Tissue engineering therapy for cardiovascular disease.
Nugent, Helen M; Edelman, Elazer R
2003-05-30
The present treatments for the loss or failure of cardiovascular function include organ transplantation, surgical reconstruction, mechanical or synthetic devices, or the administration of metabolic products. Although routinely used, these treatments are not without constraints and complications. The emerging and interdisciplinary field of tissue engineering has evolved to provide solutions to tissue creation and repair. Tissue engineering applies the principles of engineering, material science, and biology toward the development of biological substitutes that restore, maintain, or improve tissue function. Progress has been made in engineering the various components of the cardiovascular system, including blood vessels, heart valves, and cardiac muscle. Many pivotal studies have been performed in recent years that may support the move toward the widespread application of tissue-engineered therapy for cardiovascular diseases. The studies discussed include endothelial cell seeding of vascular grafts, tissue-engineered vascular conduits, generation of heart valve leaflets, cardiomyoplasty, genetic manipulation, and in vitro conditions for optimizing tissue-engineered cardiovascular constructs.
Díaz-Zuccarini, V.; Narracott, A.J.; Burriesci, G.; Zervides, C.; Rafiroiu, D.; Jones, D.; Hose, D.R.; Lawford, P.V.
2009-01-01
This paper describes the use of diverse software tools in cardiovascular applications. These tools were primarily developed in the field of engineering and the applications presented push the boundaries of the software to address events related to venous and arterial valve closure, exploration of dynamic boundary conditions or the inclusion of multi-scale boundary conditions from protein to organ levels. The future of cardiovascular research and the challenges that modellers and clinicians face from validation to clinical uptake are discussed from an end-user perspective. PMID:19487202
Díaz-Zuccarini, V; Narracott, A J; Burriesci, G; Zervides, C; Rafiroiu, D; Jones, D; Hose, D R; Lawford, P V
2009-07-13
This paper describes the use of diverse software tools in cardiovascular applications. These tools were primarily developed in the field of engineering and the applications presented push the boundaries of the software to address events related to venous and arterial valve closure, exploration of dynamic boundary conditions or the inclusion of multi-scale boundary conditions from protein to organ levels. The future of cardiovascular research and the challenges that modellers and clinicians face from validation to clinical uptake are discussed from an end-user perspective.
Yang, Chao; Sodian, Ralf; Fu, Ping; Lüders, Cora; Lemke, Thees; Du, Jing; Hübler, Michael; Weng, Yuguo; Meyer, Rudolf; Hetzer, Roland
2006-01-01
One approach to tissue engineering has been the development of in vitro conditions for the fabrication of functional cardiovascular structures intended for implantation. In this experiment, we developed a pulsatile flow system that provides biochemical and biomechanical signals in order to regulate autologous, human patch-tissue development in vitro. We constructed a biodegradable patch scaffold from porous poly-4-hydroxy-butyrate (P4HB; pore size 80 to 150 microm). The scaffold was seeded with pediatric aortic cells. The cell-seeded patch constructs were placed in a self-developed bioreactor for 7 days to observe potential tissue formation under dynamic cell culture conditions. As a control, cell-seeded scaffolds were not conditioned in the bioreactor system. After maturation in vitro, the analysis of the tissue engineered constructs included biochemical, biomechanical, morphologic, and immunohistochemical examination. Macroscopically, all tissue engineered constructs were covered by cells. After conditioning in the bioreactor, the cells were mostly viable, had grown into the pores, and had formed tissue on the patch construct. Electron microscopy showed confluent smooth surfaces. Additionally, we demonstrated the capacity to generate collagen and elastin under in vitro pulsatile flow conditions in biochemical examination. Biomechanical testing showed mechanical properties of the tissue engineered human patch tissue without any statistical differences in strength or resistance to stretch between the static controls and the conditioned patches. Immunohistochemical examination stained positive for alpha smooth muscle actin, collagen type I, and fibronectin. There was minor tissue formation in the nonconditioned control samples. Porous P4HB may be used to fabricate a biodegradable patch scaffold. Human vascular cells attached themselves to the polymeric scaffold, and extracellular matrix formation was induced under controlled biomechanical and biodynamic stimuli in a self-developed pulsatile bioreactor system.
Argento, G; de Jonge, N; Söntjens, S H M; Oomens, C W J; Bouten, C V C; Baaijens, F P T
2015-06-01
The anisotropic collagen architecture of an engineered cardiovascular tissue has a major impact on its in vivo mechanical performance. This evolving collagen architecture is determined by initial scaffold microstructure and mechanical loading. Here, we developed and validated a theoretical and computational microscale model to quantitatively understand the interplay between scaffold architecture and mechanical loading on collagen synthesis and degradation. Using input from experimental studies, we hypothesize that both the microstructure of the scaffold and the loading conditions influence collagen turnover. The evaluation of the mechanical and topological properties of in vitro engineered constructs reveals that the formation of extracellular matrix layers on top of the scaffold surface influences the mechanical anisotropy on the construct. Results show that the microscale model can successfully capture the collagen arrangement between the fibers of an electrospun scaffold under static and cyclic loading conditions. Contact guidance by the scaffold, and not applied load, dominates the collagen architecture. Therefore, when the collagen grows inside the pores of the scaffold, pronounced scaffold anisotropy guarantees the development of a construct that mimics the mechanical anisotropy of the native cardiovascular tissue.
Trends in Tissue Engineering for Blood Vessels
Nemeno-Guanzon, Judee Grace; Lee, Soojung; Berg, Johan Robert; Jo, Yong Hwa; Yeo, Jee Eun; Nam, Bo Mi; Koh, Yong-Gon; Lee, Jeong Ik
2012-01-01
Over the years, cardiovascular diseases continue to increase and affect not only human health but also the economic stability worldwide. The advancement in tissue engineering is contributing a lot in dealing with this immediate need of alleviating human health. Blood vessel diseases are considered as major cardiovascular health problems. Although blood vessel transplantation is the most convenient treatment, it has been delimited due to scarcity of donors and the patient's conditions. However, tissue-engineered blood vessels are promising alternatives as mode of treatment for blood vessel defects. The purpose of this paper is to show the importance of the advancement on biofabrication technology for treatment of soft tissue defects particularly for vascular tissues. This will also provide an overview and update on the current status of tissue reconstruction especially from autologous stem cells, scaffolds, and scaffold-free cellular transplantable constructs. The discussion of this paper will be focused on the historical view of cardiovascular tissue engineering and stem cell biology. The representative studies featured in this paper are limited within the last decade in order to trace the trend and evolution of techniques for blood vessel tissue engineering. PMID:23251085
Bioreactor Technology in Cardiovascular Tissue Engineering
NASA Astrophysics Data System (ADS)
Mertsching, H.; Hansmann, J.
Cardiovascular tissue engineering is a fast evolving field of biomedical science and technology to manufacture viable blood vessels, heart valves, myocar-dial substitutes and vascularised complex tissues. In consideration of the specific role of the haemodynamics of human circulation, bioreactors are a fundamental of this field. The development of perfusion bioreactor technology is a consequence of successes in extracorporeal circulation techniques, to provide an in vitro environment mimicking in vivo conditions. The bioreactor system should enable an automatic hydrodynamic regime control. Furthermore, the systematic studies regarding the cellular responses to various mechanical and biochemical cues guarantee the viability, bio-monitoring, testing, storage and transportation of the growing tissue.
Engine-Operating Load Influences Diesel Exhaust Composition and Cardiopulmonary and Immune Responses
Campen, Matthew J.; Harrod, Kevin S.; Seagrave, JeanClare; Seilkop, Steven K.; Mauderly, Joe L.
2011-01-01
Background: The composition of diesel engine exhaust (DEE) varies by engine type and condition, fuel, engine operation, and exhaust after treatment such as particle traps. DEE has been shown to increase inflammation, susceptibility to infection, and cardiovascular responses in experimentally exposed rodents and humans. Engines used in these studies have been operated at idle, at different steady-state loads, or on variable-load cycles, but exposures are often reported only as the mass concentration of particulate matter (PM), and the effects of different engine loads and the resulting differences in DEE composition are unknown. Objectives: We assessed the impacts of load-related differences in DEE composition on models of inflammation, susceptibility to infection, and cardiovascular toxicity. Methods: We assessed inflammation and susceptibility to viral infection in C57BL/6 mice and cardiovascular toxicity in APOE–/– mice after being exposed to DEE generated from a single-cylinder diesel generator operated at partial or full load. Results: At the same PM mass concentration, partial load resulted in higher proportions of particle organic carbon content and a smaller particle size than did high load. Vapor-phase hydrocarbon content was greater at partial load. Compared with high-load DEE, partial-load DEE caused greater responses in heart rate and T-wave morphology, in terms of both magnitude and rapidity of onset of effects, consistent with previous findings that systemic effects may be driven largely by the gas phase of the exposure atmospheres. However, high-load DEE caused more lung inflammation and greater susceptibility to viral infection than did partial load. Conclusions: Differences in engine load, as well as other operating variables, are important determinants of the type and magnitude of responses to inhaled DEE. PM mass concentration alone is not a sufficient basis for comparing or combining results from studies using DEE generated under different conditions. PMID:21524982
Kucinska-Lipka, J; Gubanska, I; Janik, H; Sienkiewicz, M
2015-01-01
Electrospinning is a unique technique, which provides forming of polymeric scaffolds for soft tissue engineering, which include tissue scaffolds for soft tissues of the cardiovascular system. Such artificial soft tissues of the cardiovascular system may possess mechanical properties comparable to native vascular tissues. Electrospinning technique gives the opportunity to form fibres with nm- to μm-scale in diameter. The arrangement of obtained fibres and their surface determine the biocompatibility of the scaffolds. Polyurethanes (PUs) are being commonly used as a prosthesis of cardiovascular soft tissues due to their excellent biocompatibility, non-toxicity, elasticity and mechanical properties. PUs also possess fine spinning properties. The combination of a variety of PU properties with an electrospinning technique, conducted at the well tailored conditions, gives unlimited possibilities of forming novel polyurethane materials suitable for soft tissue scaffolds applied in cardiovascular tissue engineering. This paper can help researches to gain more widespread and deeper understanding of designing electrospinable PU materials, which may be used as cardiovascular soft tissue scaffolds. In this paper we focus on reagents used in PU synthesis designed to increase PU biocompatibility (polyols) and biodegradability (isocyanates). We also describe suggested surface modifications of electrospun PUs, and the direct influence of surface wettability on providing enhanced biocompatibility of scaffolds. We indicate a great influence of electrospinning parameters (voltage, flow rate, working distance) and used solvents (mostly DMF, THF and HFIP) on fibre alignment and diameter - what impacts the biocompatibility and hemocompatibility of such electrospun PU scaffolds. Moreover, we present PU modifications with natural polymers with novel approach applied in electrospinning of PU scaffolds. This work may contribute with further developing of novel electrospun PUs, which may be applied as soft tissue scaffolds of the cardiovascular system. Copyright © 2014. Published by Elsevier B.V.
Bioreactors as engineering support to treat cardiac muscle and vascular disease.
Massai, Diana; Cerino, Giulia; Gallo, Diego; Pennella, Francesco; Deriu, Marco A; Rodriguez, Andres; Montevecchi, Franco M; Bignardi, Cristina; Audenino, Alberto; Morbiducci, Umberto
2013-01-01
Cardiovascular disease is the leading cause of morbidity and mortality in the Western World. The inability of fully differentiated, load-bearing cardiovascular tissues to in vivo regenerate and the limitations of the current treatment therapies greatly motivate the efforts of cardiovascular tissue engineering to become an effective clinical strategy for injured heart and vessels. For the effective production of organized and functional cardiovascular engineered constructs in vitro, a suitable dynamic environment is essential, and can be achieved and maintained within bioreactors. Bioreactors are technological devices that, while monitoring and controlling the culture environment and stimulating the construct, attempt to mimic the physiological milieu. In this study, a review of the current state of the art of bioreactor solutions for cardiovascular tissue engineering is presented, with emphasis on bioreactors and biophysical stimuli adopted for investigating the mechanisms influencing cardiovascular tissue development, and for eventually generating suitable cardiovascular tissue replacements.
Tzatzalos, Evangeline; Abilez, Oscar J; Shukla, Praveen; Wu, Joseph C
2016-01-15
Engineered heart tissue has emerged as a personalized platform for drug screening. With the advent of induced pluripotent stem cell (iPSC) technology, patient-specific stem cells can be developed and expanded into an indefinite source of cells. Subsequent developments in cardiovascular biology have led to efficient differentiation of cardiomyocytes, the force-producing cells of the heart. iPSC-derived cardiomyocytes (iPSC-CMs) have provided potentially limitless quantities of well-characterized, healthy, and disease-specific CMs, which in turn has enabled and driven the generation and scale-up of human physiological and disease-relevant engineered heart tissues. The combined technologies of engineered heart tissue and iPSC-CMs are being used to study diseases and to test drugs, and in the process, have advanced the field of cardiovascular tissue engineering into the field of precision medicine. In this review, we will discuss current developments in engineered heart tissue, including iPSC-CMs as a novel cell source. We examine new research directions that have improved the function of engineered heart tissue by using mechanical or electrical conditioning or the incorporation of non-cardiomyocyte stromal cells. Finally, we discuss how engineered heart tissue can evolve into a powerful tool for therapeutic drug testing. Copyright © 2015 Elsevier B.V. All rights reserved.
Application of stem cells for cardiovascular grafts tissue engineering.
Wu, Kaihong; Liu, Ying Long; Cui, Bin; Han, Zhongchao
2006-06-01
Congenital and acquired heart diseases are leading causes of morbidity and mortality world-wide. Currently, the synthetic materials or bioprosthetic replacement devices for cardiovascular surgery are imperfect and subject patients to one or more ongoing risks including thrombosis, limited durability and need for reoperations due to lack of growth in children and young adults. Suitable replacement grafts should have appropriate characteristics, including resistance to infection, low immunogenicity, good biocompatability and thromboresistance, with appropriate mechanical and physiological properties. Tissue engineering is a new scientific field aiming at fabrication of living, autologous grafts having structure or function properties that can be used to restore, maintain or improve tissue function. The use of autologous stem cells in cardiovascular tissue engineering is quite promising due to their capacity of self-renewal, high proliferation, and differentiation into specialized progeny. Progress has been made in engineering the various components of the cardiovascular system, including myocardial constructs, heart valves, and vascular patches or conduits with autologous stem cells. This paper will review the current achievements in stem cell-based cardiovascular grafts tissue engineering, with an emphasis on its clinical or possible clinical use in cardiovascular surgery.
Optimization of nanoparticles for cardiovascular tissue engineering.
Izadifar, Mohammad; Kelly, Michael E; Haddadi, Azita; Chen, Xiongbiao
2015-06-12
Nano-particulate delivery systems have increasingly been playing important roles in cardiovascular tissue engineering. Properties of nanoparticles (e.g. size, polydispersity, loading capacity, zeta potential, morphology) are essential to system functions. Notably, these characteristics are regulated by fabrication variables, but in a complicated manner. This raises a great need to optimize fabrication process variables to ensure the desired nanoparticle characteristics. This paper presents a comprehensive experimental study on this matter, along with a novel method, the so-called Geno-Neural approach, to analyze, predict and optimize fabrication variables for desired nanoparticle characteristics. Specifically, ovalbumin was used as a protein model of growth factors used in cardiovascular tissue regeneration, and six fabrication variables were examined with regard to their influence on the characteristics of nanoparticles made from high molecular weight poly(lactide-co-glycolide). The six-factor five-level central composite rotatable design was applied to the conduction of experiments, and based on the experimental results, a geno-neural model was developed to determine the optimum fabrication conditions. For desired particle sizes of 150, 200, 250 and 300 nm, respectively, the optimum conditions to achieve the low polydispersity index, higher negative zeta potential and higher loading capacity were identified based on the developed geno-neural model and then evaluated experimentally. The experimental results revealed that the polymer and the external aqueous phase concentrations and their interactions with other fabrication variables were the most significant variables to affect the size, polydispersity index, zeta potential, loading capacity and initial burst release of the nanoparticles, while the electron microscopy images of the nanoparticles showed their spherical geometries with no sign of large pores or cracks on their surfaces. The release study revealed that the onset of the third phase of release can be affected by the polymer concentration. Circular dichroism spectroscopy indicated that ovalbumin structural integrity is preserved during the encapsulation process. Findings from this study would greatly contribute to the design of high molecular weight poly(lactide-co-glycolide) nanoparticles for prolonged release patterns in cardiovascular engineering.
Microgravity cultivation of cells and tissues
NASA Technical Reports Server (NTRS)
Freed, L. E.; Pellis, N.; Searby, N.; de Luis, J.; Preda, C.; Bordonaro, J.; Vunjak-Novakovic, G.
1999-01-01
In vitro studies of cells and tissues in microgravity, either simulated by cultivation conditions on earth or actual, during spaceflight, are expected to help identify mechanisms underlying gravity sensing and transduction in biological organisms. In this paper, we review rotating bioreactor studies of engineered skeletal and cardiovascular tissues carried out in unit gravity, a four month long cartilage tissue engineering study carried out aboard the Mir Space Station, and the ongoing laboratory development and testing of a system for cell and tissue cultivation aboard the International Space Station.
Big Data and Genome Editing Technology: A New Paradigm of Cardiovascular Genomics.
Krittanawong, Chayakrit; Sun, Tao; Herzog, Eyal
2017-01-01
Opinion Statements: Cardiovascular diseases (CVDs) encompass a range of conditions extending from congenital heart disease to acute coronary syndrome most of which are heterogenous in nature and some of them are multiple genetic loci. However, the pathogenesis of most CVDs remains incompletely understood. The advance in genome-editing technologies, an engineering process of DNA sequences at precise genomic locations, has enabled a new paradigm that human genome can be precisely modified to achieve a therapeutic effect. Genome-editing includes the correction of genetic variants that cause disease, the addition of therapeutic genes to specific sites in the genomic locations, and the removal of deleterious genes or genome sequences. Site-specific genome engineering can be used as nucleases (known as molecular scissors) including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) systems to provide remarkable opportunities for developing novel therapies in cardiovascular clinical care. Here we discuss genetic polymorphisms and mechanistic insights in CVDs with an emphasis on the impact of genome-editing technologies. The current challenges and future prospects for genomeediting technologies in cardiovascular medicine are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Osborne, Jeffrey R.; Alonsopérez Lanza, María Victoria; Desclaux, David Ferrer; Goswami, Nandu; González Alonso, Daniel Ventura; Moser, Maximilian; Grote, Vincent; Garcia-Cuadrado, Gloria; Perez-Poch, Antoni
2014-07-01
When an astronaut transitions from a low to high gravitational environment, fluid shifts from the head towards the feet resulting in orthostatic intolerance and syncope. Ground based experiments have shown that by stimulating the cardiovascular system via simple mental stressors, syncope can be delayed, potentially enabling astronauts to reach assistance before loss of consciousness. However, the effect of mental stressors on the stimulation of the cardiovascular system in gravitational environments different than that of Earth's is unknown. As such, this paper investigates the effects that mental stressors under various gravitational environments. To do this, a pilot study was performed in which two participants were flown on two separate parabolic flights that simulated hyper and hypogravity conditions. The plane used was an Aerobatic Single-Engine Cap-10B plane (twin seater), and each participant executed 11 parabolas. The participants were the winners of the Barcelona Zero-G Challenge 2011 organized by UPC Universitat Politècnica de Catalunya-BarcelonaTech and Aeroclub Barcelona-Sabadell. Measurements were made of the participants' hemodynamic and autonomic response throughout the parabolas, using a Chronocord: high precision HRV monitor. Comparisons of the baseline response without mental stressors, and the response with mental stressors during different gravitational loading conditions were made. It was observed that there is an increase in cardiovascular activity during hypo- and hyper-gravity when performing mental arithmetic. Our results show that the twin seater aerobatic single engine CAP-10B aicraft can provide changing gravitational loading conditions for enough periods to study changes in physiological systems.
Lucking, Andrew J; Lundbäck, Magnus; Barath, Stefan L; Mills, Nicholas L; Sidhu, Manjit K; Langrish, Jeremy P; Boon, Nicholas A; Pourazar, Jamshid; Badimon, Juan J; Gerlofs-Nijland, Miriam E; Cassee, Flemming R; Boman, Christoffer; Donaldson, Kenneth; Sandstrom, Thomas; Newby, David E; Blomberg, Anders
2011-04-26
In controlled human exposure studies, diesel engine exhaust inhalation impairs vascular function and enhances thrombus formation. The aim of the present study was to establish whether an exhaust particle trap could prevent these adverse cardiovascular effects in men. Nineteen healthy volunteers (mean age, 25±3 years) were exposed to filtered air and diesel exhaust in the presence or absence of a particle trap for 1 hour in a randomized, double-blind, 3-way crossover trial. Bilateral forearm blood flow and plasma fibrinolytic factors were assessed with venous occlusion plethysmography and blood sampling during intra-arterial infusion of acetylcholine, bradykinin, sodium nitroprusside, and verapamil. Ex vivo thrombus formation was determined with the use of the Badimon chamber. Compared with filtered air, diesel exhaust inhalation was associated with reduced vasodilatation and increased ex vivo thrombus formation under both low- and high-shear conditions. The particle trap markedly reduced diesel exhaust particulate number (from 150 000 to 300 000/cm(3) to 30 to 300/cm(3); P<0.001) and mass (320±10 to 7.2±2.0 μg/m(3); P<0.001), and was associated with increased vasodilatation, reduced thrombus formation, and an increase in tissue-type plasminogen activator release. Exhaust particle traps are a highly efficient method of reducing particle emissions from diesel engines. With a range of surrogate measures, the use of a particle trap prevents several adverse cardiovascular effects of exhaust inhalation in men. Given these beneficial effects on biomarkers of cardiovascular health, the widespread use of particle traps on diesel-powered vehicles may have substantial public health benefits and reduce the burden of cardiovascular disease.
Lozić, Maja; Greenwood, Michael; Šarenac, Olivera; Martin, Andrew; Hindmarch, Charles; Tasić, Tatjana; Paton, Julian; Murphy, David; Japundžić-Žigon, Nina
2014-01-01
Background and Purpose The paraventricular nucleus (PVN) of the hypothalamus is an important integrative site for neuroendocrine control of the circulation. We investigated the role of oxytocin receptors (OT receptors) in PVN in cardiovascular homeostasis. Experimental Approach Experiments were performed in conscious male Wistar rats equipped with a radiotelemetric device. The PVN was unilaterally co-transfected with an adenoviral vector (Ad), engineered to overexpress OT receptors, and an enhanced green fluorescent protein (eGFP) tag. Control groups: PVN was transfected with an Ad expressing eGFP alone or untransfected, sham rats (Wt). Recordings were obtained without and with selective blockade of OT receptors (OTX), during both baseline and stressful conditions. Baroreceptor reflex sensitivity (BRS) and cardiovascular short-term variability were evaluated using the sequence method and spectral methodology respectively. Key Results Under baseline conditions, rats overexpressing OT receptors (OTR) exhibited enhanced BRS and reduced BP variability compared to control groups. Exposure to stress increased BP, BP variability and HR in all rats. In control groups, but not in OTR rats, BRS decreased during stress. Pretreatment of OTR rats with OTX reduced BRS and enhanced BP and HR variability under baseline and stressful conditions. Pretreatment of Wt rats with OTX, reduced BRS and increased BP variability under baseline and stressful conditions, but only increased HR variability during stress. Conclusions and Implications OT receptors in PVN are involved in tonic neural control of BRS and cardiovascular short-term variability. The failure of this mechanism could critically contribute to the loss of autonomic control in cardiovascular disease. PMID:24834854
Reichardt, Anne; Polchow, Bianca; Shakibaei, Mehdi; Henrich, Wolfgang; Hetzer, Roland; Lueders, Cora
2013-01-01
Widespread use of human umbilical cord cells for cardiovascular tissue engineering requires production of large numbers of well-characterized cells under controlled conditions. In current research projects, the expansion of cells to be used to create a tissue construct is usually performed in static cell culture systems which are, however, often not satisfactory due to limitations in nutrient and oxygen supply. To overcome these limitations dynamic cell expansion in bioreactor systems under controllable conditions could be an important tool providing continuous perfusion for the generation of large numbers of viable pre-conditioned cells in a short time period. For this purpose cells derived from human umbilical cord arteries were expanded in a rotating bed system bioreactor for up to 9 days. For a comparative study, cells were cultivated under static conditions in standard culture devices. Our results demonstrated that the microenvironment in the perfusion bioreactor was more favorable than that of the standard cell culture flasks. Data suggested that cells in the bioreactor expanded 39 fold (38.7 ± 6.1 fold) in comparison to statically cultured cells (31.8 ± 3.0 fold). Large-scale production of cells in the bioreactor resulted in more than 3 x 108 cells from a single umbilical cord fragment within 9 days. Furthermore cell doubling time was lower in the bioreactor system and production of extracellular matrix components was higher. With this study, we present an appropriate method to expand human umbilical cord artery derived cells with high cellular proliferation rates in a well-defined bioreactor system under GMP conditions. PMID:23847691
Current progress in 3D printing for cardiovascular tissue engineering.
Mosadegh, Bobak; Xiong, Guanglei; Dunham, Simon; Min, James K
2015-03-16
3D printing is a technology that allows the fabrication of structures with arbitrary geometries and heterogeneous material properties. The application of this technology to biological structures that match the complexity of native tissue is of great interest to researchers. This mini-review highlights the current progress of 3D printing for fabricating artificial tissues of the cardiovascular system, specifically the myocardium, heart valves, and coronary arteries. In addition, how 3D printed sensors and actuators can play a role in tissue engineering is discussed. To date, all the work with building 3D cardiac tissues have been proof-of-principle demonstrations, and in most cases, yielded products less effective than other traditional tissue engineering strategies. However, this technology is in its infancy and therefore there is much promise that through collaboration between biologists, engineers and material scientists, 3D bioprinting can make a significant impact on the field of cardiovascular tissue engineering.
2004-10-07
Expedition 10 Commander Leroy Chiao undergoes physical testing on a mechanized tilt table at crew quarters in Baikonur, Kazakhstan, Friday, October 8, 2004, in preparation for launch with Flight Engineer and Soyuz Commander Salizhan Sharipov and Russian Space Forces Agency cosmonaut Yuri Shargin to the International Space Station on October 14. The tilt table is used to condition the crewmembers' cardiovascular system against the effects of weightlessness once on orbit. Photo Credit: (NASA/Bill Ingalls)
2004-10-07
Expedition 10 Commander Leroy Chiao, left, and Russian Space Forces cosmonaut Yuri Shargin undergo physical testing on a mechanized tilt table at their crew quarters in Baikonur, Kazakhstan, Friday, October 8, 2004, in preparation for launch with Flight Engineer and Soyuz Commander Salizhan Sharipov to the International Space Station on October 14. The tilt table is used to condition the crewmembers' cardiovascular system against the effects of weightlessness once in orbit. Photo Credit: (NASA/Bill Ingalls)
Cardiovascular Bio-Engineering: Current State of the Art.
Simon-Yarza, Teresa; Bataille, Isabelle; Letourneur, Didier
2017-04-01
Despite the introduction of new drugs and innovative devices contributing in the last years to improve patients' quality of life, morbidity and mortality from cardiovascular diseases remain high. There is an urgent need for addressing the underlying problem of the loss of cardiac or vascular tissues and therefore developing new therapies. Autologous vascular transplants are often limited by poor quality of donor sites and heart organ transplantation by donor shortage. Vascular and cardiac tissue engineering, whose aim is to repair or replace cardiovascular tissues by the use of cells, engineering and materials, as well as biochemical and physicochemical factors, appears in this scenario as a promising tool to repair the damaged hearts and vessels. We will present a general overview on the fundamentals in the area of cardiac and vascular tissue engineering as well as on the latest progresses and challenges.
Health Social Networks as Online Life Support Groups for Patients With Cardiovascular Diseases
Medina, Edhelmira Lima; Loques, Orlando; Mesquita, Cláudio Tinoco
2013-01-01
The number of patients who use the internet in search for information that might improve their health conditions has increased. Among them, those looking for virtual environments to share experiences, doubts, opinions, and emotions, and to foster relationships aimed at giving and getting support stand out. Therefore, there is an increasing need to assess how those environments can affect the patients' health. This study was aimed at identifying scientific studies on the proliferation and impact of virtual communities, known as health social networks or online support groups, directed to cardiovascular diseases, which might be useful to patients with certain conditions, providing them with information and emotional support. A systematic review of the literature was conducted with articles published from 2007 to 2012, related to cardiovascular diseases and collected from the following databases: PubMed; Association for Computing Machinery(ACM); and Institute of Electrical and Electronics Engineers (IEEE). Four articles meeting the inclusion criteria were selected. The results were interesting and relevant from the health viewpoint, identifying therapeutic benefits, such as provision of emotional support, greater compliance to treatment, and information sharing on diseases and on life experiences. PMID:24030085
Cox, David P.; Drury, Bertram E.; Gould, Timothy R.; Kavanagh, Terrance J.; Paulsen, Michael H.; Sheppard, Lianne; Simpson, Christopher D.; Stewart, James A.; Larson, Timothy V.; Kaufman, Joel D.
2014-01-01
Epidemiologic studies have linked diesel exhaust (DE) to cardiovascular and respiratory morbidity and mortality, as well as lung cancer. DE composition is known to vary with many factors, although it is unclear how this influences toxicity. We generated eight DE atmospheres by applying a 2×2×2 factorial design and altering three parameters in a controlled exposure facility: (1) engine load (27 vs 82 %), (2) particle aging (residence time ~5 s vs ~5 min prior to particle collection), and (3) oxidation (with or without ozonation during dilution). Selected exposure concentrations of both diesel exhaust particles (DEPs) and DE gases, DEP oxidative reactivity via DTT activity, and in vitro DEP toxicity in murine endothelial cells were measured for each DE atmosphere. Cell toxicity was assessed via measurement of cell proliferation (colony formation assay), cell viability (MTT assay), and wound healing (scratch assay). Differences in DE composition were observed as a function of engine load. The mean 1-nitropyrene concentration was 15 times higher and oxidative reactivity was two times higher for low engine load versus high load. There were no substantial differences in measured toxicity among the three DE exposure parameters. These results indicate that alteration of applied engine load shifts the composition and can modify the biological reactivity of DE. While engine conditions did not affect the selected in vitro toxicity measures, the change in oxidative reactivity suggests that toxicological studies with DE need to take into account engine conditions in characterizing biological effects. PMID:26539254
NASA Astrophysics Data System (ADS)
Cox, Christopher; Plesniak, Michael W.
2017-11-01
One of the most physiologically relevant factors within the cardiovascular system is the wall shear stress. The wall shear stress affects endothelial cells via mechanotransduction and atherosclerotic regions are strongly correlated with curvature and branching in the human vasculature, where the shear stress is both oscillatory and multidirectional. Also, the combined effect of curvature and pulsatility in cardiovascular flows produces unsteady vortices. In this work, our goal is to assess the correlation between multiple vortex pairs and wall shear stress. To accomplish this, we use an in-house high-order flux reconstruction Navier-Stokes solver to simulate pulsatile flow of a Newtonian blood-analog fluid through a rigid 180° curved artery model. We use a physiologically relevant flow rate and generate results using both fully developed and uniform entrance conditions, the latter motivated by the fact that flow upstream to a curved artery may not be fully developed. Under these two inflow conditions, we characterize the evolution of various vortex pairs and their subsequent effect on several wall shear stress metrics. Supported by GW Center for Biomimetics and Bioinspired Engineering.
Amniotic Fluid-Derived Stem Cells for Cardiovascular Tissue Engineering Applications
Petsche Connell, Jennifer; Camci-Unal, Gulden; Khademhosseini, Ali
2013-01-01
Recent research has demonstrated that a population of stem cells can be isolated from amniotic fluid removed by amniocentesis that are broadly multipotent and nontumorogenic. These amniotic fluid-derived stem cells (AFSC) could potentially provide an autologous cell source for treatment of congenital defects identified during gestation, particularly cardiovascular defects. In this review, the various methods of isolating, sorting, and culturing AFSC are compared, along with techniques for inducing differentiation into cardiac myocytes and endothelial cells. Although research has not demonstrated complete and high-yield cardiac differentiation, AFSC have been shown to effectively differentiate into endothelial cells and can effectively support cardiac tissue. Additionally, several tissue engineering and regenerative therapeutic approaches for the use of these cells in heart patches, injection after myocardial infarction, heart valves, vascularized scaffolds, and blood vessels are summarized. These applications show great promise in the treatment of congenital cardiovascular defects, and further studies of isolation, culture, and differentiation of AFSC will help to develop their use for tissue engineering, regenerative medicine, and cardiovascular therapies. PMID:23350771
3D Bioprinting and In Vitro Cardiovascular Tissue Modeling.
Jang, Jinah
2017-08-18
Numerous microfabrication approaches have been developed to recapitulate morphologically and functionally organized tissue microarchitectures in vitro; however, the technical and operational limitations remain to be overcome. 3D printing technology facilitates the building of a construct containing biomaterials and cells in desired organizations and shapes that have physiologically relevant geometry, complexity, and micro-environmental cues. The selection of biomaterials for 3D printing is considered one of the most critical factors to achieve tissue function. It has been reported that some printable biomaterials, having extracellular matrix-like intrinsic microenvironment factors, were capable of regulating stem cell fate and phenotype. In particular, this technology can control the spatial positions of cells, and provide topological, chemical, and complex cues, allowing neovascularization and maturation in the engineered cardiovascular tissues. This review will delineate the state-of-the-art 3D bioprinting techniques in the field of cardiovascular tissue engineering and their applications in translational medicine. In addition, this review will describe 3D printing-based pre-vascularization technologies correlated with implementing blood perfusion throughout the engineered tissue equivalent. The described engineering method may offer a unique approach that results in the physiological mimicry of human cardiovascular tissues to aid in drug development and therapeutic approaches.
3D Bioprinting and In Vitro Cardiovascular Tissue Modeling
Jang, Jinah
2017-01-01
Numerous microfabrication approaches have been developed to recapitulate morphologically and functionally organized tissue microarchitectures in vitro; however, the technical and operational limitations remain to be overcome. 3D printing technology facilitates the building of a construct containing biomaterials and cells in desired organizations and shapes that have physiologically relevant geometry, complexity, and micro-environmental cues. The selection of biomaterials for 3D printing is considered one of the most critical factors to achieve tissue function. It has been reported that some printable biomaterials, having extracellular matrix-like intrinsic microenvironment factors, were capable of regulating stem cell fate and phenotype. In particular, this technology can control the spatial positions of cells, and provide topological, chemical, and complex cues, allowing neovascularization and maturation in the engineered cardiovascular tissues. This review will delineate the state-of-the-art 3D bioprinting techniques in the field of cardiovascular tissue engineering and their applications in translational medicine. In addition, this review will describe 3D printing-based pre-vascularization technologies correlated with implementing blood perfusion throughout the engineered tissue equivalent. The described engineering method may offer a unique approach that results in the physiological mimicry of human cardiovascular tissues to aid in drug development and therapeutic approaches. PMID:28952550
Engineering three-dimensional cardiac microtissues for potential drug screening applications.
Wang, L; Huang, G; Sha, B; Wang, S; Han, Y L; Wu, J; Li, Y; Du, Y; Lu, T J; Xu, F
2014-01-01
Heart disease is one of the major global health issues. Despite rapid advances in cardiac tissue engineering, limited successful strategies have been achieved to cure cardiovascular diseases. This situation is mainly due to poor understanding of the mechanism of diverse heart diseases and unavailability of effective in vitro heart tissue models for cardiovascular drug screening. With the development of microengineering technologies, three-dimensional (3D) cardiac microtissue (CMT) models, mimicking 3D architectural microenvironment of native heart tissues, have been developed. The engineered 3D CMT models hold greater potential to be used for assessing effective drugs candidates than traditional two-dimensional cardiomyocyte culture models. This review discusses the development of 3D CMT models and highlights their potential applications for high-throughput screening of cardiovascular drug candidates.
Serpooshan, Vahid; Mahmoudi, Morteza
2015-02-13
Cell-based therapies are a recently established path for treating a wide range of human disease. Tissue engineering of contractile heart muscle for replacement therapy is among the most exciting and important of these efforts. However, current in vitro techniques of cultivating functional mature cardiac grafts have only been moderately successful due to the poor capability of traditional two-dimensional cell culture systems to recapitulate necessary in vivo conditions. In this issue, Kiefer et al introduce a laser-patterned nanostructured substrate (Al/Al2O3 nanowires) for efficient maintenance of oriented human cardiomyocytes, with great potential to open new roads to mass-production of contractile myocardial grafts for cardiovascular tissue engineering.
Micropatterned nanostructures: a bioengineered approach to mass-produce functional myocardial grafts
NASA Astrophysics Data System (ADS)
Serpooshan, Vahid; Mahmoudi, Morteza
2015-02-01
Cell-based therapies are a recently established path for treating a wide range of human disease. Tissue engineering of contractile heart muscle for replacement therapy is among the most exciting and important of these efforts. However, current in vitro techniques of cultivating functional mature cardiac grafts have only been moderately successful due to the poor capability of traditional two-dimensional cell culture systems to recapitulate necessary in vivo conditions. In this issue, Kiefer et al [1] introduce a laser-patterned nanostructured substrate (Al/Al2O3 nanowires) for efficient maintenance of oriented human cardiomyocytes, with great potential to open new roads to mass-production of contractile myocardial grafts for cardiovascular tissue engineering.
Heart Rate and Electrocardiography Monitoring in Mice
Ho, David; Zhao, Xin; Gao, Shumin; Hong, Chull; Vatner, Dorothy E.; Vatner, Stephen F.
2011-01-01
The majority of current cardiovascular research involves studies in genetically engineered mouse models. The measurement of heart rate is central to understanding cardiovascular control under normal conditions, with altered autonomic tone, superimposed stress or disease states, both in wild type mice as well as those with altered genes. Electrocardiography (ECG) is the “gold standard” using either hard wire or telemetry transmission. In addition, heart rate is measured or monitored from the frequency of the arterial pressure pulse or cardiac contraction, or by pulse oximetry. For each of these techniques, discussions of materials and methods, as well as advantages and limitations are covered. However, only the direct ECG monitoring will determine not only the precise heart rates but also whether the cardiac rhythm is normal or not. PMID:21743842
Shivakumar, V; Kandhare, A D; Rajmane, A R; Adil, M; Ghosh, P; Badgujar, L B; Saraf, M N; Bodhankar, S L
2014-03-01
Long-term cardiovascular complications in metabolic syndrome are a major cause of mortality and morbidity in India and forecasted estimates in this domain of research are scarcely reported in the literature. The aim of present investigation is to estimate the cardiovascular events associated with a representative Indian population of patients suffering from metabolic syndrome using United Kingdom Prospective Diabetes Study risk engine. Patient level data was collated from 567 patients suffering from metabolic syndrome through structured interviews and physician records regarding the input variables, which were entered into the United Kingdom Prospective Diabetes Study risk engine. The patients of metabolic syndrome were selected according to guidelines of National Cholesterol Education Program - Adult Treatment Panel III, modified National Cholesterol Education Program - Adult Treatment Panel III and International Diabetes Federation criteria. A projection for 10 simulated years was run on the engine and output was determined. The data for each patient was processed using the United Kingdom Prospective Diabetes Study risk engine to calculate an estimate of the forecasted value for the cardiovascular complications after a period of 10 years. The absolute risk (95% confidence interval) for coronary heart disease, fatal coronary heart disease, stroke and fatal stroke for 10 years was 3.79 (1.5-3.2), 9.6 (6.8-10.7), 7.91 (6.5-9.9) and 3.57 (2.3-4.5), respectively. The relative risk (95% confidence interval) for coronary heart disease, fatal coronary heart disease, stroke and fatal stroke was 17.8 (12.98-19.99), 7 (6.7-7.2), 5.9 (4.0-6.6) and 4.7 (3.2-5.7), respectively. Simulated projections of metabolic syndrome patients predict serious life-threatening cardiovascular consequences in the representative cohort of patients in western India.
Intrinsic Cell Stress is Independent of Organization in Engineered Cell Sheets.
van Loosdregt, Inge A E W; Dekker, Sylvia; Alford, Patrick W; Oomens, Cees W J; Loerakker, Sandra; Bouten, Carlijn V C
2018-06-01
Understanding cell contractility is of fundamental importance for cardiovascular tissue engineering, due to its major impact on the tissue's mechanical properties as well as the development of permanent dimensional changes, e.g., by contraction or dilatation of the tissue. Previous attempts to quantify contractile cellular stresses mostly used strongly aligned monolayers of cells, which might not represent the actual organization in engineered cardiovascular tissues such as heart valves. In the present study, therefore, we investigated whether differences in organization affect the magnitude of intrinsic stress generated by individual myofibroblasts, a frequently used cell source for in vitro engineered heart valves. Four different monolayer organizations were created via micro-contact printing of fibronectin lines on thin PDMS films, ranging from strongly anisotropic to isotropic. Thin film curvature, cell density, and actin stress fiber distribution were quantified, and subsequently, intrinsic stress and contractility of the monolayers were determined by incorporating these data into sample-specific finite element models. Our data indicate that the intrinsic stress exerted by the monolayers in each group correlates with cell density. Additionally, after normalizing for cell density and accounting for differences in alignment, no consistent differences in intrinsic contractility were found between the different monolayer organizations, suggesting that the intrinsic stress exerted by individual myofibroblasts is independent of the organization. Consequently, this study emphasizes the importance of choosing proper architectural properties for scaffolds in cardiovascular tissue engineering, as these directly affect the stresses in the tissue, which play a crucial role in both the functionality and remodeling of (engineered) cardiovascular tissues.
Lan, Hongzhi; Updegrove, Adam; Wilson, Nathan M; Maher, Gabriel D; Shadden, Shawn C; Marsden, Alison L
2018-02-01
Patient-specific simulation plays an important role in cardiovascular disease research, diagnosis, surgical planning and medical device design, as well as education in cardiovascular biomechanics. simvascular is an open-source software package encompassing an entire cardiovascular modeling and simulation pipeline from image segmentation, three-dimensional (3D) solid modeling, and mesh generation, to patient-specific simulation and analysis. SimVascular is widely used for cardiovascular basic science and clinical research as well as education, following increased adoption by users and development of a GATEWAY web portal to facilitate educational access. Initial efforts of the project focused on replacing commercial packages with open-source alternatives and adding increased functionality for multiscale modeling, fluid-structure interaction (FSI), and solid modeling operations. In this paper, we introduce a major SimVascular (SV) release that includes a new graphical user interface (GUI) designed to improve user experience. Additional improvements include enhanced data/project management, interactive tools to facilitate user interaction, new boundary condition (BC) functionality, plug-in mechanism to increase modularity, a new 3D segmentation tool, and new computer-aided design (CAD)-based solid modeling capabilities. Here, we focus on major changes to the software platform and outline features added in this new release. We also briefly describe our recent experiences using SimVascular in the classroom for bioengineering education.
Project Super Heart--Year One.
ERIC Educational Resources Information Center
Bellardini, Harry; And Others
1980-01-01
A model cardiovascular disease prevention program for young children is described. Components include physical examinations, health education (anatomy and physiology of the cardiovascular system), nutrition instruction, first aid techniques, role modeling, and environmental engineering. (JN)
Clinical Application of Stem Cells in the Cardiovascular System
NASA Astrophysics Data System (ADS)
Stamm, Christof; Klose, Kristin; Choi, Yeong-Hoon
Regenerative medicine encompasses "tissue engineering" - the in vitro fabrication of tissues and/or organs using scaffold material and viable cells - and "cell therapy" - the transplantation or manipulation of cells in diseased tissue in vivo. In the cardiovascular system, tissue engineering strategies are being pursued for the development of viable replacement blood vessels, heart valves, patch material, cardiac pacemakers and contractile myocardium. Anecdotal clinical applications of such vessels, valves and patches have been described, but information on systematic studies of the performance of such implants is not available, yet. Cell therapy for cardiovascular regeneration, however, has been performed in large series of patients, and numerous clinical studies have produced sometimes conflicting results. The purpose of this chapter is to summarize the clinical experience with cell therapy for diseases of the cardiovascular system, and to analyse possible factors that may influence its outcome.
Recent Progress in Genome Editing Approaches for Inherited Cardiovascular Diseases.
Kaur, Balpreet; Perea-Gil, Isaac; Karakikes, Ioannis
2018-06-02
This review describes the recent progress in nuclease-based therapeutic applications for inherited heart diseases in vitro, highlights the development of the most recent genome editing technologies and discusses the associated challenges for clinical translation. Inherited cardiovascular disorders are passed from generation to generation. Over the past decade, considerable progress has been made in understanding the genetic basis of inherited heart diseases. The timely emergence of genome editing technologies using engineered programmable nucleases has revolutionized the basic research of inherited cardiovascular diseases and holds great promise for the development of targeted therapies. The genome editing toolbox is rapidly expanding, and new tools have been recently added that significantly expand the capabilities of engineered nucleases. Newer classes of versatile engineered nucleases, such as the "base editors," have been recently developed, offering the potential for efficient and precise therapeutic manipulation of the human genome.
Cardiovascular system simulation in biomedical engineering education.
NASA Technical Reports Server (NTRS)
Rideout, V. C.
1972-01-01
Use of complex cardiovascular system models, in conjunction with a large hybrid computer, in biomedical engineering courses. A cardiovascular blood pressure-flow model, driving a compartment model for the study of dye transport, was set up on the computer for use as a laboratory exercise by students who did not have the computer experience or skill to be able to easily set up such a simulation involving some 27 differential equations running at 'real time' rate. The students were given detailed instructions regarding the model, and were then able to study effects such as those due to septal and valve defects upon the pressure, flow, and dye dilution curves. The success of this experiment in the use of involved models in engineering courses was such that it seems that this type of laboratory exercise might be considered for use in physiology courses as an adjunct to animal experiments.
[Modern polyurethanes in cardiovascular surgery].
Gostev, A A; Laktionov, P P; Karpenko, A A
Currently, there is great clinical demand for synthetic tissue-engineered cardiovascular prostheses with good long-term patency. Polyurethanes belong to the class of polymers with excellent bio- and hemocompatibility. They are known to possess good mechanical properties, but are prone to processes of degradation in conditions of functioning in living organisms. Attempts at solving this problem have resulted in the development of various new subclasses of polyurethanes such as thermoplastic polyether polyurethanes, polyurethanes with a silicone segment, polycarbonate polyurethanes and nanocomposite polyurethanes. This was accompanied and followed by offering a series of new technologies of production of implantable medical devices such as vascular grafts, heart valves and others. In the presented review, we discuss biological and mechanical properties of modern subclasses of polyurethanes, as well as modern methods of manufacturing implantable medical devices made of polyurethanes, especially small-diameter vascular prostheses.
Pahl, Christina; Ebelt, Henning; Sayahkarajy, Mostafa; Supriyanto, Eko; Soesanto, Amiliana
2017-08-15
This paper proposes a robotic Transesophageal Echocardiography (TOE) system concept for Catheterization Laboratories. Cardiovascular disease causes one third of all global mortality. TOE is utilized to assess cardiovascular structures and monitor cardiac function during diagnostic procedures and catheter-based structural interventions. However, the operation of TOE underlies various conditions that may cause a negative impact on performance, the health of the cardiac sonographer and patient safety. These factors have been conflated and evince the potential of robot-assisted TOE. Hence, a careful integration of clinical experience and Systems Engineering methods was used to develop a concept and physical model for TOE manipulation. The motion of different actuators of the fabricated motorized system has been tested. It is concluded that the developed medical system, counteracting conflated disadvantages, represents a progressive approach for cardiac healthcare.
Genetic engineering of mesenchymal stem cells and its application in human disease therapy.
Hodgkinson, Conrad P; Gomez, José A; Mirotsou, Maria; Dzau, Victor J
2010-11-01
The use of stem cells for tissue regeneration and repair is advancing both at the bench and bedside. Stem cells isolated from bone marrow are currently being tested for their therapeutic potential in a variety of clinical conditions including cardiovascular injury, kidney failure, cancer, and neurological and bone disorders. Despite the advantages, stem cell therapy is still limited by low survival, engraftment, and homing to damage area as well as inefficiencies in differentiating into fully functional tissues. Genetic engineering of mesenchymal stem cells is being explored as a means to circumvent some of these problems. This review presents the current understanding of the use of genetically engineered mesenchymal stem cells in human disease therapy with emphasis on genetic modifications aimed to improve survival, homing, angiogenesis, and heart function after myocardial infarction. Advancements in other disease areas are also discussed.
Measured outcomes with hypnosis as an experimental tool in a cardiovascular physiology laboratory.
Casiglia, Edoardo; Tikhonoff, Valérie; Giordano, Nunzia; Andreatta, Elisa; Regaldo, Giuseppe; Tosello, Maria T; Rossi, Augusto M; Bordin, Daniele; Giacomello, Margherita; Facco, Enrico
2012-01-01
The authors detail their multidisciplinary collaboration of cardiologists, physiologists, neurologists, psychologists, engineers, and statisticians in researching the effects of hypnosis on the cardiovascular system and their additions to that incomplete literature. The article details their results and provides guidelines for researchers interested in replicating their research on hypnosis' effect on the cardiovascular system.
NASA Technical Reports Server (NTRS)
Hooker, John C.
1991-01-01
Three measures of nonlinear chaos (fractal dimension, Approximate Entropy (ApEn), and Lyapunov exponents) were studied as potential measures of cardiovascular condition. It is suggested that these measures have potential in the assessment of cardiovascular condition in environments of normal cardiovascular stress (normal gravity on the Earth surface), cardiovascular deconditioning (microgravity of space), and increased cardiovascular stress (lower body negative pressure (LBNP) treatments).
2010-01-01
Background Traffic emissions including diesel engine exhaust are associated with increased respiratory and cardiovascular morbidity and mortality. Controlled human exposure studies have demonstrated impaired vascular function after inhalation of exhaust generated by a diesel engine under idling conditions. Objectives To assess the vascular and fibrinolytic effects of exposure to diesel exhaust generated during urban-cycle running conditions that mimic ambient 'real-world' exposures. Methods In a randomised double-blind crossover study, eighteen healthy male volunteers were exposed to diesel exhaust (approximately 250 μg/m3) or filtered air for one hour during intermittent exercise. Diesel exhaust was generated during the urban part of the standardized European Transient Cycle. Six hours post-exposure, vascular vasomotor and fibrinolytic function was assessed during venous occlusion plethysmography with intra-arterial agonist infusions. Measurements and Main Results Forearm blood flow increased in a dose-dependent manner with both endothelial-dependent (acetylcholine and bradykinin) and endothelial-independent (sodium nitroprusside and verapamil) vasodilators. Diesel exhaust exposure attenuated the vasodilatation to acetylcholine (P < 0.001), bradykinin (P < 0.05), sodium nitroprusside (P < 0.05) and verapamil (P < 0.001). In addition, the net release of tissue plasminogen activator during bradykinin infusion was impaired following diesel exhaust exposure (P < 0.05). Conclusion Exposure to diesel exhaust generated under transient running conditions, as a relevant model of urban air pollution, impairs vasomotor function and endogenous fibrinolysis in a similar way as exposure to diesel exhaust generated at idling. This indicates that adverse vascular effects of diesel exhaust inhalation occur over different running conditions with varying exhaust composition and concentrations as well as physicochemical particle properties. Importantly, exposure to diesel exhaust under ETC conditions was also associated with a novel finding of impaired of calcium channel-dependent vasomotor function. This implies that certain cardiovascular endpoints seem to be related to general diesel exhaust properties, whereas the novel calcium flux-related effect may be associated with exhaust properties more specific for the ETC condition, for example a higher content of diesel soot particles along with their adsorbed organic compounds. PMID:20653945
Golpanian, Samuel; Wolf, Ariel; Hatzistergos, Konstantinos E; Hare, Joshua M
2016-07-01
Mesenchymal stem cells (MSCs) are broadly distributed cells that retain postnatal capacity for self-renewal and multilineage differentiation. MSCs evade immune detection, secrete an array of anti-inflammatory and anti-fibrotic mediators, and very importantly activate resident precursors. These properties form the basis for the strategy of clinical application of cell-based therapeutics for inflammatory and fibrotic conditions. In cardiovascular medicine, administration of autologous or allogeneic MSCs in patients with ischemic and nonischemic cardiomyopathy holds significant promise. Numerous preclinical studies of ischemic and nonischemic cardiomyopathy employing MSC-based therapy have demonstrated that the properties of reducing fibrosis, stimulating angiogenesis, and cardiomyogenesis have led to improvements in the structure and function of remodeled ventricles. Further attempts have been made to augment MSCs' effects through genetic modification and cell preconditioning. Progression of MSC therapy to early clinical trials has supported their role in improving cardiac structure and function, functional capacity, and patient quality of life. Emerging data have supported larger clinical trials that have been either completed or are currently underway. Mechanistically, MSC therapy is thought to benefit the heart by stimulating innate anti-fibrotic and regenerative responses. The mechanisms of action involve paracrine signaling, cell-cell interactions, and fusion with resident cells. Trans-differentiation of MSCs to bona fide cardiomyocytes and coronary vessels is also thought to occur, although at a nonphysiological level. Recently, MSC-based tissue engineering for cardiovascular disease has been examined with quite encouraging results. This review discusses MSCs from their basic biological characteristics to their role as a promising therapeutic strategy for clinical cardiovascular disease. Copyright © 2016 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Mohammadi, Bakhtiyar; Karimi, Shilan
2017-11-01
Climate and weather conditions are the most important factors that influence activities and human health. Bioclimatology/biometeorology are concerned with the study of weather effects on living creatures, including humans, plants, and animals. This research was prepared in order to understand the bioclimatic condition of Kermanshah and its relation to the level of hospital admissions of cardiovascular patients in this city. In addition to the climatic variables, the statistics on the number of daily admissions of cardiovascular patients in Kermanshah during March 27, 2009 to April 30, 2015 was prepared. First, Kermanshah's bioclimatic conditions were identified on a daily basis. Then, the relationship between each of the thermal sensations with the level of hospital admissions of cardiovascular patients in Kermanshah using Levene's test, univariate analysis of variance (ANOVA), Scheffe and Games-Howell post hoc tests was investigated. The results of this study showed that in each index, only very few bioclimatic conditions have had an impact on the increase of hospital admissions of cardiovascular diseases. For example, based on the equivalent temperature index (Tek or EqT), there is a significant relationship between extreme conditions and the rate of cardiovascular admissions. But, however, in the effective temperature index (TE), a significant correlation between warm/hot conditions and an increase in the number of cardiovascular admissions was seen. Based on the predicted mean vote (PMV) and physiological equivalent temperature (PET) indices, cool and cold conditions more than warm and comfort conditions have an effect on the number of hospital admissions of cardiovascular patients. Overall, the obtained results showed that the extreme climatic conditions were directly related to an increase in cardiovascular disease in Kermanshah.
NASA Astrophysics Data System (ADS)
Cerroni, D.; Manservisi, S.; Pozzetti, G.
2015-11-01
In this work we investigate the potentialities of multi-scale engineering techniques to approach complex problems related to biomedical and biological fields. In particular we study the interaction between blood and blood vessel focusing on the presence of an aneurysm. The study of each component of the cardiovascular system is very difficult due to the fact that the movement of the fluid and solid is determined by the rest of system through dynamical boundary conditions. The use of multi-scale techniques allows us to investigate the effect of the whole loop on the aneurysm dynamic. A three-dimensional fluid-structure interaction model for the aneurysm is developed and coupled to a mono-dimensional one for the remaining part of the cardiovascular system, where a point zero-dimensional model for the heart is provided. In this manner it is possible to achieve rigorous and quantitative investigations of the cardiovascular disease without loosing the system dynamic. In order to study this biomedical problem we use a monolithic fluid-structure interaction (FSI) model where the fluid and solid equations are solved together. The use of a monolithic solver allows us to handle the convergence issues caused by large deformations. By using this monolithic approach different solid and fluid regions are treated as a single continuum and the interface conditions are automatically taken into account. In this way the iterative process characteristic of the commonly used segregated approach, it is not needed any more.
Top 10 Myths about Cardiovascular Disease
... Thromboembolism Aortic Aneurysm More Top 10 Myths about Cardiovascular Disease Updated:Mar 16,2018 How much do ... Healthy This content was last reviewed July 2015. Cardiovascular Conditions • Conditions Home • Arrhythmia and Atrial Fibrillation • Cardiac ...
A Novel Bioreactor System for the Assessment of Endothelialization on Deformable Surfaces
Bachmann, Björn J.; Bernardi, Laura; Loosli, Christian; Marschewski, Julian; Perrini, Michela; Ehrbar, Martin; Ermanni, Paolo; Poulikakos, Dimos; Ferrari, Aldo; Mazza, Edoardo
2016-01-01
The generation of a living protective layer at the luminal surface of cardiovascular devices, composed of an autologous functional endothelium, represents the ideal solution to life-threatening, implant-related complications in cardiovascular patients. The initial evaluation of engineering strategies fostering endothelial cell adhesion and proliferation as well as the long-term tissue homeostasis requires in vitro testing in environmental model systems able to recapitulate the hemodynamic conditions experienced at the blood-to-device interface of implants as well as the substrate deformation. Here, we introduce the design and validation of a novel bioreactor system which enables the long-term conditioning of human endothelial cells interacting with artificial materials under dynamic combinations of flow-generated wall shear stress and wall deformation. The wall shear stress and wall deformation values obtained encompass both the physiological and supraphysiological range. They are determined through separate actuation systems which are controlled based on validated computational models. In addition, we demonstrate the good optical conductivity of the system permitting online monitoring of cell activities through live-cell imaging as well as standard biochemical post-processing. Altogether, the bioreactor system defines an unprecedented testing hub for potential strategies toward the endothelialization or re-endothelialization of target substrates. PMID:27941901
Juocevicius, Alvydas; Oral, Aydan; Lukmann, Aet; Takáč, Peter; Tederko, Piotr; Hāznere, Ilze; Aguiar-Branco, Catarina; Lazovic, Milica; Negrini, Stefano; Varela Donoso, Enrique; Christodoulou, Nicolas
2018-05-02
Cardiovascular conditions are significant causes of mortality and morbidity leading to substantial disability. The aim of the paper is to improve Physical and Rehabilitation Medicine (PRM) physicians' professional practice for persons with cardiovascular conditions in order to promote their functioning properties and to reduce activity limitations and/or participation restrictions. A systematic review of the literature and a Consensus procedure by means of a Delphi process has been performed involving the delegates of all European countries represented in the UEMS PRM Section. The systematic literature review is reported together with thirty recommendations resulting from the Delphi procedure. The professional role of PRM physicians having expertise in the rehabilitation of cardiovascular conditions is to lead cardiac rehabilitation programmes in multiprofessional teams, working in collaboration with other disciplines in a variety of settings to improve functioning of people with cardiovascular conditions. This EBPP represents the official position of the European Union through the UEMS PRM Section and designates the professional role of PRM physicians in persons with cardiovascular conditions.
Epidemiologic studies strongly link short-term exposures to vehicular traffic and particulate matter (PM) air pollution with adverse cardiovascular events, especially in those with preexisting cardiovascular disease. Diesel engine exhaust (DE) is a key contributor to urban ambien...
Kroustalli, A; Zisimopoulou, A E; Koch, S; Rongen, L; Deligianni, D; Diamantouros, S; Athanassiou, G; Kokozidou, M; Mavrilas, D; Jockenhoevel, S
2013-12-01
Carbon nanotubes have been proposed as fillers to reinforce polymeric biomaterials for the strengthening of their structural integrity to achieve better biomechanical properties. In this study, a new polymeric composite material was introduced by incorporating various low concentrations of multiwalled carbon nanotubes (MWCNTs) into chitosan (CS), aiming at achieving a novel composite biomaterial with superior mechanical and biological properties compared to neat CS, in order to be used in cardiovascular tissue engineering applications. Both mechanical and biological characteristics in contact with the two relevant cell types (endothelial cells and vascular myofibroblasts) were studied. Regarding the mechanical behavior of MWCNT reinforced CS (MWCNT/CS), 5 and 10 % concentrations of MWCNTs enhanced the mechanical behavior of CS, with that of 5 % exhibiting a superior mechanical strength compared to 10 % concentration and neat CS. Regarding biological properties, MWCNT/CS best supported proliferation of endothelial and myofibroblast cells, MWCNTs and MWCNT/CS caused no apoptosis and were not toxic of the examined cell types. Conclusively, the new material could be suitable for tissue engineering (TE) and particularly for cardiovascular TE applications.
Translational Applications of Tissue Engineering in Cardiovascular Medicine.
Dogan, Arin; Elcin, A Eser; Elcin, Y Murat
2017-03-26
Cardiovascular diseases are the leading cause of global deaths. The current paradigm in medicine seeks novel approaches for the treatment of progressive or end-stage diseases. The organ transplantation option is limited in availability, and unfortunately, a significant number of patients are lost while waiting for donor organs. Animal studies have shown that upon myocardial infarction, it is possible to stop adverse remodeling in its tracks and reverse with tissue engineering methods. Regaining the myocardium function and avoiding further deterioration towards heart failure can benefit millions of people with a significantly lesser burden on healthcare systems worldwide. The advent of induced pluripotent stem cells brings the unique advantage of testing candidate drug molecules on organ-on-chip systems, which mimics human heart in vitro. Biomimetic three-dimensional constructs that contain disease-specific or normal cardiomyocytes derived from human induced pluripotent stem cells are a useful tool for screening drug molecules and studying dosage, mode of action and cardio-toxicity. Tissue engineering approach aims to develop the treatments for heart valve deficiency, ischemic heart disease and a wide range of vascular diseases. Translational research seeks to improve the patient's quality of life, progressing towards developing cures, rather than treatments. To this end, researchers are working on tissue engineered heart valves, blood vessels, cardiac patches, and injectable biomaterials, hence developing new ways for engineering bio-artificial organs or tissue parts that the body will adopt as its own. In this review, we summarize translational methods for cardiovascular tissue engineering and present useful tables on pre-clinical and clinical applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
... to the Terms and Conditions and Privacy Policy Cardiovascular Conditions • Conditions Home • Arrhythmia and Atrial Fibrillation • Cardiac Arrest • Cardiac Rehab • Cardiomyopathy • Cardiovascular Conditions of Childhood • Cholesterol • Congenital Heart Defects • Diabetes • ...
Carr, J Jeffrey
2012-01-01
The ability to quantify subclinical disease to assess cardiovascular disease is greatly enhanced by modern medical imaging techniques that incorporate concepts from biomedical engineering and computer science. These techniques' numerical results, known as quantitative phenotypes, can be used to help us better understand both health and disease states. In this report, we describe our efforts in using the latest imaging technologies to assess cardiovascular disease risk by quantifying subclinical disease of participants in the Jackson Heart Study. The CT and MRI exams of the Jackson Heart Study have collected detailed information from approximately 3,000 participants. Analyses of the images from these exams provide information on several measures including the amount of plaque in the coronary arteries and the ability of the heart to pump blood. These measures can then be added to the wealth of information on JHS participants to understand how these conditions, as well as how clinical events, such as heart attacks and heart failure, occur in African Americans.
NASA Technical Reports Server (NTRS)
Annis, J. F.; Webb, P.
1980-01-01
Using a new nomex lycra elastic fabric and individualized garment engineering techniques, reverse gradient garments (RGG's) were designed, constructed, and tested for effectiveness as a countermeasure against cardiovascular deconditioning. By combining torso compensated positive pressure breathing with a distally diminishing gradient of counterpressure supplied by the elastic fabric on the limbs, the RGG acts to pool blood in the extremities of recumbent persons much as though they were standing erect in 1 g. The RGG stresses the vasculature in a fashion similar to that experienced by the normally active man, hence preventing or limiting the development of post weightlessness orthostatic intolerance and related conditions. Four male, college age subjects received daily treatments with the RGG during a 15 day bedrest study. Four additional subjects also underwent the bedrest, but received no treatments; they served as controls. The preliminary indication was that the RGG was somewhat effective in limiting the deconditioning process.
Sasaki, T; Iwasaki, K; Oka, T; Hisanaga, N
1999-10-01
A field survey of 278 engineers (20-59 years) in a machinery manufacturing company was conducted to investigate the association of working hours with biological indices related to the cardiovascular system (heart rate variability, blood pressure and serum levels of magnesium, dehydroepiandrosterone sulfate
State-of-the-Art Review of 3D Bioprinting for Cardiovascular Tissue Engineering.
Duan, Bin
2017-01-01
3D bioprinting is a group of rapidly growing techniques that allows building engineered tissue constructs with complex and hierarchical structures, mechanical and biological heterogeneity. It enables implementation of various bioinks through different printing mechanisms and precise deposition of cell and/or biomolecule laden biomaterials in predefined locations. This review briefly summarizes applicable bioink materials and various bioprinting techniques, and presents the recent advances in bioprinting of cardiovascular tissues, with focusing on vascularized constructs, myocardium and heart valve conduits. Current challenges and further perspectives are also discussed to help guide the bioink and bioprinter development, improve bioprinting strategies and direct future organ bioprinting and translational applications.
... More Healthy Heart Quizzes Updated:Oct 30,2017 Cardiovascular Conditions • Conditions Home • Arrhythmia and Atrial Fibrillation • Cardiac Arrest • Cardiac Rehab • Cardiomyopathy • Cardiovascular Conditions of Childhood • Cholesterol • Congenital Heart Defects • Diabetes • ...
Vascular tissue engineering: towards the next generation vascular grafts.
Naito, Yuji; Shinoka, Toshiharu; Duncan, Daniel; Hibino, Narutoshi; Solomon, Daniel; Cleary, Muriel; Rathore, Animesh; Fein, Corey; Church, Spencer; Breuer, Christopher
2011-04-30
The application of tissue engineering technology to cardiovascular surgery holds great promise for improving outcomes in patients with cardiovascular diseases. Currently used synthetic vascular grafts have several limitations including thrombogenicity, increased risk of infection, and lack of growth potential. We have completed the first clinical trial evaluating the feasibility of using tissue engineered vascular grafts (TEVG) created by seeding autologous bone marrow-derived mononuclear cells (BM-MNC) onto biodegradable tubular scaffolds. Despite an excellent safety profile, data from the clinical trial suggest that the primary graft related complication of the TEVG is stenosis, affecting approximately 16% of grafts within the first seven years after implantation. Continued investigation into the cellular and molecular mechanisms underlying vascular neotissue formation will improve our basic understanding and provide insights that will enable the rationale design of second generation TEVG. Published by Elsevier B.V.
Biomaterial-driven in situ cardiovascular tissue engineering-a multi-disciplinary perspective.
Wissing, Tamar B; Bonito, Valentina; Bouten, Carlijn V C; Smits, Anthal I P M
2017-01-01
There is a persistent and growing clinical need for readily-available substitutes for heart valves and small-diameter blood vessels. In situ tissue engineering is emerging as a disruptive new technology, providing ready-to-use biodegradable, cell-free constructs which are designed to induce regeneration upon implantation, directly in the functional site. The induced regenerative process hinges around the host response to the implanted biomaterial and the interplay between immune cells, stem/progenitor cell and tissue cells in the microenvironment provided by the scaffold in the hemodynamic environment. Recapitulating the complex tissue microstructure and function of cardiovascular tissues is a highly challenging target. Therein the scaffold plays an instructive role, providing the microenvironment that attracts and harbors host cells, modulating the inflammatory response, and acting as a temporal roadmap for new tissue to be formed. Moreover, the biomechanical loads imposed by the hemodynamic environment play a pivotal role. Here, we provide a multidisciplinary view on in situ cardiovascular tissue engineering using synthetic scaffolds; starting from the state-of-the art, the principles of the biomaterial-driven host response and wound healing and the cellular players involved, toward the impact of the biomechanical, physical, and biochemical microenvironmental cues that are given by the scaffold design. To conclude, we pinpoint and further address the main current challenges for in situ cardiovascular regeneration, namely the achievement of tissue homeostasis, the development of predictive models for long-term performances of the implanted grafts, and the necessity for stratification for successful clinical translation.
Inflammation and Heart Disease
... Cholesterol This content was last reviewed July 2015. Cardiovascular Conditions • Conditions Home • Arrhythmia and Atrial Fibrillation • Cardiac Arrest • Cardiac Rehab • Cardiomyopathy • Cardiovascular Conditions of Childhood • Cholesterol • Congenital Heart Defects • Diabetes • ...
NASA Astrophysics Data System (ADS)
Bulusu, Kartik V.; Plesniak, Michael W.
2013-11-01
Systolic and diastolic blood pressures, pulse pressures, and left ventricular hypertrophy contribute to cardiovascular risks. Increase of arterial stiffness due to aging and hypertension is an important factor in cardiovascular, chronic kidney and end-stage-renal-diseases. Pulse wave analysis (PWA) based on arterial pressure wave characteristics, is well established in clinical practice for evaluation of arterial distensibility and hypertension. The objective of our exploratory study in a rigid 180-degree curved artery model was to evaluate arterial pressure waveforms. Bend upstream conditions were measured using a two-component, two-dimensional, particle image velocimeter (2C-2D PIV). An ultrasonic transit-time flow meter and a catheter with a MEMS-based solid state pressure sensor, capable of measuring up to 20 harmonics of the observed pressure waveform, monitored flow conditions downstream of the bend. Our novel continuous wavelet transform algorithm (PIVlet 1.2), in addition to detecting coherent secondary flow structures is used to evaluate arterial pulse wave characteristics subjected to physiological and non-physiological inflows. Results of this study will elucidate the utility of wavelet transforms in arterial function evaluation and pulse wave speed. Supported by NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.
Particulate matter (PM) originating from diesel combustion is a public health concern due to its association with adverse effects on respiratory and cardiovascular diseases and lung cancer. This study investigated emissions from three stationary diesel engines (gensets) with var...
African-Americans and Heart Disease, Stroke
... website This content was last reviewed July 2015. Cardiovascular Conditions • Conditions Home • Arrhythmia and Atrial Fibrillation • Cardiac Arrest • Cardiac Rehab • Cardiomyopathy • Cardiovascular Conditions of Childhood • Cholesterol • Congenital Heart Defects • Diabetes • ...
