Ohya, Y.; Botstein, D.
1994-01-01
Conditional-lethal mutations of the single calmodulin gene in Saccharomyces cerevisiae have been very difficult to isolate by random and systematic methods, despite the fact that deletions cause recessive lethality. We report here the isolation of numerous conditional-lethal mutants that were recovered by systematically altering phenylalanine residues. The phenylalanine residues of calmodulin were implicated in function both by structural studies of calmodulin bound to target peptides and by their extraordinary conservation in evolution. Seven single and 26 multiple Phe -> Ala mutations were constructed. Mutant phenotypes were examined in a haploid cmd1 disrupted strain under three conditions: single copy, low copy, and overexpressed. Whereas all but one of the single mutations caused no obvious phenotype, most of the multiple mutations caused obvious growth phenotypes. Five were lethal, 6 were lethal only in synthetic medium, 13 were temperature-sensitive lethal and 2 had no discernible phenotypic consequences. Overexpression of some of the mutant genes restored the phenotype to nearly wild type. Several temperature-sensitive calmodulin mutations were suppressed by elevated concentration of CaCl(2) in the medium. Mutant calmodulin protein was detected at normal levels in extracts of most of the lethal mutant cells, suggesting that the deleterious phenotypes were due to loss of the calmodulin function and not protein instability. Analysis of diploid strains heterozygous for all combinations of cmd1-ts alleles revealed four intragenic complementation groups. The contributions of individual phe->ala changes to mutant phenotypes support the idea of internal functional redundancy in the symmetrical calmodulin protein molecule. These results suggest that the several phenylalanine residues in calmodulin are required to different extents in different combinations in order to carry out each of the several essential tasks. PMID:7896089
Conditional lethality strains for the biological control of Anastrepha species
USDA-ARS?s Scientific Manuscript database
Pro-apoptotic cell death genes are promising candidates for biologically-based autocidal control of pest insects as demonstrated by tetracycline (tet)-suppressible systems for conditional embryonic lethality in Drosophila melanogaster (Dm) and the medfly, Ceratitis capitata (Cc). However, for medfly...
Genetics Home Reference: Amish lethal microcephaly
... occurs in approximately 1 in 500 newborns in the Old Order Amish population of Pennsylvania. It has not been found outside this population. Related Information What information about a genetic condition can statistics provide? Why ... in the SLC25A19 gene cause Amish lethal microcephaly . The SLC25A19 ...
Establishment of conditional vectors for hairpin siRNA knockdowns
Matsukura, Shiro; Jones, Peter A.; Takai, Daiya
2003-01-01
Small interference RNA (siRNA) is an emerging methodology in reverse genetics. Here we report the development of a new tetracycline-inducible vector-based siRNA system, which uses a tetracycline-responsive derivative of the U6 promoter and the tetracycline repressor for conditional in vivo transcription of short hairpin RNA. This method prevents potential lethality immediately after transfection of a vector when the targeted gene is indispensable, or the phenotype of the knockdown is lethal or results in a growth abnormality. We show that the controlled knockdown of DNA methyltransferase 1 (DNMT1) in human cancer resulted in growth arrest. Removal of the inducer, doxycycline, from treated cells led to re-expression of the targeted gene. Thus the method allows for a highly controlled approach to gene knockdown. PMID:12888529
IP is caused by an X-linked dominant genetic defect that occurs on a gene known as IKBKG. Because the gene defect occurs on the X chromosome, the condition is most often seen in females. When it occurs in males, it is usually lethal.
Functional comparison of three transformer gene introns regulating conditional female lethality
USDA-ARS?s Scientific Manuscript database
The trasformer gene plays a critical role in the sex determination pathways of many insects. We cloned two transformer gene introns from Anastrepha suspensa, the Caribbean fruit fly. These introns have sequences that putatively have a role in sex-specific splicing patterns that affect sex determinat...
2014-01-01
Background Herbicide resistance in weedy plant populations can develop through different mechanisms such as gene flow of herbicide resistance transgenes from crop species into compatible weedy species or by natural evolution of herbicide resistance or tolerance following selection pressure. Results from our previous studies suggest that sub-lethal levels of the herbicide glyphosate can alter the pattern of gene flow between glyphosate resistant Canola®, Brassica napus, and glyphosate sensitive varieties of B. napus and B. rapa. The objectives of this study were to examine the phenological and developmental changes that occur in Brassica crop and weed species following sub-lethal doses of the herbicides glyphosate and glufosinate. We examined several vegetative and reproductive traits of potted plants under greenhouse conditions, treated with sub-lethal herbicide sprays. Results Our results indicate that exposure of Brassica spp. to a sub-lethal dose of glyphosate results in altering flowering phenology and reproductive function. Flowering of all sensitive species was significantly delayed and reproductive function, specifically male fertility, was suppressed. Higher dosage levels typically contributed to an increase in the magnitude of phenotypic changes. Conclusions These results demonstrate that Brassica spp. plants that are exposed to sub-lethal doses of glyphosate could be subject to very different pollination patterns and an altered pattern of gene flow that would result from changes in the overlap of flowering phenology between species. Implications include the potential for increased glyphosate resistance evolution and spread in weedy communities exposed to sub-lethal glyphosate. PMID:24655547
Londo, Jason Paul; McKinney, John; Schwartz, Matthew; Bollman, Mike; Sagers, Cynthia; Watrud, Lidia
2014-03-21
Herbicide resistance in weedy plant populations can develop through different mechanisms such as gene flow of herbicide resistance transgenes from crop species into compatible weedy species or by natural evolution of herbicide resistance or tolerance following selection pressure. Results from our previous studies suggest that sub-lethal levels of the herbicide glyphosate can alter the pattern of gene flow between glyphosate resistant Canola®, Brassica napus, and glyphosate sensitive varieties of B. napus and B. rapa. The objectives of this study were to examine the phenological and developmental changes that occur in Brassica crop and weed species following sub-lethal doses of the herbicides glyphosate and glufosinate. We examined several vegetative and reproductive traits of potted plants under greenhouse conditions, treated with sub-lethal herbicide sprays. Our results indicate that exposure of Brassica spp. to a sub-lethal dose of glyphosate results in altering flowering phenology and reproductive function. Flowering of all sensitive species was significantly delayed and reproductive function, specifically male fertility, was suppressed. Higher dosage levels typically contributed to an increase in the magnitude of phenotypic changes. These results demonstrate that Brassica spp. plants that are exposed to sub-lethal doses of glyphosate could be subject to very different pollination patterns and an altered pattern of gene flow that would result from changes in the overlap of flowering phenology between species. Implications include the potential for increased glyphosate resistance evolution and spread in weedy communities exposed to sub-lethal glyphosate.
Leow, San Min; Chua, Shu Xian Serene; Venkatachalam, Gireedhar; Shen, Liang; Luo, Le; Clement, Marie-Veronique
2017-03-07
Here we provide evidence to link sub-lethal oxidative stress to lysosome biogenesis. Exposure of cells to sub-lethal concentrations of exogenously added hydrogen peroxide resulted in cytosol to nuclear translocation of the Transcription Factor EB (TFEB), the master controller of lysosome biogenesis and function. Nuclear translocation of TFEB was dependent upon the activation of a cathepsin-caspase 3 signaling pathway, downstream of lysosomal membrane permeabilization and accompanied by a significant increase in lysosome numbers as well as induction of TFEB-dependent lysosome-associated genes expression such as Ctsl, Lamp2 and its spliced variant Lamp2a, Neu1and Ctsb and Sqstm1 and Atg9b. The effects of sub-lethal oxidative stress on lysosomal gene expression and biogenesis were rescued upon gene silencing of caspase 3 and TFEB. Notably, caspase 3 activation was not associated with phenotypic hallmarks of apoptosis, evidenced by the absence of caspase 3 substrate cleavage, such as PARP, Lamin A/C or gelsolin. Taken together, these data demonstrate for the first time an unexpected and non-canonical role of a cathepsin-caspase 3 axis in the nuclear translocation of TFEB leading to lysosome biogenesis under conditions of sub-lethal oxidative stress.
Identification of lethal cluster of genes in the yeast transcription network
NASA Astrophysics Data System (ADS)
Rho, K.; Jeong, H.; Kahng, B.
2006-05-01
Identification of essential or lethal genes would be one of the ultimate goals in drug designs. Here we introduce an in silico method to select the cluster with a high population of lethal genes, called lethal cluster, through microarray assay. We construct a gene transcription network based on the microarray expression level. Links are added one by one in the descending order of the Pearson correlation coefficients between two genes. As the link density p increases, two meaningful link densities pm and ps are observed. At pm, which is smaller than the percolation threshold, the number of disconnected clusters is maximum, and the lethal genes are highly concentrated in a certain cluster that needs to be identified. Thus the deletion of all genes in that cluster could efficiently lead to a lethal inviable mutant. This lethal cluster can be identified by an in silico method. As p increases further beyond the percolation threshold, the power law behavior in the degree distribution of a giant cluster appears at ps. We measure the degree of each gene at ps. With the information pertaining to the degrees of each gene at ps, we return to the point pm and calculate the mean degree of genes of each cluster. We find that the lethal cluster has the largest mean degree.
Conditions for success of engineered underdominance gene drive systems.
Edgington, Matthew P; Alphey, Luke S
2017-10-07
Engineered underdominance is one of a number of different gene drive strategies that have been proposed for the genetic control of insect vectors of disease. Here we model a two-locus engineered underdominance based gene drive system that is based on the concept of mutually suppressing lethals. In such a system two genetic constructs are introduced, each possessing a lethal element and a suppressor of the lethal at the other locus. Specifically, we formulate and analyse a population genetics model of this system to assess when different combinations of release strategies (i.e. single or multiple releases of both sexes or males only) and genetic systems (i.e. bisex lethal or female-specific lethal elements and different strengths of suppressors) will give population replacement or fail to do so. We anticipate that results presented here will inform the future design of engineered underdominance gene drive systems as well as providing a point of reference regarding release strategies for those looking to test such a system. Our discussion is framed in the context of genetic control of insect vectors of disease. One of several serious threats in this context are Aedes aegypti mosquitoes as they are the primary vectors of dengue viruses. However, results are also applicable to Ae. aegypti as vectors of Zika, yellow fever and chikungunya viruses and also to the control of a number of other insect species and thereby of insect-vectored pathogens. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Proteomic Characterization of Inbreeding-Related Cold Sensitivity in Drosophila melanogaster
Beck, Hans C.; Petersen, Jørgen; Gagalova, Kristina Kirilova; Loeschcke, Volker
2013-01-01
Inbreeding depression is a widespread phenomenon of central importance to agriculture, medicine, conservation biology and evolutionary biology. Although the population genetic principles of inbreeding depression are well understood, we know little about its functional genomic causes. To provide insight into the molecular interplay between intrinsic stress responses, inbreeding depression and temperature tolerance, we performed a proteomic characterization of a well-defined conditional inbreeding effect in a single line of Drosophila melanogaster, which suffers from extreme cold sensitivity and lethality. We identified 48 differentially expressed proteins in a conditional lethal line as compared to two control lines. These proteins were enriched for proteins involved in hexose metabolism, in particular pyruvate metabolism, and many were found to be associated with lipid particles. These processes can be linked to known cold tolerance mechanisms, such as the production of cryoprotectants, membrane remodeling and the build-up of energy reserves. We checked mRNA-expression of seven genes with large differential protein expression. Although protein expression poorly correlated with gene expression, we found a single gene (CG18067) that, after cold shock, was upregulated in the conditional lethal line both at the mRNA and protein level. Expression of CG18067 also increased in control flies after cold shock, and has previously been linked to cold exposure and chill coma recovery time. Many differentially expressed proteins in our study appear to be involved in cold tolerance in non-inbred individuals. This suggest the conditional inbreeding effect to be caused by misregulation of physiological cold tolerance mechanisms. PMID:23658762
Maternal-Effect Lethal Mutations on Linkage Group II of Caenorhabditis Elegans
Kemphues, K. J.; Kusch, M.; Wolf, N.
1988-01-01
We have analyzed a set of linkage group (LG) II maternal-effect lethal mutations in Caenorhabditis elegans isolated by a new screening procedure. Screens of 12,455 F(1) progeny from mutagenized adults resulted in the recovery of 54 maternal-effect lethal mutations identifying 29 genes. Of the 54 mutations, 39 are strict maternal-effect mutations defining 17 genes. These 17 genes fall into two classes distinguished by frequency of mutation to strict maternal-effect lethality. The smaller class, comprised of four genes, mutated to strict maternal-effect lethality at a frequency close to 5 X 10(-4), a rate typical of essential genes in C. elegans. Two of these genes are expressed during oogenesis and required exclusively for embryogenesis (pure maternal genes), one appears to be required specifically for meiosis, and the fourth has a more complex pattern of expression. The other 13 genes were represented by only one or two strict maternal alleles each. Two of these are identical genes previously identified by nonmaternal embryonic lethal mutations. We interpret our results to mean that although many C. elegans genes can mutate to strict maternal-effect lethality, most genes mutate to that phenotype rarely. Pure maternal genes, however, are among a smaller class of genes that mutate to maternal-effect lethality at typical rates. If our interpretation is correct, we are near saturation for pure maternal genes in the region of LG II balanced by mnC1. We conclude that the number of pure maternal genes in C. elegans is small, being probably not much higher than 12. PMID:3224814
Xiao, Zhiliang; Hu, Yang; Zhang, Xiaoli; Xue, Yuqian; Fang, Zhiyuan; Yang, Limei; Zhang, Yangyong; Liu, Yumei; Li, Zhansheng; Liu, Xing; Liu, Zezhou; Lv, Honghao; Zhuang, Mu
2017-06-05
Hybrid lethality is a deleterious phenotype that is vital to species evolution. We previously reported hybrid lethality in cabbage ( Brassica oleracea ) and performed preliminary mapping of related genes. In the present study, the fine mapping of hybrid lethal genes revealed that BoHL1 was located on chromosome C1 between BoHLTO124 and BoHLTO130, with an interval of 101 kb. BoHL2 was confirmed to be between insertion-deletion (InDels) markers HL234 and HL235 on C4, with a marker interval of 70 kb. Twenty-eight and nine annotated genes were found within the two intervals of BoHL1 and BoHL2 , respectively. We also applied RNA-Seq to analyze hybrid lethality in cabbage. In the region of BoHL1 , seven differentially expressed genes (DEGs) and five resistance (R)-related genes (two in common, i.e., Bo1g153320 and Bo1g153380 ) were found, whereas in the region of BoHL2 , two DEGs and four R-related genes (two in common, i.e., Bo4g173780 and Bo4g173810 ) were found. Along with studies in which R genes were frequently involved in hybrid lethality in other plants, these interesting R-DEGs may be good candidates associated with hybrid lethality. We also used SNP/InDel analyses and quantitative real-time PCR to confirm the results. This work provides new insight into the mechanisms of hybrid lethality in cabbage.
Mariscal, Ana M; Kakizawa, Shigeyuki; Hsu, Jonathan Y; Tanaka, Kazuki; González-González, Luis; Broto, Alicia; Querol, Enrique; Lluch-Senar, Maria; Piñero-Lambea, Carlos; Sun, Lijie; Weyman, Philip D; Wise, Kim S; Merryman, Chuck; Tse, Gavin; Moore, Adam J; Hutchison, Clyde A; Smith, Hamilton O; Tomita, Masaru; Venter, J Craig; Glass, John I; Piñol, Jaume; Suzuki, Yo
2018-05-22
Functional genomics studies in minimal mycoplasma cells enable unobstructed access to some of the most fundamental processes in biology. Conventional transposon bombardment and gene knockout approaches often fail to reveal functions of genes that are essential for viability, where lethality precludes phenotypic characterization. Conditional inactivation of genes is effective for characterizing functions central to cell growth and division, but tools are limited for this purpose in mycoplasmas. Here we demonstrate systems for inducible repression of gene expression based on clustered regularly interspaced short palindromic repeats-mediated interference (CRISPRi) in Mycoplasma pneumoniae and synthetic Mycoplasma mycoides, two organisms with reduced genomes actively used in systems biology studies. In the synthetic cell, we also demonstrate inducible gene expression for the first time. Time-course data suggest rapid kinetics and reversible engagement of CRISPRi. Targeting of six selected endogenous genes with this system results in lowered transcript levels or reduced growth rates that agree with lack or shortage of data in previous transposon bombardment studies, and now produces actual cells to analyze. The ksgA gene encodes a methylase that modifies 16S rRNA, rendering it vulnerable to inhibition by the antibiotic kasugamycin. Targeting the ksgA gene with CRISPRi removes the lethal effect of kasugamycin and enables cell growth, thereby establishing specific and effective gene modulation with our system. The facile methods for conditional gene activation and inactivation in mycoplasmas open the door to systematic dissection of genetic programs at the core of cellular life.
Identification of essential genes and synthetic lethal gene combinations in Escherichia coli K-12.
Mori, Hirotada; Baba, Tomoya; Yokoyama, Katsushi; Takeuchi, Rikiya; Nomura, Wataru; Makishi, Kazuichi; Otsuka, Yuta; Dose, Hitomi; Wanner, Barry L
2015-01-01
Here we describe the systematic identification of single genes and gene pairs, whose knockout causes lethality in Escherichia coli K-12. During construction of precise single-gene knockout library of E. coli K-12, we identified 328 essential gene candidates for growth in complex (LB) medium. Upon establishment of the Keio single-gene deletion library, we undertook the development of the ASKA single-gene deletion library carrying a different antibiotic resistance. In addition, we developed tools for identification of synthetic lethal gene combinations by systematic construction of double-gene knockout mutants. We introduce these methods herein.
Vermeulen, C J; Sørensen, P; Kirilova Gagalova, K; Loeschcke, V
2013-09-01
In sexually reproducing species, increased homozygosity often causes a decline in fitness, called inbreeding depression. Recently, researchers started describing the functional genomic changes that occur during inbreeding, both in benign conditions and under environmental stress. To further this aim, we have performed a genome-wide gene expression study of inbreeding depression, manifesting as cold sensitivity and conditional lethality. Our focus was to describe general patterns of gene expression during inbreeding depression and to identify specific processes affected in our line. There was a clear difference in gene expression between the stressful restrictive environment and the benign permissive environment in both the affected inbred line and the inbred control line. We noted a strong inbreeding-by-environment interaction, whereby virtually all transcriptional differences between lines were found in the restrictive environment. Functional annotation showed enrichment of transcripts coding for serine proteases and their inhibitors (serpins and BPTI/Kunitz family), which indicates activation of the innate immune response. These genes have previously been shown to respond transcriptionally to cold stress, suggesting the conditional lethal effect is associated with an exaggerated cold stress response. The set of differentially expressed genes significantly overlapped with those found in three other studies of inbreeding depression, demonstrating that it is possible to detect a common signature across different genetic backgrounds. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Spitler, Kathryn M.; Ponce, Jessica M.; Oudit, Gavin Y.; Hall, Duane D.
2017-01-01
The mediator complex, a multisubunit nuclear complex, plays an integral role in regulating gene expression by acting as a bridge between transcription factors and RNA polymerase II. Genetic deletion of mediator subunit 1 (Med1) results in embryonic lethality, due in large part to impaired cardiac development. We first established that Med1 is dynamically expressed in cardiac development and disease, with marked upregulation of Med1 in both human and murine failing hearts. To determine if Med1 deficiency protects against cardiac stress, we generated two cardiac-specific Med1 knockout mouse models in which Med1 is conditionally deleted (Med1cKO mice) or inducibly deleted in adult mice (Med1cKO-MCM mice). In both models, cardiac deletion of Med1 resulted in early lethality accompanied by pronounced changes in cardiac function, including left ventricular dilation, decreased ejection fraction, and pathological structural remodeling. We next defined how Med1 deficiency alters the cardiac transcriptional profile using RNA-sequencing analysis. Med1cKO mice demonstrated significant dysregulation of genes related to cardiac metabolism, in particular genes that are coordinated by the transcription factors Pgc1α, Pparα, and Errα. Consistent with the roles of these transcription factors in regulation of mitochondrial genes, we observed significant alterations in mitochondrial size, mitochondrial gene expression, complex activity, and electron transport chain expression under Med1 deficiency. Taken together, these data identify Med1 as an important regulator of vital cardiac gene expression and maintenance of normal heart function. NEW & NOTEWORTHY Disruption of transcriptional gene expression is a hallmark of dilated cardiomyopathy; however, its etiology is not well understood. Cardiac-specific deletion of the transcriptional coactivator mediator subunit 1 (Med1) results in dilated cardiomyopathy, decreased cardiac function, and lethality. Med1 deletion disrupted cardiac mitochondrial and metabolic gene expression patterns. PMID:28159809
van der Geize, R.; de Jong, W.; Hessels, G. I.; Grommen, A. W. F.; Jacobs, A. A. C.; Dijkhuizen, L.
2008-01-01
A novel method to efficiently generate unmarked in-frame gene deletions in Rhodococcus equi was developed, exploiting the cytotoxic effect of 5-fluorocytosine (5-FC) by the action of cytosine deaminase (CD) and uracil phosphoribosyltransferase (UPRT) enzymes. The opportunistic, intracellular pathogen R. equi is resistant to high concentrations of 5-FC. Introduction of Escherichia coli genes encoding CD and UPRT conferred conditional lethality to R. equi cells incubated with 5-FC. To exemplify the use of the codA::upp cassette as counter-selectable marker, an unmarked in-frame gene deletion mutant of R. equi was constructed. The supA and supB genes, part of a putative cholesterol catabolic gene cluster, were efficiently deleted from the R. equi wild-type genome. Phenotypic analysis of the generated ΔsupAB mutant confirmed that supAB are essential for growth of R. equi on cholesterol. Macrophage survival assays revealed that the ΔsupAB mutant is able to survive and proliferate in macrophages comparable to wild type. Thus, cholesterol metabolism does not appear to be essential for macrophage survival of R. equi. The CD-UPRT based 5-FC counter-selection may become a useful asset in the generation of unmarked in-frame gene deletions in other actinobacteria as well, as actinobacteria generally appear to be 5-FC resistant and 5-FU sensitive. PMID:18984616
Bhattacharjee, Sonali; Nandi, Saikat
2017-12-01
Synthetic lethality refers to a lethal phenotype that results from the simultaneous disruptions of two genes, while the disruption of either gene alone is viable. Many DNA double strand break repair (DSBR) genes have synthetic lethal relationships with oncogenes and tumor suppressor genes, which can be exploited for targeted cancer therapy, an approach referred to as combination therapy. DNA double-strand breaks (DSBs) are one of the most toxic lesions to a cell and can be repaired by non-homologous end joining (NHEJ) or homologous recombination (HR). HR and NHEJ genes are particularly attractive targets for cancer therapy because these genes have altered expression patterns in cancer cells when compared with normal cells and these genetic abnormalities can be targeted for selectively killing cancer cells. Here, we review recent advances in the development of small molecule inhibitors against HR and NHEJ genes to induce synthetic lethality and address the future directions and clinical relevance of this approach. © 2017 IUBMB Life, 69(12):929-937, 2017. © 2017 International Union of Biochemistry and Molecular Biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, W.F.; Martinell, J.; Whitney, J.B. III
The group of diseases called the thalassemias is the largest single-gene health problem in the world according the World Health Organization. The thalassemias are lethal hereditary anemias in which the infants cannot make their own blood. Three mouse mutants are shown to be models of the human disease ..cap alpha..-thalassemia. However, since an additional gene is affected, these mutants represent a particularly severe condition in which death occurs in the homozygous embryo even before globin genes are activated. Phenotypic and genotypic characteristics are described. (ACR)
A genetic screen for temperature-sensitive cell-division mutants of Caenorhabditis elegans.
O'Connell, K F; Leys, C M; White, J G
1998-01-01
A novel screen to isolate conditional cell-division mutants in Caenorhabditis elegans has been developed. The screen is based on the phenotypes associated with existing cell-division mutations: some disrupt postembryonic divisions and affect formation of the gonad and ventral nerve cord-resulting in sterile, uncoordinated animals-while others affect embryonic divisions and result in lethality. We obtained 19 conditional mutants that displayed these phenotypes when shifted to the restrictive temperature at the appropriate developmental stage. Eighteen of these mutations have been mapped; 17 proved to be single alleles of newly identified genes, while 1 proved to be an allele of a previously identified gene. Genetic tests on the embryonic lethal phenotypes indicated that for 13 genes, embryogenesis required maternal expression, while for 6, zygotic expression could suffice. In all cases, maternal expression of wild-type activity was found to be largely sufficient for embryogenesis. Cytological analysis revealed that 10 mutants possessed embryonic cell-division defects, including failure to properly segregate DNA, failure to assemble a mitotic spindle, late cytokinesis defects, prolonged cell cycles, and improperly oriented mitotic spindles. We conclude that this approach can be used to identify mutations that affect various aspects of the cell-division cycle. PMID:9649522
Osmond, B C; Specht, C A; Robbins, P W
1999-09-28
We screened Saccharomyces strains for mutants that are synthetically lethal with deletion of the major chitin synthase gene CHS3. In addition to finding, not surprisingly, that mutations in major cell wall-related genes such as FKS1 (glucan synthase) and mutations in any of the Golgi glycosylation complex genes (MNN9 family) are lethal in combination with chs3Delta, we found that a mutation in Srv2p, a bifunctional regulatory gene, is notably lethal in the chs3 deletion. In extending studies of fks1-chitin synthase 3 interactions, we made the surprising discovery that deletion of CSD3/CHS6, a gene normally required for Chs3p delivery and activity in vivo, was not lethal with fks1 and, in fact, that lack of Csd3p/Chs6p did not decrease the high level of stress-related chitin made in the fks1 mutant. This finding suggests that "stress response" chitin synthesis proceeds through an alternate Chs3p targeting pathway.
Osmond, Barbara C.; Specht, Charles A.; Robbins, Phillips W.
1999-01-01
We screened Saccharomyces strains for mutants that are synthetically lethal with deletion of the major chitin synthase gene CHS3. In addition to finding, not surprisingly, that mutations in major cell wall-related genes such as FKS1 (glucan synthase) and mutations in any of the Golgi glycosylation complex genes (MNN9 family) are lethal in combination with chs3Δ, we found that a mutation in Srv2p, a bifunctional regulatory gene, is notably lethal in the chs3 deletion. In extending studies of fks1-chitin synthase 3 interactions, we made the surprising discovery that deletion of CSD3/CHS6, a gene normally required for Chs3p delivery and activity in vivo, was not lethal with fks1 and, in fact, that lack of Csd3p/Chs6p did not decrease the high level of stress-related chitin made in the fks1 mutant. This finding suggests that “stress response” chitin synthesis proceeds through an alternate Chs3p targeting pathway. PMID:10500155
Annotating novel genes by integrating synthetic lethals and genomic information
Schöner, Daniel; Kalisch, Markus; Leisner, Christian; Meier, Lukas; Sohrmann, Marc; Faty, Mahamadou; Barral, Yves; Peter, Matthias; Gruissem, Wilhelm; Bühlmann, Peter
2008-01-01
Background Large scale screening for synthetic lethality serves as a common tool in yeast genetics to systematically search for genes that play a role in specific biological processes. Often the amounts of data resulting from a single large scale screen far exceed the capacities of experimental characterization of every identified target. Thus, there is need for computational tools that select promising candidate genes in order to reduce the number of follow-up experiments to a manageable size. Results We analyze synthetic lethality data for arp1 and jnm1, two spindle migration genes, in order to identify novel members in this process. To this end, we use an unsupervised statistical method that integrates additional information from biological data sources, such as gene expression, phenotypic profiling, RNA degradation and sequence similarity. Different from existing methods that require large amounts of synthetic lethal data, our method merely relies on synthetic lethality information from two single screens. Using a Multivariate Gaussian Mixture Model, we determine the best subset of features that assign the target genes to two groups. The approach identifies a small group of genes as candidates involved in spindle migration. Experimental testing confirms the majority of our candidates and we present she1 (YBL031W) as a novel gene involved in spindle migration. We applied the statistical methodology also to TOR2 signaling as another example. Conclusion We demonstrate the general use of Multivariate Gaussian Mixture Modeling for selecting candidate genes for experimental characterization from synthetic lethality data sets. For the given example, integration of different data sources contributes to the identification of genetic interaction partners of arp1 and jnm1 that play a role in the same biological process. PMID:18194531
New genes often acquire male-specific functions but rarely become essential in Drosophila.
Kondo, Shu; Vedanayagam, Jeffrey; Mohammed, Jaaved; Eizadshenass, Sogol; Kan, Lijuan; Pang, Nan; Aradhya, Rajaguru; Siepel, Adam; Steinhauer, Josefa; Lai, Eric C
2017-09-15
Relatively little is known about the in vivo functions of newly emerging genes, especially in metazoans. Although prior RNAi studies reported prevalent lethality among young gene knockdowns, our phylogenomic analyses reveal that young Drosophila genes are frequently restricted to the nonessential male reproductive system. We performed large-scale CRISPR/Cas9 mutagenesis of "conserved, essential" and "young, RNAi-lethal" genes and broadly confirmed the lethality of the former but the viability of the latter. Nevertheless, certain young gene mutants exhibit defective spermatogenesis and/or male sterility. Moreover, we detected widespread signatures of positive selection on young male-biased genes. Thus, young genes have a preferential impact on male reproductive system function. © 2017 Kondo et al.; Published by Cold Spring Harbor Laboratory Press.
Myxoma virus M130R is a novel virulence factor required for lethal myxomatosis in rabbits.
Barrett, John W; Werden, Steven J; Wang, Fuan; McKillop, William M; Jimenez, June; Villeneuve, Danielle; McFadden, Grant; Dekaban, Gregory A
2009-09-01
Myxoma virus (MV) is a highly lethal, rabbit-specific poxvirus that induces a disease called myxomatosis in European rabbits. In an effort to understand the function of predicted immunomodulatory genes we have deleted various viral genes from MV and tested the ability of these knockout viruses to induce lethal myxomatosis. MV encodes a unique 15 kD cytoplasmic protein (M130R) that is expressed late (12h post infection) during infection. M130R is a non-essential gene for MV replication in rabbit, monkey or human cell lines. Construction of a targeted gene knockout virus (vMyx130KO) and infection of susceptible rabbits demonstrate that the M130R knockout virus is attenuated and that loss of M130R expression allows the rabbit host immune system to effectively respond to and control the lethal effects of MV. M130R expression is a bona fide poxviral virulence factor necessary for full and lethal development of myxomatosis.
Iqbal, Junaid; Dufendach, Kevin R; Wellons, John C; Kuba, Maria G; Nickols, Hilary H; Gómez-Duarte, Oscar G; Wynn, James L
2016-01-01
Neonatal meningitis is a rare but devastating condition. Multi-drug resistant (MDR) bacteria represent a substantial global health risk. This study reports on an aggressive case of lethal neonatal meningitis due to a MDR Escherichia coli (serotype O75:H5:K1). Serotyping, MDR pattern and phylogenetic typing revealed that this strain is an emergent and highly virulent neonatal meningitis E. coli isolate. The isolate was resistant to both ampicillin and gentamicin; antibiotics currently used for empiric neonatal sepsis treatment. The strain was also positive for multiple virulence genes including K1 capsule, fimbrial adhesion fimH, siderophore receptors iroN, fyuA and iutA, secreted autotransporter toxin sat, membrane associated proteases ompA and ompT, type II polysaccharide synthesis genes (kpsMTII) and pathogenicity-associated island (PAI)-associated malX gene. The presence of highly-virulent MDR organisms isolated in neonates underscores the need to implement rapid drug resistance diagnostic methods and should prompt consideration of alternate empiric therapy in neonates with Gram negative meningitis.
Farmakis, Shannon G; Shinawi, Marwan; Miller-Thomas, Michelle; Radmanesh, Alireza; Herman, Thomas E
2015-03-01
Mutations in the fibroblast growth factor receptor 3 (FGFR3) gene account for six related skeletal dysplasia conditions: achondroplasia, hypochondroplasia, thanatophoric dysplasia types 1 and 2, SADDAN (severe achondroplasia with developmental delay and acanthosis nigricans), and platyspondylic lethal skeletal dysplasia, San Diego type. This group of disorders has very characteristic clinical and radiologic features, which distinguish them from other skeletal dysplasias. They display a spectrum of severity in the skeletal findings, ranging from relatively mild hypochondroplasia to lethal thanatophoric dysplasia. We report a patient who has the missense FGFR3 mutation, Lys650Met, previously reported in association only with SADDAN, who exhibits some findings similar to both thanatophoric dysplasia (types 1 and 2) in addition to those findings characteristic of SADDAN.
Anyanful, Akwasi; Easley, Kirk A.; Benian, Guy M.; Kalman, Daniel
2010-01-01
SUMMARY Caenorhabditis elegans exhibit avoidance behavior when presented with diverse bacterial pathogens. We hypothesized that exposure to pathogens might not only cause worms to move away but also simultaneously activate pathways that promote resistance to the pathogen. We show that brief exposure to the virulent or avirulent strains of the bacterial pathogen enteropathogenic E. coli (EPEC) “conditions” or “immunizes” C. elegans to survive a subsequent exposure that would otherwise prove lethal. Conditioning requires dopaminergic neurons. Conditioning also requires the p38 MAP Kinase pathway, which regulates innate immunity, and the insulin/IGFR pathway, which regulates lifespan. Our findings suggest that the molecular pathways that regulate innate immunity and lifespan and provide protection may, in nature, be regulated or “conditioned” by exposure to pathogens, and perhaps allow survival in noxious environments. PMID:19454349
Molecular and Genetic Characterization of the Drosophila Melanogaster 87e Actin Gene Region
Manseau, L. J.; Ganetzky, B.; Craig, E. A.
1988-01-01
A combined molecular and genetic analysis of the 87E actin gene (Act87E) in Drosophila melanogaster was undertaken. A clone of Act87E was isolated and characterized. The Act87E transcription unit is 1.57 kb and includes a 556-base intervening sequence in the 5' leader of the gene. The protein-coding region is contiguous and encodes a protein that is >93% identical to the other Drosophila actins. By in situ hybridization with a series of deficiencies that break in 87E, Act87E was localized to a region encompassing one to three faint, polytene chromosome bands. The region between the deficiency endpoints that flank the actin gene was isolated and measures approximately 24-30 kb. The closest proximal deficiency endpoint lies 8-10 kb 5' to the actin gene; the closest distal deficiency endpoint lies 16-20 kb 3' to the actin gene. A single, recessive lethal complementation group lies between the deficiency endpoints that flank the actin gene. An EMS mutagenesis screen produced four additional members of this recessive lethal complementation group. Molecular analysis of the members of this complementation group indicated that two of the newly induced mutations have deletions of approximately 1 kb in a transcribed region 4-5 kb 3' (distal) to the actin gene. This result suggests that the recessive lethal complementation group represents a gene separate from and distal to the actin gene. The mutagenesis screen failed to identify additional recessive lethal complementation groups in the actin gene-containing region. The implications of the failure to identify recessive lethal mutations in the actin gene are discussed in reference to studies of other conserved multigene families and other muscle protein mutations. PMID:2840338
The population genetics of X-autosome synthetic lethals and steriles.
Lachance, Joseph; Johnson, Norman A; True, John R
2011-11-01
Epistatic interactions are widespread, and many of these interactions involve combinations of alleles at different loci that are deleterious when present in the same individual. The average genetic environment of sex-linked genes differs from that of autosomal genes, suggesting that the population genetics of interacting X-linked and autosomal alleles may be complex. Using both analytical theory and computer simulations, we analyzed the evolutionary trajectories and mutation-selection balance conditions for X-autosome synthetic lethals and steriles. Allele frequencies follow a set of fundamental trajectories, and incompatible alleles are able to segregate at much higher frequencies than single-locus expectations. Equilibria exist, and they can involve fixation of either autosomal or X-linked alleles. The exact equilibrium depends on whether synthetic alleles are dominant or recessive and whether fitness effects are seen in males, females, or both sexes. When single-locus fitness effects and synthetic incompatibilities are both present, population dynamics depend on the dominance of alleles and historical contingency (i.e., whether X-linked or autosomal mutations occur first). Recessive synthetic lethality can result in high-frequency X-linked alleles, and dominant synthetic lethality can result in high-frequency autosomal alleles. Many X-autosome incompatibilities in natural populations may be cryptic, appearing to be single-locus effects because one locus is fixed. We also discuss the implications of these findings with respect to standing genetic variation and the origins of Haldane's rule.
Majira, Amel; Domin, Monique; Grandjean, Olivier; Gofron, Krystyna; Houba-Hérin, Nicole
2002-10-01
A seedling lethal mutant of Nicotiana plumbaginifolia (sdl-1) was isolated by transposon tagging using a maize Dissociation (Ds) element. The insertion mutation was produced by direct co-transformation of protoplasts with two plasmids: one containing Ds and a second with an Ac transposase gene. sdl-1 seedlings exhibit several phenotypes: swollen organs, short hypocotyls in light and dark conditions, and enlarged and multinucleated cells, that altogether suggest cell growth defects. Mutant cells are able to proliferate under in vitro culture conditions. Genomic DNA sequences bordering the transposon were used to recover cDNA from the normal allele. Complementation of the mutant phenotype with the cDNA confirmed that the transposon had caused the mutation. The Ds element was inserted into the first exon of the open reading frame and the homozygous mutant lacked detectable transcript. Phenocopies of the mutant were obtained by an antisense approach. SDL-1 encodes a novel protein found in several plant genomes but apparently missingfrom animal and fungal genomes; the protein is highly conserved and has a potential plastid targeting motif.
Desriac, N; Postollec, F; Coroller, L; Sohier, D; Abee, T; den Besten, H M W
2013-10-01
Exposure to mild stress conditions can activate stress adaptation mechanisms and provide cross-resistance towards otherwise lethal stresses. In this study, an approach was followed to select molecular biomarkers (quantitative gene expressions) to predict induced acid resistance after exposure to various mild stresses, i.e. exposure to sublethal concentrations of salt, acid and hydrogen peroxide during 5 min to 60 min. Gene expression patterns of unstressed and mildly stressed cells of Bacillus weihenstephanensis were correlated to their acid resistance (3D value) which was estimated after exposure to lethal acid conditions. Among the twenty-nine candidate biomarkers, 12 genes showed expression patterns that were correlated either linearly or non-linearly to acid resistance, while for the 17 other genes the correlation remains to be determined. The selected genes represented two types of biomarkers, (i) four direct biomarker genes (lexA, spxA, narL, bkdR) for which expression patterns upon mild stress treatment were linearly correlated to induced acid resistance; and (ii) nine long-acting biomarker genes (spxA, BcerKBAB4_0325, katA, trxB, codY, lacI, BcerKBAB4_1716, BcerKBAB4_2108, relA) which were transiently up-regulated during mild stress exposure and correlated to increased acid resistance over time. Our results highlight that mild stress induced transcripts can be linearly or non-linearly correlated to induced acid resistance and both approaches can be used to find relevant biomarkers. This quantitative and systematic approach opens avenues to select cellular biomarkers that could be incremented in mathematical models to predict microbial behaviour. Copyright © 2013 Elsevier B.V. All rights reserved.
Inactivation of CDK2 is synthetically lethal to MYCN over-expressing cancer cells
Molenaar, Jan J.; Ebus, Marli E.; Geerts, Dirk; Koster, Jan; Lamers, Fieke; Valentijn, Linda J.; Westerhout, Ellen M.; Versteeg, Rogier; Caron, Huib N.
2009-01-01
Two genes have a synthetically lethal relationship when the silencing or inhibiting of 1 gene is only lethal in the context of a mutation or activation of the second gene. This situation offers an attractive therapeutic strategy, as inhibition of such a gene will only trigger cell death in tumor cells with an activated second oncogene but spare normal cells without activation of the second oncogene. Here we present evidence that CDK2 is synthetically lethal to neuroblastoma cells with MYCN amplification and over-expression. Neuroblastomas are childhood tumors with an often lethal outcome. Twenty percent of the tumors have MYCN amplification, and these tumors are ultimately refractory to any therapy. Targeted silencing of CDK2 by 3 RNA interference techniques induced apoptosis in MYCN-amplified neuroblastoma cell lines, but not in MYCN single copy cells. Silencing of MYCN abrogated this apoptotic response in MYCN-amplified cells. Inversely, silencing of CDK2 in MYCN single copy cells did not trigger apoptosis, unless a MYCN transgene was activated. The MYCN induced apoptosis after CDK2 silencing was accompanied by nuclear stabilization of P53, and mRNA profiling showed up-regulation of P53 target genes. Silencing of P53 rescued the cells from MYCN-driven apoptosis. The synthetic lethality of CDK2 silencing in MYCN activated neuroblastoma cells can also be triggered by inhibition of CDK2 with a small molecule drug. Treatment of neuroblastoma cells with roscovitine, a CDK inhibitor, at clinically achievable concentrations induced MYCN-dependent apoptosis. The synthetically lethal relationship between CDK2 and MYCN indicates CDK2 inhibitors as potential MYCN-selective cancer therapeutics. PMID:19525400
Mura, Maria Elena; Ruiu, Luca
2018-06-21
The main objective of this study was to investigate the effects of the insecticidal compound spinosad on the survival, reproduction, and immune functions of the Mediterranean fruit fly. The lethal and sub-lethal effects were determined on Ceratitis capitata Wied. (Diptera: Tephritidae) challenged with different concentrations of spinosad. A median lethal concentration of 0.28 ppm was observed on flies feeding for 5 days on a treated diet. A significant and concentration-dependent decrease in fecundity, egg hatch rate, and lifespan was also detected in treated compared with control flies. Gene expression analyses conducted on treated insects by RT-qPCR revealed an immunomodulatory action of sub-lethal concentrations of spinosad. Target transcripts included several genes involved in medfly immunity and male or female reproductive functions. While a significant upregulation was detected in treated males a short time after spinosad ingestion, most target genes were downregulated in treated females. Our study confirmed the high toxicity of spinosad to C. capitata , highlighting an indirect effect on insect lifespan and reproductive performance at sub-lethal doses. In addition to defining the acute and sub-lethal toxicity of spinosad against the fly, this study provides new insights on the interaction of this compound with insect physiology.
Cilloniz, Cristian; Ebihara, Hideki; Ni, Chester; Neumann, Gabriele; Korth, Marcus J; Kelly, Sara M; Kawaoka, Yoshihiro; Feldmann, Heinz; Katze, Michael G
2011-09-01
Ebola virus is the etiologic agent of a lethal hemorrhagic fever in humans and nonhuman primates with mortality rates of up to 90%. Previous studies with Zaire Ebola virus (ZEBOV), mouse-adapted virus (MA-ZEBOV), and mutant viruses (ZEBOV-NP(ma), ZEBOV-VP24(ma), and ZEBOV-NP/VP24(ma)) allowed us to identify the mutations in viral protein 24 (VP24) and nucleoprotein (NP) responsible for acquisition of high virulence in mice. To elucidate specific molecular signatures associated with lethality, we compared global gene expression profiles in spleen samples from mice infected with these viruses and performed an extensive functional analysis. Our analysis showed that the lethal viruses (MA-ZEBOV and ZEBOV-NP/VP24(ma)) elicited a strong expression of genes 72 h after infection. In addition, we found that although the host transcriptional response to ZEBOV-VP24(ma) was nearly the same as that to ZEBOV-NP/VP24(ma), the contribution of a mutation in the NP gene was required for a lethal phenotype. Further analysis indicated that one of the most relevant biological functions differentially regulated by the lethal viruses was the inflammatory response, as was the induction of specific metalloproteinases, which were present in our newly identify functional network that was associated with Ebola virus lethality. Our results suggest that this dysregulated proinflammatory response increased the severity of disease. Consequently, the newly discovered molecular signature could be used as the starting point for the development of new drugs and therapeutics. To our knowledge, this is the first study that clearly defines unique molecular signatures associated with Ebola virus lethality.
Börgeling, Yvonne; Schmolke, Mirco; Viemann, Dorothee; Nordhoff, Carolin; Roth, Johannes; Ludwig, Stephan
2014-01-03
Highly pathogenic avian influenza viruses (HPAIV) induce severe inflammation in poultry and men. One characteristic of HPAIV infections is the induction of a cytokine burst that strongly contributes to viral pathogenicity. This cell-intrinsic hypercytokinemia seems to involve hyperinduction of p38 mitogen-activated protein kinase. Here we investigate the role of p38 MAPK signaling in the antiviral response against HPAIV in mice as well as in human endothelial cells, the latter being a primary source of cytokines during systemic infections. Global gene expression profiling of HPAIV-infected endothelial cells in the presence of the p38-specific inhibitor SB 202190 revealed that inhibition of p38 MAPK leads to reduced expression of IFNβ and other cytokines after H5N1 and H7N7 infection. More than 90% of all virus-induced genes were either partially or fully dependent on p38 signaling. Moreover, promoter analysis confirmed a direct impact of p38 on the IFNβ promoter activity. Furthermore, upon treatment with IFN or conditioned media from HPAIV-infected cells, p38 controls interferon-stimulated gene expression by coregulating STAT1 by phosphorylation at serine 727. In vivo inhibition of p38 MAPK greatly diminishes virus-induced cytokine expression concomitant with reduced viral titers, thereby protecting mice from lethal infection. These observations show that p38 MAPK acts on two levels of the antiviral IFN response. Initially the kinase regulates IFN induction and, at a later stage, p38 controls IFN signaling and thereby expression of IFN-stimulated genes. Thus, inhibition of MAP kinase p38 may be an antiviral strategy that protects mice from lethal influenza by suppressing excessive cytokine expression.
One-Step and Stepwise Magnification of a BOBBED LETHAL Chromosome in DROSOPHILA MELANOGASTER
Endow, Sharyn A.; Komma, Donald J.
1986-01-01
Bobbed lethal (bbl) chromosomes carry too few ribosomal genes for homozygous flies to be viable. Reversion of bbl chromosomes to bb or nearly bb + occurs under magnifying conditions at a low frequency in a single generation. These reversions occur too rapidly to be accounted for by single unequal sister chromatid exchanges and seem unlikely to be due to multiple sister strand exchanges within a given cell lineage. Analysis of several one-step revertants indicates that they are X-Y recombinant chromosomes which probably arise from X-Y recombination at bb. The addition of ribosomal genes from the Y chromosome to the bbl chromosome explains the more rapid reversion of the bbl chromosome than is permitted by single events of unequal sister chromatid exchange. Analysis of stepwise bbl magnified chromosomes, which were selected over a period of 4–9 magnifying generations, shows ribosomal gene patterns that are closely similar to each other. Similarity in rDNA pattern among stepwise magnified products of the same parental chromosome is consistent with reversion by a mechanism of unequal sister strand exchange. PMID:3095184
Cardani, Amber; Boulton, Adam; Kim, Taeg S.; Braciale, Thomas J.
2017-01-01
The Influenza A virus (IAV) is a major human pathogen that produces significant morbidity and mortality. To explore the contribution of alveolar macrophages (AlvMΦs) in regulating the severity of IAV infection we employed a murine model in which the Core Binding Factor Beta gene is conditionally disrupted in myeloid cells. These mice exhibit a selective deficiency in AlvMΦs. Following IAV infection these AlvMΦ deficient mice developed severe diffuse alveolar damage, lethal respiratory compromise, and consequent lethality. Lethal injury in these mice resulted from increased infection of their Type-1 Alveolar Epithelial Cells (T1AECs) and the subsequent elimination of the infected T1AECs by the adaptive immune T cell response. Further analysis indicated AlvMΦ-mediated suppression of the cysteinyl leukotriene (cysLT) pathway genes in T1AECs in vivo and in vitro. Inhibition of the cysLT pathway enzymes in a T1AECs cell line reduced the susceptibility of T1AECs to IAV infection, suggesting that AlvMΦ-mediated suppression of this pathway contributes to the resistance of T1AECs to IAV infection. Furthermore, inhibition of the cysLT pathway enzymes, as well as blockade of the cysteinyl leukotriene receptors in the AlvMΦ deficient mice reduced the susceptibility of their T1AECs to IAV infection and protected these mice from lethal infection. These results suggest that AlvMΦs may utilize a previously unappreciated mechanism to protect T1AECs against IAV infection, and thereby reduce the severity of infection. The findings further suggest that the cysLT pathway and the receptors for cysLT metabolites represent potential therapeutic targets in severe IAV infection. PMID:28085958
Ebot, Ericka M; Gerke, Travis; Labbé, David P; Sinnott, Jennifer A; Zadra, Giorgia; Rider, Jennifer R; Tyekucheva, Svitlana; Wilson, Kathryn M; Kelly, Rachel S; Shui, Irene M; Loda, Massimo; Kantoff, Philip W; Finn, Stephen; Vander Heiden, Matthew G; Brown, Myles; Giovannucci, Edward L; Mucci, Lorelei A
2017-11-01
Obese men are at higher risk of advanced prostate cancer and cancer-specific mortality; however, the biology underlying this association remains unclear. This study examined gene expression profiles of prostate tissue to identify biological processes differentially expressed by obesity status and lethal prostate cancer. Gene expression profiling was performed on tumor (n = 402) and adjacent normal (n = 200) prostate tissue from participants in 2 prospective cohorts who had been diagnosed with prostate cancer from 1982 to 2005. Body mass index (BMI) was calculated from the questionnaire immediately preceding cancer diagnosis. Men were followed for metastases or prostate cancer-specific death (lethal disease) through 2011. Gene Ontology biological processes differentially expressed by BMI were identified using gene set enrichment analysis. Pathway scores were computed by averaging the signal intensities of member genes. Odds ratios (ORs) for lethal prostate cancer were estimated with logistic regression. Among 402 men, 48% were healthy weight, 31% were overweight, and 21% were very overweight/obese. Fifteen gene sets were enriched in tumor tissue, but not normal tissue, of very overweight/obese men versus healthy-weight men; 5 of these were related to chromatin modification and remodeling (false-discovery rate < 0.25). Patients with high tumor expression of chromatin-related genes had worse clinical characteristics (Gleason grade > 7, 41% vs 17%; P = 2 × 10 -4 ) and an increased risk of lethal disease that was independent of grade and stage (OR, 5.26; 95% confidence interval, 2.37-12.25). This study improves our understanding of the biology of aggressive prostate cancer and identifies a potential mechanistic link between obesity and prostate cancer death that warrants further study. Cancer 2017;123:4130-4138. © 2017 American Cancer Society. © 2017 American Cancer Society.
Synthetic Lethality Reveals Mechanisms of Mycobacterium tuberculosis Resistance to β-Lactams
Lun, Shichun; Miranda, David; Kubler, Andre; Guo, Haidan; Maiga, Mariama C.; Winglee, Kathryn; Pelly, Shaaretha
2014-01-01
ABSTRACT Most β-lactam antibiotics are ineffective against Mycobacterium tuberculosis due to the microbe’s innate resistance. The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains has prompted interest to repurpose this class of drugs. To identify the genetic determinants of innate β-lactam resistance, we carried out a synthetic lethality screen on a transposon mutant library for susceptibility to imipenem, a carbapenem β-lactam antibiotic. Mutations in 74 unique genes demonstrated synthetic lethality. The majority of mutations were in genes associated with cell wall biosynthesis. A second quantitative real-time PCR (qPCR)-based synthetic lethality screen of randomly selected mutants confirmed the role of cell wall biosynthesis in β-lactam resistance. The global transcriptional response of the bacterium to β-lactams was investigated, and changes in levels of expression of cell wall biosynthetic genes were identified. Finally, we validated these screens in vivo using the MT1616 transposon mutant, which lacks a functional acyl-transferase gene. Mice infected with the mutant responded to β-lactam treatment with a 100-fold decrease in bacillary lung burden over 4 weeks, while the numbers of organisms in the lungs of mice infected with wild-type bacilli proliferated. These findings reveal a road map of genes required for β-lactam resistance and validate synthetic lethality screening as a promising tool for repurposing existing classes of licensed, safe, well-characterized antimicrobials against tuberculosis. PMID:25227469
Terzi, F; Henrion, D; Colucci-Guyon, E; Federici, P; Babinet, C; Levy, B I; Briand, P; Friedlander, G
1997-01-01
Modulation of vascular tone by chemical and mechanical stimuli is a crucial adaptive phenomenon which involves cytoskeleton elements. Disruption, by homologous recombination, of the gene encoding vimentin, a class III intermediate filament protein mainly expressed in vascular cells, was reported to result in apparently normal phenotype under physiological conditions. In this study, we evaluated whether the lack of vimentin affects vascular adaptation to pathological situations, such as reduction of renal mass, a pathological condition which usually results in immediate and sustained vasodilation of the renal vascular bed. Ablation of 3/4 of renal mass was constantly lethal within 72 h in mice lacking vimentin (Vim-/-), whereas no lethality was observed in wild-type littermates. Death in Vim-/- mice resulted from end-stage renal failure. Kidneys from Vim-/- mice synthesized more endothelin, but less nitric oxide (NO), than kidneys from normal animals. In vitro, renal resistance arteries from Vim-/- mice were selectively more sensitive to endothelin, less responsive to NO-dependent vasodilators, and exhibited an impaired flow (shear stress)- induced vasodilation, which is NO dependent, as compared with those from normal littermates. Finally, in vivo administration of bosentan, an endothelin receptor antagonist, totally prevented lethality in Vim-/- mice. These results suggest that vimentin plays a key role in the modulation of vascular tone, possibly via the tuning of endothelin-nitric oxide balance. PMID:9294120
Lu, Donghao; Carlsson, Jessica; Penney, Kathryn L; Davidsson, Sabina; Andersson, Swen-Olof; Mucci, Lorelei A; Valdimarsdóttir, Unnur; Andrén, Ove; Fang, Fang; Fall, Katja
2017-12-01
Background: Recent data suggest that neuroendocrine signaling pathways may play a role in the progression of prostate cancer, particularly for early-stage disease. We aimed to explore whether expression of selected genes in the adrenergic, serotoninergic, glucocorticoid, and dopaminergic pathways differs in prostate tumor tissue from men with lethal disease compared with men with nonlethal disease. Methods: On the basis of the Swedish Watchful Waiting Cohort, we included 511 men diagnosed with incidental prostate cancer through transurethral resection of the prostate during 1977-1998 with follow-up up to 30 years. For those with tumor tissue ( N = 262), we measured mRNA expression of 223 selected genes included in neuroendocrine pathways. Using DNA from normal prostate tissue ( N = 396), we genotyped 36 SNPs from 14 receptor genes. Lethal prostate cancer was the primary outcome in analyses with pathway gene expression and genetic variants. Results: Differential expression of genes in the serotoninergic pathway was associated with risk of lethal prostate cancer ( P = 0.007); similar but weaker associations were noted for the adrenergic ( P = 0.014) and glucocorticoid ( P = 0.020) pathways. Variants of the HTR2A (rs2296972; P = 0.002) and NR3CI (rs33388; P = 0.035) genes (within the serotoninergic and glucocorticoid pathways) were associated with lethal cancer in overdominant models. These genetic variants were correlated with expression of several genes in corresponding pathways ( P < 0.05). Conclusions: Our findings lend support to hypothesis that the neuroendocrine pathways, particularly serotoninergic pathway, are associated with lethal outcome in the natural course of localized prostate cancer. Impact: This study provides evidence of the role of neuroendocrine pathways in prostate cancer progression that may have clinical utility. Cancer Epidemiol Biomarkers Prev; 26(12); 1781-7. ©2017 AACR . ©2017 American Association for Cancer Research.
MOF maintains transcriptional programs regulating cellular stress response
Sheikh, B N; Bechtel-Walz, W; Lucci, J; Karpiuk, O; Hild, I; Hartleben, B; Vornweg, J; Helmstädter, M; Sahyoun, A H; Bhardwaj, V; Stehle, T; Diehl, S; Kretz, O; Voss, A K; Thomas, T; Manke, T; Huber, T B; Akhtar, A
2016-01-01
MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo. Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes. PMID:26387537
MOF maintains transcriptional programs regulating cellular stress response.
Sheikh, B N; Bechtel-Walz, W; Lucci, J; Karpiuk, O; Hild, I; Hartleben, B; Vornweg, J; Helmstädter, M; Sahyoun, A H; Bhardwaj, V; Stehle, T; Diehl, S; Kretz, O; Voss, A K; Thomas, T; Manke, T; Huber, T B; Akhtar, A
2016-05-01
MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo. Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes.
Synthetic Lethal Networks for Precision Oncology: Promises and Pitfalls.
Shen, John Paul; Ideker, Trey
2018-06-19
Synthetic lethal interactions, in which the simultaneous loss-of-function of two genes produces a lethal phenotype, are being explored as a means to therapeutically exploit cancer-specific vulnerabilities and expand the scope of precision oncology. Currently, three FDA approved drugs work by targeting the synthetic lethal interaction between BRCA1/2 and PARP. This review examines additional efforts to discover networks of synthetic lethal interactions and discusses both challenges and opportunities regarding the translation of new synthetic lethal interactions into the clinic. Copyright © 2018. Published by Elsevier Ltd.
The ADAR RNA editing enzyme controls neuronal excitability in Drosophila melanogaster
Li, Xianghua; Overton, Ian M.; Baines, Richard A.; Keegan, Liam P.; O’Connell, Mary A.
2014-01-01
RNA editing by deamination of specific adenosine bases to inosines during pre-mRNA processing generates edited isoforms of proteins. Recoding RNA editing is more widespread in Drosophila than in vertebrates. Editing levels rise strongly at metamorphosis, and Adar5G1 null mutant flies lack editing events in hundreds of CNS transcripts; mutant flies have reduced viability, severely defective locomotion and age-dependent neurodegeneration. On the other hand, overexpressing an adult dADAR isoform with high enzymatic activity ubiquitously during larval and pupal stages is lethal. Advantage was taken of this to screen for genetic modifiers; Adar overexpression lethality is rescued by reduced dosage of the Rdl (Resistant to dieldrin), gene encoding a subunit of inhibitory GABA receptors. Reduced dosage of the Gad1 gene encoding the GABA synthetase also rescues Adar overexpression lethality. Drosophila Adar5G1 mutant phenotypes are ameliorated by feeding GABA modulators. We demonstrate that neuronal excitability is linked to dADAR expression levels in individual neurons; Adar-overexpressing larval motor neurons show reduced excitability whereas Adar5G1 null mutant or targeted Adar knockdown motor neurons exhibit increased excitability. GABA inhibitory signalling is impaired in human epileptic and autistic conditions, and vertebrate ADARs may have a relevant evolutionarily conserved control over neuronal excitability. PMID:24137011
Xie, Yufen; Wang, Yingchun; Sun, Tong; Wang, Fangfei; Trostinskaia, Anna; Puscheck, Elizabeth; Rappolee, Daniel A
2005-05-01
Mitogen-activated protein kinase (MAPK) signaling pathways play an important role in controlling embryonic proliferation and differentiation. It has been demonstrated that sequential lipophilic signal transduction mediators that participate in the MAPK pathway are null post-implantation lethal. It is not clear why the lethality of these null mutants arises after implantation and not before. One hypothesis is that the gene product of these post-implantation lethal null mutants are not present before implantation in normal embryos and do not have function until after implantation. To test this hypothesis, we selected a set of lipophilic genes mediating MAPK signal transduction pathways whose null mutants result in early peri-implantation or placental lethality. These included FRS2alpha, GAB1, GRB2, SOS1, Raf-B, and Raf1. Products of these selected genes were detected and their locations and functions indicated by indirect immunocytochemistry and Western blotting for proteins and RT-polymerase chain reaction (PCR) for mRNA transcription. We report here that all six signal mediators are detected at the protein level in preimplantation mouse embryo, placental trophoblasts, and in cultured trophoblast stem cells (TSC). Proteins are all detected in E3.5 embryos at a time when the first known mitogenic intercellular communication has been documented. mRNA transcripts of two post-implantation null mutant genes are expressed in mouse preimplantation embryos and unfertilized eggs. These mRNA transcripts were detected as maternal mRNA in unfertilized eggs that could delay the lethality of null mutants. All of the proteins were detected in the cytoplasm or in the cell membrane. This study of spatial and temporal expression revealed that all of these six null mutants post-implantation genes in MAPK pathway are expressed and, where tested, phosphorylated/activated proteins are detected in the blastocyst. Studies on RNA expression using RT-PCR suggest that maternal RNA could play an important role in delaying the presence of the lethal phenotype of null mutations. Copyright (c) 2005 Wiley-Liss, Inc.
O'Brien, M. A.; Roberts, M. S.; Taghert, P. H.
1994-01-01
We have analyzed the FMRFamide neuropeptide gene region of Drosophila melanogaster. This gene maps to the 46C region of chromosome 2R; this interval previously was not well characterized. For this genetic and molecular analysis, we have used X-ray mutagenesis, EMS mutagenesis, and the recently reported local P element transposition method. We identified four overlapping deletions, two of which have proximal breakpoints that define a 50-60-kb region surrounding the FMRFamide gene in 46C. To this small region, we mapped three lethal complementation groups; 10 additional lethal complementation groups were mapped to more distal regions of 46CD. One of these groups corresponds to even-skipped, the other 12 are previously unidentified. Using various lines of evidence we excluded the possibility that FMRFamide corresponds to any of the three lethal complementation groups mapping to its immediate 50-60-kb vicinity. The positions of two of the three lethal complementation groups were identified with P elements using a local transposition scheme. The third lethal complementation group was excluded as being FMRFamide mutants by sequence analysis and by immunocytochemistry with proFMRFamide precursor-specific antibodies. This analysis has (1) provided a genetic map of the 46CD chromosomal region and a detailed molecular map of a portion of the 46C region and (2) provided additional evidence of the utility of local transposition for targeting nearby genes. PMID:8056304
van den Pol, Anthony N; Mao, Guochao; Chattopadhyay, Anasuya; Rose, John K; Davis, John N
2017-03-15
Recombinant vesicular stomatitis virus (VSV)-based chimeric viruses that include genes from other viruses show promise as vaccines and oncolytic viruses. However, the critical safety concern is the neurotropic nature conveyed by the VSV glycoprotein. VSVs that include the VSV glycoprotein (G) gene, even in most recombinant attenuated strains, can still show substantial adverse or lethal actions in the brain. Here, we test 4 chimeric viruses in the brain, including those in which glycoprotein genes from Nipah, chikungunya (CHIKV), and influenza H5N1 viruses were substituted for the VSV glycoprotein gene. We also test a virus-like vesicle (VLV) in which the VSV glycoprotein gene is expressed from a replicon encoding the nonstructural proteins of Semliki Forest virus. VSVΔG-CHIKV, VSVΔG-H5N1, and VLV were all safe in the adult mouse brain, as were VSVΔG viruses expressing either the Nipah F or G glycoprotein. In contrast, a complementing pair of VSVΔG viruses expressing Nipah G and F glycoproteins were lethal within the brain within a surprisingly short time frame of 2 days. Intranasal inoculation in postnatal day 14 mice with VSVΔG-CHIKV or VLV evoked no adverse response, whereas VSVΔG-H5N1 by this route was lethal in most mice. A key immune mechanism underlying the safety of VSVΔG-CHIKV, VSVΔG-H5N1, and VLV in the adult brain was the type I interferon response; all three viruses were lethal in the brains of adult mice lacking the interferon receptor, suggesting that the viruses can infect and replicate and spread in brain cells if not blocked by interferon-stimulated genes within the brain. IMPORTANCE Vesicular stomatitis virus (VSV) shows considerable promise both as a vaccine vector and as an oncolytic virus. The greatest limitation of VSV is that it is highly neurotropic and can be lethal within the brain. The neurotropism can be mostly attributed to the VSV G glycoprotein. Here, we test 4 chimeric viruses of VSV with glycoprotein genes from Nipah, chikungunya, and influenza viruses and nonstructural genes from Semliki Forest virus. Two of the four, VSVΔG-CHIKV and VLV, show substantially attenuated neurotropism and were safe in the healthy adult mouse brain. VSVΔG-H5N1 was safe in the adult brain but lethal in the younger brain. VSVΔG Nipah F+G was even more neurotropic than wild-type VSV, evoking a rapid lethal response in the adult brain. These results suggest that while chimeric VSVs show promise, each must be tested with both intranasal and intracranial administration to ensure the absence of lethal neurotropism. Copyright © 2017 American Society for Microbiology.
Mao, Guochao; Chattopadhyay, Anasuya; Rose, John K.; Davis, John N.
2017-01-01
ABSTRACT Recombinant vesicular stomatitis virus (VSV)-based chimeric viruses that include genes from other viruses show promise as vaccines and oncolytic viruses. However, the critical safety concern is the neurotropic nature conveyed by the VSV glycoprotein. VSVs that include the VSV glycoprotein (G) gene, even in most recombinant attenuated strains, can still show substantial adverse or lethal actions in the brain. Here, we test 4 chimeric viruses in the brain, including those in which glycoprotein genes from Nipah, chikungunya (CHIKV), and influenza H5N1 viruses were substituted for the VSV glycoprotein gene. We also test a virus-like vesicle (VLV) in which the VSV glycoprotein gene is expressed from a replicon encoding the nonstructural proteins of Semliki Forest virus. VSVΔG-CHIKV, VSVΔG-H5N1, and VLV were all safe in the adult mouse brain, as were VSVΔG viruses expressing either the Nipah F or G glycoprotein. In contrast, a complementing pair of VSVΔG viruses expressing Nipah G and F glycoproteins were lethal within the brain within a surprisingly short time frame of 2 days. Intranasal inoculation in postnatal day 14 mice with VSVΔG-CHIKV or VLV evoked no adverse response, whereas VSVΔG-H5N1 by this route was lethal in most mice. A key immune mechanism underlying the safety of VSVΔG-CHIKV, VSVΔG-H5N1, and VLV in the adult brain was the type I interferon response; all three viruses were lethal in the brains of adult mice lacking the interferon receptor, suggesting that the viruses can infect and replicate and spread in brain cells if not blocked by interferon-stimulated genes within the brain. IMPORTANCE Vesicular stomatitis virus (VSV) shows considerable promise both as a vaccine vector and as an oncolytic virus. The greatest limitation of VSV is that it is highly neurotropic and can be lethal within the brain. The neurotropism can be mostly attributed to the VSV G glycoprotein. Here, we test 4 chimeric viruses of VSV with glycoprotein genes from Nipah, chikungunya, and influenza viruses and nonstructural genes from Semliki Forest virus. Two of the four, VSVΔG-CHIKV and VLV, show substantially attenuated neurotropism and were safe in the healthy adult mouse brain. VSVΔG-H5N1 was safe in the adult brain but lethal in the younger brain. VSVΔG Nipah F+G was even more neurotropic than wild-type VSV, evoking a rapid lethal response in the adult brain. These results suggest that while chimeric VSVs show promise, each must be tested with both intranasal and intracranial administration to ensure the absence of lethal neurotropism. PMID:28077641
Kobayashi, Akiko; Miyake, Tsuyoshi; Kawaichi, Masashi; Kokubo, Tetsuro
2003-01-01
The general transcription factor TFIID, composed of the TATA box-binding protein (TBP) and 14 TBP-associated factors (TAFs), is important for both basal and regulated transcription by RNA polymerase II. Although it is well known that the TAF N-terminal domain (TAND) at the amino-terminus of the TAF1 protein binds to TBP and thereby inhibits TBP function in vitro, the physiological role of this domain remains obscure. In our previous study, we screened for mutations that cause lethality when co-expressed with the TAF1 gene lacking TAND (taf1-ΔTAND) and identified two ΔTAND synthetic lethal (nsl) mutations as those in the SPT15 gene encoding TBP. In this study we isolated another nsl mutation in the same screen and identified it to be a mutation in the histone fold domain (HFD) of the TAF12 gene. Several other HFD mutations of this gene also exhibit nsl phenotypes, and all of them are more or less impaired in transcriptional activation in vivo. Interestingly, a set of genes affected in the taf1-ΔTAND mutant is similarly affected in the taf12 HFD mutants but not in the nsl mutants of TBP. Therefore, we discovered that the nsl mutations of these two genes cause lethality in the taf1-ΔTAND mutant by different mechanisms. PMID:12582246
Thermopriming triggers splicing memory in Arabidopsis.
Ling, Yu; Serrano, Natalia; Gao, Ge; Atia, Mohamed; Mokhtar, Morad; Woo, Yong H; Bazin, Jeremie; Veluchamy, Alaguraj; Benhamed, Moussa; Crespi, Martin; Gehring, Christoph; Reddy, A S N; Mahfouz, Magdy M
2018-04-27
Abiotic and biotic stresses limit crop productivity. Exposure to a non-lethal stress, referred to as priming, can allow plants to survive subsequent and otherwise lethal conditions; the priming effect persists even after a prolonged stress-free period. However, the molecular mechanisms underlying priming are not fully understood. Here, we investigated the molecular basis of heat-shock memory and the role of priming in Arabidopsis thaliana. Comprehensive analysis of transcriptome-wide changes in gene expression and alternative splicing in primed and non-primed plants revealed that alternative splicing functions as a novel component of heat-shock memory. We show that priming of plants with a non-lethal heat stress results in de-repression of splicing after a second exposure to heat stress. By contrast, non-primed plants showed significant repression of splicing. These observations link 'splicing memory' to the ability of plants to survive subsequent and otherwise lethal heat stress. This newly discovered priming-induced splicing memory may represent a general feature of heat-stress responses in plants and other organisms as many of the key components are conserved among eukaryotes. Furthermore, this finding could facilitate the development of novel approaches to improve plant survival under extreme heat stress.
Baldin, Clara; Valiante, Vito; Krüger, Thomas; Schafferer, Lukas; Haas, Hubertus; Kniemeyer, Olaf; Brakhage, Axel A
2015-07-01
The Tor (target of rapamycin) kinase is one of the major regulatory nodes in eukaryotes. Here, we analyzed the Tor kinase in Aspergillus fumigatus, which is the most important airborne fungal pathogen of humans. Because deletion of the single tor gene was apparently lethal, we generated a conditional lethal tor mutant by replacing the endogenous tor gene by the inducible xylp-tor gene cassette. By both 2DE and gel-free LC-MS/MS, we found that Tor controls a variety of proteins involved in nutrient sensing, stress response, cell cycle progression, protein biosynthesis and degradation, but also processes in mitochondria, such as respiration and ornithine metabolism, which is required for siderophore formation. qRT-PCR analyses indicated that mRNA levels of ornithine biosynthesis genes were increased under iron limitation. When tor was repressed, iron regulation was lost. In a deletion mutant of the iron regulator HapX also carrying the xylp-tor cassette, the regulation upon iron deprivation was similar to that of the single tor inducible mutant strain. In line, hapX expression was significantly reduced when tor was repressed. Thus, Tor acts either upstream of HapX or independently of HapX as a repressor of the ornithine biosynthesis genes and thereby regulates the production of siderophores. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Le Meur, Nolwenn; Gentleman, Robert
2008-01-01
Background Synthetic lethality defines a genetic interaction where the combination of mutations in two or more genes leads to cell death. The implications of synthetic lethal screens have been discussed in the context of drug development as synthetic lethal pairs could be used to selectively kill cancer cells, but leave normal cells relatively unharmed. A challenge is to assess genome-wide experimental data and integrate the results to better understand the underlying biological processes. We propose statistical and computational tools that can be used to find relationships between synthetic lethality and cellular organizational units. Results In Saccharomyces cerevisiae, we identified multi-protein complexes and pairs of multi-protein complexes that share an unusually high number of synthetic genetic interactions. As previously predicted, we found that synthetic lethality can arise from subunits of an essential multi-protein complex or between pairs of multi-protein complexes. Finally, using multi-protein complexes allowed us to take into account the pleiotropic nature of the gene products. Conclusions Modeling synthetic lethality using current estimates of the yeast interactome is an efficient approach to disentangle some of the complex molecular interactions that drive a cell. Our model in conjunction with applied statistical methods and computational methods provides new tools to better characterize synthetic genetic interactions. PMID:18789146
Bortolussi, Giulia; Zentilin, Lorena; Baj, Gabriele; Giraudi, Pablo; Bellarosa, Cristina; Giacca, Mauro; Tiribelli, Claudio; Muro, Andrés F.
2012-01-01
Crigler-Najjar type I (CNI) syndrome is a recessively inherited disorder characterized by severe unconjugated hyperbilirubinemia caused by uridine diphosphoglucuronosyltransferase 1A1 (UGT1A1) deficiency. The disease is lethal due to bilirubin-induced neurological damage unless phototherapy is applied from birth. However, treatment becomes less effective during growth, and liver transplantation is required. To investigate the pathophysiology of the disease and therapeutic approaches in mice, we generated a mouse model by introducing a premature stop codon in the UGT1a1 gene, which results in an inactive enzyme. Homozygous mutant mice developed severe jaundice soon after birth and died within 11 d, showing significant cerebellar alterations. To rescue neonatal lethality, newborns were injected with a single dose of adeno-associated viral vector 9 (AAV9) expressing the human UGT1A1. Gene therapy treatment completely rescued all AAV-treated mutant mice, accompanied by lower plasma bilirubin levels and normal brain histology and motor coordination. Our mouse model of CNI reproduces genetic and phenotypic features of the human disease. We have shown, for the first time, the full recovery of the lethal effects of neonatal hyperbilirubinemia. We believe that, besides gene-addition-based therapies, our mice could represent a very useful model to develop and test novel technologies based on gene correction by homologous recombination.—Bortolussi, G., Zentilin, L., Baj, G., Giraudi, P., Bellarosa, C., Giacca, M., Tiribelli, C., Muro, A. F. Rescue of bilirubin-induced neonatal lethality in a mouse model of Crigler-Najjar syndrome type I by AAV9-mediated gene transfer. PMID:22094718
Bingsohn, L; Knorr, E; Billion, A; Narva, K E; Vilcinskas, A
2017-02-01
RNA interference (RNAi) is a promising alternative strategy for ecologically friendly pest management. However, the identification of RNAi candidate genes is challenging owing to the absence of laboratory strains and the seasonality of most pest species. Tribolium castaneum is a well-established model, with a strong and robust RNAi response, which can be used as a high-throughput screening platform to identify potential RNAi target genes. Recently, the cactus gene was identified as a sensitive RNAi target for pest control. To explore whether the spectrum of promising RNAi targets can be expanded beyond those found by random large-scale screening, to encompass others identified using targeted knowledge-based approaches, we constructed a Cactus interaction network. We tested nine genes in this network and found that the delivery of double-stranded RNA corresponding to fusilli and cactin showed lethal effects. The silencing of cactin resulted in 100% lethality at every developmental stage from the larva to the adult. The knockdown of pelle, Dorsal-related immunity factor and short gastrulation reduced or even prevented egg hatching in the next generation. The combination of such targets with lethal and parental RNAi effects can now be tested against different pest species in field studies. © 2016 The Royal Entomological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, H.B.
1962-02-01
Studies of the comparative mutagenic effects of ionizing radiations on males and females of Drosophila melanogaster are described. Sex-linked recessive lethal mutations were induced in nitrogen, air, and oxygen at doses of obtained in spermatozoa were uniformly about one-third higher than the frequencies obtained for the same dose and condition of atmosphere in mature oocytes. The relative frequencies of recessive autosomal lethals in mature male and female germ cells were identical with the relative fre quencies of sex-linked recessive lethals. In studies of point mutations and deficiencies involving specific loci, the rates in the male germ cells exceeded those inmore » the female germ cells by a proportion equal to that found to apply to autosomal and sex-linked recessive lethals. Spontaneous mutation rates were determined for a number of specific loci marked by recessive genes used in the tested stocks. Fertility was lost in both males and females when they were x-rayed as 80-hr-old larvae and bred upon emerging as adults. Females recovered their fertility rapidly but the males did so at a much slower rate. The brown; scarlet'' stock was found to carry two mutants each suppressed by a particular suppressor gene. It was concluded that the two suppressors act along different metabolic pathways departing from tryplophan, but both involving an x-ray-sensitive step. A study was made of the effects on the life span of two different mating regimens: immediate and deferred. It was found that the lines previously subjected to immediate mating significantly outlived the lines previously subjected to deferred mating when the mating regimen in the test was immediate mating. Exactly the opposite happened when the mating regimen in the test was deferred mating. (M.C.G.)« less
Wu, Shuyan; Yu, Pak-Lam; Wheeler, Dave; Flint, Steve
2018-06-19
The aim of this study was to determine the gene expression associated with the persistence of a Listeria monocytogenes stationary phase population when facing lethal nisin treatment METHODS: RNA Seq analysis was used for gene expression profiling of the persister cells in rich medium (persister TN) compared with untreated cells (non-persister).The results were confirmed using RT PCR. Functional genes associated with the persister populations were identified in multiple systems, such as heat shock related stress response, cell wall synthesis, ATP-binding cassette (ABC) transport system, phosphotransferase system (PTS system), and SOS/DNA repair. This study pointed to genetic regulation of persister cells exposed to lethal nisin and provides some insight into possible mechanisms of impeding bacterial persistence. Copyright © 2018. Published by Elsevier Ltd.
Jørgensen, Louise H.; Mosbech, Mai-Britt; Færgeman, Nils J.; Graakjaer, Jesper; Jacobsen, Søren V.; Schrøder, Henrik D.
2014-01-01
Spectrins and plakins are important communicators linking cytoskeletal components to each other and to cellular junctions. Microtubule-actin cross-linking factor 1 (MACF1) belongs to the spectraplakin family and is involved in control of microtubule dynamics. Complete knock out of MACF1 in mice is associated with developmental retardation and embryonic lethality. Here we present a family with a novel neuromuscular condition. Genetic analyses show a heterozygous duplication resulting in reduced MACF1 gene product. The functional consequence is affected motility observed as periodic hypotonia, lax muscles and diminished motor skills, with heterogeneous presentation among the affected family members. To corroborate these findings we used RNA interference to knock down the VAB-10 locus containing the MACF1 homologue in C. elegans, and we could show that this also causes movement disturbances. These findings suggest that changes in the MACF1 gene is implicated in this neuromuscular condition, which is an important observation since MACF1 has not previously been associated with any human disease and thus presents a key to understanding the essential nature of this gene. PMID:24899269
Jørgensen, Louise H; Mosbech, Mai-Britt; Færgeman, Nils J; Graakjaer, Jesper; Jacobsen, Søren V; Schrøder, Henrik D
2014-06-05
Spectrins and plakins are important communicators linking cytoskeletal components to each other and to cellular junctions. Microtubule-actin cross-linking factor 1 (MACF1) belongs to the spectraplakin family and is involved in control of microtubule dynamics. Complete knock out of MACF1 in mice is associated with developmental retardation and embryonic lethality. Here we present a family with a novel neuromuscular condition. Genetic analyses show a heterozygous duplication resulting in reduced MACF1 gene product. The functional consequence is affected motility observed as periodic hypotonia, lax muscles and diminished motor skills, with heterogeneous presentation among the affected family members. To corroborate these findings we used RNA interference to knock down the VAB-10 locus containing the MACF1 homologue in C. elegans, and we could show that this also causes movement disturbances. These findings suggest that changes in the MACF1 gene is implicated in this neuromuscular condition, which is an important observation since MACF1 has not previously been associated with any human disease and thus presents a key to understanding the essential nature of this gene.
Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs
Sharifpoor, Sara; van Dyk, Dewald; Costanzo, Michael; Baryshnikova, Anastasia; Friesen, Helena; Douglas, Alison C.; Youn, Ji-Young; VanderSluis, Benjamin; Myers, Chad L.; Papp, Balázs; Boone, Charles; Andrews, Brenda J.
2012-01-01
A combinatorial genetic perturbation strategy was applied to interrogate the yeast kinome on a genome-wide scale. We assessed the global effects of gene overexpression or gene deletion to map an integrated genetic interaction network of synthetic dosage lethal (SDL) and loss-of-function genetic interactions (GIs) for 92 kinases, producing a meta-network of 8700 GIs enriched for pathways known to be regulated by cognate kinases. Kinases most sensitive to dosage perturbations had constitutive cell cycle or cell polarity functions under standard growth conditions. Condition-specific screens confirmed that the spectrum of kinase dosage interactions can be expanded substantially in activating conditions. An integrated network composed of systematic SDL, negative and positive loss-of-function GIs, and literature-curated kinase–substrate interactions revealed kinase-dependent regulatory motifs predictive of novel gene-specific phenotypes. Our study provides a valuable resource to unravel novel functional relationships and pathways regulated by kinases and outlines a general strategy for deciphering mutant phenotypes from large-scale GI networks. PMID:22282571
NASA Astrophysics Data System (ADS)
Sinha, Subarna; Thomas, Daniel; Chan, Steven; Gao, Yang; Brunen, Diede; Torabi, Damoun; Reinisch, Andreas; Hernandez, David; Chan, Andy; Rankin, Erinn B.; Bernards, Rene; Majeti, Ravindra; Dill, David L.
2017-05-01
Two genes are synthetically lethal (SL) when defects in both are lethal to a cell but a single defect is non-lethal. SL partners of cancer mutations are of great interest as pharmacological targets; however, identifying them by cell line-based methods is challenging. Here we develop MiSL (Mining Synthetic Lethals), an algorithm that mines pan-cancer human primary tumour data to identify mutation-specific SL partners for specific cancers. We apply MiSL to 12 different cancers and predict 145,891 SL partners for 3,120 mutations, including known mutation-specific SL partners. Comparisons with functional screens show that MiSL predictions are enriched for SLs in multiple cancers. We extensively validate a SL interaction identified by MiSL between the IDH1 mutation and ACACA in leukaemia using gene targeting and patient-derived xenografts. Furthermore, we apply MiSL to pinpoint genetic biomarkers for drug sensitivity. These results demonstrate that MiSL can accelerate precision oncology by identifying mutation-specific targets and biomarkers.
Ferrándiz, María-José
2014-01-01
We studied the transcriptomic response of Streptococcus pneumoniae to levofloxacin (LVX) under conditions inhibiting topoisomerase IV but not gyrase. Although a complex transcriptomic response was observed, the most outstanding result was the upregulation of the genes of the fatDCEB operon, involved in iron (Fe2+ and Fe3+) uptake, which were the only genes varying under every condition tested. Although the inhibition of topoisomerase IV by levofloxacin did not have a detectable effect in the level of global supercoiling, increases in general supercoiling and fatD transcription were observed after topoisomerase I inhibition, while the opposite was observed after gyrase inhibition with novobiocin. Since fatDCEB is located in a topological chromosomal domain downregulated by DNA relaxation, we studied the transcription of a copy of the 422-bp (including the Pfat promoter) region located upstream of fatDCEB fused to the cat reporter inserted into the chromosome 106 kb away from its native position: PfatfatD was upregulated in the presence of LVX in its native location, whereas no change was observed in the Pfatcat construction. Results suggest that topological changes are indeed involved in PfatfatDCE transcription. Upregulation of fatDCEB would lead to an increase of intracellular iron and, in turn, to the activation of the Fenton reaction and the increase of reactive oxygen species. In accordance, we observed an attenuation of levofloxacin lethality in iron-deficient media and in a strain lacking the gene coding for SpxB, the main source of hydrogen peroxide. In addition, we observed an increase of reactive oxygen species that contributed to levofloxacin lethality. PMID:24145547
Lethal acrodysgenital dwarfism: a severe lethal condition resembling Smith-Lemli-Opitz syndrome.
Merrer, M L; Briard, M L; Girard, S; Mulliez, N; Moraine, C; Imbert, M C
1988-01-01
We report eight cases of a lethal association of failure to thrive, facial dysmorphism, ambiguous genitalia, syndactyly, postaxial polydactyly, and internal developmental anomalies (Hirschsprung's disease, cardiac and renal malformation). This syndrome is likely to be autosomal recessive and resembles Smith-Lemli-Opitz (SLO) syndrome. However, the lethality, the common occurrence of polydactyly, and the sexual ambiguity distinguishes this condition from SLO syndrome. A review of published reports supports the separate classification of this syndrome for which we propose the name lethal acrodysgenital dwarfism. Images PMID:2831368
Impaired eye-blink conditioning in waggler, a mutant mouse with cerebellar BDNF deficiency.
Bao, S; Chen, L; Qiao, X; Knusel, B; Thompson, R F
1998-01-01
In addition to their trophic functions, neurotrophins are also implicated in synaptic modulation and learning and memory. Although gene knockout techniques have been used widely in studying the roles of neurotrophins at molecular and cellular levels, behavioral studies using neurotrophin knockouts are limited by the early-onset lethality and various sensory deficits associated with the gene knockout mice. In the present study, we found that in a spontaneous mutant mouse, waggler, the expression of brain-derived neurotrophic factor (BDNF) was selectively absent in the cerebellar granule cells. The cytoarchitecture of the waggler cerebellum appeared to be normal at the light microscope level. The mutant mice exhibited no sensory deficits to auditory stimuli or heat-induced pain. However, they were massively impaired in classic eye-blink conditioning. These results suggest that BDNF may have a role in normal cerebellar neuronal function, which, in turn, is essential for classic eye-blink conditioning.
Li, Jie; Overall, Christopher C.; Nakayasu, Ernesto S.; ...
2015-02-10
The extracytoplasmic functioning sigma factor σ E is known to play an essential role for Salmonella enterica serovar Typhimurium to survive and proliferate in macrophages and mice. However, its regulatory network is not well characterized, especially during infection. Here we used microarray to identify genes regulated by σ E in Salmonella grown in three conditions: a nutrient-rich condition and two others that mimic early and late intracellular infection. We found that in each condition σ E regulated different sets of genes, and notably, several global regulators. When comparing nutrient-rich and infection-like conditions, large changes were observed in the expression ofmore » genes involved in Salmonella pathogenesis island (SPI)-1 type-three secretion system (TTSS), SPI-2 TTSS, protein synthesis, and stress responses. In total, the expression of 58% of Salmonella genes was affected by σ E in at least one of the three conditions. An important finding is that σ E up-regulates SPI-2 genes, which are essential for Salmonella intracellular survival, by up-regulating SPI-2 activator ssrB expression at the early stage of infection and down-regulating SPI-2 repressor hns expression at a later stage. Moreover, σ E is capable of countering the silencing of H-NS, releasing the expression of SPI-2 genes. This connection between σ E and SPI-2 genes, combined with the global regulatory effect of σ E, may account for the lethality of rpoE-deficient Salmonella in murine infection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jie; Overall, Christopher C.; Nakayasu, Ernesto S.
