blue-green window” in the ocean plays an important role in functions such as communication between vessels, underwater target identification, and remote sensing. In this study, the transmission process of blue-green light in the upper ocean is analyzed numerically using the Monte Carlo method. First, the effect of total number of photons on the numerical results is evaluated, and the most favorable number is chosen to ensure accuracy without excessive costs for calculation. Then, the physical and mathematical models are constructed. The rough sea surface is generated under windy conditions and the transmission signals are measured in the far field. Therefore, it can be conceptualized as a 1D slab with a rough boundary surface. Under windy conditions, these bubbles form layers that are horizontally homogeneous and decay exponentially with depth under the influence of gravity. The effects of bubble populations on the process of blue-green light transmission at different wind speeds, wavelengths, angle of incidence and chlorophyll-a concentrations are studied for both air-incident and water-incident cases. The results of this study indicate that the transmission process of blue-green light is significantly influenced by bubbles under high wind-speed conditions.

  19. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots

    PubMed Central

    Qu, Dan; Zheng, Min; Zhang, Ligong; Zhao, Haifeng; Xie, Zhigang; Jing, Xiabin; Haddad, Raid E.; Fan, Hongyou; Sun, Zaicheng

    2014-01-01

    Photoluminescent graphene quantum dots (GQDs) have received enormous attention because of their unique chemical, electronic and optical properties. Here a series of GQDs were synthesized under hydrothermal processes in order to investigate the formation process and optical properties of N-doped GQDs. Citric acid (CA) was used as a carbon precursor and self-assembled into sheet structure in a basic condition and formed N-free GQD graphite framework through intermolecular dehydrolysis reaction. N-doped GQDs were prepared using a series of N-containing bases such as urea. Detailed structural and property studies demonstrated the formation mechanism of N-doped GQDs for tunable optical emissions. Hydrothermal conditions promote formation of amide between –NH2 and –COOH with the presence of amine in the reaction. The intramoleculur dehydrolysis between neighbour amide and COOH groups led to formation of pyrrolic N in the graphene framework. Further, the pyrrolic N transformed to graphite N under hydrothermal conditions. N-doping results in a great improvement of PL quantum yield (QY) of GQDs. By optimized reaction conditions, the highest PL QY (94%) of N-doped GQDs was obtained using CA as a carbon source and ethylene diamine as a N source. The obtained N-doped GQDs exhibit an excitation-independent blue emission with single exponential lifetime decay. PMID:24938871

  20. Decay and nutrient dynamics of coarse woody debris in the Qinling Mountains, China

    PubMed Central

    Yuan, Jie; Hou, Lin; Wei, Xin; Shang, Zhengchun; Cheng, Fei; Zhang, Shuoxin

    2017-01-01

    As an ecological unit, coarse woody debris (CWD) plays an essential role in productivity, nutrient cycling, carbon sequestration, community regeneration and biodiversity. However, thus far, the information on quantification the decomposition and nutrient content of CWD in forest ecosystems remains considerably limited. In this study, we conducted a long-term (1996–2013) study on decay and nutrient dynamics of CWD for evaluating accurately the ecological value of CWD on the Huoditang Experimental Forest Farm in the Qinling Mountains, China. The results demonstrated that there was a strong correlation between forest biomass and CWD mass. The single exponential decay model well fit the CWD density loss at this site, and as the CWD decomposed, the CWD density decreased significantly. Annual temperature and precipitation were all significantly correlated with the annual mass decay rate. The K contents and the C/N ratio of the CWD decreased as the CWD decayed, but the C, N, P, Ca and Mg contents increased. We observed a significant CWD decay effect on the soil C, N and Mg contents, especially the soil C content. The soil N, P, K, Ca and Mg contents exhibited large fluctuations, but the variation had no obvious regularity and changed with different decay times. The results showed that CWD was a critical component of nutrient cycling in forest ecosystems. Further research is needed to determine the effect of diameter, plant tissue components, secondary wood compounds, and decomposer organisms on the CWD decay rates in the Qinling Mountains, which will be beneficial to clarifying the role of CWD in carbon cycles of forest ecosystems. PMID:28384317

Top