Protect Your Heart in the Heat
... Activity for Stroke Survivors Heatstroke vs Stroke infographic Cardiovascular Conditions • Conditions Home • Arrhythmia and Atrial Fibrillation • Cardiac Arrest • Cardiac Rehab • Cardiomyopathy • Cardiovascular Conditions of Childhood • Cholesterol • Congenital Heart Defects • Diabetes • ...
Sleep Apnea and Heart Disease, Stroke
... tea. This content was last reviewed July 2015. Cardiovascular Conditions • Conditions Home • Arrhythmia and Atrial Fibrillation • Cardiac Arrest • Cardiac Rehab • Cardiomyopathy • Cardiovascular Conditions of Childhood • Cholesterol • Congenital Heart Defects • Diabetes • ...
Cardiovascular tissue engineering: where we come from and where are we now?
Smit, Francis E; Dohmen, Pascal M
2015-01-27
Abstract Tissue engineering was introduced by Vacanti and Langer in the 80's, exploring the potential of this new technology starting with the well-known "human ear on the mouse back". The goal is to create a substitute which supplies an individual therapy for patients with regeneration, remodeling and growth potential. The growth potential of these subjects is of special interest in congenital cardiac surgery, avoiding repeated interventions and surgery. Initial applications of tissue engineered created substitutes were relatively simple cardiovascular grafts seeded initially by end-differentiated autologous endothelial cells. Important data were collected from these initial clinical autologous endothelial cell seeded grafts in peripheral and coronary vessel disease. After these initial successfully implantation bone marrow cell were used to seed patches and pulmonary conduits were implanted in patients. Driven by the positive results of tissue engineered material implanted under low pressure circumstances, first tissue engineered patches were implanted in the systemic circulation followed by the implantation of tissue engineered aortic heart valves. Tissue engineering is an extreme dynamic technology with continuously modifications and improvements to optimize clinical products. New technologies are unified and so this has also be done with tissue engineering and new application features, so called transcatheter valve intervention. First studies are initiated to apply tissue engineered heart valves with this new transcatheter delivery system less invasive. Simultaneously studies have been started on tissue engineering of so-called whole organs since organ transplantation is restricted due to donor shortage and tissue engineering could overcome this problem. Initial studies of whole heart engineering in the rat model are promising and larger size models are initiated.
ERIC Educational Resources Information Center
Pressley, Thomas A.; Limson, Melvin; Byse, Miranda; Matyas, Marsha Lakes
2011-01-01
The "Healthy Heart Race" activity provides a hands-on demonstration of cardiovascular function suitable for lay audiences. It was field tested during the United States of America Science and Engineering Festival held in Washington, DC, in October 2010. The basic equipment for the activity consisted of lengths of plastic tubing, a hand…
Tunable Elastomers with an Antithrombotic Component for Cardiovascular Applications.
Stahl, Alexander M; Yang, Yunzhi Peter
2018-05-31
This study reports the development of a novel family of biodegradable polyurethanes for use as tissue engineered cardiovascular scaffolds or blood-contacting medical devices. Covalent incorporation of the antiplatelet agent dipyridamole into biodegradable polycaprolactone-based polyurethanes yields biocompatible materials with improved thromboresistance and tunable mechanical strength and elasticity. Altering the ratio of the dipyridamole to the diisocyanate linking unit and the polycaprolactone macromer enables control over both the drug content and the polymer cross-link density. Covalent cross-linking in the materials achieves significant elasticity and a tunable range of elastic moduli similar to that of native cardiovascular tissues. Interestingly, the cross-link density of the polyurethanes is inversely related to the elastic modulus, an effect attributed to decreasing crystallinity in the more cross-linked polymers. In vitro characterization shows that the antiplatelet agent is homogeneously distributed in the materials and is released slowly throughout the polymer degradation process. The drug-containing polyurethanes support endothelial cell and vascular smooth muscle cell proliferation, while demonstrating reduced levels of platelet adhesion and activation, supporting their candidacy as promising substrates for cardiovascular tissue engineering. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cardiovascular hospitalizations and associations with environmental quality
Cardiovascular disease has been identified as a condition that may be associated with environmental factors. Air pollution in particular has been demonstrated to be associated with cardiovascular disease and atherosclerosis, which can increase the likelihood of cardiovascular eve...
Biomaterials in myocardial tissue engineering
Reis, Lewis A.; Chiu, Loraine L. Y.; Feric, Nicole; Fu, Lara; Radisic, Milica
2016-01-01
Cardiovascular disease is the leading cause of death in the developed world, and as such there is a pressing need for treatment options. Cardiac tissue engineering emerged from the need to develop alternate sources and methods of replacing tissue damaged by cardiovascular diseases, as the ultimate treatment option for many who suffer from end-stage heart failure is a heart transplant. In this review we focus on biomaterial approaches to augment injured or impaired myocardium with specific emphasis on: the design criteria for these biomaterials; the types of scaffolds—composed of natural or synthetic biomaterials, or decellularized extracellular matrix—that have been used to develop cardiac patches and tissue models; methods to vascularize scaffolds and engineered tissue, and finally injectable biomaterials (hydrogels)designed for endogenous repair, exogenous repair or as bulking agents to maintain ventricular geometry post-infarct. The challenges facing the field and obstacles that must be overcome to develop truly clinically viable cardiac therapies are also discussed. PMID:25066525
Subjective Social Status and Cardiovascular Reactivity: An Experimental Examination
Pieritz, Karoline; Süssenbach, Philipp; Rief, Winfried; Euteneuer, Frank
2016-01-01
The present experiment examined the causal influence of subjective social status (SSS) on variables related to cardiovascular health [i.e., blood pressure, heart rate variability (HRV)]. Participants were randomly assigned to one of two conditions involving a social comparison that either induced a temporary shift toward high SSS or toward low SSS. Cardiovascular variables were measured before (baseline), throughout, and after the manipulation (recovery). Participants in the low SSS condition had a significantly lower HRV during experimental manipulation than at baseline (p = 0.001). They also showed a significantly stronger HRV reactivity compared to participants in the high SSS condition (p = 0.027). Our results suggest that already temporary shifts of one's SSS have measureable effects on cardiovascular variables. They support the notion that social status plays a causal role in the development of cardiovascular disease. PMID:27486426
Mercuro, Giuseppe; Bassareo, Pier Paolo; Flore, Giovanna; Fanos, Vassilios; Dentamaro, Ilaria; Scicchitano, Pietro; Laforgia, Nicola; Ciccone, Marco Matteo
2013-04-01
Although the survival rate for preterm subjects has improved considerably, due to the progress in the field of perinatal medicine, preterm birth is frequently the cause underlying a series of notorious complications: morphological, neurological, ophthalmological, and renal alterations. In addition, it has recently been demonstrated how low gestational age and reduced foetal growth contribute towards an increased cardiovascular risk in preterm neonates. In fact, cardiovascular mortality is higher among former preterm adults than those born at term. This condition is referred to as cardiovascular perinatal programming. In the light of the above, an early, constant, and prolonged cardiological followup programme should be implemented in former preterm individuals. The aim of this paper was to perform a comprehensive literature review about two new emerging conditions predisposing to an increased cardiovascular risk: prematurity and low weight at birth.
NASA Technical Reports Server (NTRS)
Annis, J. F.; Webb, P.
1973-01-01
Using a new Nomex-Lycra elastic fabric and individualized garment engineering techniques, reverse gradient garments (RGG's) were designed, constructed, and tested for effectiveness as a countermeasure against cardiovascular deconditioning. By combining torso-compensated positive pressure breathing with a distally diminishing gradient of counterpressure supplied by the elastic fabric on the limbs, the RGG acts to pool blood in the extremities of recumbent persons much as though they were standing erect in 1 g. It was theorized that through the use of a dynamic pressurization scheme, the RGG would stress the vasculature in a fashion similar to that experienced by the noramlly active man, hence preventing or limiting the development of post-weightlessness orthostatic intolerance and related conditions. Four male, college-age subjects received daily treatments with the RGG during a 15-day bedrest study. Four additional subjects also underwent the bedrest, but received no treatments; they served as controls. The design and construction of the garments are described, and results of the treatment related measurements are given.
Asgeirsdottir, Tinna Laufey; Olafsdottir, Thorhildur; Ragnarsdottir, Dagny Osk
2014-08-01
Business cycles affect people's lives. A growing literature examines their effect on health outcomes. The available studies on the relationship between ambient economic conditions and cardiovascular health show mixed results. They are furthermore limited in their outcome measures, focusing mostly on mortality. We examined the relationship between economic conditions and cardiovascular disease and hypertension, using the Icelandic economic collapse of 2008. Logit regression analyses are used to examine the relationship between economic conditions and the probability of reporting a cardiovascular disease or hypertension. We furthermore investigated potential mediators of this relationship. The data used come from a health and lifestyle survey carried out by the Public Health Institute of Iceland in 2007 and 2009. The crisis was positively related to hypertension in males but no statistically significant relationship was found for females. The mediation analyses indicated partial mediation through changes in working hours and stress level, but negligible mediation through changes in income. The male hypertension was, however, suppressed by concurrent changes in smoking and body weight. Only examining mortality effects of society-wide economic conditions may understate the overall effect on cardiovascular health.
Polycaprolactone nanowire surfaces as interfaces for cardiovascular applications
NASA Astrophysics Data System (ADS)
Leszczak, Victoria
Cardiovascular disease is the leading killer of people worldwide. Current treatments include organ transplants, surgery, metabolic products and mechanical/synthetic implants. Of these, mechanical and synthetic implants are the most promising. However, rejection of cardiovascular implants continues to be a problem, eliciting a need for understanding the mechanisms behind tissue-material interaction. Recently, bioartificial implants, consisting of synthetic tissue engineering scaffolds and cells, have shown great promise for cardiovascular repair. An ideal cardiovascular implant surface must be capable of adhering cells and providing appropriate physiological responses while the native tissue integrates with the scaffold. However, the success of these implants is not only dependent on tissue integration but also hemocompatibility (interaction of material with blood components), a property that depends on the surface of the material. A thorough understanding of the interaction of cardiovascular cells and whole blood and its components with the material surface is essential in order to have a successful application which promotes healing as well as native tissue integration and regeneration. The purpose of this research is to study polymeric nanowire surfaces as potential interfaces for cardiovascular applications by investigating cellular response as well as hemocompatibility.
Decisions under distress: stress profiles influence anchoring and adjustment.
Kassam, Karim S; Koslov, Katrina; Mendes, Wendy Berry
2009-11-01
People frequently make decisions under stress. Understanding how stress affects decision making is complicated by the fact that not all stress responses are created equal. Challenge states, for example, occur when individuals appraise a stressful situation as demanding, but believe they have the personal resources to cope, and are characterized by efficient cardiovascular reactivity and approach motivation. Threat states, in contrast, occur when situational demands are perceived to outweigh resources and are characterized by less efficient cardiovascular reactivity and withdrawal motivation. We randomly assigned participants to social-feedback conditions (i.e., positive or negative feedback) designed to engender challenge or threat, or a no-stress condition. Participants then completed an anchoring-and-adjustment questionnaire. Those assigned to the challenge condition adjusted more from self-generated anchors than those assigned to the threat condition. Cardiovascular responses mediated the relationship between condition and adjustment. This study demonstrates the importance of considering profiles of cardiovascular reactivity when examining the influence of stress on decision making.
Decisions Under Distress Stress Profiles Influence Anchoring and Adjustment
Kassam, Karim S.; Koslov, Katrina; Mendes, Wendy Berry
2009-01-01
People frequently make decisions under stress. Understanding how stress affects decision making is complicated by the fact that not all stress responses are created equal. Challenge states, for example, occur when individuals appraise a stressful situation as demanding, but believe they have the personal resources to cope, and are characterized by efficient cardiovascular reactivity and approach motivation. Threat states, in contrast, occur when situational demands are perceived to outweigh resources and are characterized by less efficient cardiovascular reactivity and withdrawal motivation. We randomly assigned participants to social-feedback conditions (i.e., positive or negative feedback) designed to engender challenge or threat, or a no-stress condition. Participants then completed an anchoring-and-adjustment questionnaire. Those assigned to the challenge condition adjusted more from self-generated anchors than those assigned to the threat condition. Cardiovascular responses mediated the relationship between condition and adjustment. This study demonstrates the importance of considering profiles of cardiovascular reactivity when examining the influence of stress on decision making. PMID:19843261
... These measures can help reduce your risk. Preventing cardiovascular disease Cardiovascular disease is the leading cause of pulmonary edema. You ... lead to serious conditions such as a stroke, cardiovascular disease and kidney failure. In many cases, you can ...
Bonnefoy-Cudraz, Eric; Bueno, Hector; Casella, Gianni; De Maria, Elia; Fitzsimons, Donna; Halvorsen, Sigrun; Hassager, Christian; Iakobishvili, Zaza; Magdy, Ahmed; Marandi, Toomas; Mimoso, Jorge; Parkhomenko, Alexander; Price, Susana; Rokyta, Richard; Roubille, Francois; Serpytis, Pranas; Shimony, Avi; Stepinska, Janina; Tint, Diana; Trendafilova, Elina; Tubaro, Marco; Vrints, Christiaan; Walker, David; Zahger, Doron; Zima, Endre; Zukermann, Robert; Lettino, Maddalena
2018-02-01
Acute cardiovascular care has progressed considerably since the last position paper was published 10 years ago. It is now a well-defined, complex field with demanding multidisciplinary teamworking. The Acute Cardiovascular Care Association has provided this update of the 2005 position paper on acute cardiovascular care organisation, using a multinational working group. The patient population has changed, and intensive cardiovascular care units now manage a large range of conditions from those simply requiring specialised monitoring, to critical cardiovascular diseases with associated multi-organ failure. To describe better intensive cardiovascular care units case mix, acuity of care has been divided into three levels, and then defining intensive cardiovascular care unit functional organisation. For each level of intensive cardiovascular care unit, this document presents the aims of the units, the recommended management structure, the optimal number of staff, the need for specially trained cardiologists and cardiovascular nurses, the desired equipment and architecture, and the interaction with other departments in the hospital and other intensive cardiovascular care units in the region/area. This update emphasises cardiologist training, referring to the recently updated Acute Cardiovascular Care Association core curriculum on acute cardiovascular care. The training of nurses in acute cardiovascular care is additionally addressed. Intensive cardiovascular care unit expertise is not limited to within the unit's geographical boundaries, extending to different specialties and subspecialties of cardiology and other specialties in order to optimally manage the wide scope of acute cardiovascular conditions in frequently highly complex patients. This position paper therefore addresses the need for the inclusion of acute cardiac care and intensive cardiovascular care units within a hospital network, linking university medical centres, large community hospitals, and smaller hospitals with more limited capabilities.
Bibbey, Adam; Carroll, Douglas; Ginty, Annie T; Phillips, Anna C
2015-06-01
Social evaluative threat is an important factor in the cardiovascular response to mental stress. This study examined whether Type D personality, characterized by social inhibition and negative affectivity, is associated with an adverse cardiovascular response to a non-social and social evaluative threat. A total of 2300 students were screened for Type D personality, and 130 were selected for a nonsocial stress exposure condition (31 Type D, 30 non-Type D: 52% female) or a condition high in social evaluative threat (35 Type D, 34 non-Type D: 55% female). Systolic (SBP) and diastolic blood pressure (DBP), heart rate (HR), and salivary cortisol were measured. Social evaluative threat resulted in higher cardiovascular responses than the nonsocial challenge (SBP, p = .001, η = 0.092;DBP, p = .006, η = 0.058;HR, p = .006, η = 0.059). The greatest cardiovascular stress reactions were exhibited by Type D participants in the high social evaluation condition; reflected in significant group by condition interactions for SBP (F(1,126) = 7.29, p = .008, η = 0.055), DBP (F(1,126) = 5.23, p = .024, η = 0.040), and HR (F(1,126) = 5.04, p = .027, η = 0.038) reactivity. Only Type Ds in the social condition mounted a positive cortisol response (F(1,33) = 5.07, p = .031, η = 0.133). Type D individuals show different stress reactions depending on the social evaluative nature of the stress exposure. These findings suggest that dysregulation of the stress response in social situations potentially increases cardiovascular disease risk.
Robotically assisted laparoscopy benefits surgical performance under stress.
Moore, Lee J; Wilson, Mark R; Waine, Elizabeth; McGrath, John S; Masters, Rich S W; Vine, Samuel J
2015-12-01
While the benefits of robotic surgery for the patient have been relatively well established, little is known about the benefits for the surgeon. This study examined whether the advantages of robotically assisted laparoscopy (improved dexterity, a 3-dimensional view, reduction in tremors, etc.) enable the surgeon to better deal with stressful tasks. Subjective and objective (i.e. cardiovascular) responses to stress were assessed while surgeons performed on either a robotic or conventional laparoscopic system. Thirty-two surgeons were assigned to perform a surgical task on either a robotic system or a laparoscopic system, under three stress conditions. The surgeons completed self-report measures of stress before each condition. Furthermore, the surgeons' cardiovascular responses to stress were recorded prior to each condition. Finally, task performance was recorded throughout each condition. While both groups reported experiencing similar levels of stress, compared to the laparoscopic group, the robotic group displayed a more adaptive cardiovascular response to the stress conditions, reflecting a challenge state (i.e. higher blood flow and lower vascular resistance). Furthermore, despite no differences in completion time, the robotic group performed the tasks more accurately than the laparoscopic group across the stress conditions. These results highlight the benefits of using robotic technology during stressful situations. Specifically, the results show that stressful tasks can be performed more accurately with a robotic platform, and that surgeons' cardiovascular responses to stress are more favourable. Importantly, the 'challenge' cardiovascular response to stress displayed when using the robotic system has been associated with more positive long-term health outcomes in domains where stress is commonly experienced (e.g. lower cardiovascular disease risk).
Emotion suppression affects cardiovascular responses to initial and subsequent laboratory stressors.
Quartana, Phillip J; Burns, John W
2010-09-01
The study of anger suppression and risk for cardiovascular disease has relied predominately on inspection of correlations between trait anger-in and cardiovascular risk factors and disease. This approach tells us little about whether inhibitory processes have anything to do with outcomes, and cannot speak to whether suppression of anger per se affects cardiovascular parameters. Drawing on the broader emotion regulation literature, we examined the effects of experimentally induced anger and general negative emotion in the context of expressive and experiential suppression on cardiovascular responses to initial and subsequent laboratory stressors. Of all participants, 201 healthy participants were randomly assigned to one of six conditions formed by crossing emotion (anxiety, anger) and suppression (experiential, expressive, control) conditions. Participants completed a mental arithmetic task with anxiety or anger induction under their respective suppression manipulation instructions, and subsequently were exposed to a cold pressor task. Systolic blood pressure (SBP), diastolic blood pressure, and heart rate values were obtained for each experimental epoch. More robust SBP responses to the initial stressor were evidenced for those in the expressive versus the control condition. In response to the subsequent stressor, those in the experiential suppression condition showed the most pronounced SBP responses, suggesting pronounced delayed effects of this type of suppression. Effects of suppression on SBP reactivity were indistinguishable across anxiety and anger conditions. Effortful suppression of negative emotion has immediate and delayed consequences for stress-induced cardiovascular reactivity. Theoretical and clinical significance of these findings are discussed.
Positive emotion inducement modulates cardiovascular responses caused by mental work.
Liu, Xinxin; Ishimatsu, Kazuma; Sotoyama, Midori; Iwakiri, Kazuyuki
2016-11-16
Positive emotion is considered as an important factor related to health-relevant biological processes, including cardiovascular responses. To explore the possibility of using positive emotion as a tool to manage cardiovascular response of white-collar workers, we examined the influence on cardiovascular response of positive emotion inducement before a mental work. Seventeen healthy males participated and performed a 10-min, PC-based Stroop color word task as their mental work. Before the task, 60 pleasant pictures chosen from the International Affective Picture System were presented in a random order under a positive emotion inducement condition while a gray screen was presented under a control condition. A 30-min relaxation period after completing the task was provided to examine the aftereffects of positive emotion inducement. Throughout these periods, systolic and diastolic blood pressure, mean arterial blood pressure, heart rate, stroke volume, cardiac output, and total peripheral resistance were measured continuously. Blood pressure and total peripheral resistance were lower during the picture presentation period under the positive emotion inducement period compared to the control condition. All indices did not differ during the color word task period. During the relaxation period after the task, however, blood pressure and total peripheral resistance were lower under the positive emotion inducement condition compared to the control condition. Positive emotion inducement before a mental work beneficially modulates cardiovascular responses, suggesting that positive emotion inducement may be a useful tool to manage the cardiovascular response to mental work.
[Mathematical modeling for conditionality of cardiovascular disease by housing conditions].
Meshkov, N A
2014-01-01
There was studied the influence of living conditions (housing area per capita, availability of housing water supply, sewerage and central heating) on the morbidity of the cardiovascular diseases in child and adult population. With the method of regression analysis the morbidity rate was established to significantly decrease with the increase in the area of housing, constructed models are statistically significant, respectively, p = 0.01 and p = 0.02. There was revealed the relationship of the morbidity rate of cardiovascular diseases in children and adults with the supply with housing central heating (p = 0.02 and p = 0.009).
Zhan, Yilei; Cohen, Andrew B.; Tinetti, Mary E.; Trentalange, Mark; McAvay, Gail
2016-01-01
Background: Persons with multiple chronic conditions receive multiple guideline-recommended medications to improve outcomes such as mortality. Our objective was to estimate the longitudinal average attributable fraction for 3-year survival of medications for cardiovascular conditions in persons with multiple chronic conditions and to determine whether heterogeneity occurred by age. Methods: Medicare Current Beneficiary Survey participants (N = 8,578) with two or more chronic conditions, enrolled from 2005 to 2009 with follow-up through 2011, were analyzed. We calculated the longitudinal extension of the average attributable fraction for oral medications (beta blockers, renin–angiotensin system blockers, and thiazide diuretics) indicated for cardiovascular conditions (atrial fibrillation, coronary artery disease, heart failure, and hypertension), on survival adjusted for 18 participant characteristics. Models stratified by age (≤80 and >80 years) were analyzed to determine heterogeneity of both cardiovascular conditions and medications. Results: Heart failure had the greatest average attributable fraction (39%) for mortality. The fractional contributions of beta blockers, renin–angiotensin system blockers, and thiazides to improve survival were 10.4%, 9.3%, and 7.2% respectively. In age-stratified models, of these medications thiazides had a significant contribution to survival only for those aged 80 years or younger. The effects of the remaining medications were similar in both age strata. Conclusions: Most cardiovascular medications were attributed independently to survival. The two cardiovascular conditions contributing independently to death were heart failure and atrial fibrillation. The medication effects were similar by age except for thiazides that had a significant contribution to survival in persons younger than 80 years. PMID:26748093
Code of Federal Regulations, 2010 CFR
2010-07-01
... preponderant evidence demonstrates that no such revocation was intended by the officer. Cardiovascular disease... commonly accepted to be associated with substantially-increased risk of cardiovascular disease. Execution... substantially increased risk of cardiovascular disease, where such associated disease or condition is known (or...
Design Approaches to Myocardial and Vascular Tissue Engineering.
Akintewe, Olukemi O; Roberts, Erin G; Rim, Nae-Gyune; Ferguson, Michael A H; Wong, Joyce Y
2017-06-21
Engineered tissues represent an increasingly promising therapeutic approach for correcting structural defects and promoting tissue regeneration in cardiovascular diseases. One of the challenges associated with this approach has been the necessity for the replacement tissue to promote sufficient vascularization to maintain functionality after implantation. This review highlights a number of promising prevascularization design approaches for introducing vasculature into engineered tissues. Although we focus on encouraging blood vessel formation within myocardial implants, we also discuss techniques developed for other tissues that could eventually become relevant to engineered cardiac tissues. Because the ultimate solution to engineered tissue vascularization will require collaboration between wide-ranging disciplines such as developmental biology, tissue engineering, and computational modeling, we explore contributions from each field.
NASA Astrophysics Data System (ADS)
Bari, Vlasta; Marchi, Andrea; De Maria, Beatrice; Rossato, Gianluca; Nollo, Giandomenico; Faes, Luca; Porta, Alberto
2016-05-01
Cardiovascular and cerebrovascular regulatory systems are vital control mechanisms responsible for guaranteeing homeostasis and are affected by respiration. This work proposes the investigation of cardiovascular and cerebrovascular control systems and the nonlinear influences of respiration on both regulations through joint symbolic analysis (JSA), conditioned or unconditioned on respiration. Interactions between cardiovascular and cerebrovascular regulatory systems were evaluated as well by performing correlation analysis between JSA indexes describing the two control systems. Heart period, systolic and mean arterial pressure, mean cerebral blood flow velocity and respiration were acquired on a beat-to-beat basis in 13 subjects experiencing recurrent syncope episodes (SYNC) and 13 healthy individuals (non-SYNC) in supine resting condition and during head-up tilt test at 60° (TILT). Results showed that JSA distinguished conditions and groups, whereas time domain parameters detected only the effect of TILT. Respiration affected cardiovascular and cerebrovascular regulatory systems in a nonlinear way and was able to modulate the interactions between the two control systems with different outcome in non-SYNC and SYNC groups, thus suggesting that the analysis of the impact of respiration on cardiovascular and cerebrovascular regulatory systems might improve our understanding of the mechanisms underpinning the development of postural-related syncope.
Consensus Review of the Treatment of Cardiovascular Disease in People With Hemophilia A and B
Boral, Leonard I.; Cohen, Alice J.; Smyth, Susan S.; White, Gilbert C.
2015-01-01
With advances in care, increasing numbers of people with hemophilia (PWH) achieve near-normal life expectancies and present with typical age-related cardiovascular conditions. Evidence-based guidelines for medical or surgical management of cardiovascular conditions in individuals with hemophilia are limited. Published recommendations exist for the management of some common cardiovascular conditions (eg, ischemic heart disease, atrial fibrillation), but identifying optimal strategies for anticoagulant or antithrombotic therapy constitutes the primary challenge of managing nonoperative cardiovascular disease (CVD) in PWH. In general, as long as factor concentrates or other hemostatic therapies maintain adequate hemostasis, the recommended medical and surgical management of CVD in PWH parallels that in individuals without hemophilia. The presence of factor inhibitors complicates hemophilia management. Published outcomes of CVD treatment in PWH are similar to those in the general population. Specific knowledge about factor replacement, factor inhibitors, and disease-specific treatment distinguishes the cardiovascular care of PWH from similar care of individuals without this rare bleeding disorder. Furthermore, a multidisciplinary approach incorporating a hematologist with an onsite coagulation laboratory, ideally associated with a hemophilia treatment center, is integral to the management of CVD in PWH. PMID:25436468
Pulsatile perfusion bioreactor for cardiac tissue engineering.
Brown, Melissa A; Iyer, Rohin K; Radisic, Milica
2008-01-01
Cardiovascular disease is the number one cause of mortality in North America. Cardiac tissue engineering aims to engineer a contractile patch of physiological thickness to use in surgical repair of diseased heart tissue. We previously reported that perfusion of engineered cardiac constructs resulted in improved tissue assembly. Because heart tissues respond to mechanical stimuli in vitro and experience rhythmic mechanical forces during contraction in vivo, we hypothesized that provision of pulsatile interstitial medium flow to an engineered cardiac patch would result in enhanced tissue assembly by way of mechanical conditioning and improved mass transport. Thus, we constructed a novel perfusion bioreactor capable of providing pulsatile fluid flow at physiologically relevant shear stresses and flow rates. Pulsatile perfusion (PP) was achieved by incorporation of a normally closed solenoid pinch valve into the perfusion loop and was carried out at a frequency of 1 Hz and a flow rate of 1.50 mL/min (PP) or 0.32 mL/min (PP-LF). Nonpulsatile flow at 1.50 mL/min (NP) or 0.32 mL/min (NP-LF) served as controls. Static controls were cultivated in well plates. The main experimental groups were seeded with cells enriched for cardiomyocytes by one preplating step (64% cardiac Troponin I+, 34% prolyl-4-hydroxylase+), whereas pure cardiac fibroblasts and cells enriched for cardiomyocytes by two preplating steps (81% cardiac Troponin I+, 16% prolyl-4-hydroxylase+) served as controls. Cultivation under pulsatile flow had beneficial effects on contractile properties. Specifically, the excitation threshold was significantly lower in the PP condition (pulsatile perfusion at 1.50 mL/min) than in the Static control, and the contraction amplitude was the highest; whereas high maximum capture rate was observed for the PP-LF conditions (pulsatile perfusion at 0.32 mL/min). The enhanced hypertrophy index observed for the PP-LF group was consistent with the highest cellular length and diameter in this group. Within the same cultivation groups (Static, NP-LF, PP-LF, PP, and NP) there were no significant differences in the diameter between fibroblasts and cardiomyocytes, although cardiomyocytes were significantly more elongated than fibroblasts under PP-LF conditions. Cultivation of control cell populations resulted in noncontractile constructs when cardiac fibroblasts were used (as expected) and no overall improvement in functional properties when two steps of preplating were used to enrich for cardiomyocytes in comparison with only one step of preplating.
Song, Liqing; Ahmed, Mohammad Faisel; Li, Yan; Bejoy, Julie; Zeng, Changchun; Li, Yan
2017-10-01
Poly-ɛ-caprolactone (PCL) based microspheres have received much attention as drug or growth factor delivery carriers and tissue engineering scaffolds due to their biocompatibility, biodegradability, and tunable biophysical properties. In addition, PCL and polydimethylsiloxane (PDMS) can be fabricated into thermoresponsive shape memory polymers for various biomedical applications (e.g., smart sutures and vascular stents). However, the influence of biophysical properties of PCL-PDMS based microspheres on stem cell lineage commitment has not been well understood. In this study, PDMS was used as soft segments of varying length to tailor the elastic modulus of PCL-based copolymers. It was found that lower elastic modulus (<10 kPa) of the tri-block copolymer PCL-PDMS-PCL promoted vascular differentiation of embryonic stem cells, but the range of 60-100 MPa PCL-PDMS-PCL had little influence on cardiovascular differentiation. Then different sizes (30-140 μm) of PCL-PDMS-PCL microspheres were fabricated and incorporated with embryoid bodies (EBs). Differential expression of KDR, CD31, and VE-cadherin was observed for the EBs containing microspheres of different sizes. Higher expression of KDR was observed for the condition with small size of microspheres (32 μm), while higher CD31 and VE-cadherin expression was observed for the group of medium size of microspheres (94 μm). Little difference in cardiac marker α-actinin was observed for different microspheres. This study indicates that the biophysical properties of PCL-PDMS-PCL microspheres impact vascular lineage commitment and have implications for drug delivery and tissue engineering.
Vascular biology in altered gravity conditions
NASA Astrophysics Data System (ADS)
Bradamante, Silvia; Maier, Janette A. M.; Duncker, Dirk J.
2005-10-01
The physical environment of Endothelial Cells profoundly affects their gene expression, structure, function, growth differentiation and apoptosis. However, the mechanisms by which the genetic and local growth determinants driving morphogenesis are established and maintained remain unknown. Understanding how gravity affects vascular cells will offer new insights for novel therapeutical approaches for cardiovascular disease in general. In terms of tissue engineering and stem-cell therapy, significant future developments will depend on a profound understanding of the cellular and molecular basis of angiogenesis and of the biology of circulating Endothelial Precursor Cells. this MAP project has demonstrated how modelled microgravity influences endothelial proliferation and differentiation with the involvement of anti-angiogenic factors that may be responsible for the non-spontaneous formation of blood vessels.
2006-11-29
ISS014-E-08795 (29 Nov. 2006) --- European Space Agency (ESA) astronaut Thomas Reiter, Expedition 14 flight engineer, works with the Cognitive Cardiovascular (Cardiocog-2) experiment in the Zvezda Service Module of the International Space Station. Cardiocog-2 will determine the impact of weightlessness on the cardiovascular system and respiratory system and the cognitive reactions of crewmembers. The results of this study will be used to develop additional countermeasures that will continue to keep crewmembers healthy during long-duration space exploration.
Introduction: Cardiovascular physics
NASA Astrophysics Data System (ADS)
Wessel, Niels; Kurths, Jürgen; Ditto, William; Bauernschmitt, Robert
2007-03-01
The number of patients suffering from cardiovascular diseases increases unproportionally high with the increase of the human population and aging, leading to very high expenses in the public health system. Therefore, the challenge of cardiovascular physics is to develop high-sophisticated methods which are able to, on the one hand, supplement and replace expensive medical devices and, on the other hand, improve the medical diagnostics with decreasing the patient's risk. Cardiovascular physics-which interconnects medicine, physics, biology, engineering, and mathematics-is based on interdisciplinary collaboration of specialists from the above scientific fields and attempts to gain deeper insights into pathophysiology and treatment options. This paper summarizes advances in cardiovascular physics with emphasis on a workshop held in Bad Honnef, Germany, in May 2005. The meeting attracted an interdisciplinary audience and led to a number of papers covering the main research fields of cardiovascular physics, including data analysis, modeling, and medical application. The variety of problems addressed by this issue underlines the complexity of the cardiovascular system. It could be demonstrated in this Focus Issue, that data analyses and modeling methods from cardiovascular physics have the ability to lead to significant improvements in different medical fields. Consequently, this Focus Issue of Chaos is a status report that may invite all interested readers to join the community and find competent discussion and cooperation partners.
Three-dimensional ballistocardiography in weightlessness
NASA Technical Reports Server (NTRS)
Scano, A.
1981-01-01
An experiment is described the aim of which is to record a three dimensional ballistocardiogram under the condition of weightlessness and to compare it with tracings recorded on the same subject on the ground as a means of clarifying the meaning of ballistocardiogram waves in different physiological and perphaps pathological conditions. Another purpose is to investigate cardiovascular and possibly fluid adaptations to weightlessness from data collected almost simultaneously on the same subjects during the other cardiovascular during the other cardiovascular and metabolic experiments.
Effect of zero magnetic field on cardiovascular system and microcirculation
NASA Astrophysics Data System (ADS)
Gurfinkel, Yu. I.; At'kov, O. Yu.; Vasin, A. L.; Breus, T. K.; Sasonko, M. L.; Pishchalnikov, R. Yu.
2016-02-01
The effects of zero magnetic field conditions on cardiovascular system of healthy adults have been studied. In order to generate zero magnetic field, the facility for magnetic fields modeling ;ARFA; has been used. Parameters of the capillary blood flow, blood pressure, and the electrocardiogram (ECG) monitoring were measured during the study. All subjects were tested twice: in zero magnetic field and, for comparison, in sham condition. The obtained results during 60 minutes of zero magnetic field exposure demonstrate a clear effect on cardiovascular system and microcirculation. The results of our experiments can be used in studies of long-term stay in hypo-magnetic conditions during interplanetary missions.
Health effects of inhaled gasoline engine emissions.
McDonald, Jacob D; Reed, Matthew D; Campen, Matthew J; Barrett, Edward G; Seagrave, JeanClare; Mauderly, Joe L
2007-01-01
Despite their prevalence in the environment, and the myriad studies that have shown associations between morbidity or mortality with proximity to roadways (proxy for motor vehicle exposures), relatively little is known about the toxicity of gasoline engine emissions (GEE). We review the studies conducted on GEE to date, and summarize the findings from each of these studies. While there have been several studies, most of the studies were conducted prior to 1980 and thus were not conducted with contemporary engines, fuels, and driving cycles. In addition, many of the biological assays conducted during those studies did not include many of the assays that are conducted on contemporary inhalation exposures to air pollutants, including cardiovascular responses and others. None of the exposures from these earlier studies were characterized at the level of detail that would be considered adequate today. A recent GEE study was conducted as part of the National Environmental Respiratory Center (www.nercenter.org). In this study several in-use mid-mileage General Motors (Chevrolet S-10) vehicles were purchased and utilized for inhalation exposures. An exposure protocol was developed where engines were operated with a repeating California Unified Driving Cycle with one cold start per day. Two separate engines were used to provide two cold starts over a 6-h inhalation period. The exposure atmospheres were characterized in detail, including detailed chemical and physical analysis of the gas, vapor, and particle phase. Multiple rodent biological models were studied, including general toxicity and inflammation (e.g., serum chemistry, lung lavage cell counts/differentials, cytokine/chemokine analysis, histopathology), asthma (adult and in utero exposures with pulmonary function and biochemical analysis), cardiovascular effects (biochemical and electrocardiograph changes in susceptible rodent models), and susceptibility to infection (Pseudomonas bacteria challenge). GEE resulted in significant biological effects for upregulation of MIP-2, clearance of Pseudomonas bacteria, development of allergic response after in utero exposure, and cardiovascular indicators of vasoconstriction, oxidant stress, and damage.
Exercise-Related Sudden Death: Cardiovascular Evaluation of Exercisers (Part 2 of 2).
ERIC Educational Resources Information Center
Van Camp, Steven P.
1988-01-01
A primary goal of the cardiovascular evaluation of exercisers is to identify conditions that carry the risk of exercise-related sudden death. These conditions, which are found in a careful evaluation of the patient, are identifed and described in detail. (Author/JL)
A device for rapid and quantitative measurement of cardiac myocyte contractility
NASA Astrophysics Data System (ADS)
Gaitas, Angelo; Malhotra, Ricky; Li, Tao; Herron, Todd; Jalife, José
2015-03-01
Cardiac contractility is the hallmark of cardiac function and is a predictor of healthy or diseased cardiac muscle. Despite advancements over the last two decades, the techniques and tools available to cardiovascular scientists are limited in their utility to accurately and reliably measure the amplitude and frequency of cardiomyocyte contractions. Isometric force measurements in the past have entailed cumbersome attachment of isolated and permeabilized cardiomyocytes to a force transducer followed by measurements of sarcomere lengths under conditions of submaximal and maximal Ca2+ activation. These techniques have the inherent disadvantages of being labor intensive and costly. We have engineered a micro-machined cantilever sensor with an embedded deflection-sensing element that, in preliminary experiments, has demonstrated to reliably measure cardiac cell contractions in real-time. Here, we describe this new bioengineering tool with applicability in the cardiovascular research field to effectively and reliably measure cardiac cell contractility in a quantitative manner. We measured contractility in both primary neonatal rat heart cardiomyocyte monolayers that demonstrated a beat frequency of 3 Hz as well as human embryonic stem cell-derived cardiomyocytes with a contractile frequency of about 1 Hz. We also employed the β-adrenergic agonist isoproterenol (100 nmol l-1) and observed that our cantilever demonstrated high sensitivity in detecting subtle changes in both chronotropic and inotropic responses of monolayers. This report describes the utility of our micro-device in both basic cardiovascular research as well as in small molecule drug discovery to monitor cardiac cell contractions.
Point-of-Care Technologies for Precision Cardiovascular Care and Clinical Research
King, Kevin; Grazette, Luanda P.; Paltoo, Dina N.; McDevitt, John T.; Sia, Samuel K.; Barrett, Paddy M.; Apple, Fred S.; Gurbel, Paul A.; Weissleder, Ralph; Leeds, Hilary; Iturriaga, Erin J.; Rao, Anupama; Adhikari, Bishow; Desvigne-Nickens, Patrice; Galis, Zorina S.; Libby, Peter
2016-01-01
Point-of-care technologies (POC or POCT) are enabling innovative cardiovascular diagnostics that promise to improve patient care across diverse clinical settings. The National Heart, Lung, and Blood Institute convened a working group to discuss POCT in cardiovascular medicine. The multidisciplinary working group, which included clinicians, scientists, engineers, device manufacturers, regulatory officials, and program staff, reviewed the state of the POCT field; discussed opportunities for POCT to improve cardiovascular care, realize the promise of precision medicine, and advance the clinical research enterprise; and identified barriers facing translation and integration of POCT with existing clinical systems. A POCT development roadmap emerged to guide multidisciplinary teams of biomarker scientists, technologists, health care providers, and clinical trialists as they: 1) formulate needs assessments; 2) define device design specifications; 3) develop component technologies and integrated systems; 4) perform iterative pilot testing; and 5) conduct rigorous prospective clinical testing to ensure that POCT solutions have substantial effects on cardiovascular care. PMID:26977455
The sex differences in nature of vascular endothelial stress: nitrergic mechanisms
NASA Astrophysics Data System (ADS)
Sindeev, Sergey; Gekaluyk, Artem; Ulanova, Maria; Agranovich, Ilana; Sharref, Ali Esmat; Semyachkina-Glushkovskaya, Oxana
2016-04-01
Here we studied the role of nitric oxide in cardiovascular regulation in male and female hypertensive rats under normal and stress conditions. We found that the severity of hypertension in females was lower than in males. Hypertensive females demonstrated more favorable pattern of cardiovascular responses to stress. Nitric oxide blockade by NG-nitro-L-arginine methyl ester (L-NAME) increased the mean arterial pressure and decreased the heart rate more effectively in females than in males. During stress, L-NAME modified the stress-induced cardiovascular responses more significantly in female compared with male groups. Our data show that hypertensive females demonstrated the more effective nitric oxide control of cardiovascular activity under normal and especially stress conditions than male groups. This sex differences may be important mechanism underlying greater in females vs. males stress-resistance of cardiovascular system and hypertension formation.
Nanotechnology and stem cell therapy for cardiovascular diseases: potential applications.
La Francesca, Saverio
2012-01-01
The use of stem cell therapy for the treatment of cardiovascular diseases has generated significant interest in recent years. Limitations to the clinical application of this therapy center on issues of stem cell delivery, engraftment, and fate. Nanotechnology-based cell labeling and imaging techniques facilitate stem cell tracking and engraftment studies. Nanotechnology also brings exciting new opportunities to translational stem cell research as it enables the controlled engineering of nanoparticles and nanomaterials that can properly relate to the physical scale of cell-cell and cell-niche interactions. This review summarizes the most relevant potential applications of nanoscale technologies to the field of stem cell therapy for the treatment of cardiovascular diseases.
Alfonso, Fernando; Gonçalves, Lino; Pinto, Fausto; Timmis, Adam; Ector, Hugo; Ambrosio, Giuseppe; Vardas, Panos
2015-05-01
European Society of Cardiology (ESC) National Society Cardiovascular Journals (NSCJs) are high-quality biomedical journals focused on cardiovascular diseases. The Editors' Network of the ESC devises editorial initiatives aimed at improving the scientific quality and diffusion of NSCJ. In this article we will discuss on the importance of the Internet, electronic editions and open access strategies on scientific publishing. Finally, we will propose a new editorial initiative based on a novel electronic tool on the ESC web-page that may further help to increase the dissemination of contents and visibility of NSCJs. Copyright © 2013 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.
Collaborative research in cardiovascular dynamics and bone elasticity
NASA Technical Reports Server (NTRS)
1974-01-01
A collaborative research program covering a variety of topics of biomechanics and biomedical engineering within the fields of cardiovascular dynamics, respiration, bone elasticity and vestibular physiology is described. The goals of the research were to promote: (1) a better understanding of the mechanical behavior of the circulatory system and its control mechanisms; (2) development of noninvasive methods of measuring the changes in the mechanical properties of blood vessels and other cardiovascular parameters in man; (3) application of these noninvasive methods to examine in man the physiological effects of environmental changes, including earth-simulated gravitational changes; and (4) development of in-flight methods for studying the events which lead to post-flight postural hypotension.
EMERGING APPLICATIONS OF NANOMEDICINE FOR THERAPY AND DIAGNOSIS OF CARDIOVASCULAR DISEASES
Godin, Biana; Sakamoto, Jason H.; Serda, Rita E.; Grattoni, Alessandro; Bouamrani, Ali; Ferrari, Mauro
2010-01-01
Nanomedicine is an emerging field of medicine which utilizes nanotechnology concepts for advanced therapy and diagnostics. This convergent discipline, which merges research areas such as chemistry, biology, physics, mathematics and engineering thus bridging the gap between molecular and cellular interactions, has a potential to revolutionize current medical practice. This review presents recent developments in nanomedicine research, which are poised to have an important impact on cardiovascular disease and treatment by improving therapy and diagnosis of such cardiovascular disorders as atherosclerosis, restenosis and myocardial infarction. Specifically, we discuss the use of nanoparticles for molecular imaging and advanced therapeutics, specially designed drug eluting stents and in vivo/ex vivo early detection techniques. PMID:20172613
Mitroflow DL Post Approval Study- North America
2017-12-04
Aortic Stenosis; Aortic Regurgitation; Aortic Valve Insufficiency; Heart Valve Diseases; Cardiovascular Abnormalities; Cardiovascular Diseases; Congenital Abnormalities; Heart Diseases; Pathological Conditions, Anatomical
Liu, Jason; Lezama, Nicholas; Gasper, Joseph; Kawata, Jennifer; Morley, Sybil; Helmer, Drew; Ciminera, Paul
2016-07-01
The aim of this study was to determine how burn pit emissions exposure is associated with the incidence of respiratory and cardiovascular conditions. We examined the associations between assumed geographic and self-reported burn pit emissions exposure and respiratory and cardiovascular outcomes in participants of the Airborne Hazards and Open Burn Pit Registry. We found significant dose-response associations for higher risk of self-reported emphysema, chronic bronchitis, or chronic obstructive pulmonary disease with increased days of deployment within 2 miles of selected burn pits (P-trend = 0.01) and self-reported burn pit smoke exposure (P-trend = 0.0005). We found associations between burn pit emissions exposure and higher incidence of post-deployment self-reported respiratory and cardiovascular conditions, but these findings should be interpreted with caution because the surrogate measurements of burn pit emissions exposure in this analysis may not reflect individual exposure levels.
A CRISPR Path to Engineering New Genetic Mouse Models for Cardiovascular Research.
Miano, Joseph M; Zhu, Qiuyu Martin; Lowenstein, Charles J
2016-06-01
Previous efforts to target the mouse genome for the addition, subtraction, or substitution of biologically informative sequences required complex vector design and a series of arduous steps only a handful of laboratories could master. The facile and inexpensive clustered regularly interspaced short palindromic repeats (CRISPR) method has now superseded traditional means of genome modification such that virtually any laboratory can quickly assemble reagents for developing new mouse models for cardiovascular research. Here, we briefly review the history of CRISPR in prokaryotes, highlighting major discoveries leading to its formulation for genome modification in the animal kingdom. Core components of CRISPR technology are reviewed and updated. Practical pointers for 2-component and 3-component CRISPR editing are summarized with many applications in mice including frameshift mutations, deletion of enhancers and noncoding genes, nucleotide substitution of protein-coding and gene regulatory sequences, incorporation of loxP sites for conditional gene inactivation, and epitope tag integration. Genotyping strategies are presented and topics of genetic mosaicism and inadvertent targeting discussed. Finally, clinical applications and ethical considerations are addressed as the biomedical community eagerly embraces this astonishing innovation in genome editing to tackle previously intractable questions. © 2016 American Heart Association, Inc.
Bai, Hualong; Lee, Jung Seok; Chen, Elizabeth; Wang, Mo; Xing, Ying; Fahmy, Tarek M.; Dardik, Alan
2017-01-01
Prosthetic grafts and patches are commonly used in cardiovascular surgery, however neointimal hyperplasia remains a significant concern, especially under low flow conditions. We hypothesized that delivery of rapamycin from nanoparticles (NP) covalently attached to patches allows sustained site-specific delivery of therapeutic agents targeted to inhibit localized neointimal hyperplasia. NP were covalently linked to pericardial patches using EDC/NHS chemistry and could deliver at least 360 ng rapamycin per patch without detectable rapamycin in serum; nanoparticles were detectable in the liver, kidney and spleen but no other sites within 24 hours. In a rat venous patch angioplasty model, control patches developed robust neointimal hyperplasia on the patch luminal surface characterized by Eph-B4-positive endothelium and underlying SMC and infiltrating cells such as macrophages and leukocytes. Patches delivering rapamycin developed less neointimal hyperplasia, less smooth muscle cell proliferation, and had fewer infiltrating cells but retained endothelialization. NP covalently linked to pericardial patches are a novel composite delivery system that allows sustained site-specific delivery of therapeutics; NP delivering rapamycin inhibit patch neointimal hyperplasia. NP linked to patches may represent a next generation of tissue engineered cardiovascular implants. PMID:28071663
A CRISPR Path to Engineering New Genetic Mouse Models for Cardiovascular Research
Miano, Joseph M.; Zhu, Qiuyu Martin; Lowenstein, Charles J.
2016-01-01
Previous efforts to target the mouse genome for the addition, subtraction, or substitution of biologically informative sequences required complex vector design and a series of arduous steps only a handful of labs could master. The facile and inexpensive clustered regularly interspaced short palindromic repeats (CRISPR) method has now superseded traditional means of genome modification such that virtually any lab can quickly assemble reagents for developing new mouse models for cardiovascular research. Here we briefly review the history of CRISPR in prokaryotes, highlighting major discoveries leading to its formulation for genome modification in the animal kingdom. Core components of CRISPR technology are reviewed and updated. Practical pointers for two-component and three-component CRISPR editing are summarized with a number of applications in mice including frameshift mutations, deletion of enhancers and non-coding genes, nucleotide substitution of protein-coding and gene regulatory sequences, incorporation of loxP sites for conditional gene inactivation, and epitope tag integration. Genotyping strategies are presented and topics of genetic mosaicism and inadvertent targeting discussed. Finally, clinical applications and ethical considerations are addressed as the biomedical community eagerly embraces this astonishing innovation in genome editing to tackle previously intractable questions. PMID:27102963
NASA Astrophysics Data System (ADS)
Bai, Hualong; Lee, Jung Seok; Chen, Elizabeth; Wang, Mo; Xing, Ying; Fahmy, Tarek M.; Dardik, Alan
2017-01-01
Prosthetic grafts and patches are commonly used in cardiovascular surgery, however neointimal hyperplasia remains a significant concern, especially under low flow conditions. We hypothesized that delivery of rapamycin from nanoparticles (NP) covalently attached to patches allows sustained site-specific delivery of therapeutic agents targeted to inhibit localized neointimal hyperplasia. NP were covalently linked to pericardial patches using EDC/NHS chemistry and could deliver at least 360 ng rapamycin per patch without detectable rapamycin in serum; nanoparticles were detectable in the liver, kidney and spleen but no other sites within 24 hours. In a rat venous patch angioplasty model, control patches developed robust neointimal hyperplasia on the patch luminal surface characterized by Eph-B4-positive endothelium and underlying SMC and infiltrating cells such as macrophages and leukocytes. Patches delivering rapamycin developed less neointimal hyperplasia, less smooth muscle cell proliferation, and had fewer infiltrating cells but retained endothelialization. NP covalently linked to pericardial patches are a novel composite delivery system that allows sustained site-specific delivery of therapeutics; NP delivering rapamycin inhibit patch neointimal hyperplasia. NP linked to patches may represent a next generation of tissue engineered cardiovascular implants.
42 CFR 411.15 - Particular services excluded from coverage.
Code of Federal Regulations, 2010 CFR
2010-10-01
... aneurysms (AAA), cardiovascular disease screening tests, diabetes screening tests, a screening... conditions and limitation specified in § 410.19 of this chapter. (13) In the case of cardiovascular disease screening tests for the early detection of cardiovascular disease or abnormalities associated with an...
Park, Sungjin; Nam, Juhyun; Lee, Jong-Ku; Oh, Sung-Soo; Kang, Hee-Tae; Koh, Sang-Baek
2015-01-01
This study was conducted to investigate the relationship between night work and cardiovascular diseases among wage workers in Korea. The study was based on the 3rd Korean Working Conditions Survey (KWCS; 2011). This study included 29,711 wage workers. We used the chi-squared test and logistic regression to examine the association between cardiovascular diseases and night work and cumulative night work. Among all of the paid workers, 12.5% reported doing night work ≥ 1 day per month. Night work was significantly associated with an increased risk of cardiovascular diseases (odds ratio [OR] 1.58, 95% confidence interval [CI] 1.11-2.25). Also, compared to the group that did not do night works, the group with higher cumulative night work demonstrated an increased risk for cardiovascular diseases (OR 1.81, 95% CI 1.19-2.74). This study suggests that night work is significantly associated with cardiovascular diseases.
Baller, Julia B; McGinty, Emma E; Azrin, Susan T; Juliano-Bult, Denise; Daumit, Gail L
2015-03-21
Adults with serious mental illness have a mortality rate two to three times higher than the overall US population, much of which is due to somatic conditions, especially cardiovascular disease. Given the disproportionately high prevalence of cardiovascular risk factors in the population with SMI, screening for these conditions is an important first step for timely diagnosis and appropriate treatment. This comprehensive literature review summarizes screening rates for cardiovascular risk factors in the population with serious mental illness. Relevant articles published between 2000 and 2013 were identified using the EMBASE, PsychInfo, PubMed, SCOPUS and Web of Science databases. We reviewed 10 studies measuring screening rates for obesity, diabetes, dyslipidemia, and hypertension in the population with serious mental illness. Two reviewers independently extracted information on screening rates, study population, and study setting. Rates of screening varied considerably by time period, study population, and data source for all medical conditions. For example, rates of lipid testing for antipsychotic users ranged from 6% to 85%. For some conditions, rates of screening were consistently high. For example, screening rates for hypertension ranged from 79% - 88%. There is considerable variation in screening of cardiovascular risk factors in the population with serious mental illness, with significant need for improvement in some study populations and settings. Implementation of standard screening protocols triggered by diagnosis of serious mental illness or antipsychotic use may be promising avenues for ensuring timely diagnosis and treatment of cardiovascular risk factors in this population.
Lentiviral vectors for gene therapy of heart disease.
Higuchi, Koji; Medin, Jeffrey A
2007-01-01
Technological advances in genetic engineering developed over the past few years have been applied to the research and treatment of cardiovascular diseases. In many animal models, gene therapy has been shown to be an effective treatment schema. Some of these gene therapy treatments are now being applied in clinical trials. Also, as the science of gene therapy has progressed, alternative vector systems such as lentiviruses have been developed and implemented. Here we focus on the emerging role of lentiviral vectors in the treatment of cardiovascular disease.
Engineering studies of vectorcardiographs in blood pressure measuring systems
NASA Technical Reports Server (NTRS)
Mark, R. G.
1975-01-01
The following projects involving cardiovascular instrumentation were conducted: (1) the development and fabrication of a three-dimensional display measurement system for vectorcardiograms, (2) the development and fabrication of a cardiovascular monitoring system to noninvasively monitor beat-by-beat the blood pressure and heart rate using aortic pulse wave velocity, (3) the development of software for an interactive system to analyze systolic time interval data, and (4) the development of microprocessor-based physiologic instrumentation, focussing initially on EKG rhythm analysis. Brief descriptions of these projects were given.
Micro- and nanotechnology in cardiovascular tissue engineering.
Zhang, Boyang; Xiao, Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica
2011-12-09
While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.
Patient-Centred Care of Older Adults With Cardiovascular Disease and Multiple Chronic Conditions.
Kim, Dae Hyun; Rich, Michael W
2016-09-01
Multimorbidity, defined as the presence of 2 or more chronic conditions, is common among older adults with cardiovascular disease. These individuals are at increased risk for poor health outcomes and account for a large proportion of health care utilization. Clinicians are challenged with the heterogeneity of this population, the complexity of the treatment regimen, limited high-quality evidence, and fragmented health care systems. Each treatment recommended by a clinical practice guideline for a single cardiovascular disease might be rational, but the combination of all evidence-based recommendations can be impractical or even harmful to individuals with multimorbidity. These challenges can be overcome with a patient-centred approach that incorporates the individual's preferences, relevant evidence, the overall and condition-specific prognosis, clinical feasibility of treatments, and interactions with other treatments and coexisting chronic conditions. The ultimate goal is to maximize benefits and minimize harms by optimizing adherence to the most essential treatments, while acknowledging trade-offs between treatments for different health conditions. It might be necessary to discontinue therapies that are not essential or potentially harmful to decrease the risk of drug-drug and drug-disease interactions from polypharmacy. A decision to initiate, withhold, or stop a treatment should be on the basis of the time horizon to benefits vs the individual's prognosis. In this review, we illustrate how cardiologists and general practitioners can adopt a patient-centred approach to focus on the aspects of cardiovascular and noncardiovascular health that have the greatest effect on functioning and quality of life in older adults with cardiovascular disease and multimorbidity. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Hansen, Dominique; Dendale, Paul; Coninx, Karin; Vanhees, Luc; Piepoli, Massimo F; Niebauer, Josef; Cornelissen, Veronique; Pedretti, Roberto; Geurts, Eva; Ruiz, Gustavo R; Corrà, Ugo; Schmid, Jean-Paul; Greco, Eugenio; Davos, Constantinos H; Edelmann, Frank; Abreu, Ana; Rauch, Bernhard; Ambrosetti, Marco; Braga, Simona S; Barna, Olga; Beckers, Paul; Bussotti, Maurizio; Fagard, Robert; Faggiano, Pompilio; Garcia-Porrero, Esteban; Kouidi, Evangelia; Lamotte, Michel; Neunhäuserer, Daniel; Reibis, Rona; Spruit, Martijn A; Stettler, Christoph; Takken, Tim; Tonoli, Cajsa; Vigorito, Carlo; Völler, Heinz; Doherty, Patrick
2017-07-01
Background Exercise rehabilitation is highly recommended by current guidelines on prevention of cardiovascular disease, but its implementation is still poor. Many clinicians experience difficulties in prescribing exercise in the presence of different concomitant cardiovascular diseases and risk factors within the same patient. It was aimed to develop a digital training and decision support system for exercise prescription in cardiovascular disease patients in clinical practice: the European Association of Preventive Cardiology Exercise Prescription in Everyday Practice and Rehabilitative Training (EXPERT) tool. Methods EXPERT working group members were requested to define (a) diagnostic criteria for specific cardiovascular diseases, cardiovascular disease risk factors, and other chronic non-cardiovascular conditions, (b) primary goals of exercise intervention, (c) disease-specific prescription of exercise training (intensity, frequency, volume, type, session and programme duration), and (d) exercise training safety advices. The impact of exercise tolerance, common cardiovascular medications and adverse events during exercise testing were further taken into account for optimized exercise prescription. Results Exercise training recommendations and safety advices were formulated for 10 cardiovascular diseases, five cardiovascular disease risk factors (type 1 and 2 diabetes, obesity, hypertension, hypercholesterolaemia), and three common chronic non-cardiovascular conditions (lung and renal failure and sarcopaenia), but also accounted for baseline exercise tolerance, common cardiovascular medications and occurrence of adverse events during exercise testing. An algorithm, supported by an interactive tool, was constructed based on these data. This training and decision support system automatically provides an exercise prescription according to the variables provided. Conclusion This digital training and decision support system may contribute in overcoming barriers in exercise implementation in common cardiovascular diseases.
Röösli, Martin; Egger, Matthias; Pfluger, Dominik; Minder, Christoph
2008-01-01
Background Exposure to intermittent magnetic fields of 16 Hz has been shown to reduce heart rate variability, and decreased heart rate variability predicts cardiovascular mortality. We examined mortality from cardiovascular causes in railway workers exposed to varying degrees to intermittent 16.7 Hz magnetic fields. Methods We studied a cohort of 20,141 Swiss railway employees between 1972 and 2002, including highly exposed train drivers (median lifetime exposure 120.5 μT-years), and less or little exposed shunting yard engineers (42.1 μT-years), train attendants (13.3 μT-years) and station masters (5.7 μT-years). During 464,129 person-years of follow up, 5,413 deaths were recorded and 3,594 deaths were attributed to cardio-vascular diseases. We analyzed data using Cox proportional hazards models. Results For all cardiovascular mortality the hazard ratio compared to station masters was 0.99 (95%CI: 0.91, 1.08) in train drivers, 1.13 (95%CI: 0.98, 1.30) in shunting yard engineers, and 1.09 (95%CI: 1.00, 1.19) in train attendants. Corresponding hazard ratios for arrhythmia related deaths were 1.04 (95%CI: 0.68, 1.59), 0.58 (95%CI: 0.24, 1.37) and 10 (95%CI: 0.87, 1.93) and for acute myocardial infarction 1.00 (95%CI: 0.73, 1.36), 1.56 (95%CI: 1.04, 2.32), and 1.14 (95%CI: 0.85, 1.53). The hazard ratio for arrhythmia related deaths per 100 μT-years of cumulative exposure was 0.94 (95%CI: 0.71, 1.24) and 0.91 (95%CI: 0.75, 1.11) for acute myocardial infarction. Conclusion This study provides evidence against an association between long-term occupational exposure to intermittent 16.7 Hz magnetic fields and cardiovascular mortality. PMID:18593477
Costa Ferrer, Raquel; Serrano Rosa, Miguel Ángel; Zornoza Abad, Ana; Salvador Fernández-Montejo, Alicia
2010-11-01
The cardiovascular (CV) response to social challenge and stress is associated with the etiology of cardiovascular diseases. New ways of communication, time pressure and different types of information are common in our society. In this study, the cardiovascular response to two different tasks (open vs. closed information) was examined employing different communication channels (computer-mediated vs. face-to-face) and with different pace control (self vs. external). Our results indicate that there was a higher CV response in the computer-mediated condition, on the closed information task and in the externally paced condition. These role of these factors should be considered when studying the consequences of social stress and their underlying mechanisms.
Biofluid Mechanics Education at U Michigan
NASA Astrophysics Data System (ADS)
Grotberg, James
2007-11-01
At the University of Michigan, biofluid mechanics is taught in the Department of Biomedical Engineering with cross-listing in Mechanical Engineering. The course has evolved over 25 years and serves advanced undergraduates and graduate students. The course description is as follows: BiomedE/MechE 476 Biofluid Mechanics. CATALOG DESCRIPTION: This is an intermediate level fluid mechanics course which uses examples from biotechnology processes and physiologic applications including cellular, cardiovascular, respiratory, ocular, renal, orthopedic, and gastrointestinal systems. COURSE TOPICS: 1. Dimensional analysis (gastrointestinal, renal) 2. Approximation methods, numerical methods (biotechnology, respiratory) 3. Particle kinematics in Eulerian and Lagrangian references frames (biotechnology, respiratory) 4. Conservation of mass and momentum 5. Constitutive equations (blood, mucus) 6. Kinematic and stress boundary conditions: rigid, flexible, porous (cardio-pulmonary, cellular) 7. Surface tension phenomena (pulmonary, ocular) 8. Flow and wave propagation in flexible tubes (cardio-pulmonary) 9. Oscillatory and pulsatile flows (cardio-pulmonary, orthopedic) 10. High Reynolds number flows (cardio-pulmonary) 11. Low Reynolds number flows (biotechnology, cellular, vascular) 12. Lubrication theory (vascular, orthopedic) 13. Flow in poroelastic media (orthopedic, pulmonary, ocular) 14. Video presentations of laboratory experiments.
Buse, Dawn C; Reed, Michael L; Fanning, Kristina M; Kurth, Tobias; Lipton, Richard B
2017-01-01
Though migraine, particularly migraine with aura, is a cardiovascular (CV) risk factor, the scope and distribution of cardiovascular disease in representative samples of people with migraine are not known. This is important because many widely used acute migraine treatments, including triptans, ergot alkaloids, and nonsteroidal anti-inflammatory drugs, carry precautions, warnings, or contraindications for use in persons with CV disease. To assess the scope and distribution of cardiovascular events, conditions, and procedures in persons with episodic migraine in a representative sample of the US population, using data from the American Migraine Prevalence and Prevention (AMPP) Study. Eligible subjects completed the 2009 AMPP survey, met ICHD-3beta criteria for migraine, and had a headache frequency of less than 15 days per month (episodic migraine). A survey on cardiovascular events (ie, myocardial infarction), conditions (ie, angina), and procedures (ie, carotid endarterectomy) was adopted from the Women's Health Study and the Physician's Health Studies. Cardiovascular events and conditions were defined by participant reports of having both experienced and received a physician diagnosis for a particular event or condition. The distribution of CV events, conditions, and procedures was summarized for the entire migraine sample and in groups defined by gender and age (22-39, 40-59, and ≥60). To assess the numbers of persons with episodic migraine in the US, we applied age and gender stratified estimates of migraine prevalence to the 2015 Census data. To estimate the number of cardiovascular events, conditions, and procedures in the US migraine population, we applied age and gender stratified event rates to the number of persons with episodic migraine in each stratum. The 2009 AMPP Study survey was returned by 11,792 study participants out of 16,983 (64.9% response rate), including 6723 individuals who met study criteria for episodic migraine (5227 women and 1496 men). Among 22-39 year olds with episodic migraine, 3.4% reported having received a physician diagnosis of CV events or conditions and 1.1% reported undergoing CV related procedures. Among 40-59 year olds, 10.2% reported having received a physician diagnosis of CV events or conditions and 3.5% reported CV related procedures. For those age 60 or older, 22.3% reported CV events or conditions and 8.8% reported CV procedures. Prevalence of events, conditions, and procedures was higher in men than women and also in older age groups. However, the absolute number of CV events, procedures, and conditions was greater for women than men due to the higher population prevalence of episodic migraine in women. We projected that 2.0 million women and 665,000 men in the US had episodic migraine and a history of one or more CV event, condition, or procedure. By age group, it is estimated that 579,000 among those aged 22-39, 1.37 million of those aged 40-59, and 696,000 of those 60 and older with episodic migraine have ever had at least one CV event, procedure, or condition. Based on these analyses, we estimate that there are roughly 2.6 million people with episodic migraine aged 22 and older in the US with one or more prior CV event, condition, or procedure. For this group, cardiovascular contraindications to many migraine-specific acute migraine therapies may make treatment challenging. © 2016 American Headache Society.
Myers, Jonathan; Lee, Matthew; Kiratli, Jenny
2007-02-01
Cardiovascular disease is a growing concern for the spinal cord-injured (SCI) population. For long-term SCI, morbidity and mortality from cardiovascular causes now exceeds that caused by renal and pulmonary conditions, the primary causes of mortality in previous decades. Although risk estimates commonly used for ambulatory individuals have not been established from follow-up studies in SCI, nearly all risk factors tend to be more prevalent in SCI subjects compared with ambulatory subjects. These risks include a greater prevalence of obesity, lipid disorders, metabolic syndrome, and diabetes. Daily energy expenditure is significantly lower in SCI individuals, not only because of a lack of motor function, but also because of a lack of accessibility and fewer opportunities to engage in physical activity. Autonomic dysfunction caused by SCI is also associated with several conditions that contribute to heightened cardiovascular risk, including abnormalities in blood pressure, heart rate variability, arrhythmias, and a blunted cardiovascular response to exercise that can limit the capacity to perform physical activity. Thus, screening, recognition, and treatment of cardiovascular disease should be an essential component of managing individuals with SCI, and judicious treatment of risk factors can play an important role in minimizing the incidence of cardiovascular disease in these individuals. This article reviews the cardiovascular consequences of chronic SCI, including the prevalence of cardiovascular disease and risk factors unique to these individuals, and provides a synopsis of management of cardiovascular disease in this population.
Human Cardiovascular Responses to Passive Heat Stress
Crandall, Craig G.; Wilson, Thad E.
2016-01-01
Heat stress increases human morbidity and mortality compared to normothermic conditions. Many occupations, disease states, as well as stages of life are especially vulnerable to the stress imposed on the cardiovascular system during exposure to hot ambient conditions. This review focuses on the cardiovascular responses to heat stress that are necessary for heat dissipation. To accomplish this regulatory feat requires complex autonomic nervous system control of the heart and various vascular beds. For example, during heat stress cardiac output increases up to twofold, by increases in heart rate and an active maintenance of stroke volume via increases in inotropy in the presence of decreases in cardiac preload. Baroreflexes retain the ability to regulate blood pressure in many, but not all, heat stress conditions. Central hypovolemia is another cardiovascular challenge brought about by heat stress, which if added to a subsequent central volumetric stress, such as hemorrhage, can be problematic and potentially dangerous, as syncope and cardiovascular collapse may ensue. These combined stresses can compromise blood flow and oxygenation to important tissues such as the brain. It is notable that this compromised condition can occur at cardiac outputs that are adequate during normothermic conditions but are inadequate in heat because of the increased systemic vascular conductance associated with cutaneous vasodilation. Understanding the mechanisms within this complex regulatory system will allow for the development of treatment recommendations and countermeasures to reduce risks during the ever-increasing frequency of severe heat events that are predicted to occur. PMID:25589263
Efficient Genome Editing in Induced Pluripotent Stem Cells with Engineered Nucleases In Vitro.
Termglinchan, Vittavat; Seeger, Timon; Chen, Caressa; Wu, Joseph C; Karakikes, Ioannis
2017-01-01
Precision genome engineering is rapidly advancing the application of the induced pluripotent stem cells (iPSCs) technology for in vitro disease modeling of cardiovascular diseases. Targeted genome editing using engineered nucleases is a powerful tool that allows for reverse genetics, genome engineering, and targeted transgene integration experiments to be performed in a precise and predictable manner. However, nuclease-mediated homologous recombination is an inefficient process. Herein, we describe the development of an optimized method combining site-specific nucleases and the piggyBac transposon system for "seamless" genome editing in pluripotent stem cells with high efficiency and fidelity in vitro.
Nalwa, Hari Singh
2014-10-01
This second special issue of the Journal of Biomedical Nanotechnology in a series contains another 30 state-of-the-art reviews focused on the biomedical applications of nanomaterials, biosensors, bone tissue engineering, MRI and bioimaging, single-cell detection, stem cells, endothelial progenitor cells, toxicity and biosafety of nanodrugs, nanoparticle-based new therapeutic approaches for cancer, hepatic and cardiovascular disease.
Stroke: Unique to Older Adults
... more. Stroke and Other Medical Conditions : Stroke and Cardiovascular Disease An older person may have one or more cardiovascular diseases such as coronary artery disease , high blood pressure ( ...
Use of Plant and Herb Derived Medicine for Therapeutic Usage in Cardiology.
Koo, Ye Eun; Song, Jiwon; Bae, Soochan
2018-04-22
Cardiovascular diseases (CVDs) have become prominent in mortality and morbidity rates. Prevalent cardiovascular conditions, such as hypertension, atherosclerosis and oxidative stress, are increasing at an alarming rate. Conventional drugs have been associated with adverse effects, suggesting a need for an alternative measure to ameliorate CVD. A number of plant- and herb-derived preventative food and therapeutic drugs for cardiovascular conditions are progressively used for their various benefits. Naturally derived food and drugs have fewer side effects because they come from natural elements; preventative food, such as grape seed, inhibits changes of histopathology and biomarkers in vital organs whereas therapeutic drugs, for instance Xanthone, improve heart functions by suppressing oxidative stress of myocyte. This review closely examines the various plant- and herb-derived drugs that have assumed an essential role in treating inflammation and oxidative stress for prevalent cardiovascular conditions. Furthermore, the use of plant-derived medicine with other synthetic particles, such as nanoparticles, for targeted therapy is investigated for its effective clinical use in the future.