The extracytoplasmic functioning sigma factor σ E is known to play an essential role for Salmonella enterica serovar Typhimurium to survive and proliferate in macrophages and mice. However, its regulatory network is not well characterized, especially during infection. Here we used microarray to identify genes regulated by σ E in Salmonella grown in three conditions: a nutrient-rich condition and two others that mimic early and late intracellular infection. We found that in each condition σ E regulated different sets of genes, and notably, several global regulators. When comparing nutrient-rich and infection-like conditions, large changes were observed in the expression ofmore » genes involved in Salmonella pathogenesis island (SPI)-1 type-three secretion system (TTSS), SPI-2 TTSS, protein synthesis, and stress responses. In total, the expression of 58% of Salmonella genes was affected by σ E in at least one of the three conditions. An important finding is that σ E up-regulates SPI-2 genes, which are essential for Salmonella intracellular survival, by up-regulating SPI-2 activator ssrB expression at the early stage of infection and down-regulating SPI-2 repressor hns expression at a later stage. Moreover, σ E is capable of countering the silencing of H-NS, releasing the expression of SPI-2 genes. This connection between σ E and SPI-2 genes, combined with the global regulatory effect of σ E, may account for the lethality of rpoE-deficient Salmonella in murine infection.« less
Erickson, James W
2016-02-01
It has been proposed that the Male Specific Lethal (MSL) complex is active in Drosophila melanogaster embryos of both sexes prior to the maternal-to-zygotic transition. Elevated gene expression from the two X chromosomes of female embryos is proposed to facilitate the stable establishment of Sex-lethal (Sxl) expression, which determines sex and represses further activity of the MSL complex, leaving it active only in males. Important supporting data included female-lethal genetic interactions between the seven msl genes and either Sxl or scute and sisterlessA, two of the X-signal elements (XSE) that regulate early Sxl expression. Here I report contrary findings that there are no female-lethal genetic interactions between the msl genes and Sxl or its XSE regulators. Fly stocks containing the msl3(1) allele were found to exhibit a maternal-effect interaction with Sxl, scute, and sisterlessA mutations, but genetic complementation experiments showed that msl3 is neither necessary nor sufficient for the female-lethal interactions, which appear to be due to an unidentified maternal regulator of Sxl. Published data cited as evidence for an early function of the MSL complex in females, including a maternal effect of msl2, have been reevaluated and found not to support a maternal, or other effect, of the MSL complex in sex determination. These findings suggest that the MSL complex is not involved in primary sex determination or in X chromosome dosage compensation prior to the maternal-to-zygotic transition. Copyright © 2016 by the Genetics Society of America.
Cystic fibrosis genetics: from molecular understanding to clinical application.
Cutting, Garry R
2015-01-01
The availability of the human genome sequence and tools for interrogating individual genomes provide an unprecedented opportunity to apply genetics to medicine. Mendelian conditions, which are caused by dysfunction of a single gene, offer powerful examples that illustrate how genetics can provide insights into disease. Cystic fibrosis, one of the more common lethal autosomal recessive Mendelian disorders, is presented here as an example. Recent progress in elucidating disease mechanism and causes of phenotypic variation, as well as in the development of treatments, demonstrates that genetics continues to play an important part in cystic fibrosis research 25 years after the discovery of the disease-causing gene.
Dilkes, Brian P; Spielman, Melissa; Weizbauer, Renate; Watson, Brian; Burkart-Waco, Diana; Scott, Rod J; Comai, Luca
2008-12-09
The molecular mechanisms underlying lethality of F1 hybrids between diverged parents are one target of speciation research. Crosses between diploid and tetraploid individuals of the same genotype can result in F1 lethality, and this dosage-sensitive incompatibility plays a role in polyploid speciation. We have identified variation in F1 lethality in interploidy crosses of Arabidopsis thaliana and determined the genetic architecture of the maternally expressed variation via QTL mapping. A single large-effect QTL, DR. STRANGELOVE 1 (DSL1), was identified as well as two QTL with epistatic relationships to DSL1. DSL1 affects the rate of postzygotic lethality via expression in the maternal sporophyte. Fine mapping placed DSL1 in an interval encoding the maternal effect transcription factor TTG2. Maternal parents carrying loss-of-function mutations in TTG2 suppressed the F1 lethality caused by paternal excess interploidy crosses. The frequency of cellularization in the endosperm was similarly affected by both natural variation and ttg2 loss-of-function mutants. The simple genetic basis of the natural variation and effects of single-gene mutations suggests that F1 lethality in polyploids could evolve rapidly. Furthermore, the role of the sporophytically active TTG2 gene in interploidy crosses indicates that the developmental programming of the mother regulates the viability of interploidy hybrid offspring.
Zhao, Yi; Zhan, Yuxia; Burke, Kathleen A; Anderson, W French
2005-04-01
Ionizing radiation-induced myeloablation can be rescued via bone marrow transplantation (BMT) or administration of cytokines if given within 2 hours after radiation exposure. There is no evidence for the existence of soluble factors that can rescue an animal after a lethal dose of radiation when administered several hours postradiation. We established a system that could test the possibility for the existence of soluble factors that could be used more than 2 hours postirradiation to rescue animals. Animals with an implanted TheraCyte immunoisolation device (TID) received lethal-dose radiation and then normal bone marrow Lin- cells were loaded into the device (thereby preventing direct interaction between donor and recipient cells). Animal survival was evaluated and stem cell activity was tested with secondary bone marrow transplantation and flow cytometry analysis. Donor cell gene expression of five antiapoptotic cytokines was examined. Bone marrow Lin- cells rescued lethally irradiated animals via soluble factor(s). Bone marrow cells from the rescued animals can rescue and repopulate secondary lethally irradiated animals. Within the first 6 hours post-lethal-dose radiation, there is no significant change of gene expression of the known radioprotective factors TPO, SCF, IL-3, Flt-3 ligand, and SDF-1. Hematopoietic stem cells can be protected in lethally irradiated animals by soluble factors produced by bone marrow Lin- cells.
Li, Jianzhong; Xu, Jing; Lu, Yiming; Qiu, Lei; Xu, Weiheng; Lu, Bin; Hu, Zhenlin; Chu, Zhiyong; Chai, Yifeng; Zhang, Junping
2016-05-17
Matrine is an alkaloid extracted from Sophora flavescens Ait and has many biological activities, such as anti-inflammatory, antitumor, anti-fibrosis, and immunosuppressive properties. In our previous studies, the matrine derivative MASM was synthesized and exhibited potent inhibitory activity against liver fibrosis. In this study, we mainly investigated its protection against lethal total-body irradiation (TBI) in rats. Administration of MASM reduced the radiation sickness characteristics and increased the 30-day survival of rats before or after lethal TBI. Ultrastructural observation illustrated that pretreatment of rats with MASM significantly attenuated the TBI-induced morphological changes in the different organs of irradiated rats. Gene expression profiles revealed that pretreatment with MASM had a dramatic effect on gene expression changes caused by TBI. Pretreatment with MASM prevented differential expression of 53% (765 genes) of 1445 differentially expressed genes induced by TBI. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 21 pathways, such as metabolic pathways, pathways in cancer, and mitogen-activated protein kinase (MAPK) pathways. Our data indicated that pretreatment of rats with MASM modulated these pathways induced by TBI, suggesting that the pretreatment with MASM might provide the protective effects on lethal TBI mainly or partially through the modulation of these pathways, such as multiple MAPK pathways. Therefore, MASM has the potential to be used as an effective therapeutic or radioprotective agent to minimize irradiation damages and in combination with radiotherapy to improve the efficacy of cancer therapy.
Expression of the cloned ColE1 kil gene in normal and Kilr Escherichia coli.
Altieri, M; Suit, J L; Fan, M L; Luria, S E
1986-01-01
The kil gene of the ColE1 plasmid was cloned under control of the lac promoter. Its expression under this promoter gave rise to the same pattern of bacterial cell damage and lethality as that which accompanies induction of the kil gene in the colicin operon by mitomycin C. This confirms that cell damage after induction is solely due to expression of kil and is independent of the cea or imm gene products. Escherichia coli derivatives resistant to the lethal effects of kil gene expression under either the normal or the lac promoter were isolated and found to fall into several classes, some of which were altered in sensitivity to agents that affect the bacterial envelope. PMID:2946661
Meis2 is essential for cranial and cardiac neural crest development.
Machon, Ondrej; Masek, Jan; Machonova, Olga; Krauss, Stefan; Kozmik, Zbynek
2015-11-06
TALE-class homeodomain transcription factors Meis and Pbx play important roles in formation of the embryonic brain, eye, heart, cartilage or hematopoiesis. Loss-of-function studies of Pbx1, 2 and 3 and Meis1 documented specific functions in embryogenesis, however, functional studies of Meis2 in mouse are still missing. We have generated a conditional allele of Meis2 in mice and shown that systemic inactivation of the Meis2 gene results in lethality by the embryonic day 14 that is accompanied with hemorrhaging. We show that neural crest cells express Meis2 and Meis2-defficient embryos display defects in tissues that are derived from the neural crest, such as an abnormal heart outflow tract with the persistent truncus arteriosus and abnormal cranial nerves. The importance of Meis2 for neural crest cells is further confirmed by means of conditional inactivation of Meis2 using crest-specific AP2α-IRES-Cre mouse. Conditional mutants display perturbed development of the craniofacial skeleton with severe anomalies in cranial bones and cartilages, heart and cranial nerve abnormalities. Meis2-null mice are embryonic lethal. Our results reveal a critical role of Meis2 during cranial and cardiac neural crest cells development in mouse.
Cold hardiness in relation to trace metal stress in the freeze-avoiding beetle Tenebrio molitor.
Pedersen, Sindre A; Kristiansen, Erlend; Hansen, Bjørn H; Andersen, Rolf A; Zachariassen, Karl E
2006-08-01
The antifreeze proteins (AFPs) are a family of proteins characterised by their ability to inhibit the growth of ice. These proteins have evolved as a protection against lethal freezing in freeze avoiding species. Metal stress has been shown to reduce the cold hardening in invertebrates, but no study has investigated how this type of stress affects the production of AFPs. This study demonstrates that exposure to cadmium (Cd), copper (Cu) and zinc (Zn) reduces the normal developmental increase in AFP levels in Tenebrio molitor larvae reared under summer conditions. Exposure to winter conditions, however stimulated the production of AFPs in the metal exposed larvae, and raised the concentrations of AFPs to normal winter levels. The reduced level of AFPs in metal-stressed animals acclimated to summer conditions seems to arise from alterations in the normal gene expression of AFPs. The results indicate that metal exposure may cause freeze avoiding insects to become more susceptible to lethal freezing, as they enter the winter with lowered levels of AFPs. Such an effect cannot be revealed by ordinary toxicological tests, but may nevertheless be of considerable ecological importance.
Independent degeneration of W and Y sex chromosomes in frog Rana rugosa.
Miura, Ikuo; Ohtani, Hiromi; Ogata, Mitsuaki
2012-01-01
The frog Rana rugosa uniquely possesses two different sex-determining systems of XX/XY and ZZ/ZW, separately in the geographic populations. The sex chromosomes of both types share the same origin at chromosome 7, and the structural differences between X and Y or Z and W were evolved through two inversions. In order to ascertain the mechanisms of degeneration of W and Y chromosomes, we gynogenetically produced homozygous diploids WW and YY and examined their viability. Tadpoles from geographic group N (W(N)W(N)) containing three populations died of edema at an early developmental stage within 10 days after hatching, while tadpoles from the geographic group K (W(K)W(K)) that contained two populations died of underdeveloped growth at a much later stage, 40-50 days after fertilization. On the contrary, W(N)W(K) and W(K)W(N) hybrid embryos were viable, successfully passed the two lethal stages, and survived till the attainment of adulthood. The observed survival implies that the lethal genes of the W chromosomes are not shared by the two groups and thus demonstrates their independent degeneration histories between the local groups. In sharp contrast, a sex-linked gene of androgen receptor gene (AR) from the W chromosome was down-regulated in expression in both the groups, suggesting that inactivation of the W-AR allele preceded divergence of the two groups and appearance of the lethal genes. Besides, the YY embryos died of cardiac edema immediately after hatching. The symptom of lethality and the stage of developmental arrest differed from those for either of WW lethal embryos. We therefore conclude that the W and Y chromosomes involve no evolutionary common scenario for degeneration.
Isolation and characterization of two chlorophyll-deficient genes in soybean
USDA-ARS?s Scientific Manuscript database
We have identified a viable-yellow and a lethal-yellow mutant in soybean. The three phenotypes green, lethal- and viable-yellow were easily distinguished based on their light reflectance indices, chlorophyll abundance and photochemical conversion efficiency. Photochemical conversion efficiency was r...
Kawahara, Naoki; Ogawa, Kenji; Nagayasu, Mika; Kimura, Mai; Sasaki, Yoshikazu; Kobayashi, Hiroshi
2017-01-01
Inhibitors of poly(ADP-ribose) polymerase (PARP) are new types of personalized treatment of relapsed platinum-sensitive ovarian cancer harboring BRCA1/2 mutations. Ovarian clear cell cancer (CCC), a subset of ovarian cancer, often appears as low-stage disease with a higher incidence among Japanese. Advanced CCC is highly aggressive with poor patient outcome. The aim of the present study was to determine the potential synthetic lethality gene pairs for PARP inhibitions in patients with CCC through virtual and biological screenings as well as clinical studies. We conducted a literature review for putative PARP sensitivity genes that are associated with the CCC pathophysiology. Previous studies identified a variety of putative target genes from several pathways associated with DNA damage repair, chromatin remodeling complex, PI3K-AKT-mTOR signaling, Notch signaling, cell cycle checkpoint signaling, BRCA-associated complex and Fanconi's anemia susceptibility genes that could be used as biomarkers or therapeutic targets for PARP inhibition. BRCA1/2, ATM, ATR, BARD1, CCNE1, CHEK1, CKS1B, DNMT1, ERBB2, FGFR2, MRE11A, MYC, NOTCH1 and PTEN were considered as candidate genes for synthetic lethality gene partners for PARP interactions. When considering the biological background underlying PARP inhibition, we hypothesized that PARP inhibitors would be a novel synthetic lethal therapeutic approach for CCC tumors harboring homologous recombination deficiency and activating oncogene mutations. The results showed that the majority of CCC tumors appear to have indicators of DNA repair dysfunction similar to those in BRCA-mutation carriers, suggesting the possible utility of PARP inhibitors in a subset of CCC. PMID:29109859
Reward and Toxicity of Cocaine Metabolites Generated by Cocaine Hydrolase.
Murthy, Vishakantha; Geng, Liyi; Gao, Yang; Zhang, Bin; Miller, Jordan D; Reyes, Santiago; Brimijoin, Stephen
2015-08-01
Butyrylcholinesterase (BChE) gene therapy is emerging as a promising concept for treatment of cocaine addiction. BChE levels after gene transfer can rise 1000-fold above those in untreated mice, making this enzyme the second most abundant plasma protein. For months or years, gene transfer of a BChE mutated into a cocaine hydrolase (CocH) can maintain enzyme levels that destroy cocaine within seconds after appearance in the blood stream, allowing little to reach the brain. Rapid enzyme action causes a sharp rise in plasma levels of two cocaine metabolites, benzoic acid (BA) and ecgonine methyl ester (EME), a smooth muscle relaxant that is mildly hypotensive and, at best, only weakly rewarding. The present study, utilizing Balb/c mice, tested reward effects and cardiovascular effects of administering EME and BA together at molar levels equivalent to those generated by a given dose of cocaine. Reward was evaluated by conditioned place preference. In this paradigm, cocaine (20 mg/kg) induced a robust positive response but the equivalent combined dose of EME + BA failed to induce either place preference or aversion. Likewise, mice that had undergone gene transfer with mouse CocH (mCocH) showed no place preference or aversion after repeated treatments with a near-lethal 80 mg/kg cocaine dose. Furthermore, a single administration of that same high cocaine dose failed to affect blood pressure as measured using the noninvasive tail-cuff method. These observations confirm that the drug metabolites generated after CocH gene transfer therapy are safe even after a dose of cocaine that would ordinarily be lethal.
Neufeld, Stanley; Rosin, Jessica M; Ambasta, Anshula; Hui, Kristen; Shaneman, Venessa; Crowder, Ray; Vickerman, Lori; Cobb, John
2012-10-01
R-spondins are secreted ligands that bind cell surface receptors and activate Wnt/β-catenin signaling. Human mutations and gene inactivation studies in mice have revealed a role for these four proteins (RSPO1-4) in diverse developmental processes ranging from sex determination to limb development. Among the genes coding for R-spondins, only inactivation of Rspo3 shows early embryonic lethality (E10.5 in mice). Therefore, a conditional allele of this gene is necessary to understand the function of R-spondins throughout murine development. To address this need, we have produced an allele in which loxP sites flank exons 2-4 of Rspo3, allowing tissue-specific deletion of these exons in the presence of Cre recombinase. We used these mice to investigate the role of Rspo3 during limb development and found that limbs ultimately developed normally in the absence of Rspo3 function. However, severe hindlimb truncations resulted when Rspo3 and Rspo2 mutations were combined, demonstrating redundant function of these genes. Copyright © 2012 Wiley Periodicals, Inc.
The Genome-Wide Interaction Network of Nutrient Stress Genes in Escherichia coli.
Côté, Jean-Philippe; French, Shawn; Gehrke, Sebastian S; MacNair, Craig R; Mangat, Chand S; Bharat, Amrita; Brown, Eric D
2016-11-22
Conventional efforts to describe essential genes in bacteria have typically emphasized nutrient-rich growth conditions. Of note, however, are the set of genes that become essential when bacteria are grown under nutrient stress. For example, more than 100 genes become indispensable when the model bacterium Escherichia coli is grown on nutrient-limited media, and many of these nutrient stress genes have also been shown to be important for the growth of various bacterial pathogens in vivo To better understand the genetic network that underpins nutrient stress in E. coli, we performed a genome-scale cross of strains harboring deletions in some 82 nutrient stress genes with the entire E. coli gene deletion collection (Keio) to create 315,400 double deletion mutants. An analysis of the growth of the resulting strains on rich microbiological media revealed an average of 23 synthetic sick or lethal genetic interactions for each nutrient stress gene, suggesting that the network defining nutrient stress is surprisingly complex. A vast majority of these interactions involved genes of unknown function or genes of unrelated pathways. The most profound synthetic lethal interactions were between nutrient acquisition and biosynthesis. Further, the interaction map reveals remarkable metabolic robustness in E. coli through pathway redundancies. In all, the genetic interaction network provides a powerful tool to mine and identify missing links in nutrient synthesis and to further characterize genes of unknown function in E. coli Moreover, understanding of bacterial growth under nutrient stress could aid in the development of novel antibiotic discovery platforms. With the rise of antibiotic drug resistance, there is an urgent need for new antibacterial drugs. Here, we studied a group of genes that are essential for the growth of Escherichia coli under nutrient limitation, culture conditions that arguably better represent nutrient availability during an infection than rich microbiological media. Indeed, many such nutrient stress genes are essential for infection in a variety of pathogens. Thus, the respective proteins represent a pool of potential new targets for antibacterial drugs that have been largely unexplored. We have created all possible double deletion mutants through a genetic cross of nutrient stress genes and the E. coli deletion collection. An analysis of the growth of the resulting clones on rich media revealed a robust, dense, and complex network for nutrient acquisition and biosynthesis. Importantly, our data reveal new genetic connections to guide innovative approaches for the development of new antibacterial compounds targeting bacteria under nutrient stress. Copyright © 2016 Côté et al.
Novel TMEM67 Mutations and Genotype-phenotype Correlates in Meckelin-related Ciliopathies
Iannicelli, Miriam; Brancati, Francesco; Mougou-Zerelli, Soumaya; Mazzotta, Annalisa; Thomas, Sophie; Elkhartoufi, Nadia; Travaglini, Lorena; Gomes, Céline; Ardissino, Gian Luigi; Bertini, Enrico; Boltshauser, Eugen; Castorina, Pierangela; D'Arrigo, Stefano; Fischetto, Rita; Leroy, Brigitte; Loget, Philippe; Bonnière, Maryse; Starck, Lena; Tantau, Julia; Gentilin, Barbara; Majore, Silvia; Swistun, Dominika; Flori, Elizabeth; Lalatta, Faustina; Pantaleoni, Chiara; Johannes.Penzien; Grammatico, Paola; Dallapiccola, Bruno; Gleeson, Joseph G.; Attie-Bitach, Tania; Valente, Enza Maria
2010-01-01
Human ciliopathies are hereditary conditions caused by defects of proteins expressed at the primary cilium. Among ciliopathies, Joubert syndrome and related disorders (JSRD), Meckel syndrome (MKS) and nephronophthisis (NPH) present clinical and genetic overlap, being allelic at several loci. One of the most interesting gene is TMEM67, encoding the transmembrane protein meckelin. We performed mutation analysis of TMEM67 in 341 probands, including 265 JSRD representative of all clinical subgroups and 76 MKS fetuses. We identified 33 distinct mutations, of which 20 were novel, in 8/10 (80%) JS with liver involvement (COACH phenotype) and 12/76 (16%) MKS fetuses. No mutations were found in other JSRD subtypes, confirming the strong association between TMEM67 mutations and liver involvement. Literature review of all published TMEM67 mutated cases was performed to delineate genotype-phenotype correlates. In particular, comparison of the types of mutations and their distribution along the gene in lethal versus non lethal phenotypes showed in MKS patients a significant enrichment of missense mutations falling in TMEM67 exons 8 to 15, especially when in combination with a truncating mutation. These exons encode for a region of unknown function in the extracellular domain of meckelin. PMID:20232449
LSD1 activates a lethal prostate cancer gene network independently of its demethylase function.
Sehrawat, Archana; Gao, Lina; Wang, Yuliang; Bankhead, Armand; McWeeney, Shannon K; King, Carly J; Schwartzman, Jacob; Urrutia, Joshua; Bisson, William H; Coleman, Daniel J; Joshi, Sunil K; Kim, Dae-Hwan; Sampson, David A; Weinmann, Sheila; Kallakury, Bhaskar V S; Berry, Deborah L; Haque, Reina; Van Den Eeden, Stephen K; Sharma, Sunil; Bearss, Jared; Beer, Tomasz M; Thomas, George V; Heiser, Laura M; Alumkal, Joshi J
2018-05-01
Medical castration that interferes with androgen receptor (AR) function is the principal treatment for advanced prostate cancer. However, clinical progression is universal, and tumors with AR-independent resistance mechanisms appear to be increasing in frequency. Consequently, there is an urgent need to develop new treatments targeting molecular pathways enriched in lethal prostate cancer. Lysine-specific demethylase 1 (LSD1) is a histone demethylase and an important regulator of gene expression. Here, we show that LSD1 promotes the survival of prostate cancer cells, including those that are castration-resistant, independently of its demethylase function and of the AR. Importantly, this effect is explained in part by activation of a lethal prostate cancer gene network in collaboration with LSD1's binding protein, ZNF217. Finally, that a small-molecule LSD1 inhibitor-SP-2509-blocks important demethylase-independent functions and suppresses castration-resistant prostate cancer cell viability demonstrates the potential of LSD1 inhibition in this disease.
Hopkins, Suzanna R; McGregor, Grant A; Murray, Johanne M; Downs, Jessica A; Savic, Velibor
2016-10-01
In recent years, research into synthetic lethality and how it can be exploited in cancer treatments has emerged as major focus in cancer research. However, the lack of a simple to use, sensitive and standardised assay to test for synthetic interactions has been slowing the efforts. Here we present a novel approach to synthetic lethality screening based on co-culturing two syngeneic cell lines containing individual fluorescent tags. By associating shRNAs for a target gene or control to individual fluorescence labels, we can easily follow individual cell fates upon siRNA treatment and high content imaging. We have demonstrated that the system can recapitulate the functional defects of the target gene depletion and is capable of discovering novel synthetic interactors and phenotypes. In a trial screen, we show that TIP60 exhibits synthetic lethality interaction with BAF180, and that in the absence of TIP60, there is an increase micronuclei dependent on the level of BAF180 loss, significantly above levels seen with BAF180 present. Moreover, the severity of the interactions correlates with proxy measurements of BAF180 knockdown efficacy, which may expand its usefulness to addressing synthetic interactions through titratable hypomorphic gene expression. Copyright © 2016. Published by Elsevier B.V.
Barbazuk, W. B.; Johnsen, R. C.; Baillie, D. L.
1994-01-01
The Caenorhabditis elegans rol-3(e754) mutation is a member of a general glass of mutations affecting gross morphology, presumably through disruption of the nematode cuticle. Adult worms homozygous for rol-3(e754) exhibit rotation about their long axis associated with a left-hand twisted cuticle, musculature, gut and ventral nerve cord. Our laboratory previously isolated 12 recessive lethal alleles of rol-3. All these lethal alleles cause an arrest in development at either early or mid-larval stages, suggesting that the rol-3 gene product performs an essential developmental function. Furthermore, through the use of the heterochronic mutants lin-14 and lin-29, we have established that the expression of rol-3(e754)'s adult specific visible function is not dependent on the presence of an adult cuticle. In an attempt to understand rol-3's developmental role we sought to identify other genes whose products interact with that of rol-3. Toward this end, we generated eight EMS induced and two gamma irradiation-induced recessive suppressors of the temperature sensitive (ts) mid-larval lethal phenotype of rol-3(s1040ts). These suppressors define two complementation groups srl-1 II and srl-2 III; and, while they suppress the rol-3(s1040) lethality, they do not suppress the adult specific visible rolling phenotype. Furthermore, there is a complex genetic interaction between srl-2 and srl-1 such that srl-2(s2506) fails to complement all srl alleles tested. These results suggest that srl-1 and srl-2 may share a common function and, thus, possibly constitute members of the same gene family. Mutations in both srl-1 and srl-2 produce no obvious hermaphrodite phenotypes in the absence of rol-3(s1040ts); however, males homozygous for either srl-1 or srl-2 display aberrant tail morphology. We present evidence suggesting that the members of srl-2 are not allele specific with respect to their suppression of rol-3 lethality, and that rol-3 may act in some way to influence proper posterior morphogenesis. Finally, based on our genetic analysis of rol-3 and the srl mutations, we present a model whereby the wild-type products of the srl loci act in a concerted manner to negatively regulate the rol-3 gene. PMID:8138151
Soybean proteins GmTic110 and GmPsbP are crucial for chloroplast development and function
USDA-ARS?s Scientific Manuscript database
We have identified a viable-yellow and a lethal-yellow chlorophyll-deficient mutant in soybean. Segregation patterns suggested single-gene recessive inheritance for each mutant. The viable- and lethal-yellow plants showed significant reduction of chlorophyll a and b. Photochemical energy conversion ...
Vermeulen, C J; Bijlsma, R
2004-01-01
The specific genetic basis of inbreeding depression is poorly understood. To address this question, two conditionally expressed lethal effects that were found to cause line-specific life span reductions in two separate inbred lines of Drosophila melanogaster were characterized phenotypically and genetically in terms of whether the accelerated mortality effects are dominant or recessive. The mortality effect in one line (I4) is potentially a temperature-sensitive semilethal that expresses in adult males only and is partially dominant. The other line (I10) responds as one would expect for a recessive lethal. It requires a cold shock for expression and is cold sensitive. Flies exhibiting this lethal condition responded as pupae and freshly eclosed imagoes. The effect is recessive in both males and females. The expression of the lethal effects in both lines is highly dependent upon environmental conditions. These results will serve as a basis for more detailed and mechanistic genetic research on inbreeding depression and are relevant to sex- and environment-specific effects on life span observed in quantitative trait loci studies using inbred lines. PMID:15280238
Cloning of the altered mRNA stability (ams) gene of Escherichia coli K-12.
Claverie-Martin, F; Diaz-Torres, M R; Yancey, S D; Kushner, S R
1989-01-01
A temperature-sensitive mutation in the ams gene of Escherichia coli causes an increase in the chemical half-life of pulse-labeled RNA at the nonpermissive temperature. Using lambda clones containing DNA fragments from the 23- to 24-min region on the E. coli chromosome, we have isolated a 5.8-kilobase DNA fragment which, when present in a low-copy-number plasmid, complements the conditional lethality and increased mRNA stability associated with the ams-1 mutation. The approximate initiation site and the direction of transcription of the ams gene were determined from the size of truncated polypeptides produced by Tn1000 insertions and Bal 31 deletions. Overexpression of the ams locus by using a T7 RNA polymerase-promoter system permitted the identification of an ams-encoded polypeptide of 110 kilodaltons. Images PMID:2477358
Bower, S; Perkins, J; Yocum, R R; Serror, P; Sorokin, A; Rahaim, P; Howitt, C L; Prasad, N; Ehrlich, S D; Pero, J
1995-05-01
The Bacillus subtilis birA gene, which regulates biotin biosynthesis, has been cloned and characterized. The birA gene maps at 202 degrees on the B. subtilis chromosome and encodes a 36,200-Da protein that is 27% identical to Escherichia coli BirA protein. Three independent mutations in birA that lead to deregulation of biotin synthesis alter single amino acids in the amino-terminal end of the protein. The amino-terminal region that is affected by these three birA mutations shows sequence similarity to the helix-turn-helix DNA binding motif previously identified in E. coli BirA protein. B. subtilis BirA protein also possesses biotin-protein ligase activity, as judged by its ability to complement a conditional lethal birA mutant of E. coli.
Bower, S; Perkins, J; Yocum, R R; Serror, P; Sorokin, A; Rahaim, P; Howitt, C L; Prasad, N; Ehrlich, S D; Pero, J
1995-01-01
The Bacillus subtilis birA gene, which regulates biotin biosynthesis, has been cloned and characterized. The birA gene maps at 202 degrees on the B. subtilis chromosome and encodes a 36,200-Da protein that is 27% identical to Escherichia coli BirA protein. Three independent mutations in birA that lead to deregulation of biotin synthesis alter single amino acids in the amino-terminal end of the protein. The amino-terminal region that is affected by these three birA mutations shows sequence similarity to the helix-turn-helix DNA binding motif previously identified in E. coli BirA protein. B. subtilis BirA protein also possesses biotin-protein ligase activity, as judged by its ability to complement a conditional lethal birA mutant of E. coli. PMID:7730294
Kaya, Alaattin; Gerashchenko, Maxim V; Seim, Inge; Labarre, Jean; Toledano, Michel B; Gladyshev, Vadim N
2015-08-25
Aerobic respiration is a fundamental energy-generating process; however, there is cost associated with living in an oxygen-rich environment, because partially reduced oxygen species can damage cellular components. Organisms evolved enzymes that alleviate this damage and protect the intracellular milieu, most notably thiol peroxidases, which are abundant and conserved enzymes that mediate hydrogen peroxide signaling and act as the first line of defense against oxidants in nearly all living organisms. Deletion of all eight thiol peroxidase genes in yeast (∆8 strain) is not lethal, but results in slow growth and a high mutation rate. Here we characterized mechanisms that allow yeast cells to survive under conditions of thiol peroxidase deficiency. Two independent ∆8 strains increased mitochondrial content, altered mitochondrial distribution, and became dependent on respiration for growth but they were not hypersensitive to H2O2. In addition, both strains independently acquired a second copy of chromosome XI and increased expression of genes encoded by it. Survival of ∆8 cells was dependent on mitochondrial cytochrome-c peroxidase (CCP1) and UTH1, present on chromosome XI. Coexpression of these genes in ∆8 cells led to the elimination of the extra copy of chromosome XI and improved cell growth, whereas deletion of either gene was lethal. Thus, thiol peroxidase deficiency requires dosage compensation of CCP1 and UTH1 via chromosome XI aneuploidy, wherein these proteins support hydroperoxide removal with the reducing equivalents generated by the electron transport chain. To our knowledge, this is the first evidence of adaptive aneuploidy counteracting oxidative stress.
The Essential Gene EMB1611 Maintains Shoot Apical Meristem Function During Arabidopsis Development
USDA-ARS?s Scientific Manuscript database
The Arabidopsis thaliana genome contains hundreds of genes essential for seed development. Because null mutations in these genes cause embryo lethality, their specific molecular and developmental functions are largely unknown. Here, we identify a role for EMB1611/MEE22, an essential gene in Arabidop...
2014-01-01
Background Lethal amanitas (Amanita section Phalloideae) are a group of wild, fatal mushrooms causing many poisoning cases worldwide. However, the diversity and evolutionary history of these lethal mushrooms remain poorly known due to the limited sampling and insufficient gene fragments employed for phylogenetic analyses. In this study, five gene loci (nrLSU, ITS, rpb2, ef1-α and β-tubulin) with a widely geographic sampling from East and South Asia, Europe, North and Central America, South Africa and Australia were analysed with maximum-likelihood, maximum-parsimony and Bayesian inference methods. Biochemical analyses were also conducted with intention to detect amatoxins and phalloidin in 14 representative samples. Result Lethal amanitas were robustly supported to be a monophyletic group after excluding five species that were provisionally defined as lethal amanitas based on morphological studies. In lethal amanitas, 28 phylogenetic species were recognised by integrating molecular phylogenetic analyses with morphological studies, and 14 of them represented putatively new species. The biochemical analyses indicated a single origin of cyclic peptide toxins (amatoxins and phalloidin) within Amanita and suggested that this kind of toxins seemed to be a synapomorphy of lethal amanitas. Molecular dating through BEAST and biogeographic analyses with LAGRANGE and RASP indicated that lethal amanitas most likely originated in the Palaeotropics with the present crown group dated around 64.92 Mya in the early Paleocene, and the East Asia–eastern North America or Eurasia–North America–Central America disjunct distribution patterns were primarily established during the middle Oligocene to Miocene. Conclusion The cryptic diversity found in this study indicates that the species diversity of lethal amanitas is strongly underestimated under the current taxonomy. The intercontinental sister species or sister groups relationships among East Asia and eastern North America or Eurasia–North America–Central America within lethal amanitas are best explained by the diversification model of Palaeotropical origin, dispersal via the Bering Land Bridge, followed by regional vicariance speciation resulting from climate change during the middle Oligocene to the present. These findings indicate the importance of both dispersal and vicariance in shaping the intercontinental distributions of these ectomycorrhizal fungi. PMID:24950598
Bypass of lethality with mosaic mice generated by Cre-loxP-mediated recombination.
Betz, U A; Vosshenrich, C A; Rajewsky, K; Müller, W
1996-10-01
The analysis of gene function based on the generation of mutant mice by homologous recombination in embryonic stem cells is limited if gene disruption results in embryonic lethality. Mosaic mice, which contain a certain proportion of mutant cells in all organs, allow lethality to be circumvented and the potential of mutant cells to contribute to different cell lineages to be analyzed. To generate mosaic animals, we used the bacteriophage P1-derived Cre-loxP recombination system, which allows gene alteration by Cre-mediated deletion of loxP-flanked gene segments. We generated nestin-cre transgenic mouse lines, which expressed the Cre recombinase under the control of the rat nestin promoter and its second intron enhancer. In crosses to animals carrying a loxP-flanked target gene, partial deletion of the loxP-flanked allele occurred before day 10.5 post coitum and was detectable in all adult organs examined, including germ-line cells. Using this approach, we generated mosaic mice containing cells deficient in the gamma-chain of the interleukin-2 receptor (IL-2R gamma); in these animals, the IL-2R gamma-deficient cells were underrepresented in the thymus and spleen. Because mice deficient in DNA polymerase beta die perinatally, we studied the effects of DNA polymerase beta deficiency in mosaic animals. We found that some of the mosaic polymerase beta-deficient animals were viable, but were often reduced in size and weight. The fraction of DNA polymerase beta-deficient cells in mosaic embryos decreased during embryonic development, presumably because wild-type cells had a competitive advantage. The nestin-cre transgenic mice can be used to generate mosaic animals in which target genes are mutated by Cre-mediated recombination of loxP-flanked target genes. By using mosaic animals, embryonic lethality can be bypassed and cell lineages for whose development a given target gene is critical can be identified. In the case of DNA polymerase beta, deficient cells are already selected against during embryonic development, demonstrating the general importance of this protein in multiple cell types.
Brütsch, Simone Hanna; Wang, Chi Chiu; Li, Lu; Stender, Hannelore; Neziroglu, Nilgün; Richter, Constanze; Kuhn, Hartmut; Borchert, Astrid
2015-02-01
Glutathione peroxidases (Gpx) and lipoxygenases (Alox) are functional counterplayers in the metabolism of hydroperoxy lipids that regulate cellular redox homeostasis. Gpx4 is a moonlighting protein that has been implicated not only as an enzyme in anti-oxidative defense, gene expression regulation, and programmed cell death, but also as a structural protein in spermatogenesis. Homozygous Gpx4 knock-out mice are not viable, but molecular reasons for intrauterine lethality are not completely understood. This study was aimed at investigating whether the lack of catalytic activity or the impaired function as structural protein is the dominant reason for embryonic lethality. We further explored whether the pro-oxidative enzyme mouse 12/15 lipoxygenase (Alox15) plays a major role in embryonic lethality of Gpx4-deficient mice. To achieve these goals, we first created knock-in mice, which express a catalytically inactive Gpx4 mutant (Sec46Ala). As homozygous Gpx4-knock-out mice Sec46Ala-Gpx4(+/+) knock-in animals are not viable but undergo intrauterine resorption between embryonic day 6 and 7 (E6-7). In contrast, heterozygous knock-in mice (Sec46Ala-Gpx4(-/+)) are viable, fertile and do not show major phenotypic alterations. Interestingly, homozygous Alox15 deficiency did not rescue the U46A-Gpx4(+/+) mice from embryonic lethality. In fact, when heterozygous U46A-Gpx4(-/+) mice were stepwise crossed into an Alox15-deficent background, no viable U46A-Gpx4(+/+)+Alox15(-/-) individuals were obtained. However, we were able to identify U46A-Gpx4(+/+)+Alox15(-/-) embryos in the state of resorption around E7. These data suggest that the lack of catalytic activity is the major reason for the embryonic lethality of Gpx4(-/-) mice and that systemic inactivation of the Alox15 gene does not rescue homozygous knock-in mice expressing catalytically silent Gpx4.
Deak, P.; Omar, M. M.; Saunders, RDC.; Pal, M.; Komonyi, O.; Szidonya, J.; Maroy, P.; Zhang, Y.; Ashburner, M.; Benos, P.; Savakis, C.; Siden-Kiamos, I.; Louis, C.; Bolshakov, V. N.; Kafatos, F. C.; Madueno, E.; Modolell, J.; Glover, D. M.
1997-01-01
We have established a collection of 2460 lethal or semi-lethal mutant lines using a procedure thought to insert single P elements into vital genes on the third chromosome of Drosophila melanogaster. More than 1200 randomly selected lines were examined by in situ hybridization and 90% found to contain single insertions at sites that mark 89% of all lettered subdivisions of the Bridges' map. A set of chromosomal deficiencies that collectively uncover ~25% of the euchromatin of chromosome 3 reveal lethal mutations in 468 lines corresponding to 145 complementation groups. We undertook a detailed analysis of the cytogenetic interval 86E-87F and identified 87 P-element-induced mutations falling into 38 complementation groups, 16 of which correspond to previously known genes. Twenty-one of these 38 complementation groups have at least one allele that has a P-element insertion at a position consistent with the cytogenetics of the locus. We have rescued P elements and flanking chromosomal sequences from the 86E-87F region in 35 lines with either lethal or genetically silent P insertions, and used these as probes to identify cosmids and P1 clones from the Drosophila genome projects. This has tied together the physical and genetic maps and has linked 44 previously identified cosmid contigs into seven ``supercontigs'' that span the interval. STS data for sequences flanking one side of the P-element insertions in 49 lines has identified insertions in the αγ element at 87C, two known transposable elements, and the open reading frames of seven putative single copy genes. These correspond to five known genes in this interval, and two genes identified by the homology of their predicted products to known proteins from other organisms. PMID:9409831
Cloning and Characterization of the Scalloped Region of Drosophila Melanogaster
Campbell, S. D.; Duttaroy, A.; Katzen, A. L.; Chovnick, A.
1991-01-01
Viable mutants of the scalloped gene (sd) of Drosophila melanogaster exhibit defects that can include gapping of the wing margin and ectopic bristle formation on the wing. Lethal sd alleles characterized in the present study now implicate this gene in a genetic function essential for normal development. In order to further characterize the developmental role of this gene, we have undertaken to clone and characterize the region where sd maps. A P[ry(+)] transposon insertion at 13F associated with sd([ry+2216]) served as the starting point for a 42-kb chromosomal walk. Molecular lesions associated with viable and lethal sd alleles were characterized by genomic hybridization analysis as a means of defining the extent of the gene. DNA rearrangements associated with 11 viable sd alleles map to a 2-kb interval which appears to be a ``hot spot'' for P element activity. Four of five recessive lethal sd mutations were mapped by denaturing gradient gel electrophoresis to a region 12-14 kb away from the region of viable lesions. In a sd(+) genotype, at least two structurally related and developmentally regulated transcripts hybridize to the genomic region where several sd lethal alleles have been localized. A viable mutation, sd(58), used for comparison in the transcript analysis, makes at least two slightly smaller transcripts that also hybridize to this region. Preliminary analysis of cDNA clones has identified three structurally related transcripts that hybridize to this genomic region. The 5' end of these transcripts extends into the 2-kb genomic region wherein DNA rearrangements were seen in the P element rearrangements. We favor the view that the transcripts represented by these cDNA clones are products of the sd gene. If this is true, the sd gene would include genomic sequences extending over at least 14 kb of the described chromosomal walk, and would appear to be subject to alternative splicing. PMID:1706292
Krebs, Philippe; Fan, Weiwei; Chen, Yen-Hui; Tobita, Kimimasa; Downes, Michael R.; Wood, Malcolm R.; Sun, Lei; Xia, Yu; Ding, Ning; Spaeth, Jason M.; Moresco, Eva Marie Y.; Boyer, Thomas G.; Lo, Cecilia Wen Ya; Yen, Jeffrey; Evans, Ronald M.; Beutler, Bruce
2011-01-01
Deficiencies of subunits of the transcriptional regulatory complex Mediator generally result in embryonic lethality, precluding study of its physiological function. Here we describe a missense mutation in Med30 causing progressive cardiomyopathy in homozygous mice that, although viable during lactation, show precipitous lethality 2–3 wk after weaning. Expression profiling reveals pleiotropic changes in transcription of cardiac genes required for oxidative phosphorylation and mitochondrial integrity. Weaning mice to a ketogenic diet extends viability to 8.5 wk. Thus, we establish a mechanistic connection between Mediator and induction of a metabolic program for oxidative phosphorylation and fatty acid oxidation, in which lethal cardiomyopathy is mitigated by dietary intervention. PMID:22106289
Kamijho, Yuki; Shiozaki, Yayoi; Sakurai, Eiki; Hanaoka, Kazunori; Watanabe, Daisuke
2014-01-01
In this study we generated RNA interference (RNAi)-mediated gene knockdown transgenic mice (transgenic RNAi mice) against the functional Inv gene. Inv mutant mice show consistently reversed internal organs (situs inversus), multiple renal cysts and neonatal lethality. The Inv::GFP-rescue mice, which introduced the Inv::GFP fusion gene, can rescue inv mutant mice phenotypes. This indicates that the Inv::GFP gene is functional in vivo. To analyze the physiological functions of the Inv gene, and to demonstrate the availability of transgenic RNAi mice, we introduced a short hairpin RNA expression vector against GFP mRNA into Inv::GFP-rescue mice and analyzed the gene silencing effects and Inv functions by examining phenotypes. Transgenic RNAi mice with the Inv::GFP-rescue gene (Inv-KD mice) down-regulated Inv::GFP fusion protein and showed hypomorphic phenotypes of inv mutant mice, such as renal cyst development, but not situs abnormalities or postnatal lethality. This indicates that shRNAi-mediated gene silencing systems that target the tag sequence of the fusion gene work properly in vivo, and suggests that a relatively high level of Inv protein is required for kidney development in contrast to left/right axis determination. Inv::GFP protein was significantly down-regulated in the germ cells of Inv-KD mice testis compared with somatic cells, suggesting the existence of a testicular germ cell-specific enhanced RNAi system that regulates germ cell development. The Inv-KD mouse is useful for studying Inv gene functions in adult tissue that are unable to be analyzed in inv mutant mice showing postnatal lethality. In addition, the shRNA-based gene silencing system against the tag sequence of the fusion gene can be utilized as a new technique to regulate gene expression in either in vitro or in vivo experiments. PMID:24586938
Changes in ABA and gene expression in cold-acclimated sugar maple.
Bertrand, A; Robitaille, G; Castonguay, Y; Nadeau, P; Boutin, R
1997-01-01
To determine if cold acclimation of sugar maple (Acer saccharum Marsh.) is associated with specific changes in gene expression under natural hardening conditions, we compared bud and root translatable mRNAs of potted maple seedlings after cold acclimation under natural conditions and following spring dehardening. Cold-hardened roots and buds were sampled in January when tissues reached their maximum hardiness. Freezing tolerance, expressed as the lethal temperature for 50% of the tissues (LT(50)), was estimated at -17 degrees C for roots, and at lower than -36 degrees C for buds. Approximately ten transcripts were specifically synthesized in cold-acclimated buds, or were more abundant in cold-acclimated buds than in unhardened buds. Cold hardening was also associated with changes in translation. At least five translation products were more abundant in cold-acclimated buds and roots compared with unhardened tissues. Abscisic acid (ABA) concentration increased approximately tenfold in the xylem sap following winter acclimation, and the maximum concentration was reached just before maximal acclimation. We discuss the potential involvement of ABA in the observed modification of gene expression during cold hardening.
Palmer, M. J.; Mergner, V. A.; Richman, R.; Manning, J. E.; Kuroda, M. I.; Lucchesi, J. C.
1993-01-01
male-specific lethal-one (msl-1) is one of four genes that are required for dosage compensation in Drosophila males. To determine the molecular basis of msl-1 regulation of dosage compensation, we have cloned the gene and characterized its products. The predicted msl-1 protein (MSL-1) has no significant similarity to proteins in the current data bases but contains an acidic N terminus characteristic of proteins involved in transcription and chromatin modeling. We present evidence that the msl-1 protein is associated with hundreds of sites along the length of the X chromosome in male, but not in female, nuclei. Our findings support the hypothesis that msl-1 plays a direct role in increasing the level of X-linked gene transcription in male nuclei. PMID:8325488
Expression of Hygromycin Phosphotransferase Alters Virulence of Histoplasma capsulatum▿
Smulian, A. George; Gibbons, Reta S.; Demland, Jeffery A.; Spaulding, Deborah T.; Deepe, George S.
2007-01-01
The Escherichia coli hygromycin phosphotransferase (hph) gene, which confers hygromycin resistance, is commonly used as a dominant selectable marker in genetically modified bacteria, fungi, plants, insects, and mammalian cells. Expression of the hph gene has rarely been reported to induce effects other than those expected. Hygromycin B is the most common dominant selectable marker used in the molecular manipulation of Histoplasma capsulatum in the generation of knockout strains of H. capsulatum or as a marker in mutant strains. hph-expressing organisms appear to have no defect in long-term in vitro growth and survival and have been successfully used to exploit host-parasite interaction in short-term cell culture systems and animal experiments. We introduced the hph gene as a selectable marker together with the gene encoding green fluorescent protein into wild-type strains of H. capsulatum. Infection of mice with hph-expressing H. capsulatum yeast cells at sublethal doses resulted in lethality. The lethality was not attributable to the site of integration of the hph construct into the genomes or to the method of integration and was not H. capsulatum strain related. Death of mice was not caused by altered cytokine profiles or an overwhelming fungal burden. The lethality was dependent on the kinase activity of hygromycin phosphotransferase. These results should raise awareness of the potential detrimental effects of the hph gene. PMID:17873086
Expression of hygromycin phosphotransferase alters virulence of Histoplasma capsulatum.
Smulian, A George; Gibbons, Reta S; Demland, Jeffery A; Spaulding, Deborah T; Deepe, George S
2007-11-01
The Escherichia coli hygromycin phosphotransferase (hph) gene, which confers hygromycin resistance, is commonly used as a dominant selectable marker in genetically modified bacteria, fungi, plants, insects, and mammalian cells. Expression of the hph gene has rarely been reported to induce effects other than those expected. Hygromycin B is the most common dominant selectable marker used in the molecular manipulation of Histoplasma capsulatum in the generation of knockout strains of H. capsulatum or as a marker in mutant strains. hph-expressing organisms appear to have no defect in long-term in vitro growth and survival and have been successfully used to exploit host-parasite interaction in short-term cell culture systems and animal experiments. We introduced the hph gene as a selectable marker together with the gene encoding green fluorescent protein into wild-type strains of H. capsulatum. Infection of mice with hph-expressing H. capsulatum yeast cells at sublethal doses resulted in lethality. The lethality was not attributable to the site of integration of the hph construct into the genomes or to the method of integration and was not H. capsulatum strain related. Death of mice was not caused by altered cytokine profiles or an overwhelming fungal burden. The lethality was dependent on the kinase activity of hygromycin phosphotransferase. These results should raise awareness of the potential detrimental effects of the hph gene.
Mutants in the mouse NuRD/Mi2 component P66alpha are embryonic lethal.
Marino, Susan; Nusse, Roel
2007-06-13
The NuRD/Mi2 chromatin complex is involved in histone modifications and contains a large number of subunits, including the p66 protein. There are two mouse and human p66 paralogs, p66alpha and p66beta. The functions of these genes are not clear, in part because there are no mutants available, except in invertebrate model systems. We made loss of function mutants in the mouse p66alpha gene (mp66alpha, official name Gatad2a, MGI:2384585). We found that mp66alpha is essential for development, as mutant embryos die around day 10 of embryogenesis. The gene is not required for normal blastocyst development or for implantation. The phenotype of mutant embryos and the pattern of gene expression in mutants are consistent with a role of mp66alpha in gene silencing. mp66alpha is an essential gene, required for early mouse development. The lethal phenotype supports a role in execution of methylated DNA silencing.
Matveenko, A G; Belousov, M V; Bondarev, S A; Moskalenko, S E; Zhouravleva, G A
2016-01-01
Translation termination is an important step in gene expression. Its correct processing is governed by eRF1 (Sup45) and eRF3 (Sup35) proteins. In Saccharomyces cerevisiae, mutations in the corresponding genes, as well as Sup35 aggregation in [PSI^(+)] cells that propagate the prion form of Sup35 lead to inaccurate stop codon recognition and, consequently, nonsense suppression. The presence of stronger prion variants results in the more efficient suppression of nonsense mutations. Previously, we proposed a synthetic lethality test that enables the identification of genes that may influence either translation termination factors or [PSI^(+)] manifestation. This is based on the fact that the combination of sup45 mutations with the strong [PSI^(+)] prion variant in diploids is lethal. In this work, a set of genes that were previously shown to enhance nonsense suppression was analyzed. It was found that ABF1, FKH2, and REB1 overexpression decreased the growth of strains in a prion-dependent manner and, thus, might influence [PSI^(+)] prion toxicity. It was also shown that the synthetic lethality of [PSI^(+)] and sup45 mutations increased with the overexpression of GLN3 and MOT3 that encode Q/N-rich transcription factors. An analysis of the effects of their expression on the transcription of the release factors genes revealed an increase in SUP35 transcription in both cases. Since SUP35 overexpression is known to be toxic in [PSI^(+)] strains, these genes apparently enhance [PSI^(+)] toxicity via the regulation of SUP35 transcription.
Casjens, S.; Eppler, K.; Sampson, L.; Parr, R.; Wyckoff, E.
1991-01-01
The mechanism by which dsDNA is packaged by viruses is not yet understood in any system. Bacteriophage P22 has been a productive system in which to study the molecular genetics of virus particle assembly and DNA packaging. Only five phage encoded proteins, the products of genes 3, 2, 1, 8 and 5, are required for packaging the virus chromosome inside the coat protein shell. We report here the construction of a detailed genetic and physical map of these genes, the neighboring gene 4 and a portion of gene 10, in which 289 conditional lethal amber, opal, temperature sensitive and cold sensitive mutations are mapped into 44 small (several hundred base pair) intervals of known sequence. Knowledge of missense mutant phenotypes and information on the location of these mutations allows us to begin the assignment of partial protein functions to portions of these genes. The map and mapping strains will be of use in the further genetic dissection of the P22 DNA packaging and prohead assembly processes. PMID:2029965
Kaewphan, Suwisa; Van Landeghem, Sofie; Ohta, Tomoko; Van de Peer, Yves; Ginter, Filip; Pyysalo, Sampo
2016-01-01
Motivation: The recognition and normalization of cell line names in text is an important task in biomedical text mining research, facilitating for instance the identification of synthetically lethal genes from the literature. While several tools have previously been developed to address cell line recognition, it is unclear whether available systems can perform sufficiently well in realistic and broad-coverage applications such as extracting synthetically lethal genes from the cancer literature. In this study, we revisit the cell line name recognition task, evaluating both available systems and newly introduced methods on various resources to obtain a reliable tagger not tied to any specific subdomain. In support of this task, we introduce two text collections manually annotated for cell line names: the broad-coverage corpus Gellus and CLL, a focused target domain corpus. Results: We find that the best performance is achieved using NERsuite, a machine learning system based on Conditional Random Fields, trained on the Gellus corpus and supported with a dictionary of cell line names. The system achieves an F-score of 88.46% on the test set of Gellus and 85.98% on the independently annotated CLL corpus. It was further applied at large scale to 24 302 102 unannotated articles, resulting in the identification of 5 181 342 cell line mentions, normalized to 11 755 unique cell line database identifiers. Availability and implementation: The manually annotated datasets, the cell line dictionary, derived corpora, NERsuite models and the results of the large-scale run on unannotated texts are available under open licenses at http://turkunlp.github.io/Cell-line-recognition/. Contact: sukaew@utu.fi PMID:26428294
Differential expression of the lethal gene Luteus-Pa in cacao of the Parinari series.
Rehem, B C; Almeida, A-A F; Figueiredo, G S F; Gesteira, A S; Santos, S C; Corrêa, R X; Yamada, M M; Valle, R R
2016-02-22
The recessive lethal character Luteus-Pa is found in cacao (Theobroma cacao) genotypes of the Parinari series (Pa) and is characterized by expression of leaf chlorosis and seedling death. Several genotypes of the Pa series are bearers of the gene responsible for the expression of the Luteus-Pa character, which can be used as a tool for determining relationships between genotypes of this group. To evaluate this phenomenon, we analyzed the differential expression of genes between mutant seedlings and wild-type hybrid Pa 30 x 169 seedlings, with the aim of elucidating the possible lethal mechanisms of the homozygous recessive character Luteus-Pa. Plant material was harvested from leaves of wild and mutant seedlings at different periods to construct a subtractive library and perform quantitative analysis using real-time PCR. The 649 sequences obtained from the subtractive library had an average length of 500 bp, forming 409 contigs. The probable proteins encoded were grouped into 10 functional categories. Data from ESTs identified genes associated with Rubisco, peroxidases, and other proteins and enzymes related to carbon assimilation, respiration, and photosystem 2. Mutant seedlings were characterized by synthesizing defective PsbO and PsbA proteins, which were overexpressed from 15 to 20 days after seedling emergence.
A screen to identify Drosophila genes required for integrin-mediated adhesion.
Walsh, E P; Brown, N H
1998-01-01
Drosophila integrins have essential adhesive roles during development, including adhesion between the two wing surfaces. Most position-specific integrin mutations cause lethality, and clones of homozygous mutant cells in the wing do not adhere to the apposing surface, causing blisters. We have used FLP-FRT induced mitotic recombination to generate clones of randomly induced mutations in the F1 generation and screened for mutations that cause wing blisters. This phenotype is highly selective, since only 14 lethal complementation groups were identified in screens of the five major chromosome arms. Of the loci identified, 3 are PS integrin genes, 2 are blistered and bloated, and the remaining 9 appear to be newly characterized loci. All 11 nonintegrin loci are required on both sides of the wing, in contrast to integrin alpha subunit genes. Mutations in 8 loci only disrupt adhesion in the wing, similar to integrin mutations, while mutations in the 3 other loci cause additional wing defects. Mutations in 4 loci, like the strongest integrin mutations, cause a "tail-up" embryonic lethal phenotype, and mutant alleles of 1 of these loci strongly enhance an integrin mutation. Thus several of these loci are good candidates for genes encoding cytoplasmic proteins required for integrin function. PMID:9755209
Leung, Ada W. Y.; Hung, Stacy S.; Backstrom, Ian; Ricaurte, Daniel; Kwok, Brian; Poon, Steven; McKinney, Steven; Segovia, Romulo; Rawji, Jenna; Qadir, Mohammed A.; Aparicio, Samuel; Stirling, Peter C.; Steidl, Christian; Bally, Marcel B.
2016-01-01
Platinum-based combination chemotherapy is the standard treatment for advanced non-small cell lung cancer (NSCLC). While cisplatin is effective, its use is not curative and resistance often emerges. As a consequence of microenvironmental heterogeneity, many tumour cells are exposed to sub-lethal doses of cisplatin. Further, genomic heterogeneity and unique tumor cell sub-populations with reduced sensitivities to cisplatin play a role in its effectiveness within a site of tumor growth. Being exposed to sub-lethal doses will induce changes in gene expression that contribute to the tumour cell’s ability to survive and eventually contribute to the selective pressures leading to cisplatin resistance. Such changes in gene expression, therefore, may contribute to cytoprotective mechanisms. Here, we report on studies designed to uncover how tumour cells respond to sub-lethal doses of cisplatin. A microarray study revealed changes in gene expressions that occurred when A549 cells were exposed to a no-observed-effect level (NOEL) of cisplatin (e.g. the IC10). These data were integrated with results from a genome-wide siRNA screen looking for novel therapeutic targets that when inhibited transformed a NOEL of cisplatin into one that induced significant increases in lethality. Pathway analyses were performed to identify pathways that could be targeted to enhance cisplatin activity. We found that over 100 genes were differentially expressed when A549 cells were exposed to a NOEL of cisplatin. Pathways associated with apoptosis and DNA repair were activated. The siRNA screen revealed the importance of the hedgehog, cell cycle regulation, and insulin action pathways in A549 cell survival and response to cisplatin treatment. Results from both datasets suggest that RRM2B, CABYR, ALDH3A1, and FHL2 could be further explored as cisplatin-enhancing gene targets. Finally, pathways involved in repairing double-strand DNA breaks and INO80 chromatin remodeling were enriched in both datasets, warranting further research into combinations of cisplatin and therapeutics targeting these pathways. PMID:26938915
Leung, Ada W Y; Hung, Stacy S; Backstrom, Ian; Ricaurte, Daniel; Kwok, Brian; Poon, Steven; McKinney, Steven; Segovia, Romulo; Rawji, Jenna; Qadir, Mohammed A; Aparicio, Samuel; Stirling, Peter C; Steidl, Christian; Bally, Marcel B
2016-01-01
Platinum-based combination chemotherapy is the standard treatment for advanced non-small cell lung cancer (NSCLC). While cisplatin is effective, its use is not curative and resistance often emerges. As a consequence of microenvironmental heterogeneity, many tumour cells are exposed to sub-lethal doses of cisplatin. Further, genomic heterogeneity and unique tumor cell sub-populations with reduced sensitivities to cisplatin play a role in its effectiveness within a site of tumor growth. Being exposed to sub-lethal doses will induce changes in gene expression that contribute to the tumour cell's ability to survive and eventually contribute to the selective pressures leading to cisplatin resistance. Such changes in gene expression, therefore, may contribute to cytoprotective mechanisms. Here, we report on studies designed to uncover how tumour cells respond to sub-lethal doses of cisplatin. A microarray study revealed changes in gene expressions that occurred when A549 cells were exposed to a no-observed-effect level (NOEL) of cisplatin (e.g. the IC10). These data were integrated with results from a genome-wide siRNA screen looking for novel therapeutic targets that when inhibited transformed a NOEL of cisplatin into one that induced significant increases in lethality. Pathway analyses were performed to identify pathways that could be targeted to enhance cisplatin activity. We found that over 100 genes were differentially expressed when A549 cells were exposed to a NOEL of cisplatin. Pathways associated with apoptosis and DNA repair were activated. The siRNA screen revealed the importance of the hedgehog, cell cycle regulation, and insulin action pathways in A549 cell survival and response to cisplatin treatment. Results from both datasets suggest that RRM2B, CABYR, ALDH3A1, and FHL2 could be further explored as cisplatin-enhancing gene targets. Finally, pathways involved in repairing double-strand DNA breaks and INO80 chromatin remodeling were enriched in both datasets, warranting further research into combinations of cisplatin and therapeutics targeting these pathways.
Camargo, Carolina; Wu, Ke; Fishilevich, Elane; Narva, Kenneth E; Siegfried, Blair D
2018-06-01
The use of transgenic crops that induce silencing of essential genes using double-stranded RNA (dsRNA) through RNA interference (RNAi) in western corn rootworm, Diabrotica virgifera virgifera, is likely to be an important component of new technologies for the control of this important corn pest. Previous studies have demonstrated that the dsRNA response in D. v. virgifera depends on the presence of RNAi pathway genes including Dicer-2 and Argonaute 2, and that downregulation of these genes limits the lethality of environmental dsRNA. A potential resistance mechanism to lethal dsRNA may involve loss of function of RNAi pathway genes. Howver, the potential for resistance to evolve may depend on whether these pathway genes have essential functions such that the loss of function of core proteins in the RNAi pathway will have fitness costs in D. v. virgifera. Fitness costs associated with potential resistance mechanisms have a central role in determining how resistance can evolve to RNAi technologies in western corn rootworm. We evaluated the effect of dsRNA and microRNA pathway gene knockdown on the development of D. v. virgifera larvae through short-term and long-term exposures to dsRNA for Dicer and Argonaute genes. Downregulation of Argonaute 2, Dicer-2, Dicer-1 did not significantly affect larval survivorship or development through short and long-term exposure to dsRNA. However, downregulation of Argonaute 1 reduced larval survivorship and delayed development. The implications of these results as they relate to D. v. virgifera resistance to lethal dsRNA are discussed. Copyright © 2018 Elsevier Inc. All rights reserved.
Rescue of the mouse DDK syndrome by parent-of-origin-dependent modifiers.
Ideraabdullah, Folami Y; Kim, Kuikwon; Pomp, Daniel; Moran, Jennifer L; Beier, David; de Villena, Fernando Pardo-Manuel
2007-02-01
When females of the DDK inbred mouse strain are mated to males of other strains, 90-100% of the resulting embryos die during early embryonic development. This DDK syndrome lethality results from incompatibility between an ooplasmic DDK factor and a non-DDK paternal gene, which map to closely linked loci on chromosome 11. It has been proposed that the expression of the gene that encodes the ooplasmic factor is subject to allelic exclusion in oocytes. Previous studies have demonstrated the existence of recessive modifiers that increase lethality in the C57BL/6 and BALB/c strains. These modifiers are thought to skew the choice of allele undergoing allelic exclusion in the oocytes of heterozygous females. In the present study, we demonstrate the presence of modifiers in three Mus musculus domesticus wild-derived strains, PERA, PERC, and RBA. These modifiers completely rescued DDK syndrome lethality. We mapped the major locus that is responsible for rescue in PERA and PERC crosses to proximal chromosome 13 and named this locus Rmod1 (Rescue Modifier of the DDK Syndrome 1). Our experiments demonstrate that PERA or PERC alleles at Rmod1 rescue lethality independently of allelic exclusion. In addition, rescue of the lethal phenotype depends on the parental origin of the Rmod1 alleles; transmission through the dam leads to rescue, while transmission through the sire has no effect.
Gene Rearrangement Attenuates Expression and Lethality of a Nonsegmented Negative Strand RNA Virus
NASA Astrophysics Data System (ADS)
Williams Wertz, Gail; Perepelitsa, Victoria P.; Ball, L. Andrew
1998-03-01
The nonsegmented negative strand RNA viruses comprise hundreds of human, animal, insect, and plant pathogens. Gene expression of these viruses is controlled by the highly conserved order of genes relative to the single transcriptional promoter. We utilized this regulatory mechanism to alter gene expression levels of vesicular stomatitis virus by rearranging the gene order. This report documents that gene expression levels and the viral phenotype can be manipulated in a predictable manner. Translocation of the promoter-proximal nucleocapsid protein gene N, whose product is required stoichiometrically for genome replication, to successive positions down the genome reduced N mRNA and protein expression in a stepwise manner. The reduction in N gene expression resulted in a stepwise decrease in genomic RNA replication. Translocation of the N gene also attenuated the viruses to increasing extents for replication in cultured cells and for lethality in mice, without compromising their ability to elicit protective immunity. Because monopartite negative strand RNA viruses have not been reported to undergo homologous recombination, gene rearrangement should be irreversible and may provide a rational strategy for developing stably attenuated live vaccines against this type of virus.
Essential Role of Cyclin-G–associated Kinase (Auxilin-2) in Developing and Mature Mice
Lee, Dong-won; Zhao, Xiaohong; Yim, Yang-In; Eisenberg, Evan
2008-01-01
Hsc70 with its cochaperone, either auxilin or GAK, not only uncoats clathrin-coated vesicles but also acts as a chaperone during clathrin-mediated endocytosis. However, because synaptojanin is also involved in uncoating, it is not clear whether GAK is an essential gene. To answer this question, GAK conditional knockout mice were generated and then mated to mice expressing Cre recombinase under the control of the nestin, albumin, or keratin-14 promoters, all of which turn on during embryonic development. Deletion of GAK from brain, liver, or skin dramatically altered the histology of these tissues, causing the mice to die shortly after birth. Furthermore, by expressing a tamoxifen-inducible promoter to express Cre recombinase we showed that deletion of GAK caused lethality in adult mice. Mouse embryonic fibroblasts in which the GAK was disrupted showed a lack of clathrin-coated pits and a complete block in clathrin-mediated endocytosis. We conclude that GAK deletion blocks development and causes lethality in adult animals by disrupting clathrin-mediated endocytosis. PMID:18434600
Durack, Juliana; Ross, Tom; Bowman, John P.
2013-01-01
The ability of Listeria monocytogenes to adapt to various food and food- processing environments has been attributed to its robustness, persistence and prevalence in the food supply chain. To improve the present understanding of molecular mechanisms involved in hyperosmotic and low-temperature stress adaptation of L. monocytogenes, we undertook transcriptomics analysis on three strains adapted to sub-lethal levels of these stress stimuli and assessed functional gene response. Adaptation to hyperosmotic and cold-temperature stress has revealed many parallels in terms of gene expression profiles in strains possessing different levels of stress tolerance. Gene sets associated with ribosomes and translation, transcription, cell division as well as fatty acid biosynthesis and peptide transport showed activation in cells adapted to either cold or hyperosmotic stress. Repression of genes associated with carbohydrate metabolism and transport as well as flagella was evident in stressed cells, likely linked to activation of CodY regulon and consequential cellular energy conservation. PMID:24023890
O-chromosome lethal frequencies in Serbian and Montenegrin Drosophila subobscura populations.
Zivanovic, G; Arenas, C; Mestres, F
2011-10-01
Lethal chromosomal frequencies were obtained from three Drosophila subobscura samples from the Mt. Avala (Serbia) population in September 2003 (0.218), June 2004 (0.204) and September 2004 (0.250). These values and those from other Balkan populations studied previously (Petnica, Kamariste, Zanjic and Djerdap) were used to analyze the possible effect of population, year, month and altitude above sea level on lethal chromosomal frequencies. According to ANOVAS no effect were observed. Furthermore, the lethal frequencies of the Balkan populations did not vary according to latitude. This is probably due to the relative proximity and high gene flow between these populations. From a joint study of all the Palearctic D. subobscura populations so far analyzed, it can be deduced that the Balkan populations are located in the central area of the species distribution. Finally, it seems that lethal chromosomal frequencies are a consequence of the genetic structure of the populations.
Adams, David; Baldock, Richard; Bhattacharya, Shoumo; Copp, Andrew J; Dickinson, Mary; Greene, Nicholas D E; Henkelman, Mark; Justice, Monica; Mohun, Timothy; Murray, Stephen A; Pauws, Erwin; Raess, Michael; Rossant, Janet; Weaver, Tom; West, David
2013-05-01
Identifying genes that are important for embryo development is a crucial first step towards understanding their many functions in driving the ordered growth, differentiation and organogenesis of embryos. It can also shed light on the origins of developmental disease and congenital abnormalities. Current international efforts to examine gene function in the mouse provide a unique opportunity to pinpoint genes that are involved in embryogenesis, owing to the emergence of embryonic lethal knockout mutants. Through internationally coordinated efforts, the International Knockout Mouse Consortium (IKMC) has generated a public resource of mouse knockout strains and, in April 2012, the International Mouse Phenotyping Consortium (IMPC), supported by the EU InfraCoMP programme, convened a workshop to discuss developing a phenotyping pipeline for the investigation of embryonic lethal knockout lines. This workshop brought together over 100 scientists, from 13 countries, who are working in the academic and commercial research sectors, including experts and opinion leaders in the fields of embryology, animal imaging, data capture, quality control and annotation, high-throughput mouse production, phenotyping, and reporter gene analysis. This article summarises the outcome of the workshop, including (1) the vital scientific importance of phenotyping embryonic lethal mouse strains for basic and translational research; (2) a common framework to harmonise international efforts within this context; (3) the types of phenotyping that are likely to be most appropriate for systematic use, with a focus on 3D embryo imaging; (4) the importance of centralising data in a standardised form to facilitate data mining; and (5) the development of online tools to allow open access to and dissemination of the phenotyping data.
Bhinder, Bhavneet; Antczak, Christophe; Ramirez, Christina N.; Shum, David; Liu-Sullivan, Nancy; Radu, Constantin; Frattini, Mark G.
2013-01-01
Abstract RNA interference technology is becoming an integral tool for target discovery and validation.; With perhaps the exception of only few studies published using arrayed short hairpin RNA (shRNA) libraries, most of the reports have been either against pooled siRNA or shRNA, or arrayed siRNA libraries. For this purpose, we have developed a workflow and performed an arrayed genome-scale shRNA lethality screen against the TRC1 library in HeLa cells. The resulting targets would be a valuable resource of candidates toward a better understanding of cellular homeostasis. Using a high-stringency hit nomination method encompassing criteria of at least three active hairpins per gene and filtered for potential off-target effects (OTEs), referred to as the Bhinder–Djaballah analysis method, we identified 1,252 lethal and 6 rescuer gene candidates, knockdown of which resulted in severe cell death or enhanced growth, respectively. Cross referencing individual hairpins with the TRC1 validated clone database, 239 of the 1,252 candidates were deemed independently validated with at least three validated clones. Through our systematic OTE analysis, we have identified 31 microRNAs (miRNAs) in lethal and 2 in rescuer genes; all having a seed heptamer mimic in the corresponding shRNA hairpins and likely cause of the OTE observed in our screen, perhaps unraveling a previously unknown plausible essentiality of these miRNAs in cellular viability. Taken together, we report on a methodology for performing large-scale arrayed shRNA screens, a comprehensive analysis method to nominate high-confidence hits, and a performance assessment of the TRC1 library highlighting the intracellular inefficiencies of shRNA processing in general. PMID:23198867
Santander, Javier; Xin, Wei; Yang, Zhao; Curtiss, Roy
2010-01-01
asdA mutants of Gram-negative bacteria have an obligate requirement for diaminopimelic acid (DAP), which is an essential constituent of the peptidoglycan layer of the cell wall of these organisms. In environments deprived of DAP, i.e., animal tissues, they will undergo lysis. Deletion of the asdA gene has previously been exploited to develop antibiotic-sensitive strains of live attenuated recombinant bacterial vaccines. Introduction of an Asd+ plasmid into a ΔasdA mutant makes the bacterial strain plasmid-dependent. This dependence on the Asd+ plasmid vector creates a balanced-lethal complementation between the bacterial strain and the recombinant plasmid. E. ictaluri is an enteric Gram-negative fish pathogen that causes enteric septicemia in catfish. Because E. ictaluri is a nasal/oral invasive intracellular pathogen, this bacterium is a candidate to develop a bath/oral live recombinant attenuated Edwardsiella vaccine (RAEV) for the catfish aquaculture industry. As a first step to develop an antibiotic-sensitive RAEV strain, we characterized and deleted the E. ictaluri asdA gene. E. ictaluri ΔasdA01 mutants exhibit an absolute requirement for DAP to grow. The asdA gene of E. ictaluri was complemented by the asdA gene from Salmonella. Several Asd+ expression vectors with different origins of replication were transformed into E. ictaluri ΔasdA01. Asd+ vectors were compatible with the pEI1 and pEI2 E. ictaluri native plasmids. The balanced-lethal system was satisfactorily evaluated in vivo. Recombinant GFP, PspA, and LcrV proteins were synthesized by E. ictaluri ΔasdA01 harboring Asd+ plasmids. Here we constructed a balanced-lethal system, which is the first step to develop an antibiotic-sensitive RAEV for the aquaculture industry. PMID:21209920
Santander, Javier; Xin, Wei; Yang, Zhao; Curtiss, Roy
2010-12-29
asdA mutants of gram-negative bacteria have an obligate requirement for diaminopimelic acid (DAP), which is an essential constituent of the peptidoglycan layer of the cell wall of these organisms. In environments deprived of DAP, i.e., animal tissues, they will undergo lysis. Deletion of the asdA gene has previously been exploited to develop antibiotic-sensitive strains of live attenuated recombinant bacterial vaccines. Introduction of an Asd(+) plasmid into a ΔasdA mutant makes the bacterial strain plasmid-dependent. This dependence on the Asd(+) plasmid vector creates a balanced-lethal complementation between the bacterial strain and the recombinant plasmid. E. ictaluri is an enteric gram-negative fish pathogen that causes enteric septicemia in catfish. Because E. ictaluri is a nasal/oral invasive intracellular pathogen, this bacterium is a candidate to develop a bath/oral live recombinant attenuated Edwardsiella vaccine (RAEV) for the catfish aquaculture industry. As a first step to develop an antibiotic-sensitive RAEV strain, we characterized and deleted the E. ictaluri asdA gene. E. ictaluri ΔasdA01 mutants exhibit an absolute requirement for DAP to grow. The asdA gene of E. ictaluri was complemented by the asdA gene from Salmonella. Several Asd(+) expression vectors with different origins of replication were transformed into E. ictaluri ΔasdA01. Asd(+) vectors were compatible with the pEI1 and pEI2 E. ictaluri native plasmids. The balanced-lethal system was satisfactorily evaluated in vivo. Recombinant GFP, PspA, and LcrV proteins were synthesized by E. ictaluri ΔasdA01 harboring Asd(+) plasmids. Here we constructed a balanced-lethal system, which is the first step to develop an antibiotic-sensitive RAEV for the aquaculture industry.
Shima, Jun; Takagi, Hiroshi
2009-05-29
During the fermentation of dough and the production of baker's yeast (Saccharomyces cerevisiae), cells are exposed to numerous environmental stresses (baking-associated stresses) such as freeze-thaw, high sugar concentrations, air-drying and oxidative stresses. Cellular macromolecules, including proteins, nucleic acids and membranes, are seriously damaged under stress conditions, leading to the inhibition of cell growth, cell viability and fermentation. To avoid lethal damage, yeast cells need to acquire a variety of stress-tolerant mechanisms, for example the induction of stress proteins, the accumulation of stress protectants, changes in membrane composition and repression of translation, and by regulating the corresponding gene expression via stress-triggered signal-transduction pathways. Trehalose and proline are considered to be critical stress protectants, as is glycerol. It is known that these molecules are effective for providing protection against various types of environmental stresses. Modifications of the metabolic pathways of trehalose and proline by self-cloning methods have significantly increased tolerance to baking-associated stresses. To clarify which genes are required for stress tolerance, both a comprehensive phenomics analysis and a functional genomics analysis were carried out under stress conditions that simulated those occurring during the commercial baking process. These analyses indicated that many genes are involved in stress tolerance in yeast. In particular, it was suggested that vacuolar H+-ATPase plays important roles in yeast cells under stress conditions.
USDA-ARS?s Scientific Manuscript database
A haplotype on cattle chromosome 5 carrying a recessive lethal allele was found to originate in a Holstein-Friesian foundation sire. Resequencing led to the identification of a stop-gain mutation in exon 11 of APAF1, a gene known to cause embryonic lethality and neurodevelopmental abnormalities in ...
USDA-ARS?s Scientific Manuscript database
In this study, the taxonomic position and group classification of the phytoplasma associated with a lethal yellowing-type disease (LYD) of coconut (Cocos nucifera L.) in Mozambique were addressed. Pairwise sequence similarity values based on alignment of near full-length 16SrRNA genes (1530 bp) reve...
cea-kil operon of the ColE1 plasmid.
Sabik, J F; Suit, J L; Luria, S E
1983-01-01
We isolated a series of Tn5 transposon insertion mutants and chemically induced mutants with mutations in the region of the ColE1 plasmid that includes the cea (colicin) and imm (immunity) genes. Bacterial cells harboring each of the mutant plasmids were tested for their response to the colicin-inducing agent mitomycin C. All insertion mutations within the cea gene failed to bring about cell killing after mitomycin C treatment. A cea- amber mutation exerted a polar effect on killing by mitomycin C. Two insertions beyond the cea gene but within or near the imm gene also prevented the lethal response to mitomycin C. These findings suggest the presence in the ColE1 plasmid of an operon containing the cea and kil genes whose product is needed for mitomycin C-induced lethality. Bacteria carrying ColE1 plasmids with Tn5 inserted within the cea gene produced serologically cross-reacting fragments of the colicin E1 molecule, the lengths of which were proportional to the distance between the insertion and the promoter end of the cea gene. Images PMID:6298187
Ren, Xiaomeng; Ustiyan, Vladimir; Pradhan, Arun; Cai, Yuqi; Havrilak, Jamie A; Bolte, Craig S; Shannon, John M; Kalin, Tanya V; Kalinichenko, Vladimir V
2014-09-26
Inactivating mutations in the Forkhead Box transcription factor F1 (FOXF1) gene locus are frequently found in patients with alveolar capillary dysplasia with misalignment of pulmonary veins, a lethal congenital disorder, which is characterized by severe abnormalities in the respiratory, cardiovascular, and gastrointestinal systems. In mice, haploinsufficiency of the Foxf1 gene causes alveolar capillary dysplasia and developmental defects in lung, intestinal, and gall bladder morphogenesis. Although FOXF1 is expressed in multiple mesenchyme-derived cell types, cellular origins and molecular mechanisms of developmental abnormalities in FOXF1-deficient mice and patients with alveolar capillary dysplasia with misalignment of pulmonary veins remain uncharacterized because of lack of mouse models with cell-restricted inactivation of the Foxf1 gene. In the present study, the role of FOXF1 in endothelial cells was examined using a conditional knockout approach. A novel mouse line harboring Foxf1-floxed alleles was generated by homologous recombination. Tie2-Cre and Pdgfb-CreER transgenes were used to delete Foxf1 from endothelial cells. FOXF1-deficient embryos exhibited embryonic lethality, growth retardation, polyhydramnios, cardiac ventricular hypoplasia, and vascular abnormalities in the lung, placenta, yolk sac, and retina. Deletion of FOXF1 from endothelial cells reduced endothelial proliferation, increased apoptosis, inhibited vascular endothelial growth factor signaling, and decreased expression of endothelial genes critical for vascular development, including vascular endothelial growth factor receptors Flt1 and Flk1, Pdgfb, Pecam1, CD34, integrin β3, ephrin B2, Tie2, and the noncoding RNA Fendrr. Chromatin immunoprecipitation assay demonstrated that Flt1, Flk1, Pdgfb, Pecam1, and Tie2 genes are direct transcriptional targets of FOXF1. FOXF1 is required for the formation of embryonic vasculature by regulating endothelial genes critical for vascular development and vascular endothelial growth factor signaling. © 2014 American Heart Association, Inc.
Sex determination in insects: a binary decision based on alternative splicing.
Salz, Helen K
2011-08-01
The gene regulatory networks that control sex determination vary between species. Despite these differences, comparative studies in insects have found that alternative splicing is reiteratively used in evolution to control expression of the key sex-determining genes. Sex determination is best understood in Drosophila where activation of the RNA binding protein-encoding gene Sex-lethal is the central female-determining event. Sex-lethal serves as a genetic switch because once activated it controls its own expression by a positive feedback splicing mechanism. Sex fate choice in is also maintained by self-sustaining positive feedback splicing mechanisms in other dipteran and hymenopteran insects, although different RNA binding protein-encoding genes function as the binary switch. Studies exploring the mechanisms of sex-specific splicing have revealed the extent to which sex determination is integrated with other developmental regulatory networks. Copyright © 2011 Elsevier Ltd. All rights reserved.
Woeste, Keith E.; Kieber, Joseph J.
2000-01-01
A recessive mutation was identified that constitutively activated the ethylene response pathway in Arabidopsis and resulted in a rosette-lethal phenotype. Positional cloning of the gene corresponding to this mutation revealed that it was allelic to responsive to antagonist1 (ran1), a mutation that causes seedlings to respond in a positive manner to what is normally a competitive inhibitor of ethylene binding. In contrast to the previously identified ran1-1 and ran1-2 alleles that are morphologically indistinguishable from wild-type plants, this ran1-3 allele results in a rosette-lethal phenotype. The predicted protein encoded by the RAN1 gene is similar to the Wilson and Menkes disease proteins and yeast Ccc2 protein, which are integral membrane cation-transporting P-type ATPases involved in copper trafficking. Genetic epistasis analysis indicated that RAN1 acts upstream of mutations in the ethylene receptor gene family. However, the rosette-lethal phenotype of ran1-3 was not suppressed by ethylene-insensitive mutants, suggesting that this mutation also affects a non-ethylene-dependent pathway regulating cell expansion. The phenotype of ran1-3 mutants is similar to loss-of-function ethylene receptor mutants, suggesting that RAN1 may be required to form functional ethylene receptors. Furthermore, these results suggest that copper is required not only for ethylene binding but also for the signaling function of the ethylene receptors. PMID:10715329
NASA Technical Reports Server (NTRS)
Woeste, K. E.; Kieber, J. J.; Evans, M. L. (Principal Investigator)
2000-01-01
A recessive mutation was identified that constitutively activated the ethylene response pathway in Arabidopsis and resulted in a rosette-lethal phenotype. Positional cloning of the gene corresponding to this mutation revealed that it was allelic to responsive to antagonist1 (ran1), a mutation that causes seedlings to respond in a positive manner to what is normally a competitive inhibitor of ethylene binding. In contrast to the previously identified ran1-1 and ran1-2 alleles that are morphologically indistinguishable from wild-type plants, this ran1-3 allele results in a rosette-lethal phenotype. The predicted protein encoded by the RAN1 gene is similar to the Wilson and Menkes disease proteins and yeast Ccc2 protein, which are integral membrane cation-transporting P-type ATPases involved in copper trafficking. Genetic epistasis analysis indicated that RAN1 acts upstream of mutations in the ethylene receptor gene family. However, the rosette-lethal phenotype of ran1-3 was not suppressed by ethylene-insensitive mutants, suggesting that this mutation also affects a non-ethylene-dependent pathway regulating cell expansion. The phenotype of ran1-3 mutants is similar to loss-of-function ethylene receptor mutants, suggesting that RAN1 may be required to form functional ethylene receptors. Furthermore, these results suggest that copper is required not only for ethylene binding but also for the signaling function of the ethylene receptors.
McKie, Arthur B; Alsaedi, Atif; Vogt, Julie; Stuurman, Kyra E; Weiss, Marjan M; Shakeel, Hassan; Tee, Louise; Morgan, Neil V; Nikkels, Peter G J; van Haaften, Gijs; Park, Soo-Mi; van der Smagt, Jasper J; Bugiani, Marianna; Maher, Eamonn R
2014-12-05
Foetal akinesia deformation sequence syndrome (FADS) is a genetically heterogeneous disorder characterised by the combination of foetal akinesia and developmental defects which may include pterygia (joint webbing). Traditionally multiple pterygium syndrome (MPS) has been divided into two forms: prenatally lethal (LMPS) and non-lethal Escobar type (EVMPS) types. Interestingly, FADS, LMPS and EVMPS may be allelic e.g. each of these phenotypes may result from mutations in the foetal acetylcholine receptor gamma subunit gene (CHRNG). Many cases of FADS and MPS do not have a mutation in a known FADS/MPS gene and we undertook molecular genetic studies to identify novel causes of these phenotypes. After mapping a novel locus for FADS/LMPS to chromosome 19, we identified a homozygous null mutation in the RYR1 gene in a consanguineous kindred with recurrent LMPS pregnancies. Resequencing of RYR1 in a cohort of 66 unrelated probands with FADS/LMPS/EVMPS (36 with FADS/LMPS and 30 with EVMPS) revealed two additional homozygous mutations (in frame deletions). The overall frequency of RYR1 mutations in probands with FADS/LMPS was 8.3%. Our findings report, for the first time, a homozygous RYR1 null mutation and expand the range of RYR1-related phenotypes to include early lethal FADS/LMPS. We suggest that RYR1 mutation analysis should be performed in cases of severe FADS/LMPS even in the absence of specific histopathological indicators of RYR1-related disease.
Andrade, Paola; Caudepón, Daniel; Arró, Montserrat
2016-01-01
Farnesyl diphosphate synthase (FPS) catalyzes the synthesis of farnesyl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. Arabidopsis (Arabidopsis thaliana) contains two genes (FPS1 and FPS2) encoding FPS. Single fps1 and fps2 knockout mutants are phenotypically indistinguishable from wild-type plants, while fps1/fps2 double mutants are embryo lethal. To assess the effect of FPS down-regulation at postembryonic developmental stages, we generated Arabidopsis conditional knockdown mutants expressing artificial microRNAs devised to simultaneously silence both FPS genes. Induction of silencing from germination rapidly caused chlorosis and a strong developmental phenotype that led to seedling lethality. However, silencing of FPS after seed germination resulted in a slight developmental delay only, although leaves and cotyledons continued to show chlorosis and altered chloroplasts. Metabolomic analyses also revealed drastic changes in the profile of sterols, ubiquinones, and plastidial isoprenoids. RNA sequencing and reverse transcription-quantitative polymerase chain reaction transcriptomic analysis showed that a reduction in FPS activity levels triggers the misregulation of genes involved in biotic and abiotic stress responses, the most prominent one being the rapid induction of a set of genes related to the jasmonic acid pathway. Down-regulation of FPS also triggered an iron-deficiency transcriptional response that is consistent with the iron-deficient phenotype observed in FPS-silenced plants. The specific inhibition of the sterol biosynthesis pathway by chemical and genetic blockage mimicked these transcriptional responses, indicating that sterol depletion is the primary cause of the observed alterations. Our results highlight the importance of sterol homeostasis for normal chloroplast development and function and reveal important clues about how isoprenoid and sterol metabolism is integrated within plant physiology and development. PMID:27382138
Manzano, David; Andrade, Paola; Caudepón, Daniel; Altabella, Teresa; Arró, Montserrat; Ferrer, Albert
2016-09-01
Farnesyl diphosphate synthase (FPS) catalyzes the synthesis of farnesyl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. Arabidopsis (Arabidopsis thaliana) contains two genes (FPS1 and FPS2) encoding FPS. Single fps1 and fps2 knockout mutants are phenotypically indistinguishable from wild-type plants, while fps1/fps2 double mutants are embryo lethal. To assess the effect of FPS down-regulation at postembryonic developmental stages, we generated Arabidopsis conditional knockdown mutants expressing artificial microRNAs devised to simultaneously silence both FPS genes. Induction of silencing from germination rapidly caused chlorosis and a strong developmental phenotype that led to seedling lethality. However, silencing of FPS after seed germination resulted in a slight developmental delay only, although leaves and cotyledons continued to show chlorosis and altered chloroplasts. Metabolomic analyses also revealed drastic changes in the profile of sterols, ubiquinones, and plastidial isoprenoids. RNA sequencing and reverse transcription-quantitative polymerase chain reaction transcriptomic analysis showed that a reduction in FPS activity levels triggers the misregulation of genes involved in biotic and abiotic stress responses, the most prominent one being the rapid induction of a set of genes related to the jasmonic acid pathway. Down-regulation of FPS also triggered an iron-deficiency transcriptional response that is consistent with the iron-deficient phenotype observed in FPS-silenced plants. The specific inhibition of the sterol biosynthesis pathway by chemical and genetic blockage mimicked these transcriptional responses, indicating that sterol depletion is the primary cause of the observed alterations. Our results highlight the importance of sterol homeostasis for normal chloroplast development and function and reveal important clues about how isoprenoid and sterol metabolism is integrated within plant physiology and development. © 2016 American Society of Plant Biologists. All rights reserved.
Biological damage induced by ionizing cosmic rays in dry Arabidopsis seeds.
Kranz, A R; Bork, U; Bucker, H; Reitz, G
1990-01-01
In September 1987 dry seeds containing embryos of the crucifer plant Arabidopsis thaliana (L.) Heynh, were flown in orbit for 13 days on the Kosmos 1887 satellite. The seeds were fixed on CNd detectors and stored in units of Biorack type I/O. One unit was exposed inside, another one outside the satellite. The temperature profile of the flown seeds inside the satellite was simulated on earth in an identical backup control sample (BC). An additional control (SC) was studied with the original seeds sample. By use of the CNd-detector, HZE-tracks were measured with a PC-assisted microscope. The biological damages were investigated by growing the seeds under controlled climatic conditions. The following biological endpoints of the cosmic radiation damage were studied: germination, radicle length, sublethality, morphological aberrations, flower development, tumorization, embryo lethality inside the siliques. The summarized damage (D) and the mutation frequencies of embyronic lethal genes were calculated. The following results were obtained: the damages increase significantly in orbit at all biological endpoints; germination and fiowerings especially, as well as embryo lethality of fruits and lethal mutation frequency, were maximum mostly for HZE-hit seeds. Additionally, an increase of damage was observed for the seeds of the outside-exposed Biorack in comparison to the inside ones, which was probably caused by less radiation shielding and free space vacuum. The significance of the results obtained is discussed with respect to stress and risk and, thus, the quality of the RBE-factors and heavy ionizing radiation all needed for the very definition of radiation protection standards in space.
Na, Rong; Zheng, S. Lilly; Han, Misop; Yu, Hongjie; Jiang, Deke; Shah, Sameep; Ewing, Charles M.; Zhang, Liti; Novakovic, Kristian; Petkewicz, Jacqueline; Gulukota, Kamalakar; Helseth, Donald L.; Quinn, Margo; Humphries, Elizabeth; Wiley, Kathleen E.; Isaacs, Sarah D.; Wu, Yishuo; Liu, Xu; Zhang, Ning; Wang, Chi-Hsiung; Khandekar, Janardan; Hulick, Peter J.; Shevrin, Daniel H.; Cooney, Kathleen A.; Shen, Zhoujun; Partin, Alan W.; Carter, H. Ballentine; Carducci, Michael A.; Eisenberger, Mario A.; Denmeade, Sam R.; McGuire, Michael; Walsh, Patrick C.; Helfand, Brian T.; Brendler, Charles B.; Ding, Qiang; Xu, Jianfeng; Isaacs, William B.
2017-01-01
Background Germline mutations in BRCA1/2 and ATM have been associated with prostate cancer (PCa) risk. Objective To directly assess whether germline mutations in these three genes distinguish lethal from indolent PCa and whether they confer any effect on age at death. Design, setting, and participants A retrospective case-case study of 313 patients who died of PCa and 486 patients with low-risk localized PCa of European, African, and Chinese descent. Germline DNA of each of the 799 patients was sequenced for these three genes. Outcome measurements and statistical analysis Mutation carrier rates and their effect on lethal PCa were analyzed using the Fisher’s exact test and Cox regression analysis, respectively. Results and limitations The combined BRCA1/2 and ATM mutation carrier rate was significantly higher in lethal PCa patients (6.07%) than localized PCa patients (1.44%), p = 0.0007. The rate also differed significantly among lethal PCa patients as a function of age at death (10.00%, 9.08%, 8.33%, 4.94%, and 2.97% in patients who died ≤60 yr, 61–65 yr, 66–70 yr, 71–75 yr, and over 75 yr, respectively, p = 0.046) and time to death after diagnosis (12.26%, 4.76%, and 0.98% in patients who died ≤5 yr, 6–10 yr, and > 10 yr after a PCa diagnosis, respectively, p = 0.0006). Survival analysis in the entire cohort revealed mutation carriers remained an independent predictor of lethal PCa after adjusting for race and age, prostate-specific antigen, and Gleason score at the time of diagnosis (hazard ratio = 2.13, 95% confidence interval: 1.24–3.66, p = 0.004). A limitation of this study is that other DNA repair genes were not analyzed. Conclusions Mutation status of BRCA1/2 and ATM distinguishes risk for lethal and indolent PCa and is associated with earlier age at death and shorter survival time. Patient summary Prostate cancer patients with inherited mutations in BRCA1/2 and ATM are more likely to die of prostate cancer and do so at an earlier age. PMID:27989354
Immunogenicity and efficacy of an anthrax/plague DNA fusion vaccine in a mouse model.
Albrecht, Mark T; Eyles, Jim E; Baillie, Les W; Keane-Myers, Andrea M
2012-08-01
The efficacy of multi-agent DNA vaccines consisting of a truncated gene encoding Bacillus anthracis lethal factor (LFn) fused to either Yersinia pestis V antigen (V) or Y . pestis F1 was evaluated. A/J mice were immunized by gene gun and developed predominantly IgG1 responses that were fully protective against a lethal aerosolized B. anthracis spore challenge but required the presence of an additional DNA vaccine expressing anthrax protective antigen to boost survival against aerosolized Y. pestis. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Induction of Immune Mediators in Glioma and Prostate Cancer Cells by Non-Lethal Photodynamic Therapy
Kammerer, Robert; Buchner, Alexander; Palluch, Patrick; Pongratz, Thomas; Oboukhovskij, Konstantin; Beyer, Wolfgang; Johansson, Ann; Stepp, Herbert; Baumgartner, Reinhold; Zimmermann, Wolfgang
2011-01-01
Background Photodynamic therapy (PDT) uses the combination of photosensitizing drugs and harmless light to cause selective damage to tumor cells. PDT is therefore an option for focal therapy of localized disease or for otherwise unresectable tumors. In addition, there is increasing evidence that PDT can induce systemic anti-tumor immunity, supporting control of tumor cells, which were not eliminated by the primary treatment. However, the effect of non-lethal PDT on the behavior and malignant potential of tumor cells surviving PDT is molecularly not well defined. Methodology/Principal Findings Here we have evaluated changes in the transcriptome of human glioblastoma (U87, U373) and human (PC-3, DU145) and murine prostate cancer cells (TRAMP-C1, TRAMP-C2) after non-lethal PDT in vitro and in vivo using oligonucleotide microarray analyses. We found that the overall response was similar between the different cell lines and photosensitizers both in vitro and in vivo. The most prominently upregulated genes encoded proteins that belong to pathways activated by cellular stress or are involved in cell cycle arrest. This response was similar to the rescue response of tumor cells following high-dose PDT. In contrast, tumor cells dealing with non-lethal PDT were found to significantly upregulate a number of immune genes, which included the chemokine genes CXCL2, CXCL3 and IL8/CXCL8 as well as the genes for IL6 and its receptor IL6R, which can stimulate proinflammatory reactions, while IL6 and IL6R can also enhance tumor growth. Conclusions Our results indicate that PDT can support anti-tumor immune responses and is, therefore, a rational therapy even if tumor cells cannot be completely eliminated by primary phototoxic mechanisms alone. However, non-lethal PDT can also stimulate tumor growth-promoting autocrine loops, as seen by the upregulation of IL6 and its receptor. Thus the efficacy of PDT to treat tumors may be improved by controlling unwanted and potentially deleterious growth-stimulatory pathways. PMID:21738796
Yin, Jian; Wang, Ai-Ping; Li, Wan-Fang; Shi, Rui; Jin, Hong-Tao; Wei, Jin-Feng
2018-01-01
The present work aims to explore the time-response (from 24 h to 96 h) characteristic and identify early potential sensitive biomarkers of copper (Cu) (as copper chloride dihydrate), cadmium (Cd) (as cadmium acetate), lead (Pb) (as lead nitrate) and chromium (Cr) (as potassium dichromate) exposure in adult zebrafish, focusing on reactive oxygen species (ROS), SOD activity, lipid peroxidation and gene expression related to oxidative stress and inflammatory response. Furthermore, the survival rate decreased apparently by a concentration-dependent manner after Cu, Cr, Cd and Pb exposure, and we selected non-lethal concentrations 0.05 mg/L for Cu, 15 mg/L for Cr, 3 mg/L for Cd and 93.75μg/L for Pb to test the effect on the following biological indicators. Under non-lethal concentration, the four heavy metals have no apparent histological change in adult zebrafish gills. Similar trends in ROS production, MDA level and SOD activity were up-regulated by the four heavy metals, while MDA level responded more sensitive to Pb by time-dependent manner than the other three heavy metals. In addition, mRNA levels related to antioxidant system (SOD1, SOD2 and Nrf2) were up-regulated by non-lethal concentration Cu, Cr, Cd and Pb exposure. MDA level and SOD1 gene have a more delayed response to heavy metals. Genes related to immunotoxicity were increased significantly after heavy metals exposure at non-lethal concentrations. TNF-α and IL-1β gene have similar sensibility to the four heavy metals, while IL-8 gene was more responsive to Cr, Cd and Pb exposure at 48 h groups and IFN-γ gene showed more sensitivity to Cu at 48 h groups than the other heavy metals. In conclusion, the present works have suggested that the IFN-γ gene may applied as early sensitive biomarker to identify Cu-induced toxicity, while MDA content and IL-8 gene may use as early sensitive biomarkers for evaluating the risk of Pb exposure. Moreover, IL-8 and IFN-γ gene were more responsive to heavy metals, which may become early sensitive and potential biomarkers for evaluating inflammatory response induced by heavy metals. This work reinforces the concept of the usefulness of gene expression assays in the evaluation of chemicals effects and helps to establish a background data as well as contributes to evaluate early environmental risk for chemicals, even predicting toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.
RNA interference of tubulin genes has lethal effects in Mythimna separate.
Wang, Jin-da; Wang, Ya-Ru; Wang, Yong-Zhi; Wang, Wei-Zhong; Wang, Rong; Gao, San-Ji
2018-05-23
RNAi (RNA interference) is a technology for silencing expression of target genes via sequence-specific double-stranded RNA (dsRNA). Recently, dietary introduction of bacterially expressed dsRNA has shown great potential in the field of pest management. Identification of potential candidate genes for RNAi is the first step in this application. The oriental armyworm, Mythimna separata Walker (Lepidoptera: Noctuidae) is a polyphagous, migratory pest, and outbreaks have led to severe crop damage in China. In the present study, two tubulin genes were chosen as target genes because of their crucial role in insect development. Both Msα-tubulin and Msβ-tubulin genes are expressed across all life stages and are highly expressed in the head and epidermis. Feeding of bacterially expressed dsRNA of Msα-tubulin and Msβ-tubulin to third-instar larvae knocked down target mRNAs. A lethal phenotype was observed with knockdown of Msα-tubulin and Msβ-tubulin concurrent with reduction in body weight. Bacterially expressed dsRNA can be used to control M. separata, and tubulin genes could be effective candidate genes for an RNAi-based control strategy of this pest. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dongxu; Wang, Yijun; Wan, Xiaochun
(−)-Epigallocatechin-3-gallate (EGCG), a constituent of green tea, has been suggested to have numerous health-promoting effects. On the other hand, high-dose EGCG is able to evoke hepatotoxicity. In the present study, we elucidated the responses of hepatic major antioxidant enzymes and nuclear factor erythroid 2-related factor 2 (Nrf2) rescue pathway to high-dose levels of EGCG in Kunming mice. At a non-lethal toxic dose (75 mg/kg, i.p.), repeated EGCG treatments markedly decreased the levels of superoxide dismutase, catalase, and glutathione peroxidase. As a rescue response, the nuclear distribution of Nrf2 was significantly increased; a battery of Nrf2-target genes, including heme oxygenase 1more » (HO1), NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione S-transferase (GST), and those involved in glutathione and thioredoxin systems, were all up-regulated. At the maximum tolerated dose (45 mg/kg, i.p.), repeated EGCG treatments did not disturb the major antioxidant defense. Among the above-mentioned genes, only HO1, NQO1, and GST genes were significantly but modestly up-regulated, suggesting a comprehensive and extensive activation of Nrf2-target genes principally occurs at toxic levels of EGCG. At a lethal dose (200 mg/kg, i.p.), a single EGCG treatment dramatically decreased not only the major antioxidant defense but also the Nrf2-target genes, demonstrating that toxic levels of EGCG are able to cause a biphasic response of Nrf2. Overall, the mechanism of EGCG-triggered hepatotoxicity involves suppression of major antioxidant enzymes, and the Nrf2 rescue pathway plays a vital role for counteracting EGCG toxicity. - Highlights: • EGCG at maximum tolerated dose does not disturb hepatic major antioxidant defense. • EGCG at maximum tolerated dose modestly upregulates hepatic Nrf2 target genes. • EGCG at toxic dose suppresses hepatic major antioxidant enzymes. • EGCG at non-lethal toxic dose pronouncedly activates hepatic Nrf2 rescue response. • EGCG at lethal dose substantially suppresses hepatic Nrf2 pathway.« less
Czyż, Małgorzata; Toma, Monika; Gajos-Michniewicz, Anna; Majchrzak, Kinga; Hoser, Grazyna; Szemraj, Janusz; Nieborowska-Skorska, Margaret; Cheng, Phil; Gritsyuk, Daniel; Levesque, Mitchell; Dummer, Reinhard; Sliwinski, Tomasz; Skorski, Tomasz
2016-01-01
Cancer including melanoma may be “addicted” to double strand break (DSB) repair and targeting this process could sensitize them to the lethal effect of DNA damage. PARP1 exerts an important impact on DSB repair as it binds to both single- and double- strand breaks. PARP1 inhibitors might be highly effective drugs triggering synthetic lethality in patients whose tumors have germline or somatic defects in DNA repair genes. We hypothesized that PARP1-dependent synthetic lethality could be induced in melanoma cells displaying downregulation of DSB repair genes. We observed that PARP1 inhibitor olaparib sensitized melanomas with reduced expression of DNA ligase 4 (LIG4) to an alkylatimg agent dacarbazine (DTIC) treatment in vitro, while normal melanocytes remained intact. PARP1 inhibition caused accumulation of DSBs, which was associated with apoptosis in LIG4 deficient melanoma cells. Our hypothesis that olaparib is synthetic lethal with LIG4 deficiency in melanoma cells was supported by selective anti-tumor effects of olaparib used either alone or in combination with dacarbazine (DTIC) in LIG4 deficient, but not LIG4 proficient cells. In addition, olaparib combined with DTIC inhibited the growth of LIG4 deficient human melanoma xenografts. This work for the first time demonstrates the effectiveness of a combination of PARP1 inhibitor olaparib and alkylating agent DTIC for treating LIG4 deficient melanomas. In addition, analysis of the TCGA and transcriptome microarray databases revealed numerous individual melanoma samples potentially displaying specific defects in DSB repair pathways, which may predispose them to synthetic lethality triggered by PARP1 inhibitor combined with a cytotoxic drug. PMID:27705909
Mutants in the Mouse NuRD/Mi2 Component P66α Are Embryonic Lethal
Marino, Susan; Nusse, Roel
2007-01-01
Background The NuRD/Mi2 chromatin complex is involved in histone modifications and contains a large number of subunits, including the p66 protein. There are two mouse and human p66 paralogs, p66α and p66β. The functions of these genes are not clear, in part because there are no mutants available, except in invertebrate model systems. Methodology We made loss of function mutants in the mouse p66α gene (mp66α, official name Gatad2a, MGI:2384585). We found that mp66α is essential for development, as mutant embryos die around day 10 of embryogenesis. The gene is not required for normal blastocyst development or for implantation. The phenotype of mutant embryos and the pattern of gene expression in mutants are consistent with a role of mp66α in gene silencing. Conclusion mp66α is an essential gene, required for early mouse development. The lethal phenotype supports a role in execution of methylated DNA silencing. PMID:17565372
Khoriaty, Rami; Everett, Lesley; Chase, Jennifer; Zhu, Guojing; Hoenerhoff, Mark; McKnight, Brooke; Vasievich, Matthew P.; Zhang, Bin; Tomberg, Kärt; Williams, John; Maillard, Ivan; Ginsburg, David
2016-01-01
In humans, loss of function mutations in SEC23B result in Congenital Dyserythropoietic Anemia type II (CDAII), a disease limited to defective erythroid development. Patients with two nonsense SEC23B mutations have not been reported, suggesting that complete SEC23B deficiency might be lethal. We previously reported that SEC23B-deficient mice die perinatally, exhibiting massive pancreatic degeneration and that mice with hematopoietic SEC23B deficiency do not exhibit CDAII. We now show that SEC23B deficiency restricted to the pancreas is sufficient to explain the lethality observed in mice with global SEC23B-deficiency. Immunohistochemical stains demonstrate an acinar cell defect but normal islet cells. Mammalian genomes contain two Sec23 paralogs, Sec23A and Sec23B. The encoded proteins share ~85% amino acid sequence identity. We generate mice with pancreatic SEC23A deficiency and demonstrate that these mice survive normally, exhibiting normal pancreatic weights and histology. Taken together, these data demonstrate that SEC23B but not SEC23A is essential for murine pancreatic development. We also demonstrate that two BAC transgenes spanning Sec23b rescue the lethality of mice homozygous for a Sec23b gene trap allele, excluding a passenger gene mutation as the cause of the pancreatic lethality, and indicating that the regulatory elements critical for Sec23b pancreatic function reside within the BAC transgenes. PMID:27297878
Liu, Hongshuo; Marubashi, Wataru
2014-01-01
Hybrid lethality is expressed at 28°C in the cross Nicotiana nudicaulis×N. tabacum. The S subgenome of N. tabacum has been identified as controlling this hybrid lethality. To clarify the responsible genomic factor(s) of N. nudicaulis, we crossed N. trigonophylla (paternal progenitor of N. nudicaulis) with N. tabacum, because hybrids between N. sylvestris (maternal progenitor of N. nudicaulis) and N. tabacum are viable when grown in a greenhouse. In the cross N. trigonophylla×N. tabacum, approximately 50% of hybrids were vitrified, 20% were viable, and 20% were nonviable at 28°C. To reveal which subgenome of N. tabacum was responsible for these phenotypes, we crossed N. trigonophylla with two progenitors of N. tabacum, N. sylvestris (SS) and N. tomentosiformis (TT). In the cross N. sylvestris×N. trigonophylla, we confirmed that over half of hybrids of N. sylvestris×N. trigonophylla were vitrified, and none of the hybrids of N. trigonophylla×N. tomentosiformis were. The results imply that the S subgenome, encoding a gene or genes inducing hybrid lethality in the cross between N. nudicaulis and N. tabacum, has one or more genomic factors that induce vitrification. Furthermore, in vitrified hybrids of N. trigonophylla×N. tabacum and N. sylvestris×N. trigonophylla, we found that nuclear fragmentation, which progresses during expression of hybrid lethality, was accompanied by vitrification. This observation suggests that vitrification has a relationship to hybrid lethality. Based on these results, we speculate that when N. nudicaulis was formed approximately 5 million years ago, several causative genomic factors determining phenotypes of hybrid seedlings were inherited from N. trigonophylla. Subsequently, genome downsizing and various recombination-based processes took place. Some of the causative genomic factors were lost and some became genomic factor(s) controlling hybrid lethality in extant N. nudicaulis. PMID:24806486
When a Fly Has to Fly to Reproduce: Selection against Conditional Recessive Lethals in "Drosophila"
ERIC Educational Resources Information Center
Plunkett, Andrea D.; Yampolsky, Lev Y.
2010-01-01
We propose an experimental model suitable for demonstrating allele frequency change in Drosophila melanogaster populations caused by selection against an easily scorable conditional lethal, namely recessive flightless alleles such as apterous and vestigial. Homozygotes for these alleles are excluded from reproduction because the food source used…
Ote, Manabu; Ueyama, Morio; Yamamoto, Daisuke
2016-09-12
Wolbachia, endosymbiotic bacteria prevalent in invertebrates, manipulate their hosts in a variety of ways: they induce cytoplasmic incompatibility, male lethality, male-to-female transformation, and parthenogenesis. However, little is known about the molecular basis for host manipulation by these bacteria. In Drosophila melanogaster, Wolbachia infection makes otherwise sterile Sex-lethal (Sxl) mutant females capable of producing mature eggs. Through a functional genomic screen for Wolbachia genes with growth-inhibitory effects when expressed in cultured Drosophila cells, we identified the gene WD1278 encoding a novel protein we call toxic manipulator of oogenesis (TomO), which phenocopies some of the Wolbachia effects in Sxl mutant D. melanogaster females. We demonstrate that TomO enhances the maintenance of germ stem cells (GSCs) by elevating Nanos (Nos) expression via its interaction with nos mRNA, ultimately leading to the restoration of germ cell production in Sxl mutant females that are otherwise without GSCs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lee, Sang Joon; Seo, Eunseok; Cho, Yonghyun
2013-12-01
Many antimalarial drugs kill malaria parasites, but antimalarial drug resistance (ADR) and toxicity to normal cells limit their usefulness. To solve this problem, we suggest a new therapy for drug-resistant malaria. The approach consists of data integration and inference through homology analysis of yeast-human-Plasmodium. If one gene of a Plasmodium synthetic lethal (SL) gene pair has a mutation that causes ADR, a drug targeting the other gene of the SL pair might be used as an effective treatment for drug-resistant strains of malaria. A simple computational tool to analyze the inferred SL genes of Plasmodium species (malaria parasites Plasmodium falciparum and Plasmodium vivax for human malarial therapy, and rodent parasite Plasmodium berghei for in vivo studies of human malarias) was established to identify SL genes that can be used as drug targets. Information on SL gene pairs with ADR genes and their first neighbors was inferred from yeast SL genes to search for pertinent antimalarial drug targets. We not only suggest drug target gene candidates for further experimental validation, but also provide information on new usage for already-described drugs. The proposed specific antimalarial drug candidates can be inferred by searching drugs that cause a fitness defect in yeast SL genes.
Characterization of the Autophagy related gene-8a (Atg8a) promoter in Drosophila melanogaster.
Bali, Arundhati; Shravage, Bhupendra V
2017-01-01
Autophagy is an evolutionarily conserved process which is upregulated under various stress conditions, including nutrient stress and oxidative stress. Amongst autophagy related genes (Atgs), Atg8a (LC3 in mammals) is induced several-fold during nutrient limitation in Drosophila. The minimal Atg8a cis-regulatory module (CRM) which mediates transcriptional upregulation under various stress conditions is not known. Here, we describe the generation and analyses of a series of Atg8a promoter deletions which drive the expression of an mCherry-Atg8a fusion cassette. Expression studies revealed that a 200 bp region of Atg8a is sufficient to drive expression of Atg8a in nutrient rich conditions in fat body and ovaries, as well as under nutrient deficient conditions in the fat body. Furthermore, this 200 bp region can mediate Atg8a upregulation during developmental histolysis of the larval fat body and under oxidative stress conditions induced by H 2 O 2 . Finally, the expression levels of Atg8a from this promoter are sufficient to rescue the lethality of the Atg8a mutant. The 200 bp promoter-fusion reporter provides a valuable tool which can be used in genetic screens to identify transcriptional and post-transcriptional regulators of Atg8a.
Rimkus, Stacey A; Wassarman, David A
2018-01-01
Ataxia-telangiectasia (A-T) is a neurodegenerative disease caused by mutation of the A-T mutated (ATM) gene. ATM encodes a protein kinase that is activated by DNA damage and phosphorylates many proteins, including those involved in DNA repair, cell cycle control, and apoptosis. Characteristic biological and molecular functions of ATM observed in mammals are conserved in Drosophila melanogaster. As an example, conditional loss-of-function ATM alleles in flies cause progressive neurodegeneration through activation of the innate immune response. However, unlike in mammals, null alleles of ATM in flies cause lethality during development. With the goals of understanding biological and molecular roles of ATM in a whole animal and identifying candidate therapeutics for A-T, we performed a screen of 2400 compounds, including FDA-approved drugs, natural products, and bioactive compounds, for modifiers of the developmental lethality caused by a temperature-sensitive ATM allele (ATM8) that has reduced kinase activity at non-permissive temperatures. Ten compounds reproducibly suppressed the developmental lethality of ATM8 flies, including Ronnel, which is an organophosphate. Ronnel and other suppressor compounds are known to cause mitochondrial dysfunction or to inhibit the enzyme acetylcholinesterase, which controls the levels of the neurotransmitter acetylcholine, suggesting that detrimental consequences of reduced ATM kinase activity can be rescued by inhibiting the function of mitochondria or increasing acetylcholine levels. We carried out further studies of Ronnel because, unlike the other compounds that suppressed the developmental lethality of homozygous ATM8 flies, Ronnel was toxic to the development of heterozygous ATM8 flies. Ronnel did not affect the innate immune response of ATM8 flies, and it further increased the already high levels of DNA damage in brains of ATM8 flies, but its effects were not harmful to the lifespan of rescued ATM8 flies. These results provide new leads for understanding the biological and molecular roles of ATM and for the treatment of A-T.
Torres-Escobar, Ascención; Juárez-Rodríguez, María Dolores; Gunn, Bronwyn M; Branger, Christine G; Tinge, Steven A; Curtiss, Roy
2010-06-01
A balanced-lethal plasmid expression system that switches from low-copy-number to runaway-like high-copy-number replication (pYA4534) was constructed for the regulated delayed in vivo synthesis of heterologous antigens by vaccine strains. This is an antibiotic resistance-free maintenance system containing the asdA gene (essential for peptidoglycan synthesis) as a selectable marker to complement the lethal chromosomal DeltaasdA allele in live recombinant attenuated Salmonella vaccines (RASVs) such as Salmonella enterica serovar Typhimurium strain chi9447. pYA4534 harbors two origins of replication, pSC101 and pUC (low and high copy numbers, respectively). The pUC replication origin is controlled by a genetic switch formed by the operator/promoter of the P22 cro gene (O/P(cro)) (P(R)), which is negatively regulated by an arabinose-inducible P22 c2 gene located on both the plasmid and the chromosome (araC P(BAD) c2). The absence of arabinose, which is unavailable in vivo, triggers replication to a high-copy-number plasmid state. To validate these vector attributes, the Yersinia pestis virulence antigen LcrV was used to develop a vaccine against plague. An lcrV sequence encoding amino acids 131 to 326 (LcrV196) was optimized for expression in Salmonella, flanked with nucleotide sequences encoding the signal peptide (SS) and the carboxy-terminal domain (CT) of beta-lactamase, and cloned into pYA4534 under the control of the P(trc) promoter to generate plasmid pYA4535. Our results indicate that the live Salmonella vaccine strain chi9447 harboring pYA4535 efficiently stimulated a mixed Th1/Th2 immune response that protected mice against lethal challenge with Y. pestis strain CO92 introduced through either the intranasal or subcutaneous route.
Torres-Escobar, Ascención; Juárez-Rodríguez, María Dolores; Gunn, Bronwyn M.; Branger, Christine G.; Tinge, Steven A.; Curtiss, Roy
2010-01-01
A balanced-lethal plasmid expression system that switches from low-copy-number to runaway-like high-copy-number replication (pYA4534) was constructed for the regulated delayed in vivo synthesis of heterologous antigens by vaccine strains. This is an antibiotic resistance-free maintenance system containing the asdA gene (essential for peptidoglycan synthesis) as a selectable marker to complement the lethal chromosomal ΔasdA allele in live recombinant attenuated Salmonella vaccines (RASVs) such as Salmonella enterica serovar Typhimurium strain χ9447. pYA4534 harbors two origins of replication, pSC101 and pUC (low and high copy numbers, respectively). The pUC replication origin is controlled by a genetic switch formed by the operator/promoter of the P22 cro gene (O/Pcro) (PR), which is negatively regulated by an arabinose-inducible P22 c2 gene located on both the plasmid and the chromosome (araC PBAD c2). The absence of arabinose, which is unavailable in vivo, triggers replication to a high-copy-number plasmid state. To validate these vector attributes, the Yersinia pestis virulence antigen LcrV was used to develop a vaccine against plague. An lcrV sequence encoding amino acids 131 to 326 (LcrV196) was optimized for expression in Salmonella, flanked with nucleotide sequences encoding the signal peptide (SS) and the carboxy-terminal domain (CT) of β-lactamase, and cloned into pYA4534 under the control of the Ptrc promoter to generate plasmid pYA4535. Our results indicate that the live Salmonella vaccine strain χ9447 harboring pYA4535 efficiently stimulated a mixed Th1/Th2 immune response that protected mice against lethal challenge with Y. pestis strain CO92 introduced through either the intranasal or subcutaneous route. PMID:20308296
Newbury-Ecob, R
1998-01-01
Atelosteogenesis type 2 (AO2) (MIM 256050) is a neonatally lethal chondrodysplasia characterised by severe limb shortening and deficient ossification of parts of the skeleton. Other features include facial dysmorphism, cleft palate, talipes, and abducted thumbs and toes. Phenotypic overlap with non-lethal diastrophic dysplasia (DTD) suggested a common aetiology and it has recently been confirmed that both syndromes result from mutations in the DTDST (diastrophic dysplasia sulphate transporter) gene. Images PMID:9475095
Impaired expression of importin/karyopherin {beta}1 leads to post-implantation lethality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miura, Katsutaka; Yoshinobu, Kumiko; Imaizumi, Takashi
2006-03-03
Importin {beta}1 (Imp{beta})/karyopherin {beta}1 (Kpnb1) mediates the nuclear import of a large variety of substrates. This study aimed to investigate the requirement for the Kpnb1 gene in mouse development, using a gene trap line, B6-CB-Ayu8108 {sup GtgeoIMEG} (Ayu8108 {sup geo}), in which the trap vector was inserted into the promoter region of the Kpnb1 gene, but in reverse orientation of the Kpnb1 gene. Ayu8108 {sup geo/geo} homozygous embryos could develop to the blastocyst stage, but died before embryonic day 5.5, and expression of the Kpnb1 gene in homozygous blastocysts was undetectable. We also replaced the {beta}geo gene with Imp{beta} cDNAmore » through Cre-mediated recombination to rescue Imp{beta} expression. Homozygous mice for the rescued allele Ayu8108 {sup Imp{beta}}{sup /Imp{beta}} were born and developed normally. These results demonstrated that the cause of post-implantation lethality of Ayu8108 {sup geo/geo} homozygous embryos was impaired expression of the Kpnb1 gene, indicating indispensable roles of Imp{beta}1 in early development of mice.« less
Ark, B; Gummere, G; Bennett, D; Artzt, K
1991-06-01
Pim-1 is an oncogene activated in mouse T-cell lymphomas induced by Moloney and AKR mink cell focus (MCF) viruses. Pim-1 was previously mapped to chromosome 17 by somatic cell hybrids, and subsequently to the region between the hemoglobin alpha-chain pseudogene 4 (Hba-4ps) and the alpha-crystalline gene (Crya-1) by Southern blot analysis of DNA obtained from panels of recombinant inbred strains. We have now mapped Pim-1 more accurately in t-haplotypes by analysis of recombinant t-chromosomes. The recombinants were derived from Tts6tf/t12 parents backcrossed to + tf/ + tf, and scored for recombination between the loci of T and tf. For simplicity all t-complex lethal genes properly named tcl-tx are shortened to tx. The Pim-1 gene was localized 0.6 cM proximal to the tw12 lethal gene, thus placing the Pim-1 gene 5.2 cM distal to the H-2 region in t-haplotypes. Once mapped, the Pim-1 gene was used as a marker for further genetic analysis of t-haplotypes. tw12 is so close to tf that even with a large number of recombinants it was not possible to determine whether it is proximal or distal to tf. Southern blot analysis of DNA from T-tf recombinants with a separation of tw12 and tf indicated that tw12 is proximal to tf. The mapping of two allelic t-lethals, t0 and t6 with respect to tw12 and tf has also been a problem.(ABSTRACT TRUNCATED AT 250 WORDS)
The Hmr and Lhr Hybrid Incompatibility Genes Suppress a Broad Range of Heterochromatic Repeats
Satyaki, P. R. V.; Cuykendall, Tawny N.; Wei, Kevin H-C.; Brideau, Nicholas J.; Kwak, Hojoong; Aruna, S.; Ferree, Patrick M.; Ji, Shuqing; Barbash, Daniel A.
2014-01-01
Hybrid incompatibilities (HIs) cause reproductive isolation between species and thus contribute to speciation. Several HI genes encode adaptively evolving proteins that localize to or interact with heterochromatin, suggesting that HIs may result from co-evolution with rapidly evolving heterochromatic DNA. Little is known, however, about the intraspecific function of these HI genes, the specific sequences they interact with, or the evolutionary forces that drive their divergence. The genes Hmr and Lhr genetically interact to cause hybrid lethality between Drosophila melanogaster and D. simulans, yet mutations in both genes are viable. Here, we report that Hmr and Lhr encode proteins that form a heterochromatic complex with Heterochromatin Protein 1 (HP1a). Using RNA-Seq analyses we discovered that Hmr and Lhr are required to repress transcripts from satellite DNAs and many families of transposable elements (TEs). By comparing Hmr and Lhr function between D. melanogaster and D. simulans we identify several satellite DNAs and TEs that are differentially regulated between the species. Hmr and Lhr mutations also cause massive overexpression of telomeric TEs and significant telomere lengthening. Hmr and Lhr therefore regulate three types of heterochromatic sequences that are responsible for the significant differences in genome size and structure between D. melanogaster and D. simulans and have high potential to cause genetic conflicts with host fitness. We further find that many TEs are overexpressed in hybrids but that those specifically mis-expressed in lethal hybrids do not closely correlate with Hmr function. Our results therefore argue that adaptive divergence of heterochromatin proteins in response to repetitive DNAs is an important underlying force driving the evolution of hybrid incompatibility genes, but that hybrid lethality likely results from novel epistatic genetic interactions that are distinct to the hybrid background. PMID:24651406
Warner, T S; Sinclair, D A; Fitzpatrick, K A; Singh, M; Devlin, R H; Honda, B M
1998-04-01
Mutations in a number of genes affect eye colour in Drosophila melanogaster; some of these "eye-colour" genes have been shown to be involved in various aspects of cellular transport processes. In addition, combinations of viable mutant alleles of some of these genes, such as carnation (car) combined with either light (lt) or deep-orange (dor) mutants, show lethal interactions. Recently, dor was shown to be homologous to the yeast gene PEP3 (VPS18), which is known to be involved in intracellular trafficking. We have undertaken to extend our earlier work on the lt gene, in order to examine in more detail its expression pattern and to characterize its gene product via sequencing of a cloned cDNA. The gene appears to be expressed at relatively high levels in all stages and tissues examined, and shows strong homology to VPS41, a gene involved in cellular-protein trafficking in yeast and higher eukaryotes. Further genetic experiments also point to a role for lt in transport processes: we describe lethal interactions between viable alleles of lt and dor, as well as phenotypic interactions (reductions in eye pigment) between allels of lt and another eye-colour gene, garnet (g), whose gene product has close homology to a subunit of the human adaptor complex, AP-3.
Wild worm embryogenesis harbors ubiquitous polygenic modifier variation.
Paaby, Annalise B; White, Amelia G; Riccardi, David D; Gunsalus, Kristin C; Piano, Fabio; Rockman, Matthew V
2015-08-22
Embryogenesis is an essential and stereotypic process that nevertheless evolves among species. Its essentiality may favor the accumulation of cryptic genetic variation (CGV) that has no effect in the wild-type but that enhances or suppresses the effects of rare disruptions to gene function. Here, we adapted a classical modifier screen to interrogate the alleles segregating in natural populations of Caenorhabditis elegans: we induced gene knockdowns and used quantitative genetic methodology to examine how segregating variants modify the penetrance of embryonic lethality. Each perturbation revealed CGV, indicating that wild-type genomes harbor myriad genetic modifiers that may have little effect individually but which in aggregate can dramatically influence penetrance. Phenotypes were mediated by many modifiers, indicating high polygenicity, but the alleles tend to act very specifically, indicating low pleiotropy. Our findings demonstrate the extent of conditional functionality in complex trait architecture.
Fos metamorphoses: Lessons from mutants in model organisms (Drosophila).
Alfonso-Gonzalez, Carlos; Riesgo-Escovar, Juan Rafael
2018-05-10
The Fos oncogene gene family is evolutionarily conserved throughout Eukarya. Fos proteins characteristically have a leucine zipper and a basic region with a helix-turn-helix motif that binds DNA. In vertebrates, there are several Fos homologs. They can homo- or hetero-dimerize via the leucine zipper domain. Fos homologs coupled with other transcription factors, like Jun oncoproteins, constitute the Activator Protein 1 (AP-1) complex. From its original inception as an oncogene, the subsequent finding that they act as transcription factors binding DNA sequences known as TRE, to the realization that they are activated in many different scenarios, and to loss-of-function analysis, the Fos proteins have traversed a multifarious path in development and physiology. They are instrumental in 'immediate early genes' responses, and activated by a seemingly myriad assemblage of different stimuli. Yet, the majority of these studies were basically gain-of-function studies, since it was thought that Fos genes would be cell lethal. Loss-of-function mutations in vertebrates were recovered later, and were not cell lethal. In fact, c-fos null mutations are viable with developmental defects (osteopetrosis and myeloid lineage abnormalities). It was then hypothesized that vertebrate genomes exhibit partial redundancy, explaining the 'mild' phenotypes, and complicating assessment of complete loss-of-function phenotypes. Due to its promiscuous activation, fos genes (especially c-fos) are now commonly used as markers for cellular responses to stimuli. fos homologs high sequence conservation (including Drosophila) is advantageous as it allows critical assessment of fos genes functions in this genetic model. Drosophila melanogaster contains only one fos homolog, the gene kayak. kayak mutations are lethal, and allow study of all the processes where fos is required. The kayak locus encodes several different isoforms, and is a pleiotropic gene variously required for development involving cell shape changes. In general, fos genes seem to primarily activate programs involved in cellular architectural rearrangements and cell shape changes. Copyright © 2018. Published by Elsevier B.V.
New insights about host response to smallpox using microarray data.
Esteves, Gustavo H; Simoes, Ana C Q; Souza, Estevao; Dias, Rodrigo A; Ospina, Raydonal; Venancio, Thiago M
2007-08-24
Smallpox is a lethal disease that was endemic in many parts of the world until eradicated by massive immunization. Due to its lethality, there are serious concerns about its use as a bioweapon. Here we analyze publicly available microarray data to further understand survival of smallpox infected macaques, using systems biology approaches. Our goal is to improve the knowledge about the progression of this disease. We used KEGG pathways annotations to define groups of genes (or modules), and subsequently compared them to macaque survival times. This technique provided additional insights about the host response to this disease, such as increased expression of the cytokines and ECM receptors in the individuals with higher survival times. These results could indicate that these gene groups could influence an effective response from the host to smallpox. Macaques with higher survival times clearly express some specific pathways previously unidentified using regular gene-by-gene approaches. Our work also shows how third party analysis of public datasets can be important to support new hypotheses to relevant biological problems.
CRISPR/Cas9 mediated genome editing in ES cells and its application for chimeric analysis in mice.
Oji, Asami; Noda, Taichi; Fujihara, Yoshitaka; Miyata, Haruhiko; Kim, Yeon Joo; Muto, Masanaga; Nozawa, Kaori; Matsumura, Takafumi; Isotani, Ayako; Ikawa, Masahito
2016-08-17
Targeted gene disrupted mice can be efficiently generated by expressing a single guide RNA (sgRNA)/CAS9 complex in the zygote. However, the limited success of complicated genome editing, such as large deletions, point mutations, and knockins, remains to be improved. Further, the mosaicism in founder generations complicates the genotypic and phenotypic analyses in these animals. Here we show that large deletions with two sgRNAs as well as dsDNA-mediated point mutations are efficient in mouse embryonic stem cells (ESCs). The dsDNA-mediated gene knockins are also feasible in ESCs. Finally, we generated chimeric mice with biallelic mutant ESCs for a lethal gene, Dnajb13, and analyzed their phenotypes. Not only was the lethal phenotype of hydrocephalus suppressed, but we also found that Dnajb13 is required for sperm cilia formation. The combination of biallelic genome editing in ESCs and subsequent chimeric analysis provides a useful tool for rapid gene function analysis in the whole organism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doud, Devin F. R.; Angenent, Largus T.
Rhodopseudomonas palustris has emerged as a model microbe for the anaerobic metabolism of p-coumarate, which is an aromatic compound and a primary component of lignin. However, under an aerobic conditions, R.palustris must actively eliminate excess reducing equivalents through a number of known strategies (e.g., CO 2 fixation, H 2 evolution) to avoid lethal redox imbalance. Others had hypothesized that to ease the burden of this redox imbalance, a clonal population of R.palustris could functionally differentiate into a pseudo-consortium. Within this pseudo-consortium, one sub-population would perform the aromatic moiety degradation into acetate, while the other sub-population would oxidize acetate, resulting inmore » a single-genotype syntrophy through acetate sharing. Here, the objective was to test this hypothesis by utilizing microbial lelectrochemistry as a research tool with the extrac ellular-electron-transferring bacterium Geobacter sulfurreducens as a reporter strain replacing the hypothesized acetate-oxidizing sub-population. We used a 2×4 experimental design with pure cultures of R. palustris in serum bottles and co-cultures of R. palustris and G.sulfurreducens in bioelectrochemical systems.This experimental design included growth medium with and without bicarbonate to induce non-lethal and lethal redox imbalance conditions, respectively, in R. palustris. Finally, the design also included a mutant strain (NifA*) of R. palustris, which constitutively produces H 2, to serve both as a positive control for metabolite secretion (H 2) to G. sulfurreducens, and as a non-lethal redox control for without bicarbonate conditions. Our results demonstrate that acetate sharing between different sub-populations of R. palustris does not occur while degrading p-coumarate under either non-lethal or lethal redox imbalance conditions. Furthermore, this work highlights the strength of microbial electrochemistry as a tool for studying microbial syntrophy.« less
Fu, X; Xu, J G
2000-01-01
A chromosome-plasmid balanced lethal gene delivery system for Lactobacillus acidophilus based on the thyA gene was developed. The selected L. acidophilus DOM La strain carries a mutated thyA gene and has an obligate requirement for thymidine. This strain can be used as a host for the constructed shuttle vector pFXL03, lacking antibiotic-resistant markers but having the wild-type thyA gene from L. casei which complements the thyA chromosomal mutation. The vector also contains the replicon region from plasmid pUC19 and that of the Lactococcus plasmid pWV01, which allows the transfer between Escherichia coli, L. casei and L. acidophilus. Eight unique restriction sites (i.e., PstI, HindIII, SphI, SalI, AccI, XbaI, KpnI and SacI) are available for cloning. After 40-time transfers in modified MRS medium, no plasmid loss was observed. The vector pFXL03 is potentially useful as a food-grade vaccine delivery system for L. acidophilus.
Assisted suicide of a selfish gene.
Thomson, M S; Beeman, R W
1999-01-01
Medea (M) factors and the hybrid incompatibility factor (H) are involved in two incompatibility systems in flour beetles that were previously thought to be independent. M factors are a novel class of selfish genes that act by maternal lethality to nonself. The H factor causes the death of hybrids with a paternally derived H gene and previously uncharacterized maternal cofactors. We now find that M factors exhibit their selfish behavior only in the absence of the H factor. Furthermore, we show that the previously uncharacterized maternal cofactors required for H-associated hybrid inviability are identical to M factors. We propose that incompatibility between H strains and M strains is due to suppression by the H factor of the self-rescuing activity of the lethal M genes. This interaction has the effect of converting M elements from selfish into self-destructive or "suicidal" genes. M factors are globally widespread, but are conspicuously absent from India, the only country where the H factor is known to occur. Such a mechanism could prevent the spread of selfish M elements by establishing an absolute barrier to hybridization in the boundary between M and non-M zones.
2017-09-01
AWARD NUMBER: W81XWH-16-1-0162 TITLE: Development of a Synthetic Lethal Drug Combination That Targets the Energy Generation Triangle for...in HCC cells to compensate energy loss. Compared to normal liver, HCC up-regulates expression of genes involved in FA biosynthesis and down-regulates... energy generation triangle” (glycolysis, oxidative phosphorylation, and FAO) as a translational, effective and safe therapy for HCC. 15. SUBJECT
Keith Woeste; Joseph J. Kieber
2000-01-01
A recessive mutation was identified that constitutively activated the ethylene response pathway in Arabidopsis and resuited in a rosette-lethal phenotype. Positional cloning of the gene corresponding to this mutation revealed that it was allelic to responsive to antagonist1 (ran1), a mutation that causes seedlings to respond in a positive manner to what is normally a...
Telford, Bryony J; Chen, Augustine; Beetham, Henry; Frick, James; Brew, Tom P; Gould, Cathryn M; Single, Andrew; Godwin, Tanis; Simpson, Kaylene J; Guilford, Parry
2015-05-01
The CDH1 gene, which encodes the cell-to-cell adhesion protein E-cadherin, is frequently mutated in lobular breast cancer (LBC) and diffuse gastric cancer (DGC). However, because E-cadherin is a tumor suppressor protein and lost from the cancer cell, it is not a conventional drug target. To overcome this, we have taken a synthetic lethal approach to determine whether the loss of E-cadherin creates druggable vulnerabilities. We first conducted a genome-wide siRNA screen of isogenic MCF10A cells with and without CDH1 expression. Gene ontology analysis demonstrated that G-protein-coupled receptor (GPCR) signaling proteins were highly enriched among the synthetic lethal candidates. Diverse families of cytoskeletal proteins were also frequently represented. These broad classes of E-cadherin synthetic lethal hits were validated using both lentiviral-mediated shRNA knockdown and specific antagonists, including the JAK inhibitor LY2784544, Pertussis toxin, and the aurora kinase inhibitors alisertib and danusertib. Next, we conducted a 4,057 known drug screen and time course studies on the CDH1 isogenic MCF10A cell lines and identified additional drug classes with linkages to GPCR signaling and cytoskeletal function that showed evidence of E-cadherin synthetic lethality. These included multiple histone deacetylase inhibitors, including vorinostat and entinostat, PI3K inhibitors, and the tyrosine kinase inhibitors crizotinib and saracatinib. Together, these results demonstrate that E-cadherin loss creates druggable vulnerabilities that have the potential to improve the management of both sporadic and familial LBC and DGC. ©2015 American Association for Cancer Research.
Cross-protection among lethal H5N2 influenza viruses induced by DNA vaccine to the hemagglutinin.
Kodihalli, S; Haynes, J R; Robinson, H L; Webster, R G
1997-01-01
Inoculation of mice with hemagglutinin (HA)-expressing DNA affords reliable protection against lethal influenza virus infection, while in chickens the same strategy has yielded variable results. Here we show that gene gun delivery of DNA encoding an H5 HA protein confers complete immune protection to chickens challenged with lethal H5 viruses. In tests of the influence of promoter selection on vaccine efficacy, close correlations were obtained between immune responses and the dose of DNA administered, whether a cytomegalovirus (CMV) immediate-early promoter or a chicken beta-actin promoter was used. Perhaps most important, the HA-DNA vaccine conferred 95% cross-protection against challenge with lethal antigenic variants that differed from the primary antigen by 11 to 13% (HA1 amino acid sequence homology). Overall, the high levels of protection seen with gene gun delivery of HA-DNA were as good as, if not better than, those achieved with a conventional whole-virus vaccine, with fewer instances of morbidity and death. The absence of detectable antibody titers after primary immunization, together with the rapid appearance of high titers immediately after challenge, implicates efficient B-cell priming as the principal mechanism of DNA-mediated immune protection. Our results suggest that the efficacy of HA-DNA influenza virus vaccine in mice extends to chickens and probably to other avian species as well. Indeed, the H5 preparation we describe offers an attractive means to protect the domestic poultry industry in the United States from lethal H5N2 viruses, which continue to circulate in Mexico. PMID:9094608
Brancati, Francesco; Iannicelli, Miriam; Travaglini, Lorena; Mazzotta, Annalisa; Bertini, Enrico; Boltshauser, Eugen; D'Arrigo, Stefano; Emma, Francesco; Fazzi, Elisa; Gallizzi, Romina; Gentile, Mattia; Loncarevic, Damir; Mejaski-Bosnjak, Vlatka; Pantaleoni, Chiara; Rigoli, Luciana; Salpietro, Carmelo D; Signorini, Sabrina; Stringini, Gilda Rita; Verloes, Alain; Zabloka, Dominika; Dallapiccola, Bruno; Gleeson, Joseph G; Valente, Enza Maria
2009-02-01
The acronym COACH defines an autosomal recessive condition of Cerebellar vermis hypo/aplasia, Oligophrenia, congenital Ataxia, Coloboma and Hepatic fibrosis. Patients present the "molar tooth sign", a midbrain-hindbrain malformation pathognomonic for Joubert Syndrome (JS) and Related Disorders (JSRDs). The main feature of COACH is congenital hepatic fibrosis (CHF), resulting from malformation of the embryonic ductal plate. CHF is invariably found also in Meckel syndrome (MS), a lethal ciliopathy already found to be allelic with JSRDs at the CEP290 and RPGRIP1L genes. Recently, mutations in the MKS3 gene (approved symbol TMEM67), causative of about 7% MS cases, have been detected in few Meckel-like and pure JS patients. Analysis of MKS3 in 14 COACH families identified mutations in 8 (57%). Features such as colobomas and nephronophthisis were found only in a subset of mutated cases. These data confirm COACH as a distinct JSRD subgroup with core features of JS plus CHF, which major gene is MKS3, and further strengthen gene-phenotype correlates in JSRDs. (c) 2008 Wiley-Liss, Inc.
Brancati, Francesco; Iannicelli, Miriam; Travaglini, Lorena; Mazzotta, Annalisa; Bertini, Enrico; Boltshauser, Eugen; D’Arrigo, Stefano; Emma, Francesco; Fazzi, Elisa; Gallizzi, Romina; Gentile, Mattia; Loncarevic, Damir; Mejaski-Bosnjak, Vlatka; Pantaleoni, Chiara; Rigoli, Luciana; Salpietro, Carmelo D.; Signorini, Sabrina; Stringini, Gilda Rita; Verloes, Alain; Zabloka, Dominika; Dallapiccola, Bruno; Gleeson, Joseph G.; Valente, Enza Maria
2008-01-01
The acronym COACH defines an autosomal recessive condition of Cerebellar vermis hypo/aplasia, Oligophrenia, congenital Ataxia, Coloboma and Hepatic fibrosis. Patients present the “molar tooth sign”, a midbrain-hindbrain malformation pathognomonic for Joubert Syndrome (JS) and Related Disorders (JSRDs). The main feature of COACH is congenital hepatic fibrosis (CHF), resulting from malformation of the embryonic ductal plate. CHF is invariably found also in Meckel syndrome (MS), a lethal ciliopathy already found to be allelic with JSRDs at the CEP290 and RPGRIP1L genes. Recently, mutations in the MKS3 gene (approved symbol TMEM67), causative of about 7% MS cases, have been detected in few Meckel-like and pure JS patients. Analysis of MKS3 in 14 COACH families identified mutations in 8 (57%). Features such as colobomas and nephronophthisis were found only in a subset of mutated cases. These data confirm COACH as a distinct JSRD subgroup with core features of JS plus CHF, which major gene is MKS3, and further strengthen gene-phenotype correlates in JSRDs. PMID:19058225
Fujihira, Haruhiko; Masahara-Negishi, Yuki; Tamura, Masaru; Huang, Chengcheng; Harada, Yoichiro; Wakana, Shigeharu; Takakura, Daisuke; Kawasaki, Nana; Taniguchi, Naoyuki; Kondoh, Gen; Yamashita, Tadashi; Funakoshi, Yoko; Suzuki, Tadashi
2017-01-01
The cytoplasmic peptide:N-glycanase (Ngly1 in mammals) is a de-N-glycosylating enzyme that is highly conserved among eukaryotes. It was recently reported that subjects harboring mutations in the NGLY1 gene exhibited severe systemic symptoms (NGLY1-deficiency). While the enzyme obviously has a critical role in mammals, its precise function remains unclear. In this study, we analyzed Ngly1-deficient mice and found that they are embryonic lethal in C57BL/6 background. Surprisingly, the additional deletion of the gene encoding endo-β-N-acetylglucosaminidase (Engase), which is another de-N-glycosylating enzyme but leaves a single GlcNAc at glycosylated Asn residues, resulted in the partial rescue of the lethality of the Ngly1-deficient mice. Additionally, we also found that a change in the genetic background of C57BL/6 mice, produced by crossing the mice with an outbred mouse strain (ICR) could partially rescue the embryonic lethality of Ngly1-deficient mice. Viable Ngly1-deficient mice in a C57BL/6 and ICR mixed background, however, showed a very severe phenotype reminiscent of the symptoms of NGLY1-deficiency subjects. Again, many of those defects were strongly suppressed by the additional deletion of Engase in the C57BL/6 and ICR mixed background. The defects observed in Ngly1/Engase-deficient mice (C57BL/6 background) and Ngly1-deficient mice (C57BL/6 and ICR mixed background) closely resembled some of the symptoms of patients with an NGLY1-deficiency. These observations strongly suggest that the Ngly1- or Ngly1/Engase-deficient mice could serve as a valuable animal model for studies related to the pathogenesis of the NGLY1-deficiency, and that cytoplasmic ENGase represents one of the potential therapeutic targets for this genetic disorder. PMID:28426790
Hayes, Sidney; Rajamanickam, Karthic; Hayes, Connie
2018-04-05
λ genes O and P are required for replication initiation from the bacteriophage λ origin site, ori λ, located within gene O . Questions have persisted for years about whether O-defects can indeed be complemented in trans . We show the effect of original null mutations in O and the influence of four origin mutations (three are in-frame deletions and one is a point mutation) on complementation. This is the first demonstration that O proteins with internal deletions can complement for O activity, and that expression of the N-terminal portion of gene P can completely prevent O complementation. We show that O-P co-expression can limit the lethal effect of P on cell growth. We explore the influence of the contiguous small RNA OOP on O complementation and P-lethality.
Tsutsumi, Seiji; Maekawa, Ayako; Obata, Miyuki; Morgan, Timothy; Robertson, Stephen P; Kurachi, Hirohisa
2012-01-01
Boomerang dysplasia is a rare lethal osteochondrodysplasia characterized by disorganized mineralization of the skeleton, leading to complete nonossification of some limb bones and vertebral elements, and a boomerang-like aspect to some of the long tubular bones. Like many short-limbed skeletal dysplasias with accompanying thoracic hypoplasia, the potential lethality of the phenotype can be difficult to ascertain prenatally. We report a case of boomerang dysplasia prenatally diagnosed by use of ultrasonography and 3D-CT imaging, and identified a novel mutation in the gene encoding the cytoskeletal protein filamin B (FLNB) postmortem. Findings that aided the radiological diagnosis of this condition in utero included absent ossification of two out of three long bones in each limb and elements of the vertebrae and a boomerang-like shape to the ulnae. The identified mutation is the third described for this disorder and is predicted to lead to amino acid substitution in the actin-binding domain of the filamin B molecule. Copyright © 2012 S. Karger AG, Basel.
Insights into the Molecular Events That Regulate Heat-Induced Chilling Tolerance in Citrus Fruits.
Lafuente, María T; Establés-Ortíz, Beatriz; González-Candelas, Luis
2017-01-01
Low non-freezing temperature may cause chilling injury (CI), which is responsible for external quality deterioration in many chilling-sensitive horticultural crops. Exposure of chilling-sensitive citrus cultivars to non-lethal high-temperature conditioning may increase their chilling tolerance. Very little information is available about the molecular events involved in such tolerance. In this work, the molecular events associated with the low temperature tolerance induced by heating Fortune mandarin, which is very sensitive to chilling, for 3 days at 37°C prior to cold storage is presented. A transcriptomic analysis reveals that heat-conditioning has an important impact favoring the repression of genes in cold-stored fruit, and that long-term heat-induced chilling tolerance is an active process that requires activation of transcription factors involved in transcription initiation and of the WRKY family. The analysis also shows that chilling favors degradation processes, which affect lipids and proteins, and that the protective effect of the heat-conditioning treatment is more likely to be related to the repression of the genes involved in lipid degradation than to the modification of fatty acids unsaturation, which affects membrane permeability. Another major factor associated with the beneficial effect of the heat treatment on reducing CI is the regulation of stress-related proteins. Many of the genes that encoded such proteins are involved in secondary metabolism and in oxidative stress-related processes.
Zabeau, M; Stanley, K K
1982-01-01
Hybrid plasmids carrying cro-lacZ gene fusions have been constructed by joining DNA segments carrying the PR promoter and the start of the cro gene of bacteriophage lambda to the lacZ gene fragment carried by plasmid pLG400 . Plasmids in which the translational reading frames of the cro and lacZ genes are joined in-register (type I) direct the synthesis of elevated levels of cro-beta-galactosidase fusion protein amounting to 30% of the total cellular protein, while plasmids in which the genes are fused out-of-register (type II) produce a low level of beta-galactosidase protein. Sequence rearrangements downstream of the cro initiator AUG were found to influence the efficiency of translation, and have been correlated with alterations in the RNA secondary structure of the ribosome-binding site. Plasmids which direct the synthesis of high levels of beta-galactosidase are conditionally lethal and can only be propagated when the PR promoter is repressed. Deletion of sequences downstream of the lacZ gene restored viability, indicating that this region of the plasmid encodes a function which inhibits the growth of the cells. The different applications of these plasmids for expression of cloned genes are discussed. Images Fig. 6. PMID:6327257
Eliminating SCID row: new approaches to SCID.
Kohn, Donald B
2014-12-05
Treatments for patients with SCID by hematopoietic stem cell transplantation (HSCT) have changed this otherwise lethal primary immune deficiency disorder into one with an increasingly good prognosis. SCID has been the paradigm disorder supporting many key advances in the field of HSCT, with first-in-human successes with matched sibling, haploidentical, and matched unrelated donor allogeneic transplantations. Nevertheless, the optimal approaches for HSCT are still being defined, including determining the optimal stem cell sources, the use and types of pretransplantation conditioning, and applications for SCID subtypes associated with radiosensitivity, for patients with active viral infections and for neonates. Alternatively, autologous transplantation after ex vivo gene correction (gene therapy) has been applied successfully to the treatment of adenosine deaminase-deficient SCID and X-linked SCID by vector-mediated gene addition. Gene therapy holds the prospect of avoiding risks of GVHD and would allow each patient to be their own donor. New approaches to gene therapy by gene correction in autologous HSCs using site-specific endonuclease-mediated homology-driven gene repair are under development. With newborn screening becoming more widely adopted to detect SCID patients before they develop complications, the prognosis for SCID is expected to improve further. This chapter reviews recent advances and ongoing controversies in allogeneic and autologous HSCT for SCID. © 2014 by The American Society of Hematology. All rights reserved.
Boronat, Susanna; Domènech, Alba; Carmona, Mercè; García-Santamarina, Sarela; Bañó, M Carmen; Ayté, José; Hidalgo, Elena
2017-06-01
The thioredoxin and glutaredoxin pathways are responsible of recycling several enzymes which undergo intramolecular disulfide bond formation as part of their catalytic cycles such as the peroxide scavengers peroxiredoxins or the enzyme ribonucleotide reductase (RNR). RNR, the rate-limiting enzyme of deoxyribonucleotide synthesis, is an essential enzyme relying on these electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels, but little is known about the participation of electron donors in such regulation. Here, we show that cytosolic thioredoxins Trx1 and Trx3 are the primary electron donors for RNR in fission yeast. Unexpectedly, trx1 transcript and Trx1 protein levels are up-regulated in a G1-to-S phase-dependent manner, indicating that the supply of electron donors is also cell cycle-regulated. Indeed, genetic depletion of thioredoxins triggers a DNA replication checkpoint ruled by Rad3 and Cds1, with the final goal of up-regulating transcription of S phase genes and constitutive RNR synthesis. Regarding the thioredoxin and glutaredoxin cascades, one combination of gene deletions is synthetic lethal in fission yeast: cells lacking both thioredoxin reductase and cytosolic dithiol glutaredoxin. We have isolated a suppressor of this lethal phenotype: a mutation at the Tpx1-coding gene, leading to a frame shift and a loss-of-function of Tpx1, the main client of electron donors. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate such as the peroxiredoxin Tpx1 has been selected as a lethality suppressor to favor RNR function at the expense of the non-essential peroxide scavenging function, to allow DNA synthesis and cell growth.
Toxicity of atrazine- and glyphosate-based formulations on Caenorhabditis elegans.
García-Espiñeira, María; Tejeda-Benitez, Lesly; Olivero-Verbel, Jesus
2018-07-30
Atrazine and Glyphosate are herbicides massively used in agriculture for crop protection. Upon application, they are available to the biota in different ecosystems. The aim of this research was to evaluate the toxicity of Glyphosate and Atrazine based formulations (GBF and ABF, respectively). Caenorhabditis elegans was exposed to different concentrations of each single formulation, and to the mixture. Lethality, locomotion, growth, and fertility were measured as endpoints. Effects on gene expression were monitored utilizing green fluorescence protein transgenic strains. ABF caused lethality of 12%, 15%, and 18% for 6, 60, and 600 μM, respectively, displaying a dose dependence trend. GBF produced lethality of 20%, 50%, and 100% at 0.01, 10, and 100 μM, respectively. Locomotion inhibition ranged from 21% to 89% at the lowest and maximum tested concentrations for Atrazine; whereas for Glyphosate, exposure to 10 μM inhibited 87%. Brood size was decreased by 67% and 93% after treatment to 0.06 and 6 μM Atrazine, respectively; and by 23% and 93% after exposure to 0.01 and 10 μM Glyphosate, respectively. There were no significant differences in growth. Changes in gene expression occurred in all genes, highlighting the expression of sod-1, sod-4, and gpx-4 that increased more than two-fold after exposure to 600 μM ABF and 10 μM GBF. The effects observed for the mixture of these formulations were additive for lethality, locomotion and fertility. In short, GBF, ABF, and their mixture induced several toxic responses related to oxidative stress on C. elegans. Copyright © 2018 Elsevier Inc. All rights reserved.
Lethal exposure: An integrated approach to pathogen transmission via environmental reservoirs.
Turner, Wendy C; Kausrud, Kyrre L; Beyer, Wolfgang; Easterday, W Ryan; Barandongo, Zoë R; Blaschke, Elisabeth; Cloete, Claudine C; Lazak, Judith; Van Ert, Matthew N; Ganz, Holly H; Turnbull, Peter C B; Stenseth, Nils Chr; Getz, Wayne M
2016-06-06
To mitigate the effects of zoonotic diseases on human and animal populations, it is critical to understand what factors alter transmission dynamics. Here we assess the risk of exposure to lethal concentrations of the anthrax bacterium, Bacillus anthracis, for grazing animals in a natural system over time through different transmission mechanisms. We follow pathogen concentrations at anthrax carcass sites and waterholes for five years and estimate infection risk as a function of grass, soil or water intake, age of carcass sites, and the exposure required for a lethal infection. Grazing, not drinking, seems the dominant transmission route, and transmission is more probable from grazing at carcass sites 1-2 years of age. Unlike most studies of virulent pathogens that are conducted under controlled conditions for extrapolation to real situations, we evaluate exposure risk under field conditions to estimate the probability of a lethal dose, showing that not all reservoirs with detectable pathogens are significant transmission pathways.
NASA Astrophysics Data System (ADS)
Cantin, Edouard M.; Eberle, Richard; Baldick, Joseph L.; Moss, Bernard; Willey, Dru E.; Notkins, Abner L.; Openshaw, Harry
1987-08-01
The herpes simplex virus 1 (HSV-1) strain F gene encoding glycoprotein gB was isolated and modified at the 5' end by in vitro oligonucleotide-directed mutagenesis. The modified gB gene was inserted into the vaccinia virus genome and expressed under the control of a vaccinia virus promoter. The mature gB glycoprotein produced by the vaccinia virus recombinant was glycosylated, was expressed at the cell surface, and was indistinguishable from authentic HSV-1 gB in terms of electrophoretic mobility. Mice immunized intradermally with the recombinant vaccinia virus produced gB-specific neutralizing antibodies and were resistant to a lethal HSV-1 challenge.
Quélin, Chloé; Loget, Philippe; Boutaud, Lucile; Elkhartoufi, Nadia; Milon, Joelle; Odent, Sylvie; Fradin, Mélanie; Demurger, Florence; Pasquier, Laurent; Thomas, Sophie; Attié-Bitach, Tania
2018-04-27
Ciliopathies comprise a group of clinically heterogeneous and overlapping disorders with a wide spectrum of phenotypes ranging from prenatal lethality to adult-onset disorders. Pathogenic variants in more than 100 ciliary protein-encoding genes have been described, most notably those involved in intraflagellar transport (IFT) which comprises two protein complexes, responsible for retrograde (IFT-A) and anterograde transport (IFT-B). Here we describe a fetus with an unclassified severe ciliopathy phenotype including short ribs, polydactyly, bilateral renal agenesis, and imperforate anus, with compound heterozygosity for c.118_125del, p.(Thr40Glyfs*11) and a c.352 +1G > T in IFT27, which encodes a small GTPase component of the IFT-B complex. We conclude that bilateral renal agenesis is a rare feature of this severe ciliopathy and this report highlights the phenotypic overlap of Pallister-Hall syndrome and ciliopathies. The phenotype in patients with IFT27 gene variants is wide ranging from Bardet-Biedl syndrome to a lethal phenotype. © 2018 Wiley Periodicals, Inc.
Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks
Liu, Kun-hsiang; Niu, Yajie; Konishi, Mineko; Wu, Yue; Du, Hao; Sun Chung, Hoo; Li, Lei; Boudsocq, Marie; McCormack, Matthew; Maekawa, Shugo; Ishida, Tetsuya; Zhang, Chao; Shokat, Kevan; Yanagisawa, Shuichi; Sheen, Jen
2018-01-01
Nutrient signalling integrates and coordinates gene expression, metabolism and growth. However, its primary molecular mechanisms remain incompletely understood in plants and animals. Here we report novel Ca2+ signalling triggered by nitrate with live imaging of an ultrasensitive biosensor in Arabidopsis leaves and roots. A nitrate-sensitized and targeted functional genomic screen identifies subgroup III Ca2+-sensor protein kinases (CPKs) as master regulators orchestrating primary nitrate responses. A chemical switch with the engineered CPK10(M141G) kinase enables conditional analyses of cpk10,30,32 to define comprehensive nitrate-associated regulatory and developmental programs, circumventing embryo lethality. Nitrate-CPK signalling phosphorylates conserved NIN-LIKE PROTEIN (NLP) transcription factors (TFs) to specify reprogramming of gene sets for downstream TFs, transporters, N-assimilation, C/N-metabolism, redox, signalling, hormones, and proliferation. Conditional cpk10,30,32 and nlp7 similarly impair nitrate-stimulated system-wide shoot growth and root establishment. The nutrient-coupled Ca2+ signalling network integrates transcriptome and cellular metabolism with shoot-root coordination and developmental plasticity in shaping organ biomass and architecture. PMID:28489820
Female-specific flightless (fsRIDL) phenotype for control of Aedes albopictus.
Labbé, Geneviève M C; Scaife, Sarah; Morgan, Siân A; Curtis, Zoë H; Alphey, Luke
2012-01-01
Aedes albopictus, the Asian tiger mosquito, is a vector of several arboviruses including dengue and chikungunya, and is also a significant nuisance mosquito. It is one of the most invasive of mosquitoes with a relentlessly increasing geographic distribution. Conventional control methods have so far failed to control Ae. albopictus adequately. Novel genetics-based strategies offer a promising alternative or aid towards efficient control of this mosquito. We describe here the isolation, characterisation and use of the Ae. albopictus Actin-4 gene to drive a dominant lethal gene in the indirect flight muscles of Ae. albopictus, thus inducing a conditional female-specific late-acting flightless phenotype. We also show that in this context, the Actin-4 regulatory regions from both Ae. albopictus and Ae. aegypti can be used to provide conditional female-specific flightlessness in either species. With the disease-transmitting females incapacitated, the female flightless phenotype encompasses a genetic sexing mechanism and would be suitable for controlling Ae. albopictus using a male-only release approach as part of an integrated pest management strategy.
Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks.
Liu, Kun-Hsiang; Niu, Yajie; Konishi, Mineko; Wu, Yue; Du, Hao; Sun Chung, Hoo; Li, Lei; Boudsocq, Marie; McCormack, Matthew; Maekawa, Shugo; Ishida, Tetsuya; Zhang, Chao; Shokat, Kevan; Yanagisawa, Shuichi; Sheen, Jen
2017-05-18
Nutrient signalling integrates and coordinates gene expression, metabolism and growth. However, its primary molecular mechanisms remain incompletely understood in plants and animals. Here we report unique Ca 2+ signalling triggered by nitrate with live imaging of an ultrasensitive biosensor in Arabidopsis leaves and roots. A nitrate-sensitized and targeted functional genomic screen identifies subgroup III Ca 2+ -sensor protein kinases (CPKs) as master regulators that orchestrate primary nitrate responses. A chemical switch with the engineered mutant CPK10(M141G) circumvents embryo lethality and enables conditional analyses of cpk10 cpk30 cpk32 triple mutants to define comprehensive nitrate-associated regulatory and developmental programs. Nitrate-coupled CPK signalling phosphorylates conserved NIN-LIKE PROTEIN (NLP) transcription factors to specify the reprogramming of gene sets for downstream transcription factors, transporters, nitrogen assimilation, carbon/nitrogen metabolism, redox, signalling, hormones and proliferation. Conditional cpk10 cpk30 cpk32 and nlp7 mutants similarly impair nitrate-stimulated system-wide shoot growth and root establishment. The nutrient-coupled Ca 2+ signalling network integrates transcriptome and cellular metabolism with shoot-root coordination and developmental plasticity in shaping organ biomass and architecture.
Lee, Ji Young; Jun, Do Youn; Park, Ju Eun; Kwon, Gi Hyun; Kim, Jong-Sik; Kim, Young Ho
2017-03-28
To examine the pro-apoptotic role of the human ortholog (YPEL5) of the Drosophila Yippee protein, the cell viability of Saccharomyces cerevisiae mutant strain with deleted MOH1 , the yeast ortholog, was compared with that of the wild-type (WT)- MOH1 strain after exposure to different apoptogenic stimulants, including UV irradiation, methyl methanesulfonate (MMS), camptothecin (CPT), heat shock, and hyperosmotic shock. The moh1 Δ mutant exhibited enhanced cell viability compared with the WT- MOH1 strain when treated with lethal UV irradiation, 1.8 mM MMS, 100 µ CPT, heat shock at 50°C, or 1.2 M KCl. At the same time, the level of Moh1 protein was commonly up-regulated in the WT- MOH1 strain as was that of Ynk1 protein, which is known as a marker for DNA damage. Although the enhanced UV resistance of the moh1 Δ mutant largely disappeared following transformation with the yeast MOH1 gene or one of the human YPEL1-YPEL5 genes, the transformant bearing pYES2- YPEL5 was more sensitive to lethal UV irradiation and its UV sensitivity was similar to that of the WT- MOH1 strain. Under these conditions, the UV irradiation-induced apoptotic events, such as FITC-Annexin V stainability, mitochondrial membrane potential (ΔΨm) loss, and metacaspase activation, occurred to a much lesser extent in the moh1 Δ mutant compared with the WT- MOH1 strain and the mutant strain bearing pYES2- MOH1 or pYES2- YPEL5 . These results demonstrate the functional conservation between yeast Moh1 and human YPEL5, and their involvement in mitochondria-dependent apoptosis induced by DNA damage.
Al-Quraishy, Saleh; Dkhil, Mohamed A; Alomar, Suliman; Abdel-Baki, Abdel Azeem S; Delic, Denis; Wunderlich, Frank; Araúzo-Bravo, Marcos J
2016-05-01
Protective vaccination induces self-healing of otherwise lethal blood-stage infections of Plasmodium chabaudi malaria. Here, we investigate mRNA expression patterns of all 12 members of the Toll-like receptor (Tlr) gene family in the liver, a major effector organ against blood-stage malaria, during lethal and vaccination-induced self-healing infections of P. chabaudi in female Balb/c mice. Gene expression microarrays reveal that all 12 Tlr genes are constitutively expressed, though at varying levels, and specifically respond to infection. Protective vaccination does not affect constitutive expression of any of the 12 Tlr genes but leads to differential expression (p < 0.05) of seven Tlrs (1, 2, 4, 7, 8, 12, and 13) in response to malaria. Quantitative PCR substantiates differential expression at p < 0.01. There is an increased expression of Tlr2 by approximately five-fold on day 1 post-infection (p.i.) and Tlr1 by approximately threefold on day 4 p.i.. At peak parasitemia on day 8 p.i., none of the 12 Tlrs display any differential expression. After peak parasitemia, towards the end of the crisis phase on day 11 p.i., expression of Tlrs 1, 4, and 12 is increased by approximately four-, two-, and three-fold, respectively, and that of Tlr7 is decreased by approximately two-fold. Collectively, our data suggest that though all 12 members of the Tlr gene family are specifically responsive to malaria in the liver, not only Tlr2 at the early stage of infection but also the Tlrs 1, 4, 7, and 12 towards the end of crisis phase are critical for vaccination-induced resolution and survival of otherwise lethal blood-stage malaria.
RNA interference can be used to disrupt gene function in tardigrades
Tenlen, Jennifer R.; McCaskill, Shaina; Goldstein, Bob
2012-01-01
How morphological diversity arises is a key question in evolutionary developmental biology. As a long-term approach to address this question, we are developing the water bear Hypsibius dujardini (Phylum Tardigrada) as a model system. We expect that using a close relative of two well-studied models, Drosophila (Phylum Arthropoda) and Caenorhabditis elegans (Phylum Nematoda), will facilitate identifying genetic pathways relevant to understanding the evolution of development. Tardigrades are also valuable research subjects for investigating how organisms and biological materials can survive extreme conditions. Methods to disrupt gene activity are essential to each of these efforts, but no such method yet exists for the Phylum Tardigrada. We developed a protocol to disrupt tardigrade gene functions by double-stranded RNA-mediated RNA interference (RNAi). We show that targeting tardigrade homologs of essential developmental genes by RNAi produced embryonic lethality, whereas targeting green fluorescent protein did not. Disruption of gene functions appears to be relatively specific by two criteria: targeting distinct genes resulted in distinct phenotypes that were consistent with predicted gene functions, and by RT-PCR, RNAi reduced the level of a target mRNA and not a control mRNA. These studies represent the first evidence that gene functions can be disrupted by RNAi in the phylum Tardigrada. Our results form a platform for dissecting tardigrade gene functions for understanding the evolution of developmental mechanisms and survival in extreme environments. PMID:23187800
RNA interference can be used to disrupt gene function in tardigrades.
Tenlen, Jennifer R; McCaskill, Shaina; Goldstein, Bob
2013-05-01
How morphological diversity arises is a key question in evolutionary developmental biology. As a long-term approach to address this question, we are developing the water bear Hypsibius dujardini (Phylum Tardigrada) as a model system. We expect that using a close relative of two well-studied models, Drosophila (Phylum Arthropoda) and Caenorhabditis elegans (Phylum Nematoda), will facilitate identifying genetic pathways relevant to understanding the evolution of development. Tardigrades are also valuable research subjects for investigating how organisms and biological materials can survive extreme conditions. Methods to disrupt gene activity are essential to each of these efforts, but no such method yet exists for the Phylum Tardigrada. We developed a protocol to disrupt tardigrade gene functions by double-stranded RNA-mediated RNA interference (RNAi). We showed that targeting tardigrade homologs of essential developmental genes by RNAi produced embryonic lethality, whereas targeting green fluorescent protein did not. Disruption of gene functions appears to be relatively specific by two criteria: targeting distinct genes resulted in distinct phenotypes that were consistent with predicted gene functions and by RT-PCR, RNAi reduced the level of a target mRNA and not a control mRNA. These studies represent the first evidence that gene functions can be disrupted by RNAi in the phylum Tardigrada. Our results form a platform for dissecting tardigrade gene functions for understanding the evolution of developmental mechanisms and survival in extreme environments.
Coral thermal tolerance: tuning gene expression to resist thermal stress.
Bellantuono, Anthony J; Granados-Cifuentes, Camila; Miller, David J; Hoegh-Guldberg, Ove; Rodriguez-Lanetty, Mauricio
2012-01-01
The acclimatization capacity of corals is a critical consideration in the persistence of coral reefs under stresses imposed by global climate change. The stress history of corals plays a role in subsequent response to heat stress, but the transcriptomic changes associated with these plastic changes have not been previously explored. In order to identify host transcriptomic changes associated with acquired thermal tolerance in the scleractinian coral Acropora millepora, corals preconditioned to a sub-lethal temperature of 3°C below bleaching threshold temperature were compared to both non-preconditioned corals and untreated controls using a cDNA microarray platform. After eight days of hyperthermal challenge, conditions under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant) maintained Symbiodinium density, a clear differentiation in the transcriptional profiles was revealed among the condition examined. Among these changes, nine differentially expressed genes separated preconditioned corals from non-preconditioned corals, with 42 genes differentially expressed between control and preconditioned treatments, and 70 genes between non-preconditioned corals and controls. Differentially expressed genes included components of an apoptotic signaling cascade, which suggest the inhibition of apoptosis in preconditioned corals. Additionally, lectins and genes involved in response to oxidative stress were also detected. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments; that is, differences in expression magnitude were more apparent than differences in the identity of genes differentially expressed. Our work revealed a transcriptomic signature underlying the tolerance associated with coral thermal history, and suggests that understanding the molecular mechanisms behind physiological acclimatization would be critical for the modeling of reefs in impending climate change scenarios.
Coral Thermal Tolerance: Tuning Gene Expression to Resist Thermal Stress
Bellantuono, Anthony J.; Granados-Cifuentes, Camila; Miller, David J.; Hoegh-Guldberg, Ove; Rodriguez-Lanetty, Mauricio
2012-01-01
The acclimatization capacity of corals is a critical consideration in the persistence of coral reefs under stresses imposed by global climate change. The stress history of corals plays a role in subsequent response to heat stress, but the transcriptomic changes associated with these plastic changes have not been previously explored. In order to identify host transcriptomic changes associated with acquired thermal tolerance in the scleractinian coral Acropora millepora, corals preconditioned to a sub-lethal temperature of 3°C below bleaching threshold temperature were compared to both non-preconditioned corals and untreated controls using a cDNA microarray platform. After eight days of hyperthermal challenge, conditions under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant) maintained Symbiodinium density, a clear differentiation in the transcriptional profiles was revealed among the condition examined. Among these changes, nine differentially expressed genes separated preconditioned corals from non-preconditioned corals, with 42 genes differentially expressed between control and preconditioned treatments, and 70 genes between non-preconditioned corals and controls. Differentially expressed genes included components of an apoptotic signaling cascade, which suggest the inhibition of apoptosis in preconditioned corals. Additionally, lectins and genes involved in response to oxidative stress were also detected. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments; that is, differences in expression magnitude were more apparent than differences in the identity of genes differentially expressed. Our work revealed a transcriptomic signature underlying the tolerance associated with coral thermal history, and suggests that understanding the molecular mechanisms behind physiological acclimatization would be critical for the modeling of reefs in impending climate change scenarios. PMID:23226355
Wild worm embryogenesis harbors ubiquitous polygenic modifier variation
Paaby, Annalise B; White, Amelia G; Riccardi, David D; Gunsalus, Kristin C; Piano, Fabio; Rockman, Matthew V
2015-01-01
Embryogenesis is an essential and stereotypic process that nevertheless evolves among species. Its essentiality may favor the accumulation of cryptic genetic variation (CGV) that has no effect in the wild-type but that enhances or suppresses the effects of rare disruptions to gene function. Here, we adapted a classical modifier screen to interrogate the alleles segregating in natural populations of Caenorhabditis elegans: we induced gene knockdowns and used quantitative genetic methodology to examine how segregating variants modify the penetrance of embryonic lethality. Each perturbation revealed CGV, indicating that wild-type genomes harbor myriad genetic modifiers that may have little effect individually but which in aggregate can dramatically influence penetrance. Phenotypes were mediated by many modifiers, indicating high polygenicity, but the alleles tend to act very specifically, indicating low pleiotropy. Our findings demonstrate the extent of conditional functionality in complex trait architecture. DOI: http://dx.doi.org/10.7554/eLife.09178.001 PMID:26297805
Cloning and characterization of the Schizosaccharomyces pombe tRNA:pseudouridine synthase Pus1p.
Hellmuth, K; Grosjean, H; Motorin, Y; Deinert, K; Hurt, E; Simos, G
2000-12-01
Saccharomyces cerevisiae cells that carry deletions in both the LOS1 (a tRNA export receptor) and the PUS1 (a tRNA:pseudouridine synthase) genes exhibit a thermosensitive growth defect. A Schizosaccharomyces pombe gene, named spPUS1, was cloned from a cDNA library by complementation of this conditional lethal phenotype. The corresponding protein, spPus1p, shows sequence similarity to S. cerevisiae and murine Pus1p as well as other known members of the pseudouridine synthase family. Accordingly, recombinant spPus1p can catalyze in vitro the formation of pseudouridines at positions 27, 28, 34, 35 and 36 of yeast tRNA transcripts. The sequence and functional conservation of the Pus1p proteins in fungi and mammalian species and their notable absence from prokaryotes suggest that this family of pseudouridine synthases is required for a eukaryote-specific step of tRNA biogenesis, such as nuclear export.
Evans, Jessica J; Gygli, Patrick E; McCaskill, Julienne; DeVeaux, Linda C
2018-04-20
The haloarchaea are unusual in possessing genes for multiple homologs to the ubiquitous single-stranded DNA binding protein (SSB or replication protein A, RPA) found in all three domains of life. Halobacterium salinarum contains five homologs: two are eukaryotic in organization, two are prokaryotic and are encoded on the minichromosomes, and one is uniquely euryarchaeal. Radiation-resistant mutants previously isolated show upregulation of one of the eukaryotic-type RPA genes. Here, we have created deletions in the five RPA operons. These deletion mutants were exposed to DNA-damaging conditions: ionizing radiation, UV radiation, and mitomycin C. Deletion of the euryarchaeal homolog, although not lethal as in Haloferax volcanii , causes severe sensitivity to all of these agents. Deletion of the other RPA/SSB homologs imparts a variable sensitivity to these DNA-damaging agents, suggesting that the different RPA homologs have specialized roles depending on the type of genomic insult encountered.
White, W. H.; Johnson, D. I.