Polymeric Nanofibers in Tissue Engineering
Dahlin, Rebecca L.; Kasper, F. Kurtis
2011-01-01
Polymeric nanofibers can be produced using methods such as electrospinning, phase separation, and self-assembly, and the fiber composition, diameter, alignment, degradation, and mechanical properties can be tailored to the intended application. Nanofibers possess unique advantages for tissue engineering. The small diameter closely matches that of extracellular matrix fibers, and the relatively large surface area is beneficial for cell attachment and bioactive factor loading. This review will update the reader on the aspects of nanofiber fabrication and characterization important to tissue engineering, including control of porous structure, cell infiltration, and fiber degradation. Bioactive factor loading will be discussed with specific relevance to tissue engineering. Finally, applications of polymeric nanofibers in the fields of bone, cartilage, ligament and tendon, cardiovascular, and neural tissue engineering will be reviewed. PMID:21699434
Vetter, Victoria L; Covington, Theresa M; Dugan, Noreen P; Haley, Danielle Main; Dykstra, Heather; Overpeck, Mary; Iyer, V Ramesh; Shults, Justine
2015-03-01
Cardiovascular conditions rank sixth in causes of death in 1- to 19-year-olds. Our study is the first analysis of the cardiovascular death data set from the National Center for the Review and Prevention of Child Deaths, which provides the only systematic collection of cardiovascular deaths in children. We developed an analytical data set from the National Center for the Review and Prevention of Child Deaths database for cardiovascular deaths in children 0 to 21 years old, reviewing 1,098 cases from 2005 to 2009 in 16 states who agreed to participate. Cardiovascular cases were aged 4.8 ± 6.6 years; 55.3%, ≤1 year; 24.6%, ≥10 years; male, 58%; white, 70.5%; black, 22.3%; Hispanic, 19.5%. Prior conditions were present in 48.5%: congenital heart disease, 23%; cardiomyopathies, 4.6%; arrhythmia, 1.7%; and congestive heart failure, 1.6%. Deaths occurred most frequently in urban settings, 49.2%; and in the hospital, 40.4%; home, 26.1%; or at school/work/sports, 4.8%. Emergency medical services were not evenly distributed with differences by age, race, ethnicity, and area. Autopsies (40.4%) occurred more often in those >10 years old (odds ratio [OR] 2.9), blacks (OR 1.6), or in those who died at school/work/sports (OR 3.9). The most common cardiovascular causes of death included congenital heart disease, 40.8%; arrhythmias, 27.1%; cardiomyopathy, 11.8%; myocarditis, 4.6%; congestive heart failure, 3.6%; and coronary artery anomalies, 2.2%. Our study identified differences in causes and frequencies of cardiovascular deaths by age, race, and ethnicity. Prevention of death may be impacted by knowledge of prior conditions, emergency plans, automated external defibrillator programs, bystander cardiopulmonary resuscitation education, and by a registry for all cardiovascular deaths in children. Copyright © 2014 Elsevier Inc. All rights reserved.
Lin, Lian-Yu; Chuang, Hsiao-Chi; Liu, I-Jung; Chen, Hua-Wei; Chuang, Kai-Jen
2013-10-01
Indoor air pollution is associated with cardiovascular effects, however, little is known about the effects of improving indoor air quality on cardiovascular health. The aim of this study was to explore whether improving indoor air quality through air conditioning can improve cardiovascular health in human subjects. We recruited a panel of 300 healthy subjects from Taipei, aged 20 and over, to participate in six home visits each, to measure a variety of cardiovascular endpoints, including high sensitivity-C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG), fibrinogen in plasma and heart rate variability (HRV). Indoor particles and total volatile organic compounds (VOCs) were measured simultaneously at the participant's home during each visit. Three exposure conditions were investigated in this study: participants were requested to keep their windows open during the first two visits, close their windows during the next two visits, and close the windows and turn on their air conditioners during the last two visits. We used linear mixed-effects models to associate the cardiovascular endpoints with individual indoor air pollutants. The results showed that increases in hs-CRP, 8-OHdG and fibrinogen, and decreases in HRV indices were associated with increased levels of indoor particles and total VOCs in single-pollutant and two-pollutant models. The effects of indoor particles and total VOCs on cardiovascular endpoints were greatest during visits with the windows open. During visits with the air conditioners turned on, no significant changes in cardiovascular endpoints were observed. In conclusion, indoor air pollution is associated with inflammation, oxidative stress, blood coagulation and autonomic dysfunction. Reductions in indoor air pollution and subsequent improvements in cardiovascular health can be achieved by closing windows and turning on air conditioners at home. Copyright © 2013 Elsevier B.V. All rights reserved.
Uejio, C. K.; Tamerius, J. D.; Vredenburg, J.; Asaeda, G.; Isaacs, D. A.; Braun, J.; Quinn, A.; Freese, J. P.
2016-01-01
Most extreme heat studies relate outdoor weather conditions to human morbidity and mortality. In developed nations, individuals spend ~90% of their time indoors. This pilot study investigated the indoor environments of people receiving emergency medical care in New York City, NY, U.S., from July to August 2013. The first objective was to determine the relative influence of outdoor conditions as well as patient characteristics and neighborhood sociodemographics on indoor temperature and specific humidity (N = 764). The second objective was to determine whether cardiovascular or respiratory cases experience hotter and more humid indoor conditions as compared to controls. Paramedics carried portable sensors into buildings where patients received care to passively monitor indoor temperature and humidity. The case–control study compared 338 respiratory cases, 291 cardiovascular cases, and 471 controls. Intuitively, warmer and sunnier outdoor conditions increased indoor temperatures. Older patients who received emergency care tended to occupy warmer buildings. Indoor-specific humidity levels quickly adjusted to outdoor conditions. Indoor heat and humidity exposure above a 26 °C threshold increased (OR: 1.63, 95% CI: 0.98–2.68, P = 0.056), but not significantly, the proportion of respiratory cases. Indoor heat exposures were similar between cardiovascular cases and controls. PMID:26086869
Kotov collects data for the Cardiocog-2 Experiment in the SM during Expedition 15
2007-05-01
ISS015-E-08661 (May 2007) --- Cosmonaut Oleg V. Kotov, Expedition 15 flight engineer representing Russia's Federal Space Agency, collects medical data for the Cognitive Cardiovascular (Cardiocog-2) experiment in the Zvezda Service Module of the International Space Station. Cardiocog-2 will determine the impact of weightlessness on the cardiovascular system and respiratory system and the cognitive reactions of crewmembers. The results of this study will be used to develop additional countermeasures that will continue to keep crewmembers healthy during long-duration space exploration.
Kotov collects data for the Cardiocog-2 Experiment in the SM during Expedition 15
2007-05-01
ISS015-E-08660 (May 2007) --- Cosmonaut Oleg V. Kotov, Expedition 15 flight engineer representing Russia's Federal Space Agency, collects medical data for the Cognitive Cardiovascular (Cardiocog-2) experiment in the Zvezda Service Module of the International Space Station. Cardiocog-2 will determine the impact of weightlessness on the cardiovascular system and respiratory system and the cognitive reactions of crewmembers. The results of this study will be used to develop additional countermeasures that will continue to keep crewmembers healthy during long-duration space exploration.
Kotov collects data for the Cardiocog-2 Experiment in the SM during Expedition 15
2007-05-01
ISS015-E-08659 (May 2007) --- Cosmonaut Oleg V. Kotov, Expedition 15 flight engineer representing Russia's Federal Space Agency, checks procedures checklists while collecting medical data for the Cognitive Cardiovascular (Cardiocog-2) experiment in the Zvezda Service Module of the International Space Station. Cardiocog-2 will determine the impact of weightlessness on the cardiovascular system and respiratory system and the cognitive reactions of crewmembers. The results of this study will be used to develop additional countermeasures that will continue to keep crewmembers healthy during long-duration space exploration.
Clinical neurocardiology defining the value of neuroscience‐based cardiovascular therapeutics
Ajijola, Olujimi A.; Anand, Inder; Armour, J. Andrew; Chen, Peng‐Sheng; Esler, Murray; De Ferrari, Gaetano M.; Fishbein, Michael C.; Goldberger, Jeffrey J.; Harper, Ronald M.; Joyner, Michael J.; Khalsa, Sahib S.; Kumar, Rajesh; Lane, Richard; Mahajan, Aman; Po, Sunny; Schwartz, Peter J.; Somers, Virend K.; Valderrabano, Miguel; Vaseghi, Marmar; Zipes, Douglas P.
2016-01-01
Abstract The autonomic nervous system regulates all aspects of normal cardiac function, and is recognized to play a critical role in the pathophysiology of many cardiovascular diseases. As such, the value of neuroscience‐based cardiovascular therapeutics is increasingly evident. This White Paper reviews the current state of understanding of human cardiac neuroanatomy, neurophysiology, pathophysiology in specific disease conditions, autonomic testing, risk stratification, and neuromodulatory strategies to mitigate the progression of cardiovascular diseases. PMID:27114333
75 FR 19983 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-16
... Cardiovascular Conditions (GenTAC). Date: May 12, 2010. Time: 10 a.m. to 1 p.m. Agenda: To review and evaluate... Emphasis Panel, NHLBI Cardiovascular Outcomes Research Coordinating Unit. Date: May 25, 2010. Time: 8 a.m... Blood Institute Special Emphasis Panel, NHLBI Centers for Cardiovascular Outcomes Research. Date: May 25...
[The heart in extreme sports: hyperbaric activity and microgravity].
Berrettini, Umberto; Landolfi, Angelo; Patteri, Giovanna
2008-10-01
The study of the cardiovascular and respiratory modifications in extreme environments could be useful for the understanding of the adaptive mechanisms of the body in particular conditions. The knowledge of how different environmental conditions in terms of extreme pressure, temperature and gravity modify the neurovegetative and cardiovascular system could be useful in daily practice for hypobaric and hyperbaric sports.
Bhakta, Nickhill; Liu, Qi; Yeo, Frederick; Baassiri, Malek; Ehrhardt, Matthew J; Srivastava, Deo K; Metzger, Monika L; Krasin, Matthew J; Ness, Kirsten K; Hudson, Melissa M; Yasui, Yutaka; Robison, Leslie L
2016-09-01
The magnitude of cardiovascular morbidity in paediatric, adolescent, and young adult survivors of Hodgkin's lymphoma is not known. Using medically ascertained data, we applied the cumulative burden metric to compare chronic cardiovascular health conditions in survivors of Hodgkin's lymphoma and general population controls. For this study, participant data were obtained from two ongoing cohort studies at St Jude Children's Research Hospital: the St Jude Lifetime Cohort Study (SJLIFE) and the St Jude Long-term Follow-up Study (SJLTFU). SJLIFE is a cohort study initiated on April 27, 2007, to enable longitudinal clinical evaluation of health outcomes of survivors of childhood cancer treated or followed at St Jude Children's Research Hospital, and SJLTFU is an administrative system-based study initiated in 2000 to collect outcome and late toxicity data for all patients treated at the hospital for childhood cancer. The patient cohort for our study was defined as patients treated at St Jude Children's Research Hospital who reached 18 years of age and were at least 10 years post-diagnosis of pathologically confirmed primary Hodgkin's lymphoma. Outcomes in the Hodgkin's lymphoma survivors were compared with a sample of SJLIFE community control participants, aged 18 years or older at the time of assessment, frequency-matched based on strata defined by 5-year age blocks within each sex, who were selected irrespective of previous medical history. All SJLIFE participants underwent assessment for 22 chronic cardiovascular health conditions. Direct assessments, combined with retrospective clinical reviews, were used to assign severity to conditions using a modified Common Terminology Criteria of Adverse Events (CTCAE) version 4.03 grading schema. Occurrences and CTCAE grades of the conditions for eligible non-SJLIFE participants were accounted for by multiple imputation. The mean cumulative count (treating death as a competing risk) was used to estimate cumulative burden. Of 670 survivors treated at St Jude Children's Research Hospital, who survived 10 years or longer and reached age 18 years, 348 were clinically assessed in the St Jude Lifetime Cohort Study (SJLIFE); 322 eligible participants did not participate in SJLIFE. Age and sex frequency-matched SJLIFE community controls (n=272) were used for comparison. At age 50 years, the cumulative incidence of survivors experiencing at least one grade 3-5 cardiovascular condition was 45·5% (95% CI 36·6-54·3), compared with 15·7% (7·0-24·4) in community controls. The survivor cohort at age 50 experienced a cumulative burden of 430·6 (95% CI 380·7-480·6) grade 1-5 and 100·8 (77·3-124·3) grade 3-5 cardiovascular conditions per 100 survivors; these numbers were appreciably higher than those in the control cohort (227·4 [192·7-267·5] grade 1-5 conditions and 17·0 [8·4-27·5] grade 3-5 conditions per 100 individuals). Myocardial infarction and structural heart defects were the major contributors to the excess grade 3-5 cumulative burden in survivors. High cardiac radiation dose (≥35 Gy) was associated with an increased proportion of grade 3-5 cardiovascular burden, whereas increased anthracyline dose was not. The true effect of cardiovascular morbidity in paediatric, adolescent, and young adult survivors of Hodgkin's lymphoma is reflected in the cumulative burden. Survivors aged 50 years will experience more than two times the number of chronic cardiovascular health conditions and nearly five times the number of more severe (grade 3-5) cardiovascular conditions compared with community controls and, on average, have one severe, life-threatening, or fatal cardiovascular condition. The cumulative burden metric provides a more comprehensive approach for assessing overall morbidity compared with currently used cumulative incidence based analytic methodologies, and will assist clinical researchers when designing future trials and refining general practice screening guidelines. US National Cancer Institute, St Baldrick's Foundation, and American Lebanese Syrian Associated Charities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fischetto, Giuseppe; Bermon, Stéphane
2013-10-01
During the last 2 decades, progress in deciphering the human gene map as well as the discovery of specific defective genes encoding particular proteins in some serious human diseases have resulted in attempts to treat sick patients with gene therapy. There has been considerable focus on human recombinant proteins which were gene-engineered and produced in vitro (insulin, growth hormone, insulin-like growth factor-1, erythropoietin). Unfortunately, these substances and methods also became improper tools for unscrupulous athletes. Biomedical research has focused on the possible direct insertion of gene material into the body, in order to replace some defective genes in vivo and/or to promote long-lasting endogenous synthesis of deficient proteins. Theoretically, diabetes, anaemia, muscular dystrophies, immune deficiency, cardiovascular diseases and numerous other illnesses could benefit from such innovative biomedical research, though much work remains to be done. Considering recent findings linking specific genotypes and physical performance, it is tempting to submit the young athletic population to genetic screening or, alternatively, to artificial gene expression modulation. Much research is already being conducted in order to achieve a safe transfer of genetic material to humans. This is of critical importance since uncontrolled production of the specifically coded protein, with serious secondary adverse effects (polycythaemia, acute cardiovascular problems, cancer, etc.), could occur. Other unpredictable reactions (immunogenicity of vectors or DNA-vector complex, autoimmune anaemia, production of wild genetic material) also remain possible at the individual level. Some new substances (myostatin blockers or anti-myostatin antibodies), although not gene material, might represent a useful and well-tolerated treatment to prevent progression of muscular dystrophies. Similarly, other molecules, in the roles of gene or metabolic activators [5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), GW1516], might concomitantly improve endurance exercise capacity in ischaemic conditions but also in normal conditions. Undoubtedly, some athletes will attempt to take advantage of these new molecules to increase strength or endurance. Antidoping laboratories are improving detection methods. These are based both on direct identification of new substances or their metabolites and on indirect evaluation of changes in gene, protein or metabolite patterns (genomics, proteomics or metabolomics).
St Ecedil Pień, Ewa; Costa, Marina C; Kurc, Szczepan; Drożdż, Anna; Cortez-Dias, Nuno; Enguita, Francisco J
2018-06-07
Pervasive transcription of the human genome is responsible for the production of a myriad of non-coding RNA molecules (ncRNAs) some of them with regulatory functions. The pivotal role of ncRNAs in cardiovascular biology has been unveiled in the last decade, starting from the characterization of the involvement of micro-RNAs in cardiovascular development and function, and followed by the use of circulating ncRNAs as biomarkers of cardiovascular diseases. The human non-coding secretome is composed by several RNA species that circulate in body fluids and could be used as biomarkers for diagnosis and outcome prediction. In cardiovascular diseases, secreted ncRNAs have been described as biomarkers of several conditions including myocardial infarction, cardiac failure, and atrial fibrillation. Among circulating ncRNAs, micro-RNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) have been proposed as biomarkers in different cardiovascular diseases. In comparison with standard biomarkers, the biochemical nature of ncRNAs offers better stability and flexible storage conditions of the samples, and increased sensitivity and specificity. In this review we describe the current trends and future prospects of the use of the ncRNA secretome components as biomarkers of cardiovascular diseases, including the opening questions related with their secretion mechanisms and regulatory actions.
Microengineering in cardiovascular research: new developments and translational applications.
Chan, Juliana M; Wong, Keith H K; Richards, Arthur Mark; Drum, Chester L
2015-04-01
Microfluidic, cellular co-cultures that approximate macro-scale biology are important tools for refining the in vitro study of organ-level function and disease. In recent years, advances in technical fabrication and biological integration have provided new insights into biological phenomena, improved diagnostic measurements, and made major steps towards de novo tissue creation. Here we review applications of these technologies specific to the cardiovascular field, emphasizing three general categories of use: reductionist vascular models, tissue-engineered vascular models, and point-of-care diagnostics. With continued progress in the ability to purposefully control microscale environments, the detailed study of both primary and cultured cells may find new relevance in the general cardiovascular research community. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.
Nanomaterials for Cardiac Myocyte Tissue Engineering.
Amezcua, Rodolfo; Shirolkar, Ajay; Fraze, Carolyn; Stout, David A
2016-07-19
Since their synthesizing introduction to the research community, nanomaterials have infiltrated almost every corner of science and engineering. Over the last decade, one such field has begun to look at using nanomaterials for beneficial applications in tissue engineering, specifically, cardiac tissue engineering. During a myocardial infarction, part of the cardiac muscle, or myocardium, is deprived of blood. Therefore, the lack of oxygen destroys cardiomyocytes, leaving dead tissue and possibly resulting in the development of arrhythmia, ventricular remodeling, and eventual heart failure. Scarred cardiac muscle results in heart failure for millions of heart attack survivors worldwide. Modern cardiac tissue engineering research has developed nanomaterial applications to combat heart failure, preserve normal heart tissue, and grow healthy myocardium around the infarcted area. This review will discuss the recent progress of nanomaterials for cardiovascular tissue engineering applications through three main nanomaterial approaches: scaffold designs, patches, and injectable materials.
A mock heart engineered with helical aramid fibers for in vitro cardiovascular device testing.
Jansen-Park, So-Hyun; Hsu, Po-Lin; Müller, Indra; Steinseifer, Ulrich; Abel, Dirk; Autschbach, Rüdiger; Rossaint, Rolf; Schmitz-Rode, Thomas
2017-04-01
Mock heart circulation loops (MHCLs) serve as in-vitro platforms to investigate the physiological interaction between circulatory systems and cardiovascular devices. A mock heart (MH) engineered with silicone walls and helical aramid fibers, to mimic the complex contraction of a natural heart, has been developed to advance the MHCL previously developed in our group. A mock aorta with an anatomical shape enables the evaluation of a cannulation method for ventricular assist devices (VADs) and investigation of the usage of clinical measurement systems like pressure-volume catheters. Ventricle and aorta molds were produced based on MRI data and cast with silicone. Aramid fibers were layered in the silicone ventricle to reproduce ventricle torsion. A rotating hollow shaft was connected to the apex enabling the rotation of the MH and the connection of a VAD. Silicone wall thickness, aramid fiber angle and fiber pitch were varied to generate different MH models. All MH models were placed in a tank filled with variable amounts of water and air simulating the compliance. In this work, physiological ventricular torsion angles (15°-26°) and physiological pressure-volume loops were achieved. This MHCL can serve as a comprehensive testing platform for cardiovascular devices, such as artificial heart valves and cannulation of VADs.
A Novel Human Tissue-Engineered 3-D Functional Vascularized Cardiac Muscle Construct
Valarmathi, Mani T.; Fuseler, John W.; Davis, Jeffrey M.; Price, Robert L.
2017-01-01
Organ tissue engineering, including cardiovascular tissues, has been an area of intense investigation. The major challenge to these approaches has been the inability to vascularize and perfuse the in vitro engineered tissue constructs. Attempts to provide oxygen and nutrients to the cells contained in the biomaterial constructs have had varying degrees of success. The aim of this current study is to develop a three-dimensional (3-D) model of vascularized cardiac tissue to examine the concurrent temporal and spatial regulation of cardiomyogenesis in the context of postnatal de novo vasculogenesis during stem cell cardiac regeneration. In order to achieve the above aim, we have developed an in vitro 3-D functional vascularized cardiac muscle construct using human induced pluripotent stem cell-derived embryonic cardiac myocytes (hiPSC-ECMs) and human mesenchymal stem cells (hMSCs). First, to generate the prevascularized scaffold, human cardiac microvascular endothelial cells (hCMVECs) and hMSCs were co-cultured onto a 3-D collagen cell carrier (CCC) for 7 days under vasculogenic culture conditions. In this milieu, hCMVECs/hMSCs underwent maturation, differentiation, and morphogenesis characteristic of microvessels, and formed extensive plexuses of vascular networks. Next, the hiPSC-ECMs and hMSCs were co-cultured onto this generated prevascularized CCCs for further 7 or 14 days in myogenic culture conditions. Finally, the vascular and cardiac phenotypic inductions were analyzed at the morphological, immunological, biochemical, molecular, and functional levels. Expression and functional analyses of the differentiated cells revealed neo-angiogenesis and neo-cardiomyogenesis. Thus, our unique 3-D co-culture system provided us the apt in vitro functional vascularized 3-D cardiac patch that can be utilized for cellular cardiomyoplasty. PMID:28194397
Antioxidant Therapeutic Strategies for Cardiovascular Conditions Associated with Oxidative Stress
Molina, Víctor M.; Carrasco, Rodrigo A.; Figueroa, Elías; Letelier, Pablo; Castillo, Rodrigo L.
2017-01-01
Oxidative stress (OS) refers to the imbalance between the generation of reactive oxygen species (ROS) and the ability to scavenge these ROS by endogenous antioxidant systems, where ROS overwhelms the antioxidant capacity. Excessive presence of ROS results in irreversible damage to cell membranes, DNA, and other cellular structures by oxidizing lipids, proteins, and nucleic acids. Oxidative stress plays a crucial role in the pathogenesis of cardiovascular diseases related to hypoxia, cardiotoxicity and ischemia–reperfusion. Here, we describe the participation of OS in the pathophysiology of cardiovascular conditions such as myocardial infarction, anthracycline cardiotoxicity and congenital heart disease. This review focuses on the different clinical events where redox factors and OS are related to cardiovascular pathophysiology, giving to support for novel pharmacological therapies such as omega 3 fatty acids, non-selective betablockers and microRNAs. PMID:28862654
Antioxidant Therapeutic Strategies for Cardiovascular Conditions Associated with Oxidative Stress.
Farías, Jorge G; Molina, Víctor M; Carrasco, Rodrigo A; Zepeda, Andrea B; Figueroa, Elías; Letelier, Pablo; Castillo, Rodrigo L
2017-09-01
Oxidative stress (OS) refers to the imbalance between the generation of reactive oxygen species (ROS) and the ability to scavenge these ROS by endogenous antioxidant systems, where ROS overwhelms the antioxidant capacity. Excessive presence of ROS results in irreversible damage to cell membranes, DNA, and other cellular structures by oxidizing lipids, proteins, and nucleic acids. Oxidative stress plays a crucial role in the pathogenesis of cardiovascular diseases related to hypoxia, cardiotoxicity and ischemia-reperfusion. Here, we describe the participation of OS in the pathophysiology of cardiovascular conditions such as myocardial infarction, anthracycline cardiotoxicity and congenital heart disease. This review focuses on the different clinical events where redox factors and OS are related to cardiovascular pathophysiology, giving to support for novel pharmacological therapies such as omega 3 fatty acids, non-selective betablockers and microRNAs.
Job dimensions associated with severe disability due to cardiovascular disease.
Murphy, L R
1991-01-01
This study explored associations among job activities and disability due to cardiovascular disease by merging national disability data with independently-obtained job activity data. Disability data were taken from a 1978 U.S. health interview survey (n = 9855). Expert ratings of job activities (dimensions) were obtained from a job analysis database (n = 2485 occupations). The two databases were merged such that job dimension data were imputed to each occupation in the disability database. Odds ratios for cardiovascular disability were calculated for scores in the second, third, and fourth quartiles for each of the 32 job dimensions, using scores in the first quartile as the standard. Job dimensions associated with cardiovascular disability were (a) hazardous situations; (b) vigilant work and responsibility for others; (c) exchanging job-related information; and (d) attention to devices. Occupations identified with high scores on these job dimensions included transportation jobs (air traffic controllers, airline pilots and attendants, bus drivers, locomotive engineers, truck drivers), teachers (preschool, adult education), and craftsmen/foremen (machinists, carpenters, and foremen).
From Microscale Devices to 3D Printing: Advances in Fabrication of 3D Cardiovascular Tissues
Borovjagin, Anton V.; Ogle, Brenda; Berry, Joel; Zhang, Jianyi
2016-01-01
Current strategies for engineering cardiovascular cells and tissues have yielded a variety of sophisticated tools for studying disease mechanisms, for development of drug therapies, and for fabrication of tissue equivalents that may have application in future clinical use. These efforts are motivated by the need to extend traditional two-dimensional (2D) cell culture systems into 3D to more accurately replicate in vivo cell and tissue function of cardiovascular structures. Developments in microscale devices and bioprinted 3D tissues are beginning to supplant traditional 2D cell cultures and pre-clinical animal studies that have historically been the standard for drug and tissue development. These new approaches lend themselves to patient-specific diagnostics, therapeutics, and tissue regeneration. The emergence of these technologies also carries technical challenges to be met before traditional cell culture and animal testing become obsolete. Successful development and validation of 3D human tissue constructs will provide powerful new paradigms for more cost effective and timely translation of cardiovascular tissue equivalents. PMID:28057791
Mosala Nezhad, Zahra; Poncelet, Alain; de Kerchove, Laurent; Gianello, Pierre; Fervaille, Caroline; El Khoury, Gebrine
2016-01-01
Extracellular matrix (ECM) derived from small intestinal submucosa (SIS) is widely used in clinical applications as a scaffold for tissue repair. Recently, CorMatrix® porcine SIS-ECM (CorMatrix Cardiovascular, Inc., Roswell, GA, USA) has gained popularity for ‘next-generation’ cardiovascular tissue engineering due to its ease of use, remodelling properties, lack of immunogenicity, absorbability and potential to promote native tissue growth. Here, we provide an overview of the biology of porcine SIS-ECM and systematically review the preclinical and clinical literature on its use in cardiovascular surgery. CorMatrix® has been used in a variety of cardiovascular surgical applications, and since it is the most widely used SIS-ECM, this material is the focus of this review. Since CorMatrix® is a relatively new product for cardiovascular surgery, some clinical and preclinical studies published lack systematic reporting of functional and pathological findings in sufficient numbers of subjects. There are also emerging reports to suggest that, contrary to expectations, an undesirable inflammatory response may occur in CorMatrix® implants in humans and longer-term outcomes at particular sites, such as the heart valves, may be suboptimal. Large-scale clinical studies are needed driven by robust protocols that aim to quantify the pathological process of tissue repair. PMID:26912574
New SPECT and PET Radiopharmaceuticals for Imaging Cardiovascular Disease
Sogbein, Oyebola O.; Pelletier-Galarneau, Matthieu; Schindler, Thomas H.; Wei, Lihui; Wells, R. Glenn; Ruddy, Terrence D.
2014-01-01
Nuclear cardiology has experienced exponential growth within the past four decades with converging capacity to diagnose and influence management of a variety of cardiovascular diseases. Single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) with technetium-99m radiotracers or thallium-201 has dominated the field; however new hardware and software designs that optimize image quality with reduced radiation exposure are fuelling a resurgence of interest at the preclinical and clinical levels to expand beyond MPI. Other imaging modalities including positron emission tomography (PET) and magnetic resonance imaging (MRI) continue to emerge as powerful players with an expanded capacity to diagnose a variety of cardiac conditions. At the forefront of this resurgence is the development of novel target vectors based on an enhanced understanding of the underlying pathophysiological process in the subcellular domain. Molecular imaging with novel radiopharmaceuticals engineered to target a specific subcellular process has the capacity to improve diagnostic accuracy and deliver enhanced prognostic information to alter management. This paper, while not comprehensive, will review the recent advancements in radiotracer development for SPECT and PET MPI, autonomic dysfunction, apoptosis, atherosclerotic plaques, metabolism, and viability. The relevant radiochemistry and preclinical and clinical development in addition to molecular imaging with emerging modalities such as cardiac MRI and PET-MR will be discussed. PMID:24901002
Cardiovascular Safety of Droxidopa in Patients With Symptomatic Neurogenic Orthostatic Hypotension.
White, William B; Hauser, Robert A; Rowse, Gerald J; Ziemann, Adam; Hewitt, L Arthur
2017-04-01
The norepinephrine prodrug droxidopa improves symptoms of neurogenic orthostatic hypotension, a condition that is associated with diseases of neurogenic autonomic failure (e.g., Parkinson disease, multiple system atrophy, pure autonomic failure). These conditions are more prevalent in older patients who also have cardiovascular co-morbidities. Hence, we evaluated the cardiovascular safety of droxidopa in patients with symptomatic neurogenic orthostatic hypotension who participated in randomized controlled studies (short-term studies of 1 to 2 weeks and an intermediate 8- to 10-week study) and long-term open-label studies. Rates of cardiovascular adverse events (AEs) for patients treated with droxidopa were 4.4% in the intermediate study and 10.8% in the long-term open-label studies. Adjusting for exposure time, cardiovascular AE rates were 0.30 events/patient-year in the short-term and intermediate studies and 0.15 events/patient-year in the long-term open-label studies. The incidence of treatment discontinuation due to blood pressure-related events was approximately 2.5%. Among patients with a history of cardiac disorders at baseline, the rates of cardiovascular-related and blood pressure-related AEs were nominally higher with droxidopa compared to placebo. Most of these events were minor atrial arrhythmias; none were major adverse cardiovascular events or deaths. In conclusion, small increases in cardiovascular AEs were observed with droxidopa compared to placebo; this was most evident in patients with preexisting cardiac disorders. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Multiscale Characterization of Engineered Cardiac Tissue Architecture.
Drew, Nancy K; Johnsen, Nicholas E; Core, Jason Q; Grosberg, Anna
2016-11-01
In a properly contracting cardiac muscle, many different subcellular structures are organized into an intricate architecture. While it has been observed that this organization is altered in pathological conditions, the relationship between length-scales and architecture has not been properly explored. In this work, we utilize a variety of architecture metrics to quantify organization and consistency of single structures over multiple scales, from subcellular to tissue scale as well as correlation of organization of multiple structures. Specifically, as the best way to characterize cardiac tissues, we chose the orientational and co-orientational order parameters (COOPs). Similarly, neonatal rat ventricular myocytes were selected for their consistent architectural behavior. The engineered cells and tissues were stained for four architectural structures: actin, tubulin, sarcomeric z-lines, and nuclei. We applied the orientational metrics to cardiac cells of various shapes, isotropic cardiac tissues, and anisotropic globally aligned tissues. With these novel tools, we discovered: (1) the relationship between cellular shape and consistency of self-assembly; (2) the length-scales at which unguided tissues self-organize; and (3) the correlation or lack thereof between organization of actin fibrils, sarcomeric z-lines, tubulin fibrils, and nuclei. All of these together elucidate some of the current mysteries in the relationship between force production and architecture, while raising more questions about the effect of guidance cues on self-assembly function. These types of metrics are the future of quantitative tissue engineering in cardiovascular biomechanics.
The oxidized low-density lipoprotein receptor mediates vascular effects of inhaled vehicle emissions
Rationale: To determine vascular signaling pathways involved in air pollution (vehicular engine emission) exposure -induced exacerbation of atherosclerosis, associated with onset of clinical cardiovascular events. Objective: To elucidate the role of oxidized LDL (oxLDL) and its ...
State of the Art Review: Depression, Stress, Anxiety, and Cardiovascular Disease
Edmondson, Donald; Kronish, Ian M.
2015-01-01
The notion that psychological states can influence physical health is hardly new, and perhaps nowhere has the mind-body connection been better studied than in cardiovascular disease (CVD). Recently, large prospective epidemiologic studies and smaller basic science studies have firmly established a connection between CVD and several psychological conditions, including depression, chronic psychological stress, posttraumatic stress disorder (PTSD), and anxiety. In addition, numerous clinical trials have been conducted to attempt to prevent or lessen the impact of these conditions on cardiovascular health. In this article, we review studies connecting depression, stress/PTSD, and anxiety to CVD, focusing on findings from the last 5 years. For each mental health condition, we first examine the epidemiologic evidence establishing a link with CVD. We then describe studies of potential underlying mechanisms and finally discuss treatment trials and directions for future research. PMID:25911639
3D printing from cardiovascular CT: a practical guide and review
Birbara, Nicolette S.; Hussain, Tarique; Greil, Gerald; Foley, Thomas A.; Pather, Nalini
2017-01-01
Current cardiovascular imaging techniques allow anatomical relationships and pathological conditions to be captured in three dimensions. Three-dimensional (3D) printing, or rapid prototyping, has also become readily available and made it possible to transform virtual reconstructions into physical 3D models. This technology has been utilised to demonstrate cardiovascular anatomy and disease in clinical, research and educational settings. In particular, 3D models have been generated from cardiovascular computed tomography (CT) imaging data for purposes such as surgical planning and teaching. This review summarises applications, limitations and practical steps required to create a 3D printed model from cardiovascular CT. PMID:29255693
Sirtuins in the Cardiovascular System: Potential Targets in Pediatric Cardiology.
Ianni, Alessandro; Yuan, Xuejun; Bober, Eva; Braun, Thomas
2018-06-01
Cardiovascular diseases represent a major cause of death and morbidity. Cardiac and vascular pathologies develop predominantly in the aged population in part due to lifelong exposure to numerous risk factors but are also found in children and during adolescence. In comparison to adults, much has to be learned about the molecular pathways driving cardiovascular diseases in the pediatric population. Sirtuins are highly conserved enzymes that play pivotal roles in ensuring cardiac homeostasis under physiological and stress conditions. In this review, we discuss novel findings about the biological functions of these molecules in the cardiovascular system and their possible involvement in pediatric cardiovascular diseases.
Epidemiological study of health hazards among workers handling engineered nanomaterials
NASA Astrophysics Data System (ADS)
Liou, Saou-Hsing; Tsou, Tsui-Chun; Wang, Shu-Li; Li, Lih-Ann; Chiang, Hung-Che; Li, Wan-Fen; Lin, Pin-Pin; Lai, Ching-Huang; Lee, Hui-Ling; Lin, Ming-Hsiu; Hsu, Jin-Huei; Chen, Chiou-Rong; Shih, Tung-Sheng; Liao, Hui-Yi; Chung, Yu-Teh
2012-08-01
The aim of this study was to establish and identify the health effect markers of workers with potential exposure to nanoparticles (20-100 nm) during manufacturing and/or application of nanomaterials. For this cross-sectional study, we recruited 227 workers who handled nanomaterials and 137 workers for comparison who did not from 14 plants in Taiwan. A questionnaire was used to collect data on exposure status, demographics, and potential confounders. The health effect markers were measured in the medical laboratory. Control banding from the Nanotool Risk Level Matrix was used to categorize the exposure risk levels of the workers. The results showed that the antioxidant enzyme, superoxide dismutase (SOD) in risk level 1 (RL1) and risk level 2 (RL2) workers was significantly ( p < 0.05) lower than in control workers. A significantly decreasing gradient was found for SOD (control > RL1 > RL2). Another antioxidant, glutathione peroxidase (GPX), was significantly lower only in RL1 workers than in the control workers. The cardiovascular markers, fibrinogen and ICAM (intercellular adhesion molecule), were significantly higher in RL2 workers than in controls and a significant dose-response with an increasing trend was found for these two cardiovascular markers. Another cardiovascular marker, interleukin-6, was significantly increased among RL1 workers, but not among RL2 workers. The accuracy rate for remembering 7-digits and reciting them backwards was significantly lower in RL2 workers (OR = 0.48) than in controls and a significantly reversed gradient was also found for the correct rate of backward memory (OR = 0.90 for RL1, OR = 0.48 for RL2, p < 0.05 in test for trend). Depression of antioxidant enzymes and increased expression of cardiovascular markers were found among workers handling nanomaterials. Antioxidant enzymes, such as SOD and GPX, and cardiovascular markers, such as fibrinogen, ICAM, and interluekin-6, are possible biomarkers for medical surveillance of workers handling engineered nanomaterials.
Di Pasquale, E; Latronico, M V G; Jotti, G S; Condorelli, G
2012-06-01
Engineered recombinant viral vectors are a powerful tool for vehiculating genetic information into mammalian cells. Because of their ability to infect both dividing and non-dividing cells with high efficiency, lentiviral vectors have gained particular interest for basic research and preclinical studies in the cardiovascular field. We review here the major applications for lentiviral-vector technology in the cardiovascular field: we will discuss their use in trailing gene expression during the induction of differentiation, in protocols for the isolation of cardiac cells and in the tracking of cardiac cells after transplantation in vivo; we will also describe lentivirally-mediated gene delivery uses, such as the induction of a phenotype of interest in a target cell or the treatment of cardiovascular diseases. In addition, a section of the review will be dedicated to reprogramming approaches, focusing attention on the generation of pluripotent stem cells and on transdifferentiation, two emerging strategies for the production of cardiac myocytes from human cells and for the investigation of human diseases. Finally, in order to give a perspective on their future clinical use we will critically discuss advantages and disadvantages of lentivirus-based strategies for the treatment of cardiovascular diseases.
Pu, Lei; Meng, Mingyao; Wu, Jian; Zhang, Jing; Hou, Zongliu; Gao, Hui; Xu, Hui; Liu, Boyu; Tang, Weiwei; Jiang, Lihong; Li, Yaxiong
2017-03-21
The success of developing cardiovascular tissue engineering (CTE) grafts greatly needs a readily available cell substitute for endothelial and interstitial cells. Perinatal annexes have been proposed as a valuable source of mesenchymal stem cells (MSCs) for tissue engineering and regenerative medicine. The objective of the present study is to evaluate the potential of human Wharton's jelly MSCs (WJ-MSCs) and amniotic membrane MSCs (AM-MSCs) as a seeding cell in CTE and cardiovascular regenerative medicine. WJ-MSCs/AM-MSCs were isolated and characterized in vitro according to their morphology, proliferation, self-renewal, phenotype, and multipotency. More importantly, the characteristics of hemocompatibility, extracellular matrix deposition, and gene expression and viability of both MSCs were investigated. Fibroblast-like human WJ-MSCs and AM-MSCs were successfully isolated and positively expressed the characteristic markers CD73, CD90, and CD105 but were negative for CD34, CD45, and HLA-DR. Both MSCs shared trilineage differentiation toward the adipogenic, osteogenic, and chondrogenic lineages. The proliferative and self-renewal capacity of WJ-MSCs was significantly higher than that of AM-MSCs (P < 0.001). WJ-MSCs provided comparable properties of antiplatelet adhesion and did not activate the coagulation cascade to endothelial cells. However, aggregated platelets were visualized on the surface of AM-MSCs-derived cell sheets and the intrinsic pathway was activated. Furthermore, WJ-MSCs have superior properties of collagen deposition and higher viability than AM-MSCs during cell sheet formation. This study highlights that WJ-MSCs could act as a functional substitute of endothelial and interstitial cells, which could serve as an appealing and practical single-cell source for CTE and regenerative therapy.
Ultrafine carbon particle mediated cardiovascular impairment of aged spontaneously hypertensive rats
Background: Previous studies provided compelling evidences for particulate matter (PM) associated cardiovascular health effects. Elderly individuals, particularly those with preexisting conditions like hypertension are regarded to be vulnerable. Experimental data are warranted to...
Stimulation of cardiovascular adaptability during prolonged space exposure
NASA Technical Reports Server (NTRS)
Gorman, H. A.
1971-01-01
The deconditioning effects of weightlessness on the cardiovascular system of astronauts are discussed. It is believed that man cannot tolerate indefinite exposure to weightlessness without considerable circulatory deterioration. Analyses of data collected from space flights to date substantiate these beliefs, and confirm the fact that some form of compensation must be provided to keep the cardiovascular system of space travelers properly conditioned. Sequential pulsatile devices were investigated to produce periodic hydrostatic pressure gradients in the venous system of eight subhuman primates. Intermittent venous pooling of blood in the extremities triggers and stimulates the vascular reflex mechanisms of the cardiovascular system that may have significant benefits in maintaining the circulatory system in proper tone under weightless conditions. Electrocardiograms, blood pressure measurements, cardiac output and stroke volume determinations were used to evaluate the efficiency of the described technique. Results were amazingly consistent to indicate an efficient system for intermittently exercising the heart within safe and medically acceptable limits.
Allen, Karen; Blascovich, Jim; Mendes, Wendy B
2002-01-01
The purpose of this study was to examine the effects of the presence of friends, spouses, and pets on cardiovascular reactivity to psychological and physical stress. Cardiovascular reactivity was examined among 240 married couples, half of whom owned a pet. Mental arithmetic and cold pressor were performed in one of four randomly assigned social support conditions: alone, with pet or friend (friend present for non-pet owners), with spouse, with spouse and pet/friend. Relative to people without pets, people with pets had significantly lower heart rate and blood pressure levels during a resting baseline, significantly smaller increases (ie, reactivity) from baseline levels during the mental arithmetic and cold pressor, and faster recovery. Among pet owners, the lowest reactivity and quickest recovery was observed in the pet-present conditions. People perceive pets as important, supportive parts of their lives, and significant cardiovascular and behavioral benefits are associated with those perceptions.
Chronic stress impacts the cardiovascular system: animal models and clinical outcomes.
Golbidi, Saeid; Frisbee, Jefferson C; Laher, Ismail
2015-06-15
Psychological stresses are associated with cardiovascular diseases to the extent that cardiovascular diseases are among the most important group of psychosomatic diseases. The longstanding association between stress and cardiovascular disease exists despite a large ambiguity about the underlying mechanisms. An array of possibilities have been proposed including overactivity of the autonomic nervous system and humoral changes, which then converge on endothelial dysfunction that initiates unwanted cardiovascular consequences. We review some of the features of the two most important stress-activated systems, i.e., the humoral and nervous systems, and focus on alterations in endothelial function that could ensue as a result of these changes. Cardiac and hematologic consequences of stress are also addressed briefly. It is likely that activation of the inflammatory cascade in association with oxidative imbalance represents key pathophysiological components of stress-induced cardiovascular changes. We also review some of the commonly used animal models of stress and discuss the cardiovascular outcomes reported in these models of stress. The unique ability of animals for adaptation under stressful conditions lessens the extrapolation of laboratory findings to conditions of human stress. An animal model of unpredictable chronic stress, which applies various stress modules in a random fashion, might be a useful solution to this predicament. The use of stress markers as indicators of stress intensity is also discussed in various models of animal stress and in clinical studies. Copyright © 2015 the American Physiological Society.
Challenges in translating vascular tissue engineering to the pediatric clinic.
Duncan, Daniel R; Breuer, Christopher K
2011-10-14
The development of tissue-engineered vascular grafts for use in cardiovascular surgery holds great promise for improving outcomes in pediatric patients with complex congenital cardiac anomalies. Currently used synthetic grafts have a number of shortcomings in this setting but a tissue engineering approach has emerged in the past decade as a way to address these limitations. The first clinical trial of this technology showed that it is safe and effective but the primary mode of graft failure is stenosis. A variety of murine and large animal models have been developed to study and improve tissue engineering approaches with the hope of translating this technology into routine clinical use, but challenges remain. The purpose of this report is to address the clinical problem and review recent advances in vascular tissue engineering for pediatric applications. A deeper understanding of the mechanisms of neovessel formation and stenosis will enable rational design of improved tissue-engineered vascular grafts.
Randles, Amanda; Frakes, David H; Leopold, Jane A
2017-11-01
Noninvasive engineering models are now being used for diagnosing and planning the treatment of cardiovascular disease. Techniques in computational modeling and additive manufacturing have matured concurrently, and results from simulations can inform and enable the design and optimization of therapeutic devices and treatment strategies. The emerging synergy between large-scale simulations and 3D printing is having a two-fold benefit: first, 3D printing can be used to validate the complex simulations, and second, the flow models can be used to improve treatment planning for cardiovascular disease. In this review, we summarize and discuss recent methods and findings for leveraging advances in both additive manufacturing and patient-specific computational modeling, with an emphasis on new directions in these fields and remaining open questions. Copyright © 2017 Elsevier Ltd. All rights reserved.
The mysterious light of dark chocolate.
Şentürk, Tunay; Günay, Şeyda
2015-03-01
A healthy diet plays a key role in the prevention and management of cardiovascular diseases. Dark chocolate in particular has been shown to improve endothelial functions and lipid profile and to have cardiovascular protective effects via an inhibitory action on platelet functions. Recently, several studies have demonstrated the beneficial effects of chocolate, primarily on hypertension and other conditions such as coronary artery disease and hyperlipidemia. The present review provides a summary of the ingredients, bioavailability and cardiovascular protective effects of chocolate / cocoa and the published effects of chocolate on a number of cardiovascular diseases.
A Systematic Review of Cardiovascular Disease in Sexual Minorities
Brody, Abraham; Luscombe, Rachel E.; Primiano, Jillian E.; Marusca, Peter; Sitts, Edward M.; Chyun, Deborah
2017-01-01
Background: Mental health and HIV disparities are well documented among sexual minorities, but there is a dearth of research on other chronic conditions. Cardiovascular disease remains the leading cause of death worldwide. Although sexual minorities have high rates of several modifiable risk factors for cardiovascular disease (including stress, tobacco use, and alcohol consumption), there is a paucity of research in this area. Objectives: In this systematic review, we synthesized and critiqued the existing evidence on cardiovascular disease among sexual minority adults. Search Methods: We conducted a thorough literature search of 6 electronic databases for studies published between January 1985 and December 2015 that compared cardiovascular disease risk or prevalence between sexual minority and heterosexual adults. Selection Criteria: We included peer-reviewed English-language studies that compared cardiovascular disease risk or diagnoses between sexual minority and heterosexual individuals older than 18 years. We excluded reviews, case studies, and gray literature. A total of 31 studies met inclusion criteria. Data Collection and Analysis: At least 2 authors independently abstracted data from each study. We performed quality assessment of retrieved studies using the Crowe Critical Appraisal Tool. Main Results: Sexual minority women exhibited greater cardiovascular disease risk related to tobacco use, alcohol consumption, illicit drug use, poor mental health, and body mass index, whereas sexual minority men experienced excess risk related to tobacco use, illicit drug use, and poor mental health. We identified several limitations in the extant literature. The majority of included studies were cross-sectional analyses that used self-reported measures of cardiovascular disease. Even though we observed elevated cardiovascular disease risk, we found few differences in cardiovascular disease diagnoses (including hypertension, diabetes, and high cholesterol). Overall, 23 of the 26 studies that examined cardiovascular disease diagnoses used subjective measures. Only 7 studies used a combination of biomarkers and self-report measures to establish cardiovascular disease risk and diagnoses. Authors’ Conclusions: Social conditions appear to exert a negative effect on cardiovascular disease risk among sexual minorities. Although we found few differences in cardiovascular disease diagnoses, we identified an elevated risk for cardiovascular disease in both sexual minority men and women. There is a need for research that incorporates subjective and objective measures of cardiovascular disease risk. Public Health Implications: Cardiovascular disease is a major health concern for clinicians, public health practitioners, and policymakers. This systematic review supports the need for culturally appropriate interventions that address cardiovascular disease risk in sexual minority adults. PMID:28207331
Belliere, Julie; Martinez de Lizarrondo, Sara; Choudhury, Robin P; Quenault, Aurélien; Le Béhot, Audrey; Delage, Christine; Chauveau, Dominique; Schanstra, Joost P; Bascands, Jean-Loup; Vivien, Denis; Gauberti, Maxime
2015-01-01
Endothelial activation is a hallmark of cardiovascular diseases, acting either as a cause or a consequence of organ injury. To date, we lack suitable methods to measure endothelial activation in vivo. In the present study, we developed a magnetic resonance imaging (MRI) method allowing non-invasive endothelial activation mapping in the vasculature of the main organs affected during cardiovascular diseases. In clinically relevant contexts in mice (including systemic inflammation, acute and chronic kidney diseases, diabetes mellitus and normal aging), we provided evidence that this method allows detecting endothelial activation before any clinical manifestation of organ failure in the brain, kidney and heart with an exceptional sensitivity. In particular, we demonstrated that diabetes mellitus induces chronic endothelial cells activation in the kidney and heart. Moreover, aged mice presented activated endothelial cells in the kidneys and the cerebrovasculature. Interestingly, depending on the underlying condition, the temporospatial patterns of endothelial activation in the vascular beds of the cardiovascular system were different. These results demonstrate the feasibility of detecting silent endothelial activation occurring in conditions associated with high cardiovascular risk using molecular MRI.
Belliere, Julie; Martinez de Lizarrondo, Sara; Choudhury, Robin P.; Quenault, Aurélien; Le Béhot, Audrey; Delage, Christine; Chauveau, Dominique; Schanstra, Joost P.; Bascands, Jean-Loup; Vivien, Denis; Gauberti, Maxime
2015-01-01
Endothelial activation is a hallmark of cardiovascular diseases, acting either as a cause or a consequence of organ injury. To date, we lack suitable methods to measure endothelial activation in vivo. In the present study, we developed a magnetic resonance imaging (MRI) method allowing non-invasive endothelial activation mapping in the vasculature of the main organs affected during cardiovascular diseases. In clinically relevant contexts in mice (including systemic inflammation, acute and chronic kidney diseases, diabetes mellitus and normal aging), we provided evidence that this method allows detecting endothelial activation before any clinical manifestation of organ failure in the brain, kidney and heart with an exceptional sensitivity. In particular, we demonstrated that diabetes mellitus induces chronic endothelial cells activation in the kidney and heart. Moreover, aged mice presented activated endothelial cells in the kidneys and the cerebrovasculature. Interestingly, depending on the underlying condition, the temporospatial patterns of endothelial activation in the vascular beds of the cardiovascular system were different. These results demonstrate the feasibility of detecting silent endothelial activation occurring in conditions associated with high cardiovascular risk using molecular MRI. PMID:26379785
Barnason, Susan; White-Williams, Connie; Rossi, Laura P; Centeno, Mae; Crabbe, Deborah L; Lee, Kyoung Suk; McCabe, Nancy; Nauser, Julie; Schulz, Paula; Stamp, Kelly; Wood, Kathryn
2017-06-01
The burden of cardiovascular disease as a chronic illness increasingly requires patients to assume more responsibility for their self-management. Patient education is believed to be an essential component of cardiovascular care; however, there is limited evidence about specific therapeutic patient education approaches used and the impact on patient self-management outcomes. An integrative review of the literature was conducted to critically analyze published research studies of therapeutic patient education for self-management in selected cardiovascular conditions. There was variability in methodological approaches across settings and disease conditions. The most effective interventions were tailored to individual patient needs, used multiple components to improve self-management outcomes, and often used multidisciplinary approaches. This synthesis of evidence expands the base of knowledge related to the development of patient self-management skills and provides direction for more rigorous research. Recommendations are provided to guide the implementation of therapeutic patient education in clinical practice and the design of comprehensive self-management interventions to improve outcomes for cardiovascular patients. © 2017 American Heart Association, Inc.
Particulate Emissions Hazards Associated with Fueling Heat Engines
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.; Bushnell, Dennis M.
2010-01-01
All hydrocarbon- (HC-) fueled heat engine exhaust (tailpipe) emissions (<10 to 140 nm) contribute as health hazards, including emissions from transportation vehicles (e.g., aircraft) and other HC-fueled power systems. CO2 emissions are tracked, and when mapped, show outlines of major transportation routes and cities. Particulate pollution affects living tissue and is found to be detrimental to cardiovascular and respiratory systems where ultrafine particulates directly translocate to promote vascular system diseases potentially detectable as organic vapors. This paper discusses aviation emissions, fueling, and certification issues, including heat engine emissions hazards, detection at low levels and tracking of emissions, and alternate energy sources for general aviation.
Efficacy of bowel cancer appeals for promoting physical activity.
Jalleh, Geoffrey; Donovan, Robert J; Slevin, Terry; Dixon, Helen
2005-08-01
To investigate the potential efficacy of bowel cancer prevention messages in increasing intentions to be more physically active. A convenience sample of 281 physically inactive persons aged 30-60 years was recruited in the Perth city centre and randomly assigned to a bowel cancer and physical activity message or a heart disease and physical activity message. After reading a booklet containing information about physical activity and its link either to bowel cancer (n = 141) or cardiovascular disease (n = 140), respondents filled in a self-completion questionnaire. The main response measures were impact on intentions to be more physically active, and perceived believability and relevance of the message. Perceived believability of the message was high in both conditions. Perceived personal relevance of the message was substantially lower in the bowel cancer than the cardiovascular disease condition. Overall, the cardiovascular disease condition achieved somewhat higher behavioural intentions than the bowel cancer condition. The finding that two in three respondents in the bowel cancer condition had increased intention to increase their level of physical activity provides support for the potential efficacy of promoting physical activity in reducing the risk of bowel cancer.
De Marchis, Paola; Verso, Maria Gabriella; Tramuto, Fabio; Amodio, Emanuele; Picciotto, Diego
2018-03-14
Cardiovascular disease is the first cause of morbidity and mortality worldwide. Among several known risk factors, researchers also focus their attention on the chronic exposure to air pollution. There is much evidence that exposure to air pollution, especially to ultrafine particles, can damage the endothelium and can favour cardiovascular diseases in the general population. Occupational exposition could be an additive risk factor for the cardiovascular system. This article presents a scientific review of the linkage between occupational exposure to air pollution and ischemic heart disease. A scientific review was undertaken, followed by PRISMA Statements. Observational studies were selected from several scientific databases, likesuch as Pubmed, Google Scholar, Nioshtic-2 and Reserchgate, searching for selected key words: police workers, professional drivers, mail carriers, filling station attendants, road cleaners, garage workers, motor vehicles and engine maintenance. All the key words were combined with "Boolean Operators" with the following words: cardiovascular (or cardiac) disease, cardiovascular function, cardiovascular system, ischemic heart disease, coronary disease, myocardial infarction. During the systematic research, the focus was on retrospective and prospective studies from January 1990 - December 2014. Both the retrospective and prospective studies showed an increased risk of ischemic heart disease in occupationally occupied people exposed to air pollution. Only one study presented a ly minor risk. The findings of this systematic review suggest a possible linkage between occupational exposure to urban air pollution, especially to motor exhaust and particulate, and ischemic heart disease.
Sugimura, Yukiharu; Schmidt, Anna Kathrin; Lichtenberg, Artur; Assmann, Alexander; Akhyari, Payam
2017-12-01
The demand for an improvement of the biocompatibility and durability of vascular and valvular implants requires translational animal models to study the in vivo fate of cardiovascular grafts. In the present article, a review on the development and application of a microsurgical rat model of infrarenal implantation of aortic grafts and aortic valved conduits is provided. By refinement of surgical techniques and inclusion of hemodynamic considerations, a functional model has been created, which provides a modular platform for the in vivo assessment of biological and tissue-engineered grafts. Through optional addition of procalcific diets, disease-inducing agents, and genetic modifications, complex multimorbidity scenarios mimicking the clinical reality in cardiovascular patients can be simulated. Applying this model, crucial aspects of the biocompatibility, biofunctionality and degeneration of vascular and valvular implants in dependency on graft preparation, and modification as well as systemic antidegenerative treatment of the recipient have been and will be addressed.
Szlejf, Claudia; Suemoto, Claudia K; Santos, Itamar S; Brunoni, Andre R; Nunes, Maria Angélica; Viana, Maria Carmen; Barreto, Sandhi Maria; Lotufo, Paulo A; Benseñor, Isabela M
2018-06-12
Common psychiatric symptoms may hinder achieving ideal cardiovascular health (ICH). We aimed to investigate the association between the ICH score and psychiatric disorders in Brazilian adults. In this cross-sectional analysis, 13,743 participants free of cardiovascular disease from the ELSA-Brasil study were assessed using the American Heart Association ICH score. Cardiovascular health was classified as poor (0-2 ideal metrics), intermediate (3-4 ideal metrics), and optimal (5-7 ideal metrics). We used the Clinical Interview Scheduled Revised (CIS-R) to assess psychiatric disorders and investigate their association with the ICH score and each non-ICH metric. The frequency of poor, intermediate, and optimal cardiovascular health were 54.1%, 38.1%, and 7.8%, respectively. Depressive and anxiety disorders were associated with poor cardiovascular health (depressive disorder: OR = 2.49, 95% CI = 1.62-3.80, p < 0.001; anxiety disorder: OR = 1.47, 95% CI = 1.22-1.78, p < 0.001), and intermediate cardiovascular health (depressive disorder: OR = 1.94, 95% CI = 1.26-2.98, p = 0.002; anxiety disorder: OR = 1.22, 95% CI = 1.01-1.47, p = 0.043). In the analysis stratified by sex, these associations were significant only among women. The disorders were also associated with the following non-ICH metrics: body mass index, physical activity, healthy diet score, and smoking. Participants with depressive disorder and anxiety disorder had expected lower global and lifestyle ICH score than participants without these conditions, with significant results among women in the stratified analysis. Psychiatric comorbidity was associated with poorer cardiovascular health. These conditions may compromise the adoption of healthy cardiovascular risk reduction behaviors. Copyright © 2017. Published by Elsevier B.V.
Cardiovascular risk after androgen deprivation therapy for prostate cancer: an Asian perspective.
Teoh, Jeremy Yuen Chun; Ng, Chi-Fai
2016-09-01
Androgen deprivation therapy (ADT) plays an important role in managing prostate cancer. However, ADT may result in major cardiovascular events and potentially lead to fatal consequences. Cardiovascular disease is the leading cause of mortality and it is a very important health condition to look into. Asians and Caucasians differ both physiologically and genetically, and they may have display different cardiovascular profiles. In this article, we reviewed the literature focusing on the cardiovascular risk after ADT for prostate cancer in the Asian population. We would discuss about the pathogenesis of ADT leading to cardiovascular events, summarize the findings concerning cardiac and stroke risks after ADT, compare between the different modalities of ADT and also provide genetic basics which are unique to Asians. We hope this article would provide more insights into the cardiovascular risk after ADT for prostate cancer in an Asian perspective.
Salomon, Kristen; Burgess, Kaleena D; Bosson, Jennifer K
2015-04-01
Women's cardiovascular responses to sexist treatment are documented, but researchers have yet to consider these responses separately as a function of sexism type (hostile vs. benevolent). This study demonstrates distinct effects of hostile and benevolent sexism for women's cardiovascular responses that indicate increased risk for cardiovascular disease. Female participants performed a demanding insight task after exposure to a male researcher who offered them a hostilely sexist, benevolently sexist, or nonsexist comment. Women displayed heightened cardiovascular reactivity (increases from baseline) during the task following hostile sexism, and they displayed impaired cardiovascular recovery (return to baseline after the task) following benevolent sexism. The effects seen in the hostile condition were mediated by self-reported anger. These findings indicate that women's affective responses to hostile and benevolent sexism differ but that exposure to both forms of sexism may have negative cardiovascular consequences. (c) 2015 APA, all rights reserved).
Preeclampsia, prematurity and cardiovascular health in adult life.
Lewandowski, Adam J; Leeson, Paul
2014-11-01
Investigations into how perinatal growth and intrauterine environment may 'programme' risk of later cardiovascular disease have been ongoing for over two decades. One of the more recent outcomes of these studies is the observation that certain pregnancy-related conditions, such as preterm birth, have an unusually large impact on the long-term cardiovascular health of the offspring. In the present paper, we review the current literature of how preterm birth affects the long-term cardiovascular structure and function of the offspring, considering three major areas of investigation: firstly, outlining the long-term cardiovascular phenotypic changes in preterm-born individuals; secondly, investigating factors related to preterm birth that may be modifying cardiovascular phenotype, such as preeclampsia, perinatal interventions, and physiological disturbances; and thirdly, the expected clinical relevance of these cardiovascular changes. This review discusses the importance of continued research focused on the mechanistic understanding of these cardiovascular alterations in order to develop specific primary prevention strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.
From Microscale Devices to 3D Printing: Advances in Fabrication of 3D Cardiovascular Tissues.
Borovjagin, Anton V; Ogle, Brenda M; Berry, Joel L; Zhang, Jianyi
2017-01-06
Current strategies for engineering cardiovascular cells and tissues have yielded a variety of sophisticated tools for studying disease mechanisms, for development of drug therapies, and for fabrication of tissue equivalents that may have application in future clinical use. These efforts are motivated by the need to extend traditional 2-dimensional (2D) cell culture systems into 3D to more accurately replicate in vivo cell and tissue function of cardiovascular structures. Developments in microscale devices and bioprinted 3D tissues are beginning to supplant traditional 2D cell cultures and preclinical animal studies that have historically been the standard for drug and tissue development. These new approaches lend themselves to patient-specific diagnostics, therapeutics, and tissue regeneration. The emergence of these technologies also carries technical challenges to be met before traditional cell culture and animal testing become obsolete. Successful development and validation of 3D human tissue constructs will provide powerful new paradigms for more cost effective and timely translation of cardiovascular tissue equivalents. © 2017 American Heart Association, Inc.
Biomaterial based cardiac tissue engineering and its applications
Huyer, Locke Davenport; Montgomery, Miles; Zhao, Yimu; Xiao, Yun; Conant, Genevieve; Korolj, Anastasia; Radisic, Milica
2015-01-01
Cardiovascular disease is a leading cause of death worldwide, necessitating the development of effective treatment strategies. A myocardial infarction involves the blockage of a coronary artery leading to depletion of nutrient and oxygen supply to cardiomyocytes and massive cell death in a region of the myocardium. Cardiac tissue engineering is the growth of functional cardiac tissue in vitro on biomaterial scaffolds for regenerative medicine application. This strategy relies on the optimization of the complex relationship between cell networks and biomaterial properties. In this review, we discuss important biomaterial properties for cardiac tissue engineering applications, such as elasticity, degradation, and induced host response, and their relationship to engineered cardiac cell environments. With these properties in mind, we also emphasize in vitro use of cardiac tissues for high-throughput drug screening and disease modelling. PMID:25989939
Engineering studies of vectorcardiographs in blood pressure measuring systems, appendix 2
NASA Technical Reports Server (NTRS)
Mark, R. G.
1975-01-01
The development of a cardiovascular monitoring system to noninvasively monitor the blood pressure and heart rate using pulse wave velocity was described. The following topics were covered: (1) pulse wave velocity as a measure of arterial blood pressure, (2) diastolic blood pressure and pulse wave velocity in humans, (3) transducer development for blood pressure measuring device, and (4) cardiovascular monitoring system. It was found, in experiments on dogs, that the pulse wave velocity is linearly related to diastolic blood pressure over a wide range of blood pressure and in the presence of many physiological perturbations. A similar relationship was observed in normal, young human males over a moderate range of pressures. Past methods for monitoring blood pressure and a new method based on pulse wave velocity determination were described. Two systems were tested: a Doppler ultrasonic transducer and a photoelectric plethysmograph. A cardiovascular monitoring system was described, including operating instructions.
Genetic modification of stem cells for transplantation.
Phillips, M Ian; Tang, Yao Liang
2008-01-14
Gene modification of cells prior to their transplantation, especially stem cells, enhances their survival and increases their function in cell therapy. Like the Trojan horse, the gene-modified cell has to gain entrance inside the host's walls and survive and deliver its transgene products. Using cellular, molecular and gene manipulation techniques the transplanted cell can be protected in a hostile environment from immune rejection, inflammation, hypoxia and apoptosis. Genetic engineering to modify cells involves constructing modules of functional gene sequences. They can be simple reporter genes or complex cassettes with gene switches, cell specific promoters and multiple transgenes. We discuss methods to deliver and construct gene cassettes with viral and non-viral delivery, siRNA, and conditional Cre/Lox P. We review the current uses of gene-modified stem cells in cardiovascular disease, diabetes, neurological diseases, (including Parkinson's, Alzheimer's and spinal cord injury repair), bone defects, hemophilia, and cancer.
Engineering micropatterned surfaces to modulate the function of vascular stem cells.
Li, Jennifer; Wu, Michelle; Chu, Julia; Sochol, Ryan; Patel, Shyam
2014-02-21
Multipotent vascular stem cells have been implicated in vascular disease and in tissue remodeling post therapeutic intervention. Hyper-proliferation and calcified extracellular matrix deposition of VSC cause blood vessel narrowing and plaque hardening thereby increasing the risk of myocardial infarct. In this study, to optimize the surface design of vascular implants, we determined whether micropatterned polymer surfaces can modulate VSC differentiation and calcified matrix deposition. Undifferentiated rat VSC were cultured on microgrooved surfaces of varied groove widths, and on micropost surfaces. 10μm microgrooved surfaces elongated VSC and decreased cell proliferation. However, microgrooved surfaces did not attenuate calcified extracellular matrix deposition by VSC cultured in osteogenic media conditions. In contrast, VSC cultured on micropost surfaces assumed a dendritic morphology, were significantly less proliferative, and deposited minimal calcified extracellular matrix. These results have significant implications for optimizing the design of cardiovascular implant surfaces. Copyright © 2014 Elsevier Inc. All rights reserved.
Genetic Modification of Stem Cells for Transplantation
Phillips, M. Ian; Tang, Yao Liang
2009-01-01
Gene modification of cells for prior to their transplantation, especially stem cells, enhances their survival and increases their function in cell therapy. Like the Trojan horse, the gene modified cell has to gain entrance inside the host’s walls and survive and deliver its transgene products Using cellular, molecular and gene manipulation techniques the transplanted cell can be protected in a hostile environment from immune rejection, inflammation, hypoxia and apoptosis. Genetic engineering to modify cells involves constructing modules of functional gene sequences. They can be simple reporter genes or complex cassettes with gene switches, cell specific promoters and multiple transgenes. We discuss methods to deliver and construct gene cassettes with viral and non viral delivery, siRNA, and conditional Cre/Lox P. We review the current uses of gene modified stem cells in cardiovascular disease, diabetes, neurological diseases,( including Parkinson’s, Alzheimer’s and spinal cord injury repair), bone defects, hemophilia, and cancer. PMID:18031863
Depression, anxiety, and the cardiovascular system: the psychiatrist's perspective.
Roose, S P
2001-01-01
It is becoming clear that the comorbidity of depression and cardiovascular disease does not occur by chance but rather is an inevitable consequence of the relationship between the conditions. Depression in patients with cardiovascular disease is a significant risk factor for developing symptomatic and fatal ischemic heart disease. Moreover, depressed patients have a higher than expected rate of sudden cardiovascular death. Therefore, appropriate treatment of patients with depression and cardiovascular disease cannot be restricted to considerations of either depression or cardiovascular disease in isolation. The tricyclic antidepressants (TCAs) have various effects on the cardiovascular system, including Type IA antiarrhythmic activity that has been associated with an increased risk of mortality in post-myocardial infarction patients. The selective serotonin reuptake inhibitors (SSRIs) are not associated with adverse cardiac effects. The SSRI paroxetine was compared with a therapeutic level of the TCA nortriptyline in a randomized, controlled study and demonstrated a benign cardiovascular profile, while the TCA induced a significantly higher rate of serious adverse cardiovascular events. On the basis of this favorable cardiovascular profile, the SSRIs should therefore be the preferred choice for the treatment of most patients with comorbid depression and cardiovascular disease. Investigation of putative pathophysiologic mechanisms linking depression and cardiovascular mortality, such as the role of platelet activation, will form the basis for further investigation of antidepressant treatments in order to establish if the antidepressants have a beneficial effect on the prognosis of cardiovascular diseases.
A comprehensive guide to telocytes and their great potential in cardiovascular system.
Kucybala, I; Janas, P; Ciuk, S; Cholopiak, W; Klimek-Piotrowska, W; Holda, M K
2017-01-01
Telocytes, a recently discovered type of interstitial cells, have a very distinctive morphology - the small cell body with long extensions, named telopodes. In our review, apart from introducing general aspects of telocytes, we focus on properties, functions and future potential of those cells in cardiovascular system. However, physiological functions of telocytes in cardiovascular system are still regarded as quite enigmatic. Previous studies claim that they play a role in organogenesis and regeneration, bioelectrical signalling, mechanoelectrical coupling, anti-oxidative protection, angiogenesis and regulation of blood flow. As well, they are presumably connected with the presence of blood-myocardium barrier and proper organisation of extracellular matrix. Moreover, there exists a significant link between the quantity of telocytes in tissue and numerous cardiovascular diseases such as: myocardial infarction, cardiomyopathies, systemic sclerosis, heart failure, atrial fibrillation, isolated atrial amyloidosis, myxomatous valve degeneration and hyperplastic consequences of vascular injury. Thanks to their unique properties, telocytes might be a breakthrough in treatment of cardiovascular diseases, as they may be effective in reversing effects of myocardial infarction. Telocytes also may play a major role in tissue engineering - they might be the key factor in creating stable and efficient vascular network in larger synthetic tissues or organs (Tab. 1, Fig. 3, Ref. 53).
Alves-Silva, Jorge M; Zuzarte, Monica; Marques, Carla; Salgueiro, Ligia; Girao, Henrique
2016-01-01
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide that seriously affect patient's life quality and are responsible for huge economic and social burdens. It is widely accepted that a plant-based diet may reduce the risk of CVDs by attenuating several risk factors and/or modulating disease's onset and progression. Plants are rich in secondary metabolites, being terpenes the most abundant and structurally diverse group. These compounds have shown broad therapeutic potential as antimicrobial, antiviral, anti-inflammatory and antitumor agents. Despite their popularity, scientific evidence on terpenes cardiovascular effects remains sparse, limiting their potential use as cardioprotective and/or cardiotherapeutic agents. Bearing in mind the lack of comprehensive and systematic studies, the present review aims to gather the knowledge and some of the most scientific evidence accumulated over the past years on the effect of terpenes in the cardiovascular field with focus on CVDs namely ischemic heart disease, heart failure, arrhythmias and hypertension. Several popular search engines including PubMed, Science Direct, Scopus and Google Scholar were consulted. The bibliographic research focused primarily on English written papers published over the last 15 years. A systematic and comprehensive update on the cardiovascular effects of terpenes is provided. Moreover, whenever known, the possible mechanisms of action underlying the cardiovascular effects are pointed out as well as an attempt to identify the most relevant structure- activity relationships of the different classes of terpenes. Overall, this review enables a better understanding of the cardiovascular effects of terpenes, thus paving the way towards future research in medicinal chemistry and rational drug design.
Niedhammer, I; Siegrist, J
1998-11-01
The effect of psychosocial factors at work on health, especially cardiovascular health, has given rise to growing concern in occupational epidemiology over the last few years. Two theoretical models, Karasek's model and the Effort-Reward Imbalance model, have been developed to evaluate psychosocial factors at work within specific conceptual frameworks in an attempt to take into account the serious methodological difficulties inherent in the evaluation of such factors. Karasek's model, the most widely used model, measures three factors: psychological demands, decision latitude and social support at work. Many studies have shown the predictive effects of these factors on cardiovascular diseases independently of well-known cardiovascular risk factors. More recently, the Effort-Reward Imbalance model takes into account the role of individual coping characteristics which was neglected in the Karasek model. The effort-reward imbalance model focuses on the reciprocity of exchange in occupational life where high-cost/low-gain conditions are considered particularly stressful. Three dimensions of rewards are distinguished: money, esteem and gratifications in terms of promotion prospects and job security. Some studies already support that high-effort/low reward-conditions are predictive of cardiovascular diseases.
Dietary Risk Factors and Their Modification in Cardiovascular Disease.
ERIC Educational Resources Information Center
Jeffery, Robert W.
1988-01-01
Provides an overview of dietary risk factors for cardiovascular disease, including diet sodium intake for hypertension and dietary fat and cholesterol for hypercholesterolemia, exacerbation of these conditions by obesity, and intervention strategies for their modification. Describes clinical strategies for modifying diet: education, skills…
An integrated mathematical model of the human cardiopulmonary system: model development.
Albanese, Antonio; Cheng, Limei; Ursino, Mauro; Chbat, Nicolas W
2016-04-01
Several cardiovascular and pulmonary models have been proposed in the last few decades. However, very few have addressed the interactions between these two systems. Our group has developed an integrated cardiopulmonary model (CP Model) that mathematically describes the interactions between the cardiovascular and respiratory systems, along with their main short-term control mechanisms. The model has been compared with human and animal data taken from published literature. Due to the volume of the work, the paper is divided in two parts. The present paper is on model development and normophysiology, whereas the second is on the model's validation on hypoxic and hypercapnic conditions. The CP Model incorporates cardiovascular circulation, respiratory mechanics, tissue and alveolar gas exchange, as well as short-term neural control mechanisms acting on both the cardiovascular and the respiratory functions. The model is able to simulate physiological variables typically observed in adult humans under normal and pathological conditions and to explain the underlying mechanisms and dynamics. Copyright © 2016 the American Physiological Society.
Toll-like Receptors in the Vascular System: Sensing the Dangers Within
McCarthy, Cameron G.; Webb, R. Clinton
2016-01-01
Toll-like receptors (TLRs) are components of the innate immune system that respond to exogenous infectious ligands (pathogen-associated molecular patterns, PAMPs) and endogenous molecules that are released during host tissue injury/death (damage-associated molecular patterns, DAMPs). Interaction of TLRs with their ligands leads to activation of downstream signaling pathways that induce an immune response by producing inflammatory cytokines, type I interferons (IFN), and other inflammatory mediators. TLR activation affects vascular function and remodeling, and these molecular events prime antigen-specific adaptive immune responses. Despite the presence of TLRs in vascular cells, the exact mechanisms whereby TLR signaling affects the function of vascular tissues are largely unknown. Cardiovascular diseases are considered chronic inflammatory conditions, and accumulating data show that TLRs and the innate immune system play a determinant role in the initiation and development of cardiovascular diseases. This evidence unfolds a possibility that targeting TLRs and the innate immune system may be a novel therapeutic goal for these conditions. TLR inhibitors and agonists are already in clinical trials for inflammatory conditions such as asthma, cancer, and autoimmune diseases, but their study in the context of cardiovascular diseases is in its infancy. In this article, we review the current knowledge of TLR signaling in the cardiovascular system with an emphasis on atherosclerosis, hypertension, and cerebrovascular injury. Furthermore, we address the therapeutic potential of TLR as pharmacological targets in cardiovascular disease and consider intriguing research questions for future study. PMID:26721702
Glickman, Lawrence T; Glickman, Nita W; Moore, George E; Goldstein, Gary S; Lewis, Hugh B
2009-02-15
To test the hypothesis that increased severity of periodontal disease in dogs is associated with an increased risk of cardiovascular-related events, such as endocarditis and cardiomyopathy, as well as markers of inflammation. Historical cohort observational study. 59,296 dogs with a history of periodontal disease (periodontal cohort), of which 23,043 had stage 1 disease, 20,732 had stage 2 disease, and 15,521 had stage 3 disease; and an age-matched comparison group of 59,296 dogs with no history of periodontal disease (nonperiodontal cohort). Cox proportional hazard regression models were used to estimate the risk of cardiovascular-related diagnoses and examination findings in dogs as a function of the stage of periodontal disease (1, 2, or 3 or no periodontal disease) over time while controlling for the effect of potential confounding factors. Significant associations were detected between the severity of periodontal disease and the subsequent risk of cardiovascular-related conditions, such as endocarditis and cardiomyopathy, but not between the severity of periodontal disease and the risk of a variety of other common noncardiovascular-related conditions. The findings of this observational study, similar to epidemiologic studies in humans, suggested that periodontal disease was associated with cardiovascular-related conditions, such as endocarditis and cardiomyopathy. Chronic inflammation is probably an important mechanism connecting bacterial flora in the oral cavity of dogs with systemic disease. Canine health may be improved if veterinarians and pet owners place a higher priority on routine dental care.
Berman, Jesse D; Ebisu, Keita; Peng, Roger D; Dominici, Francesca; Bell, Michelle L
2017-01-01
Background Occurrence, severity and geographic extent of droughts are anticipated to increase under climate change, but the health consequences of drought conditions are unknown. We estimate risks of cardiovascular and respiratory-related hospitalization and mortality associated with drought conditions for the western U.S. elderly population. Methods For counties in the western U.S. (N=618) and for the period 2000 to 2013, we use data from the U.S. Drought Monitor to identify: 1) full drought periods; 2) non-drought periods; and 3) worsening drought periods stratified by low- and high-severity. We use Medicare claims to calculate daily rates of cardiovascular admissions, respiratory admissions, and deaths among adults 65 years or older. Using a two-stage hierarchical model, we estimated the percentage change in health risks when comparing drought to non-drought period days controlling for daily weather and seasonal trends. Findings On average there were 2·1 million days and 0·6 million days classified as non-drought periods and drought periods, respectively. Compared to non-drought periods, respiratory admissions significantly decreased by −1·99% (95% posterior interval (PI): −3·56, −0·38) during the full drought period, but not during worsening drought conditions. Mortality risk significantly increased by 1·55% (95% PI: 0·17, 2·95) during the high-severity worsening drought period, but not the full drought period. Cardiovascular admissions did not differ significantly during either drought or worsening drought periods. In counties where drought occurred less frequently, we found risks for cardiovascular disease and mortality to increase during worsening drought conditions. Interpretations Drought conditions increased risk of mortality during high-severity worsening drought, but decreased the risk of respiratory admissions during full drought periods among older adults. Counties that experience fewer drought events show larger risk for mortality and cardiovascular disease. This research describes an understudied environmental association with global health significance. PMID:29057392
Berman, Jesse D; Ebisu, Keita; Peng, Roger D; Dominici, Francesca; Bell, Michelle L
2017-04-01
Occurrence, severity and geographic extent of droughts are anticipated to increase under climate change, but the health consequences of drought conditions are unknown. We estimate risks of cardiovascular and respiratory-related hospitalization and mortality associated with drought conditions for the western U.S. elderly population. For counties in the western U.S. (N=618) and for the period 2000 to 2013, we use data from the U.S. Drought Monitor to identify: 1) full drought periods; 2) non-drought periods; and 3) worsening drought periods stratified by low- and high-severity. We use Medicare claims to calculate daily rates of cardiovascular admissions, respiratory admissions, and deaths among adults 65 years or older. Using a two-stage hierarchical model, we estimated the percentage change in health risks when comparing drought to non-drought period days controlling for daily weather and seasonal trends. On average there were 2·1 million days and 0·6 million days classified as non-drought periods and drought periods, respectively. Compared to non-drought periods, respiratory admissions significantly decreased by -1·99% (95% posterior interval (PI): -3·56, -0·38) during the full drought period, but not during worsening drought conditions. Mortality risk significantly increased by 1·55% (95% PI: 0·17, 2·95) during the high-severity worsening drought period, but not the full drought period. Cardiovascular admissions did not differ significantly during either drought or worsening drought periods. In counties where drought occurred less frequently, we found risks for cardiovascular disease and mortality to increase during worsening drought conditions. Drought conditions increased risk of mortality during high-severity worsening drought, but decreased the risk of respiratory admissions during full drought periods among older adults. Counties that experience fewer drought events show larger risk for mortality and cardiovascular disease. This research describes an understudied environmental association with global health significance.
Evaluating the Cardiovascular Safety of Nonsteroidal Anti-Inflammatory Drugs.
Antman, Elliott M
2017-05-23
Some drugs used to treat noncardiovascular conditions may adversely impact the cardiovascular status of individuals both with and without known cardiovascular disease. When the US Food and Drug Administration judges the potential cardiovascular safety signal to be of sufficient concern, it may require the pharmaceutical manufacturer of the drug in question to conduct a postmarketing (phase 4) randomized controlled trial (RCT). Although historically many phase 4 RCTs focused on efficacy (using a superiority design), contemporary phase 4 RCTs often are focused on safety and use a noninferiority design. The choices made by investigators during the planning stage of a postmarketing phase 4 RCT dedicated to the evaluation of cardiovascular safety can influence the ability to compare the standard and test agents. Multiple factors reflecting the conduct of a phase 4 RCT for a general medical condition may influence interpretation of a cardiovascular safety signal. The higher the rates of failure to adhere to the protocol and dropout from the study, the greater the risk of bias. Trials evaluating the cardiovascular safety of nonsteroidal anti-inflammatory drugs (NSAIDs) when used for arthritis are difficult to conduct and even more challenging to interpret. Concerns include the comparison of drug regimens that do not provide comparable analgesic efficacy and problems with adherence to the protocol and retention in the study. On the basis of phase 4 RCTs of NSAIDs to date, it appears that a comparatively low dose of celecoxib administered to low-risk subjects is associated with approximately the same cardiovascular risk as NSAIDs with less cyclooxygenase-2 inhibitory activity, but at the cost of not controlling arthritic pain as effectively. © 2017 American Heart Association, Inc.
Campbell, David J T; King-Shier, Kathryn; Hemmelgarn, Brenda R; Sanmartin, Claudia; Ronksley, Paul E; Weaver, Robert G; Tonelli, Marcello; Hennessy, Deirdre; Manns, Braden J
2014-05-01
People with chronic conditions who do not achieve therapeutic targets have a higher risk of adverse health outcomes. Failure to meet these targets may be due to a variety of barriers. This article examines self-reported financial barriers to health care among people with cardiovascular-related chronic conditions. A population-based survey was administered to western Canadians with cardiovascular-related chronic conditions (n = 1,849). Associations between self-reported financial barriers and statin use, the likelihood of stopping use of prescribed medications, and emergency department visits or hospitalizations were assessed. More than 10% respondents reported general financial barriers (12%) and lack of drug insurance (14%); 4% reported financial barriers to accessing medications. Emergency department visits or hospitalizations were 70% more likely among those reporting a general financial barrier. Those reporting a financial barrier to medications were 50% less likely to take statins and three times more likely to stop using prescribed medications. Individuals without drug insurance were nearly 30% less likely to take statins. In this population, self-reported financial barriers were associated with lower medication use and increased likelihood of emergency department visits or hospitalization.
Defining a region of optimization based on engine usage data
Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna
2015-08-04
Methods and systems for engine control optimization are provided. One or more operating conditions of a vehicle engine are detected. A value for each of a plurality of engine control parameters is determined based on the detected one or more operating conditions of the vehicle engine. A range of the most commonly detected operating conditions of the vehicle engine is identified and a region of optimization is defined based on the range of the most commonly detected operating conditions of the vehicle engine. The engine control optimization routine is initiated when the one or more operating conditions of the vehicle engine are within the defined region of optimization.
Climate Change and Simulation of Cardiovascular Disease Mortality: A Case Study of Mashhad, Iran.
Baaghideh, Mohammad; Mayvaneh, Fatemeh
2017-03-01
Weather and climate play a significant role in human health. We are accustomed to affects the weather conditions. By increasing or decreasing the environment temperature or change of seasons, some diseases become prevalent or remove. This study investigated the role of temperature in cardiovascular disease mortality of city of Mashhad in the current decade and its simulation in the future decades under conditions of climate change. Cardiovascular disease mortality data and the daily temperatures data were used during (2004-2013) period. First, the correlation between cardiovascular disease mortality and maximum and minimum temperatures were calculated then by using General Circulation Model, Emissions Scenarios, and temperature data were extracted for the next five decades and finally, mortality was simulated. There is a strong positive association between maximum temperature and mortality (r= 0.83, P -value<0.01), also observed a negative and weak but significant association between minimum temperatures and mortality. The results obtained from simulation show increased temperature in the next decades in Mashhad and a 1 °C increase in maximum temperature is associated with a 4.27% (95%CI: 0.91, 7.00) increase in Cardiovascular disease mortality. By increasing temperature and the number of hot days the cardiovascular disease mortality increases and these increases will be intensified in the future decades. Therefore, necessary preventive measures are required to mitigate temperature effects with greater attention to vulnerable group.
Curty, Victor M; Melo, Alexandre B; Caldas, Leonardo C; Guimarães-Ferreira, Lucas; de Sousa, Nuno F; Vassallo, Paula F; Vasquez, Elisardo C; Barauna, Valério G
2018-05-01
The aim of this study was to evaluate the acute effects of high-intensity eccentric exercise (HI-ECC) combined with blood flow restriction (BFR) on muscle damage markers, and perceptual and cardiovascular responses. Nine healthy men (26 ± 1 years, BMI 24 ± 1 kg m - ²) underwent unilateral elbow extension in two conditions: without (HI-ECC) and with BFR (HI-ECC+BFR). The HI-ECC protocol corresponded to three sets of 10 repetitions with 130% of maximal strength (1RM). The ratings of perceived exertion (RPE) and pain (RPP) were measured after each set. Muscle damage was evaluated by range of motion (ROM), upper arm circumference (CIR) and muscle soreness using a visual analogue scale at different moments (pre-exercise, immediately after, 24 and 48 h postexercise). Systolic (SBP), diastolic (DBP), mean blood pressure (MBP) and heart rate (HR) were measured before exercise and after each set. RPP was higher in HI-ECC+BFR than in HI-ECC after each set. Range of motion decreased postexercise in both conditions; however, in HI-ECC+BFR group, it returned to pre-exercise condition earlier (post-24 h) than HI-ECC (post-48 h). CIR increased only in HI-ECC, while no difference was observed in HI-ECC+BFR condition. Regarding cardiovascular responses, MBP and SBP did not change at any moment. HR showed similar increases in both conditions during exercise while DBP decreased only in HI-ECC condition. Thus, BFR attenuated HI-ECC-induced muscle damage and there was no increase in cardiovascular responses. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Sildenafil effects on sexual and cardiovascular responses in women with spinal cord injury.
Sipski, M L; Rosen, R C; Alexander, C J; Hamer, R M
2000-06-01
Sexual dysfunction is common in women with spinal cord injuries (SCIs) and other neurologic conditions. Sildenafil has previously been shown to be safe and effective in the treatment of erectile dysfunction due to SCI. This study is the first to evaluate the sexual and cardiovascular effects of sildenafil in women with SCIs in a controlled, laboratory setting. Nineteen premenopausal women with SCIs were randomly assigned to receive either sildenafil (50 mg) or placebo in a double-blind, crossover design study. Physiologic and subjective measures of sexual response, heart rate, and blood pressure were recorded during baseline and sexual stimulation conditions. Adverse events were also recorded. Significant increases in subjective arousal (SA) were observed with both drug (P <0.01) and sexual stimulation conditions (P <0.001), and a borderline significant (P <0.07) effect of drug administration on vaginal pulse amplitude (VPA) was noted. Maximal responses occurred when sildenafil was combined with visual and manual sexual stimulation. Cardiovascular data showed modest increases in heart rate (+/-5 bpm) and mild decreases in blood pressure (+/-4 mm Hg) across all stimulation conditions, consistent with the peripheral vasodilatory mechanism of the drug. Sildenafil was well tolerated with no evidence of significant adverse events. Findings suggest that sildenafil may partially reverse the sexual dysfunction commonly associated with SCI in women. Consistent with previous findings in men, the sexual effects of the drug were most evident under conditions of optimal stimulation. Mild, clinically insignificant cardiovascular effects were also noted. Further large-scale studies of sildenafil's effects in women with neurogenic sexual dysfunction are strongly indicated.
Dietary nitrite and nitrate: a review of potential mechanisms of cardiovascular benefits
Machha, Ajay
2012-01-01
Purpose In the last decade, a growing scientific and medical interest has emerged toward cardiovascular effects of dietary nitrite and nitrate; however, many questions concerning their mode of action(s) remain unanswered. In this review, we focus on multiple mechanisms that might account for potential cardiovascular beneficial effects of dietary nitrite and nitrate. Results Beneficial changes to cardiovascular health from dietary nitrite and nitrate might result from several mechanism(s) including their reduction into nitric oxide, improvement in endothelial function, vascular relaxation, and/or inhibition of the platelet aggregation. From recently obtained evidence, it appears that the longstanding concerns about the toxicity of oral nitrite or nitrate are overstated. Conclusion Dietary nitrite and nitrate may have cardiovascular protective effects in both healthy individuals and also those with cardiovascular disease conditions. A role for nitrite and nitrate in nitric oxide biosynthesis and/or in improving nitric oxide bioavailability may eventually provide a rationale for using dietary nitrite and nitrate supplementation in the treatment and prevention of cardiovascular diseases. PMID:21626413
Barbosa, José Augusto A; Rodrigues, Alexandre B; Mota, Cleonice Carvalho C; Barbosa, Márcia M; Simões e Silva, Ana C
2011-01-01
Obesity is a major public health problem affecting adults and children in both developed and developing countries. This condition often leads to metabolic syndrome, which increases the risk of cardiovascular disease. A large number of studies have been carried out to understand the pathogenesis of cardiovascular dysfunction in obese patients. Endothelial dysfunction plays a key role in the progression of atherosclerosis and the development of coronary artery disease, hypertension and congestive heart failure. Noninvasive methods in the field of cardiovascular imaging, such as measuring intima-media thickness, flow-mediated dilatation, tissue Doppler, and strain, and strain rate, constitute new tools for the early detection of cardiac and vascular dysfunction. These techniques will certainly enable a better evaluation of initial cardiovascular injury and allow the correct, timely management of obese patients. The present review summarizes the main aspects of cardiovascular dysfunction in obesity and discusses the application of recent noninvasive imaging methods for the early detection of cardiovascular alterations.
Mechanisms Linking Red Blood Cell Disorders and Cardiovascular Diseases
2015-01-01
The present paper aims to review the main pathophysiological links between red blood cell disorders and cardiovascular diseases, provides a brief description of the latest studies in this area, and considers implications for clinical practice and therapy. Anemia is associated with a special risk in proatherosclerotic conditions and heart disease and became a new therapeutic target. Guidelines must be updated for the management of patients with red blood cell disorders and cardiovascular diseases, and targets for hemoglobin level should be established. Risk scores in several cardiovascular diseases should include red blood cell count and RDW. Complete blood count and hemorheological parameters represent useful, inexpensive, widely available tools for the management and prognosis of patients with coronary heart disease, heart failure, hypertension, arrhythmias, and stroke. Hypoxia and iron accumulation cause the most important cardiovascular effects of sickle cell disease and thalassemia. Patients with congenital chronic hemolytic anemia undergoing splenectomy should be monitored, considering thromboembolic and cardiovascular risk. PMID:25710019
Clinical Pharmacology and Cardiovascular Safety of Naproxen.
Angiolillo, Dominick J; Weisman, Steven M
2017-04-01
The voluntary withdrawal of Vioxx (rofecoxib) from the market in 2004, as well as the 2005 and 2014 US FDA Advisory Committee meetings about non-steroidal anti-inflammatory drugs (NSAIDs) and cardiovascular risk, have raised questions surrounding the use of NSAIDs in at-risk populations. This paper discusses the cardiovascular safety profile of naproxen in the context of the NSAID class. The balance of evidence suggests that cardiovascular risk correlates with cyclooxygenase (COX)-2 selectivity, and the low COX-2 selectivity of naproxen results in a lower cardiovascular risk than that of other NSAIDs. The over-the-counter (OTC) use of naproxen is expected to pose minimal cardiovascular risk; however, the benefit-risk ratio and appropriate use should be considered at an individual patient level, particularly to assess underlying conditions that may increase the risk of events. Likewise, regulatory authorities should revisit label information periodically to ensure labeling reflects the current understanding of benefits and risks.
Roadmap for cardiovascular circulation model
Bradley, Christopher P.; Suresh, Vinod; Mithraratne, Kumar; Muller, Alexandre; Ho, Harvey; Ladd, David; Hellevik, Leif R.; Omholt, Stig W.; Chase, J. Geoffrey; Müller, Lucas O.; Watanabe, Sansuke M.; Blanco, Pablo J.; de Bono, Bernard; Hunter, Peter J.
2016-01-01
Abstract Computational models of many aspects of the mammalian cardiovascular circulation have been developed. Indeed, along with orthopaedics, this area of physiology is one that has attracted much interest from engineers, presumably because the equations governing blood flow in the vascular system are well understood and can be solved with well‐established numerical techniques. Unfortunately, there have been only a few attempts to create a comprehensive public domain resource for cardiovascular researchers. In this paper we propose a roadmap for developing an open source cardiovascular circulation model. The model should be registered to the musculo‐skeletal system. The computational infrastructure for the cardiovascular model should provide for near real‐time computation of blood flow and pressure in all parts of the body. The model should deal with vascular beds in all tissues, and the computational infrastructure for the model should provide links into CellML models of cell function and tissue function. In this work we review the literature associated with 1D blood flow modelling in the cardiovascular system, discuss model encoding standards, software and a model repository. We then describe the coordinate systems used to define the vascular geometry, derive the equations and discuss the implementation of these coupled equations in the open source computational software OpenCMISS. Finally, some preliminary results are presented and plans outlined for the next steps in the development of the model, the computational software and the graphical user interface for accessing the model. PMID:27506597
Roadmap for cardiovascular circulation model.
Safaei, Soroush; Bradley, Christopher P; Suresh, Vinod; Mithraratne, Kumar; Muller, Alexandre; Ho, Harvey; Ladd, David; Hellevik, Leif R; Omholt, Stig W; Chase, J Geoffrey; Müller, Lucas O; Watanabe, Sansuke M; Blanco, Pablo J; de Bono, Bernard; Hunter, Peter J
2016-12-01
Computational models of many aspects of the mammalian cardiovascular circulation have been developed. Indeed, along with orthopaedics, this area of physiology is one that has attracted much interest from engineers, presumably because the equations governing blood flow in the vascular system are well understood and can be solved with well-established numerical techniques. Unfortunately, there have been only a few attempts to create a comprehensive public domain resource for cardiovascular researchers. In this paper we propose a roadmap for developing an open source cardiovascular circulation model. The model should be registered to the musculo-skeletal system. The computational infrastructure for the cardiovascular model should provide for near real-time computation of blood flow and pressure in all parts of the body. The model should deal with vascular beds in all tissues, and the computational infrastructure for the model should provide links into CellML models of cell function and tissue function. In this work we review the literature associated with 1D blood flow modelling in the cardiovascular system, discuss model encoding standards, software and a model repository. We then describe the coordinate systems used to define the vascular geometry, derive the equations and discuss the implementation of these coupled equations in the open source computational software OpenCMISS. Finally, some preliminary results are presented and plans outlined for the next steps in the development of the model, the computational software and the graphical user interface for accessing the model. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Autophagy in health and disease: focus on the cardiovascular system.
Mialet-Perez, Jeanne; Vindis, Cécile
2017-12-12
Autophagy is a highly conserved mechanism of lysosome-mediated protein and organelle degradation that plays a crucial role in maintaining cellular homeostasis. In the last few years, specific functions for autophagy have been identified in many tissues and organs. In the cardiovascular system, autophagy appears to be essential to heart and vessel homeostasis and function; however defective or excessive autophagy activity seems to contribute to major cardiovascular disorders including heart failure (HF) or atherosclerosis. Here, we review the current knowledge on the role of cardiovascular autophagy in physiological and pathophysiological conditions. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Ichinose-Kuwahara, Tomoko; Kondo, Narihiko; Nishiyasu, Takeshi
2015-01-01
Reducing blood flow to working muscles during dynamic exercise causes metabolites to accumulate within the active muscles and evokes systemic pressor responses. Whether a similar cardiovascular response is elicited with normal blood flow to exercising muscles during dynamic exercise remains unknown, however. To address that issue, we tested whether cardiovascular responses are affected by increases in blood flow to active muscles. Thirteen healthy subjects performed dynamic plantarflexion exercise for 12 min at 20%, 40%, and 60% of peak workload (EX20, EX40, and EX60) with their lower thigh enclosed in a negative pressure box. Under control conditions, the box pressure was the same as the ambient air pressure. Under negative pressure conditions, beginning 3 min after the start of the exercise, the box pressure was decreased by 20, 45, and then 70 mmHg in stepwise fashion with 3-min step durations. During EX20, the negative pressure had no effect on blood flow or the cardiovascular responses measured. However, application of negative pressure increased blood flow to the exercising leg during EX40 and EX60. This increase in blood flow had no significant effect on systemic cardiovascular responses during EX40, but it markedly attenuated the pressor responses otherwise seen during EX60. These results demonstrate that during mild exercise, normal blood flow to exercising muscle is not a factor eliciting cardiovascular responses, whereas it elicits an important pressor effect during moderate exercise. This suggests blood flow to exercising muscle is a major determinant of cardiovascular responses during dynamic exercise at higher than moderate intensity. PMID:26377556
Benet Rodríguez, M; Apollinaire Pinnini, J J; González Leiva, J; Yanes Nuñez, A J; Fernández Urquizar, M
1999-01-01
A relationship exists between different cardiovascular risk factors and a significant rise in blood pressure in the presence of psychological or physical stress (cardiovascular reactivity). We studied this relationship in normotensive individuals who were subjected to stress caused by isometric exercise, which provided us with proof of the amount of weight withstood. A descriptive study was conducted in which 267 normotensive individuals were divided into two groups. One of these groups was a study group comprised of cardiovascular hyperreactive (CVHR) with a greater blood pressure response (BP)(n = 58), with BP levels > or = 90/140 mm/Hg, and the other group as a control group, with BP < 90/140 mm/Hg, n = 209. The relationship was found between the age, gender, sedentary life, smoking habit (SH), alcoholic beverage intake (ABI) and clinical history of blood pressure disorders (CH of BPD with the condition of cardiovascular hyperreactivity. 21.7% of the subjects were CVHR. The risk factors SH, ABI and gender were not related to the CVHR P > 0.05. The risk factor of CVHR is twice as high on the part of sedentary individuals, age becoming a factor as of age 40, and those individuals with a CH of BPD had twice the risk of having a cardiovascular hyperreactivity 3.85 (2: 7, 19) as those who had no CH of BPD). A significant relationship exists between being over age 40, CH of BPD and lack of exercise with a CVHR condition. This was not found to be the case for other risk factors such as SH, gender and ABI.
Evidence for sex differences in cardiovascular aging and adaptive responses to physical activity.
Parker, Beth A; Kalasky, Martha J; Proctor, David N
2010-09-01
There are considerable data addressing sex-related differences in cardiovascular system aging and disease risk/progression. Sex differences in cardiovascular aging are evident during resting conditions, exercise, and other acute physiological challenges (e.g., orthostasis). In conjunction with these sex-related differences-or perhaps even as an underlying cause-the impact of cardiorespiratory fitness and/or physical activity on the aging cardiovascular system also appears to be sex-specific. Potential mechanisms contributing to sex-related differences in cardiovascular aging and adaptability include changes in sex hormones with age as well as sex differences in baseline fitness and the dose of activity needed to elicit cardiovascular adaptations. The purpose of the present paper is thus to review the primary research regarding sex-specific plasticity of the cardiovascular system to fitness and physical activity in older adults. Specifically, the paper will (1) briefly review known sex differences in cardiovascular aging, (2) detail emerging evidence regarding observed cardiovascular outcomes in investigations of exercise and physical activity in older men versus women, (3) explore mechanisms underlying the differing adaptations to exercise and habitual activity in men versus women, and (4) discuss implications of these findings with respect to chronic disease risk and exercise prescription.
Evidence for sex differences in cardiovascular aging and adaptive responses to physical activity
Parker, Beth A.; Kalasky, Martha J.; Proctor, David N.
2010-01-01
There are considerable data addressing sex-related differences in cardiovascular system aging and disease risk/progression. Sex differences in cardiovascular aging are evident during resting conditions, exercise, and other acute physiological challenges (e.g., orthostasis). In conjunction with these sex-related differences—or perhaps even as an underlying cause—the impact of cardiorespiratory fitness and/or physical activity on the aging cardiovascular system also appears to be sex-specific. Potential mechanisms contributing to sex-related differences in cardiovascular aging and adaptability include changes in sex hormones with age as well as sex differences in baseline fitness and the dose of activity needed to elicit cardiovascular adaptations. The purpose of the present paper is thus to review the primary research regarding sex-specific plasticity of the cardiovascular system to fitness and physical activity in older adults. Specifically, the paper will (1) briefly review known sex differences in cardiovascular aging, (2) detail emerging evidence regarding observed cardiovascular outcomes in investigations of exercise and physical activity in older men versus women, (3) explore mechanisms underlying the differing adaptations to exercise and habitual activity in men versus women, and (4) discuss implications of these findings with respect to chronic disease risk and exercise prescription. PMID:20480371
Sia, W W; Tsuyuki, R; Pertman, S; Hui, W
2012-07-01
Epidemiologic studies suggest that pregnancy complications such as preeclampsia, gestational diabetes, preterm delivery and low birth weight independently increase maternal risk for future development of cardiovascular disease. To further investigate whether preeclampsia, gestational diabetes, and adverse obstetrical outcomes such as placental abruption, intrauterine growth restriction and preterm delivery, are independent risk factors for longterm cardiovascular disease. This was a case-control study where 252 parous women (cases) with coronary artery disease were matched with a parous woman within 5 years of age with no known coronary artery disease (controls). Participants were recruited from the Royal Alexandra Hospital in cardiac catheterization lab recovery room in Edmonton, Canada. Women with significant angiographic coronary artery stenosis were eligible as cases and those without were eligible as controls. Participants were interviewed on their pregnancy histories and traditional cardiovascular risk factors, such as hypertension, diabetes etc. Descriptive statistics, chi-square tests and conditional regression analysis were performed. We recruited 244 cases and 246 controls. The average age was 66.3 and 65.8 respectively. Cases were more likely obese, had more pregnancies as well as traditional cardiovascular risk factors than controls. Adverse pregnancy outcomes were similar between the two groups except gestational hypertension. However, it was not statistically significant in the conditional logistic regression model. Independent risk factors for future cardiovascular diseases were: dyslipidemia (OR 12.8), hypertension (3.0), and being a current (OR 7.4) or former smoker (1.8). Adverse pregnancy outcomes In this study, adverse pregnancy outcomes were not independently associated with cardiovascular disorders. Our study was limited by recall bias, and ascertainment of diagnosis.Our study supports that dyslipidemia, hypertensiion and smoking increase future cardiovascular disease. Further studies are needed to examine a postpartum intervention model to proactively manage cardiovascular risk factors, such as lipids, in these at-risk women. Copyright © 2012. Published by Elsevier B.V.
Insulin and Its Cardiovascular Effects: What Is the Current Evidence?
Dongerkery, Sahana Pai; Schroeder, Pamela R; Shomali, Mansur E
2017-10-23
In this article, we examine the nature of the complex relationship between insulin and cardiovascular disease. With metabolic abnormalities comes increased risk for cardiovascular complications. We discuss the key factors implicated in development and progression of cardiovascular disease, its relationship to insulin therapy, and what can be learned from large, recent cardiovascular outcome studies. Preclinical studies suggest that insulin has positive effects of facilitating glucose entry into cells and maintaining euglycemia and negative effects of favoring obesity and atherogenesis under certain conditions. Confounding this relationship is that cardiovascular morbidity is linked closely to duration and control of diabetes, and insulin is often used in patients with diabetes of longer duration. However, more recent clinical studies examining the cardiovascular safety of insulin therapy have been reassuring. Diabetes and cardiovascular outcomes are closely linked. Many studies have implicated insulin resistance and hyperinsulinemia as a major factor for poor cardiovascular outcomes. Additional studies link the anabolic effects of therapeutic insulin to weight gain, along with hypoglycemia, which may further aggravate cardiovascular risk in this population. Though good glycemic control has been shown to improve microvascular risks in type 1 and type 2 diabetes, what are the known cardiovascular effects of insulin therapy? The ORIGIN trial suggests at least a neutral effect of the basal insulin glargine on cardiovascular outcomes. Recent studies have demonstrated that ultra-long-acting insulin analogs like insulin degludec are non-inferior to insulin glargine with regard to cardiovascular outcomes.
Zafeiriou, Athina; Gendolla, Guido H E
2017-09-01
Based on previous research on implicit effects on effort-related cardiovascular response and evidence that aging is associated with cognitive difficulties, we tested whether the mere activation of the aging stereotype can systematically influence young individuals' effort-mobilization during cognitive performance. Young participants performed an objectively difficult short-term memory task during which they processed elderly vs. youth primes and expected low vs. high incentive for success. When participants processed elderly primes during the task, we expected cardiovascular response to be weak in the low-incentive condition and strong in the high-incentive condition. Unaffected by incentive, effort in the youth-prime condition should fall in between the two elderly-prime cells. Effects on cardiac pre-ejection period (PEP) and heart rate (HR) largely supported these predictions. The present findings show for the first time that the mere activation of the aging stereotype can systematically influence effort mobilization during cognitive performance-even in young adults. Copyright © 2017 Elsevier B.V. All rights reserved.
Verkuil, Bart; Brosschot, Jos F.
2017-01-01
Abstract Self‐esteem moderates the relationship between stress and (cardiovascular) health, with low self‐esteem potentially exacerbating the impact of stressors. Boosting self‐esteem may therefore help to buffer against stress. Subliminal evaluative conditioning (SEC), which subliminally couples self‐words with positive words, has previously been successfully used to boost self‐esteem, but the existing studies are in need of replication. In this article, we aimed to replicate and extend previous SEC studies. The first 2 experiments simultaneously examined whether SEC increased self‐esteem (Experiment 1, n = 84) and reduced cardiovascular reactivity to a stressor in high worriers (Experiment 2, n = 77). On the basis of these results, the 3rd experiment was set up to examine whether an adjusted personalized SEC task increased self‐esteem and reduced cardiac activity in high worriers (n = 81). Across the 3 experiments, no effects were found of SEC on implicit or explicit self‐esteem or affect or on cardiovascular (re)activity compared to a control condition in which the self was coupled with neutral words. The results do not support the use of the subliminal intervention in its current format. As stress is highly prevalent, future studies should focus on developing other cost‐effective and evidence‐based interventions. PMID:28795525
Test of a Cardiology Patient Simulator with Students in Fourth-Year Electives.
ERIC Educational Resources Information Center
Ewy, Gordon A.; And Others
1987-01-01
Students at five medical schools participated in an evaluation of a cardiology patient simulator (CPS), a life-size mannequin capable of simulating a wide variety of cardiovascular conditions. The CPS enhances learning both the knowledge and the skills necessary to perform a bedside cardiovascular evaluation. (Author/MLW)
A Computer Model of the Cardiovascular System for Effective Learning.
ERIC Educational Resources Information Center
Rothe, Carl F.
1980-01-01
Presents a model of the cardiovascular system which solves a set of interacting, possibly nonlinear, differential equations. Figures present a schematic diagram of the model and printouts that simulate normal conditions, exercise, hemorrhage, reduced contractility. The nine interacting equations used to describe the system are described in the…
Polchow, Bianca; Kebbel, Kati; Schmiedeknecht, Gerno; Reichardt, Anne; Henrich, Wolfgang; Hetzer, Roland; Lueders, Cora
2012-05-16
In vitro fabricated tissue engineered vascular constructs could provide an alternative to conventional substitutes. A crucial factor for tissue engineering of vascular constructs is an appropriate cell source. Vascular cells from the human umbilical cord can be directly isolated and cryopreserved until needed. Currently no cell bank for human vascular cells is available. Therefore, the establishment of a future human vascular cell bank conforming to good manufacturing practice (GMP) conditions is desirable for therapeutic applications such as tissue engineered cardiovascular constructs. A fundamental step was the adaption of conventional research and development starting materials to GMP compliant starting materials. Human umbilical cord artery derived cells (HUCAC) and human umbilical vein endothelial cells (HUVEC) were isolated, cultivated, cryopreserved (short- and long-term) directly after primary culture and recultivated subsequently. Cell viability, expression of cellular markers and proliferation potential of fresh and cryopreserved cells were studied using trypan blue staining, flow cytometry analysis, immunofluorescence staining and proliferation assays. Statistical analyses were performed using Student's t-test. Sufficient numbers of isolated cells with acceptable viabilities and homogenous expression of cellular markers confirmed that the isolation procedure was successful using GMP compliant starting materials. The influence of cryopreservation was marginal, because cryopreserved cells mostly maintain phenotypic and functional characteristics similar to those of fresh cells. Phenotypic studies revealed that fresh cultivated and cryopreserved HUCAC were positive for alpha smooth muscle actin, CD90, CD105, CD73, CD29, CD44, CD166 and negative for smoothelin. HUVEC expressed CD31, CD146, CD105 and CD144 but not alpha smooth muscle actin. Functional analysis demonstrated acceptable viability and sufficient proliferation properties of cryopreserved HUCAC and HUVEC. Adaptation of cell isolation, cultivation and cryopreservation to GMP compliant starting materials was successful. Cryopreservation did not influence cell properties with lasting impact, confirming that the application of vascular cells from the human umbilical cord is feasible for cell banking. A specific cellular marker expression profile was established for HUCAC and HUVEC using flow cytometry analysis, applicable as a GMP compliant quality control. Use of these cells for the future fabrication of advanced therapy medicinal products GMP conditions are required by the regulatory authority.
[Why is obstructive sleep apnea (OSA) a cardiovascular risk factor?].
Koehler, U; Becker, H F; Gross, V; Reinke, C; Penzel, T; Schäfer, H; Vogelmeier, C
2003-12-01
Patients with obstructive sleep apnea (OSA) frequently suffer from cardiovascular diseases. Mechanisms like intrathoracic pressure variations, changes in blood gases (hypoxia), arousals and neurohumeral adaptation mechanisms, combined with breathing disorders are causing these cardiovascular sequelae. In particular repetitive hypoxemia and activation of the sympathetic nervous system have to be considered as stressors for the cardiovascular system. Special clinical findings should take OSA into consideration as a differential diagnosis. A systematic anamnesis with questions to daytime conditions (hypersomnia, decrease of performance), snoring and apneas while sleeping is easy to ascertain, and will lead to the correct diagnosis in more than 90% of cases. The extent and need for therapy should be assessed by three criteria: 1) daytime symptoms, 2) the extent of breathing disorder and 3) cardiovascular comorbidity.
Hinderer, Svenja; Brauchle, Eva
2015-01-01
Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug‐free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus‐free vascular substitutes that are smaller than 6 mm, and stem cell‐recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off‐the‐shelf biomaterials as well as automatable and up‐scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact‐ and marker‐free biomaterial and extracellular matrix assessment methods are highlighted. PMID:25778713
Ryan, Alan J; O'Brien, Fergal J
2015-12-01
Biomaterials with the capacity to innately guide cell behaviour while also displaying suitable mechanical properties remain a challenge in tissue engineering. Our approach to this has been to utilise insoluble elastin in combination with collagen as the basis of a biomimetic scaffold for cardiovascular tissue engineering. Elastin was found to markedly alter the mechanical and biological response of these collagen-based scaffolds. Specifically, during extensive mechanical assessment elastin was found to reduce the specific tensile and compressive moduli of the scaffolds in a concentration dependant manner while having minimal effect on scaffold microarchitecture with both scaffold porosity and pore size still within the ideal ranges for tissue engineering applications. However, the viscoelastic properties were significantly improved with elastin addition with a 3.5-fold decrease in induced creep strain, a 6-fold increase in cyclical strain recovery, and with a four-parameter viscoelastic model confirming the ability of elastin to confer resistance to long term deformation/creep. Furthermore, elastin was found to result in the modulation of SMC phenotype towards a contractile state which was determined via reduced proliferation and significantly enhanced expression of early (α-SMA), mid (calponin), and late stage (SM-MHC) contractile proteins. This allows the ability to utilise extracellular matrix proteins alone to modulate SMC phenotype without any exogenous factors added. Taken together, the ability of elastin to alter the mechanical and biological response of collagen scaffolds has led to the development of a biomimetic biomaterial highly suitable for cardiovascular tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modelling and Simulating the Adhesion and Detachment of Chondrocytes in Shear Flow
NASA Astrophysics Data System (ADS)
Hao, Jian; Pan, Tsorng-Whay; Rosenstrauch, Doreen
Chondrocytes are typically studied in the environment where they normally reside such as the joints in hips, intervertebral disks or the ear. For example, in [SKE+99], the effect of seeding duration on the strength of chondrocyte adhesion to articulate cartilage has been studied in shear flow chamber since such adhesion may play an important role in the repair of articular defects by maintaining cells in positions where their biosynthetic products can contribute to the repair process. However, in this investigation, we focus mainly on the use of auricular chondrocytes in cardiovascular implants. They are abundant, easily and efficiently harvested by a minimally invasive technique. Auricular chondrocytes have ability to produce collagen type-II and other important extracellular matrix constituents; this allows them to adhere strongly to the artificial surfaces. They can be genetically engineered to act like endothelial cells so that the biocompatibility of cardiovascular prothesis can be improved. Actually in [SBBR+02], genetically engineered auricular chondrocytes can be used to line blood-contacting luminal surfaces of left ventricular assist device (LVAD) and a chondrocyte-lined LVAD has been planted into the tissue-donor calf and the results in vivo have proved the feasibility of using autologous auricular chondrocytes to improve the biocompatibility of the blood-biomaterial interface in LVADs and cardiovascular prothesis. Therefore, cultured chondrocytes may offer a more efficient and less invasive means of covering artificial surface with a viable and adherent cell layer.
Flow and pressure regulation in the cardiovascular system. [engineering systems model
NASA Technical Reports Server (NTRS)
Iberall, A.
1974-01-01
Principles and descriptive fragments which may contribute to a model of the regulating chains in the cardiovascular system are presented. Attention is given to the strain sensitivity of blood vessels, the law of the autonomy of the heart beat oscillator, the law of the encapsulation of body fluids, the law of the conservation of protein, the law of minimum 'arterial' pressure, the design of the 'mammalian' kidney, questions of homeokinetic organization, and the development of self-regulatory chains. Details concerning the development program for the heart muscle are considered along with the speed of response of the breathing rate and the significance of the pulmonary vascular pressure-flow characteristics.
Transient particle emission measurement with optical techniques
NASA Astrophysics Data System (ADS)
Bermúdez, Vicente; Luján, José M.; Serrano, José R.; Pla, Benjamín
2008-06-01
Particulate matter is responsible for some respiratory and cardiovascular diseases. In addition, it is one of the most important pollutants of high-speed direct injection (HSDI) passenger car engines. Current legislation requires particulate dilution tunnels for particulate matter measuring. However for development work, dilution tunnels are expensive and sometimes not useful since they are not able to quantify real-time particulate emissions during transient operation. In this study, the use of a continuous measurement opacimeter and a fast response HFID is proven to be a good alternative to obtain instantaneous particle mass emissions during transient operation (due to particulate matter consisting mainly of soot and SOF). Some methods and correlations available from literature, but developed for steady conditions, are evaluated during transient operation by comparing with mini-tunnel measurements during the entire MVEG-A transient cycle. A new correlation was also derived from this evaluation. Results for soot and SOF (obtained from the new correlation proposed) are compared with soot and SOF captured with particulate filters, which have been separated by means of an SOF extraction method. Finally, as an example of ECU design strategies using these sort of correlations, the EGR valve opening is optimized during transient operation. The optimization is performed while simultaneously taking into account instantaneous fuel consumption, particulate emissions (calculated with the proposed correlation) and other regulated engine pollutants.
Shinbane, Jerold S; Saxon, Leslie A
Advances in imaging technology have led to a paradigm shift from planning of cardiovascular procedures and surgeries requiring the actual patient in a "brick and mortar" hospital to utilization of the digitalized patient in the virtual hospital. Cardiovascular computed tomographic angiography (CCTA) and cardiovascular magnetic resonance (CMR) digitalized 3-D patient representation of individual patient anatomy and physiology serves as an avatar allowing for virtual delineation of the most optimal approaches to cardiovascular procedures and surgeries prior to actual hospitalization. Pre-hospitalization reconstruction and analysis of anatomy and pathophysiology previously only accessible during the actual procedure could potentially limit the intrinsic risks related to time in the operating room, cardiac procedural laboratory and overall hospital environment. Although applications are specific to areas of cardiovascular specialty focus, there are unifying themes related to the utilization of technologies. The virtual patient avatar computer can also be used for procedural planning, computational modeling of anatomy, simulation of predicted therapeutic result, printing of 3-D models, and augmentation of real time procedural performance. Examples of the above techniques are at various stages of development for application to the spectrum of cardiovascular disease processes, including percutaneous, surgical and hybrid minimally invasive interventions. A multidisciplinary approach within medicine and engineering is necessary for creation of robust algorithms for maximal utilization of the virtual patient avatar in the digital medical center. Utilization of the virtual advanced cardiac imaging patient avatar will play an important role in the virtual health care system. Although there has been a rapid proliferation of early data, advanced imaging applications require further assessment and validation of accuracy, reproducibility, standardization, safety, efficacy, quality, cost effectiveness, and overall value to medical care. Copyright © 2018 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
Kirsch, Julie A; Lehman, Barbara J
2015-12-01
Previous research suggests that in contrast to invisible social support, visible social support produces exaggerated negative emotional responses. Drawing on work by Bolger and colleagues, this study disentangled social support visibility from negative social evaluation in an examination of the effects of social support on negative emotions and cardiovascular responses. As part of an anticipatory speech task, 73 female participants were randomly assigned to receive no social support, invisible social support, non-confounded visible social support or visible social support as delivered in a 2007 study by Bolger and Amarel. Twelve readings, each for systolic blood pressure, diastolic blood pressure and heart rate were taken at 5-min intervals throughout the periods of baseline, reactivity and recovery. Cardiovascular outcomes were tested by incorporating a series of theoretically driven planned contrasts into tests of stress reactivity conducted through piecewise growth curve modelling. Linear and quadratic trends established cardiovascular reactivity to the task. Further, in comparison to the control and replication conditions, the non-confounded visible and invisible social support conditions attenuated cardiovascular reactivity over time. Pre- and post-speech negative emotional responses were not affected by the social support manipulations. These results suggest that appropriately delivered visible social support may be as beneficial as invisible social support. Copyright © 2014 John Wiley & Sons, Ltd.
CaMKII in the Cardiovascular System: Sensing Redox States
Erickson, Jeffrey R.; He, B. Julie; Grumbach, Isabella M.; Anderson, Mark E
2013-01-01
The multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII) is now recognized to play a central role in pathological events in the cardiovascular system. CaMKII has diverse downstream targets that promote vascular disease, heart failure and arrhythmias, so improved understanding of CaMKII signaling has the potential to lead to new therapies for cardiovascular disease. CaMKII is a multimeric serine-threonine kinase that is initially activated by binding calcified calmodulin (Ca2+/CaM). Under conditions of sustained exposure to elevated Ca2+/CaM CaMKII transitions into a Ca2+/CaM-autonomous enzyme by two distinct but parallel processes. Autophosphorylation of threonine 287 in the CaMKII regulatory domain ‘traps’ CaMKII into an open configuration even after Ca2+/CaM unbinding. More recently, our group identified a pair of methionines (281/282) in the CaMKII regulatory domain that undergo a partially reversible oxidation which, like autophosphorylation, prevents CaMKII from inactivating after Ca2+/CaM unbinding. Here we review roles of CaMKII in cardiovascular disease with an eye to understanding how CaMKII may act as a transduction signal to connect pro-oxidant conditions into specific downstream pathological effects that are relevant to rare and common forms of cardiovascular disease. PMID:21742790
In vivo functional photoacoustic microscopy of cutaneous microvasculature in human skin.
Favazza, Christopher P; Cornelius, Lynn A; Wang, Lihong V
2011-02-01
Microcirculation is an important component of the cardiovascular system and can be used to assess systemic cardiovascular health. Numerous studies have investigated cutaneous microcirculation as an indicator of cardiovascular related diseases. Such research has shown promising results; however, there are many limitations regarding the employed measurement techniques, such as poor depth and spatial resolution and measurement versatility. Here we show the results of functional cutaneous microvascular experiments measured with photoacoustic microscopy, which provides high spatial resolution and multiparameter measurements. In a set of experiments, microvascular networks located in the palms of volunteers were perturbed by periodic ischemic events, and the subsequent hemodynamic response to the stimulus was recorded. Results indicate that during periods of arterial occlusion, the relative oxygen saturation of the capillary vessels decreased below resting levels, and temporarily increased above resting levels immediately following the occlusion. Furthermore, a hyperemic reaction to the occlusions was measured, and the observation agreed well with similar measurements using more conventional imaging techniques. Due to its exceptional capability to functionally image vascular networks with high spatial resolution, photoacoustic microscopy could be a beneficial biomedical tool to assess microvascular functioning and applied to patients with diseases that affect cardiovascular health. © 2011 Society of Photo-Optical Instrumentation Engineers.
Concurrently adjusting interrelated control parameters to achieve optimal engine performance
Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna
2015-12-01
Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.
Mozumdar, Arupendra; Roy, Subrata K
2008-03-01
Anthropometric somatotyping is one of the methods to describe the shape of the human body, which shows some associations with an individual's health and disease condition, especially with cardiovascular diseases (CVD). Individuals with lower extremity amputation (LEA) are known to be more vulnerable to the cardiovascular risk. The objectives of the present study are to report the somatotype of the individuals having lower extremity amputation, to study the possible variation in somatotype between two groups of amputated individuals, and to study the association between cardiovascular disease risk factor and somatotype components among individuals with locomotor disability. 102 adult male individuals with unilateral lower-extremity amputation residing in Calcutta and adjoining areas were investigated. The anthropometric data for somatotyping and data on cardiovascular risk traits (such as body mass index, blood pressure measurements, blood lipids) have been collected. The somatotyping technique of Carter & Heath (1990) has been followed. The result shows high mean values of endomorphy and mesomorphy components and a low mean value of the ectomorphy component among the amputated individuals having cardiovascular risks. The results of both discriminant analysis and logistic regression analysis show a significant relationship between somatotype components and CVD risk among the individuals with LEA. The findings of the present study support the findings of similar studies conducted on the normal population. Diagnosis of CVD risk condition through somatotyping can be utilized in prevention/treatment management for the individuals with LEA.
Alessandri, N; Tufano, F; Petrassi, M; Alessandri, C; Lanzi, L; Fusco, L; Moscariello, F; De Angelis, C; Tomao, E
2010-05-01
The hysto-morfological composition of the ascending aorta wall gives to the vessel its characteristic elasticity/distensibility, which is deteriorated due to both physiological (age) and pathological events (hypertension, diabetes, dyslipidemia). This contributes to reduce the wall elasticity and to occurrence of cardiovascular events. Thirty young healthy subjects (20 males, 10 females, age <30 yr), were subjected to different postural conditions with and without Lower Body Negative Pressure (LBNP) with conventional procedures, to simulate the microgravity conditions in space flight. During this procedure the cardiovascular parameters and the aorta elasticity were assessed with ecocardiography. The observation of results and statistical comparison showed that despite different hemodynamic conditions and with significant variation of blood pressure related to posture, elasticity/distensibility did not change significantly. The elasticity/distensibility of arterial vessels is the result of two interdependent variables such as blood pressure and systolic and diastolic diameters. While blood pressure and heart rate vary physiologically in relation to posture, the compensation of the vessel diameters modifications maintains the aortic compliance invariate. Therefore, in young healthy people, despite the significant postural and the sudden pressure changes (equivalent to parietal stress) aortic compliance does not alter. This behavior might be related to the low rate of cardiovascular events that are present in healthy people aged under 30 yrs.
75 FR 32482 - Investigational New Drug Applications; Co-development of Investigational Drugs
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-08
...- infectives, seizure disorders, cardiovascular diseases, and any other therapeutic category in which such co..., cardiovascular diseases, and any other therapeutic category in which such co-development is likely to occur. III... distinct investigational drugs intended to be used in combination to treat a disease or condition. FDA is...
ERIC Educational Resources Information Center
Winter, C. F.; Hermans, H.; Evenhuis, H. M.; Echteld, M. A.
2015-01-01
Background: Depression, anxiety, diabetes and cardiovascular risk factors are frequent health problems among older people with intellectual disability (ID). These conditions may be bidirectionally related. Depression and anxiety may have biological effects causing glucose intolerance, fat accumulation and also lifestyle changes causing metabolic…
ERIC Educational Resources Information Center
Conley, Michael S.; Rozenek, Ralph
2001-01-01
Resistance training may enhance cardiovascular health, improve body composition, increase bone mineral density, reduce anxiety and depression, reduce the risk of injury during other sports, and increase muscular strength and endurance. The paper describes the effects of resistance training on: the cardiovascular system, energy expenditure and body…
Attendance at Health Promotion Programs: Baseline Predictors and Program Outcomes.
ERIC Educational Resources Information Center
Atkins, Catherine J.; And Others
1990-01-01
As part of a family cardiovascular health promotion project, 111 Mexican-American and 95 Anglo-American families with fifth or sixth grade children were assigned to either a primary prevention program involving 18 sessions or to a control condition. Correlates of attendance were low baseline scores on physical activity and cardiovascular fitness…
Block, Robert C; Abdolahi, Amir; Niemiec, Christopher P; Rigby, C Scott; Williams, Geoffrey C
2016-12-01
There is a lack of research on the use of electronic tools that guide patients toward reducing their cardiovascular disease risk. We conducted a 9-month clinical trial in which participants who were at low (n = 100) and moderate (n = 23) cardiovascular disease risk-based on the National Cholesterol Education Program III's 10-year risk estimator-were randomized to usual care or to usual care plus use of an Interactive Cholesterol Advisory Tool during the first 8 weeks of the study. In the moderate-risk category, an interaction between treatment condition and Framingham risk estimate on low-density lipoprotein and non-high-density lipoprotein cholesterol was observed, such that participants in the virtual clinician treatment condition had a larger reduction in low-density lipoprotein and non-high-density lipoprotein cholesterol as their Framingham risk estimate increased. Perceptions of the Interactive Cholesterol Advisory Tool were positive. Evidence-based information about cardiovascular disease risk and its management was accessible to participants without major technical challenges. © The Author(s) 2015.
Mendes, Romeu; Themudo Barata, J L
2008-01-01
High blood pressure is a major risk factor of cardiovascular diseases and has a high prevalence in the older individuals becoming in a risk factor associated with high cardiovascular mortality and morbidity among these population. This study has the objective to analyze the changes in the cardiovascular system inherent to the aging process, that provoke the increase of blood pressure levels with the advance of age and that can origin hypertension. With the aging process, changes in the anatomy and cardiovascular physiology occur, even in the absence of illness. High blood pressure is characterized as a systemic condition that involves the presence of structural changes of the arteries and the myocardium, associated to an endotelial and baroreceptors dysfunction.
Frazier, Lorraine; Wung, Shu-Fen; Sparks, Elizabeth; Eastwood, Cathy
2009-01-01
This paper presents the main causes of heart failure (HF) and an update on the genetics studies on each cause. The review includes a delineation of the etiology and fundamental pathophysiology of HF and provides rational for treatment for the patient and family. Various cardiomyopathies are discussed, includingprimary cardiomyopathies, mixed cardiomyopathies, cardiomyopathies that involve altered cardiac muscle along with generalized multi-organ disorders, and various cardiovascular conditions, such as coronary artery disease (ischemic cardiomyopathy) and hypertension (hypertensive cardiomyopathy).1 A brief review of pharmacogenetics and HF is presented. The application of the genetic components of cardiomyopathy and pharmacogenetics is included to enhance cardiovascular nursing care. PMID:19737164
Cardiovascular Update: Risk, Guidelines, and Recommendations.
Pearson, Tamera
2015-09-01
This article provides an update of the current status of cardiovascular disease (CVD) in the United States, including a brief review of the underlying pathophysiology and epidemiology. This article presents a discussion of the latest American Heart Association guidelines that introduce the concept of promoting ideal cardiovascular health, defined by seven identified metrics. Specific CVD risk factors and utilization of the 10-year CVD event prediction calculator are discussed. In addition, current management recommendations of health-related conditions that increase risk for CVD, such as hypertension and hypercholesterolemia, are provided. Finally, a discussion of detailed evidence-based lifestyle recommendations to promote cardiovascular health and reduce CVD risks concludes the update. © 2015 The Author(s).
Impact of age on cardiovascular risk: implications for cardiovascular disease management.
Tuomilehto, Jaakko
2004-05-01
Cardiovascular disease (CVD) represents a major global healthcare problem. The prevalence of this condition increases with age. As many countries around the world are experiencing an increase in the proportion of elderly people in the population, this raises serious issues for cardiac and cerebrovascular disease prevention and management. A wealth of data has established smoking, dyslipidemia, hypertension and type 2 diabetes as major risk factors for cardiac and cerebrovascular events. This article reviews the evidence that links these metabolic risk factors with an increased risk of complications, and assesses the data concerning how risk changes with age. This review also focuses on how these conditions can be optimally managed and whether treatment outcomes are affected by age. The current status of research is assessed and issues which remain to be resolved are highlighted.
Gomel, M; Oldenburg, B; Simpson, J M; Owen, N
1993-01-01
OBJECTIVES. This study reports an efficacy trial of four work-site health promotion programs. It was predicted that strategies making use of behavioral counseling would produce a greater reduction in cardiovascular disease risk factors than screening and educational strategies. METHODS. Twenty-eight work sites were randomly allocated to a health risk assessment, risk factor education, behavioral counseling, or behavioral counseling plus incentives intervention. Participants were assessed before the intervention and at 3, 6, and 12 months. RESULTS. Compared with the average of the health risk assessment and risk factor education conditions, there were significantly higher validated continuous smoking cessation rates and smaller increases in body mass index and estimated percentage of body fat in the two behavioral counseling conditions. The behavioral counseling condition was associated with a greater reduction in mean blood pressure than was the behavioral counseling plus incentives condition. On average among all groups, there was a short-term increase in aerobic capacity followed by a return to baseline levels. CONCLUSIONS. Work-site interventions that use behavioral approaches can produce lasting changes in some cardiovascular risk factors and, if implemented routinely, can have a significant public health impact. PMID:8362997
Android based self-diagnostic electrocardiogram system for mobile healthcare.
Choo, Kan-Yeep; Ling, Huo-Chong; Lo, Yew-Chiong; Yap, Zuo-Han; Pua, Jun-Sheng; Phan, Raphael C-W; Goh, Vik-Tor
2015-01-01
Cardiovascular diseases are the most common cause of death worldwide and are characterized by arrhythmia (i.e. irregular rhythm of heartbeat). Arrhythmia occasionally happens under certain conditions, such as stress. Therefore, it is difficult to be diagnosed using electrocardiogram (ECG) devices available in hospitals for just a few minutes. Constant diagnosis and monitoring of heartbeat is required to reduce death caused by cardiovascular diseases. Mobile healthcare system has emerged as a potential solution to assist patients in monitoring their own heart condition, especially those who are isolated from the reference hospital. This paper proposes a self-diagnostic electrocardiogram system for mobile healthcare that has the capability to perform a real-time ECG diagnostic. The self-diagnostic capability of a real-time ECG signal is achieved by implementing a detrended fluctuation analysis (DFA) method. The result obtained from DFA is used to display the patient's health condition on a smartphone anytime and anywhere. If the health condition is critical, the system will alert the patient and his medical practitioner for further diagnosis. Experimental results verified the validity of the developed ECG diagnostic application on a smartphone. The proposed system can potentially reduce death caused by cardiovascular diseases by alerting the patient possibly undergoing a heart attack.
Cannabinoids in the Cardiovascular System.
Ho, Wing S V; Kelly, Melanie E M
2017-01-01
Cannabinoids are known to modulate cardiovascular functions including heart rate, vascular tone, and blood pressure in humans and animal models. Essential components of the endocannabinoid system, namely, the production, degradation, and signaling pathways of endocannabinoids have been described not only in the central and peripheral nervous system but also in myocardium, vasculature, platelets, and immune cells. The mechanisms of cardiovascular responses to endocannabinoids are often complex and may involve cannabinoid CB 1 and CB 2 receptors or non-CB 1/2 receptor targets. Preclinical and some clinical studies have suggested that targeting the endocannabinoid system can improve cardiovascular functions in a number of pathophysiological conditions, including hypertension, metabolic syndrome, sepsis, and atherosclerosis. In this chapter, we summarize the local and systemic cardiovascular effects of cannabinoids and highlight our current knowledge regarding the therapeutic potential of endocannabinoid signaling and modulation. © 2017 Elsevier Inc. All rights reserved.
Ichinose, Masashi; Ichinose-Kuwahara, Tomoko; Kondo, Narihiko; Nishiyasu, Takeshi
2015-11-15
Reducing blood flow to working muscles during dynamic exercise causes metabolites to accumulate within the active muscles and evokes systemic pressor responses. Whether a similar cardiovascular response is elicited with normal blood flow to exercising muscles during dynamic exercise remains unknown, however. To address that issue, we tested whether cardiovascular responses are affected by increases in blood flow to active muscles. Thirteen healthy subjects performed dynamic plantarflexion exercise for 12 min at 20%, 40%, and 60% of peak workload (EX20, EX40, and EX60) with their lower thigh enclosed in a negative pressure box. Under control conditions, the box pressure was the same as the ambient air pressure. Under negative pressure conditions, beginning 3 min after the start of the exercise, the box pressure was decreased by 20, 45, and then 70 mmHg in stepwise fashion with 3-min step durations. During EX20, the negative pressure had no effect on blood flow or the cardiovascular responses measured. However, application of negative pressure increased blood flow to the exercising leg during EX40 and EX60. This increase in blood flow had no significant effect on systemic cardiovascular responses during EX40, but it markedly attenuated the pressor responses otherwise seen during EX60. These results demonstrate that during mild exercise, normal blood flow to exercising muscle is not a factor eliciting cardiovascular responses, whereas it elicits an important pressor effect during moderate exercise. This suggests blood flow to exercising muscle is a major determinant of cardiovascular responses during dynamic exercise at higher than moderate intensity. Copyright © 2015 the American Physiological Society.
A comparison of the cardiovascular effects of simulated and spontaneous laughter.
Law, Mikaela M; Broadbent, Elizabeth A; Sollers, John J
2018-04-01
Laughter has long been regarded as beneficial for health, but the mechanisms are not clearly understood. The current study aimed to compare the acute cardiovascular effects of spontaneous and simulated laughter. A mixed factorial experiment was performed to examine changes in cardiovascular variables in response to experimental tasks across conditions. A sample of 72 participants were randomised to one of three 6 min interventions. Participants in the simulated laughter condition were asked to generate fake laughter, the spontaneous laughter condition viewed a humorous video, and the control condition watched a non-humorous documentary. This was followed by a laboratory stress task. Heart rate and heart rate variability (as indexed by rMSSD) were monitored continuously throughout the experiment using ECG. The simulated laughter condition had a significantly higher heart rate (p < .001, η p 2 = .26) and lower rMSSD (p < .001, η p 2 = .13) during the laughter task compared to the other two conditions. Follow-up hierarchical regressions indicated that the difference in heart rate was due to the fact that the simulated condition produced more laughter. The difference in rMSSD, however, was unique to the simulated condition even when controlling for the amount of laughter. The simulated laughter condition had a significantly lower mean HR during the stress task but this was not significant after controlling amount of laughter produced. Laughter leads to increased heart rate and reduced heart rate variability, which is similar to the effects of exercise. This finding is more pronounced in simulated laughter. Copyright © 2018 Elsevier Ltd. All rights reserved.
Influence of municipal- and individual-level socioeconomic conditions on mortality in Japan.
Honjo, Kaori; Iso, Hiroyasu; Fukuda, Yoshiharu; Nishi, Nobuo; Nakaya, Tomoki; Fujino, Yoshihisa; Tanabe, Naohito; Suzuki, Sadao; Subramanian, S V; Tamakoshi, Akiko
2014-01-01
The health effect of area socioeconomic conditions has been evident especially in Western countries; however, limited research has focused on the effect of municipal-level socioeconomic conditions, especially in Asia. Multilevel research using data from the Japan Collaborative Cohort Study, a large cohort study followed from 1990 to 2006, was conducted to examine individual as well as municipal socioeconomic conditions on risk of death, adjusting for each other. We included 24,460 men and 32,649 women aged 40 to 65 years at baseline in 35 municipalities as our study population. Primary predictors were municipal socioeconomic conditions (proportion of college graduates, per capita income, unemployment rate, and proportion of households receiving public assistance) and individual socioeconomic conditions (education level and occupation). Among men, the multilevel logistic estimate (standard errors) of proportion of college graduates and unemployment rate for mortality from cardiovascular disease were -0.399 (0.094) and -0.343 (0.122), respectively. Among women, the multilevel logistic estimate (standard errors) of proportion of college graduates and per capita annual income for mortality from injuries were -0.386 (0.171) and -1.069 (0.407). Individual education level and occupation were associated with all-cause mortality, in particular, mortality from cardiovascular disease or injuries. Interactions between individual education level and indicators of municipal socioeconomic conditions were observed for mortality from cancer and cardiovascular disease among men and mortality from injuries among women. Municipal and individual socioeconomic conditions were independently and interactively associated with premature death; this suggests that reducing social inequalities in health demands a focus on municipal conditions in addition to those of individuals.
Cardiovascular Consequences of Metabolic Syndrome
Tune, Johnathan D.; Goodwill, Adam G.; Sassoon, Daniel J.; Mather, Kieren J.
2017-01-01
The metabolic syndrome (MetS) is defined as the concurrence of obesity-associated cardiovascular risk factors including abdominal obesity, impaired glucose tolerance, hypertriglyceridemia, decreased HDL cholesterol, and/or hypertension. Earlier conceptualizations of the MetS focused on insulin resistance as a core feature, and it is clearly coincident with the above list of features. Each component of the MetS is an independent risk factor for cardiovascular disease and the combination of these risk factors elevates rates and severity of cardiovascular disease, related to a spectrum of cardiovascular conditions including microvascular dysfunction, coronary atherosclerosis and calcification, cardiac dysfunction, myocardial infarction, and heart failure. While advances in understanding the etiology and consequences of this complex disorder have been made, the underlying pathophysiologic mechanisms remain incompletely understood, and it is unclear how these concurrent risk factors conspire to produce the variety of obesity-associated adverse cardiovascular diseases. In this review we highlight current knowledge regarding the pathophysiologic consequences of obesity and the MetS on cardiovascular function and disease, including considerations of potential physiologic and molecular mechanisms that may contribute to these adverse outcomes. PMID:28130064
Inflammation and Cardiovascular Disease Risk: A Case Study of HIV and Inflammatory Joint Disease.
Rahman, Faisal; Martin, Seth S; Whelton, Seamus P; Mody, Freny V; Vaishnav, Joban; McEvoy, John William
2018-04-01
The epidemiologic data associating infection and inflammation with increased risk of cardiovascular disease is well established. Patients with chronically upregulated inflammatory pathways, such as those with HIV and inflammatory joint diseases, often have a risk of future cardiovascular risk that is similar to or higher than patients with diabetes. Thus, it is of heightened importance for clinicians to consider the cardiovascular risk of patients with these conditions. HIV and inflammatory joint diseases are archetypal examples of how inflammatory disorders contribute to vascular disease and provide illustrative lessons that can be leveraged in the prevention of cardiovascular disease. Managing chronic inflammatory diseases calls for a multifaceted approach to evaluation and treatment of suboptimal lifestyle habits, accurate estimation of cardiovascular disease risk with potential upwards recalibration due to chronic inflammation, and more intensive treatment of risk factors because current tools often underestimate the risk in this population. This approach is further supported by the recently published CANTOS trial demonstrating that reducing inflammation can serve as a therapeutic target among persons with residual inflammatory risk for cardiovascular disease. Copyright © 2018 Elsevier Inc. All rights reserved.
The Future Role of the United States in Global Health: Emphasis on Cardiovascular Disease.
Fuster, Valentin; Frazer, Jendayi; Snair, Megan; Vedanthan, Rajesh; Dzau, Victor
2017-12-26
U.S. global health investment has focused on detection, treatment, and eradication of infectious diseases such as tuberculosis, malaria, and human immunodeficiency virus/acquired immunodeficiency syndrome, with significant results. Although efforts should be maintained and expanded to provide ongoing therapy for chronic infectious disease, there is a pressing need to meet the challenge of noncommunicable diseases, which constitute the highest burden of diseases globally. A Committee of the National Academies of Sciences, Engineering, and Medicine has made 14 recommendations that require ongoing commitments to eradication of infectious disease and increase the emphasis on chronic diseases such as cardiovascular disease. These include improving early detection and treatment, mitigating disease risk factors, shifting global health infrastructure to include management of cardiovascular disease, developing global partners and private-public ventures to meet infrastructure and funding challenges, streamlining medical product development and supply, increasing research and development capacity, and addressing gaps in global political and institutional leadership to meet the shifting challenge. Copyright © 2017. Published by Elsevier Inc.