1997-01-01
Cdc24p is the guanine-nucleotide exchange factor for the Cdc42p GTPase, which controls cell polarity in Saccharomyces cerevisiae. To identify new genes that may affect cell polarity, we characterized six UV-induced csl (CDC24 synthetic-lethal) mutants that exhibited synthetic-lethality with cdc24-4(ts) at 23°. Five mutants were not complemented by plasmid-borne CDC42, RSR1, BUD5, BEM1, BEM2, BEM3 or CLA4 genes, which are known to play a role in cell polarity. The csl3 mutant displayed phenotypes similar to those observed with calcium-sensitive, Pet(-) vma mutants defective in vacuole function. CSL5 was allelic to VMA5, the vacuolar H(+)-ATPase subunit C, and one third of csl5 cdc24-4(ts) cells were elongated or had misshapen buds. A cdc24-4(ts) Δvma5::LEU2 double mutant did not exhibit synthetic lethality, suggesting that the csl5/vma5 cdc24-4(ts) synthetic-lethality was not simply due to altered vacuole function. The cdc24-4(ts) mutant, like Δvma5::LEU2 and csl3 mutants, was sensitive to high levels of Ca(2+) as well as Na(+) in the growth media, which did not appear to be a result of a fragile cell wall because the phenotypes were not remedied by 1 M sorbitol. Our results indicated that Cdc24p was required in one V-ATPase mutant and another mutant affecting vacuole morphology, and also implicated Cdc24p in Na(+) tolerance. PMID:9286667
Nakano, A; Pulkkinen, L; Murrell, D; Rico, J; Lucky, A W; Garzon, M; Stevens, C A; Robertson, S; Pfendner, E; Uitto, J
2001-05-01
Epidermolysis bullosa with pyloric atresia (EB-PA: OMIM 226730), also known as Carmi syndrome, is a rare autosomal recessive genodermatosis that manifests with neonatal mucocutaneous fragility associated with congenital pyloric atresia. The disease is frequently lethal within the first year, but nonlethal cases have been reported. Mutations in the genes encoding subunit polypeptides of the alpha 6 beta 4 integrin (ITGA6 and ITGB4) have been demonstrated in EB-PA patients. To extend the repertoire of mutations and to identify genotype-phenotype correlations, we examined seven new EB-PA families, four with lethal and three with nonlethal disease variants. DNA from patients was screened for mutations using heteroduplex analysis followed by nucleotide sequencing of PCR products spanning all beta 4 integrin-coding sequences. Mutation analysis disclosed 12 distinct mutations, 11 of them novel. Four mutations predicted a premature termination codon as a result of nonsense mutations or small out-of-frame insertions or deletions, whereas seven were missense mutations. This brings the total number of distinct ITGB4 mutations to 33. The mutation database indicates that premature termination codons are associated predominantly with the lethal EB-PA variants, whereas missense mutations are more prevalent in nonlethal forms. However, the consequences of the missense mutations are position dependent, and substitutions of highly conserved amino acids may have lethal consequences. In general, indirect immunofluorescence studies of affected skin revealed negative staining for beta 4 integrin in lethal cases and positive, but attenuated, staining in nonlethal cases and correlated with clinical phenotype. The data on specific mutations in EB-PA patients allows prenatal testing and preimplantation genetic diagnosis in families at risk.
Horvat, Simon; McWhir, Jim; Rozman, Damjana
2011-02-01
This review describes the mouse knockout models of cholesterol synthesis, together with human malformations and drugs that target cholesterogenic enzymes. Generally, the sooner a gene acts in cholesterol synthesis, the earlier the phenotype occurs. Humans with loss of function of early cholesterogenic enzymes have not yet been described, and in the mouse, loss of Hmgcr is preimplantation lethal. Together, these results indicate that the widely prescribed cholesterol-lowering statins are potentially teratogenic. The Mvk knockout is early embryonic lethal in the mouse, the absence of Fdft1 is lethal at E9.5-12.5 dpc, while the Cyp51 knockouts die at 15.0 dpc. Fungal CYP51 inhibitor azoles are teratogenic in humans, potentially leading to symptoms of Antley-Bixler syndrome. The X-linked mutations in Nsdhl and Ebp are embryonic lethal in male mice, while heterozygous females are also affected. Consequently, the anticancer drugs, tamoxifen and toremifene, inhibiting human EBP, may be harmful in early pregnancy. The Dhcr7 and Dhcr24 knockout mice die shortly after birth, while humans survive with Smith-Lemli-Opitz syndrome or desmosterolosis. Since cholesterol is essential for hedgehog signaling, disturbance of this pathway by antipsychotics and -depressants explains some drug side effects. In conclusion, defects in cholesterol synthesis are generally lethal in mice, while humans with impaired later steps of the pathway can survive with severe malformations. Evidence shows that drugs targeting or, by coincidence, inhibiting human cholesterol synthesis are better avoided in early pregnancy. Since some drugs with teratogenic potential still stay on the market, this should be avoided in new cholesterol-related drug development.
[Hypophosphatasia: Clinical manifestations, diagnostic recommendations and therapeutic options].
Martos-Moreno, Gabriel A; Calzada, Joan; Couce, María L; Argente, Jesús
2018-06-01
Hypophosphatasia is a very rare bone metabolism disorder caused by a deficiency in alkaline phosphatase activity, due to mutations in the ALPL gene. Its clinical hallmark is the impairment of skeletal and teeth mineralisation, although extra-skeletal manifestations are frequent. Its phenotypic spectrum is widely variable from a subtype with exclusive odontological impairment (odontohypophosphatasia) to five subtypes with systemic involvement, classified according to the age at the onset of the first symptoms (four of them in the paediatric age range: perinatal lethal, perinatal benign, infant and childhood hypophosphatasia). Those subtypes of hypophosphatasia with an earliest onset usually involve a worse prognosis, due to the risk of developing potentially lethal complications, such as seizures or severe respiratory insufficiency, secondary to rib cage malformations. Due to the extremely low prevalence of the severe forms of hypophosphatasia, its clinical variability and overlapping phenotypic features with several more prevalent conditions, the diagnosis of hypophosphatasia in the clinical setting is challenging. However, its potential lethality and impact on the patient's quality of life, along with the recent availability of an enzyme replacement therapy, increases the relevance of the early and accurate identification of patients affected with hypophosphatasia. On the basis of published evidence and clinical experience, this article suggests an algorithm with practical recommendations for the differential diagnosis of childhood hypophosphatasia, as well as an updated review of current therapeutic options. Copyright © 2017 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.
Delineation of the Marfan phenotype associated with mutations in exons 23-32 of the FBN1 gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Putnam, E.A.; Cho, M.; Milewicz, D.M.
Marfan syndrome is a dominantly inherited connective tissue disorder with a wide range of phenotypic severity. The condition is the result of mutations in FBN1, a large gene composed of 65 exons encoding the fibrillin-1 protein. While mutations causing classic manifestations of Marfan syndrome have been identified throughout the FBN1 gene, the six previously characterized mutations resulting in the severe, perinatal lethal form of Marfan syndrome have clustered in exons 24-32 of the gene. We screened 8 patients with either neonatal Marfan syndrome or severe cardiovascular complications of Marfan syndrome for mutations in this region of the gene. Using intron-basedmore » exon-specific primers, we amplified exons 23-32 from genomic DNAs, screened these fragments by single-stranded conformational polymorphism analysis, and sequenced indicated exons. This analysis documented mutations in exons 25-27 of the FBN1 mutations in 6 of these patients. These results, taken together with previously published FBN1 mutations in this region, further define the phenotype associated with mutations in exons 24-32 of the FBN1 gene, information important for the development of possible diagnostic tests and genetic counseling. 49 refs., 4 figs., 2 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Happle, R.; Effendy, I., Megahed, M.; Orlow, S.J.
CHILD syndrome (congential hemidysplasia with ichthyosiform nevus and limb defects) occurs, as a rule, exclusively in girls because of the underlying X-linked gene exerts a lethal effect on male embryos. In this report the characteristic manifestations of CHILD syndrome are described in a 2-year-old boy with a normal chromosome constitution 46,XY. This exceptional case is best explained by the assumption of an early somatic mutation and thus compatible with the concept of X-linked dominant male-lethal inheritance of this trait. 18 refs., 6 figs.
Yoon, K. S.; Strycharz, J. P.; Baek, J. H.; Sun, W.; Kim, J.H.; Kang, J.S.; Pittendrigh, B. R.; Lee, S. H.; Clark, J. M.
2011-01-01
Transcriptional profiling results, using our non-invasive induction assay [short exposure intervals (2–5 h) to sub-lethal amounts of insecticides (
New insights about host response to smallpox using microarray data
Esteves, Gustavo H; Simoes, Ana CQ; Souza, Estevao; Dias, Rodrigo A; Ospina, Raydonal; Venancio, Thiago M
2007-01-01
Background Smallpox is a lethal disease that was endemic in many parts of the world until eradicated by massive immunization. Due to its lethality, there are serious concerns about its use as a bioweapon. Here we analyze publicly available microarray data to further understand survival of smallpox infected macaques, using systems biology approaches. Our goal is to improve the knowledge about the progression of this disease. Results We used KEGG pathways annotations to define groups of genes (or modules), and subsequently compared them to macaque survival times. This technique provided additional insights about the host response to this disease, such as increased expression of the cytokines and ECM receptors in the individuals with higher survival times. These results could indicate that these gene groups could influence an effective response from the host to smallpox. Conclusion Macaques with higher survival times clearly express some specific pathways previously unidentified using regular gene-by-gene approaches. Our work also shows how third party analysis of public datasets can be important to support new hypotheses to relevant biological problems. PMID:17718913
Megchelenbrink, Wout; Katzir, Rotem; Lu, Xiaowen; Ruppin, Eytan; Notebaart, Richard A
2015-09-29
Synthetic dosage lethality (SDL) denotes a genetic interaction between two genes whereby the underexpression of gene A combined with the overexpression of gene B is lethal. SDLs offer a promising way to kill cancer cells by inhibiting the activity of SDL partners of activated oncogenes in tumors, which are often difficult to target directly. As experimental genome-wide SDL screens are still scarce, here we introduce a network-level computational modeling framework that quantitatively predicts human SDLs in metabolism. For each enzyme pair (A, B) we systematically knock out the flux through A combined with a stepwise flux increase through B and search for pairs that reduce cellular growth more than when either enzyme is perturbed individually. The predictive signal of the emerging network of 12,000 SDLs is demonstrated in five different ways. (i) It can be successfully used to predict gene essentiality in shRNA cancer cell line screens. Moving to clinical tumors, we show that (ii) SDLs are significantly underrepresented in tumors. Furthermore, breast cancer tumors with SDLs active (iii) have smaller sizes and (iv) result in increased patient survival, indicating that activation of SDLs increases cancer vulnerability. Finally, (v) patient survival improves when multiple SDLs are present, pointing to a cumulative effect. This study lays the basis for quantitative identification of cancer SDLs in a model-based mechanistic manner. The approach presented can be used to identify SDLs in species and cell types in which "omics" data necessary for data-driven identification are missing.
Doud, Devin F. R.; Angenent, Largus T.
2016-07-14
Rhodopseudomonas palustris has emerged as a model microbe for the anaerobic metabolism of p-coumarate, which is an aromatic compound and a primary component of lignin. However, under an aerobic conditions, R.palustris must actively eliminate excess reducing equivalents through a number of known strategies (e.g., CO 2 fixation, H 2 evolution) to avoid lethal redox imbalance. Others had hypothesized that to ease the burden of this redox imbalance, a clonal population of R.palustris could functionally differentiate into a pseudo-consortium. Within this pseudo-consortium, one sub-population would perform the aromatic moiety degradation into acetate, while the other sub-population would oxidize acetate, resulting inmore » a single-genotype syntrophy through acetate sharing. Here, the objective was to test this hypothesis by utilizing microbial lelectrochemistry as a research tool with the extrac ellular-electron-transferring bacterium Geobacter sulfurreducens as a reporter strain replacing the hypothesized acetate-oxidizing sub-population. We used a 2×4 experimental design with pure cultures of R. palustris in serum bottles and co-cultures of R. palustris and G.sulfurreducens in bioelectrochemical systems.This experimental design included growth medium with and without bicarbonate to induce non-lethal and lethal redox imbalance conditions, respectively, in R. palustris. Finally, the design also included a mutant strain (NifA*) of R. palustris, which constitutively produces H 2, to serve both as a positive control for metabolite secretion (H 2) to G. sulfurreducens, and as a non-lethal redox control for without bicarbonate conditions. Our results demonstrate that acetate sharing between different sub-populations of R. palustris does not occur while degrading p-coumarate under either non-lethal or lethal redox imbalance conditions. Furthermore, this work highlights the strength of microbial electrochemistry as a tool for studying microbial syntrophy.« less
Polarity-defective mutants of Aspergillus nidulans.
Osherov, N; Mathew, J; May, G S
2000-12-01
We have identified two polarity-defective (pod) mutants in Aspergillus nidulans from a collection of heat-sensitive lethal mutants. At restrictive temperature, these mutants are capable of nuclear division but are unable to establish polar hyphal growth. We cloned the two pod genes by complementation of their heat-sensitive lethal phenotypes. The libraries used to clone the pod genes are under the control of the bidirectional niaD and niiA promoters. Complementation of the pod mutants is dependent on growth on inducing medium. We show that rescue of the heat-sensitive phenotype on inducing media is independent of the orientation of the gene relative to the niaD or niiA promoters, demonstrating that the intergenic region between the niaD and the niiA genes functions as an orientation-independent enhancer and repressor that is capable of functioning over long distances. The products of the podG and the podH genes were identified as homologues of the alpha subunit of yeast mitochondrial phenylalanyl--tRNA synthetase and transcription factor IIF interacting component of the CTD phosphatase. Neither of these gene products would have been predicted to produce a pod mutant phenotype based on studies of cellular polarity mutants in other organisms. The implications of these results are discussed. Copyright 2000 Academic Press.
Gene expression responses of HeLa cells to chemical species generated by an atmospheric plasma flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokoyama, Mayo, E-mail: yokoyama@plasma.ifs.tohoku.ac.jp; Johkura, Kohei, E-mail: kohei@shinshu-u.ac.jp; Sato, Takehiko, E-mail: sato@ifs.tohoku.ac.jp
2014-08-08
Highlights: • Response of HeLa cells to a plasma-irradiated medium was revealed by DNA microarray. • Gene expression pattern was basically different from that in a H{sub 2}O{sub 2}-added medium. • Prominently up-/down-regulated genes were partly shared by the two media. • Gene ontology analysis showed both similar and different responses in the two media. • Candidate genes involved in response to ROS were detected in each medium. - Abstract: Plasma irradiation generates many factors able to affect the cellular condition, and this feature has been studied for its application in the field of medicine. We previously reported that hydrogenmore » peroxide (H{sub 2}O{sub 2}) was the major cause of HeLa cell death among the chemical species generated by high level irradiation of a culture medium by atmospheric plasma. To assess the effect of plasma-induced factors on the response of live cells, HeLa cells were exposed to a medium irradiated by a non-lethal plasma flow level, and their gene expression was broadly analyzed by DNA microarray in comparison with that in a corresponding concentration of 51 μM H{sub 2}O{sub 2}. As a result, though the cell viability was sufficiently maintained at more than 90% in both cases, the plasma-medium had a greater impact on it than the H{sub 2}O{sub 2}-medium. Hierarchical clustering analysis revealed fundamentally different cellular responses between these two media. A larger population of genes was upregulated in the plasma-medium, whereas genes were downregulated in the H{sub 2}O{sub 2}-medium. However, a part of the genes that showed prominent differential expression was shared by them, including an immediate early gene ID2. In gene ontology analysis of upregulated genes, the plasma-medium showed more diverse ontologies than the H{sub 2}O{sub 2}-medium, whereas ontologies such as “response to stimulus” were common, and several genes corresponded to “response to reactive oxygen species.” Genes of AP-1 proteins, e.g., JUN and FOS, were detected and notably elevated in the plasma-medium. These results showed that the medium irradiated with a non-lethal level of plasma flow altered various gene expressions of HeLa cells by giving not only common effects with H{sub 2}O{sub 2} but also some distinctive actions. This study suggests that in addition to H{sub 2}O{sub 2}, other chemical species able to affect the cellular responses exist in the plasma-irradiated medium and provide unique features for it, probably increasing the oxidative stress level.« less
Effect of temperature and heating rate on apparent lethal concentrations of pyrolysis products
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Solis, A. N.; Marcussen, W. H.; Furst, A.
1976-01-01
The apparent lethal concentrations for 50 percent of the test animals of the pyrolysis products from twelve polymeric materials were studied as a function of temperature and heating rate. The materials were polyethylene, nylon 6, ABS, polycarbonate, polyether sulfone, polyaryl sulfone, wool fabric, aromatic polyamide fabric, polychloroprene foam, polyvinyl fluoride film, Douglas fir, and red oak. The apparent lethal concentration values of most materials vary significantly with temperature and heating rate. The apparent lethal concentration values, based on weight of sample charged, appears to effectively integrate the thermophysical, thermochemical, and physiological responses from a known quantity of material under specified imposed conditions.
Defining the Role of Essential Genes in Human Disease
Robertson, David L.; Hentges, Kathryn E.
2011-01-01
A greater understanding of the causes of human disease can come from identifying characteristics that are specific to disease genes. However, a full understanding of the contribution of essential genes to human disease is lacking, due to the premise that these genes tend to cause developmental abnormalities rather than adult disease. We tested the hypothesis that human orthologs of mouse essential genes are associated with a variety of human diseases, rather than only those related to miscarriage and birth defects. We segregated human disease genes according to whether the knockout phenotype of their mouse ortholog was lethal or viable, defining those with orthologs producing lethal knockouts as essential disease genes. We show that the human orthologs of mouse essential genes are associated with a wide spectrum of diseases affecting diverse physiological systems. Notably, human disease genes with essential mouse orthologs are over-represented among disease genes associated with cancer, suggesting links between adult cellular abnormalities and developmental functions. The proteins encoded by essential genes are highly connected in protein-protein interaction networks, which we find correlates with an over-representation of nuclear proteins amongst essential disease genes. Disease genes associated with essential orthologs also are more likely than those with non-essential orthologs to contribute to disease through an autosomal dominant inheritance pattern, suggesting that these diseases may actually result from semi-dominant mutant alleles. Overall, we have described attributes found in disease genes according to the essentiality status of their mouse orthologs. These findings demonstrate that disease genes do occupy highly connected positions in protein-protein interaction networks, and that due to the complexity of disease-associated alleles, essential genes cannot be ignored as candidates for causing diverse human diseases. PMID:22096564
DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations.
Fynan, E F; Webster, R G; Fuller, D H; Haynes, J R; Santoro, J C; Robinson, H L
1993-01-01
Plasmid DNAs expressing influenza virus hemagglutinin glycoproteins have been tested for their ability to raise protective immunity against lethal influenza challenges of the same subtype. In trials using two inoculations of from 50 to 300 micrograms of purified DNA in saline, 67-95% of test mice and 25-63% of test chickens have been protected against a lethal influenza challenge. Parenteral routes of inoculation that achieved good protection included intramuscular and intravenous injections. Successful mucosal routes of vaccination included DNA drops administered to the nares or trachea. By far the most efficient DNA immunizations were achieved by using a gene gun to deliver DNA-coated gold beads to the epidermis. In mice, 95% protection was achieved by two immunizations with beads loaded with as little as 0.4 micrograms of DNA. The breadth of routes supporting successful DNA immunizations, coupled with the very small amounts of DNA required for gene-gun immunizations, highlight the potential of this remarkably simple technique for the development of subunit vaccines. Images Fig. 1 PMID:8265577
Park, Arnold; Yun, Tatyana; Hill, Terence E; Ikegami, Tetsuro; Juelich, Terry L; Smith, Jennifer K; Zhang, Lihong; Freiberg, Alexander N; Lee, Benhur
2016-04-01
Incorporation of reporter genes within virus genomes is an indispensable tool for interrogation of virus biology and pathogenesis. In previous work, we incorporated a fluorophore into a viral ORF by attaching it to the viral gene via a P2A ribosomal skipping sequence. This recombinant Nipah virus, however, was attenuated in vitro relative to WT virus. In this work, we determined that inefficient ribosomal skipping was a major contributing factor to this attenuation. Inserting a GSG linker before the P2A sequence resulted in essentially complete skipping, significantly improved growth in vitro, and WT lethality in vivo. To the best of our knowledge, this represents the first time a recombinant virus of Mononegavirales with integration of a reporter into a viral ORF has been compared with the WT virus in vivo. Incorporating the GSG linker for improved skipping efficiency whenever functionally important is a critical consideration for recombinant virus design.
Lethal exposure: An integrated approach to pathogen transmission via environmental reservoirs
Turner, Wendy C.; Kausrud, Kyrre L.; Beyer, Wolfgang; Easterday, W. Ryan; Barandongo, Zoë R.; Blaschke, Elisabeth; Cloete, Claudine C.; Lazak, Judith; Van Ert, Matthew N.; Ganz, Holly H.; Turnbull, Peter C. B.; Stenseth, Nils Chr.; Getz, Wayne M.
2016-01-01
To mitigate the effects of zoonotic diseases on human and animal populations, it is critical to understand what factors alter transmission dynamics. Here we assess the risk of exposure to lethal concentrations of the anthrax bacterium, Bacillus anthracis, for grazing animals in a natural system over time through different transmission mechanisms. We follow pathogen concentrations at anthrax carcass sites and waterholes for five years and estimate infection risk as a function of grass, soil or water intake, age of carcass sites, and the exposure required for a lethal infection. Grazing, not drinking, seems the dominant transmission route, and transmission is more probable from grazing at carcass sites 1–2 years of age. Unlike most studies of virulent pathogens that are conducted under controlled conditions for extrapolation to real situations, we evaluate exposure risk under field conditions to estimate the probability of a lethal dose, showing that not all reservoirs with detectable pathogens are significant transmission pathways. PMID:27265371
A Functional Genomics Approach to Identify Novel Breast Cancer Gene Targets in Yeast
2005-05-01
Chaleff DT, Valent B, Fink GR. Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics 1984; 107(2): 179-97... mutations , and are synthetically lethal with rotl mutations ROX3 YBL093C Repressor Of hypoXic genes : RNA polymerase I1 holcenzyme component 3,3 SSS...mitochondrial gene products; mutation causes an elevated rate of mitochondrial turnover; 3 MOD after 60 generations, MOD on NaCI YNDI YER005W Yeast Nucleoside
Monocarboxylate transporter 1 deficiency and ketone utilization.
van Hasselt, Peter M; Ferdinandusse, Sacha; Monroe, Glen R; Ruiter, Jos P N; Turkenburg, Marjolein; Geerlings, Maartje J; Duran, Karen; Harakalova, Magdalena; van der Zwaag, Bert; Monavari, Ardeshir A; Okur, Ilyas; Sharrard, Mark J; Cleary, Maureen; O'Connell, Nuala; Walker, Valerie; Rubio-Gozalbo, M Estela; de Vries, Maaike C; Visser, Gepke; Houwen, Roderick H J; van der Smagt, Jasper J; Verhoeven-Duif, Nanda M; Wanders, Ronald J A; van Haaften, Gijs
2014-11-13
Ketoacidosis is a potentially lethal condition caused by the imbalance between hepatic production and extrahepatic utilization of ketone bodies. We performed exome sequencing in a patient with recurrent, severe ketoacidosis and identified a homozygous frameshift mutation in the gene encoding monocarboxylate transporter 1 (SLC16A1, also called MCT1). Genetic analysis in 96 patients suspected of having ketolytic defects yielded seven additional inactivating mutations in MCT1, both homozygous and heterozygous. Mutational status was found to be correlated with ketoacidosis severity, MCT1 protein levels, and transport capacity. Thus, MCT1 deficiency is a novel cause of profound ketoacidosis; the present work suggests that MCT1-mediated ketone-body transport is needed to maintain acid-base balance.
Sugihara, Asami; Nguyen, Luan Cao; Shamim, Hossain Mohammad; Iida, Tetsushi; Nakase, Mai; Takegawa, Kaoru; Senda, Mitsuhisa; Jida, Shohei; Ueno, Masaru
2018-02-19
Fission yeast Pik1p is one of three phosphatidylinositol 4-kinases associated with the Golgi complex, but its function is not fully understood. Deletion of pot1 + causes telomere degradation and chromosome circularization. We searched for the gene which becomes synthetically lethal with pot1Δ. We obtained a novel pik1 mutant, pik1-1, which is synthetically lethal with pot1Δ. We found phosphoinositol 4-phosphate in the Golgi was reduced in pik1-1. To investigate the mechanism of the lethality of the pot1Δ pik1-1 double mutant, we constructed the nmt-pot1-aid pik1-1 strain, where Pot1 function becomes low by drugs, which leads to telomere loss and chromosome circularization, and found pik1-1 mutation does not affect telomere resection and chromosome circularization. Thus, our results suggest that pik1 + is required for the maintenance of circular chromosomes. Copyright © 2018 Elsevier Inc. All rights reserved.
Skoble, Justin; Beaber, John W; Gao, Yi; Lovchik, Julie A; Sower, Laurie E; Liu, Weiqun; Luckett, William; Peterson, Johnny W; Calendar, Richard; Portnoy, Daniel A; Lyons, C Rick; Dubensky, Thomas W
2009-04-01
Bacillus anthracis is the causative agent of anthrax. We have developed a novel whole-bacterial-cell anthrax vaccine utilizing B. anthracis that is killed but metabolically active (KBMA). Vaccine strains that are asporogenic and nucleotide excision repair deficient were engineered by deleting the spoIIE and uvrAB genes, rendering B. anthracis extremely sensitive to photochemical inactivation with S-59 psoralen and UV light. We also introduced point mutations into the lef and cya genes, which allowed inactive but immunogenic toxins to be produced. Photochemically inactivated vaccine strains maintained a high degree of metabolic activity and secreted protective antigen (PA), lethal factor, and edema factor. KBMA B. anthracis vaccines were avirulent in mice and induced less injection site inflammation than recombinant PA adsorbed to aluminum hydroxide gel. KBMA B. anthracis-vaccinated animals produced antibodies against numerous anthrax antigens, including high levels of anti-PA and toxin-neutralizing antibodies. Vaccination with KBMA B. anthracis fully protected mice against challenge with lethal doses of toxinogenic unencapsulated Sterne 7702 spores and rabbits against challenge with lethal pneumonic doses of fully virulent Ames strain spores. Guinea pigs vaccinated with KBMA B. anthracis were partially protected against lethal Ames spore challenge, which was comparable to vaccination with the licensed vaccine anthrax vaccine adsorbed. These data demonstrate that KBMA anthrax vaccines are well tolerated and elicit potent protective immune responses. The use of KBMA vaccines may be broadly applicable to bacterial pathogens, especially those for which the correlates of protective immunity are unknown.
Liu, Yaling; Burne, Robert A
2009-12-01
The oral commensal Streptococcus gordonii must adapt to constantly fluctuating and often hostile environmental conditions to persist in the oral cavity. The arginine deiminase system (ADS) of S. gordonii enables cells to produce, ornithine, ammonia, CO(2), and ATP from arginine hydrolysis, augmenting the acid tolerance of the organism. The ADS genes are substrate inducible and sensitive to catabolite repression, mediated through ArcR and CcpA, respectively, but the system also requires low pH and anaerobic conditions for optimal activation. Here, we demonstrate that the CiaRH and ComDE two-component systems (TCS) are required for low-pH-dependent expression of ADS genes in S. gordonii. Further, the VicRK TCS is required for optimal ADS gene expression under anaerobic conditions and enhances the sensitivity of the operon to repression by oxygen. The known anaerobic activator of the ADS, Fnr-like protein (Flp), appeared to act independently of the Vic TCS. Mutants of S. gordonii lacking components of the CiaRH, ComDE, or VicRK grew more slowly in acidified media and were more sensitive to killing at lethal pH values and to agents that induce oxidative stress. This study provides the first evidence that TCS can regulate the ADS of bacteria in response to specific environmental signals and reveals some notable differences in the contribution of CiaRH, ComDE, and VicRK to viability and stress tolerance between the oral commensal S. gordonii and the oral pathogen Streptococcus mutans.
Kurzik-Dumke, U; Kaymer, M; Gundacker, D; Debes, A; Labitzke, K
1997-10-24
In this paper, we describe the structure and temporal expression pattern of the Drosophila melanogaster genes l(2)not and l(2)rot located at locus 59F5 vis à vis the tumor suppressor gene l(2)tid described previously and exhibiting a gene within gene configuration. The l(2)not protein coding region, 1530 nt, is divided into two exons by an intron, 2645 nt, harboring the genes l(2)rot, co-transcribed from the same DNA strand, and l(2)tid, co-transcribed from the opposite DNA strand, located vis à vis. To determine proteins encoded by the genes described in this study polyclonal rabbit antibodies (Ab), anti-Not and anti-Rot, were generated. Immunostaining of developmental Western blots with the anti-Not Ab resulted in the identification of a 45-kDa protein, Not45, which is smaller than the Not56 protein predicted from the sequence. Its localization in endoplasmic reticulum (ER) was established by immunoelectron microscopy of Drosophila melanogaster Schneider 2 cells. Not45 shows significant homology to yeast ALG3 protein acting as a dolichol mannosyltransferase in the asparagine-linked glycosylation. It is synthesized ubiquitously throughout embryonic life. The protein predicted from the l(2)rot sequence, Rot57, shows a homology to the NS2B protein of the yellow fever virus1 (yefv1). The results of l(2)rot RNA analysis by developmental Northern blot and by in situ RNA localization, as well as the results of the protein analysis via Western blot and immunohistochemistry suggest that l(2)rot is transcribed but not translated. Since RNAs encoded by the genes l(2)tid and l(2)rot are complementary and l(2)rot is presumably not translated we performed preliminary experiments on the function of the l(2)rot RNA as a natural antisense RNA (asRNA) regulator of l(2)tid expression, expressed in the same temporal and spatial manner as the l(2)tid- and l(2)not RNA. l(2)tid knock-out by antisense RNA yielded late embryonic lethality resulting from multiple morphogenetic defects.
Tishchenko, E N; Komisarenko, A G; Mikhal'skaia, S I; Sergeeva, L E; Adamenko, N I; Morgun, B V; Kochetov, A V
2014-01-01
To estimate the efficiency of proline dehydrogenase gene suppression towards increasing of sunflower (Helianthus annuus L.) tolerance level to water deficit and salinity, we employed strain LBA4404 harboring pBi2E with double-stranded RNA-suppressor, which were prepared on basis arabidopsis ProDH1 gene. The techniques of Agrobacterium-mediated transformation in vitro and in planta during fertilization sunflower have been proposed. There was shown the genotype-depended integration of T-DNA in sunflower genome. PCR-analysis showed that ProDH1 presents in genome of inbred lines transformed in planta, as well as in T1- and T2-generations. In trans-genic regenerants the essential accumulation of free L-proline during early stages of in vitro cultivation under normal conditions was shown. There was established the essential accumulation of free proline in transgenic regenerants during cultivation under lethal stress pressure (0.4 M mannitol and 2.0% sea water salts) and its decline upon the recovery period. These data are declared about effectiveness of suppression of sunflower ProDH and gene participation in processes connected with osmotolerance.
Andreu-Vieyra, Claudia; Matzuk, Martin M
2007-02-01
Maternal effect genes encode transcripts that are expressed during oogenesis. These gene products are stored in the oocyte and become functional during resumption of meiosis and zygote genome activation, and in embryonic stem cells. To date, a few maternal effect genes have been identified in mammals. Epigenetic modifications have been shown to be important during early embryonic development and involve DNA methylation and post-translational modification of core histones. During development, two families of proteins have been shown to be involved in epigenetic changes: Trithorax group (Trx-G) and Polycomb group (Pc-G) proteins. Trx-G proteins function as transcriptional activators and have been shown to accumulate in the oocyte. Deletion of Trx-G members using conventional knockout technology results in embryonic lethality in the majority of the cases analysed to date. Recent studies using conditional knockout mice have revealed that at least one family member is necessary for zygote genome activation. We propose that other Trx-G members may also regulate embryonic genome activation and that the use of oocyte-specific deletor mouse lines will help clarify their roles in this process.
Nieborowska-Skorska, Margaret; Sullivan, Katherine; Dasgupta, Yashodhara; Podszywalow-Bartnicka, Paulina; Maifrede, Silvia; Di Marcantonio, Daniela; Bolton-Gillespie, Elisabeth; Cramer-Morales, Kimberly; Lee, Jaewong; Li, Min; Slupianek, Artur; Gritsyuk, Daniel; Cerny-Reiterer, Sabine; Seferynska, Ilona; Bullinger, Lars; Gorbunova, Vera; Piwocka, Katarzyna; Valent, Peter; Civin, Curt I.; Muschen, Markus; Dick, John E.; Wang, Jean C.Y.; Bhatia, Smita; Bhatia, Ravi; Eppert, Kolja; Minden, Mark D.; Sykes, Stephen M.
2017-01-01
Quiescent and proliferating leukemia cells accumulate highly lethal DNA double-strand breaks that are repaired by 2 major mechanisms: BRCA-dependent homologous recombination and DNA-dependent protein kinase–mediated (DNA-PK–mediated) nonhomologous end-joining, whereas DNA repair pathways mediated by poly(ADP)ribose polymerase 1 (PARP1) serve as backups. Here we have designed a personalized medicine approach called gene expression and mutation analysis (GEMA) to identify BRCA- and DNA-PK–deficient leukemias either directly, using reverse transcription-quantitative PCR, microarrays, and flow cytometry, or indirectly, by the presence of oncogenes such as BCR-ABL1. DNA-PK–deficient quiescent leukemia cells and BRCA/DNA-PK–deficient proliferating leukemia cells were sensitive to PARP1 inhibitors that were administered alone or in combination with current antileukemic drugs. In conclusion, GEMA-guided targeting of PARP1 resulted in dual cellular synthetic lethality in quiescent and proliferating immature leukemia cells, and is thus a potential approach to eradicate leukemia stem and progenitor cells that are responsible for initiation and manifestation of the disease. Further, an analysis of The Cancer Genome Atlas database indicated that this personalized medicine approach could also be applied to treat numerous solid tumors from individual patients. PMID:28481221
White-Cooper, H; Carmena, M; Gonzalez, C; Glover, D M
1996-11-01
We have simultaneously screened for new alleles and second site mutations that fail to complement five cell cycle mutations of Drosphila carried on a single third chromosome (gnu, polo, mgr, asp, stg). Females that are either transheterozygous for scott of the antartic (scant) and polo, or homozygous for scant produce embryos that show mitotic defects. A maternal effect upon embryonic mitoses is also seen in embryos derived from females transheterozygous with helter skelter (hsk) and either mgr or asp. cleopatra (cleo), fails to complement asp but is not uncovered by a deficiency for asp. The mitotic phenotype of larvae heterozygous for cleo and the multiple mutant chromosome is similar to weak alleles of asp, but there are no defects in male meiosis. Mutations that failed to complement stg fell into two complementation groups corresponding to stg and a new gene noose. Three of the new stg alleles are early zygotic lethals, whereas the fourth is a pharate adult lethal allele that affects both mitosis and meiosis. Mutations in noose fully complement a small deficiency that removes stg, but when placed in trans to certain stg alleles, result in late lethality and mitotic abnormalities in larval brains.
Pokatayev, Vladislav; Hasin, Naushaba; Chon, Hyongi; Cerritelli, Susana M.; Sakhuja, Kiran; Ward, Jerrold M.; Morris, H. Douglas; Yan, Nan
2016-01-01
The neuroinflammatory autoimmune disease Aicardi-Goutières syndrome (AGS) develops from mutations in genes encoding several nucleotide-processing proteins, including RNase H2. Defective RNase H2 may induce accumulation of self-nucleic acid species that trigger chronic type I interferon and inflammatory responses, leading to AGS pathology. We created a knock-in mouse model with an RNase H2 AGS mutation in a highly conserved residue of the catalytic subunit, Rnaseh2aG37S/G37S (G37S), to understand disease pathology. G37S homozygotes are perinatal lethal, in contrast to the early embryonic lethality previously reported for Rnaseh2b- or Rnaseh2c-null mice. Importantly, we found that the G37S mutation led to increased expression of interferon-stimulated genes dependent on the cGAS–STING signaling pathway. Ablation of STING in the G37S mice results in partial rescue of the perinatal lethality, with viable mice exhibiting white spotting on their ventral surface. We believe that the G37S knock-in mouse provides an excellent animal model for studying RNASEH2-associated autoimmune diseases. PMID:26880576
Fish, Margaret B.; Cho, Ken W. Y.
2016-01-01
CRISPR/Cas9 genome editing is revolutionizing genetic loss-of-function analysis but technical limitations remain that slow progress when creating mutant lines. First, in conventional genetic breeding schemes, mosaic founder animals carrying mutant alleles are outcrossed to produce F1 heterozygotes. Phenotypic analysis occurs in the F2 generation following F1 intercrosses. Thus, mutant analyses will require multi-generational studies. Second, when targeting essential genes, efficient mutagenesis of founders is often lethal, preventing the acquisition of mature animals. Reducing mutagenesis levels may improve founder survival, but results in lower, more variable rates of germline transmission. Therefore, an efficient approach to study lethal mutations would be useful. To overcome these shortfalls, we introduce ‘leapfrogging’, a method combining efficient CRISPR mutagenesis with transplantation of mutated primordial germ cells into a wild-type host. Tested using Xenopus tropicalis, we show that founders containing transplants transmit mutant alleles with high efficiency. F1 offspring from intercrosses between F0 animals that carry embryonic lethal alleles recapitulate loss-of-function phenotypes, circumventing an entire generation of breeding. We anticipate that leapfrogging will be transferable to other species. PMID:27385011
Functional Analysis With a Barcoder Yeast Gene Overexpression System
Douglas, Alison C.; Smith, Andrew M.; Sharifpoor, Sara; Yan, Zhun; Durbic, Tanja; Heisler, Lawrence E.; Lee, Anna Y.; Ryan, Owen; Göttert, Hendrikje; Surendra, Anu; van Dyk, Dewald; Giaever, Guri; Boone, Charles; Nislow, Corey; Andrews, Brenda J.
2012-01-01
Systematic analysis of gene overexpression phenotypes provides an insight into gene function, enzyme targets, and biological pathways. Here, we describe a novel functional genomics platform that enables a highly parallel and systematic assessment of overexpression phenotypes in pooled cultures. First, we constructed a genome-level collection of ~5100 yeast barcoder strains, each of which carries a unique barcode, enabling pooled fitness assays with a barcode microarray or sequencing readout. Second, we constructed a yeast open reading frame (ORF) galactose-induced overexpression array by generating a genome-wide set of yeast transformants, each of which carries an individual plasmid-born and sequence-verified ORF derived from the Saccharomyces cerevisiae full-length EXpression-ready (FLEX) collection. We combined these collections genetically using synthetic genetic array methodology, generating ~5100 strains, each of which is barcoded and overexpresses a specific ORF, a set we termed “barFLEX.” Additional synthetic genetic array allows the barFLEX collection to be moved into different genetic backgrounds. As a proof-of-principle, we describe the properties of the barFLEX overexpression collection and its application in synthetic dosage lethality studies under different environmental conditions. PMID:23050238
Cicotello, Joaquín; Wolf, Irma V; D'Angelo, Luisa; Guglielmotti, Daniela M; Quiberoni, Andrea; Suárez, Viviana B
2018-08-01
The ability of twelve strains belonging to three Leuconostoc species (Leuconostoc mesenteroides, Leuconostoc lactis and Leuconostoc pseudomesenteroides) to grow under diverse sub-lethal technological stress conditions (cold, acidic, alkaline and osmotic) was evaluated in MRS broth. Two strains, Leuconostoc lactis Ln N6 and Leuconostoc mesenteroides Ln MB7, were selected based on their growth under sub-lethal conditions, and volatile profiles in RSM (reconstituted skim milk) at optimal and under stress conditions were analyzed. Growth rates under sub-lethal conditions were strain- and not species-dependent. Volatilomes obtained from the two strains studied were rather diverse. Particularly, Ln N6 (Ln. lactis) produced more ethanol and acetic acid than Ln MB7 (Ln. mesenteroides) and higher amounts and diversity of the rest of volatile compounds as well, at all times of incubation. For the two strains studied, most of stress conditions applied diminished the amounts of ethanol and acetic acid produced and the diversity and levels of the rest of volatile compounds. These results were consequence of the different capacity of the strains to grow under each stress condition tested. Copyright © 2018 Elsevier Ltd. All rights reserved.
Waller, Diane L.; Bartsch, Michelle; Bartsch, Lynn; Jackson, Craig
2018-01-01
Levels of carbon dioxide (CO2) that have been proposed for aquatic invasive species (AIS) control [24 000 – 96 000 µatm partial pressure CO2 (PCO2); 1 atm = 101.325 kPa] were tested on juvenile mussels, the Fatmucket (Lampsilis siliquoidea) and the U.S. federally endangered Higgins Eye (L. higginsii). A suite of responses (survival, growth, behavior, and gene expression) were measured after 28-d exposure and 14-d postexposure to CO2. The 28-d LC20 (lethal concentration to 20%) was lower for L. higginsii (31 800 µatm PCO2, 95% confidence interval (CI) 15 000 – 42 800 µatm) than for L. siliquoidea (58 200 µatm PCO2, 95% CI 45 200 – 68 100 µatm). Treatment-related reductions occurred in all measures of growth and condition. Expression of chitin synthase, key for shell formation, was down-regulated at 28-d exposure. Carbon dioxide caused narcotization and unburial of mussels, behaviors that could increase mortality by predation and displacement. We conclude that survival and growth of juvenile mussels could be reduced by continuous exposure to elevated CO2, but recovery may be possible in shorter duration exposure.
New insights into genotype–phenotype correlation for GLI3 mutations
Démurger, Florence; Ichkou, Amale; Mougou-Zerelli, Soumaya; Le Merrer, Martine; Goudefroye, Géraldine; Delezoide, Anne-Lise; Quélin, Chloé; Manouvrier, Sylvie; Baujat, Geneviève; Fradin, Mélanie; Pasquier, Laurent; Megarbané, André; Faivre, Laurence; Baumann, Clarisse; Nampoothiri, Sheela; Roume, Joëlle; Isidor, Bertrand; Lacombe, Didier; Delrue, Marie-Ange; Mercier, Sandra; Philip, Nicole; Schaefer, Elise; Holder, Muriel; Krause, Amanda; Laffargue, Fanny; Sinico, Martine; Amram, Daniel; André, Gwenaelle; Liquier, Alain; Rossi, Massimiliano; Amiel, Jeanne; Giuliano, Fabienne; Boute, Odile; Dieux-Coeslier, Anne; Jacquemont, Marie-Line; Afenjar, Alexandra; Van Maldergem, Lionel; Lackmy-Port-Lis, Marylin; Vincent- Delorme, Catherine; Chauvet, Marie-Liesse; Cormier-Daire, Valérie; Devisme, Louise; Geneviève, David; Munnich, Arnold; Viot, Géraldine; Raoul, Odile; Romana, Serge; Gonzales, Marie; Encha-Razavi, Ferechte; Odent, Sylvie; Vekemans, Michel; Attie-Bitach, Tania
2015-01-01
The phenotypic spectrum of GLI3 mutations includes autosomal dominant Greig cephalopolysyndactyly syndrome (GCPS) and Pallister–Hall syndrome (PHS). PHS was first described as a lethal condition associating hypothalamic hamartoma, postaxial or central polydactyly, anal atresia and bifid epiglottis. Typical GCPS combines polysyndactyly of hands and feet and craniofacial features. Genotype–phenotype correlations have been found both for the location and the nature of GLI3 mutations, highlighting the bifunctional nature of GLI3 during development. Here we report on the molecular and clinical study of 76 cases from 55 families with either a GLI3 mutation (49 GCPS and 21 PHS), or a large deletion encompassing the GLI3 gene (6 GCPS cases). Most of mutations are novel and consistent with the previously reported genotype–phenotype correlation. Our results also show a correlation between the location of the mutation and abnormal corpus callosum observed in some patients with GCPS. Fetal PHS observations emphasize on the possible lethality of GLI3 mutations and extend the phenotypic spectrum of malformations such as agnathia and reductional limbs defects. GLI3 expression studied by in situ hybridization during human development confirms its early expression in target tissues. PMID:24736735
New insights into genotype-phenotype correlation for GLI3 mutations.
Démurger, Florence; Ichkou, Amale; Mougou-Zerelli, Soumaya; Le Merrer, Martine; Goudefroye, Géraldine; Delezoide, Anne-Lise; Quélin, Chloé; Manouvrier, Sylvie; Baujat, Geneviève; Fradin, Mélanie; Pasquier, Laurent; Megarbané, André; Faivre, Laurence; Baumann, Clarisse; Nampoothiri, Sheela; Roume, Joëlle; Isidor, Bertrand; Lacombe, Didier; Delrue, Marie-Ange; Mercier, Sandra; Philip, Nicole; Schaefer, Elise; Holder, Muriel; Krause, Amanda; Laffargue, Fanny; Sinico, Martine; Amram, Daniel; André, Gwenaelle; Liquier, Alain; Rossi, Massimiliano; Amiel, Jeanne; Giuliano, Fabienne; Boute, Odile; Dieux-Coeslier, Anne; Jacquemont, Marie-Line; Afenjar, Alexandra; Van Maldergem, Lionel; Lackmy-Port-Lis, Marylin; Vincent-Delorme, Catherine; Chauvet, Marie-Liesse; Cormier-Daire, Valérie; Devisme, Louise; Geneviève, David; Munnich, Arnold; Viot, Géraldine; Raoul, Odile; Romana, Serge; Gonzales, Marie; Encha-Razavi, Ferechte; Odent, Sylvie; Vekemans, Michel; Attie-Bitach, Tania
2015-01-01
The phenotypic spectrum of GLI3 mutations includes autosomal dominant Greig cephalopolysyndactyly syndrome (GCPS) and Pallister-Hall syndrome (PHS). PHS was first described as a lethal condition associating hypothalamic hamartoma, postaxial or central polydactyly, anal atresia and bifid epiglottis. Typical GCPS combines polysyndactyly of hands and feet and craniofacial features. Genotype-phenotype correlations have been found both for the location and the nature of GLI3 mutations, highlighting the bifunctional nature of GLI3 during development. Here we report on the molecular and clinical study of 76 cases from 55 families with either a GLI3 mutation (49 GCPS and 21 PHS), or a large deletion encompassing the GLI3 gene (6 GCPS cases). Most of mutations are novel and consistent with the previously reported genotype-phenotype correlation. Our results also show a correlation between the location of the mutation and abnormal corpus callosum observed in some patients with GCPS. Fetal PHS observations emphasize on the possible lethality of GLI3 mutations and extend the phenotypic spectrum of malformations such as agnathia and reductional limbs defects. GLI3 expression studied by in situ hybridization during human development confirms its early expression in target tissues.
Energy metabolism regulated by HDAC inhibitor attenuates cardiac injury in hemorrhagic rat model
Kuai, Qiyuan; Wang, Chunyan; Wang, Yanbing; Li, Weijing; Zhang, Gongqing; Qiao, Zhixin; He, Min; Wang, Xuanlin; Wang, Yu; Jiang, Xingwei; Su, Lihua; He, Yuezhong; Ren, Suping; Yu, Qun
2016-01-01
A disturbance of energy metabolism reduces cardiac function in acute severe hemorrhagic patients. Alternatively, adequate energy supply reduces heart failure and increases survival. However, the approach to regulating energy metabolism conductive to vital organs is limited, and the underlying molecular mechanism remains unknown. This study assesses the ability of histone deacetylase inhibitors (HDACIs) to preserve cardiac energy metabolism during lethal hemorrhagic injury. In the lethally hemorrhagic rat and hypoxic myocardial cells, energy metabolism and heart function were well maintained following HDACI treatment, as evident by continuous ATP production with normal cardiac contraction. Valproic acid (VPA) regulated the energy metabolism of hemorrhagic heart by reducing lactate synthesis and protecting the mitochondrial ultrastructure and respiration, which were attributable to the inhibition of lactate dehydrogenase A activity and the increased myeloid cell leukemia-1 (mcl-1) gene expression, ultimately facilitating ATP production and consumption. MCL-1, the key target of VPA, mediated this cardioprotective effect under acute severe hemorrhage conditions. Our results suggest that HDACIs promote cardioprotection by improving energy metabolism during hemorrhagic injury and could therefore be an effective strategy to counteract this process in the clinical setting. PMID:27910887
Walter, Juline M.; Lopes, Fabyano A. C.; Lopes-Ferreira, Mônica; Vidal, Lívia M.; Leomil, Luciana; Melo, Fabiana; de Azevedo, Girlene S.; Oliveira, Rossandra M. S.; Medeiros, Alba J.; Melo, Adriana S. O.; De Rezende, Carlos E.; Tanuri, Amilcar; Thompson, Fabiano L.
2018-01-01
Harmful cyanobacterial blooms have become increasingly common in freshwater ecosystems in recent decades, mainly due to eutrophication and climate change. Water becomes unreliable for human consumption. Here, we report a comprehensive study carried out to investigate the water quality of several Campina Grande reservoirs. Our approach included metagenomics, microbial abundance quantification, ELISA test for three cyanotoxins (microcystin, nodularins, and cylindrospermopsin), and in vivo ecotoxicological tests with zebrafish embryos. Cytometry analysis showed high cyanobacterial abundance, while metagenomics identified an average of 10.6% of cyanobacterial sequences, and demonstrated the presence of Microcystis, Cylindrospermopsis, and toxin coding genes in all ponds. Zebrafish embryos reared with pond water had high mortality and diverse malformations. Among the ponds analyzed, Araçagi showed the highest lethality (an average of 62.9 ± 0.8%), followed by Boqueirão (lethality average of 62.5 ± 0.8%). Here, we demonstrate that water from ponds undergoing extremely drought conditions have an abundance of potentially harmful cyanobacteria and their toxins. Our findings are consistent with a scenario in which polluted drinking water poses a great risk to human health. PMID:29541063
Quinn, Nicole L; McGowan, Colin R; Cooper, Glenn A; Koop, Ben F; Davidson, William S
2011-09-22
Arctic charr thrive at high densities and can live in freshwater year round, making this species especially suitable for inland, closed containment aquaculture. However, it is a cold-water salmonid, which both limits where the species can be farmed and places wild populations at particular risk to climate change. Previously, we identified genes associated with tolerance and intolerance to acute, lethal temperature stress in Arctic charr. However, there remained a need to examine the genes involved in the stress response to more realistic temperatures that could be experienced during a summer heat wave in grow-out tanks that are not artificially cooled, or under natural conditions. Here, we exposed Arctic charr to sublethal heat stress of 15-18°C for 72 h, and gill tissues extracted before, during (i.e., at 72 h), immediately after cooling and after 72 h of recovery at ambient temperature (6°C) were used for gene expression profiling by microarray and qPCR analyses. The results revealed an expected pattern for heat shock protein expression, which was highest during heat exposure, with significantly reduced expression (approaching control levels) quickly thereafter. We also found that the expression of numerous ribosomal proteins was significantly elevated immediately and 72 h after cooling, suggesting that the gill tissues were undergoing ribosome biogenesis while recovering from damage caused by heat stress. We suggest that these are candidate gene targets for the future development of genetic markers for broodstock development or for monitoring temperature stress and recovery in wild or cultured conditions.
Combining lipophilic dye, in situ hybridization, immunohistochemistry, and histology.
Duncan, Jeremy; Kersigo, Jennifer; Gray, Brian; Fritzsch, Bernd
2011-03-17
Going beyond single gene function to cut deeper into gene regulatory networks requires multiple mutations combined in a single animal. Such analysis of two or more genes needs to be complemented with in situ hybridization of other genes, or immunohistochemistry of their proteins, both in whole mounted developing organs or sections for detailed resolution of the cellular and tissue expression alterations. Combining multiple gene alterations requires the use of cre or flipase to conditionally delete genes and avoid embryonic lethality. Required breeding schemes dramatically enhance effort and cost proportional to the number of genes mutated, with an outcome of very few animals with the full repertoire of genetic modifications desired. Amortizing the vast amount of effort and time to obtain these few precious specimens that are carrying multiple mutations necessitates tissue optimization. Moreover, investigating a single animal with multiple techniques makes it easier to correlate gene deletion defects with expression profiles. We have developed a technique to obtain a more thorough analysis of a given animal; with the ability to analyze several different histologically recognizable structures as well as gene and protein expression all from the same specimen in both whole mounted organs and sections. Although mice have been utilized to demonstrate the effectiveness of this technique it can be applied to a wide array of animals. To do this we combine lipophilic dye tracing, whole mount in situ hybridization, immunohistochemistry, and histology to extract the maximal possible amount of data.
Combining Lipophilic dye, in situ Hybridization, Immunohistochemistry, and Histology
Duncan, Jeremy; Kersigo, Jennifer; Gray, Brian; Fritzsch, Bernd
2011-01-01
Going beyond single gene function to cut deeper into gene regulatory networks requires multiple mutations combined in a single animal. Such analysis of two or more genes needs to be complemented with in situ hybridization of other genes, or immunohistochemistry of their proteins, both in whole mounted developing organs or sections for detailed resolution of the cellular and tissue expression alterations. Combining multiple gene alterations requires the use of cre or flipase to conditionally delete genes and avoid embryonic lethality. Required breeding schemes dramatically enhance effort and cost proportional to the number of genes mutated, with an outcome of very few animals with the full repertoire of genetic modifications desired. Amortizing the vast amount of effort and time to obtain these few precious specimens that are carrying multiple mutations necessitates tissue optimization. Moreover, investigating a single animal with multiple techniques makes it easier to correlate gene deletion defects with expression profiles. We have developed a technique to obtain a more thorough analysis of a given animal; with the ability to analyze several different histologically recognizable structures as well as gene and protein expression all from the same specimen in both whole mounted organs and sections. Although mice have been utilized to demonstrate the effectiveness of this technique it can be applied to a wide array of animals. To do this we combine lipophilic dye tracing, whole mount in situ hybridization, immunohistochemistry, and histology to extract the maximal possible amount of data. PMID:21445047
Non-lethal genotyping of Tribolium castaneum adults using genomic DNA extracted from wing tissue.
Strobl, Frederic; Ross, J Alexander; Stelzer, Ernst H K
2017-01-01
The red flour beetle Tribolium castaneum has become the second most important insect model organism and is frequently used in developmental biology, genetics and pest-associated research. Consequently, the methodological arsenal increases continuously, but many routinely applied techniques for Drosophila melanogaster and other insect species are still unavailable. For example, a protocol for non-lethal genotyping has not yet been adapted but is particularly useful when individuals with known genotypes are required for downstream experiments. In this study, we present a workflow for non-lethal genotyping of T. castaneum adults based on extracting genomic DNA from wing tissue. In detail, we describe a convenient procedure for wing dissection and a custom method for wing digestion that allows PCR-based genotyping of up to fifty adults in less than an afternoon with a success rate of about 86%. The amount of template is sufficient for up to ten reactions while viability and fertility of the beetles are preserved. We prove the applicability of our protocol by genotyping the white / scarlet gene pair alleles from the black-eyed San Bernadino wild-type and white-eyed Pearl recessive mutant strains spanning four generations. Non-lethal genotyping has the potential to improve and accelerate many workflows: Firstly, during the establishment process of homozygous cultures or during stock keeping of cultures that carry recessively lethal alleles, laborious test crossing is replaced by non-lethal genotyping. Secondly, in genome engineering assays, non-lethal genotyping allows the identification of appropriate founders before they are crossed against wild-types, narrowing the efforts down to only the relevant individuals. Thirdly, non-lethal genotyping simplifies experimental strategies, in which genotype and behavior should be correlated, since the genetic configuration of potential individuals can be determined before the actual behavior assays is performed.
A Drosophila mutant of LETM1, a candidate gene for seizures in Wolf-Hirschhorn syndrome.
McQuibban, Angus G; Joza, Nicholas; Megighian, Aram; Scorzeto, Michele; Zanini, Damiano; Reipert, Siegfried; Richter, Constance; Schweyen, Rudolf J; Nowikovsky, Karin
2010-03-15
Human Wolf-Hirschhorn syndrome (WHS) is a multigenic disorder resulting from a hemizygous deletion on chromosome 4. LETM1 is the best candidate gene for seizures, the strongest haploinsufficiency phenotype of WHS patients. Here, we identify the Drosophila gene CG4589 as the ortholog of LETM1 and name the gene DmLETM1. Using RNA interference approaches in both Drosophila melanogaster cultured cells and the adult fly, we have assayed the effects of down-regulating the LETM1 gene on mitochondrial function. We also show that DmLETM1 complements growth and mitochondrial K(+)/H(+) exchange (KHE) activity in yeast deficient for LETM1. Genetic studies allowing the conditional inactivation of LETM1 function in specific tissues demonstrate that the depletion of DmLETM1 results in roughening of the adult eye, mitochondrial swelling and developmental lethality in third-instar larvae, possibly the result of deregulated mitophagy. Neuronal specific down-regulation of DmLETM1 results in impairment of locomotor behavior in the fly and reduced synaptic neurotransmitter release. Taken together our results demonstrate the function of DmLETM1 as a mitochondrial osmoregulator through its KHE activity and uncover a pathophysiological WHS phenotype in the model organism D. melanogaster.
Evans, Tyler G.; Hofmann, Gretchen E.
2012-01-01
Anthropogenic stressors, such as climate change, are driving fundamental shifts in the abiotic characteristics of marine ecosystems. As the environmental aspects of our world's oceans deviate from evolved norms, of major concern is whether extant marine species possess the capacity to cope with such rapid change. In what many scientists consider the post-genomic era, tools that exploit the availability of DNA sequence information are being increasingly recognized as relevant to questions surrounding ocean change and marine conservation. In this review, we highlight the application of high-throughput gene-expression profiling, primarily transcriptomics, to the field of marine conservation physiology. Through the use of case studies, we illustrate how gene expression can be used to standardize metrics of sub-lethal stress, track organism condition in natural environments and bypass phylogenetic barriers that hinder the application of other physiological techniques to conservation. When coupled with fine-scale monitoring of environmental variables, gene-expression profiling provides a powerful approach to conservation capable of informing diverse issues related to ocean change, from coral bleaching to the spread of invasive species. Integrating novel approaches capable of improving existing conservation strategies, including gene-expression profiling, will be critical to ensuring the ecological and economic health of the global ocean. PMID:22566679
Analysis of FOXF1 and the FOX gene cluster in patients with VACTERL association
Agochukwu, Nneamaka B.; Pineda-Alvarez, Daniel E.; Keaton, Amelia A.; Warren-Mora, Nicole; Raam, Manu S.; Kamat, Aparna; Chandrasekharappa, Settara C.; Solomon, Benjamin D.
2011-01-01
VACTERL association, a relatively common condition with an incidence of approximately 1 in 20,000 – 35,000 births, is a non-random association of birth defects that includes vertebral defects (V), anal atresia (A), cardiac defects (C), tracheo-esophageal fistula (TE), renal anomalies (R) and limb malformations (L). Although the etiology is unknown in the majority of patients, there is evidence that it is causally heterogeneous. Several studies have shown evidence for inheritance in VACTERL, implying a role for genetic loci. Recently, patients with component features of VACTERL and a lethal developmental pulmonary disorder, alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV), were found to harbor deletions or mutations affecting FOXF1 and the FOX gene cluster on chromosome 16q24. We investigated this gene through direct sequencing and high-density SNP microarray in 12 patients with VACTERL association but without ACD/MPV. Our mutational analysis of FOXF1 showed normal sequences and no genomic imbalances affecting the FOX gene cluster on chromosome 16q24 in the studied patients. Possible explanations for these results include the etiologic and clinical heterogeneity of VACTERL association, the possibility that mutations affecting this gene may occur only in more severely affected individuals, and insufficient study sample size. PMID:21315191
MCM5: a new actor in the link between DNA replication and Meier-Gorlin syndrome.
Vetro, Annalisa; Savasta, Salvatore; Russo Raucci, Annalisa; Cerqua, Cristina; Sartori, Geppo; Limongelli, Ivan; Forlino, Antonella; Maruelli, Silvia; Perucca, Paola; Vergani, Debora; Mazzini, Giuliano; Mattevi, Andrea; Stivala, Lucia Anna; Salviati, Leonardo; Zuffardi, Orsetta
2017-05-01
Meier-Gorlin syndrome (MGORS) is a rare disorder characterized by primordial dwarfism, microtia, and patellar aplasia/hypoplasia. Recessive mutations in ORC1, ORC4, ORC6, CDT1, CDC6, and CDC45, encoding members of the pre-replication (pre-RC) and pre-initiation (pre-IC) complexes, and heterozygous mutations in GMNN, a regulator of cell-cycle progression and DNA replication, have already been associated with this condition. We performed whole-exome sequencing (WES) in a patient with a clinical diagnosis of MGORS and identified biallelic variants in MCM5. This gene encodes a subunit of the replicative helicase complex, which represents a component of the pre-RC. Both variants, a missense substitution within a conserved domain critical for the helicase activity, and a single base deletion causing a frameshift and a premature stop codon, were predicted to be detrimental for the MCM5 function. Although variants of MCM5 have never been reported in specific human diseases, defect of this gene in zebrafish causes a phenotype of growth restriction overlapping the one associated with orc1 depletion. Complementation experiments in yeast showed that the plasmid carrying the missense variant was unable to rescue the lethal phenotype caused by mcm5 deletion. Moreover cell-cycle progression was delayed in patient's cells, as already shown for mutations in the ORC1 gene. Altogether our findings support the role of MCM5 as a novel gene involved in MGORS, further emphasizing that this condition is caused by impaired DNA replication.
Suzuki, H; Katayama, K; Takenaka, M; Amakasu, K; Saito, K; Suzuki, K
2009-10-01
The lde/lde rat is characterized by dwarfism, postnatal lethality, male hypogonadism, a high incidence of epilepsy and many vacuoles in the hippocampus and amygdala. We used a candidate approach to identify the gene responsible for the lde phenotype and assessed the susceptibility of lde/lde rats for audiogenic seizures. Following backcross breeding of lethal dwarfism with epilepsy (LDE) to Brown Norway rats, the lde/lde rats with an altered genetic background showed all pleiotropic phenotypes. The lde locus was mapped to a 1.5-Mbp region on rat chromosome 19 that included the latter half of the Wwox gene. Sequencing of the full-length Wwox transcript identified a 13-bp deletion in exon 9 in lde/lde rats. This mutation causes a frame shift, resulting in aberrant amino acid sequences at the C-terminal. Western blotting showed that both the full-length products of the Wwox gene and its isoform were present in normal testes and hippocampi, whereas both products were undetectable in the testes and hippocampi of lde/lde rats. Sound stimulation induced epileptic seizures in 95% of lde/lde rats, with starting as wild running (WR), sometimes progressing to tonic-clonic convulsions. Electroencephalogram (EEG) analysis showed interictal spikes, fast waves during WR and burst of spikes during clonic phases. The Wwox protein is expressed in the central nervous system (CNS), indicating that abnormal neuronal excitability in lde/lde rats may be because of a lack of Wwox function. The lde/lde rat is not only useful for understanding the multiple functions of Wwox but is also a unique model for studying the physiological function of Wwox in CNS.
Adaptation and Preadaptation of Salmonella enterica to Bile
Hernández, Sara B.; Cota, Ignacio; Ducret, Adrien; Aussel, Laurent; Casadesús, Josep
2012-01-01
Bile possesses antibacterial activity because bile salts disrupt membranes, denature proteins, and damage DNA. This study describes mechanisms employed by the bacterium Salmonella enterica to survive bile. Sublethal concentrations of the bile salt sodium deoxycholate (DOC) adapt Salmonella to survive lethal concentrations of bile. Adaptation seems to be associated to multiple changes in gene expression, which include upregulation of the RpoS-dependent general stress response and other stress responses. The crucial role of the general stress response in adaptation to bile is supported by the observation that RpoS− mutants are bile-sensitive. While adaptation to bile involves a response by the bacterial population, individual cells can become bile-resistant without adaptation: plating of a non-adapted S. enterica culture on medium containing a lethal concentration of bile yields bile-resistant colonies at frequencies between 10−6 and 10−7 per cell and generation. Fluctuation analysis indicates that such colonies derive from bile-resistant cells present in the previous culture. A fraction of such isolates are stable, indicating that bile resistance can be acquired by mutation. Full genome sequencing of bile-resistant mutants shows that alteration of the lipopolysaccharide transport machinery is a frequent cause of mutational bile resistance. However, selection on lethal concentrations of bile also provides bile-resistant isolates that are not mutants. We propose that such isolates derive from rare cells whose physiological state permitted survival upon encountering bile. This view is supported by single cell analysis of gene expression using a microscope fluidic system: batch cultures of Salmonella contain cells that activate stress response genes in the absence of DOC. This phenomenon underscores the existence of phenotypic heterogeneity in clonal populations of bacteria and may illustrate the adaptive value of gene expression fluctuations. PMID:22275872
Engineering species-like barriers to sexual reproduction.
Maselko, Maciej; Heinsch, Stephen C; Chacón, Jeremy M; Harcombe, William R; Smanski, Michael J
2017-10-12
Controlling the exchange of genetic information between sexually reproducing populations has applications in agriculture, eradication of disease vectors, control of invasive species, and the safe study of emerging biotechnology applications. Here we introduce an approach to engineer a genetic barrier to sexual reproduction between otherwise compatible populations. Programmable transcription factors drive lethal gene expression in hybrid offspring following undesired mating events. As a proof of concept, we target the ACT1 promoter of the model organism Saccharomyces cerevisiae using a dCas9-based transcriptional activator. Lethal overexpression of actin results from mating this engineered strain with a strain containing the wild-type ACT1 promoter.Genetic isolation of a genetically modified organism represents a useful strategy for biocontainment. Here the authors use dCas9-VP64-driven gene expression to construct a 'species-like' barrier to reproduction between two otherwise compatible populations.
The "Lethal Chamber": Further Evidence of the Euthanasia Option.
ERIC Educational Resources Information Center
Elks, Martin A.
1993-01-01
Historical discussions of the euthanasia or "lethal chamber" option in relation to people with mental retardation are presented. The paper concludes that eugenic beliefs in the primacy of heredity over environment and the positive role of natural selection may have condoned the poor conditions characteristic of large, segregated institutions and…
Geisbert, Thomas W; Hensley, Lisa E; Kagan, Elliott; Yu, Erik Zhaoying; Geisbert, Joan B; Daddario-DiCaprio, Kathleen; Fritz, Elizabeth A; Jahrling, Peter B; McClintock, Kevin; Phelps, Janet R; Lee, Amy C H; Judge, Adam; Jeffs, Lloyd B; MacLachlan, Ian
2006-06-15
Ebola virus (EBOV) infection causes a frequently fatal hemorrhagic fever (HF) that is refractory to treatment with currently available antiviral therapeutics. RNA interference represents a powerful, naturally occurring biological strategy for the inhibition of gene expression and has demonstrated utility in the inhibition of viral replication. Here, we describe the development of a potential therapy for EBOV infection that is based on small interfering RNAs (siRNAs). Four siRNAs targeting the polymerase (L) gene of the Zaire species of EBOV (ZEBOV) were either complexed with polyethylenimine (PEI) or formulated in stable nucleic acid-lipid particles (SNALPs). Guinea pigs were treated with these siRNAs either before or after lethal ZEBOV challenge. Treatment of guinea pigs with a pool of the L gene-specific siRNAs delivered by PEI polyplexes reduced plasma viremia levels and partially protected the animals from death when administered shortly before the ZEBOV challenge. Evaluation of the same pool of siRNAs delivered using SNALPs proved that this system was more efficacious, as it completely protected guinea pigs against viremia and death when administered shortly after the ZEBOV challenge. Additional experiments showed that 1 of the 4 siRNAs alone could completely protect guinea pigs from a lethal ZEBOV challenge. Further development of this technology has the potential to yield effective treatments for EBOV HF as well as for diseases caused by other agents that are considered to be biological threats.
Menon, Debashish U; Coarfa, Cristian; Xiao, Weimin; Gunaratne, Preethi H; Meller, Victoria H
2014-11-18
Highly differentiated sex chromosomes create a lethal imbalance in gene expression in one sex. To accommodate hemizygosity of the X chromosome in male fruit flies, expression of X-linked genes increases twofold. This is achieved by the male- specific lethal (MSL) complex, which modifies chromatin to increase expression. Mutations that disrupt the X localization of this complex decrease the expression of X-linked genes and reduce male survival. The mechanism that restricts the MSL complex to X chromatin is not understood. We recently reported that the siRNA pathway contributes to localization of the MSL complex, raising questions about the source of the siRNAs involved. The X-linked 1.688 g/cm(3) satellite related repeats (1.688(X) repeats) are restricted to the X chromosome and produce small RNA, making them an attractive candidate. We tested RNA from these repeats for a role in dosage compensation and found that ectopic expression of single-stranded RNAs from 1.688(X) repeats enhanced the male lethality of mutants with defective X recognition. In contrast, expression of double-stranded hairpin RNA from a 1.688(X) repeat generated abundant siRNA and dramatically increased male survival. Consistent with improved survival, X localization of the MSL complex was largely restored in these males. The striking distribution of 1.688(X) repeats, which are nearly exclusive to the X chromosome, suggests that these are cis-acting elements contributing to identification of X chromatin.
Gao, Peng; Chen, An-Li; Zhao, Qiao-Ling; Shen, Xing-Jia; Qiu, Zhi-Yong; Xia, Ding-Guo; Tang, Shun-Ming; Zhang, Guo-Zheng
2013-09-15
The "Ming" lethal egg mutant (l-em) is a vitelline membrane mutant in silkworm, Bombyx mori. The eggs laid by the l-em mutant lose water, ultimately causing death within an hour. Previous studies have shown that the deletion of BmEP80 is responsible for the l-em mutation in silkworm, B. mori. In the current study, digital gene expression (DGE) was performed to investigate the difference of gene expression in ovaries between wild type and l-em mutant on the sixth day of the pupal stage to obtain a global view of gene expression profiles using the ovaries of three l-em mutants and three wild types. The results showed a total of 3,463,495 and 3,607,936 clean tags in the wild type and the l-em mutant libraries, respectively. Compared with those of wild type, 239 differentially expressed genes were detected in the l-em mutant, wherein 181 genes are up-regulated and 58 genes are down-regulated in the mutant strain. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis results showed that no pathway was significantly enriched and three pathways are tightly related to protein synthesis among the five leading pathways. Moreover, the expression profiles of eight important differentially expressed genes related to oogenesis changed. These results provide a comprehensive gene expression analysis of oogenesis and vitellogenesis in B. mori which facilitates understanding of both the specific molecular mechanism of the 1-em mutant and Lepidopteran oogenesis in general. Copyright © 2013 Elsevier B.V. All rights reserved.
Wang, Jinhui; He, Hua; Xu, Xin; Wang, Xiao; Chen, Yongbing; Yin, Lichen
2018-07-01
Effective anti-cancer therapy is hurdled by the complicated extracellular and intracellular barriers, and thus a smart gene vector that can enable programmable gene delivery is highly demanded. Photo-manipulation of gene delivery processes features spatial and temporal precision, while majority of current strategies utilizes short-wavelength UV/visible light with poor tissue penetration or high-power-density near-infrared (NIR) light that would cause undesired heat damage. Herein, an ROS-degradable polycation was designed and co-delivered with a photosensitizer (PS), thus realizing photo-programmable gene delivery using far-red light (661 nm) at low optical power density (down to 5 mW cm -2 ). Thioketal-crosslinked polyethylenimine (TK-PEI) was synthesized to condense p53 gene to form nanocomplexes (NCs), and hyaluronic acid (HA) modified with pheophytin a (Pha) was coated onto NCs to enhance their colloidal stability and enable cancer cell targeting. Short-time (8-min) light irradiation produced non-lethal amount of ROS to disrupt the endosomal membranes and facilitate p53 gene release via degradation of TK-PEI, which collectively enhanced p53 expression levels toward anti-cancer gene therapy. Long-time (30-min) light irradiation at the post-transfection state generated lethal amount of ROS, which cooperatively killed cancer cells to strengthen p53 gene therapy. To the best of our knowledge, this study represents the first example of an "one stone, three birds" approach to realize cooperative anti-cancer gene therapy using low-power-density, long-wavelength visible light as a single stimulus. Copyright © 2018 Elsevier Ltd. All rights reserved.
Liu, Jinxiong; Chen, Pucheng; Jiang, Yongping; Wu, Li; Zeng, Xianying; Tian, Guobin; Ge, Jinying; Kawaoka, Yoshihiro; Bu, Zhigao; Chen, Hualan
2011-01-01
Ducks play an important role in the maintenance of highly pathogenic H5N1 avian influenza viruses (AIVs) in nature, and the successful control of AIVs in ducks has important implications for the eradication of the disease in poultry and its prevention in humans. The inactivated influenza vaccine is expensive, labor-intensive, and usually needs 2 to 3 weeks to induce protective immunity in ducks. Live attenuated duck enteritis virus (DEV; a herpesvirus) vaccine is used routinely to control lethal DEV infections in many duck-producing areas. Here, we first established a system to generate the DEV vaccine strain by using the transfection of overlapping fosmid DNAs. Using this system, we constructed two recombinant viruses, rDEV-ul41HA and rDEV-us78HA, in which the hemagglutinin (HA) gene of the H5N1 virus A/duck/Anhui/1/06 was inserted and stably maintained within the ul41 gene or between the us7 and us8 genes of the DEV genome. Duck studies indicated that rDEV-us78HA had protective efficacy similar to that of the live DEV vaccine against lethal DEV challenge; importantly, a single dose of 106 PFU of rDEV-us78HA induced complete protection against a lethal H5N1 virus challenge in as little as 3 days postvaccination. The protective efficacy against both lethal DEV and H5N1 challenge provided by rDEV-ul41HA inoculation in ducks was slightly weaker than that provided by rDEV-us78HA. These results demonstrate, for the first time, that recombinant DEV is suitable for use as a bivalent live attenuated vaccine, providing rapid protection against both DEV and H5N1 virus infection in ducks. PMID:21865383
Liu, Jinxiong; Chen, Pucheng; Jiang, Yongping; Wu, Li; Zeng, Xianying; Tian, Guobin; Ge, Jinying; Kawaoka, Yoshihiro; Bu, Zhigao; Chen, Hualan
2011-11-01
Ducks play an important role in the maintenance of highly pathogenic H5N1 avian influenza viruses (AIVs) in nature, and the successful control of AIVs in ducks has important implications for the eradication of the disease in poultry and its prevention in humans. The inactivated influenza vaccine is expensive, labor-intensive, and usually needs 2 to 3 weeks to induce protective immunity in ducks. Live attenuated duck enteritis virus (DEV; a herpesvirus) vaccine is used routinely to control lethal DEV infections in many duck-producing areas. Here, we first established a system to generate the DEV vaccine strain by using the transfection of overlapping fosmid DNAs. Using this system, we constructed two recombinant viruses, rDEV-ul41HA and rDEV-us78HA, in which the hemagglutinin (HA) gene of the H5N1 virus A/duck/Anhui/1/06 was inserted and stably maintained within the ul41 gene or between the us7 and us8 genes of the DEV genome. Duck studies indicated that rDEV-us78HA had protective efficacy similar to that of the live DEV vaccine against lethal DEV challenge; importantly, a single dose of 10(6) PFU of rDEV-us78HA induced complete protection against a lethal H5N1 virus challenge in as little as 3 days postvaccination. The protective efficacy against both lethal DEV and H5N1 challenge provided by rDEV-ul41HA inoculation in ducks was slightly weaker than that provided by rDEV-us78HA. These results demonstrate, for the first time, that recombinant DEV is suitable for use as a bivalent live attenuated vaccine, providing rapid protection against both DEV and H5N1 virus infection in ducks.
Lethal and mutagenic effects of ion beams and γ-rays in Aspergillus oryzae.
Toyoshima, Yoshiyuki; Takahashi, Akemi; Tanaka, Hisaki; Watanabe, Jun; Mogi, Yoshinobu; Yamazaki, Tatsuo; Hamada, Ryoko; Iwashita, Kazuhiro; Satoh, Katsuya; Narumi, Issay
2012-12-01
Aspergillus oryzae is a fungus that is used widely in traditional Japanese fermentation industries. In this study, the lethal and mutagenic effects of different linear energy transfer (LET) radiation in freeze-dried conidia of A. oryzae were investigated. The lethal effect, which was evaluated by a 90% lethal dose, was dependent on the LET value of the ionizing radiation. The most lethal ionizing radiation among that tested was (12)C(5+) ion beams with an LET of 121keV/μm. The (12)C(5+) ion beams had a 3.6-times higher lethal effect than low-LET (0.2keV/μm) γ-rays. The mutagenic effect was evaluated by the frequency of selenate resistant mutants. (12)C(6+) ion beams with an LET of 86keV/μm were the most effective in inducing selenate resistance. The mutant frequency following exposure to (12)C(6+) ion beams increased with an increase in dose and reached 3.47×10(-3) at 700Gy. In the dose range from 0 to 700Gy, (12)C(5+) ion beams were the second most effective in inducing selenate resistance, the mutant frequency of which reached a maximum peak (1.67×10(-3)) at 400Gy. To elucidate the characteristics of mutation induced by ionizing radiation, mutations in the sulphate permease gene (sB) and ATP sulfurylase gene (sC) loci, the loss of function of which results in a selenate resistant phenotype, were compared between (12)C(5+) ion beams and γ-rays. We detected all types of transversions and transitions. For frameshifts, the frequency of a +1 frameshift was the highest in all cases. Although the incidence of deletions >2bp was generally low, deletions >20bp were characteristic for (12)C(5+) ion beams. γ-rays had a tendency to generate mutants carrying a multitude of mutations in the same locus. Both forms of radiation also induced genome-wide large-scale mutations including chromosome rearrangements and large deletions. These results provide new basic insights into the mutation breeding of A. oryzae using ionizing radiation. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Yoon, K S; Strycharz, J P; Baek, J H; Sun, W; Kim, J H; Kang, J S; Pittendrigh, B R; Lee, S H; Clark, J M
2011-12-01
Transcriptional profiling results, using our non-invasive induction assay {short exposure intervals (2-5 h) to sublethal amounts of insecticides [< lethal concentration 3% (LC(3)) at 24 h] administered by stress-reducing means (contact vs. immersion screen) and with induction assessed in a time frame when tolerance is still present [~lethal concentration 90% (LC(90)) in 2-4 h]}, showed that ivermectin-induced detoxification genes from body lice are identified by quantitative real-time PCR analyses. Of the cytochrome P450 monooxygenase and ATP binding cassette transporter genes induced by ivermectin, CYP6CJ1, CYP9AG1, CYP9AG2 and PhABCC4 were respectively most significantly over-expressed, had high basal expression levels and were most closely related to genes from other organisms that metabolized insecticides, including ivermectin. Injection of double-stranded RNAs (dsRNAs) against either CYP9AG2 or PhABCC4 into non-induced female lice reduced their respective transcript level and resulted in increased sensitivity to ivermectin, indicating that these two genes are involved in the xenobiotic metabolism of ivermectin and in the production of tolerance. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.
Antibiotics induce redox-related physiological alterations as part of their lethality
Dwyer, Daniel J.; Belenky, Peter A.; Yang, Jason H.; MacDonald, I. Cody; Martell, Jeffrey D.; Takahashi, Noriko; Chan, Clement T. Y.; Lobritz, Michael A.; Braff, Dana; Schwarz, Eric G.; Ye, Jonathan D.; Pati, Mekhala; Vercruysse, Maarten; Ralifo, Paul S.; Allison, Kyle R.; Khalil, Ahmad S.; Ting, Alice Y.; Walker, Graham C.; Collins, James J.
2014-01-01
Deeper understanding of antibiotic-induced physiological responses is critical to identifying means for enhancing our current antibiotic arsenal. Bactericidal antibiotics with diverse targets have been hypothesized to kill bacteria, in part by inducing production of damaging reactive species. This notion has been supported by many groups but has been challenged recently. Here we robustly test the hypothesis using biochemical, enzymatic, and biophysical assays along with genetic and phenotypic experiments. We first used a novel intracellular H2O2 sensor, together with a chemically diverse panel of fluorescent dyes sensitive to an array of reactive species to demonstrate that antibiotics broadly induce redox stress. Subsequent gene-expression analyses reveal that complex antibiotic-induced oxidative stress responses are distinct from canonical responses generated by supraphysiological levels of H2O2. We next developed a method to quantify cellular respiration dynamically and found that bactericidal antibiotics elevate oxygen consumption, indicating significant alterations to bacterial redox physiology. We further show that overexpression of catalase or DNA mismatch repair enzyme, MutS, and antioxidant pretreatment limit antibiotic lethality, indicating that reactive oxygen species causatively contribute to antibiotic killing. Critically, the killing efficacy of antibiotics was diminished under strict anaerobic conditions but could be enhanced by exposure to molecular oxygen or by the addition of alternative electron acceptors, indicating that environmental factors play a role in killing cells physiologically primed for death. This work provides direct evidence that, downstream of their target-specific interactions, bactericidal antibiotics induce complex redox alterations that contribute to cellular damage and death, thus supporting an evolving, expanded model of antibiotic lethality. PMID:24803433
Frey, Tiffany R; Forsyth, Katherine S; Sheehan, Maura M; De Haven, Brian C; Pevarnik, Julia G; Hand, Erin S; Pizzorno, Marie C; Eisenlohr, Laurence C; Hersperger, Adam R
2018-05-01
All known orthopoxviruses, including ectromelia virus (ECTV), contain a gene in the E3L family. The protein product of this gene, E3, is a double-stranded RNA-binding protein. It can impact host range and is used by orthopoxviruses to combat cellular defense pathways, such as PKR and RNase L. In this work, we constructed an ECTV mutant with a targeted disruption of the E3L open reading frame (ECTVΔE3L). Infection with this virus resulted in an abortive replication cycle in all cell lines tested. We detected limited transcription of late genes but no significant translation of these mRNAs. Notably, the replication defects of ECTVΔE3L were rescued in human and mouse cells lacking PKR. ECTVΔE3L was nonpathogenic in BALB/c mice, a strain susceptible to lethal mousepox disease. However, infection with ECTVΔE3L induced protective immunity upon subsequent challenge with wild-type virus. In summary, E3L is an essential gene for ECTV. Copyright © 2018 Elsevier Inc. All rights reserved.
Watson, K L; Konrad, K D; Woods, D F; Bryant, P J
1992-01-01
The tumor suppressor gene lethal(1)aberrant immune response 8 (air8) of Drosophila melanogaster encodes a homolog of the human S6 ribosomal protein. P element insertions that prevent expression of this gene cause overgrowth of the lymph glands (the hematopoietic organs), abnormal blood cell differentiation, and melanotic tumor formation. They also cause delayed development, inhibit growth of most of the larval organs, and lead to larval lethality. Mitotic recombination experiments indicate that the normal S6 gene is required for clone survival in the germ line and imaginal discs. The S6 gene produces a 1.1-kilobase transcript that is abundant throughout development in wild-type animals and in revertants derived from the insertional mutants but is barely detectable in the mutant larvae. cDNAs corresponding to this transcript show a 248-amino acid open reading frame with 75.4% identity and 94.8% similarity to both human and rat S6 ribosomal protein sequences. The results reveal a regulatory function of this ribosomal protein in the hematopoietic system of Drosophila that may be related to its developmentally regulated phosphorylation. Images PMID:1454811
Aboussekhra, A; Chanet, R; Zgaga, Z; Cassier-Chauvat, C; Heude, M; Fabre, F
1989-09-25
A new type of radiation-sensitive mutant of S. cerevisiae is described. The recessive radH mutation sensitizes to the lethal effect of UV radiations haploids in the G1 but not in the G2 mitotic phase. Homozygous diploids are as sensitive as G1 haploids. The UV-induced mutagenesis is depressed, while the induction of gene conversion is increased. The mutation is believed to channel the repair of lesions engaged in the mutagenic pathway into a recombination process, successful if the events involve sister-chromatids but lethal if they involve homologous chromosomes. The sequence of the RADH gene reveals that it may code for a DNA helicase, with a Mr of 134 kDa. All the consensus domains of known DNA helicases are present. Besides these consensus regions, strong homologies with the Rep and UvrD helicases of E. coli were found. The RadH putative helicase appears to belong to the set of proteins involved in the error-prone repair mechanism, at least for UV-induced lesions, and could act in coordination with the Rev3 error-prone DNA polymerase.
The Role of BRCA1/BARD1 Heterodimers in the Mitosis-Interphase Transition
2007-05-01
53 4 INTRODUCTION Germ line mutations in the BRCA1 gene predispose to breast and/or ovarian cancer (Miki, et al...Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53...Ludwig, T., Chapman, D.L., Papaioannou, V.E., and Efstratiadis, A. (1997). Targeted mutations of breast cancer susceptibility gene homo- logs in mice
2015-09-01
assessed the specificity of mutation in Drosophila S2R+ cells. We generated a quantitative mutation reporter vector in which an sgRNA target sequence ...phosphatases (563 genes) in the Drosophila genome (Figure 4). 65 samples that displayed synthetic lethality (15 genes) or synthetic increases in viability...targeting all kinases and phosphatases (563 genes) in the Drosophila genome . . Identified three hits (mRNA-Cap, Pitslre and CycT) that scored as
Impact of non-constant concentration exposure on lethality of inhaled hydrogen cyanide.
Sweeney, Lisa M; Sommerville, Douglas R; Channel, Stephen R
2014-03-01
The ten Berge model, also known as the toxic load model, is an empirical approach in hazard assessment modeling for estimating the relationship between the inhalation toxicity of a chemical and the exposure duration. The toxic load (TL) is normally expressed as a function of vapor concentration (C) and duration (t), with TL equaling C(n) × t being a typical form. Hypothetically, any combination of concentration and time that yields the same "toxic load" will give a constant biological response. These formulas have been developed and tested using controlled, constant concentration animal studies, but the validity of applying these assumptions to time-varying concentration profiles has not been tested. Experiments were designed to test the validity of the model under conditions of non-constant acute exposure. Male Sprague-Dawley rats inhaled constant or pulsed concentrations of hydrogen cyanide (HCN) generated in a nose-only exposure system for 5, 15, or 30 min. The observed lethality of HCN for the 11 different C versus t profiles was used to evaluate the ability of the model to adequately describe the lethality of HCN under the conditions of non-constant inhalation exposure. The model was found to be applicable under the tested conditions, with the exception of the median lethality of very brief, high concentration, discontinuous exposures.