Pesce, Maurizio; Santoro, Rosaria
2017-03-01
Although traditionally linked to the physiology of tissues in 'motion', the ability of the cells to transduce external forces into coordinated gene expression programs is emerging as an integral component of the fundamental structural organization of multicellular organisms with consequences for cell differentiation even from the beginning of embryonic development. The ability of the cells to 'feel' the surrounding mechanical environment, even in the absence of tissue motion, is then translated into 'positional' or 'social' sensing that instructs, before the organ renewal, the correct patterning of the embryos. In the present review, we will highlight how these basic concepts, emerging from the employment of novel cell engineering tools, can be linked to pathophysiology of the cardiovascular system, and may contribute to understanding the molecular bases of some of the major cardiovascular diseases like heart failure, heart valve stenosis and failure of the venous aorto-coronary bypass. Copyright © 2016 Elsevier Inc. All rights reserved.
Impact of traditional therapies and biologics on cardiovascular diseases in rheumatoid arthritis.
Boyer, Jean-Frédéric; Cantagrel, Alain; Constantin, Arnaud
2008-07-01
In chronic inflammatory diseases such as rheumatoid arthritis (RA), systemic inflammation appears as an independent risk factor, contributing to increased cardiovascular mortality. This high cardiovascular mortality reveals the existence of accelerated atherosclerosis, the pathogenesis of which may be associated with traditional risk factors such as smoking, hypertension, dyslipidemia, deterioration of insulin sensitivity, and less traditional risk factors such as hyperhomocysteinemia, inflammatory conditions and endothelial dysfunction. Control of systemic inflammation theoretically provides a means of preventing this higher cardiovascular mortality among RA patients. In this review we address the question of the impact of anti-rheumatic drugs currently used in RA, such as non-steroidal anti-inflammatory drugs (e.g. non-selective or cyclooxygenase-2 selective inhibitors), steroidal anti-inflammatory drugs (glucocorticoids), traditional disease-modifying anti-rheumatic drugs (e.g. methotrexate) or biologics (e.g. anti-tumour necrosis factor alpha anti-tumour necrosis factor alpha) on cardiovascular diseases in RA patients. We also discuss the specific mechanisms involved in the differential cardiovascular effects of these therapeutic agents.
The basics of cell therapy to treat cardiovascular disease: one cell does not fit all.
Taylor, Doris A; Robertson, Matthew J
2009-09-01
Cardiovascular disease represents a continuum of disease entities whose medical treatments differ. Cell therapy is a 21st century approach to treating cardiovascular disease and is being applied worldwide. However, no concerted approach exists for defining the best cell population(s) to use, or the best treatment conditions. It is naïve to believe that a single treatment -even a stem cell- can be found to treat the entire spectrum of cardiovascular disease. We describe the continuum of ischemic heart disease, the potential uses of cells for treating this continuum, and the basic issues that must be considered when contemplating cardiovascular cell therapy. The clinical goal is cardiac and vascular regeneration. Whether cells can deliver this remains to be determined. The correct cell, the ideal therapeutic window, and the
Evaluation of the health risks to garment workers in the city of Xambrê-PR, Brazil.
Sant'Ana, Marco Antônio; Kovalechen, Fabrício
2012-01-01
This study evaluated the risks for cardiovascular disease and the life habits of garment industry workers in northwestern Paraná state, Brazil. The following parameters were assessed: body composition, cardiorespiratory fitness, eating habits and physical activities by garment industry workers. Cardiovascular risk was observed in some of the studied subjects, in the form of high BMI and reduced maximal oxygen uptake. The development of a workplace quality-of-life program is suggested, aiming to stimulate the development of physical activities to improve the cardiovascular conditioning of workers.
Versluis, Anke; Verkuil, Bart; Brosschot, Jos F
2018-04-01
Self-esteem moderates the relationship between stress and (cardiovascular) health, with low self-esteem potentially exacerbating the impact of stressors. Boosting self-esteem may therefore help to buffer against stress. Subliminal evaluative conditioning (SEC), which subliminally couples self-words with positive words, has previously been successfully used to boost self-esteem, but the existing studies are in need of replication. In this article, we aimed to replicate and extend previous SEC studies. The first 2 experiments simultaneously examined whether SEC increased self-esteem (Experiment 1, n = 84) and reduced cardiovascular reactivity to a stressor in high worriers (Experiment 2, n = 77). On the basis of these results, the 3rd experiment was set up to examine whether an adjusted personalized SEC task increased self-esteem and reduced cardiac activity in high worriers (n = 81). Across the 3 experiments, no effects were found of SEC on implicit or explicit self-esteem or affect or on cardiovascular (re)activity compared to a control condition in which the self was coupled with neutral words. The results do not support the use of the subliminal intervention in its current format. As stress is highly prevalent, future studies should focus on developing other cost-effective and evidence-based interventions. © 2017 The Authors. Stress and Health Published by John Wiley & Sons Ltd.
Thayer, Julian F; Yamamoto, Shelby S; Brosschot, Jos F
2010-05-28
Cardiovascular disease (CVD) is the leading cause of death and disability worldwide. The understanding of the risk factors for CVD may yield important insights into the prevention, etiology, course, and treatment of this major public health concern. Autonomic imbalance, characterized by a hyperactive sympathetic system and a hypoactive parasympathetic system, is associated with various pathological conditions. Over time, excessive energy demands on the system can lead to premature aging and diseases. Therefore, autonomic imbalance may be a final common pathway to increased morbidity and mortality from a host of conditions and diseases, including cardiovascular disease. Heart rate variability (HRV) may be used to assess autonomic imbalances, diseases and mortality. Parasympathetic activity and HRV have been associated with a wide range of conditions including CVD. Here we review the evidence linking HRV to established and emerging modifiable and non-modifiable CVD risk factors such as hypertension, obesity, family history and work stress. Substantial evidence exists to support the notion that decreased HRV precedes the development of a number of risk factors and that lowering risk profiles is associated with increased HRV. We close with a suggestion that a model of autonomic imbalance may provide a unifying framework within which to investigate the impact of risk factors, including psychosocial factors and work stress, on cardiovascular disease. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Cardiovascular adaptations during long-term altered gravity
NASA Technical Reports Server (NTRS)
Popovic, V. P.
1982-01-01
Cardiovascular studies were performed on unrestrained, unanesthetized rats and on the same animals in head-down hypokinetic conditions as well as during readaptation of the same animals to free activity. Possible circulatory mechanisms that evolved in mammals during long-lasting gravity exposure are considered. These mechanisms are likely to be affected during exposure to 0-g forces.
ERIC Educational Resources Information Center
McMahan, Shari; Cathorall, Michelle; Romero, Devan R.
2007-01-01
There are clear health conditions that disproportionately affect the Hispanic population. One hundred twenty-four (45%) Hispanic and 153 (55%) White college students completed a questionnaire on cardiovascular disease (CVD) awareness, knowledge, and perceptions of risk. Results indicated that Hispanic students rated themselves as poorer in health,…
Wettstein, Zachary S; Hoshiko, Sumi; Fahimi, Jahan; Harrison, Robert J; Cascio, Wayne E; Rappold, Ana G
2018-04-11
Wildfire smoke is known to exacerbate respiratory conditions; however, evidence for cardiovascular and cerebrovascular events has been inconsistent, despite biological plausibility. A population-based epidemiologic analysis was conducted for daily cardiovascular and cerebrovascular emergency department (ED) visits and wildfire smoke exposure in 2015 among adults in 8 California air basins. A quasi-Poisson regression model was used for zip code-level counts of ED visits, adjusting for heat index, day of week, seasonality, and population. Satellite-imaged smoke plumes were classified as light, medium, or dense based on model-estimated concentrations of fine particulate matter. Relative risk was determined for smoky days for lag days 0 to 4. Rates of ED visits by age- and sex-stratified groups were also examined. Rates of all-cause cardiovascular ED visits were elevated across all lags, with the greatest increase on dense smoke days and among those aged ≥65 years at lag 0 (relative risk 1.15, 95% confidence interval [1.09, 1.22]). All-cause cerebrovascular visits were associated with smoke, especially among those 65 years and older, (1.22 [1.00, 1.49], dense smoke, lag 1). Respiratory conditions were also increased, as anticipated (1.18 [1.08, 1.28], adults >65 years, dense smoke, lag 1). No association was found for the control condition, acute appendicitis. Elevated risks for individual diagnoses included myocardial infarction, ischemic heart disease, heart failure, dysrhythmia, pulmonary embolism, ischemic stroke, and transient ischemic attack. Analysis of an extensive wildfire season found smoke exposure to be associated with cardiovascular and cerebrovascular ED visits for all adults, particularly for those over aged 65 years. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
NASA Technical Reports Server (NTRS)
Overton, J. Michael; Tipton, Charles M.
1990-01-01
To determine whether hindlimb suspension is associated with the development of cardiovascular deconditioning, male rats were studied before and after undergoing one of three treatment conditions for 9 days: (1) cage control (n = 15, CON), (2) horizontal suspension (n = 15, HOZ), and (3) head-down suspension (n = 18, HDS). Testing included lower body negative pressure administered during chloralose-urethan anesthesia and graded doses of sympathomimetic agents (norepinephrine, phenylephrine, and tyramine) administered to conscious unrestrained animals. Both HDS and HOZ were associated with a small decrease in the hypotensive response to lower body negative pressure. The HOZ group, but not the HDS group, exhibited augmented reflex tachycardia. Furthermore, both HDS and HOZ groups manifested reduced pressor responses to phenylephrine after treatment. These reductions were associated with significantly attenuated increases in mesenteric vascular resistance. However, baroreflex control of heart rate was not altered by the treatment conditions. Collectively, these results indicate that 9 days of HDS in rats does not elicit hemodynamic response patterns generally associated with cardiovascular deconditioning induced by hypogravic conditions.
Smith, Daniel J; Martin, Daniel; McLean, Gary; Langan, Julie; Guthrie, Bruce; Mercer, Stewart W
2013-12-23
Individuals with serious mental disorders experience poor physical health, especially increased rates of cardiometabolic morbidity and premature morbidity. Recent evidence suggests that individuals with schizophrenia have numerous comorbid physical conditions that may be under-recorded and undertreated, but to date very few studies have explored this issue for bipolar disorder. We conducted a cross-sectional analysis of a dataset of 1,751,841 registered patients within 314 primary care practices in Scotland, UK. Bipolar disorder was identified using Read Codes recorded within electronic medical records. Data on 32 common chronic physical conditions were also assessed. Potential prescribing inequalities were evaluated by analysing prescribing data for coronary heart disease (CHD) and hypertension. Compared to controls, individuals with bipolar disorder were significantly less likely to have no recorded physical conditions (OR 0.59, 95% CI 0.54 to 0.63) and significantly more likely to have one physical condition (OR 1.27, 95% CI 1.16 to 1.39), two physical conditions (OR 1.45, 95% CI 1.30 to 1.62) and three or more physical conditions (OR 1.44, 95% CI 1.30 to 1.64). People with bipolar disorder also had higher rates of thyroid disorders, chronic kidney disease, chronic pain, chronic obstructive airways disease and diabetes but, surprisingly, lower recorded rates of hypertension and atrial fibrillation. People with bipolar disorder and comorbid CHD or hypertension were significantly more likely to be prescribed no antihypertensive or cholesterol-lowering medications compared to controls, and bipolar individuals with CHD or hypertension were significantly less likely to be on two or more antihypertensive agents. Individuals with bipolar disorder are similar to individuals with schizophrenia in having a wide range of comorbid and multiple physical health conditions. They are also less likely than controls to have a primary-care record of cardiovascular conditions such as hypertension and atrial fibrillation. Those with a recorded diagnosis of CHD or hypertension were less likely to be treated with cardiovascular medications and were treated less intensively. This study highlights the high physical healthcare needs of people with bipolar disorder, and provides evidence for a systematic under-recognition and undertreatment of cardiovascular disease in this group.
Bonanad, C; González-Parra, E; Rivera, R; Carrascosa, J M; Daudén, E; Olveira, A; Botella-Estrada, R
2017-11-01
In recent years the concept of psoriasis as a systemic disease has gained acceptance due to its association with numerous comorbid conditions, particularly atherosclerosis and cardiovascular disease. Several studies have shown that patients with psoriasis, especially younger patients and those with more severe forms of psoriasis or with psoriatic arthritis, have a higher prevalence of risk factors and metabolic syndrome, as well as an increased risk of major cardiovascular events such as myocardial infarction, cerebrovascular disease, and peripheral arterial disease. Furthermore, it remains unclear which of the current treatments might be more effective in reducing cardiovascular risk in these patients. It is therefore important for dermatologists to be aware of this increased risk, to be able to detect modifiable risk factors early and, when appropriate, refer patients to other specialists for the prevention of major cardiovascular events. Copyright © 2017 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.
Interassociation Consensus Statement on Cardiovascular Care of College Student-Athletes.
Hainline, Brian; Drezner, Jonathan A; Baggish, Aaron; Harmon, Kimberly G; Emery, Michael S; Myerburg, Robert J; Sanchez, Eduardo; Molossi, Silvana; Parsons, John T; Thompson, Paul D
2016-06-28
Cardiovascular evaluation and care of college student-athletes is gaining increasing attention from both the public and medical communities. Emerging strategies include screening of the general athlete population, recommendations of permissible levels of participation by athletes with identified cardiovascular conditions, and preparation for responding to unanticipated cardiac events in athletic venues. The primary focus has been sudden cardiac death and the utility of screening with or without advanced cardiac screening. The National Collegiate Athletic Association convened a multidisciplinary task force to address cardiovascular concerns in collegiate student-athletes and to develop consensus for an interassociation statement. This document summarizes the task force deliberations and follow-up discussions, and includes available evidence on cardiovascular risk, pre-participation evaluation, and the recognition of and response to cardiac arrest. Future recommendations for cardiac research initiatives, education, and collaboration are also provided. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Effect of garlic on cardiovascular disorders: a review
Banerjee, Sanjay K; Maulik, Subir K
2002-01-01
Garlic and its preparations have been widely recognized as agents for prevention and treatment of cardiovascular and other metabolic diseases, atherosclerosis, hyperlipidemia, thrombosis, hypertension and diabetes. Effectiveness of garlic in cardiovascular diseases was more encouraging in experimental studies, which prompted several clinical trials. Though many clinical trials showed a positive effect of garlic on almost all cardiovascular conditions mentioned above, however a number of negative studies have recently cast doubt on the efficary of garlic specially its cholesterol lowering effect of garlic. It is a great challenge for scientists all over the world to make a proper use of garlic and enjoy its maximum beneficial effect as it is the cheapest way to prevent cardiovascular disease. This review has attempted to make a bridge the gap between experimental and clinical study and to discuss the possible mechanisms of such therapeutic actions of garlic. PMID:12537594
SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT
Halliburton, Sandra S.; Abbara, Suhny; Chen, Marcus Y.; Gentry, Ralph; Mahesh, Mahadevappa; Raff, Gilbert L.; Shaw, Leslee J.; Hausleiter, Jörg
2012-01-01
Over the last few years, computed tomography (CT) has developed into a standard clinical test for a variety of cardiovascular conditions. The emergence of cardiovascular CT during a period of dramatic increase in radiation exposure to the population from medical procedures and heightened concern about the subsequent potential cancer risk has led to intense scrutiny of the radiation burden of this new technique. This has hastened the development and implementation of dose reduction tools and prompted closer monitoring of patient dose. In an effort to aid the cardiovascular CT community in incorporating patient-centered radiation dose optimization and monitoring strategies into standard practice, the Society of Cardiovascular Computed Tomography has produced a guideline document to review available data and provide recommendations regarding interpretation of radiation dose indices and predictors of risk, appropriate use of scanner acquisition modes and settings, development of algorithms for dose optimization, and establishment of procedures for dose monitoring. PMID:21723512
Central hypothyroidism and its role for cardiovascular risk factors in hypopituitary patients.
Feldt-Rasmussen, Ulla; Klose, Marianne
2016-10-01
Hypothyroidism is characterized by hypometabolism, and may be seen as a part of secondary failure due to pituitary insufficiency or tertiary due to hypothalamic disease. Secondary and tertiary failures are also referred to as central hypothyroidism. Whereas overt primary hypothyroidism has a well-known affection on the heart and cardiovascular system, and may result in cardiac failure, cardiovascular affection is less well recognized in central hypothyroidism. Studies on central hypothyroidism and cardiovascular outcome are few and given the rarity of the diseases often small. Further, there are several limitations given vast difficulties in diagnosing the condition correctly biochemically, and difficulties monitoring the treatment because normal thyroid-pituitary feedback interrelationships are disrupted. The present review summarizes available studies of central adult hypothyroidism and its possible influence on the cardiovascular system, describe differences from primary thyroid failure and seek evidence for performing guidelines for clinical management of this particular thyroid and hypothalamo-pituitary disorder.
Shin, Kyong-Sok; Chung, Yun Kyung; Kwon, Young-Jun; Son, Jun-Seok; Lee, Se-Hoon
2017-09-01
This study investigated the relationship between weekly working hours and the occurrence of cerebro-cardiovascular diseases using a case-crossover study design. We investigated average working hours during the 7 days before the onset of illness (hazard period) and average weekly working hours between 8 days and 3 months before the onset of cerebro-cardiovascular diseases (control period) for 1,042 cases from the workers' compensation database for 2009. Among all subjects, the odds ratio by conditional logistic regression for the risk of cerebro-cardiovascular diseases with a 10 hr increase in average weekly working hours was 1.45 (95% confidence interval [CI]: 1.22-1.72), a significant association. An increase in average weekly working hours may trigger the onset of cerebro-cardiovascular disease. Am. J. Ind. Med. 60:753-761, 2017. © 2017. Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Preeclampsia and the Future Risk of Hypertension: The Pregnant Evidence
Garovic, Vesna D.; August, Phyllis
2013-01-01
Cardiovascular death rates continue to rise for women under age 55, underlying the importance of focusing on female-specific conditions that may increase cardiovascular risk, including pregnancy-related disorders. Hypertension complicates about 5–10% of pregnancies. Preeclampsia, a pregnancy-specific condition, is characterized by hypertension and proteinuria after 20 weeks of gestation and remains one of the major causes of maternal deaths in the United States. In addition, preeclampsia may have an impact on women’s health beyond their pregnancies, and has been associated with increased risks for future hypertension and cardiovascular disease, such as coronary heart disease and stroke. In this review, we discuss the evidence supporting the association between preeclampsia and future hypertension; possible mechanisms that underlie this association; current approach to women with a history of preeclampsia; and future research that is needed in this field in order to deliver optimal and timely medical care to the affected women. PMID:23397213
A wave dynamics criterion for optimization of mammalian cardiovascular system.
Pahlevan, Niema M; Gharib, Morteza
2014-05-07
The cardiovascular system in mammals follows various optimization criteria covering the heart, the vascular network, and the coupling of the two. Through a simple dimensional analysis we arrived at a non-dimensional number (wave condition number) that can predict the optimum wave state in which the left ventricular (LV) pulsatile power (LV workload) is minimized in a mammalian cardiovascular system. This number is also universal among all mammals independent of animal size maintaining a value of around 0.1. By utilizing a unique in vitro model of human aorta, we tested our hypothesis against a wide range of aortic compliance (pulse wave velocity). We concluded that the optimum value of the wave condition number remains to be around 0.1 for a wide range of aorta compliance that we could simulate in our in-vitro system. Copyright © 2014 Elsevier Ltd. All rights reserved.
Machado, Roberta Marcondes; Koike, Marcia Kiyomi
2014-04-01
Sleep duration is a risk factor for cardiovascular disease. Alteration in sleep pattern can induce the loss of circadian rhythmicity. Chronically, this desynchronization between endogenous rhythm and behavioral cycles can lead to an adverse metabolic profile, a proinflammatory condition and can increase the risk of cardiovascular disease. The circadian cycle can vary due to environmental cues. The circadian pacemaker is located in the suprachiasmatic nuclei; this central clock coordinates the circadian rhythm in the central nervous system and peripheral tissues. The mechanisms involved in sleep disturbance, circadian misalignment and adverse metabolic effects have yet to be fully elucidated. This review looks over the association among sleep alteration, circadian rhythm and the development of risk factors implicated in cardiovascular disease.
Relationship between the oral cavity and cardiovascular diseases and metabolic syndrome
Carramolino-Cuéllar, Esther; Tomás, Inmaculada
2014-01-01
The components of the human body are closely interdependent; as a result, disease conditions in some organs or components can influence the development of disease in other body locations. The effect of oral health upon health in general has been investigated for decades by many epidemiological studies. In this context, there appears to be a clear relationship between deficient oral hygiene and different systemic disorders such as cardiovascular disease and metabolic syndrome. The precise relationship between them is the subject of ongoing research, and a variety of theories have been proposed, though most of them postulate the mediation of an inflammatory response. This association between the oral cavity and disease in general requires further study, and health professionals should be made aware of the importance of adopting measures destined to promote correct oral health. The present study conducts a Medline search with the purpose of offering an update on the relationship between oral diseases and cardiovascular diseases, together with an evaluation of the bidirectional relationship between metabolic syndrome and periodontal disease. Most authors effectively describe a moderate association between the oral cavity and cardiovascular diseases, though they also report a lack of scientific evidence that oral alterations constitute an independent cause of cardiovascular diseases, or that their adequate treatment can contribute to prevent such diseases. In the case of metabolic syndrome, obesity and particularly diabetes mellitus may be associated to an increased susceptibility to periodontitis. However, it is not clear whether periodontal treatment is able to improve the systemic conditions of these patients. Key words:Cardiovascular diseases, periodontitis, metabolic syndrome, obesity, diabetes mellitus. PMID:24121926
Cardiovascular autonomic dysfunction in Ehlers-Danlos syndrome-Hypermobile type.
Hakim, Alan; O'Callaghan, Chris; De Wandele, Inge; Stiles, Lauren; Pocinki, Alan; Rowe, Peter
2017-03-01
Autonomic dysfunction contributes to health-related impairment of quality of life in the hypermobile type of Ehlers-Danlos syndrome (hEDS). Typical signs and symptoms include tachycardia, hypotension, gastrointestinal dysmotility, and disturbed bladder function and sweating regulation. Cardiovascular autonomic dysfunction may present as Orthostatic Intolerance, Orthostatic Hypotension, Postural Orthostatic Tachycardia Syndrome, or Neurally Mediated Hypotension. The incidence, prevalence, and natural history of these conditions remain unquantified, but observations from specialist clinics suggest they are frequently seen in hEDS. There is growing understanding of how hEDS-related physical and physiological pathology contributes to the development of these conditions. Evaluation of cardiovascular symptoms in hEDS should include a careful history and clinical examination. Tests of cardiovascular function range from clinic room observation to tilt-table assessment to other laboratory investigations such as supine and standing catecholamine levels. Non-pharmacologic treatments include education, managing the environment to reduce exposure to triggers, improving cardiovascular fitness, and maintaining hydration. Although there are limited clinical trials, the response to drug treatments in hEDS is supported by evidence from case and cohort observational data, and short-term physiological studies. Pharmacologic therapy is indicated for patients with moderate-severe impairment of daily function and who have inadequate response or tolerance to conservative treatment. Treatment in hEDS often requires a focus on functional maintenance. Also, the negative impact of cardiovascular symptoms on physical and psycho-social well-being may generate a need for a more general evaluation and on-going management and support. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Huttary, Rudolf; Goubergrits, Leonid; Schütte, Christof; Bernhard, Stefan
2017-08-01
It has not yet been possible to obtain modeling approaches suitable for covering a wide range of real world scenarios in cardiovascular physiology because many of the system parameters are uncertain or even unknown. Natural variability and statistical variation of cardiovascular system parameters in healthy and diseased conditions are characteristic features for understanding cardiovascular diseases in more detail. This paper presents SISCA, a novel software framework for cardiovascular system modeling and its MATLAB implementation. The framework defines a multi-model statistical ensemble approach for dimension reduced, multi-compartment models and focuses on statistical variation, system identification and patient-specific simulation based on clinical data. We also discuss a data-driven modeling scenario as a use case example. The regarded dataset originated from routine clinical examinations and comprised typical pre and post surgery clinical data from a patient diagnosed with coarctation of aorta. We conducted patient and disease specific pre/post surgery modeling by adapting a validated nominal multi-compartment model with respect to structure and parametrization using metadata and MRI geometry. In both models, the simulation reproduced measured pressures and flows fairly well with respect to stenosis and stent treatment and by pre-treatment cross stenosis phase shift of the pulse wave. However, with post-treatment data showing unrealistic phase shifts and other more obvious inconsistencies within the dataset, the methods and results we present suggest that conditioning and uncertainty management of routine clinical data sets needs significantly more attention to obtain reasonable results in patient-specific cardiovascular modeling. Copyright © 2017 Elsevier Ltd. All rights reserved.
Network-based association of hypoxia-responsive genes with cardiovascular diseases
NASA Astrophysics Data System (ADS)
Wang, Rui-Sheng; Oldham, William M.; Loscalzo, Joseph
2014-10-01
Molecular oxygen is indispensable for cellular viability and function. Hypoxia is a stress condition in which oxygen demand exceeds supply. Low cellular oxygen content induces a number of molecular changes to activate regulatory pathways responsible for increasing the oxygen supply and optimizing cellular metabolism under limited oxygen conditions. Hypoxia plays critical roles in the pathobiology of many diseases, such as cancer, heart failure, myocardial ischemia, stroke, and chronic lung diseases. Although the complicated associations between hypoxia and cardiovascular (and cerebrovascular) diseases (CVD) have been recognized for some time, there are few studies that investigate their biological link from a systems biology perspective. In this study, we integrate hypoxia genes, CVD genes, and the human protein interactome in order to explore the relationship between hypoxia and cardiovascular diseases at a systems level. We show that hypoxia genes are much closer to CVD genes in the human protein interactome than that expected by chance. We also find that hypoxia genes play significant bridging roles in connecting different cardiovascular diseases. We construct a hypoxia-CVD bipartite network and find several interesting hypoxia-CVD modules with significant gene ontology similarity. Finally, we show that hypoxia genes tend to have more CVD interactors in the human interactome than in random networks of matching topology. Based on these observations, we can predict novel genes that may be associated with CVD. This network-based association study gives us a broad view of the relationships between hypoxia and cardiovascular diseases and provides new insights into the role of hypoxia in cardiovascular biology.
Lee, Jaime; Pase, Matthew; Pipingas, Andrew; Raubenheimer, Jessica; Thurgood, Madeline; Villalon, Lorena; Macpherson, Helen; Gibbs, Amy; Scholey, Andrew
2015-05-01
Even short-term adherence to a Mediterranean-style diet may benefit aspects of psychological functioning. The aim of the present study was to assess the effects of switching to a 10-d Mediterranean-style diet on mood, cognition, and cardiovascular measures. Using a crossover design, 24 women were randomly assigned to either the diet change (where they switched to a Mediterranean-style diet) or no diet change (normal diet) condition for 10 days before switching to the other condition for the same duration. Mood, cognition, and cardiovascular measures of blood pressure, blood flow velocity, and arterial stiffness were assessed at baseline and at the completion of the two diets (days 11 and 22). Independent of whether the Mediterranean-style diet was undertaken before or after the crossover, it was associated with significantly elevated contentment and alertness, and significantly reduced confusion. Additionally, aspects of cognition, such as memory recall, improved significantly as a result of switching to the Mediterranean-style diet. Regarding cardiovascular measures, there was a significant reduction in augmentation pressure associated with the Mediterranean-style diet intervention, but blood flow velocity through the common carotid artery did not change. This Mediterranean-style diet has the potential to enhance aspects of mood, cognition, and cardiovascular function in a young, healthy adult sample. Copyright © 2015 Elsevier Inc. All rights reserved.
Hussain, Syed R; Macaluso, Andrea; Pearson, Stephen J
Moderate-intensity continuous training (MICT) has long been considered the most effective exercise treatment modality for the prevention and management of cardiovascular disease (CVD), but more recently high-intensity interval training (HIIT) has been viewed as a potential alternative to MICT in accruing such benefits. HIIT was initially found to induce significant improvements in numerous physiological and health-related indices, to a similar if not superior extent to MICT. Since then, many studies have attempted to explore the potential clinical utility of HIIT, relative to MICT, with respect to treating numerous cardiovascular conditions, such as coronary artery disease, heart failure, stroke, and hypertension. Despite this, however, the efficacy of HIIT in reversing the specific symptoms and risk factors of these cardiovascular pathologies is not well understood. HIIT is often perceived as very strenuous, which could render it unsafe for those at risk of or afflicted with CVD, but these issues are also yet to be reviewed. Furthermore, the optimal HIIT protocol for each of the CVD cohorts has not been established. Thus, the purpose of this review article is to (1) evaluate the efficacy of HIIT relative to MICT in the prevention and management of cardiovascular conditions, and (2) explore any potential safety issues surrounding the suitability and/or tolerability of HIIT for patients with CVD, and the potential optimal prescriptive variables of HIIT for application in the clinical environment.
ERIC Educational Resources Information Center
Johnson, Neil R.
1980-01-01
An aerobic exercise class that focuses on the conditioning of the cardiovascular and muscular systems is presented. Students complete data cards on heart rate, pulse, and exercises to be completed during the forty minute course. (CJ)
Bassareo, Pier Paolo; Mussap, Michele; Bassareo, Valentina; Flore, Giovanna; Mercuro, Giuseppe
2015-12-07
Atherosclerosis, in turn preceded by endothelial dysfunction, underlies a series of important cardiovascular diseases. Reduced bioavailability of endothelial nitric oxide, by increasing vascular tone and promoting platelet aggregation, leukocyte adhesion, and smooth muscle cell proliferation, plays a key role in the onset of the majority of cardiovascular diseases. In addition, high blood levels of asymmetric dimethylarginine, a potent inhibitor of nitric oxide synthesis, are associated with future development of adverse cardiovascular events and cardiac death. Recent reports have demonstrated that another methylarginine, i.e., symmetric dimethylarginine, is also involved in the onset of endothelial dysfunction and hypertension. Almost a decade ago, prematurity at birth and intrauterine growth retardation were first associated with a potential negative influence on the cardiovascular apparatus, thus constituting risk factors or leading to early onset of cardiovascular diseases. This condition is referred to as cardiovascular perinatal programming. Accordingly, cardiovascular morbidity and mortality are higher among former preterm adults than in those born at term. The aim of this paper was to undertake a comprehensive literature review focusing on cellular and biochemical mechanisms resulting in both reduced nitric oxide bioavailability and increased methylarginine levels in subjects born preterm. Evidence of the involvement of these compounds in the perinatal programming of cardiovascular risk are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Charles, John B.; Fritsch-Yelle, Janice M.; Whitson, Peggy A.; Wood, Margie L.; Brown, Troy E.; Fortner, G. William
1999-01-01
Spaceflight causes adaptive changes in cardiovascular function that may deleteriously affect crew health and safety. Over the last three decades, symptoms of cardiovascular changes have ranged from postflight orthostatic tachycardia and decreased exercise capacity to serious cardiac rhythm disturbances during extravehicular activities (EVA). The most documented symptom of cardiovascular dysfunction, postflight orthostatic intolerance, has affected a significant percentage of U.S. Space Shuttle astronauts. Problems of cardiovascular dysfunction associated with spaceflight are a concern to NASA. This has been particularly true during Shuttle flights where the primary concern is the crew's physical health, including the pilot's ability to land the Orbiter, and the crew's ability to quickly egress and move to safety should a dangerous condition arise. The study of astronauts during Shuttle activities is inherently more difficult than most human research. Consequently, sample sizes have been small and results have lacked consistency. Before the Extended Duration Orbiter Medical Project (EDOMP), there was a lack of normative data on changes in cardiovascular parameters during and after spaceflight. The EDOMP for the first time allowed studies on a large enough number of subjects to overcome some of these problems. There were three primary goals of the Cardiovascular EDOMP studies. The first was to establish, through descriptive studies, a normative data base of cardiovascular changes attributable to spaceflight. The second goal was to determine mechanisms of cardiovascular changes resulting from spaceflight (particularly orthostatic hypotension and cardiac rhythm disturbances). The third was to evaluate possible countermeasures. The Cardiovascular EDOMP studies involved parallel descriptive, mechanistic, and countermeasure evaluations.
Marzetti, Emanuele; Csiszar, Anna; Dutta, Debapriya; Balagopal, Gauthami; Calvani, Riccardo
2013-01-01
Advanced age is associated with a disproportionate prevalence of cardiovascular disease (CVD). Intrinsic alterations in the heart and the vasculature occurring over the life course render the cardiovascular system more vulnerable to various stressors in late life, ultimately favoring the development of CVD. Several lines of evidence indicate mitochondrial dysfunction as a major contributor to cardiovascular senescence. Besides being less bioenergetically efficient, damaged mitochondria also produce increased amounts of reactive oxygen species, with detrimental structural and functional consequences for the cardiovascular system. The age-related accumulation of dysfunctional mitochondrial likely results from the combination of impaired clearance of damaged organelles by autophagy and inadequate replenishment of the cellular mitochondrial pool by mitochondriogenesis. In this review, we summarize the current knowledge about relevant mechanisms and consequences of age-related mitochondrial decay and alterations in mitochondrial quality control in the cardiovascular system. The involvement of mitochondrial dysfunction in the pathogenesis of cardiovascular conditions especially prevalent in late life and the emerging connections with neurodegeneration are also illustrated. Special emphasis is placed on recent discoveries on the role played by alterations in mitochondrial dynamics (fusion and fission), mitophagy, and their interconnections in the context of age-related CVD and endothelial dysfunction. Finally, we discuss pharmacological interventions targeting mitochondrial dysfunction to delay cardiovascular aging and manage CVD. PMID:23748424
Friedrich, O; Schneidereit, D; Nikolaev, Y A; Nikolova-Krstevski, V; Schürmann, S; Wirth-Hücking, A; Merten, A L; Fatkin, D; Martinac, B
2017-11-01
Hollow organs (e.g. heart) experience pressure-induced mechanical wall stress sensed by molecular mechano-biosensors, including mechanosensitive ion channels, to translate into intracellular signaling. For direct mechanistic studies, stretch devices to apply defined extensions to cells adhered to elastomeric membranes have stimulated mechanotransduction research. However, most engineered systems only exploit unilateral cellular stretch. In addition, it is often taken for granted that stretch applied by hardware translates 1:1 to the cell membrane. However, the latter crucially depends on the tightness of the cell-substrate junction by focal adhesion complexes and is often not calibrated for. In the heart, (increased) hemodynamic volume/pressure load is associated with (increased) multiaxial wall tension, stretching individual cardiomyocytes in multiple directions. To adequately study cellular models of chronic organ distension on a cellular level, biomedical engineering faces challenges to implement multiaxial cell stretch systems that allow observing cell reactions to stretch during live-cell imaging, and to calibrate for hardware-to-cell membrane stretch translation. Here, we review mechanotransduction, cell stretch technologies from uni-to multiaxial designs in cardio-vascular research, and the importance of the stretch substrate-cell membrane junction. We also present new results using our IsoStretcher to demonstrate mechanosensitivity of Piezo1 in HEK293 cells and stretch-induced Ca 2+ entry in 3D-hydrogel-embedded cardiomyocytes. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Survey on Cellular and Engineered Tissue Therapies in Europe in 2012*
Ireland, Hilary; Baldomero, Helen; Passweg, Jakob
2015-01-01
Following the coordinated efforts of five established scientific organizations, this report describes activity in Europe for the year 2012 in the area of cellular and engineered tissue therapies, excluding hematopoietic stem cell (HSC) treatments for the reconstitution of hematopoiesis. Three hundred thirteen teams from 33 countries responded to the cellular and engineered tissue therapy survey: 138 teams from 27 countries provided data on 2157 patients, while a further 175 teams reported no activity. Indications were musculoskeletal/rheumatological disorders (36%; 80% autologous), cardiovascular disorders (25%; 95% autologous), hematology/oncology, predominantly prevention or treatment of graft versus host disease and HSC graft enhancement (19%; 1% autologous), neurological disorders (3%; 99% autologous), gastrointestinal disorders (1%; 71% autologous), and other indications (16%; 79% autologous). Autologous cells were predominantly used for musculoskeletal/rheumatological (42%) and cardiovascular (34%) disorders, whereas allogeneic cells were mainly used for hematology/oncology (60%). The reported cell types were mesenchymal stem/stromal cells (49%), HSC (28%), chondrocytes (11%), dermal fibroblasts (4%), keratinocytes (1%), and others (7%). In 51% of the grafts, cells were delivered after ex vivo expansion, whereas cells were transduced or sorted in 10% and 16%, respectively, of the reported cases. Cells were delivered intra-organ (35%), intravenously (31%), on a membrane or gel (15%), or using 3D scaffolds (19%). The data are compared with those collected since 2008 to identify trends in the field and discussed in the light of recent publications and ongoing clinical studies. PMID:25425342
Virts on ergometer in U.S. Lab
2014-12-27
ISS042E082884 (12/27/2014) --- Expedition 42 Flight Engineer Terry Virts of NASA straps into the station’s stationary exercise bicycle known as the Cycle Ergometer with Vibration Isolation System (CEVIS). Each crew member spends an average of 2.5 hours a day exercising to combat the negative effects of prolonged weightlessness by maintaining bone and muscle mass and cardiovascular health.
Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip
Zhang, Yu Shrike; Arneri, Andrea; Bersini, Simone; Shin, Su-Ryon; Zhu, Kai; Goli-Malekabadi, Zahra; Aleman, Julio; Colosi, Cristina; Busignani, Fabio; Dell'Erba, Valeria; Bishop, Colin; Shupe, Thomas; Demarchi, Danilo; Moretti, Matteo; Rasponi, Marco; Dokmeci, Mehmet Remzi; Atala, Anthony; Khademhosseini, Ali
2016-01-01
Engineering cardiac tissues and organ models remains a great challenge due to the hierarchical structure of the native myocardium. The need of integrating blood vessels brings additional complexity, limiting the available approaches that are suitable to produce integrated cardiovascular organoids. In this work we propose a novel hybrid strategy based on 3D bioprinting, to fabricate endothelialized myocardium. Enabled by the use of our composite bioink, endothelial cells directly bioprinted within microfibrous hydrogel scaffolds gradually migrated towards the peripheries of the microfibers to form a layer of confluent endothelium. Together with controlled anisotropy, this 3D endothelial bed was then seeded with cardiomyocytes to generate aligned myocardium capable of spontaneous and synchronous contraction. We further embedded the organoids into a specially designed microfluidic perfusion bioreactor to complete the endothelialized-myocardium-on-a-chip platform for cardiovascular toxicity evaluation. Finally, we demonstrated that such a technique could be translated to human cardiomyocytes derived from induced pluripotent stem cells to construct endothelialized human myocardium. We believe that our method for generation of endothelialized organoids fabricated through an innovative 3D bioprinting technology may find widespread applications in regenerative medicine, drug screening, and potentially disease modeling. PMID:27710832
Hinderer, Svenja; Brauchle, Eva; Schenke-Layland, Katja
2015-11-18
Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug-free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus-free vascular substitutes that are smaller than 6 mm, and stem cell-recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off-the-shelf biomaterials as well as automatable and up-scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact- and marker-free biomaterial and extracellular matrix assessment methods are highlighted. © 2015 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Yu Shrike; Arneri, Andrea; Bersini, Simone; Shin, Su-Ryon; Zhu, Kai; Goli-Malekabadi, Zahra; Aleman, Julio; Colosi, Cristina; Busignani, Fabio; Dell'Erba, Valeria; Bishop, Colin; Shupe, Thomas; Demarchi, Danilo; Moretti, Matteo; Rasponi, Marco; Dokmeci, Mehmet Remzi; Atala, Anthony; Khademhosseini, Ali
2016-12-01
Engineering cardiac tissues and organ models remains a great challenge due to the hierarchical structure of the native myocardium. The need of integrating blood vessels brings additional complexity, limiting the available approaches that are suitable to produce integrated cardiovascular organoids. In this work we propose a novel hybrid strategy based on 3D bioprinting, to fabricate endothelialized myocardium. Enabled by the use of our composite bioink, endothelial cells directly bioprinted within microfibrous hydrogel scaffolds gradually migrated towards the peripheries of the microfibers to form a layer of confluent endothelium. Together with controlled anisotropy, this 3D endothelial bed was then seeded with cardiomyocytes to generate aligned myocardium capable of spontaneous and synchronous contraction. We further embedded the organoids into a specially designed microfluidic perfusion bioreactor to complete the endothelialized-myocardium-on-a-chip platform for cardiovascular toxicity evaluation. Finally, we demonstrated that such a technique could be translated to human cardiomyocytes derived from induced pluripotent stem cells to construct endothelialized human myocardium. We believe that our method for generation of endothelialized organoids fabricated through an innovative 3D bioprinting technology may find widespread applications in regenerative medicine, drug screening, and potentially disease modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Slim, Ahmad M; Jerome, Scott; Blankstein, Ron; Weigold, Wm Guy; Patel, Amit R; Kalra, Dinesh K; Miller, Ryan; Branch, Kelley; Rabbat, Mark G; Hecht, Harvey; Nicol, Edward D; Villines, Todd C; Shaw, Leslee J
The rising cost of healthcare is prompting numerous policy and advocacy discussions regarding strategies for constraining growth and creating a more efficient and effective healthcare system. Cardiovascular imaging is central to the care of patients at risk of, and living with, heart disease. Estimates are that utilization of cardiovascular imaging exceeds 20 million studies per year. The Society of Cardiovascular CT (SCCT), alongside Rush University Medical Center, and in collaboration with government agencies, regional payers, and industry healthcare experts met in November 2016 in Chicago, IL to evaluate obstacles and hurdles facing the cardiovascular imaging community and how they can contribute to efficacy while maintaining or even improving outcomes and quality. The summit incorporated inputs from payers, providers, and patients' perspectives, providing a platform for all voices to be heard, allowing for a constructive dialogue with potential solutions moving forward. This article outlines the proceedings from the summit, with a detailed review of past hurdles, current status, and potential solutions as we move forward in an ever-changing healthcare landscape. Copyright © 2017 Society of Cardiovascular Computed Tomography. All rights reserved.
2010-01-01
Truncus arteriosus (TA) is a rare congenital condition defined as a single arterial vessel arising from the heart that gives origin to the systemic, pulmonary and coronary circulations. We discuss the unique case of a 28 year-old female patient with unrepaired TA and interruption of the aortic arch who underwent cardiovascular magnetic resonance (CMR). PMID:20307275
Facile synthesis of degradable and electrically conductive polysaccharide hydrogels.
Guo, Baolin; Finne-Wistrand, Anna; Albertsson, Ann-Christine
2011-07-11
Degradable and electrically conductive polysaccharide hydrogels (DECPHs) have been synthesized by functionalizing polysaccharide with conductive aniline oligomers. DECPHs based on chitosan (CS), aniline tetramer (AT), and glutaraldehyde were obtained by a facile one-pot reaction by using the amine group of CS and AT under mild conditions, which avoids the multistep reactions and tedious purification involved in the synthesis of degradable conductive hydrogels in our previous work. Interestingly, these one-pot hydrogels possess good film-forming properties, electrical conductivity, and a pH-sensitive swelling behavior. The chemical structure and morphology before and after swelling of the hydrogels were verified by FT-IR, NMR, and SEM. The conductivity of the hydrogels was tuned by adjusting the content of AT. The swelling ratio of the hydrogels was altered by the content of tetraaniline and cross-linker. The hydrogels underwent slow degradation in a buffer solution. The hydrogels obtained by this facile approach provide new possibilities in biomedical applications, for example, biodegradable conductive hydrogels, films, and scaffolds for cardiovascular tissue engineering and controlled drug delivery.
Barnes, Ralston M.; Firulli, Beth A.; VanDusen, Nathan J.; Morikawa, Yuka; Conway, Simon J.; Cserjesi, Peter; Vincentz, Joshua W.; Firulli, Anthony B.
2011-01-01
Rationale The bHLH transcription factors Hand1 and Hand2 are essential for embryonic development. Given their requirement for cardiogenesis, it is imperative to determine their impact on cardiovascular function. Objective Deduce the role of Hand2 within the epicardium. Method & Results We engineered a Hand1 allele expressing Cre recombinase. Cardiac Hand1 expression is largely limited to cells of the primary heart field, overlapping little with Hand2 expression. Hand1 is expressed within the septum transversum (ST) and the Hand1-lineage marks the proepicardial organ and epicardium. To examine Hand factor functional overlap, we conditionally deleted Hand2 from Hand1-expressing cells. Hand2 mutants display defective epicardialization and fail to form coronary arteries, coincident with altered ECM deposition and Pdgfr expression. Conclusion These data demonstrate a hierarchal relationship whereby transient Hand1 ST expression defines epicardial precursors that are subsequently dependent upon Hand2 function. PMID:21350214
Cell- and Gene-Based Therapeutic Strategies for Periodontal Regenerative Medicine
Rios, Hector F.; Lin, Zhao; Oh, BiNa; Park, Chan Ho; Giannobile, William V.
2012-01-01
Inflammatory periodontal diseases are a leading cause of tooth loss and are linked to multiple systemic conditions, such as cardiovascular disease and stroke. Reconstruction of the support and function of affected tooth-supporting tissues represents an important therapeutic endpoint for periodontal regenerative medicine. An improved understanding of periodontal biology coupled with current advances in scaffolding matrices has introduced novel treatments that use cell and gene therapy to enhance periodontal tissue reconstruction and its biomechanical integration. Cell and gene delivery technologies have the potential to overcome limitations associated with existing periodontal therapies, and may provide a new direction in sustainable inflammation control and more predictable tissue regeneration of supporting alveolar bone, periodontal ligament, and cementum. This review provides clinicians with the current status of these early-stage and emerging cell- and gene-based therapeutics in periodontal regenerative medicine, and introduces their future application in clinical periodontal treatment. The paper concludes with prospects on the application of cell and gene tissue engineering technologies for reconstructive periodontology. PMID:21284553
Mesenchymal stem cell-derived microparticles: a promising therapeutic strategy.
Tan, Xi; Gong, Yong-Zhen; Wu, Ping; Liao, Duan-Fang; Zheng, Xi-Long
2014-08-18
Mesenchymal stem cells (MSCs) are multipotent stem cells that give rise to various cell types of the mesodermal germ layer. Because of their unique ability to home in on injured and cancerous tissues, MSCs are of great potential in regenerative medicine. MSCs also contribute to reparative processes in different pathological conditions, including cardiovascular diseases and cancer. However, many studies have shown that only a small proportion of transplanted MSCs can actually survive and be incorporated into host tissues. The effects of MSCs cannot be fully explained by their number. Recent discoveries suggest that microparticles (MPs) derived from MSCs may be important for the physiological functions of their parent. Though the physiological role of MSC-MPs is currently not well understood, inspiring results indicate that, in tissue repair and anti-cancer therapy, MSC-MPs have similar pro-regenerative and protective properties as their cellular counterparts. Thus, MSC-MPs represent a promising approach that may overcome the obstacles and risks associated with the use of native or engineered MSCs.
Mesenchymal Stem Cell-Derived Microparticles: A Promising Therapeutic Strategy
Tan, Xi; Gong, Yong-Zhen; Wu, Ping; Liao, Duan-Fang; Zheng, Xi-Long
2014-01-01
Mesenchymal stem cells (MSCs) are multipotent stem cells that give rise to various cell types of the mesodermal germ layer. Because of their unique ability to home in on injured and cancerous tissues, MSCs are of great potential in regenerative medicine. MSCs also contribute to reparative processes in different pathological conditions, including cardiovascular diseases and cancer. However, many studies have shown that only a small proportion of transplanted MSCs can actually survive and be incorporated into host tissues. The effects of MSCs cannot be fully explained by their number. Recent discoveries suggest that microparticles (MPs) derived from MSCs may be important for the physiological functions of their parent. Though the physiological role of MSC-MPs is currently not well understood, inspiring results indicate that, in tissue repair and anti-cancer therapy, MSC-MPs have similar pro-regenerative and protective properties as their cellular counterparts. Thus, MSC-MPs represent a promising approach that may overcome the obstacles and risks associated with the use of native or engineered MSCs. PMID:25196436
2009-01-01
In Japan, it is believed that guidelines for lifestyle-related disease are used in routine clinical practice, however, there are few reports on the actual rate of healthcare conducted in accordance with these guidelines by general practitioners and on their usefulness in preventing cardiovascular events. Therefore, the Heart Care Network (HCN) groups were organized mainly by general practitioners treating lifestyle diseases in 62 areas of Japan. The HCN has collected data on lifestyle diseases in high-risk patients in routine practices and investigated management conditions, guideline target achievement rates and medication. Additionally, the incidence of cardiovascular events was assessed. We analyzed 14,064 cases. The lipid profile, blood pressure, glycemic control were significantly improved over the 3 years. The incidence of cardiovascular events were significantly reduced by the achievement of target LDL cholesterol, systolic blood pressure and hemoglobin A1c and even after adjustment for age, gender, history of myocardial infarction, the reduction of these lifestyle-related parameters remains significant. These results revealed the current trends in the healthcare activities of general practitioners, the management conditions for lifestyle diseases in CHD high-risk patients and their effects on reducing cardiovascular events.
Metal Nanomaterial Toxicity Variations Within the Vascular System
Abukabda, Alaeddin B.; Stapleton, Phoebe A.; Nurkiewicz, Timothy R.
2016-01-01
Engineered nanomaterials (ENM) are anthropogenic materials with at least one dimension less than 100 nm. Their ubiquitous employment in biomedical and industrial applications in the absence of full toxicological assessments raises significant concerns over their safety on human health. This is a significant concern, especially for metal and metal oxide ENM as they may possess the greatest potential to impair human health. A large body of literature has developed that reflects adverse systemic effects associated with exposure to these materials, but an integrated mechanistic framework for how ENM exposure influences morbidity remains elusive. This may be due in large part to the tremendous diversity of existing ENM and the rate at which novel ENM are produced. In this review, the influence of specific ENM physicochemical characteristics and hemodynamic factors on cardiovascular toxicity are discussed. Additionally, the toxicity of metallic, and metal oxide ENM is presented in the context of the cardiovascular system and its discrete anatomical and functional components. Finally, future directions and understudied topics are presented. While it is clear that the nanotechnology boom has increased our interest in ENM toxicity, it is also evident that the field of cardiovascular nanotoxicology remains in its infancy and continued, expansive research is necessary in order to determine the mechanisms via which ENM exposure contributes to cardiovascular morbidity. PMID:27686080
In vivo functional photoacoustic microscopy of cutaneous microvasculature in human skin
Favazza, Christopher P.; Cornelius, Lynn A.; Wang, Lihong V.
2011-01-01
Microcirculation is an important component of the cardiovascular system and can be used to assess systemic cardiovascular health. Numerous studies have investigated cutaneous microcirculation as an indicator of cardiovascular related diseases. Such research has shown promising results; however, there are many limitations regarding the employed measurement techniques, such as poor depth and spatial resolution and measurement versatility. Here we show the results of functional cutaneous microvascular experiments measured with photoacoustic microscopy, which provides high spatial resolution and multiparameter measurements. In a set of experiments, microvascular networks located in the palms of volunteers were perturbed by periodic ischemic events, and the subsequent hemodynamic response to the stimulus was recorded. Results indicate that during periods of arterial occlusion, the relative oxygen saturation of the capillary vessels decreased below resting levels, and temporarily increased above resting levels immediately following the occlusion. Furthermore, a hyperemic reaction to the occlusions was measured, and the observation agreed well with similar measurements using more conventional imaging techniques. Due to its exceptional capability to functionally image vascular networks with high spatial resolution, photoacoustic microscopy could be a beneficial biomedical tool to assess microvascular functioning and applied to patients with diseases that affect cardiovascular health. © 2011 Society of Photo-Optical Instrumentation Engineers. PMID:21361688
NASA Technical Reports Server (NTRS)
White, Ronald J.; Leonard, Joel I.; Srinivasan, R. Srini; Charles, John B.
1991-01-01
The purpose of NASA's Extended Duration Orbiter program is a gradual extension of the capabilities of the Space Shuttle Orbiter beyond its current 7-10 day limit on mission duration, as warranted by deepening understanding of the long-term physiological effects of weightlessness. Attention is being given to the cardiovascular problem of orthostatic tolerance loss due to its adverse effects on crew performance and health during reentry and initial readaptation to earth gravity. An account is given of the results of the application of proven mathematical models of circulatory and cardiovascular systems under microgravity conditions.
Genetics of Human Cardiovascular Disease
Kathiresan, Sekar; Srivastava, Deepak
2012-01-01
Cardiovascular disease encompasses a range of conditions extending from myocardial infarction to congenital heart disease most of which are heritable. Enormous effort has been invested in understanding the genes and specific DNA sequence variants responsible for this heritability. Here, we review the lessons learned for monogenic and common, complex forms of cardiovascular disease. We also discuss key challenges that remain for gene discovery and for moving from genomic localization to mechanistic insights with an emphasis on the impact of next generation sequencing and the use of pluripotent human cells to understand the mechanism by which genetic variation contributes to disease. PMID:22424232
Stephen L. Gans Distinguished Overseas Lecture. The neural crest in pediatric surgery.
Tovar, Juan A
2007-06-01
This review highlights the relevance of the neural crest (NC) as a developmental control mechanism involved in several pediatric surgical conditions and the investigative interest of following some of its known signaling pathways. The participation of the NC in facial clefts, ear defects, branchial fistulae and cysts, heart outflow tract and aortic arch anomalies, pigmentary disorders, abnormal enteric innervation, neural tumors, hemangiomas, and vascular anomalies is briefly reviewed. Then, the literature on clinical and experimental esophageal atresia-tracheoesophageal fistula (EA-TEF) and congenital diaphragmatic hernia (CDH) is reviewed for the presence of associated NC defects. Finally, some of the molecular signaling pathways involved in both conditions (sonic hedgehog, Hox genes, and retinoids) are summarized. The association of facial, cardiovascular, thymic, parathyroid, and C-cell defects together with anomalies of extrinsic and intrinsic esophageal innervation in babies and/or animals with both EA-TEF and CDH strongly supports the hypothesis that NC is involved in the pathogenesis of these malformative clusters. On the other hand, both EA-TEF and CDH are observed in mice mutant for genes involved in the previously mentioned signaling pathways. The investigation of NC-related molecular pathogenic pathways involved in malformative associations like EA-TEF and CDH that are induced by chromosomal anomalies, chemical teratogens, and engineered mutations is a promising way of clarifying why and how some pediatric surgical conditions occur. Pediatric surgeons should be actively involved in these investigations.
NASA Technical Reports Server (NTRS)
Chatzimavroudis, George P.; Spirka, Thomas A.; Setser, Randolph M.; Myers, Jerry G.
2004-01-01
One of NASA's objectives is to be able to perform a complete, pre-flight, evaluation of cardiovascular changes in astronauts scheduled for prolonged space missions. Computational fluid dynamics (CFD) has shown promise as a method for estimating cardiovascular function during reduced gravity conditions. For this purpose, MRI can provide geometrical information, to reconstruct vessel geometries, and measure all spatial velocity components, providing location specific boundary conditions. The objective of this study was to investigate the reliability of MRI-based model reconstruction and measured boundary conditions for CFD simulations. An aortic arch model and a carotid bifurcation model were scanned in a 1.5T Siemens MRI scanner. Axial MRI acquisitions provided images for geometry reconstruction (slice thickness 3 and 5 mm; pixel size 1x1 and 0.5x0.5 square millimeters). Velocity acquisitions provided measured inlet boundary conditions and localized three-directional steady-flow velocity data (0.7-3.0 L/min). The vessel walls were isolated using NIH provided software (ImageJ) and lofted to form the geometric surface. Constructed and idealized geometries were imported into a commercial CFD code for meshing and simulation. Contour and vector plots of the velocity showed identical features between the MRI velocity data, the MRI-based CFD data, and the idealized-geometry CFD data, with less than 10% differences in the local velocity values. CFD results on models reconstructed from different MRI resolution settings showed insignificant differences (less than 5%). This study illustrated, quantitatively, that reliable CFD simulations can be performed with MRI reconstructed models and gives evidence that a future, subject-specific, computational evaluation of the cardiovascular system alteration during space travel is feasible.
Trends and Patterns of Geographic Variation in Cardiovascular Mortality Among US Counties, 1980–2014
Roth, Gregory A.; Dwyer-Lindgren, Laura; Bertozzi-Villa, Amelia; Stubbs, Rebecca W.; Morozoff, Chloe; Naghavi, Mohsen; Mokdad, Ali H.; Murray, Christopher J. L.
2017-01-01
IMPORTANCE In the United States, regional variation in cardiovascular mortality is well-known but county-level estimates for all major cardiovascular conditions have not been produced. OBJECTIVE To estimate age-standardized mortality rates from cardiovascular diseases by county. DESIGN AND SETTING Deidentified death records from the National Center for Health Statistics and population counts from the US Census Bureau, the National Center for Health Statistics, and the Human Mortality Database from 1980 through 2014 were used. Validated small area estimation models were used to estimate county-level mortality rates from all cardiovascular diseases, including ischemic heart disease, cerebrovascular disease, ischemic stroke, hemorrhagic stroke, hypertensive heart disease, cardiomyopathy, atrial fibrillation and flutter, rheumatic heart disease, aortic aneurysm, peripheral arterial disease, endocarditis, and all other cardiovascular diseases combined. EXPOSURES The 3110 counties of residence. MAIN OUTCOMES AND MEASURES Age-standardized cardiovascular disease mortality rates by county, year, sex, and cause. RESULTS From 1980 to 2014, cardiovascular diseases were the leading cause of death in the United States, although the mortality rate declined from 507.4 deaths per 100 000 persons in 1980 to 252.7 deaths per 100 000 persons in 2014, a relative decline of 50.2% (95% uncertainty interval [UI], 49.5%–50.8%). In 2014, cardiovascular diseases accounted for more than 846 000 deaths (95% UI, 827–865 thousand deaths) and 11.7 million years of life lost (95% UI, 11.6–11.9 million years of life lost). The gap in age-standardized cardiovascular disease mortality rates between counties at the 10th and 90th percentile declined 14.6% from 172.1 deaths per 100 000 persons in 1980 to 147.0 deaths per 100 000 persons in 2014 (posterior probability of decline >99.9%). In 2014, the ratio between counties at the 90th and 10th percentile was 2.0 for ischemic heart disease (119.1 vs 235.7 deaths per 100 000 persons) and 1.7 for cerebrovascular disease (40.3 vs 68.1 deaths per 100 000 persons). For other cardiovascular disease causes, the ratio ranged from 1.4 (aortic aneurysm: 3.5 vs 5.1 deaths per 100 000 persons) to 4.2 (hypertensive heart disease: 4.3 vs 17.9 deaths per 100 000 persons). The largest concentration of counties with high cardiovascular disease mortality extended from southeastern Oklahoma along the Mississippi River Valley to eastern Kentucky. Several cardiovascular disease conditions were clustered substantially outside the South, including atrial fibrillation (Northwest), aortic aneurysm (Midwest), and endocarditis (Mountain West and Alaska). The lowest cardiovascular mortality rates were found in the counties surrounding San Francisco, California, central Colorado, northern Nebraska, central Minnesota, northeastern Virginia, and southern Florida. CONCLUSIONS AND RELEVANCE Substantial differences exist between county ischemic heart disease and stroke mortality rates. Smaller differences exist for diseases of the myocardium, atrial fibrillation, aortic and peripheral arterial disease, rheumatic heart disease, and endocarditis. PMID:28510678
Exercise science: research to sustain and enhance performance
NASA Astrophysics Data System (ADS)
Wingo, Jonathan E.
2013-05-01
Cardiovascular adjustments accompanying exercise in high ambient temperatures are likely responsible for diminished aerobic capacity and performance in such conditions. These adjustments include a phenomenon known as cardiovascular drift in which heart rate rises and stroke volume declines progressively over time during constant-rate exercise. A variety of factors modulate the magnitude of cardiovascular drift, e.g., elevated core and skin temperatures, dehydration, and exercise intensity. Regardless of the mode of manipulation, decreases in stroke volume associated with cardiovascular drift result in directionally and proportionally similar decreases in maximal aerobic capacity. Maximal aerobic capacity is determined by maximal heart rate, maximal tissue oxygen extraction, and maximal stroke volume. Because maximal heart rate and maximal tissue oxygen extraction are unaffected during exercise in the heat, decreased stroke volume associated with cardiovascular drift likely persists during maximal efforts and explains the decrease in maximal aerobic capacity. Decreased maximal aerobic capacity results in a greater perceptual and physiological strain accompanying any given level of work. Therefore, sustaining and enhancing performance involves sophisticated monitoring of physiological strain combined with development of countermeasures that mitigate the magnitude of deleterious phenomena like cardiovascular drift.
Workplace Programs, Policies, And Environmental Supports To Prevent Cardiovascular Disease.
Goetzel, Ron Z; Henke, Rachel Mosher; Head, Michael A; Benevent, Richele; Calitz, Chris
2017-02-01
Using a novel approach, we provide a preliminary "snapshot" of how the comprehensiveness of workplace cardiovascular health initiatives is related to measures of employees' health risks, disease prevalence, and medical expenditures. We linked scores for the twenty large organizations that voluntarily completed the American Heart Association's newly launched Worksite Health Achievement Index (WHAI) for 2015 to individual-level MarketScan® data for 373,478 of their workers with employer benefits that year. Higher aggregate WHAI scores were associated with lower values for four of seven modifiable indicators of cardiovascular risk and a higher value for one. Although also associated with lower prevalence of cardiovascular disease, higher aggregate scores were associated with higher spending on the condition. These and other findings provide useful benchmarks and norms for employer practices related to cardiovascular disease prevention. As employers continue to complete the annual WHAI, we expect to gain further insights into the policies, programs, and environmental supports employers can implement to positively influence cardiovascular health and related spending. Project HOPE—The People-to-People Health Foundation, Inc.
LDL electronegativity index: a potential novel index for predicting cardiovascular disease.
Ivanova, Ekaterina A; Bobryshev, Yuri V; Orekhov, Alexander N
2015-01-01
High cardiovascular risk conditions are frequently associated with altered plasma lipoprotein profile, such as elevated low-density lipoprotein (LDL) and LDL cholesterol and decreased high-density lipoprotein. There is, however, accumulating evidence that specific subclasses of LDL may play an important role in cardiovascular disease development, and their relative concentration can be regarded as a more relevant risk factor. LDL particles undergo multiple modifications in plasma that can lead to the increase of their negative charge. The resulting electronegative LDL [LDL(-)] subfraction has been demonstrated to be especially atherogenic, and became a subject of numerous recent studies. In this review, we discuss the physicochemical properties of LDL(-), methods of its detection, atherogenic activity, and relevance of the LDL electronegativity index as a potential independent predictor of cardiovascular risk.
LDL electronegativity index: a potential novel index for predicting cardiovascular disease
Ivanova, Ekaterina A; Bobryshev, Yuri V; Orekhov, Alexander N
2015-01-01
High cardiovascular risk conditions are frequently associated with altered plasma lipoprotein profile, such as elevated low-density lipoprotein (LDL) and LDL cholesterol and decreased high-density lipoprotein. There is, however, accumulating evidence that specific subclasses of LDL may play an important role in cardiovascular disease development, and their relative concentration can be regarded as a more relevant risk factor. LDL particles undergo multiple modifications in plasma that can lead to the increase of their negative charge. The resulting electronegative LDL [LDL(–)] subfraction has been demonstrated to be especially atherogenic, and became a subject of numerous recent studies. In this review, we discuss the physicochemical properties of LDL(–), methods of its detection, atherogenic activity, and relevance of the LDL electronegativity index as a potential independent predictor of cardiovascular risk. PMID:26357481
Zhang, Xiaoqing; Battiston, Kyle G; Labow, Rosalind S; Simmons, Craig A; Santerre, J Paul
2017-05-01
Tissue engineering (particularly for the case of load-bearing cardiovascular and connective tissues) requires the ability to promote the production and accumulation of extracellular matrix (ECM) components (e.g., collagen, glycosaminoglycan and elastin). Although different approaches have been attempted in order to enhance ECM accumulation in tissue engineered constructs, studies of underlying signalling mechanisms that influence ECM deposition and degradation during tissue remodelling and regeneration in multi-cellular culture systems have been limited. The current study investigated vascular smooth muscle cell (VSMC)-monocyte co-culture systems using different VSMC:monocyte ratios, within a degradable polyurethane scaffold, to assess their influence on ECM generation and degradation processes, and to elucidate relevant signalling molecules involved in this in vitro vascular tissue engineering system. It was found that a desired release profile of growth factors (e.g. insulin growth factor-1 (IGF-1)) and hydrolytic proteases (e.g. matrix-metalloproteinases 2, 9, 13 and 14 (MMP2, MMP9, MMP13 and MMP14)), could be achieved in co-culture systems, yielding an accumulation of ECM (specifically for 2:1 and 4:1 VSMC:monocyte culture systems). This study has significant implications for the tissue engineering field (including vascular tissue engineering), not only because it identified important cytokines and proteases that control ECM accumulation/degradation within synthetic tissue engineering scaffolds, but also because the established culture systems could be applied to improve the development of different types of tissue constructs. Sufficient extracellular matrix accumulation within cardiovascular and connective tissue engineered constructs is a prerequisite for their appropriate function in vivo. This study established co-culture systems with tissue specific cells (vascular smooth muscle cells (VSMCs)) and defined ratios of immune cells (monocytes) to investigate extracellular matrix (ECM) generation and degradation processes, revealing important mechanisms underlying ECM turnover during vascular tissue regeneration/remodelling. A specific growth factor (IGF-1), as well as hydrolytic proteases (e.g. MMP2, MMP9, MMP13 and MMP14), were identified as playing important roles in these processes. ECM accumulation was found to be dependent on achieving a desired release profile of these ECM-promoting and ECM-degrading factors within the multi-cellular microenvironment. The findings enhance our understanding of ECM deposition and degradation during in vitro tissue engineering and would be applicable to the repair or regeneration of a variety of tissues. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Elliott, Morgan; Martin, David
2015-01-01
For my summer internship project, I organized a pilot study to analyze the effects of a cephalic fluid shift on venous return and right ventricular mechanics to increase right ventricular and venous knowledge. To accomplish this pilot study, I wrote a testing protocol, obtained Institutional Review Board (IRB) approval, completed subject payment forms, lead testing sessions, and analyzed the data. This experiment used -20deg head down tilt (20 HDT) as the ground based simulation for the fluid shift that occurs during spaceflight and compared it to data obtained from the seated and supine positions. Using echocardiography, data was collected for the right ventricle, hepatic vein, internal jugular vein, external jugular vein, and inferior vena cava. Additionally, non-invasive venous pressure measurements, similar to those soon to be done in-orbit, were collected. It was determined that the venous return from below the heard is increased during 20 HDT, which was supported by increased hepatic vein velocities, increased right ventricular inflow, and increased right ventricular strain at 20 HDT relative to seated values. Jugular veins in the neck undergo an increase in pressure and area, but no significant increase in flow, relative to seated values when a subject is tilted 20 HDT. Contrary to the initial expectations based on this jugular flow, there was no significant increase in central venous pressure, as evidenced by no change in Doppler indices for right arterial pressure or inferior vena cava diameter. It is suspected that these differences in pressure are due to the hydrostatic pressure indifference point shifting during tilt; there is a potential for a similar phenomenon with microgravity. This data will hopefully lead to a more in-depth understanding of the response of the body to microgravity and how those relate to the previously mentioned cardiovascular risk of fluid shift that is associated with spaceflight. These results were presented in greater detail to the Cardiovascular Laboratory and the Space Life Science Summer Institute, which helped me prepare for future graduate school research presentations. This internship allowed me to apply and expand the anatomy, physiology, and mechanics information I learned during my undergraduate degree in Biomedical Engineering to the cardiovascular system with the unique zero gravity perspective. Additionally, I was able to develop skills with data analysis techniques involving speckle tracking for ventricular strain and Doppler waveforms for blood velocities. Additionally, I was able to expand upon my previous work in the Cardiovascular Laboratory by writing a literature review on a data analysis project I completed last summer. Ultimately, this internship and venous relationship comparison project provided me with a significant learning experience and additional skill sets, which are applicable to my goals of attaining a Ph.D. in biomedical engineering with a focus on tissue engineering and the cardiovascular system.
Müller-Ribeiro, Flávia C; Wanner, Samuel P; Santos, Weslley H M; Malheiros-Lima, Milene R; Fonseca, Ivana A T; Coimbra, Cândido C; Pires, Washington
2017-01-01
Enhanced cardiovascular strain is one of the factors that explains degraded aerobic capacity in hot environments. The cardiovascular system is regulated by the autonomic nervous system, whose activity can be indirectly evaluated by analyzing heart rate variability (HRV) and systolic arterial pressure (SAP) variability. However, no study has addressed whether HRV or SAP variability can predict aerobic performance during a single bout of exercise. Therefore, this study aimed to investigate whether there is an association between cardiovascular variability and performance in rats subjected to treadmill running at two ambient temperatures. In addition, this study investigated whether the heat-induced changes in cardiovascular variability and reductions in performance are associated with each other. Male Wistar rats were implanted with a catheter into their carotid artery for pulsatile blood pressure recordings. After recovery from surgery, the animals were subjected to incremental-speed exercise until they were fatigued under temperate (25°C) and hot (35°C) conditions. Impaired performance and exaggerated cardiovascular responses were observed in the hot relative to the temperate environment. Significant and negative correlations between most of the SAP variability components (standard deviation, variance, very low frequency [VLF], and low frequency [LF]) at the earlier stages of exercise and total exercise time were observed in both environmental conditions. Furthermore, the heat-induced changes in the sympathetic components of SAP variability (VLF and LF) were associated with heat-induced impairments in performance. Overall, the results indicate that SAP variability at the beginning of exercise predicts the acute performance of rats. Our findings also suggest that heat impairments in aerobic performance are associated with changes in cardiovascular autonomic control. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reprising Ramadan-Related Angina Pectoris: A Potential Strategy for Risk Reduction.
Siegel, Arthur J; Bhatti, Nasir A; Wasfy, Jason H
2016-11-10
BACKGROUND A preponderance of evidence supports short-term aspirin usage to reduce transiently increased cardiovascular risk in clinical conditions that promote acute myocardial ischemia. CASE REPORT We report on the case of a 69-year-old male of Muslim Indian heritage with multiple cardiovascular risk factors who experienced the onset of angina pectoris while fasting for Ramadan for more than 16 hours daily for 30 days in July 2015. While symptom free for 2 months on medical management after ending his fast, he underwent quadruple coronary artery bypass surgery for severe 4-vessel disease following an acute anterior myocardial infarction. A percutaneous coronary intervention with stent placement was subsequently required for persistent myocardial ischemia on stress-MIBI testing due to occlusion of the graft to left anterior descending artery. Presently asymptomatic, he decided to forgo fasting for Ramadan in June 2016. CONCLUSIONS Based on this case, measures for primary cardiovascular prevention among the 1.2 billion susceptible males at similar high short-term cardiac risk while fasting for Ramadan are proposed. The value of aspirin for attenuating high short-term cardiovascular risk in clinical conditions conferring transient inflammatory stress is considered. Low-dose aspirin usage at evening meals while fasting for Ramadan is prudent for primary cardiovascular protection of males who may have non-obstructive coronary atherosclerosis to mitigate the risk for rupture of potentially vulnerable plaques. Based in part on conclusive evidence for protection of middle-aged males from first myocardial infarction in a randomized prospective primary prevention trial, this measure is concordant with recommendations from sub-specialty societies for primary cardiovascular prevention for persons at above-average risk demonstrated by validated biomarkers and from the United States Preventive Services Task Force.
Hensel, Mario; Stuhr, Markus; Geppert, Daniel; Kersten, Jan F; Lorenz, Jürgen; Kerner, Thoralf
2017-02-01
To test the hypothesis that more cardiovascular emergencies occur at low rather than at high temperatures under moderate climatic conditions. This was a prospective observational study performed in a prehospital setting. Data from the Emergency Medical Service in Hamburg (Germany) and from the local weather station were evaluated over a 5-year period. Temperature data were matched with the associated rescue mission data. Lowess-Regression analysis was performed to assess the relationship between the temperature and the frequency of individual cardiovascular emergencies. In addition, three threshold-temperatures (0°C, 10°C, 20°C) were defined in order to determine the frequency of cardiovascular emergencies above and below each cut-off value. The severity of emergencies was assessed using the National Advisory Committee for Aeronautics (NACA) scoring system. A total of 35,390 cardiovascular emergencies were treated by Emergency Physicians. Transient Loss of Consciousness increased at high temperatures (above 20°C): +43% (95%-CI: [27%; 59%]). In contrast, Coronary Artery Disease +26% (95%-CI: [17%; 34%]), Cardiac Pulmonary Edema +21% (95%-CI: [14%; 27%]), Hypertensive Urgency +18% (95%-CI: [10%; 25%]) and Cerebrovascular Accident +17% (95%-CI: [8%; 24%]) increased at low temperatures, particularly below 10°C (significance level for all: p<0.001). No temperature-related effect was seen in Cardiac Arrhythmia and Pulmonary Embolism and no significant correlation was found between the severity of emergencies and temperature. Our findings suggest that some cardiovascular emergencies such as Coronary Artery Disease, Cardiac Pulmonary Edema, Hypertensive Urgency and Cerebrovascular Accident are more frequent in low temperatures even under mild climatic conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
40 CFR 91.311 - Test conditions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... engine air at the inlet to the engine and the dry atmospheric pressure (designated as p s and expressed... rates at standard conditions for temperature and pressure. Use these conditions consistently throughout all calculations. Standard conditions for temperature and pressure are 25 °C and 101.3 kPa. (b) Engine...
40 CFR 90.311 - Test conditions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... pressure, and use these conditions consistently throughout all calculations. Standard conditions for temperature and pressure are 25 °C and 101.3 kPa. (b) Engine test conditions. Measure the absolute temperature (designated as T and expressed in Kelvin) of the engine air at the inlet to the engine and the dry atmospheric...
Left ventricular hypertrophy as protective factor after bypass grafting.
Iannuzzi, Gian Luca; Maniscalco, Mauro; Elia, Andrea; Scognamiglio, Anna; Furgi, Giuseppe; Rengo, Franco
2018-05-01
Left ventricular hypertrophy (LVH) is a well established cardiovascular risk factor, accounting for an increase in cardiovascular morbid-mortality, although how much the magnitude and the kind of LVH could affect cardiovascular outcomes is in large part unknown. We speculate that mild LVH in absence of left ventricular (LV) chamber dilation, could play a protective role towards functional capacity, clinical outcome, cardiovascular and total morbi-mortality in conditions in which LV systolic function is generally reduced. Accordingly to many epidemiological observations, the availability of extra-quote of systolic function could lead to a significative improvement in the final outcome of some kinds of heart patients, as those undergoing bypass-grafting, where the stress for heart and cardiovascular system is always high. We suppose that the functional reserve available for patients with LVH could make the difference with respect to other patients undergoing myocardial revascularization. Similarly, the availability of a contractile reserve warranted by LVH could ensure a little gain in the outcome for patients after other major cardiovascular events (such as myocardial infarction or other heart surgery as surgical valve replacement). However, our hypothesis only involves mild LVH without LV chamber dilation, that is the initial stage of "non-dilated concentric" LVH and "non-dilated eccentric" LVH according to the new four-tiered classification of LVH based on relative wall thickness and LV dilation. Support for our hypothesis derives from the well-known protective role of systolic function that is a major factor in almost all cardiovascular diseases, where LV ejection fraction (LVEF) has shown to significantly improve quality of life, as well as morbidity and mortality. The knowledge that mild LVH in absence of LV chamber dilation is not as harmful in such conditions as believed at present could make avoidable some drugs prescription in some stages of the disease. Furthermore, it may allow a better evaluation of the risk profile of patients with LVH undergoing some cardiovascular major events like bypass grafting, myocardial infarction or surgical heart valve replacement. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cardiometabolic aspects of polycystic ovarian syndrome.
Cho, Li Wei; Randeva, Harpal S; Atkin, Stephen L
2007-01-01
It is estimated that 60%-7% of women of reproductive age have polycystic ovarian syndrome (PCOS). Women with this condition exhibit an adverse cardiovascular risk profile, characteristic of the cardiometabolic syndrome and given the high prevalence of PCOS in the female population, this condition may contribute towards the acceleration of cardiovascular disease among young women. This article summarizes the recent development and findings in the cardiometabolic abnormalities in patients with PCOS. Patients with PCOS have the clinical features of oligomenorrhoea, hirsutism and infertility; however, they also exhibit hyperinsulinemia, obesity, hypertension, dyslipidemia, and an increased pro-thrombotic state. They have an increased risk of type 2 diabetes and impaired glucose tolerance, and sleep apnea is also found more commonly in this population. However, despite the presence of cardiovascular risk factors and increased surrogate markers of cardiovascular disease it is unclear if they have accelerated atherosclerosis. End point studies are currently lacking and the available evidence are conflicting. Adipose tissue has emerged as an important endocrine organ over the last decade and gained recognition in having an important role in the cardiometabolic syndrome. Adiponectin that is secreted exclusively by adipocytes has recently been recognized as an important marker of cardiometabolic syndrome, obesity, type 2 diabetes, and coronary artery disease. Other adipocytokines like leptin and resistin have also recently been recognized. This article will address the current evidence for the adverse cardiovascular risk in PCOS and the other factors that may be implicated. Finally the therapeutic options for treatment will be discussed.
Implication of Oxidative Stress in Fetal Programming of Cardiovascular Disease
Rodríguez-Rodríguez, Pilar; Ramiro-Cortijo, David; Reyes-Hernández, Cynthia G.; López de Pablo, Angel L.; González, M. Carmen; Arribas, Silvia M.
2018-01-01
Lifestyle and genetic background are well known risk factors of cardiovascular disease (CVD). A third contributing factor is suboptimal fetal development, due to nutrient or oxygen deprivation, placental insufficiency, or exposure to toxic substances. The fetus adapts to adverse intrauterine conditions to ensure survival; the immediate consequence is low birth weight (LBW) and the long-term effect is an increased susceptibility to develop CVD in adult life. This process is known as Developmental Origins of Health and Disease (DOHaD) or fetal programming of CVD. The influence of fetal life for the future cardiovascular health of the individual has been evidenced by numerous epidemiologic studies in populations suffering from starvation during intrauterine life. Furthermore, experimental animal models have provided support and enabled exploring the underlying mechanisms. Oxidative stress seems to play a central role in fetal programming of CVD, both in the response of the feto-placental unit to the suboptimal intrauterine environment and in the alterations of physiologic systems of cardiovascular control, ultimately leading to disease. This review aims to summarize current knowledge on the alterations in oxidative balance in response to fetal stress factors covering two aspects. Firstly, the evidence from human studies of the implication of oxidative stress in LBW induced by suboptimal conditions during intrauterine life, emphasizing the role of the placenta. In the second part we summarize data on specific redox alterations in key cardiovascular control organs induced by exposure to known stress factors in experimental animals and discuss the emerging role of the mitochondria. PMID:29875698
Vitamins K1 and K2: The Emerging Group of Vitamins Required for Human Health.
Schwalfenberg, Gerry Kurt
2017-01-01
To review the evidence for the use of vitamin K supplementation in clinical conditions such as osteoporosis, vascular calcification, arthritis, cancer, renal calculi, diabetes, and warfarin therapy. PubMed was searched for articles on vitamin K (K1 and K2) along with books and conference proceedings and health conditions listed above. Level I and II evidence supports the use of vitamins K1 and K2 in osteoporosis and Level II evidence supports vitamin K2 in prevention of coronary calcification and cardiovascular disease. Evidence is insufficient for use in diabetes, arthritis, renal calculi, and cancer. Vitamin K2 may be a useful adjunct for the treatment of osteoporosis, along with vitamin D and calcium, rivaling bisphosphonate therapy without toxicity. It may also significantly reduce morbidity and mortality in cardiovascular health by reducing vascular calcification. Vitamin K2 appears promising in the areas of diabetes, cancer, and osteoarthritis. Vitamin K use in warfarin therapy is safe and may improve INR control, although a dosage adjustment is required. Vitamin K supplementation may be useful for a number of chronic conditions that are afflicting North Americans as the population ages. Supplementation may be required for bone and cardiovascular health.
Armentano, Ricardo L; Cardelino, Juan; Wray, Sandra; Cymberknop, Leandro J; Kun, Luis
2015-01-01
The synergy amongst Engineering, Medicine and Biology evolves as fast as these disciplines. We propose to articulate these specialties based on the premise that new professionals must face different situations or crisis due to the so-called islands of excellence. René Favaloro focused his work and struggles against poverty, since malnutrition and environmental degradation may increase the propensity to cardiovascular diseases. Doctor Favaloro has dedicated, throughout his career, a considerable amount of time to prepare and qualify a research group, aware of the importance that an adequate working environment has over the final results. He created a team of young students, engineers, medical doctors, physicists, mathematicians and other specialists. He centered his attention on human resources, in order to disseminate his latest advances in Biology, Medicine and Engineering. We are revising the programs of biomedical engineering education and the application of new pedagogic paradigms, where critical thinking is the key: a holistic challenge that consists of a new way of learning, innovating, communicating and shearing, with a creative attitude that represents quality of perception.
Current status of nanotechnology approaches for cardiovascular disease: a personal perspective.
Buxton, Denis B
2009-01-01
Nanotechnology is poised to have an increasing impact on cardiovascular health in coming years. Diagnostically, multiplexed point-of-care devices will enable rapid genotyping and biomarker measurement to optimize and tailor therapies for the individual patient. Nanoparticle-based molecular imaging agents will take advantage of targeted agents to provide increased insight into disease pathways rather then simply providing structural and functional information. Drug delivery will be impacted by targeting of nanoparticle-encapsulated drugs to the site of action, increasing the effective concentration and decreasing systemic dosage and side effects. Controlled and tailored release of drugs from polymers will improve control of pharmacokinetics and bioavailability. The application of nanotechnology to tissue engineering will facilitate the fabrication of better tissue implants in vitro, and provide scaffolds to promote regeneration in vivo taking advantage of the body's own repair mechanisms. Medical devices will benefit from the development of nanostructured surfaces and coatings to provide better control of thrombogenicity and infection. Taken together, these new technologies have enormous potential for improving the diagnosis and treatment of cardiovascular diseases. (c) 2009 John Wiley & Sons, Inc.
Stendahl, John C; Sinusas, Albert J
2015-10-01
Imaging agents made from nanoparticles are functionally versatile and have unique properties that may translate to clinical utility in several key cardiovascular imaging niches. Nanoparticles exhibit size-based circulation, biodistribution, and elimination properties different from those of small molecules and microparticles. In addition, nanoparticles provide versatile platforms that can be engineered to create both multimodal and multifunctional imaging agents with tunable properties. With these features, nanoparticulate imaging agents can facilitate fusion of high-sensitivity and high-resolution imaging modalities and selectively bind tissues for targeted molecular imaging and therapeutic delivery. Despite their intriguing attributes, nanoparticulate imaging agents have thus far achieved only limited clinical use. The reasons for this restricted advancement include an evolving scope of applications, the simplicity and effectiveness of existing small-molecule agents, pharmacokinetic limitations, safety concerns, and a complex regulatory environment. This review describes general features of nanoparticulate imaging agents and therapeutics and discusses challenges associated with clinical translation. A second, related review to appear in a subsequent issue of JNM highlights nuclear-based nanoparticulate probes in preclinical cardiovascular imaging. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
van den Berg, Gerard J; Doblhammer-Reiter, Gabriele; Christensen, Kaare
2011-05-01
We connect the recent medical and economic literatures on the long-run effects of early-life conditions by analyzing the effects of economic conditions on the individual cardiovascular (CV) mortality rate later in life, using individual data records from the Danish Twin Registry covering births since the 1870s and including the cause of death. To capture exogenous variation of conditions early in life, we use the state of the business cycle around birth. We find significant negative effects of economic conditions around birth on the individual CV mortality rate at higher ages. There is no effect on the cancer-specific mortality rate. From variation within and between monozygotic and dizygotic twin pairs born under different conditions, we conclude that the fate of an individual is more strongly determined by genetic and household-environmental factors if early-life conditions are poor. Individual-specific qualities come more to fruition if the starting position in life is better.
Impact of the cardiovascular system-associated adipose tissue on atherosclerotic pathology.
Chistiakov, Dimitry A; Grechko, Andrey V; Myasoedova, Veronika A; Melnichenko, Alexandra A; Orekhov, Alexander N
2017-08-01
Cardiac obesity makes an important contribution to the pathogenesis of cardiovascular disease. One of the important pathways of this contribution is the inflammatory process that takes place in the adipose tissue. In this review, we consider the role of the cardiovascular system-associated fat in atherosclerotic cardiovascular pathology and a non-atherosclerotic cause of coronary artery disease, such as atrial fibrillation. Cardiovascular system-associated fat not only serves as the energy store, but also releases adipokines that control local and systemic metabolism, heart/vascular function and vessel tone, and a number of vasodilating and anti-inflammatory substances. Adipokine appears to play an important protective role in cardiovascular system. Under chronic inflammation conditions, the repertoire of signaling molecules secreted by cardiac fat can be altered, leading to a higher amount of pro-inflammatory messengers, vasoconstrictors, profibrotic modulators. This further aggravates cardiovascular inflammation and leads to hypertension, induction of the pathological tissue remodeling and cardiac fibrosis. Contemporary imaging techniques showed that epicardial fat thickness correlates with the visceral fat mass, which is an established risk factor and predictor of cardiovascular disease in obese subjects. However, this correlation is no longer present after adjustment for other covariates. Nevertheless, recent studies showed that pericardial fat volume and epicardial fat thickness can probably serve as a better indicator for atrial fibrillation. Copyright © 2017 Elsevier B.V. All rights reserved.
2012-01-01
Background In vitro fabricated tissue engineered vascular constructs could provide an alternative to conventional substitutes. A crucial factor for tissue engineering of vascular constructs is an appropriate cell source. Vascular cells from the human umbilical cord can be directly isolated and cryopreserved until needed. Currently no cell bank for human vascular cells is available. Therefore, the establishment of a future human vascular cell bank conforming to good manufacturing practice (GMP) conditions is desirable for therapeutic applications such as tissue engineered cardiovascular constructs. Materials and methods A fundamental step was the adaption of conventional research and development starting materials to GMP compliant starting materials. Human umbilical cord artery derived cells (HUCAC) and human umbilical vein endothelial cells (HUVEC) were isolated, cultivated, cryopreserved (short- and long-term) directly after primary culture and recultivated subsequently. Cell viability, expression of cellular markers and proliferation potential of fresh and cryopreserved cells were studied using trypan blue staining, flow cytometry analysis, immunofluorescence staining and proliferation assays. Statistical analyses were performed using Student’s t-test. Results Sufficient numbers of isolated cells with acceptable viabilities and homogenous expression of cellular markers confirmed that the isolation procedure was successful using GMP compliant starting materials. The influence of cryopreservation was marginal, because cryopreserved cells mostly maintain phenotypic and functional characteristics similar to those of fresh cells. Phenotypic studies revealed that fresh cultivated and cryopreserved HUCAC were positive for alpha smooth muscle actin, CD90, CD105, CD73, CD29, CD44, CD166 and negative for smoothelin. HUVEC expressed CD31, CD146, CD105 and CD144 but not alpha smooth muscle actin. Functional analysis demonstrated acceptable viability and sufficient proliferation properties of cryopreserved HUCAC and HUVEC. Conclusion Adaptation of cell isolation, cultivation and cryopreservation to GMP compliant starting materials was successful. Cryopreservation did not influence cell properties with lasting impact, confirming that the application of vascular cells from the human umbilical cord is feasible for cell banking. A specific cellular marker expression profile was established for HUCAC and HUVEC using flow cytometry analysis, applicable as a GMP compliant quality control. Use of these cells for the future fabrication of advanced therapy medicinal products GMP conditions are required by the regulatory authority. PMID:22591741
Interassociation Consensus Statement on Cardiovascular Care of College Student-Athletes.
Hainline, Brian; Drezner, Jonathan; Baggish, Aaron; Harmon, Kimberly G; Emery, Michael S; Myerburg, Robert J; Sanchez, Eduardo; Molossi, Silvana; Parsons, John T; Thompson, Paul D
2016-04-01
Cardiovascular evaluation and care of college student-athletes is gaining increasing attention from both the public and medical communities. Emerging strategies include screening of the general athlete population, recommendations of permissible levels of participation by athletes with identified cardiovascular conditions, and preparation for responding to unanticipated cardiac events in athletic venues. The primary focus has been sudden cardiac death and the utility of screening with or without advanced cardiac screening. The National Collegiate Athletic Association convened a multidisciplinary task force to address cardiovascular concerns in collegiate student-athletes and to develop consensus for an interassociation statement. This document summarizes the task force deliberations and follow-up discussions, and includes available evidence on cardiovascular risk, pre-participation evaluation, and the recognition of and response to cardiac arrest. Future recommendations for cardiac research initiatives, education, and collaboration are also provided. (J Am Coll Cardiol 2016;doi: 10.1016/j.jacc.2016.03.527.) ©2016 by the American College of Cardiology Foundation.
Family-Based Approaches to Cardiovascular Health Promotion.
Vedanthan, Rajesh; Bansilal, Sameer; Soto, Ana Victoria; Kovacic, Jason C; Latina, Jacqueline; Jaslow, Risa; Santana, Maribel; Gorga, Elio; Kasarskis, Andrew; Hajjar, Roger; Schadt, Eric E; Björkegren, Johan L; Fayad, Zahi A; Fuster, Valentin
2016-04-12
Cardiovascular disease is the leading cause of mortality in the world, and the increasing burden is largely a consequence of modifiable behavioral risk factors that interact with genomics and the environment. Continuous cardiovascular health promotion and disease prevention throughout the lifespan is critical, and the family is a central entity in this process. In this review, we describe the potential rationale and mechanisms that contribute to the importance of family for cardiovascular health promotion, focusing on: 1) mutual interdependence of the family system; 2) shared environment; 3) parenting style; 4) caregiver perceptions; and 5) genomics. We conclude that family-based approaches that target both caregivers and children, encourage communication among the family unit, and address the structural and environmental conditions in which families live and operate are likely to be the most effective approach to promote cardiovascular health. We describe lessons learned, future implications, and applications to ongoing and planned studies. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Methotrexate in Atherogenesis and Cholesterol Metabolism
Coomes, Eric; Chan, Edwin S. L.; Reiss, Allison B.
2011-01-01
Methotrexate is a disease-modifying antirheumatic drug commonly used to treat inflammatory conditions such as rheumatoid arthritis which itself is linked to increased cardiovascular risk. Treatments that target inflammation may also impact the cardiovascular system. While methotrexate improves cardiovascular risk, inhibition of the cyclooxygenase (COX)-2 enzyme promotes atherosclerosis. These opposing cardiovascular influences may arise from differing effects on the expression of proteins involved in cholesterol homeostasis. These proteins, ATP-binding cassette transporter (ABC) A1 and cholesterol 27-hydroxylase, facilitate cellular cholesterol efflux and defend against cholesterol overload. Methotrexate upregulates expression of cholesterol 27-hydroxylase and ABCA1 via adenosine release, while COX-2 inhibition downregulates these proteins. Adenosine, acting through the A2A and A3 receptors, may upregulate proteins involved in reverse cholesterol transport by cAMP-PKA-CREB activation and STAT inhibition, respectively. Elucidating underlying cardiovascular mechanisms of these drugs provides a framework for developing novel cardioprotective anti-inflammatory medications, such as selective A2A receptor agonists. PMID:21490773
Development of GUI Type On-Line Condition Monitoring Program for a Turboprop Engine Using Labview
NASA Astrophysics Data System (ADS)
Kong, Changduk; Kim, Keonwoo
2011-12-01
Recently, an aero gas turbine health monitoring system has been developed for precaution and maintenance action against faults or performance degradations of the advanced propulsion system which occurs in severe environments such as high altitude, foreign object damage particles, hot and heavy rain and snowy atmospheric conditions. However to establish this health monitoring system, the online condition monitoring program is firstly required, and the program must monitor the engine performance trend through comparison between measured engine performance data and base performance results calculated by base engine performance model. This work aims to develop a GUI type on-line condition monitoring program for the PT6A-67 turboprop engine of a high altitude and long endurance operation UAV using LabVIEW. The base engine performance of the on-line condition monitoring program is simulated using component maps inversely generated from the limited performance deck data provided by engine manufacturer. The base engine performance simulation program is evaluated because analysis results by this program agree well with the performance deck data. The proposed on-line condition program can monitor the real engine performance as well as the trend through precise comparison between clean engine performance results calculated by the base performance simulation program and measured engine performance signals. In the development phase of this monitoring system, a signal generation module is proposed to evaluate the proposed online monitoring system. For user friendly purpose, all monitoring program are coded by LabVIEW, and monitoring examples are demonstrated using the proposed GUI type on-condition monitoring program.
Miller, Paul D
2011-01-01
To examine data showing associations between serum 25-hydroxyvitamin D levels and calcium intake and cardiovascular mortality. The articles reviewed include those published from 1992-2011 derived from search engines (PubMed, Scopus, Medscape) using the following search terms: vitamin D, calcium, cardiovascular events, cardiovascular mortality, all-cause mortality, vascular calcification, chronic kidney disease, renal stones, and hypercalciuria. Because these articles were not weighted (graded) on the level of evidence, this review reflects my own perspective on the data and how they should be applied to clinical management. For skeletal health, vitamin D and calcium are both needed to ensure proper skeletal growth (modeling) and repair (remodeling). Nutritional deficiencies of either vitamin D or calcium may lead to a spectrum of metabolic bone disorders. Excessive consumption of either nutrient has been linked to a variety of medical disorders, such as hypercalcemia or renal stones. There have also been associations between vitamin D or calcium intake and cardiovascular disease. However, neither of these associations have established evidence nor known causality for increasing cardiovascular risk or all-cause mortality in patients with creatinine clearances greater than 60 mL/min. In patients with more severe chronic kidney disease, stronger data link excess calcium (or phosphorus) intake and increase in vascular calcification, but not mortality. The safe upper limit for vitamin D intake is at least 4000 IU daily and probably 10 000 IU daily; for calcium, the safe upper limit is between 2000 and 3000 mg daily. While no solid scientific evidence validates that serum vitamin D levels between 15 and 70 ng/mL are associated with increased cardiovascular disease risk, stronger but inconsistent evidence shows an association between calcium supplementation greater than 500 mg daily and an increase in cardiovascular disease risk. Most professional societies suggest that replacement levels of these nutrients be personalized with the goal of reaching a 25-hydroxyvitamin D concentration between 30 and 50 ng/mL and a calcium intake of 1200 mg daily.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Medical Institutions of The Johns Hopkins University and The Johns Hopkins University Applied Physics Laboratory have developed a vigorous collaborative program of biomedical research, development, and systems engineering. An important objective of the program is to apply the expertise in engineering, the physical sciences, and systems analysis acquired by APL in defense and space research and development to problems of medical research and health care delivery. This program has grown to include collaboration with many of the clinical and basic science departments of the medical divisions. Active collaborative projects exist in ophthalmology, neurosensory research and instrumentation development, cardiovascular systems,more » patient monitoring, therapeutic and rehabilitation systems, clinical information systems, and clinical engineering. This application of state-of-the-art technology has contributed to advances in many areas of basic medical research and in clinical diagnosis and therapy through improvement of instrumentation, techniques, and basic understanding.« less
Using Acellular Bioactive Extracellular Matrix Scaffolds to Enhance Endogenous Cardiac Repair
Svystonyuk, Daniyil A.; Mewhort, Holly E. M.; Fedak, Paul W. M.
2018-01-01
An inability to recover lost cardiac muscle following acute ischemic injury remains the biggest shortcoming of current therapies to prevent heart failure. As compared to standard medical and surgical treatments, tissue engineering strategies offer the promise of improved heart function by inducing regeneration of functional heart muscle. Tissue engineering approaches that use stem cells and genetic manipulation have shown promise in preclinical studies but have also been challenged by numerous critical barriers preventing effective clinical translational. We believe that surgical intervention using acellular bioactive ECM scaffolds may yield similar therapeutic benefits with minimal translational hurdles. In this review, we outline the limitations of cellular-based tissue engineering strategies and the advantages of using acellular biomaterials with bioinductive properties. We highlight key anatomic targets enriched with cellular niches that can be uniquely activated using bioactive scaffold therapy. Finally, we review the evolving cardiovascular tissue engineering landscape and provide critical insights into the potential therapeutic benefits of acellular scaffold therapy. PMID:29696148
Brunauer, Andreas; Koköfer, Andreas; Bataar, Otgon; Gradwohl-Matis, Ilse; Dankl, Daniel; Dünser, Martin W
2014-12-19
Liberal and overaggressive use of vasopressors during the initial period of shock resuscitation may compromise organ perfusion and worsen outcome. When transiently applying the concept of permissive hypotension, it would be helpful to know at which arterial blood pressure terminal cardiovascular collapse occurs. In this retrospective cohort study, we aimed to identify the arterial blood pressure associated with terminal cardiovascular collapse in 140 patients who died in the intensive care unit while being invasively monitored. Demographic data, co-morbid conditions and clinical data at admission and during the 24 hours before and at the time of terminal cardiovascular collapse were collected. The systolic, mean and diastolic arterial blood pressures immediately before terminal cardiovascular collapse were documented. Terminal cardiovascular collapse was defined as an abrupt (<5 minutes) and exponential decrease in heart rate (> 50% compared to preceding values) followed by cardiac arrest. The mean ± standard deviation (SD) values of the systolic, mean and diastolic arterial blood pressures associated with terminal cardiovascular collapse were 47 ± 12 mmHg, 35 ± 11 mmHg and 29 ± 9 mmHg, respectively. Patients with congestive heart failure (39 ± 13 mmHg versus 34 ± 10 mmHg; P = 0.04), left main stem stenosis (39 ± 11 mmHg versus 34 ± 11 mmHg; P = 0.03) or acute right heart failure (39 ± 13 mmHg versus 34 ± 10 mmHg; P = 0.03) had higher arterial blood pressures than patients without these risk factors. Patients with severe valvular aortic stenosis had the highest arterial blood pressures associated with terminal cardiovascular collapse (systolic, 60 ± 20 mmHg; mean, 46 ± 12 mmHg; diastolic, 36 ± 10 mmHg), but this difference was not significant. Patients with sepsis and patients exposed to sedatives or opioids during the terminal phase exhibited lower arterial blood pressures than patients without sepsis or administration of such drugs. The arterial blood pressure associated with terminal cardiovascular collapse in critically ill patients was very low and varied with individual co-morbid conditions (for example, congestive heart failure, left main stem stenosis, severe valvular aortic stenosis, acute right heart failure), drug exposure (for example, sedatives or opioids) and the type of acute illness (for example, sepsis).
NASA Astrophysics Data System (ADS)
Sundaresan, Alamelu; Mehta, Satish K.; Schlegel, Todd. T.; Russomano, Thais; Pierson, Duane L.; Mann, Vivek; Mansoor, Elvedina; Olamigoke, Loretta; Okoro, Elvis
2017-02-01
This pilot study compared placental growth factor (PIGF) levels in populations with high versus low risk for cardiovascular disease. Previous experiments from our laboratory (Sundaresan et al. 2005, 2009) revealed that the angiogenic factor PIGF was up regulated in modeled microgravity conditions in human lymphocytes leading to possible atherogenesis and pathogenesis in microgravity. Since the findings came from microgravity analog experiments, there is a strong link to its usefulness in the microgravity field as a biomarker. It is important to understand, that these findings came from both studies on expression levels of this cardiovascular marker in human lymphocytes in microgravity ( in vitro microgravity analog), and a follow up gene expression study in hind limb suspended mice ( in vivo microgravity analog). The relevance is enhanced because in life on earth, PIGF is an inflammatory biomarker for cardiovascular disease. Studies on the levels of PIGF would help to reduce the risk and prevention of heart failures in astronauts. If we can use this marker to predict and reduce the risk of cardiac events in astronauts and pilots, it would significantly help aerospace medicine operations. The investigations here confirmed that in a cardiovascular stressed population such as coronary artery disease (CAD) and acute coronary syndrome (ACS) patients, PIGF could be overexpressed. We desired to re-evaluate this marker in patients with cardiovascular disease in our own study. PIGF is a marker of inflammation and a predictor of short-term and long-term adverse outcome in ACS. In addition, elevated PIGF levels may be associated with increased risk for CAD.PIGF levels were determined in thirty-one patients undergoing cardiovascular catheterization for reasons other than ACS and in thirty-three low-risk asymptomatic subjects. Additional data on traditional cardiovascular risk factors for both populations were also compiled and compared. We found that PIGF levels were significantly higher in the high-risk population as compared to low-risk population. Also we were able to ascertain that PIGF levels were inversely correlated with HDL-cholesterol but directly correlated with the triglyceride levels. With further validation, PIGF may prove a useful addition to the armamentarium of noninvasive biomarkers for cardiovascular disease including a new area of stressful physiological conditions such as microgravity.
Riva, Mylène; Larsen, Christina Viskum Lytken; Bjerregaard, Peter
2016-01-01
Despite abundant evidence that socio-economic status (SES) is a fundamental determinant of health, there is a dearth of research examining association between SES, measured at the individual and community levels, and cardiovascular risk factors and morbidity among indigenous populations. To examine the influence of individual-level and community-level SES on systolic and diastolic blood pressure among Greenlandic Inuit. Multilevel analysis of cross-sectional data from the Inuit Health in Transition - Greenland Survey, to which 3,108 Greenlandic Inuit aged 18 years and older participated. Blood pressure is measured using an automatic device, according to standardized protocol. Individual SES is measured by education. Community socio-economic conditions are measured using combined information on average disposable household income and settlement type. Education was not significantly associated with blood pressure. There was an inverse U-shape association between community socio-economic conditions and blood pressure with significantly lower SBP and DBP among participants living in remote traditional villages characterized by lower average disposable household income and in affluent more urbanized towns. Sex-stratified analyses demonstrate the salience of community conditions for men. The association observed between blood pressure and community-level socio-economic conditions suggests that public health and social policies, programmes and interventions aiming to improve living conditions might improve cardiovascular health in Greenland. Studies are required to further examine social gradients in cardiovascular risk factors and morbidity among indigenous populations using different measures of SES.
Gaudreau, Katherine; Sanford, Carolyn J.; Cheverie, Connie; McClure, Carol
2013-01-01
Background This is the first study to have examined the effect of smoking bans on hospitalizations in the Atlantic Canadian socio-economic, cultural and climatic context. On June 1, 2003 Prince Edward Island (PEI) enacted a province-wide smoking ban in public places and workplaces. Changes in hospital admission rates for cardiovascular (acute myocardial infarction, angina, and stroke) and respiratory (chronic obstructive pulmonary disease and asthma) conditions were examined before and after the smoking ban. Methods Crude annual and monthly admission rates for the above conditions were calculated from April 1, 1995 to December 31, 2008 in all PEI acute care hospitals. Autoregressive Integrated Moving Average time series models were used to test for changes in mean and trend of monthly admission rates for study conditions, control conditions and a control province after the comprehensive smoking ban. Age- and sex-based analyses were completed. Results The mean rate of acute myocardial infarctions was reduced by 5.92 cases per 100,000 person-months (P = 0.04) immediately after the smoking ban. The trend of monthly angina admissions in men was reduced by −0.44 cases per 100,000 person-months (P = 0.01) in the 67 months after the smoking ban. All other cardiovascular and respiratory admission changes were non-significant. Conclusions A comprehensive smoking ban in PEI reduced the overall mean number of acute myocardial infarction admissions and the trend of angina hospital admissions. PMID:23520450
Gaudreau, Katherine; Sanford, Carolyn J; Cheverie, Connie; McClure, Carol
2013-01-01
This is the first study to have examined the effect of smoking bans on hospitalizations in the Atlantic Canadian socio-economic, cultural and climatic context. On June 1, 2003 Prince Edward Island (PEI) enacted a province-wide smoking ban in public places and workplaces. Changes in hospital admission rates for cardiovascular (acute myocardial infarction, angina, and stroke) and respiratory (chronic obstructive pulmonary disease and asthma) conditions were examined before and after the smoking ban. Crude annual and monthly admission rates for the above conditions were calculated from April 1, 1995 to December 31, 2008 in all PEI acute care hospitals. Autoregressive Integrated Moving Average time series models were used to test for changes in mean and trend of monthly admission rates for study conditions, control conditions and a control province after the comprehensive smoking ban. Age- and sex-based analyses were completed. The mean rate of acute myocardial infarctions was reduced by 5.92 cases per 100,000 person-months (P = 0.04) immediately after the smoking ban. The trend of monthly angina admissions in men was reduced by -0.44 cases per 100,000 person-months (P = 0.01) in the 67 months after the smoking ban. All other cardiovascular and respiratory admission changes were non-significant. A comprehensive smoking ban in PEI reduced the overall mean number of acute myocardial infarction admissions and the trend of angina hospital admissions.
NASA Astrophysics Data System (ADS)
Song, Liqing
Poly-epsilon-caprolactone (PCL) based copolymers have received much attention as drug or growth factor delivery carriers and tissue engineering scaffolds due to their biocompatibility, biodegradability, and tunable biophysical properties. Copolymers of PCL and polydimethylsiloxane (PDMS) also have shape memory behaviors and can be made into thermoresponsive shape memory polymers for various biomedical applications such as smart sutures and vascular stents. However, the influence of biophysical properties of PCL-PDMS-PCL copolymers on stem cell lineage commitment is not well understood. In this study, PDMS was used as soft segments of varying length to tailor the biophysical properties of PCL-based co-polymers. While low elastic modulus (<10 kPa) of the tri-block copolymer PCL-PDMS-PCL affected cardiovascular differentiation of embryonic stem cells, the range of 60-100 MPa PCL-PDMS-PCL showed little influence on the differentiation. Then different size (30-140 mum) of microspheres were fabricated from PCL-PDMS-PCL copolymers and incorporated within embryoid bodies (EBs). Mesoderm differentiation was induced using bone morphogenetic protein (BMP)-4 for cardiovascular differentiation. Differential expressions of mesoderm progenitor marker KDR and vascular markers CD31 and VE-cadherin were observed for the cells differentiated from EBs incorporated with microspheres of different size, while little difference was observed for cardiac marker alpha-actinin expression. Small size of microspheres (30 mum) resulted in higher expression of KDR while medium size of microspheres (94 mum) resulted in higher CD31 and VE-cadherin expression. This study indicated that the biophysical properties of PCL-based copolymers impacted stem cell lineage commitment, which should be considered for drug delivery and tissue engineering applications.
Progress toward an advanced condition monitoring system for reusable rocket engines
NASA Technical Reports Server (NTRS)
Maram, J.; Barkhoudarian, S.
1987-01-01
A new generation of advanced sensor technologies will allow the direct measurement of critical/degradable rocket engine components' health and the detection of degraded conditions before component deterioration affects engine performance, leading to substantial improvements in reusable engines' operation and maintenance. When combined with a computer-based engine condition-monitoring system, these sensors can furnish a continuously updated data base for the prediction of engine availability and advanced warning of emergent maintenance requirements. Attention is given to the case of a practical turbopump and combustion device diagnostic/prognostic health-monitoring system.
Bioengineered vascular constructs as living models for in vitro cardiovascular research.
Wolf, Frederic; Vogt, Felix; Schmitz-Rode, Thomas; Jockenhoevel, Stefan; Mela, Petra
2016-09-01
Cardiovascular diseases represent the most common cause of morbidity and mortality worldwide. In this review, we explore the potential of bioengineered vascular constructs as living models for in vitro cardiovascular research to advance the current knowledge of pathophysiological processes and support the development of clinical therapies. Bioengineered vascular constructs capable of recapitulating the cellular and mechanical environment of native vessels represent a valuable platform to study cellular interactions and signaling cascades, test drugs and medical devices under (patho)physiological conditions, with the additional potential benefit of reducing the number of animals required for preclinical testing. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Effects of Insomnia and Sleep Loss on Cardiovascular Disease.
Khan, Meena S; Aouad, Rita
2017-06-01
Sleep loss has negative impacts on quality of life, mood, cognitive function, and heath. Insomnia is linked to poor mood, increased use of health care resources, decreased quality of life, and possibly cardiovascular risk factors and disease. Studies have shown increase in cortisol levels, decreased immunity, and increased markers of sympathetic activity in sleep-deprived healthy subjects and those with chronic insomnia. The literature shows subjective complaints consistent with chronic insomnia and shortened sleep can be associated with development of diabetes, hypertension, and cardiovascular disease. This article explores the relationship between insufficient sleep and insomnia with these health conditions. Copyright © 2017 Elsevier Inc. All rights reserved.
BMI, total and abdominal fat distribution, and cardiovascular risk factors in school-age children.
Gishti, Olta; Gaillard, Romy; Durmus, Busra; Abrahamse, Marieke; van der Beek, Eline M; Hofman, Albert; Franco, Oscar H; de Jonge, Layla L; Jaddoe, Vincent W V
2015-05-01
More specific total body and abdominal fat mass measures might be stronger associated with cardiovascular risk factors in childhood, than BMI. We examined the independent associations of total and abdominal fat measures with cardiovascular risk factors in school age children. We performed a population-based cohort study among 6,523 children. At the age of 6 y, we measured childhood BMI, and general and abdominal fat mass, using dual-energy X-ray absorptiometry, and ultrasound and cardiovascular risk factors. Conditional on BMI, higher fat mass percentage and abdominal fat mass were associated with higher blood pressure, total- and low-density lipoprotein (LDL)-cholesterol, insulin and c-peptide levels, but with lower left ventricular mass and high-density lipoprotein (HDL)-cholesterol (P values < 0.05). These associations differed between underweight, normal weight, overweight, and obese children. Higher childhood adiposity measures were associated with increased odds of cardiovascular risk factors clustering, with the strongest effect for fat mass percentage (odds ratios: 3.01 (95% confidence interval: 2.67, 3.9). Our results suggest that general and abdominal fat measures are associated with cardiovascular risk factors in childhood, independent from BMI. These measures may provide additional information for identification of children with an adverse cardiovascular profile.
Keage, Hannah A D; Smith, Ashleigh; Loetscher, Tobias; Psaltis, Peter
2016-12-01
Older individuals can now undergo invasive cardiovascular procedures without serious concern about mortality, and the numbers and proportions of the over 65s and 85s doing so in Australia has been increasing over the last 20 years. There is overwhelming evidence linking cardiovascular conditions to late-life (65 years and over) cognitive impairment and dementia including Alzheimer's Disease, primarily due to impaired cerebrovascularisation and cascading neuropathological processes. Somewhat paradoxically, these cardiovascular interventions, carried out with the primary aim of revascularisation, are not usually associated with short- or long-term improvements in cognitive function in older adults. We discuss factors associated with cognitive outcomes post-cardiovascular surgeries in patients over 65 years of age. There are many opportunities for future research: we know almost nothing about cognitive outcomes following invasive cardiac procedures in the oldest old (85 years and over) nor how to predict the cognitive/delirium outcome using pre-surgical data, and lastly, intervention opportunities exist both pre and postoperatively that have not been tested. As our population ages with increased cardiovascular burden and rates of cardiovascular interventions and surgeries, it is critical that we understand the cognitive consequences of these procedures, who is at greatest risk, and ways to optimise cognition. Copyright © 2016. Published by Elsevier B.V.
The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions
2014-10-01
The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions by Matthew Kurman, Luis Bravo, Chol-Bum Kweon...Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions Matthew Kurman, Luis Bravo, and Chol-Bum Kweon Vehicle Technology...March 2014 4. TITLE AND SUBTITLE The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions 5a. CONTRACT NUMBER 5b
NASA Astrophysics Data System (ADS)
Seo, Jongmin; Schiavazzi, Daniele; Marsden, Alison
2017-11-01
Cardiovascular simulations are increasingly used in clinical decision making, surgical planning, and disease diagnostics. Patient-specific modeling and simulation typically proceeds through a pipeline from anatomic model construction using medical image data to blood flow simulation and analysis. To provide confidence intervals on simulation predictions, we use an uncertainty quantification (UQ) framework to analyze the effects of numerous uncertainties that stem from clinical data acquisition, modeling, material properties, and boundary condition selection. However, UQ poses a computational challenge requiring multiple evaluations of the Navier-Stokes equations in complex 3-D models. To achieve efficiency in UQ problems with many function evaluations, we implement and compare a range of iterative linear solver and preconditioning techniques in our flow solver. We then discuss applications to patient-specific cardiovascular simulation and how the problem/boundary condition formulation in the solver affects the selection of the most efficient linear solver. Finally, we discuss performance improvements in the context of uncertainty propagation. Support from National Institute of Health (R01 EB018302) is greatly appreciated.
Lee, Moon J; Sobralske, Mary C; Fackenthall, Chelane
2016-04-01
Cardiovascular disease (CVD) is the leading cause of death across all races and ethnicities. In particular, Latino men suffer disproportionately from conditions that lead to CVD such as hypertension, high cholesterol, and diabetes. There are easy and inexpensive ways to screen for certain cardiovascular conditions, yet Latino men are not benefiting from these. It is important to identify motivators and barriers to screening among this population. The purpose of this qualitative, descriptive study was to determine what motivates Latino men to participate in health screening for diabetes, high blood pressure, and high cholesterol. Self-identified Latino men (n = 17) were interviewed following a community health screening targeting Latinos. Individual semi-structured interviews were conducted in either Spanish or English after giving written consent. Trained interpreters were used for Spanish interviews. Emerging themes include motivating factors and barriers to participate in screening. Data findings direct future studies and provide culturally meaningful and relevant strategies to reduce health disparities.
Faes, Luca; Nollo, Giandomenico; Krohova, Jana; Czippelova, Barbora; Turianikova, Zuzana; Javorka, Michal
2017-07-01
To fully elucidate the complex physiological mechanisms underlying the short-term autonomic regulation of heart period (H), systolic and diastolic arterial pressure (S, D) and respiratory (R) variability, the joint dynamics of these variables need to be explored using multivariate time series analysis. This study proposes the utilization of information-theoretic measures to measure causal interactions between nodes of the cardiovascular/cardiorespiratory network and to assess the nature (synergistic or redundant) of these directed interactions. Indexes of information transfer and information modification are extracted from the H, S, D and R series measured from healthy subjects in a resting state and during postural stress. Computations are performed in the framework of multivariate linear regression, using bootstrap techniques to assess on a single-subject basis the statistical significance of each measure and of its transitions across conditions. We find patterns of information transfer and modification which are related to specific cardiovascular and cardiorespiratory mechanisms in resting conditions and to their modification induced by the orthostatic stress.
Role of Uremic Toxins for Kidney, Cardiovascular, and Bone Dysfunction.
Fujii, Hideki; Goto, Shunsuke; Fukagawa, Masafumi
2018-05-16
With decreasing kidney function, cardiovascular disease (CVD) and mineral bone disorders frequently emerge in patients with chronic kidney disease (CKD). For these patients, in addition to the traditional risk factors, non-traditional CKD-specific risk factors are also associated with such diseases and conditions. One of these non-traditional risk factors is the accumulation of uremic toxins (UTs). In addition, the accumulation of UTs further deteriorates kidney function. Recently, a huge number of UTs have been identified. Although many experimental and clinical studies have reported associations between UTs and the progression of CKD, CVD, and bone disease, these relationships are very complex and have not been fully elucidated. Among the UTs, indoxyl sulfate, asymmetric dimethylarginine, and p -cresylsulfate have been of particular focus, up until now. In this review, we summarize the pathophysiological influences of these UTs on the kidney, cardiovascular system, and bone, and discuss the clinical data regarding the harmful effects of these UTs on diseases and conditions.
Goldstein, Benjamin I; Carnethon, Mercedes R; Matthews, Karen A; McIntyre, Roger S; Miller, Gregory E; Raghuveer, Geetha; Stoney, Catherine M; Wasiak, Hank; McCrindle, Brian W
2015-09-08
In the 2011 "Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents," several medical conditions among youth were identified that predispose to accelerated atherosclerosis and early cardiovascular disease (CVD), and risk stratification and management strategies for youth with these conditions were elaborated. Major depressive disorder (MDD) and bipolar disorder (BD) among youth satisfy the criteria set for, and therefore merit inclusion among, Expert Panel tier II moderate-risk conditions. The combined prevalence of MDD and BD among adolescents in the United States is ≈10%, at least 10 times greater than the prevalence of the existing moderate-risk conditions combined. The high prevalence of MDD and BD underscores the importance of positioning these diseases alongside other pediatric diseases previously identified as moderate risk for CVD. The overall objective of this statement is to increase awareness and recognition of MDD and BD among youth as moderate-risk conditions for early CVD. To achieve this objective, the primary specific aims of this statement are to (1) summarize evidence that MDD and BD are tier II moderate-risk conditions associated with accelerated atherosclerosis and early CVD and (2) position MDD and BD as tier II moderate-risk conditions that require the application of risk stratification and management strategies in accordance with Expert Panel recommendations. In this scientific statement, there is an integration of the various factors that putatively underlie the association of MDD and BD with CVD, including pathophysiological mechanisms, traditional CVD risk factors, behavioral and environmental factors, and psychiatric medications. © 2015 American Heart Association, Inc.
Chrischilles, Elizabeth; Schneider, Kathleen; Wilwert, June; Lessman, Gregory; O'Donnell, Brian; Gryzlak, Brian; Wright, Kara; Wallace, Robert
2014-03-01
Studies of patients with multiple chronic conditions using claims data are often missing important determinants of treatments and outcomes, such as function status and disease severity. We sought to identify and evaluate a class of function-related indicators (FRIs) from administrative claims data. The study cohort comprised US Medicare beneficiaries aged 65 years or older with Parts A and B fee-for-service and Part D coverage, with a hospitalization for acute myocardial infarction during 2007. Measures during the year before admission included the FRIs, demographics, conventional comorbidity measures, and prior hospitalization. Outcomes were receipt of cardiac catheterization during the index hospitalization and 12-month mortality. Model development used a random sample (n=72,056) with an equal sample for validation. In addition to prior cardiovascular conditions (85%), 40% had ≥1 comorbid condition, 30% were hospitalized in the prior 6 months, and 65% had ≥1 FRI [eg, delirium/dementia (22.7%), depression (16.7%), mobility limitation (16.1%), and chronic skin ulcers (12.6%)]. Including the FRIs improved mortality and cardiac catheterization prediction models (C-statistics 0.71 and 0.77, respectively). Patients with more cardiovascular conditions received less cardiac catheterization [minimally adjusted odds ratio (OR) 0.83; 95% confidence interval (CI), 0.82-0.83], as did patients with more comorbidities (minimally adjusted OR 0.70; 95% CI, 0.69-0.71), but this was attenuated by adjusting for functional status (fully adjusted OR for cardiovascular conditions 0.95; 95% CI, 0.94-0.96 and for comorbid conditions 0.94; 95% CI, 0.92-0.95). Claims data studies that include indicators of potentially diminished patient functional status better capture heterogeneity of patients with multiple chronic conditions.
Life-Time Risk, Screening and The Cost of Cardiovascular Comorbidities in CKD Patients.
Zoccali, Carmine; Abd ElHafeez, Samar; Dounousi, Evangelia; Anastasi, Rossana; Tripepi, Giovanni; Mallamaci, Francesca
2015-01-01
CKD is a problem of epidemic dimension. The risk of death and cardiovascular complications in this condition is of the same order of that by myocardial infarction, which qualifies CKD as "risk equivalent". Calculations made on the basis of the epidemiological data of the MONICA-Augsburg study and analyses of the costs of myocardial infarction in a large health insurance company in Germany show that the economic burden of cardiovascular comorbidities with CKD in this country is substantial. These estimates, which may be valid also for other large member states of the European Community, represent a call for studies looking at the cost-effectiveness of preventive interventions aimed at reducing the risk for CKD and at lowering the concerning incidence rate of death and disability due to CKD-triggered cardiovascular complications in CKD patients.
Brudey, Chevelle; Park, Jeanie; Wiaderkiewicz, Jan; Kobayashi, Ihori; Mellman, Thomas A; Marvar, Paul J
2015-08-15
Stress- and anxiety-related disorders are on the rise in both military and general populations. Over the next decade, it is predicted that treatment of these conditions, in particular, posttraumatic stress disorder (PTSD), along with its associated long-term comorbidities, will challenge the health care system. Multiple organ systems are adversely affected by PTSD, and PTSD is linked to cancer, arthritis, digestive disease, and cardiovascular disease. Evidence for a strong link between PTSD and cardiovascular disease is compelling, and this review describes current clinical data linking PTSD to cardiovascular disease, via inflammation, autonomic dysfunction, and the renin-angiotensin system. Recent clinical and preclinical evidence regarding the role of the renin-angiotensin system in the extinction of fear memory and relevance in PTSD-related immune and autonomic dysfunction is also addressed. Copyright © 2015 the American Physiological Society.
Computational fluid dynamics modelling in cardiovascular medicine
Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P
2016-01-01
This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards ‘digital patient’ or ‘virtual physiological human’ representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges. PMID:26512019
2006-03-31
drinks, artificial sweeteners , and diet books) and services (e.g., fitness clubs and weight-loss programs) (Kassirer & Angell, 1998). According to the...consequences associated with excessive body weight, such as premature death, diabetes mellitus, hypertension, cardiovascular disease, and certain kinds of... diabetes or cardiovascular disease). Body weight varies greatly and depends on an individual’s body composition. Consequently, defining the “ideal
System and method for diagnosing EGR performance using NOx sensor
Mazur, Christopher John
2003-12-23
A method and system for diagnosing a condition of an EGR valve used in an engine system. The EGR valve controls the portion exhaust gases produced by such engine system and fed back to an intake of such engine system. The engine system includes a NOx sensor for measuring NOx in such exhaust. The method includes: determining a time rate of change in NOx measured by the NOx sensor; comparing the determined time rate of change in the measured NOx with a predetermined expected time rate of change in measured NOx; and determining the condition of the EGR valve as a function of such comparison. The method also includes: determining from NOx measured by the NOx sensor and engine operating conditions indications of instances when samples of such measured NOx are greater than an expected maximum NOx level for such engine condition and less than an expected minimum NOx level for such engine condition; and determining the condition of the EGR valve as a function of a statistical analysis of such indications. The method includes determining whether the NOx sensor is faulty and wherein the EGR condition determining includes determining whether the NOx sensor is faulty.
The effects of arousal reappraisal on stress responses, performance and attention.
Sammy, Nadine; Anstiss, Paul A; Moore, Lee J; Freeman, Paul; Wilson, Mark R; Vine, Samuel J
2017-11-01
This study examined the effects of arousal reappraisal on cardiovascular responses, demand and resource evaluations, self-confidence, performance and attention under pressurized conditions. A recent study by Moore et al. [2015. Reappraising threat: How to optimize performance under pressure. Journal of Sport and Exercise Psychology, 37(3), 339-343. doi: 10.1123/jsep.2014-0186 ] suggested that arousal reappraisal is beneficial to the promotion of challenge states and leads to improvements in single-trial performance. This study aimed to further the work of Moore and colleagues (2015) by examining the effects of arousal reappraisal on cardiovascular responses, demand and resource evaluations, self-confidence, performance and attention in a multi-trial pressurized performance situation. Participants were randomly assigned to either an arousal reappraisal intervention or control condition, and completed a pressurized dart throwing task. The intervention encouraged participants to view their physiological arousal as facilitative rather than debilitative to performance. Measures of cardiovascular reactivity, demand and resource evaluations, self-confidence, task performance and attention were recorded. The reappraisal group displayed more favorable cardiovascular reactivity and reported higher resource evaluations and higher self-confidence than the control group but no task performance or attention effects were detected. These findings demonstrate the strength of arousal reappraisal in promoting adaptive stress responses, perceptions of resources and self-confidence.
Treatment of Men for “Low Testosterone”: A Systematic Review
Huo, Samantha; Scialli, Anthony R.; McGarvey, Sean; Hill, Elizabeth; Tügertimur, Buğra; Hogenmiller, Alycia; Hirsch, Alessandra I.; Fugh-Berman, Adriane
2016-01-01
Testosterone products are recommended by some prescribers in response to a diagnosis or presumption of “low testosterone” (low-T) for cardiovascular health, sexual function, muscle weakness or wasting, mood and behavior, and cognition. We performed a systematic review of 156 eligible randomized controlled trials in which testosterone was compared to placebo for one or more of these conditions. We included studies in bibliographic databases between January 1, 1950 and April 9, 2016, and excluded studies involving bodybuilding, contraceptive effectiveness, or treatment of any condition in women or children. Studies with multiple relevant endpoints were included in all relevant tables. Testosterone supplementation did not show consistent benefit for cardiovascular risk, sexual function, mood and behavior, or cognition. Studies that examined clinical cardiovascular endpoints have not favored testosterone therapy over placebo. Testosterone is ineffective in treating erectile dysfunction and controlled trials did not show a consistent effect on libido. Testosterone supplementation consistently increased muscle strength but did not have beneficial effects on physical function. Most studies on mood-related endpoints found no beneficial effect of testosterone treatment on personality, psychological well-being, or mood. The prescription of testosterone supplementation for low-T for cardiovascular health, sexual function, physical function, mood, or cognitive function is without support from randomized clinical trials. PMID:27655114
Nutrition and health: guidelines for dental practitioners
Palacios, C; Joshipura, KJ; Willett, WC
2017-01-01
Good nutrition is vital to overall health, and poor diet and a sedentary lifestyle are major causes of morbidity and mortality worldwide. Nutritional factors are implicated in many oral and systemic diseases and conditions, including obesity, hypertension, dyslipidemia, type II diabetes, cardiovascular disease, osteoporosis, dental caries and some cancers including oral cancers. This review focuses on the evidence for the relations between key nutritional factors and health. Energy intake is related to body weight and obesity, highlighting the importance of lower-energy diets and regular physical activity for body weight maintenance and for preventing obesity. Evidence is presented for the health benefits of high quality carbohydrates, such as whole grain products, and fruits and vegetables, in reducing the risk of cardiovascular disease and cancer. The adverse effects of sugar, sweetened beverages, and trans and saturated fats on several diseases including caries, diabetes and cardiovascular disease are described. The health benefits of unsaturated fats, antioxidants, B vitamins and vitamin D in cardiovascular disease, periodontitis, cancer, and other conditions are documented. Both benefits and harmful effects of dairy product intake on health are discussed. Based on the evidence, nutritional guidelines are provided, as well as key recommendations for preventing obesity. Dentists can play a critical role in motivating and enabling healthy food choices. PMID:19467151
Metabolic and Cardiovascular Responses to Upright Cycle Exercise with Leg Blood Flow Reduction
Ozaki, Hayao; Brechue, William F.; Sakamaki, Mikako; Yasuda, Tomohiro; Nishikawa, Masato; Aoki, Norikazu; Ogita, Futoshi; Abe, Takashi
2010-01-01
The purpose of this study was to examine the metabolic and cardiovascular response to exercise without (CON) or with (BFR) restricted blood flow to the muscles. Ten young men performed upright cycle exercise at 20, 40, and 60% of maximal oxygen uptake, VO2max in both conditions while metabolic and cardiovascular parameters were determined. Pre-exercise VO2 was not different between CON and BFR. Cardiac output (Q) was similar between the two conditions as a 25% reduction in stroke volume (SV) observed in BFR was associated with a 23% higher heart rate (HR) in BFR compared to CON. As a result rate-pressure product (RPP) was higher in the BFR but there was no difference in mean arterial pressure (MAP) or total peripheral resistance (TPR). During exercise, VO2 tended to increase with BFR (~10%) at each workload. Q increased in proportion to exercise intensity and there were no differences between conditions. The increase in SV with exercise was impaired during BFR; being ~20% lower in BFR at each workload. Both HR and RPP were significantly greater at each workload with BFR. MAP and TPR were greater with BFR at 40 and 60% VO2max. In conclusion, the BFR employed impairs exercise SV but central cardiovascular function is maintained by an increased HR. BFR appears to result in a greater energy demand during continuous exercise between 20 and 60% of control VO2max; probably indicated by a higher energy supply and RPP. When incorporating BFR, HR and RPP may not be valid or reliable indicators of exercise intensity. Key points Blood flow reduction (BFR) employed impairs stroke volume (SV) during exercise, but central cardiovascular function is maintained by an increased heart rate (HR). BFR appears to result in a greater energy demand during continuous exercise between 20 and 60% of control VO2max; Probably indicated by a higher energy supply (VO2) and rate-pressure product (HR x systolic blood pressure). PMID:24149689
Hypertension and Ischemic Heart Disease in Women.
Dorobantu, Maria; Onciul, Sebastian; Tautu, Oana Florentina; Cenko, Edina
2016-01-01
Ischemic heart disease (IHD) is the most important cause of mortality worldwide. Although the awareness of cardiovascular risk factors and IHD in women has increased over the last decades, mortality rates are still higher in women than in men. Among traditional cardiovascular risk factors, hypertension is associated with a greater risk for IHD in women as compared to men. In this review, discuss gender differences in epidemiology and pathophysiology of hypertension and its impact on the incidence and outcomes of IHD in women. We also, discuss some "women conditions" such as hypertensive disorders in pregnancy (HDP) and polycystic ovarian syndrome (PCOS). Even though this is not a systematic review, English-language studies on MEDLINE and the Cochrane Database of Systematic reviews were searched for consultation and analysis. Hypertension display different epidemiological patterns in men and women. Studies have shown that hypertension has a different proatherogenic effects in men and women. Hypertension has a direct effect on microcirculation, but estrogens have a protective role in this regard in premenopausal women. However, after the decline in estrogen levels, women are exposed to the same cardiovascular risk as males. Postmenopausal women exhibit a greater burden of cardiovascular risk factors, which together with microvascular dysfunction and smaller and stiffer arteries conducts to the worse prognosis observed in women with IHD. "Women specific conditions" such as HDP and PCOS affects 10% of pregnant women and women in reproductive age, respectively. These conditions are associated with increased risk of hypertension and IHD later in life. Although women are more aware of their hypertension, cardiovascular mortality is higher in hypertensive women with comorbid IHD. Yet these gender disparities in outcomes seem to be attenuated with effective therapy. The pathophysiology of IHD is gender specific, women with ischemic symptoms presenting less often with coronary obstructive disease, and more frequently with dysfunction of the coronary microcirculation. Optimal control of hypertension could attenuate gender related differences in mortality in this population.
Stress-associated cardiovascular reaction masks heart rate dependence on physical load in mice.
Andreev-Andrievskiy, A A; Popova, A S; Borovik, A S; Dolgov, O N; Tsvirkun, D V; Custaud, M; Vinogradova, O L
2014-06-10
When tested on the treadmill mice do not display a graded increase of heart rate (HR), but rather a sharp shift of cardiovascular indices to high levels at the onset of locomotion. We hypothesized that under test conditions cardiovascular reaction to physical load in mice is masked with stress-associated HR increase. To test this hypothesis we monitored mean arterial pressure (MAP) and heart rate in C57BL/6 mice after exposure to stressful stimuli, during spontaneous locomotion in the open-field test, treadmill running or running in a wheel installed in the home cage. Mice were treated with β1-adrenoblocker atenolol (2mg/kg ip, A), cholinolytic ipratropium bromide (2mg/kg ip, I), combination of blockers (A+I), anxiolytic diazepam (5mg/kg ip, D) or saline (control trials, SAL). MAP and HR in mice increased sharply after handling, despite 3weeks of habituation to the procedure. Under stressful conditions of open field test cardiovascular parameters in mice were elevated and did not depend on movement speed. HR values did not differ in I and SAL groups and were reduced with A or A+I. HR was lower at rest in D pretreated mice. In the treadmill test HR increase over speeds of 6, 12 and 18m/min was roughly 1/7-1/10 of HR increase observed after placing the mice on the treadmill. HR could not be increased with cholinolytic (I), but was reduced after sympatholytic (A) or A+I treatment. Anxiolytic (D) reduced heart rate at lower speeds of movement and its overall effect was to unmask the dependency of HR on running speed. During voluntary running in non-stressful conditions of the home cage HR in mice linearly increased with increasing running speeds. We conclude that in test situations cardiovascular reactions in mice are governed predominantly by stress-associated sympathetic activation, rendering efforts to evaluate HR and MAP reactions to workload unreliable. Copyright © 2014 Elsevier Inc. All rights reserved.
Advanced research to qualify man for long term weightlessness.
NASA Technical Reports Server (NTRS)
Jones, W. L.
1972-01-01
NASA is in the process of conducting a broad program of research and development of technology to qualify, support, and permit the successful use of man in long-term space flight. The technological tasks include human engineering, extravehicular engineering, life support, and human research to assess the effect of space stresses on human physiology and psychology. Various testing techniques that are being used may have future relevance to world health. These include a biocybernetic approach to the study of cardiovascular stresses, measurement of blood flow by means of the Doppler effect, and a device for simulating radiation dosages similar to those produced in solar flares. The planned program includes a study of both humans and animals.
Short term effects of air pollution on mortality in the city of Lyon, France, 1985-90.
Zmirou, D; Barumandzadeh, T; Balducci, F; Ritter, P; Laham, G; Ghilardi, J P
1996-01-01
OBJECTIVE: The short term association between daily mortality and ambient air pollution in the city of Lyon, France (population, 410,000) between 1985 and 1990 was assessed using time series analysis. DESIGN: This study followed the standardised design and statistical analysis (Poisson regression) that characterise the APHEA project. METHODS: Four categories of cause of death were studied: total (minus external causes), respiratory, cardiovascular, and digestive causes (as a control condition). RESULTS: No association was found with any cause of death for nitrogen dioxide (NO2) and ozone (O3), nor, for any pollutant, for digestive conditions. Sulphur dioxide (SO2) and, to a much lesser degree, suspended particles (PM13), were significantly related to mortality from respiratory and cardiovascular conditions. The relative risk (RR) of respiratory deaths associated with a 50 micrograms/m3 increment of mean daily SO2 over the whole period was 1.22 (95% CI 1.05, 1.40); the RR for cardiovascular deaths was 1.54 (1.22, 1.96). The corresponding RRs for PM13 were 1.04 (1.00, 1.09) for respiratory mortality and 1.04 (0.99, 1.10) for cardiovascular deaths. CONCLUSIONS: The effects of particulates were slightly increased during the cold season. When particulates concentrations were greater than 60 micrograms/m3, the joint SO2 effect was increased, suggesting some interaction between the two pollution indicators. These results agree with other studies showing an association between particulate pollution and daily mortality; however, they also suggest the noxious effect of SO2. PMID:8758221
Similarity constraints in testing of cooled engine parts
NASA Technical Reports Server (NTRS)
Colladay, R. S.; Stepka, F. S.
1974-01-01
A study is made of the effect of testing cooled parts of current and advanced gas turbine engines at the reduced temperature and pressure conditions which maintain similarity with the engine environment. Some of the problems facing the experimentalist in evaluating heat transfer and aerodynamic performance when hardware is tested at conditions other than the actual engine environment are considered. Low temperature and pressure test environments can simulate the performance of actual size prototype engine hardware within the tolerance of experimental accuracy if appropriate similarity conditions are satisfied. Failure to adhere to these similarity constraints because of test facility limitations or other reasons, can result in a number of serious errors in projecting the performance of test hardware to engine conditions.
Cardiovascular Safety of Febuxostat or Allopurinol in Patients with Gout.
White, William B; Saag, Kenneth G; Becker, Michael A; Borer, Jeffrey S; Gorelick, Philip B; Whelton, Andrew; Hunt, Barbara; Castillo, Majin; Gunawardhana, Lhanoo
2018-03-29
Cardiovascular risk is increased in patients with gout. We compared cardiovascular outcomes associated with febuxostat, a nonpurine xanthine oxidase inhibitor, with those associated with allopurinol, a purine base analogue xanthine oxidase inhibitor, in patients with gout and cardiovascular disease. We conducted a multicenter, double-blind, noninferiority trial involving patients with gout and cardiovascular disease; patients were randomly assigned to receive febuxostat or allopurinol and were stratified according to kidney function. The trial had a prespecified noninferiority margin of 1.3 for the hazard ratio for the primary end point (a composite of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, or unstable angina with urgent revascularization). In total, 6190 patients underwent randomization, received febuxostat or allopurinol, and were followed for a median of 32 months (maximum, 85 months). The trial regimen was discontinued in 56.6% of patients, and 45.0% discontinued follow-up. In the modified intention-to-treat analysis, a primary end-point event occurred in 335 patients (10.8%) in the febuxostat group and in 321 patients (10.4%) in the allopurinol group (hazard ratio, 1.03; upper limit of the one-sided 98.5% confidence interval [CI], 1.23; P=0.002 for noninferiority). All-cause and cardiovascular mortality were higher in the febuxostat group than in the allopurinol group (hazard ratio for death from any cause, 1.22 [95% CI, 1.01 to 1.47]; hazard ratio for cardiovascular death, 1.34 [95% CI, 1.03 to 1.73]). The results with regard to the primary end point and all-cause and cardiovascular mortality in the analysis of events that occurred while patients were being treated were similar to the results in the modified intention-to-treat analysis. In patients with gout and major cardiovascular coexisting conditions, febuxostat was noninferior to allopurinol with respect to rates of adverse cardiovascular events. All-cause mortality and cardiovascular mortality were higher with febuxostat than with allopurinol. (Funded by Takeda Development Center Americas; CARES ClinicalTrials.gov number, NCT01101035 .).
Adequate nutrient intake can reduce cardiovascular disease risk in African Americans.
Reusser, Molly E; DiRienzo, Douglas B; Miller, Gregory D; McCarron, David A
2003-03-01
Cardiovascular disease kills nearly as many Americans each year as the next seven leading causes of death combined. The prevalence of cardiovascular disease and most of its associated risk factors is markedly higher and increasing more rapidly among African Americans than in any other racial or ethnic group. Improving these statistics may be simply a matter of improving diet quality. In recent years, a substantial and growing body of evidence has revealed that dietary patterns complete in all food groups, including nutrient-rich dairy products, are essential for preventing and reducing cardiovascular disease and the conditions that contribute to it. Several cardiovascular risk factors, including hypertension, insulin resistance syndrome, and obesity, have been shown to be positively influenced by dietary patterns that include adequate intake of dairy products. The benefits of nutrient-rich dietary patterns have been specifically tested in randomized, controlled trials emphasizing African American populations. These studies demonstrated proportionally greater benefits for African Americans without evidence of adverse effects such as symptoms of lactose intolerance. As currently promoted for the prevention of certain cancers and osteoporosis, regular consumption of diets that meet recommended nutrient intake levels might also be the most effective approach for reducing cardiovascular disease risk in African Americans.
Diabetes and Cardiovascular Disease in Older Adults: Current Status and Future Directions
McFarland Horne, Frances; Crandall, Jill P.; Goldberg, Andrew; Harkless, Lawrence; Hazzard, William R.; Huang, Elbert S.; Kirkman, M. Sue; Plutzky, Jorge; Schmader, Kenneth E.; Zieman, Susan; High, Kevin P.
2014-01-01
The prevalence of diabetes increases with age, driven in part by an absolute increase in incidence among adults aged 65 years and older. Individuals with diabetes are at higher risk for cardiovascular disease, and age strongly predicts cardiovascular complications. Inflammation and oxidative stress appear to play some role in the mechanisms underlying aging, diabetes, cardiovascular disease, and other complications of diabetes. However, the mechanisms underlying the age-associated increase in risk for diabetes and diabetes-related cardiovascular disease remain poorly understood. Moreover, because of the heterogeneity of the older population, a lack of understanding of the biology of aging, and inadequate study of the effects of treatments on traditional complications and geriatric conditions associated with diabetes, no consensus exists on the optimal interventions for older diabetic adults. The Association of Specialty Professors, along with the National Institute on Aging, the National Institute of Diabetes and Digestive and Kidney Diseases, the National Heart, Lung, and Blood Institute, and the American Diabetes Association, held a workshop, summarized in this Perspective, to discuss current knowledge regarding diabetes and cardiovascular disease in older adults, identify gaps, and propose questions to guide future research. PMID:25060886
Racism and cardiovascular disease in African Americans.