Nakahara, Kenji S; Kitazawa, Hiroaki; Atsumi, Go; Choi, Sun Hee; Suzuki, Yuji; Uyeda, Ichiro
2011-07-18
Clover yellow vein virus (ClYVV) causes lethal systemic necrosis in legumes, including broad bean (Vicia faba) and pea (Pisum sativum). To identify host genes involved in necrotic symptom expression after ClYVV infection, we screened cDNA fragments in which expression was changed in advance of necrotic symptom expression in broad bean (V. faba cv. Wase) using the differential display technique and secondarily with Northern blot analysis. Expression changes were confirmed in 20 genes, and the six that exhibited the most change were analyzed further. These six genes included a gene that encodes a putative nitrate-induced NOI protein (VfNOI), and another was homologous to an Arabidopsis gene that encodes a glycine- and proline-rich protein GPRP (VfGPRP). We recently reported that necrotic symptom development in ClYVV-infected pea is associated with expression of salicylic acid (SA)-dependent pathogenesis-related (PR) proteins and requires SA-dependent host responses. Interestingly, VfNOI and VfGPRP expression was correlated with that of the putative SA-dependent PR proteins in ClYVV-infected broad bean. However, broad bean infected with a recombinant ClYVV expressing the VfGPRP protein showed weaker symptoms and less viral multiplication than that infected with ClYVV expressing the GFP protein. These results imply that VfGPRP plays a role in defense against ClYVV rather than in necrotic symptom expression.
Gordon, Michael D; Ayres, Janelle S; Schneider, David S; Nusse, Roel
2008-07-25
Drosophila melanogaster mount an effective innate immune response against invading microorganisms, but can eventually succumb to persistent pathogenic infections. Understanding of this pathogenesis is limited, but it appears that host factors, induced by microbes, can have a direct cost to the host organism. Mutations in wntD cause susceptibility to Listeria monocytogenes infection, apparently through the derepression of Toll-Dorsal target genes, some of which are deleterious to survival. Here, we use gene expression profiling to identify genes that may mediate the observed susceptibility of wntD mutants to lethal infection. These genes include the TNF family member eiger and the novel immunity gene edin (elevated during infection; synonym CG32185), both of which are more strongly induced by infection of wntD mutants compared to controls. edin is also expressed more highly during infection of wild-type flies with wild-type Salmonella typhimurium than with a less pathogenic mutant strain, and its expression is regulated in part by the Imd pathway. Furthermore, overexpression of edin can induce age-dependent lethality, while loss of function in edin renders flies more susceptible to Listeria infection. These results are consistent with a model in which the regulation of host factors, including edin, must be tightly controlled to avoid the detrimental consequences of having too much or too little activity.
Mozer, B A
2001-05-15
Dominant Drop (Dr) mutations are nearly eyeless and have additional recessive phenotypes including lethality and patterning defects in eye and sensory bristles due to cis-regulatory lesions in the cell cycle regulator string (stg). Genetic analysis demonstrates that the dominant small eye phenotype is the result of separate gain-of-function mutations in the closely linked muscle segment homeobox (msh) gene, encoding a homeodomain transcription factor required for patterning of muscle and nervous system. Reversion of the Dr(Mio) allele was coincident with the generation of lethal loss-of-function mutations in msh in cis, suggesting that the dominant eye phenotype is the result of ectopic expression. Molecular genetic analysis revealed that two dominant Dr alleles contain lesions upstream of the msh transcription start site. In the Dr(Mio) mutant, a 3S18 retrotransposon insertion is the target of second-site mutations (P-element insertions or deletions) which suppress the dominant eye phenotype following reversion. The pattern of 3S18 expression and the absence of msh in eye imaginal discs suggest that transcriptional activation of the msh promoter accounts for ectopic expression. Dr dominant mutations arrest eye development by blocking the progression of the morphogenetic furrow leading to photoreceptor cell loss via apoptosis. Gal4-mediated ubiquitous expression of msh in third-instar larvae was sufficient to arrest the morphogenetic furrow in the eye imaginal disc and resulted in lethality prior to eclosion. Dominant mutations in the human msx2 gene, one of the vertebrate homologs of msh, are associated with craniosynostosis, a disease affecting cranial development. The Dr mutations are the first example of gain-of-function mutations in the msh/msx gene family identified in a genetically tractible model organism and may serve as a useful tool to identify additional genes that regulate this class of homeodomain proteins. Copyright 2001 Academic Press.
Li, Zhuo; Mooney, Alaina J.; Gabbard, Jon D.; Gao, Xiudan; Xu, Pei; Place, Ryan J.; Hogan, Robert J.; Tompkins, S. Mark
2013-01-01
A safe and effective vaccine is the best way to prevent large-scale highly pathogenic avian influenza virus (HPAI) H5N1 outbreaks in the human population. The current FDA-approved H5N1 vaccine has serious limitations. A more efficacious H5N1 vaccine is urgently needed. Parainfluenza virus 5 (PIV5), a paramyxovirus, is not known to cause any illness in humans. PIV5 is an attractive vaccine vector. In our studies, a single dose of a live recombinant PIV5 expressing a hemagglutinin (HA) gene of H5N1 (rPIV5-H5) from the H5N1 subtype provided sterilizing immunity against lethal doses of HPAI H5N1 infection in mice. Furthermore, we have examined the effect of insertion of H5N1 HA at different locations within the PIV5 genome on the efficacy of a PIV5-based vaccine. Interestingly, insertion of H5N1 HA between the leader sequence, the de facto promoter of PIV5, and the first viral gene, nucleoprotein (NP), did not lead to a viable virus. Insertion of H5N1 HA between NP and the next gene, V/phosphorprotein (V/P), led to a virus that was defective in growth. We have found that insertion of H5N1 HA at the junction between the small hydrophobic (SH) gene and the hemagglutinin-neuraminidase (HN) gene gave the best immunity against HPAI H5N1 challenge: a dose as low as 1,000 PFU was sufficient to protect against lethal HPAI H5N1 challenge in mice. The work suggests that recombinant PIV5 expressing H5N1 HA has great potential as an HPAI H5N1 vaccine. PMID:23077314
Stagg, Stephanie B.; Guardiola, Amaris R.; Crews, Stephen T.
2011-01-01
Dopaminergic neurons play important behavioral roles in locomotion, reward and aggression. The Drosophila H-cell is a dopaminergic neuron that resides at the midline of the ventral nerve cord. Both the H-cell and the glutamatergic H-cell sib are the asymmetric progeny of the MP3 midline precursor cell. H-cell sib cell fate is dependent on Notch signaling, whereas H-cell fate is Notch independent. Genetic analysis of genes that could potentially regulate H-cell fate revealed that the lethal of scute [l(1)sc], tailup and SoxNeuro transcription factor genes act together to control H-cell gene expression. The l(1)sc bHLH gene is required for all H-cell-specific gene transcription, whereas tailup acts in parallel to l(1)sc and controls genes involved in dopamine metabolism. SoxNeuro functions downstream of l(1)sc and controls expression of a peptide neurotransmitter receptor gene. The role of l(1)sc may be more widespread, as a l(1)sc mutant shows reductions in gene expression in non-midline dopaminergic neurons. In addition, l(1)sc mutant embryos possess defects in the formation of MP4-6 midline precursor and the median neuroblast stem cell, revealing a proneural role for l(1)sc in midline cells. The Notch-dependent progeny of MP4-6 are the mVUM motoneurons, and these cells also require l(1)sc for mVUM-specific gene expression. Thus, l(1)sc plays an important regulatory role in both neurogenesis and specifying dopaminergic neuron and motoneuron identities. PMID:21558367
Mokri, Poroshista; Lamp, Nora; Linnebacher, Michael; Classen, Carl Friedrich; Erbersdobler, Andreas; Schneider, Björn
2017-01-01
Glioblastoma multiforme (GBM) is the most common and lethal brain tumor in adults. It is known that amplification of the epidermal growth factor receptor gene (EGFR) occurs in approximately 40% of GBM, leading to enhanced activation of the EGFR signaling pathway and promoting tumor growth. Although GBM mutations are stably maintained in GBM in vitro models, rapid loss of EGFR gene amplification is a common observation during cell culture. To maintain EGFR amplification in vitro, heterotopic GBM xenografts with elevated EGFR copy number were cultured under varying serum conditions and EGF concentrations. EGFR copy numbers were assessed over several passages by quantitative PCR and chromogenic in situ hybridization. As expected, in control assays with 10% FCS, cells lost EGFR amplification with increasing passage numbers. However, cells cultured under serum free conditions stably maintained elevated copy numbers. Furthermore, EGFR protein expression positively correlated with genomic amplification levels. Although elevated EGFR copy numbers could be maintained over several passages in vitro, levels of EGFR amplification were variable and dependent on the EGF concentration in the medium. In vitro cultures of GBM cells with elevated EGFR copy number and corresponding EGFR protein expression should prove valuable preclinical tools to gain a better understanding of EGFR driven glioblastoma and assist in the development of new improved therapies. PMID:28934307
Dosage Compensation in Mammals
Brockdorff, Neil; Turner, Bryan M.
2015-01-01
Many organisms show major chromosomal differences between sexes. In mammals, females have two copies of a large, gene-rich chromosome, the X, whereas males have one X and a small, gene-poor Y. The imbalance in expression of several hundred genes is lethal if not dealt with by dosage compensation. The male–female difference is addressed by silencing of genes on one female X early in development. However, both males and females now have only one active X chromosome. This is compensated by twofold up-regulation of genes on the active X. This complex system continues to provide important insights into mechanisms of epigenetic regulation. PMID:25731764
Percopo, Caroline M; Rice, Tyler A; Brenner, Todd A; Dyer, Kimberly D; Luo, Janice L; Kanakabandi, Kishore; Sturdevant, Daniel E; Porcella, Stephen F; Domachowske, Joseph B; Keicher, Jesse D; Rosenberg, Helene F
2015-09-01
We reported previously that priming of the respiratory tract with immunobiotic Lactobacillus prior to virus challenge protects mice against subsequent lethal infection with pneumonia virus of mice (PVM). We present here the results of gene microarray which document differential expression of proinflammatory mediators in response to PVM infection alone and those suppressed in response to Lactobacillus plantarum. We also demonstrate for the first time that intranasal inoculation with live or heat-inactivated L. plantarum or Lactobacillus reuteri promotes full survival from PVM infection when administered within 24h after virus challenge. Survival in response to L. plantarum administered after virus challenge is associated with suppression of proinflammatory cytokines, limited virus recovery, and diminished neutrophil recruitment to lung tissue and airways. Utilizing this post-virus challenge protocol, we found that protective responses elicited by L. plantarum at the respiratory tract were distinct from those at the gastrointestinal mucosa, as mice devoid of the anti-inflammatory cytokine, interleukin (IL)-10, exhibit survival and inflammatory responses that are indistinguishable from those of their wild-type counterparts. Finally, although L. plantarum interacts specifically with pattern recognition receptors TLR2 and NOD2, the respective gene-deleted mice were fully protected against lethal PVM infection by L. plantarum, as are mice devoid of type I interferon receptors. Taken together, L. plantarum is a versatile and flexible agent that is capable of averting the lethal sequelae of severe respiratory infection both prior to and post-virus challenge via complex and potentially redundant mechanisms. Published by Elsevier B.V.
Fitzpatrick, Collin J.; Suschak, John J.; Richards, Michelle J.; Badger, Catherine V.; Six, Carolyn M.; Martin, Jacqueline D.; Hannaman, Drew; Zivcec, Marko; Bergeron, Eric; Koehler, Jeffrey W.; Schmaljohn, Connie S.
2017-01-01
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus capable of causing a severe hemorrhagic fever disease in humans. There are currently no licensed vaccines to prevent CCHFV-associated disease. We developed a DNA vaccine expressing the M-segment glycoprotein precursor gene of CCHFV and assessed its immunogenicity and protective efficacy in two lethal mouse models of disease: type I interferon receptor knockout (IFNAR-/-) mice; and a novel transiently immune suppressed (IS) mouse model. Vaccination of mice by muscle electroporation of the M-segment DNA vaccine elicited strong antigen-specific humoral immune responses with neutralizing titers after three vaccinations in both IFNAR-/- and IS mouse models. To compare the protective efficacy of the vaccine in the two models, groups of vaccinated mice (7–10 per group) were intraperitoneally (IP) challenged with a lethal dose of CCHFV strain IbAr 10200. Weight loss was markedly reduced in CCHFV DNA-vaccinated mice as compared to controls. Furthermore, whereas all vector-control vaccinated mice succumbed to disease by day 5, the DNA vaccine protected >60% of the animals from lethal disease. Mice from both models developed comparable levels of antibodies, but the IS mice had a more balanced Th1/Th2 response to vaccination. There were no statistical differences in the protective efficacies of the vaccine in the two models. Our results provide the first comparison of these two mouse models for assessing a vaccine against CCHFV and offer supportive data indicating that a DNA vaccine expressing the glycoprotein genes of CCHFV elicits protective immunity against CCHFV. PMID:28922426
Garrison, Aura R; Shoemaker, Charles J; Golden, Joseph W; Fitzpatrick, Collin J; Suschak, John J; Richards, Michelle J; Badger, Catherine V; Six, Carolyn M; Martin, Jacqueline D; Hannaman, Drew; Zivcec, Marko; Bergeron, Eric; Koehler, Jeffrey W; Schmaljohn, Connie S
2017-09-01
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus capable of causing a severe hemorrhagic fever disease in humans. There are currently no licensed vaccines to prevent CCHFV-associated disease. We developed a DNA vaccine expressing the M-segment glycoprotein precursor gene of CCHFV and assessed its immunogenicity and protective efficacy in two lethal mouse models of disease: type I interferon receptor knockout (IFNAR-/-) mice; and a novel transiently immune suppressed (IS) mouse model. Vaccination of mice by muscle electroporation of the M-segment DNA vaccine elicited strong antigen-specific humoral immune responses with neutralizing titers after three vaccinations in both IFNAR-/- and IS mouse models. To compare the protective efficacy of the vaccine in the two models, groups of vaccinated mice (7-10 per group) were intraperitoneally (IP) challenged with a lethal dose of CCHFV strain IbAr 10200. Weight loss was markedly reduced in CCHFV DNA-vaccinated mice as compared to controls. Furthermore, whereas all vector-control vaccinated mice succumbed to disease by day 5, the DNA vaccine protected >60% of the animals from lethal disease. Mice from both models developed comparable levels of antibodies, but the IS mice had a more balanced Th1/Th2 response to vaccination. There were no statistical differences in the protective efficacies of the vaccine in the two models. Our results provide the first comparison of these two mouse models for assessing a vaccine against CCHFV and offer supportive data indicating that a DNA vaccine expressing the glycoprotein genes of CCHFV elicits protective immunity against CCHFV.
Targeting SOD1 induces synthetic lethal killing in BLM- and CHEK2-deficient colorectal cancer cells
Sajesh, Babu V.; McManus, Kirk J.
2015-01-01
Cancer is a major cause of death throughout the world, and there is a large need for better and more personalized approaches to combat the disease. Over the past decade, synthetic lethal approaches have been developed that are designed to exploit the aberrant molecular origins (i.e. defective genes) that underlie tumorigenesis. BLM and CHEK2 are two evolutionarily conserved genes that are somatically altered in a number of tumor types. Both proteins normally function in preserving genome stability through facilitating the accurate repair of DNA double strand breaks. Thus, uncovering synthetic lethal interactors of BLM and CHEK2 will identify novel candidate drug targets and lead chemical compounds. Here we identify an evolutionarily conserved synthetic lethal interaction between SOD1 and both BLM and CHEK2 in two distinct cell models. Using quantitative imaging microscopy, real-time cellular analyses, colony formation and tumor spheroid models we show that SOD1 silencing and inhibition (ATTM and LCS-1 treatments), or the induction of reactive oxygen species (2ME2 treatment) induces selective killing within BLM- and CHEK2-deficient cells relative to controls. We further show that increases in reactive oxygen species follow SOD1 silencing and inhibition that are associated with the persistence of DNA double strand breaks, and increases in apoptosis. Collectively, these data identify SOD1 as a novel candidate drug target in BLM and CHEK2 cancer contexts, and further suggest that 2ME2, ATTM and LCS-1 are lead therapeutic compounds warranting further pre-clinical study. PMID:26318585
Targeting SOD1 induces synthetic lethal killing in BLM- and CHEK2-deficient colorectal cancer cells.
Sajesh, Babu V; McManus, Kirk J
2015-09-29
Cancer is a major cause of death throughout the world, and there is a large need for better and more personalized approaches to combat the disease. Over the past decade, synthetic lethal approaches have been developed that are designed to exploit the aberrant molecular origins (i.e. defective genes) that underlie tumorigenesis. BLM and CHEK2 are two evolutionarily conserved genes that are somatically altered in a number of tumor types. Both proteins normally function in preserving genome stability through facilitating the accurate repair of DNA double strand breaks. Thus, uncovering synthetic lethal interactors of BLM and CHEK2 will identify novel candidate drug targets and lead chemical compounds. Here we identify an evolutionarily conserved synthetic lethal interaction between SOD1 and both BLM and CHEK2 in two distinct cell models. Using quantitative imaging microscopy, real-time cellular analyses, colony formation and tumor spheroid models we show that SOD1 silencing and inhibition (ATTM and LCS-1 treatments), or the induction of reactive oxygen species (2ME2 treatment) induces selective killing within BLM- and CHEK2-deficient cells relative to controls. We further show that increases in reactive oxygen species follow SOD1 silencing and inhibition that are associated with the persistence of DNA double strand breaks, and increases in apoptosis. Collectively, these data identify SOD1 as a novel candidate drug target in BLM and CHEK2 cancer contexts, and further suggest that 2ME2, ATTM and LCS-1 are lead therapeutic compounds warranting further pre-clinical study.
Kress, C; Vandormael-Pournin, S; Baldacci, P; Cohen-Tannoudji, M; Babinet, C
1998-12-01
The inbred mouse strain DDK carries a conditional early embryonic lethal mutation that is manifested when DDK females are crossed to males of other inbred strains but not in the corresponding reciprocal crosses. It has been shown that embryonic lethality could be assigned to a single genetic locus called Ovum mutant (Om), on Chromosome (Chr) 11 near Syca 1. In the course of our study of the molecular mechanisms underlying the embryonic lethality, we were interested in deriving an embryonic stem cell bearing the Om mutation in the homozygous state (Omd/Omd). However, it turned out that DDK is nonpermissive for ES cell establishment, with a standard protocol. Here we show that permissiveness could be obtained using Omd/Omd blastocysts with a 75% 129/Sv and 25% DDK genetic background. Several germline-competent Omd/Omd ES cell lines have been derived from blastocysts of this genotype. Such a scenario could be extended to the generation of ES cell lines bearing any mutation present in an otherwise nonpermissive mouse strain.
Protease-deficient herpes simplex virus protects mice from lethal herpesvirus infection.
Hippenmeyer, P J; Rankin, A M; Luckow, V A; Neises, G R
1997-01-01
Null mutants and attenuated mutants of herpes simplex virus (HSV) have been shown to induce immunity against challenge from wild-type virus. Null viruses with a defect in late gene products would be expected to express more viral genes than viruses with defects in essential early gene products and thus induce a better immune response. Herpesviruses encode a late gene product (serine protease) that is autocatalytic and cleaves the capsid assembly protein during viral replication. To determine whether a virus with a mutation in this gene could induce immunity, we constructed a recombinant virus containing the gusA reporter gene in the protease domain of the HSV type 1 UL26 open reading frame (ORF). Consistent with previous results (M. Gao, L. Matusick-Kumar, W. Hurlburt, S. F. DiTusa, W. W. Newcomb, J. C. Brown, P. J. McCann, I. Deckman, and R. J. Colonno, J. Virol. 68:3702-3712, 1994), recombinant virus could be isolated only from helper cell lines expressing the product of the UL26 ORF. Mice inoculated with the recombinant virus were unaffected by doses of virus that were lethal to mice infected with wild-type virus. Mice which were previously inoculated with the recombinant virus were also protected by a subsequent challenge with wild-type virus in a dose-dependent manner. These results indicate that recombinant viruses lacking the protease gene are avirulent but render protection from subsequent challenge. PMID:8995617
Global Expression Studies of Yersinia Pestis Pathogenicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, E; Motin, V; Brubaker, R
2002-10-15
The aim of these studies continues to be the investigation into the molecular mechanisms that underlie the virulence process in Yersinia pestis. In particular, the focus of this work centers on the identification of novel genes and pathways responsible for the pathogenic properties of this organism. In spite of more than four decades of intense investigation in this field, the dilemma as to what makes Y. pestis such a virulent and lethal pathogen remains unanswered. The method being employed makes use microarray technology (DNA chip) that enables the examination of the global activities of the whole complement of genes inmore » this pathogen. Two primary resources available to the investigators (one directly obtained from a separate CBNP-funded project) make these studies possible: (1) Whole genome comparisons of the genes in Y. pestis and its near neighbors with attenuated or non pathogenic characteristics, and (2) the ability to duplicate in vitro, conditions that mimic the infection process of this pathogen. This year we have extended our studies from the original work of characterizing the global transcriptional regulation in Y. pestis triggered during temperature transition from 26 C to 37 C (roughly conditions found in the flea vector and the mammalian host, respectively) to studies of regulation encountered during shift between growth from conditions of neutral pH to acidic pH (the latter conditions, those mimic the environment found inside macrophages, a likely environment found by these cells during infection.). For this work, DNA arrays containing some 5,000 genes (the entire genome of Y. pestis plus those genes found uniquely in the enteropathogen, and near neighbor, Y. pseudotuberculosis) are used to monitor the simultaneous expression levels of each gene of known and unknown function in Y. pestis. Those genes that are up-regulate under the experimental conditions represent genes potentially involved in the pathogenic process. The ultimate role in pathogenicity of those candidate genes uncovered from these studies will be further ascertained by direct knock outs (gene inactivation) and by in vivo studies using an animal model. Discovery of new virulence factors in Y. pestis will directly impact the development of new signatures for detection and geo-location since it will help us to understand and identify those genes that are essential in making the organism pathogenic. These are genes that cannot be altered or removed from the pathogen and as such constitute the best type of signature that we can utilize in their detection and identification. Applications such as this will also enable the utilization of similar technologies to study other pathogens such as Francisella and Brucella, for which we know substantially less in terms of their modality of virulence.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Hyejin; Yoon, Min-Sik; Ryu, Kwon-Yul, E-mail: kyryu@uos.ac.kr
Highlights: •Proliferation capacity of Ubc{sup −/−} FLCs was reduced during culture in vitro. •Ubc is required for proliferation of both hepatocytes and bipotent FLEPCs. •Bipotent FLEPCs exhibit highest Ubc transcription and proliferation capacity. •Cell types responsible for Ubc{sup −/−} fetal liver developmental defect were identified. -- Abstract: We have previously demonstrated that disruption of polyubiquitin gene Ubc leads to mid-gestation embryonic lethality most likely due to a defect in fetal liver development, which can be partially rescued by ectopic expression of Ub. In a previous study, we assessed the cause of embryonic lethality with respect to the fetal liver hematopoieticmore » system. We confirmed that Ubc{sup −/−} embryonic lethality could not be attributed to impaired function of hematopoietic stem cells, which raises the question of whether or not FLECs such as hepatocytes and bile duct cells, the most abundant cell types in the liver, are affected by disruption of Ubc and contribute to embryonic lethality. To answer this, we isolated FLCs from E13.5 embryos and cultured them in vitro. We found that proliferation capacity of Ubc{sup −/−} cells was significantly reduced compared to that of control cells, especially during the early culture period, however we did not observe the increased number of apoptotic cells. Furthermore, levels of Ub conjugate, but not free Ub, decreased upon disruption of Ubc expression in FLCs, and this could not be compensated for by upregulation of other poly- or mono-ubiquitin genes. Intriguingly, the highest Ubc expression levels throughout the entire culture period were observed in bipotent FLEPCs. Hepatocytes and bipotent FLEPCs were most affected by disruption of Ubc, resulting in defective proliferation as well as reduced cell numbers in vitro. These results suggest that defective proliferation of these cell types may contribute to severe reduction of fetal liver size and potentially mid-gestation lethality of Ubc{sup −/−} embryos.« less
Cui, Xianlan; Zhao, Yan; Shi, Xingming; Li, Qiaoling; Yan, Shuai; Gao, Ming; Wang, Mei; Liu, Changjun; Wang, Yunfeng
2013-01-01
Background Herpesvirus of turkey (HVT) as a vector to express the haemagglutinin (HA) of avian influenza virus (AIV) H5 was developed and its protection against lethal Marek’s disease virus (MDV) and highly pathogenic AIV (HPAIV) challenges was evaluated previously. It is well-known that avirulemt MDV type 1 vaccines are more effective than HVT in prevention of lethal MDV infection. To further increase protective efficacy against HPAIV and lethal MDV, a recombinant MDV type 1 strain 814 was developed to express HA gene of HPAIV H5N1. Methodology/Principal Findings A recombinant MDV-1 strain 814 expressing HA gene of HPAIV H5N1 virus A/goose/Guangdong/3/96 at the US2 site (rMDV-HA) was developed under the control of a human CMV immediate-early promoter. The HA expression in the rMDV-HA was tested by immunofluorescence and Western blot analyses, and in vitro and in vivo growth properties of rMDV-HA were also analyzed. Furthermore, we evaluated and compared the protective immunity of rMDV-HA and previously constructed rHVT-HA against HPAIV and lethal MDV. Vaccination of chickens with rMDV-HA induced 80% protection against HPAIV, which was better than the protection rate by rHVT-HA (66.7%). In the animal study with MDV challenge, chickens immunized with rMDV-HA were completely protected against virulent MDV strain J-1 whereas rHVT-HA only induced 80% protection with the same challenge dose. Conclusions/Significance The rMDV-HA vaccine was more effective than rHVT-HA vaccine for protection against lethal MDV and HPAIV challenges. Therefore, avirulent MDV type 1 vaccine is a better vector than HVT for development of a recombinant live virus vaccine against virulent MDV and HPAIV in poultry. PMID:23301062
The in vitro impact of toothpaste extracts on cell viability.
Cvikl, Barbara; Lussi, Adrian; Gruber, Reinhard
2015-06-01
Toothpastes contain three main components: detergents, abrasives, and fluoride. Detergents, particularly sodium lauryl sulfate, have been proposed as components that enable toothpastes to produce cytotoxic effects in vitro. However, not all toothpastes contain sodium lauryl sulfate, and almost no studies have found an association between detergents and the in vitro cytotoxicity of toothpastes. The present study examined the in vitro cytotoxicity of nine commercially available toothpastes containing four different detergents. Toothpastes were diluted in serum-free medium, centrifuged, and filter sterilized. The half-lethal concentration of the toothpaste-conditioned medium (TCM) was calculated based on the formation of formazan by gingival fibroblasts, oral squamous cell carcinoma HSC-2 cells, and L929 cells. Cell proliferation was analyzed, and live-dead staining was performed, after exposure of cells to conditioned medium prepared with 1% toothpaste (1% TCM). It was found that toothpastes containing sodium lauryl sulfate and amine fluoride strongly inhibited cell viability with the half-lethal concentration being obtained with conditioned medium prepared with approximately 1% toothpaste (1% TCM). Toothpastes containing cocamidopropyl betaine and Steareth-20 showed higher half-lethal concentration values, with the half-lethal concentration being obtained with conditioned medium prepared with 10% (10% TCM) and 70% (70% TCM) toothpaste, respectively. Proliferation and live-dead data were consistent with the cell-viability analyses. These results demonstrate that the type of detergent in toothpastes can be associated with changes in in vitro cell toxicity. © 2015 Eur J Oral Sci.
Barbosa, J; Borges, S; Teixeira, P
2015-12-01
The demand for new functional non-dairy based products makes the production of a probiotic orange juice powder an encouraging challenge. However, during drying process and storage, loss of viability of the dried probiotic cultures can occur, since the cells are exposed to various stresses. The influence of sub-lethal conditions of temperature, acidic pH and hydrogen peroxide on the viability of Pediococcus acidilactici HA-6111-2 and Lactobacillus plantarum 299v during spray drying in orange juice and subsequent storage under different conditions was investigated. At the end of storage, the survival of both microorganisms through simulated gastro-intestinal tract (GIT) conditions was also determined. The viability of cells previously exposed to each stress was not affected by the drying process. However, during 180 days of storage at room temperature, unlike P. acidilactici HA-6111-2, survival of L. plantarum 299v was enhanced by prior exposure to sub-lethal conditions. Previous exposure to sub-lethal stresses of each microorganism did not improve their viability after passage through simulated GIT. Nevertheless, as cellular inactivation during 180 days of storage was low, both microorganisms were present in numbers of ca. 10(7) cfu/mL at the end of GIT. This is an indication that both bacteria are good candidates for use in the development of an orange juice powder with functional characteristics. Copyright © 2015 Elsevier Ltd. All rights reserved.
Garner, Austin G; Kenney, Amanda M; Fishman, Lila; Sweigart, Andrea L
2016-07-01
In flowering plants, F1 hybrid seed lethality is a common outcome of crosses between closely related diploid species, but the genetic basis of this early-acting and potentially widespread form of postzygotic reproductive isolation is largely unknown. We intercrossed two closely related species of monkeyflower, Mimulus guttatus and Mimulus tilingii, to characterize the mechanisms and strength of postzygotic reproductive isolation. Then, using a reciprocal backcross design, we performed high-resolution genetic mapping to determine the genetic architecture of hybrid seed lethality and directly test for loci with parent-of-origin effects. We found that F1 hybrid seed lethality is an exceptionally strong isolating barrier between Mimulus species, with reciprocal crosses producing < 1% viable seeds. This form of postzygotic reproductive isolation appears to be highly polygenic, indicating that multiple incompatibility loci have accumulated rapidly between these closely related Mimulus species. It is also primarily caused by genetic loci with parent-of-origin effects, suggesting a possible role for imprinted genes in the evolution of Mimulus hybrid seed lethality. Our findings suggest that divergence in loci with parent-of-origin effects, which is probably driven by genomic coevolution within lineages, might be an important source of hybrid incompatibilities between flowering plant species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Biallelic variants in the ciliary gene TMEM67 cause RHYNS syndrome.
Brancati, Francesco; Camerota, Letizia; Colao, Emma; Vega-Warner, Virginia; Zhao, Xiangzhong; Zhang, Ruixiao; Bottillo, Irene; Castori, Marco; Caglioti, Alfredo; Sangiuolo, Federica; Novelli, Giuseppe; Perrotti, Nicola; Otto, Edgar A
2018-06-11
A rare syndrome was first described in 1997 in a 17-year-old male patient presenting with Retinitis pigmentosa, HYpopituitarism, Nephronophthisis and Skeletal dysplasia (RHYNS). In the single reported familial case, two brothers were affected, arguing for X-linked or recessive mode of inheritance. Up to now, the underlying genetic basis of RHYNS syndrome remains unknown. Here we applied whole-exome sequencing in the originally described family with RHYNS to identify compound heterozygous variants in the ciliary gene TMEM67. Sanger sequencing confirmed a paternally inherited nonsense c.622A > T, p.(Arg208*) and a maternally inherited missense variant c.1289A > G, p.(Asp430Gly), which perturbs the correct splicing of exon 13. Overall, TMEM67 showed one of the widest clinical continuum observed in ciliopathies ranging from early lethality to adults with liver fibrosis. Our findings extend the spectrum of phenotypes/syndromes resulting from biallelic TMEM67 variants to now eight distinguishable clinical conditions including RHYNS syndrome.
Cloning and characterization of the Schizosaccharomyces pombe tRNA:pseudouridine synthase Pus1p
Hellmuth, Klaus; Grosjean, Henri; Motorin, Yuri; Deinert, Karina; Hurt, Ed; Simos, George
2000-01-01
Saccharomyces cerevisiae cells that carry deletions in both the LOS1 (a tRNA export receptor) and the PUS1 (a tRNA:pseudouridine synthase) genes exhibit a thermosensitive growth defect. A Schizosaccharomyces pombe gene, named spPUS1, was cloned from a cDNA library by complementation of this conditional lethal phenotype. The corresponding protein, spPus1p, shows sequence similarity to S.cerevisiae and murine Pus1p as well as other known members of the pseudouridine synthase family. Accordingly, recombinant spPus1p can catalyze in vitro the formation of pseudouridines at positions 27, 28, 34, 35 and 36 of yeast tRNA transcripts. The sequence and functional conservation of the Pus1p proteins in fungi and mammalian species and their notable absence from prokaryotes suggest that this family of pseudouridine synthases is required for a eukaryote-specific step of tRNA biogenesis, such as nuclear export. PMID:11095668
Novel Harmful Recessive Haplotypes Identified for Fertility Traits in Nordic Holstein Cattle
Sahana, Goutam; Nielsen, Ulrik Sander; Aamand, Gert Pedersen; Lund, Mogens Sandø; Guldbrandtsen, Bernt
2013-01-01
Using genomic data, lethal recessives may be discovered from haplotypes that are common in the population but never occur in the homozygote state in live animals. This approach only requires genotype data from phenotypically normal (i.e. live) individuals and not from the affected embryos that die. A total of 7,937 Nordic Holstein animals were genotyped with BovineSNP50 BeadChip and haplotypes including 25 consecutive markers were constructed and tested for absence of homozygotes states. We have identified 17 homozygote deficient haplotypes which could be loosely clustered into eight genomic regions harboring possible recessive lethal alleles. Effects of the identified haplotypes were estimated on two fertility traits: non-return rates and calving interval. Out of the eight identified genomic regions, six regions were confirmed as having an effect on fertility. The information can be used to avoid carrier-by-carrier mattings in practical animal breeding. Further, identification of causative genes/polymorphisms responsible for lethal effects will lead to accurate testing of the individuals carrying a lethal allele. PMID:24376603
Poon, S K; Peacock, L; Gibson, W; Gull, K; Kelly, S
2012-02-01
Here, we present a simple modular extendable vector system for introducing the T7 RNA polymerase and tetracycline repressor genes into Trypanosoma brucei. This novel system exploits developments in our understanding of gene expression and genome organization to produce a streamlined plasmid optimized for high levels of expression of the introduced transgenes. We demonstrate the utility of this novel system in bloodstream and procyclic forms of Trypanosoma brucei, including the genome strain TREU927/4. We validate these cell lines using a variety of inducible experiments that recapture previously published lethal and non-lethal phenotypes. We further demonstrate the utility of the single marker (SmOx) TREU927/4 cell line for in vivo experiments in the tsetse fly and provide a set of plasmids that enable both whole-fly and salivary gland-specific inducible expression of transgenes.
Poon, S. K.; Peacock, L.; Gibson, W.; Gull, K.; Kelly, S.
2012-01-01
Here, we present a simple modular extendable vector system for introducing the T7 RNA polymerase and tetracycline repressor genes into Trypanosoma brucei. This novel system exploits developments in our understanding of gene expression and genome organization to produce a streamlined plasmid optimized for high levels of expression of the introduced transgenes. We demonstrate the utility of this novel system in bloodstream and procyclic forms of Trypanosoma brucei, including the genome strain TREU927/4. We validate these cell lines using a variety of inducible experiments that recapture previously published lethal and non-lethal phenotypes. We further demonstrate the utility of the single marker (SmOx) TREU927/4 cell line for in vivo experiments in the tsetse fly and provide a set of plasmids that enable both whole-fly and salivary gland-specific inducible expression of transgenes. PMID:22645659
Áy, Zoltán; Mihály, Róbert; Cserháti, Mátyás; Kótai, Éva; Pauk, János
2012-01-01
We present an experiment done on a bar(+) wheat line treated with 14 different concentrations of glufosinate ammonium-an effective component of nonselective herbicides-during seed germination in a closed experimental system. Yield components as number of spikes per plant, number of grains per spike, thousand kernel weight, and yield per plant were thoroughly analysed and statistically evaluated after harvesting. We found that a concentration of glufosinate ammonium 5000 times the lethal dose was not enough to inhibit the germination of transgenic plants expressing the bar gene. Extremely high concentrations of glufosinate ammonium caused a bushy phenotype, significantly lower numbers of grains per spike, and thousand kernel weights. Concerning the productivity, we observed that concentrations of glufosinate ammonium 64 times the lethal dose did not lead to yield depression. Our results draw attention to the possibilities implied in the transgenic approaches.
Zhang, Jiang; Khan, Sher Afzal; Hasse, Claudia; Ruf, Stephanie; Heckel, David G; Bock, Ralph
2015-02-27
Double-stranded RNAs (dsRNAs) targeted against essential genes can trigger a lethal RNA interference (RNAi) response in insect pests. The application of this concept in plant protection is hampered by the presence of an endogenous plant RNAi pathway that processes dsRNAs into short interfering RNAs. We found that long dsRNAs can be stably produced in chloroplasts, a cellular compartment that appears to lack an RNAi machinery. When expressed from the chloroplast genome, dsRNAs accumulated to as much as 0.4% of the total cellular RNA. Transplastomic potato plants producing dsRNAs targeted against the β-actin gene of the Colorado potato beetle, a notorious agricultural pest, were protected from herbivory and were lethal to its larvae. Thus, chloroplast expression of long dsRNAs can provide crop protection without chemical pesticides. Copyright © 2015, American Association for the Advancement of Science.
Gene family encoding the major toxins of lethal Amanita mushrooms
Hallen, Heather E.; Luo, Hong; Scott-Craig, John S.; Walton, Jonathan D.
2007-01-01
Amatoxins, the lethal constituents of poisonous mushrooms in the genus Amanita, are bicyclic octapeptides. Two genes in A. bisporigera, AMA1 and PHA1, directly encode α-amanitin, an amatoxin, and the related bicyclic heptapeptide phallacidin, a phallotoxin, indicating that these compounds are synthesized on ribosomes and not by nonribosomal peptide synthetases. α-Amanitin and phallacidin are synthesized as proproteins of 35 and 34 amino acids, respectively, from which they are predicted to be cleaved by a prolyl oligopeptidase. AMA1 and PHA1 are present in other toxic species of Amanita section Phalloidae but are absent from nontoxic species in other sections. The genomes of A. bisporigera and A. phalloides contain multiple sequences related to AMA1 and PHA1. The predicted protein products of this family of genes are characterized by a hypervariable “toxin” region capable of encoding a wide variety of peptides of 7–10 amino acids flanked by conserved sequences. Our results suggest that these fungi have a broad capacity to synthesize cyclic peptides on ribosomes. PMID:18025465
Sixt, Nathalie; Cardoso, Alicia; Vallier, Agnès; Fayolle, Joël; Buckland, Robin; Wild, T. Fabian
1998-01-01
We have studied the immune responses to the two glycoproteins of the Morbillivirus canine distemper virus (CDV) after DNA vaccination of BALB/c mice. The plasmids coding for both CDV hemagglutinin (H) and fusion protein (F) induce high levels of antibodies which persist for more than 6 months. Intramuscular inoculation of the CDV DNA induces a predominantly immunoglobulin G2a (IgG2a) response (Th1 response), whereas gene gun immunization with CDV H evokes exclusively an IgG1 response (Th2 response). In contrast, the CDV F gene elicited a mixed, IgG1 and IgG2a response. Mice vaccinated (by gene gun) with either the CDV H or F DNA showed a class I-restricted cytotoxic lymphocyte response. Immunized mice challenged intracerebrally with a lethal dose of a neurovirulent strain of CDV were protected. However, approximately 30% of the mice vaccinated with the CDV F DNA became obese in the first 2 months following the challenge. This was not correlated with the serum antibody levels. PMID:9765383
Dietlein, Felix; Thelen, Lisa; Jokic, Mladen; Jachimowicz, Ron D; Ivan, Laura; Knittel, Gero; Leeser, Uschi; van Oers, Johanna; Edelmann, Winfried; Heukamp, Lukas C; Reinhardt, H Christian
2014-05-01
Here, we use a large-scale cell line-based approach to identify cancer cell-specific mutations that are associated with DNA-dependent protein kinase catalytic subunit (DNA-PKcs) dependence. For this purpose, we profiled the mutational landscape across 1,319 cancer-associated genes of 67 distinct cell lines and identified numerous genes involved in homologous recombination-mediated DNA repair, including BRCA1, BRCA2, ATM, PAXIP, and RAD50, as being associated with non-oncogene addiction to DNA-PKcs. Mutations in the mismatch repair gene MSH3, which have been reported to occur recurrently in numerous human cancer entities, emerged as the most significant predictors of DNA-PKcs addiction. Concordantly, DNA-PKcs inhibition robustly induced apoptosis in MSH3-mutant cell lines in vitro and displayed remarkable single-agent efficacy against MSH3-mutant tumors in vivo. Thus, we here identify a therapeutically actionable synthetic lethal interaction between MSH3 and the non-homologous end joining kinase DNA-PKcs. Our observations recommend DNA-PKcs inhibition as a therapeutic concept for the treatment of human cancers displaying homologous recombination defects.
Steckel, Michael; Molina-Arcas, Miriam; Weigelt, Britta; Marani, Michaela; Warne, Patricia H; Kuznetsov, Hanna; Kelly, Gavin; Saunders, Becky; Howell, Michael; Downward, Julian; Hancock, David C
2012-01-01
Oncogenic mutations in RAS genes are very common in human cancer, resulting in cells with well-characterized selective advantages, but also less well-understood vulnerabilities. We have carried out a large-scale loss-of-function screen to identify genes that are required by KRAS-transformed colon cancer cells, but not by derivatives lacking this oncogene. Top-scoring genes were then tested in a larger panel of KRAS mutant and wild-type cancer cells. Cancer cells expressing oncogenic KRAS were found to be highly dependent on the transcription factor GATA2 and the DNA replication initiation regulator CDC6. Extending this analysis using a collection of drugs with known targets, we found that cancer cells with mutant KRAS showed selective addiction to proteasome function, as well as synthetic lethality with topoisomerase inhibition. Combination targeting of these functions caused improved killing of KRAS mutant cells relative to wild-type cells. These observations suggest novel targets and new ways of combining existing therapies for optimal effect in RAS mutant cancers, which are traditionally seen as being highly refractory to therapy. PMID:22613949
Samata, Maria; Akhtar, Asifa
2018-06-20
X chromosome regulation represents a prime example of an epigenetic phenomenon where coordinated regulation of a whole chromosome is required. In flies, this is achieved by transcriptional upregulation of X chromosomal genes in males to equalize the gene dosage differences in females. Chromatin-bound proteins and long noncoding RNAs (lncRNAs) constituting a ribonucleoprotein complex known as the male-specific lethal (MSL) complex or the dosage compensation complex mediate this process. MSL complex members decorate the male X chromosome, and their absence leads to male lethality. The male X chromosome is also enriched with histone H4 lysine 16 acetylation (H4K16ac), indicating that the chromatin compaction status of the X chromosome also plays an important role in transcriptional activation. How the X chromosome is specifically targeted and how dosage compensation is mechanistically achieved are central questions for the field. Here, we review recent advances, which reveal a complex interplay among lncRNAs, the chromatin landscape, transcription, and chromosome conformation that fine-tune X chromosome gene expression.
Basrai, M A; Velculescu, V E; Kinzler, K W; Hieter, P
1999-10-01
Analysis of global gene expression in Saccharomyces cerevisiae by the serial analysis of gene expression technique has permitted the identification of at least 302 previously unidentified transcripts from nonannotated open reading frames (NORFs). Transcription of one of these, NORF5/HUG1 (hydroxyurea and UV and gamma radiation induced), is induced by DNA damage, and this induction requires MEC1, a homolog of the ataxia telangiectasia mutated (ATM) gene. DNA damage-specific induction of HUG1, which is independent of the cell cycle stage, is due to the alleviation of repression by the Crt1p-Ssn6p-Tup1p complex. Overexpression of HUG1 is lethal in combination with a mec1 mutation in the presence of DNA damage or replication arrest, whereas a deletion of HUG1 rescues the lethality due to a mec1 null allele. HUG1 is the first example of a NORF with important biological functional properties and defines a novel component of the MEC1 checkpoint pathway.
Lu, Weiwei; Xu, Qiujing; Zhu, Jun; Liu, Chen; Ge, Linquan; Yang, Guoqing; Liu, Fang
2017-08-01
The miridbug, Cyrtorhinus lividipennis, is a significant predacious enemy of rice planthoppers. The effects of sub-lethal concentrations of triazophos, deltamethrin and imidacloprid on fecundity, egg hatchability, expression levels of genes associated with reproduction, and population growth in C. lividipennis were investigated. The fecundities for three pair combinations (♀ c × ♂ t , ♀ t × ♂ c and ♀ t × ♂ t ) treated with sub-lethal concentrations of the insecticides triazophos, deltamethrin and imidacloprid (LC 10 and LC 20 ) showed a significant increase compared to the untreated pairs (♀ c × ♂ c ). However, sub-lethal concentration treatments did not affect the egg hatchability. The ClVg expression levels of female adults exposed to triazophos, deltamethrin and imidacloprid (LC 20 ) increased by 52.6, 48.9 and 91.2%, respectively. The ClSPATA13 expression level of adult males exposed to triazophos, deltamethrim and imidacloprid (LC 20 ) increased by 80.7, 41.3 and 48.3%, respectively. Furthermore, sub-lethal concentrations of insecticides (LC 20 ) caused increased population numbers in C. lividipennis. Sub-lethal concentrations of triazophos, deltamethrin and imidacloprid stimulated reproduction and enhanced population growth of C. lividipennis. The reproductive stimulation might result from the up-regulation of ClVg or ClSPATA13. These findings may be useful in mediating populations of planthoppers. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Gifford, Robert J.; Rhee, Soo-Yon; Eriksson, Nicolas; Liu, Tommy F.; Kiuchi, Mark; Das, Amar K.; Shafer, Robert W.
2008-01-01
Design Promiscuous guanine (G) to adenine (A) substitutions catalysed by apolipoprotein B RNA-editing catalytic component (APOBEC) enzymes are observed in a proportion of HIV-1 sequences in vivo and can introduce artifacts into some genetic analyses. The potential impact of undetected lethal editing on genotypic estimation of transmitted drug resistance was assessed. Methods Classifiers of lethal, APOBEC-mediated editing were developed by analysis of lentiviral pol gene sequence variation and evaluated using control sets of HIV-1 sequences. The potential impact of sequence editing on genotypic estimation of drug resistance was assessed in sets of sequences obtained from 77 studies of 25 or more therapy-naive individuals, using mixture modelling approaches to determine the maximum likelihood classification of sequences as lethally edited as opposed to viable. Results Analysis of 6437 protease and reverse transcriptase sequences from therapy-naive individuals using a novel classifier of lethal, APOBEC3G-mediated sequence editing, the polypeptide-like 3G (APOBEC3G)-mediated defectives (A3GD) index’, detected lethal editing in association with spurious ‘transmitted drug resistance’ in nearly 3% of proviral sequences obtained from whole blood and 0.2% of samples obtained from plasma. Conclusion Screening for lethally edited sequences in datasets containing a proportion of proviral DNA, such as those likely to be obtained for epidemiological surveillance of transmitted drug resistance in the developing world, can eliminate rare but potentially significant errors in genotypic estimation of transmitted drug resistance. PMID:18356601
Highly variable penetrance of abnormal phenotypes in embryonic lethal knockout mice
Wilson, Robert; Geyer, Stefan H.; Reissig, Lukas; Rose, Julia; Szumska, Dorota; Hardman, Emily; Prin, Fabrice; McGuire, Christina; Ramirez-Solis, Ramiro; White, Jacqui; Galli, Antonella; Tudor, Catherine; Tuck, Elizabeth; Mazzeo, Cecilia Icoresi; Smith, James C.; Robertson, Elizabeth; Adams, David J.; Mohun, Timothy; Weninger, Wolfgang J.
2017-01-01
Background: Identifying genes that are essential for mouse embryonic development and survival through term is a powerful and unbiased way to discover possible genetic determinants of human developmental disorders. Characterising the changes in mouse embryos that result from ablation of lethal genes is a necessary first step towards uncovering their role in normal embryonic development and establishing any correlates amongst human congenital abnormalities. Methods: Here we present results gathered to date in the Deciphering the Mechanisms of Developmental Disorders (DMDD) programme, cataloguing the morphological defects identified from comprehensive imaging of 220 homozygous mutant and 114 wild type embryos from 42 lethal and subviable lines, analysed at E14.5. Results: Virtually all mutant embryos show multiple abnormal phenotypes and amongst the 42 lines these affect most organ systems. Within each mutant line, the phenotypes of individual embryos form distinct but overlapping sets. Subcutaneous edema, malformations of the heart or great vessels, abnormalities in forebrain morphology and the musculature of the eyes are all prevalent phenotypes, as is loss or abnormal size of the hypoglossal nerve. Conclusions: Overall, the most striking finding is that no matter how profound the malformation, each phenotype shows highly variable penetrance within a mutant line. These findings have challenging implications for efforts to identify human disease correlates. PMID:27996060
USDA-ARS?s Scientific Manuscript database
African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal disease of domestic pigs that has significant economic consequences for the swine industry. The viral genome encodes for more than 150 genes, and only a select few have been studied in some detail. Here we rep...
USDA-ARS?s Scientific Manuscript database
African swine fever virus (ASFV) causes a contagious and frequently lethal disease of pigs that produces significant economic consequences to the swine industry. ASFV genome encodes for more than 150 genes, but only a few of them have been studied in detail. Here we report the characterization of op...
Jia, Yuzhi; Chang, Hsiang-Chun; Schipma, Matthew J; Liu, Jing; Shete, Varsha; Liu, Ning; Sato, Tatsuya; Thorp, Edward B; Barger, Philip M; Zhu, Yi-Jun; Viswakarma, Navin; Kanwar, Yashpal S; Ardehali, Hossein; Thimmapaya, Bayar; Reddy, Janardan K
2016-01-01
Mediator, an evolutionarily conserved multi-protein complex consisting of about 30 subunits, is a key component of the polymerase II mediated gene transcription. Germline deletion of the Mediator subunit 1 (Med1) of the Mediator in mice results in mid-gestational embryonic lethality with developmental impairment of multiple organs including heart. Here we show that cardiomyocyte-specific deletion of Med1 in mice (csMed1-/-) during late gestational and early postnatal development by intercrossing Med1fl/fl mice to α-MyHC-Cre transgenic mice results in lethality within 10 days after weaning due to dilated cardiomyopathy-related ventricular dilation and heart failure. The csMed1-/- mouse heart manifests mitochondrial damage, increased apoptosis and interstitial fibrosis. Global gene expression analysis revealed that loss of Med1 in heart down-regulates more than 200 genes including Acadm, Cacna1s, Atp2a2, Ryr2, Pde1c, Pln, PGC1α, and PGC1β that are critical for calcium signaling, cardiac muscle contraction, arrhythmogenic right ventricular cardiomyopathy, dilated cardiomyopathy and peroxisome proliferator-activated receptor regulated energy metabolism. Many genes essential for oxidative phosphorylation and proper mitochondrial function such as genes coding for the succinate dehydrogenase subunits of the mitochondrial complex II are also down-regulated in csMed1-/- heart contributing to myocardial injury. Data also showed up-regulation of about 180 genes including Tgfb2, Ace, Atf3, Ctgf, Angpt14, Col9a2, Wisp2, Nppa, Nppb, and Actn1 that are linked to cardiac muscle contraction, cardiac hypertrophy, cardiac fibrosis and myocardial injury. Furthermore, we demonstrate that cardiac specific deletion of Med1 in adult mice using tamoxifen-inducible Cre approach (TmcsMed1-/-), results in rapid development of cardiomyopathy and death within 4 weeks. We found that the key findings of the csMed1-/- studies described above are highly reproducible in TmcsMed1-/- mouse heart. Collectively, these observations suggest that Med1 plays a critical role in the maintenance of heart function impacting on multiple metabolic, compensatory and reparative pathways with a likely therapeutic potential in the management of heart failure.
Transcription of detoxification genes following permethrin selection in the mosquito Aedes aegypti
Saavedra-Rodriguez, Karla; Suarez, Adriana Flores; Salas, Ildefonso Fernandez; Strode, Clare; Ranson, Hilary; Hemingway, Janet; Black, William C.
2011-01-01
Changes in gene expression before, during and after five generations of permethrin laboratory selection were monitored in six strains of Aedes aegypti: five F2 – F3 collections from the Yucatán Peninsula of México and one F2 from Iquitos, Perú. Three biological replicate lines were generated for each strain. The response to selection was measured as changes in the lethal and knockdown permethrin concentrations (LC50, KC50) and in the frequency of the Ile1,016 substitution in the voltage gated sodium channel (para) gene. Changes in expression of 290 metabolic detoxification genes were measured using the “Aedes Detox” microarray. Selection simultaneously increased the LC50, KC50 and Ile1,016 frequency. There was an inverse relationship between Ile1,016 frequency and the numbers of differentially transcribed genes. The Iquitos strain lacked the Ile1,016 allele and 51 genes were differentially transcribed following selection as compared to 10–18 genes in the Mexican strains. Very few of the same genes were differentially transcribed among field strains but ten cytochrome P450 genes were upregulated in more than one strain. Laboratory adaptation to permethrin in Ae. aegypti is genetically complex and largely conditioned by geographic origin and preexisting target site insensitivity in the para gene. The lack of uniformity in the genes that responded to artificial selection as well as differences in the direction of their responses challenges the assumption that one or a few genes control permethrin metabolic resistance. Attempts to identify one or a few metabolic genes that are predictably associated with permethrin adaptation may be futile. PMID:22032702
Blumenthal, Edward M
2008-01-01
Mutations in the Drosophila gene drop-dead (drd) result in early adult lethality and neurodegeneration, but the molecular identity of the drd gene and its mechanism of action are not known. This paper describes the characterization of a new X-linked recessive adult-lethal mutation, originally called lot's wife (lwf(1)) but subsequently identified as an allele of drd (drd(lwf)); drd(lwf) mutants die within two weeks of eclosion. Through mapping and complementation, the drd gene has been identified as CG33968, which encodes a putative integral membrane protein of unknown function. The drd(lwf) allele is associated with a nonsense mutation that eliminates nearly 80% of the CG33968 gene product; mutations in the same gene were also found in two previously described drd alleles. Characterization of drd (lwf) flies revealed additional phenotypes of drd, most notably, defects in food processing by the digestive system and in oogenesis. Mutant flies store significantly more food in their crops and defecate less than wild-type flies, suggesting that normal transfer of ingested food from the crop into the midgut is dependent upon the DRD gene product. The defect in oogenesis results in the sterility of homozygous mutant females and is associated with a reduction in the number of vitellogenic egg chambers. The disruption in vitellogenesis is far more severe than that seen in starved flies and so is unlikely to be a secondary consequence of the digestive phenotype. This study demonstrates that mutation of the drd gene CG33968 results in a complex phenotype affecting multiple physiological systems within the fly.
Structural Basis for the Binding of the Neutralizing Antibody, 7D11, to the Poxvirus L1 Protein
2007-08-01
pCR- 7D11-vHC and pCR-7D11- vLC , respectively. Crystallization of the complex between L1 and 7D11-Fab VACV L1 protein was expressed and purified as...2005. Vaccinia virus H3L envelope protein is a major target of neutralizing antibodies in humans and elicits protection against lethal challenge in...D.M., Schmaljohn, C., Schmaljohn, A., 2000. DNA vaccination with vaccinia virus L1R and A33R genes protects mice against a lethal poxvirus challenge
Yoon, Ho-Kyoung; Kim, Yong-Ku
2009-04-30
Serotonergic system-related genes can be good candidate genes for both major depressive disorder (MDD) and suicidal behavior. In this study, we aimed to investigate the association of serotonin 2A receptor gene -1438A/G SNP (HTR2A -1438A/G), tryptophan hydroxylase 2 gene -703G/T SNP (TPH2 -703G/T) and serotonin 1A receptor C-1019G (HTR1A C-1019G) with suicidal behavior. One hundred and eighty one suicidal depressed patients and 143 non-suicidal depressed patients who met DSM-IV criteria for major depressive disorder were recruited from patients who were admitted to Korea University Ansan Hospital. One hundred seventy six normal controls were healthy volunteers who were recruited by local advertisement. Patients and normal controls were genotyped for HTR2A -1438A/G, TPH2 -703G/T and 5-HT1A C-1019G. The suicidal depressed patients were evaluated by the lethality of individual suicide attempts using Weisman and Worden's risk-rescue rating (RRR) and the Lethality Suicide Attempt Rating Scale-updated (LSARS-II). In order to assess the severity of depressive symptoms of patients, Hamilton's Depression Rating Scale (HDRS) was administered. Genotype and allele frequencies were compared between groups by chi(2) statistics. Association of genotype of the candidate genes with the lethality of suicidal behavior was examined with ANOVA by comparing the mean scores of LSARS and RRR according to the genotype. There were statistically significant differences in the genotype distributions and allele frequencies of TPH2 -703G/T between the suicidal depressive group and the normal control group. The homozygous allele G (G/G genotype) frequency was significantly higher in suicidal depressed patients than in controls. However, no differences in either genotype distribution or in allele frequencies of HTR2A -1438A/G and HTR1A C-1019G were observed between the suicidal depressed patients, the non-suicidal depressed patients, and the normal controls. There were no differences in the lethality of suicidal behavior in suicidal depressed patients according to the genotypes of three polymorphisms. Our results suggest that TPH2 -703G/T SNP may have an important effect on susceptibility to suicidal behavior. Furthermore, an increased frequency of G allele of TPH2 SNP may be associated with elevated suicidal behavior itself rather than with the diagnosis of major depression and may increase risk of suicidality, independent of diagnosis.
Papin, James F.; Verardi, Paulo H.; Jones, Leslie A.; Monge-Navarro, Francisco; Brault, Aaron C.; Holbrook, Michael R.; Worthy, Melissa N.; Freiberg, Alexander N.; Yilma, Tilahun D.
2011-01-01
Rift Valley fever (RVF) is a zoonotic disease endemic in Africa and the Arabian Peninsula caused by the highly infectious Rift Valley fever virus (RVFV) that can be lethal to humans and animals and results in major losses in the livestock industry. RVF is exotic to the United States; however, mosquito species native to this region can serve as biological vectors for the virus. Thus, accidental or malicious introduction of this virus could result in RVFV becoming endemic in North America. Such an event would likely lead to significant morbidity and mortality in humans, and devastating economic effects on the livestock industry. Currently, there are no licensed vaccines for RVF that are both safe and efficacious. To address this issue, we developed two recombinant RVFV vaccines using vaccinia virus (VACV) as a vector for use in livestock. The first vaccine, vCOGnGc, was attenuated by the deletion of a VACV gene encoding an IFN-γ binding protein, insertional inactivation of the thymidine kinase gene, and expression of RVFV glycoproteins, Gn and Gc. The second vaccine, vCOGnGcγ, is identical to the first and also expresses the human IFN-γ gene to enhance safety. Both vaccines are extremely safe; neither resulted in weight loss nor death in severe combined immunodeficient mice, and pock lesions were smaller in baboons compared with the controls. Furthermore, both vaccines induced protective levels of antibody titers in vaccinated mice and baboons. Mice were protected from lethal RVFV challenge. Thus, we have developed two safe and efficacious recombinant vaccines for RVF. PMID:21873194
Stach, Christopher S; Vu, Bao G; Merriman, Joseph A; Herrera, Alfa; Cahill, Michael P; Schlievert, Patrick M; Salgado-Pabón, Wilmara
2016-01-01
Superantigens are indispensable virulence factors for Staphylococcus aureus in disease causation. Superantigens stimulate massive immune cell activation, leading to toxic shock syndrome (TSS) and contributing to other illnesses. However, superantigens differ in their capacities to induce body-wide effects. For many, their production, at least as tested in vitro, is not high enough to reach the circulation, or the proteins are not efficient in crossing epithelial and endothelial barriers, thus remaining within tissues or localized on mucosal surfaces where they exert only local effects. In this study, we address the role of TSS toxin-1 (TSST-1) and most importantly the enterotoxin gene cluster (egc) in infective endocarditis and sepsis, gaining insights into the body-wide versus local effects of superantigens. We examined S. aureus TSST-1 gene (tstH) and egc deletion strains in the rabbit model of infective endocarditis and sepsis. Importantly, we also assessed the ability of commercial human intravenous immunoglobulin (IVIG) plus vancomycin to alter the course of infective endocarditis and sepsis. TSST-1 contributed to infective endocarditis vegetations and lethal sepsis, while superantigens of the egc, a cluster with uncharacterized functions in S. aureus infections, promoted vegetation formation in infective endocarditis. IVIG plus vancomycin prevented lethality and stroke development in infective endocarditis and sepsis. Our studies support the local tissue effects of egc superantigens for establishment and progression of infective endocarditis providing evidence for their role in life-threatening illnesses. In contrast, TSST-1 contributes to both infective endocarditis and lethal sepsis. IVIG may be a useful adjunct therapy for infective endocarditis and sepsis.
Balmus, Gabriel; Zhu, Min; Mukherjee, Sucheta; Lyndaker, Amy M.; Hume, Kelly R.; Lee, Jaesung; Riccio, Mark L.; Reeves, Anthony P.; Sutter, Nathan B.; Noden, Drew M.; Peters, Rachel M.; Weiss, Robert S.
2012-01-01
The human genomic instability syndrome ataxia telangiectasia (A-T), caused by mutations in the gene encoding the DNA damage checkpoint kinase ATM, is characterized by multisystem defects including neurodegeneration, immunodeficiency and increased cancer predisposition. ATM is central to a pathway that responds to double-strand DNA breaks, whereas the related kinase ATR leads a parallel signaling cascade that is activated by replication stress. To dissect the physiological relationship between the ATM and ATR pathways, we generated mice defective for both. Because complete ATR pathway inactivation causes embryonic lethality, we weakened the ATR mechanism to different degrees by impairing HUS1, a member of the 911 complex that is required for efficient ATR signaling. Notably, simultaneous ATM and HUS1 defects caused synthetic lethality. Atm/Hus1 double-mutant embryos showed widespread apoptosis and died mid-gestationally. Despite the underlying DNA damage checkpoint defects, increased DNA damage signaling was observed, as evidenced by H2AX phosphorylation and p53 accumulation. A less severe Hus1 defect together with Atm loss resulted in partial embryonic lethality, with the surviving double-mutant mice showing synergistic increases in genomic instability and specific developmental defects, including dwarfism, craniofacial abnormalities and brachymesophalangy, phenotypes that are observed in several human genomic instability disorders. In addition to identifying tissue-specific consequences of checkpoint dysfunction, these data highlight a robust, cooperative configuration for the mammalian DNA damage response network and further suggest HUS1 and related genes in the ATR pathway as candidate modifiers of disease severity in A-T patients. PMID:22575700
Phage Lambda P Protein: Trans-Activation, Inhibition Phenotypes and their Suppression
Hayes, Sidney; Erker, Craig; Horbay, Monique A.; Marciniuk, Kristen; Wang, Wen; Hayes, Connie
2013-01-01
The initiation of bacteriophage λ replication depends upon interactions between the oriλ DNA site, phage proteins O and P, and E. coli host replication proteins. P exhibits a high affinity for DnaB, the major replicative helicase for unwinding double stranded DNA. The concept of P-lethality relates to the hypothesis that P can sequester DnaB and in turn prevent cellular replication initiation from oriC. Alternatively, it was suggested that P-lethality does not involve an interaction between P and DnaB, but is targeted to DnaA. P-lethality is assessed by examining host cells for transformation by ColE1-type plasmids that can express P, and the absence of transformants is attributed to a lethal effect of P expression. The plasmid we employed enabled conditional expression of P, where under permissive conditions, cells were efficiently transformed. We observed that ColE1 replication and plasmid establishment upon transformation is extremely sensitive to P, and distinguish this effect from P-lethality directed to cells. We show that alleles of dnaB protect the variant cells from P expression. P-dependent cellular filamentation arose in ΔrecA or lexA[Ind-] cells, defective for SOS induction. Replication propagation and restart could represent additional targets for P interference of E. coli replication, beyond the oriC-dependent initiation step. PMID:23389467
Wiesenfahrt, Tobias; Duanmu, Jingjie; Snider, Frances; Moerman, Don; Au, Vinci; Li-Leger, Erica; Flibotte, Stephane; Parker, Dylan M; Marshall, Craig J; Nishimura, Erin Osborne; Mains, Paul E; McGhee, James D
2018-05-04
The ELT-2 GATA factor normally functions in differentiation of the C. elegans endoderm, downstream of endoderm specification. We have previously shown that, if ELT-2 is expressed sufficiently early, it is also able to specify the endoderm and to replace all other members of the core GATA-factor transcriptional cascade (END-1, END-3, ELT-7). However, such rescue requires multiple copies (and presumably overexpression) of the end-1p :: elt-2 cDNA transgene; a single copy of the transgene does not rescue. We have made this observation the basis of a genetic screen to search for genetic modifiers that allow a single copy of the end-1p :: elt-2 cDNA transgene to rescue the lethality of the end-1 end-3 double mutant. We performed this screen on a strain that has a single copy insertion of the transgene in an end-1 end-3 background. These animals are kept alive by virtue of an extrachromosomal array containing multiple copies of the rescuing transgene; the extrachromosomal array also contains a toxin under heat shock control to counterselect for mutagenized survivors that have been able to lose the rescuing array. A screen of ∼14,000 mutagenized haploid genomes produced 17 independent surviving strains. Whole genome sequencing was performed to identify genes that incurred independent mutations in more than one surviving strain. The C. elegans gene tasp-1 was mutated in four independent strains. tasp-1 encodes the C. elegans homolog of Taspase, a threonine-aspartic acid protease that has been found, in both mammals and insects, to cleave several proteins involved in transcription, in particular MLL1/trithorax and TFIIA. A second gene, pqn-82 , was mutated in two independent strains and encodes a glutamine-asparagine rich protein. tasp-1 and pqn-82 were verified as loss-of-function modifiers of the end-1p :: elt-2 transgene by RNAi and by CRISPR/Cas9-induced mutations. In both cases, gene loss leads to modest increases in the level of ELT-2 protein in the early endoderm although ELT-2 levels do not strictly correlate with rescue. We suggest that tasp-1 and pqn-82 represent a class of genes acting in the early embryo to modulate levels of critical transcription factors or to modulate the responsiveness of critical target genes. The screen's design, rescuing lethality with an extrachromosomal transgene followed by counterselection, has a background survival rate of <10 -4 without mutagenesis and should be readily adapted to the general problem of identifying suppressors of C. elegans lethal mutations. Copyright © 2018 Wiesenfahrt et al.
Kobayashi, Eri; Shimizu, Ritsuko; Kikuchi, Yuko; Takahashi, Satoru; Yamamoto, Masayuki
2010-01-01
GATA1 is essential for the differentiation of erythroid cells and megakaryocytes. The Gata1 gene is composed of multiple untranslated first exons and five common coding exons. The erythroid first exon (IE exon) is important for Gata1 gene expression in hematopoietic lineages. Because previous IE exon knockdown analyses resulted in embryonic lethality, less is understood about the contribution of the IE exon to adult hematopoiesis. Here, we achieved specific deletion of the floxed IE exon in adulthood using an inducible Cre expression system. In this conditional knock-out mouse line, the Gata1 mRNA level was significantly down-regulated in the megakaryocyte lineage, resulting in thrombocytopenia with a marked proliferation of megakaryocytes. By contrast, in the erythroid lineage, Gata1 mRNA was expressed abundantly utilizing alternative first exons. Especially, the IEb/c and newly identified IEd exons were transcribed at a level comparable with that of the IE exon in control mice. Surprisingly, in the IE-null mouse, these transcripts failed to produce full-length GATA1 protein, but instead yielded GATA1 lacking the N-terminal domain inefficiently. With low level expression of the short form of GATA1, IE-null mice showed severe anemia with skewed erythroid maturation. Notably, the hematological phenotypes of adult IE-null mice substantially differ from those observed in mice harboring conditional ablation of the entire Gata1 gene. The present study demonstrates that the IE exon is instrumental to adult erythropoiesis by regulating the proper level of transcription and selecting the correct transcription start site of the Gata1 gene. PMID:19854837
Li, Qingtian; Wang, Helen Y; Chepelev, Iouri; Zhu, Qingyuan; Wei, Gang; Zhao, Keji; Wang, Rong-Fu
2014-07-01
Histone demethylases have emerged as important players in developmental processes. Jumonji domain containing-3 (Jmjd3) has been identified as a key histone demethylase that plays a critical role in the regulation of gene expression; however, the in vivo function of Jmjd3 in embryonic development remains largely unknown. To this end, we generated Jmjd3 global and conditional knockout mice. Global deletion of Jmjd3 induces perinatal lethality associated with defective lung development. Tissue and stage-specific deletion revealed that Jmjd3 is dispensable in the later stage of embryonic lung development. Jmjd3 ablation downregulates the expression of genes critical for lung development and function, including AQP-5 and SP-B. Jmjd3-mediated alterations in gene expression are associated with locus-specific changes in the methylation status of H3K27 and H3K4. Furthermore, Jmjd3 is recruited to the SP-B promoter through interactions with the transcription factor Nkx2.1 and the epigenetic protein Brg1. Taken together, these findings demonstrate that Jmjd3 plays a stage-dependent and locus-specific role in the mouse lung development. Our study provides molecular insights into the mechanisms by which Jmjd3 regulates target gene expression in the embryonic stages of lung development.
Emergence of antibiotic-resistant extremophiles (AREs).
Gabani, Prashant; Prakash, Dhan; Singh, Om V
2012-09-01
Excessive use of antibiotics in recent years has produced bacteria that are resistant to a wide array of antibiotics. Several genetic and non-genetic elements allow microorganisms to adapt and thrive under harsh environmental conditions such as lethal doses of antibiotics. We attempt to classify these microorganisms as antibiotic-resistant extremophiles (AREs). AREs develop strategies to gain greater resistance to antibiotics via accumulation of multiple genes or plasmids that harbor genes for multiple drug resistance (MDR). In addition to their altered expression of multiple genes, AREs also survive by producing enzymes such as penicillinase that inactivate antibiotics. It is of interest to identify the underlying molecular mechanisms by which the AREs are able to survive in the presence of wide arrays of high-dosage antibiotics. Technologically, "omics"-based approaches such as genomics have revealed a wide array of genes differentially expressed in AREs. Proteomics studies with 2DE, MALDI-TOF, and MS/MS have identified specific proteins, enzymes, and pumps that function in the adaptation mechanisms of AREs. This article discusses the molecular mechanisms by which microorganisms develop into AREs and how "omics" approaches can identify the genetic elements of these adaptation mechanisms. These objectives will assist the development of strategies and potential therapeutics to treat outbreaks of pathogenic microorganisms in the future.
Unusual fan shaped ossification in a female fetus with radiological features of boomerang dysplasia
Odent, S.; Loget, P.; Le Marec, B.; Delezoide, A.; Maroteaux, P.
1999-01-01
We report on a female fetus of 24 weeks whose clinical and radiological findings were compatible with boomerang dysplasia (BD). However, histopathology was unusual with a lateral fan shaped diaphyseal ossification. This has never been described either in typical atelosteogenesis I (AT-I) or in BD. The purpose of this report is to find out if this condition is a separate lethal bone dysplasia or another histological feature of the nosological group of AT-I and BD. Keywords: boomerang dysplasia; atelosteogenesis; lethal chondrodysplasia; lethal dwarfism PMID:10227404
Knorr, Eileen; Fishilevich, Elane; Tenbusch, Linda; Frey, Meghan L F; Rangasamy, Murugesan; Billion, Andre; Worden, Sarah E; Gandra, Premchand; Arora, Kanika; Lo, Wendy; Schulenberg, Greg; Valverde-Garcia, Pablo; Vilcinskas, Andreas; Narva, Kenneth E
2018-02-01
RNAi shows potential as an agricultural technology for insect control, yet, a relatively low number of robust lethal RNAi targets have been demonstrated to control insects of agricultural interest. In the current study, a selection of lethal RNAi target genes from the iBeetle (Tribolium castaneum) screen were used to demonstrate efficacy of orthologous targets in the economically important coleopteran pests Diabrotica virgifera virgifera and Meligethes aeneus. Transcript orthologs of 50 selected genes were analyzed in D. v. virgifera diet-based RNAi bioassays; 21 of these RNAi targets showed mortality and 36 showed growth inhibition. Low dose injection- and diet-based dsRNA assays in T. castaneum and D. v. virgifera, respectively, enabled the identification of the four highly potent RNAi target genes: Rop, dre4, ncm, and RpII140. Maize was genetically engineered to express dsRNA directed against these prioritized candidate target genes. T 0 plants expressing Rop, dre4, or RpII140 RNA hairpins showed protection from D. v. virgifera larval feeding damage. dsRNA targeting Rop, dre4, ncm, and RpII140 in M. aeneus also caused high levels of mortality both by injection and feeding. In summary, high throughput systems for model organisms can be successfully used to identify potent RNA targets for difficult-to-work with agricultural insect pests.
Park, Sunghee; Yoon, Sangyeon; Zhao, Yuechao; Park, Seong-Eun; Liao, Lan; Xu, Jianming; Lydon, John P.; DeMayo, Francesco J.; O'Malley, Bert W.; Bagchi, Milan K.
2012-01-01
Although the effectiveness of nuclear hormone-receptor complexes is known to depend on coregulator partner proteins, relatively little is known about the roles of coregulators in uterine development and early stages of pregnancy and implantation. Because conventional genetic deletion of the coregulator, repressor of estrogen receptor activity (REA), was embryonic lethal, we here study REA conditional knockout mice generated by cre-loxP recombination, in which REA function was abrogated only in progesterone receptor-expressing tissues, to define the roles of REA in postembryonic stages and in a tissue-specific manner. We find that REA has gene dose-dependent activity impacting uterine development and fertility. Conditional homozygous mutant (REAd/d) mice developed to adulthood and showed normal ovarian function, but females were infertile with severely compromised uterine development and function characterized by cell cycle arrest, apoptosis, and altered adenogenesis (endometrial gland morphogenesis), resulting in failure of implantation and decidualization. By contrast, mice heterozygous for REA (REAf/d) had a very different phenotype, with estradiol treatment resulting in hyperstimulated, large uteri showing increased proliferation of luminal epithelial cells, and enhanced fluid imbibition associated with altered regulation of aquaporins. These REAf/d female mice showed a subfertility phenotype with reduced numbers and sizes of litters. These findings highlight that uterine development and regulation of estrogen receptor activities show a bimodal dependence on the gene dosage of REA. Optimal uterine development and functional activities require the normal gene dosage of REA, with partial or complete deletion resulting in hyperresponsiveness or underresponsiveness to hormone and subfertility or infertility, respectively. PMID:22585830
2012-01-01
Background Geographic variation in the thermal environment impacts a broad range of biochemical and physiological processes and can be a major selective force leading to local population adaptation. In the intertidal copepod Tigriopus californicus, populations along the coast of California show differences in thermal tolerance that are consistent with adaptation, i.e., southern populations withstand thermal stresses that are lethal to northern populations. To understand the genetic basis of these physiological differences, we use an RNA-seq approach to compare genome-wide patterns of gene expression in two populations known to differ in thermal tolerance. Results Observed differences in gene expression between the southern (San Diego) and the northern (Santa Cruz) populations included both the number of affected loci as well as the identity of these loci. However, the most pronounced differences concerned the amplitude of up-regulation of genes producing heat shock proteins (Hsps) and genes involved in ubiquitination and proteolysis. Among the hsp genes, orthologous pairs show markedly different thermal responses as the amplitude of hsp response was greatly elevated in the San Diego population, most notably in members of the hsp70 gene family. There was no evidence of accelerated evolution at the sequence level for hsp genes. Among other sets of genes, cuticle genes were up-regulated in SD but down-regulated in SC, and mitochondrial genes were down-regulated in both populations. Conclusions Marked changes in gene expression were observed in response to acute sub-lethal thermal stress in the copepod T. californicus. Although some qualitative differences were observed between populations, the most pronounced differences involved the magnitude of induction of numerous hsp and ubiquitin genes. These differences in gene expression suggest that evolutionary divergence in the regulatory pathway(s) involved in acute temperature stress may offer at least a partial explanation of population differences in thermal tolerance observed in Tigriopus. PMID:22950661
Shan, Ying; Zhang, Yikai; Zhuo, Xunhui; Li, Xiaoliang; Peng, Jinrong; Fang, Weihuan
2016-07-01
Zebrafish could serve as an alternative animal model for pathogenic bacteria in multiple infectious routes. Our previous study showed that immersion infection in zebrafish with Listeria monocytogenes did not cause lethality but induced transient expression of several immune response genes. We used an Affymetrix gene chip to examine the expression profiles of genes of zebrafish immersion-infected with L. monocytogenes. A total of 239 genes were up-regulated and 56 genes down-regulated compared with uninfected fish. Highest expression (>20-fold) was seen with the mmp-9 gene encoding the matrix metalloproteinase-9 (Mmp-9) known to degrade the extracellular matrix proteins. By morpholino knockdown of mmp-9, we found that the morphants showed rapid death with much higher bacterial load after intravenous or intraventricular (brain ventricle) infection with L. monocytogenes. Macrophages in mmp-9-knockdown morphants had significant defect in migrating to the brain cavity upon intraventricular infection. Decreased migration of murine macrophages with knockdown of mmp-9 and cd44 was also seen in transwell inserts with 8-μm pore polycarbonate membrane, as compared with the scrambled RNA. These findings suggest that Mmp-9 is a protective molecule against infection by L. monocytogenes by engaging in migration of zebrafish macrophages to the site of infection via a non-proteolytic role. Further work is required on the molecular mechanisms governing Mmp-9-driven macrophage migration in zebrafish. Copyright © 2016 Elsevier Ltd. All rights reserved.
A new deletion refines the boundaries of the murine Prader–Willi syndrome imprinting center
DuBose, Amanda J.; Smith, Emily Y.; Yang, Thomas P.; Johnstone, Karen A.; Resnick, James L.
2011-01-01
The human chromosomal 15q11–15q13 region is subject to both maternal and paternal genomic imprinting. Absence of paternal gene expression from this region results in Prader–Willi syndrome (PWS), while absence of maternal gene expression leads to Angelman syndrome. Transcription of paternally expressed genes in the region depends upon an imprinting center termed the PWS-IC. Imprinting defects in PWS can be caused by microdeletions and the smallest commonly deleted region indicates that the PWS-IC lies within a region of 4.3 kb. The function and location of the PWS-IC is evolutionarily conserved, but delineation of the PWS-IC in mouse has proven difficult. The first targeted mutation of the PWS-IC, a deletion of 35 kb spanning Snrpn exon 1, exhibited a complete PWS-IC deletion phenotype. Pups inheriting this mutation paternally showed a complete loss of paternal gene expression and died neonatally. A reported deletion of 4.8 kb showed only a reduction in paternal gene expression and incomplete penetrance of neonatal lethality, suggesting that some PWS-IC function had been retained. Here, we report that a 6 kb deletion spanning Snrpn exon 1 exhibits a complete PWS-IC deletion phenotype. Pups inheriting this mutation paternally lack detectable expression of all PWS genes and paternal silencing of Ube3a, exhibit maternal DNA methylation imprints at Ndn and Mkrn3 and suffer failure to thrive leading to a fully penetrant neonatal lethality. PMID:21659337
A new deletion refines the boundaries of the murine Prader-Willi syndrome imprinting center.
Dubose, Amanda J; Smith, Emily Y; Yang, Thomas P; Johnstone, Karen A; Resnick, James L
2011-09-01
The human chromosomal 15q11-15q13 region is subject to both maternal and paternal genomic imprinting. Absence of paternal gene expression from this region results in Prader-Willi syndrome (PWS), while absence of maternal gene expression leads to Angelman syndrome. Transcription of paternally expressed genes in the region depends upon an imprinting center termed the PWS-IC. Imprinting defects in PWS can be caused by microdeletions and the smallest commonly deleted region indicates that the PWS-IC lies within a region of 4.3 kb. The function and location of the PWS-IC is evolutionarily conserved, but delineation of the PWS-IC in mouse has proven difficult. The first targeted mutation of the PWS-IC, a deletion of 35 kb spanning Snrpn exon 1, exhibited a complete PWS-IC deletion phenotype. Pups inheriting this mutation paternally showed a complete loss of paternal gene expression and died neonatally. A reported deletion of 4.8 kb showed only a reduction in paternal gene expression and incomplete penetrance of neonatal lethality, suggesting that some PWS-IC function had been retained. Here, we report that a 6 kb deletion spanning Snrpn exon 1 exhibits a complete PWS-IC deletion phenotype. Pups inheriting this mutation paternally lack detectable expression of all PWS genes and paternal silencing of Ube3a, exhibit maternal DNA methylation imprints at Ndn and Mkrn3 and suffer failure to thrive leading to a fully penetrant neonatal lethality.
Gao, Yang; Xu, Siyi; Cui, Zhenwen; Zhang, Mingkun; Lin, Yingying; Cai, Lei; Wang, Zhugang; Luo, Xingguang; Zheng, Yan; Wang, Yong; Luo, Qizhong; Jiang, Jiyao; Neale, Joseph H; Zhong, Chunlong
2015-07-01
Glutamate carboxypeptidase II (GCPII) is a transmembrane zinc metallopeptidase found mainly in the nervous system, prostate and small intestine. In the nervous system, glia-bound GCPII mediates the hydrolysis of the neurotransmitter N-acetylaspartylglutamate (NAAG) into glutamate and N-acetylaspartate. Inhibition of GCPII has been shown to attenuate excitotoxicity associated with enhanced glutamate transmission under pathological conditions. However, different strains of mice lacking the GCPII gene are reported to exhibit striking phenotypic differences. In this study, a GCPII gene knockout (KO) strategy involved removing exons 3-5 of GCPII. This generated a new GCPII KO mice line with no overt differences in standard neurological behavior compared to their wild-type (WT) littermates. However, GCPII KO mice were significantly less susceptible to moderate traumatic brain injury (TBI). GCPII gene KO significantly lessened neuronal degeneration and astrocyte damage in the CA2 and CA3 regions of the hippocampus 24 h after moderate TBI. In addition, GCPII gene KO reduced TBI-induced deficits in long-term spatial learning/memory tested in the Morris water maze and motor balance tested via beam walking. Knockout of the GCPII gene is not embryonic lethal and affords histopathological protection with improved long-term behavioral outcomes after TBI, a result that further validates GCPII as a target for drug development consistent with results from studies using GCPII peptidase inhibitors. © 2015 International Society for Neurochemistry.
A resource for functional profiling of noncoding RNA in the yeast Saccharomyces cerevisiae.
Parker, Steven; Fraczek, Marcin G; Wu, Jian; Shamsah, Sara; Manousaki, Alkisti; Dungrattanalert, Kobchai; de Almeida, Rogerio Alves; Estrada-Rivadeneyra, Diego; Omara, Walid; Delneri, Daniela; O'Keefe, Raymond T
2017-08-01
Eukaryotic genomes are extensively transcribed, generating many different RNAs with no known function. We have constructed 1502 molecular barcoded ncRNA gene deletion strains encompassing 443 ncRNAs in the yeast Saccharomyces cerevisiae as tools for ncRNA functional analysis. This resource includes deletions of small nuclear RNAs (snRNAs), transfer RNAs (tRNAs), small nucleolar RNAs (snoRNAs), and other annotated ncRNAs as well as the more recently identified stable unannotated transcripts (SUTs) and cryptic unstable transcripts (CUTs) whose functions are largely unknown. Specifically, deletions have been constructed for ncRNAs found in the intergenic regions, not overlapping genes or their promoters (i.e., at least 200 bp minimum distance from the closest gene start codon). The deletion strains carry molecular barcodes designed to be complementary with the protein gene deletion collection enabling parallel analysis experiments. These strains will be useful for the numerous genomic and molecular techniques that utilize deletion strains, including genome-wide phenotypic screens under different growth conditions, pooled chemogenomic screens with drugs or chemicals, synthetic genetic array analysis to uncover novel genetic interactions, and synthetic dosage lethality screens to analyze gene dosage. Overall, we created a valuable resource for the RNA community and for future ncRNA research. © 2017 Parker et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Wittig-Blaich, Stephanie; Wittig, Rainer; Schmidt, Steffen; Lyer, Stefan; Bewerunge-Hudler, Melanie; Gronert-Sum, Sabine; Strobel-Freidekind, Olga; Müller, Carolin; List, Markus; Jaskot, Aleksandra; Christiansen, Helle; Hafner, Mathias; Schadendorf, Dirk; Block, Ines; Mollenhauer, Jan
2017-01-01
Next-generation sequencing has dramatically increased genome-wide profiling options and conceptually initiates the possibility for personalized cancer therapy. State-of-the-art sequencing studies yield large candidate gene sets comprising dozens or hundreds of mutated genes. However, few technologies are available for the systematic downstream evaluation of these results to identify novel starting points of future cancer therapies. We improved and extended a site-specific recombination-based system for systematic analysis of the individual functions of a large number of candidate genes. This was facilitated by a novel system for the construction of isogenic constitutive and inducible gain- and loss-of-function cell lines. Additionally, we demonstrate the construction of isogenic cell lines with combinations of the traits for advanced functional in vitro analyses. In a proof-of-concept experiment, a library of 108 isogenic melanoma cell lines was constructed and 8 genes were identified that significantly reduced viability in a discovery screen and in an independent validation screen. Here, we demonstrate the broad applicability of this recombination-based method and we proved its potential to identify new drug targets via the identification of the tumor suppressor DUSP6 as potential synthetic lethal target in melanoma cell lines with BRAF V600E mutations and high DUSP6 expression. PMID:28423600
Lee, Mei-Chong Wendy; Lopez-Diaz, Fernando J; Khan, Shahid Yar; Tariq, Muhammad Akram; Dayn, Yelena; Vaske, Charles Joseph; Radenbaugh, Amie J; Kim, Hyunsung John; Emerson, Beverly M; Pourmand, Nader
2014-11-04
The acute cellular response to stress generates a subpopulation of reversibly stress-tolerant cells under conditions that are lethal to the majority of the population. Stress tolerance is attributed to heterogeneity of gene expression within the population to ensure survival of a minority. We performed whole transcriptome sequencing analyses of metastatic human breast cancer cells subjected to the chemotherapeutic agent paclitaxel at the single-cell and population levels. Here we show that specific transcriptional programs are enacted within untreated, stressed, and drug-tolerant cell groups while generating high heterogeneity between single cells within and between groups. We further demonstrate that drug-tolerant cells contain specific RNA variants residing in genes involved in microtubule organization and stabilization, as well as cell adhesion and cell surface signaling. In addition, the gene expression profile of drug-tolerant cells is similar to that of untreated cells within a few doublings. Thus, single-cell analyses reveal the dynamics of the stress response in terms of cell-specific RNA variants driving heterogeneity, the survival of a minority population through generation of specific RNA variants, and the efficient reconversion of stress-tolerant cells back to normalcy.
Lee, Mei-Chong Wendy; Lopez-Diaz, Fernando J.; Khan, Shahid Yar; Tariq, Muhammad Akram; Dayn, Yelena; Vaske, Charles Joseph; Radenbaugh, Amie J.; Kim, Hyunsung John; Emerson, Beverly M.; Pourmand, Nader
2014-01-01
The acute cellular response to stress generates a subpopulation of reversibly stress-tolerant cells under conditions that are lethal to the majority of the population. Stress tolerance is attributed to heterogeneity of gene expression within the population to ensure survival of a minority. We performed whole transcriptome sequencing analyses of metastatic human breast cancer cells subjected to the chemotherapeutic agent paclitaxel at the single-cell and population levels. Here we show that specific transcriptional programs are enacted within untreated, stressed, and drug-tolerant cell groups while generating high heterogeneity between single cells within and between groups. We further demonstrate that drug-tolerant cells contain specific RNA variants residing in genes involved in microtubule organization and stabilization, as well as cell adhesion and cell surface signaling. In addition, the gene expression profile of drug-tolerant cells is similar to that of untreated cells within a few doublings. Thus, single-cell analyses reveal the dynamics of the stress response in terms of cell-specific RNA variants driving heterogeneity, the survival of a minority population through generation of specific RNA variants, and the efficient reconversion of stress-tolerant cells back to normalcy. PMID:25339441
Rantakari, Pia; Strauss, Leena; Kiviranta, Riku; Lagerbohm, Heidi; Paviala, Jenni; Holopainen, Irma; Vainio, Seppo; Pakarinen, Pirjo; Poutanen, Matti
2008-01-01
Hydroxysteroid (17-β) dehydrogenase 2 (HSD17B2) is a member of aldo-keto reductase superfamily, known to catalyze the inactivation of 17β-hydroxysteroids to less active 17-keto forms and catalyze the conversion of 20α-hydroxyprogesterone to progesterone in vitro. To examine the role of HSD17B2 in vivo, we generated mice deficient in Hsd17b2 [HSD17B2 knockout (KO)] by a targeted gene disruption in embryonic stem cells. From the homozygous mice carrying the disrupted Hsd17b2, 70% showed embryonic lethality appearing at the age of embryonic d 11.5 onward. The embryonic lethality was associated with reduced placental size measured at embryonic d 17.5. The HSD17B2KO mice placentas presented with structural abnormalities in all three major layers: the decidua, spongiotrophoblast, and labyrinth. Most notable was the disruption of the spongiotrophoblast and labyrinthine layers, together with liquid-filled cysts in the junctional region and the basal layer. Treatments with an antiestrogen or progesterone did not rescue the embryonic lethality or the placenta defect in the homozygous mice. In hybrid background used, 24% of HSD17B2KO mice survived through the fetal period but were born growth retarded and displayed a phenotype in the brain with enlargement of ventricles, abnormal laminar organization, and increased cellular density in the cortex. Furthermore, the HSD17B2KO mice had unilateral renal degeneration, the affected kidney frequently appearing as a fluid-filled sac. Our results provide evidence for a role for HSD17B2 enzyme in the cellular organization of the mouse placenta. PMID:18048640
Pezzoni, Magdalena; Tribelli, Paula M; Pizarro, Ramón A; López, Nancy I; Costa, Cristina S
2016-05-01
Solar UVA radiation is one of the main environmental stress factors for Pseudomonas aeruginosa. Exposure to high UVA doses produces lethal effects by the action of the reactive oxygen species (ROS) it generates. P. aeruginosa has several enzymes, including KatA and KatB catalases, which provide detoxification of ROS. We have previously demonstrated that KatA is essential in defending P. aeruginosa against high UVA doses. In order to analyse the mechanisms involved in the adaptation of this micro-organism to UVA, we investigated the effect of exposure to low UVA doses on KatA and KatB activities, and the physiological consequences. Exposure to UVA induced total catalase activity; assays with non-denaturing polyacrylamide gels showed that both KatA and KatB activities were increased by radiation. This regulation occurred at the transcriptional level and depended, at least partly, on the increase in H2O2 levels. We demonstrated that exposure to low UVA produced a protective effect against subsequent lethal doses of UVA, sodium hypochlorite and H2O2. Protection against lethal UVA depends on katA, whilst protection against sodium hypochlorite depends on katB, demonstrating that different mechanisms are involved in the defence against these oxidative agents, although both genes can be involved in the global cellular response. Conversely, protection against lethal doses of H2O2 could depend on induction of both genes and/or (an)other defensive factor(s). A better understanding of the adaptive response of P. aeruginosa to UVA is relevant from an ecological standpoint and for improving disinfection strategies that employ UVA or solar irradiation.
Folkerts, Erik J; Blewett, Tamzin A; He, Yuhe; Goss, Greg G
2017-12-01
Hydraulic fracturing flowback and produced water (FPW) is a wastewater produced during fracturing activities in an operating well which is hyper saline and chemically heterogeneous in nature, containing both anthropogenic and petrogenic chemicals. Determination of FPW associated toxicity to embryonic fish is limited, while investigation into how embryonic exposures may affect later life stages is not yet studied. Zebrafish embryos (24hrs post fertilization) were acutely exposed to 2.5% and 5% FPW fractions for either 24 or 48hrs and returned to freshwater. After either 24 or 48h exposures, embryos were examined for expression of 3 hypoxia related genes. Erythropoietin (epoa) but not hypoxia inducible factor (hif1aa) nor hemoglobin -ß chain (hbbe1.1) was up-regulated after either 24 or 48h FPW exposure. Surviving embryos were placed in freshwater and grown to a juvenile stage (60days post fertilization). Previously exposed zebrafish were analyzed for both swim performance (U crit and U max ) and aerobic capacity. Fish exposed to both sediment containing (FPW-S) or sediment free (FPW-SF) FPW displayed significantly reduced aerobic scope and U crit /U max values compared to control conditions. Our results collectively suggest that organics present in our FPW sample may be responsible for sub-lethal fitness and metabolic responses. We provide evidence supporting the theory that the cardio-respiratory system is impacted by FPW exposure. This is the first known research associating embryonic FPW exposures to sub-lethal performance related responses in later life fish stages. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mar, M.H.
1995-07-01
Based on the vulnerability Lethality (V/L) taxonomy developed by the Ballistic Vulnerability Lethality Division (BVLD) of the Survivability Lethality Analysis Directorate (SLAD), a nuclear electromagnetic pulse (EMP) coupling V/L analysis taxonomy has been developed. A nuclear EMP threat to a military system can be divided into two levels: (1) coupling to a system level through a cable, antenna, or aperture; and (2) the component level. This report will focus on the initial condition, which includes threat definition and target description, as well as the mapping process from the initial condition to damaged components state. EMP coupling analysis at a systemmore » level is used to accomplish this. This report introduces the nature of EMP threat, interaction between the threat and target, and how the output of EMP coupling analysis at a system level becomes the input to the component level analysis. Many different tools (EMP coupling codes) will be discussed for the mapping process, which correponds to the physics of phenomenology. This EMP coupling V/L taxonomy and the models identified in this report will provide the tools necessary to conduct basic V/L analysis of EMP coupling.« less
Manimaran, P; Ramkumar, G; Sakthivel, K; Sundaram, R M; Madhav, M S; Balachandran, S M
2011-01-01
Genetically modified crops are one of the prudent options for enhancing the production and productivity of crop plants by safeguarding from the losses due to biotic and abiotic stresses. Agrobacterium-mediated and biolistic transformation methods are used to develop transgenic crop plants in which selectable marker genes (SMG) are generally deployed to identify 'true' transformants. The commonly used SMG obtained from prokaryotic sources when employed in transgenic plants pose risks due to their lethal nature during selection process. In the recent past, some non-lethal SMGs have been identified and used for selection of transformants with increased precision and high selection efficiency. Considering the concerns related to bio-safety of the environment, it is desirable to remove the SMG in order to maximize the commercial success through wide adoption and public acceptance of genetically modified (GM) food crops. In this review, we examine the availability, and the suitability of wide range of non-lethal selection markers and elimination of SMG methods to develop marker-free transgenics for achieving global food security. As the strategies for marker-free plants are still in proof-of-concept stage, adaptation of new genomics tools for identification of novel non-lethal marker systems and its application for developing marker-free transgenics would further strengthen the crop improvement program. Copyright © 2011 Elsevier Inc. All rights reserved.
van Haaften, Gijs; Vastenhouw, Nadine L.; Nollen, Ellen A. A.; Plasterk, Ronald H. A.; Tijsterman, Marcel
2004-01-01
Here, we describe a systematic search for synthetic gene interactions in a multicellular organism, the nematode Caenorhabditis elegans. We established a high-throughput method to determine synthetic gene interactions by genome-wide RNA interference and identified genes that are required to protect the germ line against DNA double-strand breaks. Besides known DNA-repair proteins such as the C. elegans orthologs of TopBP1, RPA2, and RAD51, eight genes previously unassociated with a double-strand-break response were identified. Knockdown of these genes increased sensitivity to ionizing radiation and camptothecin and resulted in increased chromosomal nondisjunction. All genes have human orthologs that may play a role in human carcinogenesis. PMID:15326288
Galili, Uri
2016-11-01
Humans produce multiple natural antibodies against carbohydrate antigens on gastrointestinal bacteria. Two such antibodies appeared in primates in recent geological times. Anti-Gal, abundant in humans, apes and Old-World monkeys, appeared 20-30 million years ago (mya) following inactivation of the α1,3GT gene (GGTA1). This gene encodes in other mammals the enzyme α1,3galactosyltransferase (α1,3GT) that synthesizes α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R) which bind anti-Gal. Anti-Neu5Gc, found only in humans, appeared in hominins <6 mya, following elimination of N-glycolylneuraminic-acid (Neu5Gc) because of inactivation of CMAH, the gene encoding hydroxylase that converts N-acetylneuraminic-acid (Neu5Ac) into Neu5Gc. These antibodies, were initially produced in few individuals that acquired random mutations inactivating the corresponding genes and eliminating α-gal epitopes or Neu5Gc, which became nonself antigens. It is suggested that these evolutionary selection events were induced by epidemics of enveloped viruses, lethal to ancestral Old World primates or hominins. Such viruses presented α-gal epitopes or Neu5Gc, synthesized in primates that conserved active GGTA1 or CMAH, respectively, and were lethal to their hosts. The natural anti-Gal or anti-Neu5Gc antibodies, produced in offspring lacking the corresponding carbohydrate antigens, neutralized and destroyed viruses presenting α-gal epitopes or Neu5Gc. These antibodies further induced rapid, effective immune responses against virus antigens, thus preventing infections from reaching lethal stages. These epidemics ultimately resulted in extinction of primate populations synthesizing these carbohydrate antigens and their replacement with offspring populations lacking the antigens and producing protective antibodies against them. Similar events could mediate the elimination of various carbohydrate antigens, thus preventing the complete extinction of other vertebrate species. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Hinkle, Karen L.; Anderson, Chad C.; Forkey, Blake; Griffin, Jacob; Cone, Kelsey; Vitzthum, Carl; Olsen, Darlene
2016-01-01
The lampricide 3-trifluoromethyl-4-nitrophenol (TFM) is used to control sea lamprey (Petromyzon marinus) populations in freshwater lakes. While TFM can have sublethal and lethal effects, little is known about gene expression changes with TFM exposure. Microarray analysis was used to determine differential gene expression over 4 hours of exposure in S. cerevisiae. Among the most significantly up regulated genes were regulators of carbohydrate transport including HXT1, HXT3, HXT4, IMA5, MIG2, and YKR075C. PMID:26606276
Predicting human genetic interactions from cancer genome evolution.
Lu, Xiaowen; Megchelenbrink, Wout; Notebaart, Richard A; Huynen, Martijn A
2015-01-01
Synthetic Lethal (SL) genetic interactions play a key role in various types of biological research, ranging from understanding genotype-phenotype relationships to identifying drug-targets against cancer. Despite recent advances in empirical measuring SL interactions in human cells, the human genetic interaction map is far from complete. Here, we present a novel approach to predict this map by exploiting patterns in cancer genome evolution. First, we show that empirically determined SL interactions are reflected in various gene presence, absence, and duplication patterns in hundreds of cancer genomes. The most evident pattern that we discovered is that when one member of an SL interaction gene pair is lost, the other gene tends not to be lost, i.e. the absence of co-loss. This observation is in line with expectation, because the loss of an SL interacting pair will be lethal to the cancer cell. SL interactions are also reflected in gene expression profiles, such as an under representation of cases where the genes in an SL pair are both under expressed, and an over representation of cases where one gene of an SL pair is under expressed, while the other one is over expressed. We integrated the various previously unknown cancer genome patterns and the gene expression patterns into a computational model to identify SL pairs. This simple, genome-wide model achieves a high prediction power (AUC = 0.75) for known genetic interactions. It allows us to present for the first time a comprehensive genome-wide list of SL interactions with a high estimated prediction precision, covering up to 591,000 gene pairs. This unique list can potentially be used in various application areas ranging from biotechnology to medical genetics.
Dolega, Patryk; Szulc-Dąbrowska, Lidia; Bossowska, Magdalena; Mielcarska, Matylda; Nowak, Zuzanna; Toka, Felix N
2017-06-01
Poxviruses have evolved numerous mechanisms to avoid the immune response of the infected host, and many of these mechanisms have not been fully described. Here, we studied the transcriptional response of innate immune genes in BALB/c and C57BL/6 peritoneal macrophages following infection with the Moscow strain of ectromelia virus (ECTV-Mos) with the aim of delineating innate immune genes that contribute to the difference between susceptibility and resistance to lethal infection. We show a generalized downregulation of many genes in four categories (toll-like receptor signaling, NOD-like receptor signaling, RIG-I-like receptor signaling, and type I interferon signaling) of antiviral innate immune receptors, downstream signaling pathways, and responsive components. Two important observations were made. First, 14 innate antiviral genes were differentially expressed with fold change upregulation of two and above occurring in C57BL/6 mice, known to be resistant to ECTV-Mos infection, whereas the same genes were downregulated in BALB/c mice with fold change of two and below. Second, the cathepsin group of genes was downregulated in both strains of mice but with profound fold changes of 17, 38, and 62 downregulation for CtsL, CtsB, and CtsS, respectively, in C57BL/6 mice. We show that a poxvirus profoundly downregulates both the mRNA and protein expression of these three cathepsins and this change appears to support virus replication. Based on these data we propose that the variations in gene expression observed may contribute to the difference in resistance/susceptibility between BALB/c and C57BL/6 mice to lethal infection by ECTV-Mos.
Ferreyra, Gabriela A.; Elinoff, Jason M.; Demirkale, Cumhur Y.; Starost, Matthew F.; Buckley, Marilyn; Munson, Peter J.; Krakauer, Teresa; Danner, Robert L.
2014-01-01
Background Bacterial superantigens are virulence factors that cause toxic shock syndrome. Here, the genome-wide, temporal response of mice to lethal intranasal staphylococcal enterotoxin B (SEB) challenge was investigated in six tissues. Results The earliest responses and largest number of affected genes occurred in peripheral blood mononuclear cells (PBMC), spleen, and lung tissues with the highest content of both T-cells and monocyte/macrophages, the direct cellular targets of SEB. In contrast, the response of liver, kidney, and heart was delayed and involved fewer genes, but revealed a dominant genetic program that was seen in all 6 tissues. Many of the 85 uniquely annotated transcripts participating in this shared genomic response have not been previously linked to SEB. Nine of the 85 genes were subsequently confirmed by RT-PCR in every tissue/organ at 24 h. These 85 transcripts, up-regulated in all tissues, annotated to the interferon (IFN)/antiviral-response and included genes belonging to the DNA/RNA sensing system, DNA damage repair, the immunoproteasome, and the ER/metabolic stress-response and apoptosis pathways. Overall, this shared program was identified as a type I and II interferon (IFN)-response and the promoters of these genes were highly enriched for IFN regulatory matrices. Several genes whose secreted products induce the IFN pathway were up-regulated at early time points in PBMCs, spleen, and/or lung. Furthermore, IFN regulatory factors including Irf1, Irf7 and Irf8, and Zbp1, a DNA sensor/transcription factor that can directly elicit an IFN innate immune response, participated in this host-wide SEB signature. Conclusion Global gene-expression changes across multiple organs implicated a host-wide IFN-response in SEB-induced death. Therapies aimed at IFN-associated innate immunity may improve outcome in toxic shock syndromes. PMID:24551153
Genetics Home Reference: bladder cancer
... events in bladder tumors. Researchers believe that several genes that control cell growth and division are probably located on chromosome 9 . ... Kwast TH, Zwarthoff EC, Radvanyi F. Novel fibroblast growth factor receptor ... identified in non-lethal skeletal disorders. Eur J Hum Genet. 2002 Dec;10( ...
Minimum requirements for the function of eukaryotic translation initiation factor 2.
Erickson, F L; Nika, J; Rippel, S; Hannig, E M
2001-01-01
Eukaryotic translation initiation factor 2 (eIF2) is a G protein heterotrimer required for GTP-dependent delivery of initiator tRNA to the ribosome. eIF2B, the nucleotide exchange factor for eIF2, is a heteropentamer that, in yeast, is encoded by four essential genes and one nonessential gene. We found that increased levels of wild-type eIF2, in the presence of sufficient levels of initiator tRNA, overcome the requirement for eIF2B in vivo. Consistent with bypassing eIF2B, these conditions also suppress the lethal effect of overexpressing the mammalian tumor suppressor PKR, an eIF2alpha kinase. The effects described are further enhanced in the presence of a mutation in the G protein (gamma) subunit of eIF2, gcd11-K250R, which mimics the function of eIF2B in vitro. Interestingly, the same conditions that bypass eIF2B also overcome the requirement for the normally essential eIF2alpha structural gene (SUI2). Our results suggest that the eIF2betagamma complex is capable of carrying out the essential function(s) of eIF2 in the absence of eIF2alpha and eIF2B and are consistent with the idea that the latter function primarily to regulate the level of eIF2.GTP.Met-tRNA(i)(Met) ternary complexes in vivo. PMID:11333223
Foxa1 and Foxa2 are required for formation of the intervertebral discs.
Maier, Jennifer A; Lo, YinTing; Harfe, Brian D
2013-01-01
The intervertebral disc (IVD) is composed of 3 main structures, the collagenous annulus fibrosus (AF), which surrounds the gel-like nucleus pulposus (NP), and hyaline cartilage endplates, which are attached to the vertebral bodies. An IVD is located between each vertebral body. Degeneration of the IVD is thought to be a major cause of back pain, a potentially chronic condition for which there exist few effective treatments. The NP forms from the embryonic notochord. Foxa1 and Foxa2, transcription factors in the forkhead box family, are expressed early during notochord development. However, embryonic lethality and the absence of the notochord in Foxa2 null mice have precluded the study of potential roles these genes may play during IVD formation. Using a conditional Foxa2 allele in conjunction with a tamoxifen-inducible Cre allele (ShhcreER(T2)), we removed Foxa2 from the notochord of E7.5 mice null for Foxa1. Foxa1(-/-);Foxa2(c/c);ShhcreER(T2) double mutant animals had a severely deformed nucleus pulposus, an increase in cell death in the tail, decreased hedgehog signaling, defects in the notochord sheath, and aberrant dorsal-ventral patterning of the neural tube. Embryos lacking only Foxa1 or Foxa2 from the notochord were indistinguishable from control animals, demonstrating a functional redundancy for these genes in IVD formation. In addition, we provide in vivo genetic evidence that Foxa genes are required for activation of Shh in the notochord.
Foxa1 and Foxa2 Are Required for Formation of the Intervertebral Discs
Maier, Jennifer A.; Lo, YinTing; Harfe, Brian D.
2013-01-01
The intervertebral disc (IVD) is composed of 3 main structures, the collagenous annulus fibrosus (AF), which surrounds the gel-like nucleus pulposus (NP), and hyaline cartilage endplates, which are attached to the vertebral bodies. An IVD is located between each vertebral body. Degeneration of the IVD is thought to be a major cause of back pain, a potentially chronic condition for which there exist few effective treatments. The NP forms from the embryonic notochord. Foxa1 and Foxa2, transcription factors in the forkhead box family, are expressed early during notochord development. However, embryonic lethality and the absence of the notochord in Foxa2 null mice have precluded the study of potential roles these genes may play during IVD formation. Using a conditional Foxa2 allele in conjunction with a tamoxifen-inducible Cre allele (ShhcreERT2), we removed Foxa2 from the notochord of E7.5 mice null for Foxa1. Foxa1−/−;Foxa2c/c;ShhcreERT2 double mutant animals had a severely deformed nucleus pulposus, an increase in cell death in the tail, decreased hedgehog signaling, defects in the notochord sheath, and aberrant dorsal-ventral patterning of the neural tube. Embryos lacking only Foxa1 or Foxa2 from the notochord were indistinguishable from control animals, demonstrating a functional redundancy for these genes in IVD formation. In addition, we provide in vivo genetic evidence that Foxa genes are required for activation of Shh in the notochord. PMID:23383217
Lachance, Joseph; True, John R.
2010-01-01
Substantial genetic variation exists in natural populations of Drosophila melanogaster. This segregating variation includes alleles at different loci that interact to cause lethality or sterility (synthetic incompatibilities). Fitness epistasis in natural populations has important implications for speciation and the rate of adaptive evolution. To assess the prevalence of epistatic fitness interactions, we placed naturally occurring X chromosomes into genetic backgrounds derived from different geographic locations. Considerable amounts of synthetic incompatibilities were observed between X chromosomes and autosomes: greater than 44% of all combinations were either lethal or sterile. Sex-specific lethality and sterility were also tested to determine whether Haldane's rule holds for within-species variation. Surprisingly, we observed an excess of female sterility in genotypes that were homozygous, but not heterozygous, for the X chromosome. The recessive nature of these incompatibilities is similar to that predicted for incompatibilities underlying Haldane’s rule. Our study also found higher levels of sterility and lethality for genomes that contain chromosomes from different geographical regions. These findings are consistent with the view that genomes are co-adapted gene complexes and that geography affects the likelihood of epistatic fitness interactions. PMID:20455929
Drosophila Lin-52 Acts in Opposition to Repressive Components of the Myb-MuvB/dREAM Complex
Lewis, Peter W.; Sahoo, Debashis; Geng, Cuiyun; Bell, Maren
2012-01-01
The Drosophila melanogaster Myb-MuvB/dREAM complex (MMB/dREAM) participates in both the activation and repression of developmentally regulated genes and origins of DNA replication. Mutants in MMB subunits exhibit diverse phenotypes, including lethality, eye defects, reduced fecundity, and sterility. Here, we used P-element excision to generate mutations in lin-52, which encodes the smallest subunit of the MMB/dREAM complex. lin-52 is required for viability, as null mutants die prior to pupariation. The generation of somatic and germ line mutant clones indicates that lin-52 is required for adult eye development and for early embryogenesis via maternal effects. Interestingly, the maternal-effect embryonic lethality, larval lethality, and adult eye defects could be suppressed by mutations in other subunits of the MMB/dREAM complex. These results suggest that a partial MMB/dREAM complex is responsible for the lethality and eye defects of lin-52 mutants. Furthermore, these findings support a model in which the Lin-52 and Myb proteins counteract the repressive activities of the other members of the MMB/dREAM complex at specific genomic loci in a developmentally controlled manner. PMID:22688510
Jiang, Guan; Liu, Yan-Qun; Wei, Zhi-Ping; Pei, Dong-Sheng; Mao, Li-Jun; Zheng, Jun-Nian
2010-08-28
Malignant melanoma is one of the most lethal and aggressive human malignancies. It is notoriously resistant to all of the current therapeutic modalities, including chemotherapy. Suppressed apoptosis and extraordinary invasiveness are the distinctive features that contribute to the malignancy of melanoma. Dacarbazine (DTIC) has been considered as the gold standard for melanoma treatment with a response rate of 15-20%. Unfortunately, the resistance to this chemotherapeutic agent occurs frequently. ZD55-IL-24 is a selective conditionally replicating adenovirus that can mediate the expression of interleukin-24 (IL-24) gene, which has a strong anti-tumor effect. In this study, we hypothesized that a combination of ZD55-IL-24-mediated gene virotherapy and chemotherapy using DTIC would produce an increased cytotoxicity against human melanoma cells in comparison with these agents alone. Our results showed that the combination of ZD55-IL-24 and DTIC significantly enhanced the anti-tumor activity by more effectively inducing apoptosis in melanoma cells than either agent used alone without any overlapping toxicity against normal cells. This additive or synergistic effect of ZD55-IL-24 in combination with DTIC in killing human malignant melanoma cells implies a promising novel approach for melanoma therapy. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
ATR suppresses endogenous DNA damage and allows completion of homologous recombination repair.
Brown, Adam D; Sager, Brian W; Gorthi, Aparna; Tonapi, Sonal S; Brown, Eric J; Bishop, Alexander J R
2014-01-01
DNA replication fork stalling or collapse that arises from endogenous damage poses a serious threat to genome stability, but cells invoke an intricate signaling cascade referred to as the DNA damage response (DDR) to prevent such damage. The gene product ataxia telangiectasia and Rad3-related (ATR) responds primarily to replication stress by regulating cell cycle checkpoint control, yet it's role in DNA repair, particularly homologous recombination (HR), remains unclear. This is of particular interest since HR is one way in which replication restart can occur in the presence of a stalled or collapsed fork. Hypomorphic mutations in human ATR cause the rare autosomal-recessive disease Seckel syndrome, and complete loss of Atr in mice leads to embryonic lethality. We recently adapted the in vivo murine pink-eyed unstable (pun) assay for measuring HR frequency to be able to investigate the role of essential genes on HR using a conditional Cre/loxP system. Our system allows for the unique opportunity to test the effect of ATR loss on HR in somatic cells under physiological conditions. Using this system, we provide evidence that retinal pigment epithelium (RPE) cells lacking ATR have decreased density with abnormal morphology, a decreased frequency of HR and an increased level of chromosomal damage.
Unifying measures of gene function and evolution.
Wolf, Yuri I; Carmel, Liran; Koonin, Eugene V
2006-06-22
Recent genome analyses revealed intriguing correlations between variables characterizing the functioning of a gene, such as expression level (EL), connectivity of genetic and protein-protein interaction networks, and knockout effect, and variables describing gene evolution, such as sequence evolution rate (ER) and propensity for gene loss. Typically, variables within each of these classes are positively correlated, e.g. products of highly expressed genes also have a propensity to be involved in many protein-protein interactions, whereas variables between classes are negatively correlated, e.g. highly expressed genes, on average, evolve slower than weakly expressed genes. Here, we describe principal component (PC) analysis of seven genome-related variables and propose biological interpretations for the first three PCs. The first PC reflects a gene's 'importance', or the 'status' of a gene in the genomic community, with positive contributions from knockout lethality, EL, number of protein-protein interaction partners and the number of paralogues, and negative contributions from sequence ER and gene loss propensity. The next two PCs define a plane that seems to reflect the functional and evolutionary plasticity of a gene. Specifically, PC2 can be interpreted as a gene's 'adaptability' whereby genes with high adaptability readily duplicate, have many genetic interaction partners and tend to be non-essential. PC3 also might reflect the role of a gene in organismal adaptation albeit with a negative rather than a positive contribution of genetic interactions; we provisionally designate this PC 'reactivity'. The interpretation of PC2 and PC3 as measures of a gene's plasticity is compatible with the observation that genes with high values of these PCs tend to be expressed in a condition- or tissue-specific manner. Functional classes of genes substantially vary in status, adaptability and reactivity, with the highest status characteristic of the translation system and cytoskeletal proteins, highest adaptability seen in cellular processes and signalling genes, and top reactivity characteristic of metabolic enzymes.
Lethal Nipah Virus Infection Induces Rapid Overexpression of CXCL10
Mathieu, Cyrille; Guillaume, Vanessa; Sabine, Amélie; Ong, Kien Chai; Wong, Kum Thong; Legras-Lachuer, Catherine; Horvat, Branka
2012-01-01
Nipah virus (NiV) is a recently emerged zoonotic Paramyxovirus that causes regular outbreaks in East Asia with mortality rate exceeding 75%. Major cellular targets of NiV infection are endothelial cells and neurons. To better understand virus-host interaction, we analyzed the transcriptome profile of NiV infection in primary human umbilical vein endothelial cells. We further assessed some of the obtained results by in vitro and in vivo methods in a hamster model and in brain samples from NiV-infected patients. We found that NiV infection strongly induces genes involved in interferon response in endothelial cells. Among the top ten upregulated genes, we identified the chemokine CXCL10 (interferon-induced protein 10, IP-10), an important chemoattractant involved in the generation of inflammatory immune response and neurotoxicity. In NiV-infected hamsters, which develop pathology similar to what is seen in humans, expression of CXCL10 mRNA was induced in different organs with kinetics that followed NiV replication. Finally, we showed intense staining for CXCL10 in the brain of patients who succumbed to lethal NiV infection during the outbreak in Malaysia, confirming induction of this chemokine in fatal human infections. This study sheds new light on NiV pathogenesis, indicating the role of CXCL10 during the course of infection and suggests that this chemokine may serve as a potential new marker for lethal NiV encephalitis. PMID:22393386
2014-06-01
Specifically, we combined the CRISPR genome editing system with a novel approach allowing efficient single cell cloning of Drosophila cells with the aim of...and culture these to produce cultures completely lacking wildtype sequence at the target locus. No robust methods existed to clone single Drosophila ...targeting all kinases and phosphatases (563 genes) in the Drosophila genome . 65 samples that displayed synthetic lethality (15 genes) or synthetic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omel`yanchuk, L.V.
1995-12-01
A lethal insertion of an element P[lArB], which caused nondisjunction and structural abnormalities in chromosomes in the neuroblasts of homozygous larvae, was found. The insertion was mapped to region 57B1-12 of the polytene map of chromosome 2 of Drosophila. The expression of the corresponding gene was found in testes, ovaries, and neural ganglia. 8 refs., 6 figs.
Zhuang, Jianguo; Zhao, Lei; Zang, Na
2015-01-01
Rat pups prenatally exposed to nicotine (PNE) present apneic (lethal ventilatory arrest) responses during severe hypoxia. To clarify whether these responses are of central origin, we tested PNE effects on ventilation and diaphragm electromyography (EMGdi) during hypoxia in conscious rat pups. PNE produced apnea (lethal ventilatory arrest) identical to EMGdi silencing during hypoxia, indicating a central origin of this apneic response. We further asked whether PNE would sensitize bronchopulmonary C-fibers (PCFs), a key player in generating central apnea, with increase of the density and transient receptor potential cation channel subfamily V member 1 (TRPV1) expression of C-fibers/neurons in the nodose/jugular (N/J) ganglia and neurotrophic factors in the airways and lungs. We compared 1) ventilatory and pulmonary C-neural responses to right atrial bolus injection of capsaicin (CAP, 0.5 μg/kg), 2) bronchial substance P-immunoreactive (SP-IR) fiber density, 3) gene and protein expressions of TRPV1 in the ganglia, and 4) nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) protein in bronchoalveolar lavage fluid (BALF) and TrkA and TrkB genes in the ganglia between control and PNE pups. PNE markedly strengthened the PCF-mediated apneic response to CAP via increasing pulmonary C-neural sensitivity. PNE also enhanced bronchial SP-IR fiber density and N/J ganglia neural TRPV1 expression associated with increased gene expression of TrkA in the N/G ganglia and decreased NGF and BDNF in BALF. Our results suggest that PNE enhances PCF sensitivity likely through increasing PCF density and TRPV1 expression via upregulation of neural TrkA and downregulation of pulmonary BDNF, which may contribute to the PNE-promoted central apnea (lethal ventilatory arrest) during hypoxia. PMID:25747962
Capitan, Aurélien; Allais-Bonnet, Aurélie; Pinton, Alain; Marquant-Le Guienne, Brigitte; Le Bourhis, Daniel; Grohs, Cécile; Bouet, Stéphan; Clément, Laëtitia; Salas-Cortes, Laura; Venot, Eric; Chaffaux, Stéphane; Weiss, Bernard; Delpeuch, Arnaud; Noé, Guy; Rossignol, Marie-Noëlle; Barbey, Sarah; Dozias, Dominique; Cobo, Emilie; Barasc, Harmonie; Auguste, Aurélie; Pannetier, Maëlle; Deloche, Marie-Christine; Lhuilier, Emeline; Bouchez, Olivier; Esquerré, Diane; Salin, Gérald; Klopp, Christophe; Donnadieu, Cécile; Chantry-Darmon, Céline; Hayes, Hélène; Gallard, Yves; Ponsart, Claire; Boichard, Didier; Pailhoux, Eric
2012-01-01
Polled and Multisystemic Syndrome (PMS) is a novel developmental disorder occurring in the progeny of a single bull. Its clinical spectrum includes polledness (complete agenesis of horns), facial dysmorphism, growth delay, chronic diarrhea, premature ovarian failure, and variable neurological and cardiac anomalies. PMS is also characterized by a deviation of the sex-ratio, suggesting male lethality during pregnancy. Using Mendelian error mapping and whole-genome sequencing, we identified a 3.7 Mb deletion on the paternal bovine chromosome 2 encompassing ARHGAP15, GTDC1 and ZEB2 genes. We then produced control and affected 90-day old fetuses to characterize this syndrome by histological and expression analyses. Compared to wild type individuals, affected animals showed a decreased expression of the three deleted genes. Based on a comparison with human Mowat-Wilson syndrome, we suggest that deletion of ZEB2, is responsible for most of the effects of the mutation. Finally sperm-FISH, embryo genotyping and analysis of reproduction records confirmed somatic mosaicism in the founder bull and male-specific lethality during the first third of gestation. In conclusion, we identified a novel locus involved in bovid horn ontogenesis and suggest that epithelial-to-mesenchymal transition plays a critical role in horn bud differentiation. We also provide new insights into the pathogenicity of ZEB2 loss of heterozygosity in bovine and humans and describe the first case of male-specific lethality associated with an autosomal locus in a non-murine mammalian species. This result sets PMS as a unique model to study sex-specific gene expression/regulation. PMID:23152852
Augmented Oxygen-Dependent Killing of Leishmania.
1992-06-30
reduction-oxidation cycling drugs: amphotericin B, menadione , and phenazine methosulfate. Promastigotes were exposed to the above drugs under...P02 = 2]..1 kPa) or hyperoxic conditions(P02 - 91.7 kPa). High oxygen tensions did not alter the lethal effects of either menadione or phenazine...effects of high oxygen tensions on the lethal effects of three reduction-oxidation cycling drugs: amphotericin B, menadione , and phenazine
Keeping the Wolves at Bay: Antitoxins of Prokaryotic Type II Toxin-Antitoxin Systems.
Chan, Wai Ting; Espinosa, Manuel; Yeo, Chew Chieng
2016-01-01
In their initial stages of discovery, prokaryotic toxin-antitoxin (TA) systems were confined to bacterial plasmids where they function to mediate the maintenance and stability of usually low- to medium-copy number plasmids through the post-segregational killing of any plasmid-free daughter cells that developed. Their eventual discovery as nearly ubiquitous and repetitive elements in bacterial chromosomes led to a wealth of knowledge and scientific debate as to their diversity and functionality in the prokaryotic lifestyle. Currently categorized into six different types designated types I-VI, type II TA systems are the best characterized. These generally comprised of two genes encoding a proteic toxin and its corresponding proteic antitoxin, respectively. Under normal growth conditions, the stable toxin is prevented from exerting its lethal effect through tight binding with the less stable antitoxin partner, forming a non-lethal TA protein complex. Besides binding with its cognate toxin, the antitoxin also plays a role in regulating the expression of the type II TA operon by binding to the operator site, thereby repressing transcription from the TA promoter. In most cases, full repression is observed in the presence of the TA complex as binding of the toxin enhances the DNA binding capability of the antitoxin. TA systems have been implicated in a gamut of prokaryotic cellular functions such as being mediators of programmed cell death as well as persistence or dormancy, biofilm formation, as defensive weapons against bacteriophage infections and as virulence factors in pathogenic bacteria. It is thus apparent that these antitoxins, as DNA-binding proteins, play an essential role in modulating the prokaryotic lifestyle whilst at the same time preventing the lethal action of the toxins under normal growth conditions, i.e., keeping the proverbial wolves at bay. In this review, we will cover the diversity and characteristics of various type II TA antitoxins. We shall also look into some interesting deviations from the canonical type II TA systems such as tripartite TA systems where the regulatory role is played by a third party protein and not the antitoxin, and a unique TA system encoding a single protein with both toxin as well as antitoxin domains.
Keeping the Wolves at Bay: Antitoxins of Prokaryotic Type II Toxin-Antitoxin Systems
Chan, Wai Ting; Espinosa, Manuel; Yeo, Chew Chieng
2016-01-01
In their initial stages of discovery, prokaryotic toxin-antitoxin (TA) systems were confined to bacterial plasmids where they function to mediate the maintenance and stability of usually low- to medium-copy number plasmids through the post-segregational killing of any plasmid-free daughter cells that developed. Their eventual discovery as nearly ubiquitous and repetitive elements in bacterial chromosomes led to a wealth of knowledge and scientific debate as to their diversity and functionality in the prokaryotic lifestyle. Currently categorized into six different types designated types I–VI, type II TA systems are the best characterized. These generally comprised of two genes encoding a proteic toxin and its corresponding proteic antitoxin, respectively. Under normal growth conditions, the stable toxin is prevented from exerting its lethal effect through tight binding with the less stable antitoxin partner, forming a non-lethal TA protein complex. Besides binding with its cognate toxin, the antitoxin also plays a role in regulating the expression of the type II TA operon by binding to the operator site, thereby repressing transcription from the TA promoter. In most cases, full repression is observed in the presence of the TA complex as binding of the toxin enhances the DNA binding capability of the antitoxin. TA systems have been implicated in a gamut of prokaryotic cellular functions such as being mediators of programmed cell death as well as persistence or dormancy, biofilm formation, as defensive weapons against bacteriophage infections and as virulence factors in pathogenic bacteria. It is thus apparent that these antitoxins, as DNA-binding proteins, play an essential role in modulating the prokaryotic lifestyle whilst at the same time preventing the lethal action of the toxins under normal growth conditions, i.e., keeping the proverbial wolves at bay. In this review, we will cover the diversity and characteristics of various type II TA antitoxins. We shall also look into some interesting deviations from the canonical type II TA systems such as tripartite TA systems where the regulatory role is played by a third party protein and not the antitoxin, and a unique TA system encoding a single protein with both toxin as well as antitoxin domains. PMID:27047942
Pultz, M A; Zimmerman, K K; Alto, N M; Kaeberlein, M; Lange, S K; Pitt, J N; Reeves, N L; Zehrung, D L
2000-01-01
We have screened for zygotic embryonic lethal mutations affecting cuticular morphology in Nasonia vitripennis (Hymenoptera; Chalcidoidea). Our broad goal was to investigate the use of Nasonia for genetically surveying conservation and change in regulatory gene systems, as a means to understand the diversity of developmental strategies that have arisen during the course of evolution. Specifically, we aim to compare anteroposterior patterning gene functions in two long germ band insects, Nasonia and Drosophila. In Nasonia, unfertilized eggs develop as haploid males while fertilized eggs develop as diploid females, so the entire genome can be screened for recessive zygotic mutations by examining the progeny of F1 females. We describe 74 of >100 lines with embryonic cuticular mutant phenotypes, including representatives of coordinate, gap, pair-rule, segment polarity, homeotic, and Polycomb group functions, as well as mutants with novel phenotypes not directly comparable to those of known Drosophila genes. We conclude that Nasonia is a tractable experimental organism for comparative developmental genetic study. The mutants isolated here have begun to outline the extent of conservation and change in the genetic programs controlling embryonic patterning in Nasonia and Drosophila. PMID:10866651
Aleshin, SE; Timofeev, AV; Khoretonenko, MV; Zakharova, LG; Pashvykina, GV; Stephenson, JR; Shneider, AM; Altstein, AD
2005-01-01
Background Heterologous prime-boost immunization protocols using different gene expression systems have proven to be successful tools in protecting against various diseases in experimental animal models. The main reason for using this approach is to exploit the ability of expression cassettes to prime or boost the immune system in different ways during vaccination procedures. The purpose of the project was to study the ability of recombinant vaccinia virus (VV) and bacterial plasmid, both carrying the NS1 gene from tick-borne encephalitis (TBE) virus under the control of different promoters, to protect mice against lethal challenge using a heterologous prime-boost vaccination protocol. Results The heterologous prime-boost vaccination protocol, using a VV recombinant and bacterial plasmid, both containing the NS1 TBE virus protein gene under the control of different promoters, achieved a high level of protection in mice against lethal challenge with a highly pathogenic TBE virus strain. No signs of pronounced TBE infection were detected in the surviving animals. Conclusion Heterologous prime-boost vaccination protocols using recombinant VV and bacterial plasmids could be used for the development of flavivirus vaccines. PMID:16076390
Suto, J; Wakayama, T; Imamura, K; Goto, S; Fukuta, K
1995-08-01
The semidominant gene Dh (Dominant hemimelia) induces skeletal and visceral abnormalities of various degrees and failure of the spleen in mice. The homozygous individual (Dh/Dh) seems to be lethal. The present experiment was designed to investigate the ability Dh cells to form a spleen and the genesis of the hind limb malformations by Dh/Dh and Dh/+ cells in chimeric mice. The Dh/Dh and Dh/+ embryos were produced in the F2 progeny of a cross between inbred strains of Dh/+ and DDD mice. They were aggregated with C3H/He or C57BL/6 embryos to make chimeras. Identification of Dh/Dh or Dh/+ embryos was carried out by Pep-3, and chimerism was analyzed by Gpi-1. Of 25 chimeras carrying the Dh gene, four mice formed a small spleen, two mice had a vestigial spleen, and the others no spleen. The tissues of the incompletely developed spleens were normal histologically and Dh cells were involved in the tissues of the spleen. In the chimeric mice, hindlimb malformation by the Dh gene was reduced in severity and the lethality of the homozygote (Dh/Dh) was rescued.
An AP Endonuclease Functions in Active DNA Demethylation and Gene Imprinting in Arabidopsis
Li, Yan; Córdoba-Cañero, Dolores; Qian, Weiqiang; Zhu, Xiaohong; Tang, Kai; Zhang, Huiming; Ariza, Rafael R.; Roldán-Arjona, Teresa; Zhu, Jian-Kang
2015-01-01
Active DNA demethylation in plants occurs through base excision repair, beginning with removal of methylated cytosine by the ROS1/DME subfamily of 5-methylcytosine DNA glycosylases. Active DNA demethylation in animals requires the DNA glycosylase TDG or MBD4, which functions after oxidation or deamination of 5-methylcytosine, respectively. However, little is known about the steps following DNA glycosylase action in the active DNA demethylation pathways in plants and animals. We show here that the Arabidopsis APE1L protein has apurinic/apyrimidinic endonuclease activities and functions downstream of ROS1 and DME. APE1L and ROS1 interact in vitro and co-localize in vivo. Whole genome bisulfite sequencing of ape1l mutant plants revealed widespread alterations in DNA methylation. We show that the ape1l/zdp double mutant displays embryonic lethality. Notably, the ape1l+/−zdp−/− mutant shows a maternal-effect lethality phenotype. APE1L and the DNA phosphatase ZDP are required for FWA and MEA gene imprinting in the endosperm and are important for seed development. Thus, APE1L is a new component of the active DNA demethylation pathway and, together with ZDP, regulates gene imprinting in Arabidopsis. PMID:25569774
Dziedzic, Slawomir A; Caplan, Allan B
2011-05-01
Eukaryotes use a common set of genes to perform two mechanistically similar autophagic processes. Bulk autophagy harvests proteins nonselectively and reuses their constitutents when nutrients are scarce. In contrast, different forms of selective autophagy target protein aggregates or damaged organelles that threaten to interfere with growth. Yeast uses one form of selective autophagy, called cytoplasm-to-vacuole targeting (Cvt), to engulf two vacuolar enzymes in Cvt vesicles ("CVT-somes") within which they are transported to vacuoles for maturation. While both are dispensable normally, bulk and selective autophagy help sustain life under stressful conditions. Consistent with this view, knocking out several genes participating in Cvt and specialized autophagic pathways heightened the sensitivity of Saccharomyces cerevisiae to inhibitory levels of Zn(2+). The loss of other autophagic genes, and genes responsible for apoptotic cell death, had no such effect. Unexpectedly, the loss of members of a third set of autophagy genes heightened cellular resistance to zinc as if they encoded proteins that actively contributed to zinc-induced cell death. Further studies showed that both sensitive and resistant strains accumulated similar amounts of H2O2 during zinc treatments, but that more sensitive strains showed signs of necrosis sooner. Although zinc lethality depended on autophagic proteins, studies with several reporter genes failed to reveal increased autophagic activity. In fact, microscopy analysis indicated that Zn(2+) partially inhibited fusion of Cvt vesicles with vacuoles. Further studies into how the loss of autophagic processes suppressed necrosis in yeast might reveal whether a similar process could occur in plants and animals.
Herbicide resistance in weedy plant populations can develop through different mechanisms such as gene flow of herbicide resistant transgenes from crop species into compatible weedy species or by natural evolution of herbicide resistance or tolerance following selection pressure. ...
WT1: a weak spot in KRAS-induced transformation
Licciulli, Silvia; Kissil, Joseph L.
2010-01-01
Activating mutations in the Ras alleles are found frequently in tumors, making the proteins they encode highly attractive candidate therapeutic targets. However, Ras proteins have proven difficult to target directly. Recent approaches have therefore focused on identifying indirect targets to inhibit Ras-induced oncogenesis. For example, RNAi-based negative selection screens to identify genes that when silenced in concert with activating Ras mutations are incompatible with cellular proliferation, a concept known as synthetic lethality. In this issue of the JCI, Vicent et al. report on the identification of Wilms tumor 1 (Wt1) as a Kras synthetic-lethal gene in a mouse model of lung adenocarcinoma. Silencing of Wt1 in cells expressing an endogenous allele of activated Kras triggers senescence in vitro and has an impact on tumor progression in vivo. These findings are of significant interest given previous studies suggesting that the ability of oncogenic Kras to induce senescence versus proliferation depends on its levels of expression. PMID:20972324
Guo, Yunqing; Hu, Di; Guo, Jie; Li, Xiaowen; Guo, Jinyue; Wang, Xiliang; Xiao, Yuncai; Jin, Hui; Liu, Mei; Li, Zili; Bi, Dingren; Zhou, Zutao
2017-01-01
Riemerella anatipestifer, an avian pathogen, has resulted in enormous economic losses to the duck industry globally. Notwithstanding, little is known regarding the physiological, pathogenic and virulence mechanisms of Riemerella anatipestifer (RA) infection. However, the role of Ferric uptake regulator (Fur) in the virulence of R. anatipestifer has not, to date, been demonstrated. Using a genetic approach, unmarked gene deletion system, we evaluated the function of fur gene in the virulence of R. anatipestifer. For this purpose, we constructed a suicide vector containing pheS as a counter selectable marker for unmarked deletion of fur gene to investigate its role in the virulence. After successful transformation of the newly constructed vector, a mutant strain was characterized for genes regulated by iron and Fur using RNA-sequencing and a comparison was made between wild type and mutant strains in both iron restricted and enriched conditions. RNA-seq analysis of the mutant strain in a restricted iron environment showed the downregulation and upregulation of genes which were involved in either important metabolic pathways, transport processes, growth or cell membrane synthesis. Electrophoretic mobility shift assay was performed to identify the putative sequences recognized by Fur. The putative Fur-box sequence was 5′-GATAATGATAATCATTATC-3′. Lastly, the median lethal dose and histopathological investigations of animal tissues also illustrated mild pathological lesions produced by the mutant strain as compared to the wild type RA strain, hence showing declined virulence. Conclusively, an unmarked gene deletion system was successfully developed for RA and the role of the fur gene in virulence was explored comprehensively. PMID:28971067
Gene essentiality, conservation index and co-evolution of genes in cyanobacteria.
Tiruveedula, Gopi Siva Sai; Wangikar, Pramod P
2017-01-01
Cyanobacteria, a group of photosynthetic prokaryotes, dominate the earth with ~ 1015 g wet biomass. Despite diversity in habitats and an ancient origin, cyanobacterial phylum has retained a significant core genome. Cyanobacteria are being explored for direct conversion of solar energy and carbon dioxide into biofuels. For this, efficient cyanobacterial strains will need to be designed via metabolic engineering. This will require identification of target knockouts to channelize the flow of carbon toward the product of interest while minimizing deletions of essential genes. We propose "Gene Conservation Index" (GCI) as a quick measure to predict gene essentiality in cyanobacteria. GCI is based on phylogenetic profile of a gene constructed with a reduced dataset of cyanobacterial genomes. GCI is the percentage of organism clusters in which the query gene is present in the reduced dataset. Of the 750 genes deemed to be essential in the experimental study on S. elongatus PCC 7942, we found 494 to be conserved across the phylum which largely comprise of the essential metabolic pathways. On the contrary, the conserved but non-essential genes broadly comprise of genes required under stress conditions. Exceptions to this rule include genes such as the glycogen synthesis and degradation enzymes, deoxyribose-phosphate aldolase (DERA), glucose-6-phosphate 1-dehydrogenase (zwf) and fructose-1,6-bisphosphatase class1, which are conserved but non-essential. While the essential genes are to be avoided during gene knockout studies as potentially lethal deletions, the non-essential but conserved set of genes could be interesting targets for metabolic engineering. Further, we identify clusters of co-evolving genes (CCG), which provide insights that may be useful in annotation. Principal component analysis (PCA) plots of the CCGs are demonstrated as data visualization tools that are complementary to the conventional heatmaps. Our dataset consists of phylogenetic profiles for 23,643 non-redundant cyanobacterial genes. We believe that the data and the analysis presented here will be a great resource to the scientific community interested in cyanobacteria.
Diamond, Spencer; Rubin, Benjamin E.; Shultzaberger, Ryan K.; Chen, You; Barber, Chase D.; Golden, Susan S.
2017-01-01
Cyanobacteria evolved a robust circadian clock, which has a profound influence on fitness and metabolism under daily light–dark (LD) cycles. In the model cyanobacterium Synechococcus elongatus PCC 7942, a functional clock is not required for diurnal growth, but mutants defective for the response regulator that mediates transcriptional rhythms in the wild-type, regulator of phycobilisome association A (RpaA), cannot be cultured under LD conditions. We found that rpaA-null mutants are inviable after several hours in the dark and compared the metabolomes of wild-type and rpaA-null strains to identify the source of lethality. Here, we show that the wild-type metabolome is very stable throughout the night, and this stability is lost in the absence of RpaA. Additionally, an rpaA mutant accumulates excessive reactive oxygen species (ROS) during the day and is unable to clear it during the night. The rpaA-null metabolome indicates that these cells are reductant-starved in the dark, likely because enzymes of the primary nighttime NADPH-producing pathway are direct targets of RpaA. Because NADPH is required for processes that detoxify ROS, conditional LD lethality likely results from inability of the mutant to activate reductant-requiring pathways that detoxify ROS when photosynthesis is not active. We identified second-site mutations and growth conditions that suppress LD lethality in the mutant background that support these conclusions. These results provide a mechanistic explanation as to why rpaA-null mutants die in the dark, further connect the clock to metabolism under diurnal growth, and indicate that RpaA likely has important unidentified functions during the day. PMID:28074036
R-LOCUS DELETERIOUS FACTORS IN MORMONIELLA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiting, P.W.
1962-01-01
New data are presented on 37 R-locus mutant genes containing deleterious factors or crossover suppressors. Twenty-seven of these genes are among the 206 recognizable eye-color mutants previously found by others in experiments in which wild-type males were irradiated and mated, siring 11062 daughters examined, mutation rate 1.86%. With the addition of eight mutants from later simdlar tests there were 38 mutants failing to breed, probably being dominant steriles, and seven immature, probably dominant lethals. Of the l60 mutants given successful breeding test, 80 were normal and 80 contained delcterious factors of different types - lethals, near-steriles, femalesteriles, and male-stertles. Ratemore » of deleterious factor productdon differs according to the factor mutating to produce the eye-color marker. Among the l07 genes changed in factor S alone, 68 were also deleterious (63.6%) but for the 45 in O, there were only nine (20.0%), suggesting a more sensitive region near S. More than one deleterious factor may be produced simultaneously with an eye-color change and one defeet may mask others. The gene which forms a temporary unit of segregation in heterozygotes is of a higher order of magnitude than units of heredity (gene elements, cistrons) which may be permanently present dn the germ plasm. Because of the high mutation rate to the marker eye colors scarlet and oyster white, the genetical structure of the R region may be easily studied. (auth)« less
Favor, Jack; Bradley, Alan; Conte, Nathalie; Janik, Dirk; Pretsch, Walter; Reitmeir, Peter; Rosemann, Michael; Schmahl, Wolfgang; Wienberg, Johannes; Zaus, Irmgard
2009-08-01
In the mouse Pax6 function is critical in a dose-dependent manner for proper eye development. Pax6 contiguous gene deletions were shown to be homozygous lethal at an early embryonic stage. Heterozygotes express belly spotting and extreme microphthalmia. The eye phenotype is more severe than in heterozygous Pax6 intragenic null mutants, raising the possibility that deletions are functionally different from intragenic null mutations or that a region distinct from Pax6 included in the deletions affects eye phenotype. We recovered and identified the exact regions deleted in three new Pax6 deletions. All are homozygous lethal at an early embryonic stage. None express belly spotting. One expresses extreme microphthalmia and two express the milder eye phenotype similar to Pax6 intragenic null mutants. Analysis of Pax6 expression levels and the major isoforms excluded the hypothesis that the deletions expressing extreme microphthalmia are directly due to the action of Pax6 and functionally different from intragenic null mutations. A region distinct from Pax6 containing eight genes was identified for belly spotting. A second region containing one gene (Rcn1) was identified for the extreme microphthalmia phenotype. Rcn1 is a Ca(+2)-binding protein, resident in the endoplasmic reticulum, participates in the secretory pathway and expressed in the eye. Our results suggest that deletion of Rcn1 directly or indirectly contributes to the eye phenotype in Pax6 contiguous gene deletions.
Parallel universes of Black Six biology.
Kraev, Alexander
2014-07-19
Creation of lethal and synthetic lethal mutations in an experimental organism is a cornerstone of genetic dissection of gene function, and is related to the concept of an essential gene. Common inbred mouse strains carry background mutations, which can act as genetic modifiers, interfering with the assignment of gene essentiality. The inbred strain C57BL/6J, commonly known as "Black Six", stands out, as it carries a spontaneous homozygous deletion in the nicotinamide nucleotide transhydrogenase (Nnt) gene [GenBank: AH009385.2], resulting in impairment of steroidogenic mitochondria of the adrenal gland, and a multitude of indirect modifier effects, coming from alteration of glucocorticoid-regulated processes. Over time, the popular strain has been used, by means of gene targeting technology, to assign "essential" and "redundant" qualifiers to numerous genes, thus creating an internally consistent "parallel universe" of knowledge. It is unrealistic to suggest phasing-out of this strain, given the scope of shared resources built around it, however, continuing on the road of "strain-unawareness" will result in profound waste of effort, particularly where translational research is concerned. The review analyzes the historical roots of this phenomenon and proposes that building of "parallel universes" should be urgently made visible to a critical reader by obligatory use of unambiguous and persistent tags in publications and databases, such as hypertext links, pointing to a vendor's strain description web page, or to a digital object identifier (d.o.i.) of the original publication, so that any research done exclusively in C57BL/6J, could be easily identified. This article was reviewed by Dr. Neil Smalheiser and Dr. Miguel Andrade-Navarro.
Jmjd5 functions as a regulator of p53 signaling during mouse embryogenesis.
Ishimura, Akihiko; Terashima, Minoru; Tange, Shoichiro; Suzuki, Takeshi
2016-03-01
Genetic studies have shown that aberrant activation of p53 signaling leads to embryonic lethality. Maintenance of a fine balance of the p53 protein level is critical for normal development. Previously, we have reported that Jmjd5, a member of the Jumonji C (JmjC) family, regulates embryonic cell proliferation through the control of Cdkn1a expression. Since Cdkn1a is the representative p53-regulated gene, we have examined whether the expression of other p53 target genes is coincidentally upregulated with Cdkn1a in Jmjd5-deficient embryos. The expression of a subset of p53-regulated genes was increased in both Jmjd5 hypomorphic mouse embryonic fibroblasts (MEFs) and Jmjd5-deficient embryos at embryonic day 8.25 without the induced expression of Trp53. Intercrossing of Jmjd5-deficient mice with Trp53 knockout mice showed that the growth defect of Jmjd5 mutant cells was significantly recovered under a Trp53 null genetic background. Chromatin immunoprecipitation analysis in Jmjd5 hypomorphic MEFs indicated the increased recruitment of p53 at several p53 target gene loci, such as Cdkn1a, Pmaip1, and Mdm2. These results suggest that Jmjd5 is involved in the transcriptional regulation of a subset of p53-regulated genes, possibly through the control of p53 recruitment at the gene loci. In Jmjd5-deficient embryos, the enhanced recruitment of p53 might result in the abnormal activation of p53 signaling leading to embryonic lethality.
Barrero, José María; González-Bayón, Rebeca; del Pozo, Juan Carlos; Ponce, María Rosa; Micol, José Luis
2007-01-01
Cell type–specific gene expression patterns are maintained by the stable inheritance of transcriptional states through mitosis, requiring the action of multiprotein complexes that remodel chromatin structure. Genetic and molecular interactions between chromatin remodeling factors and components of the DNA replication machinery have been identified in Schizosaccharomyces pombe, indicating that some epigenetic marks are replicated simultaneously to DNA with the participation of the DNA replication complexes. This model of epigenetic inheritance might be extended to the plant kingdom, as we report here with the positional cloning and characterization of INCURVATA2 (ICU2), which encodes the putative catalytic subunit of the DNA polymerase α of Arabidopsis thaliana. The strong icu2-2 and icu2-3 insertional alleles caused fully penetrant zygotic lethality when homozygous and incompletely penetrant gametophytic lethality, probably because of loss of DNA polymerase activity. The weak icu2-1 allele carried a point mutation and caused early flowering, leaf incurvature, and homeotic transformations of sepals into carpels and of petals into stamens. Further genetic analyses indicated that ICU2 interacts with TERMINAL FLOWER2, the ortholog of HETEROCHROMATIN PROTEIN1 of animals and yeasts, and with the Polycomb group (PcG) gene CURLY LEAF. Another PcG gene, EMBRYONIC FLOWER2, was found to be epistatic to ICU2. Quantitative RT-PCR analyses indicated that a number of regulatory genes were derepressed in the icu2-1 mutant, including genes associated with flowering time, floral meristem, and floral organ identity. PMID:17873092
Bétrémieux, P; Druyer, J; Bertorello, I; Huillery, M-L; Brunet, C; Le Bouar, G
2016-02-01
To study the pregnancies followed at Rennes University Hospital from 2006 to 2012, after prenatal diagnosis of lethal fetal condition and prenatal project of palliative care at birth consisting of comfort care emphasizing parent-child encounters and bonding. Retrospective study of 20 pregnancies with diagnosis of lethal fetal condition where parents accepted antenatally the proposal or sought for palliative care at birth. Diagnosis was made at a median age of 20 weeks gestation (12-33). Birth occurred at 37.4 WG, 6 caesarean sections were performed for maternal conditions. Six cases of hypoplastic left heart syndrome (HLHS) share common characteristics: good Apgar score, prolonged survival (26hours to 159days) transfer to neonatology ward (6) or later at home (4). In four multiple pregnancies, the choice of SP mainly contributed to protect healthy twins during pregnancy. In birth room, there was no need for invasive procedure or drugs. Death: one occurred during labor, 8 in birth room before H2, others in neonatal ward before d4 (excluding HLHS). These data will enable better antenatal preparation of both teams and parents. Lifetime, however short, allowed parents to meet with their child alive this permitting collection of memory traces and bonding. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Fear, Justin M; Arbeitman, Michelle N; Salomon, Matthew P; Dalton, Justin E; Tower, John; Nuzhdin, Sergey V; McIntyre, Lauren M
2015-09-04
The Drosophila sex determination hierarchy is a classic example of a transcriptional regulatory hierarchy, with sex-specific isoforms regulating morphology and behavior. We use a structural equation modeling approach, leveraging natural genetic variation from two studies on Drosophila female head tissues--DSPR collection (596 F1-hybrids from crosses between DSPR sub-populations) and CEGS population (75 F1-hybrids from crosses between DGRP/Winters lines to a reference strain w1118)--to expand understanding of the sex hierarchy gene regulatory network (GRN). This approach is completely generalizable to any natural population, including humans. We expanded the sex hierarchy GRN adding novel links among genes, including a link from fruitless (fru) to Sex-lethal (Sxl) identified in both populations. This link is further supported by the presence of fru binding sites in the Sxl locus. 754 candidate genes were added to the pathway, including the splicing factors male-specific lethal 2 and Rm62 as downstream targets of Sxl which are well-supported links in males. Independent studies of doublesex and transformer mutants support many additions, including evidence for a link between the sex hierarchy and metabolism, via Insulin-like receptor. The genes added in the CEGS population were enriched for genes with sex-biased splicing and components of the spliceosome. A common goal of molecular biologists is to expand understanding about regulatory interactions among genes. Using natural alleles we can not only identify novel relationships, but using supervised approaches can order genes into a regulatory hierarchy. Combining these results with independent large effect mutation studies, allows clear candidates for detailed molecular follow-up to emerge.
Mosley, Gregg A; Gillis, John R; Krushefski, Garrett
2005-01-01
Bacterial endospores from six different species of bacteria were exposed to a spectrum of ethylene oxide (EtO) sterilizing conditions. Temperature was varied from 40 to 60 degrees C and the ethylene oxide concentration was varied from 300 to 750 mg/L. Relative humidity was maintained at 60+/-10% RH. The fraction negative procedure was used to determine the D value for each of the test conditions. Bacterial species tested included Bacillus atrophaeus ATCC # 9372, Bacillus smithii ATCC # 51232, Bacillus subtilis "5230" ATCC # 35021, Bacillus subtilis, DSM # 4181, Bacillus pumilus ATCC # 27142, and Geobacillus stearothermophilus ATCC # 7953. All spore preparations were inoculated on filter paper strips packaged in blue, sterilizable glassine pouches. G. stearothermophilus was the least resistant organism tested. The most resistant organisms tested were B. atrophaeus and B. subtilis "5230". The B. subtilis "5230" strain was slightly more resistant than B. atrophaeus at conditions of 54C and EtO concentrations of 400, 600, and 750 mg/L, as well as at 60C/750mg/L EtO. The other species were between these extremes. This empirical data allowed the application of the recently published formula for converting D values from one set of conditions to another and evaluations of accuracy. The measured D values also allowed the determination of Z values based on temperature variations. These formulae, when applied to process temperatures independent of gas concentration, result in a Z value of approximately 32 degrees C that appears to be similar for all species tested. These data support the application of the previously published formulae 1-6 and allow the same approach to integrated lethality for ethylene oxide processes as is commonly applied to steam sterilization. A review of steam sterilization and related principles was conducted for comparison of integrated lethality for these two methods of sterilization. Errors associated with D values, Z values, extrapolation, and integrated lethality for both methods of sterilization are discussed.
Carpio, Lomeli R.; Bradley, Elizabeth W.; McGee-Lawrence, Meghan E.; Weivoda, Megan M.; Poston, Daniel D.; Dudakovic, Amel; Xu, Ming; Tchkonia, Tamar; Kirkland, James L.; van Wijnen, Andre J.; Oursler, Merry Jo; Westendorf, Jennifer J.
2017-01-01
Histone deacetylase (HDAC) inhibitors are efficacious epigenetic-based therapies for some cancers and neurological disorders; however, each of these drugs inhibits multiple HDACs and has detrimental effects on the skeleton. To better understand how HDAC inhibitors affect endochondral bone formation, we conditionally deleted one of their targets, Hdac3, pre- and postnatally in type II collagen α1 (Col2α1)–expressing chondrocytes. Embryonic deletion was lethal, but postnatal deletion of Hdac3 delayed secondary ossification center formation, altered maturation of growth plate chondrocytes, and increased osteoclast activity in the primary spongiosa. HDAC3-deficient chondrocytes exhibited increased expression of cytokine and matrix-degrading genes (Il-6, Mmp3, Mmp13, and Saa3) and a reduced abundance of genes related to extracellular matrix production, bone development, and ossification (Acan, Col2a1, Ihh, and Col10a1). Histone acetylation increased at and near genes that had increased expression. The acetylation and activation of nuclear factor κB (NF-κB) were also increased in HDAC3-deficient chondrocytes. Increased cytokine signaling promoted autocrine activation of Janus kinase (JAK)–signal transducer and activator of transcription (STAT) and NF-κB pathways to suppress chondrocyte maturation, as well as paracrine activation of osteoclasts and bone resorption. Blockade of interleukin-6 (IL-6)–JAK–STAT signaling, NF-κB signaling, and bromodomain extraterminal proteins, which recognize acetylated lysines and promote transcriptional elongation, significantly reduced Il-6 and Mmp13 expression in HDAC3-deficient chondrocytes and secondary activation in osteoclasts. The JAK inhibitor ruxolitinib also reduced osteoclast activity in Hdac3 conditional knockout mice. Thus, HDAC3 controls the temporal and spatial expression of tissue-remodeling genes and inflammatory responses in chondrocytes to ensure proper endochondral ossification during development. PMID:27507649
Non-Invasive Gene Therapy of Experimental Parkinson’s Disease
2004-09-01
20 is lethal (7). The hydro- dynamic method involves the rapid intravenous injection of a Weekly Intravenous Gene Therapy volume of saline greater...PILs do not aggregate in saline and have prolonged the TH expression plasmid DNA encapsulated in either the blood residence times (11). PILs have been...weeks. A third control group of rats was treated with brain cancer (12), and PILs have been given to rats for the saline , treatment of experimental
Bogdanova, Vera S.; Zaytseva, Olga O.; Mglinets, Anatoliy V.; Shatskaya, Natalia V.; Kosterin, Oleg E.; Vasiliev, Gennadiy V.
2015-01-01
In crosses of wild and cultivated peas (Pisum sativum L.), nuclear-cytoplasmic incompatibility frequently occurs manifested as decreased pollen fertility, male gametophyte lethality, sporophyte lethality. High-throughput sequencing of plastid genomes of one cultivated and four wild pea accessions differing in cross-compatibility was performed. Candidate genes for involvement in the nuclear-plastid conflict were searched in the reconstructed plastid genomes. In the annotated Medicago truncatula genome, nuclear candidate genes were searched in the portion syntenic to the pea chromosome region known to harbor a locus involved in the conflict. In the plastid genomes, a substantial variability of the accD locus represented by nucleotide substitutions and indels was found to correspond to the pattern of cross-compatibility among the accessions analyzed. Amino acid substitutions in the polypeptides encoded by the alleles of a nuclear locus, designated as Bccp3, with a complementary function to accD, fitted the compatibility pattern. The accD locus in the plastid genome encoding beta subunit of the carboxyltransferase of acetyl-coA carboxylase and the nuclear locus Bccp3 encoding biotin carboxyl carrier protein of the same multi-subunit enzyme were nominated as candidate genes for main contribution to nuclear-cytoplasmic incompatibility in peas. Existence of another nuclear locus involved in the accD-mediated conflict is hypothesized. PMID:25789472
Cekaite, Lina; Peng, Qian; Reiner, Andrew; Shahzidi, Susan; Tveito, Siri; Furre, Ingegerd E; Hovig, Eivind
2007-01-01
Background Photodynamic therapy (PDT) involves systemic or topical administration of a lesion-localizing photosensitizer or its precursor, followed by irradiation of visible light to cause singlet oxygen-induced damage to the affected tissue. A number of mechanisms seem to be involved in the protective responses to PDT, including activation of transcription factors, heat shock proteins, antioxidant enzymes and apoptotic pathways. Results In this study, we address the effects of a destructive/lethal hexaminolevulinate (HAL) mediated PDT dose on the transcriptome by using transcriptional exon evidence oligo microarrays. Here, we confirm deviations in the steady state expression levels of previously identified early defence response genes and extend this to include unreported PDT inducible gene groups, most notably the metallothioneins and histones. HAL-PDT mediated stress also altered expression of genes encoded by mitochondrial DNA (mtDNA). Further, we report PDT stress induced alternative splicing. Specifically, the ATF3 alternative isoform (deltaZip2) was up-regulated, while the full-length variant was not changed by the treatment. Results were independently verified by two different technological microarray platforms. Good microarray, RT-PCR and Western immunoblotting correlation for selected genes support these findings. Conclusion Here, we report new insights into how destructive/lethal PDT alters the transcriptome not only at the transcriptional level but also at post-transcriptional level via alternative splicing. PMID:17692132
Rozhdestvensky, Timofey S; Robeck, Thomas; Galiveti, Chenna R; Raabe, Carsten A; Seeger, Birte; Wolters, Anna; Gubar, Leonid V; Brosius, Jürgen; Skryabin, Boris V
2016-02-05
Prader-Willi syndrome (PWS) is a neurogenetic disorder caused by loss of paternally expressed genes on chromosome 15q11-q13. The PWS-critical region (PWScr) contains an array of non-protein coding IPW-A exons hosting intronic SNORD116 snoRNA genes. Deletion of PWScr is associated with PWS in humans and growth retardation in mice exhibiting ~15% postnatal lethality in C57BL/6 background. Here we analysed a knock-in mouse containing a 5'HPRT-LoxP-Neo(R) cassette (5'LoxP) inserted upstream of the PWScr. When the insertion was inherited maternally in a paternal PWScr-deletion mouse model (PWScr(p-/m5'LoxP)), we observed compensation of growth retardation and postnatal lethality. Genomic methylation pattern and expression of protein-coding genes remained unaltered at the PWS-locus of PWScr(p-/m5'LoxP) mice. Interestingly, ubiquitous Snord116 and IPW-A exon transcription from the originally silent maternal chromosome was detected. In situ hybridization indicated that PWScr(p-/m5'LoxP) mice expressed Snord116 in brain areas similar to wild type animals. Our results suggest that the lack of PWScr RNA expression in certain brain areas could be a primary cause of the growth retardation phenotype in mice. We propose that activation of disease-associated genes on imprinted regions could lead to general therapeutic strategies in associated diseases.
Essential roles for Cdx in murine primitive hematopoiesis.
Brooke-Bisschop, Travis; Savory, Joanne G A; Foley, Tanya; Ringuette, Randy; Lohnes, David
2017-02-15
The Cdx transcription factors play essential roles in primitive hematopoiesis in the zebrafish where they exert their effects, in part, through regulation of hox genes. Defects in hematopoiesis have also been reported in Cdx mutant murine embryonic stem cell models, however, to date no mouse model reflecting the zebrafish Cdx mutant hematopoietic phenotype has been described. This is likely due, in part, to functional redundancy among Cdx members and the early lethality of Cdx2 null mutants. To circumvent these limitations, we used Cre-mediated conditional deletion to assess the impact of concomitant loss of Cdx1 and Cdx2 on murine primitive hematopoiesis. We found that Cdx1/Cdx2 double mutants exhibited defects in primitive hematopoiesis and yolk sac vasculature concomitant with reduced expression of several genes encoding hematopoietic transcription factors including Scl/Tal1. Chromatin immunoprecipitation analysis revealed that Scl was occupied by Cdx2 in vivo, and Cdx mutant hematopoietic yolk sac differentiation defects could be rescued by expression of exogenous Scl. These findings demonstrate critical roles for Cdx members in murine primitive hematopoiesis upstream of Scl. Copyright © 2017 Elsevier Inc. All rights reserved.
Grant-Klein, Rebecca J; Altamura, Louis A; Badger, Catherine V; Bounds, Callie E; Van Deusen, Nicole M; Kwilas, Steven A; Vu, Hong A; Warfield, Kelly L; Hooper, Jay W; Hannaman, Drew; Dupuy, Lesley C; Schmaljohn, Connie S
2015-01-01
Cynomolgus macaques were vaccinated by intramuscular electroporation with DNA plasmids expressing codon-optimized glycoprotein (GP) genes of Ebola virus (EBOV) or Marburg virus (MARV) or a combination of codon-optimized GP DNA vaccines for EBOV, MARV, Sudan virus and Ravn virus. When measured by ELISA, the individual vaccines elicited slightly higher IgG responses to EBOV or MARV than did the combination vaccines. No significant differences in immune responses of macaques given the individual or combination vaccines were measured by pseudovirion neutralization or IFN-γ ELISpot assays. Both the MARV and mixed vaccines were able to protect macaques from lethal MARV challenge (5/6 vs. 6/6). In contrast, a greater proportion of macaques vaccinated with the EBOV vaccine survived lethal EBOV challenge in comparison to those that received the mixed vaccine (5/6 vs. 1/6). EBOV challenge survivors had significantly higher pre-challenge neutralizing antibody titers than those that succumbed.
Methyl Farnesoate Plays a Dual Role in Regulating Drosophila Metamorphosis
Wen, Di; Rivera-Perez, Crisalejandra; Abdou, Mohamed; Jia, Qiangqiang; He, Qianyu; Liu, Xi; Zyaan, Ola; Xu, Jingjing; Bendena, William G.; Tobe, Stephen S.; Noriega, Fernando G.; Palli, Subba R.; Wang, Jian; Li, Sheng
2015-01-01
Corpus allatum (CA) ablation results in juvenile hormone (JH) deficiency and pupal lethality in Drosophila. The fly CA produces and releases three sesquiterpenoid hormones: JH III bisepoxide (JHB3), JH III, and methyl farnesoate (MF). In the whole body extracts, MF is the most abundant sesquiterpenoid, followed by JHB3 and JH III. Knockout of JH acid methyl transferase (jhamt) did not result in lethality; it decreased biosynthesis of JHB3, but MF biosynthesis was not affected. RNAi-mediated reduction of 3-hydroxy-3-methylglutaryl CoA reductase (hmgcr) expression in the CA decreased biosynthesis and titers of the three sesquiterpenoids, resulting in partial lethality. Reducing hmgcr expression in the CA of the jhamt mutant further decreased MF titer to a very low level, and caused complete lethality. JH III, JHB3, and MF function through Met and Gce, the two JH receptors, and induce expression of Kr-h1, a JH primary-response gene. As well, a portion of MF is converted to JHB3 in the hemolymph or peripheral tissues. Topical application of JHB3, JH III, or MF precluded lethality in JH-deficient animals, but not in the Met gce double mutant. Taken together, these experiments show that MF is produced by the larval CA and released into the hemolymph, from where it exerts its anti-metamorphic effects indirectly after conversion to JHB3, as well as acting as a hormone itself through the two JH receptors, Met and Gce. PMID:25774983
Liver transplantation for lethal genetic syndromes: a novel model of personalized genomic medicine.
Petrowsky, Henrik; Brunicardi, F Charles; Leow, Voon Meng; Venick, Robert S; Agopian, Vatche; Kaldas, Fady M; Zarrinpar, Ali; Markovic, Daniela; McDiarmid, Sue V; Hong, Johnny C; Farmer, Douglas G; Hiatt, Jonathan R; Busuttil, Ronald W
2013-04-01
Our aim was to analyze our single-center experience with orthotopic liver transplantation for metabolic lethal genetic syndromes in children and adults. From 1984 to 2012, all pediatric (younger than 18 years) and adult (18 years and older) patients who underwent orthotopic liver transplantation for lethal genetic disorders were identified. Data on diagnostic pathways and specific outcomes were analyzed for both groups. Outcomes measures included recurrence rate as well as graft and patient survival. Metabolic lethal genetic syndrome was the primary indication for orthotopic liver transplantation in 152 of 4,564 patients (3.3%) at University of California, Los Angeles during the study period (74 pediatric patients and 78 adults). Genetic testing was performed in only 12% of the 152 patients and in 39% of patients after 2006. Two patients (1.3%) experienced a recurrence of the genetic disease. Overall 5- and 20-year survival rates were 89% and 77% for children and 73% and 50% for adults. Survival of pediatric patients was superior to adults (log-rank p < 0.009). Multivariate analysis identified age (hazard ratio = 2.18), preoperative life support (hazard ratio = 2.68), and earlier transplantation (hazard ratio = 3.41) as independent predictors of reduced survival. Orthotopic liver transplantation achieved excellent long-term survival in pediatric and adult patients with lethal genetic syndromes and represents a model of personalized genomic medicine by providing gene therapy through solid organ transplantation. Copyright © 2013 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
Zhang, Huimin; Wang, Qingjing; Fisher, Derek J.; Cai, Mingzhu; Chakravartty, Vandana; Ye, Huiyan; Li, Ping; Solbiati, Jose O.; Feng, Youjun
2016-01-01
Biotin protein ligase (BPL) is widespread in the three domains of the life. The paradigm BPL is the Escherichia coli BirA protein, which also functions as a repressor for the biotin biosynthesis pathway. Here we report that Lactococcus lactis possesses two different orthologues of birA (birA1_LL and birA2_LL). Unlike the scenario in E. coli, L. lactis appears to be auxotrophic for biotin in that it lacks a full biotin biosynthesis pathway. In contrast, it retains two biotin transporter-encoding genes (bioY1_LL and bioY2_LL), suggesting the use of a scavenging strategy to obtain biotin from the environment. The in vivo function of the two L. lactis birA genes was judged by their abilities to complement the conditional lethal E. coli birA mutant. Thin-layer chromatography and mass spectroscopy assays demonstrated that these two recombinant BirA proteins catalyze the biotinylation reaction of the acceptor biotin carboxyl carrier protein (BCCP), through the expected biotinoyl-AMP intermediate. Gel shift assays were used to characterize bioY1_LL and BirA1_LL. We also determined the ability to uptake 3H-biotin by L. lactis. Taken together, our results deciphered a unique biotin scavenging pathway with redundant genes present in the probiotic bacterium L. lactis. PMID:27161258
Zhang, Huimin; Wang, Qingjing; Fisher, Derek J; Cai, Mingzhu; Chakravartty, Vandana; Ye, Huiyan; Li, Ping; Solbiati, Jose O; Feng, Youjun
2016-05-10
Biotin protein ligase (BPL) is widespread in the three domains of the life. The paradigm BPL is the Escherichia coli BirA protein, which also functions as a repressor for the biotin biosynthesis pathway. Here we report that Lactococcus lactis possesses two different orthologues of birA (birA1_LL and birA2_LL). Unlike the scenario in E. coli, L. lactis appears to be auxotrophic for biotin in that it lacks a full biotin biosynthesis pathway. In contrast, it retains two biotin transporter-encoding genes (bioY1_LL and bioY2_LL), suggesting the use of a scavenging strategy to obtain biotin from the environment. The in vivo function of the two L. lactis birA genes was judged by their abilities to complement the conditional lethal E. coli birA mutant. Thin-layer chromatography and mass spectroscopy assays demonstrated that these two recombinant BirA proteins catalyze the biotinylation reaction of the acceptor biotin carboxyl carrier protein (BCCP), through the expected biotinoyl-AMP intermediate. Gel shift assays were used to characterize bioY1_LL and BirA1_LL. We also determined the ability to uptake (3)H-biotin by L. lactis. Taken together, our results deciphered a unique biotin scavenging pathway with redundant genes present in the probiotic bacterium L. lactis.
Embryonic lethality is not sufficient to explain hourglass-like conservation of vertebrate embryos.
Uchida, Yui; Uesaka, Masahiro; Yamamoto, Takayoshi; Takeda, Hiroyuki; Irie, Naoki
2018-01-01
Understanding the general trends in developmental changes during animal evolution, which are often associated with morphological diversification, has long been a central issue in evolutionary developmental biology. Recent comparative transcriptomic studies revealed that gene expression profiles of mid-embryonic period tend to be more evolutionarily conserved than those in earlier or later periods. While the hourglass-like divergence of developmental processes has been demonstrated in a variety of animal groups such as vertebrates, arthropods, and nematodes, the exact mechanism leading to this mid-embryonic conservation remains to be clarified. One possibility is that the mid-embryonic period (pharyngula period in vertebrates) is highly prone to embryonic lethality, and the resulting negative selections lead to evolutionary conservation of this phase. Here, we tested this "mid-embryonic lethality hypothesis" by measuring the rate of lethal phenotypes of three different species of vertebrate embryos subjected to two kinds of perturbations: transient perturbations and genetic mutations. By subjecting zebrafish ( Danio rerio ), African clawed frog ( Xenopus laevis ), and chicken ( Gallus gallus ) embryos to transient perturbations, namely heat shock and inhibitor treatments during three developmental periods [early (represented by blastula and gastrula), pharyngula, and late], we found that the early stages showed the highest rate of lethal phenotypes in all three species. This result was corroborated by perturbation with genetic mutations. By tracking the survival rate of wild-type embryos and embryos with genetic mutations induced by UV irradiation in zebrafish and African clawed frogs, we found that the highest decrease in survival rate was at the early stages particularly around gastrulation in both these species. In opposition to the "mid-embryonic lethality hypothesis," our results consistently showed that the stage with the highest lethality was not around the conserved pharyngula period, but rather around the early period in all the vertebrate species tested. These results suggest that negative selection by embryonic lethality could not explain hourglass-like conservation of animal embryos. This highlights the potential contribution of alternative mechanisms such as the diversifying effect of positive selections against earlier and later stages, and developmental constraints which lead to conservation of mid-embryonic stages.
Merrill, Ray M; Johnson, Erin
2017-10-01
The purpose of the paper is to assess the influence of marital status on conditional relative survival of cancer according to sex. Analyses involved 779,978 males and 1,032,868 females diagnosed with 1 of 13 cancer types between 2000 and 2008, and followed through 2013. Data are from the Surveillance, Epidemiology, and End Results (SEER) Program. Regression models were adjusted for age, sex, race, and tumor stage. Five-year relative survival conditional on years already survived is higher among married patients with less lethal cancers (oral cavity and pharynx, colon and rectum, breast, urinary bladder, kidney and renal pelvis, melanoma of the skin, thyroid, lymphoma). For more lethal cancers, married patients have similar (liver, lung and bronchus, pancreas, leukemia) or poorer (brain and other nervous system) cancer survival. Separated/divorced or widowed patients have the lowest conditional relative survival rates. For most cancers, 5-year cancer relative survival rates conditional on time already survived through 5 years approach 70 to 90% of that for the general population. The beneficial effect of marriage on survival decreases with years already survived. Superior conditional relative survival rates in females decrease with time already survived and are less pronounced in married patients. Five-year relative survival rates improve with time already survived. The benefits of marriage on conditional relative survival are greater for less lethal cancers. Greater 5-year conditional relative survival rates in females narrow with time already survived and are less pronounced in married patients. Conditional relative survival rates of cancer can lead to more informed decisions and understanding regarding treatment and prognosis.
Watson, D A; Musher, D M
1990-01-01
Transposon Tn916 mutagenesis was used to produce mutant strains of Streptococcus pneumoniae serotype 3 that lacked only a polysaccharide capsule. Southern blotting, DNA-DNA hybridization, and immunochemical analyses demonstrated that the presence of a single copy of Tn916 was sufficient to produce unencapsulation. The 50% lethal dose for such mutants was greater than 5 x 10(7) CFU, as opposed to a 50% lethal dose of 1 CFU for wild-type strains. These experiments outline an effective method for targeting genes in S. pneumoniae by transposon interruption and provide molecular evidence to support the longstanding hypothesis that the capsule is the principal virulence factor in this pathogen. Images PMID:2167295
CYP2C9*3 polymorphism presenting as lethal subdural hematoma with low-dose warfarin
Karnik, Niteen D.; Sridharan, Kannan; Tiwari, D.; Gupta, V.
2014-01-01
Warfarin is the most common and cheap oral anticoagulant currently used in clinical practice. A high inter-individual variation is seen in the response to warfarin. Recently, pharmacogenetics has gained importance in managing patients on warfarin, both in predicting the optimum required dose as well as in decreasing the risk of bleeding. This case report is a description of a 49-year-old patient who had a lethal subdural hematoma with low-dose warfarin. He was subsequently found to have CYP2C9 gene polymorphism (*1/*3). This case report stresses the importance of pre-prescription assessment of genetic analysis for those initiated on warfarin. PMID:25298588
1988-01-01
of gout , hyperlipemia, and in post-coronary patients Protection Against Viral Inftiom With DHEA 311 [Regelson, 19881. In animal models [Yen, 19771 and...3333. Johnson DA, Schultz LD, Bedigian HG (1982): Immunodeficiency and reticulum cell sarcoma in mice segregating for HRS/J and SJL/J genes . Leukemia
The Role of BRCA1 in Lethal Prostate Cancer
2013-08-01
Positive 5% Positive 12% -15- Figure II. Correlation coefficients of mRNA expression of 28,000 genes within technical replicates for an 11-year old tissue...Transdisciplinary Prostate Cancer Partnership (ToPCaP, topcapteam.org) 1Division of Urology, McMaster University, Hamilton, ON, Canada 2Department of
Bobrov, Alexander G.; Kirillina, Olga; Fetherston, Jacqueline D.; Miller, M. Clarke; Burlison, Joseph A.; Perry, Robert D.