Wyatt, Sharon B; Williams, David R; Calvin, Rosie; Henderson, Frances C; Walker, Evelyn R; Winters, Karen
2003-06-01
This article provides an overview of the evidence on the ways racism can affect the disproportionate rates of cardiovascular disease (CVD) in African Americans. It describes the significant health disparities in CVD for blacks and whites and suggests that racial disparities should be understood within the context of persistent inequities in societal institutions and relations. Evidence and potential pathways for exploring effects of 3 levels of racism on cardiovascular health risk factors and outcomes are reviewed. First, institutional racism can lead to limited opportunities for socioeconomic mobility, differential access to goods and resources, and poor living conditions that can adversely affect cardiovascular health. Second, perceived/personally mediated racism acts as a stressor and can induce psychophysiological reactions that negatively affect cardiovascular health. Third, in race-conscious societies, such as the United States, the negative self-evaluations of accepting negative cultural stereotypes as true (internalized racism) can have deleterious effects on cardiovascular health. Few population-based studies have examined the relationship between racism and CVD. The findings, though suggestive of a positive association, are neither consistent nor clear. The research agenda of the Jackson Heart Study in addressing the role of racism in CVD is presented.
Endothelial to mesenchymal transition in the cardiovascular system.
Gong, Hui; Lyu, Xing; Wang, Qiong; Hu, Min; Zhang, Xiangyu
2017-09-01
Endothelial to mesenchymal transition (EndMT) is a special type of epithelial to mesenchymal transition. It is a process that is characterized by the loss of features of endothelial cells and acquisition of specific markers of mesenchymal cells. A variety of stimuli, such as inflammation, growth factors, and hypoxia, regulate EndMT through various signaling pathways and intracellular transcription factors. It has been demonstrated that epigenetic modifications are also involved in this process. Recent studies have identified the essential role of EndMT in the cardiovascular system. EndMT contributes to steps in cardiovascular development, such as cardiac valve formation and septation, as well as the pathogenesis of various cardiovascular disorders, such as congenital heart disease, myocardial fibrosis, myocardial infarction and pulmonary arterial hypertension. Thus, comprehensive understanding of the underlying mechanisms of EndMT will provide novel therapeutic strategies to overcome congenital heart disease due to abnormal development and other cardiovascular diseases. This review will focus on summarizing the currently understood signaling pathways and epigenetic modifications involved in the regulation of EndMT and the role of EndMT in pathophysiological conditions of the cardiovascular system. Copyright © 2017. Published by Elsevier Inc.
Giorgini, Paolo; Di Giosia, Paolo; Petrarca, Marco; Lattanzio, Francesco; Stamerra, Cosimo Andrea; Ferri, Claudio
2017-01-01
Climate change is rapidly affecting all the regions of our planet. The most relevant example is global warming, which impacts on the earth's ecosystems, threatening human health. Other effects include extreme variations in temperature and increases in air pollution. These events may negatively impact mortality and morbidity for cardiovascular diseases. In this review, we discuss the main effects of climate changes on cardiovascular diseases, reporting the epidemiological evidences and the biological mechanisms linking climate change consequences to hypertension, diabetes, ischemic heart diseases, heart failure and stroke. Up to now, findings suggest that humans acclimate under different weather conditions, even though extreme temperatures and higher levels of air pollution can influence health-related outcomes. In these cases, climate change adversely affects cardiovascular system and the high-risk subjects for cardiovascular diseases are those more exposed. Finally, we examine climate change implications on publich health and suggest adaptation strategies to monitor the high-risk population, and reduce the amount of hospital admissions associated to these events. Such interventions may minimize the costs of public health and reduce the mortality for cardiovascular diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Reductions in Cardiovascular Risk After Bariatric Surgery
Benraoune, Fethi; Litwin, Sheldon E.
2012-01-01
Purpose of review Obesity is commonly associated with multiple conditions imparting adverse cardiovascular risk including, hypertension, dyslipidemia and insulin resistance or diabetes. In addition, sleep disordered breathing, inflammation, left ventricular hypertrophy, left atrial enlargement and subclinical left ventricular systolic and diastolic dysfunction may collectively contribute to increased cardiovascular morbidity and mortality. This review will describe improvements in cardiovascular risk factors after bariatric surgery. Recent findings All of the cardiovascular risk factors listed above are improved or even resolved after bariatric surgery. Cardiac structure and function also have shown consistent improvement after surgically-induced weight loss. The amount of improvement in cardiac risk factors is generally proportional to the amount of weight lost. The degree of weight loss varies with different bariatric procedures. Based on the improvement in risk profiles, it has been predicted that progression of atherosclerosis could be slowed and the 10 year risk of cardiac events would decline by ~ 50% in patients undergoing weight loss surgery. In keeping with these predictions, 2 studies have demonstrated reductions in 10-year total and cardiovascular mortality of approximately 50% in patients who had bariatric surgery. Summary These encouraging data support the continued, and perhaps expanded use of surgical procedures to induce weight loss in severely obese patients. PMID:21934498
Long-term psychosocial work environment and cardiovascular mortality among Swedish men.
Johnson, J V; Stewart, W; Hall, E M; Fredlund, P; Theorell, T
1996-01-01
OBJECTIVES. This study examined the effect of cumulative exposure to work organization--psychological demands, work control, and social support on prospectively measured cardiovascular disease mortality risk. METHODS. The source population was a national sample of 12517 subjects selected from the Swedish male population by Statistics Sweden in annual surveys between 1977 and 1981. Over a 14-year follow-up period, 521 deaths from cardiovascular disease were identified. A nested case-control design was used. Work environment exposure scores were assigned to cases and controls by linking lifetime job histories with a job exposure matrix. RESULTS. Conditional logistic regression analysis was used in examining cardiovascular mortality risk in relation to work exposure after adjustment for age, year last employed, smoking, exercise, education, social class, nationality, and physical job demands. In the final multi-variable analysis, workers with low work control had a relative risk of 1.83 (95% confidence interval [CI] = 1.19, 2.82) for cardiovascular mortality. Workers with combined exposure to low control and low support had a relative risk of 2.62 (95% CI=1.22, 5.61). CONCLUSIONS. These results indicate that long-term exposure to low work control is a risk factor for cardiovascular disease mortality. PMID:8604756
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-16
...; Special Conditions No. 23-259-SC] Special Conditions: Cessna Aircraft Company, Model J182T; Diesel Cycle..., air cooled, diesel cycle engine that uses turbine (jet) fuel. The Model No. J182T, which is a... engine airplane with a cantilever high wing, with the SMA SR305- 230E-C1 diesel cycle engine and...
Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System
2011-01-01
Background Zero-dimensional (lumped parameter) and one dimensional models, based on simplified representations of the components of the cardiovascular system, can contribute strongly to our understanding of circulatory physiology. Zero-D models provide a concise way to evaluate the haemodynamic interactions among the cardiovascular organs, whilst one-D (distributed parameter) models add the facility to represent efficiently the effects of pulse wave transmission in the arterial network at greatly reduced computational expense compared to higher dimensional computational fluid dynamics studies. There is extensive literature on both types of models. Method and Results The purpose of this review article is to summarise published 0D and 1D models of the cardiovascular system, to explore their limitations and range of application, and to provide an indication of the physiological phenomena that can be included in these representations. The review on 0D models collects together in one place a description of the range of models that have been used to describe the various characteristics of cardiovascular response, together with the factors that influence it. Such models generally feature the major components of the system, such as the heart, the heart valves and the vasculature. The models are categorised in terms of the features of the system that they are able to represent, their complexity and range of application: representations of effects including pressure-dependent vessel properties, interaction between the heart chambers, neuro-regulation and auto-regulation are explored. The examination on 1D models covers various methods for the assembly, discretisation and solution of the governing equations, in conjunction with a report of the definition and treatment of boundary conditions. Increasingly, 0D and 1D models are used in multi-scale models, in which their primary role is to provide boundary conditions for sophisticate, and often patient-specific, 2D and 3D models, and this application is also addressed. As an example of 0D cardiovascular modelling, a small selection of simple models have been represented in the CellML mark-up language and uploaded to the CellML model repository http://models.cellml.org/. They are freely available to the research and education communities. Conclusion Each published cardiovascular model has merit for particular applications. This review categorises 0D and 1D models, highlights their advantages and disadvantages, and thus provides guidance on the selection of models to assist various cardiovascular modelling studies. It also identifies directions for further development, as well as current challenges in the wider use of these models including service to represent boundary conditions for local 3D models and translation to clinical application. PMID:21521508
Thymosin β4: Roles in Development, Repair, and Engineering of the Cardiovascular System.
Marks, E D; Kumar, A
2016-01-01
The burden of cardiovascular disease is a growing worldwide issue that demands attention. While many clinical trials are ongoing to test therapies for treating the heart after myocardial infarction (MI) and heart failure, there are few options doctors able to currently give patients to repair the heart. This eventually leads to decreased ventricular contractility and increased systemic disease, including vascular disorders that could result in stroke. Small peptides such as thymosin β4 (Tβ4) are upregulated in the cardiovascular niche during fetal development and after injuries such as MI, providing increased neovasculogenesis and paracrine signals for endogenous stem cell recruitment to aid in wound repair. New research is looking into the effects of in vivo administration of Tβ4 through injections and coatings on implants, as well as its effect on cell differentiation. Results so far demonstrate Tβ4 administration leads to robust increases in angiogenesis and wound healing in the heart after MI and the brain after stroke, and can differentiate adult stem cells toward the cardiac lineage for implantation to the heart to increase contractility and survival. Future work, some of which is currently in clinical trials, will demonstrate the in vivo effect of these therapies on human patients, with the goal of helping the millions of people worldwide affected by cardiovascular disease. © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slogar, G.A.
1976-03-01
Full scale engine tests were conducted on a GTCP85-98CK Auxiliary Power Unit and a TPE331-5-251M Turboprop engine. The purpose of this program was to measure exhaust emission of HC, CO, CO/sub 2/, NO/sub x/, and smoke at controlled (temperature, humidity, and pressure) engine inlet conditions. This data along with other available data will provide the data base for the determination of the effects of ambient conditions on gas turbine engines. (GRA)
FE6 during Sprint Ultrasound Scans
2013-11-22
ISS038-E-007119 (21 Nov. 2013) --- Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, wears ultrasound gear around his legs while performing the Integrated Resistance and Aerobic Training Study (Sprint) experiment in the Columbus laboratory of the International Space Station. Sprint evaluates the use of high intensity, low volume exercise training to minimize loss of muscle, bone, and cardiovascular function in station crew members during long-duration missions.
Ultra Fine Particles from Diesel Engines Induce Vascular Oxidative Stress via JNK Activation
Li, Rongsong; Ning, Zhi; Cui, Jeffery; Khalsa, Bhavraj; Ai, Lisong; Takabe, Wakako; Beebe, Tyler; Majumdar, Rohit; Sioutas, Constantinos; Hsiai, Tzung
2011-01-01
Exposure of particulate air pollution is linked to increased incidences of cardiovascular diseases. Ambient ultra fine particles (UFP) from diesel vehicle engines have been shown to be pro-atherogenic in apoE knockout mice and may constitute a major cardiovascular risk in humans. We posited that circulating nano-sized particles from traffic pollution sources induced vascular oxidative stress via JNK activation in endothelial cells. Diesel UFP were collected from a 1998 Kenworth truck. Intra-cellular superoxide assay revealed that these UFP dose-dependently induced superoxide (O2·-) production in human aortic endothelial cells (HAEC). Flow cytometry (FACS) showed that UFP increased MitoSOX Red intensity specific for mitochondrial superoxide. Protein carbonyl content is increased by UFP as an indication of vascular oxidative stress. UFP also up-regulated hemeoxygenase-1 (HO-1) and tissue factor (TF) mRNA expression, and pre-treatment with antioxidant, N-acetyl cysteine (NAC), significantly decreased their expression. Furthermore, UFP transiently activated JNK in HAEC. Treatment with JNK inhibitor SP600125 and silencing of both JNK1 and JNK2 with siRNA inhibited UFP stimulated O2·- production and mRNA expression of HO-1 and TF. Our findings suggest that JNK activation play an important role in UFP-induced oxidative stress and stress response gene expression. PMID:19154785
Pahnke, Aric; Conant, Genna; Huyer, Locke Davenport; Zhao, Yimu; Feric, Nicole; Radisic, Milica
2016-05-06
Wingless-related integration site (Wnt) signaling has proven to be a fundamental mechanism in cardiovascular development as well as disease. Understanding its particular role in heart formation has helped to develop pluripotent stem cell differentiation protocols that produce relatively pure cardiomyocyte populations. The resultant cardiomyocytes have been used to generate heart tissue for pharmaceutical testing, and to study physiological and disease states. Such protocols in combination with induced pluripotent stem cell technology have yielded patient-derived cardiomyocytes that exhibit some of the hallmarks of cardiovascular disease and are therefore being used to model disease states. While FDA approval of new treatments typically requires animal experiments, the burgeoning field of tissue engineering could act as a replacement. This would necessitate the generation of reproducible three-dimensional cardiac tissues in a well-controlled environment, which exhibit native heart properties, such as cellular density, composition, extracellular matrix composition, and structure-function. Such tissues could also enable the further study of Wnt signaling. Furthermore, as Wnt signaling has been found to have a mechanistic role in cardiac pathophysiology, e.g. heart attack, hypertrophy, atherosclerosis, and aortic stenosis, its strategic manipulation could provide a means of generating reproducible and specific, physiological and pathological cardiac models. Copyright © 2015 Elsevier Inc. All rights reserved.
Sasaki, T; Iwasaki, K; Oka, T; Hisanaga, N; Ueda, T; Takada, Y; Fujiki, Y
1999-01-01
A field survey of 147 engineers (23-49 years) in an electronics manufacturing company was conducted to investigate the effect of working hours on cardiovascular-autonomic nervous functions (urinary catecholamines, heart rate variability and blood pressure). The subjects were divided into 3 groups by age: 23-29 (n = 49), 30-39 (n = 74) and 40-49 (n = 24) year groups. Subjects in each age group were further divided into shorter (SWH) and longer (LWH) working hour subgroups according to the median of weekly working hours. In the 30-39 year group, urinary noradrenaline in the afternoon for LWH was significantly lower than that for SWH and a similar tendency was found in the LF/HF ratio of heart rate variability at rest. Because these two autonomic nervous indices are related to sympathetic nervous activity, the findings suggested that sympathetic nervous activity for LWH was lower than that for SWH in the 30-39 year group. Furthermore, there were significant relationships both between long working hours and short sleeping hours, and between short sleeping hours and high complaint rates of "drowsiness and dullness" in the morning in this age group. Summarizing these results, it appeared that long working hours might lower sympathetic nervous activity due to chronic sleep deprivation.
Engineering blood vessels by gene and cell therapy.
Zarbiv, Gabriel; Preis, Meir; Ben-Yosef, Yaara; Flugelman, Moshe Y
2007-08-01
Cardiovascular-related syndromes are the leading cause of morbidity and mortality worldwide. Arterial narrowing and blockage due to atherosclerosis cause reduced blood flow to the brain, heart and legs. Bypass surgery to improve blood flow to the heart and legs in these patients is performed in hundreds of thousands of patients every year. Autologous grafts, such as the internal thoracic artery and saphenous vein, are used in most patients, but in a significant number of patients such grafts are not available and synthetic grafts are used. Synthetic grafts have higher failure rates than autologous grafts due to thrombosis and scar formation within graft lumen. Cell and gene therapy combined with tissue engineering hold a great promise to provide grafts that will be biocompatible and durable. This review describes the field of vascular grafts in the context of tissue engineering using cell and gene therapies.
The Impact of Biomechanics in Tissue Engineering and Regenerative Medicine
Butler, David L.; Goldstein, Steven A.; Guo, X. Edward; Kamm, Roger; Laurencin, Cato T.; McIntire, Larry V.; Mow, Van C.; Nerem, Robert M.; Sah, Robert L.; Soslowsky, Louis J.; Spilker, Robert L.; Tranquillo, Robert T.
2009-01-01
Biomechanical factors profoundly influence the processes of tissue growth, development, maintenance, degeneration, and repair. Regenerative strategies to restore damaged or diseased tissues in vivo and create living tissue replacements in vitro have recently begun to harness advances in understanding of how cells and tissues sense and adapt to their mechanical environment. It is clear that biomechanical considerations will be fundamental to the successful development of clinical therapies based on principles of tissue engineering and regenerative medicine for a broad range of musculoskeletal, cardiovascular, craniofacial, skin, urinary, and neural tissues. Biomechanical stimuli may in fact hold the key to producing regenerated tissues with high strength and endurance. However, many challenges remain, particularly for tissues that function within complex and demanding mechanical environments in vivo. This paper reviews the present role and potential impact of experimental and computational biomechanics in engineering functional tissues using several illustrative examples of past successes and future grand challenges. PMID:19583462
Mutagenicity of diesel exhaust particles from an engine with differing exhaust after treatments.
Shi, X-C; Keane, M J; Ong, T; Li, S-Q; Bugarski, A B
2010-01-01
This study was conducted to investigate the effects of engine operating conditions and exhaust aftertreatments on the mutagenicity of diesel particulate matter (DPM) collected directly in an underground mine environment. A number of after-treatment devices are currently used on diesel engines in mines, but it is critical to determine whether reductions in DPM concentrations result in a corresponding decrease in adverse health effects. An eddy-current dynamometer was used to operate naturally aspirated mechanically controlled engine at several steady-state conditions. The samples were collected when the engine was equipped with a standard muffler, a diesel oxidation catalytic converter, two types of uncatalyzed diesel particulate filter systems, and three types of disposable diesel particulate filter elements. Bacterial gene mutation activity of DPM was tested on acetone extracts using the Ames Salmonella assay. The results indicated strong correlation between engine operating conditions and mutagenic activity of DPM. When the engine was fitted with muffler, the mutagenic activity was observed for the samples collected from light-load, but not heavy-load operating conditions. When the engine was equipped with a diesel oxidation catalyst, the samples did not exhibit mutagenic activity for any of four engine operating conditions. Mutagenic activity was observed for the samples collected when the engine was retrofitted with three types of disposable filters and sintered metal diesel particulate filter and operated at light load conditions. However, those filtration systems substantially reduced the concentration-normalized mutagenic activity from the levels observed for the muffler.
Pivovarov, Yu I; Kuznetsova, E E; Koryakina, L B; Gorokhova, V G; Kuril'skaya, T E
2015-05-01
We studied specific features of erythrocyte membrane response to short-term occlusion of the brachial artery in patients with cardiovascular pathology. Under ischemic conditions, processes of sorption were primarily intensified in patients with effort angina and processes of hemoglobin binding with erythrocyte membrane predominated in patients with essential hypertension. These changes in the cell membrane were related to modulation of aggregation properties of erythrocytes (in patients with angina) and plasminogen activity (in patients with essential hypertension). They can also be associated with changes in glucose levels (effort angina) and uric acid (essential hypertension) whose effects can be significantly modified by other endogenous factors.
Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength?
Martín-Timón, Iciar; Sevillano-Collantes, Cristina; Segura-Galindo, Amparo; del Cañizo-Gómez, Francisco Javier
2014-01-01
Diabetes mellitus is a chronic condition that occurs when the body cannot produce enough or effectively use of insulin. Compared with individuals without diabetes, patients with type 2 diabetes mellitus have a considerably higher risk of cardiovascular morbidity and mortality, and are disproportionately affected by cardiovascular disease. Most of this excess risk is it associated with an augmented prevalence of well-known risk factors such as hypertension, dyslipidaemia and obesity in these patients. However the improved cardiovascular disease in type 2 diabetes mellitus patients can not be attributed solely to the higher prevalence of traditional risk factors. Therefore other non-traditional risk factors may be important in people with type 2 diabetes mellitus. Cardiovascular disease is increased in type 2 diabetes mellitus subjects due to a complex combination of various traditional and non-traditional risk factors that have an important role to play in the beginning and the evolution of atherosclerosis over its long natural history from endothelial function to clinical events. Many of these risk factors could be common history for both diabetes mellitus and cardiovascular disease, reinforcing the postulate that both disorders come independently from “common soil”. The objective of this review is to highlight the weight of traditional and non-traditional risk factors for cardiovascular disease in the setting of type 2 diabetes mellitus and discuss their position in the pathogenesis of the excess cardiovascular disease mortality and morbidity in these patients. PMID:25126392
[Hypertension, cardiovascular reactivity to stress and sensibility to pain].
Conde-Guzón, P A; Bartolomé-Albistegui, M T; Quirós-Expósito, P; Grzib-Schlosky, G
To provide a review of empirical evidence of decreased pain perception in hypertensive persons or exaggerated cardiovascular reactivity to stress. To following article will briefly review the existing literature on the association between hypoalgesia and high blood pressure. In particular, evidence of hypoalgesia in normotensive individuals at increased risk for hypertension (exaggerated cardiovascular reactivity to stress) will be offered in support of the notion that high cardiovascular reactivity to stress and decreased pain perception may result from a common physiological dysfunction. Cardiovascular reactivity refers to changes in cardiovascular activity associated primarily with exposure to psychological stress. Different individuals show different amounts of reactivity under the same conditions. The greater cardiovascular reactivity to behavioral stressors may play some role in the development of sustained arterial hypertension. Central opioid hyposensitivity is hypothesized as a mechanism of both hypoalgesia and exaggerated autonomic and neuroendocrine responses to stress in individuals at risk for hypertension. The paraventricular nucleus of the hypothalamus (PVN) serves the crucial function of integrating cardiovascular and painful responses. The central opioid hyposensitivity model of hypoalgesia asserts that attenuation of inhibitory opioid input to the PVN may have important consequences for pain modulation. These consequences includes: 1) greater activation of baroreceptor reflex arcs, 2) enhanced release of endogenous opioids during stress, and 3) increased stimulation of descending pain modulation pathways. High elevated thresholds to painful thermal stressors might serve as a behavioral marker of risk for hypertension before the onset of high blood pressure levels.
Yamakoshi, Takehiro; Matsumura, Kenta; Hanaki, Shota; Rolfe, Peter
2013-12-01
The purpose of this study was to investigate the cardiovascular hemodynamic effects of Red Bull® Energy Drink during prolonged, simulated, monotonous driving. This was a double-blind, within-subjects-design, crossover study. Twelve healthy volunteers (21.7 ± 0.8 years old) experienced each of three conditions at various times: 1) consumption of Red Bull® Energy Drink; 2) consumption of placebo-controlled drink; and 3) no test drink. All subjects undertook 90-min periods of simulated monotonous driving, during which physiological measurements were made. The variables recorded were cardiovascular indices, i.e., mean blood pressure (MBP), cardiac output (CO), electrocardiogram RR interval (RR), total peripheral-vascular resistance (TPR: = MBP/CO), and normalized pulse volume (NPV). Additional parameters were the standard deviation of lateral position, i.e., the weaving of the car, and subjective rating of sleepiness. CO, RR, and TPR during the monotonous task were significantly different in those consuming the energy drink as compared with those receiving the placebo and as compared with no drink values. The energy drink elicited a cardiac-dominant reaction pattern, while the other conditions demonstrated the vascular-dominant reaction pattern typically observed in monotonous driving tasks. The observed differences indicate the cardiovascular system being more aroused with the energy drink. The effects of Red Bull® Energy Drink were reflected in cardiovascular hemodynamic phenomena especially to the heart function, and we conclude that consumption of this drink before long-distance driving in non-sleepy drivers could facilitate more physiologically active, and possibly safer, driving.
Wessler, Benjamin S; Lai Yh, Lana; Kramer, Whitney; Cangelosi, Michael; Raman, Gowri; Lutz, Jennifer S; Kent, David M
2015-07-01
Clinical prediction models (CPMs) estimate the probability of clinical outcomes and hold the potential to improve decision making and individualize care. For patients with cardiovascular disease, there are numerous CPMs available although the extent of this literature is not well described. We conducted a systematic review for articles containing CPMs for cardiovascular disease published between January 1990 and May 2012. Cardiovascular disease includes coronary heart disease, heart failure, arrhythmias, stroke, venous thromboembolism, and peripheral vascular disease. We created a novel database and characterized CPMs based on the stage of development, population under study, performance, covariates, and predicted outcomes. There are 796 models included in this database. The number of CPMs published each year is increasing steadily over time. Seven hundred seventeen (90%) are de novo CPMs, 21 (3%) are CPM recalibrations, and 58 (7%) are CPM adaptations. This database contains CPMs for 31 index conditions, including 215 CPMs for patients with coronary artery disease, 168 CPMs for population samples, and 79 models for patients with heart failure. There are 77 distinct index/outcome pairings. Of the de novo models in this database, 450 (63%) report a c-statistic and 259 (36%) report some information on calibration. There is an abundance of CPMs available for a wide assortment of cardiovascular disease conditions, with substantial redundancy in the literature. The comparative performance of these models, the consistency of effects and risk estimates across models and the actual and potential clinical impact of this body of literature is poorly understood. © 2015 American Heart Association, Inc.
NASA Technical Reports Server (NTRS)
Ashpis, David E.; Thurman, Douglas R.
2011-01-01
Dielectric Barrier Discharge (DBD) Plasma actuators for active flow control in aircraft and jet engines need to be tested in the laboratory to characterize their performance at flight operating conditions. DBD plasma actuators generate a wall-jet electronically by creating weakly ionized plasma, therefore their performance is affected by gas discharge properties, which, in turn, depend on the pressure and temperature at the actuator placement location. Characterization of actuators is initially performed in a laboratory chamber without external flow. The pressure and temperature at the actuator flight operation conditions need to be simultaneously set in the chamber. A simplified approach is desired. It is assumed that the plasma discharge depends only on the gas density, while other temperature effects are assumed to be negligible. Therefore, tests can be performed at room temperature with chamber pressure set to yield the same density as in operating flight conditions. The needed chamber pressures are shown for altitude flight of an air vehicle and for jet engines at sea-level takeoff and altitude cruise conditions. Atmospheric flight conditions are calculated from standard atmosphere with and without shock waves. The engine data was obtained from four generic engine models; 300-, 150-, and 50-passenger (PAX) aircraft engines, and a military jet-fighter engine. The static and total pressure, temperature, and density distributions along the engine were calculated for sea-level takeoff and for altitude cruise conditions. The corresponding chamber pressures needed to test the actuators were calculated. The results show that, to simulate engine component flows at in-flight conditions, plasma actuator should be tested over a wide range of pressures. For the four model engines the range is from 12.4 to 0.03 atm, depending on the placement of the actuator in the engine. For example, if a DBD plasma actuator is to be placed at the compressor exit of a 300 PAX engine, it has to be tested at 12.4 atm for takeoff, and 6 atm for cruise conditions. If it is to be placed at the low-pressure turbine, it has to be tested at 0.5 and 0.2 atm, respectively. These results have implications for the feasibility and design of DBD plasma actuators for jet engine flow control applications. In addition, the distributions of unit Reynolds number, Mach number, and velocity along the engine are provided. The engine models are non-proprietary and this information can be used for evaluation of other types of actuators and for other purposes.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-18
... Engines GmbH (TAE) TAE 125-02-99 and TAE 125-02-114 Reciprocating Engines AGENCY: Federal Aviation... unsafe condition on an aviation product. The MCAI describes the unsafe condition as: In-flight engine shutdown incidents have been reported on aeroplanes equipped with TAE 125 engines. Preliminary...
Dyslipidemias and Cardiovascular Prevention: Tailoring Treatment According to Lipid Phenotype.
Sanin, Veronika; Pfetsch, Vanessa; Koenig, Wolfgang
2017-07-01
This study aimed to present the current information on the genetic background of dyslipidemias and provide insights into the complex pathophysiological role of several plasma lipids/lipoproteins in the pathogenesis of atherosclerotic cardiovascular disease. Furthermore, we aim to summarize established therapies and describe the scientific rationale for the development of novel therapeutic strategies. Evidence from genetic studies suggests that besides lowering low-density lipoprotein cholesterol, pharmacological reduction of triglyceride-rich lipoproteins, or lipoprotein(a) will reduce risk for coronary heart disease. Dyslipidemia, in particular hypercholesterolemia, is a common clinical condition and represents an important determinant of atherosclerotic vascular disease. Treatment decisions are currently guided by the causative lipid phenotype and the presence of other risk factors suggesting a very high cardiovascular risk. Therefore, the identification of lipid disorders and the optimal combination of therapeutic strategies provide an outstanding opportunity for reducing the onset and burden of cardiovascular disease.
Knowledge Translation for Cardiovascular Disease Research and Management in Japan
Shommu, Nusrat S
2017-01-01
Knowledge translation is an essential and emerging arena in healthcare research. It is the process of aiding the application of research knowledge into clinical practice or policymaking. Individuals at all levels of the health care system, including patients, healthcare professionals, and policymakers, are affected by the gaps that exist between research evidence and practice; the process of knowledge translation plays a role in bridging these gaps and incorporating high-quality clinical research into decision-making. Cardiovascular disease (CVD) management is a crucial area of healthcare where information gaps are known to exist. Although Japan has one of the lowest risks and mortality rates from CVDs, an increasing trend of cardiovascular incidence and changes in the risk factor conditions have been observed in recent years. This article provides an overview of knowledge translation and its importance in the cardiovascular health of the Japanese population, and describes the key steps of a typical knowledge translation strategy. PMID:28757537
Knowledge Translation for Cardiovascular Disease Research and Management in Japan.
Shommu, Nusrat S; Turin, Tanvir C
2017-09-01
Knowledge translation is an essential and emerging arena in healthcare research. It is the process of aiding the application of research knowledge into clinical practice or policymaking. Individuals at all levels of the health care system, including patients, healthcare professionals, and policymakers, are affected by the gaps that exist between research evidence and practice; the process of knowledge translation plays a role in bridging these gaps and incorporating high-quality clinical research into decision-making. Cardiovascular disease (CVD) management is a crucial area of healthcare where information gaps are known to exist. Although Japan has one of the lowest risks and mortality rates from CVDs, an increasing trend of cardiovascular incidence and changes in the risk factor conditions have been observed in recent years. This article provides an overview of knowledge translation and its importance in the cardiovascular health of the Japanese population, and describes the key steps of a typical knowledge translation strategy.
The impact of nitric oxide in cardiovascular medicine: untapped potential utility.
Pepine, Carl J
2009-05-01
The structural integrity and functional activity of the endothelium play an important role in atherogenesis and related adverse outcomes. Cardiovascular disease risk conditions contribute to oxidative stress, which causes a disruption in the balance between nitric oxide (NO) and reactive oxygen species, with a resulting relative decrease in bioavailable NO and/or the NO-soluble guanylate cyclase cascade in blood vessels. This leads to endothelial and vascular smooth muscle cell dysfunction, resulting in increased tone and alterations in cell growth and gene expression that create a prothrombotic, proinflammatory environment. This leads to formation, progression, and destabilization of atherosclerotic plaques which may result in myocardial infarction, stroke, and cardiovascular death. NO clearly has a critical role in the maintenance and repair of the vasculature, and a decrease in bioavailable NO is linked to adverse outcomes. This background provides the rationale for exploring the potential therapeutic role for NO-donating agents in the prevention of adverse cardiovascular outcomes.
Cardiovascular effects of bupivacaine and the role of this agent in preemptive dental analgesia.
Younessi, O J; Punnia-Moorthy, A
1999-01-01
Inappropriately high blood concentrations of bupivacaine have been reported to cause toxicity and even death. The potential for cardiovascular toxicity and the difficulty with which this may be reversed has made the dental practitioners reluctant to use this agent. Nevertheless, cardiovascular toxicity from its use in and around the mouth is exceedingly rare. This study was undertaken to assess bupivacaine's cardiotoxic potential in the practice of oral and maxillofacial surgery. Results showed a dose-dependent decrease in systolic blood pressure, but no other statistically significant cardiovascular change was noted. Preemptive treatment of postsurgical pain has been the subject of numerous trials. Bupivacaine administered preoperatively has been suggested to prevent central nervous system "conditioning," thus decreasing the perceived postoperative pain. However, there was no statistical support for any reduction in the perceived postoperative pain in the treatment groups in this study.
Raymond, Michelle R; Christensen, Krista Y; Thompson, Brooke A; Anderson, Henry A
2016-07-01
The aim of this study was to determine fish consumption habits and contaminant exposures associated with adverse cardiovascular outcomes among older male anglers. One hundred fifty-four men aged 50 years and older living and fishing in Wisconsin completed a detailed survey and provided hair and blood samples. Associations between fish consumption and body burdens of several contaminants, with self-reported cardiovascular outcomes, were evaluated. Consuming fish species with higher methyl mercury content was positively associated with odds of angina, coronary heart disease (CHD), or heart attack, while consuming fattier species was negatively associated with high blood pressure or high cholesterol. Total mercury in blood was associated with 27% higher odds of heart attack, and certain classes of polychlorinated biphenyls were positively associated with CHD. Total mercury exposures may affect cardiovascular outcomes. Educational interventions promoting consumption of fish low in methyl mercury among older male anglers are needed.
The impact of mast cells on cardiovascular diseases.
Kritikou, Eva; Kuiper, Johan; Kovanen, Petri T; Bot, Ilze
2016-05-05
Mast cells comprise an innate immune cell population, which accumulates in tissues proximal to the outside environment and, upon activation, augments the progression of immunological reactions through the release and diffusion of either pre-formed or newly generated mediators. The released products of mast cells include histamine, proteases, as well as a variety of cytokines, chemokines and growth factors, which act on the surrounding microenvironment thereby shaping the immune responses triggered in various diseased states. Mast cells have also been detected in the arterial wall and are implicated in the onset and progression of numerous cardiovascular diseases. Notably, modulation of distinct mast cell actions using genetic and pharmacological approaches highlights the crucial role of this cell type in cardiovascular syndromes. The acquired evidence renders mast cells and their mediators as potential prognostic markers and therapeutic targets in a broad spectrum of pathophysiological conditions related to cardiovascular diseases. Copyright © 2015 Elsevier B.V. All rights reserved.
Herath, Herath M Meththananda; Weerarathna, Thilak Priyantha; Umesha, Dilini
2015-01-01
Patients with type 2 diabetes mellitus (T2DM) are at higher risk of developing cardiovascular diseases, and assessment of their cardiac risk is important for preventive strategies. The Ministry of Health of Sri Lanka has recommended World Health Organization/International Society of Hypertension (WHO/ISH) charts for cardiac risk assessment in individuals with T2DM. However, the most suitable cardiac risk assessment tool for Sri Lankans with T2DM has not been studied. This study was designed to evaluate the performance of two cardiac risk assessments tools; WHO/ISH charts and UK Prospective Diabetes Study (UKPDS) risk engine. Cardiac risk assessments were done in 2,432 patients with T2DM attending a diabetes clinic in Southern Sri Lanka using the two risk assessment tools. Validity of two assessment tools was further assessed by their ability to recognize individuals with raised low-density lipoprotein (LDL) and raised diastolic blood pressure in a cohort of newly diagnosed T2DM patients (n=332). WHO/ISH charts identified 78.4% of subjects as low cardiac risk whereas the UKPDS risk engine categorized 52.3% as low cardiac risk (P<0.001). In the risk categories of 10%-<20%, the UKPDS risk engine identified higher proportions of patients (28%) compared to WHO/ISH charts (7%). Approximately 6% of subjects were classified as low cardiac risk (<10%) by WHO/ISH when UKPDS recognized them as cardiac risk of >20%. Agreement between the two tools was poor (κ value =0.144, P<0.01). Approximately 82% of individuals categorized as low cardiac risk by WHO/ISH had higher LDL cholesterol than the therapeutic target of 100 mg/dL. There is a significant discrepancy between the two assessment tools with WHO/ISH risk chart recognizing higher proportions of patients having low cardiac risk than the UKPDS risk engine. Risk assessment by both assessment tools demonstrated poor sensitivity in identifying those with treatable levels of LDL cholesterol and diastolic blood pressure.
[Cardiac rehabilitation. Recent advances].
Lellamo, Ferdinando; Volterrani, Maurizio
2010-03-01
Evidence derived from studies which support the relevance of exercise as a core component of cardiac rehabilitation programs are presented, along with the beneficial effects of exercise training in counteracting the mechanisms sustaining the atherosclerotic process and cardiovascular risk factors in the context of secundary, as well as primary, cardiovascular prevention. Practical guides to plan exercise training programs are also provided with suggestions for specific pathological conditions and advanced age. Recent advances on the benefits of exercise training in patients with heart failure are reported along with the potential of telemedicine for home rehabilitation aiming to a widespread diffusion of exercise as a cardiovascular therapy. Finally, the possible risks of exercise and practical open questions in cardiac rehabilitation are discussed.
Donnelly, Tam Truong; Al Suwaidi, Jassim; Al Enazi, Noora Rashid; Idris, Zeinab; Albulushi, Asma Mohammad; Yassin, Khadra; Rehman, Asma Mohammad; Hassan, Asma Hassan Abu
2012-01-01
In Qatar, cardiovascular diseases are the leading causes of morbidity and mortality. Cardiovascular diseases can be prevented and controlled by modifying lifestyle risk behaviors. In this qualitative study, we investigate ways to increase participation in physical activity, and to promote a healthy diet, and nonsmoking behavior in Qatari women. Individual in-depth interviews were conducted with 50 Arabic women. Participation in physical activity, observing a healthy diet, and abstinence from smoking are desirable lifestyle practices among Qatari women. Social support networks, cultural values, religion, changing sociodemographic and economic conditions, heart disease, and a harsh climate affect the ability of these women to pursue a healthy lifestyle.
NASA Astrophysics Data System (ADS)
Laing, Kevin J. C.; Russamono, Thais
2013-02-01
The likelihood of trained astronauts developing a life threatening cardiac event during spaceflight is relatively rare, whilst the incidence in untrained individuals is unknown. Space tourists who live a sedentary lifestyle have reduced cardiovascular function, but the associated danger of sudden cardiac arrest (SCA) during a suborbital spaceflight (SOSF) is unclear. Risk during SOSF was examined by reviewing several microgravity studies and methods of determining poor cardiovascular condition. Accurately assessing cardiovascular function and improving baroreceptor sensitivity through exercise is suggested to reduce the incidence of SCA during future SOSFs. Future studies will benefit from past participants sharing medical history; allowing creation of risk profiles and suitable guidelines.
Cardiovascular effects of fenoterol under conditions of hypoxaemia.
Bremner, P; Burgess, C D; Crane, J; McHaffie, D; Galletly, D; Pearce, N; Woodman, K; Beasley, R
1992-01-01
BACKGROUND: The reason for the association of increased risk of death with fenoterol in patients with asthma in New Zealand is unknown but may relate to its cardiovascular effects. Most deaths from asthma occur outside hospital, where hypoxaemia is likely to be a complicating factor. The cardiovascular effects of fenoterol have been investigated therefore under conditions of normoxaemia and hypoxaemia. METHOD: Eight healthy men were studied on two occasions. Measurements of heart rate, blood pressure, total electromechanical systole (QS2I), electrocardiographic QTc interval, cardiac index, stroke volume, and ejection fraction were made under conditions of normoxaemia and hypoxaemia (arterial oxygen saturation 90%) before and after administration of 800 micrograms of fenoterol by a metered dose inhaler. The order in which treatments were applied was according to a Latin square design. RESULTS: Before inhalation of fenoterol hypoxaemia was associated with a significant increase in heart rate (8 beats/min) and QTc interval (15.6 ms). Under conditions of normoxaemia fenoterol caused a significant increase in heart rate (14.3 beats/min), systolic blood pressure (7.7 mm Hg), stroke volume (27.7 ml), cardiac index (1.6 1/min/m2), ejection fraction (11.48), and QTc interval (32.9 ms) and a fall in QS2I (-23.2 ms) and diastolic blood pressure (-8.4 mm Hg). Under conditions of hypoxaemia the changes after inhalation of fenoterol were similar to those recorded during normoxaemia; thus the effects of hypoxaemia and fenoterol were additive (heart rate 21.9 beats/min, QTc 43.5 ms with fenoterol and hypoxaemia). CONCLUSION: The chronotropic and electrophysiological effects of fenoterol were enhanced by conditions of hypoxaemia. PMID:1481183
Generalization of turbojet and turbine-propeller engine performance in windmilling condition
NASA Technical Reports Server (NTRS)
Wallner, Ewis E; Welna, Henry J
1951-01-01
Windmilling characteristics of several turbojet and turbine-propeller engines were investigated individually over a wide range of flight conditions in the NACA Lewis altitude wind tunnel. A study was made of all these data and windmilling performance of gas turbine engines was generalized. Although internal-drag, air-flow, and total-pressure-drop parameters were generalized to a single curve for both the axial-flow type engines and another for the centrifugal-flow engine. The engine speed, component pressure changes, and windmilling-propeller drag were generalized to single curves for the two turbine-propeller-type engines investigated. By the use of these curves the windmilling performance can be estimated for axial-flow type gas turbine engines similar to the types investigated over a wide range of flight conditions.
Simmons, Rebecca K.; Coleman, Ruth L.; Price, Hermione C.; Holman, Rury R.; Khaw, Kay-Tee; Wareham, Nicholas J.; Griffin, Simon J.
2009-01-01
OBJECTIVE The purpose of this study was to examine the performance of the UK Prospective Diabetes Study (UKPDS) Risk Engine (version 3) and the Framingham risk equations (2008) in estimating cardiovascular disease (CVD) incidence in three populations: 1) individuals with known diabetes; 2) individuals with nondiabetic hyperglycemia, defined as A1C ≥6.0%; and 3) individuals with normoglycemia defined as A1C <6.0%. RESEARCH DESIGN AND METHODS This was a population-based prospective cohort (European Prospective Investigation of Cancer-Norfolk). Participants aged 40–79 years recruited from U.K. general practices attended a health examination (1993–1998) and were followed for CVD events/death until April 2007. CVD risk estimates were calculated for 10,137 individuals. RESULTS Over 10.1 years, there were 69 CVD events in the diabetes group (25.4%), 160 in the hyperglycemia group (17.7%), and 732 in the normoglycemia group (8.2%). Estimated CVD 10-year risk in the diabetes group was 33 and 37% using the UKPDS and Framingham equations, respectively. In the hyperglycemia group, estimated CVD risks were 31 and 22%, respectively, and for the normoglycemia group risks were 20 and 14%, respectively. There were no significant differences in the ability of the risk equations to discriminate between individuals at different risk of CVD events in each subgroup; both equations overestimated CVD risk. The Framingham equations performed better in the hyperglycemia and normoglycemia groups as they did not overestimate risk as much as the UKPDS Risk Engine, and they classified more participants correctly. CONCLUSIONS Both the UKPDS Risk Engine and Framingham risk equations were moderately effective at ranking individuals and are therefore suitable for resource prioritization. However, both overestimated true risk, which is important when one is using scores to communicate prognostic information to individuals. PMID:19114615
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slogar, G.A.; Holder, R.C.
1976-03-01
Full scale engine testswere conducted on a GTCP85-98CK Auxiliary Power Unit and a TPE331-5-251M Turboprop engine. The purpose of this program was to measure exhaust emission of HC, CO, CO/sub 2/, NO/sub x/, and smoke at controlled (temperature, humidity, and pressure) engine inlet conditions. This data along with other available data will provide the data base for the determination of the effects of ambient conditions on gas turbine engines. This volume contains the computer programs for volume 2 data. (GRA)
RhoA/Rho-Kinase in the Cardiovascular System.
Shimokawa, Hiroaki; Sunamura, Shinichiro; Satoh, Kimio
2016-01-22
Twenty years ago, Rho-kinase was identified as an important downstream effector of the small GTP-binding protein, RhoA. Thereafter, a series of studies demonstrated the important roles of Rho-kinase in the cardiovascular system. The RhoA/Rho-kinase pathway is now widely known to play important roles in many cellular functions, including contraction, motility, proliferation, and apoptosis, and its excessive activity induces oxidative stress and promotes the development of cardiovascular diseases. Furthermore, the important role of Rho-kinase has been demonstrated in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, and heart failure. Cyclophilin A is secreted by vascular smooth muscle cells and inflammatory cells and activated platelets in a Rho-kinase-dependent manner, playing important roles in a wide range of cardiovascular diseases. Thus, the RhoA/Rho-kinase pathway plays crucial roles under both physiological and pathological conditions and is an important therapeutic target in cardiovascular medicine. Recently, functional differences between ROCK1 and ROCK2 have been reported in vitro. ROCK1 is specifically cleaved by caspase-3, whereas granzyme B cleaves ROCK2. However, limited information is available on the functional differences and interactions between ROCK1 and ROCK2 in the cardiovascular system in vivo. Herein, we will review the recent advances about the importance of RhoA/Rho-kinase in the cardiovascular system. © 2016 American Heart Association, Inc.
[Cardiovascular risk profiles by occupation in Madrid region, Spain].
Zimmermann Verdejo, Marta; González Gómez, María Fernanda; Galán Labaca, Iñaki
2010-01-01
It is well known the association between cardiovascular risks and life styles. In addition, all these factors could be strongly associated with working conditions. The aim of this study was to describe the association between some cardiovascular risk factors and occupations in order to define strategies focused on health promotion at workplace. 16.048 questionnaires were analysed from the Surveillance System for Non-transmissible Diseases Risk Factors (SIVFRENT) for Madrid region. The surveys of eight consecutive years (2000-2007) were aggregated and analysed. Seven risk factors for cardiovascular diseases were studied (diet, overweight, sedentary work, physical activity, alcohol and tobacco consumption and high blood pressure). An indicator of exposure was created based on these seven risk factors. The association between cardiovascular risk factors and occupations was calculated for age and gender effects adjustment. Sedentary work (prevalence: 44,2%) and tobacco consumption (prevalence: 33,1%) were the most common risk factors found . To accumulate more than two cardiovascular risk factors was statistically higher in men (27,4%) than in women (15%). The highest risk was found for tree occupations: Drivers (OR:1,78; 95% CI:1,45-2,18), Administrative secretaries (OR:1,83; 95% CI:1,64-2,05) and Direction managers(OR:1,25; 95% CI:1,09-1,44). Drives, Secretaries and Managers seem to have a higher vulnerability for some cardiovascular risk factors.
Vitamins K1 and K2: The Emerging Group of Vitamins Required for Human Health
2017-01-01
Objective To review the evidence for the use of vitamin K supplementation in clinical conditions such as osteoporosis, vascular calcification, arthritis, cancer, renal calculi, diabetes, and warfarin therapy. Quality of Evidence PubMed was searched for articles on vitamin K (K1 and K2) along with books and conference proceedings and health conditions listed above. Level I and II evidence supports the use of vitamins K1 and K2 in osteoporosis and Level II evidence supports vitamin K2 in prevention of coronary calcification and cardiovascular disease. Evidence is insufficient for use in diabetes, arthritis, renal calculi, and cancer. Main Message Vitamin K2 may be a useful adjunct for the treatment of osteoporosis, along with vitamin D and calcium, rivaling bisphosphonate therapy without toxicity. It may also significantly reduce morbidity and mortality in cardiovascular health by reducing vascular calcification. Vitamin K2 appears promising in the areas of diabetes, cancer, and osteoarthritis. Vitamin K use in warfarin therapy is safe and may improve INR control, although a dosage adjustment is required. Conclusion Vitamin K supplementation may be useful for a number of chronic conditions that are afflicting North Americans as the population ages. Supplementation may be required for bone and cardiovascular health. PMID:28698808
Tate, Kevin B; Kohl, Zachary F; Eme, John; Rhen, Turk; Crossley, Dane A
2015-01-01
Environmental conditions fluctuate dramatically in some reptilian nests. However, critical windows of environmental sensitivity for cardiovascular development have not been identified. Continuous developmental hypoxia has been shown to alter cardiovascular form and function in embryonic snapping turtles (Chelydra serpentina), and we used this species to identify critical periods during which hypoxia modifies the cardiovascular phenotype. We hypothesized that incubation in 10% O2 during specific developmental periods would have differential effects on the cardiovascular system versus overall somatic growth. Two critical windows were identified with 10% O2 from 50% to 70% of incubation, resulting in relative heart enlargement, either via preservation of or preferential growth of this tissue, while exposure to 10% O2 from 20% to 70% of incubation resulted in a reduction in arterial pressure. The deleterious or advantageous aspects of these embryonic phenotypes in posthatching snapping turtles have yet to be explored. However, identification of these critical windows has provided insight into how the developmental environment alters the phenotype of reptiles and will also be pivotal in understanding its impact on the fitness of egg-laying reptiles.
Therapeutic Potential of Phytochemicals in Combination with Drugs for Cardiovascular Disorders.
Shen, James Z; Ng, Ting L J; Ho, Wing S
2017-01-01
The incidence of cardiovascular disorders is increasing worldwide. Heart disease is the leading cause of death for both men and women. High blood pressure, high low-density lipoprotein cholesterol level, and smoking are key risk factors for heart disease. Other medical conditions such as diabetes, overweight, obesity and lifestyle can put people at a higher risk for coronary heart disease. The preventive measures based on the common drugs may help reduce the risk of cardiovascular diseases. The present review highlights the contributions of therapeutic potential of phytochemicals in management of cardiovascular diseases. However, the delivery efficiency of therapeutic agents can be enhanced in order to improve the efficacy of phytochemicals as a therapeutic agent. The oral administration of phytochemicals as therapeutic agents is a common approach. The review highlights the recent development of natural products for the complementary treatment of cardiovascular diseases. These findings indicate that the combination of therapeutic drugs and natural products may improve the treatment efficacy of therapeutic agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Dynamics of a macroscopic model characterizing mutualism of search engines and web sites
NASA Astrophysics Data System (ADS)
Wang, Yuanshi; Wu, Hong
2006-05-01
We present a model to describe the mutualism relationship between search engines and web sites. In the model, search engines and web sites benefit from each other while the search engines are derived products of the web sites and cannot survive independently. Our goal is to show strategies for the search engines to survive in the internet market. From mathematical analysis of the model, we show that mutualism does not always result in survival. We show various conditions under which the search engines would tend to extinction, persist or grow explosively. Then by the conditions, we deduce a series of strategies for the search engines to survive in the internet market. We present conditions under which the initial number of consumers of the search engines has little contribution to their persistence, which is in agreement with the results in previous works. Furthermore, we show novel conditions under which the initial value plays an important role in the persistence of the search engines and deduce new strategies. We also give suggestions for the web sites to cooperate with the search engines in order to form a win-win situation.
Test and evaluation of the HIDEC engine uptrim algorithm
NASA Technical Reports Server (NTRS)
Ray, R. J.; Myers, L. P.
1986-01-01
The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemented into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.
Aircraft Engine Sensor/Actuator/Component Fault Diagnosis Using a Bank of Kalman Filters
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L. (Technical Monitor)
2003-01-01
In this report, a fault detection and isolation (FDI) system which utilizes a bank of Kalman filters is developed for aircraft engine sensor and actuator FDI in conjunction with the detection of component faults. This FDI approach uses multiple Kalman filters, each of which is designed based on a specific hypothesis for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, from which a specific fault is isolated. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The performance of the FDI system is evaluated against a nonlinear engine simulation for various engine faults at cruise operating conditions. In order to mimic the real engine environment, the nonlinear simulation is executed not only at the nominal, or healthy, condition but also at aged conditions. When the FDI system designed at the healthy condition is applied to an aged engine, the effectiveness of the FDI system is impacted by the mismatch in the engine health condition. Depending on its severity, this mismatch can cause the FDI system to generate incorrect diagnostic results, such as false alarms and missed detections. To partially recover the nominal performance, two approaches, which incorporate information regarding the engine s aging condition in the FDI system, will be discussed and evaluated. The results indicate that the proposed FDI system is promising for reliable diagnostics of aircraft engines.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-14
... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 25 [Docket No. FAA-2011-1107; Special Conditions No. 25-447-SC] Special Conditions: Gulfstream Aerospace LP (GALP) Model G280 Airplane, Limit Engine Torque Loads for Sudden Engine Stoppage AGENCY: Federal Aviation Administration (FAA...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-05
... dynamic loads resulting from: (a) The loss of any fan, compressor, or turbine blade; and (b) Separately... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 25 [Docket No. NM454 Special Conditions No. 25-11-11-SC] Special Conditions: Gulfstream Model GVI Airplane; Limit Engine Torque...
An Evaluation of the Pavement Condition Index Prediction Model for Rigid Airfield Pavements
1982-09-01
UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGO(I*%A Data Entotoi) The United States Army Corps of Engineers, Construction Engineering Research Laboratory...Condition . . . 31 Pavement Design/ Construction ....... . 82 Aircraft Traffic ........ .............. 82 Climate Conditions ........ ............. 84...PATTERSON AFB . . . . . . . . . . . . . . . . . . . . . . . . . 155 C. DATA OBTAINED FROM THE CONSTRUCTION ENGINEERING RESEARCH LABORATORY. .. .. 168 D
The Effect of Altitude Conditions on the Particle Emissions of a J85-GE-5L Turbojet Engine
NASA Technical Reports Server (NTRS)
Rickey, June Elizabeth
1995-01-01
Particles from a J85-GE-5L turbojet engine were measured over a range of engine speeds at simulated altitude conditions ranging from near sea level to 45,000 ft and at flight Mach numbers of 0.5 and 0.8. Samples were collected from the engine by using a specially designed probe positioned several inches behind the exhaust nozzle. A differential mobility particle sizing system was used to determine particle size. Particle data measured at near sea-level conditions were compared with Navy Aircraft Environmental Support Office (AESO) particle data taken from a GE-J85-4A engine at a sea-level static condition. Particle data from the J85 engine were also compared with particle data from a J85 combustor at three different simulated altitudes.
Protein–Hydrogel Interactions in Tissue Engineering: Mechanisms and Applications
Zustiak, Silviya P.; Wei, Yunqian
2013-01-01
Recent advances in our understanding of the sophistication of the cellular microenvironment and the dynamics of tissue remodeling during development, disease, and regeneration have increased our appreciation of the current challenges facing tissue engineering. As this appreciation advances, we are better equipped to approach problems in the biology and therapeutics of even more complex fields, such as stem cells and cancer. To aid in these studies, as well as the established areas of tissue engineering, including cardiovascular, musculoskeletal, and neural applications, biomaterials scientists have developed an extensive array of materials with specifically designed chemical, mechanical, and biological properties. Herein, we highlight an important topic within this area of biomaterials research, protein–hydrogel interactions. Due to inherent advantages of hydrated scaffolds for soft tissue engineering as well as specialized bioactivity of proteins and peptides, this field is well-posed to tackle major needs within emerging areas of tissue engineering. We provide an overview of the major modes of interactions between hydrogels and proteins (e.g., weak forces, covalent binding, affinity binding), examples of applications within growth factor delivery and three-dimensional scaffolds, and finally future directions within the area of hydrogel–protein interactions that will advance our ability to control the cell–biomaterial interface. PMID:23150926
Halcox, Julian P; Banegas, José R; Roy, Carine; Dallongeville, Jean; De Backer, Guy; Guallar, Eliseo; Perk, Joep; Hajage, David; Henriksson, Karin M; Borghi, Claudio
2017-06-17
Atherogenic dyslipidemia is associated with poor cardiovascular outcomes, yet markers of this condition are often ignored in clinical practice. Here, we address a clear evidence gap by assessing the prevalence and treatment of two markers of atherogenic dyslipidemia: elevated triglyceride levels and low levels of high-density lipoprotein cholesterol. This cross-sectional observational study assessed the prevalence of two atherogenic dyslipidemia markers, high triglyceride levels and low high-density lipoprotein cholesterol levels, in the study population from the European Study on Cardiovascular Risk Prevention and Management in Usual Daily Practice (EURIKA; N = 7641; of whom 51.6% were female and 95.6% were White/Caucasian). The EURIKA population included European patients, aged at least 50 years with at least one cardiovascular risk factor but no history of cardiovascular disease. Over 20% of patients from the EURIKA population have either triglyceride or high-density lipoprotein cholesterol levels characteristic of atherogenic dyslipidemia. Furthermore, the proportions of patients with one of these markers were higher in subpopulations with type 2 diabetes mellitus or those already calculated to be at high risk of cardiovascular disease. Approximately 55% of the EURIKA population who have markers of atherogenic dyslipidemia are not receiving lipid-lowering therapy. A considerable proportion of patients with at least one major cardiovascular risk factor in the primary cardiovascular disease prevention setting have markers of atherogenic dyslipidemia. The majority of these patients are not receiving optimal treatment, as specified in international guidelines, and thus their risk of developing cardiovascular disease is possibly underestimated. The present study is registered with ClinicalTrials.gov (ID: NCT00882336).
The cardiovascular system in growth hormone excess and growth hormone deficiency.
Lombardi, G; Di Somma, C; Grasso, L F S; Savanelli, M C; Colao, A; Pivonello, R
2012-12-01
The clinical conditions associated with GH excess and GH deficiency (GHD) are known to be associated with an increased risk for the cardiovascular morbidity and mortality, suggesting that either an excess or a deficiency in GH and/or IGF-I is deleterious for cardiovascular system. In patients with acromegaly, chronic GH and IGF-I excess commonly causes a specific cardiomyopathy characterized by a concentric cardiac hypertrophy associated with diastolic dysfunction and, in later stages, with systolic dysfunction ending in heart failure if GH/IGF-I excess is not controlled. Abnormalities of cardiac rhythm and anomalies of cardiac valves can also occur. Moreover, the increased prevalence of cardiovascular risk factors, such as hypertension, diabetes mellitus, and insulin resistance, as well as dyslipidemia, confer an increased risk for vascular atherosclerosis. Successful control of the disease is accompanied by a decrease of the cardiac mass and improvement of cardiac function and an improvement in cardiovascular risk factors. In patients with hypopituitarism, GHD has been considered the under- lying factor of the increased mortality when appropriate standard replacement of the pituitary hormones deficiencies is given. Either childhood-onset or adulthood-onset GHD are characterized by a cluster of abnormalities associated with an increased cardiovascular risk, including altered body composition, unfavorable lipid profile, insulin resistance, endothelial dysfunction and vascular atherosclerosis, a decrease in cardiac mass together with an impairment of systolic function mainly after exercise. Treatment with recombinant GH in patients with GHD is followed by an improvement of the cardiovascular risk factors and an increase in cardiac mass together with an improvement in cardiac performance. In conclusion, acromegaly and GHD are associated with an increased risk for cardiovascular morbidity and mortality, but the control of GH/IGF-I secretion reverses cardiovascular abnormalities and restores the normal life expectancy.
Cardiovascular reactivity to acute psychological stress following sleep deprivation.
Franzen, Peter L; Gianaros, Peter J; Marsland, Anna L; Hall, Martica H; Siegle, Greg J; Dahl, Ronald E; Buysse, Daniel J
2011-10-01
Psychological stress and sleep disturbances are highly prevalent and are both implicated in the etiology of cardiovascular diseases. Given the common co-occurrence of psychological distress and sleep disturbances including short sleep duration, this study examined the combined effects of these two factors on blood pressure reactivity to immediate mental challenge tasks after well-rested and sleep-deprived experimental conditions. Participants (n = 20) were healthy young adults free from current or past sleep, psychiatric, or major medical disorders. Using a within-subjects crossover design, we examined acute stress reactivity under two experimental conditions: after a night of normal sleep in the laboratory and after a night of total sleep deprivation. Two standardized psychological stress tasks were administered, a Stroop color-word naming interference task and a speech task, which were preceded by a prestress baseline period and followed by a poststress recovery period. Each period was 10 minutes in duration, and blood pressure recordings were collected every 2.5 minutes throughout each period. Mean blood pressure responses during stress and recovery periods were examined with a mixed-effects analysis of covariance, controlling for baseline blood pressure. There was a significant interaction between sleep deprivation and stress on systolic blood pressure (F(2,82.7) = 4.05, p = .02). Systolic blood pressure was higher in the sleep deprivation condition compared with the normal sleep condition during the speech task and during the two baseline periods. Sleep deprivation amplified systolic blood pressure increases to psychological stress. Sleep loss may increase cardiovascular risk by dysregulating stress physiology.
De Lazzari, Claudio; Genuini, Igino; Pisanelli, Domenico M; D'Ambrosi, Alessandra; Fedele, Francesco
2014-12-18
There is an established tradition of cardiovascular simulation tools, but the application of this kind of technology in the e-Learning arena is a novel approach. This paper presents an e-Learning environment aimed at teaching the interaction of cardiovascular and lung systems to health-care professionals. Heart-lung interaction must be analyzed while assisting patients with severe respiratory problems or with heart failure in intensive care unit. Such patients can be assisted by mechanical ventilatory assistance or by thoracic artificial lung."In silico" cardiovascular simulator was experimented during a training course given to graduate students of the School of Specialization in Cardiology at 'Sapienza' University in Rome.The training course employed CARDIOSIM©: a numerical simulator of the cardiovascular system. Such simulator is able to reproduce pathophysiological conditions of patients affected by cardiovascular and/or lung disease. In order to study the interactions among the cardiovascular system, the natural lung and the thoracic artificial lung (TAL), the numerical model of this device has been implemented. After having reproduced a patient's pathological condition, TAL model was applied in parallel and hybrid model during the training course.Results obtained during the training course show that TAL parallel assistance reduces right ventricular end systolic (diastolic) volume, but increases left ventricular end systolic (diastolic) volume. The percentage changes induced by hybrid TAL assistance on haemodynamic variables are lower than those produced by parallel assistance. Only in the case of the mean pulmonary arterial pressure, there is a percentage reduction which, in case of hybrid assistance, is greater (about 40%) than in case of parallel assistance (20-30%).At the end of the course, a short questionnaire was submitted to students in order to assess the quality of the course. The feedback obtained was positive, showing good results with respect to the degree of students' learning and the ease of use of the software simulator.
Balasubramanian, Priya; Sirivelu, Madhu P; Weiss, Kathryn A; Wagner, James G; Harkema, Jack R; Morishita, Masako; Mohankumar, P S; Mohankumar, Sheba M J
2013-05-01
Acute exposure to airborne pollutants, especially particulate matter (PM2.5) is known to increase hospital admissions for cardiovascular conditions, increase cardiovascular related mortality and predispose the elderly and obese individuals to cardiovascular conditions. The mechanisms by which PM2.5 exposure affects the cardiovascular system is not clear. Since the autonomic system plays an important role in cardiovascular regulation, we hypothesized that PM2.5 exposure most likely activates the paraventricular nucleus (PVN) of the hypothalamus to cause an increase in sympathetic nervous system and/or stress axis activity. We also hypothesized that these changes may be sustained in obese rats predisposing them to higher cardiovascular risk. To test this, adult male Brown Norway (BN) rats were subjected to one day or three days of inhalation exposures to filtered air (FA) or concentrated air particulate (CAP) derived from ambient PM2.5. Corpulent JCR-LA rats were exposed to FA or CAP for four days. Animals were sacrificed 24h after the last inhalation exposure. Their brains were removed, frozen and sectioned. The PVN and median eminence (ME) were microdissected. PVN was analyzed for norepinephrine (NE), dopamine (DA) and 5-hydroxy-indole acetic acid (5-HIAA) levels using HPLC-EC. ME was analyzed for corticotrophin releasing hormone (CRH) levels by ELISA. One day exposure to CAP increased NE levels in the PVN and CRH levels in the ME of BN rats. Repeated exposures to CAP did not affect NE levels in the PVN of BN rats, but increased NE levels in JCR/LA rats. A similar pattern was observed with 5-HIAA levels. DA levels on the other hand, were unaffected in both BN and JCR/LA strains. These data suggest that repeated exposures to PM2.5 continue to stimulate the PVN in obese animals but not lean rats. Copyright © 2012 Elsevier Inc. All rights reserved.
Wright Beatty, Heather E; Hardcastle, Stephen G; Boulay, Pierre; Flouris, Andreas D; Kenny, Glen P
2015-01-01
Older adults have been reported to have a lower evaporative heat loss capacity than younger adults during exercise when full sweat evaporation is permitted. However, it is unclear how conditions of restricted evaporative and convective heat loss (i.e., high humidity, clothing insulation) alter heat stress. to the purpose of this study was to examine the heat stress responses of young and older males during and following exercise in a warm/humid environment under two different levels of air velocity. Ten young (YOUNG: 24±2 yr) and 10 older (OLDER: 59±3 yr) males, matched for body surface area performed 4×15-min cycling bouts (15-min rest) at a fixed rate of heat production (400 W) in warm/humid conditions (35°C, 60% relative humidity) under 0.5 (Low) and 3.0 (High) m·s(-1) air velocity while wearing work coveralls. Rectal (Tre) and mean skin (MTsk) temperatures, heart rate (HR), local sweat rate, % max skin blood flow (SkBF) (recovery only), and blood pressure (recovery only) were measured. High air velocity reduced core and skin temperatures (p < 0.05) equally in YOUNG and OLDER males (p > 0.05) but was more effective in reducing cardiovascular strain (absolute and % max HR; p < 0.05) in YOUNG males (p < 0.05). Greater increases in local dry heat loss responses (% max SkBF and cutaneous vascular conductance) were detected across time in OLDER than YOUNG males in both conditions (p < 0.05). Local dry heat loss responses and cardiovascular strain were attenuated during the High condition in YOUNG compared to OLDER (p < 0.05). High air velocity reduced the number of males surpassing the 38.0°C Tre threshold from 90% (Low) to 50% (High). Despite age-related local heat loss differences, YOUNG and OLDER males had similar levels of heat stress during intermittent exercise in warm and humid conditions while wearing work coveralls. Increased air velocity was effective in reducing heat stress equally, and cardiovascular strain to a greater extent, in YOUNG and OLDER males, and may be useful for mitigating heat stress in all workers.
Samoli, Evangelia; Atkinson, Richard W; Analitis, Antonis; Fuller, Gary W; Green, David C; Mudway, Ian; Anderson, H Ross; Kelly, Frank J
2016-05-01
There is evidence of adverse associations between short-term exposure to traffic-related pollution and health, but little is known about the relative contribution of the various sources and particulate constituents. For each day for 2011-2012 in London, UK over 100 air pollutant metrics were assembled using monitors, modelling and chemical analyses. We selected a priori metrics indicative of traffic sources: general traffic, petrol exhaust, diesel exhaust and non-exhaust (mineral dust, brake and tyre wear). Using Poisson regression models, controlling for time-varying confounders, we derived effect estimates for cardiovascular and respiratory hospital admissions at prespecified lags and evaluated the sensitivity of estimates to multipollutant modelling and effect modification by season. For single day exposure, we found consistent associations between adult (15-64 years) cardiovascular and paediatric (0-14 years) respiratory admissions with elemental and black carbon (EC/BC), ranging from 0.56% to 1.65% increase per IQR change, and to a lesser degree with carbon monoxide (CO) and aluminium (Al). The average of past 7 days EC/BC exposure was associated with elderly (65+ years) cardiovascular admissions. Indicated associations were higher during the warm period of the year. Although effect estimates were sensitive to the adjustment for other pollutants they remained consistent in direction, indicating independence of associations from different sources, especially between diesel and petrol engines, as well as mineral dust. Our results suggest that exhaust related pollutants are associated with increased numbers of adult cardiovascular and paediatric respiratory hospitalisations. More extensive monitoring in urban centres is required to further elucidate the associations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Computational fluid dynamics modelling in cardiovascular medicine.
Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P
2016-01-01
This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Samoli, Evangelia; Atkinson, Richard W; Analitis, Antonis; Fuller, Gary W; Green, David C; Mudway, Ian; Anderson, H Ross; Kelly, Frank J
2016-01-01
Objectives There is evidence of adverse associations between short-term exposure to traffic-related pollution and health, but little is known about the relative contribution of the various sources and particulate constituents. Methods For each day for 2011–2012 in London, UK over 100 air pollutant metrics were assembled using monitors, modelling and chemical analyses. We selected a priori metrics indicative of traffic sources: general traffic, petrol exhaust, diesel exhaust and non-exhaust (mineral dust, brake and tyre wear). Using Poisson regression models, controlling for time-varying confounders, we derived effect estimates for cardiovascular and respiratory hospital admissions at prespecified lags and evaluated the sensitivity of estimates to multipollutant modelling and effect modification by season. Results For single day exposure, we found consistent associations between adult (15–64 years) cardiovascular and paediatric (0–14 years) respiratory admissions with elemental and black carbon (EC/BC), ranging from 0.56% to 1.65% increase per IQR change, and to a lesser degree with carbon monoxide (CO) and aluminium (Al). The average of past 7 days EC/BC exposure was associated with elderly (65+ years) cardiovascular admissions. Indicated associations were higher during the warm period of the year. Although effect estimates were sensitive to the adjustment for other pollutants they remained consistent in direction, indicating independence of associations from different sources, especially between diesel and petrol engines, as well as mineral dust. Conclusions Our results suggest that exhaust related pollutants are associated with increased numbers of adult cardiovascular and paediatric respiratory hospitalisations. More extensive monitoring in urban centres is required to further elucidate the associations. PMID:26884048
NASA Technical Reports Server (NTRS)
Groesbeck, W. A.; Baud, K. M.; Lacovic, R. F.; Tabata, W. K.; Szabo, S. V., Jr.
1974-01-01
Propulsion system tests were conducted on a full scale Centaur vehicle to investigate system capability of the proposed D-lT configuration for a three-burn mission. This particular mission profile requires that the engines be capable of restarting and firing for a final maneuver after a 5-1/2-hour coast to synchronous orbit. The thermal conditioning requirements of the engine and propellant feed system components for engine start under these conditions were investigated. Performance data were also obtained on the D-lT type computer controlled propellant tank pressurization system. The test results demonstrated that the RL-10 engines on the Centaur vehicle could be started and run reliably after being thermally conditioned to predicted engine start conditions for a one, two and three burn mission. Investigation of the thermal margins also indicated that engine starts could be accomplished at the maximum predicted component temperature conditions with prestart durations less than planned for flight.
A Complex Contraception Registry
2018-03-13
Diabetes; Cardiovascular Disease; Epilepsy; Migraine; Neurological Disorders; Cancer; Bariatric Surgery Candidate; Organ or Tissue Transplant; Complications; Lupus Erythematosus, Systemic; Other Hematologic Conditions; Other Venous Embolism and Thrombosis
Arterial Stiffness in Children: Pediatric Measurement and Considerations
Savant, Jonathan D.; Furth, Susan L.; Meyers, Kevin E.C.
2014-01-01
Background Arterial stiffness is a natural consequence of aging, accelerated in certain chronic conditions, and predictive of cardiovascular events in adults. Emerging research suggests the importance of arterial stiffness in pediatric populations. Methods There are different indices of arterial stiffness. The present manuscript focuses on carotid-femoral pulse wave velocity and pulse wave analysis, although other methodologies are discussed. Also reviewed are specific measurement considerations for pediatric populations and the literature describing arterial stiffness in children with certain chronic conditions (primary hypertension, obesity, diabetes, chronic kidney disease, hypercholesterolemia, genetic syndromes involving vasculopathy, and solid organ transplant recipients). Conclusions The measurement of arterial stiffness in children is feasible and, under controlled conditions, can give accurate information about the underlying state of the arteries. This potentially adds valuable information about the functionality of the cardiovascular system in children with a variety of chronic diseases well beyond that of the brachial artery blood pressure. PMID:26587447
User's instructions for the cardiovascular Walters model
NASA Technical Reports Server (NTRS)
Croston, R. C.
1973-01-01
The model is a combined, steady-state cardiovascular and thermal model. It was originally developed for interactive use, but was converted to batch mode simulation for the Sigma 3 computer. The model has the purpose to compute steady-state circulatory and thermal variables in response to exercise work loads and environmental factors. During a computer simulation run, several selected variables are printed at each time step. End conditions are also printed at the completion of the run.
Ultrasound biomicroscopy in mouse cardiovascular development
NASA Astrophysics Data System (ADS)
Turnbull, Daniel H.
2004-05-01
The mouse is the preferred animal model for studying mammalian cardiovascular development and many human congenital heart diseases. Ultrasound biomicroscopy (UBM), utilizing high-frequency (40-50-MHz) ultrasound, is uniquely capable of providing in vivo, real-time microimaging and Doppler blood velocity measurements in mouse embryos and neonates. UBM analyses of normal and abnormal mouse cardiovascular function will be described to illustrate the power of this microimaging approach. In particular, real-time UBM images have been used to analyze dimensional changes in the mouse heart from embryonic to neonatal stages. UBM-Doppler has been used recently to examine the precise timing of onset of a functional circulation in early-stage mouse embryos, from the first detectable cardiac contractions. In other experiments, blood velocity waveforms have been analyzed to characterize the functional phenotype of mutant mouse embryos having defects in cardiac valve formation. Finally, UBM has been developed for real-time, in utero image-guided injection of mouse embryos, enabling cell transplantation and genetic gain-of-function experiments with transfected cells and retroviruses. In summary, UBM provides a unique and powerful approach for in vivo analysis and image-guided manipulation in normal and genetically engineered mice, over a wide range of embryonic to neonatal developmental stages.
Osgood, Michael J.; Harrison, David G.; Sexton, Kevin W.; Hocking, Kyle M.; Voskresensky, Igor V.; Komalavilas, Padmini; Cheung-Flynn, Joyce; Guzman, Raul J.; Brophy, Colleen M.
2014-01-01
The saphenous vein remains the most widely used conduit for peripheral and coronary revascularization despite a high rate of vein graft failure. The most common cause of vein graft failure is intimal hyperplasia. No agents have been proven to be successful for the prevention of intimal hyperplasia in human subjects. The rennin–angiotensin system is essential in the regulation of vascular tone and blood pressure in physiologic conditions. However, this system mediates cardiovascular remodeling in pathophysiologic states. Angiotensin II is becoming increasingly recognized as a potential mediator of intimal hyperplasia. Drugs modulating the renin–angiotensin system include angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. These drugs are powerful inhibitors of atherosclerosis and cardiovascular remodeling, and they are first-line agents for management of several medical conditions based on class I evidence that they delay progression of cardiovascular disease and improve survival. Several experimental models have demonstrated that these agents are capable of inhibiting intimal hyperplasia. However, there are no data supporting their role in prevention of intimal hyperplasia in patients with vein grafts. This review summarizes the physiology of the rennin–angiotensin system, the role of angiotensin II in the pathogenesis of cardiovascular remodeling, the medical indications for these agents, and the experimental data supporting an important role of the rennin–angiotensin system in the pathogenesis of intimal hyperplasia. PMID:22445245
Alacreu-Crespo, Adrián; Costa, Raquel; Abad-Tortosa, Diana; Salvador, Alicia; Serrano, Miguel Ángel
2018-06-22
Competition elicits different psychological and cardiovascular responses depending on a person's skills. Decision-making has been considered a distal factor that influences competition, but there are no studies analyzing this relationship. Our objective was to analyze whether decision-making affects the response to competition. Specifically, we aimed to test whether good performers on a decision-making test, the Iowa Gambling Task (IGT), showed an adaptive cardiovascular response to competition. In all, 116 participants (44 women) performed the IGT and were classified into Good or Poor decision-makers. Subsequently, they were exposed to a stress task in two different conditions: a face-to-face competition (winners/losers) or a control condition, while an electrocardiogram was recorded. In the competition group, good decision-makers increased their high-frequency respect to the total heart rate variability (HF/HRV) levels during the task, compared to Poor decision-makers. Again, competition group good decision-makers, showed lower LF and higher HF/HRV reactivity than the control group, which represents lower HRV stress pattern. Moreover, in the group of losers, good decision-makers had a decline in low frequency (LF) during the task and faster recovery than poor decision-makers. In conclusion, good decision-makers have a more adaptive stress response and higher levels of mental effort, based on total HRV interpretation. Decision-making skills could be a factor in a more adaptive cardiovascular response to competition.
Suppressed anger, evaluative threat, and cardiovascular reactivity: a tripartite profile approach.
Jorgensen, Randall S; Kolodziej, Monika E
2007-11-01
Despite decades of theory and research implicating suppressed anger in the development of cardiovascular disorders involving cardiovascular reactivity (CVR), to date the theoretical components of low anger expression, guilt feelings over agonistic reactions, and defensive strivings to avoid social disapproval have not been used conjointly to profile suppressed anger for the prediction of CVR. The purpose of this study, then, was to cluster analyze measures of anger expression, hostility guilt, and social defensiveness to create a suppressed anger profile (low anger expression, high hostility guilt, high social defensiveness) and a non-suppressed profile from a sample of college males. Social evaluative threat may be a potent stressor for people who defensively suppress anger expression. Thus, to examine the combined effects of suppressed anger and social evaluative threat, participants, prior to telling a story to a Thematic Apperception Card (TAT), were randomly assigned to either a high-threat (story will be compared to stories created by the mentally ill) or a low-threat condition (story used to study effects of talking on cardiovascular responses). Blood pressure (BP) and heart rate (HR) were monitored during a rest period and the subsequent TAT card period. As predicted, suppressed anger males in the high-threat condition showed the highest levels of diastolic BP and HR change from the rest period. The suppressed anger group's systolic BP reactivity was independent of threat manipulation. Research implications are discussed.
Cignarella, Andrea; Tedesco, Serena; Cappellari, Roberta; Fadini, Gian Paolo
2018-03-30
The monocyte-macrophage cell lineage represents a major player in innate immunity, and is involved in many physiologic and pathologic conditions. Particularly, monocyte-macrophages play a very important role in atherosclerosis and cardiovascular disease. Monocyte heterogeneity is well recognized but the biologic and clinical meaning of the various monocyte subtypes is not entirely understood. Traditionally, monocytes can be divided in classical, intermediate, and nonclassical based on expression of the surface antigens CD14 and CD16. While macrophage diversity is now well recognized to organize as a continuum, monocyte subsets have long been considered as separated entities. However, mounting evidence obtained by tracking the ontology of human monocytes help clarifying that monocytes mature from classical to nonclassical ones, through an intermediate phenotype. This concept is therefore best depicted as a continuum, whereas the subdivision into discrete CD14/CD16 subsets appears an oversimplification. In this review, we discuss the evidence supporting the existence of a monocyte continuum along with the technical challenges of monocyte characterization. In particular, we describe the advantage of considering monocytes along a continuous distribution for the evaluation of cardiovascular risk. We make the point that small transition along the monocyte continuum better reflects cardiovascular risk than a simplified analysis of discrete monocyte subsets. Recognizing the monocyte continuum can be helpful to model other pathophysiologic conditions where these cells are involved. ©2018 Society for Leukocyte Biology.
Surface acoustical intensity measurements on a diesel engine
NASA Technical Reports Server (NTRS)
Mcgary, M. C.; Crocker, M. J.
1980-01-01
The use of surface intensity measurements as an alternative to the conventional selective wrapping technique of noise source identification and ranking on diesel engines was investigated. A six cylinder, in line turbocharged, 350 horsepower diesel engine was used. Sound power was measured under anechoic conditions for eight separate parts of the engine at steady state operating conditions using the conventional technique. Sound power measurements were repeated on five separate parts of the engine using the surface intensity at the same steady state operating conditions. The results were compared by plotting sound power level against frequency and noise source rankings for the two methods.
NASA Technical Reports Server (NTRS)
Holdeman, J. D.
1974-01-01
Emissions of total oxides of nitrogen, unburned hydrocarbons, and carbon monoxide from a J-58 engine at simulated flight conditions of Mach 2.0, 2.4, and 2.8 at 19.8 km altitude are reported. For each flight condition, measurements were made for four engine power levels from maximum power without afterburning through maximum afterburning. These measurements were made 7 cm downstream of the engine primary nozzle using a single point traversing gas sample probe. Results show that emissions vary with flight speed, engine power level, and with radial position across the exhaust.
NASA Technical Reports Server (NTRS)
Holdeman, J. D.
1974-01-01
Emissions of total oxides of nitrogen, unburned hydrocarbons, and carbon monoxide from a J-58 engine at simulated flight conditions of Mach 2.0, 2.4, and 2.8 at 19.8 km altitude are reported. For each flight condition, measurements were made for four engine power levels from maximum power without afterburning through maximum afterburning. These measurements were made 7 cm downstream of the engine primary nozzle using a single point traversing gas sample probe. Results show that emissions vary with flight speed, engine power level, and with radial position across the exhaust.
Effects of Extreme Temperatures on Cause-Specific Cardiovascular Mortality in China
Wang, Xuying; Li, Guoxing; Liu, Liqun; Westerdahl, Dane; Jin, Xiaobin; Pan, Xiaochuan
2015-01-01
Objective: Limited evidence is available for the effects of extreme temperatures on cause-specific cardiovascular mortality in China. Methods: We collected data from Beijing and Shanghai, China, during 2007–2009, including the daily mortality of cardiovascular disease, cerebrovascular disease, ischemic heart disease and hypertensive disease, as well as air pollution concentrations and weather conditions. We used Poisson regression with a distributed lag non-linear model to examine the effects of extremely high and low ambient temperatures on cause-specific cardiovascular mortality. Results: For all cause-specific cardiovascular mortality, Beijing had stronger cold and hot effects than those in Shanghai. The cold effects on cause-specific cardiovascular mortality reached the strongest at lag 0–27, while the hot effects reached the strongest at lag 0–14. The effects of extremely low and high temperatures differed by mortality types in the two cities. Hypertensive disease in Beijing was particularly susceptible to both extremely high and low temperatures; while for Shanghai, people with ischemic heart disease showed the greatest relative risk (RRs = 1.16, 95% CI: 1.03, 1.34) to extremely low temperature. Conclusion: People with hypertensive disease were particularly susceptible to extremely low and high temperatures in Beijing. People with ischemic heart disease in Shanghai showed greater susceptibility to extremely cold days. PMID:26703637
Effects of Extreme Temperatures on Cause-Specific Cardiovascular Mortality in China.
Wang, Xuying; Li, Guoxing; Liu, Liqun; Westerdahl, Dane; Jin, Xiaobin; Pan, Xiaochuan
2015-12-21
Limited evidence is available for the effects of extreme temperatures on cause-specific cardiovascular mortality in China. We collected data from Beijing and Shanghai, China, during 2007-2009, including the daily mortality of cardiovascular disease, cerebrovascular disease, ischemic heart disease and hypertensive disease, as well as air pollution concentrations and weather conditions. We used Poisson regression with a distributed lag non-linear model to examine the effects of extremely high and low ambient temperatures on cause-specific cardiovascular mortality. For all cause-specific cardiovascular mortality, Beijing had stronger cold and hot effects than those in Shanghai. The cold effects on cause-specific cardiovascular mortality reached the strongest at lag 0-27, while the hot effects reached the strongest at lag 0-14. The effects of extremely low and high temperatures differed by mortality types in the two cities. Hypertensive disease in Beijing was particularly susceptible to both extremely high and low temperatures; while for Shanghai, people with ischemic heart disease showed the greatest relative risk (RRs = 1.16, 95% CI: 1.03, 1.34) to extremely low temperature. People with hypertensive disease were particularly susceptible to extremely low and high temperatures in Beijing. People with ischemic heart disease in Shanghai showed greater susceptibility to extremely cold days.
Maternal and neonatal outcomes in labor and at delivery when long QT syndrome is present.
Tanaka, Hiroaki; Katsuragi, Shinji; Tanaka, Kayo; Sawada, Masami; Iwanaga, Naoko; Yoshimatsu, Jun; Ikeda, Tomoaki
2016-01-01
Women during labor may be susceptible to torsades de pointes (TdP), which may cause the fetal condition to deteriorate. The aim of the present investigation was to analyze maternal and fetal outcomes during labor when long QT syndrome (LQTS) was present. We examined the maternal and neonatal outcomes of 25 pregnancies (18 women) with LQT between 1995 and 2012 at the Department of Perinatology, National Cardiovascular Center, Japan. Maternal and neonatal outcomes including cardiovascular events, cardiovascular events within a week after delivery, caesarean delivery rate, still births, preterm births, and non-reassuring fetal heart rate pattern (NRFHR) during labor were investigated. All the mothers survived, and no cardiovascular events occurred in labor or postpartum due to LQTS in either vaginal delivery or caesarean delivery. A total of 23 women (92%) had used beta blockers in this study. Caesarean delivery was performed due to NRFHR during labor in 5 pregnancies (20%). Delivery when LQTS is present has a low likelihood of cardiovascular events, but pregnancy with LQTS had a higher caesarean delivery rate due to NRFHR in labor. Most women used beta blockers in this study, and it is possible that beta blocker use prevents cardiovascular events during labor. NRFHR during labor may be related with inherited LQT through the mother.
Magnani, Jared W; Mujahid, Mahasin S; Aronow, Herbert D; Cené, Crystal W; Dickson, Victoria Vaughan; Havranek, Edward; Morgenstern, Lewis B; Paasche-Orlow, Michael K; Pollak, Amy; Willey, Joshua Z
2018-06-04
Health literacy is the degree to which individuals are able to access and process basic health information and services and thereby participate in health-related decisions. Limited health literacy is highly prevalent in the United States and is strongly associated with patient morbidity, mortality, healthcare use, and costs. The objectives of this American Heart Association scientific statement are (1) to summarize the relevance of health literacy to cardiovascular health; (2) to present the adverse associations of health literacy with cardiovascular risk factors, conditions, and treatments; (3) to suggest strategies that address barriers imposed by limited health literacy on the management and prevention of cardiovascular disease; (4) to demonstrate the contributions of health literacy to health disparities, given its association with social determinants of health; and (5) to propose future directions for how health literacy can be integrated into the American Heart Association's mandate to advance cardiovascular treatment and research, thereby improving patient care and public health. Inadequate health literacy is a barrier to the American Heart Association meeting its 2020 Impact Goals, and this statement articulates the rationale to anticipate and address the adverse cardiovascular effects associated with health literacy. © 2018 American Heart Association, Inc.
Nieuwsma, Jason A; Wray, Laura O; Voils, Corrine I; Gierisch, Jennifer M; Dundon, Margaret; Coffman, Cynthia J; Jackson, George L; Merwin, Rhonda; Vair, Christina; Juntilla, Karen; White-Clark, Courtney; Jeffreys, Amy S; Harris, Amy; Owings, Michael; Marr, Johnpatrick; Edelman, David
2017-09-01
Health behaviors related to diet, tobacco usage, physical activity, medication adherence, and alcohol use are highly determinative of risk for developing cardiovascular disease. This paper describes a study protocol to evaluate a problem-solving intervention that aims to help patients at risk for developing cardiovascular disease address barriers to adopting positive health behaviors in order to reduce cardiovascular risk. Eligible patients are adults enrolled in Veterans Affairs (VA) health care who have not experienced a cardiovascular event but are at elevated risk based on their Framingham Risk Score (FRS). Participants in this two-site study are randomized to either the intervention or care as usual, with a target of 400 participants. The study intervention, Healthy Living Problem-Solving (HELPS), consists of six group sessions conducted approximately monthly interspersed with individualized coaching calls to help participants apply problem-solving principles. The primary outcome is FRS, analyzed at the beginning and end of the study intervention (6months). Participants also complete measures of physical activity, caloric intake, self-efficacy, group cohesion, problem-solving capacities, and demographic characteristics. Results of this trial will inform behavioral interventions to change health behaviors in those at risk for cardiovascular disease and other health conditions. ClinicalTrials.gov identifier NCT01838226. Published by Elsevier Inc.
Alimentary habits, physical activity, and Framingham global risk score in metabolic syndrome.
Soares, Thays Soliman; Piovesan, Carla Haas; Gustavo, Andréia da Silva; Macagnan, Fabrício Edler; Bodanese, Luiz Carlos; Feoli, Ana Maria Pandolfo
2014-04-01
Metabolic syndrome is a complex disorder represented by a set of cardiovascular risk factors. A healthy lifestyle is strongly related to improve Quality of Life and interfere positively in the control of risk factors presented in this condition. To evaluate the effect of a program of lifestyle modification on the Framingham General Cardiovascular Risk Profile in subjects diagnosed with metabolic syndrome. A sub-analysis study of a randomized clinical trial controlled blind that lasted three months. Participants were randomized into four groups: dietary intervention + placebo (DIP), dietary intervention + supplementation of omega 3 (fish oil 3 g/day) (DIS3), dietary intervention + placebo + physical activity (DIPE) and dietary intervention + physical activity + supplementation of omega 3 (DIS3PE). The general cardiovascular risk profile of each individual was calculated before and after the intervention. The study included 70 subjects. Evaluating the score between the pre and post intervention yielded a significant value (p < 0.001). We obtained a reduction for intermediate risk in 25.7% of subjects. After intervention, there was a significant reduction (p < 0.01) on cardiovascular age, this being more significant in groups DIP (5.2%) and DIPE (5.3%). Proposed interventions produced beneficial effects for reducing cardiovascular risk score. This study emphasizes the importance of lifestyle modification in the prevention and treatment of cardiovascular diseases.
Electrospun Scaffolds for Tissue Engineering of Vascular Grafts
Hasan, Anwarul; Memic, Adnan; Annabi, Nasim; Hossain, Monowar; Paul, Arghya; Dokmeci, Mehmet R.; Dehghani, Fariba; Khademhosseini, Ali
2013-01-01
There is a growing demand for off-the-shelf tissue engineered vascular grafts (TEVGs) for replacement or bypass of damaged arteries in various cardiovascular diseases. Scaffolds from the decellularized tissue skeletons to biopolymers and biodegradable synthetic polymers have been used for fabricating TEVGs. However, several issues have not yet been resolved, which include the inability to mimic the mechanical properties of native tissues, and the ability for long term patency and growth required for in vivo function. Electrospinning is a popular technique for the production of scaffolds that has the potential to address these issues. However, its application to human TEVGs has not yet been achieved. This review provides an overview of tubular scaffolds that have been prepared by electrospinning with potential for TEVG applications. PMID:23973391
The NASA Space Life Sciences Training Program - Preparing the way
NASA Technical Reports Server (NTRS)
Biro, Ronald; Munsey, Bill; Long, Irene
1990-01-01
Attention is given to the goals and methods adopted in the NASA Space Life Sciences Training Program (SLSTP) for preparing scientists and engineers for space-related life-sciences research and operations. The SLSTP is based on six weeks of projects and lectures which give an overview of payload processing and experiment flow in the space environment. The topics addressed in the course of the program include descriptions of space vehicles, support hardware, equipment, and research directions. Specific lecture topics include the gravity responses of plants, mission integration of a flight experiment, and the cardiovascular deconditioning. The SLSTP is shown to be an important part of the process of recruiting and training qualified scientists and engineers to support space activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevostyanova, V. V., E-mail: sevostyanova.victoria@gmail.com; Khodyrevskaya, Y. I.; Glushkova, T. V.
The development of tissue-engineered small-diameter vascular grafts is an urgent issue in cardiovascular surgery. In this study, we assessed how the incorporation of the vascular endothelial growth factor (VEGF) affects morphological and mechanical properties of polycaprolactone (PCL) vascular grafts along with its release kinetics. Vascular grafts were prepared using two-phase electrospinning. In pursuing our aims, we performed scanning electron microscopy, mechanical testing, and enzyme-linked immunosorbent assay. Our results demonstrated the preservation of a highly porous structure and improvement of PCL/VEGF scaffold mechanical properties as compared to PCL grafts. A prolonged VEGF release testifies the use of this construct as amore » scaffold for tissue-engineered vascular grafts.« less
Ocular Pseudoexfoliation and Cardiovascular Disease: A National Cross-Section Comparison Study
French, Dustin D; Margo, Curtis E; Harman, Lynn E
2012-01-01
Background: Pseudoexfoliation is a systemic disorder characterized by the deposition of extracellular matrix material. The microfibrillar material that gives rise to the condition is visible clinically in the anterior segment of the eye, and is also found in other tissues, including blood vessels, skin, gallbladder, kidneys, lungs, and heart. Aims: The present study aims to determine whether ocular pseudoexfoliation is associated with selected cardiovascular diseases. Materials and Methods: A cross-section comparison study was conducted with the help of the Veterans Health Administration databases, using the International Classification of Diseases, Ninth revision, Clinical Modification for pseudoexfoliation of lens capsule and pseudoexfoliation glaucoma. Selected cardiovascular diseases and risk factors for cardiovascular disease were identified using the appropriate medical codes. Patients with primary open-angle glaucoma, chronic sinusitis, and benign prostatic hyperplasia served as the comparison groups. A logistic regression model was used to control for age, gender, race, and major cardiovascular risk factors. Results: There were 6,046 case patients with pseudoexfoliation; approximately half were diagnosed with pseudoexfoliation glaucoma. Various stages of ischemic heart disease, cardiomyopathy, and aortic aneurysm were significantly associated with ocular pseudoexfoliation, after controlling for age, gender, race, and major cardiovascular risk factors. Associations, in general, were less demonstrable relative to the primary open-angle glaucoma comparison group. Conclusion: Associations of ocular pseudoexfoliation with cardiovascular diseases were generally fewer and less pronounced when compared to patients with primary open-angle glaucoma. These results add to the results of earlier studies, which suggest that open-angle glaucoma itself might be a risk factor for certain cardiovascular disorders. PMID:23112968
Grippo, Angela J.; Johnson, Alan Kim
2008-01-01
A bidirectional association between mood disorders such as depression, and cardiovascular diseases such as myocardial infarction and congestive heart failure, has been described; however, the precise neurobiological mechanisms that underlie these associations have not been fully elucidated. This review is focused on the neurobiological processes and mediators that are common to both mood and cardiovascular disorders, with an emphasis on the role of exogenous stressors in addition to: (a) neuroendocrine and neurohumoral changes involving dysfunction of the hypothalamic-pituitary-adrenal axis and activation of the renin-angiotensin-aldosterone system, (b) immune alterations including activation of pro-inflammatory cytokines, (c) autonomic and cardiovascular dysregulation including increased sympathetic drive, withdrawal of parasympathetic tone, cardiac rate and rhythm disturbances, and altered baroreceptor reflex function, (d) central neurotransmitter system dysfunction including dopamine, norepinephrine and serotonin, and (e) behavioral changes including fatigue and physical inactivity. We also focus specifically on experimental investigations with preclinical disease models, conducted to elucidate the neurobiological mechanisms underlying the link between mood disorders and cardiovascular disease. These include: (a) the chronic mild stress model of depression, (b) a model of congestive heart failure, a model of cardiovascular deconditioning, (d) pharmacological manipulations of body fluid and sodium balance, and (e) pharmacological manipulations of the central serotonergic system. In combination with the extensive literature describing findings from human research, the investigation of mechanisms underlying mood and cardiovascular regulation using animal models will enhance our understanding of the association of depression and cardiovascular disease, and can promote the development of better treatments and interventions for individuals with these co-morbid conditions. PMID:19116888
A Survey of Hospitalizations in Cardiology Units in Sub-Saharan Africa
2018-05-24
Acute Coronary Syndrome; Heart Failure; Syncope; Stroke; Pericarditis; Endocarditis; Conduction Abnormalities; Rhythm; Abnormal; Pulmonary Embolism; Deep Vein Thrombosis; Other Cardiovascular Conditions
Countermeasures for Maintenance of Cardiovascular and Muscle Function in Space Flight
NASA Technical Reports Server (NTRS)
1997-01-01
In this session, Session FA2, the discussion focuses on the following topics: Effects of Repeated Long Duration +2Gz Load on Man's Cardiovascular Function; Certain Approaches to the Development of On-Board Automated Training System; Cardiac, Arterial, and Venous Adaptation to Og during 6 Month MIR-Spaceflights with and without "Thigh Cuffs" (93-95); Space Cycle(TM) Induced Physiologic Responses; Muscular Deconditioning During Long-term Spaceflight Exercise Recommendations to Optimize Crew Performance; Structure And Function of Knee Extensors After Long-Duration Spaceflight in Man, Effects of Countermeasure Exercise Training; Force and power characteristics of an exercise ergometer designed for use in space; and The simulating of overgravity conditions for astronauts' motor apparatus at the conditions of the training for orbital flights.
Uprated OMS Engine Status-Sea Level Testing Results
NASA Technical Reports Server (NTRS)
Bertolino, J. D.; Boyd, W. C.
1990-01-01
The current Space Shuttle Orbital Maneuvering Engine (OME) is pressure fed, utilizing storable propellants. Performance uprating of this engine, through the use of a gas generator driven turbopump to increase operating pressure, is being pursued by the NASA Johnson Space Center (JSC). Component level design, fabrication, and test activities for this engine system have been on-going since 1984. More recently, a complete engine designated the Integrated Component Test Bed (ICTB), was tested at sea level conditions by Aerojet. A description of the test hardware and results of the sea level test program are presented. These results, which include the test condition operating envelope and projected performance at altitude conditions, confirm the capability of the selected Uprated OME (UOME) configuration to meet or exceed performance and operational requirements. Engine flexibility, demonstrated through testing at two different operational mixture ratios, along with a summary of projected Space Shuttle performance enhancements using the UOME, are discussed. Planned future activities, including ICTB tests at simulated altitude conditions, and recommendations for further engine development, are also discussed.
Idling speed control system of an internal combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyazaki, M.; Ishii, M.; Kako, H.
1986-09-16
This patent describes an idling speed control system of an internal combustion engine comprising: a valve device which controls the amount of intake air for the engine; an actuator which includes an electric motor for variably controlling the opening of the value device; rotation speed detector means for detecting the rotation speed of the engine; idling condition detector means for detecting the idling condition of the engine; feedback control means responsive to the detected output of the idling condition detector means for generating feedback control pulses to intermittently drive the electric motor so that the detected rotation speed of themore » engine under the idling condition may converge into a target idling rotation speed; and control means responsive to the output of detector means that detects an abnormally low rotation speed of the engine detected by the rotation speed detector means for generating control pulses that do not overlap the feedback control pulses to drive the electric motor in a predetermined direction.« less
Liquid sprays and flow studies in the direct-injection diesel engine under motored conditions
NASA Technical Reports Server (NTRS)
Nguyen, Hung Lee; Carpenter, Mark H.; Ramos, Juan I.; Schock, Harold J.; Stegeman, James D.
1988-01-01
A two dimensional, implicit finite difference method of the control volume variety, a two equation model of turbulence, and a discrete droplet model were used to study the flow field, turbulence levels, fuel penetration, vaporization, and mixing in diesel engine environments. The model was also used to study the effects of engine speed, injection angle, spray cone angle, droplet distribution, and intake swirl angle on the flow field, spray penetration and vaporization, and turbulence in motored two-stroke diesel engines. It is shown that there are optimum conditions for injection, which depend on droplet distribution, swirl, spray cone angle, and injection angle. The optimum conditions result in good spray penetration and vaporization and in good fuel mixing. The calculation presented clearly indicates that internal combustion engine models can be used to assess, at least qualitatively, the effects of injection characteristics and engine operating conditions on the flow field and on the spray penetration and vaporization in diesel engines.
78 FR 19982 - Special Conditions: Turbomeca Ardiden 3K Turboshaft Engine
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... novel or unusual design feature that is a 30-minute all engines operating (AEO) power rating for... appropriate safety standards for this design feature. These special conditions contain the additional safety... Ardiden 3K engine is the first variant in the new Ardiden 3 series. This engine incorporates a two-stage...
NASA Technical Reports Server (NTRS)
Tolmei, V. R.
1982-01-01
Proposed circuit would monitor vibration spectrum of engines under test or in service. It could detect subtle out-of-specification conditions and could be programed to shut down engine if an out-of-limits condition develops. Possible uses of monitor are in bench testing automobiles and outboard motors and as a safety device in very critical engine applications.
75 FR 22693 - Airworthiness Directives; Turbomeca Makila 2A Turboshaft Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-30
... Airworthiness Directives; Turbomeca Makila 2A Turboshaft Engines AGENCY: Federal Aviation Administration (FAA... condition on an aviation product. The MCAI describes the unsafe condition as: Some digital engine control units (DECUs) used to control MAKILA 2A and MAKILA 2A1 engines have an ambient pressure (P0) sensor with...
NASA Technical Reports Server (NTRS)
Ray, R. J.; Myers, L. P.
1986-01-01
The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemente into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-25
... Conditions No. 25-441-SC] Special Conditions: Gulfstream Model GVI Airplane; Limit Engine Torque Loads for... transient dynamic loads resulting from: (a) The loss of any fan, compressor, or turbine blade; and (b...;Federal Register / Vol. 76, No. 142 / Monday, July 25, 2011 / Rules and Regulations#0;#0; [[Page 44245...
Price, Hermione C; Dudley, Christina; Barrow, Beryl; Kennedy, Ian; Griffin, Simon J; Holman, Rury R
2009-10-01
People need to perceive a risk in order to build an intention-to-change behaviour yet our ability to interpret information about risk is highly variable. We aimed to use a user-centred design process to develop an animated interface for the UK Prospective Diabetes Study (UKPDS) Risk Engine to illustrate cardiovascular disease (CVD) risk and the potential to reduce this risk. In addition, we sought to use the same approach to develop a brief lifestyle advice intervention. Three focus groups were held. Participants were provided with examples of materials used to communicate CVD risk and a leaflet containing a draft brief lifestyle advice intervention and considered their potential to increase motivation-to-change behaviours including diet, physical activity, and smoking in order to reduce CVD risk. Discussions were tape-recorded, transcribed and coded and recurring themes sought. Sixty-two percent of participants were male, mean age was 66 years (range = 47-76 years) and median age at leaving full-time education was 18 years (range = 15-40 years). Sixteen had type 2 diabetes and none had a prior history of CVD. Recurring themes from focus group discussions included the following: being less numerate is common, CVD risk reduction is important and a clear visual representation aids comprehension. A simple animated interface of the UKPDS Risk Engine to illustrate CVD risk and the potential for reducing this risk has been developed for use as a motivational tool, along with a brief lifestyle advice intervention. Future work will investigate whether use of this interactive version of the UKPDS Risk Engine and brief lifestyle advice is associated with increased behavioural intentions and changes in health behaviours designed to reduce CVD risk.
Social Support Versus Social Evaluation: Unique Effects on Vascular and Myocardial Response Patterns
Christian, Lisa M.; Stoney, Catherine M.
2010-01-01
Objectives This study examined the effects of companion presence and evaluation on cardiovascular reactivity to an acute stressor. Methods Eighty-two women completed a speech task in one of four conditions: with an evaluative companion present, with a nonevaluative companion present, alone while being evaluated by a companion with a video camera, or alone while the companion waited outside. Results A significant interaction between companion condition and evaluative condition on systolic blood pressure was found; women who were evaluated while alone demonstrated significantly greater reactivity than did women who were in the nonevaluative alone condition. Furthermore, both potential for evaluation and the presence of a companion had important influences on hemodynamic parameters underlying the blood pressure response. Specifically, those in evaluative conditions showed greater myocardial responding than those in nonevaluative conditions and those in alone conditions showed greater vascular responding than did those with companions present. Taken together, those in the evaluative alone condition demonstrated systolic blood pressure responses reflecting both myocardial and vascular contributions. Conclusions Social support and social evaluation have unique effects on vascular and myocardial responding. The implications for future research include focus on the stress-buffering model of social support and the value of including impedance cardiography measures in investigations of cardiovascular functioning. PMID:17079702
Fatigue of internal combustion engines
NASA Technical Reports Server (NTRS)
Dumanois, P
1924-01-01
The above conditions enable the employment of a criterion of general fatigue which simultaneously takes account of both mechanical and thermal conditions, for the sake of comparing any projected engine with engines of the same type already in use.
NASA Technical Reports Server (NTRS)
Sekiguchi, Chiharu
1993-01-01
In addition to health monitoring of the Japanese Payload Specialists (PS) during the flight, this investigation also focuses on the changes of cardiovascular hemodynamics during flight which will be conducted under the science collaboration with the Lower Body Negative Pressure (LBNP) Experiment of NASA. For the Japanese, this is an opportunity to examine firsthand the effects of microgravity of human physiology. We are particularly interested in the adaption process and how it relates to space motion sickness and cardiovascular deconditioning. By comparing data from our own experiment to data collected by others, we hope to understand the processes involved and find ways to avoid these problems for future Japanese astronauts onboard Space Station Freedom and other Japanese space ventures. The primary objective of this experiment is to monitor the health condition of Japanese Payload Specialists to maintain a good health status during and after space flight. The second purpose is to investigate the autonomic nervous system's response to space motion sickness. To achieve this, the function of the autonomic nervous system will be monitored using non-invasive techniques. Data obtained will be employed to evaluate the role of autonomic nervous system in space motion sickness and to predict susceptibility to space motion sickness. The third objective is evaluation of the adaption process of the cardiovascular system to microgravity. By observation of the hemodynamics using an echocardiogram we will gain insight on cardiovascular deconditioning. The last objective is to create a data base for use in the health care of Japanese astronauts by obtaining control data in experiment L-O in the SL-J mission.
Influence hypervitaminosis D3 on hemodynamic presentation of experimental copper intoxication.
Brin, V B; Mittsiev, K G; Mittsiev, A K; Kabisov, O T
2016-01-01
As a component of various enzymes, it refers to copper essential trace elements, but the excessive consumption of the metal leads to the development of the pathogenic effects of xenobiotics on the functional condition of the cardiovascular system. However, the works devoted to the study of the effectiveness of prophylactic calcium in a copper toxicity, is not in the current literature. study the effect of long-term toxicity of copper on the functional state of the cardiovascular system and its reactivity in experimental hypercalcemia. Experimental hypercalcemia model was created by forming a pilot hypervitaminosis D, by introducing «Akvadetrim» atraumatic preparation through a probe into the stomach in the dose 3000 IU (0.2 ml) / 100 g of body weight for 30 days. Chronic copper poisoning model created by intragastric administration of copper sulfate solution at a dosage of 20 mg/kg (in terms of metal) for 30 days, daily one time a day. The study of the functional state of the cardiovascular system is to determine the mean arterial pressure, specific peripheral vascular resistance, stroke index, cardiac index, the reactivity of the renin-angiotensin system and adrenoreactivity cardiovascular system. The experimental study revealed that long-term copper poisoning leads to the development of hypertension due to an increase in total peripheral vascular resistance, along with the marked decline in the pumping function of the heart. Experimental hypercalcemia simulated by intragastric administration of vitamin D promotes more pronounced toxic effects of copper sulfate on the cardiovascular system. Copper poisoning of the body is characterized by the development of hypertension and the condition of artificial hypercalcemia potentiates the cardiotoxic effects of copper.
Molecular mechanisms of hypertension: role of Nox family NADPH oxidases.
Sedeek, Mona; Hébert, Richard L; Kennedy, Chris R; Burns, Kevin D; Touyz, Rhian M
2009-03-01
Molecular mechanisms contributing to the pathoetiology of hypertension are complex, involving many interacting systems such as signaling through G protein-coupled receptors, the renin-angiotensin system, vascular inflammation and remodeling, vascular senescence and aging and developmental programming, as highlighted in the current issue of the journal. Common to these systems is NADPH oxidase-derived reactive oxygen species (ROS). This editorial highlights current concepts relating to the production of ROS in hypertension and focuses on the Nox family NADPH oxidases, major sources of free radicals in the cardiovascular and renal systems. ROS play a major role as intracellular signaling molecules to regulate normal biological cellular responses. In pathological conditions, loss of redox homeostasis contributes to vascular oxidative damage. Recent evidence indicates that specific enzymes, the Nox family of NADPH oxidases, have the sole function of generating ROS in a highly regulated fashion in physiological conditions, and that in disease states, hyperactivation of Noxes contributes to oxidative stress and consequent cardiovascular and renal injury. The Nox family comprises seven members, Nox1-Nox7. Nox1, Nox2 (gp91phox-containing NADPH oxidase), Nox4 and Nox5 have been identified in the cardiovascular-renal systems and have been implicated in the pathophysiology of cardiovascular and renal disease. Noxes, which are differentially regulated in hypertension, are major sources of cardiovascular and renal oxidative stress. This has evoked considerable interest because of the possibilities that therapies targeted against specific Nox isoforms to decrease ROS generation or to increase nitric oxide availability or both may be useful in minimizing vascular injury and renal dysfunction, and thereby prevent or regress target organ damage associated with hypertension.
Furusawa, Takuro; Naka, Izumi; Yamauchi, Taro; Natsuhara, Kazumi; Eddie, Ricky; Kimura, Ryosuke; Nakazawa, Minato; Ishida, Takafumi; Ohtsuka, Ryutaro; Ohashi, Jun
2017-01-01
The people of the Solomon Islands represent an Austronesian (AN)-speaking population's adaptation to a humid tropical environment and subsistence of tuberous crops. Genome-wide association studies (GWASs) of other populations (e.g. the Human Genome Diversity Project [HGDP]) have suggested the existence of genotypes adaptive to ecoregion, diet, and subsistence, and that those genotypes are also associated with metabolic and cardiovascular diseases. Recently, the incidence of non-communicable diseases has been increasing in the Solomon Islands. In the present study, we explored the association of genotypes adaptive to a tropical environment and tuberous crop diet with metabolic and cardiovascular conditions in rural and urban AN-speaking Melanesian and Micronesian populations of the Solomon Islands. A total of 561 participants were genotyped for single nucleotide polymorphisms (SNPs) potentially associated with a tropical environment (rs174570 and rs2237892) and a tuberous crop diet (rs162036, rs185819, and rs2722425). The results showed that the allele frequencies of the Solomon Islands populations adopted patterns similar to those in populations from other hot, tropical areas with a tuberous crop diet in previous studies. Furthermore, rs162036, rs185819, rs2237892, and rs2722425 were all strongly associated with one or more metabolic and cardiovascular conditions. The derived allele of rs2722425 (i.e. rs2722425-G) was significantly associated with an elevated LDL level (P = 0.000264) even after the significance level was adjusted for multiple testing (i.e., α = 0.0005). Our results suggest that the inhabitants of the Solomon Islands exhibit the effects of the tropical environment and tuberous crop diet on their allele frequencies, and that their susceptibility to metabolic and cardiovascular diseases is therefore considered to be associated with their environment and diet.
Zelko, Aurel; Bukova, Alena; Kolarcik, Peter; Bakalar, Peter; Majercak, Ivan; Potocnikova, Jana; Reijneveld, Sijmen A; van Dijk, Jitse P
2018-04-04
Guidelines on modifiable risk factors regarding cardiological patients are poorly implemented in clinical practice perhaps due to low health literacy. Several digital tools for improving lifestyle and behavioural intervention were developed. Our primary aim is to evaluate the effectiveness of a digital exercise prescription tool on the adherence to physical activity recommendations among patients with cardiovascular diseases. A randomized controlled trial will be realized in cooperation with Cardiovascular Health Centres in Eastern Slovakia. Patients recruited through their cardiologists, will be randomised at 1:1 ratio to the three-months' experimental condition or control condition. The experimental group will receive standard lifestyle consultation leading to individually optimized prescription of physical activity. The control group will receive standard, usual-cardio-care lifestyle counselling, also in the domain of physical activity. The digital system will be used for optimized exercise prescription. The primary outcome is a change in the patient's adherence to exercise recommendations. Data will be collected in both groups prior to consultation and after 3 months. This study protocol presents background and design of a randomized control trial to investigate the effectiveness of a digital system-provide exercise prescription tool on the adherence to physical activity recommendations. An optimized exercise prescription that better reflects patient's diagnosis, comorbidities and medication can have a significant impact on secondary prevention of cardiovascular disease. This trial can provide important evidence about the effectiveness of digital exercise guidance in everyday practice of cardiovascular healthcare. The study was registered on 1st November, 2017 and is available online at ClinicalTrials.gov (ID: NCT03329053 ).
Health and Disease at Age 100.
Jopp, Daniela S; Boerner, Kathrin; Rott, Christoph
2016-03-25
Centenarian studies from around the world have shown that reaching age 100 typically involves substantial health issues. The present study adds to the existing knowledge from other countries by describing health conditions in German centenarians. A total of 112 centenarians or their primary contacts provided information on acute and chronic health conditions and pain in the context of the Second Heidelberg Centenarian Study (mean age = 100.45 years, standard deviation [SD] = 0.47, 89% females). Participants showed high comorbidity, with an average of five illnesses (mean = 5.3; SD = 2.20). Health conditions with highest prevalence were sensory (vision, hearing; 94%), mobility (72%) and musculoskeletal conditions (60%). Cardiovascular conditions (57%) and urinary system ailments (55%) were also common. Pain was experienced often by 30% of the participants. Of those reporting any pain, 36% indicated pain exceeding bearable levels. German centenarians experienced a substantial number of ill nesses, dominated by sensory and mobility conditions. Cardiovascular diseases were the only potentially lethal illnesses with high prevalence. Evidence of unaddressed pain seems alarming, requiring future research. Emerging health profiles indicate that even in very advanced age, quality of life may be improved by enhanced diagnostics and optimal disease management. Mobility limitations may be addressed with preventive efforts.
Measured far-field flight noise of a counterrotation turboprop at cruise conditions
NASA Technical Reports Server (NTRS)
Woodward, Richard P.; Loeffler, Irvin J.; Dittmar, James H.
1989-01-01
Modern high speed propeller (advanced turboprop) aircraft are expected to operate on 50 to 60 percent less fuel than the 1980 vintage turbofan fleet while at the same time matching the flight speed and performance of those aircraft. Counterrotation turboprop engines offer additional fuel savings by means of upstream propeller swirl recovery. This paper presents acoustic sideline results for a full-scale counterrotation turboprop engine at cruise conditions. The engine was installed on a Boeing 727 aircraft in place of the right-side turbofan engine. Acoustic data were taken from an instrumented Learjet chase plane. Sideline acoustic results are presented for 0.50 and 0.72 Mach cruise conditions. A scale model of the engine propeller was tested in a wind tunnel at 0.72 Mach cruise conditions. The model data were adjusted to flight acquisition conditions and were in general agreement with the flight results.
Salt, Ian P; Hardie, D Grahame
2017-05-26
The AMP-activated protein kinase (AMPK) is a key regulator of cellular and whole-body energy homeostasis, which acts to restore energy homoeostasis whenever cellular energy charge is depleted. Over the last 2 decades, it has become apparent that AMPK regulates several other cellular functions and has specific roles in cardiovascular tissues, acting to regulate cardiac metabolism and contractile function, as well as promoting anticontractile, anti-inflammatory, and antiatherogenic actions in blood vessels. In this review, we discuss the role of AMPK in the cardiovascular system, including the molecular basis of mutations in AMPK that alter cardiac physiology and the proposed mechanisms by which AMPK regulates vascular function under physiological and pathophysiological conditions. © 2017 American Heart Association, Inc.
Recent findings in cardiovascular physiology with space travel.
Hughson, Richard L
2009-10-01
The cardiovascular system undergoes major changes in stress with space flight primarily related to the elimination of the head-to-foot gravitational force. A major observation has been that the central venous pressure is not elevated early in space flight yet stroke volume is increased at least early in flight. Recent observations demonstrate that heart rate remains lower during the normal daily activities of space flight compared to Earth-based conditions. Structural and functional adaptations occur in the vascular system that could result in impaired response with demands of physical exertion and return to Earth. Cardiac muscle mass is reduced after flight and contractile function may be altered. Regular and specific countermeasures are essential to maintain cardiovascular health during long-duration space flight.
Shao, Hui; Fonseca, Vivian; Stoecker, Charles; Liu, Shuqian; Shi, Lizheng
2018-05-03
There is an urgent need to update diabetes prediction, which has relied on the United Kingdom Prospective Diabetes Study (UKPDS) that dates back to 1970 s' European populations. The objective of this study was to develop a risk engine with multiple risk equations using a recent patient cohort with type 2 diabetes mellitus reflective of the US population. A total of 17 risk equations for predicting diabetes-related microvascular and macrovascular events, hypoglycemia, mortality, and progression of diabetes risk factors were estimated using the data from the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial (n = 10,251). Internal and external validation processes were used to assess performance of the Building, Relating, Assessing, and Validating Outcomes (BRAVO) risk engine. One-way sensitivity analysis was conducted to examine the impact of risk factors on mortality at the population level. The BRAVO risk engine added several risk factors including severe hypoglycemia and common US racial/ethnicity categories compared with the UKPDS risk engine. The BRAVO risk engine also modeled mortality escalation associated with intensive glycemic control (i.e., glycosylated hemoglobin < 6.5%). External validation showed a good prediction power on 28 endpoints observed from other clinical trials (slope = 1.071, R 2 = 0.86). The BRAVO risk engine for the US diabetes cohort provides an alternative to the UKPDS risk engine. It can be applied to assist clinical and policy decision making such as cost-effective resource allocation in USA.
21 CFR 101.14 - Health claims: general requirements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... of the body such that it does not function properly (e.g., cardiovascular disease), or a state of... relationship of any substance to a disease or health-related condition. Implied health claims include those... and a disease or health-related condition. (2) Substance means a specific food or component of food...
78 FR 77137 - Agency Information Collection Activities: Proposed Collection: Public Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-20
.... Other measures will account for secondary conditions common to miners (e.g., cardiovascular disease) and... associated with occupationally-related coal mine dust lung disease. Primary services provided for active... reducing the morbidity of coal mine dust lung disease (CMDLD) and secondary conditions; enhancing access to...
GUI Type Fault Diagnostic Program for a Turboshaft Engine Using Fuzzy and Neural Networks
NASA Astrophysics Data System (ADS)
Kong, Changduk; Koo, Youngju
2011-04-01
The helicopter to be operated in a severe flight environmental condition must have a very reliable propulsion system. On-line condition monitoring and fault detection of the engine can promote reliability and availability of the helicopter propulsion system. A hybrid health monitoring program using Fuzzy Logic and Neural Network Algorithms can be proposed. In this hybrid method, the Fuzzy Logic identifies easily the faulted components from engine measuring parameter changes, and the Neural Networks can quantify accurately its identified faults. In order to use effectively the fault diagnostic system, a GUI (Graphical User Interface) type program is newly proposed. This program is composed of the real time monitoring part, the engine condition monitoring part and the fault diagnostic part. The real time monitoring part can display measuring parameters of the study turboshaft engine such as power turbine inlet temperature, exhaust gas temperature, fuel flow, torque and gas generator speed. The engine condition monitoring part can evaluate the engine condition through comparison between monitoring performance parameters the base performance parameters analyzed by the base performance analysis program using look-up tables. The fault diagnostic part can identify and quantify the single faults the multiple faults from the monitoring parameters using hybrid method.
Cardiac 3D Printing and its Future Directions.
Vukicevic, Marija; Mosadegh, Bobak; Min, James K; Little, Stephen H
2017-02-01
Three-dimensional (3D) printing is at the crossroads of printer and materials engineering, noninvasive diagnostic imaging, computer-aided design, and structural heart intervention. Cardiovascular applications of this technology development include the use of patient-specific 3D models for medical teaching, exploration of valve and vessel function, surgical and catheter-based procedural planning, and early work in designing and refining the latest innovations in percutaneous structural devices. In this review, we discuss the methods and materials being used for 3D printing today. We discuss the basic principles of clinical image segmentation, including coregistration of multiple imaging datasets to create an anatomic model of interest. With applications in congenital heart disease, coronary artery disease, and surgical and catheter-based structural disease, 3D printing is a new tool that is challenging how we image, plan, and carry out cardiovascular interventions. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Resource management in cardiovascular engineering: is outsourcing the solution?
Feyrer, Richard; Weyand, Michael; Kunzmann, Udo
2005-09-01
In recent years, modern medicine has changed considerably. At maximum care centers, in particular, the use of state-of-the-art medical equipment has become an essential part of patient care. HoWever, using such high-tech products also means a considerable burden on the financial resources available, because additional financing is rare. Consequently, there is a need for approaches that allow the use of state-of-the-art equipment without straining the budget unduly. The question now is whether economic strategies that have long since been established in other industries, e.g., the outsourcing of certain services, represent a potential solution for the economic problems of modern clinics. The fundamentals of outsourcing and its pros and cons are outlined and discussed, taking cardiovascular perfusion as an example, a cost-intensive field of heart surgery that is responsible for attending to heart-lung machines, artificial hearts and circulatory support systems.
Cardiac 3D Printing and Its Future Directions
Vukicevic, Marija; Mosadegh, Bobak; Min, James K.; Little, Stephen H.
2017-01-01
3D printing is at the crossroads of printer and materials engineering; non-invasive diagnostic imaging; computer aided design (CAD); and structural heart intervention. Cardiovascular applications of this technology development include the use of patient-specific 3D models for medical teaching, exploration of valve and vessel function, surgical and catheter-based procedural planning, and early work in designing and refining the latest innovations in percutaneous structural devices. In this review we discuss the methods and materials being used for 3D printing today. We discuss the basic principles of clinical image segmentation including co-registration of multiple imaging datasets to create an anatomic model of interest. With applications in congenital heart disease, coronary artery disease, and in surgical and catheter-based structural disease – 3D printing is a new tool that is challenging how we image, plan, and carry out cardiovascular interventions. PMID:28183437
RL10 ignition limits test for Shuttle Centaur
NASA Technical Reports Server (NTRS)
1987-01-01
During routine development testing of the RL10A-3-3B engine a potential no-ignition condition was encountered when operating at certain propellant inlet conditions within the Shuttle Centaur G operating region. The conditions, the resulting investigative program, and methods to correct the potential problem are discussed. The Shuttle Centaur program was cancelled prior to completion of this effort. Although the RL10 engine in the Atlas Centaur vehicle is required by specification to operate over a wide range of propellant inlet conditions. The vehicle actually operates over a narrow range of conditions. This factor, combined with configuration differences between Atlas Centaur (or Titan Centaur) and the Shuttle Centaur RL10 engines, indicates the ignition problem does not exist for these vehicles. As a precautionary measure the vehicle manufacturer was requested to coordinate with Pratt and Whitney any anticipated changes in propellant inlet conditions from the current narrow range. An engineering change will be proposed for future RL10 deliveries to provide more consistent propellant flow to the igniter. This will permit operation of the engine throughout the wide range specification inlet conditions if desired.
[Air pollution and cardiovascular toxicity: known risks].
Kostrzewa, A; Filleul, L; Eilstein, D; Harrabi, I; Tessier, J F
2004-03-01
Review of studies about epidemiological and physiopathological knowledge of ambient air particles short-term cardio-vascular effects. CURRENTS AND STRONG POINTS: Many studies, in contrasted countries for pollution's sources, meteorological conditions or socio-demographical characteristics, have shown health effects due to ambient air particles. After having studied mainly the respiratory effects of particulate air pollution, epidemiologists are now interested in the cardio-vascular effects of ambient air particles. In fact, serious effects seem to exist in fragile people which can get to emergency department visits, hospitalisation and even death. In addition, studies have shown less serious effects, but likely to be frequent (cardiac symptoms, and stoppages for cardio-vascular causes, notably). The exact mechanism by which particles have cardio-vascular adverse health effects is unknown, but experimental and epidemiological studies have led to several hypotheses: local pulmonary effects seem to be followed by systemic effects, which would be responsible for effects on the electrical activity of the heart through cardiac autonomic dysfunction and effects on the blood supply to the heart. The objective of this work is to summarise epidemiological and physiopathological knowledge about the cardio-vascular effects of ambient air particles. To evaluate the real importance of cardio-vascular effects due to particulate air pollution and to identify their exact mechanism, a more precise knowledge of detailed causes of deaths and hospitalisations and a better knowledge of less serious effects, but likely to be frequent, is necessary. Equally, a detailed identification of fragile people is essential for developing preventive actions.
Contraceptive Hormone Use and Cardiovascular Disease
Shufelt, Chrisandra L.; Noel Bairey Merz, C.
2009-01-01
Contraceptive hormones, most commonly prescribed as oral contraceptives (OC), are a widely utilized method to prevent ovulation, implantation and therefore pregnancy. The Women’s Health Initiative demonstrated cardiovascular risk linked to menopausal hormone therapy among women without pre-existing cardiovascular disease, prompting review of the safety, efficacy and side effects of other forms of hormone therapy. A variety of basic science, animal and human data suggest that contraceptive hormones have anti-atheromatous effects, however relatively less is known regarding the impact on atherosclerosis, thrombosis, vasomotion and arrhythmogenesis. Newer generation OC formulations currently in use indicate no increased myocardial infarction (MI) risk for current users, but a persistent increased risk of venous thrombo-embolism (VTE). There are no cardiovascular data available for the newest generation contraceptive hormone formulations, including those that contain newer progestins that lower blood pressure, as well as the non-oral routes (topical and vaginal). Current guidelines indicate that, as with all medication, contraceptive hormones should be selected and initiated by weighing risks and benefits for the individual patient. Women 35 years and older should be assessed for cardiovascular risk factors including hypertension, smoking, diabetes, nephropathy and other vascular diseases including migraines, prior to use. Existing data are mixed with regard to possible protection from OC for atherosclerosis and cardiovascular events; longer-term cardiovascular follow-up of menopausal women with regard to prior OC use, including subgroup information regarding adequacy of ovulatory cycling, the presence of hyperandrogenic conditions, and the presence of prothrombotic genetic disorders is needed to address this important issue. PMID:19147038
Cannabis Smoking and Cardiovascular Health: It's Complicated.
Piano, M R
2017-08-01
Many states have legalized cannabis use for treatment of certain medical conditions or have legalized cannabis for recreational use. Consequently, cannabis use prevalence has escalated, giving rise to concerns about potential health effects. Cannabis smoking remains the most prevalent route of administration and is associated with inhalation of chemical toxicants. The aim of this article is to summarize the effects of cannabis smoking on the vasculature and occurrence of cardiovascular (CV) events such as myocardial infarction (MI) and stroke. © 2017 American Society for Clinical Pharmacology and Therapeutics.
Observation of arterial blood pressure of the primate
NASA Technical Reports Server (NTRS)
Meehan, J. P.; Henry, J. P.
1973-01-01
The developments are reported in physiological instrumentation, surgical procedures, measurement and data analysis techniques, and the definition of flight experiments to determine the effects of prolonged weightlessness on the cardiovascular system of subhuman primates. The development of an implantable telemetric data acquisition system is discussed along with cardiovascular research applications in renal hemodynamics. It is concluded that the implant technique permits a valid interpretation, free of emotional response, for the manipulated variable on physiological functions. It also allows a better definition of normal physiological baseline conditions.
[Features of cardiologic diseases prevalence among individuals engaged into geology].
Zinenko; Petrichenko, S I; Miroshnikov, M P; Dasaeva, L A; Vermel', A E
2005-01-01
The authors studied influence of work and living conditions on geologists' health state. A cohort under study demonstrated paradoxical epidemiologic situation with high mortality risk of arterial hypertension, whereas prevalence of this disease among specialists working on expeditionary shifted mode is nearly equal to that among general population. Unfavorable situation concerning cardiovascular diseases could be caused by high prevalence of cardiovascular risks and some occupational hazards. The situation is deteriorated by insufficient medical observation and psychologic traits of the specialists working on expeditionary shifted mode.
Dzhuraeva, L A; Sadykova, Kh A; Maslova, G V
1989-01-01
Medical and pedagogical observation performed during hours of therapeutic exercise in groups of cardiovascular and respiratory diseases patients proved a beneficial effect of music accompaniment. This was most efficient when started from the very onset of the exercise course for the former group of patients and from the second week of the exercise course for the latter patients. It is stated that music should be used differentially at different stages of hospital conditioning.
Cardiovascular hoarseness: an unusual presentation to otolaryngologists.
Fennessy, B G; Sheahan, P; McShane, D
2008-03-01
We discuss the case of a 73-year-old woman with a six-month history of hoarseness secondary to an aortic arch pseudoaneurysm. We present the findings of an extensive review of the literature relating to cardiovascular disorders involving the recurrent laryngeal nerve (i.e. Ortner's syndrome). Ortner's syndrome, also known as cardiovocal syndrome, is a rare condition, with few reports in the literature. This is only the second documented case of Ortner's syndrome in Great Britain and Ireland, and the first demonstrating an aortic pseudoaneurysm.
NASA Technical Reports Server (NTRS)
1993-01-01
In the mid-sixties, Gary Graham, a Boeing designer, developed a cardiovascular conditioner for a planned Air Force orbiting laboratory. After the project was cancelled, Graham participated in space station conditioning studies for the Skylab program. Twenty years later, he used this expertise to develop the Shuttle 2000-1, a physical therapy and athletic development conditioner, available through Contemporary Designs. The machine is used by football teams, sports clinics and medical rehabilitation centers. Cardiovascular fitness and muscular strength development are promoted through both kinetic and plyometric exercises.
NASA Astrophysics Data System (ADS)
Merkisz, Jerzy; Lijewski, Piotr; Fuć, Paweł
2011-06-01
The tests performed under real traffic conditions provide invaluable information on the relations between the engine parameters, vehicle parameters and traffic conditions (traffic congestion) on one side and the exhaust emissions on the other. The paper presents the result of road tests obtained in an urban and extra-urban cycles for vehicles fitted with different engines, spark ignition engine and compression ignition engine. For the tests a portable emission analyzer SEMTECH DS. by SENSORS was used. This analyzer provides online measurement of the concentrations of exhaust emission components on a vehicle in motion under real traffic conditions. The tests were performed in city traffic. A comparative analysis has been presented of the obtained results for vehicles with individual powertrains.
McGaw, Iain J; McMahon, Brian R
2003-01-01
Decapod crustaceans inhabit aquatic environments that are frequently subjected to changes in salinity and oxygen content. The physiological responses of decapod crustaceans to either salinity or hypoxia are well documented; however, there are many fewer reports on the physiological responses during exposure to these parameters in combination. We investigated the effects of simultaneous and sequential combinations of low salinity and hypoxia on the cardiovascular physiology of the Dungeness crab, Cancer magister. Heart rate, as well as haemolymph flow rates through the anterolateral, hepatic, sternal and posterior arteries were measured using a pulsed-Doppler flowmeter. Summation of flows allowed calculation of cardiac output and division of this by heart rate yielded stroke volume. When hypoxia and low salinity were encountered simultaneously, the observed changes in cardiac properties tended to be a mix of both factors. Hypoxia caused a bradycardia, whereas exposure to low salinity was associated with a tachycardia. However, the hypoxic conditions had the dominant effect on heart rate. Although hypoxia caused an increase in stroke volume of the heart, the low salinity had a more pronounced effect, causing an overall decrease in stroke volume. The patterns of haemolymph flow through the arterial system also varied when hypoxia and low salinity were offered together. The resulting responses were a mix of those resulting from exposure to either parameter alone. When low salinity and hypoxia were offered sequentially, the parameter experienced first tended to have the dominant effect on cardiac function and haemolymph flows. Low salinity exposure was associated with an increase in heart rate, a decrease in stroke volume and cardiac output, and a concomitant decrease in haemolymph flow rates. Subsequent exposure to hypoxic conditions caused a slight decrease in rate, but other cardiovascular variables were largely unaffected. In contrast, when low salinity followed acclimation to hypoxic conditions, apart from an increased heart rate, there were no other cardiovascular changes associated with the low salinity episode. The implications of these changes in cardiovascular dynamics are discussed in relation to physiological mechanisms and the ecology of decapod crustaceans, in hypoxic or low salinity environments. Copyright 2003, Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Budhwani, Karim Ismail
The tremendous quality of life impact notwithstanding, cardiovascular diseases and Cancer add up to over US$ 700bn each year in financial costs alone. Aging and population growth are expected to further expand the problem space while drug research and development remain expensive. However, preclinical costs can be substantially mitigated by substituting animal models with in vitro devices that accurately model human cardiovascular transport. Here we present a novel physiologically relevant lab-on-a-brane that simulates in vivo pressure, flow, strain, and shear waveforms associated with normal and pathological conditions in large and small blood vessels for studying molecular transport across the endothelial monolayer. The device builds upon previously demonstrated integrated microfluidic loop design by: (a) introducing nanoscale pores in the substrate membrane to enable transmembrane molecular transport, (b) transforming the substrate membrane into a nanofibrous matrix for 3D smooth muscle cell (SMC) tissue culture, (c) integrating electrospinning fabrication methods, (d) engineering an invertible sandwich cell culture device architecture, and (e) devising a healthy co-culture mechanism for human arterial endothelial cell (HAEC) monolayer and multiple layers of human smooth muscle cells (HSMC) to accurately mimic arterial anatomy. Structural and mechanical characterization was conducted using confocal microscopy, SEM, stress/strain analysis, and infrared spectroscopy. Transport was characterized using FITC-Dextran hydraulic permeability protocol. Structure and transport characterization successfully demonstrate device viability as a physiologically relevant arterial mimic for testing transendothelial transport. Thus, our lab-on-a-brane provides a highly effective and efficient, yet considerably inexpensive, physiologically relevant alternative for pharmacokinetic evaluation; possibly reducing animals used in pre-clinical testing, clinical trials cost from false starts, and time-to-market. Furthermore, this platform can be easily configured for testing targeted therapeutic delivery and in multiple simultaneous arrays for personalized and precision medicine applications.
Thermodynamic Modeling and Analysis of Human Stress Response
NASA Technical Reports Server (NTRS)
Boregowda, S. C.; Tiwari, S. N.
1999-01-01
A novel approach based on the second law of thermodynamics is developed to investigate the psychophysiology and quantify human stress level. Two types of stresses (thermal and mental) are examined. A Unified Stress Response Theory (USRT) is developed under the new proposed field of study called Engineering Psychophysiology. The USRT is used to investigate both thermal and mental stresses from a holistic (human body as a whole) and thermodynamic viewpoint. The original concepts and definitions are established as postulates which form the basis for thermodynamic approach to quantify human stress level. An Objective Thermal Stress Index (OTSI) is developed by applying the second law of thermodynamics to the human thermal system to quantify thermal stress or dis- comfort in the human body. The human thermal model based on finite element method is implemented. It is utilized as a "Computational Environmental Chamber" to conduct series of simulations to examine the human thermal stress responses under different environmental conditions. An innovative hybrid technique is developed to analyze human thermal behavior based on series of human-environment interaction simulations. Continuous monitoring of thermal stress is demonstrated with the help of OTSI. It is well established that the human thermal system obeys the second law of thermodynamics. Further, the OTSI is validated against the experimental data. Regarding mental stress, an Objective Mental Stress Index (OMSI) is developed by applying the Maxwell relations of thermodynamics to the combined thermal and cardiovascular system in the human body. The OMSI is utilized to demonstrate the technique of monitoring mental stress continuously and is validated with the help of series of experimental studies. Although the OMSI indicates the level of mental stress, it provides a strong thermodynamic and mathematical relationship between activities of thermal and cardiovascular systems of the human body.
NASA Technical Reports Server (NTRS)
1986-01-01
Engineering Development Laboratory developed a system for the cardiovascular study of weightless astronauts. This was designed to aid people with congestive heart failure and diabetes. While in space, astronauts' blood pressure rises, heart rate becomes unstable, and there are sometimes postflight lightheadedness or blackouts. The Baro-Cuff studies the resetting of blood pressure. When a silicone rubber chamber is strapped to the neck, the Baro-Cuff stimulates the carotid arteries by electronically controlled pressure application. Blood pressure controls in patients may be studied.
Hiebl, B; Hopperdietzel, C; Hünigen, H; Jung, F; Scharnagl, N
2013-01-01
Despite considerable efforts in biomaterial development there is still a lack on substrates for cardiovascular tissue engineering approaches which allow the establishment of a tight a functional endothelial layer on their surface to provide hemocompatibility. The study aimed to test the biocompatibility of a silicon (Si14)-based coating substrate (Supershine Medicare, Permanon) which was designed to resist temperatures from -40°C up to 300°C and which allows the use of established heat-inducing sterilization techniques respectively. By X-ray photoelectron spectroscopy it could be validated that this substrate is able to establish a 40-50 nm thick layer of silica, oxygen and carbon without including any further elements from the substrate on an exemplary selection of materials (silicone, soda-lime-silica glass, stainless steel). Analysis of the LDH-release, the cell activity/proliferation (MTS assay) and the cell phenotype after growing 3T3 cells with extracts of the coated materials did not indicate any signs of cytotoxicity. Additionally by measuring the C5a release after exposure of the coated materials with human serum it could be demonstrated, that the coating had no impact on the activation of the complement system. These results generally suggest the tested substrate as a promising candidate for the coating of materials which are aimed to be used in cardiovascular tissue engineering approaches.
Technician Career Opportunities in Engineering Technology.
ERIC Educational Resources Information Center
Engineers' Council for Professional Development, New York, NY.
Career opportunities for engineering technicians are available in the technologies relating to air conditioning, heating, and refrigeration, aviation and aerospace, building construction, chemical engineering, civil engineering, electrical engineering, electronics, industrial engineering, instrumentation, internal combustion engines, mechanical…
[Evaluative study of medical-care costs in primary care].
Brotons Cuixart, Carlos; Moral Peláez, Irene; Pitarch Salgado, Marc; Sellarès Sallas, Jaume; Bohigas Santasusagna, Lluís; da Pena Alvarez, José Manuel
2007-09-01
To estimate the real costs of medical care by diagnostic groups at a primary care centre. Descriptive, retrospective study, based on the review of computerized medical records. Urban primary care centre (PCC). All patients who attended the PCC during 2005. Mean medical care cost per visit in euros, broken down for health professionals, diagnostic procedures and drugs costs, and stratified by diagnostic groups. The most frequent visits were for pulmonary, locomotor, cardiovascular, and gastro-intestinal conditions. The mean number of visits per patient attended was 8.7 (SD, 9.4); and per patient registered at the centre, 5.9 (8.7). The highest costs were for cardiovascular (18.96%; 95% CI, 18.93%-18.99%), locomotor (11.21%; 95% CI, 11.18%-11.23%), psychological (10.69%, 95% CI, 10.66%-10.71%), pulmonary (10.20%; 95% CI, 10.17%-10.22%) and endocrinal-nutritional (9.61%; 95% CI, 9.58%-9.63%) problems. Drugs expenditure accounted for 65% of the total cost; visits to health professionals, for 33%; and procedures, for 2%. Overall cost per inhabitant was 239.1 (493.6) euros, and per patient attended was 349.5 (563.5). Cardiovascular disease conditions are much the most costly ones in terms of overall medical cost. Psychological conditions are located in second place in terms of pharmaceutical cost; and in third place, in terms of overall medical-care cost.
The Epidemiology of Uric Acid and Fructose
Rho, Young Hee; Zhu, Yanyan; Choi, Hyon K.
2011-01-01
During the past few decades, the mean serum uric acid levels and the prevalence of hyperuricemia in the general population appear to have increased. Correspondingly, the prevalence and incidence of gout have doubled. Potential reasons behind these trends include the increasing prevalence of obesity and metabolic syndrome, western life-style factors, increased prevalence of medical conditions (e.g. renal conditions, hypertension, and cardiovascular disorders) and use of medications that increase uric acid levels (e.g. diuretics and low-dose aspirin). The substantial increase in sugar-sweetened soft drinks and associated fructose consumption has also coincided with the secular trend of hyperuricemia and gout. Recently, several large-scale epidemiologic studies have clarified a number of these long-suspected risk factors in relation with hyperuricemia and gout. Furthermore, recent studies have illuminated the substantial comorbidities of hyperuricemia and gout, particularly metabolic-cardiovascular-renal conditions. While many prospective studies have suggested an independent association between serum uric acid levels and the future risk of cardiovascular-metabolic morbidities and mortality, only a limited number of randomized clinical trials and observational studies have recently demonstrated that the use of allopurinol can be beneficial against these outcomes. As these data are scarce and the effects of allopurinol might not be limited to lowering serum uric acid levels, the potential causal role of uric acid on these outcomes remains to be clarified with further studies. PMID:22000647
Deuchars, Susan A; Lall, Varinder K; Clancy, Jennifer; Mahadi, Mohd; Murray, Aaron; Peers, Lucy; Deuchars, Jim
2018-03-01
What is the topic of this review? This review briefly considers what modulates sympathetic nerve activity and how it may change as we age or in pathological conditions. It then focuses on transcutaneous vagus nerve stimulation, a method of neuromodulation in autonomic cardiovascular control. What advances does it highlight? The review considers the pathways involved in eliciting the changes in autonomic balance seen with transcutaneous vagus nerve stimulation in relationship to other neuromodulatory techniques. The autonomic nervous system, consisting of the sympathetic and parasympathetic branches, is a major contributor to the maintenance of cardiovascular variables within homeostatic limits. As we age or in certain pathological conditions, the balance between the two branches changes such that sympathetic activity is more dominant, and this change in dominance is negatively correlated with prognosis in conditions such as heart failure. We have shown that non-invasive stimulation of the tragus of the ear increases parasympathetic activity and reduces sympathetic activity and that the extent of this effect is correlated with the baseline cardiovascular parameters of different subjects. The effects could be attributable to activation of the afferent branch of the vagus and, potentially, other sensory nerves in that region. This indicates that tragus stimulation may be a viable treatment in disorders where autonomic activity to the heart is compromised. © 2017 The Authors. Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.