2014-01-01
Summary Bacterial pathogens must overcome host sequestration of zinc (Zn2+), an essential micronutrient, during the infectious disease process. While the mechanisms to acquire chelated Zn2+ by bacteria are largely undefined, many pathogens rely upon the ZnuABC family of ABC transporters. Here we show that in Yersinia pestis, irp2, a gene encoding the synthetase (HMWP2) for the siderophore yersiniabactin (Ybt) is required for growth under Zn2+-deficient conditions in a strain lacking ZnuABC. Moreover, growth stimulation with exogenous, purified apo-Ybt provides evidence that Ybt may serve as a zincophore for Zn2+ acquisition. Studies with the Zn2+-dependent transcriptional reporter znuA∷lacZ indicate that the ability to synthesize Ybt affects the levels of intracellular Zn2+. However, the outer membrane receptor Psn and TonB as well as the inner membrane (IM) ABC transporter YbtPQ, that are required for Fe3+ acquisition by Ybt, are not needed for Ybt-dependent Zn2+ uptake. In contrast, the predicted IM protein YbtX, a member of the Major Facilitator Superfamily, was essential for Ybt-dependent Zn2+ uptake. Finally, we show that the ZnuABC system and the Ybt synthetase HMWP2, presumably by Ybt synthesis, both contribute to the development of a lethal infection in a septicemic plague mouse model. PMID:24979062
High-throughput discovery of novel developmental phenotypes.
Dickinson, Mary E; Flenniken, Ann M; Ji, Xiao; Teboul, Lydia; Wong, Michael D; White, Jacqueline K; Meehan, Terrence F; Weninger, Wolfgang J; Westerberg, Henrik; Adissu, Hibret; Baker, Candice N; Bower, Lynette; Brown, James M; Caddle, L Brianna; Chiani, Francesco; Clary, Dave; Cleak, James; Daly, Mark J; Denegre, James M; Doe, Brendan; Dolan, Mary E; Edie, Sarah M; Fuchs, Helmut; Gailus-Durner, Valerie; Galli, Antonella; Gambadoro, Alessia; Gallegos, Juan; Guo, Shiying; Horner, Neil R; Hsu, Chih-Wei; Johnson, Sara J; Kalaga, Sowmya; Keith, Lance C; Lanoue, Louise; Lawson, Thomas N; Lek, Monkol; Mark, Manuel; Marschall, Susan; Mason, Jeremy; McElwee, Melissa L; Newbigging, Susan; Nutter, Lauryl M J; Peterson, Kevin A; Ramirez-Solis, Ramiro; Rowland, Douglas J; Ryder, Edward; Samocha, Kaitlin E; Seavitt, John R; Selloum, Mohammed; Szoke-Kovacs, Zsombor; Tamura, Masaru; Trainor, Amanda G; Tudose, Ilinca; Wakana, Shigeharu; Warren, Jonathan; Wendling, Olivia; West, David B; Wong, Leeyean; Yoshiki, Atsushi; MacArthur, Daniel G; Tocchini-Valentini, Glauco P; Gao, Xiang; Flicek, Paul; Bradley, Allan; Skarnes, William C; Justice, Monica J; Parkinson, Helen E; Moore, Mark; Wells, Sara; Braun, Robert E; Svenson, Karen L; de Angelis, Martin Hrabe; Herault, Yann; Mohun, Tim; Mallon, Ann-Marie; Henkelman, R Mark; Brown, Steve D M; Adams, David J; Lloyd, K C Kent; McKerlie, Colin; Beaudet, Arthur L; Bućan, Maja; Murray, Stephen A
2016-09-22
Approximately one-third of all mammalian genes are essential for life. Phenotypes resulting from knockouts of these genes in mice have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5,000 knockout mouse lines, here we identify 410 lethal genes during the production of the first 1,751 unique gene knockouts. Using a standardized phenotyping platform that incorporates high-resolution 3D imaging, we identify phenotypes at multiple time points for previously uncharacterized genes and additional phenotypes for genes with previously reported mutant phenotypes. Unexpectedly, our analysis reveals that incomplete penetrance and variable expressivity are common even on a defined genetic background. In addition, we show that human disease genes are enriched for essential genes, thus providing a dataset that facilitates the prioritization and validation of mutations identified in clinical sequencing efforts.
High-throughput discovery of novel developmental phenotypes
Dickinson, Mary E.; Flenniken, Ann M.; Ji, Xiao; Teboul, Lydia; Wong, Michael D.; White, Jacqueline K.; Meehan, Terrence F.; Weninger, Wolfgang J.; Westerberg, Henrik; Adissu, Hibret; Baker, Candice N.; Bower, Lynette; Brown, James M.; Caddle, L. Brianna; Chiani, Francesco; Clary, Dave; Cleak, James; Daly, Mark J.; Denegre, James M.; Doe, Brendan; Dolan, Mary E.; Edie, Sarah M.; Fuchs, Helmut; Gailus-Durner, Valerie; Galli, Antonella; Gambadoro, Alessia; Gallegos, Juan; Guo, Shiying; Horner, Neil R.; Hsu, Chih-wei; Johnson, Sara J.; Kalaga, Sowmya; Keith, Lance C.; Lanoue, Louise; Lawson, Thomas N.; Lek, Monkol; Mark, Manuel; Marschall, Susan; Mason, Jeremy; McElwee, Melissa L.; Newbigging, Susan; Nutter, Lauryl M.J.; Peterson, Kevin A.; Ramirez-Solis, Ramiro; Rowland, Douglas J.; Ryder, Edward; Samocha, Kaitlin E.; Seavitt, John R.; Selloum, Mohammed; Szoke-Kovacs, Zsombor; Tamura, Masaru; Trainor, Amanda G; Tudose, Ilinca; Wakana, Shigeharu; Warren, Jonathan; Wendling, Olivia; West, David B.; Wong, Leeyean; Yoshiki, Atsushi; MacArthur, Daniel G.; Tocchini-Valentini, Glauco P.; Gao, Xiang; Flicek, Paul; Bradley, Allan; Skarnes, William C.; Justice, Monica J.; Parkinson, Helen E.; Moore, Mark; Wells, Sara; Braun, Robert E.; Svenson, Karen L.; de Angelis, Martin Hrabe; Herault, Yann; Mohun, Tim; Mallon, Ann-Marie; Henkelman, R. Mark; Brown, Steve D.M.; Adams, David J.; Lloyd, K.C. Kent; McKerlie, Colin; Beaudet, Arthur L.; Bucan, Maja; Murray, Stephen A.
2016-01-01
Approximately one third of all mammalian genes are essential for life. Phenotypes resulting from mouse knockouts of these genes have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5000 knockout mouse lines, we have identified 410 lethal genes during the production of the first 1751 unique gene knockouts. Using a standardised phenotyping platform that incorporates high-resolution 3D imaging, we identified novel phenotypes at multiple time points for previously uncharacterized genes and additional phenotypes for genes with previously reported mutant phenotypes. Unexpectedly, our analysis reveals that incomplete penetrance and variable expressivity are common even on a defined genetic background. In addition, we show that human disease genes are enriched for essential genes identified in our screen, thus providing a novel dataset that facilitates prioritization and validation of mutations identified in clinical sequencing efforts. PMID:27626380
Antibiotics and antibiotic resistance: a bitter fight against evolution.
Rodríguez-Rojas, Alexandro; Rodríguez-Beltrán, Jerónimo; Couce, Alejandro; Blázquez, Jesús
2013-08-01
One of the most terrible consequences of Darwinian evolution is arguably the emergence and spread of antibiotic resistance, which is becoming a serious menace to modern societies. While spontaneous mutation, recombination and horizontal gene transfer are recognized as the main causes of this notorious phenomenon; recent research has raised awareness that sub-lethal concentrations of antibiotics can also foster resistance as an undesirable side-effect. They can produce genetic changes by different ways, including a raise of free radicals within the cell, induction of error-prone DNA-polymerases mediated by SOS response, imbalanced nucleotide metabolism or affect directly DNA. In addition to certain environmental conditions, subinhibitory concentrations of antimicrobials may increase, even more, the mutagenic effect of antibiotics. Here, we review the state of knowledge on antibiotics as promoters of antibiotic resistance. Copyright © 2013 Elsevier GmbH. All rights reserved.
Considerations for designing chemical screening strategies in plant biology
Serrano, Mario; Kombrink, Erich; Meesters, Christian
2015-01-01
Traditionally, biologists regularly used classical genetic approaches to characterize and dissect plant processes. However, this strategy is often impaired by redundancy, lethality or pleiotropy of gene functions, which prevent the isolation of viable mutants. The chemical genetic approach has been recognized as an alternative experimental strategy, which has the potential to circumvent these problems. It relies on the capacity of small molecules to modify biological processes by specific binding to protein target(s), thereby conditionally modifying protein function(s), which phenotypically resemble mutation(s) of the encoding gene(s). A successful chemical screening campaign comprises three equally important elements: (1) a reliable, robust, and quantitative bioassay, which allows to distinguish between potent and less potent compounds, (2) a rigorous validation process for candidate compounds to establish their selectivity, and (3) an experimental strategy for elucidating a compound's mode of action and molecular target. In this review we will discuss details of this general strategy and additional aspects that deserve consideration in order to take full advantage of the power provided by the chemical approach to plant biology. In addition, we will highlight some success stories of recent chemical screenings in plant systems, which may serve as teaching examples for the implementation of future chemical biology projects. PMID:25904921
Wendt, Kristen E; Ungerer, Justin; Cobb, Ryan E; Zhao, Huimin; Pakrasi, Himadri B
2016-06-23
As autotrophic prokaryotes, cyanobacteria are ideal chassis organisms for sustainable production of various useful compounds. The newly characterized cyanobacterium Synechococcus elongatus UTEX 2973 is a promising candidate for serving as a microbial cell factory because of its unusually rapid growth rate. Here, we seek to develop a genetic toolkit that enables extensive genomic engineering of Synechococcus 2973 by implementing a CRISPR/Cas9 editing system. We targeted the nblA gene because of its important role in biological response to nitrogen deprivation conditions. First, we determined that the Streptococcus pyogenes Cas9 enzyme is toxic in cyanobacteria, and conjugational transfer of stable, replicating constructs containing the cas9 gene resulted in lethality. However, after switching to a vector that permitted transient expression of the cas9 gene, we achieved markerless editing in 100 % of cyanobacterial exconjugants after the first patch. Moreover, we could readily cure the organisms of antibiotic resistance, resulting in a markerless deletion strain. High expression levels of the Cas9 protein in Synechococcus 2973 appear to be toxic and result in cell death. However, introduction of a CRISPR/Cas9 genome editing system on a plasmid backbone that leads to transient cas9 expression allowed for efficient markerless genome editing in a wild type genetic background.
Wendt, Kristen E.; Ungerer, Justin; Cobb, Ryan E.; ...
2016-06-23
As autotrophic prokaryotes, cyanobacteria are ideal chassis organisms for sustainable production of various useful compounds. The newly characterized cyanobacterium Synechococcus elongatus UTEX 2973 is a promising candidate for serving as a microbial cell factory because of its unusually rapid growth rate. Here, we seek to develop a genetic toolkit that enables extensive genomic engineering of Synechococcus 2973 by implementing a CRISPR/Cas9 editing system. We targeted the nblA gene because of its important role in biological response to nitrogen deprivation conditions. First, we determined that the Streptococcus pyogenes Cas9 enzyme is toxic in cyanobacteria, and conjugational transfer of stable, replicating constructsmore » containing the cas9 gene resulted in lethality. However, after switching to a vector that permitted transient expression of the cas9 gene, we achieved markerless editing in 100 % of cyanobacterial exconjugants after the first patch. Moreover, we could readily cure the organisms of antibiotic resistance, resulting in a markerless deletion strain. In conclusion, high expression levels of the Cas9 protein in Synechococcus 2973 appear to be toxic and result in cell death. However, introduction of a CRISPR/Cas9 genome editing system on a plasmid backbone that leads to transient cas9 expression allowed for efficient markerless genome editing in a wild type genetic background.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, Kristen E.; Ungerer, Justin; Cobb, Ryan E.
As autotrophic prokaryotes, cyanobacteria are ideal chassis organisms for sustainable production of various useful compounds. The newly characterized cyanobacterium Synechococcus elongatus UTEX 2973 is a promising candidate for serving as a microbial cell factory because of its unusually rapid growth rate. Here, we seek to develop a genetic toolkit that enables extensive genomic engineering of Synechococcus 2973 by implementing a CRISPR/Cas9 editing system. We targeted the nblA gene because of its important role in biological response to nitrogen deprivation conditions. First, we determined that the Streptococcus pyogenes Cas9 enzyme is toxic in cyanobacteria, and conjugational transfer of stable, replicating constructsmore » containing the cas9 gene resulted in lethality. However, after switching to a vector that permitted transient expression of the cas9 gene, we achieved markerless editing in 100 % of cyanobacterial exconjugants after the first patch. Moreover, we could readily cure the organisms of antibiotic resistance, resulting in a markerless deletion strain. In conclusion, high expression levels of the Cas9 protein in Synechococcus 2973 appear to be toxic and result in cell death. However, introduction of a CRISPR/Cas9 genome editing system on a plasmid backbone that leads to transient cas9 expression allowed for efficient markerless genome editing in a wild type genetic background.« less
Liu, Jun; Ben-Shahar, Tom Rolef; Riemer, Dieter; Treinin, Millet; Spann, Perah; Weber, Klaus; Fire, Andrew; Gruenbaum, Yosef
2000-01-01
Caenorhabditis elegans has a single lamin gene, designated lmn-1 (previously termed CeLam-1). Antibodies raised against the lmn-1 product (Ce-lamin) detected a 64-kDa nuclear envelope protein. Ce-lamin was detected in the nuclear periphery of all cells except sperm and was found in the nuclear interior in embryonic cells and in a fraction of adult cells. Reductions in the amount of Ce-lamin protein produce embryonic lethality. Although the majority of affected embryos survive to produce several hundred nuclei, defects can be detected as early as the first nuclear divisions. Abnormalities include rapid changes in nuclear morphology during interphase, loss of chromosomes, unequal separation of chromosomes into daughter nuclei, abnormal condensation of chromatin, an increase in DNA content, and abnormal distribution of nuclear pore complexes (NPCs). Under conditions of incomplete RNA interference, a fraction of embryos escaped embryonic arrest and continue to develop through larval life. These animals exhibit additional phenotypes including sterility and defective segregation of chromosomes in germ cells. Our observations show that lmn-1 is an essential gene in C. elegans, and that the nuclear lamins are involved in chromatin organization, cell cycle progression, chromosome segregation, and correct spacing of NPCs. PMID:11071918
Saini, Nidhi; Georgiev, Oleg; Schaffner, Walter
2011-01-01
The gene for Parkin, an E3 ubiquitin ligase, is mutated in some familial forms of Parkinson's disease, a severe neurodegenerative disorder. A homozygous mutant of the Drosophila ortholog of human parkin is viable but results in severe motoric impairment including an inability to fly, female and male sterility, and a decreased life span. We show here that a double mutant of the genes for Parkin and the metal-responsive transcription factor 1 (MTF-1) is not viable. MTF-1, which is conserved from insects to mammals, is a key regulator of heavy metal homeostasis and detoxification and plays additional roles in other stress conditions, notably oxidative stress. In contrast to the synthetic lethality of the double mutant, elevated expression of MTF-1 dramatically ameliorates the parkin mutant phenotype, as evidenced by a prolonged life span, motoric improvement including short flight episodes, and female fertility. At the cellular level, muscle and mitochondrial structures are substantially improved. A beneficial effect is also seen with a transgene encoding human MTF-1. We propose that Parkin and MTF-1 provide complementary functions in metal homeostasis, oxidative stress and other cellular stress responses. Our findings also raise the possibility that MTF-1 gene polymorphisms in humans could affect the severity of Parkinson's disease. PMID:21383066
Verberk, Wilco C E P; Durance, Isabelle; Vaughan, Ian P; Ormerod, Steve J
2016-05-01
Aquatic ecological responses to climatic warming are complicated by interactions between thermal effects and other environmental stressors such as organic pollution and hypoxia. Laboratory experiments have demonstrated how oxygen limitation can set heat tolerance for some aquatic ectotherms, but only at unrealistic lethal temperatures and without field data to assess whether oxygen shortages might also underlie sublethal warming effects. Here, we test whether oxygen availability affects both lethal and nonlethal impacts of warming on two widespread Eurasian mayflies, Ephemera danica, Müller 1764 and Serratella ignita (Poda 1761). Mayfly nymphs are often a dominant component of the invertebrate assemblage in streams, and play a vital role in aquatic and riparian food webs. In the laboratory, lethal impacts of warming were assessed under three oxygen conditions. In the field, effects of oxygen availability on nonlethal impacts of warming were assessed from mayfly occurrence in 42 293 UK stream samples where water temperature and biochemical oxygen demand were measured. Oxygen limitation affected both lethal and sublethal impacts of warming in each species. Hypoxia lowered lethal limits by 5.5 °C (±2.13) and 8.2 °C (±0.62) for E. danica and S. ignita respectively. Field data confirmed the importance of oxygen limitation in warmer waters; poor oxygenation drastically reduced site occupancy, and reductions were especially pronounced under warm water conditions. Consequently, poor oxygenation lowered optimal stream temperatures for both species. The broad concordance shown here between laboratory results and extensive field data suggests that oxygen limitation not only impairs survival at thermal extremes but also restricts species abundance in the field at temperatures well below upper lethal limits. Stream oxygenation could thus control the vulnerability of aquatic ectotherms to global warming. Improving water oxygenation and reducing pollution can provide key facets of climate change adaptation for running waters. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Degani, Genny; Ragni, Enrico; Botias, Pedro; Ravasio, Davide; Calderon, Julia; Pianezzola, Elena; Rodriguez-Peña, Jose Manuel; Vanoni, Maria Antonietta; Arroyo, Javier; Fonzi, William A; Popolo, Laura
2016-07-02
The cell wall is essential for the yeast to hypha (Y-H) transition that enables Candida albicans to invade human tissues and evade the immune system. The main constituent, β(1,3)-glucan, is remodeled by glucanosyltransferases of the GH72 family. Phr1p is responsible of glucan remodeling at neutral-alkaline pH and is essential for morphogenesis and virulence. Due to the pH-regulated expression of PHR1, the phr1Δ phenotype is manifested at pH > 6 and its severity increases with the rise in pH. We exploited the pH-conditional nature of a PHR1 null mutant to analyze the impact of glucan remodeling on the hyphal transcriptional program and the role of chitin synthases in the hyphal wall stress (HWS) response. In hyphal growth inducing conditions, phr1Δ germ tubes are defective in elongation, accumulate chitin, and constitutively activate the signaling pathways mediated by the MAP kinases Mkc1p, Cek1p and Hog1p. The transcriptional profiles revealed an increase of transcript levels for genes involved in cell wall formation (CHS2 and CHS8, CRH11, PGA23, orf19.750, RBR1, RBT4, ECM331, PGA6, PGA13), protein N-glycosylation and sorting in the ER (CWH8 and CHS7), signaling (CPP1, SSK2), ion transport (FLC2, YVC1), stress response and metabolism and a reduced expression of adhesins. A transient up-regulation of DNA replication genes associated with entry into S-phase occurred whereas cell-cycle regulating genes (PCL1, PCL2, CCN1, GIN4, DUN1, CDC28) were persistently up-regulated. To test the physiological relevance of altered CHS gene expression, phr1Δ chsxΔ (x = 2,3,8) mutant phenotypes were analyzed during the Y-H transition. PHR1 deletion was synthetic lethal with CHS3 loss on solid M199 medium-pH 7.5 and with CHS8 deletion on solid M199-pH 8. On Spider medium, PHR1 was synthetic lethal with CHS3 or CHS8 at pH 8. The absence of Phr1p triggers an adaptive response aimed to reinforce the hyphal cell wall and restore homeostasis. Chs3p is essential in preserving phr1Δ cell integrity during the Y-H transition. Our findings also unveiled an unanticipated essential role of Chs8p during filamentation on solid media. These results highlight the flexibility of fungal cells in maintaining cell wall integrity and contribute to assessments of glucan remodeling as a target for therapy.
Dackor, J.; Strunk, K. E.; Wehmeyer, M. M.; Threadgill, D. W.
2007-01-01
Homozygosity for the Egfrtm1Mag null allele in mice leads to genetic background dependent placental abnormalities and embryonic lethality. Molecular mechanisms or genetic modifiers that differentiate strains with surviving versus non-surviving Egfr nullizygous embryos have yet to be identified. Egfr transcripts in wildtype placenta was quantified by ribonuclease protection assay (RPA) and the lowest level of Egfr mRNA expression was found to coincide with Egfrtm1Mag homozygous lethality. Immunohistochemical analysis of ERBB family receptors, ERBB2, ERBB3, and ERBB4, showed similar expression between Egfr wildtype and null placentas indicating that Egfr null trophoblast do not up-regulate these receptors to compensate for EGFR deficiency. Significantly fewer numbers of bromodeoxyuridine (BrdU) positive trophoblast were observed in Egfr nullizygous placentas and Cdc25a and Myc, genes associated with proliferation, were significantly down-regulated in null placentas. However, strains with both mild and severe placental phenotypes exhibit reduced proliferation suggesting that this defect alone does not account for strain-specific embryonic lethality. Consistent with this hypothesis, intercrosses generating mice null for cell cycle checkpoint genes (Trp53, Rb1, Cdkn1a, Cdkn1b or Cdkn2c) in combination with Egfr deficiency did not increase survival of Egfr nullizygous embryos. Since complete development of the spongiotrophoblast compartment is not required for survival of Egfr nullizygous embryos, reduction of this layer that is commonly observed in Egfr nullizygous placentas likely accounts for the decrease in proliferation. PMID:17822758
Bruno, Stefania; Grange, Cristina; Collino, Federica; Deregibus, Maria Chiara; Cantaluppi, Vincenzo; Biancone, Luigi; Tetta, Ciro; Camussi, Giovanni
2012-01-01
Several studies demonstrated that treatment with mesenchymal stem cells (MSCs) reduces cisplatin mortality in mice. Microvesicles (MVs) released from MSCs were previously shown to favor renal repair in non lethal toxic and ischemic acute renal injury (AKI). In the present study we investigated the effects of MSC-derived MVs in SCID mice survival in lethal cisplatin-induced AKI. Moreover, we evaluated in vitro the effect of MVs on cisplatin-induced apoptosis of human renal tubular epithelial cells and the molecular mechanisms involved. Two different regimens of MV injection were used. The single administration of MVs ameliorated renal function and morphology, and improved survival but did not prevent chronic tubular injury and persistent increase in BUN and creatinine. Multiple injections of MVs further decreased mortality and at day 21 surviving mice showed normal histology and renal function. The mechanism of protection was mainly ascribed to an anti-apoptotic effect of MVs. In vitro studies demonstrated that MVs up-regulated in cisplatin-treated human tubular epithelial cells anti-apoptotic genes, such as Bcl-xL, Bcl2 and BIRC8 and down-regulated genes that have a central role in the execution-phase of cell apoptosis such as Casp1, Casp8 and LTA. In conclusion, MVs released from MSCs were found to exert a pro-survival effect on renal cells in vitro and in vivo, suggesting that MVs may contribute to renal protection conferred by MSCs. PMID:22431999
Swenson, Dana L; Warfield, Kelly L; Warren, Travis K; Lovejoy, Candace; Hassinger, Jed N; Ruthel, Gordon; Blouch, Robert E; Moulton, Hong M; Weller, Dwight D; Iversen, Patrick L; Bavari, Sina
2009-05-01
Phosphorodiamidate morpholino oligomers (PMOs) are uncharged nucleic acid-like molecules designed to inactivate the expression of specific genes via the antisense-based steric hindrance of mRNA translation. PMOs have been successful at knocking out viral gene expression and replication in the case of acute viral infections in animal models and have been well tolerated in human clinical trials. We propose that antisense PMOs represent a promising class of therapeutic agents that may be useful for combating filoviral infections. We have previously shown that mice treated with a PMO whose sequence is complementary to a region spanning the start codon of VP24 mRNA were protected against lethal Ebola virus challenge. In the present study, we report on the abilities of two additional VP24-specific PMOs to reduce the cell-free translation of a VP24 reporter, to inhibit the in vitro replication of Ebola virus, and to protect mice against lethal challenge when the PMOs are delivered prior to infection. Additionally, structure-activity relationship evaluations were conducted to assess the enhancement of antiviral efficacy associated with PMO chemical modifications that included conjugation with peptides of various lengths and compositions, positioning of conjugated peptides to either the 5' or the 3' terminus, and the conferring of charge modifications by the addition of piperazine moieties. Conjugation with arginine-rich peptides greatly enhanced the antiviral efficacy of VP24-specific PMOs in infected cells and mice during lethal Ebola virus challenge.
Modeling white sturgeon movement in a reservoir: The effect of water quality and sturgeon density
Sullivan, A.B.; Jager, H.I.; Myers, R.
2003-01-01
We developed a movement model to examine the distribution and survival of white sturgeon (Acipenser transmontanus) in a reservoir subject to large spatial and temporal variation in dissolved oxygen and temperature. Temperature and dissolved oxygen were simulated by a CE-QUAL-W2 model of Brownlee Reservoir, Idaho for a typical wet, normal, and dry hydrologic year. We compared current water quality conditions to scenarios with reduced nutrient inputs to the reservoir. White sturgeon habitat quality was modeled as a function of temperature, dissolved oxygen and, in some cases, suitability for foraging and depth. We assigned a quality index to each cell along the bottom of the reservoir. The model simulated two aspects of daily movement. Advective movement simulated the tendency for animals to move toward areas with high habitat quality, and diffusion simulated density dependent movement away from areas with high sturgeon density in areas with non-lethal habitat conditions. Mortality resulted when sturgeon were unable to leave areas with lethal temperature or dissolved oxygen conditions. Water quality was highest in winter and early spring and lowest in mid to late summer. Limiting nutrient inputs reduced the area of Brownlee Reservoir with lethal conditions for sturgeon and raised the average habitat suitability throughout the reservoir. Without movement, simulated white sturgeon survival ranged between 45 and 89%. Allowing movement raised the predicted survival of sturgeon under all conditions to above 90% as sturgeon avoided areas with low habitat quality. ?? 2003 Elsevier B.V. All rights reserved.
Loudon, Andrew H; Woodhams, Douglas C; Parfrey, Laura Wegener; Archer, Holly; Knight, Rob; McKenzie, Valerie; Harris, Reid N
2014-01-01
Beneficial cutaneous bacteria on amphibians can protect against the lethal disease chytridiomycosis, which has devastated many amphibian species and is caused by the fungus Batrachochytrium dendrobatidis. We describe the diversity of bacteria on red-backed salamanders (Plethodon cinereus) in the wild and the stability of these communities through time in captivity using culture-independent Illumina 16S rRNA gene sequencing. After field sampling, salamanders were housed with soil from the field or sterile media. The captive conditions led to different trajectories of bacterial communities. Eight OTUs present on >90% of salamanders in the field, through time, and in both treatments were defined as the core community, suggesting that some bacteria are closely associated with the host and are independent of an environmental reservoir. One of these taxa, a Pseudomonas sp., was previously cultured from amphibians and found to be antifungal. As all host-associated bacteria were found in the soil reservoir, environmental microbes strongly influence host–microbial diversity and likely regulate the core community. Using PICRUSt, an exploratory bioinformatics tool to predict gene functions, we found that core skin bacteria provided similar gene functions to the entire community. We suggest that future experiments focus on testing whether core bacteria on salamander skin contribute to the observed resistance to chytridiomycosis in this species even under hygenic captive conditions. For disease-susceptible hosts, providing an environmental reservoir with defensive bacteria in captive-rearing programs may improve outcomes by increasing bacterial diversity on threatened amphibians or increasing the likelihood that defensive bacteria are available for colonization. PMID:24335825
Meckel-Gruber Syndrome: An Update on Diagnosis, Clinical Management, and Research Advances.
Hartill, Verity; Szymanska, Katarzyna; Sharif, Saghira Malik; Wheway, Gabrielle; Johnson, Colin A
2017-01-01
Meckel-Gruber syndrome (MKS) is a lethal autosomal recessive congenital anomaly syndrome caused by mutations in genes encoding proteins that are structural or functional components of the primary cilium. Conditions that are caused by mutations in ciliary genes are collectively termed the ciliopathies, and MKS represents the most severe condition in this group of disorders. The primary cilium is a microtubule-based organelle, projecting from the apical surface of vertebrate cells. It acts as an "antenna" that receives and transduces chemosensory and mechanosensory signals, but also regulates diverse signaling pathways, such as Wnt and Shh, that have important roles during embryonic development. Most MKS proteins localize to a distinct ciliary compartment called the transition zone (TZ) that regulates the trafficking of cargo proteins or lipids. In this review, we provide an up-to-date summary of MKS clinical features, molecular genetics, and clinical diagnosis. MKS has a highly variable phenotype, extreme genetic heterogeneity, and displays allelism with other related ciliopathies such as Joubert syndrome, presenting significant challenges to diagnosis. Recent advances in genetic technology, with the widespread use of multi-gene panels for molecular testing, have significantly improved diagnosis, genetic counseling, and the clinical management of MKS families. These include the description of some limited genotype-phenotype correlations. We discuss recent insights into the molecular basis of disease in MKS, since the functions of some of the relevant ciliary proteins have now been determined. A common molecular etiology appears to be disruption of ciliary TZ structure and function, affecting essential developmental signaling and the regulation of secondary messengers.
Dietrich, Charles R; Han, Gongshe; Chen, Ming; Berg, R Howard; Dunn, Teresa M; Cahoon, Edgar B
2008-04-01
Serine palmitoyltransferase (SPT) catalyzes the first step in sphingolipid biosynthesis, and downregulation of this enzyme provides a means for exploring sphingolipid function in cells. We have previously demonstrated that Arabidopsis SPT requires LCB1 and LCB2 subunits for activity, as is the case in other eukaryotes. In this study, we show that Arabidopsis has two genes (AtLCB2a and AtLCB2b) that encode functional isoforms of the LCB2 subunit. No alterations in sphingolipid content or growth were observed in T-DNA mutants for either gene, but homozygous double mutants were not recoverable, suggesting that these genes are functionally redundant. Reciprocal crosses conducted with Atlcb2a and Atlcb2b mutants indicated that lethality is associated primarily with the inability to transmit the lcb2 null genotype through the haploid pollen. Consistent with this, approximately 50% of the pollen obtained from plants homozygous for a mutation in one gene and heterozygous for a mutation in the second gene arrested during transition from uni-nucleate microspore to bicellular pollen. Ultrastructural analyses revealed that these pollen grains contained aberrant endomembranes and lacked an intine layer. To examine sphingolipid function in sporophytic cells, Arabidopsis lines were generated that allowed inducible RNAi silencing of AtLCB2b in an Atlcb2a mutant background. Studies conducted with these lines demonstrated that sphingolipids are essential throughout plant development, and that lethality resulting from LCB2 silencing in seedlings could be partially rescued by supplying exogenous long-chain bases. Overall, these studies provide insights into the genetic and biochemical properties of SPT and sphingolipid function in Arabidopsis.
Ye, Ping; Peyser, Brian D; Spencer, Forrest A; Bader, Joel S
2005-01-01
Background In a genetic interaction, the phenotype of a double mutant differs from the combined phenotypes of the underlying single mutants. When the single mutants have no growth defect, but the double mutant is lethal or exhibits slow growth, the interaction is termed synthetic lethality or synthetic fitness. These genetic interactions reveal gene redundancy and compensating pathways. Recently available large-scale data sets of genetic interactions and protein interactions in Saccharomyces cerevisiae provide a unique opportunity to elucidate the topological structure of biological pathways and how genes function in these pathways. Results We have defined congruent genes as pairs of genes with similar sets of genetic interaction partners and constructed a genetic congruence network by linking congruent genes. By comparing path lengths in three types of networks (genetic interaction, genetic congruence, and protein interaction), we discovered that high genetic congruence not only exhibits correlation with direct protein interaction linkage but also exhibits commensurate distance with the protein interaction network. However, consistent distances were not observed between genetic and protein interaction networks. We also demonstrated that congruence and protein networks are enriched with motifs that indicate network transitivity, while the genetic network has both transitive (triangle) and intransitive (square) types of motifs. These results suggest that robustness of yeast cells to gene deletions is due in part to two complementary pathways (square motif) or three complementary pathways, any two of which are required for viability (triangle motif). Conclusion Genetic congruence is superior to genetic interaction in prediction of protein interactions and function associations. Genetically interacting pairs usually belong to parallel compensatory pathways, which can generate transitive motifs (any two of three pathways needed) or intransitive motifs (either of two pathways needed). PMID:16283923
Mejlachowicz, Dan; Nolent, Flora; Maluenda, Jérome; Ranjatoelina-Randrianaivo, Hanitra; Giuliano, Fabienne; Gut, Ivo; Sternberg, Damien; Laquerrière, Annie; Melki, Judith
2015-01-01
Arthrogryposis multiplex congenita (AMC) is characterized by the presence of multiple joint contractures resulting from reduced or absent fetal movement. Here, we report two unrelated families affected by lethal AMC. By genetic mapping and whole-exome sequencing in a multiplex family, a heterozygous truncating MAGEL2 mutation leading to frameshift and a premature stop codon (c.1996delC, p.Gln666Serfs∗36) and inherited from the father was identified in the probands. In another family, a distinct heterozygous truncating mutation leading to frameshift (c.2118delT, p.Leu708Trpfs∗7) and occurring de novo on the paternal allele of MAGEL2 was identified in the affected individual. In both families, RNA analysis identified the mutated paternal MAGEL2 transcripts only in affected individuals. MAGEL2 is one of the paternally expressed genes within the Prader-Willi syndrome (PWS) locus. PWS is associated with, to varying extents, reduced fetal mobility, severe infantile hypotonia, childhood-onset obesity, hypogonadism, and intellectual disability. MAGEL2 mutations have been recently reported in affected individuals with features resembling PWS and called Schaaf-Yang syndrome. Here, we show that paternal MAGEL2 mutations are also responsible for lethal AMC, recapitulating the clinical spectrum of PWS and suggesting that MAGEL2 is a PWS-determining gene. PMID:26365340
Flury, Pascale; Aellen, Nora; Ruffner, Beat; Péchy-Tarr, Maria; Fataar, Shakira; Metla, Zane; Dominguez-Ferreras, Ana; Bloemberg, Guido; Frey, Joachim; Goesmann, Alexander; Raaijmakers, Jos M; Duffy, Brion; Höfte, Monica; Blom, Jochen; Smits, Theo H M; Keel, Christoph; Maurhofer, Monika
2016-10-01
Bacteria of the genus Pseudomonas occupy diverse environments. The Pseudomonas fluorescens group is particularly well-known for its plant-beneficial properties including pathogen suppression. Recent observations that some strains of this group also cause lethal infections in insect larvae, however, point to a more versatile ecology of these bacteria. We show that 26 P. fluorescens group strains, isolated from three continents and covering three phylogenetically distinct sub-clades, exhibited different activities toward lepidopteran larvae, ranging from lethal to avirulent. All strains of sub-clade 1, which includes Pseudomonas chlororaphis and Pseudomonas protegens, were highly insecticidal regardless of their origin (animals, plants). Comparative genomics revealed that strains in this sub-clade possess specific traits allowing a switch between plant- and insect-associated lifestyles. We identified 90 genes unique to all highly insecticidal strains (sub-clade 1) and 117 genes common to all strains of sub-clade 1 and present in some moderately insecticidal strains of sub-clade 3. Mutational analysis of selected genes revealed the importance of chitinase C and phospholipase C in insect pathogenicity. The study provides insight into the genetic basis and phylogenetic distribution of traits defining insecticidal activity in plant-beneficial pseudomonads. Strains with potent dual activity against plant pathogens and herbivorous insects have great potential for use in integrated pest management for crops.
Flury, Pascale; Aellen, Nora; Ruffner, Beat; Péchy-Tarr, Maria; Fataar, Shakira; Metla, Zane; Dominguez-Ferreras, Ana; Bloemberg, Guido; Frey, Joachim; Goesmann, Alexander; Raaijmakers, Jos M; Duffy, Brion; Höfte, Monica; Blom, Jochen; Smits, Theo H M; Keel, Christoph; Maurhofer, Monika
2016-01-01
Bacteria of the genus Pseudomonas occupy diverse environments. The Pseudomonas fluorescens group is particularly well-known for its plant-beneficial properties including pathogen suppression. Recent observations that some strains of this group also cause lethal infections in insect larvae, however, point to a more versatile ecology of these bacteria. We show that 26 P. fluorescens group strains, isolated from three continents and covering three phylogenetically distinct sub-clades, exhibited different activities toward lepidopteran larvae, ranging from lethal to avirulent. All strains of sub-clade 1, which includes Pseudomonas chlororaphis and Pseudomonas protegens, were highly insecticidal regardless of their origin (animals, plants). Comparative genomics revealed that strains in this sub-clade possess specific traits allowing a switch between plant- and insect-associated lifestyles. We identified 90 genes unique to all highly insecticidal strains (sub-clade 1) and 117 genes common to all strains of sub-clade 1 and present in some moderately insecticidal strains of sub-clade 3. Mutational analysis of selected genes revealed the importance of chitinase C and phospholipase C in insect pathogenicity. The study provides insight into the genetic basis and phylogenetic distribution of traits defining insecticidal activity in plant-beneficial pseudomonads. Strains with potent dual activity against plant pathogens and herbivorous insects have great potential for use in integrated pest management for crops. PMID:26894448
Atzingen, Marina V; Gonçales, Amane P; de Morais, Zenaide M; Araújo, Eduardo R; De Brito, Thales; Vasconcellos, Silvio A; Nascimento, Ana L T O
2010-09-01
Leptospirosis is a worldwide zoonosis caused by pathogenic Leptospira. The whole-genome sequence of Leptospira interrogans serovar Copenhageni together with bioinformatic tools allow us to search for novel antigen candidates suitable for improved vaccines against leptospirosis. This study focused on three genes encoding conserved hypothetical proteins predicted to be exported to the outer membrane. The genes were amplified by PCR from six predominant pathogenic serovars in Brazil. The genes were cloned and expressed in Escherichia coli strain BL21-SI using the expression vector pDEST17. The recombinant proteins tagged with N-terminal 6xHis were purified by metal-charged chromatography. The proteins were recognized by antibodies present in sera from hamsters that were experimentally infected. Immunization of hamsters followed by challenge with a lethal dose of a virulent strain of Leptospira showed that the recombinant protein rLIC12730 afforded statistically significant protection to animals (44 %), followed by rLIC10494 (40 %) and rLIC12922 (30 %). Immunization with these proteins produced an increase in antibody titres during subsequent boosters, suggesting the involvement of a T-helper 2 response. Although more studies are needed, these data suggest that rLIC12730 and rLIC10494 are promising candidates for a multivalent vaccine for the prevention of leptospirosis.
Beeman; Friesen
1999-05-01
Maternally acting selfish genes, termed 'Medea' factors, were found to be widespread in wild populations of Tribolium castaneum collected in Europe, North and South America, Africa and south-east Asia, but were rare or absent in populations from Australia and the Indian subcontinent. We detected at least four distinct genetic loci in at least two different linkage groups that exhibit the Medea pattern of differential mortality of genotypes within maternal families. Although each M factor tested had similar properties of maternal lethality to larvae and zygotic self-rescue, M factors representing distinct loci did not show cross-rescue. Alleles at two of these loci, M1 and M4, were by far the most prevalent, M4 being the predominant type. M2 and M3 were each found only once, in Pakistan and Japan, respectively. Although M1 could be genetically segregated from M4 and maintained as a purified stock, the M1 factor invariably co-occurred with M4 in field populations, whereas M4 usually occurred in the absence of other Medea factors. The dominant maternal lethal action of M1 could be selectively inactivated (reverted) by gene-knockout gamma irradiation with retention of zygotic rescue activity.
Maheshwari, Shamoni; Barbash, Daniel A.
2012-01-01
Hybrid incompatibility (HI) genes are frequently observed to be rapidly evolving under selection. This observation has led to the attractive conjecture that selection-derived protein-sequence divergence is culpable for incompatibilities in hybrids. The Drosophila simulans HI gene Lethal hybrid rescue (Lhr) is an intriguing case, because despite having experienced rapid sequence evolution, its HI properties are a shared function inherited from the ancestral state. Using an unusual D. simulans Lhr hybrid rescue allele, Lhr2, we here identify a conserved stretch of 10 amino acids in the C terminus of LHR that is critical for causing hybrid incompatibility. Altering these 10 amino acids weakens or abolishes the ability of Lhr to suppress the hybrid rescue alleles Lhr1 or Hmr1, respectively. Besides single-amino-acid substitutions, Lhr orthologs differ by a 16-aa indel polymorphism, with the ancestral deletion state fixed in D. melanogaster and the derived insertion state at very high frequency in D. simulans. Lhr2 is a rare D. simulans allele that has the ancestral deletion state of the 16-aa polymorphism. Through a series of transgenic constructs we demonstrate that the ancestral deletion state contributes to the rescue activity of Lhr2. This indel is thus a polymorphism that can affect the HI function of Lhr. PMID:22865735
Associations between malaria and MHC genes in a migratory songbird
Westerdahl, Helena; Waldenström, Jonas; Hansson, Bengt; Hasselquist, Dennis; von Schantz, Torbjörn; Bensch, Staffan
2005-01-01
Malaria parasites are a widespread and species-rich group infecting many wild populations of mammals, birds and reptiles. Studies on humans have demonstrated that genetic factors play a key role in the susceptibility and outcome of malaria infections. Until the present study, it has not been examined whether genetic variation in hosts is important for the outcome of malaria infections in natural avian populations. We investigated associations between major histocompatibility complex (MHC) genes and prevalence of three different avian malaria parasites (Haemoproteus payevskyi (GRW1), Plasmodium sp. (GRW2) and Plasmodium sp. (GRW4)) in a long-term study of great reed warblers Acrocephalus arundinaceus. We hypothesized that the MHC genes could either give full protection against a malaria infection, or confer protection against lethal malaria and direct the infection towards being milder. We found a positive association between numbers of MHC class I alleles (a measure of level of heterozygosity) and prevalence of the GRW2 parasite, suggesting the latter scenario. There was also a positive association between a specific MHC allele (B4b), previously shown to be under frequency-dependent selection in the study population, and prevalence of GRW2. These associations suggest that individuals carrying either a large number of MHC alleles or a specific MHC allele are protected against lethal malaria infections. PMID:16011927
Associations between malaria and MHC genes in a migratory songbird.
Westerdahl, Helena; Waldenström, Jonas; Hansson, Bengt; Hasselquist, Dennis; von Schantz, Torbjörn; Bensch, Staffan
2005-07-22
Malaria parasites are a widespread and species-rich group infecting many wild populations of mammals, birds and reptiles. Studies on humans have demonstrated that genetic factors play a key role in the susceptibility and outcome of malaria infections. Until the present study, it has not been examined whether genetic variation in hosts is important for the outcome of malaria infections in natural avian populations. We investigated associations between major histocompatibility complex (MHC) genes and prevalence of three different avian malaria parasites (Haemoproteus payevskyi (GRW1), Plasmodium sp. (GRW2) and Plasmodium sp. (GRW4)) in a long-term study of great reed warblers Acrocephalus arundinaceus. We hypothesized that the MHC genes could either give full protection against a malaria infection, or confer protection against lethal malaria and direct the infection towards being milder. We found a positive association between numbers of MHC class I alleles (a measure of level of heterozygosity) and prevalence of the GRW2 parasite, suggesting the latter scenario. There was also a positive association between a specific MHC allele (B4b), previously shown to be under frequency-dependent selection in the study population, and prevalence of GRW2. These associations suggest that individuals carrying either a large number of MHC alleles or a specific MHC allele are protected against lethal malaria infections.
Drosophila nemo is an essential gene involved in the regulation of programmed cell death.
Mirkovic, Ivana; Charish, Kristi; Gorski, Sharon M; McKnight, Kristen; Verheyen, Esther M
2002-11-01
Nemo-like kinases define a novel family of serine/threonine kinases that are involved in integrating multiple signaling pathways. They are conserved regulators of Wnt/Wingless pathways, which may coordinate Wnt with TGFbeta-mediated signaling. Drosophila nemo was identified through its involvement in epithelial planar polarity, a process regulated by a non-canonical Wnt pathway. We have previously found that ectopic expression of Nemo using the Gal4-UAS system resulted in embryonic lethality associated with defects in patterning and head development. In this study we present our analyses of the phenotypes of germline clone-derived embryos. We observe lethality associated with head defects and reduction of programmed cell death and conclude that nmo is an essential gene. We also present data showing that nmo is involved in regulating apoptosis during eye development, based on both loss of function phenotypes and on genetic interactions with the pro-apoptotic gene reaper. Finally, we present genetic data from the adult wing that suggest the activity of ectopically expressed Nemo can be modulated by Jun N-terminal kinase (JNK) signaling. Such an observation supports the model that there is cross-talk between Wnt, TGFbeta and JNK signaling at multiple stages of development. Copyright 2002 Elsevier Science Ireland Ltd.
Singh, Rashmi; Khatri, Preeti; Srivastava, Nidhi; Jain, Shruti; Brahmachari, Vani; Mukhopadhyay, Asish; Mazumder, Shibnath
2017-04-01
The present study describes the immunotoxic effect of chronic fluoride exposure on adult zebrafish (Danio rerio). Zebrafish were exposed to fluoride (71.12 mg/L; 1/10 LC 50 ) for 30 d and the expression of selected genes studied. We observed significant elevation in the detoxification pathway gene cyp1a suggesting chronic exposure to non-lethal concentration of fluoride is indeed toxic to fish. Fluoride mediated pro-oxidative stress is implicated with the downregulation in superoxide dismutase 1 and 2 (sod1/2) genes. Fluoride affected DNA repair machinery by abrogating the expression of the DNA repair gene rad51 and growth arrest and DNA damage inducible beta a gene gadd45ba. The upregulated expression of casp3a coupled with altered Bcl-2 associated X protein/B-cell lymphoma 2 ratio (baxa/bcl2a) clearly suggested chronic fluoride exposure induced the apoptotic cascade in zebrafish. Fluoride-exposed zebrafish when challenged with non-lethal dose of fish pathogen A. hydrophila revealed gross histopathology in spleen, bacterial persistence and significant mortality. We report that fluoride interferes with system-level output of pro-inflammatory cytokines tumour necrosis factor-α, interleukin-1β and interferon-γ, as a consequence, bacteria replicate efficiently causing significant fish mortality. We conclude, chronic fluoride exposure impairs the redox balance, affects DNA repair machinery with pro-apoptotic implications and suppresses pro-inflammatory cytokines expression abrogating host immunity to bacterial infections. Copyright © 2017 Elsevier Ltd. All rights reserved.
Weil, Mirco; Scholz, Stefan; Zimmer, Michaela; Sacher, Frank; Duis, Karen
2009-09-01
Based on the hypothesis that analysis of gene expression could be used to predict chronic fish toxicity, the zebrafish (Danio rerio) embryo test (DarT), developed as a replacement method for the acute fish test, was expanded to a gene expression D. rerio embryo test (Gene-DarT). The effects of 14 substances on lethal and sublethal endpoints of the DarT and on expression of potential marker genes were investigated: the aryl hydrocarbon receptor 2, cytochrome P450 1A (cypla), heat shock protein 70, fizzy-related protein 1, the transcription factors v-maf musculoaponeurotic fibrosarcoma oncogene family protein g (avian) 1 and NF-E2-p45-related factor, and heme oxygenase 1 (hmox1). After exposure of zebrafish embryos for 48 h, differential gene expression was evaluated using reverse transcriptase-polymerase chain reaction, gel electrophoresis, and densitometric analysis of the gels. All tested compounds significantly affected the expression of at least one potential marker gene, with cyp1a and hmox1 being most sensitive. Lowest-observed-effect concentrations (LOECs) for gene expression were below concentrations resulting in 10% lethal effects in the DarT. For 10 (3,4- and 3,5-dichloroaniline, 1,4-dichlorobenzene, 2,4-dinitrophenol, atrazine, parathion-ethyl, chlorotoluron, genistein, 4-nitroquinoline-1-oxide, and cadmium) out of the 14 tested substances, LOEC values derived with the Gene-DarT differ by a factor of less than 10 from LOEC values of fish early life stage tests with zebrafish. For pentachloroaniline and pentachlorobenzene, the Gene-DarT showed a 23- and 153-fold higher sensitivity, respectively, while for lindane, it showed a 13-fold lower sensitivity. For ivermectin, the Gene-DarT was by a factor of more than 1,000 less sensitive than the acute fish test. The results of the present study indicate that gene expression analysis in zebrafish embryos could principally be used to predict effect concentrations in the fish early life stage test.
Babinet, C; Cohen-Tannoudji, M
2001-09-01
The ability to introduce genetic modifications in the germ line of complex organisms has been a long-standing goal of those who study developmental biology. In this regard, the mouse, a favorite model for the study of the mammals, is unique: indeed not only is it possible since the late seventies, to add genes to the mouse genome like in several other complex organisms but also to perform gene replacement and modification. This has been made possible via two technological breakthroughs: 1) the isolation and culture of embryonic stem cells (ES), which have the unique ability to colonize all the tissues of an host embryo including its germ line; 2) the development of methods allowing homologous recombination between an incoming DNA and its cognate chromosomal sequence (gene "targeting"). As a result, it has become possible to create mice bearing null mutations in any cloned gene (knock-out mice). Such a possibility has revolutionized the genetic approach of almost all aspects of the biology of the mouse. In recent years, the scope of gene targeting has been widened even more, due to the refinement of the knock-out technology: other types of genetic modifications may now be created, including subtle mutations (point mutations, micro deletions or insertions, etc.) and chromosomal rearrangements such as large deletions, duplications and translocations. Finally, methods have been devised which permit the creation of conditional mutations, allowing the study of gene function throughout the life of an animal, when gene inactivation entails embryonic lethality. In this paper, we present an overview of the methods and scenarios used for the programmed modification of mouse genome, and we underline their enormous interest for the study of mammalian biology.
Chacón, Francisco; Oviedo, Andrea; Escalante, Teresa; Solano, Gabriela; Rucavado, Alexandra; Gutiérrez, José María
2015-01-01
The potency of antivenoms is assessed by analyzing the neutralization of venom-induced lethality, and is expressed as the Median Effective Dose (ED50). The present study was designed to investigate the pathophysiological mechanisms responsible for lethality induced by the venom of Bothrops asper, in the experimental conditions used for the evaluation of the neutralizing potency of antivenoms. Mice injected with 4 LD50s of venom by the intraperitoneal route died within ∼25 min with drastic alterations in the abdominal organs, characterized by hemorrhage, increment in plasma extravasation, and hemoconcentration, thus leading to hypovolemia and cardiovascular collapse. Snake venom metalloproteinases (SVMPs) play a predominat role in lethality, as judged by partial inhibition by the chelating agent CaNa2EDTA. When venom was mixed with antivenom, there was a venom/antivenom ratio at which hemorrhage was significantly reduced, but mice died at later time intervals with evident hemoconcentration, indicating that other components in addition to SVMPs also contribute to plasma extravasation and lethality. Pretreatment with the analgesic tramadol did not affect the outcome of the neutralization test, thus suggesting that prophylactic (precautionary) analgesia can be introduced in this assay. Neutralization of lethality in mice correlated with neutralization of in vitro coagulant activity in human plasma. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cassetti, Maria Cristina; Merchlinsky, Michael; Wolffe, Elizabeth J.; Weisberg, Andrea S.; Moss, Bernard
1998-01-01
The vaccinia virus A32 open reading frame was predicted to encode a protein with a nucleoside triphosphate-binding motif and a mass of 34 kDa. To investigate the role of this protein, we constructed a mutant in which the original A32 gene was replaced by an inducible copy. The recombinant virus, vA32i, has a conditional lethal phenotype: infectious virus formation was dependent on isopropyl-β-d-thiogalactopyranoside (IPTG). Under nonpermissive conditions, the mutant synthesized early- and late-stage viral proteins, as well as viral DNA that was processed into unit-length genomes. Electron microscopy of cells infected in the absence of IPTG revealed normal-appearing crescents and immature virus particles but very few with nucleoids. Instead of brick-shaped mature particles with defined core structures, there were numerous electron-dense, spherical particles. Some of these spherical particles were wrapped with cisternal membranes, analogous to intracellular and extracellular enveloped virions. Mutant viral particles, purified by sucrose density gradient centrifugation, had low infectivity and transcriptional activity, and the majority were spherical and lacked DNA. Nevertheless, the particle preparation contained representative membrane proteins, cleaved and uncleaved core proteins, the viral RNA polymerase, the early transcription factor and several enzymes, suggesting that incorporation of these components is not strictly coupled to DNA packaging. PMID:9621036
NAT1/DAP5/p97 and Atypical Translational Control in the Drosophila Circadian Oscillator
Bradley, Sean; Narayanan, Siddhartha; Rosbash, Michael
2012-01-01
Circadian rhythms are driven by gene expression feedback loops in metazoans. Based on the success of genetic screens for circadian mutants in Drosophila melanogaster, we undertook a targeted RNAi screen to study the impact of translation control genes on circadian locomotor activity rhythms in flies. Knockdown of vital translation factors in timeless protein-positive circadian neurons caused a range of effects including lethality. Knockdown of the atypical translation factor NAT1 had the strongest effect and lengthened circadian period. It also dramatically reduced PER protein levels in pigment dispersing factor (PDF) neurons. BELLE (BEL) protein was also reduced by the NAT1 knockdown, presumably reflecting a role of NAT1 in belle mRNA translation. belle and NAT1 are also targets of the key circadian transcription factor Clock (CLK). Further evidence for a role of NAT1 is that inhibition of the target of rapamycin (TOR) kinase increased oscillator activity in cultured wings, which is absent under conditions of NAT1 knockdown. Moreover, the per 5′- and 3′-UTRs may function together to facilitate cap-independent translation under conditions of TOR inhibition. We suggest that NAT1 and cap-independent translation are important for per mRNA translation, which is also important for the circadian oscillator. A circadian translation program may be especially important in fly pacemaker cells. PMID:22904033
Embryonic Lethality Due to Arrested Cardiac Development in Psip1/Hdgfrp2 Double-Deficient Mice.
Wang, Hao; Shun, Ming-Chieh; Dickson, Amy K; Engelman, Alan N
2015-01-01
Hepatoma-derived growth factor (HDGF) related protein 2 (HRP2) and lens epithelium-derived growth factor (LEDGF)/p75 are closely related members of the HRP2 protein family. LEDGF/p75 has been implicated in numerous human pathologies including cancer, autoimmunity, and infectious disease. Knockout of the Psip1 gene, which encodes for LEDGF/p75 and the shorter LEDGF/p52 isoform, was previously shown to cause perinatal lethality in mice. The function of HRP2 was by contrast largely unknown. To learn about the role of HRP2 in development, we knocked out the Hdgfrp2 gene, which encodes for HRP2, in both normal and Psip1 knockout mice. Hdgfrp2 knockout mice developed normally and were fertile. By contrast, the double deficient mice died at approximate embryonic day (E) 13.5. Histological examination revealed ventricular septal defect (VSD) associated with E14.5 double knockout embryos. To investigate the underlying molecular mechanism(s), RNA recovered from ventricular tissue was subjected to RNA-sequencing on the Illumina platform. Bioinformatic analysis revealed several genes and biological pathways that were significantly deregulated by the Psip1 knockout and/or Psip1/Hdgfrp2 double knockout. Among the dozen genes known to encode for LEDGF/p75 binding factors, only the expression of Nova1, which encodes an RNA splicing factor, was significantly deregulated by the knockouts. However the expression of other RNA splicing factors, including the LEDGF/p52-interacting protein ASF/SF2, was not significantly altered, indicating that deregulation of global RNA splicing was not a driving factor in the pathology of the VSD. Tumor growth factor (Tgf) β-signaling, which plays a key role in cardiac morphogenesis during development, was the only pathway significantly deregulated by the double knockout as compared to control and Psip1 knockout samples. We accordingly speculate that deregulated Tgf-β signaling was a contributing factor to the VSD and prenatal lethality of Psip1/Hdgfrp2 double-deficient mice.
Gates, Julie; Lam, Geanette; Ortiz, José A; Losson, Régine; Thummel, Carl S
2004-01-01
Pulses of the steroid hormone ecdysone trigger the major developmental transitions in Drosophila, including molting and puparium formation. The ecdysone signal is transduced by the EcR/USP nuclear receptor heterodimer that binds to specific response elements in the genome and directly regulates target gene transcription. We describe a novel nuclear receptor interacting protein encoded by rigor mortis (rig) that is required for ecdysone responses during larval development. rig mutants display defects in molting, delayed larval development, larval lethality, duplicated mouth parts, and defects in puparium formation--phenotypes that resemble those seen in EcR, usp, E75A and betaFTZ-F1 mutants. Although the expression of these nuclear receptor genes is essentially normal in rig mutant larvae, the ecdysone-triggered switch in E74 isoform expression is defective. rig encodes a protein with multiple WD-40 repeats and an LXXLL motif, sequences that act as specific protein-protein interaction domains. Consistent with the presence of these elements and the lethal phenotypes of rig mutants, Rig protein interacts with several Drosophila nuclear receptors in GST pull-down experiments, including EcR, USP, DHR3, SVP and betaFTZ-F1. The ligand binding domain of betaFTZ-F1 is sufficient for this interaction, which can occur in an AF-2-independent manner. Antibody stains reveal that Rig protein is present in the brain and imaginal discs of second and third instar larvae, where it is restricted to the cytoplasm. In larval salivary gland and midgut cells, however, Rig shuttles between the cytoplasm and nucleus in a spatially and temporally regulated manner, at times that correlate with the major lethal phase of rig mutants and major switches in ecdysone-regulated gene expression. Taken together, these data indicate that rig exerts essential functions during larval development through gene-specific effects on ecdysone-regulated transcription, most likely as a cofactor for one or more nuclear receptors. Furthermore, the dynamic intracellular redistribution of Rig protein suggests that it may act to refine spatial and temporal responses to ecdysone during development.
Han, Jeonghoon; Won, Eun-Ji; Lee, Bo-Young; Hwang, Un-Ki; Kim, Il-Chan; Yim, Joung Han; Leung, Kenneth Mei Yee; Lee, Yong Sung; Lee, Jae-Seong
2014-07-01
Nuclear radioisotope accidents are potentially ecologically devastating due to their impact on marine organisms. To examine the effects of exposure of a marine organism to radioisotopes, we irradiated the intertidal copepod Tigriopus japonicus with several doses of gamma radiation and analyzed the effects on mortality, fecundity, and molting by assessing antioxidant enzyme activities and gene expression patterns. No mortality was observed at 96h, even in response to exposure to a high dose (800Gy) of radiation, but mortality rate was significantly increased 120h (5 days) after exposure to 600 or 800Gy gamma ray radiation. We observed a dose-dependent reduction in fecundity of ovigerous females; even the group irradiated with 50Gy showed a significant reduction in fecundity, suggesting that gamma rays are likely to have a population level effect. In addition, we observed growth retardation, particularly at the nauplius stage, in individuals after gamma irradiation. In fact, nauplii irradiated with more than 200Gy, though able to molt to copepodite stage 1, did not develop into adults. Upon gamma radiation, T. japonicus showed a dose-dependent increase in reactive oxygen species (ROS) levels, the activities of several antioxidant enzymes, and expression of double-stranded DNA break damage genes (e.g. DNA-PK, Ku70, Ku80). At a low level (sub-lethal dose) of gamma irradiation, we found dose-dependent upregulation of p53, implying cellular damage in T. japonicus in response to sub-lethal doses of gamma irradiation, suggesting that T. japonicus is not susceptible to sub-lethal doses of gamma irradiation. Additionally, antioxidant genes, phase II enzyme (e.g. GSTs), and cellular chaperone genes (e.g. Hsps) that are involved in cellular defense mechanisms also showed the same expression patterns for sublethal doses of gamma irradiation (50-200Gy). These findings indicate that sublethal doses of gamma radiation can induce oxidative stress-mediated DNA damage and increase the expression of antioxidant enzymes and proteins with chaperone-related functions, thereby significantly affecting life history parameters such as fecundity and molting in the copepod T. japonicus. Copyright © 2014 Elsevier B.V. All rights reserved.
Bock, Sylvia; Ortelt, Jennifer; Link, Gerhard
2014-01-01
Plants contain a nuclear gene family for plastid sigma factors, i.e., proteins that associate with the “bacterial-type” organellar RNA polymerase and confer the ability for correct promoter binding and transcription initiation. Questions that are still unresolved relate to the “division of labor” among members of the sigma family, both in terms of their range of target genes and their temporal and spatial activity during development. Clues to the in vivo role of individual sigma genes have mainly come from studies of sigma knockout lines. Despite its obvious strengths, however, this strategy does not necessarily trace-down causal relationships between mutant phenotype and a single sigma gene, if other family members act in a redundant and/or compensatory manner. We made efforts to reduce the complexity by genetic crosses of Arabidopsis single mutants (with focus on a chlorophyll-deficient sig6 line) to generate double knockout lines. The latter typically had a similar visible phenotype as the parental lines, but tended to be more strongly affected in the transcript patterns of both plastid and sigma genes. Because triple mutants were lethal under our growth conditions, we exploited a strategy of transformation of single and double mutants with RNAi constructs that contained sequences from the unconserved sigma region (UCR). These RNAi/knockout lines phenotypically resembled their parental lines, but were even more strongly affected in their plastid transcript patterns. Expression patterns of sigma genes revealed both similarities and differences compared to the parental lines, with transcripts at reduced or unchanged amounts and others that were found to be present in higher (perhaps compensatory) amounts. Together, our results reveal considerable flexibility of gene activity at the levels of both sigma and plastid gene expression. A (still viable) “basal state” seems to be reached, if 2–3 of the 6 Arabidopsis sigma genes are functionally compromised. PMID:25505479
Behrens, Dieter; Forsgren, Eva; Fries, Ingemar; Moritz, Robin F A
2010-10-01
We compared the mortality of honeybee (Apis mellifera) drone and worker larvae from a single queen under controlled in vitro conditions following infection with Paenibacillus larvae, a bacterium causing the brood disease American Foulbrood (AFB). We also determined absolute P. larvae cell numbers and lethal titres in deceased individuals of both sexes up to 8 days post infection using quantitative real-time PCR (qPCR). Our results show that in drones the onset of infection induced mortality is delayed by 1 day, the cumulative mortality is reduced by 10% and P. larvae cell numbers are higher than in worker larvae. Since differences in bacterial cell titres between sexes can be explained by differences in body size, larval size appears to be a key parameter for a lethal threshold in AFB tolerance. Both means and variances for lethal thresholds are similar for drone and worker larvae suggesting that drone resistance phenotypes resemble those of related workers. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.
Ivie, Susan E.; Fennessey, Christine M.; Sheng, Jinsong; Rubin, Donald H.; McClain, Mark S.
2011-01-01
The Clostridium perfringens ε-toxin is an extremely potent toxin associated with lethal toxemias in domesticated ruminants and may be toxic to humans. Intoxication results in fluid accumulation in various tissues, most notably in the brain and kidneys. Previous studies suggest that the toxin is a pore-forming toxin, leading to dysregulated ion homeostasis and ultimately cell death. However, mammalian host factors that likely contribute to ε-toxin-induced cytotoxicity are poorly understood. A library of insertional mutant Madin Darby canine kidney (MDCK) cells, which are highly susceptible to the lethal affects of ε-toxin, was used to select clones of cells resistant to ε-toxin-induced cytotoxicity. The genes mutated in 9 surviving resistant cell clones were identified. We focused additional experiments on one of the identified genes as a means of validating the experimental approach. Gene expression microarray analysis revealed that one of the identified genes, hepatitis A virus cellular receptor 1 (HAVCR1, KIM-1, TIM1), is more abundantly expressed in human kidney cell lines than it is expressed in human cells known to be resistant to ε-toxin. One human kidney cell line, ACHN, was found to be sensitive to the toxin and expresses a larger isoform of the HAVCR1 protein than the HAVCR1 protein expressed by other, toxin-resistant human kidney cell lines. RNA interference studies in MDCK and in ACHN cells confirmed that HAVCR1 contributes to ε-toxin-induced cytotoxicity. Additionally, ε-toxin was shown to bind to HAVCR1 in vitro. The results of this study indicate that HAVCR1 and the other genes identified through the use of gene-trap mutagenesis and RNA interference strategies represent important targets for investigation of the process by which ε-toxin induces cell death and new targets for potential therapeutic intervention. PMID:21412435
Ivie, Susan E; Fennessey, Christine M; Sheng, Jinsong; Rubin, Donald H; McClain, Mark S
2011-03-11
The Clostridium perfringens ε-toxin is an extremely potent toxin associated with lethal toxemias in domesticated ruminants and may be toxic to humans. Intoxication results in fluid accumulation in various tissues, most notably in the brain and kidneys. Previous studies suggest that the toxin is a pore-forming toxin, leading to dysregulated ion homeostasis and ultimately cell death. However, mammalian host factors that likely contribute to ε-toxin-induced cytotoxicity are poorly understood. A library of insertional mutant Madin Darby canine kidney (MDCK) cells, which are highly susceptible to the lethal affects of ε-toxin, was used to select clones of cells resistant to ε-toxin-induced cytotoxicity. The genes mutated in 9 surviving resistant cell clones were identified. We focused additional experiments on one of the identified genes as a means of validating the experimental approach. Gene expression microarray analysis revealed that one of the identified genes, hepatitis A virus cellular receptor 1 (HAVCR1, KIM-1, TIM1), is more abundantly expressed in human kidney cell lines than it is expressed in human cells known to be resistant to ε-toxin. One human kidney cell line, ACHN, was found to be sensitive to the toxin and expresses a larger isoform of the HAVCR1 protein than the HAVCR1 protein expressed by other, toxin-resistant human kidney cell lines. RNA interference studies in MDCK and in ACHN cells confirmed that HAVCR1 contributes to ε-toxin-induced cytotoxicity. Additionally, ε-toxin was shown to bind to HAVCR1 in vitro. The results of this study indicate that HAVCR1 and the other genes identified through the use of gene-trap mutagenesis and RNA interference strategies represent important targets for investigation of the process by which ε-toxin induces cell death and new targets for potential therapeutic intervention.
USDA-ARS?s Scientific Manuscript database
Avian influenza (AI) is viral disease of poultry and detection in commercial flocks can result in trade embargos causing serious economic impact to the poultry industry. Vaccination is currently used to increase protection of birds against AI and limit transmission to susceptible cohorts. Because ...
Antimicrobial Peptide-PNA Conjugates Selectively Targeting Bacterial Genes
2013-07-22
RXR)4XB and (KFF)3K, were previously reported as a potent permeabilizer against E. coli and MRSA cells (Mellbye, 2009). (RW)4D, a small dendrimeric ...lethal concentration (Liu, 2007). Scheme 1. Synthesis of PNA- dendrimer conjugate. (a) (RW)4D-cysteine (b)Free PNA (C) PNA-(RW)4D conjugates
USDA-ARS?s Scientific Manuscript database
African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal viral disease of domestic pigs. There are no vaccines to control Africa swine fever (ASF). Experimental vaccines have been developed using genetically modified live attenuated ASFVs obtained by specifically de...
Happle, R
1987-04-01
A genetic concept is advanced to explain the origin of several sporadic syndromes characterized by a mosaic distribution of skin defects. It is postulated that these disorders are due to the action of a lethal gene surviving by mosaicism. The presence of the mutation in the zygote will lead to death of the embryo at an early stage of development. Cells bearing the mutation can survive only in a mosaic state, in close proximity with normal cells. The mosaic may arise either from a gametic half chromatid mutation or from an early somatic mutation. This concept of origin is proposed to apply to the Schimmelpenning-Feuerstein-Mims syndrome, the McCune-Albright syndrome, the Klippel-Trenaunay syndrome, the Sturge-Weber syndrome, and neurocutaneous melanosis. Moreover, this etiologic hypothesis may apply to two other birth defects that have recently been delineated, the Proteus syndrome (partial gigantism of hands or feet, hemihypertrophy, macrocephaly, linear papillomatous epidermal nevus, subcutaneous hemangiomas and lipomas, accelerated growth, and visceral anomalies), and the Delleman-Oorthuys syndrome (orbital cyst, porencephaly, periorbital appendages, and focal aplasia of the skin.
Anthrax Toxin-Expressing Bacillus cereus Isolated from an Anthrax-Like Eschar.
Marston, Chung K; Ibrahim, Hisham; Lee, Philip; Churchwell, George; Gumke, Megan; Stanek, Danielle; Gee, Jay E; Boyer, Anne E; Gallegos-Candela, Maribel; Barr, John R; Li, Han; Boulay, Darbi; Cronin, Li; Quinn, Conrad P; Hoffmaster, Alex R
2016-01-01
Bacillus cereus isolates have been described harboring Bacillus anthracis toxin genes, most notably B. cereus G9241, and capable of causing severe and fatal pneumonias. This report describes the characterization of a B. cereus isolate, BcFL2013, associated with a naturally occurring cutaneous lesion resembling an anthrax eschar. Similar to G9241, BcFL2013 is positive for the B. anthracis pXO1 toxin genes, has a multi-locus sequence type of 78, and a pagA sequence type of 9. Whole genome sequencing confirms the similarity to G9241. In addition to the chromosome having an average nucleotide identity of 99.98% when compared to G9241, BcFL2013 harbors three plasmids with varying homology to the G9241 plasmids (pBCXO1, pBC210 and pBFH_1). This is also the first report to include serologic testing of patient specimens associated with this type of B. cereus infection which resulted in the detection of anthrax lethal factor toxemia, a quantifiable serum antibody response to protective antigen (PA), and lethal toxin neutralization activity.
Simmons, Michael J; Peterson, Mark P; Thorp, Michael W; Buschette, Jared T; DiPrima, Stephanie N; Harter, Christine L; Skolnick, Matthew J
2015-03-01
Transposons, especially retrotransposons, are abundant in the genome of Drosophila melanogaster. These mobile elements are regulated by small RNAs that interact with the Piwi family of proteins-the piwi-interacting or piRNAs. The Piwi proteins are encoded by the genes argonaute3 (ago3), aubergine (aub), and piwi. Heterochromatin Protein 1 (HP1), a chromatin-organizing protein encoded by the Suppressor of variegation 205 [Su(var)205] gene, also plays a role in this regulation. To assess the mutational impact of weakening the system for transposon regulation, we measured the frequency of recessive X-linked lethal mutations occurring in the germ lines of males from stocks that were heterozygous for mutant alleles of the ago3, aub, piwi, or Su(var)205 genes. These mutant alleles are expected to deplete the wild-type proteins encoded by these genes by as much as 50%. The mutant alleles of piwi and Su(var)205 significantly increased the X-linked lethal mutation frequency, whereas the mutant alleles of ago3 did not. An increased mutation frequency was also observed in males from one of two mutant aub stocks, but this increase may not have been due to the aub mutant. The increased mutation frequency caused by depleting Piwi or HP1suggests that chromatin-organizing proteins play important roles in minimizing the germ-line mutation rate, possibly by stabilizing the structure of the heterochromatin in which many transposons are situated. Copyright © 2015 Elsevier B.V. All rights reserved.
Un, Frank
2007-04-01
Cisplatin has been used effectively to treat various human cancer types; yet, the precise mechanism underlying its cytotoxicity remains unknown. In eukaryotes, progression through G1 is monitored by a checkpoint, which executes G1 arrest in the event of DNA damage to allow time for repair before initiating DNA replication. The retinoblastoma tumor suppressor gene is an integral component of the mammalian G1 checkpoint. The utility of the retinoblastoma gene as a therapeutic for human cancers has been investigated. Intriguingly, the cytotoxicity profile of the retinoblastoma gene therapy closely parallels the clinical targets of cisplatin. It prompted an investigation into the potential role of the checkpoint-induced G1 arrest in cisplatin cytotoxicity. Here, the evidence that G1 arrest induction represents a critical step in cisplatin-induced lytic path is presented. First, cisplatin-treated human cancer cells undergo a prolonged G1 arrest before dying. Second, triggering G1 arrest via infection with a recombinant adenovirus expressing the human retinoblastoma gene is sufficient to potentiate lethality in the absence of cisplatin. Third, the extent of the lethality induced correlates with the G1-arresting potential of the ectopically expressed human retinoblastoma polypeptide. Fourth, human cancer cells resistant to cisplatin do not undergo G1 arrest despite cisplatin treatment. The above mechanism may be exploited to develop therapeutics that preserve the efficacy of cisplatin yet bypass its mutagenicity associated with the formation of secondary tumors.
Shirata, Mika; Araye, Quenta; Maehara, Kazunori; Enya, Sora; Takano-Shimizu, Toshiyuki; Sawamura, Kyoichi
2014-02-01
In the cross between Drosophila melanogaster females and D. simulans males, hybrid males die at the late larval stage, and the sibling females also die at later stages at high temperatures. Removing the D. simulans allele of the Lethal hybrid rescue gene (Lhr (sim) ) improves the hybrid incompatibility phenotypes. However, the loss-of-function mutation of Lhr (sim) (Lhr (sim0) ) does not rescue the hybrid males in crosses with several D. melanogaster strains. We first describe the genetic factor possessed by the D. melanogaster strains. It has been suggested that removing the D. melanogaster allele of Lhr (Lhr (mel) ), that is Lhr (mel0) , does not have the hybrid male rescue effect, contrasting to Lhr (sim0) . Because the expression level of the Lhr gene is known to be Lhr (sim) > Lhr (mel) in the hybrid, Lhr (mel0) may not lead to enough of a reduction in total Lhr expression. Then, there is a possibility that the D. melanogaster factor changes the expression level to Lhr (sim) < Lhr (mel) . But in fact, the expression level was Lhr (sim) > Lhr (mel) in the hybrid irrespectively of the presence of the factor. At last, we showed that Lhr (mel0) slightly improves the viability of hybrid females, which was not realized previously. All of the present results are consistent with the allelic asymmetry model of the Lhr gene expression in the hybrid.
Rozhdestvensky, Timofey S.; Robeck, Thomas; Galiveti, Chenna R.; Raabe, Carsten A.; Seeger, Birte; Wolters, Anna; Gubar, Leonid V.; Brosius, Jürgen; Skryabin, Boris V.
2016-01-01
Prader-Willi syndrome (PWS) is a neurogenetic disorder caused by loss of paternally expressed genes on chromosome 15q11-q13. The PWS-critical region (PWScr) contains an array of non-protein coding IPW-A exons hosting intronic SNORD116 snoRNA genes. Deletion of PWScr is associated with PWS in humans and growth retardation in mice exhibiting ~15% postnatal lethality in C57BL/6 background. Here we analysed a knock-in mouse containing a 5′HPRT-LoxP-NeoR cassette (5′LoxP) inserted upstream of the PWScr. When the insertion was inherited maternally in a paternal PWScr-deletion mouse model (PWScrp−/m5′LoxP), we observed compensation of growth retardation and postnatal lethality. Genomic methylation pattern and expression of protein-coding genes remained unaltered at the PWS-locus of PWScrp−/m5′LoxP mice. Interestingly, ubiquitous Snord116 and IPW-A exon transcription from the originally silent maternal chromosome was detected. In situ hybridization indicated that PWScrp−/m5′LoxP mice expressed Snord116 in brain areas similar to wild type animals. Our results suggest that the lack of PWScr RNA expression in certain brain areas could be a primary cause of the growth retardation phenotype in mice. We propose that activation of disease-associated genes on imprinted regions could lead to general therapeutic strategies in associated diseases. PMID:26848093
Spencer, Careni; Lombaard, Hendrik; Wise, Amy; Krause, Amanda; Robertson, Stephen P
2018-04-01
Melnick-Needles syndrome (MNS; MIM 309350) is an X-linked skeletal dysplasia caused by mutations in FLNA. Females with the condition present with characteristic facial features, short stature, skeletal anomalies, including poorly modeled and sclerotic bones, and structural abnormalities such as cardiac and urological defects. Previously males were thought to present with either a mild phenotype compatible with life or a severe lethal presentation depending on the maternal phenotype. The discovery of a limited number of mutations in FLNA as the cause of the condition has clarified the molecular basis of the disorder, but only a very small number of severely affected males have been reported with MNS. Furthermore, no mildly affected males have been described with a molecular confirmation of the condition. In this report, we describe the clinical and molecular findings of a mildly affected mother with MNS and her severely affected son. They shared a well-documented disease-causing variant in FLNA, p.(Ala1188Thr), one of two highly recurrent mutations leading to the disorder. This is only the fourth report of a male with perinatal lethal MNS and a molecular confirmation; it is the first description of this specific mutation in a male. © 2018 Wiley Periodicals, Inc.
Baral, Pankaj; Umans, Benjamin D; Li, Lu; Wallrapp, Antonia; Bist, Meghna; Kirschbaum, Talia; Wei, Yibing; Zhou, Yan; Kuchroo, Vijay K; Burkett, Patrick R; Yipp, Bryan G; Liberles, Stephen D; Chiu, Isaac M
2018-05-01
Lung-innervating nociceptor sensory neurons detect noxious or harmful stimuli and consequently protect organisms by mediating coughing, pain, and bronchoconstriction. However, the role of sensory neurons in pulmonary host defense is unclear. Here, we found that TRPV1 + nociceptors suppressed protective immunity against lethal Staphylococcus aureus pneumonia. Targeted TRPV1 + -neuron ablation increased survival, cytokine induction, and lung bacterial clearance. Nociceptors suppressed the recruitment and surveillance of neutrophils, and altered lung γδ T cell numbers, which are necessary for immunity. Vagal ganglia TRPV1 + afferents mediated immunosuppression through release of the neuropeptide calcitonin gene-related peptide (CGRP). Targeting neuroimmunological signaling may be an effective approach to treat lung infections and bacterial pneumonia.
Targeted Disruption of Mouse Yin Yang 1 Transcription Factor Results in Peri-Implantation Lethality
Donohoe, Mary E.; Zhang, Xiaolin; McGinnis, Lynda; Biggers, John; Li, En; Shi, Yang
1999-01-01
Yin Yang 1 (YY1) is a zinc finger-containing transcription factor and a target of viral oncoproteins. To determine the biological role of YY1 in mammalian development, we generated mice deficient for YY1 by gene targeting. Homozygosity for the mutated YY1 allele results in embryonic lethality in the mouse. YY1 mutants undergo implantation and induce uterine decidualization but rapidly degenerate around the time of implantation. A subset of YY1 heterozygote embryos are developmentally retarded and exhibit neurulation defects, suggesting that YY1 may have additional roles during later stages of mouse embryogenesis. Our studies demonstrate an essential function for YY1 in the development of the mouse embryo. PMID:10490658
Liu, Chang-Lun; Sung, Hung-Hung
2011-09-01
To assess the toxicity of nonylphenol towards aquatic crustaceans, Neocaridina denticulata were exposed short-term to sublethal concentration (0.001-0.5 mg/L). Following treatment, differentially expressed genes were identified using suppression subtractive hybridization on samples prepared from whole specimens. There were 20 differentially expressed sequence tags that corresponded to known genes and could be divided into six functional classes: defence, translation, metabolism, ribosomal gene expression, respiration, and genes involved in the stress response. Using semi-quantitative RT-PCR, we found that 14 of the differentially expressed sequence tags significantly responded to nonylphenol, including six at a nominal concentration of 0.01 mg/L; among them, 12 genes were down-regulated. These results suggest that under non-lethal concentrations of nonylphenol, the polluted aquatic environment may still present a potential risk to N. denticulata.
Horizontal gene transfer and gene dosage drives adaptation to wood colonization in a tree pathogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhillon, Braham; Feau, Nicolas; Aerts, Andrea L.
Some of the most damaging tree diseases are caused by pathogens that induce cankers, a stem deformation often lethal. To investigate the cause of this adaptation, we sequenced the genomes of poplar pathogens that do and do not cause cankers. We found a unique cluster of genes that produce secondary metabolites and are co-activated when the canker pathogen is grown on poplar wood and leaves. The gene genealogy is discordant with the species phylogeny, showing a signature of horizontal transfer from fungi associated with wood decay. Furthermore, genes encoding hemicellulose-degrading enzymes are up-regulated on poplar wood chips, with some havingmore » been acquired horizontally. In conclusion, we propose that adaptation to colonize poplar woody stems is the result of acquisition of these genes.« less
Horizontal gene transfer and gene dosage drives adaptation to wood colonization in a tree pathogen
Dhillon, Braham; Feau, Nicolas; Aerts, Andrea L.; ...
2015-03-02
Some of the most damaging tree diseases are caused by pathogens that induce cankers, a stem deformation often lethal. To investigate the cause of this adaptation, we sequenced the genomes of poplar pathogens that do and do not cause cankers. We found a unique cluster of genes that produce secondary metabolites and are co-activated when the canker pathogen is grown on poplar wood and leaves. The gene genealogy is discordant with the species phylogeny, showing a signature of horizontal transfer from fungi associated with wood decay. Furthermore, genes encoding hemicellulose-degrading enzymes are up-regulated on poplar wood chips, with some havingmore » been acquired horizontally. In conclusion, we propose that adaptation to colonize poplar woody stems is the result of acquisition of these genes.« less
Takeda, Kojiro; Mori, Ayaka; Yanagida, Mitsuhiro
2011-01-01
Bortezomib/PS-341/Velcade, a proteasome inhibitor, is widely used to treat multiple myeloma. While several mechanisms of the cytotoxicity of the drug were proposed, the actual mechanism remains elusive. We aimed to identify genes affecting the cytotoxicity of Bortezomib in the fission yeast S.pombe as the drug inhibits this organism's cell division cycle like proteasome mutants. Among the 2815 genes screened (covering 56% of total ORFs), 19 genes, whose deletions induce strong synthetic lethality with Bortezomib, were identified. The products of the 19 genes included four ubiquitin enzymes and one nuclear proteasome factor, and 13 of them are conserved in humans. Our results will provide useful information for understanding the actions of Bortezomib within cells. PMID:21760946
James, S. W.; Ranum, LPW.; Silflow, C. D.; Lefebvre, P. A.
1988-01-01
We have used genetic analysis to study the mode of action of two anti-microtubule herbicides, amiprophos-methyl (APM) and oryzalin (ORY). Over 200 resistant mutants were selected by growth on APM- or ORY-containing plates. The 21 independently isolated mutants examined in this study are 3- to 8-fold resistant to APM and are strongly cross-resistant to ORY and butamiphos, a close analog of APM. Two Mendelian genes, apm1 and apm2, are defined by linkage and complementation analysis. There are 20 alleles of apm1 and one temperature-sensitive lethal (33°) allele of apm2. Mapping by two-factor crosses places apm1 6.5 cM centromere proximal to uni1 and within 4 cM of pf7 on the uni linkage group, a genetically circular linkage group comprising genes which affect flagellar assembly or function; apm2 maps near the centromere of linkage group VIII. Allele-specific synthetic lethality is observed in crosses between apm2 and alleles of apm1. Also, self crosses of apm2 are zygotic lethal, whereas crosses of nine apm1 alleles inter se result in normal germination and tetrad viability. The mutants are recessive to their wild-type alleles but doubly heterozygous diploids (apm1 +/+ apm2) made with apm2 and any of 15 apm1 alleles display partial intergenic noncomplementation, expressed as intermediate resistance. Diploids homozygous for mutant alleles of apm1 are 4-6-fold resistant to APM and ORY; diploids homozygous for apm2 are ts(-) and 2-fold resistant to the herbicides. Doubly heterozygous diploids complement the ts(-) phenotype of apm2, but they are typically 1.5-2-fold resistant to APM and ORY. From the results described we suggest that the gene products of apm1 and apm2 may interact directly or function in the same structure or process. PMID:8608924
Zhan, Lihong; Xie, Qijing; Tibbetts, Randal S
2015-02-01
Pathological aggregation and mutation of the 43-kDa TAR DNA-binding protein (TDP-43) are strongly implicated in the pathogenesis amyotrophic lateral sclerosis and frontotemporal lobar degeneration. TDP-43 neurotoxicity has been extensively modeled in mice, zebrafish, Caenorhabditis elegans and Drosophila, where selective expression of TDP-43 in motoneurons led to paralysis and premature lethality. Through a genetic screen aimed to identify genetic modifiers of TDP-43, we found that the Drosophila dual leucine kinase Wallenda (Wnd) and its downstream kinases JNK and p38 influenced TDP-43 neurotoxicity. Reducing Wnd gene dosage or overexpressing its antagonist highwire partially rescued TDP-43-associated premature lethality. Downstream of Wnd, the JNK and p38 kinases played opposing roles in TDP-43-associated neurodegeneration. LOF alleles of the p38b gene as well as p38 inhibitors diminished TDP-43-associated premature lethality, whereas p38b GOF caused phenotypic worsening. In stark contrast, disruptive alleles of Basket (Bsk), the Drosophila homologue of JNK, exacerbated longevity shortening, whereas overexpression of Bsk extended lifespan. Among possible mechanisms, we found motoneuron-directed expression of TDP-43 elicited oxidative stress and innate immune gene activation that were exacerbated by p38 GOF and Bsk LOF, respectively. A key pathologic role for innate immunity in TDP-43-associated neurodegeneration was further supported by the finding that genetic suppression of the Toll/Dif and Imd/Relish inflammatory pathways dramatically extended lifespan of TDP-43 transgenic flies. We propose that oxidative stress and neuroinflammation are intrinsic components of TDP-43-associated neurodegeneration and that the balance between cytoprotective JNK and cytotoxic p38 signaling dictates phenotypic outcome to TDP-43 expression in Drosophila. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Toxic responses of bivalves to metal mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathew, P.; Menon, N.R.
Although there is a growing body of information on the toxicity of individual heavy metals to economically important on the toxicity of individual heavy metals to economically important species of bivalves, literature on the lethal toxicity of metal mixtures to bivalves under controlled conditions is rather limited. In the present investigation the toxic effects of combinations of copper - mercury and copper - mercury and copper - cadmium at lethal levels of two marine bivalve species, Perna indica and Donax incarnatus, have been delineated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenberg, C.R.; Taylor, C.D.; Haworth, J.C.
The authors have discovered a single homoallelic nucleotide substitution as the putative cause of the perinatal (lethal) form of hypophosphatasia in Canadian Mennonites. Previous linkage and haplotype analysis in this population suggested that a single mutational event was responsible for this autosomal recessive form of hypophosphatasia. The mutation is a guanosine-to-adenosine substitution at nucleotide position 1177 in exon 10 of the tissue nonspecific (liver/bone/kidney) alkaline phosphatase gene. This Gly[sup 317] [yields] Asp mutation segregates exclusively with the heterozygote phenotype previously assigned by biochemical testing (maximum combined lod score of 18.24 at [theta] = 0.00). This putative disease-causing mutation has notmore » been described in controls nor in other non-Mennonite probands with both lethal and nonlethal forms of hypophosphatasia studied to date. This Gly[sup 317] [yields] Asp mutation changes a polar glycine to an acidic aspartate at amino acid position 317 within the highly conserved active site region of the 507-amino-acid polypeptide. Carrier screening for this lethal mutation in a high-risk population is now feasible. 15 refs., 2 figs.« less
USP22 regulates oncogenic signaling pathways to drive lethal cancer progression.
Schrecengost, Randy S; Dean, Jeffry L; Goodwin, Jonathan F; Schiewer, Matthew J; Urban, Mark W; Stanek, Timothy J; Sussman, Robyn T; Hicks, Jessica L; Birbe, Ruth C; Draganova-Tacheva, Rossitza A; Visakorpi, Tapio; DeMarzo, Angelo M; McMahon, Steven B; Knudsen, Karen E
2014-01-01
Increasing evidence links deregulation of the ubiquitin-specific proteases 22 (USP22) deubitiquitylase to cancer development and progression in a select group of tumor types, but its specificity and underlying mechanisms of action are not well defined. Here we show that USP22 is a critical promoter of lethal tumor phenotypes that acts by modulating nuclear receptor and oncogenic signaling. In multiple xenograft models of human cancer, modeling of tumor-associated USP22 deregulation demonstrated that USP22 controls androgen receptor accumulation and signaling, and that it enhances expression of critical target genes coregulated by androgen receptor and MYC. USP22 not only reprogrammed androgen receptor function, but was sufficient to induce the transition to therapeutic resistance. Notably, in vivo depletion experiments revealed that USP22 is critical to maintain phenotypes associated with end-stage disease. This was a significant finding given clinical evidence that USP22 is highly deregulated in tumors, which have achieved therapeutic resistance. Taken together, our findings define USP22 as a critical effector of tumor progression, which drives lethal phenotypes, rationalizing this enzyme as an appealing therapeutic target to treat advanced disease.
Shen, Song; Mao, Chong-Qiong; Yang, Xian-Zhu; Du, Xiao-Jiao; Liu, Yang; Zhu, Yan-Hua; Wang, Jun
2014-08-04
Synthetic lethal interaction provides a conceptual framework for the development of wiser cancer therapeutics. In this study, we exploited a therapeutic strategy based on the interaction between GATA binding protein 2 (GATA2) downregulation and the KRAS mutation status by delivering small interfering RNA targeting GATA2 (siGATA2) with cationic lipid-assisted polymeric nanoparticles for treatment of non-small-cell lung carcinoma (NSCLC) harboring oncogenic KRAS mutations. Nanoparticles carrying siGATA2 (NPsiGATA2) were effectively taken up by NSCLC cells and resulted in targeted gene suppression. NPsiGATA2 selectively inhibited cell proliferation and induced cell apoptosis in KRAS mutant NSCLC cells. However, this intervention was harmless to normal KRAS wild-type NSCLC cells and HL7702 hepatocytes, confirming the advantage of synthetic lethality-based therapy. Moreover, systemic delivery of NPsiGATA2 significantly inhibited tumor growth in the KRAS mutant A549 NSCLC xenograft murine model, suggesting the therapeutic promise of NPsiGATA2 delivery in KRAS mutant NSCLC therapy.
Interferon-induced TRAIL-independent cell death in DNase II-/- embryos.
Kitahara, Yusuke; Kawane, Kohki; Nagata, Shigekazu
2010-09-01
The chromosomal DNA of apoptotic cells and the nuclear DNA expelled from erythroid precursors is cleaved by DNase II in lysosomes after the cells or nuclei are engulfed by macrophages. DNase II(-/-) embryos suffer from lethal anemia due to IFN-beta produced in the macrophages carrying undigested DNA. Here, we show that Type I IFN induced a caspase-dependent cell death in human epithelial cells that were transformed to express a high level of IFN type I receptor. During this death process, a set of genes was strongly activated, one of which encoded TRAIL, a death ligand. A high level of TRAIL mRNA was also found in the fetal liver of the lethally anemic DNase II(-/-) embryos, and a lack of IFN type I receptor in the DNase II(-/-) IFN-IR(-/-) embryos blocked the expression of TRAIL mRNA. However, a null mutation in TRAIL did not rescue the lethal anemia of the DNase II(-/-) embryos, indicating that TRAIL is dispensable for inducing the apoptosis of erythroid cells in DNase II(-/-) embryos, and therefore, that there is a TRAIL-independent mechanism for the IFN-induced apoptosis.
Inviability of a DNA2 deletion mutant is due to the DNA damage checkpoint.
Budd, Martin E; Antoshechkin, Igor A; Reis, Clara; Wold, Barbara J; Campbell, Judith L
2011-05-15
Dna2 is a dual polarity exo/endonuclease, and 5' to 3' DNA helicase involved in Okazaki Fragment Processing (OFP) and Double-Strand Break (DSB) Repair. In yeast, DNA2 is an essential gene, as expected for a DNA replication protein. Suppression of the lethality of dna2Δ mutants has been found to occur by two mechanisms: overexpression of RAD27 (scFEN1) , encoding a 5' to 3' exo/endo nuclease that processes Okazaki fragments (OFs) for ligation, or deletion of PIF1, a 5' to 3' helicase involved in mitochondrial recombination, telomerase inhibition and OFP. Mapping of a novel, spontaneously arising suppressor of dna2Δ now reveals that mutation of rad9 and double mutation of rad9 mrc1 can also suppress the lethality of dna2Δ mutants. Interaction of dna2Δ and DNA damage checkpoint mutations provides insight as to why dna2Δ is lethal but rad27Δ is not, even though evidence shows that Rad27 (ScFEN1) processes most of the Okazaki fragments, while Dna2 processes only a subset.
The Yeast Environmental Stress Response Regulates Mutagenesis Induced by Proteotoxic Stress
Shor, Erika; Fox, Catherine A.; Broach, James R.
2013-01-01
Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR) in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors. PMID:23935537
Jen, Freda E-C; Djoko, Karrera Y; Bent, Stephen J; Day, Christopher J; McEwan, Alastair G; Jennings, Michael P
2015-09-01
Under conditions of low oxygen availability, Neisseria meningitidis and Neisseria gonorrhoeae are able to respire via a partial denitrification pathway in which nitrite is converted to nitrous oxide. In this process, nitrite reductase (AniA), a copper (Cu)-containing protein converts nitrite to NO, and this product is converted to nitrous oxide by nitric oxide reductase (NorB). NorB also confers protection against toxic NO, and so we devised a conditional lethal screen, using a norB mutant, to identify mutants that were resistant to nitrite-dependent killing. After random-deletion mutagenesis of N. meningitidis, this genetic screen identified a gene encoding a Cu chaperone that is essential for AniA function, AccA. Purified AccA binds one Cu (I) ion and also possesses a second binding site for Cu (II). This novel periplasmic Cu chaperone (AccA) appears to be essential for provision of Cu ions to AniA of pathogenic Neisseria to generate an active nitrite reductase. Apart from the Neisseria genus, AccA is distributed across a wide range of environmental Proteobacteria species. © FASEB.
XRCC4 suppresses medulloblastomas with recurrent translocations in p53-deficient mice
Yan, Catherine T.; Kaushal, Dhruv; Murphy, Michael; Zhang, Yu; Datta, Abhishek; Chen, Changzhong; Monroe, Brianna; Mostoslavsky, Gustavo; Coakley, Kristen; Gao, Yijie; Mills, Kevin D.; Fazeli, Alex P.; Tepsuporn, Suprawee; Hall, Giles; Mulligan, Richard; Fox, Edward; Bronson, Roderick; De Girolami, Umberto; Lee, Charles; Alt, Frederick W.
2006-01-01
Inactivation of the XRCC4 nonhomologous end-joining factor in the mouse germ line leads to embryonic lethality, in association with apoptosis of newly generated, postmitotic neurons. We now show that conditional inactivation of the XRCC4 in nestin-expressing neuronal progenitor cells, although leading to no obvious phenotype in a WT background, leads to early onset of neuronally differentiated medulloblastomas (MBs) in a p53-deficient background. A substantial proportion of the XRCC4/p53-deficient MBs have high-level N-myc gene amplification, often intrachromosomally in the context of complex translocations or other alterations of chromosome 12, on which N-myc resides, or extrachromosomally within double minutes. In addition, most XRCC4/p53-deficient MBs harbor clonal translocations of chromosome 13, which frequently involve chromosome 6 as a partner. One copy of the patched gene (Ptc), which lies on chromosome 13, was deleted in all tested XRCC4/p53-deficient MBs in the context of translocations or interstitial deletions. In addition, Cyclin D2, a chromosome 6 gene, was amplified in a subset of tumors. Notably, amplification of Myc-family or Cyclin D2 genes and deletion of Ptc also have been observed in human MBs. We therefore conclude that, in neuronal cells of mice, the nonhomologous end-joining pathway plays a critical role in suppressing genomic instability that, in a p53-deficient background, routinely contributes to genesis of MBs with recurrent chromosomal alterations. PMID:16670198
Matassov, Demetrius; Marzi, Andrea; Latham, Terri; Xu, Rong; Ota-Setlik, Ayuko; Feldmann, Friederike; Geisbert, Joan B.; Mire, Chad E.; Hamm, Stefan; Nowak, Becky; Egan, Michael A.; Geisbert, Thomas W.; Eldridge, John H.; Feldmann, Heinz; Clarke, David K.
2015-01-01
Previously, recombinant vesicular stomatitis virus (rVSV) pseudotypes expressing Ebolavirus glycoproteins (GPs) in place of the VSV G protein demonstrated protection of nonhuman primates from lethal homologous Ebolavirus challenge. Those pseudotype vectors contained no additional attenuating mutations in the rVSV genome. Here we describe rVSV vectors containing a full complement of VSV genes and expressing the Ebola virus (EBOV) GP from an additional transcription unit. These rVSV vectors contain the same combination of attenuating mutations used previously in the clinical development pathway of an rVSV/human immunodeficiency virus type 1 vaccine. One of these rVSV vectors (N4CT1-EBOVGP1), which expresses membrane-anchored EBOV GP from the first position in the genome (GP1), elicited a balanced cellular and humoral GP-specific immune response in mice. Guinea pigs immunized with a single dose of this vector were protected from any signs of disease following lethal EBOV challenge, while control animals died in 7–9 days. Subsequently, N4CT1-EBOVGP1 demonstrated complete, single-dose protection of 2 macaques following lethal EBOV challenge. A single sham-vaccinated macaque died from disease due to EBOV infection. These results demonstrate that highly attenuated rVSV vectors expressing EBOV GP may provide safer alternatives to current EBOV vaccines. PMID:26109675
Wu, Chenggang; Huang, I-Hsiu; Chang, Chungyu; Reardon-Robinson, Melissa Elizabeth; Das, Asis; Ton-That, Hung
2014-01-01
Sortase, a cysteine-transpeptidase conserved in Gram-positive bacteria, anchors on the cell wall many surface proteins that facilitate bacterial pathogenesis and fitness. Genetic disruption of the housekeeping sortase in several Gram-positive pathogens reported thus far attenuates virulence, but not bacterial growth. Paradoxically, we discovered that depletion of the housekeeping sortase SrtA was lethal for Actinomyces oris; yet, all of its predicted cell wall-anchored protein substrates (AcaA-N) were individually dispensable for cell viability. Using Tn5-transposon mutagenesis to identify factors that upend lethality of srtA deletion, we uncovered a set of genetic suppressors harboring transposon insertions within genes of a locus encoding AcaC and a LytR-CpsA-Psr (LCP)-like protein. AcaC was shown to be highly glycosylated and dependent on LCP for its glycosylation. Upon SrtA depletion, the glycosylated form of AcaC, hereby renamed GspA, was accumulated in the membrane. Overexpression of GspA in a mutant lacking gspA and srtA was lethal; conversely, cells overexpressing a GspA mutant missing a membrane-localization domain were viable. The results reveal a unique glycosylation pathway in A. oris that is coupled to cell wall anchoring catalyzed by sortase SrtA. Significantly, this novel phenomenon of glyco-stress provides convenient cell-based assays for developing a new class of inhibitors against Gram-positive pathogens. PMID:25230351
Kamble, Nitin Machindra; Hajam, Irshad Ahmed; Lee, John Hwa
2017-03-01
Pre-stimulation of toll-like receptors (TLRs) by agonists has been shown to increase protection against influenza virus infection. In this study, we evaluated the protective response generated against influenza A/Puerto Rico/8/1934 (PR8; H1N1) virus by oral and nasal administration of live attenuated Salmonella enterica serovar Typhimurium, JOL911 strain, in mice. Oral and nasal inoculation of JOL911 significantly increased the mRNA copy number of TLR-2, TLR4 and TLR5, and downstream type I interferon (IFN) molecules, IFN-α and IFN-β, both in peripheral blood mononuclear cells (PBMCs) and in lung tissue. Similarly, the mRNA copy number of interferon-inducible genes (ISGs), Mx and ISG15, were significantly increased in both the orally and the nasally inoculated mice. Post PR8 virus lethal challenge, the nasal JOL911 and the PBS control group mice showed significant loss of body weight with 70% and 100% mortality, respectively, compared to only 30% mortality in the oral JOL911 group mice. Post sub-lethal challenge, the significant reduction in PR8 virus copy number in lung tissue was observed in oral [on day 4 and 6 post-challenge (dpc)] and nasal (on 4dpc) than the PBS control group mice. The lethal and sub-lethal challenge showed that the generated stimulated innate resistance (StIR) in JOL911 inoculated mice conferred resistance to acute and initial influenza infection but might not be sufficient to prevent the PR8 virus invasion and replication in the lung. Overall, the present study indicates that oral administration of attenuated S. Typhimurium can pre-stimulate multiple TLR pathways in mice to provide immediate early StIR against a lethal H1N1 virus challenge. Copyright © 2017 Elsevier B.V. All rights reserved.
Paul, James M; Toosi, Behzad; Vizeacoumar, Frederick S; Bhanumathy, Kalpana Kalyanasundaram; Li, Yue; Gerger, Courtney; El Zawily, Amr; Freywald, Tanya; Anderson, Deborah H; Mousseau, Darrell; Kanthan, Rani; Zhang, Zhaolei; Vizeacoumar, Franco J; Freywald, Andrew
2016-08-02
Application of tumor genome sequencing has identified numerous loss-of-function alterations in cancer cells. While these alterations are difficult to target using direct interventions, they may be attacked with the help of the synthetic lethality (SL) approach. In this approach, inhibition of one gene causes lethality only when another gene is also completely or partially inactivated. The EPHB6 receptor tyrosine kinase has been shown to have anti-malignant properties and to be downregulated in multiple cancers, which makes it a very attractive target for SL applications. In our work, we used a genome-wide SL screen combined with expression and interaction network analyses, and identified the SRC kinase as a SL partner of EPHB6 in triple-negative breast cancer (TNBC) cells. Our experiments also reveal that this SL interaction can be targeted by small molecule SRC inhibitors, SU6656 and KX2-391, and can be used to improve elimination of human TNBC tumors in a xenograft model. Our observations are of potential practical importance, since TNBC is an aggressive heterogeneous malignancy with a very high rate of patient mortality due to the lack of targeted therapies, and our work indicates that FDA-approved SRC inhibitors may potentially be used in a personalized manner for treating patients with EPHB6-deficient TNBC. Our findings are also of a general interest, as EPHB6 is downregulated in multiple malignancies and our data serve as a proof of principle that EPHB6 deficiency may be targeted by small molecule inhibitors in the SL approach.
Fujii, Tsuguru; Yamamoto, Kimiko; Banno, Yutaka
2016-06-01
Uric acid accumulates in the epidermis of Bombyx mori larvae and renders the larval integument opaque and white. Yamamoto translucent (oya) is a novel spontaneous mutant with a translucent larval integument and unique phenotypic characteristics, such as male-biased lethality and flaccid larval paralysis. Xanthine dehydrogenase (XDH) that requires a molybdenum cofactor (MoCo) for its activity is a key enzyme for uric acid synthesis. It has been observed that injection of a bovine xanthine oxidase, which corresponds functionally to XDH and contains its own MoCo activity, changes the integuments of oya mutants from translucent to opaque and white. This finding suggests that XDH/MoCo activity might be defective in oya mutants. Our linkage analysis identified an association between the oya locus and chromosome 23. Because XDH is not linked to chromosome 23 in B. mori, MoCo appears to be defective in oya mutants. In eukaryotes, MoCo is synthesized by a conserved biosynthesis pathway governed by four loci (MOCS1, MOCS2, MOCS3, and GEPH). Through a candidate gene approach followed by sequence analysis, a 6-bp deletion was detected in an exon of the B. mori molybdenum cofactor synthesis-step 1 gene (BmMOCS1) in the oya strain. Moreover, recombination was not observed between the oya and BmMOCS1 loci. These results indicate that the BmMOCS1 locus is responsible for the oya locus. Finally, we discuss the potential cause of male-biased lethality and flaccid paralysis observed in the oya mutants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mozzetti, V; Grattepanche, F; Berger, B; Rezzonico, E; Arigoni, F; Lacroix, C
2013-06-01
A central issue in the application of probiotics as food additives is their fastidious production and their sensitivity to many environmental stresses. The importance of inducible cell-protective mechanisms triggered by application of sublethal stresses for survival under stress conditions has been demonstrated. Continuous cultures could be a suitable and more efficient method to test stress factors on one culture instead of several repeated batch cultures. In this study, the application of a two-stage continuous culture of Bifidobacterium longum NCC2705 was investigated. The first reactor was operated under fixed conditions at 37 °C and pH 6.0 and used to produce cells with controlled physiology, mimicking cells in the late exponential growth phase. Stress pretreatment combinations of pH (6.0, 5.0 and 4.0), temperature (37, 45 and 47 °C) and NaCl (0, 5 and 10%) were tested in the second reactor. Of all tested combinations, only those of pH 4.0 significantly decreased cell viability in the second reactor compared to control conditions (37 °C, pH 6.0, 0% NaCl) and, therefore, could not be considered as sublethal stresses. Pretreatments with 5 or 10% NaCl had a negative effect on cell viability after gastric lethal stress. A significant improvement in cell resistance to heat lethal stress (56 °C, 5 min) was observed for cells pretreated at 47 °C. In contrast, heat pretreatment negatively affected cell viability after freeze drying and osmotic lethal stresses. The two-stage continuous culture allowed for efficient screening of several stress pretreatments during the same experiment with up to four different conditions tested per day. Optimal sublethal stress conditions can also be applied for producing cells with traditional batch cultures.
A case of thanatophoric dysplasia type 2: a novel mutation.
Gülaşı, Selvi; Atıcı, Aytuğ; Çelik, Yalçın
2015-03-01
Thanatophoric dysplasia (TD) is a lethal form of skeletal dysplasia with short-limb dwarfism. Two types distinguished with their radiological characteristics have been defined clinically. The femur is curved in type 1, while it is straight in type 2. TD is known to be due to a mutation in the fibroblast growth factor receptor 3 (FGFR3) gene. We report a male patient who showed clinical findings congruent with TD type 2 and a new mutation in the FGFR3 gene, a finding which has not been reported previously.
Call, Gerald B.; Olson, John M.; Chen, Jiong; Villarasa, Nikki; Ngo, Kathy T.; Yabroff, Allison M.; Cokus, Shawn; Pellegrini, Matteo; Bibikova, Elena; Bui, Chris; Cespedes, Albert; Chan, Cheryl; Chan, Stacy; Cheema, Amrita K.; Chhabra, Akanksha; Chitsazzadeh, Vida; Do, Minh-Tu; Fang, Q. Angela; Folick, Andrew; Goodstein, Gelsey L.; Huang, Cheng R.; Hung, Tony; Kim, Eunha; Kim, William; Kim, Yulee; Kohan, Emil; Kuoy, Edward; Kwak, Robert; Lee, Eric; Lee, JiEun; Lin, Henry; Liu, H-C. Angela; Moroz, Tatiana; Prasad, Tharani; Prashad, Sacha L.; Patananan, Alexander N.; Rangel, Alma; Rosselli, Desiree; Sidhu, Sohrab; Sitz, Daniel; Taber, Chelsea E.; Tan, Jingwen; Topp, Kasey; Tran, PhuongThao; Tran, Quynh-Minh; Unkovic, Mary; Wells, Maggie; Wickland, Jessica; Yackle, Kevin; Yavari, Amir; Zaretsky, Jesse M.; Allen, Christopher M.; Alli, Latifat; An, Ju; Anwar, Abbas; Arevalo, Sonia; Ayoub, Danny; Badal, Shawn S.; Baghdanian, Armonde; Baghdanian, Arthur H.; Baumann, Sara A.; Becerra, Vivian N.; Chan, Hei J.; Chang, Aileen E.; Cheng, Xibin A.; Chin, Mabel; Chong, Fleurette; Crisostomo, Carlyn; Datta, Sanjit; Delosreyes, Angela; Diep, Francie; Ekanayake, Preethika; Engeln, Mark; Evers, Elizabeth; Farshidi, Farzin; Fischer, Katrina; Formanes, Arlene J.; Gong, Jun; Gupta, Riju; Haas, Blake E.; Hahm, Vicky; Hsieh, Michael; Hui, James Z.; Iao, Mei L.; Jin, Sophia D.; Kim, Angela Y.; Kim, Lydia S-H.; King, Megan; Knudsen-Robbins, Chloe; Kohanchi, David; Kovshilovskaya, Bogdana; Ku, Amy; Kung, Raymond W.; Landig, Mark E. L.; Latterman, Stephanie S.; Lauw, Stephanie S.; Lee, Daniel S.; Lee, Joann S.; Lei, Kai C.; Leung, Lesley L.; Lerner, Renata; Lin, Jian-ya; Lin, Kathleen; Lim, Bryon C.; Lui, Crystal P. Y.; Liu, Tiffany Q.; Luong, Vincent; Makshanoff, Jacob; Mei, An-Chi; Meza, Miguel; Mikhaeil, Yara A.; Moarefi, Majid; Nguyen, Long H.; Pai, Shekhar S.; Pandya, Manish; Patel, Aadit R.; Picard, Paul D.; Safaee, Michael M.; Salame, Carol; Sanchez, Christian; Sanchez, Nina; Seifert, Christina C.; Shah, Abhishek; Shilgevorkyan, Oganes H.; Singh, Inderroop; Soma, Vanessa; Song, Junia J.; Srivastava, Neetika; Sta.Ana, Jennifer L.; Sun, Christie; Tan, Diane; Teruya, Alison S.; Tikia, Robyn; Tran, Trinh; Travis, Emily G.; Trinh, Jennifer D.; Vo, Diane; Walsh, Thomas; Wong, Regan S.; Wu, Katherine; Wu, Ya-Whey; Yang, Nkau X. V.; Yeranosian, Michael; Yu, James S.; Zhou, Jennifer J.; Zhu, Ran X.; Abrams, Anna; Abramson, Amanda; Amado, Latiffe; Anderson, Jenny; Bashour, Keenan; Beyer, Elsa; Bookatz, Allen; Brewer, Sarah; Buu, Natalie; Calvillo, Stephanie; Cao, Joseph; Chan, Amy; Chan, Jenny; Chang, Aileen; Chang, Daniel; Chang, Yuli; Chen, YiBing; Choi, Joo; Chou, Jeyling; Dang, Peter; Datta, Sumit; Davarifar, Ardy; Deravanesian, Artemis; Desai, Poonam; Fabrikant, Jordan; Farnad, Shahbaz; Fu, Katherine; Garcia, Eddie; Garrone, Nick; Gasparyan, Srpouhi; Gayda, Phyllis; Go, Sherrylene; Goffstein, Chad; Gonzalez, Courtney; Guirguis, Mariam; Hassid, Ryan; Hermogeno, Brenda; Hong, Julie; Hong, Aria; Hovestreydt, Lindsay; Hu, Charles; Huff, Devon; Jamshidian, Farid; Jen, James; Kahen, Katrin; Kao, Linda; Kelley, Melissa; Kho, Thomas; Kim, Yein; Kim, Sarah; Kirkpatrick, Brian; Langenbacher, Adam; Laxamana, Santino; Lee, Janet; Lee, Chris; Lee, So-Youn; Lee, ToHang S.; Lee, Toni; Lewis, Gemma; Lezcano, Sheila; Lin, Peter; Luu, Thanh; Luu, Julie; Marrs, Will; Marsh, Erin; Marshall, Jamie; Min, Sarah; Minasian, Tanya; Minye, Helena; Misra, Amit; Morimoto, Miles; Moshfegh, Yasaman; Murray, Jessica; Nguyen, Kha; Nguyen, Cynthia; Nodado, Ernesto; O'Donahue, Amanda; Onugha, Ndidi; Orjiakor, Nneka; Padhiar, Bhavin; Paul, Eric; Pavel-Dinu, Mara; Pavlenko, Alex; Paz, Edwin; Phaklides, Sarah; Pham, Lephong; Poulose, Preethi; Powell, Russell; Pusic, Aya; Ramola, Divi; Regalia, Kirsten; Ribbens, Meghann; Rifai, Bassel; Saakyan, Manyak; Saarikoski, Pamela; Segura, Miriam; Shadpour, Farnaz; Shemmassian, Aram; Singh, Ramnik; Singh, Vivek; Skinner, Emily; Solomin, Daniel; Soneji, Kosha; Spivey, Kristin; Stageberg, Erika; Stavchanskiy, Marina; Tekchandani, Leena; Thai, Leo; Thiyanaratnam, Jayantha; Tong, Maurine; Toor, Aneet; Tovar, Steve; Trangsrud, Kelly; Tsang, Wah-Yung; Uemura, Marc; Vollmer, Emily; Weiss, Emily; Wood, Damien; Wu, Joy; Wu, Sophia; Wu, Winston; Xu, Qing; Yamauchi, Yuki; Yarosh, Will; Yee, Laura; Yen, George; Banerjee, Utpal
2007-01-01
Using a large consortium of undergraduate students in an organized program at the University of California, Los Angeles (UCLA), we have undertaken a functional genomic screen in the Drosophila eye. In addition to the educational value of discovery-based learning, this article presents the first comprehensive genomewide analysis of essential genes involved in eye development. The data reveal the surprising result that the X chromosome has almost twice the frequency of essential genes involved in eye development as that found on the autosomes. PMID:17720911
Tondo, María Laura; Delprato, María Laura; Kraiselburd, Ivana; Fernández Zenoff, María Verónica; Farías, María Eugenia; Orellano, Elena G
2016-01-01
Xanthomonas citri subsp. citri (Xcc) is the bacterium responsible for citrus canker. This bacterium is exposed to reactive oxygen species (ROS) at different points during its life cycle, including those normally produced by aerobic respiration or upon exposition to ultraviolet (UV) radiation. Moreover, ROS are key components of the host immune response. Among enzymatic ROS-detoxifying mechanisms, catalases eliminate H2O2, avoiding the potential damage caused by this specie. Xcc genome includes four catalase genes. In this work, we studied the physiological role of KatG, the only bifunctional catalase of Xcc, through the construction and characterization of a modified strain (XcckatG), carrying an insertional mutation in the katG gene. First, we evaluated the involvement of KatG in the bacterial adaptive response to H2O2. XcckatG cultures exhibited lower catalase activity than those of the wild-type strain, and this activity was not induced upon treatment with sub-lethal doses of H2O2. Moreover, the KatG-deficient mutant exhibited decreased tolerance to H2O2 toxicity compared to wild-type cells and accumulated high intracellular levels of peroxides upon exposure to sub-lethal concentrations of H2O2. To further study the role of KatG in Xcc physiology, we evaluated bacterial survival upon exposure to UV-A or UV-B radiation. In both conditions, XcckatG showed a high mortality in comparison to Xcc wild-type. Finally, we studied the development of bacterial biofilms. While structured biofilms were observed for the Xcc wild-type, the development of these structures was impaired for XcckatG. Based on these results, we demonstrated that KatG is responsible for Xcc adaptive response to H2O2 and a key component of the bacterial response to oxidative stress. Moreover, this enzyme plays an important role during Xcc epiphytic survival, being essential for biofilm formation and UV resistance.
Tondo, María Laura; Delprato, María Laura; Kraiselburd, Ivana; Fernández Zenoff, María Verónica; Farías, María Eugenia; Orellano, Elena G.
2016-01-01
Xanthomonas citri subsp. citri (Xcc) is the bacterium responsible for citrus canker. This bacterium is exposed to reactive oxygen species (ROS) at different points during its life cycle, including those normally produced by aerobic respiration or upon exposition to ultraviolet (UV) radiation. Moreover, ROS are key components of the host immune response. Among enzymatic ROS-detoxifying mechanisms, catalases eliminate H2O2, avoiding the potential damage caused by this specie. Xcc genome includes four catalase genes. In this work, we studied the physiological role of KatG, the only bifunctional catalase of Xcc, through the construction and characterization of a modified strain (XcckatG), carrying an insertional mutation in the katG gene. First, we evaluated the involvement of KatG in the bacterial adaptive response to H2O2. XcckatG cultures exhibited lower catalase activity than those of the wild-type strain, and this activity was not induced upon treatment with sub-lethal doses of H2O2. Moreover, the KatG-deficient mutant exhibited decreased tolerance to H2O2 toxicity compared to wild-type cells and accumulated high intracellular levels of peroxides upon exposure to sub-lethal concentrations of H2O2. To further study the role of KatG in Xcc physiology, we evaluated bacterial survival upon exposure to UV-A or UV-B radiation. In both conditions, XcckatG showed a high mortality in comparison to Xcc wild-type. Finally, we studied the development of bacterial biofilms. While structured biofilms were observed for the Xcc wild-type, the development of these structures was impaired for XcckatG. Based on these results, we demonstrated that KatG is responsible for Xcc adaptive response to H2O2 and a key component of the bacterial response to oxidative stress. Moreover, this enzyme plays an important role during Xcc epiphytic survival, being essential for biofilm formation and UV resistance. PMID:26990197
A comparative study of proliferative nodules and lethal melanomas in congenital nevi from children.
Yélamos, Oriol; Arva, Nicoleta C; Obregon, Roxana; Yazdan, Pedram; Wagner, Annette; Guitart, Joan; Gerami, Pedram
2015-03-01
Differentiating proliferative nodules (PNs) from melanomas arising in congenital nevi (CN) is a considerable challenge for dermatopathologists. Most of the specimens dermatopathologists assess that deal with this differential diagnosis involve proliferations of melanocytes arising in the dermis. In this study, we compare the clinical, histologic, and molecular findings of these 2 conditions. In our database, we found 22 examples of PNs arising in the dermis of CN and 2 cases of lethal melanomas arising from the dermis/epidermis of CN of children. Importantly, we found that among dermal melanocytic proliferations arising from CN in children, PNs are far more common than lethal melanomas. Clinically, multiplicity of lesions favored a diagnosis of PNs, whereas ulceration was infrequent in PNs compared with lethal melanomas. Histologically, PNs showed several distinct patterns including expansile nodules of epithelioid melanocytes with mitotic counts lower than that seen in the melanomas (1.67 vs. 12.5 mitoses/mm), a small round blue cell pattern often highly mitotically active, neurocristic-like, blue nevus-like, a nevoid melanoma-like pattern, or an undifferentiated spindle cell pattern. The lethal melanomas both featured expansile nodules of epithelioid melanocytes with high mitotic counts (range, 5 to 20 mitoses/mm) and an ulcerated overlying epidermis. At the molecular level, the PNs showed mostly whole chromosomal copy number aberrations, which in some cases were accompanied by rare partial chromosomal aberrations, whereas both lethal melanomas showed highly elevated copy number aberrations involving 6p25 without gains of the long arm of chromosome 6.
Asthma and risk of lethal prostate cancer in the Health Professionals Follow-Up Study.
Platz, Elizabeth A; Drake, Charles G; Wilson, Kathryn M; Sutcliffe, Siobhan; Kenfield, Stacey A; Mucci, Lorelei A; Stampfer, Meir J; Willett, Walter C; Camargo, Carlos A; Giovannucci, Edward
2015-08-15
Inflammation, and more generally, the immune response are thought to influence the development of prostate cancer. To determine the components of the immune response that are potentially contributory, we prospectively evaluated the association of immune-mediated conditions, asthma and hayfever, with lethal prostate cancer risk in the Health Professionals Follow-up Study. We included 47,880 men aged 40-75 years with no prior cancer diagnosis. On the baseline questionnaire in 1986, the men reported diagnoses of asthma and hayfever and year of onset. On the follow-up questionnaires, they reported new asthma and prostate cancer diagnoses. We used Cox proportional hazards regression to estimate relative risks (RRs). In total, 9.2% reported ever having been diagnosed with asthma. In all, 25.3% reported a hayfever diagnosis at baseline. During 995,176 person-years of follow-up by 2012, we confirmed 798 lethal prostate cancer cases (diagnosed with distant metastases, progressed to distant metastasis or died of prostate cancer [N = 625]). Ever having a diagnosis of asthma was inversely associated with risk of lethal (RR = 0.71, 95% confidence interval [CI] = 0.51-1.00) and fatal (RR = 0.64, 95% CI = 0.42-0.96) disease. Hayfever with onset in the distant past was possibly weakly positively associated with risk of lethal (RR = 1.10, 95% CI = 0.92-1.33) and fatal (RR = 1.12, 95% CI = 0.91-1.37) disease. Men who were ever diagnosed with asthma were less likely to develop lethal and fatal prostate cancer. Our findings may lead to testable hypotheses about specific immune profiles in the etiology of lethal prostate cancer. © 2015 UICC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culiat, C.T.; Stubbs, L.; Nicholls, R.D.
1993-06-01
Genetic and molecular analyses of a number of radiation-induced deletion mutations of the pink-eyed dilution (p) locus in mouse chromosome 7 have identified a specific interval on the genetic map associated with a neonatally lethal mutation that results in cleft palate. This interval, closely linked and distal to p, and bracketed by the genes encoding the [alpha][sub 5] and [beta][sub 3] subunits of the type A [gamma]-aminobutyric acid receptor (Gabra5 and Gabrb3, respectively), contains a gene(s) (cp1; cleft palate 1) necessary for normal palate development. The cp1 interval extends from the distal breakpoint of the prenatally lethal p[sup 83FBFo] deletionmore » to the Gabrb3 locus. Among 20 p deletions tested, there was complete concordance between alterations at the Gabrb3 transcription unit and inability to complement the cleft-palate defect. These mapping data, along with previously described in vivo and in vitro teratological effects of [gamma]-aminobutyric acid or its agonists on palate development, suggest the possibility that a particular type A [gamma]-aminobutyric acid receptor that includes the [beta][sub 3] subunit may be necessary for normal palate development. The placement of the cp1 gene within a defined segment of the larger D15S12h (p)-D15S9h-1 interval in the mouse suggests that the highly homologous region of the human genome, 15q11-q13, be evaluated for a role(s) in human fetal facial development. 29 refs., 4 figs., 1 tab.« less
Wu, Qiuli; Li, Yiping; Tang, Meng; Ye, Boping; Wang, Dayong
2012-01-01
With growing concerns of the safety of nanotechnology, the in vivo toxicity of nanoparticles (NPs) at environmental relevant concentrations has drawn increasing attentions. We investigated the possible molecular mechanisms of titanium nanoparticles (Ti-NPs) in the induction of toxicity at predicted environmental relevant concentrations. In nematodes, small sizes (4 nm and 10 nm) of TiO2-NPs induced more severe toxicities than large sizes (60 nm and 90 nm) of TiO2-NPs on animals using lethality, growth, reproduction, locomotion behavior, intestinal autofluorescence, and reactive oxygen species (ROS) production as endpoints. Locomotion behaviors could be significantly decreased by exposure to 4-nm and 10-nm TiO2-NPs at concentration of 1 ng/L in nematodes. Among genes required for the control of oxidative stress, only the expression patterns of sod-2 and sod-3 genes encoding Mn-SODs in animals exposed to small sizes of TiO2-NPs were significantly different from those in animals exposed to large sizes of TiO2-NPs. sod-2 and sod-3 gene expressions were closely correlated with lethality, growth, reproduction, locomotion behavior, intestinal autofluorescence, and ROS production in TiO2-NPs-exposed animals. Ectopically expression of human and nematode Mn-SODs genes effectively prevented the induction of ROS production and the development of toxicity of TiO2-NPs. Therefore, the altered expression patterns of Mn-SODs may explain the toxicity formation for different sizes of TiO2-NPs at predicted environmental relevant concentrations. In addition, we demonstrated here a strategy to investigate the toxicological effects of exposure to NPs upon humans by generating transgenic strains in nematodes for specific human genes. PMID:22973466
Harrison, Nigel A; Davis, Robert E; Oropeza, Carlos; Helmick, Ericka E; Narváez, María; Eden-Green, Simon; Dollet, Michel; Dickinson, Matthew
2014-06-01
In this study, the taxonomic position and group classification of the phytoplasma associated with a lethal yellowing-type disease (LYD) of coconut (Cocos nucifera L.) in Mozambique were addressed. Pairwise similarity values based on alignment of nearly full-length 16S rRNA gene sequences (1530 bp) revealed that the Mozambique coconut phytoplasma (LYDM) shared 100% identity with a comparable sequence derived from a phytoplasma strain (LDN) responsible for Awka wilt disease of coconut in Nigeria, and shared 99.0-99.6% identity with 16S rRNA gene sequences from strains associated with Cape St Paul wilt (CSPW) disease of coconut in Ghana and Côte d'Ivoire. Similarity scores further determined that the 16S rRNA gene of the LYDM phytoplasma shared <97.5% sequence identity with all previously described members of 'Candidatus Phytoplasma'. The presence of unique regions in the 16S rRNA gene sequence distinguished the LYDM phytoplasma from all currently described members of 'Candidatus Phytoplasma', justifying its recognition as the reference strain of a novel taxon, 'Candidatus Phytoplasma palmicola'. Virtual RFLP profiles of the F2n/R2 portion (1251 bp) of the 16S rRNA gene and pattern similarity coefficients delineated coconut LYDM phytoplasma strains from Mozambique as novel members of established group 16SrXXII, subgroup A (16SrXXII-A). Similarity coefficients of 0.97 were obtained for comparisons between subgroup 16SrXXII-A strains and CSPW phytoplasmas from Ghana and Côte d'Ivoire. On this basis, the CSPW phytoplasma strains were designated members of a novel subgroup, 16SrXXII-B.
Paluh, J. L.; Plamann, M.; Kruger, D.; Barthelmess, I. B.; Yanofsky, C.; Perkins, D. D.
1990-01-01
cpc-1 is the locus specifying what is believed to be the major trans-activating transcription factor that regulates expression of amino acid biosynthetic genes subject to cross-pathway control in Neurospora crassa. Mutants altered at this locus are incapable of the global increase in gene expression normally seen in response to amino acid starvation. Using polymerase chain reaction methodology we have cloned and sequenced the inactive mutant allele, cpc-1 (CD15). The cpc-1 (CD15) mutation was found to be a single base pair deletion in codon 93 of the cpc-1 structural gene. A second, presumed lethal, allele, cpc-1 (j-5), also was investigated. Northern analyses with strains carrying the cpc-1 (j-5) allele revealed that no cpc-1 mRNA is produced. Southern and genetic analyses established that the cpc-1 (j-5) mutation involved a chromosomal rearrangement in which a break occurred within the cpc-1 locus, normally resident on linkage group VI; a small fragment from the left arm of linkage group VI, containing the cpc-1 promoter region and ylo-1, was translocated to the right arm of linkage group I. Other studies indicate that the cpc-1 locus itself is not essential for viability. Lethality previously attributed to the cpc-1 (j-5) mutation is due instead to the production of progeny that are deficient for essential genes in an adjoining segment of linkage group VI. Molecular characterization of cpc-1 (j-5) X ylo-1 pan-2 duplication progeny indicated that cpc-1 is normally transcribed towards the linkage group VI centromere. PMID:2138111
Brown, Tanya; Rodriguez-Lanetty, Mauricio
2015-01-01
Cnidarians, in general, are long-lived organisms and hence may repeatedly encounter common pathogens during their lifespans. It remains unknown whether these early diverging animals possess some type of immunological reaction that strengthens the defense response upon repeated infections, such as that described in more evolutionary derived organisms. Here we show results that sea anemones that had previously encountered a pathogen under sub-lethal conditions had a higher survivorship during a subsequently lethal challenge than naïve anemones that encountered the pathogen for the first time. Anemones subjected to the lethal challenge two and four weeks after the sub-lethal exposure presented seven- and five-fold increases in survival, respectively, compared to the naïve anemones. However, anemones challenged six weeks after the sub-lethal exposure showed no increase in survivorship. We argue that this short-lasting priming of the defense response could be ecologically relevant if pathogen encounters are restricted to short seasons characterized by high stress. Furthermore, we discovered significant changes in proteomic profiles between naïve sea anemones and those primed after pathogen exposure suggesting a clear molecular signature associated with immunological priming in cnidarians. Our findings reveal that immunological priming may have evolved much earlier in the tree of life than previously thought. PMID:26628080
White pine blister rust resistance in limber pine: Evidence for a major gene
A. W. Schoettle; R. A. Sniezko; A. Kegley; K. S. Burns
2014-01-01
Limber pine (Pinus flexilis) is being threatened by the lethal disease white pine blister rust caused by the non-native pathogen Cronartium ribicola. The types and frequencies of genetic resistance to the rust will likely determine the potential success of restoration or proactive measures. These first extensive inoculation trials using individual tree seed collections...
Clinical implications of miRNAs in the pathogenesis, diagnosis and therapy of pancreatic cancer
Rachagani, Satyanarayana; Macha, Muzafar A.; Heimann, Nicholas; Seshacharyulu, Parthasarathy; Haridas, Dhanya; Chugh, Seema; Batra, Surinder K.
2014-01-01
Despite considerable progress being made in understanding pancreatic cancer (PC) pathogenesis, it still remains the 10th most often diagnosed malignancy in the world and 4th leading cause of cancer related deaths in the United States with a five year survival rate of only 6%. The aggressive nature, lack of early diagnostic and prognostic markers, late clinical presentation, and limited efficacy of existing treatment regimens makes PC a lethal cancer with high mortality and poor prognosis. Therefore, novel reliable biomarkers and molecular targets are urgently needed to combat this deadly disease. MicroRNAs (miRNAs) are short (19–24 nucleotides) non-coding RNA molecules implicated in the regulation of gene expression at post-transcriptional level and play significant roles in various physiological and pathological conditions. Aberrant expression of miRNAs has been reported in several cancers including PC and is implicated in PC pathogenesis and progression, suggesting their utility in diagnosis, prognosis and therapy. In this review, we summarize the role of several miRNAs that regulate various oncogenes (KRAS) and tumor suppressor genes (p53, p16, SMAD4 etc) involved in PC development, their prospective roles as diagnostic and prognostic markers and their therapeutic targets. PMID:25453266
Essential role of B-Raf in ERK activation during extraembryonic development.
Galabova-Kovacs, Gergana; Matzen, Dana; Piazzolla, Daniela; Meissl, Katrin; Plyushch, Tatiana; Chen, Adele P; Silva, Alcino; Baccarini, Manuela
2006-01-31
The kinases of the Raf family have been intensively studied as activators of the mitogen-activated protein kinase kinase/extra-cellular signal-regulated kinase (ERK) module in regulated and deregulated proliferation. Genetic evidence that Raf is required for ERK activation in vivo has been obtained in lower organisms, which express only one Raf kinase, but was hitherto lacking in mammals, which express more than one Raf kinase. Ablation of the two best studied Raf kinases, B-Raf and Raf-1, is lethal at midgestation in mice, hampering the detailed study of the essential functions of these proteins. Here, we have combined conventional and conditional gene ablation to show that B-Raf is essential for ERK activation and for vascular development in the placenta. B-Raf-deficient placentae show complete absence of phosphorylated ERK and strongly reduced HIF-1alpha and VEGF levels, whereas all these parameters are normal in Raf-1-deficient placentae. In addition, neither ERK phosphorylation nor development are affected in B-raf-deficient embryos that are born alive obtained by epiblast-restricted gene inactivation. The data demonstrate that B-Raf plays a nonredundant role in ERK activation during extraembyronic mammalian development in vivo.
Long-term phenotypic evolution of bacteria.
Plata, Germán; Henry, Christopher S; Vitkup, Dennis
2015-01-15
For many decades comparative analyses of protein sequences and structures have been used to investigate fundamental principles of molecular evolution. In contrast, relatively little is known about the long-term evolution of species' phenotypic and genetic properties. This represents an important gap in our understanding of evolution, as exactly these proprieties play key roles in natural selection and adaptation to diverse environments. Here we perform a comparative analysis of bacterial growth and gene deletion phenotypes using hundreds of genome-scale metabolic models. Overall, bacterial phenotypic evolution can be described by a two-stage process with a rapid initial phenotypic diversification followed by a slow long-term exponential divergence. The observed average divergence trend, with approximately similar fractions of phenotypic properties changing per unit time, continues for billions of years. We experimentally confirm the predicted divergence trend using the phenotypic profiles of 40 diverse bacterial species across more than 60 growth conditions. Our analysis suggests that, at long evolutionary distances, gene essentiality is significantly more conserved than the ability to utilize different nutrients, while synthetic lethality is significantly less conserved. We also find that although a rapid phenotypic evolution is sometimes observed within the same species, a transition from high to low phenotypic similarity occurs primarily at the genus level.
Van Molle, Wim; Hochepied, Tino; Brouckaert, Peter; Libert, Claude
2000-01-01
The proinflammatory cytokine tumor necrosis factor alpha (TNF-α) induces lethal hepatitis when injected into d-(+)-galactosamine-sensitized mice on the one hand or systemic inflammatory response syndrome (SIRS) in normal mice on the other hand. We studied whether serum amyloid P component (SAP), the major acute-phase protein in mice, plays a protective role in both lethal models. For this purpose, we used SAP0/0 mice generated by gene targeting. We studied the lethal response of SAP0/0 or SAP+/+ mice to both lethal triggers but found no differences in the sensitivity of both types of mice. We also investigated whether SAP is involved in establishing two types of endogenous protection: one using a single injection of interleukin-1β (IL-1β) for desensitization and clearly involving a liver protein, the other by tolerizing mice for 5 days using small doses of human TNF-α. Although after IL-1β or after tolerization the SAP levels in the serum had risen fourfold in the control mice and not in the SAP0/0 mice, the same extents of desensitization and tolerization were achieved. Finally, we observed that the induction of hemorrhagic necrosis in the skin of mice by two consecutive local injections with TNF-α was not altered in SAP0/0 mice. We conclude that the presence or absence of SAP has no influence on the sensitivity of mice to TNF-α-induced hepatitis, SIRS, and hemorrhagic necrosis or on the endogenous protective mechanisms of desensitization or tolerization. PMID:10948120
Zhang, Xue; Acencio, Marcio Luis; Lemke, Ney
2016-01-01
Essential proteins/genes are indispensable to the survival or reproduction of an organism, and the deletion of such essential proteins will result in lethality or infertility. The identification of essential genes is very important not only for understanding the minimal requirements for survival of an organism, but also for finding human disease genes and new drug targets. Experimental methods for identifying essential genes are costly, time-consuming, and laborious. With the accumulation of sequenced genomes data and high-throughput experimental data, many computational methods for identifying essential proteins are proposed, which are useful complements to experimental methods. In this review, we show the state-of-the-art methods for identifying essential genes and proteins based on machine learning and network topological features, point out the progress and limitations of current methods, and discuss the challenges and directions for further research. PMID:27014079
A selfish gene chastened: Tribolium castaneum Medea M4 is silenced by a complementary gene.
Thomson, M Scott
2014-04-01
Maternal-effect dominant embryonic arrest (Medea) of Tribolium castaneum are autosomal factors that act maternally to cause the death of any progeny that do not inherit them. This selfish behavior is thought to result from a maternally expressed poison and zygotically expressed antidote. Medea factors and the hybrid incompatibility factor, H, have a negative interaction consistent with complementary genes of the Dobzhansky-Muller model for post-zygotic isolation. This negative interaction may result from H suppression of Medea zygotic antidote, leaving zygotes incompletely protected from maternal poison. I report here a test of the hypothesis that H also suppresses the Medea maternal poison. Viable F1 females were generated from a cross of Medea M4 strain males to H strain females. These females, heterozygous for both M4 and H, failed to express M4 maternal lethal activity when crossed to their male sibs. Transmission of non-M4 homologues from these females was confirmed using a dominant transgenic enhanced green fluorescent protein eye color marker, tightly linked in cis to M4. M4 beetles, lacking H, were selected from the F2 population. Female descendants of these clearly expressed M4 maternal lethal activity, indicating restoration of this activity after H was segregated away. I conclude that H, or a factor tightly linked to H, suppresses Medea M4 maternal poison.
Rohrer, J; Conley, M E
1999-11-15
Gene therapy for inherited disorders is more likely to succeed if gene-corrected cells have a proliferative or survival advantage compared with mutant cells. We used a competitive reconstitution model to evaluate the strength of the selective advantage that Btk normal cells have in Btk-deficient xid mice. Whereas 2,500 normal bone marrow cells when mixed with 497,500 xid cells restored serum IgM and IgG3 levels to near normal concentrations in 3 of 5 lethally irradiated mice, 25,000 normal cells mixed with 475,000 xid cells reliably restored serum IgM and IgG3 concentrations and the thymus-independent antibody response in all transplanted mice. Reconstitution was not dependent on lethal irradiation, because sublethally irradiated mice all had elevated serum IgM and IgG3 by 30 weeks postreconstitution when receiving 25,000 normal cells. Furthermore, the xid defect was corrected with as few as 10% of the splenic B cells expressing a normal Btk. When normal donor cells were sorted into B220(+)/CD19(+) committed B cells and B220(-)/CD19(-) cell populations, only the B220(-)/CD19(-) cells provided long-term B-cell reconstitution in sublethally irradiated mice. These findings suggest that even inefficient gene therapy may provide clinical benefit for patients with XLA.
Enriched expression of the ciliopathy gene Ick in cell proliferating regions of adult mice.
Tsutsumi, Ryotaro; Chaya, Taro; Furukawa, Takahisa
2018-04-07
Cilia are essential for sensory and motile functions across species. In humans, ciliary dysfunction causes "ciliopathies", which show severe developmental abnormalities in various tissues. Several missense mutations in intestinal cell kinase (ICK) gene lead to endocrine-cerebro-osteodysplasia syndrome or short rib-polydactyly syndrome, lethal recessive developmental ciliopathies. We and others previously reported that Ick-deficient mice exhibit neonatal lethality with developmental defects. Mechanistically, Ick regulates intraflagellar transport and cilia length at ciliary tips. Although Ick plays important roles during mammalian development, roles of Ick at the adult stage are poorly understood. In the current study, we investigated the Ick gene expression in adult mouse tissues. RT-PCR analysis showed that Ick is ubiquitously expressed, with enrichment in the retina, brain, lung, intestine, and reproductive system. In the adult brain, we found that Ick expression is enriched in the walls of the lateral ventricle, in the rostral migratory stream of the olfactory bulb, and in the subgranular zone of the hippocampal dentate gyrus by in situ hybridization analysis. We also observed that Ick staining pattern is similar to pachytene spermatocyte to spermatid markers in the mature testis and to an intestinal stem cell marker in the adult small intestine. These results suggest that Ick is expressed in proliferating regions in the adult mouse brain, testis, and intestine. Copyright © 2018 Elsevier B.V. All rights reserved.
Hersh, Bradley M; Hartwieg, Erika; Horvitz, H Robert
2002-04-02
The misregulation of programmed cell death, or apoptosis, contributes to the pathogenesis of many diseases. We used Nomarski microscopy to screen for mutants containing refractile cell corpses in a C. elegans strain in which all programmed cell death is blocked and such corpses are absent. We isolated a mutant strain that accumulates refractile bodies resembling irregular cell corpses. We rescued this mutant phenotype with the C. elegans mucolipidosis type IV (ML-IV) homolog, the recently identified cup-5 (coelomocyte-uptake defective) gene. ML-IV is a human autosomal recessive lysosomal storage disease characterized by psychomotor retardation and ophthalmological abnormalities. Our null mutations in cup-5 cause maternal-effect lethality. In addition, cup-5 mutants contain excess lysosomes in many and possibly all cell types and contain lamellar structures similar to those observed in ML-IV cell lines. The human ML-IV gene is capable of rescuing both the maternal-effect lethality and the lysosome-accumulation abnormality of cup-5 mutants. cup-5 mutants seem to contain excess apoptotic cells as detected by staining with terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling. We suggest that the increased apoptosis seen in cup-5 mutants is a secondary consequence of the lysosomal defect, and that abnormalities in apoptosis may be associated with human lysosomal storage disorders.
Marshall, Charlotte; Lopez, Jaime; Crookes, Laura; Pollitt, Rebecca C; Balasubramanian, Meena
2016-12-20
Osteogenesis imperfecta (OI) is a genetic disorder characterised by low bone mineral density resulting in fractures. 85-90% of patients with OI carry a variant in the type 1 collagen genes, COL1A1 and COL1A2, which follows an autosomal dominant pattern of inheritance. However, within the last two decades, there have been growing number of variants identified in genes that follow an autosomal recessive pattern of inheritance. Our proband is a child born in Mexico with multiple fractures of ribs, minimal calvarial mineralisation, platyspondyly, marked compression and deformed long bones. He also presented with significant hydranencephaly, requiring ventilatory support from birth, and died at 8days of age. A homozygous c.338_357delins22 variant in exon 2 of SERPINH1 was identified. This gene encodes heat shock protein 47, a collagen-specific chaperone which binds to the procollagen triple helix and is responsible for collagen stabilisation in the endoplasmic reticulum. There is minimal literature on the mechanism of action for variants in SERPINH1 resulting in osteogenesis imperfecta. Here we discuss this rare, previously unreported variant, and expand on the phenotypic presentation of this novel variant resulting in a severe, lethal phenotype of OI in association with hydranencephaly. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurimasa, Akihiro; Burma, Sandeep; Henrie, Melinda
2002-04-15
Nijmegen breakage syndrome (NBS) is a rare autosomal recessive chromosome instability syndrome characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition, with cellular features similar to that of ataxia telangiectasia (AT). NBS results from mutations in the mammalian gene Nbs1 that codes for a 95-kDa protein called nibrin, NBS1, or p95. To establish an animal model for NBS, we attempted to generate NBS1 knockout mice. However, NBS1 gene knockouts were lethal at an early embryonic stage. NBS1 homozygous(-/-) blastocyst cells cultured in vitro showed retarded growth and subsequently underwent growth arrest within 5 days of culture. Apoptosis, assayed by TUNELmore » staining, was observed in NBSI homozygous(-/-) blastocyst cells cultured for four days. NBSI heterozygous(+/-) mice were normal, and exhibited no specific phenotype for at least one year. However, fibroblast cells from NBSI heterozygous(+/-) mice displayed an enhanced frequency of spontaneous transformation to anchorage-independent growth as compared to NBS1 wild-type(+/+) cells. Furthermore, heterozygous(+/-) mice exhibited a high incidence of hepatocellular carcinoma after one year compared to wild-type mice, even though no significant differences in the incidence of other tumors such as lung adenocarcinoma and lymphoma were observed. Taken together, these results strongly suggest that NBS1 heterozygosity and reduced NBSI expression induces formation of specific tumors in mice.« less
Sakai, Hiroki; Sumitani, Megumi; Chikami, Yasuhiko; Yahata, Kensuke; Uchino, Keiro; Kiuchi, Takashi; Katsuma, Susumu; Aoki, Fugaku; Sezutsu, Hideki; Suzuki, Masataka G
2016-08-01
In Bombyx mori (B. mori), Fem piRNA originates from the W chromosome and is responsible for femaleness. The Fem piRNA-PIWI complex targets and cleaves mRNAs transcribed from the Masc gene. Masc encodes a novel CCCH type zinc-finger protein and is required for male-specific splicing of B. mori doublesex (Bmdsx) transcripts. In the present study, several silkworm strains carrying a transgene, which encodes a Fem piRNA-resistant Masc mRNA (Masc-R), were generated. Forced expression of the Masc-R transgene caused female-specific lethality during the larval stages. One of the Masc-R strains weakly expressed Masc-R in various tissues. Females heterozygous for the transgene expressed male-specific isoform of the Bombyx homolog of insulin-like growth factor II mRNA-binding protein (ImpM) and Bmdsx. All examined females showed a lower inducibility of vitellogenin synthesis and exhibited abnormalities in the ovaries. Testis-like tissues were observed in abnormal ovaries and, notably, the tissues contained considerable numbers of sperm bundles. Homozygous expression of the transgene resulted in formation of the male-specific abdominal segment in adult females and caused partial male differentiation in female genitalia. These results strongly suggest that Masc is an important regulatory gene of maleness in B. mori.
Bobrov, Alexander G; Kirillina, Olga; Fetherston, Jacqueline D; Miller, M Clarke; Burlison, Joseph A; Perry, Robert D
2014-08-01
Bacterial pathogens must overcome host sequestration of zinc (Zn(2+) ), an essential micronutrient, during the infectious disease process. While the mechanisms to acquire chelated Zn(2+) by bacteria are largely undefined, many pathogens rely upon the ZnuABC family of ABC transporters. Here we show that in Yersinia pestis, irp2, a gene encoding the synthetase (HMWP2) for the siderophore yersiniabactin (Ybt) is required for growth under Zn(2+) -deficient conditions in a strain lacking ZnuABC. Moreover, growth stimulation with exogenous, purified apo-Ybt provides evidence that Ybt may serve as a zincophore for Zn(2+) acquisition. Studies with the Zn(2+) -dependent transcriptional reporter znuA::lacZ indicate that the ability to synthesize Ybt affects the levels of intracellular Zn(2+) . However, the outer membrane receptor Psn and TonB as well as the inner membrane (IM) ABC transporter YbtPQ, which are required for Fe(3+) acquisition by Ybt, are not needed for Ybt-dependent Zn(2+) uptake. In contrast, the predicted IM protein YbtX, a member of the Major Facilitator Superfamily, was essential for Ybt-dependent Zn(2+) uptake. Finally, we show that the ZnuABC system and the Ybt synthetase HMWP2, presumably by Ybt synthesis, both contribute to the development of a lethal infection in a septicaemic plague mouse model. © 2014 John Wiley & Sons Ltd.
Thakur, Suresh; Chakrabarti, Amitabha
2010-02-01
Saccharomyces cerevisiae Hsp30 is a plasma membrane heat shock protein which is induced by various environmental stress conditions. However functional role of Hsp30 during diverse environmental stressors is not presently known. To gain insight into its function during thermal stress, we have constructed and characterized a hsp30 strain during heat stress. BY4741Deltahsp30 cells were found to be more sensitive compared to BY4741 cells when exposed to a lethal heat stress at 50 degrees Celsius. When budding yeast is exposed to either heat shock or weak organic acid, it inhibits Pma1p activity. In this study we measured the levels of Pma1p in mutant and Wt cells both during optimal temperature and heat shock temperature. We observed that BY4741Deltahsp30 cells showed constitutive reduction of Pma1p. To gain further insights into the role of Hsp30 during heat stress, we compared total protein profile by 2D gel electrophoresis followed by identification of differentially expressed spots by LC-MS. We observed that contrary to that expected from thermal stress induced changes in gene expression, the Deltahsp30mutant maintained elevated levels of Pdc1p, Trx1p and Nbp35p and reduced levels of Atp2p and Sod1p during heat shock. In conclusion, Hsp30 is necessary during lethal heat stress, for the maintenance of Pma1p and a set of thermal stress response functions.
Lamitina, S Todd; Strange, Kevin
2005-02-01
All cells adapt to hypertonic stress by regulating their volume after shrinkage, by accumulating organic osmolytes, and by activating mechanisms that protect against and repair hypertonicity-induced damage. In mammals and nematodes, inhibition of signaling from the DAF-2/IGF-1 insulin receptor activates the DAF-16/FOXO transcription factor, resulting in increased life span and resistance to some types of stress. We tested the hypothesis that inhibition of insulin signaling in Caenorhabditis elegans also increases hypertonic stress resistance. Genetic inhibition of DAF-2 or its downstream target, the AGE-1 phosphatidylinositol 3-kinase, confers striking resistance to a normally lethal hypertonic shock in a DAF-16-dependent manner. However, insulin signaling is not inhibited by or required for adaptation to hypertonic conditions. Microarray studies have identified 263 genes that are transcriptionally upregulated by DAF-16 activation. We identified 14 DAF-16-upregulated genes by RNA interference screening that are required for age-1 hypertonic stress resistance. These genes encode heat shock proteins, proteins of unknown function, and trehalose synthesis enzymes. Trehalose levels were elevated approximately twofold in age-1 mutants, but this increase was insufficient to prevent rapid hypertonic shrinkage. However, age-1 animals unable to synthesize trehalose survive poorly under hypertonic conditions. We conclude that increased expression of proteins that protect eukaryotic cells against environmental stress and/or repair stress-induced molecular damage confers hypertonic stress resistance in C. elegans daf-2/age-1 mutants. Elevated levels of solutes such as trehalose may also function in a cytoprotective manner. Our studies provide novel insights into stress resistance in animal cells and a foundation for new studies aimed at defining molecular mechanisms underlying these essential processes.
NASA Astrophysics Data System (ADS)
Tasselli, Stefano; Ballin, Francesca; Franchi, Nicola; Fabbri, Elena; Ballarin, Loriano
2017-03-01
Environmental stress conditions are ultimately related to the induction of oxidative stress in organisms, as a consequence of an increased production of reactive oxygen species (ROS). This could be exploited to study sub-lethal effects induced by the environment in the organisms. In the present work, we evaluate the possibility to use the colonial ascidian Botryllus schlosseri as a bioindicator, to assess the environmental quality in the Lagoon of Venice. Three colony batches were immersed, for 22 days, at two sites (1 and 2) with different grades of hydrodynamics and anthropogenic impact and physico-chemical features of seawater; a control batch was kept in a large tank with continuous seawater flow at the Marine Station of the Department of Biology, University of Padova, in Chioggia (site 3). Seawater at site 2 had higher pH and temperature than site 1. Colonies were then retrieved, their mRNA was extracted and the level of transcription of genes involved in oxidative stress response (glutathione synthase, γ-glutamyl-cysteine ligase, modulatory subunit, two isoforms of glutathione peroxidases and Cu/Zn superoxide dismutase) was evaluated. In colonies from sites 1 and 2, most genes showed significantly increased transcriptional levels with respect to control values. Spectrophotometric analyses of colony homogenates revealed that the enzymatic activity of superoxide dismutase and catalase was higher in colonies from site 2 as compared to site 1, allowing us to speculate that colonies in site 2 were under higher stress level than those in site 1. Overall, we can conclude that B. schlosseri seems a good indicator of the ecological status of the Lagoon environment, within a range of pH and temperature in which colonies are used to live.
Haruta, Miyoshi; Sussman, Michael R
2012-03-01
The plasma membrane proton gradient is an essential feature of plant cells. In Arabidopsis (Arabidopsis thaliana), this gradient is generated by the plasma membrane proton pump encoded by a family of 11 genes (abbreviated as AHA, for Arabidopsis H(+)-ATPase), of which AHA1 and AHA2 are the two most predominantly expressed in seedlings and adult plants. Although double knockdown mutant plants containing T-DNA insertions in both genes are embryonic lethal, under ideal laboratory growth conditions, single knockdown mutant plants with a 50% reduction in proton pump concentration complete their life cycle without any observable growth alteration. However, when grown under conditions that induce stress on the plasma membrane protonmotive force (PMF), such as high external potassium to reduce the electrical gradient or high external pH to reduce the proton chemical gradient, aha2 mutant plants show a growth retardation compared with wild-type plants. In this report, we describe the results of studies that examine in greater detail AHA2's specific role in maintaining the PMF during seedling growth. By comparing the wild type and aha2 mutants, we have measured the effects of a reduced PMF on root and hypocotyl growth, ATP-induced skewed root growth, and rapid cytoplasmic calcium spiking. In addition, genome-wide gene expression profiling revealed the up-regulation of potassium transporters in aha2 mutants, indicating, as predicted, a close link between the PMF and potassium uptake at the plasma membrane. Overall, this characterization of aha2 mutants provides an experimental and theoretical framework for investigating growth and signaling processes that are mediated by PMF-coupled energetics at the cell membrane.
Echigoya, Yusuke; Lim, Kenji Rowel Q; Trieu, Nhu; Bao, Bo; Miskew Nichols, Bailey; Vila, Maria Candida; Novak, James S; Hara, Yuko; Lee, Joshua; Touznik, Aleksander; Mamchaoui, Kamel; Aoki, Yoshitsugu; Takeda, Shin'ichi; Nagaraju, Kanneboyina; Mouly, Vincent; Maruyama, Rika; Duddy, William; Yokota, Toshifumi
2017-11-01
Duchenne muscular dystrophy (DMD), the most common lethal genetic disorder, is caused by mutations in the dystrophin (DMD) gene. Exon skipping is a therapeutic approach that uses antisense oligonucleotides (AOs) to modulate splicing and restore the reading frame, leading to truncated, yet functional protein expression. In 2016, the US Food and Drug Administration (FDA) conditionally approved the first phosphorodiamidate morpholino oligomer (morpholino)-based AO drug, eteplirsen, developed for DMD exon 51 skipping. Eteplirsen remains controversial with insufficient evidence of its therapeutic effect in patients. We recently developed an in silico tool to design antisense morpholino sequences for exon skipping. Here, we designed morpholino AOs targeting DMD exon 51 using the in silico tool and quantitatively evaluated the effects in immortalized DMD muscle cells in vitro. To our surprise, most of the newly designed morpholinos induced exon 51 skipping more efficiently compared with the eteplirsen sequence. The efficacy of exon 51 skipping and rescue of dystrophin protein expression were increased by up to more than 12-fold and 7-fold, respectively, compared with the eteplirsen sequence. Significant in vivo efficacy of the most effective morpholino, determined in vitro, was confirmed in mice carrying the human DMD gene. These findings underscore the importance of AO sequence optimization for exon skipping. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration.
Zhang, Pengpeng; Liang, Xinrong; Shan, Tizhong; Jiang, Qinyang; Deng, Changyan; Zheng, Rong; Kuang, Shihuan
The serine/threonine kinase mammalian target of rapamycin (mTOR) is a key regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive deletion of Mtor gene results in embryonic lethality, the function of mTOR in muscle stem cells (satellite cells) and skeletal muscle regeneration remains to be determined. In this study, we established a satellite cell specific Mtor conditional knockout (cKO) mouse model by crossing Pax7(CreER) and Mtor(flox/flox) mice. Skeletal muscle regeneration after injury was severely compromised in the absence of Mtor, indicated by increased number of necrotic myofibers infiltrated by Evans blue dye, and reduced number and size of regenerated myofibers in the Mtor cKO mice compared to wild type (WT) littermates. To dissect the cellular mechanism, we analyzed satellite cell-derived primary myoblasts grown on single myofibers or adhered to culture plates. The Mtor cKO myoblasts exhibited defective proliferation and differentiation kinetics when compared to myoblasts derived from WT littermates. At the mRNA and protein levels, the Mtor cKO myoblasts expressed lower levels of key myogenic determinant genes Pax7, Myf5, Myod, Myog than did the WT myoblasts. These results suggest that mTOR is essential for satellite cell function and skeletal muscle regeneration through controlling the expression of myogenic genes. Copyright © 2015 Elsevier Inc. All rights reserved.
Hurtado, Alicia; Real, Francisca M; Palomino, Rogelio; Carmona, Francisco David; Burgos, Miguel; Jiménez, Rafael; Barrionuevo, Francisco J
2018-01-01
MicroRNAs are frequently organized into polycistronic clusters whose transcription is controlled by a single promoter. The miR-17-92 cluster is expressed in most embryonic and postnatal organs. It is a potent oncogene associated to several types of cancer and it is involved in several important developmental processes. In the testis, expression of the miR-17-92 cluster in the germ cells is necessary to maintain normal spermatogenesis. This cluster is also expressed in Sertoli cells (the somatic cells of the seminiferous tubules), which require miRNAs for correct cell development and survival. To study the possible role of miR-17-92 in Sertoli cell development and function and, in order to overcome the postnatal lethality of miR-17-92-/ mice, we conditionally deleted it in embryonic Sertoli cells shortly after the sex determination stage using an Amh-Cre allele. Mutant mice developed apparently normal testes and were fertile, but their testis transcriptomes contained hundreds of moderately deregulated genes, indicating that testis homeostasis is tightly controlled in mammals and that miR-17-92 expression in Sertoli cells contribute to maintain normal gene expression levels, but is unnecessary for testis development and function. Our results show that significant deregulation of hundreds of genes might have no functional consequences.
Inner retinal dystrophy in a patient with biallelic sequence variants in BRAT1.
Oatts, Julius T; Duncan, Jacque L; Hoyt, Creig S; Slavotinek, Anne M; Moore, Anthony T
2017-12-01
Mutations in the BRCA1-associated protein required for the ataxia telangiectasia mutated (ATM) activation-1 (BRAT1) gene cause lethal neonatal rigidity and multifocal seizure syndrome characterized by rigidity and intractable seizures and a milder phenotype with intellectual disability, seizures, nonprogressive cerebellar ataxia or dyspraxia, and cerebellar atrophy. To date, nystagmus, cortical visual impairment, impairment of central vision, optic nerve hypoplasia, and optic atrophy have been described in this condition. This article describes the retinal findings in a patient with biallelic deleterious sequence variants in BRAT1. Case report of a child with biallelic sequence variants in the BRAT1 gene. This patient had developmental delay, microcephaly, nystagmus, and esotropia, and full-field electroretinography (ERG) revealed an inner retinal dystrophy. She was found on exome sequencing to have compound heterozygous sequence variants in the BRAT1 gene: one maternally inherited frameshift variant (c.294dupA, predicting p.Leu99Thrfs*92), which has previously been reported, and one paternally inherited novel missense variant (c.803G>A, p.Arg268His), which is likely to affect protein function. Biallelic sequence variants in BRAT1 have been reported to cause a variety of ocular and systemic manifestations, but to our knowledge, this is the first report of inner retinal dysfunction manifest as selective loss of full-field ERG scotopic and photopic b-wave amplitudes.
Targeted deletion of p97 (VCP/CDC48) in mouse results in early embryonic lethality.
Müller, J M M; Deinhardt, K; Rosewell, I; Warren, G; Shima, D T
2007-03-09
The highly conserved AAA ATPase p97 (VCP/CDC48) has well-established roles in cell cycle progression, proteasome degradation and membrane dynamics. Gene disruption in Saccromyces cerevisiae, Drosophila melanogaster and Trypanosoma brucei demonstrated that p97 is essential in unicellular and multicellular organisms. To explore the requirement for p97 in mammalian cell function and embryogenesis, we disrupted the p97 locus by gene targeting. Heterozygous p97+/- mice were indistinguishable from their wild-type littermates, whereas homozygous mutants did not survive to birth and died at a peri-implantation stage. These results show that p97 is an essential gene for early mouse development.
Killing wolves to prevent predation on livestock may protect one farm but harm neighbors.
Santiago-Avila, Francisco J; Cornman, Ari M; Treves, Adrian
2018-01-01
Large carnivores, such as gray wolves, Canis lupus, are difficult to protect in mixed-use landscapes because some people perceive them as dangerous and because they sometimes threaten human property and safety. Governments may respond by killing carnivores in an effort to prevent repeated conflicts or threats, although the functional effectiveness of lethal methods has long been questioned. We evaluated two methods of government intervention following independent events of verified wolf predation on domestic animals (depredation) in the Upper Peninsula of Michigan, USA between 1998-2014, at three spatial scales. We evaluated two intervention methods using log-rank tests and conditional Cox recurrent event, gap time models based on retrospective analyses of the following quasi-experimental treatments: (1) selective killing of wolves by trapping near sites of verified depredation, and (2) advice to owners and haphazard use of non-lethal methods without wolf-killing. The government did not randomly assign treatments and used a pseudo-control (no removal of wolves was not a true control), but the federal permission to intervene lethally was granted and rescinded independent of events on the ground. Hazard ratios suggest lethal intervention was associated with an insignificant 27% lower risk of recurrence of events at trapping sites, but offset by an insignificant 22% increase in risk of recurrence at sites up to 5.42 km distant in the same year, compared to the non-lethal treatment. Our results do not support the hypothesis that Michigan's use of lethal intervention after wolf depredations was effective for reducing the future risk of recurrence in the vicinities of trapping sites. Examining only the sites of intervention is incomplete because neighbors near trapping sites may suffer the recurrence of depredations. We propose two new hypotheses for perceived effectiveness of lethal methods: (a) killing predators may be perceived as effective because of the benefits to a small minority of farmers, and (b) if neighbors experience side-effects of lethal intervention such as displaced depredations, they may perceive the problem growing and then demand more lethal intervention rather than detecting problems spreading from the first trapping site. Ethical wildlife management guided by the "best scientific and commercial data available" would suggest suspending the standard method of trapping wolves in favor of non-lethal methods (livestock guarding dogs or fladry) that have been proven effective in preventing livestock losses in Michigan and elsewhere.
Clapp, Caitlin; Portt, Liam; Khoury, Chamel; Sheibani, Sara; Eid, Rawan; Greenwood, Matthew; Vali, Hojatollah; Mandato, Craig A.; Greenwood, Michael T.
2012-01-01
Genetically programmed cell death (PCD) mechanisms, including apoptosis, are important for the survival of metazoans since it allows, among things, the removal of damaged cells that interfere with normal function. Cell death due to PCD is observed in normal processes such as aging and in a number of pathophysiologies including hypoxia (common causes of heart attacks and strokes) and subsequent tissue reperfusion. Conversely, the loss of normal apoptotic responses is associated with the development of tumors. So far, limited success in preventing unwanted PCD has been reported with current therapeutic approaches despite the fact that inhibitors of key apoptotic inducers such as caspases have been developed. Alternative approaches have focused on mimicking anti-apoptotic processes observed in cells displaying increased resistance to apoptotic stimuli. Hormesis and pre-conditioning are commonly observed cellular strategies where sub-lethal levels of pro-apoptotic stimuli lead to increased resistance to higher or lethal levels of stress. Increased expression of anti-apoptotic sequences is a common mechanism mediating these protective effects. The relevance of the latter observation is exemplified by the observation that transgenic mice overexpressing anti-apoptotic genes show significant reductions in tissue damage following ischemia. Thus strategies aimed at increasing the levels of anti-apoptotic proteins, using gene therapy or cell penetrating recombinant proteins are being evaluated as novel therapeutics to decrease cell death following acute periods of cell death inducing stress. In spite of its functional and therapeutic importance, more is known regarding the processes involved in apoptosis than anti-apoptosis. The genetically tractable yeast Saccharomyces cerevisiae has emerged as an exceptional model to study multiple aspects of PCD including the mitochondrial mediated apoptosis observed in metazoans. To increase our knowledge of the process of anti-apoptosis, we screened a human heart cDNA expression library in yeast cells undergoing PCD due to the conditional expression of a mammalian pro-apoptotic Bax cDNA. Analysis of the multiple Bax suppressors identified revealed several previously known as well as a large number of clones representing potential novel anti-apoptotic sequences. The focus of this review is to report on recent achievements in the use of humanized yeast in genetic screens to identify novel stress-induced PCD suppressors, supporting the use of yeast as a unicellular model organism to elucidate anti-apoptotic and cell survival mechanisms. PMID:22708116
Arabidopsis thaliana DNA gyrase is targeted to chloroplasts and mitochondria.
Wall, Melisa K; Mitchenall, Lesley A; Maxwell, Anthony
2004-05-18
DNA gyrase is the bacterial DNA topoisomerase (topo) that supercoils DNA by using the free energy of ATP hydrolysis. The enzyme, an A(2)B(2) tetramer encoded by the gyrA and gyrB genes, catalyses topological changes in DNA during replication and transcription, and is the only topo that is able to introduce negative supercoils. Gyrase is essential in bacteria and apparently absent from eukaryotes and is, consequently, an important target for antibacterial agents (e.g., quinolones and coumarins). We have identified four putative gyrase genes in the model plant Arabidopsis thaliana; one gyrA and three gyrB homologues. DNA gyrase protein A (GyrA) has a dual translational initiation site targeting the mature protein to both chloroplasts and mitochondria, and there are individual targeting sequences for two of the DNA gyrase protein B (GyrB) homologues. N-terminal fusions of the organellar targeting sequences to GFPs support the hypothesis that one enzyme is targeted to the chloroplast and another to the mitochondrion, which correlates with supercoiling activity in isolated organelles. Treatment of seedlings and cultured cells with gyrase-specific drugs leads to growth inhibition. Knockout of A. thaliana gyrA is embryo-lethal whereas knockouts in the gyrB genes lead to seedling-lethal phenotypes or severely stunted growth and development. The A. thaliana genes have been cloned in Escherichia coli and found to complement gyrase temperature-sensitive strains. This report confirms the existence of DNA gyrase in eukaryotes and has important implications for drug targeting, organelle replication, and the evolution of topos in plants.
Jantzen, Carrie E.; Annunziato, Kate A.; Bugel, Sean M.; Cooper, Keith R.
2016-01-01
Polyfluorinated compounds (PFC) are a class of anthropogenic, persistent and toxic chemicals. PFCs are detected worldwide and consist of fluorinated carbon chains of varying length, terminal groups, and industrial uses. Previous zebrafish studies in the literature as well as our own studies have shown that exposure to these chemicals at a low range of concentrations (0.02 µM – 2.0 µM; 20–2000 ppb) resulted in chemical specific developmental defects and reduced post hatch survival. It was hypothesized that sub-lethal embryonic exposure to perfluorooctanesulfonic acid (PFOS), perfluorononanoic acid (PFNA), or perfluorooctanoic acid (PFOA) would result in different responses with regard to morphometric, behavior, and gene expression in both yolk sac fry and larval zebrafish. Zebrafish were exposed to PFOS, PFOA, and PFNA (0.02, 0.2, 2.0 µM) for the first five days post fertilization (dpf) and analyzed for morphometrics (5 dpf, 14 dpf), targeted gene expression (5 dpf, 14 dpf), and locomotive behavior (14 dpf). All three PFCs commonly resulted in a decrease in total body length, increased tfc3a (muscle development) expression and decreased ap1s (protein transport) expression at 5dpf, and hyperactive locomotor activity 14 dpf. All other endpoints measured at both life-stage time points varied between each of the PFCs. PFOS, PFNA, and PFOA exposure resulted in significantly altered responses in terms of morphometric, locomotion, and gene expression endpoints, which could be manifested in field exposed teleosts. PMID:27058923
Chau, Johnnie; Kulnane, Laura Shapiro; Salz, Helen K.
2012-01-01
Drosophila ovarian germ cells require Sex-lethal (Sxl) to exit from the stem cell state and to enter the differentiation pathway. Sxl encodes a female-specific RNA binding protein and in somatic cells serves as the developmental switch gene for somatic sex determination and X-chromosome dosage compensation. None of the known Sxl target genes are required for germline differentiation, leaving open the question of how Sxl promotes the transition from stem cell to committed daughter cell. We address the mechanism by which Sxl regulates this transition through the identification of nanos as one of its target genes. Previous studies have shown that Nanos protein is necessary for GSC self-renewal and is rapidly down-regulated in the daughter cells fated to differentiate in the adult ovary. We find that this dynamic expression pattern is limited to female germ cells and is under Sxl control. In the absence of Sxl, or in male germ cells, Nanos protein is continuously expressed. Furthermore, this female-specific expression pattern is dependent on the presence of canonical Sxl binding sites located in the nanos 3′ untranslated region. These results, combined with the observation that nanos RNA associates with the Sxl protein in ovarian extracts and loss and gain of function studies, suggest that Sxl enables the switch from germline stem cell to committed daughter cell by posttranscriptional down-regulation of nanos expression. These findings connect sexual identity to the stem cell self-renewal/differentiation decision and highlight the importance of posttranscriptional gene regulatory networks in controlling stem cell behavior. PMID:22645327
Chau, Johnnie; Kulnane, Laura Shapiro; Salz, Helen K
2012-06-12
Drosophila ovarian germ cells require Sex-lethal (Sxl) to exit from the stem cell state and to enter the differentiation pathway. Sxl encodes a female-specific RNA binding protein and in somatic cells serves as the developmental switch gene for somatic sex determination and X-chromosome dosage compensation. None of the known Sxl target genes are required for germline differentiation, leaving open the question of how Sxl promotes the transition from stem cell to committed daughter cell. We address the mechanism by which Sxl regulates this transition through the identification of nanos as one of its target genes. Previous studies have shown that Nanos protein is necessary for GSC self-renewal and is rapidly down-regulated in the daughter cells fated to differentiate in the adult ovary. We find that this dynamic expression pattern is limited to female germ cells and is under Sxl control. In the absence of Sxl, or in male germ cells, Nanos protein is continuously expressed. Furthermore, this female-specific expression pattern is dependent on the presence of canonical Sxl binding sites located in the nanos 3' untranslated region. These results, combined with the observation that nanos RNA associates with the Sxl protein in ovarian extracts and loss and gain of function studies, suggest that Sxl enables the switch from germline stem cell to committed daughter cell by posttranscriptional down-regulation of nanos expression. These findings connect sexual identity to the stem cell self-renewal/differentiation decision and highlight the importance of posttranscriptional gene regulatory networks in controlling stem cell behavior.
Hermann, Greg J.; King, Edward J.; Shaw, Janet M.
1997-01-01
In Saccharomyces cerevisiae, the growing bud inherits a portion of the mitochondrial network from the mother cell soon after it emerges. Although this polarized transport of mitochondria is thought to require functions of the cytoskeleton, there are conflicting reports concerning the nature of the cytoskeletal element involved. Here we report the isolation of a yeast mutant, mdm20, in which both mitochondrial inheritance and actin cables (bundles of actin filaments) are disrupted. The MDM20 gene encodes a 93-kD polypeptide with no homology to other characterized proteins. Extra copies of TPM1, a gene encoding the actin filament–binding protein tropomyosin, suppress mitochondrial inheritance defects and partially restore actin cables in mdm20Δ cells. Synthetic lethality is also observed between mdm20 and tpm1 mutant strains. Overexpression of a second yeast tropomyosin, Tpm2p, rescues mutant phenotypes in the mdm20 strain to a lesser extent. Together, these results provide compelling evidence that mitochondrial inheritance in yeast is an actin-mediated process. MDM20 and TPM1 also exhibit the same pattern of genetic interactions; mutations in MDM20 are synthetically lethal with mutations in BEM2 and MYO2 but not SAC6. Although MDM20 and TPM1 are both required for the formation and/or stabilization of actin cables, mutations in these genes disrupt mitochondrial inheritance and nuclear segregation to different extents. Thus, Mdm20p and Tpm1p may act in vivo to establish molecular and functional heterogeneity of the actin cytoskeleton. PMID:9105043
Gerbaba, Teklu K.; Gupta, Pratyush; Rioux, Kevin; Hansen, Dave
2015-01-01
Giardia duodenalis is the most common cause of parasitic diarrhea worldwide and a well-established risk factor for postinfectious irritable bowel syndrome. We hypothesized that Giardia-induced disruptions in host-microbiota interactions may play a role in the pathogenesis of giardiasis and in postgiardiasis disease. Functional changes induced by Giardia in commensal bacteria and the resulting effects on Caenorhabditis elegans were determined. Although Giardia or bacteria alone did not affect worm viability, combining commensal Escherichia coli bacteria with Giardia became lethal to C. elegans. Giardia also induced killing of C. elegans with attenuated Citrobacter rodentium espF and map mutant strains, human microbiota from a healthy donor, and microbiota from inflamed colonic sites of ulcerative colitis patient. In contrast, combinations of Giardia with microbiota from noninflamed sites of the same patient allowed for worm survival. The synergistic lethal effects of Giardia and E. coli required the presence of live bacteria and were associated with the facilitation of bacterial colonization in the C. elegans intestine. Exposure to C. elegans and/or Giardia altered the expression of 172 genes in E. coli. The genes affected by Giardia included hydrogen sulfide biosynthesis (HSB) genes, and deletion of a positive regulator of HSB genes, cysB, was sufficient to kill C. elegans even in the absence of Giardia. Our findings indicate that Giardia induces functional changes in commensal bacteria, possibly making them opportunistic pathogens, and alters host-microbe homeostatic interactions. This report describes the use of a novel in vivo model to assess the toxicity of human microbiota. PMID:25573177
Deng, Huai; Cai, Weili; Wang, Chao; Lerach, Stephanie; Delattre, Marion; Girton, Jack; Johansen, Jørgen; Johansen, Kristen M.
2010-01-01
The essential JIL-1 histone H3S10 kinase is a key regulator of chromatin structure that functions to maintain euchromatic domains while counteracting heterochromatization and gene silencing. In the absence of the JIL-1 kinase, two of the major heterochromatin markers H3K9me2 and HP1a spread in tandem to ectopic locations on the chromosome arms. Here we address the role of the third major heterochromatin component, the zinc-finger protein Su(var)3-7. We show that the lethality but not the chromosome morphology defects associated with the null JIL-1 phenotype to a large degree can be rescued by reducing the dose of the Su(var)3-7 gene and that Su(var)3-7 and JIL-1 loss-of-function mutations have an antagonistic and counterbalancing effect on position-effect variegation (PEV). Furthermore, we show that in the absence of JIL-1 kinase activity, Su(var)3-7 gets redistributed and upregulated on the chromosome arms. Reducing the dose of the Su(var)3-7 gene dramatically decreases this redistribution; however, the spreading of H3K9me2 to the chromosome arms was unaffected, strongly indicating that ectopic Su(var)3-9 activity is not a direct cause of lethality. These observations suggest a model where Su(var)3-7 functions as an effector downstream of Su(var)3-9 and H3K9 dimethylation in heterochromatic spreading and gene silencing that is normally counteracted by JIL-1 kinase activity. PMID:20457875